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Preface

This book is an extended revision of Modelling Irregularly Spaced Financial Data —
Theory and Practice of Dynamic Duration Models (Hautsch 2004) which has been
written as a doctoral dissertation at the Department of Economics at the University
of Konstanz. Six years later, when I started thinking about a second edition of this
book accounting for recent developments in the area of high-frequency finance,
I realized that an extension of the scope of the book and the inclusion of more topics
and material are inevitable. Given the developments in high-frequency finance, the
number of new approaches and the current challenges induced by technological
progress in market structures as well as in the trading industry, I decided to change
the title of the book, to revise and restructure existing material and to include
additional topics resulting in a new monography.

Compared to Hautsch (2004), the list of topics has been extended, among
others, by various types of univariate and multivariate multiplicative error models,
autoregressive count data approaches, dynamic specifications for integer-valued
variables as well as models for quote dynamics. Moreover, different approaches
to quantify intraday volatility are discussed involving realized volatility measures,
trade-based volatility concepts, and intensity-based measures. A further focus lies
on the modeling of liquidity and order book dynamics. Finally, institutional settings,
market structures, issues of data preparation, preprocessing, and implementation
pitfalls as well as illustrations of the empirical properties of high-frequency data are
discussed more extensively and thoroughly using updated data from trading at the
New York Stock Exchange, NASDAQ and the Deutsche Borse.

The book is intended for researchers interested in methods, approaches and
applications in the area of high-frequency econometrics. Moreover, it is written for
students and scholars covering this subject, for instance, in a course on financial
econometrics, financial statistics, or empirical finance. Students using the book
should have a basic knowledge in mathematical statistics, time series analysis, and
econometric estimation theory. Finally, the book addresses the needs of financial
practitioners who require statistical methods to model and predict high-frequency
market processes as well as intraday volatility and liquidity dynamics.
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viii Preface

Needless to say that a book focusing on a rapidly developing and growing field,
such as high-frequency financial econometrics, is never complete and entirely up-
to-date. Moreover, it is impossible to cover all specific topics, approaches, and
applications. Furthermore, it is obvious that each topic could be addressed in
more depth both from a methodological (and mathematical) viewpoint and from
an applied side. In fact, some of the topics, such, for instance, the concept of
realized volatility, are only touched without going into deep mathematical details.
Therefore, I tried to find a compromise between elaborateness, compactness, and
topical broadness.

I wish to thank Axel GroB-KluBmann, Gustav Haitz, Ruihong Huang, Peter
Malec, and Stefanie Schulz for helpful comments, proof reading, and editing work.
Moreover, I am grateful to many colleagues, coworkers and coauthors for inspiring
discussions and joint work building the basis for many aspects and topics covered
in this book. In this context, I wish to express my special gratitude to Luc Bauwens,
Wolfgang Hirdle, Anthony Hall, Lada Kyj, Roel Oomen, Mark Podolskij, and
Melanie Schienle.

Last but not least, I would like to thank my family. I am exceptionally indebted to
my wonderful wife Christiane. Without her love, support, and encouragement, this
book could not have been written. I also wish to thank my children Elias and Emilia
for providing refreshing and valuable distraction from research and writing a book.

Berlin Nikolaus Hautsch
May 2011
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Chapter 1
Introduction

1.1 Motivation

The availability of financial data recorded on high-frequency level has inspired a
research area which over the last decade emerged to a major area in econometrics
and statistics. The growing popularity of high-frequency econometrics is triggered
by technological progress in trading systems and trade recording as well as an
increasing importance of intraday trading, optimal trade execution, order placement
and liquidity dynamics. Technological progress and the growing dominance of
electronic trading allows to record market activity on high frequency and with
high precision leading to advanced and comprehensive data sets. The informational
limiting case is reached when all market events, e.g., in form of order messages, are
recorded. Such recording schemes result in data bases which are even more detailed
than transaction data and allow to reproduce the entire order flow as well as the
underlying order book.

A major reason for the academic as well as practical interest in high-frequency
finance is that market structures and the process of trading are subject to ongoing
changes. This process is induced by technological progress, further developments
in trading systems, increasing competition between exchanges and a strong increase
in intraday trading activity. The introduction of electronic trading platforms have
automatized and speeded up trade execution as well as trade reporting and allow
investors to automatize trading strategies, order routing and real-time order man-
agement. Particularly the launch of alternative trading systems, e.g., in form of
electronic communication networks (ECNs), challenges traditional and established
exchanges, induces mergers and take-offers and increases the competition for
liquidity. As a consequence, trading costs declined and the speed of trading and
order submission substantially increased over the last decade. In blue chip assets,
traded, for instance, at the NASDAQ, we can nowadays easily observe more than
100,000 transactions per day. Moreover, competition between exchanges and ECNs
creates a greater variety in trading forms, rules and institutional settings challenging
economic theory as well as econometric modelling.

N. Hautsch, Econometrics of Financial High-Frequency Data, 1
DOI 10.1007/978-3-642-21925-2_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

Transaction and limit order book data, as provided by various exchanges and
trading platforms, create strong academic interest as they allow to analyze the
impact of institutional settings on the trading process, price discovery as well as the
market outcome and enable to study market dynamics and traders’ behavior on the
lowest possible aggregation level. Monitoring asset prices as well as liquidity supply
and demand on a maximally high observation frequency opens up possibilities to
construct more efficient estimators and predictors for price volatility, time-varying
correlation structures as well as liquidity risks. Modelling limit order books on high
frequencies provide insights into the interplay between liquidity supply and demand,
execution risks, traders’ order submission strategies and the market impact of order
placements. Addressing these issues requires the development and application of
econometric models which are tailor-made for specific data and research tasks.

Methods and models for high-frequency data are also of growing importance
in financial industry. Important tasks in financial practice are high-frequency
predictions of trading volume, volatility, market depth, bid-ask spreads and trading
costs to optimize order placement and order execution with minimal price impact
and transaction costs. Moreover, econometric and statistical techniques are required
to quantify dynamic interdependencies between order flow, volatility and liquidity
as well as between markets and assets. Finally, from a regulation viewpoint,
(ih)liquidity risks, intraday price risks and the consequences of automated high-
frequency trading for market outcomes are not fully understood yet and require
ongoing empirical investigations.

High-frequency data embody distinct properties which challenge econometric
and statistical modelling. One major feature of transaction data is the irregular
spacing in time. The question of how this salient property should be treated in
an econometric model is not obvious. Indeed, the time between market events
carries information and is a valuable economic variable serving as a measure of
trading activity and affects price and volume behavior. Accounting for the timing
of market events requires to consider the data statistically as point processes. Point
processes characterize the random occurrence of single events along the time axis in
dependence of observable characteristics and of the process history. The importance
of point process models in financial econometrics has been discussed for the first
time by the 2003 Nobel laureate Robert F. Engle on the 51th European Meeting of
the Econometric Society in Istanbul, 1996. His paper, which is published under
Engle (2000), can be regarded as the starting point for a fast growing body of
research in high-frequency financial econometrics.

A further important property of financial high-frequency data is the discreteness
of prices, quotes, bid-ask spreads or, e.g., trade counts in fixed intervals. More-
over, most high-frequency variables are positive-valued, positively autocorrelated,
strongly persistent and follow distinct intraday periodicities. Finally, trading and
order book processes are inherently high-dimensional and reveal complex multi-
variate dynamic structures. To capture these properties, new types of econometric
models are developed combining features of (multivariate) time series models,
microeconometric, e.g., categorical, approaches, point process models as well as
factor specifications.
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The objective of this book is to provide a state-of-the art overview of the most
important approaches in high-frequency econometrics. A major aim is to discuss
implementation details including insights into properties of high-frequency data
and institutional settings and to present applications to volatility and liquidity
estimation, order book modelling and market microstructure analysis.

An important task of successful high-frequency modelling is to appropriately
capture the dynamics in the data. In this context, autoregressive conditional mean
models play a dominant role in the literature. The underlying principle is to
model the conditional mean as an autoregressive process which is updated based
on observation driven or parameter driven innovations. If the conditional mean
function multiplicatively interacts with positive-valued error terms, the class of
multiplicative error models (MEMs) — named according to Engle (2002) — is
obtained. These specifications are popular to model the dynamics of continuous
positive-valued random variables, such as trade-to-trade durations, trading volumes
or market depth. They have been originally introduced by Engle and Russell (1997,
1998) in form of the autoregressive conditional duration (ACD) model to capture
the dynamics of trade-to-trade durations. Alternatively, autoregressive specifications
of the (conditional) mean of count data distributions yield a class of autoregressive
count data models, as, e.g., the Autoregressive Conditional Poisson (ACP) model.
As illustrated in this book, this class of models is readily modified to capture non-
linearities in dynamics, long range dependence, explanatory variables as well as
intraday seasonalities and can be extended to multivariate settings.

A further methodological focus lies on dynamic models for the (stochastic)
intensity function. The latter is a central concept in the theory of point processes
and is defined as the instantaneous rate of occurrence given the process history and
observable factors. The intensity function describes a point process in continuous
time and thus allows to account for events and information arrival occurring at any
point in time, as in the case of time-varying covariates or induced by the arrival of
other point processes. As illustrated in this book, dynamic intensity processes can
be either specified as so-called self-exciting intensity processes, where the intensity
is driven by functions of the backward recurrence time to all previous points, or as
time series specifications where the intensity function follows a dynamic structure
that is updated at each occurrence of a new point. For instance, multivariate intensity
processes can be used to model order arrival processes in continuous time or to study
multivariate instantaneous price change intensities.

Moreover, to reduce the dimensionality of multivariate trading processes or
order book dynamics, factor-based approaches play an increasingly important role.
For instance, latent dynamic factor models are applied to capture commonalities
in market processes stemming from a common underlying unobservable factor.
Alternatively, multi-factor models are used to model order book dynamics and time-
varying order book curves.

These types of models, applications thereof and corresponding empirical evi-
dence will be discussed in more detail in the sequel of this book.
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1.2 Structure of the Book

Chapter 2 provides insights into trading rules, trading forms and institutional
settings. We discuss different forms of trading, most importantly quote-driven
markets vs. order-driven markets, and present typical order precedence and pricing
rules. As an illustration, we show the institutional settings of selected international
exchanges. Moreover, the chapter gives a compact overview on major branches in
market microstructure theory. We briefly explain the main principles underlying
sequential trade and strategic trade models, inventory-based approaches as well as
models for limit order markets.

Chapter 3 discusses the different types of high-frequency data and illustrates
preparation and processing steps as well as potential pitfalls and problems which
should be taken into account. In this context, the concept of so-called financial
durations arising from aggregations based on specific trading events is introduced.
Here, we consider the (multivariate) point process describing the complete trading
process of a financial asset over a given time span. By systematically selecting
individual points of this process, different types of financial duration processes, such
as trade-to-trade durations or price change durations are generated.

The major part of the chapter focuses on the presentation and discussion of the
major empirical properties of different types of high-frequency variables, such as
returns, trading intensities, volatilities, trading volumes, bid-ask spreads and market
depth based on different aggregation levels. The illustrations are based on blue chip
stocks traded at the New York Stock Exchange (NYSE), NASDAQ and XETRA.

Chapter 4 introduces to the theory of point processes and provides methodolog-
ical background. The main focus lies on the intensity function and the integrated
intensity function as the key concepts to describe point processes in a continuous-
time framework. We briefly review their statistical properties and show how to
perform intensity-based inference. By concentrating on a non-dynamic framework,
we illustrate the basic statistical concepts and discuss different ways to model point
processes. In this context, we review different possibilities to classify point process
models. This leads to a distinction between proportional intensity (PI) models
and accelerated failure time (AFT) models as well as a classification in intensity
models, duration models and count data approaches. These different classes of point
processes build the basis for dynamic extensions considered in the remainder of the
book.

In Chap. 5, we present the most common type of dynamic duration model, the
autoregressive conditional duration (ACD) model proposed by Engle and Russell
(1998) which is equivalent to a multiplicative error model (MEM) for durations. It
allows to model autocorrelated durations in a discrete-time framework and combines
elements of GARCH specifications with features of duration models. We discuss the
statistical properties of the basic (linear) ACD model, illustrate how to estimate it
using (quasi) maximum likelihood and how to account for explanatory variables
and intraday periodicities. Moreover, as the most important alternative to a linear
specification, we present a logarithmic ACD model, as proposed by Bauwens
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and Giot (2000), which does not require explicit non-negativity restrictions of the
parameters and allows to apply quasi maximum likelihood techniques as well.

A major part of the chapter is devoted to specification tests for ACD models. We
discuss various tests against distributional and dynamical misspecification including
Portmanteau tests and independence tests for ACD residuals, nonparametric dis-
tribution tests as well as Lagrange multiplier tests and conditional moment tests.
The latter are designed to test for misspecifications of the functional form and thus
violations of the conditional mean restriction implied by the ADC model.

Empirical evidence, however, shows that in most applications, linear multiplica-
tive error models are too restrictive to sufficiently fit the data. This has given birth to
a plethora of papers extending the linear MEM/ACD model in various directions. In
Chap. 6, we show generalizations of basic MEMs which can be presented in terms of
a generalized polynomial random coefficient model according to Carrasco and Chen
(2002). Moreover, we illustrate several other types of MEM/ACD models including
(smooth) transition ACD models, Markov Switching ACD specifications and ACD
models accommodating for long range dependence in the data. Particular emphasis
is put on mixture ACD models, where the conditional mean function is driven by a
dynamic latent factor, and component models combining intradaily dynamics with
daily dynamics.

Chapter 7 focuses on multivariate extensions of multiplicative error models. We
discuss statistical properties and inference for the basic multivariate model and
illustrate applications. Particular focus lies on the presentation of stochastic vector
MEMs. The underlying principle is to augment a VMEM process by a common
latent factor which jointly affects the individual components. The latent process
follows its own (parameter driven) dynamic and serves as a driving force for
commonalities and common autoregressive structures in the multivariate process.
The individual components are subject to own (observation driven) dynamics
capturing idiosyncratic effects. As a result, the model combines both parameter
driven as well as observation driven dynamics and is useful to describe the complex
dynamics of multivariate trading processes. As the dynamic latent factor has
to be integrated out, the model cannot be estimated using standard maximum
likelihood and requires simulation-based techniques. In this context, we discuss
simulated maximum likelihood estimation employing efficient importance sampling
techniques.

Chapter 8 presents different intraday volatility estimators. We discuss realized
measures to estimate the intraday quadratic variation of prices and review selected
estimators, such as the maximum likelihood estimator by Ait-Sahalia et al. (2005),
the realized kernel estimator by Barndorff-Nielsen et al. (2008a) as well as the
pre-averaging estimator by Jacod et al. (2009). In applications, we illustrate how to
use these estimators to estimate intraday variances over windows ranging between
1 h and 5 min. As high-frequency variances are closely related to spot variances and
particularly affected by asset price jumps, we also discuss basic ideas behind jump-
robust and spot variance estimators. As an alternative to spot variances on ultra-high
frequencies, we illustrate estimators of trade-to-trade return variances based on
high-frequency GARCH models as proposed by Engle (2000) and Ghysels and
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Jasiak (1998). Finally, we present the idea of price change durations and illustrate
how to construct intensity-based volatility estimators as alternatives to volatility
estimators based on calendar time aggregations.

In Chap. 9, we focus on the estimation and prediction of market liquidity. Here,
we discuss different dimensions of liquidity and present simple bid-ask spread and
price impact measures. As alternative liquidity concepts, we study the use of volume
durations to capture the time and volume dimension of liquidity and excess volume
durations as measures of one-sided trading intensity. However, since the traded
volume indicates only the liquidity demand, the pending volume in order book
queues, reflects the supply of liquidity. To model the latter, we present dynamic
factor approaches to estimate and predict time-varying order curves. The major
principle is to reduce the high dimensionality of order curves by parsimoniously
describing their shapes by a low number of parametric or non-parametric factor
specifications. Then, time variations are captured by multivariate time series models
of the factor loadings. We illustrate the usefulness of such approaches to model
order book dynamics.

Chapter 10 presents dynamic semiparametric proportional hazard (PH) models
as an alternative and direct counterpart to the class of ACD models considered in
Chap. 5. In the semiparametric PH model, the hazard function is specified based on
the product between some non-specified baseline hazard characterizing the underly-
ing distribution of the durations and a function of covariates. The advantage of this
model is that no explicit distributional assumptions are needed since the baseline
hazard is estimated semiparametrically. The so-called autoregressive conditional
proportional hazard (ACPH) model proposed by Gerhard and Hautsch (2007)
exploits the close relationship between ordered response models and approaches for
categorized durations. The main idea is to categorize the durations and formulate
the semiparametric PH model in terms of a specific type of ordered response model
which is augmented by an observation driven dynamic. Such an approach allows
for a consistent estimation of the dynamic parameters without requiring explicit
distributional assumptions for the baseline hazard. Discrete points of the baseline
survivor function can be estimated simultaneously with the dynamic parameters. It
is illustrated that the approach allows to account for censoring structures, induced,
e.g., by trading halts or non-trading periods and therefore is useful to estimate price
change intensities based on aggregation levels covering longer time spans.

Chapter 11 addresses univariate autoregressive intensity models. We consider
dynamic parameterizations of the intensity function which allow for a modelling
of point processes in continuous time. The focus is on two general types of models:
autoregressive conditional intensity (ACI) models and self-exciting intensity models.
The first class of models is proposed by Russell (1999) and is based on an autore-
gressive structure of the intensity function that is updated at each occurrence of a
new point. In the latter class of models, the intensity is driven by a function of the
backward recurrence time to all previous points. Hawkes (1971) introduces a linear
self-exciting process based on an exponentially decaying backward recurrence
function. For both types of models we discuss their theoretical properties as well
as estimation issues.
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Multivariate autoregressive intensity models are introduced in Chap.12. We
present multivariate extensions of ACI and Hawkes models. Moreover, as a
generalized framework for the modelling of point processes, stochastic conditional
intensity (SCI) processes as proposed by Bauwens and Hautsch (2006) are
discussed. The main idea is to assume that the conditional intensity, given the
(observable) history of the process, is not deterministic but stochastic and itself
follows a dynamic process. Accordingly, the SCI model embodies characteristics
of a doubly stochastic Poisson process (see, e.g., Grandell 1976, or Cox and Isham
1980). A multivariate SCI model is obtained by assuming the latent dynamic factor
serving as a common component jointly driving all individual processes. Then,
similar to the principle underlying stochastic vector MEMs in Chap. 7, idiosyncratic
effects are captured by component-specific dynamics. We illustrate probabilistic
properties of the model, statistical inference as well as applications to the analysis
of multivariate price intensities.

Chapter 13 presents models for autoregressive discrete-valued processes and
quote dynamics. A major focus lies on the discussion of autoregressive conditional
Poisson (ACP) models where the conditional mean of the Poisson distribution is
dynamically parameterized. Extensions thereof, such as the Negative Binomial dis-
tribution and Double Poisson distribution lead to Autoregressive Conditional Nega-
tive Binomial and Autoregressive Conditional Double Poisson models, respectively.
As shown in this chapter, these approaches have the advantage of being straight-
forwardly extended to a multivariate framework. Moreover, we review the classical
approach by Hasbrouck (1991) to model (mid-)quote and price dynamics in terms of
a vector autoregressive framework. While this approach is easily implemented and
extended in various ways, it has the disadvantage of not explicitly accounting for
the discreteness of prices and quotes on transaction level. Addressing the latter issue
leads to the class of dynamic models for integer-valued variables allowing to model
discrete-valued transaction price changes, bid-ask spreads, indicators of the trading
direction (buy vs. sell) or trade sizes occurring only in round lot sizes. In this context,
we present autoregressive conditional multinomial models and integer count hurdle
models decomposing integer-valued random variables into their directional compo-
nents (negative, zero, positive) as well as their magnitudes. Moreover, the chapter
presents structural approaches to capture the joint dynamics of bid and ask quotes.

The individual chapters include extensive empirical illustrations of the presented
frameworks and models. We illustrate the models’ usefulness and potential in vari-
ous applications focusing on the modelling of trading processes, the estimation and
prediction of volatility and liquidity as well as the modelling of limit order books.

Note that it is not necessary to read all chapters in a strict order. For readers
who are mainly interested in methodological issues, it is recommended to first
read Chap.4 and then to focus on the methodological Chaps. 5—7 and 10-13 or the
application-orientated Chaps. 8 and 9 which can be read separately. Readers who
are interested in major empirical properties of high-frequency data, data preparation
issues as well as institutional and economic background are referred to the Chaps. 2
and 3. Finally, the appendix contains a review of the most important distributions
relevant for high-frequency data.
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Chapter 2
Microstructure Foundations

This chapter gives an overview of institutional and theoretical market microstructure
foundations. Section 2.1 introduces to the institutional framework of trading on
modern financial markets. We discuss different forms of trading, types of traders
as well as types of orders. Moreover, we present fundamental types of market
structures, most importantly quote-driven markets vs. order-driven markets, and
provide insights into common order precedence and pricing rules. In the last section,
market structures and trading rules on some selected international exchanges
are discussed. This section is understood as an overview of the most important
institutional aspects of financial market microstructures and mainly follows Harris
(2003).

Section 2.2 provides a compact overview on the fundamental strings of theoreti-
cal market microstructure literature. We review classical approaches of asymmetric
information based market microstructure theory, such as sequential trade models
and strategic trade models, as well as inventory-based approaches and models for
limit order markets. The purpose of this section is not to provide an in-depth
derivation and discussion of the individual models. Rather we compactly illustrate
the basic principles underlying the different approaches and review their major
predictions for market microstructure relationships and trading dynamics. Readers
interested in more details are referred, e.g., to Hasbrouck (2007).

2.1 The Institutional Framework of Trading

2.1.1 Types of Traders and Forms of Trading

Traders either trade on their own account, arrange trades for others or have others
arranging trades for them. Accordingly we distinguish between proprietary traders
trading on their own accounts and brokers arranging trades as agents for their clients.
This results either in proprietary trading or agency or brokerage trading. Dealers

N. Hautsch, Econometrics of Financial High-Frequency Data, 9
DOI 10.1007/978-3-642-21925-2_2, © Springer-Verlag Berlin Heidelberg 2012
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are traders who stand ready to trade with other traders (or clients) when they want to
trade. Correspondingly, they serve as liquidity suppliers taking the opposite side of
the market if required. They operate as market makers, specialists or floor traders.
Often traders simultaneously serve as brokers and dealers and are known as broker-
dealers.

The buy side of a market is typically driven by investors (e.g., individuals,
funds, money managers, endowments), borrowers (e.g., individuals or companies),
hedgers (e.g., banks) or speculators. The market’s sell side consists of dealers
serving, (e.g., as market makers or floor traders), brokers (e.g., retail brokers or
institutional brokers), or broker-dealers representing well-known companies, like
Goldman Sachs or Merrill Lynch.

Exchanges are the platform where traders arrange their trades. On most
exchanges only member brokers are allowed to trade. Non-members can only
trade by instructing a member to trade for them. We distinguish between floor
trading, where traders meet on exchange floors to arrange trades and electronic
trading where traders trade via electronic systems. Order-driven systems are, most
generally, platforms where matches between buy and sell orders are arranged
according to certain trading rules. Here, trades can be processed via computers,
clerks or member brokers. For instance, classical floor-based oral auctions are
also order-driven systems where trades are arranged by personally exchanging
information. Conversely, in an order-driven computerized system, the order
matching is performed by a computer. Often, brokerages have their own (typically
order-driven) trading platforms to arrange trades for their clients. Important
examples are the electronic communication networks (ECNs), such as Island ECN
or Archipelago, which are electronic order-driven systems that are not regulated
as exchanges and are owned by brokerages and dealers. These trading platforms
are best-known as alternative trading systems and are competitors to regulated
exchanges. Finally, trades can be also arranged over the counter without involving
an exchange. An example is the corporate bond market, where most trading is
arranged over the counter.

2.1.2 Types of Orders

An order represents an instruction of a trader who cannot personally negotiate his
trades and therefore determines what to trade, when to trade and how much to trade.
A bid (offer) reflects a trader’s willingness to buy (sell) and contains the respective
price and quantity the trader will accept. Correspondingly, bid and ask (offer) prices
are the prices at which the trader is willing to trade. The highest (lowest) bid (ask)
price available is called best ask (bid) price or ask (bid) quote. A market quotation
gives the best bid and offer in a market and is called Best Bid and Offer (BBO). The
best bid and offer across consolidated markets for National Market System (NMS)
stocks is called the National Best Bid and Offer (NBBO). The difference between
the best ask and best bid is called the bid-ask spread.
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A market order is an order that trades immediately at the best price currently
available in the market. The corresponding price at which an order is executed is
called transaction price. Market order traders “pay” the bid-ask spread as long as
the order is filled with the offered quantity at the best ask or bid price. If the size of
the market order is larger than the quantity offered at the best ask or bid, the trader
must move prices and thus has to pay an extra premium (“price concession”). Then,
buyers (sellers) have to bid prices up (down) in order to find a counter-party who is
willing to take the other side a large trade. The resulting price movements are called
(instantaneous) market impact or price impact and naturally increase with the order
size and are the dominant part of the trading costs (on top of the bid-ask spread).
These trading costs induced by a potential market impact and the execution price
uncertainty are often referred to as the price traders have to pay to obtain priority
in the market, i.e., the “price of immediacy”. In some markets traders can negotiate
prices and receive prices which are better than the currently available best ask and
bid. In this case, the trader receives price improvement due to a counter-party who
is willing to step in front of the currently best quote.

A limit order is a trade instruction to trade at a price which is no worse than
the so-called limit price specified by the trader. As the corresponding limit price is
not necessarily offered on the other side of the market, a limit order faces execution
risk. If no one is willing to take the opposite side at the required limit price, the order
is not executed and is placed in the limit order book where all non-executed limit
orders are queued according to price and time priority. Correspondingly, the larger
the distance between the limit order and the best quote, the worse is the order’s
position in the queue and the lower is its execution probability in given time. Hence,
in order to increase the execution probability and to reduce the time until execution,
the limit order trader has to bid more aggressively with a limit price closer to the
market. Limit orders at the best bid or offer are called at the market. Accordingly,
limit orders with prices worse (better) than the current best quotes are called behind
(in) the market. A limit order with a limit price at or above (below) the best ask
(bid) price in case of a buy (sell) order is executed immediately and, if necessary,
filled until the limit price level is reached. Such an order is called a marketable limit
order corresponding to a market order where the trader limits the potential price
impact (by correspondingly setting the limit price). If the limit price is worse than
the current best price, the order has to “walk up (down)” the book in case of a buy
(sell) order. Finally, a market-to-limit order is a market order, which is executed at
the best ask/bid quote in the order book. Any unfilled part of a market-to-limit order
automatically enters the order book.

Besides the risk of execution uncertainty, limit order traders face adverse
selection risk corresponding to the risk that the order is executed (“picked up”) and
then the markets moves against their new position causing a loss. This happens,
for instance, if the market moves downwards, picks up a standing buy (bid)
limit order and continues declining. Adverse selection risk can only be reduced
by posting far away from the market which, however, increases the execution
uncertainty.
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A stop order is an order which automatically buys (sells) a given quantity after
the price rises (falls) to the “stop price”. In case of a sell, the stop order prevents
further losses in case of further falling prices and thus is called stop loss order.
Hence, in contrast to a limit order, a stop order is activated as soon as the price
passes the specified stop price. In contrast, a limit order is only executed as long as
the price is better than the corresponding limit price. Combinations of both trade
instructions result in a stop limit order with the stop price determining when the
limit order becomes active and the limit price indicating the limit until which the
order is executed.

A so-called market-if-touched order is a market order which becomes only valid
if the price reaches a certain touch price. While stop orders buy (sell) after the
price rises (falls) to the stop price, a corresponding market-if-touched order sells
(buys) after the price falls (rises) to the touch price. While loss orders enforce price
movements by trading in line with the market trend and thus generate momentum,
market-if-touched orders do exactly the opposite. They buy when prices drop and
sell when prices rise and thus generate contrarian trading patterns.

Limit orders are typically combined with specific attributes specifying for
instance, for how long an order is valid and under which conditions it might
be canceled. Examples are fill-or-kill order whose portions that cannot filled
immediately are canceled or all-or-none orders which are only executed if they can
be filled at once. For other types of orders, see, e.g., Harris (2003).

Finally, on a growing number of markets, orders can be partly or even completely
hidden. A common type of order is the so-called iceberg order (or reserve order)
where a certain proportion of the order can be non-displayed and thus is non-visible
for other market participants. Such orders are used to hide trading strategies and to
reduce adverse selection risk. The minimum display size is fixed by trading rules
and differs across exchanges. Some markets, such as the NASDAQ allow to post
hidden orders, where the order is entirely hidden. As shown by Hautsch and Huang
(2011) based on NASDAQ data, the possibility to post completely hidden orders in
the spread, might create substantial market activity as traders “search” for hidden
volume by submitting “fleeting limit orders” to test for potential execution.

2.1.3 Market Structures

The market structure determines who can trade, what can be traded, when can be
traded, and how it can be traded. We generally distinguish between continuous
trading, where traders can trade whenever the market is open and call markets where
all traders trade simultaneously in a call auction when the market is called. Call
markets are often used to open a trading session and to settle the price before the
market switches to continuous trading. Likewise they are also used to end a trading
session, to have a mid-day call auction interrupting continuous trading or to re-start
it after a trading halt. In some markets, call markets are also used to trade less liquid
assets.



2.1 The Institutional Framework of Trading 13

The most important characteristic of a market is the form of its execution system.
We distinguish between the three major types of execution systems leading to guote-
driven dealer markets, order-driven markets and brokered markets.

2.1.3.1 Quote-Driven Dealer Markets

In a quote-driven market (dealer market), trades are only executed by dealers. The
dealers quote the ask and bid prices and supply liquidity by standing ready on
the opposite side of the market. They often trade among themselves. In a pure
quote-driven market, traders (or brokers acting on behalf of traders) cannot trade
themselves (even if they have matching positions) but must execute their trades by
dealers which earn the bid-ask spread. In some (though not pure) dealer markets,
however, traders can trade directly without interacting with a dealer. A prominent
example is the NASDAQ Stock Market as described in Sect.2.1.5.2.

Dealers are often specialized in serving specific clients which are trustworthy and
creditworthy and tend to refuse trading with counter-parties outside their clientele or
which might be better informed. Traders who do not have credit relationships with
dealers have to trade via brokers stepping in and guaranteeing credit worthiness.
Interdealer brokers are brokers arranging trades among dealers if dealers prefer
keeping anonymity and not informing their rivals about their quotes.

Quote-driven dealer markets are popular forms of trading for bonds, currencies
and stocks. Examples are the NASDAQ Stock Market or the London Stock
Exchange.

2.1.3.2 Order-Driven Markets

In an order-driven market, traders trade directly with each other. As there are no
dealers serving as intermediaries, trading occurs according to specific trading rules.
Order precedence rules determine which buyers trade with which sellers and trade
pricing rules determine the resulting transaction prices. Liquidity provision in an
order-driven market is ensured by traders taking the opposite side of the market or
by dealers serving as traders. In some order-driven markets, most of the liquidity is
still provided by dealers. However, a main characteristic of an order-driven market
is that dealers cannot choose their clients but have to trade with anyone accepting
the offer.

Order-driven markets are mostly auction markets. An auction is a formalized
process, the so-called price discovery process by which buyers seek the lowest
available prices and sellers seek the highest available prices. In a single-price
auction all trades at the same price following a call are simultaneously arranged.
Conversely, in continuous two-sided auctions, traders continuously arrange their
trades on both sides of the market based on prices varying over time. In markets
with oral auctions traders trade face-to-face on a trading floor. As they negotiate
their trades by crying out their bids and offers these markets are called open outcry
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markets. Order-driven markets which use an electronic execution system employ
rule-based order matching.

Only order-driven markets which are not organized as auctions are crossing
networks where trading takes place at prices which are determined on other markets.
These prices are called crossing prices. Crossing networks are call markets where
submitted orders are matched according to order precedence rules. Such market
structures are sometimes used to organize after-hours trading based on closing prices
from continuous trading (e.g., at the New York Stock Exchange). Alternatively, they
are used to organize intraday calls where the crossing prices correspond to a price
in a continuous market at a random time within a certain time interval following the
call.

As in an order-driven market, in contrast to quote-driven dealer markets, trades
are arranged according to precedence rules and traders cannot choose with whom
they trade, traders typically trade with counter-parties with whom they do not
have credit relationships. To ensure proper order settlement, these markets require
elaborate clearing mechanisms.

2.1.3.3 Brokered Markets

In brokered markets, brokers initiate the matches between buyers and sellers. The
broker’s role is to find liquidity provided by a counter-party. We distinguish between
concealed traders and latent traders. Concealed traders are traders who intend
to trade but do not make public offers to hide their strategies. However, they
trade if brokers offer them suitable matches. A latent trader has no concrete trade
intention but only trades if she is confronted with an attractive trading opportunity.
Successful brokers in a brokered market have to find both concealed traders and
latent traders.

2.1.4 Order Precedence and Pricing Rules

The order precedence rules in an oral auction are price priority and time precedence.
According to the price priority rule, traders who offer the most competitive prices
have priority. Traders are not allowed to accept bids and offers at inferior prices.
The time precedence rule gives priority to traders whose quotes first improve the
prevailing best ask and bid prices. Time precedence is retained as long as the quotes
are maintained or accepted by the counter-party. In oral auctions, according to
traders “a quote is good only as long as the breath is warm” requiring to repeating
offers to maintain precedence. However, time precedence is only helpful as long as
the minimum price increment, the so-called minimum tick size, is not too small.
Otherwise, time precedence gives only little privilege as competitors can easily
improve the best quotes. In oral auctions, price priority is self-fulfilling as traders
try to trade to best possible prices which encourages seeking for the best offer. This,



2.1 The Institutional Framework of Trading 15

however, is not guaranteed for time precedence as for traders it makes no difference
with whom to trade as long as quotes are equal.

Most exchanges and electronic trading platforms use rule-based order-matching
systems. Here, trading is typically anonymous, decentralized and traders trade by
electronically submitting, canceling or amending (already existing) orders. Order
matching is arranged by a typically automatized system using a sequence of
procedures. All systems use price priority as primary order precedence rule. As
second order precedence rule, mostly time precedence is used. Some markets use
display precedence giving priority to displayed orders over undisclosed orders or
size precedence where orders with either large or small sizes are privileged. Pro
rata matching yields an allocation where each order is filled in proportion to its
size.

In single-price auctions, the market ranks the orders and starts by matching the
highest-ranking buy and sell orders to each other. This match results in a trade as
long as the buyer pays at least as much as the seller demands. If the two orders have
the same size, both will execute completely. Otherwise, the unfilled part of an order
will be matched with the next highest-ranking orders. This process continues until
all possible trades are matched. The price of the last possible match is the market-
clearing price. In a single price auction, all trades take place at the market clearing
price.

The market-clearing price of a single price auction corresponds to the price where
the supply schedule equals the demand schedule. The supply schedule lists the
total offered volume according to price priority and thus is a non-decreasing curve.
Likewise, the demand schedule lists the total sell volume and is a non-increasing
curve. Correspondingly, at prices below the clearing price there is excess demand
in the market while there is excess supply for prices above the clearing price. By
choosing the market-clearing price to match all orders, a maximum amount of
possible volume is traded. Moreover, it is easily shown that traders’ overall benefits
from participating in this auction are maximized.

If the buy order in the last feasible trade bids at a higher price than the sell
order, the resulting market-clearing price can be either of these two prices or can
be between them. In this case, the market-clearing price does not provide an exact
match and some excess demand or supply might be left. In case of excess supply
(demand), all buyers (sellers) at the market-clearing price fill their orders, while the
secondary precedence rules determines which sell (buy) orders to be filled.

The pricing rule in an oral auction and in a continuous rule-based order matching
system is called discriminatory pricing rule. According to this rule, every trade takes
place at the price proposed by the trader whose ask or bid is accepted. Consequently,
the entire offer or bid side of the market is matched in a discriminatory fashion
with progressively inferior prices. This is similar to the way how a large order is
simultaneously matched with all trades pending on the opposite side yielding best
prices for the first piece and progressively inferior prices for the other pieces as the
order walks up or down the ask or bid schedule and exhausts liquidity.

In continuous auction markets, this process is maintained by an order book
which is automatically updated whenever a new order arrives. New orders enter the
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book according to order precedence rules. If they are marketable, they are matched
against the standing orders. Then, under discriminatory pricing, the limit price of
any standing order determines the price for each match. Accordingly, large orders
trade their individually matched parts at different prices as they walk up or down
the book. In contrast, under uniform pricing, the individual orders trade at the
same price corresponding to the worst price under discriminatory pricing. Hence,
large impatient traders prefer discriminatory pricing while liquidity suppliers prefer
uniform pricing.

Finally, refined and modified rules are applied to special type of orders. For
instance, in order-driven markets allowing for hidden orders, special rules regulate
order precedence for displayed and non-displayed parts of an order. A common
rule is that, for a given limit price, visible order volume has priority over non-
visible volume (even if the non-displayed volume has been posted before). For more
specific details, see the trading rules, e.g., on NASDAQ.

2.1.5 Trading Forms at Selected International Exchanges

In this section, we illustrate the current trading forms at some selected international
exchanges. We concentrate on those exchanges where most of the data used in the
remainder of the book come from. These are the two most important exchanges
in the U.S., the New York Stock Exchange (NYSE) and NASDAQ as well as
the electronic trading systems of the Frankfurt stock exchange (XETRA) and the
Australian Stock Exchange (ASX) as representatives of typical electronic limit order
book markets commonly used for equities.

2.1.5.1 The New York Stock Exchange (NYSE)

Trading at the NYSE is based on a hybrid system, i.e., the trading mechanism com-
bines elements from quote-driven, order-driven and brokered markets. Essentially,
it is an order-driven market, however, there are still specialists who have to provide
liquidity. In fact, NYSE trading combines an open outcry system, a dealer market
and an electronic limit order book.

The NYSE started in 1792 as an order-driven open outcry floor market and was
historically the dominant trading platform for U.S. equities. Later, components of
a dealer market have been integrated in the open outcry system. As a result, for
each stock, one market maker (specialist) has to manage the trading and quote
process and has to guarantee the provision of liquidity, when necessary, by taking
the other side of the market. The specialist also has to maintain the underlying limit
order book. Besides from orders posted by the specialist, the limit order book also
receives orders directly from the exchange’s routing system. These are orders which
do not require to be handled by a broker and are sent directly to the specialists’s
workstation. The specialist sets bid and ask quotes representing his own interest,
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those of a floor broker or the best ask and bid implied by the limit order book. In
his function to serve as an agent for the book, she is considered as a single floor
trader. According to present rules, the specialist must display limit orders (from the
book) that are better than the prevailing ones within 30 s. Hence, during short time
spans, orders from the book might not have price priority over prices offered by
floor brokers. Moreover, the book might not have time priority over floor traders.
The dealer market starts with a single-price call auction as opening procedure.

Regular trading at the NYSE starts at 9:30 and ends at 16:00. The closing
procedure has some similarities to an auction and requires the specialist to balance
supply and demand and to establish a (preferably smooth) transition path to the
closing prices. Accordingly, trading “at the close” is governed by relatively complex
rules.

While in the (open outcry) dealer market trades are only executed by the
specialists, NYSE offers also automatic (electronic) execution. The NYSE Direct+
system, which was introduced in 2000, is an electronic trading system which runs
parallel to the dealer market. Induced by the rising competition with ECNs, the
NYSE established several mergers. One important merger was the merger between
the NYSE and the ECN “Archipelago” yielding “NYSE Arca”.

2.1.5.2 NASDAQ

The name NASDAQ is an acronym for “National Association of Securities Dealers
Automated Quotations” and was founded in 1971 by the National Association of
Securities Dealers (NASD). Historically, it was primarily organized as a dealer
market linking geographically non-centralized dealers via an electronic system.
In the early 1990s NASDAQ gave little protection to customer limit orders. For
instance, competitive customer quotes were not necessarily immediately displayed
but were used by the dealers to trade on their own account. Such a proceeding
was prohibited by the so-called “Manning Rules” adopted in 1994/1995. In 1994,
the SEC started investigations on coordinated quote setting behavior of NASDAQ
dealers resulting in unnecessarily discrete price grids and large spreads. These
investigations resulted in civil lawsuits against NASDAQ dealers and more explicit
order execution rules set by the SEC (which were not only limited to NASDAQ).
The two most important components of these rules are the “display rule” requiring
the display of customer orders with prices better than the currently prevailing quotes
and the “quote rule” requiring a market maker to make publicly available any
(potentially superior) prices that she quotes in inter-dealer markets. As a result of
these reforms, NASDAQ spreads declined significantly.

Subsequently, NASDAQ established an electronic system (“SuperMontage”)
which organizes trade execution, reporting, confirmation, and interdealer communi-
cation. The underlying principles resemble mostly those of an electronic limit order
book, which, however, is maintained only by the dealers and not by the customers.
NASDAQ’s position further increased by numerous alliances and take-overs. For
instance, NASDAQ purchased the American Stock Exchange (AMEX) in 2003, the
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ECN’s INET (formerly Island/Instinet) and Brut in 2004/2005 and the Philadelphia
Stock Exchange in 2007. As a result, NASDQA is currently the biggest electronic
stock market in the U.S.

2.1.5.3 XETRA

The German Exchange Electronic Trading (XETRA) is the electronic trading
system of the Deutsche Borse AG for cash market trading in equities and a variety of
other instruments including Exchange Traded Funds, mutual funds, bonds, warrants,
certificates, among others. It has been introduced in November 1997 as an electronic
supplement of the classical floor trading at the Frankfurter Wertpapierbrse. XETRA
is a double continuous auction system with an opening and closing call auction at the
beginning and at the end of the trading day, respectively, and a mid-day call auction.
During the normal trading period, trading is based on an automatic order matching
procedure. Limit orders enter the queues of the order book according to strict price-
time priority. Auctions consider all order sizes for price determination, whereas
continuous trading is based upon round lots only. XETRA trading is completely
anonymous and does not reveal the identity of the traders. A trader can act as agent
trader or as proprietary trader. Some traders might act as market makers on behalf of
XETRA and are obliged to guarantee liquidity on both sides of the market as well
as to adjust supply and demand imbalances. Normal trading currently takes place
from 09:00 to 17:00.

2.1.5.4 Australian Stock Exchange

The Australian Stock Exchange (ASX) is a continuous double auction electronic
market and as such is an example for an electronic limit order book trading system
similar to those operating, for instance, in Paris, Hong Kong and Sao Paulo. The
continuous auction trading period is preceded and followed by an opening call
auction. Normal trading takes place continuously between 10:09 and 16:00 Sydney
time on Monday to Friday. Limit orders are placed in the buy and sell queues
according to a strict time-price priority order. Any buy (sell) order entered that has
a price that is greater (less) than existing queued sell (buy) orders, will be executed
immediately. The order will be automatically matched to the extent of the volume
that is available at the specified limit price. All orders and trades are always visible
to the public. Order prices are always visible, however orders may be entered with an
undisclosed (hidden) volume if the total value of the order exceeds AUD 200,000.
The identity of the broker who entered an order is not public information, but is
available to all other brokers. A comprehensive description of the trading rules of
the Stock Exchange Automated Trading System (SEATS) on the ASX can be found
in the SEATS Reference Manual available at www.asxonline.com.
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2.2 A Review of Market Microstructure Theory

In this section, we give a compact overview of the fundamental approaches and
directions in theoretical market microstructure literature. More in-depth treatments
of this material are given, for example, by O’Hara (1995), the surveys by Madhavan
(2000) and Biais et al. (2005) or the monograph by Hasbrouck (2007).

As stated by Madhavan (2000), market microstructure theory is concerned with
“the process by which investors’ latent demands are ultimately translated into prices
and volumes.” Consequently, central topics in market microstructure theory deal
with price formation, price discovery, inventory, liquidity, transaction costs as well
as information diffusion and dissemination in markets. Traditional microstructure
theory provides two major directions to explain price setting behavior: asymmetric
information based models and inventory models. The former branch models market
dynamics and adjustment processes of prices using insights from the theory of
asymmetric information and adverse selection. As discussed in Sect. 2.2.1, two main
approaches are sequential trade models and strategic trade models. The branch of
inventory models, as discussed in Sect.2.2.2, investigates the uncertainty in order
flow and the inventory risk and optimization problem of liquidity suppliers under
possible risk aversion. We summarize the major theoretical implications of the
individual approaches in Sect.2.2.3. Finally, more recent work addresses trading
behavior and equilibria on limit order book markets. We briefly review this literature
in Sect. 2.2.4.

2.2.1 Asymmetric Information Based Models

2.2.1.1 Sequential Trade Models

In sequential trade models, randomly selected traders sequentially arrive at the
market. The framework is based on the assumption of the existence of differently
informed traders. Accordingly, there are so-called “informed traders”, who trade
due to private information on the fundamental value of the asset and “liquidity
traders”, who trade due to exogenous reasons, like portfolio adjustments or liquidity
aspects. The assumption of heterogeneous groups of traders provides the basis for a
plethora of asymmetric information based models. Seminal papers in this direction
are Copeland and Galai (1983) and Glosten and Milgrom (1985).

In the Glosten and Milgrom (1985) model, securities have a payoff which is
either high or low with given probability and is revealed after market closure. The
population of traders consist of informed traders knowing the true asset payoff
and uninformed traders who buy or sell randomly with equal probability. Informed
traders buy (sell) if the true asset value is high (low). The proportion of informed
traders in the market is given. Dealers are uninformed and infer on the asset’s true
value based on the trade history. In particular, observing a buy (sell) request of a
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trader, the dealer computes the conditionally expected value of the asset given a
trade is a buy or sell. Then, she sets the ask (bid) quote such that the expected
gain from an uninformed buyer (seller) are balanced by the loss to an informed
buyer (seller). After the next trade, the dealer updates her beliefs on the asset’s true
value using her initial beliefs as priors. This results into updating recursions on the
probabilities for the asset’s true values. The resulting bid-ask spread is a function of
the asset’s potential values (high vs. low), their corresponding probabilities, and the
relative proportion of informed traders. Fundamental implications of this sequential
trade model is that trade prices follow a martingale, order flow is correlated (buys
tend to follow buys, sells tend to follow sells), bid-ask spreads decline over time as
the dealer’s uncertainty is reduced and individual trades have price impact.

The Glosten and Milgrom (1985) model has been extended and modified in
various directions. Easley and O‘Hara (1992) allow for event uncertainty by
assuming the random occurrence of a trade event at the beginning of each day.
In case of no information event, informed traders refrain from trading and only
uninformed traders (randomly) trade in the market. Easley and O‘Hara (1992)
assume that uninformed traders do not necessarily always buy or sell but can also
refrain from trading. Consequently, also the occurrence of no trade (i.e., a slow-
down of the trading process) carries information. Therefore, besides bid-ask spreads
also the time between trades is informative. Variations of this framework are Easley
and O’Hara (1987) where different order sizes are possible and Easley and O‘Hara
(1991) allowing for different types of orders.

Easley et al. (1997) and Easley et al. (2002) extend the framework of Easley and
O‘Hara (1992) to allow for Poisson arrival of the events determining the asset’s
true value. Then, traders do not sequentially arrive in discrete time but arrive
randomly in continuous time. This arrival process is governed by further Poisson
processes with different intensities for informed and uninformed traders. As a result,
the numbers of daily buys and sells are jointly distributed based on a mixture of
Poisson distributions. Then, based on the information arrival intensity as well as the
arrival intensities for informed and uninformed traders, the probability of informed
trading (PIN), i.e., the probability that a randomly chosen trader is informed, can be
computed. Easley et al. (2008) extend this approach to a dynamic framework and
estimate time-varying PINs.

2.2.1.2 Strategic Trade Models

In a sequential trade model, a trader participates in a market only once. Therefore,
she does not take into account the impact of her trade decision on the subsequent
behavior of others. As a consequence, informed traders trade largest possible
quantities as they do not have to account for possible adverse price effects in future
trades. This situation is completely different in a strategic trade model, where a
trader repeatedly participates in the market and therefore has to behave strategically.
A seminal paper in this area is Kyle (1985). In the Kyle model, the security’s value is
stochastic but is known by an informed trader. Uninformed traders (“noise traders”)
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trade independently of the asset’s true value and submit a stochastic order flow. The
market maker receives the demand of both the uninformed and informed traders and
has to set a price such that all trades are cleared. However, as the informed trader
might trade aggressively, the market maker has to protect herself against being on
the wrong side of the market by setting the price as a linearly increasing function of
the net order flow (i.e., the total net volume requested by informed and uninformed
traders). This, however is anticipated by the informed trader who computes her
profits given her conjecture on the market maker’s price setting rule and her demand.
Note that in contrast to a sequential trade model, the informed trader’s profit is not
necessarily positive as a high demand from liquidity traders might drive up the price
set by the market maker. The informed trader’s optimization problem is to choose
her demand such that her expected profit is maximized. This yields a linear demand
function in the asset’s true value.

When the market maker conjectures the informed trader’s underlying optimiza-
tion problem, she can compute the trader’s linear demand function in dependence
of the parameters of her own price setting rule. This yields an inverse relationship
between the slopes of the trader’s demand and the market maker’s price setting rule.
The slope of the market maker’s price setting rule determines the price impact of
net order flow and is commonly referred to as “Kyle’s lambda”.

Kyle (1985) makes this quantity operational by exploiting properties of bivariate
normal random variables. In such a framework, it can be computed as a function
of the covariance between the total asset demand and the true value of the asset
as well as the variance of noise trading. An implication of the Kyle model is that
the informed trader’s expected profit is increasing in the divergence between the
asset’s true value and the market maker’s unconditional price (irrespective of the
order flow) and in the variance of noise trading. The latter effect is interesting as it
implies that the informed trader’s profit is higher when there is more liquidity in the
market.

Kyle’s model has been extended in various directions. For instance, Admati and
Pfleiderer (1988) and Foster and Viswanathan (1990) allow for uninformed traders
who behave strategically themselves. Foster and Viswanathan (1996), among others,
allow for multi-period models.

2.2.2 Inventory Models

Inventory models consider the inventory problem of a dealer who is facing buyers
and sellers arriving asynchronously. This string of the literature originates from
Garman (1976) who models the arrival processes of buyers and sellers as Poisson
processes. The arrival intensities depend on the price they pay or receive, respec-
tively. Hence, as long as the intensities are equal, the dealer is on average buying
and selling at the same rate. The dealer makes profits by setting a spread. Then, the
larger is the bid-ask spread, the higher are the profits per trade but the lower is the
trade arrival rate. Garman (1976) characterizes the inventory problem of the market
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maker who has to ensure that her holdings of the security and cash do not drop below
a given level. If ask and bid quotes are set such that the resulting arrival intensities
of buyers and sellers are equal, holding of stock follow a zero-drift random walk
while cash holding follow a positive-drift random walk (as long as the spread is
strictly positive). This causes the market maker to go bankrupt with probability
one as a zero-drift random walk hits any finite level with probability one. Hence,
as long as the market maker keeps ask and bid quotes constant, she must expect
to be ruined within short time. Amihud and Mendelson (1980) present a similar
framework where the market maker’s inventory is constrained to lie between upper
and lower bounds. They show that the market maker updates her quotes whenever
the inventory approaches these boundaries to drive up or down, respectively, the
arrival rates of buyers and sellers. As a result, bid and ask quotes are monotonically
decreasing in the inventory levels and quotes are not necessarily set symmetrically
around the asset’s true value.

Dealer’s price setting can be also analyzed in a framework where the dealer is
risk averse and sets ask and bid quotes to appropriately balance her portfolio. This
is, e.g., studied by Stoll (1978), Ho and Stoll (1981), Stoll (1989) and Huang and
Stoll (1997), among others.

2.2.3 Major Implications for Trading Variables

The main theoretical findings on the properties and determinants of key microstruc-
ture variables and relationships thereof are summarized as follows:

1. Transaction volumes: In the Easley and O’Hara (1987) model, traders are
allowed to trade either small or large quantities, but are not allowed to refrain
from trading. Thus, large quantities indicate the existence of information. Blume
et al. (1994) investigate the informational role of volume when traders receive
information signals of different quality in each period. The authors analyze how
the statistical properties of volume relate to the behavior of market prices and
show that traders can infer from the volume about the quality and quantity of
information in the market. An important result is that the volume provides additional
information that cannot be deduced from price statistics. As a consequence, volume
and volatility are correlated.

2. Bid-ask spreads: In the Glosten and Milgrom (1985) model, the market maker
determines the spread in a way that it compensates for the risk due to adverse
selection. The higher the probability that she transacts at a loss due to trading
with market participants with superior information, the higher the bid-ask spread.
Moreover, bid-ask spreads are positively correlated with market maker’s inventory
risks and risk aversion. In the Easley and O‘Hara (1992) approach, the market maker
uses no-trade-intervals to infer the existence of new information. Consequently,
lagged durations and the size of spreads are negatively correlated.

3. Trade durations: Diamond and Verrecchia (1987) propose a rational expec-
tation model with short selling constraints. They assert that the absence of a trade
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is associated with the occurrence of “bad” news. Then, the absence of a trade is
informative and is correlated with price volatility. In this framework, time matters
only because of the imposed short selling restrictions. In Easley and O‘Hara (1992),
however, informed traders enter the market whenever there are information signals
while non-informed traders might also refrain from trading. As a consequence, short
trade-to-trade durations indicate the existence of information. Admati and Pfleiderer
(1988) provide an explanation for temporal clustering of durations. In their setting,
liquidity traders prefer to minimize their transaction costs and to trade if other
traders are in the market. In equilibrium, it is optimal for informed traders to behave
similarly. As a consequence, trading is clustered, and trade durations are positively
autocorrelated.

2.2.4 Models for Limit Order Book Markets

A seminal paper to model limit order markets is Glosten (1994). In this model, all
market participants have access to an electronic screen. Posting limit orders is done
costlessly and the execution of a trade against the book occurs in a “discriminatory”
fashion. That is, each limit order transacts at its limit price. Investors are rational
and risk averse and maximize a quasi-concave utility function of their cash and
share position as well as personal preferences. The trading behavior of market order
traders depends on their marginal valuation functions and the prevailing terms of
trade, i.e., the list of bid and ask quotes available, which influence the changes in
investors’ cash and share positions. It is assumed that an investor chooses the trade
quantity such that her marginal valuation equals the marginal price corresponding
to the price paid for the last share in a transaction. There is informed trading if an
investor’s marginal valuation is associated with the future payoff. Then, incoming
market orders reveal information about the unknown “full information value” of
the traded security. Due to the anonymity of the electronic market, the underlying
marginal valuation implied by an arriving market order can be assessed by the
liquidity suppliers only through the observed limit price and the traded quantity
given the terms of trades offered by the book.

Glosten assumes that there is a large number of uninformed, risk-neutral and
profit-maximizing limit order submitters who set limit prices and quantities on the
basis of their “upper tail expectation”. The latter corresponds to the conditional
expectation of the asset’s full information liquidation value given that the next
arrival’s marginal valuation is greater than or equal to the traded quantity. In
the presence of private information, liquidity suppliers protect themselves against
adverse selection by setting the limit price at least equal to the upper tail expectation
given a market order trading at the corresponding price. It is shown that such
a strategy leads to a Nash equilibrium which is characterized by a zero-profit
condition for prices at which positive quantities are offered.

Glosten’s model is extended in several directions by Chakravarty and Holden
(1995), Handa and Schwartz (1996), Seppi (1997), Kavajecz (1999), Viswanathan
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and Wang (2002) and Parlour and Seppi (2003). However, while static equilibrium
models provide insights into the structure of the limit order book, they do not allow
to analyze (dynamic) interactions between the order flow and the state of the limit
order book. For this reason, Parlour (1998) proposes a dynamic game theoretical
equilibrium model where traders have different valuations for the asset and choose
between submitting a market order, a limit order or refraining from trading. Since
the expected future order flow is affected by their own order submission strategies,
the execution probabilities of limit orders are endogenous. This leads to systematic
patterns in traders’ order submission strategies even when there is no asymmetric
information in the market. The basic underlying mechanism is a “crowding out”
effect whereby market orders and limit orders on the individual market sides crowd
out one another when the ask or bid queue is changed. In particular, the probability
of the arrival of a buy (sell) trade after observing a buy (sell) trade is higher than
after observing a sell (buy) trade. This results from a buy transaction reducing the
depth on the ask side which in turn increases the execution probability for limit
sell orders. Hence, for a potential seller, the attractiveness of limit orders relative
to market orders rises inducing a crowding out of market sell orders in favor of
limit sell orders. Handa et al. 2003 extend this approach by introducing an adverse
selection component due to the presence of privately informed traders.

An alternative dynamic game theoretical equilibrium model has been proposed
by Foucault (1999) in order to study the cross-sectional behavior of the mix between
market orders and limit orders and the implied trading costs. He analyzes the
influence of the risks of being picked off and of non-execution on traders’ order
submission strategy and derives testable implications regarding the relationship
between the proportion of limit orders and market orders in the order flow, the fill
rate (i.e., the percentage of executed limit orders), the trading costs and the volatility
of the asset price. Handa et al. (2003) extend the approach by Foucault (1999) by
introducing private information in his model. While in Foucault’s model trading
occurs because of differences in traders’ valuation for the security, Handa et al.
introduce an adverse selection component due to the presence of privately informed
traders. As a result, the size of the spread is a function of the differences in valuation
among investors and of adverse selection. Further extensions of these frameworks
are, among others, Foucault et al. (2005) and Goettler et al. (2005, 2009). Recent
literature focuses on the theoretical analysis on automated trading and smart order
routing in electronic trading platforms. See, e.g., Foucault and Menkveld (2008),
Hendershott et al. (2011) or Biais et al. (2010), among others.
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Chapter 3
Empirical Properties of High-Frequency Data

In this chapter, we present financial high-frequency data and their empirical
properties. We discuss data preparation issues and show the statistical properties
of various high-frequency variables based on blue chip assets traded at the NYSE,
NASDAQ and XETRA. Section 3.1 focuses on peculiar problems which have to be
taken into account when transaction data sets are prepared. Section 3.2 discusses the
concept of so-called financial durations arising from aggregations based on trading
events. Section 3.3 illustrates the statistical features of different types of financial
durations including trade durations, price (change) durations and volume durations.
In Sect. 3.4, we discuss the properties of further trading characteristics such as high-
frequency returns, trading volumes, bid-ask spreads and market depth. Section 3.5
presents the empirical features of time aggregated data. Finally, Sect.3.6 gives a
compact summary of the major empirical features of high-frequency data.

3.1 Handling High-Frequency Data

3.1.1 Databases and Trading Variables

As illustrated in Chap. 2, the most dominant trading forms for equities are floor
trading, limit order book trading or combinations thereof yielding hybrid forms of
trading. Typical datasets arising from floor trading contain information on trades
and quotes whereas data from electronic trading often contains information on the
process of order arrivals as well as (at least partly) of the order book. Typically, the
data is recorded whenever a trade, quote or — in the informational limiting cases — a
limit order occurs. This data is called transaction data, (ultra-)high frequency data
or sometimes tick data.

IStrictly speaking, the terminology “tick data” refers to settings where the data is only recorded
whenever the price changes (by at least one tick). The literature is not always stringent with these
terminologies.

N. Hautsch, Econometrics of Financial High-Frequency Data, 27
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Regarding the detailedness of high-frequency information, we can distinguish
between five major levels:

1. Trade data. The transaction level is associated with information on individual
trades consisting of

(a) the time stamp of trades,
(b) the price at which a trade was executed,
(c) the traded volume (in number of shares).

2. Trade and quote data. Information on trades and quotes provides the most
common form of transaction data containing

(a) the time stamp of trades and best ask/bid quote updates,

(b) the underlying best ask/bid quotes,

(c) the price at which a trade was executed,

(d) the traded volume (in number of shares),

(e) the trade direction (up to identification rules as described below),
(f) the indicative depth associated with best ask and bid quotes.

The most common database of this type is the Trade & Quote (TAQ) database
released by the NYSE which is illustrated in more detail below.

3. Fixed level order book data. If the underlying trading system is a fully comput-
erized system, often also (at least partial) information on the depth behind the
market is available. This type of data contains the same information as above but
provides also information on limit order activities behind the market. Based on
such data it is possible to reconstruct the limit order book up to a fixed level.

4. Messages on all limit order activities. Such data provide full information on any
limit order activities, including time stamps, (limit) prices, sizes and specific
attributes of limit order submissions, executions, cancellations and amendments.
It allows to fully re-produce the trading flow and to re-construct the limit order
book at any point in time during continuous trading and allows for an exact
identification of buyer-initiated or seller-initiated trades. Sometimes such data
contains also information on hidden orders or iceberg orders. For instance,
TotalView-ITCH data from NASDAQ trading (see for an illustration below)
provides information on execution against hidden orders. See, e.g., Hautsch and
Huang (2011) for more details.

5. Data on order book snap-shots. Some data sets provide snap-shots of the
limit order book at equi-distant time intervals avoiding the need for order
book re-constructions. However, as they are recorded on an equi-distant grid,
the matching with the corresponding underlying trading process is difficult.
Therefore, this data is only useful to study limit order book dynamics but is of
limited use to analyze interactions between the book and the trading process.

Even based on full-information limit order book data, a complete reconstruction
of the limit order book is a difficult task. Two major problems have to be addressed
in this context: Firstly, a complete and correct re-construction of the limit order book
requires accounting also for order book activities outside the continuous trading
hours including opening auctions, pre-trading and late-trading periods. Secondly,
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Table 3.1 TAQ data record on trades for Microsoft on June 1, 2009

SYMBOL  DATE TIME EX PRICE SIZE COND CORR G127
MSFT 2009-06-01 36601 Z 21.1900 200 0 0
MSFT 2009-06-01 36601 Z 21.1900 1000 0 0
MSFT 2009-06-01 36601 Z 21.1900 100 0 0
MSFT 2009-06-01 36601 B 21.1900 400 @F 0 0
MSFT 2009-06-01 36601 B 21.1900 400 @F 0 0
MSFT 2009-06-01 36602 D 21.1912 470 0 0
MSFT 2009-06-01 36602 Z 21.1900 200 0 0
MSFT 2009-06-01 36602 Q 21.1900 900 0 0
MSFT 2009-06-01 36602 Q 21.1900 100 @F 0 0
MSFT 2009-06-01 36602  Q 21.1900 100 @F 0 0
MSFT 2009-06-01 36602  Q 21.1900 300 0 0
MSFT 2009-06-01 36602 Q 21.1900 100 0 0
MSFT 2009-06-01 36602 D 21.1900 100 @F 0 0
MSFT 2009-06-01 36602 D 21.1900 100 @F 0 0

SYMBOL stock symbol, DATE trade date, TIME trade time, EX exchange on which the trade
occurred, PRICE transaction price, SIZE trade size, COND sale condition, CORR correction
indicator of correctness of a trade, G/27 indicating G trades (trades of NYSE members on their
own behalf) and rule 127 transactions (block trades)

as briefly discussed in Chap. 2, most modern electronic exchanges allow traders to
submit iceberg orders or hidden orders. The trading rules associated with partial (or
complete) display differ across exchanges. For instance, some exchanges, such as
the NASDAQ, even allow to post completely hidden orders in the bid-ask spread
(and thus providing execution priority) while this is not possible on other trading
platforms. As long as information on hidden orders is not available, limit order
books can be only incompletely constructed. For more details on iceberg orders
and hidden orders, see, e.g., Bessembinder et al. (2009), Frey and Sandas (2009) or
Hautsch and Huang (2011).

The quality as well as the format of the data strongly depends on the underlying
institutional settings and the recording system. See, Chap. 2 or, e.g., Harris (2003)
for more details on institutional frameworks. Though to the growing importance
of electronic trading, the quality and detailedness of transaction data has increased
during recent years, rigorous data handling and processing is still an important task
and essential prerequisite for empirical studies.

To illustrate possible forms of raw high-frequency data, Tables 3.1 and 3.2 show
extracts of raw files from the "Trade and Quote” (TAQ) database released by the
NYSE. The TAQ database is one of the most popular and widely used transaction
datasets and contains detailed information on the intraday trade and quote process at
the NYSE, NASDAQ and numerous local exchanges in the U.S. The TAQ database
consists of two parts: the trade database and the quote database. The trade database
contains transaction prices, trading volumes, the exact time stamp (to the second)
and attribute information on the validity of the transaction. The quote database
consists of time stamped (best) bid and ask quotes, the volume for which the
particular quote is valid (market depth), as well as additional information on the
validity of the quotes. As the NYSE features a hybrid trading mechanism (see
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Table 3.2 TAQ data record on quotes for Microsoft on June 1, 2009

SYMBOL DATE EX TIME BID BIDSZ OFFER OFFSZ MODE
MSFT 2009-06-01 Z 36001  21.1100 43 21.1300 38 12
MSFT 2009-06-01 T 36001 21.1100 97 21.1200 6 12
MSFT 2009-06-01 T 36001 21.1100 92 21.1200 6 12
MSFT 2009-06-01 T 36001 21.1100 82 21.1200 6 12
MSFT 2009-06-01 I 36001  21.1100 9 21.1200 5 12
MSFT 2009-06-01 T 36001 21.1100 72 21.1200 6 12
MSFT 2009-06-01 B 36001 21.1100 30 21.1300 22 12
MSFT 2009-06-01 D 36001  21.1000 8 21.2100 2 12
MSFT 2009-06-01 B 36001 21.1100 31 21.1300 22 12
MSFT 2009-06-01 B 36002 21.1100 30 21.1300 22 12
MSFT 2009-06-01 B 36002 21.1100 21 21.1300 22 12
MSFT 2009-06-01 T 36002 21.1100 72 21.1200 5 12
MSFT 2009-06-01 T 36002 21.1100 78 21.1200 5 12
MSFT 2009-06-01 I 36002 21.1100 9 21.1300 33 12

SYMBOL stock symbol, DATE quote date, TIME quote time, EX exchange on which the trade
occurred, BID bid price, BID SZ bid size in number of round lots (100 shares), OFFER ofter (ask)
price, OFF SZ offer size in number of round lots (100 shares), MODE quote condition

Chap. 2), the quotes reported in the quote database can be quotes that are posted by
the specialist, limit orders from market participants posted in the limit order book,
or limit orders submitted by traders in the trading crowd.

Table 3.3 shows raw data from the TotalView-ITCH data feed offered by NAS-
DAQ which is more detailed than the TAQ database and also provides information
on incoming limit orders. The “event classification” allows for a quite precise
reconstruction of all limit order book activities and thus the resulting order book.
Here, only messages on the events “A” and “P” yield information on prices and types
of limit orders. Corresponding information on other event types can be retrieved
by tracing the limit order according to its order ID. This data can be used to
fully re-construct the limit order book and to partly identify the location of hidden
volume.? For more details on the properties and the use of ITCH data, see Hautsch
and Huang (2011).

3.1.2 Matching Trades and Quotes

Many exchanges, such as, e.g., the NYSE, NASDAQ, EURONEXT or XETRA,
record trades and quotes separately which raises the problem of appropriately
matching the two data files. This step is necessary whenever trade characteristics,
like trade prices and trade sizes, have to be linked to the underlying quotes prevailing

2 Automatic and efficient limit order book reconstruction can be performed by a limit order book
system reconstructor (“LOBSTER”) which is developed at Humboldt-Universitdt zu Berlin and
can be accessed on http://lobster.wiwi.hu-berlin.de.
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Table 3.3 TotalView-ITCH data record on market and limit orders for Microsoft trading at
NASDAQ on September 1, 2009

TIME ORDER ID EVENT PRICE SIZE SIDE
40900995 135132726 E 500

40900995 135133117 E 100

40900996 135126512 D 100

40900996 135135501 A 2428 100 —1
40900996 135125636 D 200

40900996 132601833 P 2427 500 —1
40900996 132601833 P 2427 250 —1
40900996 132601833 P 2427 144 —1
40900997 135135542 A 2427 100 1
40900997 135135544 A 2428 200 -1
40900997 135135580 A 2426 200 1
40900998 135135501 D 100

40900998 135135591 A 2432 100 —1
40900999 135135631 A 2428 4000 —1

TIME milliseconds from midnight, ORDER ID unique ID for each limit order, EVENT: E
execution of an order, A posting a new limit order, D (partial or total) deletion of limit orders,
P execution against a hidden order, PRICE limit price, SIZE order size, SIDE: —1 — sell side, 1 —
buy side

in the market. This matching process induces an identification problem as long
as the corresponding time stamps are not exact. Particularly in systems where
the trading process is recorded manually, the time stamps are not necessarily
reliable and thus comparable. Even if the recording system is exact, latency and
technological limitations circumvent a perfect matching of trades and corresponding
quotes. For NYSE data of the early nineties, Lee and Ready (1991) show that the
problem of potential mismatching can be reduced by the so-called “five-seconds
rule”. Accordingly, a trade is linked to the quote posted at least 5s before the
corresponding transaction. This is due to the fact that quotes are posted more quickly
than trades can be recorded. Lee and Ready (1991) illustrate that this rule leads to the
lowest rates of mismatching. However, while this rule was sensible for transaction
data during the nineties and early 2000s, it is not applicable anymore to more
recent data. In fact, the speed and precision of order processing has been increased
substantially reducing the average 5-s delay of trade records. For instance, using
NYSE data and estimating the adverse selection cost component in bid-ask spreads,
Henker and Wang (2006) show that the time delay is rather 1s than 5s. This result
is in line with most recent studies which use the most recent quote as the relevant
one at each trade arrival.

However, given the variety of trading forms and systems as well as specific
trading rules on the individual markets, the application of universal matching rules is
rather inappropriate. If, for instance, reliable data on market depth at (and eventually
behind) the best quotes are available, data-driven matching methods could be more
sensible. Using data on market orders, limit orders and market depth associated with
the three best levels from EURONEXT Amsterdam, Hautsch and Huang (2009)
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propose an automatized algorithm yielding a specific matching for each trade. It
consists of three steps, where the first step searches for a perfect match between the
trade and the corresponding order book update while the following steps search for
an approximate match whenever a perfect match is not possible:

Step 1: Perfect matching. Consider a specified time window, e.g., [—10, 10] seconds
around the time stamp of the corresponding trade. Then, pick every order book
record in this time window and perform the following analysis:

1. if the trade price equals the current best bid (ask) and the difference in best bid
(ask) order book volumes between the current record and the previous one equals
the trade size, or,

2. if the trade price equals the previous best bid (ask), the difference in best bid (ask)
order book volumes between the current record and the previous one equals the
trade size, and the best bid (ask) decreased (increased) since the last order book
update,

then, match the most previous order book record with the current trade and record
the corresponding delay time. Case (1) is associated with a trade which absorbs
parts of the pending depth on the first level. Accordingly, case (2) is associated
with a trade which completely removes the first depth level and thus moves the best
ask/bid quote. If for none of the order book records a match can be achieved in the
given time window, the trade remains unmatched and we move to Step 2.

Step 2: Imperfect matching. Pick any unmatched trade record’s time stamp and
consider a time window of size which is twice the average delay time computed
in Step 1. Moreover, if

1. the trade price equals to the best bid (ask) and the best bid (ask) size is less than
the previous one, or,
2. the best bid (ask) decreases (increases) between two consecutive records,

then, match the trade with the corresponding order book entry. This step accounts
for the possibility that trades might be executed against hidden liquidity. If for none
of the order book records a match can be achieved in the given time window, the
trade remains unmatched and we move to Step 3.
Step 3: Round time matching. Pick any unmatched trade and match it with the order
book record that is closest to the trade’s time stamp plus the average delay time.
Obviously, this procedure has to be adapted to specific trading rules at individual
exchanges.

3.1.3 Data Cleaning

After matching trades and quotes, obvious data errors should be filtered out. Typical
data errors are due to (a) a wrong recording or (b) a delayed recording of trade
or quote information. Delayed records arise from trades which are recorded too
late or from subsequent corrections of mis-recorded trades which are lined into the
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Fig. 3.1 Plot of Apple trade prices, NASDAQ, 11/10/2007, 13:11 to 13:15

trading system with a time delay. As an illustration of mis-recorded trades, Fig. 3.1
shows the price evolution of the Apple stock on October 11, 2007, over the course
of 4min.> While the underlying price level is around 165, we observe a massive
number of price jumps due to the imputation of mis-recorded prices.

Such recording errors are most easily identified if transaction prices or quotes
show severe jumps between consecutive observations which are reverted immedi-
ately thereafter. To remove such types of errors, a set of filters, similar to those
shown below, is commonly applied:

1. Delete observations which are directly indicated to be incorrect, delayed or
subsequently corrected.
. Delete entries outside the regular trading hours.
. Delete entries with a quote or transaction price equal to zero or being negative.
. Delete all entries with negative spreads.
. Delete entries whenever the price is outside the interval [bid —2 x spread ; ask +
2 x spread].
6. Delete all entries with the spread being greater or equal than 50 times the median
spread of that day.
7. Delete all entries with the price being greater or equal than 5 times the median
mid-quote of that day.
8. Delete all entries with the mid-quote being greater or equal than 10 times the
mean absolute deviation from the local median mid-quote.
9. Delete all entries with the price being greater or equal than 10 times the mean
absolute deviation from the local median mid-quote.

[ I SO I NS

Obviously, the choice of window sizes in rules (v) to (ix) is somewhat arbitrary
and dependent on the overall quality of the data. However, the parameters here are
rather typical and in accordance with, e.g., Brownlees and Gallo (2006), Barndorft-
Nielsen et al. (2008b) or Hautsch et al. (2011), among others.

3This example was kindly provided by Roel Oomen.
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3.1.4 Split-Transactions

After having the data synchronized and cleaned, so-called “split-transactions” have
to be taken into account. Split-transactions arise when a marketable order on one
side of the market is matched against several standing limit orders on the opposite
side. Such observations occur in electronic trading systems when the volume of an
order exceeds the capacities of the first level of the opposing queue of the limit order
book. In these cases, the orders are automatically matched against several opposing
order book entries. Often, these sub-trades are recorded individually. Consequently,
the recorded time between the particular “sub-transactions” is extremely small*
and the corresponding transaction prices are equal or show an increasing (or
decreasing, respectively) sequence. Depending on the research objective, it is
sometimes justified to aggregate these sub-trades to one single transaction. However,
as argued by Veredas et al. (2008), the occurrence of such observations might also
be due to the fact that the limit orders of many traders are set for being executed at
round prices, and thus, trades executed at the same time do not necessarily belong
to the same trader. Moreover, in very actively traded stocks, the occurrence of
different transactions within a couple of milliseconds is not unlikely. In these cases,
a simple aggregation of observations with zero trade-to-trade durations would lead
to mismatching. Grammig and Wellner (2002) propose identifying a trade as a split-
transaction when the durations between the sub-transactions are smaller than 1s,
and the sequence of the prices (associated with a split-transaction on the bid (ask)
side of the order book) are non-increasing (non-decreasing). Then, the volume of
the particular sub-trades is aggregated and the price is computed as the (volume
weighted) average of the prices of the sub-transactions.

3.1.5 Identification of Buyer- and Seller-Initiated Trades

Often, it is not possible to directly identify whether a trade is seller- or buyer-
initiated. In such a case, the initiation of trades has to be indirectly inferred from
the price and quote process. The most commonly used methods of inferring the
trade direction are the quote method, the tick test as well as hybrid methods
combining both methods (see, e.g., Finucane 2000). The quote method is based
on the comparison of the transaction price and the mid-quote. Whenever the price is
above (below) the mid-quote, the trade is classified as a buy (sell). Trades which are
executed directly at or above (below) the prevailing best ask (bid) are most easily
identified. However, the closer transaction prices are located to current mid-quotes,
the higher the risk of misclassification is.

4Often it is a matter of measurement accuracy that determines whether sub-transactions have
exactly the same time stamp or differ only by hundredths of a second.
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If trades are executed at the mid-quote (and no other information is available),
only the sequence of previous prices can be used to identify the current trade
direction. According to the so-called fick test, a trade is classified as a buy (sell)
if the current trade occurs at a higher (lower) price than the previous trade. If the
price change between consecutive transactions is zero, the trade classification is
based on the last price that differs from the current price. However, if information
on the underlying market depth is available, the comparison of transaction volume
and corresponding changes of market depth on one side of the market provides
additional information which increases the precision of the identification algorithm.

3.2 Aggregation by Trading Events: Financial Durations

Transaction data is often also used in an aggregated way. Though aggregation
schemes naturally induce a loss of information, there are three major reasons for
the use of specific sampling schemes. Firstly, as discussed below, data aggregation
allows to construct economically as well as practically interesting and relevant
variables. Secondly, aggregation schemes allow to reduce the impact of market
microstructure effects whenever the latter are of less interest and might cause noise
in a given context. A typical example is the use of aggregated (squared) returns in
realized volatility measures to estimate daily quadratic price variations. In such a
context, a well-known phenomenon is the trade-off between on the one hand using
a maximum amount of information increasing estimators’ efficiency and on the
other hand the impact of market microstructure effects causing biases in volatility
estimates.’ Thirdly, aggregation schemes allow to reduce the amount of data which
is helpful whenever long sample periods or large cross-sections of assets are studied.

In general, we can distinguish between two major types of sampling and aggre-
gation schemes: (i) Event aggregation, i.e., aggregations of the process according
to specific trading events. This type of sampling scheme will be discussed in
more detail in this section. (ii) Time aggregation, i.e., aggregations of the process
according to calendar time which will be discussed in Sect. 3.5.

Consider in the following a (multivariate) point process associated with the
complete order arrival process of a financial asset over a given time span. By
selecting points of this process according to certain trading events, different types of
so-called financial point processes are generated. The selection of individual points
is commonly referred to as a “thinning” of the point process.

3.2.1 Trade and Order Arrival Durations

Sampling the process whenever a trade occurs is commonly referred to as trans-
action time sampling or business time sampling and is often used as a sampling

SFor more details, see Chap. 8.
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scheme underlying realized volatility measures. For a discussion, see e.g., Hansen
and Lunde (2006), Andersen et al. (2010) or Hautsch and Podolskij (2010). The
time between subsequent transactions is called trade duration, is the most common
type of financial duration and is a natural measure of the trading intensity. Since
a trade reflects demand for liquidity, a trade duration is naturally associated with
the intensity of liquidity demand. Correspondingly, buy or sell trade durations are
defined as the time between consecutive buys or sells, respectively, and measure the
demand for liquidity on the individual sides of the market.

In an order driven market, limit order (arrival) durations, defined as the time
between consecutive arrivals of limit orders, reflect the activity in the limit order
book and thus on the supply side of liquidity. In studying limit order book dynamics,
it is of particular interest to distinguish between different types of limit order
activities reflecting, for instance, traders’ order aggressiveness.

3.2.2 Price and Volume Durations

Price (change) durations are generated by selecting points according to their price
information. Let p;, a; and b; be the process of transaction prices, best ask quotes
and best bid quotes, respectively. Define in the following i’ with i’ < i as the
index of the most recently selected point of the point process. Then, a series of price
durations is generated by thinning the process according to the following rule:

Retain pointi, i > 1,if |p; — pir| = dp.

The variable dp gives the size of the underlying cumulative absolute price change
and is chosen exogenously. The first point typically corresponds to the first point
(i = 1) of the original point process. In order to avoid biases caused by a bouncing
of transaction prices between ask and bid quotes (“bid-ask bounce”), an alternative
is to generate price durations not on the basis of transaction prices p;, but based
on midquotes mq; := (a; + b;)/2. As discussed in more detail in Chap. 8, price
durations are closely related to volatility measures. Sampling whenever prices
(or mid-quotes) change by a tick (corresponding to the smallest possible price
movement), i.e., dp = 1, is commonly referred to as tick time sampling.

In technical analysis, turning points of local price movements are of particular
interest since they are associated with optimal times to buy or to sell. The time
between such local extrema, i.e., the so-called directional change duration, provides
information on the speed of mean reversion in price processes. A directional change
duration is generated according to the following procedure:

Retain pointi, i > 1, if

L pi—piz()dp
and if there exists a point, indexed by i” with i” > i’, for which
2. pi=(S)pjwithj=i+1,...,i" —1and p; — pi» > (<) dp.
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Here, dp gives the minimum price difference between consecutive local extreme
values.

Volume durations are defined as the time until a certain aggregated volume
is traded on the market. It is generated formally by retaining point 7, i > 1 if
le —irp1 V= dv, where dv represents the chosen amount of the cumulated volume
and v; the transaction volume associated with trade i. Volume durations capture not
only the speed of trading but also the size of trades. Consequently, they naturally
reflect the intensity of liquidity demand.

An indicator for the presence of information on the market is the time it takes to
trade a given amount of excess (or net) buy or sell volume. Consequently, so-called
excess volume duration measure the intensity of (one-sided) demand for liquidity
and are formally created by retaining pointi, i > 1, if | le g1 y? vj| > dv, where
y? is an indicator variable that takes the value 1 if a trade is buyer-initiated and —1
if a transaction is seller-initiated. The threshold value dv is fixed exogenously and
determines the level of one-sided volume under risk.

While excess volume durations reflect market-side specific imbalances in liquid-
ity demand, the same idea can be applied to liquidity supply in limit order book
markets. Correspondingly, we can quantify the time it takes until a given imbalance
between ask and bid depth is realized. We refer this to an excess depth duration.

3.3 Properties of Financial Durations

During the remainder of this chapter we analyze the empirical properties of high-
frequency data using the stocks JP Morgan (JPM), traded at NYSE, Microsoft
(MSFT), traded at NASDAQ, and Deutsche Telekom (DTEK), traded in the German
XETRA system. JP Morgan and Microsoft data are extracted from the TAQ database
for June 2009. For Deutsche Telekom we employ trade data as well as 1-s snapshots
of the (displayed) limit order book during September 2010. Throughout this chapter,
overnight effects are omitted. Hence, aggregated data cover only observations within
a trading day.

The present section discusses major empirical properties of financial durations.
Figure 3.2 shows the evolution of monthly averages of the number of trades per
day for JP Morgan traded at the NYSE from 2001 to 2009. We observe a clear
increase in trading intensities since 2001, particularly during the financial crisis in
2008. Though trading activity declined after the crisis, we still observe a trading
frequency in 2009 which is more than two times as high as in 2001.

Figure 3.3 shows the distribution of the time between trades over the universe of
S&P 1500 stocks between 2006 and 2009. We observe that nearly 600 out of 1,500
assets trade more frequently than every 10 s. These assets are mostly constituents of
the S&P 500 index. However, even beyond the S&P 500 assets, we observe around
1,000 assets trading more frequently than every 20 seconds on average.
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Fig. 3.2 Monthly averages of the number of trades per day for JP Morgan, NYSE, 2001-2009
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Fig. 3.3 Histogram of the time between trades (horizontal axis; in seconds) over the S&P 1500
universe, 2006-2009

Figure 3.4 shows histograms of trade durations, midquote (change) durations,
volume durations, excess volume durations and excess depth durations for JPM,
MSFT and DTEK. We observe that more than 50% of all JPM trade durations are
less or equal than 1s whereas trade durations longer than 10s happen only very
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infrequently. This amounts to an average trade duration of 2.9s. A similar picture
arises for MSFT with an average trade duration of 4.5 s. DTEK trades occur slightly
less frequent (with an average trade duration of 9.5s) but reveal a more fat-tailed
distribution with higher probabilities for longer durations (>10s) and very short
durations (<1 s). For all stocks, a striking feature is the non-trivial proportion of zero
durations caused by split-trades (see Sect. 3.1.4) or truly simultaneous (or close-to-
simultaneous) trade occurrences.

The second panel shows price durations associated with midquote changes of 10
basis points of the average price level for JPM (corresponding to 3.5 cents) and 3
ticks for MSFT and DTEK (corresponding to 1.5 cents and 0.15 cents, respectively).
These price movements last on average 47.6, 64.1 and 66.7 s for JPM, MSFT and
DTEK, respectively, and reveal a clearly more dispersed unconditional distribution
as for trade durations. This dispersion becomes higher if the magnitude of the
underlying price changes increases (third panel). The distributions of both trade
and price durations reveal overdispersion, i.e., the standard deviation exceeds the
mean. We observe dispersion ratios between 1.6 and 1.9 for trade durations and
price durations yielding clear evidence against an exponential distribution.

The fourth panel of Fig. 3.4 shows the distribution of the time it takes to trade
10 times the average (single) trade size. These waiting times last on average 40.5,
67.4 and 118.3s for JPM, MSFT and DTEK, respectively, with dispersion ratios
around approximately 1.1. Hence, we observe a lower proportion of extremely
long or extremely small durations inducing a more symmetric distribution. Finally,
excess volume durations (for JPM and MSFT) and excess depth durations (for
DTEK), shown in the bottom panel, give the time it takes until a certain imbalance
in market side specific trading volume and depth arises on the market. Also
here, we observe substantial variations in waiting times associated with clearly
overdispersed distributions. Figure 3.5 shows time series plots of trade durations
and price durations. We observe that financial durations are clustered in time with
long (short) durations following on long (short) durations. This suggests positive
serial dependence in duration series and is confirmed by Fig.3.6 depicting the
corresponding autocorrelation functions (ACF) of the individual financial duration
series.

Note that these are autocorrelations of (irregularly spaced) time intervals.
Accordingly, the (calendar) time distance to a lagged observation is time-varying.
We observe highly significant positive autocorrelations revealing a strong persis-
tence of the process. This is particularly true for trade durations having ACFs which
decay very slowly. Actually, though not explicitly documented here, corresponding
tests show evidence for long range dependence. For more details, see Chap. 6.

Price durations have higher autocorrelations but reveal slightly less persistence.
Nevertheless, price durations based on relatively small price changes still reveal
significant long range dependence. Recalling the close link between price durations
and price volatility,® these results show that high-frequency volatility is obviously

6See Chap. 8 for more details on this relationship.
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Fig. 3.4 Histograms of trade durations, midquote durations, volume durations, excess volume
durations and excess depth durations for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche
Telekom (XETRA). Aggregation levels for price durations in basis points of the average price level
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June 2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom
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Fig. 3.5 Time series of trade durations and price durations for JP Morgan (NYSE), Microsoft
(NASDAQ) and Deutsche Telekom (XETRA). Aggregation levels for price durations in basis
points of the average price level for JP Morgan and in minimum tick size for Microsoft
and Deutsche Telekom. Sample period: First 2,000 observations for trade durations and 1,000
observations for price durations in June 2009 for JP Morgan and Microsoft and in September 2010
for Deutsche Telekom

very persistent. This persistent declines when the underlying aggregation level (i.e.,
the size of underlying price movements) raises and first passage times become
longer. Then, as shown in the third panel, the ACFs decay quickly and become even
negative for JPM and MSFT after approximately 25 lags. This negative dependence
is driven by intraday periodicities since higher lags of comparably long price
durations might easily go beyond the current trading day and are driven by price
activity of the day before.

The ACFs of volume durations start on a comparably high level. For example,
for JPM volume durations, the first order autocorrelation is around 0.65. This
high autocorrelation is caused by the fact that trade sizes are strongly clustered
themselves (see Sect. 3.4 for more details).” Finally, also excess volume duration
series are strongly autocorrelated but are less persistent than volume durations. In
contrast, excess depth durations are very persistent. The time it takes to build up
a certain excess liquidity supply reveals long memory. Hence, (excess) liquidity
shocks are quite long-lived.

Figure 3.7 shows the intraday seasonality patterns based on cubic spline regres-
sions.® For JPM and MSFT we find a distinct inverse U-shaped pattern with
lowest durations in the morning and before closure and significantly longer spells

"Note that these effects are not caused by split-transactions since such effects have been taken into
account already.

8For more details on the estimation of seasonality effects, see Sect. 5.4.



~
§)

3 Empirical Properties of High-Frequency Data

©
o
©
°
]
e
o
=)
e
o
o

0.05 0.10 0.15 0.20 0.25
0.05 0.10 0.15 0.20 0.25

-0.05

20 60 120 180 240 300 360 420 480 20 60 120 180 240 300 360 420 480 20 60 120 180 240 300 360 420 480

JPM trade durations MSFT trade durations DTEK trade durations

@ a @

3 B 3

S S S

0 .n o

] ] g

o o o

2 2 o

] S S

8 8 8

o o o

] ] 8 ] 8l

7 5 10 15 20 25 30 35 40 45 9 5 10 15 20 25 30 35 40 45 ] 5 10 15 20 25 30 35 40 45
JPM 10bp midquote durations MSFT 3tck midquote durations DTEK 6tck midquote durations

2 2 2

o o o

2 2 2

3 ] 3

o S o

] 8 8

o o o

= 2 e

S o S

o o Pl

Q Q S

S S S

1 1 1

o o =

3 3 3 —

N 5 10 15 20 25 30 35 40 45 N 5 10 15 20 25 30 35 40 45 N 5 10 15 20 25 30 35 40 45
JPM 20bp midquote durations MSFT 6tck midquote durations DTEK 6tck midquote durations

R R R

o o o

a a o

3 3 3

E E )

2 2 2

o o o

o o o

q g g

S S S

e e e

S S ]

9 9 0

o ] o e

G 5 10 15 20 25 30 35 40 45 G 5 10 15 20 25 30 35 40 45 T S 10 15 20 25 30 35 40 45

JPM volume durations MSFT volume durations DTEK volume durations

2 2 2

o o o

Q Q Q

g ] g

S S S

] 8 8

o o o

=4 2 e

S S S

a o o

S S °

o o o

1 1 1

o o =3

3 — 3 — S —

T 5 10 15 20 25 30 35 40 45 T 5 10 15 20 25 30 35 40 45 ] 5 10 15 20 25 30 35 40 45
JPM excess volume durations MSFT excess volume durations DTEK excess depth durations

Fig. 3.6 Autocorrelation functions of trade durations, midquote change durations, volume dura-
tions, excess volume durations and excess depth durations for JP Morgan (NYSE), Microsoft
(NASDAQ) and Deutsche Telekom (XETRA). Data description see Fig. 3.4. Dotted lines: approx-
imately 99% confidence interval. The x-axis denotes the lags in terms of durations

around lunch time. High trading activities after market opening are driven by the
dissemination of information occurring over night. As soon as information from
other markets is processed, market activity declines and reaches its minimum around
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denotes local calendar time

lunch time. Then, approaching market closure, trading activity steadily increases
again as many traders tend to close or to re-balance their positions before continuous
trading stops. XETRA trading reveals a slightly different pattern with the mid-day
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spike being more pronounced and a sharp decline of durations (and thus an increase
of market activities) around 14:30. The latter “dip” is likely to be induced by the
opening of the major U.S. exchanges (CBOT, NYSE and NASDAQ) and the need
to process new information. We observe that this significantly increases temporary
trading activity, volatility and market imbalances.

Finally, Fig. 3.8 plots the relationship between the size of the underlying cumula-
tive absolute price change dp and the average length of the resulting price duration,
where overnight periods are discarded. We observe slightly concave functions with
relatively similar shapes. Note that the scaling on the y-axis is quite different
reflecting that overall volatility differs from stock to stock.” While for DTEK it
takes on average approximately 40 min to move the price by 0.03, this movement
just takes around 2 min in JPM trading.

3.4 Properties of Trading Characteristics

In this section, we discuss the statistical properties of the most important trading
characteristics, such as the bid-ask spread, the trade size, the order book depth as
well as the trade-to-trade return. These characteristics are observed on transaction
level and thus are irregularly spaced in time. Figure 3.9 shows the unconditional
distributions of trade sizes, bid-ask spreads, trade-to-trade price changes as well as
trade-to-trade midquote changes. We observe that JPM trade sizes are quite discrete
and clustered in round lots. To model such outcomes, a count data distribution (see
Chap. 13) seems to be most appropriate. Conversely, for MSFT and DTEK, the dis-
tribution of trade sizes is significantly more dispersed. Nevertheless, we still observe
a concentration of probability mass at round numbers. This is particularly striking
for DETK trading where trade sizes of multiples of 5 lots are particularly preferred.
This reflects the well-known phenomenon of traders’ preference for round numbers.

°The discontinuities are caused by finite-sample properties as for high aggregation levels the
number of underlying observations naturally shrinks.
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Fig. 3.9 Histograms for trade sizes (in 100 share lots), bid-ask spreads, trade-to-trade spread
changes, trade-to-trade price changes and trade-to-trade midquote changes for JP Morgan (NYSE),
Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan
and Microsoft and September 2010 for Deutsche Telekom

The distribution of bid-ask spread realizations is very discrete. In 90% of all
cases, JPM spreads take the values 0.01, 0.02 and 0.03. In case of JPM and
DTEK, the distribution is even more extreme with a clear concentration of spread



S
[@)}

3 Empirical Properties of High-Frequency Data

0.000 0.008 0.016 0.024 0.032 0.040

0.000 0.008 0.016 0.024 0.032

0.000 0.008 0.016 0.024 0.032

2 4 6 8 10 12 14 16 18 20 22 24 2 6 10 14 18 22 26 30 34 38 42 46
Rel. avg. 1st level depth Rel. avg. 2nd level depth Rel. avg. 3rd level depth

2468 12 16 20 24 28 32 36

0.024

0.016

0.008

|
|
|
|
|
|

i,
S -09 -0.6 -03 -0.002 04 06 0.8 S -09 -06 -03 -0.002 0.4 06 0.8 S -09 -0.6 -0.3 -0.002 04 06 08

Rel. ask—bid imbalance, 1st level Rel. ask—bid imbalance, 2nd level Rel. ask—bid imbalance, 3rd level

000 0.008 0.016 0.024 0.032 0.040

000

Fig. 3.10 Top panel: Histograms of first, second and third level depth (ask and bid average) for
Deutsche Telekom (XETRA) as multiples of the average trade size. Bottom panel: Percentage
difference between cumulated ask and bid depth, weighted by the price difference to the opposite
side of the market. Sample period: September 2010

realizations at one or two ticks. This discreteness is naturally also reflected in
the distribution of trade-to-trade spread changes which are essentially one-point
distributions in case of MSFT and DTEK. This reflects that for these very active
stocks, bid-ask spreads are close to be minimal and are mostly constant over time.

The last two panels in Fig.3.9 show the distributions of trade-to-trade price
and mid-quote changes. Probability mass clearly concentrates at zero indicating
that transaction prices are mostly constant from trade to trade.!® This distri-
bution is even more concentrated in case of mid-quote price changes which
reflects that trade-to-trade quote changes are less likely than transaction price
changes.!!

Figure 3.10 plots distributions of order book depth for DTEK. The upper panel
depicts the histograms of depth (averaged over the ask and bid side) at the first best,
second best and third best observed quote as multiples of the average trade size.
First level depth is right-skewed indicating only small probabilities for observing a
comparably thin market. On average, first level depth is approximately seven times
the average trade size with a standard deviation of 5. Note that the second and
third best observed quote is not necessarily the second and third best theoretically
possible quote as there might be empty price grids in the book. However, since
DTEK belongs to the most actively traded XETRA stocks during the observation

10The asymmetries in the distributions are induced by the underlying sample period where, e.g.,
for JPM, upward price movements are slightly less likely than downward movements.

"'We do not record trade-to-trade midquote changes for Deutsche Telekom since for this stock, we
only employ 1-s limit order book snapshots.
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period, the probability to observe gaps in the order book close to the market is
relatively small. Therefore, the distributions shown in Fig.3.10 are very similar to
depth distributions shown for fixed price grids around the best ask and bid quote.
We observe that these distributions are rather symmetric with averages of 15 and 19
for the second and third level, respectively. Hence, on average, the depth behind the
market is on average significantly higher than the depth at the market.

In the bottom panel of Fig.3.10, we show the difference between the cumulated
ask and bid depth, weighted by the spread to the opposite side of the market, relative
to the sum of cumulated ask and bid weighted depth. In particular, for k € {1, 2, 3}
we compute

k ajo j g1y bic 1 ]

Zj:] vi'(aj —b;j) —v; " (a; = b;)

Yh_ v @] b))+ v (@} = b))

vi(k) =

where v/ and v/ denote the ask and bid depth at the jth level, respectively and
a;’ and b;/ are the corresponding ask and bid quotes, respectively. Hence, v; (k) = 0
indicates a completely balanced market whereas values of 1 (—1) reflect that all
depth is cumulated on the ask (bid) side of the market. Accordingly, v;(1) just
equals the relative ask-bid depth difference. For this quantity, we observe a fat-tailed
distribution assigning significant probability mass to extreme values of completely
imbalanced order books. Conversely for k > 1, the distributions of v; (k) are clearly
less fat-tailed with shapes very similar to that of a normal distribution. Hence, if
we cumulate depth over several price levels, the probability for extreme market
imbalances is clearly smaller. Figure 3.11 shows time series plots of trade sizes
and bid-ask spreads. We observe that trade sizes themselves are clearly clustered
over time. Hence, large trade sizes tend to follow large trade sizes suggesting
positive autocorrelations. The time series plots of bid-ask spreads naturally reflect
the discreteness of quotes shown in Fig. 3.9. Moreover, even spread realizations tend
to be clustered over time as well. This is most evident for JPM spreads but is also
visible for the very discrete series of MSFT and DTEK.

The notion of clustering in trade sizes and spreads is confirmed by Fig.3.12
depicting trade-to-trade autocorrelations of the corresponding trading characteris-
tics. JPM trade sizes reveal a slowly decaying autocorrelation function similar to
that observed for trade durations. The fact that serial correlations in trade sizes are
clearly lower and less persistent for MSFT and DTEK, indicates that trade-to-trade
dynamics vary over the cross-section of stocks and are obviously driven by specific
underlying institutional structures. Nonetheless, it is remarkable that trade sizes are
significantly autocorrelated up to at least 100 lags. The second panel shows that
also bid-ask spreads are strongly clustered over time. Again, there is substantial
variation in the ACF shapes across the different stocks. While for JPM and DTEK,
bid-ask spread dynamics are very persistent and reveal long range dependence,
MSFT autocorrelations are lower and decay quite fast. Overall these results indicate
that bid-ask spreads — and as such important components of transaction costs — are
clearly predictable.
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Fig. 3.11 Time series of trade sizes (in 100 share lots) and bid-ask spreads for JP Morgan (NYSE),
Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period: First 2,000 observations
in June 2009 for JP Morgan and Microsoft and in September 2010 for Deutsche Telekom

The third panel depicts the ACFs of absolute trade-to-trade price changes. The
latter can be seen as proxies for high-frequency (or trade based) volatility (for
more details, see Chap.8). It is shown that trade volatility is strongly serially
dependent and persistent. The shape of the ACFs are quite similar to those of
trade durations and trade sizes. Note that the clustering of absolute trade-to-
trade transaction price changes is partly driven by a bouncing of trade prices
between ask and bid quotes (see also the discussion below). Indeed, trade-to-trade
movements of absolute midquote changes (bottom panel) reveal slightly weaker (but
still persistent) dependencies. Using the mid-quote as a proxy for the underlying
(unobservable) “efficient” price of the asset, these plots reveal substantial volatility
clustering even on the transaction level.

Figure 3.13 shows the evolution of trade prices and corresponding quotes over
an arbitrary 1-min interval for JPM and MSFT trading. The pictures illustrate the
irregular spacing of trades, the discrete movements of prices and quotes as well as
the up-ward and down-ward bouncing of trade prices between ask and bid quotes
(as well as within the spread). As confirmed by Fig.3.14, this bid-ask bouncing
of trade prices causes a highly significant and negative first order autocorrelation
in trade-to-trade (signed) price changes. This feature is well-known in the market
microstructure literature and is formally discussed by Roll (1984). Roll illustrates
that in the most simple case where (unobservable) “efficient prices” follow a random
walk and transactions can occur only on ask and bid quotes (with the spread being
constant and symmetric around the efficient price), resulting trade price changes
follow an MA(1) process with negative coefficient. For a deeper discussion, see
also Hasbrouck (2007). The second panel of Fig. 3.14 shows the ACFs of trade-to-
trade midquote changes. Though there is still some evidence for an MA(1) process,
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Fig. 3.12 Autocorrelation functions of trade sizes, bid-ask spreads, absolute trade-to-trade price
changes and absolute trade-to-trade midquote changes for JP Morgan (NYSE), Microsoft (NAS-
DAQ) and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and Microsoft
and September 2010 for Deutsche Telekom

the dependence is clearly weaker as for trade price changes. The remaining negative
autocorrelation provides evidence for reversal effects in quote changes, i.e., changes
in quotes tend to be reversed thereafter. This effect is confirmed by the ACFs of ask
quote changes shown in the bottom panel.'?

Figure 3.15 depicts the intraday seasonality patterns of trading characteristics.
We observe distinct seasonality shapes for trading volumes of JPM and MSFT
with high trade sizes after opening and before market closure. This pattern is well

12The ACFs for bid quote changes look very similar and are not shown here.
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in accordance with the seasonalities found for financial durations in Fig.3.7 and
indicates that high trading activities at the beginning and before the end of a trading
session are not only reflected in the speed of trading but also in trade sizes. However,
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while this pattern is quite pronounced for JPM and MSFT, for DTEK trading no
clear patterns are observable. Hence, intraday periodicities differ across markets
and depend on institutional settings and time zones.

For bid-ask spreads and absolute midquote changes, the intraday seasonality
pattern is quite pronounced with high spreads and high volatility after opening
which then remain quite constant during the trading day. Finally, also market depth
reveals clear intraday periodicities. Accordingly, depth is lowest after opening,
successively increases during the morning and remains on a widely constant level
during the day. Hence, it takes some time after market opening until sufficient order
book depth is built up.
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3.5 Properties of Time Aggregated Data

As discussed in Sect.3.3, an alternative way to aggregate high-frequency data
is to sample in calendar time. Evaluating market activity over equi-distant time
intervals has the advantage that the data are by construction synchronized which
eases multi-variate modelling. Moreover, it is advantageous whenever forecasts of
market activity over fixed time intervals are required.

Figure 3.16 depicts the distributions of trading characteristics aggregated over
2 min. The first panel shows the number of trades. Though the underlying variable
is a count variable, its variation is sufficiently large to justify its treatment as a
continuous (positive-valued) random variable. The distributions indicate the high
liquidity of the underlying assets with on average approximately 41, 26 and 13
trades per 2min for JPM, MSFT and DTEK, respectively. The distributions are
right-skewed and fat-tailed. For instance, for JPM, the occurrence of more than 100
transactions in 2 min is not very unlikely. The distributions of cumulative trading
volumes are even more right-skewed which is particularly evident for MSFT and
DTEK. Also here, significant probability mass in the right tail reflects the occurrence
of periods of very high trading intensity.

The third panel shows the distributions of the difference between cumulative
buy and sell volume relative to the total cumulative volume. This variable reflects
imbalances in liquidity demand. The spikes at —1 and 1 are caused by trading
periods where the entire cumulative trading volume is on one side of the market. Due
to the concentration of probability mass at single points, the resulting distribution is
obviously not purely continuous but is rather a mixture of continuous and discrete
components. The right picture in the third panel shows the distribution of changes
in the DTEK relative ask-bid (first level) depth imbalance (relative to the total
prevailing depth) evaluated at 2 min intervals. As the relative ask-bid imbalance is
by construction bounded between —1 and 1, changes thereof are bounded between
—2 and 2. Accordingly, values of —2 or 2 indicate that over a 2-min interval one-
sided depth in the book has been entirely shifted to the other side of the market. In
our dataset, such a situation, however, never occurred. Nevertheless, values of higher
than |1.5] indicate that quite substantial shifts of order book depth from one side of
the market to the other side within 2 min are possible. Finally, the two bottom panels
of Fig.3.16 show the distributions of 2-min quote changes (here representatively
only for the ask side) and transaction price changes. The discreteness of quote and
price changes is still clearly visible even over 2-min periods.

Figure 3.17 gives the histograms of 2-min percentage changes of the first, second
and third level depth (averaged over ask and bid sides). It turns out that the overall
order book depth does not change very dramatically over 2 min with zero values
occurring with probability around 50%. Conversely, as illustrated above, the relative
allocation over the two sides of the market can vary quite significantly.

Figures 3.18 and 3.19 display the corresponding distributions over 30s and 10s
aggregates, respectively. The ranges of realizations for trade counts naturally shrink.
Likewise the distributions become even more right skewed and traders’ preferences
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Fig. 3.16 Histograms for 2-min number of trades, cumulated trading volume (in 100 share lots),
cumulated net buy volume (in %), relative net ask depth changes, best ask changes and transaction
price changes for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom (XETRA).
Sample period: June 2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom

for round lot sizes (see Sect.3.4) become visible again if the aggregation level
declines. This is most evident for 10-s DTEK volume revealing a concentration
of probability mass at round lot sizes. Moreover, also the distribution of cumulative
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Fig. 3.17 Top panel: Histograms of 2-min relative changes of first, second and third level depth
(ask and bid average) for Deutsche Telekom (XETRA). Sample period: September 2010

relative net buy volume becomes much more discrete since the probability for the
occurrence of one-sided volume rises with shrinking time intervals. Correspond-
ingly, the distributions reveal a clustering at the values —1, 0, and 1. Likewise also
the distribution of quote and price changes become less dispersed and converge to
the distributions observed on transaction level (see Fig.3.9).

Figure 3.20 plots the ACFs of the corresponding 2-min aggregates. Trade counts
and cumulated volumes reveal a strong serial dependence indicating that liquidity
demand over short intervals is highly predictable. In contrast to the ACFs reported
for financial durations (see Fig. 3.6), the persistence is lower with ACFs decaying
relatively fast. The third panel reveals that also signed (relative) cumulative trading
volume is predictable with first order autocorrelations between 0.1 and 0.15. Like-
wise, also bid-ask spreads are still autocorrelated over 2-min intervals though we see
clear differences across the different assets. The bottom panel plots the ACFs of first
level depth (averaged over the ask and bid side) and the relative net ask depth change
for DTEK over 2-min intervals. A first order autocorrelation of approximately 0.4
shows that depth is clearly predictable. Relative changes in the excess ask depth
show a strong reversal pattern with a highly significant first order autocorrelation of
approximately —0.46. This result indicates that imbalances in the order book are not
persistent and are very likely to be re-moved within the next 2 min.

The top three panels of Fig.3.21 give the ACFs of quote log returns, trade
price log returns and midquote log returns computed over 2 min. With very few
exceptions, there is no significant evidence for predictability in high-frequency
returns. The bid-ask bounce effect as shown in Fig.3.14 on the transaction level
is not visible anymore on a 2-min frequency which is obviously induced by the
high trading frequency of the underlying assets. In fact, bid-ask bounces can still be
significant over longer time intervals if the underlying trading frequency is lower.
The bottom panel in Fig.3.21 reports the ACFs of squared midquote log returns
showing that 2-min price volatility is clearly clustered.

Figures 3.22-3.25 present the corresponding autocorrelation functions for 30
and 10s. The plots illustrate how the dynamics of the individual variables change
when the sampling frequency increases and ultimately converge to transaction
level. It turns out that the persistence in trade counts and cumulative volumes
clearly increases and the processes tend to reflect long range dependence. Similar
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Fig. 3.18 Histograms for 30-s number of trades, cumulated trading volume, cumulated net buy
volume, relative net ask depth changes, best ask changes and transaction price changes for JP
Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period: June
2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom

effects are observed for spread and depth dynamics. It is also illustrated how
return dynamics of quotes and prices become more pronounced if we approach
transaction level. Besides slightly significant (though very small) autocorrelations,
the bid-ask bounce effect becomes most dominant. The intraday seasonality of
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Fig. 3.19 Histograms for 10-s number of trades, cumulated trading volume, cumulated net buy
volume, relative net ask depth changes, best ask changes and transaction price changes for JP
Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period: June
2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom

2-min aggregated data shown in Fig.3.26 confirm the findings above: All trading
activity variables reveal a distinct U-shaped pattern with activities being highest
after opening and before closure.
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Fig. 3.20 Autocorrelation functions for 2-min number of trades, cumulated trading volume,
cumulated net buy volume, bid-ask spreads, first level depth and relative net ask depth changes
for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period:
June 2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom

Figures 3.27-3.29 plot the cross-autocorrelations between the different trading
variables for 2 min, 30 and 10s aggregates. For JPM and MSFT, we observe strong
temporal cross-dependencies between trade counts, cumulative trading volumes
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Fig. 3.21 Autocorrelation functions for 2-min ask quote log returns, price log returns, midquote
log returns and squared midquote log returns for JP Morgan (NYSE), Microsoft (NASDAQ)
and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and Microsoft and
September 2010 for Deutsche Telekom

and absolute returns, where causalities work in all directions. In contrast, DTEK
characteristics reveal only very little cross-dependencies. These findings suggest
that causalities between different trading variables are obviously quite dependent
on the underlying stock and the exchange. Overall, the results show that many
trading variables are predictable not only based on their own history but also
based on other variables. Besides variables reflecting the liquidity demand (such
as trading intensities and volumes) and volatility this is also evident for liquidity
supply variables such as bid-ask spreads and market depth.
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Fig. 3.22 Autocorrelation functions for 30-s number of trades, cumulated trading volume,
cumulated net buy volume, bid-ask spreads, first level depth and relative net ask depth changes
for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period:
June 2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom
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Fig. 3.23 Autocorrelation functions for 30-s ask quote log returns, price log returns, midquote
log returns and squared midquote log returns for JP Morgan (NYSE), Microsoft (NASDAQ)
and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and Microsoft and
September 2010 for Deutsche Telekom

3.6 Summary of Major Empirical Findings

Summarizing the major empirical features of financial high-frequency data results
in the following main findings:

1. Virtually all high-frequency trading characteristics (apart from returns them-
selves) are strongly serially correlated. This holds for characteristics observed on
transaction level, data which are aggregated over time (resulting in equi-distant
observations) and aggregated based on trading events (resulting in irregularly
spaced financial durations). To capture this feature, appropriate dynamic models
are needed which are defined either in calendar time or in business time.
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Fig. 3.24 Autocorrelation functions for 10-s number of trades, cumulated trading volume,
cumulated net buy volume, bid-ask spreads, first level depth and relative net ask depth changes
for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period:
June 2009 for JP Morgan and Microsoft and September 2010 for Deutsche Telekom

2. Many high-frequency characteristics are very persistent over time and reveal
long range dependence. This calls for models allowing not only for ARMA-
type dynamics but also long memory behavior. This is particularly evident for
the dynamics of trading intensities, volumes, spreads and market depth.
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Fig. 3.25 Autocorrelation functions for 10-s ask quote log returns, price log returns, midquote
log returns and squared midquote log returns for JP Morgan (NYSE), Microsoft (NASDAQ)
and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and Microsoft and
September 2010 for Deutsche Telekom

3. Most high-frequency variables take only positive values calling for specific
models for positive-valued variables. This is particularly true for all volatility-
related variables as well as characteristics capturing different dimensions of
liquidity.

4. Nearly all high-frequency variables are subject to strong intraday periodicities.
A common feature is the typical U-shaped intraday seasonality pattern associated
with high market activities after opening and before closure and less activity over
lunch time. Additional periodicities might occur due to the opening of markets
in other time zones.

5. Some high-frequency variables are quite discrete. This is mostly true for trade-
to-trade price, quote or spread changes but might also occur if trading is only
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JP Morgan and Microsoft and September 2010 for Deutsche Telekom
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possible in round lot sizes. This calls for dynamic approaches for discrete-valued
random variables.

6. Some distributions of high-frequency variables contain mixtures of discrete
and continuous components. A typical example is the high proportion of zero
outcomes in cumulative trading volumes measured in calendar time. Moreover,
mixtures of discrete and continuous components are also observed in distribu-
tions of trade sizes reflecting traders’ preference for round numbers.

7. Trading processes are inherently high-dimensional calling for multivariate
dynamic models either defined in discrete calendar time or transaction time
in case of time-synchronized data or defined in continuous time if variables
occur asynchronously over time.

Econometric frameworks and models to capture these specific properties are
discussed in the following chapters.
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Chapter 4
Financial Point Processes

This chapter provides the methodological background for the specification and
estimation of financial point processes. We give a brief introduction to the funda-
mental statistical concepts and the basic ways to model point processes. For ease of
introduction, we restrict our attention to non-dynamic point processes. In Sect. 4.1,
we discuss the most important theoretical concepts in point process theory. Here, the
focus lies on the idea of the intensity function as a major concept in the theory of
point processes. In Sect. 4.2, different ways to model point processes are discussed.
Section 4.3 is concerned with the treatment of censoring mechanisms and time-
varying covariates. Section 4.4 gives an outlook on different ways to dynamically
extend basic point process models.

4.1 Basic Concepts of Point Processes

In this section, we discuss central concepts of point process theory. The mathemat-
ical level of this chapter is chosen in a way such that concepts and relationships
are understandable without requiring deep foundations in stochastics. In this
sense, it provides a compromise between mathematical exactness and accessibility.
Mathematically more rigorous textbook treatments of point process theory are given
by Karr (1991), Snyder and Miller (1991) or Daley and Vere-Jones (2005). Classical
textbooks on duration and failure time analysis are Kalbfleisch and Prentice (1980)
and Lancaster (1997). A recent review of the literature on financial point processes
is also given by Bauwens and Hautsch (2009).

4.1.1 Fundamental Definitions

4.1.1.1 Point Processes

increasing event arrival times 0 < #; < t;4;. Then, the sequence {¢;} is called a

N. Hautsch, Econometrics of Financial High-Frequency Data, 69
DOI 10.1007/978-3-642-21925-2_4, © Springer-Verlag Berlin Heidelberg 2012
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point process on [0, o) (on the line).! Here, we restrict ourselves to point processes
defined in time. If #;, < t;4; V i, the process is called a simple point process
excluding the possibility of the simultaneous occurrence of events. During the
remainder of the book, we only focus on simple point processes. Furthermore,
denote n as the number of observed events and #, as the last observed point of

.....

.....

process or, alternatively, a (simple) K-dimensional point process. Marks specifically
indicate different types of events, as, e.g., the arrival of buys, sells or certain limit
orders in financial trading processes. The event-specific arrival times are denoted
by {t Vieqiakyp kK = 1,..., K, with n* defining the number of observed k-type
events. Considering only the sequence {z;} of a marked point process {z;, W;} (or,
equivalently, superposing the individual k-type arrival times for k = 1,...,K)

yields the so-called pooled process.

4.1.1.2 Counting Processes

The process N(¢) with N(¢) := )", I, <, is called a right-continuous (cadlag
counting process associated with {#;}.>2 N(¢) is a right-continuous step function
with upward jumps (at each ¢#;) of magnitude one. Furthermore, the process N (1)
with N (7) := Y i1 Ny <oy s called a left-continuous counting process associated
with {;}. N (¢) is a left-continuous step function and counts the number of events
that occur before t. Often, a point process is characterized by its counting process
N(t). If N(¢) is a K-variate marked point process, the K sequences of event
times are represented by the corresponding k-type counting functions N*(t) :=
Yot V< Lgwi=iy and N4 (1) := 30,0 Dy <y W =iy

4.1.1.3 Durations and Backward Recurrence Times

Define x; as the waiting time between two successive points, defined as

Moreover, the process x(7) with x(7) := ¢ — ) is called the backward recurrence

!Point processes can also evolve over space yielding the class of spatial point processes or cluster
processes, see, e.g., Daley and Vere-Jones (2005).

2A cadlag (french: continue a droite, limitée 2 gauche) function is a function which is right-
continuous with left-hand limits.
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time at t. The backward recurrence time is the time elapsed since the previous point
and is a left-continuous function that grows linearly through time with discrete
jumps back to zero after each arrival time ¢;. Note that x(t;) = t; — t;— 1= X;.

4.1.1.4 Filtrations and (Time-Varying) Covariates

Throughout this book, we restrict ourselves to point processes which have an
evolutionary character in time. That is, at any time #, the event probability of a point
process N(t) depends on information which is (at least instantaneously) known prior
to ¢.3 This information might be the history of N(¢) and/or exogenous variables. To
formalize such a concept, let F; denote the information set up to and including ¢.
The set F;, might be the so-called internal history or natural filtration F; := FN
with FN = o(N¥(s) : 0 < s <1,k € 8), N*(s) := Y, g, <53 1 (e 5y, Where
Z denotes the o-field of all subsets of {1, ..., K}. B

If the occurrence (but not necessarily the type) of an event is driven by a vector of
event i, we call them time-invariant covariates. Conversely, time-varying covariates
are characteristics which drive the occurrence of an event and can continuously
change between two consecutive events. Correspondingly, they are denoted by the
vector z(t). For the covariates to be weakly exogenous for x;, the process z() must
be cadlag with Zi(y+1 = z(t;—y) forallt witht;_; <t <t;.

If F; does not only include the internal history of the process but also the
processes {z; } and {z(t)}, we have FN¥ C F,.

4.1.2 Compensators and Intensities

A central concept in the theory of point processes is the intensity function which is
heuristically defined as following:

Definition 4.1. Let N(7) be a simple point process on [0, co) that is adapted to
some history F; and assume that A(z; F;) is a positive-valued process with sample
paths that are left-continuous and have right-hand limits. Then, the process

1
M F) % A4) = Tim ZEING + 4) = NOIFL A+ >0, V1,

with A(t+, F;) = limao A(t + A, F;), is called the F;-intensity process of the
counting process N(t).

This definition is familiar in classical duration literature (see, e.g., Lancaster 1997)
and manifests the intensity function as the instantaneous arrival rate of an event

3More general types of point processes not fulfilling this property are, e.g., spatial point processes
or Neymann-Scott cluster processes. For more details, see, e.g., Daley and Vere-Jones (2005).
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in ¢ conditional on the information up to ¢, ;. Note that the terminology is not
consistent in all papers or textbooks on point processes. Some authors, for example,
Brémaud (1981) and Karr (1991), denote A(¢; F;) as “stochastic intensity function”
accounting for the fact that A(¢; F;) is not necessarily deterministic but might follow
a stochastic process. Daley and Vere-Jones (2005) refer A(z; F;) to as a “conditional
intensity function” as A(¢; F;) depends on conditioning information. Here, we call
A(t; F;) just an intensity or, correspondingly, F;-intensity whenever the type of
conditioning information has to be stressed. The point process generated by an F;-
intensity is called F;-adapted point process.

The above definition provides also the link to the concept of the hazard function
which is given by

h(xi; Fio1) = f(xis Fim1)/S(xi: Fie1) 4.1
1

= lim —Prlx; < X; <x; + A|X; > x5 Fizil (4.2)
A—0 A

with x; denoting the (inter-event) duration as represented by the realization of a ran-
dom variable X; with conditional probability density function (p.d.f.) f(x;; Fi—1),
conditional survivor function S(x;; F;i—1) := 1 — F(x;;F;—1), and conditional
cumulative distribution function (c.d.f.) F(x;; Fi—1) := Pr[X; < x;|Fi—1]. While
the intensity function is defined in continuous time and conditions on a possibly
continuously varying information set F;, the hazard rate is evaluated at the end of
each duration x; and conditions just on the time elapsed since the beginning of the
spell and potential covariates (e.g., capturing the process history). It is a central
concept in traditional duration or survival analysis, where cross-sectional duration
data are analyzed.* Formulating the hazard function in terms of the backward
recurrence time yields the corresponding continuous time representation

h(x(): Fyy) = 230, Fy) 4.3)

as an intensity which just depends on the time since the last event. As there
are conflicting definitions and terminologies of hazard and intensity concepts, we
distinguish them as follows: In the remainder of the book we call an intensity
function a (conditional) hazard function whenever it can be represented in terms
of the underlying duration process and can be stated in terms of the ratio of the
conditional probability density function and the conditional survivor function of the
durations given the information prevailing at the beginning of the spell, see (4.1).
With this definition, we rule out that the information set changes over the course of
a spell, as, e.g., in the case of time-varying covariates.

In point process theory, the intensity function plays an important role since it
is closely linked to a corresponding likelihood function and thus opens up the
possibility for likelihood-based inference. This relationship traditionally builds on
the evolutionary character of a point process which is mathematically captured by

“See, e.g., Kalbfleisch and Prentice (1980), Kiefer (1988) or Lancaster (1997).
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martingale-based point process theory. Define an F;-adapted process N(¢) with
E[N(t)] < oo for each ¢ to be a F;-martingale if for0 < s <t < oo,

E[N(t)|Fs] = N(s) a.s. (almost surely),
and to be a F;-submartingale if
E[N(t)|Fs] = N(s) a.s.
Then, according to the Doob-Meyer decomposition,’ any (bounded) F;-
submartingale N(7) can be decomposed into a unique zero-mean J;-martingale
M (t) and a unique F;-predictable cumulative process A (), i.e.,

N(t) = M(1) + A(t), (4.4)

where the process A(1) is called the compensator with the property

A(r) = / A(s; Fy)ds. (4.5)
0

The fact that

N(t) — /0 t Mt Fy)ds = M(t) (4.6)

is a martingale process will be exploited in the remainder of the book to construct
diagnostic tests for intensity models. Accordingly, we obtain

EIN()|F] = E [ [ 2w Fa

]-"3] , o a.s.,

or,

E[N(t) — N(s)|F,] = E Ut A Fo)du ]—'S} =E [A(s,t)‘]-‘,] as, (A7)

which gives an alternative implicit definition of the intensity A(¢; F;). Thus, the
expected number of events in the interval (s,?], given Fy, is computed as the
conditional expectation of the so-called integrated intensity function defined as

A(s, 1) :=/ Au; Fu)du (4.8)

with A(s, 1) := A1) — A(s).

3See, e.g., Daley and Vere-Jones (2005), Theorem A3.4.1II.
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4.1.3 The Homogeneous Poisson Process

The simplest type of point process is given by the homogeneous Poisson process.
The Poisson process of rate A is defined by the requirements that for all 7, as the
time interval A | 0,

Pr(N(t+ A)—N(@)) =1|F]=21A+0(4), 4.9)
Pr[(N(t + A)— N(t)) > 1|F] = 0(4), (4.10)

leading to
Pr(N(t+ A —N()=0|F]=1—-12A+0(4), 4.11)

where 0(A) denotes a remainder term with the property o(A)/A — 0 as
A — 0. One major property of the Poisson process is that the probability for
the occurrence of an event in (¢, + A] is independent from F;, i.e., it does not
depend on the number of points observed before (and also exactly at) ¢. Equations
(4.9) and (4.10) are associated with the intensity representation of a Poisson
process.

Further key properties of the Poisson process are related to the distribution of
events in a fixed time interval. Following Lancaster (1997), it is easy to see that the
probability for the occurrence of j events before t + A is obtained by

Pr [1\7(1 +A) = j] = Pr [N(t) = j] Pr[(N(t + A) — N(t)) = 0]
+Pr [1\7(:) —j— 1] Br[(N(t + A)— N@)) = 1]

+Pr [N(z) —j- 2] Pr(N(t + A) — N(t)) = 2]

=Pr[NO = j]-(1-24)
+Pr [1\7(;) = —1] LA+ o(A). (4.12)
By rearranging the terms and dividing by A, one obtains
A (IP’r [N(z +A) = j] —Pr [1\7(:) - J])
— _APr [N(z) - j] + APr [N(t) —j— 1] +o(A)A, (4.13)

and thus, for A | 0,
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%Pr [1\7(:) - j] — _APr [1\7(:) - j] + APr [N(z) —j— 1]. (4.14)
For j =0, (4.14) becomes
%Pr [1\7(:) — o] — _APr [N(z) - o] , (4.15)

because Pr [N tH)y=j- 1] = 0 for j = 0. By accounting for the initial condition
Pr [1\7 0) = 0] = 1, we obtain

Pr [N(z) - o] — exp(—A1), (4.16)

which corresponds to the survivor function of an exponential distribution. Thus,
the waiting time until the first event is exponentially distributed. Analogously it
is shown that (4.16) is also the probability that no events occur in an interval
of length ¢ starting at any arbitrary point on the time axis, like, at the occur-
rence of the previous event. Therefore, the duration between subsequent points
is independent of the length of all other spells. Hence, it can be concluded that
the durations are independently exponentially distributed with p.d.f. and c.d.f.
given by

f(x) = Aexp (—Ax),
F(x) =1—exp(—Ax).

Accordingly, the hazard function is given by A(x) = f(x)/(1 — F(x)) = A and
thus is identical to the Poisson intensity. These properties are associated with the
duration representation of a Poisson process.

The third key property of the Poisson process is obtained by solving the
differential equation (4.14) successively for j = 1,2, ... given the solution of (4.14)
for j = 0. It is easily shown that this differential equation has the solution

Pr [N(z) = j] - w, j=12,.... 4.17)
Therefore, the number of events during an interval of length ¢ is Poisson distributed
with parameter Az. Note that (4.17) does not depend on the starting point on the
time axis, thus, the property holds for any time interval. Hence, the number of
events in the interval (s, ], N(t) — N(s), is Poisson distributed with parameter
A(t — s). This relationship is called the counting representation of a Poisson
process. The mean and variance of the number of points falling in the interval
(s, ] is given by A(t — s). This equality is often exploited to test for a Poisson

process.
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Alternatively, we can express (4.17) as

i—l ;
()“,")j . (4.18)

Prit; > x] =Pr[N(x) <i] = Zexp(—lx) ;
j=0

Note that the resulting distribution only depends on the length x of the underlying
interval but not on its position on the time scale ¢. Point processes fulfilling this
property are called stationary point processes.

4.1.4 Generalizations of Poisson Processes

As discussed in the previous subsection, a key property of the homogeneous Poisson
process is that the intensity is constant. Thus, the data generating process (DGP) is
fully described by the intensity A(¢; F;) = A.

By allowing the intensity rate A to vary over time, we obtain the general class
of non-homogeneous Poisson processes or inhomogeneous Poisson processes. For
example, if the Poisson process depends on cadlag covariates which are observable
at the beginning of the spell, then the DGP is fully described by the zy ., (7)-
intensity A(7;Zy,4,)- One special case is the so-called non-stationary Poisson
process, where A is a function of time. It is described by (4.9)—(4.10) but with A
replaced by A(¢). A non-stationary Poisson process typically does not imply the
independence of consecutive durations.

A further type of inhomogeneous Poisson process is obtained by the class of
doubly stochastic Poisson processes (or so-called Cox processes). In this framework,
it is assumed that the intensity is driven by some unobserved stochastic process
A*(t). This leads to a DGP that is characterized by the intensity A(z; F,*), where
JF;* denotes the history of the unobserved process up to . Such processes will be
discussed in more detail in Chap. 11. For more details concerning specific types of
inhomogeneous Poisson processes, see Cox and Isham (1980) or Daley and Vere-
Jones (2005).

A general class of point processes is given by renewal processes which are
characterized by independently identically distributed inter-event durations. In
particular, the event arrival times of a renewal process are obtained by summing
independent identically distributed non-negative random variables. The indepen-
dence property is a crucial characteristic of renewal processes and stems from
the idea of studying the sequence of intervals between successive replacements
of a component which is replaced by a new component in case of failure. In the
case where the event arrival times are driven by (partial) sums of i.i.d. standard
exponential variables, we obtain the homogeneous Poisson process. Due to the
independence of inter-event durations, the process history before 7;_; has no impact
on the current intensity at #;,_; < t;. Therefore, a renewal process is typically used
to model cross-sectional duration data.
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Deviating from the exponential distribution and allowing for more flexible
distributions with density f(x;) yields hazard functions /(x;) which are non-
constant during a duration spell. In this case, in contrast to Poisson processes,
the time since the previous event point does have an influence on the further
development of the process. Because of this property, one has to take care of the
initial conditions. In general, the forward recurrence time x| from t = 0 to the first
subsequent point does not have the density f(-) except for the case when there
is a point in ¢ = 0. In such a case, the process is called an ordinary renewal
process, otherwise it is a modified renewal process. More details are given in Cox
and Isham (1980) or Daley and Vere-Jones (2005). The shape of the hazard function
determines the so-called duration dependence which is associated with the sign of
dh(s)/ds. If dh(s)/ds > (<)O0, the process is said to exhibit positive (negative)
duration dependence, i.e., the hazard rate increases (decreases) over the length of
the spell.

More general types of point processes are obtained by allowing for serial
dependencies in durations {x;},7 = 1,...,n. This yields the class of dynamic point
processes which is more systematically discussed in Sect. 4.4 and in the remainder
of the book.

Alternative classes of point processes (on the line) are the classes of finite point
processes, where the total number of points is finite with probability one and where
dependence structures are typically described using combinatorial arguments. More
general classes arise by relaxing the stationarity and orderliness of a point process,
see, e.g., Daley and Vere-Jones (2005). These type of processes are, however, bey-
ond the scope of this book.

4.1.5 A Random Time Change Argument

A fundamental result in martingale-based point process theory is the random time
change theorem by Meyer (1971) which allows to transform a wide class of point
processes to a unit-rate Poisson process.

Theorem 4.2. Let N(t) be a simple point process adapted to a history F, with
intensity A(t; F;) and F,-compensator A(t) with A(co) = oo almost surely. Define
for all t, the stopping-time t(t) as the solution to

(1)
/ At; Fy)ds = t. (4.19)
0

Then, the point process
N(t) = N(z(t)) = N(A7'(1)) (4.20)

is a homogeneous Poisson process with intensity A = 1.
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Proof. See the proof of Theorem T16 in Brémaud (1981) or Theorem 7.4.1in Daley
and Vere-Jones (2005). O

Hence, (4.19) corresponds to a change of the time scale from ¢ to t(¢) transforming
N(¢) into a unit rate Poisson process N (1) = N(z(1)).

In order to exploit this result for the construction of diagnostic tests, we still have
to show that the realizations of /i(t) evaluated at ¢;, i.e., /T(l,-) = Oli A(s; Fy)ds
correspond to the arrival times associated with N (1), 7; for all i. This is shown in
the following lemma by Bowsher (2007):

Lemma 4}.3. Denote t; as the arrival times associated with the (transformed) point
process N (t) given by (4.20). Then, f; = Oli A(s; Fy)ds Vi.

Proof. Assume f;_; < s < #; with N(s) = N(z(s)) = i — 1. Then, if s 1 7, it
follows that 7(s) 1 7(f;). Since N(t(;)) = N(f;) = i by (4.20), it follows that
N(z(s)) must jump from i — 1 to i at 7(f;), i.e. s = ;. Since by definition N(t)
jumps to i only at #;, it follows that #; = z(f;). Then, it follows from (4.19) that
fi = [y A(s; Fyds. a

Using Lemma 4.3 and Theorem 4.2 yields a theorem building the basis for the
construction of diagnostic tests:

Theorem 4.4. The durations t; — i;— associated with the (transformed) point
process N (t) according to (4.20) are given by

t
i —tiog = A(ti—1.t) = / A(s; Fy)ds
ti—1

and correspond to i.i.d. unit exponential random variates. Then it follows that

Ati—1,t;) ~ i.id. Exp(l). 4.21)

Proof. The proof straightforwardly follows from the fact that 7; = (;[ A(s; Fy)ds
are event times of a unit rate Poisson process. O

Hence, under fairly weak regularity conditions, the integrated intensity function
A(ti—1,t;) is i.i.d. unit exponentially distributed and establishes a powerful link
between the intensity function and the duration until the occurrence of the next
point. For example, in a simple case where the intensity function is constant during
two points, the duration x; is given by x; = A(t;—1,t)/A(t;; F;). Furthermore,
A(ti—1, t;) can be interpreted as a generalized error (for example, in the spirit of Cox
and Snell 1968) and indicates whether the path of the conditional intensity function
under-predicts (A(t;—1,t;) > 1) or over-predicts (A(t;—1,t;) < 1) the number of
events between t; and ;.



4.1 Basic Concepts of Point Processes 79

The random time change argument also holds in case of a multivariate point
process:

Theorem 4.5. Let N(t) be a K-variate point process adapted to a history F; with
corresponding intensities A* (t; F;) and F;-compensators A (t) = fot A (s; Fy)ds
with A (00) = oo almost surely N k. Define for all t, the stopping-time T (t) as the
solution to

O]
/ A (s: Fyyds =t. (4.22)
0
Then, the multivariate point process (N'(1), ..., NX(t)) with
Nk@t) = NF(5 (1)) = N*(Ak@)™), k=1...,K, (4.23)

is a multivariate Poisson process with components each having a unit rate and being

independent of each other.
Moreover, the durations fik —

k=1...,K, are given by

fik_l associated with the Poisson processes N* (1),

i—1°%

1
i1k = ARk tk)Z/] A (53 Fo)ds
i

and correspond to i.i.d. unit exponential random variates.

Proof. See Daley and Vere-Jones (2005), Meyer (1971) or Brown and Nair (1988)
for a more accessible proof. The proof of the exponentiality of A* (ti"_1 , tl-k) follows
straightforwardly by adapting Lemma 4.3 to the multivariate case. O

4.1.6 Intensity-Based Inference

Karr (1991) proves the existence of a unique probability measure such that N(¢) has
the F;-intensity A(¢; F;). This theorem is fundamental for intensity-based statistical
inference since it implies that a statistical model can be completely specified in
terms of the F;-intensity. A valuable conclusion from Karr’s Theorem 5.2 is the
establishment of a likelihood function in terms of the intensity. Assume that the
intensity process satisfies the condition

ty
/ A(s; Fy)ds < oo.
0

Then, the log-likelihood function associated with the matrix of underlying data Y
and the parameter vector  is given by
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tll
InL(Y,0) =/ (1= A(s; Fy))ds +/ InA(s; Fs)dN(s)
0 (0.1,]

tn
= (I=A(s:F))ds + ) Dz InA(5), (4.24)
0 i>1
where
/( ]U(s)dN(s) =Y ly<nUt) (4.25)
0.1 i=1

defines the stochastic Stieltjes integral® of some measurable point process U(t) with
respect to N(z).

Note that the relationship above holds under fairly weak conditions. Never-
theless, by imposing more assumptions, we can establish a link between the
intensity function A(¢; ;) and the conditional survivor function S(x;;F;) =
Pr [X; > x; |F;, ] yielding the so called “exponential formula” according to Yashin
and Arjas (1988):

S(Xi ) ]:t,) = exp (—A(li_l s l,‘)) . (4.26)

When there is no conditioning, this relationship is simply derived by solving the
differential equation

iS()Ci) = —Ati-1 + x)S(x;) (4.27)
dxi

subject to the initial condition S(0) = 1. As illustrated by Yashin and Arjas
(1988), this relationship also holds if the conditioning is based on a fixed o-algebra.
However, it does not necessarily hold when the conditioning is “dynamic”, i.e.,
depending on time-dependent random factors (e.g., time-varying covariates). More
concretely, Yashin and Arjas (1988) prove that the “exponential formula” (4.26) is
only valid if S (x;; F;,_,+x,) is absolutely continuous in ;. Note that his assumption
excludes jumps of the conditional survivor function induced by changes of the
information set during a spell.

Exploiting the “exponential formula” (4.26) yields another straightforward way
showing that A(t;_;, ;) is an i.i.d. standard exponential variate (see, for instance,
Lancaster 1997). However, this proof requires undesirably restrictive assumptions
which are problematic whenever information sets might change continuously,
as, e.g., in case of time-varying covariates and multivariate processes. In these
situations, the random time change argument as discussed in Sect.4.1.5 is more
universal since it requires less restrictive conditions.

%See, e.g., Karr (1991), p. 57.
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4.1.7 Simulation and Diagnostics

The random time change argument allows us to construct simulation algorithms and
diagnostic tests for point processes. A natural simulation algorithm for a univariate
F;-adapted point process N(r) with F;-intensity A, and J;-compensator A(t) is
obtained by exploiting the fact that A(t;—1,%) ~ ii.d. Exp(1). Then, using the
inverse method we can simulate the process as follows:

(i) Simulate a sequence Uy, Uy, ..., U, ofi.i.d. uniform U(0, 1) random variables.
(i) Using the inverse method, generate standard exponential variates by
Vi= — In(1-0;),i =1,2,...,n.

(iii) Setfy = 0.If A(0,7;) = V; can be expressed as t; = x; = A(0, V;)~! with
A~ denoting the inverse function of A depending only on V; (and ), set
t; = x). Alternatively, solve A(0, ¢;) = V; implicitly for #,.

(iv) Fori =2,...,n:If A(t;_,t;) = V; can be expressed as x; = A~ (t;_1, V}),
set t; = t;—1 + x;. Alternatively, solve A(t;—;,t;) = V; implicitly for ¢;.

Correspondingly, the simulation of a K-dimensional point process is similarly
performed but requires to continuously update the (integrated) intensities whenever
a new point of the pooled process N(t) occurs:

(i) Simulate K (independent) sequences Uk,Uzk,...,U,f, k =1,...,K, of
i.i.d. uniform U(0, 1) random variables.

(i) Using the inverse method, generate standard exponential variates by
VEk= — In(1-U",i=1,....n,k=1,...,K.

(iii) Set X = 0.Tf A%(0,tf) = V} can be expressed as tf = A¥(0, V)~ with
A¥(-)7! denoting the inverse function of A¥ depending only on Vlk (and t(’)‘),
set tF = x¥. Alternatively, solve A¥(0, ) = V} implicitly for ¢X.

(iv) Set t; = min{s!,...,tK} and Wi = argming{s},... 5 ... 1KY for
k=1,...,K. _ A

(v) Forall j # W;: Compute A/ (0,1;). If A7(0,1]) = A/ (0,11) + A/ (11,1]) =
Y[ can be expressed as t; = A/ (0, V/)™!, sett] = x.

For j = Wy If AJ (1, tzj) = Yzj can be expressed as xé = A (1, sz)_l,
set7) =t + x; . Alternatively, solve A/ (t1,1;) = Y, implicitly for z; .

(vi) Settgzmin{tzl, e, tzK}and W2=argmink{t21, e té‘, e tzK}forkzl, ..., K.
(vii) Continue this procedure until ny, k = 1,..., K, spells in each dimension are
generated.

Alternative simulation techniques are discussed, e.g., by Daley and Vere-Jones
(2005).

The random time change argument as discussed in Sect.4.1.5 provides the
possibility to construct different types of diagnostic tests. In particular, we perform
diagnostics based on four different types of (generalized) errors in the spirit of Cox
and Snell (1968) building on integrated intensities. Assume a K-dimensional point
process and define
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1 ifW;, =k,
yhe=)0 BT (4.28)
0 otherwise.

Then, define

koo pkek ik
gy = AT ),

i—1%

K
. k(. k kN Lk
Ein = Z A ([ifl’ t; )yi s
k=1

K
eizi=y Ao 1) = Alio1. 1),
k=1

gia = K@ —1;-1),

where 7; are the event times associated with the superposition Ny (f):= Zle Nk(1)

and N* (t), k = 1,...,K, are the time-changed point processes according to
(4.20). According to Theorems 4.4 and 4.5, all residuals ¢; ;, j=1...,4, are
i.i.d. standard exponentially distributed. The exponentiality of 8{{1, k=1,...,K,

directly follows from Theorem 4.5. The errors g;, correspond to mixtures of
ii.d. standard exponentially distributed variates and thus must be i.i.d. standard
exponentially distributed themselves. The errors ¢; 3 correspond to the integrated
intensity of the (pooled) market point process and are standard exponentially
distributed according to Theorem 4.4. Finally, the errors ¢; 4 are computed by

sorting the transformed k-type specific event times 7* = fot"k AKX (s: Fy)ds for all
k = 1,...,K into ascending order yielding the superposed process Ny (). Since
the N¥(r) processes are independent Poisson processes with intensity equal to one,
the intensity of No(7) is K yielding durations (f; — #;_;) which are exponentially
distributed with mean K~'. Thus, scaling by K as in & 4 yields unit exponential
variates. These types of errors have been proposed by Bowsher (2007) as an
“omnibus” test accounting for the multivariate nature of the process. Hence, errors
&i.j» J = 2,3,4, depend not only on the individual process N¥(t) but also on
(potential) cross-process interdependencies. In contrast, sf.‘, | only depends on the
individual k-type series. Obviously, all four types of model residuals coincide in the
univariate case (K = 1).

Using the residual series, model evaluation can be done by testing the dynamical
and distributional properties of {&¥,,&;5,8; 3, é;4}. The dynamical properties are
typically evaluated based on Portmanteau statistics or independence tests such
as proposed by Brock et al. (1996) and discussed in Chap.5. The distributional
properties can be evaluated based on a test against excess dispersion. Define e;
as the corresponding model induced residual, i.e. ¢; € {é{‘l &0, 8i3,&i4}. Engle
and Russell (1998) propose a specific test on the exponentiality of the series based
on the asymptotically standard normally distributed test statistic 1/n./8 (62 — 1),
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where 7, denotes the number of residuals and 6 denotes the empirical variance of
the residuals being one under the null hypothesis. Alternatively, the distributional
properties of the residuals can be tested based on Pearsons’s classical y2-goodness-
of-fit tests or using graphical methods, such as quantile-quantile plots.

4.2 Four Ways to Model Point Processes

In this section, we briefly discuss four basic ways to model point processes:

(i) models for intensity processes,
(ii)) models for hazard processes,

(iii) models for duration processes,
(iv) models for counting processes.

Here, we restrict our focus on the non-dynamic case. In the following chapters of
the book, duration and intensity concepts will be reconsidered in more detail and
will be extended to a dynamic framework.

4.2.1 Intensity Models

An obvious way to model point processes is to model the intensity A(¢; F;) directly.
A general class of intensity models is given by

At; Fr) = Ao(t; g2(F)) gt Fr), (4.29)

where A denotes a baseline intensity function which is driven by time ¢ and a
function g, depending on F;. The function g, might capture the dependence on
(time-varying) covariates, past durations or characteristics of other point processes.
Likewise, g; most generally depends on the same information set but might have
another form. It proportionally interacts with Ay. An example of such a process is
a multivariate autoregressive conditional intensity model as discussed in Chap. 12,
where g, is a function of the backward recurrence time of other point processes and
g1 is a function of the history of the process F, ¥ with Fy(t) C F,. However,
considering special cases of representation (4.29) allows to characterize different
classes of models which will be discussed in more detail in the remainder of the
book:

(i) For gy = g», we obtain an intensity model where g; does not only multi-
plicatively interact with A but enters A also as an argument. Moreover, if we
assume that Aq(z; g1(F;)) can be expressed as Ao(t; g1(F;)) = Ao(t/g1(F)),
we obtain a class we refer to as accelerated intensity models as g scales
(and thus accelerates or decelerates) the time argument in Ag. This model is
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(ii)

(iii)

@iv)

(v)
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the intensity counterpart to an accelerated failure time model as discussed
below.

If we assume that g(F;) =g1(Fj)) as well as g>(F) =ga2(Fy ). and
Ao(t: 82(F ) = Ao(x(2): g2(F iy (,))), then A(z; F¢) only depends on infor-
mation prevailing at the beginning of the spell, i.e., A(t; F;) = Ao(x(¢); g2
(F ))& (Fy (), and the resulting intensity corresponds to a conditional
hazard function

At Fo) = h(x (1), &1(Fy ) 82(Fyp)

A0 8Fye) 81 (Fig)
11— Fo(x(1): g2(]:1\7(;))a &1 (-7:/\7(;))).

(4.30)

As the information set only changes at each event but not during a spell,
the hazard function can be represented in terms of the inter-event durations
Xy = Xi ie.,

f(xi;gZ(Ei—J’ &1 (J__.l‘,'—l))
1— F(xi;gZ(]:tf—l)v &1 (]:li—l)).

According to the definitions stated in Sect.4.1.2, we will refer to intensity
processes as long as possibly time-varying covariates have to be taken into
account and the process has to be updated during a spell. If, however, point
processes are only driven by information updated at each event time but not
during a spell, we will refer to hazard processes.

If we assume that g, = 0 and A is only a function of the time elapsed
since the last event, i.e., Ao(¢; F;) = Ao(x(¢)) = ho(x(¢)), we obtain the
class of proportional intensity models. If, in addition, g1(F7) = g1(Fy)s
then A(t; ;) = ho(x(1))g1(F(,)) corresponds to a proportional hazard (PH)
model.

Assuming g1(F;) = g2(F:) = g1(Fy ) and in addition Ao(2; g1 (Fy () =
Ao(t/81(Fy ), then A(t: F) = Ao(t/g1(Fy)))&1(Fi)) belongs to the
class of so-called accelerated failure time (AFT) models where the time scale
is accelerated (or decelerated) by observable characteristics. As shown below,
AFT models are naturally linked to duration models.

The functional form of Ay can be chosen parametrically or can be left
unspecified (and can be estimated nonparametrically). For instance, assuming
Mot g2(F)) = do(x(2)) = wx(t)*! forw > 0, a > 0, allows the intensity
to monotonically increase (for @ > 1) or decrease (for a < 1) during the
spell. Under the additional assumption that g;(F;) = g1(Fjy ), the resulting

h(x;; g2(~7:ti—1)’ gl(]:ti—l)) =

4.31)

intensity process A(¢; F) = wx (t)“_lgl(f];,(t)) generates durations x; which
are Weibull distributed with shape parameter a and scale parameter g;. As
illustrated below, this special case of a Weibull (proportional) hazard model
can be alternatively represented as a specific AFT model, which is obviously
driven by the specific parametric form of A¢. Finally, the case of a completely
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unspecified baseline function A is mostly relevant in the class of proportional
hazard models yielding the class of semiparametric proportional hazard
models.

Models of the intensity function are discussed in a dynamic setting in Chap. 11.
The special cases of (non-dynamic) PH and AFT models will be discussed in more
detail in the next subsection which will build the basis for dynamic extensions
discussed in the following chapters.

4.2.2 Hazard Models

4.2.2.1 Proportional Hazard (PH) Models

The proportional hazard model has its origin in cross-sectional survival analysis in
biostatistics” and labor economics.®

As stated in the previous section, the PH model is specified as the product of a
baseline hazard function /o(x;) > 0 and a strictly positive function of a vector of
covariates z;_; with coefficients y. It is given by

h(xiszi—1) = ho(x;) exp(—z;_,y). (4.32)

The baseline hazard hy(x) corresponds to i(x;z = 0). That is, if the regressors are
centered, /¢ has an interpretation as the intensity function for the mean values of z.
The key property of the PH model is that d In 4(x;z)/dz = y, thus, y is interpreted
as the constant proportional effect of z on the conditional arrival rate.

The most common examples of a (parametric) PH model are the exponential
and Weibull regression model. In these models, the baseline hazard A is specified
according to the exponential or Weibull hazard function. While the Weibull model
allows only for monotonically increasing or decreasing hazard shapes, more flexible
parameterizations are obtained, for instance, by the gamma, generalized gamma,
Burr or generalized F distribution (see appendix). Alternatively, non-standard PH
models are obtained by deviating from classical gamma or Burr shapes and
parameterizing the baseline hazard function, for instance, as a linear spline function.
Assume that the observed durations are partitioned into K categories, where
Xr, k=1,..., K — 1 denote the chosen category bounds. Then, a spline baseline

7See, e.g., Kalbfleisch and Prentice (1980), Cox and Oakes (1984) or the recent survey by Oakes
(2001).

8 A well known example is the analysis of the length of unemployment spells which is studied
by a wide range of theoretical and empirical papers, see e.g. Lancaster (1979), Nickell (1979),
Heckmann and Singer (1984), Moffitt (1985), Honoré (1990), Meyer (1990), Han and Hausman
(1990), Gritz (1993), McCall (1996) or van den Berg and van der Klaauw (2001) among many
others.
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hazard is obtained by

K—1
ho(x) = exp |:U0 + Z Vo I g <y (X — xi)j| , (4.33)
k=1

where vg is a constant and vy are coefficients associated with the nodes of the
spline function. Parametric PH models are easily estimated by maximum likelihood
(ML) adapting the log likelihood function (4.24). Note that in a full information
ML approach, a consistent estimation of y requires the correct specification of /.
However, often parametric distributions are not sufficient to capture the actually
observed hazard shape. In such a case, a full information ML estimation of the PH
model leads to inconsistent estimates of y.

A more flexible PH model is proposed by Cox (1972). In this framework, the
baseline hazard h, remains completely unspecified and can be estimated non-
parametrically. Cox (1975) illustrates that the estimation of y does not require a
specification of the baseline hazard, and thus, the estimation of y and hy can be
separated. In order to estimate y and A, he suggests a two-step approach where y
is consistently estimated using a partial likelihood approach while the estimation
of the baseline hazard follows from a modification of the estimator by Kaplan and
Meier (1958) as proposed by Breslow (1972, 1974).°

Since the partial likelihood approach proposed by Cox (1975) is based on the
order statistics of the durations, this method is of limited use in the case of ties,
i.e., when several observations have the same outcome. Then, only approximative
procedures can be used (see, e.g., Breslow 1974). In this case, a valuable alternative
way to estimate the PH model, is to apply a categorization approach as proposed by
Han and Hausman (1990) and Meyer (1990). The main idea behind this procedure
is to exploit the relationship between ordered response specifications and models for
grouped durations (see Sueyoshi 1995). Since a categorization approach will play
an important role in the context of (censored) autoregressive proportional hazard
models (see Chap. 10), it will be discussed here in more detail.

The main idea is to write the PH model in terms of the (log) integrated
baseline hazard. According to the implications of Theorem 4.2, the integrated hazard
function

Xi
H(x;) = / A(s)ds (4.34)
0
is i.i.d. standard exponentially distributed. Thus, the PH model is rewritten as
Ho(x;) = exp(z;_y) H(x;), (4.35)

where

For more details, see Kalbfleisch and Prentice (1980) or in the survey of Kiefer (1988).
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Hy(x;) := /0 [Ao(s)ds

denotes the integrated baseline hazard. By assuming the validity of the “exponential
formula”, (4.26), the integrated baseline hazard is written as Hy(x;) = —In Sp(x;),
where Sy (-) denotes the baseline survivor function associated with the baseline haz-
ard hg. Hence, (4.35) can be formulated in terms of the baseline survivor function as

In So(x;) = —exp(z;_;y) H(x;). (4.36)
Since H (x;) is standard exponentially distributed, it is straightforward to verify that

E[Ho(x;)] = exp(z;_,y)
V[Ho(x;)] = exp(2z;_,y).

Equivalently, the PH model can be expressed in terms of the log integrated hazard
leading to

In Hy(x;) =In(—InSo(x;)) =z._,y +¢&f, i=1,...,n, (4.37)
where ¢ := In H(x;) follows an i.i.d. standard extreme value type I distribution
(standard Gumbel (minimum) distribution) with mean E[e]] = —0.5772 (corre-

sponding to the Euler-Mascheroni constant), variance V[ef] = 7?/6 and density
function

fex () = exp(s — exp(s)). (4.38)

Note that this approach does not require to specify the baseline hazard ¢, however
it requires a complete parameterization of the log integrated baseline hazard. Thus,
the PH model boils down to a regression model for In Hy. The function H,
can be interpreted as a transformation of the underlying duration x;, where the
transformation is known when /g is completely specified, otherwise it is unknown.
For example, by assuming a standard Weibull specification, i.e., ho(x) = ax®”!,
the PH model yields

1nxi=1§_lz+—8}“, i=1,...,n. (4.39)
a

In this case, the PH model is a log-linear model with standard extreme value
distributed errors. The coefficient vector y/a can be consistently (however, not
efficiently) estimated by OLS.'? Alternatively, the (fully parametric) PH model is
consistently and efficiently estimated by ML.

10Tn this case, an intercept term has to be included in (4.39) since &/ has a nonzero mean.
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When kg is non-specified, Hy is unknown and can be interpreted as a latent
variable. Han and Hausman (1990) propose treating this model as a special type of
ordered response model leading to a semiparametric estimation of Ay. The central
idea is to introduce a categorization of the duration x; and to consider (4.37) as a
latent process which is observable only at discrete points associated with the chosen
category bounds. Then, by adapting the categorization introduced above, we define

pti=InHo(%), k=1,... . K—1, (4.40)

as the value of the latent variable In Hy(-) at the (observable) category bound X.
In this formulation, the PH model is interpreted as an ordered response model
based on a standard extreme value distribution. Hence, the thresholds of the latent
model correspond to the log integrated baseline hazard calculated at the points
of the corresponding categorized durations. The direct relationship between the
latent thresholds and the log integrated baseline hazard function is one of the main
advantages of this approach. Thus, the unknown baseline survivor function Sy can
be estimated at the K — 1 discrete points by a nonlinear function of the estimated
thresholds pf, thus

So(Xr) = exp(—exp(uy)), k=1,....,K—1. (4.41)

Based on the discrete points of the baseline survivor function, we can estimate
a discrete baseline hazard hy, corresponding to the conditional failure probability
given the elapsed time since the last event,

ho(%x) 1= Pr [%x < xi < Fgq1 |0 > %]

_ So(Xk) — So(Xk+1)

0 . k=0.... . K-2, (4.42)
So(Xx)

where X( := 0. This formulation serves as an approximation of the baseline hazard
if divided by the length of the discretization interval. If the length of the intervals
goes to zero, the approximation converges to the original definition, (4.1), thus

ho (%)

ho()_fk) N —
Xk+1 — Xk

(4.43)

Note that the result of Cox (1975) also holds in this discretization framework.
Hence, y can be estimated consistently without an explicit specification of /o, which
means that the consistency of 7 does not depend on the chosen categorization and
the number of the categories.!! This result will be exploited in a dynamic framework
in Chap. 10.

Nevertheless, the efficiency of the estimator is affected by the chosen categorization.
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The log likelihood function associated with the PH model represented by (4.37),
(4.38) and (4.40) has the well known form of an ordered response specification
based on the standard extreme value distribution

0 K-l Ay
NL(Y:0) =Y > lgyer .yl / for(s)ds. (4.44)
s K =%y

4.2.2.2 Accelerated Failure Time Models

As illustrated above, in the PH model, explanatory variables act multiplicatively
with the baseline intensity. In contrast, in the AFT model, it is assumed that z;
accelerates (or decelerates) the time to failure. Thus, the covariates alter the rate at
which one proceeds along the time axis, leading to a hazard function that is given by

h(x;;2zi—1) = ho (x; exp(—z;_,y)) exp(—z_,y). (4.45)

which can be alternatively written as'?

Inx; =z_,y+e&, i=1,...,n, (4.46)

where ¢; is an error term that follows some continuous distribution. Hence, while
the PH model implies a linear model with an unknown left-hand variable and a
standard extreme value distributed error term, the AFT model leads to a log-linear
representation with x; as the left-hand variable and an unknown distribution of
the error term. While in the PH model, the covariates act multiplicatively with the
hazard function, in the AFT model, the covariates act multiplicatively with the log
duration. For the special case when x; is Weibull distributed with parameter a (see
Sect.4.2.2.1), we obtain a model that belongs to both model families, implying a
multiplicative relationship between the covariates and the intensity function, as well
as between the covariates and the log duration. In this case, (4.46) corresponds to
(4.39), hence, ag; = ¢ is standard extreme value distributed.

A more general class of models that nests both the PH model and the AFT model
is introduced by Ridder (1990) and is called the Generalized Accelerated Failure
Time (GAFT) model. 1t is given by

Ing(x;) =z_,y + &, (4.47)

where g(-) is an arbitrary non-decreasing function defined on [0, co) and &; follows
an unknown continuous distribution with p.d.f f(-). The GAFT model nests the PH

12See Kalbfleisch and Prentice (1980).
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model if f(-) = fex and nests the AFT model if g(x) = x. Ridder (1990) illustrates
that the GAFT model can be identified non-parametrically.

4.2.3 Duration Models

Instead of specifying the intensity function, a point process can be alternatively
directly described by the process of durations between subsequent points. In order
to ensure non-negativity, the most simple approach is to specify the durations in
terms of a log-linear regression model,

Inx; =z._,y + &, (4.48)

where ¢; is some i.i.d. error term. Such a model is easily estimated by OLS. As
discussed in Sect.4.2.2.2, this type of model belongs to the class of AFT models
or — for the special case when ¢; is standard extreme value distributed — also to
the class of PH models. However, generally, regression models for log durations
are associated with AFT representations. A more detailed discussion of (dynamic)
duration models will be given in Chap. 5.

4.2.4 Count Data Models

An alternative representation of a point process model is obtained by specifying
the joint distribution of the number of points in equally spaced intervals of
length A. Denote N jA as the number of events in the interval [jA, (j + 1)A),
i.e.,

NA =N + DA = NGA), j=1.2,... (4.49)

The specification of a count data models require to aggregate the data which
naturally induces a certain loss of information. Denote sz. as a covariate vector
associated with N f‘, then, the most simple count data model is given by the Poisson
model by assuming that

NPzd ~ Po(h). (4.50)

More general models are obtained by using the NegBin distribution (see, e.g.,
Cameron and Trivedi 1998) or the double Poisson distribution introduced by
Efron (1986). A more detailed discussion of (dynamic) count data models and
corresponding distributions will be given in Chap. 12.
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4.3 Censoring and Time-Varying Covariates

In this section, we discuss two phenomena which typically occur in traditional
duration data (like unemployment data) and also play a role in financial point
processes: The effects of censoring and of time-varying covariates. As will be
illustrated, both phenomena are easily incorporated in an intensity framework.

4.3.1 Censoring

A typical property of economic duration data is the occurrence of censoring leading
to incomplete spells. Therefore, a wide strand of econometric duration literature
focuses on the consideration of censoring mechanisms.! In the context of financial
point processes, censoring occurs if there exist intervals in which the point process
cannot be observed directly. This might be, for example, due to non-trading periods,
like nights, weekends or holidays. Assume in the following that it is possible to
identify whether a point #; lies within such a censoring interval. Consider, for
example, a point process where the points are associated with the occurrence of
a cumulative price change of given size.'* Then, prices move during non-trading
periods as well (due to trading on other markets), but can be observed at the earliest
at the beginning of the next trading day. In this case, we only know that a price event
occurred but we do not know when it exactly occurred.!> Hence, we can identify
only the minimum length of the corresponding duration (i.e., the time from the
previous point #;_; to the beginning of the censoring interval) and the maximum
length of the spell (i.e., the time from the end of the censoring interval to the next
point #; 4 1).

In the following, tl-l and ¢ with til < t; <t} are defined as the boundaries of a
potential censoring interval around #;, and ¢; is defined as the indicator variable that
indicates whether #; occurs within a censoring interval, i.e.,

1 ify et

ik

0 ift;, =t/ =1t

In the case of left-censoring, right-censoring or left-right-censoring, the non-
observed duration x; can be isolated by the boundaries x; € [xf , x!] where the
lower and upper boundary x} and x}' are computed corresponding to

3See, e.g., Horowitz and Neumann (1987, 1989), the survey by Neumann (1997), Gorgens and
Horowitz (1999) or Orbe et al. (2002).

14Such processes will be discussed in more details in Chap. 10.

ISHowever, note that we cannot identify whether more than one price movement occurred during
the non-trading period.
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[t — 1 st —tl_] if ¢i-1 =1,¢; =0 (left-censoring)
xi € [l —tici;tf — ;2] if ¢i—1 =0,¢; =1 (right-censoring) (4.51)
[tl.l — 1t — ll-l_l] if ¢i_1 =1,¢; =1 (left-right-censoring).

A common assumption that is easily fulfilled in the context of financial data is the
assumption of independent censoring. This assumption means that the censoring
mechanism is determined exogenously and is not driven by the duration process
itself. For a detailed exposition and a discussion of different types of censoring
mechanisms, see e.g. Neumann (1997).

Under the assumption of independent censoring, the likelihood can be decom-
posed into

LY;0]ct,....cn) =L(YX;0,c1,...,¢n)- L(Y;¢1,...,Cn). (4.52)

Hence, the second factor does not depend on the parameters of the model, and
thus the parameter vector 6 is estimated by maximizing the first factor of (4.52).
Therefore, the corresponding log likelihood function is given by

InL(Y;ci,...,ch10) = Z(l —ci)(I —ci—) (=A(ti—1, ) + In A5 Fr,))

i=1

+Y el —c)In (S — 1) — St — 1))

i=l1

+ Y (I—cim)e In (S —ti-1) = S = 1i-1))

i=1

+ Y ciaeIn(SE -1 ) = S@ —1ly)).  (4.53)

i=1

The first term in (4.53) is the log likelihood contribution of a non-censored duration
while the following terms are the contributions of left-censored, right-censored and
left-right-censored observations.

4.3.2 Time-Varying Covariates

In the following, we discuss the treatment of time-varying covariates z(¢). Here, the
impact of the covariates on the intensity is not constant during the time from #;_;
to #;, but is time-varying. However, the formulation of a continuous-time model for
the covariate path is rather difficult, since it requires the identification of the precise
timing of events on the continuous path. In order to circumvent these difficulties, one
typically builds a model based on a discrete-time framework. Hence, it is common
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to proceed by assuming that the occurrence of events can occur at discrete points of
time only. This leads to a discretization of the intensity concept.

By following the notation in Lancaster (1997), denote Z; (x) as the path of z(¢)
from z(t;—1) to z(t;—; + x) and Z;(x1, x2) as the path of z(¢) from z(z;—; + x;) to
Z(ti—1 + x»). Furthermore, according to the framework outlined in Sect.4.2.2.1,
the observed durations are divided into M intervals and it is assumed that the
durations x; can only take the discrete values x,,, m = 1,..., M — 1. Moreover,
it is assumed that the discretization is sensitive enough to capture each particular
point, i.e., min{x; } > x| Vi.

Then, following Lancaster (1997), a discrete formulation of the intensity function
at the points #;,_; + X,, is obtained by

Atimt + T3 Zi(Tn) = Pri = S 1% = T Zi ()] (4.54)
and can be computed based on

m—1
Prixi = %, 2 (%)) = [ [ [1 = 21 + %5 2i(5))]
j=1
m—1
< [TPr(2i @03 | = 5. 2i(%;-)] (455
j=1

and

Prixi = %, Xi > Xy Zi (%)) = Ati=1 + Xns Zi (%))

m—1
X 1_[ [1 — At +)_€j§Zi(3_Cj))]

j=1
xl_[]P’r [Z,'()_Cj_l,)_cj')|x,' Z)_Cj,Zj()_Cj_l)]. (4.56)
i=1

The expressions (4.55) and (4.56) simplify in the case of a so-called exogenous
covariate process, i.e., following the definition in Lancaster (1997), if and only if
PriZi(x,x +A)[xi = x+ A, Zi(x)]
=Pr[Zi(x,x+ A)|Z((x)], Vx=>0,4>0. (4.57)
Hence, exogeneity of the covariate process means that the information that no

further event has been observed until x + A has no predictability for the further
path of the covariates from x to x + A. In this case, (4.55) and (4.56) simplify to



94 4 Financial Point Processes

m—1
Prixi = %, Zi(%n)] = [ [ [1 = Xim1 + 53 2(5))] (4.58)
j=1

and

Prix; = X, Xi > Xy Zi (X)) = Atizt 4 X Zi (%))

m—1

) [T = Ao + %52 Zi(%)))]. (4.59)

J=1

Only when the covariates are exogenous, (4.55) and (4.56) can be interpreted
as conditional probabilities, given the covariate path. However, even when they
are valid probabilities they can never be interpreted as the values of a conditional
survivor function or probability density function of x; given Z;(x;) at the point X,,,.
This is due to the fact that Z; (i) is itself a function of # and the conditioning event
of the conditional survivor function or conditional p.d.f. changes when the argument
itself changes.

Nevertheless, even though it cannot be interpreted as the value of a (discrete)
p.d.f., it can be used to draw statistical inference. Hence, the intensity function,
given the covariate path, is always defined even when there exists no counterpart
that is interpretable as a conditional density or conditional survivor function. These
relationships illustrate the importance of the intensity concept in modelling duration
data.

4.4 An Outlook on Dynamic Extensions

The implementation of autoregressive structures in point processes can be per-
formed in alternative ways. According to the three possible specifications of a point
process, dynamics can be introduced either in the intensity process, the duration
process or in the counting process. A priori, it is quite unclear which way should
be preferred and whether one specification is superior to another. Ultimately, the
particular concepts have to be judged by their ability to result in well specified
empirical models that provide a satisfying fit to the data and whose coefficients
may be readily economically interpretable. Nonetheless, in the context of a dynamic
framework, it is necessary to have a closer look at the fundamental differences
between the particular approaches and at their strengths and weaknesses with regard
to the specific properties of financial point processes.

The most simple and probably most intuitive way to model autoregressive point
processes is to specify an autoregressive process in terms of the durations. While a
renewal process is specified via independently identically distributed intervals, more
general types of point processes arise by allowing for dynamics in successive event
intervals {x;}, i = 1,...,n. For instance, the class of so-called Wold processes



4.4  An Outlook on Dynamic Extensions 95

(see, e.g., Daley and Vere-Jones 2005) is obtained when the process {x;} forms a
Markov chain, i.e., the distribution of x;4; given x;, x;—1, ..., depends only on x;.
In fact, a (stationary) AR(1) process for inter-event durations,

Xi = ¢+ ¢xi—1 + &,

with ¢; being an i.i.d. non-negative random variable and ¢ > Oand 0 < ¢ < 1
satisfying non-negativity restrictions would serve as a natural candidate of a Wold
process. A so called Semi-Markov process according to Cox and Isham (1980)
is obtained by specifying a stochastic sequence of distribution functions for the
duration sequence. By supposing M distribution functions F((-), ..., FM)(.)
associated with M particular states, the process is said to be in state j in ¢ if the
current distribution function of x M)+ is FU)(-). The transitions are determined by
a transition matrix P* where the ijth element is the transition probability from state
i to state j. For more details, see Cox and Isham (1980).

By relaxing the Markovian structure, more general dynamic point processes are
obtained. Allowing for higher-order (ARMA-type) dynamics in duration processes
yields the class of autoregressive duration processes. As discussed in more detail
in Chap. 5, these processes are characterized by an intensity function containing an
autoregressive component in terms of past durations.

A particular class of autoregressive duration models is proposed by Engle and
Russell (1997, 1998) and Engle (1996, 2000) and is considered in more detail
in Chaps.5 and 6 of this book. The major advantage of such an approach is its
practicability since standard time series packages for ARMA or GARCH models
can be more or less directly applied to the duration data. Presumably for this reason,
an autoregressive duration model is the most common type of financial point process
specification and is commonly used in the recent financial econometrics literature.

Autoregressive duration models, however, also reveal major drawbacks. First,
they are not easily extended to a multivariate framework as the individual processes
occur asynchronously in time. Consequently, there exist no joint points that can be
used to couple the processes making it difficult to estimate contemporaneous corre-
lations between the individual processes. Second, the treatment of censoring effects
is rather difficult. In the case of censoring, the exact timing of particular points of
the process cannot be observed and can only be approximated by a corresponding
interval. Such effects induce problems in an autoregressive framework because the
information about the exact length of a spell is needed for the sequel of the time
series. One possible solution is, for example, to build a modified model where non-
observed durations are replaced by a function of their corresponding conditional
expectations. However, such modifications are not straightforward in a time series
context. Third, in a discrete-time duration framework, it is difficult to account for
time-varying covariates. As discussed in Sect.4.3.2, an intensity representation is
more useful and convenient in such a context.

The key advantage of dynamic intensity models compared to autoregressive
duration approaches is that they allow to model point processes in a continuous-
time framework. Thus, while the duration between two points is by definition
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observed at the individual points #; themselves, the intensity function is defined
at any point in time. This property plays an important role in the modelling of
time-varying covariates and in the context of autoregressive multivariate point
process models. In an intensity framework, it is possible to couple the particular
processes at each point of the pooled process, and thus addressing the problem of
asynchronicity. Multivariate autoregressive intensity models are discussed in more
detail in Chap. 12.

A particular type of dynamic point processes is the class of self-exciting
processes. Hawkes (1971) introduces a special class of linear self-exciting processes
where the intensity is a weighted function of the backward recurrence time to
all previous points. The advantage of this approach is to estimate the nature of
the dependence of the intensity without imposing a strong a priori time series
structure. For more details and applications of Hawkes processes to financial data,
see Chaps. 11 and 12.

An alternative to self-exciting processes is the class of autoregressive point
processes. In this context, renewal processes are augmented by time series structures
that may be specified in terms of the intensity function, the integrated hazard
function, the duration between subsequent points, or in terms of the counting
function. Detailed illustrations of such types of point processes will be given in
the sequel of this book.

However, as in a duration framework, the treatment of censoring effects is rather
difficult. For a censored observation, the occurrence time, and thus the intensity
function at the particular time, is not exactly measurable. Thus, as long as these
(unobserved) realizations are needed in the time series recursion of a dynamic
model, approximations have to be used. Therefore, for the modelling of point
processes that are subject to strong censoring mechanisms, alternative approaches
are necessary. One alternative is to build a dynamic model based on a function of
the survivor function. The survivor function plays an important role in the context
of censoring (see Sect. 4.3.1), since it allows to isolate the non-observed occurrence
times in terms of survivor probabilities with respect to corresponding censoring
bounds. Hence, by exploiting the relationship between the survivor function and
the integrated hazard function (see (4.26)), an alternative dynamic point process
model can be built based on the integrated hazard function. Moreover, as illustrated
in Chap. 10, autoregressive integrated hazard models are valuable approaches for
dynamic extensions of semiparametric proportional hazard models. In this context,
the discretization approach presented in Sect.4.2.2.1 will be applied to obtain
a semiparametric estimation of a non-specified baseline hazard in a dynamic
framework.

A further possibility to model autoregressive point processes is to specify an
autoregressive count data model. The strength of this approach is that these models
are based (per assumption) on equi-distant time intervals. For this reason, they are
easily extended to a multivariate framework (see Davis et al. 2001 or Heinen and
Rengifo 2007). However, the treatment of censoring mechanisms and the inclusion
of time-varying covariates is rather difficult in this context. These types of models
are discussed in more detail in Chap. 13.
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Chapter 5
Univariate Multiplicative Error Models

The terminology multiplicative error model (MEM) has been introduced by Engle
(2002b) for a general class of time series models for positive-valued random
variables which are decomposed into the product of their conditional mean and a
positive-valued error term. Such models might be alternatively classified as autore-
gressive conditional mean models where the conditional mean of a distribution is
assumed to follow a stochastic process. The idea of a MEM is well known in finan-
cial econometrics and originates from the structure of the autoregressive conditional
heteroscedasticity (ARCH) model introduced by Engle (1982) or the stochastic
volatility (SV) model proposed by Taylor (1982) where the conditional variance is
dynamically parameterized and multiplicatively interacts with an innovation term.
In high-frequency econometrics, a MEM has been firstly introduced by Engle and
Russell (1997, 1998) to model the dynamic behavior of the time between trades
and was referred to as autoregressive conditional duration (ACD) model. Thus, the
ACD model is a special type of MEM applied to financial durations.

In this chapter, we discuss univariate MEMs. In order not to confuse the reader
with different terminologies for the same model, we discuss the model in the context
of financial durations and thus use the terminology ACD models in the following
sections. Needless to say that the model can be directly applied to any other positive-
valued (continuous) process, such as trading volumes, market depth, bid-ask spreads
or the number of trades (if the latter are sufficiently continuous). For instance, in
case of the modelling of trading volumes, Manganelli (2005) calls the corresponding
model an autoregressive conditional volume (ACV) process. To avoid an inflation
of terminology we, however, refrain from using these different labels.

Note that MEMs can be not only applied to different types of variables but also to
different sampling schemes. In case of financial durations, the process is observed
in event time and thus observations are irregularly spaced in time. Conversely, the
process is defined in calendar time if a MEM is used to model aggregated trading
activity based on (equi-distant) time intervals.

Since we discuss MEMs in the context of financial duration modelling, we
also stress their role as a model for financial point processes and their link to
concepts in point process theory as discussed in Chap.4. In this context, we
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illustrate the representation of an ACD model in terms of an intensity process. These
interpretations, however, are not meaningful if other variables than durations are
modelled.

In Sect.5.1, we discuss autoregressive models for log durations as a natural
starting point. In Sect. 5.2, we present the basic form of the autoregressive condi-
tional duration (ACD) model proposed by Engle and Russell (1997, 1998). Because
it is the most common type of autoregressive duration model and is extensively
considered in recent econometrics literature, we discuss theoretical properties
and estimation issues in more detail. Section 5.3 discusses (quasi) maximum
likelihood estimation of ACD models. In Sect. 5.4, the inclusion of covariates and
consideration of intraday periodicities is illustrated. A logarithmic specification
of the ACD model — the so-called Log ACD model — is discussed in Sect.5.5.
Section 5.6 is devoted to specification tests for the ACD model. Here, we focus
on Portmanteau tests, independence tests, distribution tests as well as Lagrange
Multiplier and (integrated) conditional moment tests.

5.1 ARMA Models for Log Variables

A natural starting point for an autoregressive model for positive-valued variables
x; > 0 is to specify an (autoregression) model for log variables. Since log variables
are not subject to non-negativity restrictions, traditional time series models are
easily applicable. Accordingly, a simple ARMA model for log variables is given
by

P 0
lnx,-=a)+20{jlnx,~_j+z,3j§,-_j+§i, i=1,...,7’l, (51)
J=1 Jj=1

where &; is a white noise variable. If x; is a financial duration, the model belongs to
the class of AFT models (see Chap.4). Then, covariates, including, in this context,
past durations, accelerate or decelerate the time to failure. A quasi maximum
likelihood (QML) estimator for # = (w,«, )’ is obtained by estimating the
model under the normality assumption for &;, implying a conditional log normal
distribution for x;. Based on QML estimates, the empirical distribution of the
residuals &; yields a nonparametric estimate of the underlying distribution, and thus,

the baseline hazard.
More sophisticated specifications are obtained by ARMA-GARCH type models.
For instance, the conditional mean function of In x; can be specified according to
(5.1), while its conditional variance, h;, follows a standard GARCH process. Thus,

& = Vhiui, u ~N(Q©,1),
Py O

hi =a)h+2ah,]’§i2_j+Zl3h.jh,'_j. (52)

Jj=1 Jj=1
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In case of trade durations or volume durations, /; is interpreted as a duration volatil-
ity which is economically associated with liquidity risk (see, for example, Ghysels
et al. 1998). By exploiting the asymptotic properties of the QML estimator of the
Gaussian GARCH model (see Bollerslev and Wooldridge 1992), the autoregressive
parameters of (5.1) and (5.2) are estimated consistently.!

The separability of the conditional mean and the conditional variance of In x;
is obviously implied by the normality assumption. However, such a separation
of the two first moments is not straightforward for plain variables. In general,
distributions defined on positive support typically imply a strict dependence between
the first moment and higher order moments and do not allow to disentangle the
conditional mean and variance function. Then, a parameterization of the conditional
mean implies per (distributional) assumption also a parameterization of higher
order conditional moments. Ghysels et al. (1998) argue that such distributional
assumptions are too restrictive and are not flexible enough to model duration
dynamics. For a deeper discussion of this issue, see Chap. 6.

However, researchers are often not interested in models (and forecasts) of In x;
but of x;. Dufour and Engle (2000) illustrate that the forecast performance of auto-
regressions in log-durations perform rather poorly compared to more sophisticated
ACD specifications as presented in the following subsection. Thus, an alternative
specification is given by a simple ARMA model for x; where the innovations follow
a distribution defined on positive support:

P 0
Xi :a)+2ajxi_j+z,3j5i—j+5i, (5.3)
j=1 j=1

where w > 0,; > 0, 8; > 0. A QML estimator for § = (w,«, B)’ is obtained by
assuming a standard exponential distribution for &; leading to the quasi maximum
likelihood function based on data X and parameters 6

n n P 0
ln»CQML(X;o):_ZgiZ_Z xi—a)—Zajx,-_j—Z,Bjéi_j ,
i=1 i=1 j=1 j=1

(5.4)

which is the true log likelihood if the p.d.f. of & is the exponential density.
According to QML theory (see, e.g., Gouriéroux et al. 1984), correct specifications
of the conditional mean function ensure consistent estimation of 6.

A drawback of this approach is that in this case, the marginal distribution of the
resulting duration process is not exponential. Thus, in difference to Gaussian ARMA
models, the relationship between the conditional distribution and the marginal

For more details, see Sect. 5.3.1, where the asymptotic properties of the GARCH QML estimator
are carried over to ACD models.
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distribution of x; is not obvious. Lawrence and Lewis (1980) propose an exponential
ARMA (EARMA) model which is based on i.i.d. exponential innovations and leads
to an exponential marginal distribution. This result is achieved by specifying a linear
autoregressive model for a stationary variable that is based on a probabilistic choice
between different linear combinations of independent exponentially distributed
random variables.

5.2 A MEM for Durations: The ACD Model

The most popular autoregressive duration approach and most common type of
MEM is proposed by Engle (1996, 2000) and Engle and Russell (1997, 1998). The
basic idea of the autoregressive conditional duration (ACD) model is a dynamic
parameterization of the conditional mean function

Vi =i (0) = E[x;[F,_,: 0], (5.5)

where 6 denotes a p x 1 parameter vector. Here, F;,_, denotes the information set up
to the most recent (irregularly spaced) observation #;—;. As long as the exact timing
of the observation at #; is not important, it is sufficient to index all observations by i
and to denote the information set by F;.
It is assumed that the standardized durations
Xi

= 5.6
&= (5.6)

follow an i.i.d. process defined on positive support with [E[e;] = 1. Obviously, the
ACD model can be regarded as a GARCH model for duration data. Different types
of ACD models can be divided either by the choice of the functional form used for
the conditional mean function ¥; or by the choice of the distribution for ¢;.

The basic ACD specification is based on a linear parameterization of the
conditional mean function

P Y
lI/iza)—i-Zoejxi_j—i—Zﬂle/i_j. (57)
j=1 j=l1

A sufficient, however not necessary, condition for non-negativity of the process is
w>0anda >0, >0.
The ACD process can be rewritten in terms of an intensity representation

x(z;f,)zig( *() )Wl , (5.8)

Wﬁ(z)-',-l N(@t)+1
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where )NLS(S) denotes the hazard function of the ACD innovation ¢;. This represen-
tation shows that the ACD model belongs to the class of AFT models since past
dynamics influence the rate of failure time. Changes of the intensity function during
a spell are only induced by the hazard shape of &; while new information enters
the model exclusively at the particular points #;. As suggested by Hamilton and
Jorda (2002), (5.8) can be used as the starting point for generalized specifications by
directly parameterizing the intensity function and allowing for news arrival within a
spell. As soon as time-varying covariates are taken into account, such specifications
require to switch from a duration setting to an intensity setting. This is discussed in
more detail in Chap. 11.

The basic idea of the ACD model is to (dynamically) parameterize the condi-
tional duration mean rather than the intensity function itself. Thus, the complete
dynamic structure as well as the influence of covariates is captured by the function
¥; which per construction can only be updated at the points ;.

The conditional mean of the ACD model is given by definition as E[x;|F;—1] =
¥;, whereas the unconditional mean and the conditional variance are

w

Elx;] = E[Wi] - Ele;] = 7 , (5.9)
— =9~ Z]‘Q=1 Bj
Vi |Fii] = 97 - Viei]. (5.10)
For the case P = Q = 1, the unconditional variance of x; is given by?

1 —B%—-2ap

VIxi] = E[x;]*V[e; : 5.11

() = Bl PVlel | 1= e e | G.11)
Correspondingly, the autocorrelation function is derived as

a(1—B7 —a1f)

= C L Xieg) = , 5.12

p] OV(xl X l) 1 _ 1312 — 2(1][31 ( )

pn = (@ + B)pn—1 forn>2. (5.13)

Accordingly, covariance stationarity conditions of the ACD model are similar to the
covariance stationarity conditions of the GARCH model (see Bollerslev 1986) and
are satisfied by

(@ + B)? —a?V[e;] < 1.
The corresponding results for higher-order ACD models are similar but more

cumbersome to compute. It is easy to see that V[x;] > E[x;]?, thus, the ACD
model implies excess dispersion, i.e., the unconditional standard deviation exceeds

’Inthecase P = Q = 1, weset o := ; and B := B,.
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the unconditional mean. This property might be regarded as the counterpart to the
“overkurtosis property” of the Gaussian GARCH model. General formulations of
lower and upper bounds for the p.d.f. of the duration process implied by an ACD
(P, Q) model are given by Fernandes (2004).

By introducing the martingale difference n; := x; — ¥;, the ACD(P, Q) model
can be written in terms of an ARMA(max(P,Q),Q) model for plain durations

max(P,Q) ]
Xi=w+ Y (@ +B)xio; = Bini-j+ i (5.14)
j=1 j=1

5.3 Estimation of the ACD Model

5.3.1 QML Estimation

A natural choice for the distribution of &; is the exponential distribution. As
discussed in Chap.4, the exponential distribution is the central distribution for
stochastic processes defined on positive support and can be seen as the counterpart
to the normal distribution for random variables defined on R. Consequently, the
specification of an Exponential-ACD (EACD) model is a natural starting point.
Though the assumption of an exponential distribution is quite restrictive for many
applications,? it has the major advantage of leading to a QML estimator for the ACD
parameters. The exponential quasi log likelihood function is given by

n

In £(X; 0) =Zli(0)=—2|:lnl1/,- +;/—] (5.15)

i=1 i=1

where /; (6) denotes the log likelihood contribution of the i th observation. The score
and the Hessian are given by

amc(x 9)

s(0) := Z (o)— —%[;——1] (5.16)

i=l1

9 1n £(X; 0
H(O) = Ialoa(o/) Zh(e)

i=1

) B LA VRS B LR L
_1,21 2 4 Y 90 90" w?)

(5.17)

3See also the descriptive statistics in Chap. 3.
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where s;(0) is a p x 1 vector denoting the ith contribution to the score vector
and h; (#) is a p x p matrix denoting the ith contribution to the Hessian matrix.
Under correct specification of the model, i.e., ¥; = ¥, o, where ¥; o := ¥;(0y) =
E [x;| Fi—1; 0] denotes the “true” conditional mean function, it follows that &; =
x; /W¥; is stochastically independent of ¥; and has an expectation of one. Hence,
the score s; (@) is a martingale difference with respect to the information set F;_;
and

e 10w 0
E[H(00)|Fi1] = ;hiwo) = —; W—%WOWO (5.18)
where h; (0) := E[h; (0)| Fi_].

The correct specification of the conditional mean function is an essential
prerequisite to establish the QML property of the EACD estimator. Engle (2000)
illustrates that the results of Bollerslev and Wooldridge (1992) can be directly
applied to the EACD model. These results are summarized in the following
theorem:

Theorem 5.1. Assume the following regularity conditions:

(i) © is a compact parameter space and has nonempty interior; © is a subset of

R?.
(ii) For some 0 € int(@), E[x;| Fi—1;00] = ¥;(0¢) := Wi,.
(iii) (a) ¥;(0) := Y; is measurable for all 0 € O and is twice continuously

differentiable on int O for all x;;
(b) W; is positive with probability one for all § € ©.
(iv) (a) O is the identifiable unique maximizer of n=' > ' | E[l;(0) — 1;(0,)];
(b) {1;(0) — 1;(8)} satisfies the UNLLNY i = 1,2,...,n*
(v) (a){h;(00)} and {h;(0)} satisfy the UWLLN;
(b) {h; (0) — h;(0)} satisfies the UWLLN;
(c)A°:=n"' Y0, E[h; (80)] is uniformly positive definite.
(vi) (a){s;(00)s;(00)'} satisfies the UWLLN;
(b)B° :=n~' 3" | E[s;(00)s;(00)'] is uniformly positive definite;

(c) BV 2p= V2570 si(B0)s (00)’—">N(0, 1,) with I, denoting the p-
dimensional identity matrix.

(vii) (a) {h;(0) —h;(8¢)} satisfies the UWLLN;
(b) {S,’ (0)s; (0)/ —s;(00)s; (00)/} satisfies the UWLLN.

Then,

[A'B°A° ]2 V(B — 85) > N(0.1,).

4UWLLN: Uniform Weak Law of Large Numbers.
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Furthermore,

»>>
==}

C—A°=>0 and °—B°= 0,

where

.. 1 n o A 1 " A N
Ao = =3 k() and B =—% si®)si(6).

i=1 i=1

Proof: See Bollerslev and Wooldridge (1992), p. 167. a

This theorem illustrates that the maximization of the quasi log likelihood function
(5.15) leads to a consistent estimate of # without specifying the density function
of the disturbances. As pointed out by Bollerslev and Wooldridge (1992), the
matrix A°~'B°A°~! is a consistent estimator of the White (1982) robust asymptotic
variance covariance of /1 (9 — 0y). A variance covariance estimator that is
robust not only against distributional misspecification but also against dynamic
misspecification in the ACD errors is obtained by following Newey and West (1987)
and estimating B° by

50 A ] ~ A/
B° = [ — . ).
Po+ Y ( J+1)(V/+VJ)
where

pro=nTt > si(@)si(B)

i=j+1

and J denotes the exogenously given truncation lag order. The assumptions of
Bollerslev and Wooldridge (1992) are quite strong since they require asymptotic
normality of the score vector and uniform weak convergence of the likelihood
and its second derivative. Moreover, as shown in Chap. 3, typical high-frequency
duration processes (like, for example, trade duration processes) are highly persistent
and nearly integrated. In the integrated case, the unconditional mean of ¥; is not
finite leading to non-normal limiting distributions of the estimator. In order to cope
with these problems, Lee and Hansen (1994) establish the asymptotic properties
for the IGARCH QML estimator under weaker assumptions than in Bollerslev and
Wooldridge (1992). Engle and Russell (1998) illustrate that these results are easily
carried over to the EACD(1,1) case. The main results of Lee and Hansen (1994) are
summarized as follows:

Theorem 5.2. Assume the following regularity conditions:

(i) 00 = (a)o,ao,ﬂo)' S int(@).
(i) E[x;| Fi—1:00] := ¥i(00) = ¥ip = wo + aoxi—1 + Bo¥i—1.
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(iii) &; = x; /Wi, is strictly stationary and ergodic.
(iv) &; is non-degenerate.
(v) E [812| ]—'i_l] < 00 a.s.
(vi) sup; E[In By + aoei| Fi—1] < 0 a.s.
(vii) InL(X:8) = X 1:(8) = = Y_, [m v + @L]  where W, = o+axi_; +
BYi-1.
(viii) @ is the identifiable unique maximizer of n=' Y '_ | E[l;(8) — 1;(6)].

Then,

[A°'B°A°1 ]2 V(B — 85) > N (0.1,)
and
A°—A°L 0 and B°—B°Lo.

Proof: See Lee and Hansen (1994), p. 471f. a

These results are also valid in case of « + § = 1. Moreover, the standardized
durations are not necessarily assumed to follow an i.i.d. process. It is rather required
that they are strictly stationary and ergodic. This property generalizes the results
of Bollerslev and Wooldridge (1992) to a broader class of models, including, for
example, the class of so-called semiparametric ACD models introduced by Drost
and Werker (2004) (see Chap.6). Note that these results are based on the linear
EACD(1,1) model and cannot necessarily carried over to more general cases, like
(nonlinear) EACD(P,Q) models. In any case, a crucial requirement for the QML
estimation of the ACD model is the validity of the conditional mean restriction, i.e.,
the correct specification of the conditional mean function ¥;. This assumption will
be explored in more detail in Sect. 5.6.

The consistency of the Exponential QML estimator is inherently related to the
fact that its score function corresponds to an unconditional moment function with
the property

Els;(80)] =0, 0,0, i=1,...,n. (5.19)
This allows to construct corresponding moment estimators. As discussed by Drost
and Werker (2004) and Engle and Gallo (2006), this relationship can be alternatively

achieved by choosing a Gamma distribution. From (5.16) it is easily seen that the
Exponential QML score contribution of a single observation i can be written as

s:(8) = (e1 — 1)%111% (5.20)

Then, assuming the ACD innovations ¢; to follow a normalized Gamma distributed,
ie., & ~ G(m,m) with E[¢;] = 1 (see appendix A) and p.d.f.
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m—1

el'™" exp(—&;/m)

Jm(ei) = mn T (m)

, m >0,

it is easily shown that the resulting score function can be written as

Afm(e) 1
Im  fn(ei)

which is proportional to (5.20) yielding the same underlying moment function
(5.19). Consequently, the estimator based on a Gamma distribution is identical to
the one obtained from an exponential quasi maximum likelihood procedure. Its main
advantage is to allow for more flexibility due to an additional parameter m. However,
note that the Gamma distribution for m # 1 is only defined for positive random
variables whereas the exponential distribution (i.e., the case m = 1) is also defined
for zero realizations. Hence, in cases, where zero or near-to-zero observations
or present in the data, the maximization of a gamma log likelihood might cause
numerical difficulties. As a further alternative, Brownlees et al. (2011) recommend
estimating the model by the method of moments using optimal instruments. In
particular, they show that the efficient moment estimator of @ solves the moment
conditions

1+¢ =m(l —¢g), (5.21)

1 <~ 0y, X;
=y Lyt 21 )=0 522
PIETAL (wf ) 422

with the asymptotic covariance given by

-1
- [ i1 1 & 0w I,
_ Z i) : .
AV(0) = Jim_ IE—IEI: TR , (5.23)

which is consistently estimated by

-e>

A —1
AV(0) = V[g;] [ZWM’ —2] .

i=l1

V[ei] = ann:(x,-/q?,- —1)>2

i=1

As illustrated by Engle and Russell (1998), an important implication of the strong
analogy between the Gaussian GARCH model and the Exponential ACD model is
that the ACD model can be estimated by GARCH software. In particular, the ACD
parameter vector # can be estimated by taking ./X; as the dependent variable in
a GARCH regression where the conditional mean is set to zero. Therefore, given
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the QML properties of the EACD model, the parameter estimates 6 are consistent,
however not necessarily efficient.

Indeed, summary statistics of financial durations (see Chap.3) show that the
assumption of an exponential distribution for the standardized durations typically
does not hold. Thus, QML parameter estimates can be biased in finite samples.
Grammig and Maurer (2000) analyze the performance of different ACD speci-
fications based on Monte Carlo studies and show that the QML estimation of
these models may perform poorly in finite samples, even in quite large samples
such as 15,000 observations. For this reason, they propose to specify the ACD
model based on more general distributions. Bauwens et al. (2004) investigate the
predictive performance of ACD models by using density forecasts. They illustrate
that the predictions can be significantly improved by allowing for more flexible
distributions. In these cases, the ACD model is not estimated by QML but by
standard ML.

5.3.2 ML Estimation

In duration literature, a standard way to obtain more flexible distributions is to use
mixture models. In this framework, a specific parametric family of distributions is
mixed with respect to a heterogeneity variable leading to a mixture distribution.’
The most common mixture model is obtained by multiplying the integrated hazard
rate by a random heterogeneity term. In most applications, a gamma distributed
random variable is used leading to a mixture model which is analytically tractable
and allows for the derivation of simple results.

Below, we give a small classification over the most common types of mixture
models leading to a flexible family of distributions. Consider a Weibull distribution
which can be written in the form

X u 0
r a>0,
where A and a are the scale and shape parameter of the distribution, respectively,
and u is a random variable which follows an unit exponential distribution. Note
that in this case, (x/A)? is the integrated hazard function. A gamma mixture of
Weibull distributions is obtained by multiplying the integrated hazard by a random
heterogeneity term following a gamma distribution v ~ G (1, n) with mean E[v] = 1
and variance V[v] = n~!. Then, the resulting mixture model follows a Burr
distribution with parameters A, a and 7.

More flexible models are obtained by a generalization of the underlying Weibull
model and by assuming that u ~ G(m, m) leading to a duration model based on the

SFor an overview of mixture distributions, see, e.g., Lancaster (1997).
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generalized gamma distribution. The generalized gamma family of density functions
nests the Weibull family when m = 1 and the (two-parameter) gamma distribution
whena = 1.

Both types of distributions have been already successfully applied in the ACD
framework leading to the Burr ACD model (Grammig and Maurer 2000) and the
generalized gamma ACD model (Lunde 2000). However, both models belong to
different distribution families and are not nested. An extension of the generalized
gamma ACD model which also nests one member of the Burr family is based on a
gamma mixture of the generalized gamma distribution leading to the generalized F
distribution (see Kalbfleisch and Prentice 1980 or Lancaster 1997). The generalized
F distribution is obtained by assuming the generalized gamma model as basic
duration model and multiplying the integrated hazard by a gamma variate v ~
G(n, n). Then, the marginal density function of x is given by

ax" [y + (/1))

= , 5.24
£(x) B ) (5.24)
where B(-) describes the complete Beta function with B(m,n) = 1;,(&)&7;) . The
moments of the generalized F distribution are given by
r I'(n—
R[] = At L ES/OT 0 =s/a) =0 (5.25)

r(m)I"(n) ’

Hence, the generalized F ACD model as introduced by Hautsch (2003) is based on
three parameters a, m and 7, and thus, nests the generalized gamma ACD model
for n — oo, the Weibull ACD model for m = 1,7 — oo and the log-logistic
ACD model for m = n = 1. For a discussion of even more special cases of the
Generalized F distribution, see Karanasos (2008). Figures 5.1-5.3 show the hazard
functions implied by the generalized F distribution based on different parameter
combinations. If an ACD process is specified based on a distribution with mean
unequal to one (i.e., other than the exponential distribution), it can be without loss
of generality written as

xi = WTE = g, (5.26)

where &; denotes the error term with ¢ := E[g;] # 1 and

w o
& =Y/ = 7 + Exi—] + B
= +axi— + P (5.27)

with @ := w/¢ and @ := «/C.
Hence, to specify an ACD model, for instance, based on the generalized F
distribution, A and E[¥;] = w/(1 — a — B) are not simultaneously identifiable.
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Fig. 5.1 Hazard functions implied by the generalized F distribution. Left: m = 0.8, a = 0.8,
A = 1.0, upper: n = 100, middle: n = 10, lower: n = 0.5. Right: m = 0.8, a = 1.1, A = 1.0,
upper: n = 100, middle: n = 10, lower: n = 0.5
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Fig. 5.2 Hazard functions implied by the generalized F distribution. Left: m = 1.4, a = 0.9,
A = 1.0, upper: n = 100, middle: n = 10, lower: n = 0.5. Right: m = 1.4,a = 1.2, A 1.0,
upper: n = 100, middle: n = 10, lower: n = 0.5
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Fig. 5.3 Hazard functions implied by the generalized F distribution. Lefr: m = 1.27!,a = 1.2,
A = 1.0, upper: n = 100, middle: n = 10, lower: n = 0.5. Right: m = 1.2,a = 1.271, 1 = 1.0,
upper: n = 100, middle: n = 10, lower: n = 0.5
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Therefore, either A or w have to be fixed. It is more natural to fix A = 1 and to
choose ¢ as

n'/“I'(m +1/a)I'(n —1/a)
I'(m)I"(n)
The generalized F ACD specification is given by (5.26) with &; being generalized F

distributed with A = 1. Then, applying the change of variables theorem the density
of x; and thus the corresponding log likelihood function is given by

=

~.  T(m+n)
InL(X;60) = Zlnm +loga —amlog®; + (am — 1) Inx;
i=1

— (4 m)In[n+ (@7 x;)*] + nin(n). (5.28)

This specification is equivalent to setting A = & and dynamically parameterizing
it according to (5.27) by setting ¥; = &;{. Alternative distributions employed
for ACD models are the Pareto distribution (see Luca and Zuccolotto 2006) or
generalizations of the generalized F distribution (see Karanasos 2004). Note that any
generalizations of the exponential distribution require the strict positiveness of x;.
Hence, in case of zero observations, the model has to be estimated either by QML
based on the exponential distribution, by (G)MM or by ML employing sufficiently
flexible distributions which explicitly account for zero observations. In this context,
Hautsch et al. (2010) propose a zero-augmented generalized F distribution and
implement it in a MEM framework.

Alternatively, even more flexible distributions for ACD models are obtained by
mixture distributions with time-varying weights. De Luca and Gallo (2009) propose
a mixture of exponentials with time-varying weights and show that the resulting
distribution successfully captures also the occurrence of duration observations in
the tails.

Finally, besides the family of gamma mixture distributions, another natural
distribution for positive-valued random variables is the log-normal distribution with

p.d.f.
1 1 (Inx—p 2
Sx) = exp | — (—) , (5.29)
xoA/2m 2 o

where © and o denote the corresponding location and scale parameters, respectively,
implying E[x] = exp (x + 0%/2) and V[x] = exp (211 + 02) (exp(0?) — 1). As
shown in Sect. 5.5, specifying an ACD model based on a log-normal distribution
is particularly useful in cases where the conditional mean function follows a
logarithmic specification as well and allows to carry over Gaussian QML properties.
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5.4 Seasonalities and Explanatory Variables

As illustrated in Chap. 3, financial duration processes are typically subject to strong
intraday periodicities. One common solution in the ACD framework is to generate
seasonally adjusted series by partialling out the time-of-day effects. In this context,
the durations are decomposed into a deterministic and stochastic component. Engle
and Russell (1998) assume that deterministic seasonality effects act multiplicatively,
thus

Xi = X;$i, (5.30)

where X; denotes the seasonal adjusted duration and s; the seasonality component
at i. Then, the conditional mean is given by

W = E[X| Fioilsi = Us;. (5.31)

The deterministic seasonality function s; can be specified in different ways.
Obviously, the most simple way to account for seasonalities is to include appropriate
dummy variables, i.e.,

0
si= Y 8l <q<r (5.32)

Jj=1

where § ; are parameters to be estimated and 7;, j = 0,1,...,79, denote
exogenously chosen (calendar) time points splitting the trading day into Q + 1
intervals (with 7o chosen before the end of the trading day to ensure identification
of the constant w in ¥;).

While seasonality dummies capture the deterministic pattern in terms of piece-
wise constant functions, a linear spline function allows for a piecewise linear
function defined over the knots 7;. It is given by

0
si=1+Y 8t —t) oy (5.33)

Jj=1

and is normalized to one at the beginning of the trading day to ensure the
identification of w. The linear spline function can be extended to a quadratic or
cubic spline function where the (piecewise) linear functions are replaced by second
or third order polynomials, respectively. See, e.g., de Boor (1978).

An alternative and common specification is to use the flexible Fourier series
approximation proposed by Andersen and Bollerslev (1998b) based on the work
of Gallant (1981). Assuming a polynomial of degree Q, the non-stochastic seasonal
trend term is of the form
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0
si=50.5.0) =8I + Y _ (8 cos(l; - 2j) + 8, sin(; - 2mj)) . (5.34)
j=1

where 8, 8. ;, and &, ; are the seasonality coefficients to be estimated and 7; € [0, 1]
is the normalized calendar time associated with #; computed as the number of
seconds from opening of the exchange until the intraday calendar time of #; divided
by the length of the trading day.

In the high-frequency literature, it is common to apply a two-step estimation
approach. In the first step, durations are seasonally filtered, whereas in the second
step, the model is estimated based on seasonally standardized durations. The major
advantage of this procedure is a significant reduction of the number of parameters
and thus of the computational burden in the second step (Q)ML or GMM estimation.
This is particularly important if the number of observations is high.

Nevertheless, two-step estimation is inefficient and in some cases even incon-
sistent. In the latter case, it is inevitable to jointly estimate all parameters. Veredas
et al. (2008) propose a semiparametric estimator, where the seasonality components
are jointly estimated non-parametrically with the parameters of the ACD model,
and show that joint estimation leads to efficiency gains and improved forecasting
properties. Brownlees and Gallo (2011) develop a shrinkage estimator to jointly
estimate the ACD component and a flexibly specified deterministic component. The
basic principle of the shrinkage estimator is to penalize the log likelihood by a
penalty function which is quadratic in the number of parameters of the flexible
component. This implies that these parameters are shrinked toward zero with the
amount of penalization (and thus shrinkage) controlled by a smoothing parameter.
Brownlees and Gallo (2011) show that the shrinkage estimates yield improved
forecasts compared to the case of basic ML estimation.

Explanatory variables can be included in two different ways. The first possibility
is to include them in form of a function g(-) which enters the conditional mean
function additively, i.e.,

P 0
W=w+Y aixij+ Yy Bi¥i-; +gE_y). or  (5.35)
j=1 j=1

P %
U —g@_ ) =0+ aixi—j+ ) B —gE__;y).  (536)

J=1 J=1

In the most simple form, g(-) is just chosen as g(y) = y implying an additive but not
necessarily non-negative inclusion of covariates. Alternatively, g(-) might be chosen
as a non-negative function, e.g., g(v) = exp(y) which ensures that covariates affect
conditional durations in a non-negative, however, obviously non-linear fashion.
Specification (5.35) implies a dynamic inclusion of explanatory variables, i.e.,
in this specification, the covariate effects enter the ACD specification in terms of
an infinite lag structure (see, e.g. Hendry 1995). In contrast, (5.36) implies a static
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inclusion of regressor effects. A priori it is unclear which specification should be
preferred in practice. However, in some cases, a dynamic inclusion according to
(5.35) makes the interpretation of estimates of y difficult. This is the case whenever
the regressors z are connected to certain time periods (for instance, to capture the
effect of a news event occurring at a fixed time). In such a case, (5.36), is preferred.

Alternatively, explanatory variables might be included multiplicatively as an
additional scaling function. Then, define X; as the duration standardized by both
seasonality and covariate effects. Thus

9 Xi

¥ o=t (5.37)
l Sig(Z;_1V)

and ¥; is given by

W = Wsig(z_,y). (5.38)

5.5 The Log-ACD Model

Bauwens and Giot (2000) and Lunde (2000) propose a logarithmic ACD model®
that ensures the non-negativity of durations without any parameter restrictions and
is obtained by x; = ¥;¢; with

InY, =w+alng_; + fIn¥;_y,
=w+alnx_ +(—a)ln¥_, (5.39)

where ¢; is i.i.d. with mean one. In order to distinguish the model from an alternative
logarithmic specification introduced below, we call the model in line with Bauwens
and Giot (2000) Logarithmic ACD model of type I (LACD)).

In contrast to the linear ACD model, the LACD model implies a concave
relationship between ¢;_; and x; (the so-called news impact curve). le., the
difference in the impact of innovations with ¢; < 1 (“negative” surprises) on x;
is larger than in the case of innovations with &; > 1 (“positive” surprises).

Similarly to the linear ACD model presented in the previous sections, in case
of innovation distributions with a mean non-equal to one, the process can be
represented as

Xi = W& /{ =: &
]n@i = o +Ol1n8j71 +I31n¢i71a

%In some studies, this model is also called “Nelson type” ACD model since it resembles the
EGARCH specification proposed by Nelson (1991).
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where @ := w + (B — 1)In¢ and ¢; := €; /¢ with E[§;] :== ¢ # 1.

Similarly to the basic ACD model, the Log-ACD model can be also represented
by an ARMA specification. Allen et al. (2008) show that a Log-ACD model as given
by (5.39) can be represented as an ARMA(R,R) specification for In x;,

R R
nx; =&+ Y 8lnxi;+ Y 05, +&. (5.40)
j=1 j=1
where & := (Ing; —E[lng;]) ~ iid(O,agz), w:=w+ Zle 0;E[ln¢g;] + E[lne;],
and R := max(P, Q).

Bauwens and Giot (2000) also propose an alternative Log-ACD specification
given by

InY; =w+agi— + fIn¥;_,
=ow+ax_1/¥-1)+BIn¥_, (5.41)

which implies a convex news impact curve and is referred to as Log ACD type II
(LACD,) model. Both Log-ACD specifications can be compactly written as

P 0
¥ =0+ ajge-;)+ Y Bin¥_ ;. (5.42)
j=1 J=1
where g(g;) = Ing; (type I) or g(e;) = &; (type II). Bauwens et al. (2008)

and Karanasos (2008) derive the unconditional moments for both Log ACD
specifications. In the case P = Q = 1, the mth moment of x; is given by

E[x!"] = pm exp (%) 1_[ E [exp {maﬁj_lg(gi)}] , (5.43)
j=1

where m is an arbitrary positive integer m and the conditions p,, = E|x"| < oo,
|B| < 1 and E[exp(maB’~'g(e;))] < oo have to be satisfied.

Correspondingly, under the conditions |8| < 1, E[exp(2ag(s;))] < oo, the
autocorrelation function is given by

uE [Sieaﬂ"*‘gm] [T\ E [eaﬁf”g(sf)] 2, E [ea<1+ﬂ">ﬁf*‘g<si>]
. . 2
pa T2 E [ 0] — 2 (T2, E e ~'50])
W (1‘[?‘;1 E [eaﬁf —‘gm)])z

11 H?o=1 E [eZaﬂ/_lg(si)] — 2 (H;X):l E [eaﬁj_]g(ei)Dz ‘

Pn =

(5.44)
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From these results it follows that the LACD model is covariance stationary if
B <1, El[g exp{ag(ei)}] < oo, Elexp{2ag(e;i)}] < oco.

Generalizations of these results are given in Bauwens et al. (2008) and Karanasos
(2008). In practice, it is suggested to truncate the infinite sums after a sufficiently
large number.

As pointed out by Allen et al. (2008), the Exponential QML properties of the
linear ACD model cannot be straightforwardly carried over to the Log-ACD case.
Loosely speaking, the underlying reason is that in the Log-ACD case, the innovation
¢i—1 affects ¥; and x; in a nonlinear way which perishes the validity of the QML
score function in case of distributional misspecification. This is similar to the result
that the QML property of the Gaussian GARCH model cannot be carried over to
Nelson’s (1991) Exponential GARCH.

As an alternative, Allen et al. (2008) propose estimating the LACD model using
the log-normal distribution. Assuming In x; to be normally distributed with mean
¥; and variance o, the corresponding log likelihood function is given by

! 1 L (nx, —In %)’
hlﬁ(X;o)=—§ln2n—§1n02—lnxi—_w_

5 = (5.45)

Then, Allen et al. (2008) show the consistency and asymptotic normality of é,

V(@ —60) S NO.A00) ' BO)AWB) ). (5.46)
where
A(8o) = nlggon—lE[H(o)])o:oO = lim n"'E [%} e (5.47)
B(0) = ]11320,1—1 E[s(0)s(8)]|4_s,
. n_lE[alnL(X;@ 81n£()/(;0):| | 545
S 20 20 o—on

An important advantage of the LACD model is that ¥; is straightforwardly extended
by covariates without violating the non-negativity restrictions. In this context, the
discussion of Sect. 5.4 applies.

5.6 Testing the ACD Model

In this section, we show several procedures to test the ACD model. Section 5.6.1
illustrates Portmanteau tests for ACD residuals. Here, we discuss the classical
Box—Pierce and Ljung—Box tests as well as refinements thereof accounting for
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the peculiar features of ACD residuals. Section 5.6.2 discusses independence tests,
such as the BDS tests proposed by Brock et al. (1996) as well as Hong and Lee’s
(2003) omnibus test based on generalized spectral densities. In Sect. 5.6.3, we focus
on explicit tests on the distribution of ACD residuals. Besides density evaluations
using Rosenblatt’s (1952) probability integral transformations, we focus on non-
parametric tests against distributional misspecification as proposed by Fernandes
and Grammig (2005) based on Ait-Sahalia (1996). Section 5.6.4 concentrates on
Lagrange Multiplier (LM) tests on correct functional form of the conditional mean
specification. These tests have optimal power against local alternatives but only low
power against more general alternatives. Therefore, Sect. 5.6.5 discusses conditional
moment (CM) tests as originally introduced by Newey (1985). These tests are
consistent against a finite number of possible alternatives since they rely on a finite
number of conditional moment restrictions. In Sect.5.6.5.2 we illustrate the use
of integrated conditional moment (ICM) tests proposed by Bierens (1982, 1990).
By employing an infinite number of conditional moments, this test possesses the
property of consistency against all possible alternatives, and thus, is a generalization
of the CM test. Finally, in Sect.5.6.6, we present a Monte Carlo study where we
analyze the size and the power of different forms of LM, CM and ICM tests on the
basis of various types of augmented ACD models as data generating processes.

5.6.1 Portmanteau Tests

One obvious way to evaluate the goodness-of-fit of the ACD model is to investigate
the dynamic and distributional properties of the ACD residuals

e; Zzéi:x,'/‘l/,', izl,...,l’l. (549)

Under correct model specification, the series must be i.i.d. Hence, Portmanteau
statistics as proposed by Box and Pierce (1970) and Ljung and Box (1978) based
on the ACD residuals can be used to analyze whether the specification is able to
account for the inter-temporal dependence in the duration process. In particular, if
the residuals e; are i.i.d., the Box—Pierce statistic is given by

k
Opr(k) =nY 5 ~ iy (5.50)

=1

where s denotes the number of autoregressive parameters to be estimated underlying
e;,i.e.s := max{P, 0} in case of an ACD model, and /; denotes the jth lag sample
autocorrelation

. Y ei —@)(eir; — @)
SARED SN G0
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where e is the mean of e; which equals one under correct specification. To improve
the poor finite sample properties of the Box—Pierce test when the sample size ranges
from small to moderate, Ljung and Box (1978) suggest using the statistic

A2

Qrp(k) =n(n +2) Z L (5.52)

Both the Box—Pierce and Ljung-Box test statistics rely on the result that if the
underlying series is normally distributed with a (true) mean zero, the asymptotic
distribution of p; is normal with mean zero and variance (n — j)/(n(n + 2)) where
the latter expression is approximated by n~! if n is large.

Various studies analyze the effects of an unknown, possibly non-zero mean
and deviations from normality. Dufour and Roy (1985) show that in case of an
unknown mean, the finite sample performance of Q3 can be improved if p; is
not standardized by (n — j)/(n(n + 2)) but by its exact first and second moments.
Kwan et al. (2005) illustrate that the standard Box—Pierce and Ljung-Box tests
can be clearly undersized if the underlying data generating process is skewed.
In such a situation, a non-parametric Portmanteau test as proposed by Dufour
and Roy (1986) relying on rank autocorrelations provides a better performance in
finite samples. Further modifications of Portmanteau statistics based on variance-
stabilizing transformations have been proposed by Kwan and Sim, (1996a,b).

As stressed by Pacurar (2008), the asymptotic y? distributions which are derived
for Box—Pierce or Ljung—Box tests based on residuals arising from an ARMA
model cannot be directly carried over to ACD residuals. In fact, for the case of
an Exponential ACD model, Li and Yu (2003) show that the asymptotic distribution

of \/np with p := (py,..., ) and

N J(ei = Deirj — 1)
Y -1

or, alternatively (as > i, (e; — 1)? LA 1)

n—j
pi = (ei = Deir; = 1), (5.53)

i=1

is multivariate normal with mean zero and covariance matrix Iy — ZH™!Z’ with I,
denoting the k-dimensional identity matrix, H := —E [n7'H(0)], In£(X:0) =
— 2 i—i(In¥ + gb) and

D 11,2 (e —1) 1Y, %(ei—l —1)

Z:= : : . (5.54)

1
p Z:l k41 wz(et k_l) Z —k+1 lI/2 =L (ej— — 1) k2



120 5 Univariate Multiplicative Error Models

Then, the statistic is

a

Quy(k) =np' (M —ZH'Z)"'p ~ 7. (5.55)

This result explicitly holds for the case of an underlying exponential distribution
but can be easily generalized, e.g., to the case of a Weibull distribution. A similar
finding has been shown by Li and Mak (1994) for Portmanteau tests for squared
standardized residuals in a GARCH model.

Hence, Box—Pierce and Ljung-Box tests can be still used as approximative
tests indicating the model’s dynamic fit to perform (relative) model comparisons.
However, whenever one is interested in possibly exact inference on the dynamic
properties of ACD residuals, modified Portmanteau tests as discussed above should
be used.

Note that the independence of e; is tested only based on the first k autocorre-
lations implying testing against the specific alternative hypothesis H; : p; # 0
for 1 < j < k. However, Box—Pierce and Ljung-Box tests are straightforwardly
applicable to test not only for correlations but also for dependencies in higher
order moments, e.g., in squared ACD residuals. An application of the Ljung—Box
test based on squared residuals was proposed by McLeod and Li (1983) and is
commonly referred to as McLeod-Li test.

5.6.2 Independence Tests

While the Portmanteau tests discussed above can only detect autocorrelations in
the employed series but do not automatically detect dependencies in higher order
moments, they are not applicable to explicitly test for the independence of ACD
residuals. Brock et al. (1996) propose a nonparametric test which has power against
many alternatives to i.i.d. processes, including chaotic effects. The major idea is to
evaluate the “nearness” of m-period histories of residuals. In particular, define

1 i]‘]ei—ej|<d,

0 otherwise,

]l(ei,ej,d) = (556)

and

m—1

Un(eiej.d) == [ | 1(eisk.ejrx.d). (5.57)
k=0

where d is some distance. Hence, 1 ,,(-) is one whenever the two m-period histories
{ei.eir1,....eixm—1yand {ej,ejq1,...,ej1n—1} are near each other in the sense
that for each term, |e; yx —e; 1«| < d. The proportion of m-period histories that are
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near each other is estimated by the correlation integral

n—m n—m+1
2
Cn(n,d) = E 1, (x;,x;,d 5.58
(n,d) (n—m)(n—m+1) i=1j=§i+:1 (xi,xj,d) (5.58)

with limit

Cyn(d) := plimCy,(n,d).

n—00

If the observations are i.i.d., then C,,(d) = C1(d)™. Conversely, if the observations
are from a chaotic process, then C,,(d) > C;(d)™. Exploiting the asymptotic
distribution of the correlation integral, Brock et al. (1996) construct a test statistic
as

Cn(d) = Ci(d)" 4

BDS(m.,d) := /n e — N(0,1), (5.59)

where V,, := WAI[\/E {Cn(n,d)—Ci(n,d)™}] denotes the asymptotic variance which
can be estimated by

m—1
V=4 K"+ (m—1)’C*" —m>KC*™ >+ 2% "K"/CY |, (5.60)
j=1

where C := Ci(n,d) and

6
- m—m—-—1Dm—myn—m+1)

K :

n—m

i—1 n—m-+1
X Z Z]lm(e_/‘,ei) |: Z ]lm(ei,ek)i|

i=1 \ | j=1 k=i+1

The BDS test has the property to be nuisance-parameter-free in the sense that any
J/n-consistent parameter estimator has no impact on its null limit distribution under
a class of conditional mean models. However, as stressed by Hong and Lee (2003),
the BDS test requires choosing the parameters m and d . In finite samples, this choice
might affect the power and size properties of the test. Moreover, it is shown that the
BDS test is not an omnibus test in the sense that it has power against any possible
alternative.

As an alternative, Hong and Lee (2003) propose a misspecification test for ACD
models based on the generalized spectrum test introduced by Hong (1999). It is
based on the covariance between empirical characteristic functions of e; and e;_;
given by
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0 (u,v) := Covl[e", e™=/], (5.61)

where ¢ := +/—1 and j = 0,=+1,... Then, oj(u,v) = @ju,v) — ee®),
where ¢; (u,v) := E[e'“i =] and ¢(u) := E[e"“] are the joint and marginal
characteristic functions of (e;, ¢;—;). Consequently, o; (1, v) = 0 for all (u,v) € R?
if e; and e; are independent. The Fourier transform of o (1, v) is given by

fw,u,v) = % Z oj(u, Ve v we -, . (5.62)

j==00

As the negative partial derivative of f(w, u, v) with respect to (u, v) at (0, 0) yields
the “conventional” spectral density, Hong (1999) refers it to as a “generalized
spectral density” of {e;}. It can capture any type of pairwise dependence across
various lags in {e;}. If {e; } is i.i.d., f(w, u, v) becomes a flat spectrum

fow,u,v) = —Oo(u V). (5.63)

Hong and Lee (2003) suggest estimating f(w, u, v) using a kernel estimator,

R 1 n—1 -
Falwov) = 5= 37 (1= 1j1/m) K/ i) e,

j=Il-n
i(u,v)=¢;w,v)—¢;ju,09;0,v), j=0=xI,....,£(n—1),

(n—Jj)~ IZ,_H, etlwertve—p) if j >0,

(5.64)
(n+ )" Yo etleitjtve) if j <0,

(ﬁj (Lt, V) =

where K : R — [—1, 1] is a symmetric kernel with bandwidth b, such that b,, — oo,
b,/n — 0asn — oo, and (1 — |j|/n)"/? is a finite-sample adjustment factor.
Correspondingly, fo(w, u, v) is estimated by

fo(w u,v) = —Oo(u V). (5.65)

Hong and Lee (2003) propose a test statistic by comparing f;(w, u,v) and
ﬁ)(w, u,v) via an Ly-norm, see Hong and Lee (2003) for details. For the choice of
the kernel, Hong and Lee suggest using the Daniell kernel as optimal to maximize
the asymptotic power of the test. However, as stressed by Meitz and Terdsvirta
(20006), its computation is demanding since it has an unbounded support. This is
particularly true if the underlying sample size is huge. Therefore, as an alternative,
Meitz and Terdsvirta (2006) propose using a Parzen kernel.

Note that both the BDS test as well as the Hong and Lee (2003) test are not
applicable to exclusively test the conditional mean function of ACD models. As
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correct specifications of the mean function do not necessarily rule out higher order
dependence, both tests would indicate a rejection of the ACD mean specification
though it may be correct. For such situations, Hong and Lee (2011) construct a test
on the dynamics in the conditional mean function based on a partial derivative of the
generalized spectrum. They show that the test can detect a wide class of neglected
linear and nonlinear dynamic structures in conditionally expected durations. Duch-
esne and Pacurar (2008) propose a test based on a kernel spectral density estimator
of ACD residuals yielding a generalized version of Hong’s (1996) test.

5.6.3 Distribution Tests

The residual series {e;} should have a mean of one and a distribution which
should correspond to the specified distribution of the ACD errors. Hence, graphical
checks of the residual series can be performed based on quantile-quantile plots
(QQ plots). Alternatively, moment conditions implied by the specific distributions
might be investigated to evaluate the goodness-of-fit. In the case of an exponential
distribution, a simple moment condition implies the equality of the mean and the
standard deviation. As discussed in Chap.4, Engle and Russell (1998) propose the
statistic /n((62 — 1)/0.) to test for excess dispersion, where 6?2 is the sample
variance of ¢; and o, is the standard deviation of (g; — 1) which equals /8 under
the exponential null hypothesis. Under the null, this test statistic is asymptotically
standard normally distributed.

Another way to evaluate the goodness-of-fit is to evaluate the in-sample density
forecasts implied by the model. Diebold et al. (1998) propose an evaluation method
based on Rosenblatt’s (1952) probability integral transform

qi ‘== /xi f(s)ds. (5.66)

They show that under the null hypothesis, i.e., correct model specification, the
distribution of the ¢; series is i.i.d. uniform. Hence, testing the ¢g; series against
the uniform distribution allows to evaluate the performance of density forecasts.”
In this context, Pearson’s goodness-of-fit test might be performed by categorizing
the probability integral transforms ¢; and computing a y2-statistic based on the
frequencies of the individual categories,

z (ny — nﬁ:z)Z a 5

Y A X

npk
m=1 Pm

"For more details, see e.g., Bauwens et al. (2004) or Dufour and Engle (2000), who apply this
concept to the comparison of alternative financial duration models.
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where M denotes the number of categories, n,, the number of observations in
category m and p, the estimated probability to observe a realization of g; in
category m.

More sophisticated tests against distributional misspecification are proposed by
Fernandes and Grammig (2005) based on the work of Ait-Sahalia (1996). They
suggest a nonparametric testing procedure that is based on the distance between the
estimated parametric density function and its non-parametric estimate. This test is
very general, since it tests for correctness of the complete (conditional) density.

In the following we illustrate the concept to test the distribution of ACD
residuals which are consistent estimates of ¢; as long as the conditional mean
function ¥; is correctly specified. Fernandes and Grammig (2005) show that there
are no asymptotic costs in substituting the true errors g; by their /n-consistent
estimates e;. Define the c.d.f. and p.d.f. of the ACD residuals e¢; as F(e,#)
and f(e, @), respectively, with @ denoting the underlying parameter vector. The
principle of the test proposed by Fernandes and Grammig (2005) is to test whether
there is any value @ of the parameter vector such that the true and parametric
density functions of e; coincide almost everywhere. Consider the null hypothesis

Hy:36, € ® suchthat f(e,0p) = f(e),

where ® denotes the underlying parameter space. The so-called D-test is based on
the distance

Ep = / Liees)(f(e.8) — f(e))2dF(e). (5.67)

where the integral is over the support of f and S defines the subset of regions
in which non-parametric (kernel) density estimation is stable. Then, the sample
counterpart of (5.67) is given by

1< L.
gp=- D Mgesytfei0) = f(eny. (5.68)

i=1

where 8 and f denote pointwise consistent estimates of 6y and f, respectively.
Hence, & 7 evaluates the difference between the parametric and nonparametric
estimates of the density function f. As the parametric estimate is consistent only

under correct specification, &  converges to zero under the null.

To construct a formal test, consider a kernel density estimate f (e) of f(e) given
by

fle)=

1 n
- > Kep,(er). (5.69)
"=l
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where K(e;) := K., (e;) is a continuously differentiable kernel function K(-) > 0
with [ K(u)du = 1 and bandwidth b,. In case of using a fixed kernel, Fernandes
and Grammig (2005) propose a test statistic for & 7 of the form

nbj/zaf — b2,

tP = _ , (5.70)
(o))
where b, = o(n~'/@*D) denotes the bandwidth of the fixed kernel and s is

the order of the kernel. Moreover, §p and 812) are consistent estimates of §p =
IkE[1 esyf(e)] and 03 := JE[l ,esy./>(e)], where Ix and Jx depend on the
form of the (fixed) kernel and are defined by

Ik = /Kz(u)du,

Jk :=/u%/”K(u)K(u+v)du§2dv.

The parameters §p and 012) can be consistently estimated using the empirical
distribution to compute the expectation and then plugging in the corresponding
(fixed) kernel density estimate:

. 1 & A
SD = IK;ZH{E[GS}f(ei)’

i=1

. (BN :
op = JK; Z Ly esyf(e).

i=1

In case of the optimal uniform kernel according to Gosh and Huang (1991) given by

(24/3)7", for|u| < V3.

(5.71)
0, for |u| > /3,

K"(u) = {

f is estimated by substituting K, p, (¢;) = K* (%) in (5.69), and [¢ and Jg are

given by Ix = (24/3)"" and Jx = (3+/3)7".
Under a set of regularity conditions (see Fernandes and Grammig 2005), the
statistic 7 is asymptotically normally distributed,

2 L N0, 1),

However, as the ACD residuals have a support which is bounded from below,

the test statistic %,f) may perform poorly due to the well-known boundary bias
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induced by fixed kernels. This problem is caused by the fact that a fixed kernel
assigns weight outside the support of the density when smoothing occurs near the
boundary. An alternative is to consider asymmetric kernels such as the flexible
gamma kernel proposed by Chen (2000). This kernel is based on the density of the
gamma distribution with shape parameter x/b, + 1 and the bandwidth b, serving
as scale parameter. It is given by

w*/Pn exp(—u/b,)
b/ P (x /by + 1)

ny/bn+1.bn () := 103 (5.72)

where b, = o(n~*°). Then, the corresponding gamma kernel density estimate is
given by

1 n
fl@)=—=3 Kl s, (5.73)

i=1

Since the support of these kernels is the positive real line, they never assign weight
outside the support of the underlying density. In addition to being free of boundary
bias, the kernel shape changes according to the position of the observations, which
modifies the amount of smoothing.

Using the gamma kernel as underlying kernel estimator, Fernandes and Grammig
(2005) propose a modified test statistic of the form

P = - — N(0,1), (5.74)
oG
where 8¢ and G4 are consistent estimates of §g := ﬁ;E[ﬂ{eeg}e_l/zf(e)] and
0% = \/4271[*3[]1 eesye” /2 f3(e)]. Similarly to above, 8 and 02 can be consistently
estimated by
8¢ = ! i ﬂ{e453}8-_1/2f(€i),
2/mn — !
2= — Xn:ﬂ{ esier 2 f(er)’.
¢ V2mn e

i=1

To choose the bandwidth b,, Fernandes and Grammig (2005) adapt Silverman’s
(1986) rule of thumb and choose

1 4 ~
by = —A/4)7V3Q = )T,
Inn
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where A is a consistent estimate of the parameter A of an exponential distribution
which is straightforwardly estimated by the sample mean of the ACD residuals or
just set to one.

In a similar fashion, Fernandes and Grammig (2005) propose also a so-called
H-test based on the distance between parametric and nonparametric estimates of the
hazard function. See Fernandes and Grammig (2005) for more details.

The appealing features of the gamma kernel, such as the reduced variance in
the interior part of the support, come at a cost. Compared to symmetric kernels,
the gamma kernel estimator features a somewhat higher bias when moving away
from the boundary (see, e.g., Hagmann and Scaillet 2007). That property makes
it necessary to implement an effective technique for bias correction. A simple
technique for multiplicative bias correction for fixed kernels is suggested by
Hjort and Glad (1995) and extended to asymmetric kernels by Hagmann and
Scaillet (2007) as a special case of local bias correction methods. This approach
is semiparametric in the sense that the density is being estimated nonparametrically
while using a parametric start. Hautsch et al. (2010) employ these techniques to
construct a generalization of the Fernandes and Grammig (2005) test which allows
to test against discrete-continuous mixture distributions explicitly accounting also
for zero observations.

5.6.4 Lagrange Multiplier Tests

Note that the tests discussed in the previous sections are not appropriate for
explicitly testing the conditional mean restriction of ACD models. Clearly, these
tests have power against misspecifications of the conditional mean function, but
they do not allow to identify whether a possible rejection is due to a violation of
distributional assumptions caused by misspecifications of higher order conditional
moments or due to a violation of the conditional mean restriction. Especially in
the context of QML estimation of the ACD model, one is mainly interested in
the validity of the conditional mean restriction but not necessarily in the correct
specification of the complete density. Moreover, the distribution tests illustrated in
Sect. 5.6.3 built on consistent estimates of the ACD errors, which require a correct
specification of the conditional mean function. Procedures that explicitly test this
particular conditional moment restriction are discussed in the following subsections.

In the econometric literature, the Lagrange Multiplier test has proven to be a
useful diagnostic tool to detect model misspecifications. See for example, Breusch
(1978), Breusch and Pagan (1979, 1980), Godfrey (1978a,b), or Engle (1984). In
case of QML estimation of the ACD model (see Sect.5.3.1), the LM test statistic is
computed as

LM = fyz0(z)z0) "'z, (5.75)
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X1 Xn ! 1 0¥, 1 0w\
fo=—-1....——1]), 2o=—.,....— | ,
Gt ) (7w a0
both evaluated under the null. It is easy to show that this test statistic corresponds to
the uncentered R? from a regression of f, on z and is commonly computed as nR?>
where R? is the uncentered R? from a regression of a vector of ones on the scores
of the model.

To perform the LM test, it is necessary to specify a general model which
encompasses the model under the null. Consider a more general form of LM test
which allows to test for misspecifications of the conditional mean function of
unknown form. Assume that the ACD specification under the null is a special case
of a more general (additive) model of the form

U =v 4+ 02, (5.76)

where ¥ denotes the conditional mean function under the null depending on the
parameter vector 6, while 6, and z,; denote the vectors of additional parameters
and missing variables, respectively. Then, we can test for the correct specification
of the null model by testing the parameter restriction §, = 0. Following the
idea of Engle and Ng (1993), z,; might be specified in terms of so-called sign
bias variables 1, <1y, Ny;_,<nn€i—1 and N, >13&—1, and extensions thereof.
Such specifications allow to investigate whether the specification is appropriate to
capture possible nonlinearities in the news impact function. The resulting LM test
is formulated based on the auxiliary regression

e = 2By + 2B, + ui. (5.77)

where u; is a zero mean i.i.d. error term, [90 and Bu are vectors of regression
coefficients, zo; = 1/¥-0¥/30 and z,; = 1/¥ -9 /36, evaluated at 6, = 0
and at the QML estimator under the null. Then, the statistic is given by n times
the R? from the regression (5.77) and follows asymptotically a y?(m) distribution
where m denotes the number of restrictions.

However, as discussed in Meitz and Terdsvirta (20006), this test is not robust if the
ACD errors ¢; are not exponentially distributed. They suggest to follow the approach
by Wooldridge (1990) and to apply the following procedure:

1. Compute the residuals, r;, from a regression of z,; on z;.

2. Regress a vector of ones on r;(x;/¥; — 1) and compute the sum of squared
residuals, SSR.

3. Compute the asymptotically y*(m) distributed test statistic as # times SSR.

As illustrated by Wooldridge (1990), this procedure leads to a consistent test
which is (asymptotically) not affected by violations of the underlying distributional
assumptions.
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More specific LM tests against particular parametric alternatives are derived by
Meitz and Teridsvirta (2006). In particular, they consider two types of misspecifica-
tion: the conditional duration is either additively or multiplicatively misspecified. In
these cases, it is given by

xi = (W + ¢)ei (5.78)

or
xi =Yg, (5.79)
where ¥; = W(0,) denotes the conditional mean depending on parameters 6

and ¢; = ¢;(01,80,) is the misspecification depending not only on €; but also
on additional parameters 6 ,. Define

1 0%(0y)
a;(0) := 0 00,
_ 1 0¢i(6,.05)
bl(01702) L (pl(ol) 802 3
Xi
“O0= gy~

Assume that under the null hypothesis Hy : 6, = 02, the function ¢; satisfies
<pi(01,0g) = 0, where the superscript ‘0’ denotes the true parameter. Then, as
shown by Meitz and Terésvirta (2006), under the null Hy : 6, = 03, the LM test
statistic for a test against a general additive alternative is given by

-1
i=1 i=1 i=1 i=1 i=1

—1 7
={Xn:ei6;} iﬁﬁ}(ifna}) (Zn:ﬁia;) (iaiﬁg)
x {Zéiﬁi§ X Ay (5.80)

i=1

Likewise, assume that under the null hypothesis Hy : 6, = 03, the function ¢;
satisfies ¢; (601, 0(2)) = 1. Then, under the null Hy : 0, = 0(2), a test against a general
multiplicative alternative is obtained by

n n —1 n -
LM= { go,cb} Z »2b; b, — ( @,-Biﬁ;)( ﬁ,-a,’.s) ( @,-ﬁif);)
i=1 i=1 i=1 i=1 i=1

n
x{ ¢),-é,—b,—} R Xaimioy: (5.81)
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As stressed by Meitz and Terdsvirta (2006), misspecifications of the conditional
distribution of the durations may affect the properties of the LM test statistics as they
implicitly build on distributional assumptions. For instance, it is necessary that the
conditional variance of the durations is correctly specified under the null hypothesis.
To avoid distortions of the test statistics due to distributional misspecifications,
Meitz and Terdsvirta (2006) suggest a procedure building on Wooldridge (1991)
resulting in “robust” versions of the test statistics with their asymptotic behavior
being unaffected by possible distributional misspecifications. In case of additive
misspecification, it is suggested to compute the test statistic as follows:

1. Using the QML estimate of 6 ; under the null hypothesis and compute

N 1 w0 o 1 3¢:i(6,,09) Xi
a, = ——F—, b, = ~ - , ¢ = — —1
v (1) 09, (0 96, vi(01)
fori =1...,n.
2. Regress f): on ﬁ;, i = 1,...,n, and compute the corresponding dim(6,) x 1
residual vectors 7;.
3. Regress lon¢;7i,i = 1,...,n,and compute the sum of squared residuals (SSR).

4. Compute the test statistic as nR> = n — SSR which is asymptotically x>
distributed with dim(6,) degrees of freedom under the null hypothesis.

In case of the LM test against multiplicative misspecification, the same procedure
applies with b; replaced by ¢;b;. Applications of this framework to test against
specific types of misspecifications are illustrated in Meitz and Terédsvirta (2006).

5.6.5 Conditional Moment Tests
5.6.5.1 Adapting Newey’s Conditional Moment Test

The LM test discussed in the previous subsection has optimal power against local
(parametric) alternatives and is a special case of a conditional moment test. The main
idea behind the conditional moment (CM) test is to test the validity of conditional
moment restrictions implied by the data which hold when the model is correctly
specified. In the ACD framework, a natural moment condition is obtained by the
conditional mean restriction.

Define p; := p;(#),i = 1...,n, as the s x 1 vector of conditional moment
functions with the property E[p; |w;] = 0, where w; is a s X ¢ matrix of instruments.
Correspondingly, we obtain the g x 1 vector of unconditional moment functions as
7; = 7;(0) := w}p,;. Moreover, we define the ¢ x 1 vector of sample moments
@, = n~! Z;l:] 7;. In the ACD framework, natural choices for p; are (x; —¥;) or
(x;/¥; — 1) allowing to test the null hypotheses for s = 1,

Hy: E[lxi —¥|w;]=0 or Hf: E[x/¥% —1|w;]=0.
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We assume that € is estimated by exponential QML. Correspondingly, we denote
the p x 1 vector s; := s;(0) as the score associated with the ith log likelihood
contribution. Accordingly, we define the n x p matrix s := s(0) := (s},....s,)
and H(0) := ag;gy) as the Hessian of the pseudo log likelihood. Furthermore, we
make the following assumptions:

(A1) ,(0) follows a stationary and ergodic process with 8, defining the true
parameter.
(A2) t; is continuously differentiable in # with E[t,(0)] < oco.

(A3) ¢, 5 E[r;]and n™' Y1, 97,/80" 5 E [97,(8,)/20'].

—1 n .
(Ad) n!2 |:r;_1 %"”:1 :’i| LN (0, ¥') with ¥ denoting a positive semi-definite
L Si
covariance mlatrix of dimension p + q.
(AS) For some neighborhood 9t of 6 : E[sup ||H(0)]|] < oo.
0en

In the following, a modified form of Newey’s (1985) conditional moment test
is illustrated which allows for non-i.i.d. data and is robust to any misspecification
other than violations of the conditional mean restriction, as, e.g., distributional
misspecification or conditional heteroscedasticity in the scores. The asymptotic

distribution of n'/2¢, is derived by expanding ¢, around 6, using the mean value
theorem,
n'2p, =n' [ 121’ o) + (phm n~! 281 C )/ao) 6 — 00)}
i=l1 i=1

(5.82)
where 0% := 0 + )u(é —0y),0 <A < 1.With ) being a QML estimator, we have
W20 = 00) = — [ HO] Y s 00)

i=1
Substituting back into (5.82) yields

n'?¢, = n_1/22 7;(60) — (p]im ! Zati(a*)/a())

i=1 oo i=1
n
xn'PHO%)7 ) "si(89).
i=l1

This expression can be re-written as

n—1/2
/26 21—17 (90)
on = B[ SN si(80) G589
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where the ¢ X (p + ¢g) matrix B is given by

B = |:Iq : (plim n! Zari(e*)/a()) (n_l’H(O*))_l:|, (5.84)

i=1

n d
and I, denotes a (¢ x ¢) identity matrix. Then, we yield n'/2¢, — N'(0,BXB)
and thus

n@,(BEB)'9,] ~ 1. (5.85)

Under the given assumptions, we have ¥ := Z;:_n Y=Y+ Z'j’-:l()/j + 7,
where y; := E[p; (00)$;_;(00)'] and ¢; := ¢(x;,00) = (z;(00),s: (00))" is the
(g+ p)x1 vector of moment restrictions and scores in i . Then, X can be consistently
estimated by a kernel-based estimator

n—1
= " K(/anp

j=—n+l

where K(-) is a kernel function and ¢, is a bandwidth depending on n. Natural
choices are Bartlett kernels, quadratic spectral kernels or Parzen kernels as, e.g.,
suggested by Newey and West (1987) and Andrews (1991).

Estimating the matrix B requires consistently estimating 7(6) by the
empirical Hessian which is ensured by the dominance condition (A5). Moreover,
plim n=!1>", 97;(6*)/0 can be consistently estimated by

n—o0

n~t Y 0%:/00 = 07"y (Wi0%;/00 + ;0w /00).

i=1 i=1
where

9%,/08 = —icl@j/(x,- - lIA/i) in case of Hy,
—S; lI/iz/(xi —Y;) incaseof H.

Note that in case of i.i.d. observations, X' is consistently estimated by n_lqAb i (]AS: ,
whereas plim ), dr(-)/00 can be consistently estimated by the outer product

n—>0o0
between score and moment vector (see Tauchen 1985, or Newey 1985). Then, we

get the well-known expression (see, e.g., Pagan and Vella 1989)
n[¢, (BXB)'¢,] = 'R(R'R — R's(s's) 'sR) 'Rt (5.86)

where ¢ is a (n x 1) vector of ones and R is the n x g matrix with f; as ith element.
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Valuable choices for the weighting functions w () are lagged sign bias variables
(as discussed in Sect. 5.6.4) and/or functionals (e.g. moments) of past durations.

A well known result is that the power of the CM test depends heavily on the
choice of the weighting functions. Newey (1985) illustrates how to obtain an optimal
conditional moment test with maximal local power. It is shown that the LM test
corresponds to an optimal CM test in the case of a particular local alternative.
However, since the CM test is based on a finite number of conditional moment
restrictions, it cannot be consistent against a// possible alternatives.

Generalized moment tests are proposed by Chen and Hsieh (2010). They con-
struct moment functions which allow not only to test the validity of the conditional
mean function but also to test for independence and distributional misspecification.
Conditional mean and independence tests are constructed based on moment restric-
tions implied by the exponential QML method. Correspondingly, the distribution
test relies on the ML method and the assumption of independent error terms.

5.6.5.2 Integrated Conditional Moment Tests

Bierens (1990) illustrates that any CM test of functional form can be converted
into a chi-square test that possesses the property of consistency against all possible
alternatives. The main idea behind the consistent conditional moment test is based
on the following lemma:

Lemma 5.1 (Bierens 1990). Let o be a random variable satisfying the condition
Elo| < oo and let z be a bounded random variable in R with Pr[E(o|z) = 0] < 1.
Then the set S = {t € R : E[oexp(tz)] = 0} is countable and thus has Lebesgue
measure zero. a

Bierens shows that E[pexp(tz)] # 0 in a neighborhood of t = #, where ¢,
is such that E[p exp(foz)] = 0 and Pr [E[oexp(tz)|z] = 0] < 1. de Jong (1996)
extends Bierens’ test towards the case of serially dependent data. In the following,
we assume that the duration process is stationary and obeys the concept of v-
stability. Moreover it is supposed that E|e; — 1| < oo. By assuming that the model
is misspecified, i.e. Pr[E[p;(#0)|Fi—1] = 0] < 1 and replacing the conditioning
information by &(x;—1), §(x;—2), ..., where £(-) is a bounded one-to-one mapping
from R into R, the set

d
S=q1eR :E|p@o)exp| D t;Exi—;) || =0
j=1

with d = min(i — 1, c) has Lebesgue measure zero. Therefore, de Jong (1996)
suggests a consistent CM test based on the unconditional moment restriction

n d
Mn(l)=n_l/22,0i(90)exp lef(xi—j) . (5.87)

i=1 j=1
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where 0 is estimated consistently by QML. de Jong points out that a conditional
moment restriction test based on d = ¢ < n does not allow us to consistently test the
hypotheses Hy and H; for an infinite number of lags and thus d = i — 1 should be
preferred. Equation (5.87) has the property that under the alternative hypothesis H;,

plim M, (t) # Oforall # exceptin a set with Lebesgue measure zero. Therefore, the
n—oQ
principle of the consistent conditional moment test is to employ a class of weighting

functions which are indexed by a continuous nuisance parameter (vector) t. Since
this nuisance parameter is integrated out, this test is called integrated conditional
moment (ICM) test. The lemma above implies that by choosing a vectort’ ¢ S, a
consistent CM test is obtained. However, S depends on the distribution of the data,
and thus it is impossible to choose a fixed vector t for which the test is consistent. As
suggested by de Jong (1996), a solution to this problem is to achieve test consistency
by maximizing a functional of M, (t) over a compact subset & of R°. The main idea
is that a vector t' which maximizes a test statistic based on M, (t) cannot belong to
the set S. By defining a space for infinite sequences {f}, f5, ...} as

S=1{t:a; <t; <b;Vj:t; €R} (5.88)
J J J J

where a; < b; and |a;|, |b;| < Bj~? for some constant B, de Jong suggests to
consider the use of a functional of sup,cz |Mn (t)| as test statistic. Consequently,
a difficulty arises by the fact that the limiting distribution of the test statistic
SUPse 5 |]l;!,, (t)| is case-dependent which prevents the use of generally applicable
critical values. For this reason de Jong introduces a simulation procedure based on
a conditional Monte Carlo approach. In particular, he shows that under the null, the
moment restriction (5.87) has the same asymptotic finite-dimensional distribution
as

d

M) =2 o @0 exp [ 3 te(xi)) (5.89)

i=1 Jj=1

pointwise in t, where o; are bounded i.i.d. random variables independent of x; and
pi (8) with E[o?] = 1. Thus the distribution of M, (t) can be approximated based
on the simulation of n-tuples of o;. de Jong proves that the critical regions obtained

by the simulation of M, (t) are asymptotically valid (see de Jong 1996, Theorem 5).
Nevertheless, a further difficulty is that a consistent ICM test rests on the statistic
SUP¢e 5 |Mn (t)|. The calculation of this test statistic is quite cumbersome since it
requires the maximization over a parameter space of dimension #— 1. For this reason
de Jong suggests to find another continuous functional of M, (t) that possesses the
same consistency property but is more easily calculated. Then, de Jong proposes to
use the functional

A=n"" LMn(t)zwl(tl)dwl...(pj(tj)dtj (5.90)
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where the integrations run over an infinite number of 7;. According to (5.88), each #;
is integrated over the subset of R, such thata; < |t;| < b;. ¢;(¢) denote a sequence
of density functions that integrate to one over the particular subsets. de Jong shows
that the use of this functional leads to a consistent test. Since M, (t) can be written
as a double summation and the integrals can be calculated one at a time, we obtain

a functional which is easier to calculate than sup | M, (t)|. By choosing a uniform
tes

distribution, i.e. ¢; (1) = t~!, the ICM test statistic A results in

i—s) + E(x/ S)]

3 i, (00)1"[{

i=1j=1
x [exp(b; (€ (xi—s) + E(xj-))) — expla; (€ (xi—) + E(xj—))]} . (5.91)

Summarizing, the implementation of ICM tests to ACD models requires the
following steps:

1. (Q)ML estimation of the ACD model: Estimate the particular ACD model by
(Q)ML and calculate the conditional moment restriction p; (6 ).

2. Choice of aj and b : Choose values for a; and b;, defining the parameter space
Z. de Jong (1996) suggests touse a; = Aj 2 and b; = Bj % where the values
A and B (0 < A < B) can be chosen arbitrarily. Asymptotically the choice of
A and B should have no influence on the power of the test, however in finite
samples it probably has. Monte Carlo simulations of de Jong (1996) suggest to
choose a small range, for example A = 0 and B = 0.5.

3. Choice of £(-): According to the lemma above, the function £(-) must be a
bounded one-to-one mapping from R into R. Asymptotically, the choice of the
function £(-) is irrelevant, however, Bierens (1990) proposes to use £(x) =
arctan(x). We suggest £(x) = arctan(0.01 - x) - 100 which is also a bounded
function but has the advantage that it is nearly linear in the relevant region which
improves the small sample properties of the test.

4. Choice of d : Note that in the case of dependent data, the test consistency is only
ensured by accounting for all feasible lags, d = i — 1, i.e., the dimension of the
parameter space under consideration grows with the sample size. An alternative
which does not require as much computer time, would be to choose a fixed value
d < n. However, in this case the test does not allow us to consistently test the
moment condition for an infinite number of conditioning variables.

5. Simulation of n-tuples of o;: Simulate R n-tuples of (bounded) i.i.d. random

variables 0;,, i = 1,...,n, with E[o?,] = 1 forr = 1,...,R. Following
de Jong (1996), we generate the o; variables such that E[o; = 1] = E[o; =
—1]=0.5.

6. Computation of the test statistic and simulating of the critical values:

— Compute the test statistic A according to (5.91).
— For each n-tuple of 0;, compute the simulated test statistic
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=n"" Y "> (01,p:(00))(0,.p; (B0))

i=1j=1

:Am

{(b —a)) ey + E(xj—0]

x [exp(bj ((xi—s) + §(x;j=))) — exp(a; (€ (xi—s) + E(x;=)))]} -

forr=1,...,R.

7. Computation of simulated p-values: Since the critical region of the test has the
form (C, oo], we compute the simulated p-value of the ICM test as

1 R

pvicw = 4 IR I (5.92)

r=1

5.6.6 Monte Carlo Evidence

The following Monte Carlo study provides insights into the size and power
properties of various conditional moment tests. Samples of size 3,000 are drawn
which is still relatively small for high-frequency financial data and allows us to
study the finite-sample properties. Each Monte Carlo experiment is repeated 500
times. The following five data generating processes (DGPs) ensuring E[¥;] = 1 are
considered:

¥; =0.14+0.1x;—; + 0.8¥;_, (5.93)
¥; = exp(0.137 + 0.3, + 0.8In¥;_) (5.94)
¥ = (0.05¥; 1 +0.5)g;—; + 0.8¥; (5.95)
¥, = exp(—0.18 + 0.5¢;_1 — 0.48|e;—1 — 1| + 0.8 In ;1) (5.96)

0.05 4 0.20x,_; + 0.85%,_; if x;—; < 0.25,
0.10 4 0.05x,_1 + 0.90%_; if x;_; € (0.25,1.5], (5.97)
0.20 4+ 0.03x;_1 + 0.80%_; ifx;_; > 1.5,

&
Il

where x; = Y;g;, & ~ Exp(l). Equation (5.94) is a logarithmic ACD (LACD)
specification as discussed in Sect. 5.5.

Specifications (5.95) to (5.97) are nonlinear and extended ACD models which
are discussed in more detail in Chap. 6. In particular, specification (5.95) includes
innovations both multiplicatively and additively. Specification (5.96) implies a news
impact function which is kinked at ¢;_; = 1. Such a model has been proposed by
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Table 5.1 Choice of weighting functions w; in the CM tests

Conditioning information

Zi) = (l{e,_]<l}- l{g;_1<1}8i—], l{g;_lzl}si—l)/
zi2= (2. Ve oery. Viocntia. iy =)
Zi3 = (] i<ty Loy <nyXi—1, ]{x,flzl}xi—l)/
zia= (23 Vg ,en. g ,enXio. 1 =n3Xi—2)
CM tests

CM, wir = (o X X e g, 5?—1)/

CM, wio= (W, X ¥, xi, ea e, &)

CM3 W3 = (Xl'_], Z;.l)/

CM, wis = (xi1, Xi—a Z,/'.z)/

CM;s Wis = (Eifls Z,{,g)/

CM; wio = (si—1. -, 12,4)/

CM; Wi = (Zz{,l’ Zz{,z)/

CM; Wig = (Zfz Zz{A)/

CM, Wio = (Xi—1, Xi—2, ... ,Xi—10)

CMy Wii0 = (81'—1, Ei—2, ... ,81'—1())/

CM, bins for g;— and &; —:

[0,0.1),[0.1,0.2),[0.2,0.5),[0.5,0.8),[0.8, 1), [1.2, 1.5),[1.5,2), [2, 3), [3, 00)
CM, bins for x;—; and x;—:
[0,0.1),[0.1,0.2),[0.2,0.5), [0.5,0.8),[0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3, 00)

ICM tests
ICM, pi =x;i — ¥, w() =1, A=0, B =0.5, K =100 d=1
I1CM, pi =x;i =¥, w() =1, A=0, B =0.5, K =100 d=2
1CM; pi =x; — ¥, w() =1, A =0, B = 0.5, K =100 d=>5
I1CM, pi =x; — ¥, w() =1, A=0, B =0.5, K =100 d =10

Dufour and Engle (2000) and allows large innovations ¢&; (“positive” surprises in
durations) to have a different impact on future durations than small innovations
(“negative” surprises). Since it is in line with Nelson’s EGARCH model, it is
referred to as an EXACD specification. Finally, (5.97) corresponds to a threshold
ACD (TACD) model as proposed by Zhang et al. (2001). For more details on these
specifications, see Chap. 6.

For each data generating process (DGP), we estimate a (linear) ACD(1,1)
specification ¥; = w + ax;—; + p¥;_; or a LACD(1,1) specification In¥; =
o + ag;—1 + BInW;_y, respectively. We use the conditional moment function p; =
x;/¥; — 1 and 12 weighting functions wij,J = 1,...,12, based on functions of
past realizations, innovations, and indicator variables indicating possible nonlinear
news impact effects. As benchmarks we compute different specifications of the [CM
test based on the conditional moment function p; = x; — ¥; (see Table 5.1).

Table 5.2 gives the rejection rates of the individual tests when a linear ACD(1,1)
specification is estimated. Correspondingly, Table 5.3 displays the results based on
estimations of the LACD(1,1) model. The first column shows the size since the
estimated model and the DGP coincide. The CM tests tend to be slightly oversized
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Table 5.2 Rejection frequencies of the individual (I)CM tests (see Table 5.1). Size of simulated

samples: 3,000. Number of replications: 500. Estimated model: ACD(1,1)

DGP (5.93) DGP (5.94) DGP (5.95) DGP (5.96) DGP (5.97)

5% 0% 5% 10% 5% 10% 5% 0% 5% 10%
CM, 0066 0.126 1.000 1.000 0498 0.605 1.000 1.000 0.140 0.212
CM, 0076 0.142 0994 1.000 0526 0.670 1.000 1000 0.132 0.210
CM; 0074 0.146 1.000 1.000 0454 0591 1.000 1.000 0.156 0.250
CM, 0070 0.148 1.000 1.000 0443 0584 1.000 1.000 0.162 0.246
CMs 0068 0.138 1.000 1.000 0464 0581 1.000 1000 0.168 0.254
CMs 0064 0.136 1.000 1.000 0436 058 1.000 1.000 0.162 0.266
CM, 0074 0.116 1.000 1.000 0485 0591 1.000 1.000 0.182 0.282
CMs 0076 0.130 1.000 1.000 0447 0567 1.000 1000 0.186 0.284
CMs 0072 0.120 0998 1.000 0488 0.601 1.000 1000 0.168 0.274
CMy, 0068 0.122 0996 1000 0440 0.564 1.000 1.000 0.188 0.286
CM,, 0064 0.104 1.000 1.000 0519 0615 1.000 1000 0210 0.314
CM;, 0066 0.126 1.000 1.000 0450 0574 1.000 1.000 0222 0.338
ICM; 0010 0022 0840 0872 0.175 0251 0930 0952 0014 0.034
ICM, 0008 0020 0.822 0860 0203 0275 0918 00940 0.014 0.034
ICM; 0010 0022 0824 0860 0.199 0306 0908 0.930 0.012 0.030
ICM, 0006 0022 0818 0852 0.199 0316 0912 0934 0016 0.030

Table 5.3 Rejection frequencies of the individual (I)CM tests (see Table 5.1). Size of simulated
samples: 3,000. Number of replications: 500. Estimated model: LACD(1,1)

DGP (5.94) DGP (5.93) DGP (5.95) DGP (5.96) DGP (5.97)

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
CM, 0.096 0.140 0.224 0.346 0.743 0.843 0.860 0918 0.062 0.113
CM, 0.082 0.148 0.250 0.374 0.701 0.808 0.838 0.896 0.063 0.113
CM; 0.100 0.156 0.306 0.458 0910 0948 0942 0964 0.058 0.122
CM, 0.090 0.150 0.324 0470 0.887 0941 0872 0916 0.058 0.132
CM; 0.060 0.130 0342 0496 0.893 0946 0.960 0976 0.072 0.135
CMg 0.062 0.128 0326 0.492 0.843 0908 0936 0.964 0.070 0.147
CM; 0.078 0.132 0438 0.590 0960 0979 0994 0.994 0.077 0.130
CM;y 0.074 0.134 0422 0558 0935 0964 0.968 0982 0.080 0.142
CM, 0.072 0.126 0320 0464 0935 0962 0.874 0918 0.067 0.127
CM,, 0068 0.124 0312 0446 0.881 0.946 0.866 0914 0.067 0.132
CM;; 0.080 0.146 0410 0.564 0969 0981 0912 0.948 0.070 0.137
CM,;, 0084 0.134 0412 0528 0950 0977 0.856 0910 0.077 0.140
ICM, 0026 0074 0.066 0.134 0.065 0.128 0.042 0.098 0.008 0.028
ICM, 0.030 0064 0.074 0.166 0.044 0.088 0.046 0.096 0.003 0.023
ICM; 0.034 0.066 0.074 0.166 0.048 0.094 0.042 0.102 0.005 0.015
ICM, 0038 0.084 0078 0.172 0.046 0.109 0.044 0.110 0.003 0.022

for the given sample size whereas the ICM test is strongly undersized. The power
of the CM tests is generally quite high and increases with the strength of the
deviation from linearity in ¥;. Consequently, the tests have very high power to
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evaluate the linear ACD model against the DGPs (5.94) or (5.96). Lower rejection
rates are shown for tests against additive stochastic components (DGP (5.95)) and
regime switching behavior (DGP (5.97)). Both forms of misspecification are hard
to detect since the deviation from a linear ACD is not too severe. A similar picture
is revealed by Table 5.3. Nevertheless, the test’s power against an underlying linear
ACD specification when a LACD is estimated is clearly lower than in the reversed
case. Not surprisingly, the tests have lower power to distinguish between an LACD
and an alternative specification implying also a concave news impact function. The
highest power is shown for conditional moment tests based on weighting functions
which are particularly sensitive against nonlinearities in the news response function
(e.g., CMy; and CM,). These specifications have power against a wide range of
possible misspecifications. This is still true even when we take into account that the
tests tend to be oversized. In contrast, the power properties of the ICM tests are very
poor regardless the choice of the underlying nuisance parameters. This is a general
finding for omnibus tests and is also confirmed by Meitz and Terdsvirta (2006) using
Hong and Lee’s (2003) spectral density test illustrated above.

In conclusion, the results indicate that an appropriate choice of the weighting
functions induces consistency against a wide range of misspecifications while pre-
serving reasonable (size-adjusted) power properties in finite samples. Consequently,
in real applications, CM tests are valuable complements to LM type tests. Both kind
of tests serve as constructive tests in the sense of Godfrey (1996) allowing to detect
possible sources of model misspecification. Moreover, the proposed framework is
straightforwardly applied to test also multivariate MEM processes or restrictions on
higher order moments.
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Chapter 6
Generalized Multiplicative Error Models

In this chapter, we present generalizations of the basic multiplicative error model
as introduced in Chap.5. Section 6.1 discusses a class of ACD models which
can be presented in terms of a generalized polynomial random coefficient model
according to Carrasco and Chen (2002). We illustrate various special cases,
discuss the theoretical properties and show empirical illustrations. In Sect. 6.2,
we consider regime-switching ACD models allowing for parameters which might
change in dependence of observable or unobservable characteristics. We concentrate
on threshold ACD models, smooth transition ACD models as well as Markov
Switching ACD specifications. Section 6.3 focuses on ACD models accommodating
long range dependence in the data. In this context, we discuss different possibilities
to capture long memory. In Sect. 6.4, we focus on mixture and component models.
We discuss two types of mixture models, where the conditional mean function is
driven by a dynamic latent component. The stochastic conditional duration model
proposed by Bauwens and Veredas (2004), as discussed in Sect. 6.4.1, assumes
the conditional mean function to follow a latent AR(1) process. The stochastic
multiplicative error model introduced by Hautsch (2008) shown in Sect. 6.4.2
generalizes this idea and allows for both latent as well as observation-driven
dynamics. Likewise, a component MEM specification as proposed by Brownlees
et al. (2011) allows to combine intradaily dynamics with daily dynamics. Further
generalizations, such as semiparametric ACD models and stochastic volatility
duration models are discussed in Sect. 6.5.

6.1 A Class of Augmented ACD Models

In this section, we discuss a general class of ACD models which can be presented
in terms of a generalized polynomial random coefficient ACD model as analyzed
by Carrasco and Chen (2002). Building on the notation introduced in Chap. 5, this
class of models is given by

V(W) = A(e) ¥ (Wi-1) + C(&i), (6.1)

N. Hautsch, Econometrics of Financial High-Frequency Data, 143
DOI 10.1007/978-3-642-21925-2_6, © Springer-Verlag Berlin Heidelberg 2012
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where 9 (-) is a continuous function with domain [0, 00), A and B are polynomial
functions, and &; = x; /¥; denotes an i.i.d. innovation term with E[g;] = 1.

6.1.1 Special Cases

The class of generalized polynomial random coefficient ACD models contains
various extensions of the basic linear ACD model allowing for additive as well as
multiplicative stochastic components, i.e., specifications, where lagged innovations
enter the conditional mean function additively and/or multiplicatively. Moreover,
it contains parameterizations capturing not only linear but also more flexible news
impact curves. For simplicity of exposition, the following discussions are restricted
to models with alag orderof P = Q = 1.

6.1.1.1 Additive and Multiplicative ACD (AMACD) Model

A simple extension of the basic ACD specification incorporating both an additive
and multiplicative innovation component is given by

Ui =w+ (@¥i—1 +v)ei—1 + BYi—1, (6.2)

where v is a parameter. This specification implies a news impact curve with a
slope given by a¥;_| + v. Thus, the lagged innovation enters the conditional mean
function additively, as well as multiplicatively. In this sense, the (so called) Additive
and Multiplicative ACD (AMACD) model is more flexible and nests the linear ACD
model for v = 0.

6.1.1.2 Box-Cox ACD (BACD) Model

Hautsch (2003) suggests an additive ACD model based on power transformations
of ¥; and ¢;:

U = +as +pYt |, (6.3)

l

where 81, 8, > 0. It is easy to see that this model can be written in terms of Box—Cox
transformations. Thus,

w1 o

i =& +aE™, —1)/8 + p—=—, (6.4)
81 81
where

. otoa+p-1
w=—— and o= —.

51 51
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This specification allows for concave, convex, as well as linear news impact
functions. It nests the AMACD model for §; = §, = 1, the LACD; model for
81 — 0, 6, — 0 and the LACD; model for §; — 0, § = 1 (see Chap.5). For
81 — 0, it coincides with a Box—Cox ACD specification proposed by Dufour and
Engle (2000).

6.1.1.3 EXponential ACD (EXACD) Model

Alternative parameterizations are obtained by the assumption of piece-wise linear
news impact functions. Dufour and Engle (2000) introduce the so-called EXpo-
nential' ACD model capturing features of the EGARCH specification proposed by
Nelson (1991). This model allows for a linear news impact function that is kinked
atg;— = 1:

InY; =w+agi—; +clei-1 — 1|+ BIn;_y. (6.5)

For durations shorter than the conditional mean (¢;—; < 1), the news impact curve
has a slope « — ¢ and an intercept w + ¢, while for durations longer than the
conditional mean (g;—; > 1), slope and intercept are « + ¢ and w — c, respectively.

6.1.1.4 Augmented Box-Cox ACD (ABACD) Model

While the EXACD model allows for news impact curves that are kinked at ¢;_; = 1
only, a valuable generalization is to parameterize also the position of the kink. Using
the parameterization for modelling asymmetric GARCH processes introduced by
Hentschel (1995), we obtain a specification that we call augmented Box—Cox ACD
model:

W) = o+ allsio —b| + c(sioi — b)) + YL, (6.6)
In this specification, the parameter b gives the position of the kink while 4,
determines the shape of the piecewise functions around the kink. For §; > 1, the
shape is convex and for §, < 1, it is concave. It nests the BACD model for b = 0
and ¢ = 0. This model does not encompass the basic ACD model since the ABACD
specification is based on an additive stochastic component.

Even though this specification of the news impact function allows for more
flexibility, it has one major drawback since the parameter restriction |¢| <= 1
has to be imposed in order to circumvent complex values whenever 6, # 1. This
restriction is binding in the case where the model has to be fitted to data that imply

I'They use this notation to prevent confusion with the Exponential ACD model (EACD) based on
an exponential distribution.
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an upward kinked concave news impact function. Such a pattern is quite typical
for financial durations (see also the empirical results in Sect.6.1.3) and is only
possible for ¢ < —1 (and o < 0). Hence, in such a case, a restricted version of
the BACD model must be estimated. In particular, for cases when ¢ converges to the
boundary, either 8, or, alternatively, |c| has to be fixed to 1. Setting 6, = 1 implies
a piecewise linear news impact function that is kinked at b. In that case, the model
is reformulated as

w1 N ]
! :w+a€i_1+c|ei_1—b|+ﬁ;
81 81

. (6.7)

where

. w—ach+p—1 .. ac

= , o= —, and ¢ :=
81 51

o
8
Such a specification nests the EXACD model for §; — 0 and b = 1. Alternatively,
by setting ¢ = 1, the specification becomes

Ul = o+ aleio = b Lz + BEL,
where @ = 2%q. Thus, the news impact function is zero for £;,_; < b and follows
a concave (convex) function for §, < 1 (6, > 1). Correspondingly, setting ¢ = —1
leads to

W' =0+ @b — eim)? e zpy + BYL.
Note that the latter two restricted ABACD specifications do not nest the

EXACD model but the BACD model for b = 0 (b — o0) whenever ¢ is set
to 1 (—1).

6.1.1.5 Hentschel ACD (HACD) Model

An alternative nonlinear ACD model is proposed by Fernandes and Grammig
(2006). They introduce a specification that is the direct counterpart to the augmented
GARCH process proposed by Hentschel (1995). Though Fernandes and Grammig
call it augmented ACD model, here, we call it H(entschel)-ACD model in order to
avoid confusion with other augmented ACD processes considered in this section.
The HACD mode is given by

W =+ oW (e — bl + cei—1 — b)) + B (6.8)

1

This specification is quite similar to the ABACD model. The main difference is that
the HACD model is based on a multiplicative stochastic component (since lI/l.éll
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acts multiplicatively with a function of ¢;_;) while the ABACD model is based on
an additive stochastic component. Therefore, the HACD model imposes the same
parameter restriction for ¢ as in the ABACD case. Since the HACD model includes
a multiplicative stochastic component, it nests the basic linear ACD model for §; =
8, = 1,b = ¢ = 0. It coincides with a special case of the ABACD model for
81 — 0. Therefore, it nests also the LACD; model for§; — 0,6, — 0,b =¢c =0
and the LACD; model for §; — 0,6, = 1, b = ¢ = 0. Moreover, it corresponds
to the Box—Cox specification introduced by Dufour and Engle (2000) for §; — 0,
b = ¢ = 0 and to the EXACD model for §; — 0, §, = b = 1. However, in general,
it does not encompass the AMACD, BACD and ABACD model since it is based on
a multiplicative stochastic component.

6.1.1.6 Augmented Hentschel ACD (AHACD) Model
An encompassing model that nests all specifications outlined above is given by

U = w4+ oW (|eim1 — b (6.9)

1

+c(eim1 — b)) + v(|lei—1 — b| + c(eimy — b)) + & .

We call this specification augmented Hentschel ACD model since it combines the
HACD model with the ABACD specification. This ACD model allows for both
additive and multiplicative stochastic coefficients, and therefore implies an additive
as well as a multiplicative impact of past shocks on the conditional mean function.
It encompasses all specifications nested by the HACD model, as well as all other
models based on additive stochastic components. In particular, it nests the AMACD
model for §; = 8, = 1, b = ¢ = 0, the BACD model fora = b=c = 0
and the ABACD model for « = 0. The AGACD, the HACD and the ABACD
models coincide for §; — 0. Therefore, the parameters @ and v are only separately
identifiable whenever §; > 0. A further generalization would be to specify different
news impact parameters b, ¢ and §, for the additive and the stochastic component.
However, in this case the estimation of the model becomes tricky due to numerical
complexity.

6.1.1.7 Spline News Impact ACD (SNIACD) Model

A further type of ACD specification is obtained by modelling the news response in
terms of a piecewise linear function. In the spirit of Engle and Ng (1993), the news
impact curve might be parameterized as a linear spline function with nodes at given
break points of ¢;_;. In particular, the range of ¢;_ is divided into M intervals where
M~ (M) denotes the number of intervals in the range &;_; < 1 (g;_; > 1) with
M = M~ + M ™. By denoting the breakpoints by {&p/—, ..., 81,80, &1, ..., 8+ }»
the SNTACD model is given by
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Mt
W=o+ Y of Ly e (6-1— &)
m=0
-
+ D e <,y (Eimt — En) + BWi. (6.10)
m=0

where o} and o), denote the coefficients associated with the piecewise linear
spline. Alternatively, the model can also be specified in terms of a logarithmic
transformation of ¥;. In this form, the model is more easy to estimate since it does
not require any non-negativity restrictions. The intervals must not be equally sized,
nor do we need the same number of intervals on each side of &,. As pointed out
by Engle and Ng (1993), a slow increase in M as a function of the sample size
should asymptotically give a consistent estimate of the news impact curve. This
specification allows for extremely flexible (nonlinear) news responses, but does not
necessarily nest the other (parametric) ACD specifications.

6.1.2 Theoretical Properties

By recalling the formulation of ACD models in terms of a generalized polynomial
coefficient model, (6.1), we can classify all ACD specifications discussed above
by using a corresponding parameterization for 9 (-), A(-) and C(-). This is shown in
Table 6.1. The theoretical properties for this class of models are derived by Carrasco
and Chen (2002) building on results by Mokkadem (1990). They provide sufficient
conditions ensuring S-mixing, strict stationarity and the existence of higher order
moments. We reproduce the main findings in the following proposition:

Proposition 6.1. Assume that the durations x;, i = 1,...,n, follow the process
x; = e, where W; is given by one of the processes in Table 6.1. Assume that
& is an i.i.d. random variable that is independent of ¥; and presume that the
marginal probability distribution of €; is absolutely continuous with respect to the
Lebesgue measure on (0, 00). Moreover, g; is independent of 6 (9 (Wi—1, ..., 0 (¥)).
Let 9(A()) be the largest eigenvalue in absolute value of the polynomial function
A("). Moreover, assume that

(i) A(-) and C(-) are polynomial functions that are measurable with respect to the
sigma field generated by ¢;.
(i) 0(A(0)) < 1.
(iii) |A0)| < 1, E[A(e;)]* < 1 and E[C(&;)]* < oo for some integers s > 1.

Then, the process {W;} is Markov geometrically ergodic and E[¥;]° < oo. If the
processes {W;}!_, and {x;}!_, are initialized from their ergodic distribution, then
they are strictly stationary and -mixing with exponential decay.
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Table 6.1 Classification of ACD models

Typ (&) A(ei) C(er)

Linear and logarithmic ACD models

ACD lI/,' e — + ﬂ w

LACD,; In ¥; ﬂ o+ alng_,;

LACD, InY; ﬂ o+ agi—;

Nonlinear ACD models

BACD A B o+ o,

EXACD InY; B o+ agi— + clei— — 1]

ABACD o B w+a(lgi—; — bl + c(gi—; — b))*®

HACD e a(lei— —b| + B8 w
+c(simi — b))

Augmented ACD models

AMACD Y, agi—1 + B w ~+ vei—;

AHACD A a(lei— —bl+ B o+ v(lei—1 — bl + c(si—y — b))
+e(gi—1 —b))»

Spline news impact ACD model
+ -
SNIACD ¥ or In Y B o+ Yo e =5, (ei—1 — En)

m
M — -
+ Zm=0 & Vi1 <z,3 (8im1 — Em)

Proof: See Carrasco and Chen (2002), Proposition 2 and 5. O

Hence, establishing stationarity and ergodicity conditions for the individual
ACD specifications requires imposing restrictions on the functions A(-) and C(-).
Corresponding examples in the context of individual GARCH specifications are
given by Carrasco and Chen (2002). Generalizations of these results are given by
Meitz and Saikkonen (2008) in the framework of Markov models.?

6.1.3 Empirical Illustrations

Table 6.4 shows estimates of different ACD specifications based on (de-sea-
sonalized) trade durations and $0.05 midquote change durations for the Coca-Cola
and GE stock traded at the NYSE covering the period from 01/02/01 to 05/31/01.
For each type of financial duration, seven different ACD specifications are esti-
mated, the basic ACD model, the LACD, model, the BACD model, the EXACD
model, the ABACD model and a logarithmic version of the SNIACD model. The
individual time series are re-initialized every trading day and are estimated by

2See also Carrasco and Chen (2005) and Meitz and Saikkonen (2008) for a correction of some of
the results provided by Carrasco and Chen (2002). These corrections, however, do not affect the
proposition presented above.
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QML. The lag orders are chosen according to the Bayes Information Criterion
(BIC) suggesting ACD(2,1) or ACD(2,2) models as the preferred specification.
Note that for the individual types of nonlinear ACD specifications, the inclusion
of a second lag is not straightforward because it also requires a parameterization
of the second lag news impact function. Hence, it doubles the corresponding news
response parameters which is not practicable for the highly parameterized ABACD
and SNIACD models. For this reason, a parameterization is chosen that allows, on
the one hand, to account for higher order dynamics, but on the other hand, ensures
model parsimony. In particular, the news impact of the second lag is modelled in the
same way as for the first lag, i.e., based on the same parameters 41, 6,, ¢, with only
the autoregressive parameters «, 8, ¢ and v being doubled. Then, the ABACD(2,2)
model is given by

2 2
Wl’SI :Q)+Zaj(|8,_j—b|+Cj(81_j—b))82+ZIB1lI/fLJ
j=1 J=l1

Correspondingly, the SNIACD(2,2) model is given by

M+t M~
¥, =w+ Z a;]l{s,-_pém}(gi—l — &) + Z ay;]l{s,'_mém}(gi—l —&m)
m=0 m=0
Mt
+ Z(O{,—,’; + a+)]l{£,-_225m}(8i—2 - 5m)
m=0
M~ 2
+ Y (@ +a ) ey (G —En) + ) By 6.11)
m=0 i=1

Tables 6.2-6.5 give the estimation results and diagnostics. Two difficulties have
to be considered in this context. First, for nonlinear models involving absolute
value functions in the news impact function, the estimation of the Hessian matrix
is often cumbersome due to numerical problems. For this reason, the asymptotic
standard errors are estimated by the OPG estimator of the variance covariance
matrix. Second, in several specifications, the coefficients §; and ¢ converge to their
boundaries. Then, the coefficients are set to their boundaries and correspondingly
restricted models are re-estimated. In this context, see the discussion in Sect. 6.1.1.4.

Analyzing the estimation results, the following findings can be summarized.
First, the innovation parameters are quite low, while the persistence parameters are
close to one. Note that no explicit non-negativity restrictions on the autoregressive
parameters are imposed. For this reason, even negative values for «; are obtained in
several regressions. However, in these cases, they are overcompensated by positive
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Table 6.2 QML estimates of various types of augmented ACD models for Coca-Cola trade
durations. Sample period 03/19/01 to 03/30/01. 15,174 observations. Standard errors based
on OPG estimates (in parantheses). SNIACD model estimated based on the category bounds
(0.1,0.2,0.5,1.0,1.5,2.0,3.0) with &, = 1.0. Diagnostics: Log Likelihood (LL), Bayes Infor-

mation Criterion (BIC), mean (&;), standard deviation (S.D.) and Ljung-Box statistic with respect

to 20 lags (LB) of ACD residuals

ACD LACD BACD EXACD  ABACD SNIACD
(u 0.122 —0.038 0.100 —0.041 0.010 ® —0.036
(0.016) (0.003) (0.043) (0.004) (0.010) 0.011)
o —0.024 —0.025 —0.026 —0.075 0.066
(0.004) (0.004) (0.038) (0.009) 0.011)
@ 0.065 0.063 0.058 0.104 —0.062
(0.005) (0.005) (0.087) (0.009) (0.011)
B 0.837 0.869 0.872 0.868 0.871 B 0.899
(0.019) (0.017) (0.018) (0.018) (0.018) (0.014)
81 0.483 —a o 0.062
(0.736) e (0.021)
8 0.672 1.000° o —0071
(0.089) —b (0.039)
b 1.420 o 0031
(0.203) (0.031)
¢ 0.080 —0.773 o —0.033
(0.012) (0.119) (0.013)
¢ —0.068 —1.393 o —0.124
(0.013) (0.187) (0.020)
vy o —0.153
(0.038)
2 "2 0.245
(0.112)
oy —0.863
(0.335)
at 0230
(0.026)
a”  0.009
(0.004)
LL —15059  —15060  —15056  —15047  —15,045 —15,038
BIC  —15079 —15079  —15085  —15075  —15079 —15,095
& 1.000 1.000 1.000 1.000 1.000 1.000
SD. 1245 1.246 1.249 1.245 1.246 1.242
LB 17.146 15.823 16.083 15.254 15.761 17.527

2Estimation based on a logarithmic specification

"Parameter set to boundary

values of «,.> Nonetheless, based on the estimates we do not find any violations of
the non-negativity restriction of ¥;.

3Note that in a nonlinear ACD specification, an upward kinked concave news impact function

actually implies a negative value for «; see also Sect. 6.1.1.4.
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Table 6.3 QML estimates of various types of augmented ACD models for Coca-Cola $0.05
price durations. Sample period 01/02/01 to 05/31/01. 12,971 observations. Standard errors
based on OPG estimates (in parantheses). SNIACD model estimated based on the category
bounds (0.1,0.2,0.5,1.0, 1.5, 2.0, 3.0) with &, = 1.0. Diagnostics: Log Likelihood (LL), Bayes
Information Criterion (BIC), mean (&;), standard deviation (S.D.) and Ljung-Box statistic with
respect to 20 lags (LB) of ACD residuals

ACD LACD BACD EXACD  ABACD SNIACD
(u 0.012 —0.050 —0.004 —0.036 0.035 ® 0.020
(0.002) (0.003) (0.027) (0.003) (0.007) (0.009)
o 0.079 0.075 0.037 0.183 —0.170
(0.005) (0.005) (0.061) (0.011) (0.032)
@ —0.020 —0.025 —0.019 —0.113 0.132
(0.003) (0.004) (0.031) (0.010) (0.025)
B 0.930 0.988 0.987 0.990 0.991 B 0.989
(0.004) (0.002) (0.002) (0.002) (0.002) (0.002)
81 0.081 —a o 0.021
(0.135) e (0.018)
8 0.275 1.096 o 0010
(0.044) (0.137) (0.034)
b 1.016 o —0.034
(0.103) (0.029)
¢ —0.179 —1.000° o  0.006
(0.013) —b (0.014)
¢ 0.136 —0.801 o 0226
(0.013) (0.035) (0.020)
vy o 0246
(0.038)
2 "2 0.324
(0.101)
oy —0.157
(0.199)
at  —03%
(0.028)
a~  0.005
(0.003)
LL —12,072  —12,081  —12,016  —11,996  —11,996 —11,991
BIC ~ —12,091  —12,100  —12,044  —12,024  —12,029 —12,048
& 1.008 1.008 1.033 1.005 1.005 1.004
SD. 1208 1.210 1.234 1.196 1.196 1.194
LB 30.816 31.776 26.809 23.016 24.431 23217

4Estimation based on a logarithmic specification
YParameter set to boundary

Second, by comparing the goodness-of-fit of the specifications based on the BIC
values, we find the best performance for EXACD and BACD models. Especially
for price durations, the more simple (linear and logarithmic) models are rejected in
favor of the (A)BACD and EXACD model. For trade durations, no clear picture is
revealed. For the Coca-Cola stock, the EXACD model is the best specification, while
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Table 6.4 QML estimates of various types of augmented ACD models for GE trade dura-
tions. Sample period 03/19/01 to 03/30/01. 25,101 observations. Standard errors based on
OPG estimates (in parantheses). SNIACD model estimated based on the category bounds
(0.1,0.2,0.5,1.0,1.5,2.0,3.0) with &, = 1.0. Diagnostics: Log Likelihood (LL), Bayes Infor-
mation Criterion (BIC), mean (&;), standard deviation (S.D.) and Ljung-Box statistic with respect
to 20 lags (LB) of ACD residuals

ACD LACD BACD EXACD  ABACD SNIACD
(u 0.036 —0.038 —0.003 —0.037 0.017 ® —0.007
(0.005) (0.003) (0.030) (0.003) (0.024) (0.007)
e —0.001 —0.001 —0.000 —0.014 0.016
(0.006) (0.006) (0.006) (0.010) (0.018)
@ 0.043 0.038 0.042 0.056 0.023
(0.006) (0.006) (0.033) (0.010) (0.024)
B 0.922 0.965 0.964 0.966 0.960 B 0.962
(0.007) (0.005) (0.005) (0.005) (0.005) (0.005)
81 0.705 0.497 o 0.039
(0.558) (0.528) (0.014)
8 0.758 0.595 o —0.021
(0.107) (0.078) (0.027)
b 0.444 o —0.014
(0.030) (0.023)
¢ 0.023 —0.956 af  —0.008
(0.014) (0.143) (0.012)
P —0.031 1,000 af  —0.030
(0.014) — (0.019)
Vi oy —0.048
(0.030)
%) "2 —0.227
(0.096)
a;  0.636
(1.290)
at  0.097
(0.031)
a=  0.006
(0.005)
LL —24813  —24815  —24811  —24813  —24,.803 —24,801
BIC  —24834  —243836  —24,841  —24843  —24,844 —24,862
& 1.001 1.000 0.999 1.000 1.000 1.001
SD.  1.007 1.007 1.006 1.007 1.006 1.005
LB 38.695 37.281 36.779 37.039 35.826 36.380

4 Parameter set to boundary

for the GE stock, the basic ACD model leads to the highest BIC. Nonetheless, for
all specifications, we observe the strongest increase of the log-likelihood function
when the (L)ACD model is extended to a BACD or EXACD model. This result
illustrates that for both types of financial durations, it is crucial to account for
nonlinear news impact effects. Not surprisingly, the most flexible SNIACD model
leads to the overall highest log-likelihood values for all series indicating the best fit
to the data.
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Table 6.5 QML estimates of various types of augmented ACD models for GE $0.05 price
durations. Sample period 01/02/01 to 05/31/01. 16,008 observations. Standard errors based
on OPG estimates (in parantheses). SNIACD model estimated based on the category bounds
(0.1,0.2,0.5,1.0,1.5,2.0,3.0) with &, = 1.0. Diagnostics: Bayes Information Criterion (BIC),
mean (&;), standard deviation (S.D.) and Ljung—Box statistic with respect to 20 lags (LB) of ACD
residuals

ACD LACD BACD EXACD ABACD  SNIACD
(u 0.009 —0.030  —0.093  —0.034  —0016 o 0.012
0.002)  (0.004)  (0.017)  (0.005  (0.003) (0.006)
) 0.143 0.122 0.372 0.174 —0.389
0.009)  (0.007)  (0.049)  (0.011)  (0.062)
@ —0.094  —0092  —0269  —0.128  0.325
0.007)  (0.006)  (0.036)  (0.010)  (0.054)
B 1.227 1.532 1.434 1433 1.408 B 1.391
0.073)  (0.057)  (0.063)  (0.067)  (0.066) (0.068)
B> —0284  —0538  —0442  —0442  —0417 B, —0.400
0.066)  (0.056)  (0.062)  (0.066)  (0.065) (0.067)
8 —a — a 0.020
—a —a (0.012)
8 0.407 1.000° ot 0.051
(0.051) —b (0.024)
b 0.355 i 0.002
(0.032) (0.020)
¢ —0.100  —1235 o 0.018
0.014)  (0.043) (0.009)
e 0.082 —1.179 o 0.211
0.014)  (0.041) (0.017)
vy a, 0.223
(0.029)
vy oy 0.120
(0.072)
o ay 0.512
(0.181)
) at —0.377
(0.028)
i a~ —0.039
(0.006)
BIC —14729 —14730 —14,699 —14,708  —14,699 —14,725
& 1.002 1.001 1.000 1.001 1.000 1.000
S.D.  1.060 1.057 1.059 1.059 1.056 1.057
LB 33.643 23.238 35.240 29.765 32.469 33.801

2Estimation based on a logarithmic specification
Parameter set to boundary

Third, the estimated Box—Cox parameters § 1 and 32 are almost always lower than
one for price durations, while for trade durations, values greater and less than one
are obtained. These results are in conflict to the linear ACD and, in most cases, also
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to the LACD model. Hence, we notice that price duration processes imply concave
news impact curves, i.e., the adjustments of the conditional expected mean are
stronger in periods of smaller than expected price durations (volatility shocks) than
in periods with unexpectedly low price intensities. Corresponding results are found
based on the EXACD model as the mostly highly significant negative parameters for
¢ imply upward kinked concave shaped news response curves. For trade durations,
the picture is less clear since we obtain evidence for concave, as well as convex
news impact curves.

Fourth, in most cases only restricted versions of the augmented ACD models
are estimated because either §; tends to zero and/or |c¢| tends to one. Since most
duration series seem to imply a concave news impact function, it is not surprising
that the second restriction is binding for nearly all series. In the first case, the model
is estimated under the restriction § — 0, which is performed by estimating the
model based on a logarithmic transformation. Note that this has consequences for
the estimates of w, o and v as a logarithmic model belongs to the class of Box—
Cox models and not to the class of power ACD models, which imply parameter
transformations from w, « and ¢ to @, & and ¢ as illustrated in Sect. 6.1.1.4. In the
second case, two restricted versions of the model are re-estimated: one specification
under the restriction |¢| = 1 and one model under §;, = 1. Then, the specification
is chosen that leads to the higher log-likelihood value. It turns out that generally
neither of the restricted models outperforms the other.

Fifth, the SNIACD model is estimated using the categorization {0.1, 0.2, 0.5, 1.0,
1.5,2.0,3.0} with &g = 1.0 which allows for more flexibility in case of very
small and very large innovations. For most of the thresholds, we obtain significant
estimates. However, since these coefficients belong to a spline function, it is not
useful to interpret them separately. The mostly significant parameters a* and a~
indicate that it is also useful to account for flexible news impact effects for the
second lag.

Figure 6.1 depicts the corresponding news impact functions implied by the
estimates of the SNIACD model. The shape of the estimated news impact curves
confirm the estimation results of the parametric ACD models. The news response
curves for trade durations reveal high nonlinearities, especially for very small
innovations. For Coca-Cola, we even observe a news response function that implies
a downward shape for low values of ¢;_;. Here, for extremely small innovations,
the first order autocorrelation is negative rather than positive. This finding illustrates
that small durations induce significantly different adjustments of the expected mean
as long durations which has to be taken into account in the econometric modelling.
This result is in line with the findings of Zhang et al. (2001) who provide evidence
for similar effects based on estimations of the TACD model.

The news response function for price durations reveals a significantly different
shape. The larger (positive) slope of the curve indicates a higher (positive) auto-
correlation for price durations. Nonetheless, we notice a nonlinear news impact
curve with a strongly increasing pattern for ¢;,_; < 1 and a nearly flat function
for ¢;_; > 1. Hence, we observe different adjustment processes for unexpectedly
small price durations, i.e., in periods of unexpectedly high volatility.
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Fig. 6.1 Estimated news impact curves for trade durations (/eft) and price durations (right) of the
Coca-Cola and GE stock

Table 6.6 gives the (Q)ML estimates of ACD, EXACD and SNIACD models for
de-seasonalized trade durations, 10bp price durations, and 30-s as well as 2-min
aggregated volumes for JP Morgan traded at NYSE, June 2009. We observe the
following effects: First, the parameter estimates indicate that trade durations and
price durations reveal a lower persistence than time aggregated trading volumes.
Second, as indicated by the EXACD estimates, we observe clear evidence for asym-
metric news impacts. The estimates of ¢ are highly significant and reveal concave
news impact functions. These effects are mostly evident based on aggregated data.
Third, in terms of the BIC, the EXACD model yields the best goodness-of-fit.
Hence, allowing for a kinked news impact function seems to be a parsimonious way
to capture nonlinearities in MEM/ACD dynamics. These effects are confirmed by
Fig. 6.2 depicting the estimated news impact curves based on the SNIACD model.

6.2 Regime-Switching ACD Models

In the following subsection, we summarize several further functional extensions of
the ACD model. All models have in common that they allow for regime-dependence
of the conditional mean function. The regimes are determined either based on
observable variables, like in threshold ACD models and smooth transition ACD
models or based on unobservable factors, as in Markov switching ACD models.

6.2.1 Threshold ACD Models

Zhang et al. (2001) introduce a threshold ACD (TACD) model which allows
the expected duration to depend nonlinearly on past information variables. The
TACD model can be seen as a generalization of the threshold GARCH models
introduced by Rabemananjara and Zakoian (1993) and Zakoian (1994). Assume a
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Table 6.6 QML estimates of the ACD model for de-seasonalized trade durations, 10bp price
durations, and 30-s as well as 2-min aggregated volumes for JP Morgan traded at NYSE, June

2009. Category bounds for SNIACD model: (0.1,0.2,0.5, 1.0, 1.5,2.0, 3.0) with &g = 1.0

Par. Est. p-val. Est. p-val. Est. p-val. Est. p-val.
Trade dur. 10bp dur. 30-s vol. 2-min vol.
ACD
[0} 0.019 0.000 0.009 0.000 0.031 0.000 0.007 0.000
o 0.055 0.000 0.078 0.000 0.245 0.000 0.245 0.000
B 0.925 0.000 0913 0.000 0.738 0.000 0.760 0.000
BIC —38,238 —9,939 —16,204 —3,325
LB 2.40 48.6 22.5 31.1
EXACD
w —0.0494 0.000 —0.0624 0.000 —0.163 0.000 —0.196 0.000
o 0.0631 0.000 0.1060 0.000 0.238 0.000 0.257 0.000
c 0.9789 0.000 0.9801 0.000 0.961 0.000 0.985 0.000
B —0.0204 0.000 —0.0596 0.000 —0.112 0.000 —0.133 0.000
BIC —38,226 —9,915 —16,233 —3,324
LB 2.53 43.1 27.3 36.6
SNIACD
w 0.014 0.021 0.035 0.007 0.027 0.074 0.051 0.180
B 0.979 0.000 0.981 0.000 0.961 0.000 0.986 0.000
o 0.460 0.034 0.238 0.134 -0.183 0.446 —1.317 0.692
oy —0.020 0.530 0.196 0.173 —0.162 0.364 0.250 0.701
az —0.042 0.268 —0.237 0.138 0.200 0.284 —0.094 0.849
ay 0.113 0.000 0.215 0.003 0.221 0.009 0.375 0.082
ot1+ 0.061 0.008 0.039 0.413 0.268 0.000 0.190 0.227
oe2+ —0.011 0.807 0.041 0.653 —0.116 0.255 —0.183 0.585
oz3+ 0.005 0.888 0.004 0.953 0.073 0.413 0.207 0.506
ozj' —0.041 0.021 —0.068 0.043 —0.182 0.000 —0.154 0.407
BIC —38,229 —9,934 —16,210 —3,325
LB 2.49 42.3 25.3 38.3
categorization of durations into M categories with X,,, m = 1, ..., M, denoting the

corresponding category bounds. Then, an M -regime TACD(P,Q) model is given by

x; = Wiel"
1
ifxj—y € (xm—l»)_cm]

U = m 4 Zf’=1 Ol;M)xi—j + ZQ

()
j=1B; Wi

(6.12)

where o™ >0, a;m) >0 and ,3;'") >0 are regime-switching ACD parameters.
,{m) is assumed to follow some distribution f,(s; Gg(m))

with ]E[sgm)] =1 depending on regime-switching distribution parameters 02,’").

The i.1.d. error term ¢
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Fig. 6.2 Estimated news impact curves for trade durations, 10bp price durations, and 30-s as well
as 2-min aggregated volumes for JP Morgan (NYSE). June 2009

Correspondingly to the basic ACD model, the model can be rewritten as

max(P,Q) Q
X = (,()(m) + Z (a}m) + ,B;‘m))xi—j _ Z ,3;”1)711‘—1‘ + i (613)
j=l j=l

with 7n;:=x; —¥;. Hence, the TACD model corresponds to a threshold
ARMA(M ;max(P, Q). Q) process.* Obviously, the TACD model is strongly
related to the SNIACD model. The main difference is that in the SNIACD model
only the impact of lagged innovations is regime-dependent while in the TACD
model all autoregressive and distributional parameters are allowed to be regime-
switching. Hence, in this sense, the TACD model is more general and allows for
various forms of nonlinear dynamics. However, the derivation of theoretical proper-
ties is not straightforward in this framework. Zhang et al. (2001) derive conditions
for geometric ergodicity and the existence of moments for the TACD(1,1) case.
Moreover, in the SNIACD model, the threshold values associated with the particular
regimes are given exogenously while in the TACD model they are endogenous and
are estimated together with the other parameters. The estimation has to be performed
by a grid search algorithm over the thresholds X,, and maximizing the conditional
likelihood for each combination of the grid thresholds. Clearly, for higher numbers
of M, this procedure becomes computationally quite cuambersome.

6.2.2 Smooth Transition ACD Models

Note that in the TACD model, as well as in the SNIACD model, the transition from
one state to another state is not smooth but follows a jump process. An alternative is

“For more details concerning threshold autoregressive (TAR) models, see, for example, Tong
(1990).
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to allow for a smooth transition which is driven by some transition function. Smooth
transition autoregressive (STAR) models are considered, for example, by Granger
and Terasvirta (1993), Terdsvirta (1994,1998) for the conditional mean of financial
return processes and by Hagerud (1997) and Gonzalez-Rivera (1998) for conditional
variance processes. Meitz and Terdsvirta (2006) propose a smooth transition ACD
(STACD) model of the form

P P 0
Wi=o+Y o+ Y (@ +aix )GO)+ Y Bi%io;.  (6.14)
j=1 j=1 ji=1

P P 0
=0+ Y ofGO+ Y (¢ +ajGO)xi—; + > ¥,
j=1 ji=1 j=1

where G(-) = G(In x;; y, ¢) denotes a transition function given by

M -1
—y [[nxi—; —cm)}) : (6.15)

m=1

G(nx;—j;y,c) = (1 + exp

forc; < ... < cpy,y > 0. The choice of G(-) as a logistic function ensures that
it is bounded and non-negative. As it is defined on the entire real axis, Inx;—;
is used as the transition variable. As discussed by Meitz and Terdsvirta (2006),
an alternative would be to choose a cumulative distribution function of a random
variable with positive support as transition function. However, due to its non-
decreasing nature, such a transition function would impose strong a priori structures
preventing possible non-linearities. The parameter M determines the shape of
the transition function. For M = 1, the transition function increases in x;_;.
Alternatively, choosing M = 2 allows very short and long durations having a
different news impact than more moderate durations. Figure 6.3 shows the transition
function for the case M = 2, ¢; = —1, ¢, = 1 and for different values for y. It
is shown that the smoothness of the transition declines with y. Hence, in the limit,
y — o0, the transition is not smooth anymore and the model corresponds to a
special case of the TACD model as proposed by Zhang et al. (2001). In this case, @
and « would jump between a regime for very short and long durations and a regime
for moderate durations (as approximately given by 0.5 > x; < 2.5 in Fig.6.3). In
particular, a two-regime TACD(1,1) model with gV = B® and sfm) ~ Exp(1),
m = 1,2, is the limiting case of a STACD(1,1) process for M = 1 and y — oc.
Correspondingly, a three-regime TACD model with () = B2 = g3 () = )
a® = a® and &™ ~ Exp(1),m = 1,2.3, is the limiting case of a STACD(I,1)
process with M = 2 and y — oo.

Correspondingly, Meitz and Terdsvirta (2006) also suggest a smooth transition
Log ACD (STLACD) model given by
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Fig. 6.3 The transition function G(In x;;y, ¢) as a function of x; for M = 2,¢; = —1,¢;, =1
and for y € {1, 3,5, 10, 50}. The smoothest (steepest) curves are associated with y = 1 (y = 50)

P P 0
¥ =0+ ajnx j+Y (@ +afinx_;)GO+ Y B;In¥_;. (6.16)

J=1 J=1 Jj=1

P P 0
=w+ Zw}‘G(-) + Z(aj +a;G()Inx;—; + Zﬁj In¥;_;,

j=1 Jj=1 j=1

with G(-) = G(Inx;—;;y,c). Clearly, there are numerous alternative possibilities
to choose the transition variable. Instead of specifying G(-) in terms of x;, it
could be also specified in terms of the ACD innovation &; = x;/¥;. Then,
regime switches would be driven by durations which are scaled by their conditional
expectations, and thus “surprises” in durations. Alternatively, regime switching of
ACD parameters could be also driven by deterministic time patterns. For instance,
Meitz and Terdsvirta (2006) propose specifying G(-) in terms of a standardized
calendar time variable #; € [0, 1] reflecting, e.g., the time of the day. Then, choosing
the transition function as G*(f;—1;v,¢) = G(fi—1:y,c) — 0.5 yields a so-called
time-varying ACD (TVACD) specification,

P Y P Q
Ui =w+ Za_,»xi__/ + 2,3_/‘1/[—/ + Z C();k + oe;.‘x,-__, + Z,B;II/,'_/ G*(")

j=1 j=1 j=1 j=1

P P
=@+ 0" G* () + D (@ +«FG*(O)xi—j + Y _(B; + BIG*()Wi—;.
j=1 j=1
/ ' (6.17)
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with G*(-) = G*(fi—1:y.c)). Here, not only @ and « but also the persistence
parameter 3 vary.

6.2.3 Markov Switching ACD Models

Hujer et al. (2002) propose a Markov switching ACD model where the conditional
mean function depends on an unobservable stochastic process, which follows a
Markov chain. Define in the following M/* as a discrete valued stochastic process
which indicates the state of the unobservable Markov chain and takes the values
1,2,..., M. Then, the MSACD model is given by

xi =Y, & ~ fe(s) (6.18)
M

W=y PrM=m|F,_ ] " (6.19)
m=1
M

fols) =D PrM*=m|F,_ ] fu(s:0), (6.20)
m=1

where lI/i(m) denotes the regime-specific conditional mean function

P Q
j=1 j=1

and f(s; 95('")) is the regime-dependent conditional density for ;. The Markov
chain is characterized by a transition matrix P* with elements p;, :=Pr[M;* = k|
M* | =I]. Hence, the marginal density of x; is given by

M
FOilFo) =Y PrM =m|Fia] foalM} =m: Fiy).  (6.22)

m=1

Hujer et al. (2002) estimate the MSACD model based on the Expectation-
Maximization (EM) algorithm proposed by Dempster et al. (1977). They show
that the MSACD outperforms the basic (linear) ACD model and leads to a
better description of the underlying duration process. In this sense, they confirm
the results of Zhang et al. (2001) that nonlinear ACD specifications are more
appropriate to model financial duration processes. Hujer et al. (2002) illustrate
that the unobservable regime variable can be interpreted in light of market
microstructure theory and allows for more sophisticated tests of corresponding
theoretical hypotheses.
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6.3 Long Memory ACD Models

As illustrated in Chap. 3, trading variables typically exhibit a strong persistence
implying ACD parameters o and B to sum nearly to one. A typical indication for the
existence of long range dependence is an autocorrelation function which displays no
exponential decay but a slow, hyperbolic rate of decay. Formally,

lim pi/[ck™] =1,
k—o00

with @ € (0,1) and ¢ > O (see, e.g. Beran, 1994). A consequence of this result is
that the variance of sample averages computed over sub-samples of the length n, x,
decline with a rate n™%, i.e.

V[xu] ~en™®, ¢, >0.

Figure 6.4 shows the plots of Inn vs. In V[x,,] for trade durations, price durations as
well as the number of trades and cumulated volumes in 30-s intervals for JPM,
Microsoft and Deutsche Telekom traded at the NYSE, NASDAQ and XETRA,
respectively. The estimated slopes underlying the corresponding bivariate regres-
sions yield clear evidence for long range dependence.

While the existence of long memory patterns in return and volatility series have
been already explored in much detail,? only a few approaches pay attention to such
effects in high-frequency series. Engle (2000) applies a two-component model as
proposed by Ding and Granger (1996), given by

¥ =w¥ ;i + (1 —w)y,, (6.23)
Ui =aixio + (1 —a)¥,i-, (6.24)
Vi =+ axi—1 + oo, (6.25)

Hence, ¥; consists of the weighted sum of two components, ¥ ; and ¥,; with
weights w and 1 — w, respectively. Equation (6.24) is an integrated ACD(1,1)
specification capturing long-term movements, while (6.25) is a standard ACD(1,1)
specification that captures short-term fluctuations in financial durations. As illus-
trated by Ding and Granger (1996), the resulting two-component process is
covariance stationary, but allows for a slower decay of the ACF compared to the
corresponding standard model. Engle (2000) shows that the two component ACD
model improves the goodness-of-fit and captures the duration dynamics in a better
way than the basic ACD model. Ding and Granger (1996) analyze the limiting
case of a multi-component model by increasing the number of components towards
infinity. They show that such a model implies autocorrelation functions that reflect

SFor an overview, see Beran (1994) or Baillie (1996).
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Fig. 6.4 Plots of Inn vs. InV[x,] for trade durations, midquote change durations, the number
of trades as well as cumulated trading volumes during 30-s intervals for JP Morgan (NYSE),
Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Aggregation levels for price durations
in basis points of the average price level for JP Morgan and in minimum tick size for Microsoft
and Deutsche Telekom. Sample period: June 2009 for JP Morgan and Microsoft and September
2010 for Deutsche Telekom

the typical characteristics of long memory processes. Moreover, it is shown that the
resulting model is closely related to the fractionally integrated GARCH (FIGARCH)
model proposed by Baillie et al. (1996). Following this string of the literature,
Jasiak (1998) proposes a fractionally integrated ACD (FIACD) model which is the
counterpart to the FIGARCH model. The FIACD model is based on a fractionally
integrated process for ¥; and is given by

[1— B =+ [1—B(L)— (L)1 - L)]x;, (6.26)
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where ¢ (L) := 1 —a(L) = B(L), a(L) := ¥} _ ;L) and B(L) := YF_, B; LI
denote polynomials in terms of the lag operator L. The fractional integration
operator (1 — L)? (with 0 < d < 1) is given by

[e.e]

i (A, o TG=d)
(1-1) —Z(j)( l)ij_;—F(—d)F(j—i-l)Lj’ 6.27)

j=0
where I'(-) denotes the gamma function. The FIACD model is not covariance
stationary and implies infinite first and second unconditional moments of Xx;.
Following the results of Bougerol and Picard (1992), it can be shown that it is strictly
stationary and ergodic for0 < d < 1.Ford = 0, the model corresponds to the basic
ACD model, whereas for d = 1, it corresponds to an integrated ACD process as the
counterpart to an integrated GARCH model.

An alternative long memory specification is provided by Karanasos (2004) and
is given by

_ =B N
X =w+ m?’]l = w +jzo(1)jrh_J, (628)

where 1; 1= x; — ¥;. As in the FIACD model, we have the case of long-range
dependence and thus non-summable autocovariance functions for d > 0 with the

model being weakly stationary for d < 0.5. As shown by Karanasos (2004), the
model can be written as an infinite sum of lagged values of n;,

00
Xi =w+ijni_j, (6.29)
=0
where

J

i’\:r Z (j_—dl) m (=177,

w; =
r=I1 =0
min{/,m} A
m= Y ATI(=B;) (Bo:=—1)
=0
At = A

' ]_[;l:l.l;ér()‘r —A)

Moreover, ¥; can be expressed as

_ Q=LY .,
W = (1 - 1——;9(L)) x; = ;w,xi_j, (6.30)

with ¢y > 0,v; > Ofor j > 2.
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In contrast to Jasiak’s FIACD model, (6.28) implies finite first and second
moments of x; with E[x;] = @ < oo and E[x?] < oo if

(1—@)%@«.

j=0

An analytical expression for the autocorrelation function is given by Karanasos
(2004).

A similar type of long memory ACD model is proposed by Koulikov (2003) and
is given by

o0
2 =w+a29j,1n,-,j, 6.31)

J=1

where {0; : j > 0} € Ro4 is an infinite sequence of coefficients with 6y = 1
and w and o are model parameters. The process (6.31) is covariance stationary and
ergodic as long as ¢; is a (zero mean) martingale difference, and the coefficients 6;
are square-summable (see Koulikov 2003). Following Granger and Joyeux (1980),
or Hosking (1981), a possible parameterization of the coefficients 6; is given by a
power series expansion of (1 — fz)~' (1 — z)™¢ as given by

J
0; = B 07, (6.32)
k=0

where

9;‘ = M j =0, (6.33)
rd)yraa+j)

are the coefficients of the expansion of (1 — z)™¢, B is a model parameter with
|B] < 1 and I'(:) denotes the gamma function. For d € (0, 1), (6.33) produces
a non-summable autocovariance function, and thus long memory. For O<d<%,
the power series expansion implies a sequence of square-summable hyperbolic
decaying coefficients and thus ensures covariance stationarity. By replacing z by
the lag operator L, we can re-write ¥; as

¥ =w+a(l—BL) (11— L) nio (6.34)

with (1 = L) nimy = 352, 0j—1mi—;-

Table 6.7 gives QML estimates of the FIACD and the LMACD specification
proposed by Karanasos (2004) for de-seasonalized trade durations, 10bp price
durations, and 30-s number of trades for JP Morgan traded at NYSE. As revealed
by the estimates of the long memory parameter d, there is strong evidence for the
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Table 6.7 QML estimates of the FIACD and the LMACD specification proposed by Karanasos
(2004) for de-seasonalized trade durations, 10 bp price durations, and 30-s number of trades for JP
Morgan traded at NYSE. Sampling period: 01/06/09-05/06/09 for trade durations and June 2009
for price durations and trade counts. Diagnostics: Bayes Information Criterion (BIC) and Ljung-
Box (LB) statistics of ACD residuals associated with 20 lags

par. est. p-val. est. p-val. est. p-val.
trade dur. 10bp price dur. 30-s no. of trades

FIACD

10) 0.006 0.000 0.003 0.000 0.004 0.274

o 0.021 0.000 0.029 0.000 0.021 0.181

B 0.967 0.000 0.962 0.000 0.955 0.000

d 0.092 0.000 0.124 0.000 0.247 0.000

BIC —36,657 —9,927 —16,041

LB 4.71 15.39 34.94

LMACD

[0) 1.053 0.000 1.086 0.000 0.994 0.000

o 0.023 0.000 0.031 0.000 0.021 0.174

B 0.965 0.000 0.960 0.000 0.955 0.000

d 0.082 0.000 0.120 0.000 0.245 0.000

BIC —36,645 —9,929 —16,040

LB 4.41 14.57 34.87

existence of long range dependence. In all cases, d is between (0, 0.5) indicating
the processes being stationary. The significance of o and § reveals also the presence
of short memory dynamics. In terms of goodness-of-fit, as revealed by BIC and
Ljung—-Box statistics, all specifications perform relatively similar.

A counterpart to a long memory stochastic volatility model is proposed by Deo
et al. (2010). This specification is discussed in more detail in Sect. 6.4.1. Conditions
for the propagation of the long memory parameter from durations to counts are
analyzed by Deo et al. (2009). In particular, they establish conditions for weakly
stationary long range dependent duration processes with memory parameter d
ensuring that the resulting counting process N(¢) satisfies V[N(1)] ~ Cr2?+!,
C >0ift — oo.

6.4 Mixture and Component Multiplicative Error Models

6.4.1 The Stochastic Conditional Duration Model

In the Markov Switching ACD model the latent variable follows a Markov process,
i.e., the state of the process depends only on the state of the previous observation.
An alternative specification has been proposed by Bauwens and Veredas (2004).6

6See also Meddahi et al. (1998) who introduce a similar specification.
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They assume that the conditional mean function ¥; given the history F;_; is
not deterministic but is driven by a latent AR(1) process. Hence, the Stochastic
Conditional Duration (SCD) model is given by

In¥; =w+ pIn¥i— + v, (6.35)

where x; =Y;¢;, & denotes the usual ii.d. ACD innovation term and v; is
conditionally normally distributed, i.e., v;|Fi—; ~ i.i.d.N(0,0?) independently
of ¢;. Hence, the marginal distribution of x; is determined by a mixture of a log-
normal distribution of ¥; and the distribution of ¢;. Economically, the latent factor
can be interpreted as information flow (or general state of the market) that cannot
be observed directly but drives the duration process. In this sense, the SCD model
is the counterpart to the stochastic volatility model introduced by Taylor (1982).
Bauwens and Veredas (2004) analyze the theoretical properties of the SCD model
and illustrate that the SCD model, even with restrictive distributional assumptions
for ¢;, is quite flexible and allows for a wide range of different (marginal) hazard
functions of the durations. In a comparison study with the Log-ACD model they
find a better fit of the SCD model. The model is estimated by simulated maximum
likelihood (see Sect. 7.2) or, as proposed by Bauwens and Veredas (2004), based on
QML by applying the Kalman filter.’

A long memory version of the SCD model is proposed by Deo et al. (2010). In
their so-called long memory stochastic duration (LMSD) model, ¥; is given by

InY =w+(1-L)4y (6.36)

with d € [0,0.5). Deo et al. (2010) propose estimating the model by QML using the
Whittle (1962) approximation. A further extension of the SCD model based on non-
Gaussian state-space models and allowing for asymmetric behavior of the expected
duration is suggested by Feng et al. (2004).

6.4.2 Stochastic Multiplicative Error Models

The major difference between the ACD and SCD model is that in the ACD
framework, dynamics are observation-driven whereas in the SCD setting, dynamics
are parameter-driven. This implies that E[x;|F;_;] is deterministic in the ACD
model, while it is stochastic in the SCD model. Hautsch (2008) proposes combining
both types of dynamics resulting in an ACD model (or MEM, respectively) which
is augmented by a dynamic latent factor. It is given by

Xi = ll’ieﬁ’.é‘,‘, (637)

7 Alternatively, Strickland et al. (2006) propose estimating the SCD model based on Monte Carlo
Markov Chain (MCMC) techniques. Bauwens and Galli (2009) employ efficient importance
sampling techniques as discussed in Sect. 7.2.
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with § > 0 being a parameter, A; denoting a latent factor, & being i.i.d. and
following a distribution on positive support with E[¢;] = 1. The conditional mean
Y; can be specified according to various ACD specifications as discussed in the
previous sections. Then, ¥;e®* corresponds to the conditional mean given F;_; and
Ai. Accordingly, ¥; = E[x;|F;—1] = x;/(e**&;) is stochastic. The latent factor A;
is assumed to follow a zero mean AR(1) process, given by

Ai =aki—1 +vi, v ~iid N(0,]1), (6.38)

where v; is assumed to be independent of ;. Note that because of the symmetry of
the distribution of v;, the sign of § is not identified.

Hautsch (2008) calls the model a stochastic MEM (SMEM) or — in the ACD
case — a stochastic ACD (SACD) model since it nests both the ACD model for
8 = 0 and the SCD model for ¥ being constant (i.e., « = B = 0 in case of a linear
ACD model). Correspondingly, for « # 0 and § = 0 an SCD model is obtained
which is mixed with a further random variable. Hence, it allows to explicitly test for
both types of dynamics. The SACD model can also be seen as a special case of a
semiparametric ACD model with x; = ¥;¢; and & = etig; following a dynamic
process. Moreover, due to its two-factor structure, the SMEM allows capturing
dynamics not only in first conditional moments but also in higher order conditional
moments. In this sense, the SMEM serves as an alternative to the SVD model (see
Sect. 6.5.3). Due to its latent dynamic component, the model cannot be estimated by
(Q)ML and requires simulation-based techniques. More information on estimation
details as well as statistical properties are given in Sect.7.2, where the SMEM is
discussed in a multivariate setting.

As an illustration, Table 6.8 reproduces some of the estimation results of
Hautsch (2008) for SMEMs using a Log-ACD specification of ¥;, i.e., In¥; =
o + Zle ajgi—j + ZJ.Q=1 BjIn¥;_; for Smin averaged trade sizes and the
number of trades for Boeing, traded at NYSE, 2001. The lag order, P and Q
are restricted to P < 2 and QO < 2. As revealed by the estimates of a, there is
significant evidence for the existence of a persistent latent component. Moreover, it
is shown that both the parameter driven dynamics as well as the observation driven
dynamics interact. The persistence parameter is driven toward one when the latent
factor is taken into account. As discussed in Hautsch (2008), this finding indicates
that news tend to enter the model primarily through the latent component, which
is in line with the idea that the latter serves as a proxy for unobserved information
driving the trading process. It is shown that the inclusion of the unobservable factor
increases the goodness-of-fit of the model. Nevertheless, neither the parameter
driven component nor the observation driven component can be rejected illustrating
that trading dynamics are not sufficiently captured by a one-factor model but rather
by a two-factor model.
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Table 6.8 Maximum likelihood efficient importance sampling estimates of different parameter-
izations of SMEMS for 5 min average trade sizes and number of trades for Boeing traded at the
NYSE, sample period 02/01/01 to 31/05/01. Standard errors are computed based on the inverse
of the estimated Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo
replications based on 5 EIS iterations (for details on the EIS approach, see Sect. 7.2). Diagnostics:
Log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard deviation and
Ljung-Box statistics (LB) based on 20 lags of the filtered residuals. Significance at the 1%, 5%
and 10% levels are denoted by ***, ** and *, respectively

€)) 2 3) “ (5)
5 min average trade sizes
0] —0.403*** —0.416*** —5.841%** —0.070*** —0.057***
o 0.001*** 0.0027** 0.011%** —0.006**
a —0.000 0.014%**
B 0.928*** 0.7617*** 0.981*** 1.0747%**
B2 0.165 —0.091
p 0.517%** 0.519*** 0.450*** 1.202%** 1.188%***
m 8.032%** 7.9917%** 12.753%** 4.276*** 4.321%**
Latent component
a 0.954%** 0.260™** 0.391%**
] 0.113%** 0.506*** 0.4947**
LL —6,211 —6,200 —6,019 —5,954 —5,943
BIC —6,234 —6,232 —6,041 —5,985 —5,983
Mean 1.011 1.010 1.017 1.024 1.027
S.D. 0.871 0.870 0.890 0.901 0.909
LB 39.166*** 23.256 38.896*** 19.486 15.183
5 min number of trades
3] —0.202%** —0.025%** —0.426*** —0.035%** —0.042%**
o 0.077*** 0.105%** 0.026™** 0.046™**
o —0.092%** —0.018
B 0.953%*** 1.704%** 0.991%*** 0.562%**
B —0.708™** 0.427*
¥4 1.632%** 1.752%** 2.170%** 2.563%** 2.366***
m 3.674%** 3.2377%* 2.6397%** 2.100%** 2.317%**
Latent component
a 0.9577*** 0.766™** 0.821***
] 0.067*** 0.110*** 0.092%***
LL —1,982 —1,957 —1,975 —1,925 —1,921
BIC —2,005 —1,988 —1,998 —1,956 —1,961
Mean 0.999 0.999 1.002 1.001 1.002
S.D. 0.323 0.322 0.324 0.322 0.322
LB 55.018*** 33.285** 54.158*** 36.095** 24.503

6.4.3 Component Multiplicative Error Models

A further type of mixture MEM is proposed by Brownlees et al. (2011) to model the
behavior of intraday volumes. To capture not only intra-day dynamics but also daily
dynamics, they propose a so-called component MEM given by
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iid
Xoi = Yailatai, €ai ~ (1,0%), (6.39)

where d indexes the corresponding trading day and i the intraday observation.
Furthermore, 1, denotes a daily component varying from day to day but being
constant during a day. By restricting the lag order for simplicity to one, it is given by

pa = o +alxaoy + B pa, (6.40)
where 0, a? and B¢ are parameters, and x, is the standardized daily volume,
L g Xas (6.41)
Xg=— ) —=, .
ng L%

i=1

with ny denoting the number of observations on day d. Accordingly, ¥, ; denotes
the intraday component given by a standard MEM dynamic based on standardized
intradaily volume,

Xdi—1

Yyi=w+a + BYii-1. (6.42)

In order to make the model identifiable, the restriction w = 1 — o — f is imposed
ensuring that E[¥;;] = 1. Hence, the component p; adjusts the mean level of
the series on a daily basis, whereas W, ; captures intraday variations around this
level. Given that both types of dynamics are observation-driven, the model is
straightforwardly estimated by QML or GMM.

Alternatively, the daily component might be specified in terms of a latent process
with

Inpg =w+aInpg_y +ug, ug ~ N(Q,0?). (6.43)

Such a specification is proposed by Brownlees and Vannucci (2010) and is similar
to Hautsch’s (2008) SMEM. It also multiplicatively combines an observation driven
dynamic as well as a parameter driven dynamic where, however, the latter is updated
on a daily basis. Hence, as the SMEM, it cannot be estimated using (Q)ML and
requires simulation-based techniques. Brownlees and Vannucci (2010) propose
estimating the model using Bayesian inference and develop a corresponding MCMC
algorithm.

6.5 Further Generalizations of Multiplicative Error Models

6.5.1 Competing Risks ACD Models

Bauwens and Giot (2003) propose a two-state competing risks ACD specification to
model the duration process in dependence of the direction of the contemporaneous
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midquote change. They specify two competing ACD models (for upwards midquote
movements vs. downwards midquote movements) with regime-switching parame-
ters that are determined by the direction of lagged price movements. Then, at each
observation the end of only one of the two spells can be observed (depending on
whether one observes an increase or decrease of the midquote) while the other spell
is censored. Engle and Lunde (2003) propose a similar competing risks model to
study the interdependencies between the trade and quote arrival process. However,
they impose an asymmetric treatment of both processes since they assume that the
trade process is the “driving process” which is completely observed while the quote
process is subject to censoring mechanisms.

6.5.2 Semiparametric ACD Models

The assumption of independently, identically distributed innovations &; is a standard
assumption in the class of MEMs. However, Drost and Werker (2004) argue that
the i.i.d. assumption for standardized durations could be too restrictive to describe
financial duration processes accurately. In the semiparametric ACD model, the
conditional p.d.f. of ACD innovations g; = x; /¥; is characterized by

S (il Fim1) = f(&ilHi-1), (6.44)

where H; C F;. The terminology semiparametric ACD model stems from the
fact that the conditional density f(e;|H;—1) is not specified. The set H; defines
the relevant past variables driving the conditional distribution of &; and formalizes
the dependence among the innovations ¢;. Clearly, if H; equals the trivial sigma
field, the innovations are assumed to be independent and the model coincides with
the basic ACD model. Conversely, if H; = F;, the dependence structure of the
innovations ¢; is completely unrestricted. In case of H; = o(e;) the innovations
follow a Markov structure.

Drost and Werker (2004) show how to construct semiparametrically efficient
estimators in case of (6.44) and f(e;|H;—;) being non-specified. The key concept in
this context is the semiparametric score function, i.e. the semiparametric counterpart
to the score function E[s; (6¢)] = 0,0, € ©@,i = 1,...,n. The semiparametric
score function is computed using techniques based on tangent spaces (see Bickel
et al. 1993) and is given by

e —1 ad
s7(0) = Vie: i I]E[ InY; l:|

0 (ei [ Hy_1)/00\ [ 0 5
_(”’ e ) )[8_ im {@Wf

Hi- } :| , (6.45)
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where f(g;|Hi—1) (as well its derivative) has to be estimated by kernel techniques.
Then, the semiparametric estimator is constructed as the one-step Newton-Raphson
improvement from an arbitrary consistent parametric estimator. In particular, let 0,
denote this arbitrary consistent estimator which is naturally chosen as the exponen-
tial QML estimator. Then, the semiparametrically efficient estimator is obtained by

—1
7)) 0 1 En: *pn *p o\ 1 §": *
0)1 = 0;1 + (E Si (on)si (on)) ; Si (0n)- (646)

i=1 i=l1

Applying this concept to ACD models based on different types of innovation
processes, Drost and Werker (2004) illustrate that even small dependencies in the
innovations can induce sizeable efficiency gains of the efficient semiparametric
procedure over the QML procedure.

6.5.3 Stochastic Volatility Duration Models

One drawback of autoregressive duration models (like EARMA or ACD models)
is that they do not allow for separate dynamic parameterizations of higher order
moments. This is due to the fact that typical duration distributions, like the
exponential distribution, imply a direct relationship between the first moment and
higher order moments. To address this problem, Ghysels et al. (1998) propose a two
factor model which allows one to estimate separate dynamics for the conditional
variance of durations (the so-called duration volatility).

Consider an i.i.d. exponential model with gamma heterogeneity, x; = u;/A;,
where u; is an i.i.d. standard exponential variate and the hazard A; is assumed to
depend on some heterogeneity component v;. Thus,

Ai = avj, Vi ~ g(K,K) (647)

with v; assumed to be independent of ;. Ghysels et al. (1998) consider the equation
x; = u;/(av;) as a two factor formulation and rewrite this expression in terms of
Gaussian factors. Hence, x; is expressed as

.- G '(L.dmy)  G(1.my)
" aG T (k. @(my) T aGle.my)’

(6.48)

where m| and m; are i.i.d. standard normal random variables, @(-) is the c.d.f. of
the standard normal distribution and G~'(m, &) is the a-quantile function of the
G(m,m) distribution. The function G(1,m,) can be solved as G(1,m;) = —log
(1—@(m;)) while G(x, m,) does not allow for a simple analytical solution and has
to be approximated numerically (for more details, see Ghysels et al. 1998).
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This (static) representation of an exponential duration model with gamma het-
erogeneity as the function of two independent Gaussian random variables is used as
starting point for a dynamic specification of the stochastic volatility duration (SVD)
model. Ghysels et al. (1998) propose specifying the process m; := (m; my;)" in
terms of a VAR representation, where the marginal distribution is constrained to be
a NV(0,1) distribution, where I denotes the identity matrix. This restriction ensures
that the marginal distribution of the durations belongs to the class of exponential
distributions with gamma heterogeneity. Thus,

P
m; = ZAjmi_j— + &;, (6.49)
=1

where A ; denotes the matrix of autoregressive VAR parameters and &; is a vector
of Gaussian white noise random variables with variance-covariance matrix X (A)
which ensures that V(m;) = L

The SVD model belongs to the class of nonlinear dynamic factor models for
which the likelihood typically is difficult to evaluate. Therefore, Ghysels et al.
(1998) propose a two step procedure. In the first step, one exploits the property that
the marginal distribution of x; is a Pareto distribution depending on the parameters a
and « (see appendix). Thus, a and « can be estimated by (Q)ML. In the second step,
the autoregressive parameters A ; are estimated by using the methods of simulated
moments (for more details, see Ghysels et al. 1998).

Ghysels et al. (1998) apply the SVD model to analyze trade durations of the
Alcatel stock traded at the Paris Stock Exchange and find empirical evidence
for strong dynamics in both factors. However, the higher dynamic flexibility of
the SVD model induces strong distributional assumptions. Bauwens et al. (2004)
show that the assumption of a Pareto distribution for the marginal distribution of
x; is inappropriate for specific types of financial durations (particularly volume
durations) which makes the estimation of the Pareto parameters a and k extremely
cumbersome. Moreover, they find a relatively poor prediction performance of the
SVD model compared to alternative ACD specifications.
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Chapter 7
Vector Multiplicative Error Models

This chapter focusses on multivariate extensions of multiplicative error models. The
basic multivariate (or vector) multiplicative error model is introduced in Sect. 7.1.1.
We discuss specification, statistical inference and provide empirical illustrations.
Section 7.2 is devoted to stochastic vector MEMs corresponding to multivariate
versions of univariate stochastic MEMs as presented in Chap.5. Here, the idea
is to augment a VMEM process by a common latent component which jointly
affects all individual processes. We illustrate how to estimate this class of models
using simulated maximum likelihood and illustrate applications to the modelling of
trading processes.

7.1 VMEM Processes

7.1.1 The Basic VMEM Specification

Consider a K-dimensional positive-valued time series, denoted by {x;}, i =
1...,n, withx;: = (xl.l, .. ,xiK). The so-called vector MEM (VMEM) for x; is
defined by

x; =V Oe,
where ¥; = E[x;|F;—1] is a K x 1 vector, ©® denotes the Hadamard product
(element-wise multiplication) and &; is a K-dimensional vector of mutually and
serially i.i.d. innovation processes, where the jth element is given by

el |Fio ~iid. D10}, j=1...K

The VMEM is a straightforward extension of the univariate linear MEM/ACD
model and is specified by Manganelli (2005) as

N. Hautsch, Econometrics of Financial High-Frequency Data, 177
DOI 10.1007/978-3-642-21925-2_7, © Springer-Verlag Berlin Heidelberg 2012



178 7 Vector Multiplicative Error Models

P %
v, =w+A0Xi+ZAin—_/+ZBj‘I’i—j, (7.1)

=1 J=1

where @ is a K x 1 vector, and Ay, A; as well as B; are K x K parameter matrices.
The matrix A, captures contemporaneous relationships between the elements of x;
and is specified as a matrix where only the upper triangular elements are non-zero.
This triangular structure excludes simultaneity between the individual variables and
implies that x; is causal for x, m > j, but x/" is not causal for x; . Consequently,
x™ is conditionally i.i.d. given {x/, F;_} for j < m.

A VMEM approach is obviously only meaningful if the multivariate time series
are synchronized in time. In case of financial trading variables, the model is
applicable, e.g., to simultaneously model trading characteristics (trade durations,
trade sizes, bid-ask spreads, trade-to-trade returns etc.). This approach is pursued
by Manganelli (2005). In case of processes which do not occur synchronously in
time (such as trading activities across different assets), a time synchronization of
the data is necessary. Then, most naturally, aggregated variables over equi-distant
time intervals as discussed in Chap. 3 are used.

Analogously to the univariate case, the linear VMEM can be alternatively
presented in terms of a vector ARMA (VARMA) process for x;. By introducing
the vector of martingale differences ; := x; — ¥;, and for simplicity of illustration
restricting our attention to the case P = Q = 1, the VMEM(1,1) model can be
written as

xi = I—=A0) (@ + (A1 + B)xi—1 —Bin,_; +1,. (7.2)

Invertibility of (I — Ag) is ensured by the triangular structure of A( ruling out
simultaneous relationships between the variables. Then, the unconditional mean is
straightforwardly given by

Elxi]=(I-A¢—A; —B) "o, (7.3)

with the conditions for weak stationarity given by all eigenvalues of |(I — Ag)~!
(A| + By)| having modulus smaller than one.

The advantage of this specification is that contemporaneous relationships
between the variables are taken into account without requiring multivariate
distributions for e;. Furthermore, the theoretical properties of univariate MEMs
as discussed in the previous chapter can be straightforwardly extended to the
multivariate case. However, an obvious drawback is the requirement to impose an
explicit ordering of the variables in x; induced by the triangular structure. The order
is typically chosen in accordance with a specific research objective or following
economic reasoning.

An alternative way to capture contemporaneous relationships is to allow for
mutual correlations between the innovation terms 8{ . Then, the innovation term
vector follows a density function which is defined over non-negative K -dimensional
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support [0, +oo)K with unit mean ¢ and covariance matrix X', i.e.,
&i|Fizy ~iid. D, X)
implying

E[x;|Fi-i] = ¥,
Vx| Fio] = ¥,¥, 0 X.

Fining an appropriate multivariate distribution defined on positive support is a
difficult task. As discussed by Cipollini et al. (2007), a possible candidate is a
multivariate gamma distribution which however imposes severe restrictions on the
contemporaneous correlations between the errors 8'1-/ .

Alternatively, the dependence structure can be captured by copula approaches.
Bodnar and Hautsch (2011) propose modelling the dependence in &; by a Gaussian

copula with dynamic correlation matrix. Define
ef = (@7 (Fi(e1), ., @7 (Fi(ex.)))

where @(.) denotes the c.d.f. of the univariate standard normal distribution and F; (.)

denotes the marginal distribution function of &/. The assumption of the Gaussian
copula implies that the transformed residuals e are conditionally normally dis-
tributed with conditional correlation matrix R;. The transformation from &; to &}
is monotone though non-linear. Therefore, the series {e*} as well as {€}?} might
be autocorrelated while the {&;} themselves are uncorrelated. To capture these
effects, Bodnar and Hautsch propose an VARMA-(M)GARCH parameterization
given by

Q*
el = ZC_/ei*_j + v, (7.4)
j=1
v =Vh 0§, (7.5)
Ph Qh
h; Za)h-i-ZAj(v,'_j@V,‘_j)-‘rZthi_j, (7.6)
j=1 =1

where C;, A; and B; are K x K parameter matrices with e;" ~ N(O,R)).
Correspondingly, h; is a K x 1 vector of conditional variances of v; with &; denoting
a vector of i.i.d. A/(0, 1) innovations. Then, the conditional correlation matrix R;
is modelled according to Engle’s (2002) Dynamic Conditional Correlation (DCC)
model and is given by

R, = Q' 'Q;Q ', (7.7)
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pR oR pR oR
Q = 1—2)/]‘—281' Q‘FZVJ'E;'—J"E;—]"“ZSJQI‘—/" (7.8)

j=1 j=1 j=1 Jj=1

where Q is the unconditional covariance matrix of &;. Hence, the Gaussian copula
implies a transformation of &; into a multivariate normal distribution with dynamic
conditional mean and conditional covariance matrix. Bodnar and Hautsch (2011)
suggest a two-stage maximum likelihood approach, where the MEM parameters are
estimated in a first step, while the VARMA-GARCH-DCC parameters are estimated
in a second step. Modelling the trading process of various NYSE stocks, Bodnar
and Hautsch (2011) show that the assumption of normality of the components & is
well supported by the data. Moreover, significant evidence for serial dependencies
in conditional variances and correlations is shown.

Obviously, the conditional mean function ¥; can be specified in various alterna-
tive ways. For instance, a logarithmic VMEM specification is obtained by

P o
¥ =0 +Aglnx; + > Ajglei—;)+ > BjinW, ;. (7.9)
j=1 j=1
where g(e);i—;) = €;—; or g(e;—;) = Ine;_;, respectively (see also Sect.5.5).

Generalized VMEM:s can be specified in accordance to the approaches discussed in
the previous chapter.

7.1.2 Statistical Inference

Define f(x},x?,...,xX|Fi_1;0) as the joint conditional density given F;_; and
the parameter vector § = (0 LY L ). Due to the triangular structure of A, the
joint density can be decomposed into

St I Foi0) = fGd I xS Fi, )
X fFlx} xS Fie0)

X f(x1K|E—1; 0)

Then, the log likelihood function is given as

n K
InL(Y:0) =YY Inf(x/ 1x/ T xK o). (7.10)

i=1j=1
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Constructing the likelihood based on an exponential distribution leads to the quasi
likelihood function with components

lnf(xf|xf+l,...,xf<;]%,1) = —Z(ln‘]fij +xij/l1/,<j),

i=1

where the elements of the score and Hessian are given by

(LEICHL AR S z_ia%z(x_f_l)

967 =067 vl \/
Pn £l /T XK Fil) _ i J 1oy \ [ 1
907907 P 997 l[/ij 00/ lI/ij

The model can be estimated equation by equation as long as the likelihood can
be decomposed into

K
Fel X2 xKFe) = ]‘[f(xf|xf+1,...,xK;f,-,l,of). (7.11)

Jj=1

This requires the parameters of the system to be variation free according to Engle
et al. (1983). In case of the linear specification (7.1), this is naturally ensured. In
case of the logarithmic specification (7.9), it is ensured only if g(e;—;) = Ine;_;
as this specification can be re-written in terms of a logarithmic version of (7.1).! In
more general cases, the decomposition of the likelihood according to (7.11) is not
necessarily possible which requires estimating all parameters simultaneously.

7.1.3 Applications

Hautsch and Jeleskovic (2008) apply the VMEM to jointly model 1-min squared
returns, average trade sizes, number of trades as well as average trading costs based
on data of the electronic trading of the Australian Stock Exchange (ASX). The
data stem from completely reconstructed order books for the stocks BHP Billiton
Limited (BHP) and National Australian Bank (NAB) during the trading period
July and August 2002 covering 45 trading days. The log returns are pre-adjusted
to account for the bid-ask bounce and correspond to the residuals of an MA(1)

IRecall the discussion of Log-ACD models in Chap. 5.
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filter. The trading costs are computed as the hypothetical trading costs of an order
of the size of 10,000 shares in excess to the trading costs which would prevail
if investors could trade at the mid-quote. As reported by Hautsch and Jeleskovic
(2008), resulting average excess trading costs are 60 ASD for BHP and 188 ASD
for NAB during the analyzed trading period.

Hautsch and Jeleskovic (2008) propose modelling this process by a four-
dimensional augmented Log-VMEM process which accounts for the occurrence of
zeros and is given by

In¥; =+ Ao[(Inx;) © Iy ~0y] + AJ O Ly —y

P P
+ ZAj [g(ei—j) O Iy, 03] + ZAS O Ly, =0}

j=1 j=1

0
+ ZB, n,;_;, (7.12)

j=1

where Iy, -0y and Iy, —oy denote 4 x 1 vectors of indicator variables indicating non-

zero and zero realizations, respectively, and .A(])-, j =0,...,p, are corresponding

4 x 4 parameter matrices.’

Table 7.1 re-produces the estimation results of Hautsch and Jeleskovic (2008)
for a Log-VMEM(1,1) specification for BHP and NAB based on a specification
with fully parameterized matrix A and diagonal matrix B; for seasonally adjusted
(pre-filtered) squared log returns, trade sizes, number of trades and transaction costs
standardized by their corresponding seasonality components.

The innovation terms are chosen as g(e;) = e&;. For the process of squared
returns, xil = riz, it is assumed that xi1 |(xl2 ... ,x;‘,}',-fl) ~ N0, l,I/['). Accord-
ingly, for xi/, Jj € 1{2,3,4}, it is assumed xi] |xi/+l, ... ,xf‘,}}_l ~ Exp(llfl-’). As
zeros only (simultaneously) occur in trade sizes and the number of trades, only the
(2, 3)-element in Ag and one of the two middle columns in A(l) can be identified.
Consequently, all other parameters in A and A" are set to zero.

The following results can be summarized: First, there exist significant mutual
correlations between nearly all variables. Volatility is positively correlated with lig-
uidity demand and liquidity supply. Hence, active trading as driven by high volumes
and high trading intensities is accompanied by high volatility. The significantly
negative estimates of 49, and A9, indicate that these are trading periods which are
characterized by low transaction costs.

Second, the diagonal elements in A and the elements in B, reveal that all trading
components are strongly positively autocorrelated but are not very persistent. The
persistence is highest for trade sizes and trading intensities.

2For a more sophisticated approach to model positive-valued (continuous) random variables which
reveal a non-trivial part of zero outcomes, see Hautsch et al. (2010).
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Table 7.1 Maximum likelihood estimation results of a Log VMEM for seasonally adjusted (i)
squared (MA(1) filtered) log returns, (ii) average trade sizes, (iii) number of trades, and (iv) average
trading costs per 1-min interval. Standard errors are computed based on the OPG covariance matrix.
ASX trading, July—August 2002. Diagnostics: Log likelihood function (LL) and Bayes Information
Criterion (BIC). Reproduced from Hautsch and Jeleskovic (2008)

BHP NAB

Par. Coeff. Std. err. Coeft. Std. err.
W —0.0673 0.0663 0.0023 0.0302
W 0.1921 0.0449 0.1371 0.0254
w3 —0.4722 0.1009 —0.1226 0.0432
Wy —0.4914 0.1066 —0.5773 0.0485
Aoz 0.0549 0.0092 0.1249 0.0056
Ao 0.3142 0.0173 0.6070 0.0122
Ao.14 0.4685 0.0489 0.7876 0.0094
Aoos 0.0673 0.0074 0.0531 0.0070
Ao —0.1002 0.0289 0.0176 0.0093
Aosa —0.2181 0.0618 —0.0235 0.0123
A8<12 —3.8196 0.0402 —1.5086 0.0176
Al 0.1446 0.0080 0.0804 0.0038
A 12 0.0043 0.0090 0.0804 0.0041
A1z —0.0939 0.0173 0.2036 0.0125
Apa 0.1487 0.0602 —0.0833 0.0214
Ay 0.0004 0.0034 —0.0002 0.0015
Al 0.0488 0.0049 0.0259 0.0025
A —0.0377 0.0115 —0.0116 0.0093
Al —0.1911 0.0398 —0.1329 0.0226
A3 0.0100 0.0053 —0.0022 0.0020
A 0.0095 0.0071 0.0045 0.0031
Al 0.1088 0.0152 0.0894 0.0109
Al 0.3420 0.0932 0.0341 0.0377
Ay g 0.0064 0.0113 0.0044 0.0067
Ala 0.0091 0.0163 0.0081 0.0081
Atz 0.0524 0.0321 0.0537 0.0249
Al 0.4256 0.0898 0.5105 0.0431
A(l),ZI 1.1467 0.0911 —0.5181 0.0204
A?,zz 0.1497 0.0212 0.0341 0.0134
A?zs 0.0946 0.0318 0.0985 0.0132
A?,24 —0.0006 0.0755 0.0115 0.0579
By 0.4027 0.0252 0.2616 0.0078
By 0.7736 0.0179 0.9109 0.0081
B33 0.9731 0.0074 0.9673 0.0070
By 44 0.5369 0.1024 0.7832 0.0374
LL —60,211 —58,622

BIC —60,378 —58,790
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Third, liquidity variables Granger cause future volatility. In particular, high
trade sizes predict high future return volatilities. Conversely, the impact of trading
intensities and trading costs on future volatility is less clear revealing contradictive
results for both stocks. Obviously, there is no prediction power of return volatility
for future liquidity demand and supply.

Fourth, trading intensities and trading costs negatively influence future trade
sizes. Thus, a high speed of trading tends to reduce trade sizes over time. Likewise,
increasing trading costs seem to lower the incentive for high order sizes but on the
other hand increase the speed of trading. These results might be induced by the
fact that investors tend to break up large orders into sequences of small orders if
liquidity supply is low.

7.2 Stochastic Vector Multiplicative Error Models

7.2.1 Stochastic VMEM Processes

A further generalization of VMEM processes and multivariate extension of the
stochastic MEM has been introduced by Hautsch (2008). The major idea is to
capture mutual (time-varying) dependencies by a subordinated common (latent)
factor jointly driving the individual processes. Economically, this process might
be associated with the underlying (latent) information process jointly influencing
the multivariate trading process. The so-called stochastic VMEM (SVMEM) can be
compactly represented as

X, =¥, 04; Oey, (7.13)
where A; is a (K x 1) vector with elements {)Lfi Li=1,...,K,
InA; =aln);—; +v;, v ~iid N(0,1), (7.14)

and v; is assumed to be independent of ¢;. In this multivariate setting, the component
A; is interpreted as a common dynamic factor with process-specific impacts §;
(requiring the identification condition V[v;] = 1). The elements of ¥; represent
“genuine” (e.g., trade-driven) effects given the latent factor.

Hautsch (2008) applies the SVMEM to the three-dimensional process of intraday
returns y;, trade sizes v; and trading intensities p; (thus K = 3) as given by

yi =ElyilFial + &, (7.15)
& = v hié’(sll"Sh.,'Wi, Wi ~ i.i.d.N(O, 1), (7.16)
Vv, = <1§,>652A"sv,iu,>, u; ~ii.d.GG(pa, my), (7.17)

pi = J/iew"sp,is,', & ~iid. GG(p3, ms3), (7.18)
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where h;, @; and ¥; denote the so-called observation-driven dynamic components,
wi, u; and g; are process-specific innovation terms, which are assumed to be
independent, and sj;,$,,,5,; > 0 capture deterministic time-of-day effects in
volatilities, trade sizes, and trading intensities, respectively. The volatility innova-
tions w; are assumed to follow a standard normal distribution whereas the volume
and trading intensity innovations u; and ¢; follow standard generalized gamma
distributions with parameters p,, m, and p3, m3, respectively.

The process-specific impact of the latent factor is given by A;; := §;A; with
Aij =aki—1j +6; v,,andthus ” > (<)0ford; > (<)0with j =1,2,3. Since
the distribution of v; is symmetrlc 'the sign of the parameters §; are not individually
identified and require to restrict the sign of one of the parameters §;. Then, the signs
of & with k # j are identified.

The process-specific components /;, @; and ¥; are parameterized in terms of a
three-dimensional version of (7.9),

P 0
V= +Aizo;+ ) Ajzij+ Y BjW, (7.19)

j=1 j=1

where
V¥, := (Inh;, In®;, ny;), (7.20)
20 == (0, Inv;, Inp;), (7.21)
] /
Z, ‘= Sl S Vi s pi = (lW,‘|€81M/2, uiesﬂi, 8,'6531")/. (722)
\/l’l,'Sh.i d)isv.i 'Ilisp,i

As stressed by Hautsch (2008), the fact that the innovations z; do not depend
on the latent component ensures that 4;, @; and ¥; are completely observation-
driven and eases the estimation of the model. On the other hand, since the latent
variable is not integrated out of the innovations, a shock in A; influences {%;, &;,
¥; } not only directly (in period i), but also indirectly (through z;) in the subsequent
periods. Therefore, A; can generate cross-dependencies between the observation-
driven processes h;, ®; and ¥; even when Ag = A; = 0. As illustrated by
Hautsch (2008), due to this feature the model allows to parsimoniously capture
cross-dependencies.

If we set for simplicity Ag = 0, P = Q = 1, s3; = 8,; = $p; = 1, and
diagonal parameterizations of A and B, the model is rewritten as

= \/hTiwi, hi = h;e®?

vi = Qiuj, & = e,

pi = Yiei, W, = W,
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where
nh; —8iA = o +al! Jizil + BN (nhi—y —810i-1).
Vhl 1
In®; — 8> _w2+a12¢’ L B2(nd; ) — 80i1).
i—1

lnlI/ —83/1 = w3 +(¥33$A l +/3 (lnlffi_l —53A,‘_1).

Hence, A; serves as an additional (static) regressor which is driven by its own
dynamics according to (7.14). More details on the statistical properties of the
multivariate SMEM are given in Hautsch (2008).

7.2.2 Simulation-Based Inference

Let Y denote the entire data matrix with Y; := {y; }5.:1 and define 0 to be the
vector of SVMEM parameters. The conditional likelihood, given the realizations of
the latent variable A;, is given by

‘ 1 g2 ] oy |: (vi )pz]
L(Y:0]4,) = S R e
ol =] eXp[ 2 ) Tenya™ P\ &

p3m3—1 \ P3
x PP exp [— (&) } , (7.23)
I (m3) "™ %,

where

ro SiAs
hi == hie"sp;,
®; = @i, ;,

7R R Y
U = Wes s,

Accordingly, the integrated likelihood function is given by

B 5_12 I vpzmz 1 B V_z P2
F0) = /zlj[l 2]’17‘[ [ 2Hi:|r(m2)¢ip2m2 exp[ (él) :|

p3mz—1 3
P30} pi 1 1 2]
L R—— U 8 ——exp|—= (A; —poi)" |dA
I (m3) @™ p[ (lI/,) ] V2n p[ 2( £ Hoi)
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/Ilﬂxuh, 0)p(lAi1:0)d A

i=1

= /Hf(yiv)&ﬂYi—l,Ai_]; 0)dA,

i=1

where po; := [E[A;|A4;—1], g(-) denotes the conditional density of y; given
(A;,Y;—;) and p(-) denotes the conditional density of A; given A;_;. The
computation of the n-dimensional integral in (7.24) is done numerically using the
efficient importance sampling (EIS) method proposed by Richard and Zhang (2007)
and requires rewriting the integral (7.24) as

. ' l’vk‘ Yi £ i ’0
L(Y: 9) :/Hf(ym(,\lm 11 . )1 )Hm(/\ Aicy.¢)d A, (1.24)
i=1 i

where {m(A;|A;_1,¢;)}!_, denotes a sequence of auxiliary importance samplers
indexed by auxiliary parameters ¢;. The importance sampling estimate of the

likelihood is obtained by

, (7.25)

FGi AD1Y21, 47,5 0)
L(Y:0) ~ Lr(Y;0) = — . i
??[E mA"140,,¢,)

where {)L( )}l —, denotes a trajectory of random draws from the sequence of auxiliary
importance samplers m and R such trajectories are generated.

The idea of the EIS approach is to choose a sequence of samplers for
m(A;i|Ai—1, ¢;) exploiting the sample information on A; revealed by the observable
data. As shown by Richard and Zhang (2007), the EIS principle is to choose
the auxiliary parameters {¢,;}”_, in a way that provides a good match between
I m(A;|A;—1,¢;) and IT"_, f(yi,Ai|Yi—1,A;—1;0) in order to minimize the
Monte Carlo sampling variance of Lr (Y; 0). Richard and Zhang (2007) illustrate
that the resulting high-dimensional minimization problem can be split up into
solvable low-dimensional subproblems. This makes the approach tractable even for
very high dimensions. The detailed EIS procedure is given by Hautsch (2008). See
also Chap. 12 for a quite similar EIS procedure to estimate stochastic conditional
intensity models.

An important advantage facilitating the computation of the function f(-) is that
the time series recursion of the observation-driven components /4;, @; and ¥; can
be computed without the latent factor being known. As discussed in Sect. 7.2.1, this
is because {h;, @;, ¥;} are driven based on innovations z; that are observable given
the history of {&;,v;, p;} and {h;, ®;, ¥;}. Then, h;, ®; and ¥; can be computed in
a first step according to the VARMA structure given by (7.19) to (7.22) and can be

used in a second step to evaluate the sampler {m(A;|A; 1, P;}/_,.
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Filtered estimates of an arbitrary function of A;, ¥ (A4;), given the observable
information set up to #;_; are given by

JOAD)pAi|Yici Ai—1,0) f(Yio1, A;i—1]0)d A;

EP@)Nia]= S f(Yio1, Ai—|0)d A,

(7.26)

The integral in the denominator corresponds to the marginal likelihood function
of the first i — 1 observations, £(Y;—;;0), and can be evaluated on Athe basis of
the sequence of auxiliary samplers {m(A; |41, (;)lj_l)};_:ll where {qA)lj_l} denotes
the value of the EIS auxiliary parameters associated with the computation of
L(Yi—1;0) and 6 is set equal to its corresponding maximum likelihood estimate.
Correspondingly, the numerator is computed by

L& L7 (920G DI -1 47,8, 7).0)
Ll T
R

oAl N Ai—1_ ~i—l
= sl m (@A @ .8 )

, (7.27)

N A=l . . .
where {A;') (¢lj )}’j;l1 denotes a trajectory drawn from the sequence of importance

samplers associated with £(Y;_;;8), and AE”(G) is a random draw from the

conditional density p(A;|Y;—1, Afr_)l((;)i:;), #). The computation of the sequence

of filtered estimates E [#(A;) |Yi—1], 7 = 1,...,n, requires a re-run of the EIS
algorithm for every i (from 1 to n). For more details, see Hautsch (2008). Then, the
filtered residuals are given by

. &

w; = = ,
\/hiE[egl)” 1Yio1 ] $ni

~ Vi

4 B [eho e
AN P e

AL Pi

& =

W [ Vi1 ] $pi

7.2.3 Modelling Trading Processes

Tables 7.2 and 7.3 reproduces the estimates of Hautsch (2008) based on seasonally
adjusted 5 min (ARMAC(1,1)-pre-filtered) squared returns, average trade sizes and
number of trades data from the NYSE stocks JP Morgan and IBM covering
five months between 02/01/2001 and 31/05/2001. The underlying lag length is
restricted to two, where A, and B, are diagonal matrices. The major findings are
as follows:
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Table 7.2 Maximum likelihood efficient importance sampling (ML-EIS) estimates of different
parameterizations of SMEM specifications up to a lag order of P = Q = 2 models for the
log return volatility, the average volume per trade and the number of trades per 5 min interval for
the JP Morgan stock traded on the NYSE. Sample period from 02/01/01 to 31/05/01. Overnight
observations are excluded. The models are re-initialized on each trading day. Standard errors are
computed based on the inverse of the estimated Hessian. The ML-EIS estimates are computed
using R = 50 Monte Carlo replications based on 5 EIS iterations.

Diagnostics: Log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard
deviation and Ljung—Box statistics of the filtered residuals (LB) and squared filtered residuals
(LB2, only for the return process) as well as multivariate Ljung—Box statistic (MLB). The Ljung—
Box statistics are computed based on 20 lags. Significance at the 1%, 5% and 10% levels are
denoted by ***, ** and *, respectively. Results reproduced from Hautsch (2008)

&) 2 3) @) Q)

o 1.996%** 0.529%** —0.097*** 0.167*** 0.209
) —1.410%** —2.240%** —1471%** —2.035%** —2.122%**
w3 —0.016%** —0.225%** —0.337%** —0.008*** —0.005
od? 0.859*** 0.492%** —0.078*** 0.023* 0.050***
g’ 0.910%** 0.365%** —0.091*** 0.022 —0.033
o2 —0.882%** —1.158%** —0.953%** —0.941%** —0.958***
all 0.138*** 0.097*** 0.085*** 0.072%**
al? 0.009 —0.004 —0.010
all 0.001*** 0.000 0.001
ot —0.003 —0.022%** —0.029***
af? 0.005%** 0.005*** 0.005*** 0.010%**
ol 0.000** 0.000*** 0.000**
;! 0.550%** —0.037 0.096
aj? 0.388%** —0.054 —0.101**
ol 0.216%** 0.188*** 0.212%** 0.214%**
o) 0.117*** 0.053** 0.049**
af? —0.002*** —0.001 —0.004**
a3 —0.207*** —0.206%** —0.210%**

I 0.051 0.972%** 0.861*** 0.789***

12 0.170*** —0.246***

3 0.000 —0.001

121 0.646*** 0.066

2 0.708*** 0.178*** 0.115** 0.083

» 0.000 —0.001

3 1.166*** 0.180**

32 0.527%** —0.427**

3 1.623%%* 0.836*** 1.625%** 1.655%**

i —0.068** 0.086 0.177

22 —0.017 0.025 —0.077

S —0.625%** —0.626%** —0.657***
D2 0.720%** 0.863*** 1.027%%* 0.854*** 0.890***
ny 6.947%** 5.800%** 4.917%** 6.537%** 5.869%**
P 2.438%** 2.414%%* 2.287%** 2.454%** 2.579%**
ms 2.373%** 1.986%** 2.620%** 2.364%** 2.173%**

(continued)
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Table 7.2 (continued)
(1) (2) (3) 4) (5)

Latent component

a 0.951%** 0.907*** 0.941%** 0.930***
8 0.165*** 0.339%** 0.339*** 0.350***
8 0.122%** 0.176*** 0.136*** 0.132%**
3 0.024*** 0.009*** 0.011*** 0.015%***

General diagnostics

LL —18,306 —19,398 —18,201 —18,040 —18,009
BIC —18,458 —19,461 —18,291 —18,184 —18,180
MLB 665.637*** 12,670.643*** 288.422%** 171.290*** 197.625***

Diagnostics for the return process

Mean —0.019 —0.011 —0.004 —0.005 —0.006
S.D. 0.999 1.026 1.048 1.067 1.056

LB 35911** 31.627** 26.265 25.315 24.722
LB2 355.220%** 35.564** 40.740%** 6.513 11.903

Diagnostics for the volume process

Mean 1.001 1.003 1.009 1.009 1.006
S.D. 0.600 0.609 0.598 0.597 0.592
LB 22.132 90.3897*** 46.4347%** 11.269 17.671

Diagnostics for the trading intensity process

Mean 1.000 0.999 1.000 0.999 1.000
S.D. 0.273 0.306 0.276 0.273 0.273
LB 43.659*** 6,337.3537*** 140.305*** 50.553*** 53.280***

First, it turns out that the latent common component is strongly autocorrelated
with an autoregressive parameter being on average around @ ~ 0.94. Consequently,
the latent factor seems to accommodate common long-run dependence, which
is not captured by the observation-driven dynamics. Second, common shocks
simultaneously increase all three trading components. As revealed by the parameters
81, 8, and &3, the joint factor influences primarily the volatility and trade size.
Conversely, its impact on the trading intensity is relatively weak. These findings
confirm the results by Xu and Wu (1999), Chan and Fong (2000), Huang and
Masulis (2003) and Blume et al. (1994) documenting that trade size is obviously an
important indicator for the quality of news. Consequently, a subordinated common
(information) process is more strongly reflected in the average trade size rather than
in the trading intensity.

Third, including the common latent factor induces a decline of the magnitude
of the parameters a)® and o’. This indicates that the conditional contempora-
neous correlations between volatilities, volumes and trading intensities given the
latent component are lower than the corresponding unconditional ones. Hence, a
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Table 7.3 Maximum likelihood efficient importance sampling (ML-EIS) estimates of different
parameterizations of SMEM specifications up to a lag order of P = Q = 2 models for the log
return volatility, the average volume per trade and the number of trades per 5 min interval for the
IBM stock traded on the NYSE. Sample period from 02/01/01 to 31/05/01. Overnight observations
are excluded. The models are re-initialized on each trading day. Standard errors are computed
based on the inverse of the estimated Hessian. The ML-EIS estimates are computed using R = 50
Monte Carlo replications based on 5 EIS iterations.

Diagnostics: Log likelihood function (LL), Bayes Information Criterion (BIC), mean, standard
deviation and Ljung—Box statistics of the filtered residuals (LB) and squared filtered residuals
(LB2, only for the return process) as well as multivariate Ljung—Box statistic (MLB). The Ljung—
Box statistics are computed based on 20 lags. Significance at the 1%, 5% and 10% levels are
denoted by ***, ** and *, respectively. Results reproduced from Hautsch (2008)

¢)) 2 €) ) Q)
w 0.372%%* 0.504*%* 0.494*** 0.316%** 1.079%**
o —0.784*** —1.420%** —1.831%** —1.307*** —1.403***
w3 —0.200*** —0.517%** —0.373%** —0.160*** —0.305***
ad? 0.792*** 0.704*** 0.596*** 0.128*** 0.140%***
g’ 0.746*** 0.182** 0.585%** 0.099*** 0.429%**
ol —0.783%** —1.355%%* —0.768*** —0.866*** —0.789***
all 0.183%** 0.070*** 0.068*** 0.067***
al? 0.025%** 0.018** 0.015**
all 0.000 —0.001 0.002
ot —0.052%** —0.061*** —0.064***
af? 0.021%** 0.016*** 0.012%** 0.013%**
ol 0.001*** —0.001** 0.001**
;! —0.136%** —0.086** 0.015
o3l 0.344%** 0.110%* 0.136***
ol 0.191%** 0.153%** 0.182%** 0.151%**
! 0.131%** 0.086*** 0.048**
af? —0.004*** 0.001 0.001
o —0.101%** —0.105*** —0.087***
I 0.580*** —0.228%** 0.471%** 0.596***
12 0.048*** —0.050
13 * %k
0.001 —0.007
121 —0.108*** 0.477%**
2 0.866*** 0.176*** 0.400%** 0.436%**
» 0.000 —0.059***
31 —0.347%** 0.114
32 0.701*** 0.105
3 1.211%** 0.900*** 1.272%** 1.122%**
2 0.044 0.496™** 0.414%**
2 —0.009 —0.091** —0.115%*
3 —0.252%** —0.313*** —0.229**
D2 0.847*** 1.168*** 0.965*** 1.190%** 1.115%%*
ny 6.936*** 4.466%** 6.492%%* 4.953%** 5.470%%*
P 2.303%** 2.204%** 2.156%** 2.278%** 2.172%%*
ms 4.131%%* 3.499*** 4.642%** 4.255%%* 4.620%**

(continued)
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Table 7.3 (continued)

@ ) ©)) “ (6)
Latent component
a 0.9427%** 0.967*** 0.9407** 0.9447***
8 0.154%** 0.141*** 0.263*** 0.256***
8 0.146*** 0.087*** 0.133%** 0.123%**
3 0.0447%** 0.004*** 0.0127%** 0.003**
General diagnostics
LL —15,338 —16,959 —15,349 —15,106 —15,086
BIC —15,490 —17,021 —15,439 —15,250 —15,257
MLB 240.460*** 19,077.193*** 833.269%** 95.978*** 76.669*

Diagnostics for the return process

Mean —0.009 —0.009 —0.006 0.000 0.000
S.D. 1.000 1.014 1.009 1.026 1.028
LB 17.720 17.105 19.767 23.732 24.735
LB2 154.973*** 622.605*** 313.360™** 18.042 16.570

Diagnostics for the volume process

Mean 0.999 1.003 1.001 1.005 1.004
S.D. 0.484 0.512 0.487 0.481 0.483
LB 47.007*** 257.354*** 54.532%** 56.413*** 54.164***

Diagnostics for the trading intensity process

Mean 0.999 0.999 0.999 1.000 1.000
S.D. 0.216 0.246 0.217 0.216 0.216
LB 12.195 6,935.761 *** 84.6427%** 11.464 11.405

significant part of the contemporaneous relationships between conditional return
variances and average trade sizes as well as trading intensities obviously stem
from an underlying common component. Nonetheless, while the common factor
comprises the positive dependence between return volatility and trade size to a
large extent, it can only partly explain the positive correlation between trading
intensities and volatilities. The parameter o3° is significantly negative and mainly
unaffected by the inclusion of the latent component. This indicates that the
(negative) contemporaneous relationship between trade size and trading intensity
is not driven by a latent common component. Instead, according to Hautsch (2008),
it might be rather explained by the common finding that high volumes are typically
split over time leading to higher trading frequencies but also to smaller trade sizes.

Fourth, Panels (1)—(3) show the estimates of specifications omitting a common
latent component and revealing significant cross-dependencies between volatilities,
volumes and trading intensities. These dependencies, however, are clearly reduced
as soon as a common latent component is taken into account (Panels (5)—(7)).
Indeed, the size of cross-effects becomes close to zero and/or is insignificant.
Likewise the non-diagonal elements in B; shrink. As argued by Hautsch (2008),
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this finding indicates that most of the observed causalities between the individual
variables are mainly due to the existence of a subordinated common (information)
process jointly directing the individual components.

Moreover, the inclusion of the latent factor reduces the impact of the process-
specific innovations (&' and &' fori = 1,2, 3) and increases the persistence in the
observation-driven dynamics. This finding is in accordance with the results shown
for univariate SMEM processes in Sect. 6.4.2 and indicates that news seem to enter
the model primarily through the latent factor reducing the impact of process-specific
innovations.

Finally, the inclusion of a latent component leads to a reduction of the mul-
tivariate Ljung—Box statistic indicating that the common component successfully
captures the multivariate dynamics and interdependencies between the individual
processes. This is supported by a reduction of the Bayes information criterion
indicating a better fit of the SVMEM compared to MEMs without a latent factor.
Interestingly, the worst performance is observed for specification (4), where any
observation-driven dynamics are omitted and only a parameter-driven dynamic
is included. This indicates that a single common autoregressive component is
obviously not sufficient to completely capture the dynamics of the multivariate
system which confirms the findings by Andersen (1996) or Liesenfeld (1998).
Ultimately, we can neither reject the parameter-driven dynamic nor the observation-
driven dynamic confirming the basic idea of the proposed mixture model.
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Chapter 8
Modelling High-Frequency Volatility

This chapter discusses different ways to estimate intraday volatility. Section 8.1
presents realized measures to estimate intraday quadratic variation. Here, we
compactly illustrate fundamental approaches, such as the maximum likelihood
estimator by Ait-Sahalia et al. (2005), the realized kernel estimator by Barndorff-
Nielsen et al. (2008a) as well as the pre-averaging estimator by Jacod et al. (2009).
We restrict ourselves to a rather intuitive discussion of the major principles behind
these estimators. A more in-depth treatment, however, is beyond the scope of this
book and we refer to the reader to the underlying literature. Moreover, we show
applications of these estimators to estimate intraday variances based on different
frequencies and discuss modelling and forecasting approaches. Section 8.2 deals
with jump-robust and spot variance estimators. Section 8.3 illustrates intensity-
based volatility estimators. Here, we discuss the estimation of trade-to-trade return
variances based on high-frequency GARCH models as proposed by Engle (2000)
and Ghysels and Jasiak (1998) and their relationships to spot variances. Section 8.4
shows how to use price durations to construct intensity-based volatility estimators.

8.1 Intraday Quadratic Variation Measures

Under the assumption of no arbitrage, price processes must follow a semi-
martingale, see, e.g., Delbaen and Schachermayer (1994). Denote p; as the asset’s
logarithmic price process and assume that it follows a continuous semi-martingale
P, t = 0, of the form

t t
Pt = Po +/ I'Ltd": +/ UTdWT, (81)
0 0

where W denotes a standard (one-dimensional) Wiener process, (ii;)r>0 is a
finite variation caglag drift process and (0;).>¢ is an adapted cadlag volatility
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process associated with the instantaneous conditional mean and volatility of the
corresponding return.

To formally introduce the concept of quadratic variation, consider a stochastic
process g;, ¢t > 0, and decompose the interval [0, ¢] into intervals 5o < s; < ... <
s, = t. Then,

n
Vn(o, t) = Z |gxi — &si— | (8.2)

i=1

is defined as the (absolute) variation of the stochastic process g on the partition
S0, 81, ... over the interval [0, 7]. If V,(0,1) = V(0,t) forn — oo with V(0,1)
denoting the stochastic limit (in mean square), g is referred to be of finite variation.
In this case, the sum of absolute increments of the process on increasingly fine
partitions for a fixed ¢ is finite. This is true if the process has — loosely speaking —
a sufficiently smooth sample path. Conversely, if the sample path is very “spiky”,
it might happen that the sum of process increments does not converge to a finite
quantity but grows with n — oo.

Correspondingly, the quadratic variation (on the partition defined above) is given
by

OVu(0,1) 1= (g5 — &s1)’ (8.3)

i=1

with stochastic limit (in mean square) QV/(0,t). Using results from stochastic
calculus, it can be shown that a finite variation process, i.e., V(0,7) < oo, has a
quadratic variation which stochastically converges to zero. Likewise it can be shown
that a process with positive (finite) quadratic variation has infinite variation.

Consider the price process over the interval from 0 to 7 with continuously
compounded return

t t
Toq i= P — po = / pedt +[ ordW-,. (8.4)
0 0
The quadratic variation of p over the interval [0, ¢] is then given by
t
oV(0,1) = / oldt (8.5)
0
with

n
Z(pJA — P(j—l)A)2 Ig. QV(O,I) forn —> OQ. (86)
j=1
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The reason for (8.5) is that the drift process y; has a quadratic variation of zero,
while the quadratic variation of a Wiener process on [0, ¢] equals z. Hence, u, does
not affect the sample path variation of the return.

As the return process defined above is continuous, the quadratic variation equals
the so-called integrated variance

1V(0,1) :=/ o2dt = QV(0,1). (8.7)
0

This equality does not hold for processes containing a jump component, as, €.g., in
jump-diffusion processes.

Loosely speaking, the quadratic variation of a process corresponds to the sum
of its squared increments measured on infinitesimal intervals. Hence, it is a natural
quantity reflecting the riskiness of an asset over a given time span.

The availability of high-frequency data opens up the possibility to observe the
price path of an asset over arbitrarily small intervals and to generate estimators
of the quadratic variation. For simplicity consider the (standardized) interval [0, 1]
corresponding to a day or any intraday interval. Then, the quadratic variation
measured over [0, 1] is naturally approximated by the so-called realized variance'

n n
RV":= (pja—pi-na) == Y _Fian (8.8)
j=1 j=1

where 7 is the number of high-frequency intervals with length A = n~! in which
[0,1] is decomposed. Semimartingale theory ensures that the realized variance
converges to QV/(0, 1) in probability if n — oo. These asymptotics are typically
referred to as “in-fill” asymptotics. Hence, if it is possible to sample frequently
enough, QV(0,1) can be estimated with minimal estimation error. This is also
reflected in the asymptotic distribution (see Barndorff-Nielsen and Shephard 2002),

RV" —QV
ﬁﬁ ~ N(0,1), (8.9)

where IV = IV(0,1) and IQ := 1Q(0,1) := jg otdt defines the integrated
quarticity which can be consistently estimated by the realized quarticity RQ" :=
% Zj’:l r;'lA,n'

The consistency of the realized volatility estimator builds on the assumption
that prices behave according to the semi-martingale (8.1) and can be sampled
arbitrarily frequently. In practice, however, the sampling frequency is inevitably
limited by the actual quotation or transaction frequency. Moreover, as discussed

'In the literature it is often also called realized volatility though in a strict sense, the terminology
“volatility” is typically used for o; rather than for 7.
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in Chap. 4, transaction prices are subject to market microstructure effects, such as
the discreteness of prices or the bid-ask bounce effect. Hence, instead of the semi-
martingale process (8.1), it is more realistic to assume the observable price process
to be given by

po=pf +er, (8.10)

where p;* denotes the latent true price process following (8.1) and ¢, is a zero mean
error term reflecting so-called market microstructure noise. If ¢, is assumed to be
i.i.d. with E[¢?] := w?, it is easily shown that the observed high-frequency returns
rja,n follow an MA(1) process, see Sect. 8.1.1. Moreover, it is shown that

E[RV"] = IV(0,1) 4 2nw?. (8.11)

Hence, the realized volatility estimator based on the observed price process is biased
with bias term 2nw?, see, e. g., Hansen and Lunde (2006). For n — oo, RV, diverges
to infinity linearly in n. Thus, the estimate is dominated by market microstructure
noise.

Consequently, sampling at a lower frequency, such as every 5, 10, 15 or 30 min,
seems to alleviate the problem of market microstructure noise and thus is frequently
applied in the literature. This so—called sparse sampling, however, comes at the cost
of a less precise estimate of the actual volatility. To address the problem of not
loosing too much information due to sparse sampling on the one hand and being
not affected by market microstructure noise on the other hand, several competing
estimators have been proposed in the recent literature. For an overview, see, e.g.,
Andersen et al. (2008).

Since it is beyond the scope of this book to provide an in-depth discussion
of alternative quadratic variation estimators, we only briefly present three popular
estimators accounting for the presence of noise. These are the maximum likelihood
estimator proposed by Ait-Sahalia et al. (2005), the realized kernel estimator
introduced by Barndorff-Nielsen et al. (2008a) and the pre-averaging estimator
suggested by Jacod et al. (2009).

8.1.1 Maximum Likelihood Estimation

A relatively simple parametric estimator is proposed by Ait-Sahalia et al. (2005)
and builds on the assumption of a high-frequency discrete (log) price process

. iid.
Pja =DPiatEja. Eja ™ (0, %), (8.12)

where
iid.

r;A.n = P;:A - P?}—l)A = (0,074)

with r]’.kA’n being independent of € .
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Then, rjs, = r;‘A’n + &4 —¢&(j—1)4 can be re-parameterized as a MA(1) process,

Tjan = Wjan + NUG=1)An; (8.13)
where tja, ~ (0,y?). The parameters 7 and y? can be identified by

V(U + 1) = V[rjaal = 0’ A + 20,
yzn = CoV[rjan, I(j—1)an] = —w?.

2

Consequently, the daily variance o~ as well as the microstructure noise variance

can be estimated by

Q>
~o

I
~
<

Il
&
<>

21—, (8.14)
»* = —p*n, (8.15)

where 72 and 7} are maximum likelihood estimates based on a MA(1) process using
high-frequency returns.

8.1.2 The Realized Kernel Estimator

While the maximum likelihood estimator above is consistent under the assumption
of the given high-frequency price process, it is biased and inconsistent under more
general price properties. Barndorff-Nielsen et al. (2008a) propose a realized kernel
estimator which is consistent under more general conditions, such as, e.g., higher-
order dependence or endogeneity in the noise process. The idea is to capture
(potentially noise induced) serial correlations in trade-to-trade returns by a kernel.
The realized kernel estimator (RK) proposed by Barndorff-Nielsen et al. (2008a) is
defined by

H
h—1
K = ro@) + Lk () n@ + ra@h, 810
h=1
where y;,(A) denotes the Ath realized autocovariance given by
n
yi(A) =D (pia, = Pi-1a) (P—ia, — Pi—i—1)a,) (8.17)

j=1

withh = —H,...,—1,0,1,..., H and k(-) denoting the kernel function depending
on a bandwidth H. Barndorff-Nielsen et al. (2008a) suggest using the Tukey-
Hanning, kernel with

k(x) = sin*{m/2(1 — x)*} (8.18)
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with optimal choice of the bandwidth, H, given by

H = ctn, (8.19)

where ¢ = 5.74 for the Tukey-Hanning, kernel and ¢ is defined by

[ p1
2 =w? ‘du.
¢ w-/ /0 otdu

The quantity fol 0;‘ du can be estimated using the realized quarticity. To estimate
w?, Barndorff-Nielsen et al. (2008b) suggest

1 J
A2 ~2
= 52‘%‘)’
i=1
with
RV
2 == i=1...4
211([)
and RV(?), i = 1,...,q are realized variance estimators RV}, = Zj’:i ”]2'4,,1

sampling every ¢ = N/nth trade using the first ¢ trades per day as different starting
points, N denoting the number of transactions in [0, 1] and 71(;) giving the number of
non-zero returns that were used to compute RV/?,. To robustify this estimator against
serial dependence in the noise process, Barndorff-Nielsen et al. (2008b) propose
using g such that every gth observation is, on average, 2 min apart. As discussed by
the authors, this estimator is likely to be upward biased and therefore yields a rather
conservative choice of the bandwidth. For more details, see Barndorff-Nielsen et al.
(2008a,b).

8.1.3 The Pre-averaging Estimator

The principle behind the pre-averaging estimator proposed by Jacod et al. (2009)
is — loosely speaking — to remove market microstructure noise by locally averaging
high-frequency returns before squaring them and adding them up. The estimator is
constructed by choosing a sequence k, of integers satisfying

kn A2 =6 + 0(AY) (8.20)

for some 6 > 0, and a non-zero real-valued function g : [0,1] — R, which is
continuous, piecewise continuously differentiable, and g(0) = g(1) = 0. A typical
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example of a function g, which we use in the empirical section, is given by g(x) =
min{x, (I — x)} for x € (0, 1). The pre-averaged returns are given as

kn

_, j
Z; = Zg<k—>r(i+j)4$n, Tidn = DiA — Pii—1)A- (8.21)
j=t "

Hence, 7:-1 corresponds to a weighted average of the increments 7;4 , in the local
window [i A, (i + k,)A] which diminishes the influence of noise. The window size
k, is chosen to be of order A;l/ = pl2 leading to optimal convergence rates, see
Jacod et al. (2009).

Then, the direct analogue to the realized variance estimator is given by

[I/A]_kn
Vizany= > |Z;P (8.22)
i=0
yielding the pre-averaging estimator
A A
Cc" = £V(Z,n)— nAa pyn (8.23)
AV 202,

where ¥ 1= fol (g'(s))’ds = 1 and ¥, := fol (g(s))*ds = 1/12.
As shown by Jacod et al. (2009), we have

A ! A
—RV" %/ widu+ =1V.
2 0 2

The error of this approximation is of order A and has expectation 0. Therefore, the
statistic C" actually estimates

-2

In finite-samples we have to adjust for the true number of summands in V(Z, n)
inducing the adjustment term [1/A]/([1/A] — k, + 1). This yields the finite-sample
adjusted pre-averaging estimator

(A
‘o 262y ([1/A] — ky + 2)0y%

kn
[I/A]«/Z V(Z,n) _ l)[/] Akn RVH) ,
202y %
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where ¥|" and v," denote the finite-sample counterparts of ¥; and ¥, given by

=k S (L) (L)
kn—1

_ ki ) gz(é).

Jj=1

Jacod et al. (2009) show that the estimator is consistent and asymptotically
mixed normally distributed. It can be extended in various directions, for instance,
by allowing for serially dependent noise and jumps in the underlying price process.
Hautsch and Podolskij (2010) analyze the estimator’s dependence of the pre-
averaging parameter 6 and suggest a data-driven MSE minimizing choice.

8.1.4 Empirical Evidence

Traditionally, realized variance estimators as discussed in the previous subsection
are applied to daily (or even higher aggregated) data. Nevertheless, given the high
trading frequency of blue chip stocks nowadays, there are sufficient high-frequency
price (or mid-quote) observations to apply these estimators also to intraday data. As
shown by Hautsch and Podolskij (2010), it is recommended to apply realized kernel
and pre-averaging estimators using the highest possible sampling frequency. This is
particularly important if the underlying interval over which the quadratic variation
is measured shrinks. Figures 8.1-8.4 show estimates of the quadratic variation over
5 days based on intervals of 60, 30, 15 and 5 min, respectively. The realized kernel
estimator is computed based on an optimal choice of H as illustrated in Sect. 8.1.2.
The pre-averaging estimator is based on a fixed length of the pre-averaging interval
according to & = 0.2. Both estimates are benchmarked with the squared return
computed over the entire period and a plain realized variance estimator based on
2min returns. To increase the efficiency of the realized variance estimator, it is
sub-sampled, i.e., it corresponds to the average of all realized variance estimators
sampled over 2-min grids but starting at different observations within the first 2-min
interval.?

It is shown that squared returns yield quite noisy estimates, particularly when
the underlying interval becomes small. The sub-sampled 2-min realized variance
estimators are similar to the realized kernel and pre-averaging estimators. This
finding indicates that at least for actively traded assets, (sub-sampled) realized
variance estimators provide a powerful but simple way to estimate high-frequency

2All estimators are correspondingly scaled in order to account for “border effects” when the
sampling grid does not exactly match the underlying sampling period.
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Fig. 8.1 Annualized quadratic variation estimates (in percent) of 60-min intervals for JP Morgan
(NYSE), Microsoft (NASDAQ) and Deutsche Telekom (DTEK). Sample period: 01/06/09—
05/06/09 for JP Morgan and Microsoft and 06/09/10-10/09/10 for Deutsche Telekom. Upper
panel: 2-min sub-sampled realized variance estimator (solid) and squared 60-min returns (dotted).
Lower panel: Realized kernel estimator (solid) and pre-averaging estimator (dotted)
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Fig. 8.2 Annualized quadratic variation estimates (in percent) of 30-min intervals for JP Morgan
(NYSE), Microsoft (NASDAQ) and Deutsche Telekom (DTEK). Sample period: 01/06/09—
05/06/09 for JP Morgan and Microsoft and 06/09/10-10/09/10 for Deutsche Telekom. Upper
panel: 2-min sub-sampled realized variance estimator (solid) and squared 30-min returns (dotted).
Lower panel: Realized kernel estimator (solid) and pre-averaging estimator (dotted)

variances with high precision without being affected by noise-induced biases.
As expected, the estimators become more noisy and erratic if the underlying
period shrinks. The time series of 60min volatilities is relatively smooth and
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Fig. 8.3 Annualized quadratic variation estimates (in percent) of 15-min intervals for JP Morgan
(NYSE), Microsoft (NASDAQ) and Deutsche Telekom (DTEK). Sample period: 01/06/09—
05/06/09 for JP Morgan and Microsoft and 06/09/10-10/09/10 for Deutsche Telekom. Upper
panel: 2-min sub-sampled realized variance estimator (solid) and squared 15-min returns (dotted).
Lower panel: Realized kernel estimator (solid) and pre-averaging estimator (dotted)
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Fig. 8.4 Annualized quadratic variation estimates (in percent) of 5-min intervals for JP Morgan
(NYSE), Microsoft (NASDAQ) and Deutsche Telekom (DTEK). Sample period: 01/06/09—
05/06/09 for JP Morgan and Microsoft and 06/09/10-10/09/10 for Deutsche Telekom. Upper
panel: 2-min sub-sampled realized variance estimator (solid) and squared 5-min returns (dotted).
Lower panel: Realized kernel estimator (solid) and pre-averaging estimator (dotted)

reveals an obvious intraday seasonality pattern. In contrast, 5-min volatilities
are based on less underlying data points and thus are less efficient and clearly
more erratic. Moreover, the high-frequency estimators are naturally more affected
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by potential jumps. This is most evident for JPM revealing an obvious jump
at the end of the first day. Overall, these results suggest that realized variance
estimators are useful to estimate intraday variances as long as the interval of
interest covers sufficiently many observations but reach their natural limits if the
interval approaches transaction level. For these situations, spot variance estimators
or trade-based volatility estimators as discussed in Sects.8.2 and 8.4 are more
useful.

8.1.5 Modelling and Forecasting Intraday Variances

The estimators as discussed in the previous subsection provide model-free ex post
measures of the quadratic variation. To exploit this information for predictions of
future volatilities, however, a time series model has to be employed. A typical
feature of quadratic variation estimates on a daily level is their strong persistence
as reflected by significantly positive and slowly decaying autocorrelation functions.
To capture this behavior, Andersen et al. (2003) advocate using ARFIMA processes.
However, on an intraday level, the statistical properties of realized variances differ in
two respects. Firstly, the persistence in autocorrelations is lower. Secondly, intraday
volatility is subject to significant seasonality patterns.

Figure 8.5 shows plots of the estimated intraday seasonality patterns of quadratic
variation estimates covering 5 and 15 min. The underlying periodicities are esti-
mated employing a flexible Fourier form as discussed in Chap. 5, i.e.,
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Fig. 8.5 Intraday seasonalities of pre-averaging estimates for JP Morgan (NYSE), Microsoft
(NASDAQ) and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and
Microsoft and September 2010 for Deutsche Telekom. Seasonality estimated based on flexible
Fourier form. Top panel: 15-min based estimates. Bottom panel: 5-min based estimates
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RV, = s;¢;,

0
si=81+ Z {8;]- cos(i - 2mj) + 8 ; sin(zT-an)} ,
j=1

where ¢; is an i.i.d. mean one error term, RV; denotes the corresponding volatility
estimate associated with intraday interval i, s; is the seasonality function and i €
[0, 1] denotes the standardized intraday time. We observe that the typical U-shaped
intraday seasonality pattern is robustly estimated based on the different sampling
intervals.

Figure 8.6 depicts the autocorrelation functions of the corresponding seasonally
standardized volatility estimates. The ACFs are highly positive, but decay relatively
quickly to zero. Such a dynamic behavior is straightforwardly captured by a standard
ARMA process for logarithmic quadratic variation estimates

RV = RVs;,

P 0
¢+ ZO{]HRV,»“_J» + Zﬂ&‘i_j + &,
Jj=1 Jj=1

In RV,

where RV is the seasonally adjusted realized variance estimate and ¢; denotes
a white noise error term. As discussed in Chap.5, such a specification can be
consistently and efficiently estimated in one step or, computationally easier but less
efficient, in two steps. Though such a model is widely used in the given context, its
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Fig. 8.6 Autocorrelations of seasonally adjusted pre-averaging estimates for JP Morgan (NYSE),
Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan
and Microsoft and September 2010 for Deutsche Telekom. Seasonality estimated based on flexible
Fourier form. Top panel: 15-min based estimates. Bottom panel: 5-min based estimates
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main drawback is that estimates of log volatilities have to be transformed back to
plain volatilities whenever one is interested in predictions of the non-transformed
process. Alternatively, modelling RV directly can be straightforwardly performed
in a MEM context as discussed in Chap. 5 and leading to

RV: = s;¥Wei, & ~ Exp(l), (8.24)
P 0

W =w+Y o jRVioj/sicj+ Y Bi—j¥-j, (8.25)
j=l1 j=1

which can be estimated by QML. Obviously, this model is easily extended to a
fractionally integrated process as illustrated in Chap. 6.

A more classical approach is to apply a GARCH process based on the corre-
sponding seasonally adjusted intraday returns, i.e.,

ri = riz/sisgn(ri), (8.26)

rt=c+e. & =uo;, w = (0,1), (8.27)
P 0

o} =w+ Y el + Y Biol . (8.28)
j=I j=I

where s; is the (pre-estimated) intraday seasonality of squared returns and sgn(r;)
denotes the sign of r;.

However, as stressed by Hansen et al. (2011), GARCH models update only
very slowly after sudden changes in volatility. The main reason for this slow
responsiveness is that the innovation term &7 is a comparably noisy estimate of
volatility. Consequently, it takes relatively long to reach a new variance level after
a shock. Engle (2002) proposes augmenting a GARCH equation by the lagged
realized variance. This idea has been put forward by Shepard and Sheppard (2009)
and Hansen et al. (2011). Accordingly, by replacing &7 by RV; we obtain

P 0
of=w+ Y a;RVi;+ Y Bjo’ ;.

J=1 Jj=1

In line with Hansen et al. (2011), we refer this specification to as a realized GARCH
model.

Tables 8.1 and 8.2 show QML estimates of MEM(1,1), GARCH(1,1) and
Realized GARCH(1,1) models for de-seasonalized 15-min and 5-min intraday
volatilities for JPM, MSFT and DTEK. The underlying quadratic variations are
estimated using the (finite-sample adjusted) pre-averaging estimator C.. The
intraday seasonalities are estimated using a flexible Fourier form as illustrated
above. The highest persistence is revealed by the (realized) GARCH processes with
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Table 8.1 QML estimates of MEM(1,1), GARCH(1,1) and Realized GARCH(1,1) models for
15-min de-seasonalized intraday volatilities for JP Morgan (NYSE), Microsoft (NASDAQ) and
Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and Microsoft and
September 2010 for Deutsche Telekom

par. est. p-val. est. p-val. est. p-val.
JPM MSFT DTEK

MEM estimates

w 0.084 0.036 0.210 0.000 0.180 0.034

o 0.347 0.000 0.289 0.000 0.222 0.000

B 0.572 0.000 0.501 0.000 0.599 0.000

GARCH estimates

c —0.030 0.770 0.036 0.187 —0.015 0.653

w 0.097 0.027 0.095 0.178 0.345 0.002

o 0.073 0.002 0.036 0.076 0.107 0.005

B 0.830 0.000 0.869 0.000 0.550 0.000

Realized GARCH estimates

c —0.034 0.760 0.040 0.172 —0.017 0.658

w —0.001 0.531 0.887 0.000 0.189 0.023

a 0.170 0.004 0.228 0.028 0.325 0.000

B 0.831 0.000 —0.112 0.681 0.488 0.000

Table 8.2 QML estimates of MEM(1,1), GARCH(1,1) and Realized GARCH(1,1) models for
5-min de-seasonalized intraday volatilities for JP Morgan (NYSE), Microsoft (NASDAQ) and
Deutsche Telekom (XETRA). Sample period: June 2009 for JP Morgan and Microsoft and
September 2010 for Deutsche Telekom

par. est. p-val. est. p-val. est. p-val.
JPM MSFT DTEK

MEM estimates

w 0.079 0.003 0.194 0.004 0.198 0.048

o 0.293 0.000 0.210 0.000 0.176 0.000

B 0.629 0.000 0.596 0.000 0.627 0.000

GARCH estimates

c —0.008 0.629 0.028 0.117 —0.015 0.737

w 0.022 0.004 0.058 0.061 0.191 0.029

o 0.045 0.000 0.047 0.003 0.110 0.000

B 0.934 0.000 0.895 0.000 0.700 0.000

Realized GARCH estimates

c —0.007 0.618 0.035 0.076 —0.019 0.782

w 0.024 0.211 0.596 0.009 0.107 0.041

o 0.117 0.007 0.223 0.000 0.175 0.000

B 0.860 0.000 0.179 0.271 0.719 0.000

estimates of B close to one and « being comparably small. In the (plain) GARCH
model, the innovation parameter « is significantly lower as in the realized GARCH
and the multiplicative error models. This indicates that the past realized volatility
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Table 8.3 Mincer—Zarnowitz forecasting regressions of 15-min de-seasonalized quadratic varia-
tions on corresponding one-step-ahead forecasts implied by MEM(1,1), GARCH(1,1) and Realized
GARCH(1,1) models for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom
(XETRA). Sample period: June 2009 for JP Morgan and Microsoft and September 2010 for
Deutsche Telekom

par.  est. p-val.  R? est. p-val.  R? est. p-val.  R?
JPM MSFT DTEK

MEM forecasts

a 0.098 0.048 —0.019 0.585 —0.028 0.600

b 0.895 0.000 0.302 1.019 0.000 0.191 1.027 0.000 0.137

GARCH forecasts

a 0.022 0.405 —0.044 0.604 0.272 0.019

b 0977  0.000  0.175 1.042  0.000  0.066 0.726  0.000  0.052

Realized GARCH forecasts
a 0.162 0.003 —0.741 1.000 0.186 0.017
b 0.836 0.000 0.265 1.737 0.000 0.145 0.814  0.000 0.135

carries more information for the present conditional variance than the past squared
return. This effect is also supported by the decline of the GARCH parameter 8 when
moving from a GARCH specification to a realized GARCH model.? For a deeper
discussion of these effects based on daily data, see Hansen et al. (2011).

A simple way to evaluate the goodness-of-fit and forecasting performance of
volatility models is to apply forecasting regressions according to Mincer and
Zarnowitz (1969) where actually observed quantities are regressed on their cor-
responding forecasts. As volatility is unobservable, it is replaced by an efficient
quadratic variation estimate serving as benchmark. This is a common proceeding in
the volatility literature, see, e.g., Andersen and Bollerslev (1998a), among others.

Tables 8.3-8.4 show the results of the corresponding forecasting regressions
where the underlying pre-averaging based quadratic variation estimates are
regressed on the corresponding MEM, GARCH and realized GARCH forecasts,
ie.,

Cli=a+bQV;+e. & ~ WN, (8.29)

where él\/ ; € {lIA/, 652} in the context of the MEM or (realized) GARCH model,
respectively.* Evaluating the estimates against the benchmark ¢ = 0 (reflecting
the forecast’s unbiasedness), b = 1 (reflecting the forecast’s efficiency) with

3Note that the p-values of the GARCH-RV model have to be interpreted with care since the process
depends on pre-estimated regressors. Computing exact standard errors requires taking the sampling
error of the pre-averaging estimator explicitly account. A deeper discussion of these effects is
beyond the scope of this illustration.

“To reduce the potential effects of outliers, Pagan and Schwert (1990) suggest replacing the
variables in (8.29) by their corresponding logarithmic transformations.
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Table 8.4 Mincer—Zarnowitz forecasting regressions of 5-min de-seasonalized quadratic varia-
tions on corresponding one-step-ahead forecasts implied by MEM(1,1), GARCH(1,1) and Realized
GARCH(1,1) models for JP Morgan (NYSE), Microsoft (NASDAQ) and Deutsche Telekom
(XETRA). Sample period: June 2009 for JP Morgan and Microsoft and September 2010 for
Deutsche Telekom

par.  est. p-val.  R? est. p-val.  R? est. p-val.  R?
JPM MSFT DTEK

MEM forecasts

a 0.056 0.062 —0.086 0.902 0.010  0.455

b 0.940 0.000 0.296 1.087 0.000 0.139 0.990  0.000 0.077

GARCH forecasts

a 0.070 0.084 0.013 0.440 0.299 0.000

b 0.924 0.000 0.170 0.990 0.000 0.080  0.700  0.000 0.048

Realized GARCH forecasts

a —0.047 0.871 —0.455 1.000 0.171 0.010

b 1.041 0.000 0.282 1.458 0.000 0.125 0.829 0.000 0.075

a preferably high coefficient of determination R? (reflecting the correlatedness
between realization and forecast) allows to compare the predictive performance of
the competing models. We observe that MEM and realized GARCH specifications
provide the highest R? and thus the highest correlation between the forecast and
the realization. The similar performance of both approaches is expected as both
specifications rely on the lagged realized volatility as innovation. Overall, the MEM
approach yields the best forecasting performance which is not only reflected in the
R? values but also in estimates of a being virtually zero and b being close to one.
This is not necessarily true in the GARCH-type models which are partly biased and
less efficient. Overall, these results support the usefulness of multiplicative error
specifications for intraday volatility modelling and forecasting.

8.2 Spot Variances and Jumps

As illustrated above, for very high frequencies, the use of realized measures is
limited by the availability of sufficient underlying transaction data. While for very
liquid assets, quadratic variation estimates over short intervals are still more efficient
than just using the squared returns measured over the corresponding interval, these
differences vanish in case of less liquid stocks or if the length of the intervals
shrinks to zero. Hence, if one is interested in estimating the volatility based on very
high frequencies covering, e.g., only a couple of seconds, one is either left with
the modelling of squared high-frequency returns or using smoothing techniques to
exploit information of neighboring observations. The latter approach leads to an
estimation of spot variances.
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As in the given context, it is inevitable to account for the presence of jumps in
the underlying price process, we modify (8.1) as follows:

t t
pr = po+ / nedt + / o dW, + k;: Ny, (8.30)
0 0

where k; denotes a random variable with mean pu,, and variance o,f‘t and N, is a
counting process representing the number of jumps in the price path up to time 7.
Then, the quadratic variation over the interval [0, ¢] is given by

Al
QV(0.1) := plim ;(pm — P(—1)a)? (8.31)
= 1V(0,1) + JV(0,1), (8.32)

where
TVO.1) == k7 (8.33)

J=t

and 1 V(0, ) given by (8.7).

In this case, the estimators discussed above are still consistent for QV/(0, ¢) but
not for the integrated variance 71V(0,¢). To consistently estimate /V(0,¢) in the
absence of market microstructure noise, Barndorff-Nielsen and Shephard (2004)
propose the realized bipower variation estimator given by

. P n
BPV" == Y 1pja— py-nallpG-na = p-2al- (8.34)
=2

A consistent estimator for /1/(0, ¢) in the presence of jumps and noise is given by
Podolskij and Vetter (2009). Define the pre-averaged multipower variation as

n—lk,+1

V(Z.qr...q)" = Y ZMZ | | 2 e, | (8.35)
i=0

As shown by Podolskij and Vetter (2009), V(Z,qy,...,q;)" is biased due to
market microstructure noise. A bias-adjusted estimator is given by

VA A
BT" := ———V(p.1,1)" — 1/"2
Omiv, 202y,

RV", (8.36)



212 8 Modelling High-Frequency Volatility

or, alternatively,

VA U,

BT" := Vip,1,1)' — —&°,
Omiy (p. 1.1 02y

(8.37)

with BT" — IV, m; := E[JN(0, 1)|] and w? being consistently estimated by

N

R 1

»* = _ﬁ Z(pt,- - pli—l)(pti—l - ptf—z)’ (8.38)
i=2

with p; denoting the price at transaction i and N is the number of transactions
within the interval [0, 1], see Oomen (2006).
Moreover, we have

BTV" := “/—Z(V(z,z)" —mPV(Z.1.1)") = kG
CAV2) =

In finite samples, it is better to replace the constants ¥, Y» by their empirical
counterparts and to standardize the statistic V(Z,qi,...,q;)" by [1/A]/([1/A] —
lk, + 2) (see Sect.8.1) and to account for the true number of summands. For the
empirical properties of this type of estimators, see Hautsch and Podolskij (2010).

The spot variance is defined as the derivative of the integrated variance IV,
measured over a local window ¢ — £, ¢, i.e.,

IVi—ho _ . [l 0kdt

2= li 8.39
K iy h h—0 h (8.39)
Then, O'tz can be estimated by
IV —ht
o= MVE-RY) (8.40)

I

where I/I\/(t —h, t) is a consistent estimator of / V(¢ —h, t) and h,, is a local window
depending on n with the property 4, /n — 0 if h, — oo.

As proposed by Bos et al. (2009), (8.37) can be adapted yielding a consistent
estimate of 0,2 at the ith observation,

'_kn
0. VAR i
2. |

=-_vZ NZ o | — o2, 8.41
Uti em%"//zhn j J || ]-‘,—k"l 92w2w ( )

=i—hy

where h, = nf with B € (0.5, 1] accounting for the fact that k, is of order
n'/2. An obviously critical choice is the length of the local window /, implying
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the usual trade-off between biasedness and efficiency of the estimator. Empirical
evidence on the choice of %, is provided by Bos et al. (2009). Underlying theory
on nonparametric spot variance estimation is provided, among others, by Foster and
Nelson (1996), Bandi and Reno (2009) or Kristensen (2010).

8.3 Trade-Based Volatility Measures

An alternative way of estimating spot volatility is to define volatility on a trade-to-
trade basis and to construct estimators based on trade-to-trade returns. Engle (2000)
defines returns per square root of time, 7; := r;/./x; and suggests an ARMA-
GARCH model given by

Fi=c+@QFi— + 01 + &,

& = uivhi, ui ~ (0,1),
hi = wp + apel_, + Brhi-. (8.42)

According to this formulation, the variance per time unit, h; := aiz /x; with
o? = Vlgle;,j < i — 1] follows a GARCH(1,1) equation. This model is
referred to as the simplest form of a so-called ultra-high-frequency GARCH (UHF-
GARCH) which accounts for the irregular spacing of trades. The model builds on
the assumption that the news from the last trade is measured as the square of the last
price innovation per second, with the persistence of shocks being unaffected by trade
durations. In this case, the coefficients are constant and the model can be estimated
as a standard ARMA(1,1)-GARCH(1,1) model with the dependent variable defined
as returns divided by the square root of trade-to-trade durations.

To allow for trade-to-trade durations influencing the volatility per time and
assuming

E[s,-|sj,xj,j 5i—1;x,~]=0, (843)

the conditional variance of ¢; given the contemporaneous duration x;, i;i = 6,-2 /Xi
with 67 := V[e;|e;, j <i — 1, x;], (8.42) can be specified as

. N X _
hi = op + anei_y + Brhi—1 + yix; ! + J/z—lpl_ +
1

xi =¥&, & ~ Exp(l),
U, = wy + axXxi—1 + ﬂxlpi—]- (8.44)

As long as trade durations are assumed to be weakly exogenous for the volatility
process, the model can be straightforwardly estimated by (Q)ML.
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While Engle (2000) specifies the variance per time unit, Ghysels and Jasiak
(1998) and Grammig and Wellner (2002) advocate GARCH processes for the toral
variance, 0} = Vle;|e;,x;,j < i — 1] in transaction time whose parameters
are directed by an ACD process. Starting point is the assumption of a weak
GARCH process according to Drost and Nijman (1993), where ¢ = ¢ = 6 = 0
and

P[8%+1|r,',r,'_1, ] = ‘71'2+1 = w; + Otgri2 + ﬂaoiz, (8.45)

where P [rl2 11|7i. ri—1,...] denotes the best linear predictor in terms of (1,7;, 71,
o), e, E[(r2 — PRl i, i) = 0fori > 1,1 =0,1,2and n =
0,1,2,.... Suppose that trade durations exactly correspond to the values predicted
by the deterministic intraday component. Then, the corresponding GARCH process
is observed based on “normal” business time and is referred to as a “normal duration
GARCH process”. However, in case of changes of the trading frequency, the normal
duration GARCH process has to be aggregated or disaggregated. Drost and Werker
(1996) provide a temporal aggregation formula for GARCH processes yielding
a GARCH process with parameters depending on the underlying time between
observations. In the given context of a weak GARCH process, this requires making
the GARCH parameters dependent on the expected trade duration

0,-2+1 =wra(¥it1.0,) + OlTA(‘I’i+1,05)V,<2 + Bra(¥it1, 00)0,2,

where “TA” stands for “temporal aggregation”, 6, = (wy,ds,Bs,ks) with
k, denoting the kurtosis of the underlying return distribution. Note that ¥; :=
E[x;|F;—1] is deterministic given the information in #;_;. Thus, the parameters
074 := (wr4,0714, Bra)’ are known in t;_;. Drost and Werker’s (1996) theorem
on temporal aggregation yields the connection between 6, and the parameters of
the time aggregated process 0 74:

Theorem 8.1 (Drost and Werker (1996)). Assume (y;,i € N) is a weak GARCH
process with parameters 0, = (wy2,0,, By, ks), where k, is the kurtosis of y;.
Then, for each integer m > 1, the process (Z?’;ll Yitj-1,i € mN) is a weak
GARCH process with parameters

1 — (a5 + Bo)™
71— (s + /Sa) '
Oy 1= OZTA(le 90) = (as + ,Bo)m - ,Bm
B := Bra(m, 6,) is the real solution of

Bm _ a(og, Bo. ko, m)(ats + Bo)" — b(ay. By, m)
1+ 8% a(e, Bo.ke.m)(1 + (a5 + Bo)?") — 2b(cty, B )’

Wy = wra(m, 0;) = mo
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ko —3
ke =3+

+ 6(ko - 1)

« (m(1—ay — Bo)—1+ (s +B5)") (6 (1 — (a5 + :30)2) + Olg(ot(, + Bs))
m2(1 — 0y — ﬂa)(l - (aa + 50)2 + aé) ’

where

1 — (oo + ,Ba)zm

b(agvﬂa,m) = (Ola(l - (aa + /30)2) +a§(a0 + /30)) 1— (0[ + ﬂ )2 ’

a(y, By, ko m) :=m(l — By)> + 2m(m — 1)
(1 — Uy — ﬁo)z(l - (aa + ,60)2 + ai)
(ke = (1 = (a5 + B5)?)

(m(l —ay — Bo) — 1+ (a5 + B5)")
1 - (ao + ,30)2 '

% (aa(l - (aa + ,30)2) + 01(27(010 + :30))
1 — (a5 + Bo)? .

+4

An important implication of this theorem is that @74(m,074(n,0)) =
074(mn,0). Moreover, Drost and Werker (1996) show that the temporal
aggregation results also hold if m and n are replaced by arbitrary real numbers.
Then, the conditionally expected duration until the next trade ¥; +; (stemming from
an ACD model) corresponds to the aggregation parameter m. Grammig and Wellner
(2002) show how to simultaneously estimate the temporally aggregated GARCH
process and the ACD process using GMM.

As illustrated by Meddahi et al. (2006), there are two main differences between
Engle (2000) and the time-aggregated GARCH formulation of Ghysels and Jasiak
(1998). Firstly, Engle (2000) considers a conditional variance given past information
as well as contemporaneous trade durations while Ghysels and Jasiak (1998)
condition on past information only. Under (8.43), we have

aiz = E[6i2|8j,xj,j <i]. (8.46)

Secondly, Engle’s GARCH model for the variance per time units yields a time-
varying parameter GARCH equation for the total variance process o7. Set for
simplicity y; = y» = y3 = 0. Then, (8.44) can be written as

~ Xi Xio
67 = wx; +a——el |+ B——67,. (8.47)
Xi—1 Xi—1
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Using (8.46) and the definition of ¥;, we obtain

: w, A
‘71'2 = 0¥ +a— 81'2—1 +p— ‘7:'2—1 +B— (01'2—1 _Uiz—l)a (8.48)
Xi—1 Xi—1 Xi—1

which is obviously not a GARCH process for 0'1»2. Thus, Engle’s (2000) high-
frequency GARCH model is a time-varying parameter GARCH equation for h; but
not for /;.

Using an exact discretization of continuous time stochastic volatility processes
observed at irregularly spaced times, Meddahi et al. (2006) show that it is appro-
priate to study the variance of ¢; given F{_| = o(g;,v;,x;,j < i —1;x;) with
v; denoting the spot variance of an underlying continuous time stochastic volatility
model d In p; = /v;,d W;. They show that V[e; | F_,] is well approximated by

Vlei [ Fi_] =~ vieixi, (8.49)

which motivates studying the conditional variance per time unit V(e;|F_]/x;
as discrete time approximation of the underlying spot variance and supports the
approach by Engle (2000).

However, Meddahi et al. (2006) also illustrate that in the given framework,
Vlei|F;_,1/xi follows an AR(1) process with time-varying parameters contradicting
Engle (2000) and supporting the approach by Ghysels and Jasiak (1998). Hence,
ideally combining the merits of both competing approaches would mean to (i) model
the variance per time unit rather than the total variance, (ii) condition not only on
the history of the process but also on the contemporaneous duration, and (iii) allow
for time-varying parameters based on temporal aggregation.

Finally, note that the approaches discussed above ignore instantaneous simul-
taneity and causality effects between trade durations and stock price volatility.
A simultaneous modelling of the price and duration process by explicitly accounting
for the discreteness of price changes is proposed by Gerhard and Pohlmeier (2002).
Renault and Werker (2011) study the simultaneous relationship between price
volatility and trade durations in a continuous-time framework. They confirm the
results of Gerhard and Pohlmeier (2002) and illustrate that a considerable proportion
of intraday price volatility is caused by duration dynamics.

8.4 Volatility Measurement Using Price Durations

The use of price durations as defined in Chap.4 opens up alternative ways of
estimating volatility and price change risks. By definition they account for time
structures in the price process and are of particular interest whenever an investor
is able to determine his risk in terms of a certain price movement. On the basis of
price durations, it is possible to estimate first passage times in the price process,
i.e., the time until a certain price limit is exceeded. Equivalently, they allow for the
quantification of the risk for a given price change within a particular time interval.
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Price durations are naturally related to the price volatility of an asset. In order
to clarify this relationship in more detail, it is worthwhile to consider the expected
conditional volatility per time unit measured over the next trade duration x; 1, i.e.,

1
0'2(lj) ZZEI:—(I’H_]—fH_l)Z ]:[[i|, i=1,...,n, (8.50)
Xi+1
with r, = 2L Pt
Pi—1

and r; ;= E[r;| F,_, ] :=0.
Here, r; denotes the simple net return with a conditional mean assumed to be zero.?
Note that (8.50) is quite imprecise with respect to the measure that is used within
the integral. This aspect will be considered in more detail below.

In a GARCH framework, the event of interest is not the price at every transaction,
but the price observed at certain points in time. Intra-day aggregates are typically
used, e.g., on the basis of 5 or 10 min intervals.® Define in the following A as the
length of the aggregation interval and p(¢) as the price that is valid at ¢. Then, a
volatility measure based on equi-distant time intervals is obtained by

1
04y (JA) = E[r(( + DA Fja] . J=1,....n%, (8.51)
t)y—pit—A
with () 1= 2D = PE=4) (8.52)
pt—A4)
wheret = jA, j = 1,... ,n4, are the equi-distant time points associated with A

and n denotes the sample size of A minute intervals. Thus, o(zr A)(t) is not based on
the transaction process, but on certain (equi-distant) points in time and is typically
estimated by standard GARCH-type models.” In general, volatility measurement
based on equi-distant time intervals raises the question of an optimal aggregation
level. A major problem is that the criteria of optimality for the determination of the
aggregation level are not yet clear.

An alternative to an equi-distant interval framework is to specify a bivariate
process, which accounts for the stochastic nature of both the process of price
changes and the process of trade durations. These specifications allow for volatility
estimates on the basis of a bivariate distribution. By defining the price change
variable d; := p; — p;—1, we have thus

1
O (ti) = E [— ~dy

Xi+41

1
]-'t,,] —., i=1...,n (8.53)
pPi

SFor the ease of exposition, no log returns are used. However, using log returns would not change
the general proceeding.

%See, e.g., Andersen and Bollerslev (1998a,b) for further references.
7In this context, it is common to approximate p(t) by the most recent observed price before 7.
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The limitation of such models to the analysis of price changes d; is standard and
not substantial since these models are usually estimated on the basis of transaction
data. However, the process of price changes on the transaction level has a peculiar
property which needs to be accounted for. Price changes take on only a few
different values depending on the tick size and liquidity of the traded asset, see the
empirical results in Chap. 3. For the implications of the tick size on the distributional
and dynamical properties of the price process, see, e.g., Hautsch and Pohlmeier
(2002). Most models concentrating on the bivariate process account explicitly for
these market microstructure effects, like Russell and Engle (2005), Gerhard and
Pohlmeier (2002), Liesenfeld and Pohlmeier (2003) or Rydberg and Shephard
(2003). For more details, see Chap. 13.

A volatility estimator based on price durations is proposed by Gerhard and
Hautsch (2002). They start with the assumption that a decision maker in need
of a risk measure is able to express the size of a significant price change, dp.
In this framework, the bivariate distribution of r; and x; is no longer of interest
since r; is reduced to the ratio of a constant and a conditionally deterministic
variable. Define {tid‘" }ie{12..qdry being the sequence of points of the thinned point
process associated with price durations with respect to price change sizes of dp.
Moreover, define xfip = tidp - tl.df | as the corresponding price duration. Then, we
can formulate the conditional volatility per time measured over the spell of a price
duration as

2
1 d
o2, () =E| ——|Fu | [ (8.54)
(xaPy i dp t; P
Xit1 i’
1
=022, ") ==, i=1,....n%, (8.55)
tl.d”

where 0(”)‘( %p)(tl.dp ) stands for the conditional price change volatility from which
the conditional volatility of returns can easily be recovered according to (8.55).

Note that the estimation of a(zx ipy (t;’!p ) necessitates the estimation of the conditional
expectation E [%
Xit1
for Ldp itself or, alternatively, computing the conditional distribution +p using
X

X i

v _dpi|. This requires either specifying a stochastic process

a transformation of the conditional distribution of xl-d P. The latter procedure is
typically quite cumbersome and requires the use of simulation techniques. For
this reason, in Sect.4.2.2, an approximation procedure based on a categorization
approach is suggested.

Note that (8.55) is only defined at the particular points tidp of the underlying
thinned point process associated with dp-price durations. Thus, it does not provide
a continuous-time volatility estimation. Alternatively, in line with Engle and Russell
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(1998), an instantaneous volatility is defined as

o Lo (P +A) = p@))’
“([)"E%AE[( o)

Equation (8.56) can be formulated in terms of the intensity function associated with

}'t] . (8.56)

the process of dp-price changes {t,-dp}l-e{u ,,,, ndpy- Thus,
2
52.)(1) = lim Pr (|pt + &)~ p(0)| = dp|F)-| 2| s57)
@ AL A - S NI0) '
1 2
= lim —Pr [(N(t + 4) = N (1)) > 0|7, ] [_}
Alo A p

= APt F)- [d_pT
’ ON I

where N (t) denotes the counting process associated with cumulated absolute dp-
price changes and A%? (¢; F;) the corresponding dp-price change intensity function.
Expression (8.57) gives the expectation of the conditional dp-price change volatility
per time in the next instant and thus, allows for a continuous picture of volatility over
time.

Figures 8.7 and 8.8 show estimates of 6(2X i) (7) evaluated at the end of each price
duration spell for JP Morgan, Microsoft and Deutsche Telekom. We choose different
aggregation levels and estimate 6(2X i) () using an Exponential ACD(1,1) model with

3 8 N
) ° <
© 8
o S S
° 3 3
o 3
o o
Q o IS
(=] o
S
o
o o o
o o o
Sa 1 2 3 4 5 o0 1 2 3 4 5 20 1 2 3 4 5
JPM 10 bp price durations MSFT 3 tick price durations DTEK 3 tick price durations
o
o S
o o~
© 3
© Q
N s s
B
s ©
o 3 g8
=Y =) o
s
g J\J 8 | g
8 e S
S0 1 2 3 4 5 G0 1 2 3 4 5 20 1 2 3 ¥ 5
JPM 20 bp price durations MSFT 6 tick price durations DTEK 6 tick price durations

Fig. 8.7 Price duration based volatility estimates for JP Morgan (NYSE), Microsoft (NASDAQ)
and Deutsche Telekom (XETRA). Sample period: 01/06/09-05/06/09 for JP Morgan and Microsoft
and 06/09/10-10/09/10 for Deutsche Telekom. Estimates multiplied by 1e7
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Fig. 8.8 Seasonally adjusted price duration based volatility estimates for JP Morgan (NYSE),
Microsoft (NASDAQ) and Deutsche Telekom (XETRA). Sample period: 01/06/09-05/06/09 for
JP Morgan and Microsoft and 06/09/10-10/09/10 for Deutsche Telekom. Estimates multiplied by
le7

multiplicative intraday seasonality function chosen as a flexible Fourier form (see
Chap. 5). We observe that an increase in the aggregation level dp yields a natural
“smoothing” over time since smaller price changes are filtered out. We also observe
that these figures are strongly affected by intraday periodicities. Dividing by the
corresponding seasonality function in Fig. 8.8 yields a more clear picture of intraday
price intensities. Overall, we see an obvious similarity of the plots to the graphs
shown in Sect. 8.1.

8.5 Modelling Quote Volatility

While the previous sections cover reduced-form (pure statistical) approaches to
estimate and to model intraday volatility, this section discusses a structural approach
arising from market microstructure literature. Define r,; := Ina; — Ina;—; and
rp; = Inb; — Inb;_; as the log returns of ask and bid quotes, respectively.
A common approach in market microstructure research (see, for instance, Roll 1984,
Glosten and Harris 1988, Hasbrouck 1996 or Madhavan et al. 1997) is to decompose
the bivariate process r; := (r,;, Fp;) into the sum of a common return component
m; and market-side-specific components S, ; and Sj;,

r, = HS; + B/Z,‘, (858)

H:— 101
011

where
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and &, := (Sqi, Spi,m;) . Moreover, B := (B,, B;) is a k x 2 parameter matrix
associated with regressors z; driving the individual components. The common
component m; captures the underlying (unobservable) “efficient return” driving
both ask and bid returns. The quote-specific components S,; and S,; capture
deviations between m; and r; and are associated with transaction costs driving the
bid-ask spread. A similar framework for underlying quotes (in levels) is presented in
Chap. 13. Then, m; denotes the underlying efficient price, and ask and bid dynamics
involve a cointegration relationship.

Hautsch et al. (2011) extend and apply this framework to jointly model quote
and volatility dynamics. They refer S,; and Sp; to as ask and bid noise returns,
respectively, and model the dynamics of the unobservable return components in
terms of a vector autoregressive (VAR) process of order one, i.e.,

§=pn+F§_ +e. (8.59)
where i := (0,0,¢)’ is a3 x 1 vector, and F is a 3 x 3 matrix of the form

¢a 0 0
F=|10¢ O
0 0 ¢nm

According to traditional market microstructure theory, efficient returns should
follow a white noise process implying ¢,, and ¢ to be zero. Conversely, ask and bid
noise returns have a zero mean and should show mean-reverting behavior resulting
in negative coefficients ¢, and ¢. Hautsch et al. (2011) show that this notion is
strongly supported by the data.

Hautsch et al. 2011 assume the 3 x 1 vector of innovations &; := (£4, > Em.i)
to be conditionally normally distributed, i.e.,

&i| Fii ~ N(0, X), (8.60)

where X'; is specified as a diagonal matrix with X'; := diag(h,;, hp;, hm ;) and F;
denotes the information set up to i . Consequently, the off-diagonal elements are left
unspecified. The components %, ;, hp;, b,y are referred to as (conditional) ask and
bid noise variances as well as the efficient variance, respectively.

Hautsch et al. 2011 propose specifying the variance components in terms of a
multiplicative error specification of the form

hj; = ojz,,-s_,-,,' exp (yj'»wi) . j={a,b,m}, (8.61)

where w; are regressors (multiplicatively) affecting the variance components with
parameter y;. Moreover, ajz..i and s;; denote components capturing volatility
dynamics as well as deterministic time-of-day effects parameterized in terms of an
EGARCH model and a flexible Fourier form, respectively,
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2 I leji—1] 2 2
0j; =exp|w; +o; (ﬁ_ﬂ; +Bjnoj,_, |,

0
§ji 1= exp Z Vs sin2rgt) + ¥ cos2mqr) |,

g=1

with w;, oj, and B; are EGARCH parameters and v; are Fourier form parameters.
Finally, t € (0, 1) denotes the standardized time of the day.

Correspondingly, conditioning on past information and regressors, the condi-
tional (co-)variances are given by

szqi = V[rj,i|]-",-_1,zj,i,w,‘] = hj'i + hm,i» Jj € {a,b}, (8.62)

Oubi = CoVlrai, rpilFi—1,2ji Wil = hp . (8.63)

Similar to Engle and Patton (2004) (see also Chap. 13), parameterizing r,; and rp;
directly yields a specification for changes in the log spread s; := Ina; — Inb; and
the log mid-quote mq; := 0.5(Ina; + Inb;). Pre-multiplying (8.58) by the matrix
(1 : —1,0.5 : 0.5) yields the reduced form

As; = Sai — Spi + (B, — By) 7, (8.64)
Amq; = ¢ 4+ 0.5(Sai + Spi) +mi +0.5(8, — B) . (8.65)

where A denotes the first-difference operator. Correspondingly, the conditional
variances of As; and Amg; are given by

03y = VIAS | Fiot,2i,Wi] = hai + hy,, (8.66)
Oamgi = VIAmMGi | Fimi, 2. W;] = 0.5(hai + hpi) + b (8.67)

Hence, the conditional variance of spread changes equals the sum of the noise
variances. As a result, if the noise variances are zero, the spread is constant, and
quote returns and efficient returns coincide and correspond to the mid-quote return.
Then, its conditional variance simply equals /,, ;.

Hautsch et al. (2011) estimate this model based on two steps. In the first stage,
the model is estimated with constant variances using the Kalman filter as well as
the parameters using the corresponding error prediction decomposition (see Harvey
1992). Using quasi-maximum likelihood arguments in an exponential family setting,
the estimates are consistent, though not efficient, under distributional misspecifica-
tion as long as the conditional means are correctly specified (see Gouriéroux et al.
1984). In the second step, Hautsch et al. (2011) estimate (univariate) EGARCH
models based on the updated Kalman filter residuals, e;; := E[ej‘l|}",] j =
{a,b,m}. The model is applied to study the impact of macroeconomic news
announcements on the individual quote and volatility components.
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Chapter 9
Estimating Market Liquidity

Liquidity has been recognized as an important determinant of the efficient working
of a market. Following the conventional definition of liquidity, an asset is considered
as being liquid if it can be traded quickly, in large quantities and with little
impact on the price.! According to this concept, the measurement of liquidity
requires to account for three dimensions of the transaction process: time, volume
and price. Kyle (1985) defines liquidity in terms of the tightness indicated by
the bid-ask spread, the depth corresponding to the amount of one-sided volume
that can be absorbed by the market without inducing a revision of the bid
and ask quotes and resiliency, i.e., the time in which the market returns to its
equilibrium.

The multi-dimensionality of the liquidity concept is also reflected in theoretical
and empirical literature, where several strings can be divided: A wide range of the
literature is related to the bid-ask spread as a measure of liquidity,” the price impact
of volumes® and the analysis of market depth.*

In this chapter, we discuss different concepts of liquidity and econometric
approaches to estimate liquidity demand, liquidity supply and market impact.
Section 9.1 presents simple bid-ask spread and price impact measures. Section 9.2
discusses the application of volume durations to capture the time and volume
dimension of liquidity. Here, we will particularly focus on excess volume durations
as measures of one-sided trading intensity. Finally, Sect.9.3 deals with dynamic
models for limit order books.

IClassical references are, for example, Keynes (1930), Demsetz (1968), Black (1971) or Glosten
and Harris (1988).

2See, for example, Conroy et al. (1990), Greene and Smart (1999), Bessembinder (2000) or
Elyasiani et al. (2000).

3See, for example, Chan and Lakonishok (1995), Keim and Madhavan (1996) or Fleming and
Remolona (1999).

4See, for example, Glosten (1994), Biais et al. (1995), Bangia et al. (2008) or Giot and Grammig
(2006).

N. Hautsch, Econometrics of Financial High-Frequency Data, 225
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9.1 Simple Spread and Price Impact Measures

9.1.1 Spread Measures

A natural liquidity measure is the bid-ask spread reflecting the costs to cross the
market. Besides the standard bid-ask spread

S; = a; —bi, (91)

with a; and b; denoting the ask and bid quotes at time ¢;, also modified bid-ask
spreads are often used, see, e.g., Goyenko et al. (2009). For instance, the effective
spread is given by

Sei = 2|1In p; —Inmg;|, 9.2)

where mq; = 0.5(a; + b;) denotes the mid-quote. The effective spread measures
the (absolute) distance between the transaction price and the mid-quote and thus the
effective transaction costs implied by a trade. If the effective spread is aggregated
over time, we can compute a stock’s dollar-volume-weighted average trading costs.
Alternatively, the realized spread is given by

Sei=2|Inp; —Inmg;; |, 9.3)
where j, indicates the next trade which is at least x minutes apart. This measure
gives the spread which is realized after x minutes and thus reflects the transaction
costs which apply if the stock would be bought or sold back after this time. In

applications, x is typically chosen as 5 min. If an identification of the trade direction
is possible, the realized spread measure can be modified as

2(In p; —Inmg,y;,.), if the ith trade is a buy, 9.4)
Sri = ’ .
" 2(Inmgi4j, —1In p;), if the ith trade is a sell.

Then, a simple measure of the permanent price impact of a trade in 7 is then given
by the difference between the effective spread and the realized spread, i.e.,

Sei —Sri = 2|Inmg;1;, —Inmg;]|. 9.5)

9.1.2 Price Impact Measures

Roll (1984) proposes a simple model of price dynamics if transaction costs are taken
into account. Assume that midquotes follow a random walk process

mq; =mgqi—1 + &, (9.6)
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with g; being white noise and prices are given by

pi =mq; + cyib, 9.7)
where

y?: 1 if i is a buy,
' —1 ifiisa sell,

and c¢ reflects the effective trading costs corresponding to the half spread. Then, the
model implies

Api = mgq; +cy! — (mqi—1 +cyl_) = cAy! + &, 9.8)

and thus ¢ = \/ —Cov[Api, Api—1]. The effective transaction costs can be measured
as the square root of the negative first order autocovariance of transaction price
changes. Note that this measure is only valid as long as the first order autocovariance
is negative. Generalizations of the Roll model are proposed by Hasbrouck (2007).
Hasbrouck (2009) develops a Gibbs sampler to estimate transaction costs using daily
data.

Amihud (2002) proposes an illiquidity measure given by

I =1ral|/va, 9.9)

where d indexes trading days, r; denotes daily log returns and v, is the daily trading
volume. Accordingly, the Amihud measure gives the average price change per trade
size and thus reflects the average price impact of a transaction unit. Correspondingly,

L=1"=v/Ird, (9.10)

is a liquidity measure and is sometimes referred to as Amivest liquidity ratio (after
a management firm that developed it).

Note that the price impact measures discussed above are “low-frequency”
measures in the sense that they are computed based on aggregated data.

Corresponding high-frequency measures are traditionally obtained by price
impact coefficients in regressions of trade-to-trade price changes on (signed)
trading volume. Denote m; as the expected value of the stock, conditional on the
information set at i. Accordingly to Glosten and Harris (1988) we assume that m;
evolves as

m; =mi— + Aq; + &,

where ¢; denotes the signed trading volume at i and ¢; is a white noise process
representing (non-predictable) public signals. The coefficient A represents a market
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depth parameter reflecting the underlying demand or supply schedule. Then, if the
price process follows (9.7), price changes are given by

Api = Agi +e(y] = yio) +ei. ©.11)

As suggested by Brennan et al. (2009), this equation can be modified to allow for
different price responses to buys and sells,

Api = @ + Apuy(qilgi > 0) + Aseri(qilgi < 0) + eV =yl ) +ei.  (9.12)

Then, Ap,y and Ay are referred to as so-called “buy lambdas” and “‘sell lambdas”,
respectively, which reflect the trade-specific price impact and are easily estimated
by OLS.

A more reduced-form approach to measure the price impact of a trade is to run
the regression,

ri = Agi—1 + i, (9.13)

and to estimate A as a simple measure of the price impact. Modifications of these
price impact regressions are proposed, e.g., by Hasbrouck (2009) by running the
regression

A Z/XASJ'A—FE]'A, 9.14)

where j indexes A-min intervals, m indexes all trades within the jth A-min interval,
and Sja = ), 581V j)/|vm.j| denotes the cumulative signed (dollar) volume
over the jth interval. Then, A, reflects the derivative of the cost of demanding a
certain amount of liquidity over A minutes. Typically, one chooses A as 5 min (see,
e.g., Hasbrouck 2009 or Brennan et al. 2009).

Finally, note that all these measures require an identification of buyer and seller
initiated trade. Hence, a noisy buy-sell identification can have a severe impact on
the reliability of these measures. As already discussed in Chap. 3, these problems
are particularly present if transactions are executed at prices within the bid-ask
spread. For more refined (e.g., transaction cost based) measures, see, Harris (2003)
or Hasbrouck (2007).

9.2 Volume Based Measures

9.2.1 The VNET Measure

As also reflected in Amihud’s measure (see Sect.9.1.2), a natural way to estimate
the realized market depth is to relate the net trading volume to the corresponding
price change over a fixed interval of time. However, as discussed by Engle and
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Lange (2001), using a too small time interval can lead to measurement problems
because the excess demand or the corresponding price change often can be zero. In
contrast, using longer intervals reduces the ability of the measure to capture short-
run dynamics that are of particular interest when the market is very active. For this
reason, Engle and Lange (2001) propose the VNET measure, which measures the
log net directional (buy or sell) volume over a price duration. Using a price duration
as an underlying time interval avoids the aforementioned problems and links market
volatility to market depth. Consider the sequence of points associated with dp-price
changes, {tidp }. Then, VNET is computed as

NG
VNET; :=In Z yhvil, 9.15)

. d
J=NEL)

where N(7) denotes the counting function associated with the transaction process.
Hence, VNET measures the excess volume that can be traded before prices exceed
a given threshold and therefore can be interpreted as the intensity in which excess
demand flows into the market. An application of this concept in analyzing the depth
of the market is found in Engle and Lange (2001).

Alternative liquidity measures can be constructed based on trading volumes
reflecting (realized) liquidity demand. In this context, the cumulated trading volume,
as empirically studied in Chap. 3, is a widely used measure and plays an important
role for trading strategies, such as, for instance, VWAP strategies, see Brownlees
et al. (2011). It is easily available based on transaction data, however, has the
drawback that trading volume is also closely correlated to volatility, which can
impede market liquidity.

A further category of liquidity proxies are intensity-based volume measures.
Analyzing trade durations or, alternatively, the number of trades per time interval
naturally reflect the trading frequency and liquidity demand in terms of trading
opportunities. Alternatively, volume durations capture both the time and volume
dimension of the intraday trading process. Though volume durations do not account
for the price impact, they provide a reasonable measure of time costs of liquidity
(see, e.g., Gouriéroux et al. 1999). Consider, for example, a trader who wants to
execute a large order, but wants to avoid the costs of immediacy induced by a high
bid-ask-spread. Then, she has the option of splitting her order and distributing the
volume over time. Such a trader is interested in the expected time until the order is
entirely executed. Accordingly, the expected volume duration yield the (time) costs
of liquidity.

By defining volume durations not only based on the amount of volume shares, but
also on the type of the corresponding transactions, it is possible to capture different
components of the trading process. Hence, buy (sell) volume durations might be
interpreted as the waiting time until a corresponding (unlimited) market order is
executed. In this sense, forecasts of volume durations are associated with predictions
of the absorptive capacities of the market. Alternatively, by the quantification of the
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time until a given volume on both market sides is traded, one obtains a liquidity
measure that also accounts for the balance between the market sides. In this case, a
market period is defined as liquid if unlimited market orders are executed quickly
on both sides of the market.

9.2.2 Excess Volume Measures

9.2.2.1 Determinants of Excess Volume Durations

According to asymmetric information based market microstructure models as
reviewed in Chap. 2, the presence of information on the market is associated with
fast trading and one-sided volume confronting liquidity suppliers with risks due to
inventory problems and adverse selection. Hautsch (2003) proposes to use excess
volume durations as defined in Chap.3 as natural indicators for the presence of
information on the market. Excess volume durations measure the intensity of (one-
sided) demand for liquidity and allow to account for the time and volume dimension
of information-based trading. In this framework, small durations indicate a high
demand of one-sided volume per time and reflect a high (il)liquidity risk. In contrast,
long excess volume durations indicate either thin trading (long trade durations),
or heavy, balanced trading. However, neither of the latter two cases confront the
liquidity supplier with high liquidity risks. In this sense, excess volume durations
serve as natural indicators for informed trading inducing adverse selection and
inventory risks.

Hautsch (2003) models excess volume durations for several stocks traded at the
NYSE. Table 9.1 reproduces part of the estimation results for IBM, JP Morgan
and Philip Morris covering the period from 01/02/01 to 05/31/01. For each asset,
two aggregation levels are chosen ensuring a satisfying number of observations per
trading day and per stock leading to mean durations between approximately 4 and
10min corresponding to approximately 40 and 130 observations per trading day,
respectively. The excess volume duration series are seasonally adjusted by using
a cubic spline regression based on 30 min nodes in a first step. The econometric
framework is based on a Box—Cox ACD model (see Chap.5) that allows for a
parsimonious modelling of nonlinearities in the news impact function. Thus, the
model is given by

P 0
W =D/si =0+ el + > B —D/Si+7_y.  (9.16)
j=1 j=1

Though this specification does not necessarily ensure positive values for ¥; and
X;, the actual estimates do not reveal any violations of this restriction. The ACD
errors are assumed to follow a generalized F distribution as discussed in Chap. 5.
The choice of the appropriate lag order is performed on the basis of the Bayes
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Table 9.1 Estimates of Box—Cox-ACD(1,1) models with explanatory variables for excess volume
durations. Based on the stocks IBM, JP Morgan and Philip Morris traded at the NYSE. Sample
period from 01/02/01 to 05/31/01. QML standard errors in parantheses. Diagnostics: log likelihood
function (LL), Bayes Information Criterion (BIC), LR-test for joint significance of all covariates
(x*(6)-statistic), as well as mean (&), standard deviation (S.D.) and Ljung—Box statistic (LB) of
ACD residuals. Reproduced from Hautsch (2003)

IBM JP Morgan Philip Morris
dv = dv = dv = dv = dv = dv =
25,000 50,000 25,000 50,000 25,000 50,000
w 1.977 2.536 0.843 1.493 0.545 0.856
(0.356) (1.014) (0.198) (0.408) (0.147) (0.314)
o 0.292 0.339 0.151 0.163 0.137 0.154
(0.041) (0.070) (0.027) (0.054) (0.024) (0.047)
B 0.945 0.931 0.965 0.927 0.943 0.917
(0.010) (0.016) (0.007) (0.016) (0.010) (0.018)
81 0.055 0.113 0.057 0.063 0.322 0.354
(0.093) (0.123) (0.110) (0.099) (0.101) (0.084)
8 0.566 0.545 0.702 0.719 0.746 0.755
(0.056) (0.087) (0.071) (0.145) (0.082) (0.127)
a 1.615 2.206 0.981 1.001 1.352 0.857
(0.207) (0.214) (0.113) (0.138) (0.053) (0.115)
m 3.240 5.405 1.158 1.231 1.544 0.856
0.617) (1.007) (0.173) (0.224) (0.098) (0.146)
n 0.050 - 0.142 0.086 - 0.187
(0.027) - (0.059) (0.061) - (0.082)
|dp;i—1| —0.025 —0.127 —0.072 —0.140 —0.245 —0.314
(0.018) (0.039) (0.058) (0.069) (0.124) (0.139)
dp;— 0.023 —0.043 —0.101 —0.080 —0.204 —0.161
(0.018) (0.027) (0.045) (0.049) (0.082) (0.095)
dvi—; —0.213 —0.257 —0.091 —0.151 —0.063 —0.091
(0.035) (0.093) (0.019) (0.037) (0.014) (0.028)
vol;—; 0.007 —0.006 0.004 —0.016 —0.008 —0.023
(0.004) (0.009) (0.005) (0.011) (0.007) (0.012)
spdi— —0.123 —0.094 —0.157 —0.223 —0.254 —0.362
(0.033) (0.043) (0.042) (0.089) (0.060) (0.113)
dspd;—, —0.027 —0.055 —0.259 —0.207 —0.615 —0.464
(0.056) (0.065) (0.086) (0.138) (0.126) (0.157)
obs 10,442 4,138 10,145 4,093 9,625 4,220
LL —8,636 —3,382 —8,773 —3,386 —8,464 —3,563
BIC —8,701 —3,436 —8,837 —3,444 —8,523 —3,621
12 (6) 134.282 77.434 125.772 88.314 186.640 84.601
g 1.005 1.013 1.005 1.017 1.008 1.016
S.D. 1.060 0.999 1.082 1.008 1.107 1.125

LB(20) 32.11 20.70 36.89 24.42 28.05 21.00
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Information Criterion (BIC) leading to an ACD specification with a lag order of
P = Q =1 as the preferred model.

It is shown that the autocorrelation parameters are highly significant and reveal a
strong serial dependence in the series of excess demand intensities. As indicated
by the Ljung—Box statistics, nearly all estimated specifications are appropriate
for capturing the dynamics of the duration process. In most cases, the Box—Cox
parameter §; is found to be between 0 and 0.3 rejecting both linear specifications
(61 = 1) as well as logarithmic specifications (§ — 0). The estimates of §, vary
between 0.5 and 0.7 yielding evidence for a concave shape of the news impact
curve. As indicated by the distribution parameters a, m and 1, the high flexibility of
the generalized F distribution is not necessarily required in all cases. In most cases,
the estimates of 7 are close to zero indicating that a generalized gamma distribution
seems to be sufficient.’

In order to capture the dependence between excess volume durations and past
trading activities, Hautsch (2003) augments the model by six explanatory variables.
Including the absolute midquote change |dp;—1|, measured over the previous excess
volume spell, yield insights whether the magnitude of quote adjustments during
the past duration period has some predictability for the future liquidity demand
intensity. Indeed, the absolute price change associated with a given excess volume is
a proxy for the realized (absorbed) market depth. A significantly negative coefficient
in most cases indicates that liquidity suppliers tend to adjust their quotes stronger
when they expect high excess demands, and thus high liquidity risks. That is,
the lower the market depth over the previous spell, the smaller the length of the
subsequent excess volume duration.

Moreover, a highly significant coefficient associated with the signed price change
(dpi—1) measured over the previous duration period provides evidence in favor of
asymmetric behavior of market participants. The sign of this coefficient is negative
disclosing a higher (lower) excess demand intensity after positive (negative) price
changes.

As a further explanatory variable the magnitude of the lagged (excess) volume
is included. Note that a volume duration is measured as the time it takes a certain
minimum excess volume to trade. Obviously, in the case of a large block trade,
this threshold can be clearly exceeded. Since the extent to which the traded
volume exceeds the threshold can contain important information for the appraisal
of liquidity risk, the effective excess volume cumulated during the previous spell
(dvi—1) is included as a further regressor. A significantly negative impact of this
variable in most regressions yields additional evidence for a strong clustering of
excess volume intensities. To capture the fact that cumulative trading volumes are
driven by both trade sizes and trading intensity, the average volume per transaction
measured over the last duration spell, W,-_l, is included as a control variable but
is shown to be insignificant. This might be induced by collinearity effects between
dv;_ and Wi_l caused by the fact that large values of dv;_; only occur when the

SIn cases where  — 0, the models are re-estimated using a generalized gamma distribution.
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last trade in a duration period is a block trade. Then, the larger the quantity of this
final tra_nsaction, the larger dv;_; and therefore, the larger the average volume per
trade, vol;_;.

Moreover, it is shown that the length of an excess volume duration is negatively
correlated with the size of the spread posted at the beginning of the spell (spr;_).
Hence, given the past excess volume intensity, the spread posted by the market
maker indicates her assessment of the expected liquidity risk. Furthermore, the
change of the spread during the previous spell, dspr;_, := spr;_;, — spr;_,, has a
significantly negative impact on future excess volume durations. Thus, a widening of
the bid-ask spread reflects an increase of the expected liquidity risk in the subsequent
period.

9.2.2.2 Measuring Realized Market Depth

Similar to the VNET measure proposed by Engle and Lange (2001), the absolute
price change measured over the corresponding duration period provides a measure
of the realized market depth. The main difference between both concepts is the
underlying time interval over which the price impact is measured. In case of excess
volume durations, market depth is related to the intensity of the demand for (one-
sided) liquidity and thus to liquidity supplier’s inventory and adverse selection risk.
Hence, they allow to analyze price adjustments in situations which are characterized
by large imbalances between the buy and sell trading flow.

Table 9.2a reproduces part of Hautsch’s (2003) results of linear regressions of
the absolute price change, |dp;|, measured over an excess volume duration episode
on a set of regressors consisting mainly of the variables discussed in the previous
subsection. In addition, Hautsch includes the contemporaneous excess volume
duration, x;, as well as the ACD residual &; = x;/ lIA/, Clearly, these variables are
not weakly exogenous for |dp;|. Nevertheless, one might argue that these regressors
can be considered as being under the control of a market participant who influences
the demand for liquidity, and thus the length of the underlying volume duration spell
by her trading behavior. This specification enables to explore the determinants of the
price impact given the length of the underlying spell. It allows to characterize the
view of a trader who wants to place her volume in an optimal way and is interested
in the relationship between the price impact and the time in which the volume is
absorbed by the market.

An interesting question is whether the time in which a given excess volume is
traded, plays an important role for the size of quote adjustments. Mostly highly
significant coefficients associated with x; indicate a positive correlation between
the length of the time interval in which a certain excess volume is traded and
the corresponding absolute price reaction. Obviously, a market maker has better
chances of inferring from the trading flow when she is confronted with a more and
thus uniform demand than in periods where she faces large single orders entering
the market. Moreover, unexpectedly large (small) duration episodes, as measured
by &;, increase (decrease) the price impact even more. Hence, the market depth is
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Table 9.2 Linear regressions for absolute price changes measured over excess volume durations.
Dependent variable: |dp;|. Based on the stocks IBM, JP Morgan and Philip Morris traded at the
NYSE. Database extracted from the 2001 TAQ database, sample period from 01/02/01 to 05/31/01.
Diagnostics: p-value of F-test for joint significance of explanatory variables (pvr) and adjusted R-
squared. HAC robust standard errors in parantheses. Reproduced from Hautsch (2003)

IBM JP Morgan Philip Morris
dv = dv = dv = dv = dv = dv =
25,000 50,000 25,000 50,000 25,000 50,000
|dpi—1] —0.000 0.097 0.062 0.046 0.083 0.085
(0.000) (0.018) (0.014) (0.020) (0.011) (0.017)
dvi— —0.391 —0.066 —0.012 —0.010 —0.001 —0.012
(0.379) (0.026) (0.002) (0.008) (0.001) (0.005)
vol;_; 0.162 —0.008 —0.004 —0.005 —0.002 —0.000
(0.182) (0.005) (0.001) (0.003) (0.000) (0.001)
Spri— —0.234 0.121 0.086 0.184 0.029 0.032
(0.362) (0.065) (0.031) (0.057) (0.011) (0.024)
dspri— 0.184 —0.042 —0.039 —0.064 —0.012 —0.011
(0.230) (0.065) (0.018) (0.034) (0.011) (0.020)
& —0.001 0.073 0.025 0.025 0.017 0.015
(0.054) (0.010) (0.002) (0.006) (0.001) (0.003)
X; 0.064 0.022 0.007 0.025 0.001 0.008
(0.057) (0.009) (0.002) (0.006) (0.001) (0.002)
const 2.873 0.917 0.190 0.212 0.060 0.182
(2.506) (0.282) (0.026) (0.094) (0.017) (0.053)
obs 10,441 4,137 10,144 4,092 9,624 4,219
DPVF 0.000 0.000 0.000 0.000 0.000 0.000
R? 0.001 0.147 0.165 0.147 0.147 0.114

lower in periods of unexpectedly high excess demand intensity. These results seem
to be counter-intuitive since one would expect that traders who trade large quantities
quickly would have to bear additional “costs for immediacy”. However, note that
this empirical study does not consider the trading of block transactions. Such trades
are typically executed on the upstairs market and are based on special agreements
between the specialist and the trader (see, for example, Keim and Madhavan 1996)
confronting the investor with additional transaction costs induced by higher bid-
ask spreads. By explicitly focusing on floor trading at the NYSE, such effects are
not captured and opposite tendencies seem to prevail. Hence, liquidity suppliers
do not seem to draw inference from single large transactions, but from a more
permanent one-sided trading flow. Accordingly, the higher the continuity of the one-
sided trading flow, the higher the probability for the existence of information on
the market. Obviously, single large trades are associated with individual liquidity
traders, while a more continuous one-sided liquidity demand seems to be attributed
to the existence of information.
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9.3 Modelling Order Book Depth

The price impact measures discussed in the previous subsection reflect the realized
price impact depending on the underlying (unobservable) supply and demand sched-
ule in the market. However, limit order book data open up the possibility to estimate
the ex ante price impact of a trade. This is particularly true if the complete bid
and ask order curves are observable. Figure 9.1 illustrates a hypothetical limit order
book and plots the cumulated pending ask and bid volume against the corresponding
limit prices. Here, the steepness of the ask and bid curves are natural measures of
the liquidity supply. The steeper the curves, the more liquidity supply is offered (i.e.,
sell offers on the buy (ask) side and buy offers on the sell (bid) side) and the smaller
the price impact of a large order “walking up” or “walking down” the book. Given
the objective to capture not only the volume around the best quotes but also pending
quantities “behind” the market, i.e., deeper in the book, the underlying problem
becomes high-dimensional. In some markets or for some stocks, depth is strongly
concentrated closely to the market requiring to capture only a few levels. However,
in less liquid markets, liquidity supply is dispersed over a wide range of price levels.
Figure 9.2 shows snapshots of the order books of the National Australian Bank
(NAB), BHP Billiton Limited (BHP), a resource company, Mount Isa Mines Limited
(MIM), a base metal mining company and Woolworths (WOW) in the electronic
trading system of the Australian Stock Exchange (ASX). Here, the order book for
MIM reflects a situation where the market is very deep on the first order level
but very thin behind the market. Here, large orders can be executed without price
impact beyond the spread. However, as long as the first level is absorbed, trading
costs might increase dramatically or — in the extreme case — the order cannot be
completely executed because of a lack of offered liquidity. Conversely, the order

Volume Quantiles
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50% -

40% -

Bid Curve
30% 1 Ask Curve

20%

10% -
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—

Inside Spread

Fig. 9.1 Illustration of a limit order book. Vertical axis: Cumulated pending order volume.
Horizontal axis: limit price
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Fig. 9.2 Limit order books of the stocks BHP, NAB, MIM and WOW traded at the ASX on July 8,
2002 at 10:15

books of BHP and NAB reflect situations where the offered liquidity is spread over
many levels. Since liquidity is less concentrated, it is much more likely that large
orders walk up or down the book and thus face price impact costs.

9.3.1 A Cointegrated VAR Model for Quotes and Depth

In a limit order book market where liquidity and order activity is concentrated on a
few levels close to the prevailing best ask and bid quotes, the dimensionality of the
underlying process is still moderate. In this case, liquidity supply on the individual
levels can be modelled using classical multivariate time series models. Hautsch and
Huang (2009) propose a vector autoregressive model for best ask and bid quotes
as well as several levels of depth. Let i index any order activity in the market and
denote a; and b; as the best ask and bid quotes instantaneously after the ith order
activity. Moreover, vf’j and vf’j for j = 1,...,k, denote the depth on the jth best
observed quote level on the ask and bid side, respectively.

Then, high-frequency dynamics in quotes and depths are captured in a K-
dimensional vector of the logarithmic endogenous variables y; := [lng;,Inb;,In
vf’l, .. ,lnvf’k,lnvb'l, ...,In vf”k]’ with K = 2 + 2 x k. In Hautsch and Huang
(2009), the quote levels associated with v;” and vf’j are not observed on a fixed
grid at and behind the best quotes. Hence, their price distance to a; and b; is not
necessarily exactly j — 1 ticks but might be higher if there are no limit orders on all
possible price levels behind the market. This proceeding is justified for liquid assets
where level j mostly corresponds to a distance of j — 1 ticks to the corresponding
best quote. Moreover, modelling log volumes instead of plain volumes reduces
the impact of extraordinarily large volumes. This is also suggested by Potters and
Bouchaud (2003) studying the statistical properties of the market impacts of trades.
Moreover, using logs implies that changes in market depth can be interpreted as
relative changes with respect to the current depth level.

Hautsch and Huang (2009) model log quotes and log depths in terms of a
cointegrated VAR(P) model which is given in vector error correction (VEC) form

P
Ay, =p +af'y— + Z I;Ay,;+u, 9.17)
=



9.3 Modelling Order Book Depth 237

where u is a K x 1 vector of constants, & and B denote the K x r loading
and cointegrating matrices with r < K,and I';, j = 1,...,p—1,isa K x K
parameter matrix. The noise term u; is assumed to be serially uncorrelated with zero
mean and covariance X',. The model can be straightforwardly written in reduced
VAR form,

P
Vi=m+ Y Ajyioj+u, (9.18)
=1

where A| := Ix + af’ + I'| with Ix denoting a K x K identity matrix, Aj =
Fj _rj—l with 1 < ] < pandAp = _Fp—1~

As the model is a specification for quote and depth levels rather than first
differences, it is sufficiently general to accommodate both stationary and non-
stationary behavior of the underlying variables and does not require a priori
restrictions on the stationarity of order book depth. Using limit order book data
from actively traded Euronext stocks in 2008, Hautsch and Huang (2009) show that
order book depth can be actually strongly persistent on high frequencies and tend to
reflect near-unit-root behavior. This general framework obviously also nests the case
of stationary order book depth. Then, there is only one cointegration relationship
between ask and bid quotes. In models involving only quote dynamics (see, e.g.,
Engle and Patton 2004) or spread dynamics (see, e.g., Lo and Sapp 20006), the error
correction term B'y; is typically assumed to be equal to the spread implying a linear
restriction R’ = 0 with R” = [1,1,0,...,0]. For a discussion of the Engle and
Patton (2004) model, see Chap. 13.

9.3.2 A Dynamic Nelson-Siegel Type Order Book Model

If market depth is less concentrated around the best quotes but more dispersed
over several price levels, the dimensionality of the underlying process becomes
high making VAR type models for individual depth levels rather cumbersome.
In this case, dimension reduction techniques have to be applied. Proposing a
suitable statistical model results in the problem of finding an appropriate way of
reducing the high dimension without losing too much information on the spatial
and dynamic structure of the process. Moreover, applicability of the model requires
computational tractability as well as numerical stability.

A common way to reduce the dimensionality of multivariate processes is to apply
a factor decomposition. The underlying idea is that the high-dimensional process is
driven by only a few common factors which contain most underlying information.
Factor models are often applied in the asset pricing literature to extract underlying
common risk factors. In this spirit, a successful parametric factor model has been
proposed, for instance, by Nelson and Siegel (1987) to model yield curves. Applying
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the Nelson—Siegel model to the order curve on one side of the market,® cumulative
depth up to level j at period i is given by

. 1 —eHMJ 1—eHiJ s
v/ = Bii + B (—) + Bsi (— - €_M) . 9.19)
A,,'] Ai

The parameters f1;, B; and B3; can be interpreted as three latent dynamic factors
with loadings 1, (1 — e %/)/A;j, and {(1 — e 7)/A;j} — e, respectively.
Then, B;; represents a long-term factor whose loading is constant for all levels and
thus reflects the (cross-sectional) average depth. With the loading of f,; starting
at one and decaying monotonically and quickly to zero, f,; captures the overall
slope of the order curve. Finally, fB3; is interpreted as a “curvature factor” with
a loading starting at zero, increasing and decaying to zero in the limit. Finally,
the parameter A; governs the speed of decay and drives the order schedule’s
curvature.

Then, denoting the factors in correspondence with the term structure literature

by L; := Bi1;, S; := B2 and C; := B3;, we can represent the model in state-space
form
vV, = Afl + €;, (920)
where f; = (L;, S;, C;)’ denotes the 3 x 1 vector of latent factors, v; :=
(i, Vi )/ is the J x 1 vector of level-dependent depth and
l—e=A1 A1 i
1 =5 T !

1 l—e 2 |—e Hi?2 _ il

A= Ai2 Ai2
l—e* =R )
1 =7 X7 e

represents the J x 3 matrix of factor loadings. Finally, for the J x 1 vector of error
terms €; one can assume

ei = (g}, &, ....¢]) ~ 1id. N(0,X)
with
x =diag{(0")". (®)..... ()} (9.21)

As suggested by Diebold and Li (2006), this model can be estimated for each
observation i by regressing v; on the matrix A using nonlinear least squares. If

SFor ease of notation we omit the market-side specific index.
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A; is fixed to a constant (as in typical term structure modelling, see, e.g., Diebold
and Li 2006), the model can be even estimated by ordinary least squares.

Then, the dynamic behavior of limit order curves, captured by the latent factors
f;, can be modelled using multivariate time series models. A natural choice is to
model f; as a VAR(Q) process,

0
fi=p+) ®fi;+u,. (9.22)

j=1

where @ is a 3 x 3 parameter matrix, g denotes a 3 x 1 parameter vector, and
the 3 x 1 zero mean error term vector 3; is assumed to be independent of &; with
covariance matrix H. Clearly, to allow for dynamic interdependencies between ask
and bid order curves, it is suggested to model the dynamics of ﬁ”k and ff-’i 4 in a joint
six-dimensional VAR system.

The advantage of the Nelson—Siegel model is its flexibility while being very
parsimonious and easy to estimate. Nevertheless, due its purely parametric form,
its flexibility to capture any possible order book shape is naturally limited. Hence,
more flexibility is provided by a model which captures the shapes of the order book
curves in a fully nonparametric way.

Finally, note that the model does not necessarily ensure that order book curves
are non-decreasing. This might cause problems for predictions of order book shapes
in (extreme) areas where the book becomes very dispersed and data is sparse. In
such a case, re-arrangement procedures for non-monotone estimates of monotone
functions, as, e.g., proposed by Chernozhukov et al. (2009), might be used.

9.3.3 A Semiparametric Dynamic Factor Model

Hérdle et al. (2009) propose modelling the order book curves using a dynamic
semiparametric factor model (DSFM) as introduced by Park et al. (2009). The
starting point is to assume that v{ follows an orthogonal L-factor model with
L,

vl =mo+ Buml + -+ BLim’ + ¢, (9.23)

where m is a constant, mI’ is the j-level specific realization of a (time-invariant)
factor loading with m; : R’ — R, B;; denotes the value of the corresponding factor
at i and 8'1»/ represents a white noise error term. Define m := (mg,m; ..., mz)" and
f; := (Boi. Biis-- .. Bri) with Bo; = 1.7 The DSFM is a generalization of the factor

7As both variables f8;; and m; are assumed to be unobservable, the definitions of factors and
loadings are somewhat arbitrary. Here, we use a terminology which is consistent with the previous
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model (9.23) and allows the factor loadings m; to depend on explanatory variables,
z! . Accordingly, it is given by

L
v o= Zﬂliml(z{)—i—aij =fmz) + ¢, (9.24)
1=0

where the processes zi’ , s'il and f; are assumed to be independent.

Park et al. (2009) propose estimating the unobservable factor loadings m; using
a series estimator. For K > 1, appropriate functions vy, : [0, l]d - R,k =
1,..., K, which are normalized such that f W}? (x)dx = 1 holds, are selected.
Park et al. (2009) select a tensor B-spline basis functions for . Then, K denotes
the number of knots used for the tensor B-spline functions and is interpretable as a
bandwidth parameter. Accordingly, the loadings m are approximated by By, where
B = (bix) € REFDK is a coefficient matrix, and ¥ = (1, ..., ¥x) denotes a
vector of selected functions. Then, the first part in the right-hand side of (9.24) can
be rewritten as

L L K
fm(z)) =Y Bumi@) =Y Bu Y buvi(z) =tBy(z). (9.25)

1=0 =0 k=1

The coefficient matrix B and the factors f; are estimated by least squares, i.e.,

7

B and f'i = (1,¢A>,;1, .. ,¢A>,-,L) are defined as minimizers of the sum of squared
residuals, S (B, f;),

(f,- fs) = arg min S (B. 1)) (9.26)

— arg I}llélz 3 {v{ — By (z{)}2. (9.27)

Park et al. (2009) suggest solving the minimization problem using a Newton—
Raphson algorithm which is shown to converge to a solution at a geometric rate
under weak regularity conditions. Moreover, they show that the difference between
the estimated factors f; and the true factors f; are asymptotically negligible. Conse-
quently, it is justified to use in a second step multivariate time series specifications
in order to model the dynamics of the factors.

The selection of the number of time-varying factors (L) and the number of knots
K is performed by evaluating the proportion of explained variance (E'V):

section and is commonly used in the literature of factor models. However, Hirdle et al. (2009) use
a converse terminology and define m; as a factor and f;; as a factor loading.
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EV(L)=1- == , (9.28)

where v denotes the overall average.

Hirdle et al. (2009) use this approach to model the limit order book curves of four
stocks at the Australian Stock Exchange based on a 5 min frequency. They choose
vl-/ as the seasonally adjusted order book depth, cumulated up to level j, observed at
time interval i. Accordingly, as explanatory variables driving the loadings m, they
use the vector of relative distances between the corresponding limit price levels
j = 1,...,J, to the current mid-quote at the market. Hence, by using these so-
called “relative order prices” instead of an absolute price grid, the order curves are
interpreted as a relationship between the cumulated pending order volume and the
order prices’ relative distance to the current mid-quote level. In this context, Hiardle
et al. (2009) choose the knots underlying the tensor B-spline function such that they
cover the complete range of realizations of the relative order prices.

Table 9.3 reproduces results from Hirdle et al. (2009) and shows the model’s
explained variation for the stocks BHP, NAB, MIM and WOW traded at the
ASX during July and August 2002. We observe that approximately 95% of the
explained variation in order curves can be explained using two (time-varying)
factors, whereas the marginal contribution of a potentially third factor is only very
small. Consequently, a factor model involving one constant and two time-varying
factors (similarly to the Nelson—Siegel approach illustrated above) is sufficient to
capture the order book dynamics.

The goodness-of-fit of the model is illustrated by Fig. 9.3 giving snapshots of the
estimated order curves on an arbitrary day. It turns out that the model captures the
true order curves remarkably well. This is particularly true for price levels close to
the best ask and bid quotes. Nevertheless, slight deviations are observed for price
levels deeply in the book.

Figure 9.4 shows the estimates of the first and second factor loading /7, and 7,
in dependence of the relative order price grids. The first factor obviously captures

Table 9.3 Explained variance of DSFM estimates of ask and bid order book curves depending on
relative order prices based on different number of factors L and 20 B-spline knots. Based on trading
at the ASX for the stocks, BHP, NAB, MIM and WOW, July 8 to August 16, 2002. Reproduced
from Hirdle et al. (2009)

L BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
1 0.925 0.934 0.990 0.916 0.916 0.909 0.946 0.938
2 0.964 0.965 0.996 0.975 0.941 0.948 0.953 0.959
3 0.971 0.976 0.996 0.981 0.941 0.961 0.949 0.964
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Fig. 9.3 Estimated (dashed) and observed (solid) limit order curves depending on relative order
price levels for the stocks BHP, NAB, MIM and WOW traded at the ASX on July 8, 2002, 11:00
(upper panel) and 13:00 (lower panel). Reproduced from Hérdle (2009)
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Fig. 9.4 Estimated first and second factor loadings of the limit order curves depending on relative
order price levels for the stocks BHP, NAB, MIM and WOW traded at the ASX, July 8 to
August 16. Reproduced from Hirdle (2009)

the order book slope which is naturally associated with the average price impact on
a particular side of the market. The second loading captures order curve fluctuations
around the overall slope. Correspondingly, the second factor can be associated with
a “curvature” factor in the spirit of Nelson and Siegel (1987). The shape of this
loading reveals that the curve’s curvature is particularly distinct for levels close to
the best quotes and for levels very deep in the book where the curve seems to spread
out. The shapes of the estimated loadings are remarkably similar for all stocks
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Fig. 9.5 Time series plots of the estimated first and second factors of the limit order curves
depending on relative order price levels for the stocks BHP, NAB, MIM and WOW traded at the
ASX, July 8 to August 16. Underlying aggregation level: 5 min. Reproduced from Hérdle (2009)

except for MIM. As illustrated above, MIM is exceptional in the sense that order
book depth is strongly concentrated at the best quotes.

The time series dynamics of the corresponding factors ﬁ,b and ,3;’ are shown
in Fig.9.5. It is shown that the factors strongly vary over time reflecting time
variations in the shape of the book. The series reveal clustering structures indicating
arelatively high persistence in the processes. This result is not very surprising given
the fact that order book inventories do not change too severely over short time
horizons.
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Chapter 10
Semiparametric Dynamic Proportional
Hazard Models

Proportional hazard (PH) models as introduced in Chap. 4 have a long history in
labor economics and serve as a workhorse for the modelling of unemployment
spells. Here, we discuss dynamic extensions which can be seen as the direct
counterpart to the class of dynamic accelerated failure time (AFT) models to which
the ACD model belongs to. As discussed in Chap. 4, a PH model can be estimated
in different ways. One possibility is to adopt a fully parametric approach leading
to a complete parameterization of the hazard function. Such a model is consistently
estimated by maximum likelihood given that the chosen parameterization is correct.
A further possibility is to refer to the results of Cox (1975) and to consistently
estimate the parameter vector y either by a partial likelihood approach or in a
semiparametric way. In this framework, the model requires no specification of the
baseline hazard /¢ (x) but of the integrated baseline hazard Hy(x) := fox ho(s)ds.
Then, ho(x) can be estimated semiparametrically or non-parametrically.’

In this chapter, we focus on the latter approach and consider a dynamic extension
of semiparametric PH models. This class of models is introduced by Gerhard
and Hautsch (2007) under the name semiparametric autoregressive conditional
proportional hazard (SACPH) model. The basic idea is to specify a dynamic process
directly for the integrated hazard function H(x;) := Oxi h(s)ds. We illustrate that
the categorization approach proposed by Han and Hausman (1990) is a valuable
starting point for such a specification leading to a model that allows for a consistent
estimation of the model parameters without requiring explicit parametric forms
of the baseline hazard. Moreover, as in the non-dynamic case, discrete points of
the baseline survivor function can be estimated simultaneously with the dynamic
parameters.

A further strength of a dynamic model in terms of the integrated hazard function
becomes evident in the context of censoring structures. Censoring occurs due
to non-trading periods, when the exact end of a spell and, correspondingly, the

ISee, for example, Han and Hausman (1990), Meyer (1990), Horowitz and Neumann (1987) or
Horowitz (1996, 1999).
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begin of the next spell, cannot be observed directly. Because of the relationship
between the integrated hazard and the conditional survivor function (see Chap.4),
an autoregressive model for the integrated hazard rate is a natural way to account
for censoring mechanisms in a dynamic framework.

In Sect. 10.1, we discuss general challenges when specifying dynamics in semi-
parametric PH models and motivate the idea behind the SACPH model. Section 10.2
introduces the SACPH model and illustrates ML estimation. Theoretical properties
are discussed in Sect. 10.3. Here, we focus on the derivation of the theoretical ACF,
as well as on the effects of the discretization approach on the estimation quality
of the model. Section 10.4 considers extensions of the basic SACPH model, where
we discuss regime-switching baseline hazard functions, unobserved heterogeneity
and censoring effects. Diagnostic tests for the model are given in Sect. 10.5. Section
10.6 illustrates the application of the SACPH approach for modelling price change
volatilities based on censored price durations.

10.1 Dynamic Integrated Hazard Processes

Recall the definition of the standard PH model, as given by (4.32) in Chap. 4,
h(xi32i-1) = ho(x;) exp(=z;_, ).

We formulate the PH model in terms of a log-linear representation of the baseline
hazard function, as illustrated in (4.37),

In Ho(x;) = ¢(Fi—1:0) + &, (10.1)

where ¢ (F;_1; @) denotes a possibly nonlinear function depending of past dura-
tions, marks and a parameter vector #. The error & follows per construction an
i.i.d. standard extreme value distribution. Hence, we obtain a regression model based
on a standard extreme value distributed error term as a natural starting point for a
dynamic extension.

In order to simplify the following discussion, define

X' :=In Ho(x;), (10.2)

where Hj(x;) denotes the integrated baseline hazard function as defined in Chap. 4.
In the case of a non-specified baseline hazard % (x;), the transformation from x; to
xi* is unknown, and thus, xf is interpreted as a latent variable. Then, the PH model
can be represented in more general form as a latent variable model

XF = ¢(Fii;0) +ef. (10.3)
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Using the terminology of Cox (1981), there are two ways to incorporate a dynamic
in a latent variable model. On the one hand, observation driven models are
characterized by a conditional mean function which is measurable with respect to
some observable information set. On the other hand, in parameter driven models,
the conditional mean function is measurable with respect to some unobservable
information set F;* = o(x),x/_,,...,Xx{,%,%—,...,%). At first glance, the
distinction seems point-less since (10.2) is a one-to-one mapping from x; to x/
and thus, the information sets coincide. However, the importance of the distinction
will become clear once both approaches have been outlined in greater detail.

An observation driven dynamic model of x* can be depicted as in (10.3). The
estimation of this type of model uses the partial likelihood procedure proposed by
Cox (1975), which has been shown by Oakes and Cui (1994) to be available, even
in the dynamic case. Therefore, the two-step estimation of the parameters 6 and the
baseline intensity /4 is still possible. A simple example would be to specify ¢ (-)
in terms of lagged durations (see, e.g., Hautsch 1999). However, it turns out, that
the dynamic properties of such models are non-trivial and that in most applications,
AR type structures are not sufficient to capture the persistence in financial duration
processes. The inclusion of a MA term is not easy in the given context and requires
to build the dynamic on variables which are unobservable leading directly to a
parameter driven model.

Hence, an alternative is to specify the model dynamics directly in terms of the
log integrated baseline hazard function leading to a parameter driven dynamic PH
model of the form

X =¢(F 50) + & (10.4)

In this context, two main problems have to be resolved. First, since this specification
involves dynamics in terms of the log integrated hazard function, the partial
likelihood approach proposed by Cox (1975) is not available. This becomes obvious,
if one considers an AR(1) process for x* as a special case of (10.4),

x' =ax! |+ =alnHy(xi—) + & (10.5)
Then, x* is a function of the baseline hazard & and the latter is left unspecified.
Hence, a separate estimation of « and 4 is not possible. Second, a further challenge
is that x itself is not observable directly. As dynamics attached to a latent variable
have to be integrated out, maximum likelihood estimation involves an n-fold
integral, see, e.g., Chap. 6.

To circumvent these problems, Gerhard and Hautsch (2007) propose a model
which is based on the categorization framework as discussed in Han and Hausman
(1990). This approach is a valuable alternative to the partial likelihood approach
and allows for a simultaneous estimation of discrete points of the baseline survivor
function and of the parameter vector y. A further advantage of a categorization
approach is that x can be observed through a threshold function. This property
is exploited by specifying a model based on an observation driven dynamic
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which does not necessitate the use of extensive simulation methods but allows for
straightforward ML estimation. As it will be demonstrated in more detail in the next
subsection, the SACPH model embodies characteristics of both observation driven
specifications as well as parameter driven models.

10.2 The Semiparametric ACPH Model

By adopting the discretization approach as discussed in Sect.4.2.2.1, we recall the
definition of ,u;: as the value of the latent variable x* at the boundary X, (4.40),

Upi=InHo(xx), k=1,...,K—1.

Define in the following

d.
xi =k Dg cx <im0 (10.6)
as an ordered integer variable indicating the observed category. Moreover, let
fid = J(xid,xlfl_l, ... ,xf,z,-,zifl, ...,Z1) be the information set generated by

the categorized durations. This is a standard approach in the analysis of grouped
durations, see, e.g., Thompson (1977), Prentice and Gloeckler (1978), Meyer
(1990), Kiefer (1988), Han and Hausman (1990), Sueyoshi (1995) or Romeo
(1999). Clearly, the discretization approach implies some loss of information since
FlCF.

To avoid the computational challenges of a pure parameter driven dynamic,
Gerhard and Hautsch (2007) suggest specifying the dynamic on the basis of
conditional expectations of the error 8;",

e :=E[ef| F{]. (10.7)
The conditional expectation e; relates to the concept of generalized errors, see

Gouriéroux et al. (1987), or Bayesian errors, see Albert and Chib (1995).
The resulting SACPH(P,Q) model is given by

xF=¢; +&F, (10.8)
where ¢; := ¢ (F;—; 0) is defined through a recursion, conditioned on an initial ¢,
P 0
¢i=> ai(gij+e )+ Y Bei;. (10.9)
j=1 j=1

The computation of ¢; allows us to use a conditioning approach which exploits
the observation of ¢;_;, and thus prevents us from computing high-dimensional
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integrals. The SACPH model is built on an ARMA structure based on the condi-
tional expectation of the latent variable given the observable categorized durations.
This specification poses a dynamic extension of the approach of Han and Hausman
(1990) since the autoregressive structure is built on values of a transformation of
ho that is assumed to be constant during the particular categories. The covariance
stationarity conditions for the SACPH(P,Q) model correspond to the stationarity
conditions of a standard ARMA model and are givenby 3, o; < 1.
The SACPH model can be rewritten in terms of the hazard function as

h(xi;: FL) = ho(x;) exp(—gi—1). (10.10)

The dynamic structure of the SACPH model given by (10.8) and (10.9) relies on a
recursive updating structure. For illustration, consider a special case of the SACPH
model when /1 is known. In this case, the transformation from x; to x;* is replaced
by a measurable one-to-one function, so that ]—"id = F = F;. Then, ¢; = & and
¢i = E[x*|F ] — E[e]], and thus, the SACPH model coincides with a standard
ARMA process of the log integrated hazard function. Assume in the following a
Weibull specification for the baseline hazard with Ao(x) = ax*~'. Then, we obtain
a Weibull ACPH(1,1) (WACPH(1,1)) model of the form

alnx; = ¢ + &}, (10.11)

where ¢; = a(¢i—1 + &/_,) + Be/_,. The WACPH(1,1) model can be written as an
ARMA model for log durations based on a standard extreme value distribution, i.e.,

B . &
Inx; =alnx;—y +—¢&"—_, + —. (10.12)
a a

However, in the general case where /¢ is unknown, the SACPH model does not
exactly correspond to an ARMA model for log durations. In this case, the parameters
o; and B; can be interpreted only as approximations to the parameters &; and §; in
the ARMA model of the form

P
Z& Xi— 1+Z:31 &i_ ,+8 (10.13)

j=1

The exactness of this approximation obviously increases with the fineness of the
chosen categorization. In the limiting case for K — o0, hy is quasi-observable, and
the SACPH model converges to (10.13) with parameters ; = &; and 8; = ;.

The proposed dynamic has the advantage that a computationally simple maxi-
mum likelihood estimator of the dynamic parameters & and 8 and the parameters of
the baseline hazard approximation p* is directly available.

The computation of the log likelihood function requires to compute the general-
ized errors e; by
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ei :=E[ef| F'] =E[ef|x. ¢i]

K(—00,v;1) o
—_— ifx; =1,
1— SE* (Vi,l)
K (Vi k—1,Vik) o
= : - ifx; €{2,..., K —1}, (10.14)
S (Vi.k—l) - Se*(Vi,k) ' {
Kk (Vi k—1,00) if5 = K.
Sex (Vik—1)

52
where vy = pf — ¢i, k(s1,82) = [ufer(u)du and fo+(-) and S (-) denote
S1
the p.d.f. and survivor function of the standard extreme value distribution, respec-
tively.?

Since the observation driven dynamic enables us to use the standard prediction
error decomposition, the likelihood is evaluated in a straightforward iterative fash-
ion: The function ¢; is initialized with its unconditional expectation ¢y := E[¢;].
Then, based on the recursion, (10.9), as well as the definition of the generalized
errors, (10.14), the likelihood contribution of observation i given the observation
rule (10.6) is computed as

1 — Sex(ut — 1) ifx¢ =1,
Sa* * i —Sg* * i 1fx,d=2,

Prixd =k|F,]=1. (= 80) = Ser a3 = 91) (10.15)
Sex (W) — b1) if x¢ = K.

By denoting the matrix of the underlying data as Y, the log likelihood function is
given by

n

K
InL(Y:0) = ZZn{x;,:k}lnPr [x =k |7, ]. (10.16)

i=1 k=1
As illustrated in Chap.4, the baseline survivor function and (discrete) baseline
hazard function is computed based on (4.41) to (4.43).

10.3 Properties of the Semiparametric ACPH Model

10.3.1 Autocorrelation Structure

Since the dynamics of the model are incorporated in a latent structure, an important
question is how the autoregressive parameters can be interpreted in terms of the

2For an extended discussion of generalized errors in the context of non-dynamic models, see
Gouriéroux et al. (1987).
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observable durations. The main challenge is that no closed form expression for the
generalized errors and the p.d.f of the latent variable x* can be given, so that one
needs to resort to numerical methods to evaluate the model’s ACF.

Gerhard and Hautsch (2007) conduct a simulation study and simulate SACPH
processes, (10.8) and (10.9), based on exogenously given categories which are
associated with predetermined quantiles of the unconditional distribution of x}*.
The resulting empirical ACF of the SACPH model, (10.8)-(10.9), as well as of
the ARMA process in (10.13) is computed for « = @ and B = . This process
corresponds to the limiting case of the SACPH process when K — oo, i.e., when
ho is known, and can be interpreted as benchmark process. Moreover, the ACF of the
resulting observable durations implied by WSACPH models with shape parameter
a = 0.5 is computed.

Figures 10.1 and 10.2 reproduce the individual autocorrelation patterns computed
by Gerhard and Hautsch (2007) for SACPH(1,0) dynamics with parameters o =
0.5 and o =0.9, respectively, based on n =100,000 drawings. Each process is
simulated under three different groupings for the durations. The first grouping is
based on only two categories, in particular below and above the 0.5-quantile of
x}. Correspondingly, the other categorizations are based on the 0.25-, 0.5- and
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Fig. 10.1 Simulated autocorrelation functions of x;" and x; based on an SACPH(1,0) model with
o = 0.5. Categorizations based on quantiles of x;*. Left: 0.5-quantile, middle: 0.25-, 0.5-, 0.75-
quantiles, right: 0.1-, 0.2-, ..., 0.9-quantiles. Solid line: ACF of x,-* based on (10.13). Broken line:
ACF of x/*, based on (10.8)—(10.9). Dotted line: ACF of x;. Reproduced from Gerhard and Hautsch
(2007)
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Fig. 10.2 Simulated autocorrelation functions of x;* and x; based on an SACPH(1,0) model with
a = 0.9. Categorizations based on quantiles of x;*. Left: 0.5-quantile, middle: 0.25-, 0.5-, 0.75-
quantiles, right: 0.1-, 0.2-, ..., 0.9-quantiles. Solid line: ACF of x,-* based on (10.13). Broken line:
ACF of x;", based on (10.8)—~(10.9). Dotted line: ACF of x;. Reproduced from Gerhard and Hautsch
(2007)
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0.75-quantiles, as well as the 0.1-, 0.2-,. . .,0.9-quantiles. The former categorization
is the worst possible approximation of the true baseline hazard /i while the latter
covers a more realistic case using a moderate number of thresholds. We observe
a close relationship between the different autocorrelation functions which is rather
driven by the chosen categorization than by the strength of the serial dependence.
While for the two-category-grouping clear differences in the autocorrelation func-
tions are observed, quite similar shapes are revealed for the finer categorizations. Itis
shown that the ACF implied by the SACPH model converges towards the ACF of the
pure ARMA model for the log integrated hazard, (10.13), when the categorization
becomes finer. Moreover, there is a quite close relationship between the ACF of the
latent variable x and the observable variable ;.

These results are confirmed based on SACPH(1,1) processes (Figs.10.3 and
10.4). For a sufficiently fine categorization, the autocorrelation functions of the
latent and the observable processes are quite similar. Hence, it can be concluded
that the ACF implied by the estimated ARMA coefficients of an SACPH model is a
good proxy for the ACF of a pure ARMA process for In Hy(x;) and for the ACF of
the observed durations.
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Fig. 10.3 Simulated autocorrelation functions of x;" and x; based on an SACPH(1,1) model with
o = 0.5 and B = 0.7. Categorizations based on quantiles of x;*. Left: 0.5-quantile, middle: 0.25-,
0.5-, 0.75-quantiles, right: 0.1-, 0.2-, ..., 0.9-quantiles. Solid line: ACF of xl.* based on (10.13).
Broken line: ACF of x;*, based on (10.8)-(10.9). Dotted line: ACF of x;. Reproduced from Gerhard
and Hautsch (2007)
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Fig. 10.4 Simulated autocorrelation functions of x;* and x; based on an SACPH(1,1) model with
a = 0.5 and B = 0.5. Categorizations based on quantiles of x;*. Left: 0.5-quantile, middle: 0.25-,
0.5-, 0.75-quantiles, right: 0.1-, 0.2-, ..., 0.9-quantiles. Solid line: ACF of x,»* based on (10.13).
Broken line: ACF of x*, based on (10.8)-(10.9). Dotted line: ACF of x;. Reproduced from Gerhard
and Hautsch (2007)



10.3 Properties of the Semiparametric ACPH Model 253
10.3.2 Estimation Quality

Gerhard and Hautsch (2007) perform a Monte Carlo study to evaluate the small
sample bias incurred by the discretization approach for different sample sizes and
two different categorizations based on K = 2 and K = 10 categories. The
categories are chosen in accordance with the 0.5-quantile, as well as the 0.1-,. ..,
0.9-quantile of x/. The two-category-model is replicated for two sample sizes

= 50 and n = 500. The model with more thresholds is only estimated for a
small sample size n = 50. This set-up allows us to compare the improvement
achieved by increasing the number of observations vs. the benefit of a better
approximation of the baseline hazard function. Parameter estimations are based
on the SACPH(1,0) and SACPH(0,1) model. Since the focus is on the bias of the
dynamic parameters, the threshold parameters are fixed to their true values. A range
of parameter values for & and § are covered in the simulations, concisely, «, 8 €
Q = {-0.9,-0.8,...,0.8,0.9} providing nlMc = 1,000, i € Q, replications for
each value. The errors ¢ are drawn from the standard extreme value distribution
as in the assumed DGP. Overall results for all n¥¢ = 19,000 replications are
reported in Table 10.1. It provides descriptive statistics of the difference between
the true parameters and the corresponding estimates, &) — @, and 8@ — B®, for
i =1,...,nMC. Though we aggregate over all parameter values, the small sample
properties match the expectation build from asymptotic theory, i.e., the variance
decreases over an increasing sample size. The results indicate that even a moderately
sized sample of 50 observations is sufficient to obtain reasonable results. Particularly
for the SACPH(1,0) model, the asymptotic properties seem to hold quite nicely. To
gain more insight into the consequences the discretization grid of the durations bears
for the estimation, the results of the Monte Carlo experiment are scrutinized with
respect to the parameters of the model, & and . Simulation results for each of the 19
considered values of the true parameter in the DGP are illustrated in the Box plots
reported in Figs. 10.5 through 10.7. Overall, the results indicate that the bias incurred
for an SACPH(1,0) based on K = 2 categories is reduced considerably once a higher
parameterized model based on K = 10 categories is employed. Furthermore, for a
reasonable sample size (n = 500), even for the two-category-model the performance
of the estimator is quite satisfying over all parameter values considered.

Table 10.1 Results of a Monte Carlo study based on SACPH(P,Q) models with K categories
and n observations. Shown diagnostics: bias, mean squared error (MSE) and mean absolute error
(MAE)

P Q K n bias MSE MAE
1 0 2 50 —0.006 0.029 0.118
1 0 10 50 0.004 0.009 0.073
1 0 2 500 0.005 0.002 0.037
0 1 2 50 —0.007 0.074 0.202
0 1 10 50 —0.005 0.018 0.093
0 1 2 500 0.015 0.020 0.095
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Fig. 10.5 Box plots of « — &® for 19 values of the parameter @) in a Monte Carlo study.
SACPH(1,0) model, K = 2, n = 50. Reproduced from Gerhard and Hautsch (2007)
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Fig. 10.6 Box plots of a® — &® for 19 values of the parameter @) in a Monte Carlo study.
SACPH(1,0) model, K = 10, n = 50. Reproduced from Gerhard and Hautsch (2007)
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Fig. 10.7 Box plots of a® — @@ for 19 values of the parameter @) in a Monte Carlo study.
SACPH(1,0) model, K = 2, n = 500. Reproduced from Gerhard and Hautsch (2007)

Figures 10.8—-10.10 reproduce the corresponding results for SACPH(0,1) models.
Though qualitatively similar, it is evident from the study that the SACPH(0,1) model
performs worse than the corresponding SACPH(1,0) model. After an increase in the
number of categories from K = 2 to K = 10, the approximation reaches about the
quality of the SACPH(1,0) process with K = 2 categories, except for the parameter
value B = 0.9. The reason for this can be found in the differing ACF of an AR(1)
and a MA(1) process. The relatively bad performance of the SACPH(0,1) process
for parameters 8 with a large absolute value is due to the flattening out of the ACF
towards the limits of the invertible region.

104 Extended SACPH Models

10.4.1 Regime-Switching Baseline Hazard Functions

The standard PH model underlies the assumption that, for any two sets of explana-
tory variables z; and z,, the hazard functions are related by

h(x;zy) < h(x;zy).
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Fig. 10.8 Box plots of 8O — 8@ for 19 values of the parameter B© in a Monte Carlo study.
SACPH(0,1) model, K = 2, n = 50. Reproduced from Gerhard and Hautsch (2007)

: N
pgbgaqredsiiiagag ]
et T
TS

| J

Fig. 10.9 Box plots of ) — ,3(") for 19 values of the parameter ) in a Monte Carlo study.
SACPH(0,1) model, K = 10, n = 50. Reproduced from Gerhard and Hautsch (2007)
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Fig. 10.10 Box plots of 89 — 8% for 19 values of the parameter 8¢ in a Monte Carlo study.
SACPH(0,1) model, K = 2, n = 500. Reproduced from Gerhard and Hautsch (2007)

To obtain more flexibility and to relax the proportionality assumption, we stratify
the data set and define regime-dependent baseline hazard functions %, (x), m =
1,..., M. Assume a state defining integer variable M; = 1,..., M, which is
weakly exogenous for x; and determines the functional relationship between x*
and the baseline hazard 5, (x). Then, the transformation from x; to x is state-
dependent and is given by

S

=Y gpg=my In Hom(x7). (10.17)

where Hy,,(x;) denotes the regime-dependent integrated baseline hazard. The
assumption of a model with M distinct baseline hazard functions translates to M
sets of distinct threshold parameters [,thm, where k = 1,..., K —1and m =

1,..., M. Correspondingly, we obtain M baseline survivor functions evaluated at
the K — 1 thresholds

Som(¥x) = exp(—exp(uy ). k=1,....,K—=1, m=1,....M. (10.18)

Consequently, the generalized residuals are also state-dependent, i.e.,

e . 8 |]:d Z U (R, =m}€ims
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where e;,, is computed according to (10.14) based on the corresponding set of
threshold parameters 4 . Hence, a SACPH model with state-dependent baseline
hazard functions is defined as

M
h(xis FL) = ) hom (i) 1as,=my exp(—gi—1). (10.19)

m=1

The calculation of the log likelihood is based on the procedure proposed in
Sect. 10.2, therefore, we obtain the log likelihood function by

n K

M
InL(Y:0) = ZZ Z gy Lgpg=my InPr [x! =k|M; =m:FL,].
i=1 k=1 m=1

(10.20)

10.4.2 Censoring

A major advantage of the SACPH model is that it can easily accommodate for
censoring structures. Define in the following xid ! and xlf’! “ as the discretized
counterparts to the duration boundaries xf and x} as given in Sect.4.3.1. Hence,
x;’ S [xid ’l,xid "], where xid ! and xid * are computed corresponding to (4.51)
by accounting for the observation rule, (10.6). Then, in the case of a censored
observation 7, the corresponding log likelihood contribution in (10.20) is replaced
by

Pr [le <x! <xf \]'_id—pci—la CivCig1 | = Sex (™ — @) — Sex (U™ — ),
(10.21)

where

u*lzp,,’: if xid’l=k+1,
W =y if xid’uzk.

The derivation of the generalized residuals needs to be slightly modified. In the case
of censoring, the conditional expectation of ¢/ is computed as

di _d,
e = ]E[8;k|xfiv¢i,6i—1,ci,ci+1] = ]E[sﬂxi ' u»¢i:|

1

_ KOy (10.22)
Ser (1) — Spr (V)

Lo %l —
where v; 1= pu* —¢; and v} 1= pu* — ¢;.



10.4 Extended SACPH Models 259
10.4.3 Unobserved Heterogeneity

A further advantage of the SACPH model is that it is readily extended to allow for
unobservable heterogeneity. In duration literature, it is well known that ignoring
unobserved heterogeneity can lead to biased estimates of the baseline hazard func-
tion.? Following Han and Hausman (1990), unobserved heterogeneity effects can
be captured by a random variable which enters the hazard function multiplicatively
leading to a mixed SACPH model. Lancaster (1997) illustrates that the inclusion of
a heterogeneity variable can capture errors in the regressors. In financial duration
data, unobservable heterogeneity effects can be driven by different groups of traders
or different states of the market.

The standard procedure to account for unobserved heterogeneity in the SACPH
model is to introduce an i.i.d. random variable v; in the specification (10.10) to
obtain

A FEvi) = ho(x;i) - vi - exp(—¢i—1). (10.23)

Assume for the random variable v; a Gamma distribution with mean one and
variance n~!, which is standard for this type of mixture models, see, e.g., Lancaster
(1997) or Sect.5.3.2. Then, the survivor function of the compounded model is
obtained by integrating out v;

S FLy) = [1+ 07" exp(—¢i) Ho(x)] " (10.24)

Note that this is identical to the survivor function of a Burrll(n) distribution under
appropriate parameterization (see appendix).

The latter gives rise to an analogue model based on the discretization approach
outlined in Sect. 10.2. By augmenting the log-linear model of the integrated baseline
hazard by the compounder, we obtain an extended ACPH(P,Q) model based on the
modified latent process

x' =1In(n) + ¢ + ¢, (10.25)

where the error term &} follows in this case a BurrlI(n) distribution with density
function
nexp(s)

Jex(s) = TSR

(10.26)

It is easily shown that

lim [1+ n~ i 1"10(361')]_'7 = exp(—Ho(x:)¢i),

n—>00

3See, e.g., Lancaster (1979) or Heckmann and Singer (1984) among others.
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ie., for 7! = V(v;) — 0, the Burrll() distribution converges to the standard
extreme value distribution. Hence, if no unobservable heterogeneity effects exist,
the model coincides with the basic SACPH model.

The estimation procedure is similar to the procedure described in Sect. 10.2. The
difference is that the model is now based on a Burrll(#) distribution. Apart from an
obvious adjustment to the generalized errors, the relationship between the estimated
thresholds and the estimation of the distribution function of the error term, as given
in (4.41) for the standard extreme value distribution, is slightly modified to

1
So(Fx) = k=1,....K—1. (10.27)

[1 4 exp(u} —In(n)]"

10.5 Testing the SACPH Model

An obvious way to test for correct specification of the SACPH model is to evaluate
the properties of the series of the estimated log integrated hazard £* = In H (xi)
which should be i.i.d. standard extreme value or Burrll(n) distributed, respectively.
However, the difficulty is that we cannot estimate & but only its conditional
expectation &; = E[Sﬂ]:ld] Thus, the SACPH model has to be evaluated by
comparing the distributional and dynamical properties of &; with their theoretical
counterparts.
The theoretical mean of e; is straightforwardly computed as

Elei] = E[E[¢] |x{, $i]] = E[¢]]. (10.28)

However, the computation of higher order moments of e; is a difficult task. The
reason is that the categorization is based on x*, and thus the category boundaries
for e, vix = uf — ¢;, are time-varying and depend itself on lags of e;. Therefore,
the derivation of theoretical moments can only be performed on the basis of
the estimated model dynamics, and thus, they are of limited value for powerful
diagnostic checks of the model. Hence, only upper limits for the moments in
the limiting case K — oo can be given. In this case, ¢; = 5;* , and thus, the
moments of e; correspond to the moments of the standard extreme value or BurrII(n)
distribution, respectively.

Gerhard and Hautsch (2007) propose evaluating the dynamic properties of the ¢;
series based on a test for serial dependence according to Gouriéroux et al. (1985).
The test is based on the direct relationship between the score of the observable and
the latent model. By accounting for unobserved heterogeneity (see Sect. 10.4.3), the
latent model is written as

x; =1n(n) + ¢ + u;, (10.29)
U = &./Mi_j + 8?, (10.30)
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where ¢ is i.i.d. Burrll(n) distributed and j denotes the tested lag. Then, the null
hypothesis is Hy : &; = 0. The test is based on the score of the observable model.
Following Gouriéroux et al. (1985), the observable score is equal to the conditional
expectation of the latent score, given the observable categorized variable, i. e.,

dInL(Y:0) ZE[M';[I] (10.31)

a0 a0

where In £*(-) denotes the log likelihood function of the latent model and L*
denotes the n x 1 vector of the latent realizations x*. Under the assumption of
a Burrll(n) distribution for &, the log likelihood function of the latent model is
given by

InL*L*:0) = > In fr(u; — @juiy)
i=j+1

= > [Int) + &jui—j —wi — (n + D In[1 + exp(@ju;—; —ur)]].
i=j+1

Under the null, the score with respect to &, s(c;) is given by

‘@) :E[alnﬁafL ;0)'34}
o)
_ N o |zl exp(ef) |
N i;]E[ei_j“]:" ] [] (n+ 1)]E|:l + exp(e]) i :|:|
= ) e-jl-(m+Dal. (10.32)
i=j+1
where
. exp(e;’) d
& = ]E[—l T exp(e) F! } (10.33)
Then,
s@) =3 by [1—(ﬁ+1)§,~]. (10.34)
i=j+1

Under the null, the expectation of e is given by E[éi] = (n 4+ 17!, and thus,
E[s(a;)] = 0. Exploiting the asymptotic normality of the score, i.e.,
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| 1 3
%s(aj) —MNo, phm; i;lef_j 11—+ D& ],

a y2-statistic for the null hypothesis Hy : & ; = 01is obtained by

n n 2
> & [1-G+é]
) — L=/ 4 .2
Yo = L2 —- L 20, (10.35)
2 1= G+ Dé
i=JZ+l l ][ 1 ]

Correspondingly, for the standard extreme value case, the test modifies to

2
rU = L=+ 4220 10.36
- n N 2 NX () ( . )

> e & -]

i=j+1

with

& :=E[exp(e})| F]. (10.37)

10.6 Estimating Volatility Using the SACPH Model

Gerhard and Hautsch (2007) apply the SACPH model for volatility estimation on
the basis of price durations. They use data originating from Bund future trading.
The Bund future is one of the most actively traded future contracts in Europe.
The contract is written on a synthetic long-term German government bond. Prices
are denoted in basis points of the face value (so-called “ticks”) corresponding to
10 EURO. As the minimum tick size is comparably large, price movements in
Bund future trading are very discrete. As shown, e.g., by Hautsch and Pohlmeier
(2002), trade-to-trade price changes are most likely zero or just one tick. As such
price discreteness challenges volatility estimators based on continuous distributions,
Gerhard and Hautsch (2007) rely on the concept of price durations. Due to the
flexibility of the SACPH model to capture also censored price durations, arising,
e.g., from non-trading periods, it is particularly suitable to study volatility dynamics
also on higher aggregation levels. To illustrate this feature, Gerhard and Hautsch
(2007) choose aggregation levels associated with large cumulated price movements
that might last over several trading days.
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10.6.1 Data and the Generation of Price Events

The underlying data stems from Bund future trading at the London International
Financial Futures and Options Exchange (LIFFE) which has been taken over by
Euronext 2002 and in meantime belongs to NYSE Euronext. The sample covers
transaction data on 11 contracts and 816 trading days between 04/05/94 and
06/30/97 with a total of about n ~ 2 - 10° transactions. Though the data is relatively
old, it still reveals very similar features as also found for more recent Bund future
data (though the underlying trading frequency arguably has increased). Particularly
for the effects discussed in the sequel, the data is still quite representative.

Gerhard and Hautsch generate price durations xid P as described in Sect.3.2.2
using the aggregation level dp € {10, 15, 20} ticks, corresponding to 7,491, 3,560,
and 2,166 observations. Price change events can also be caused by news occurring
during non-trading periods inducing censoring structures. Since the resulting price
event is observable at the earliest at the beginning of the next trading day, it is
not possible to identify whether the price movement is caused by overnight news
or by recent information. To overcome this problem, Gerhard and Hautsch (2007)
consider the first price event occurring within the first 15 min of a trading day as
censored, i.e., this price change is assumed to be driven by events occurring during
the non-trading period. In contrast, price events observed after the first 15 min of a
trading day are assumed to be driven by recent information. For these observations,
the duration is measured as the time since the last observation of the previous trading
day. Figure 10.11 illustrates the identification rule graphically. It shows the arrival
times of three transactions occurring on two subsequent trading days. According to
this rule, the spell between A and B is assumed to be censored and has a minimum
length of 15 min and a maximum length of 15 h and 30 min. In contrast, the duration
episode between A and C can be measured exactly as 16 h.

Based on the sample used, there are 600, 457, and 318 censored durations for
the 10, 15 and 20 tick aggregation level, respectively. Gerhard and Hautsch choose
a categorization which ensures satisfactory frequencies in each category. For this
reason, the categorization differs for the individual aggregation levels. Table 10.2
shows the distribution of the categorized durations based on the finest grouping
which is used for the 10 tick level.

A peculiar feature of Bund future trading data is the occurrence of periodicities
occurring not only within a trading day but also over the lifetime of a contract

A night B C

17:00 17:15 08:30 08:45 09:00

Fig. 10.11 Identification of censored durations in the Bund future trading
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(so-called “time-to-maturity seasonalities”). Both types of seasonality effects are
captured by a Fourier series approximation s(¢) = s(8%,7, Q) of order O = 6 (see
(5.34) in Chap. 5). In case of intraday effects, periodicities are quantified based on
the normalized intraday time 7 € [0, 1] given by

_ seconds since 7:30
t = . (10.38)
seconds between 7:30 and 16:15

Accordingly, for time-to-maturity seasonalities

Pl days to maturity (1039)
B 150 '

is used. Observations with values of more than 150 days are captured by a dummy
variable. Including the seasonality variables in a static way, the resulting SACPH
model is given by

X' =g +s5(tim1) + ¢,
Zaj (pi— —j tei j)+2ﬁjel—j
ji=1

To account for the fact that the durations are categorized, Gerhard and Hautsch
(2007) reformulate the conditional price change volatility derived in Chap. 8 as

K—1

0t i) = @) Y Br x5 = k| Flis@)]
k=1
1
‘E[ | X =k F S(tl)], (10.40)
Xit1

where x ‘P denotes the categorized dp-price duration. Moreover, in the context of
grouped durations, the following approximation is assumed to hold:

1 dd,
p _
E |: T X, =k
1+1
Then, an obvious sample estimator for the second factor in the weighted sum of

(10.40) is obtained. This, however, does not exclude the conditioning information,
but merely expresses the fact that all information contained in the regressors

enters exclusively the first factor Pr [x =k |]-'d, s(t,)] in (10.40) for which
an estimator is available by adopting (10.15).

1
X =k F s(t,):| ~E|: d.dp
1+1
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10.6.2 Empirical Findings

Table 10.3 reproduces the estimation results from Gerhard and Hautsch (2007)
for SACPH specifications without any seasonality variables (Panel A), with only
intraday seasonalities (Panel B) and including all seasonality variables (Panel C)
based on 15 tick price durations. It is shown that the goodness-of-fit is significantly
improved by the inclusion of seasonality variables. The autoregressive parameters
are highly significant indicating strong serial dependence. Hence, even on the
highest aggregation level, price durations are strongly clustered. Applying the test

Table 10.3 ML estimates of SACPH(1,2) models for Bund future price durations using 15 tick
price changes. Standard errors computed based on OPG estimates. Diagnostics: Log Likelihood
(LL), Bayes Information Criterion (BIC), mean (¢;) and standard deviation (S.D.) of SACPH
residuals. Reproduced from Gerhard and Hautsch (2007)

A B C
est. S.E. est. S.E. est. S.E.

Thresholds

vy (¥, = 10) —3.990 0.182 —3.770 0.208 —4.422 0.246
v} (¥3 = 20) —3.255 0.179 —3.042 0.205 —3.673 0.243
vy (kg = 40) —2.543 0.178 —2.332 0.203 —2.949 0.241
v¥ (¥s = 1h) —2.117 0.177 —1.900 0.202 —2.514 0.241
Ve (X6 = 2h) —1.595 0.175 —1.354 0.200 —1.963 0.239
vy (¥7 =3h) —1.344 0.175 —1.080 0.200 —1.685 0.239
vy (¥g = 4h) —1.198 0.174 —0.919 0.199 —1.520 0.238
v§ (X9 = 6h) —0.942 0.173 —0.639 0.198 —1.232 0.237
v}y (10 = 8h) —0.777 0.172 —0.456 0.198 —1.042 0.237
v} (X1 = 24h) —0.178 0.169 0.200 0.194 —0.329 0.235
vi5 (X12 = 36h) —0.009 0.168 0.376 0.194 —0.127 0.235
vy (13 = 48h) 0.084 0.168 0.473 0.193 —0.014 0.234
Intraday seasonalities

&) 0.814 0.141 0.853 0.153
854 0.461 0.054 0.456 0.056
85, —0.068 0.038 —0.066 0.040
855 —0.020 0.034 —0.036 0.037
854 0.023 0.033 0.029 0.035
855 —0.057 0.031 —0.072 0.033
86 —0.034 0.029 —0.022 0.031
84 0.191 0.035 0.228 0.035
8, 0.169 0.031 0.189 0.032
8o —0.007 0.029 0.002 0.030
84 0.042 0.030 0.042 0.031
85 0.068 0.029 0.063 0.031
86 —0.044 0.027 —0.042 0.028

(continued)
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Table 10.3 (continued)

A B C

est. est. S.E. est. S.E.
Seasonalities over the future’s maturity
1.150 0.418 0.271
55 —1.455 0.276
55 —0.038 0.104
55 0.233 0.063
55 —0.048 0.049
85 0.080 0.040
85 0.070 0.034
v 0.026 0.032
55 0.508 0.055
8% 0.008 0.044
855 —0.046 0.038
854 0.018 0.036
8k —0.055 0.035
5% 0.014 0.030
Dynamic parameters
a) 0.962 0.961 0.006 0.978 0.005
B —0.788 —0.779 0.013 —0.850 0.014
B2 —0.084 —0.081 0.013 —0.085 0.013
Diagnostics
Obs 3,559 3,559 3,559
LL —7,480 —17,331 —7,208
BIC —7,541 —7,445 —17,380
& —0.561 —0.561 —0.557
S.D. 1.166 1.159 1.169

on serial correlation as illustrated in Sect. 10.5, Gerhard and Hautsch (2007) show
that the null hypothesis of remaining serial correlation in generalized residuals is
clearly rejected. Hence, the SACPH model does a good job in capturing the serial

dependence in the data.

Table 10.4 reproduces the results for the fully parameterized model (specifi-
cation C) for all three aggregation levels using a gamma compounded SACPH
model accounting also for unobservable heterogeneity effects. It is shown that
the heterogeneity variance increases with the aggregation level. For 20 tick price
changes, the heterogeneity variance takes on a value of 1.156 corresponding to a
specification which is close to an ordered logit model.*

“4Recall that the BurrlI(1) distribution coincides with the logistic distribution.
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Table 10.4 ML estimates of gamma compounded SACPH(1,2) models for Bund future price
durations using 10, 15 and 20 tick price changes. Standard errors computed based on OPG

estimates. Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC), mean (¢;) and
standard deviation (S.D.) of SACPH residuals. Reproduced from Gerhard and Hautsch (2007)

dp =10 dp =15 dp =20

est. S.E. est. S.E. est. S.E.
Thresholds
Ui =5) —6.034 0.301
vy (X = 10') —5.194 0.303 —4.590 0.439
vy (X3 =20') —4.300 0.307 —3.756 0.441 —2.344 0.565
vy (kg = 40) —3.429 0.312 —2.900 0.446 —1.481 0.565
v¥ (¥s = 1h) —2.933 0.317 —2.339 0.452 —0.910 0.567
ve (X6 = 2h) —2.164 0.328 —1.546 0.465 —0.146 0.574
vy (¥7 = 3h) —1.772 0.335 —1.114 0.475 0.241 0.579
vy (g = 4h) —1.506 0.340 —0.847 0.481 0.486 0.583
vy (X9 = 6h) —1.119 0.350 —0.357 0.495 0.949 0.592
vy (X10 = 8h) —0.940 0.356 —0.012 0.506 1.371 0.602
v (X1 = 24h) 0.133 0.387 1.446 0.560 2.832 0.641
v} (X12 = 36h) 0.451 0.397 1.923 0.581 3.523 0.666
v (X33 = 48h) 0.698 0.404 2.209 0.595 3.916 0.680
Intraday seasonalities
&) 1.407 0.136 1.855 0.247 1.374 0.324
851 0.896 0.056 1.021 0.095 0.624 0.125
85, 0.080 0.037 0.050 0.062 —0.138 0.085
855 0.054 0.033 —0.003 0.055 —0.149 0.077
854 0.114 0.030 0.092 0.053 —0.001 0.075
85 s —0.077 0.030 —0.145 0.051 —0.162 0.072
56 —0.001 0.028 —0.049 0.049 —0.079 0.068
8 —0.050 0.035 0.264 0.055 0.356 0.074
85 0.170 0.030 0.365 0.052 0.280 0.069
84 0.043 0.029 0.086 0.050 —0.098 0.068
804 0.150 0.030 0.178 0.051 0.113 0.068
85 0.157 0.029 0.143 0.049 0.000 0.067
86 —0.022 0.026 —0.050 0.046 0.040 0.064
Seasonalities over the future’s maturity
1.5 0.353 0.328 0.902 0.374 1.398 0.467
85 —3.264 0.384 —2.742 0.465 —2.250 0.569
55 —0.181 0.141 —0.084 0.181 0.180 0.202
55 0.291 0.094 0.396 0.107 0.490 0.119
55 —0.070 0.076 —0.043 0.083 0.031 0.094
8 0.113 0.067 0.171 0.071 0.166 0.084
8% 0.041 0.062 0.066 0.064 0.107 0.078
85 —0.015 0.056 —0.014 0.057 0.042 0.071
55 0.981 0.087 1.010 0.122 1.005 0.116

(continued)
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Table 10.4 (continued)

dp =10 dp =15 dp =20

est. S.E. est. S.E. est. S.E.
58X —0.056 0.073 —0.038 0.080 —0.084 0.080
5% —0.055 0.067 —0.112 0.067 —0.198 0.076
5% 0.040 0.061 0.021 0.062 0.002 0.072
85X —0.071 0.056 —0.133 0.058 —0.133 0.069
8;"2 0.076 0.053 0.002 0.054 0.134 0.067

Heterogeneity variance
Vil 0.576 0.047 0.897 0.074 1.156 0.095

Dynamic parameters

o 0.913 0.009 0.982 0.004 0.993 0.002
Bi —0.680 0.015 —0.828 0.018 —0.882 0.022
B —0.055 0.012 —0.097 0.017 —0.067 0.022
Diagnostics

Obs 7,490 3,559 2,165

LL —14,597 —7,141 —4,304

]_31C —14,793 —7,317 —4,465

é; —0.812 —0.176 0.245

S.D. 1.476 1.662 1.809

Figure 10.12 from Gerhard and Hautsch (2007) gives the resulting pattern of
o*(";c %,p)(tlfip ) in dependence of the time to maturity for 20 tick price changes. The
intraday seasonality coefficients are fixed to a value associated with 14:00 GMT
while the dynamic variables are set to their unconditional expectations. It is shown
that volatility is highest within a time horizon of about 90 days to maturity. This
is probably caused by the roll-over from the previous contract to the front month
contract inducing a price discovery process. This period seems to be finished after
around 80 days to maturity leading to a stabilization of the volatility pattern at a
relatively constant level. The corresponding volatility pattern based on 10 tick price
changes (Fig. 10.13) reveals a similar picture.

Figures 10.14 and 10.15 show the corresponding intraday seasonality patterns
for 10 tick and 20 tick price durations evaluated based on a fixed time to maturity
of 30 days. We observe a slight volatility spike at the beginning of the trading
day which is well explained by the price finding process at the opening, where
the price information conveyed by U.S. traders needs to be scrutinized. Then,
volatility declines leading to the well known lunch time effect around 11:00 GMT.
Volatility increases again around 13:20 GMT which obviously corresponds to the
opening of the CBOT. After that period, volatility drops continually, interrupted
by an additional spike before 15:00 GMT which is obviously associated with the
opening of the NYSE. Overall, during the afternoon, volatility remains on a higher
level than in the morning.
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price change volatility
0.00 0.02 0.04 0.06 0,08 0.10 0.12 0.14 0.16 0.18 0.20

150 135 120 105 90 75 50 45 30 15 0
time to maturity

Fig. 10.12 Price change volatility o *2 )(z[’”) vs. time to maturity for dp = 20. 14:00 GMT, Bund

(xdr

future trading, LIFFE. Based on estimates by Gerhard and Hautsch (2007)
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Fig. 10.13 Price change volatility 0(*2 (t,-dp) vs. time to maturity for dp = 10. 14:00 GMT, Bund

xdp)

future trading, LIFFE. Based on estimates by Gerhard and Hautsch (2007)
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Fig. 10.14 Price change volatility a(’;f,p)(t,-dp ) vs. intraday time dp = 10. 30 days to maturity,
Bund future trading, LIFFE. Based on estimates by Gerhard and Hautsch (2007)
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Fig. 10.15 Price change volatility a(tf,p)(t;lp ) vs. intraday time for dp = 20. 30 days to maturity,
Bund future trading, LIFFE. Based on estimates by Gerhard and Hautsch (2007)
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The 20 tick volatility (Fig. 10.15) reveals a less pronounced intraday pattern.
Hence, intraday volatility seems to be driven mainly by more frequent but smaller
price movements, while the time-to-maturity volatility patterns are dominated by
lower frequent but larger price changes. The CBOT opening effect can still be
identified, however, the volatility level drops significantly faster than for the 5 tick
price changes. Hence, additional U.S. traders obviously do not generate price events
above 20 ticks, after the initial information dissemination.
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Chapter 11
Univariate Dynamic Intensity Models

This chapter presents dynamic parameterizations of the intensity function. We
model the intensity in continuous time which allows to update the intensity process
whenever required. This is in contrast to Chaps.5, 6 and 10 discussing discrete-
time processes which are only updated at discrete points in time. Moreover, instead
of specifying a model for durations (Chaps.5 and 6) or the integrated (baseline)
hazard function (Chap. 10), we discuss dynamic models which are built directly
on the intensity. As illustrated in this and the next chapter, such a framework
yields a valuable approach to account for time-varying covariates and multivariate
structures.

We focus on two general ways of introducing dynamic structures in intensity
processes. The first possibility is to parameterize the intensity function in terms
of an autoregressive structure, which is updated at each occurrence of a new
point. Following this idea, Russell (1999) proposes a dynamic extension of a
parametric proportional intensity (PI) model that he calls autoregressive conditional
intensity (ACI) model. This model will be presented in Sect. 11.1. Generalizations
of this framework are presented in Sect. 11.2. Here, we will discuss long mem-
ory ACI models, generalizations allowing for accelerated failure time structures
and thus nesting special cases of the ACD model as well as component ACI
models.

A valuable alternative to an autoregressive intensity process is a so-called self-
exciting intensity process where the intensity is driven by a function of the backward
recurrence time to all previous points. A particular type of linear self-exciting
processes is introduced by Hawkes (1971) where the intensity is governed by the
sum of negative exponential functions of the time to all previous events. As shown
in Sect. 11.3, such a process naturally accounts for events which are clustered
in time and is well suited to model the evolution of market activity and trading
intensities.

N. Hautsch, Econometrics of Financial High-Frequency Data, 273
DOI 10.1007/978-3-642-21925-2_11, © Springer-Verlag Berlin Heidelberg 2012
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11.1 The Autoregressive Conditional Intensity Model

Assume the existence of a time-varying covariate process which occurs at dis-
crete points 7,),...,1%." Then, N°(r) and NO(t) denote the corresponding
right-continuous and left-continuous counting processes, respectively, associated
with the arrival times of the covariate process z?. Moreover, let {7;} be the pooled
process of all points t; and lio.

A straightforward way of specifying an autoregressive intensity process is to
parameterize the intensity function in terms of a time series model. Then, A(z; F;)
follows a dynamic process that is updated whenever a new point occurs. As
proposed by Russell (1999), the intensity is driven by three components: one
component @(¢) capturing the dynamic structure, a baseline intensity component
Ao(?) (Russell calls it backward recurrence time function), as well as a deterministic
function of time (e.g., periodicity component) s(¢). By imposing a multiplicative
structure, the ACI model is obtained by a dynamic extension of a (parametric)
proportional intensity (PI) model and is given by

AL Fr) = @()Ao()s(1). (1L.1)

By including both time-invariant and time-varying covariates in static form and
specifying @(¢) in logarithmic form (to ensure non-negativity), @(t) is given by

0,
®(1) = exp (@N(t)+1 + g,y +zﬁ’0(t)ﬂ), (11.2)
P 0
Gi=0+Y ajEij+ Y pidi. (11.3)
j= j=1

where y and ¢ denote coefficient vectors and the innovation term &; can specified
either as
gi=1—¢g = l—A([,'_l,[l‘) (11.4)

or, alternatively, as

& = —0.5772 —Ing;

—0.5772 —In A(ti—1, t;) (11.5)

witheg; 1= A(ti—1, 1) = fllt’_l A(s; Fs)ds denoting the integrated intensity function.
Note that @(z) is a left-continuous function that only changes during a spell due
to the evolution of the time-varying covariate process. Hence, in absence of time-
varying covariates, @(¢) remains constant between #;_; and t;, i.e.,

'Such a process might be associated, for instance, with the arrival of new (limit) orders in the
market.
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Q(t) = D(1;) fort;_, <t <t.

In that case, @(¢;) is known instantaneously after the occurrence of #,_; and
does not change until ;. Then, A(¢) changes between t;_; and f; only as a
deterministic function of time (according to Ao(¢) and s(z)). Under the conditions
given in Theorem 4.2 in Chap. 4, the integrated intensity follows an i.i.d. standard
exponential process, hence, the model innovations &; are i.i.d. exponential variates
in (11.4) or extreme value variates in (11.5) that are centered by their unconditional
mean and enter the model negatively. This implies a positive value of @ whenever
the intensity is positively autocorrelated.

Note that in contrast to the SACPH model presented in Chap. 10, the baseline
intensity function A((z) is fully parameterized. Russell (1999) suggests to specify
Ao(t) = Ao(x(2)) according to a standard Weibull parameterization

Ao(t) = exp(w)x(1)*™!,  a>0, (11.6)

where a value of a larger (smaller) than one is associated with an upward
(downward) sloping intensity function, i.e., “positive” or respectively “negative”
duration dependence. Alternatively, a standard Burr type baseline intensity function
is obtained by

x(t)a—l

Ao(t) = exp(w)m,

a>0,n>0, 11.7)

which allows for non-monotonous hazard shapes.

Note that &; follows an ARMA type dynamic that is updated by i.i.d. zero mean
innovations. Thus, E[®;] = 0 and the weak stationarity of &; is ensured if the roots
of the lag polynomial based on the persistence parameters fi, ..., B lie inside the
unit circle.

To show the relationship to the ACD model, recall (5.8) from Chap.5 that the
intensity representation of an ACD model is given by

x(1) 1
A(t;-/r) = hg s
t (lpﬁ(t)-i-l) Yy

N(6)+1
where ¥; := E[x;|F;—1] denotes the conditionally expected duration mean and /,
denotes the (baseline) hazard function induced by the assumed distribution of ¢;,
i=1,...,n,witheg := Xx; 11/1,*1 being i.i.d. We observe two major differences to the

ACD framework: Firstly, in contrast to @;, ¥; is a discrete-time function which is
only updated at the end of each spell. Secondly, the baseline hazard /., does not only
depend on x () but on an “accelerated” time scale x(z)/ Y5 1)+1- Hence, for both
models to coincide we have to rule out the possibility of time-varying covariates
and have to impose specific assumptions on the form of the baseline intensity. For
simplicity, set s(f) = 1 and assume # = 0. Then, A¢(¢) = 1 implies ¥; = ®; ! with
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¥, = exp (lf/,- —z_,y).
U = - +a(xi /¥ — 1)+ B + o)
=& +axi—1 /Wi + f¥i_1, (11.8)

corresponding to a Log ACD (type II) model with @ := (8 — 1)@ —« (see Chap. 5).
Note that a constant baseline intensity function is equivalent to the assumption
of conditionally exponentially distributed durations. A similar relationship can be
derived for a Weibull parameterization of the baseline intensity. Hence, the fact that
AFT and PI models coincide in case of Weibull or exponential distributions carries
over to the coincidence between ACI and Log-ACD models (as long as there are no
time-varying covariates). Building on the close relationship between ACI and ACD
models in case of conditionally exponentially distributed durations and exploiting
the inverse relationship between intensity and conditionally expected durations,
Hamilton and Jorda (2002) propose a so-called autoregressive conditional hazard
(ACH) model of the form

1

. 07 ’
wN(t)+1 + Z/\“/o(,)'}

At F) =

(11.9)

corresponding to a particular type of ACI model.

The explicit derivation of theoretical moments of the intensity function is
complicated by the fact that conditional expectations of A(¢; F;) typically cannot
be computed analytically. This is because the relationship between the intensity
function at some point #; and the expected time until the next point #;4; generally
cannot be expressed in closed form. In general, the computation of the conditional
expected arrival time of the next point, E[#;| F,_,], is performed by exploiting
the relationship &; := A(t;—1,t;) ~ Exp(1). However, in case of a Weibull
parameterization of A¢(?), (11.6), A(ti—1,t;) can be actually expressed in closed
form. Then, under the assumption of no (time-varying) covariate arrival during the
current spell, E[#;| F,_,] is computed as

&ida 1a
Elt|Fy ] =11 +E HW}

f,‘,_l} . (11.10)

Correspondingly, the conditionally expected intensity at the next point #; is
derived as

E[A(t)] Fio] = @) exp(@)E[ (6 — t;-)* | Fii )]

a—l1

gia ¢
= @(;) exp(w)E [ [W]

.7-",,._1]. (11.11)
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Hence, these expressions are computed based on the conditional mean of trans-
formations of an exponential variate. The calculation of autocovariances of the
intensity function and of the corresponding durations x; has to be performed
numerically on the basis of simulation procedures. Figures 11.1-11.3 show sim-
ulated ACI(1,1) processes based on different parameter settings with a constant
baseline intensity function A¢(f) = exp(w). The figures depict the ACF of
A(t;; Fi;) (measured at the points 71,1, ...), as well as the ACF of the resulting
duration process. The parameterizations reflect different persistence levels. The
processes shown in Figs. 11.1 and 11.2 are based on a value of 8 = 0.97 and
thus are close to the non-stationary region. Both processes imply significantly
autocorrelated durations coming along with an exponentially decay of the ACF.
In particular, the ACF of the durations in Fig. 11.1 shows a shape that is quite
typical for financial duration series. Obviously, the persistence of the duration
processes strongly depends on the value of B, while the strength of the serial
dependence is driven by the innovation parameter «. For example, for « = 0.05
and B = 0.7 (Fig. 11.3), the ACF of the duration series declines sharply and quickly
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Fig. 11.1 ACF of univariate ACI(1,1) processes. Left: ACF of A(¢;; Fy;). Right: ACF of x;. Based
on 5,000,000 drawings. w = 0, « = 0.05, 8 = 0.97

ACF intensity function ACF durations

03 04 05 0.6

020304 05 0.6 0.7 08 09 1.0
02

-0.0
0.0

0 50 100 150 200 250 300 350 400 450 500 Q 50 100 150 200 250 300 350 400 450 500
lags lags

Fig. 11.2 ACF of univariate ACI(1,1) processes. Left: ACF of A(t;; F;,). Right: ACF of x;. Based
on 5,000,000 drawings. w = 0, = 0.2, B = 0.97
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ACF Intensity function ACF durations
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Fig. 11.3 ACF of univariate ACI(1,1) processes. Left: ACF of A(t;; F;,). Right: ACF of x;. Based
on 5,000,000 drawings. w = 0, « = 0.05, 8 = 0.7

tends towards zero for higher lags. Thus, autocorrelation patterns of intensities that
resemble the autocorrelation structures of typical financial duration series require
values of B quite close to one.

The log likelihood function of the ACI model is obtained by adapting
(4.24) in an obvious way. For example, by assuming a Weibull type baseline
intensity function, (11.6), the integrated intensity function can be computed
analytically, and the log likelihood function is obtained based on piecewise
analytical integrations of the intensity function over all points 7 ;witht; | < f =,
hence

. L 1 . .
mL(Y:0)=) {->" [d)(tj)s(tj)exp(w)g(tj+l - tj)“]

i=1 j
+1n (D(t:)s(1;) exp(w)x{ ") ¢ . (11.12)

However, in the case of more sophisticated parameterizations of Ao(¢), A(t;—1, )
has to be computed numerically.

11.2 Generalized ACI Models

In this section, we discuss several extensions of the basic ACI model. Section
11.2.1 introduces an ACI specification which captures long memory dynamics in
the intensity. Section 11.2.2 presents a generalized ACI specification which includes
the case of accelerated failure time dynamics and nests special cases of the ACD
model. In Sect. 11.2.3, we briefly illustrate how to extend the ACI model to allow
also for low-frequency (e.g., daily) dynamics. Finally, Sect. 11.2.4 gives empirical
illustrations of the individual specifications.
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11.2.1 Long-Memory ACI Models

Empirical applications of the ACI model (see Sects. 11.2.4 or 12.2.1) show that
financial intensity processes reveal a strong persistence and often indicate the
presence of long range dependence.

A simple extension of the basic model, which is easy to estimate but allows for
higher persistence, is to specify a two-component ACI model given by

& = wdi ) + (1 —w)P;2, (11.13)
@i =181 + D11, (11.14)
Dy = aréiy + BDi_ia, (11.15)

where QSM and @; , denote two intensity components leading to a weighted sum of
an integrated process and a weakly stationary process. This model is the counterpart
to the two-component ACD model specified by Engle (2000) building on the work
of Ding and Granger (1996) (see Sect. 6.3).

Alternatively, ACI dynamics can be straightforwardly extended to allow for long
range dependence. Similar to the case of ACD models as discussed in Sect. 6.3, ®;
might be parameterized in terms of an infinite series representation according to
Koulikov (2003), i.e.,

00 J
éi =a)+a20j_1§,-_j, Qj = Z,Bk 7_]{, (11.16)
j=1 k=0
where
o* = rd+j) 0.

R N

are the coefficients of the expansion of (1 — z)~¢ with |8| < 1. This yields a long
memory ACI specification

& =w+a(l—pL)'(1-L)%_, (11.17)
with (1 — L)™&,_, = Z?‘;l 0;-1&;—;. The model obviously nests the basic ACI
specification for d = 0 and reveals (stationary) long memory dynamics for d €

(0, 0.5). For a deeper discussion of these types of long memory specifications, see
Sect. 6.3.

11.2.2 An AFT-Type ACI Model

As discussed in Sect. 11.1, the ACI and ACD model only coincide in case of Weibull
parameterizations of the baseline intensity Ao(¢). The reason is that under such a
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parameterization, AFT and PI specifications coincide since accelerating factors in
the baseline intensity can be alternatively written as proportional factors. Therefore,
to bridge the gap between the ACI and ACD model and to obtain a more general
specification which nests both types of structures, the ACI model has to be extended
to allow for AFT effects. Accordingly, a generalized ACI specification nesting both
AFT and PI models is given by specifying Ao(¢) as

Ao(t) = Ao (n(1)) (11.18)

where
8

n() == x() - |:¢1\7(t)+1s(t)] . (11.19)
corresponding to the time elapsed since the last event scaled by @y, and s(t).
Hence, n(t) can be interpreted as a transformation of the time scale on which
the baseline intensity Ao(-) is defined. If § > 0, ACI dynamics and seasonality
effects accelerate the time until the next event, whereas for § < 0, the time scale
is decelerated. By assuming that the ACI dynamics are given by (11.17), setting
for convenience s(¢) = 1, and ruling out time-varying covariates (¢ = 0), we can
distinguish between the following special cases:

1. If the baseline intensity A¢(-) is non-specified, and § = 1, w =a = =0,
the model corresponds to the standard (non-dynamic) AFT model (see, e.g.,
Kalbfleisch and Prentice 1980) as given by

At Fr) = A(t) = do[x(t) exp(zy (1)'y) | exp(zy (1) y).

As discussed in Chap. 4, it can be alternatively written as a log-linear model in
terms of the durations x; :=t; — t;_,

Inx; = —z;_l}' +&, i=1,....n,
where §; is an error term following a non-specified continuous distribution.
2. If the baseline intensity A¢(-) is non-specified,and § = w = o = B = 0, the

model corresponds to the well-known class of (non-dynamic) semiparametric PH
models as discussed in Chap. 4 and given by

At Fr) = At) = Ao(x (1) exp(zy (1)'y).
3. If Ao (-) = 1, we have &; = &' with

W, =exp (¥ —7,_,p),
U = —w+a(l —BL) (1 — L) (ui—y),
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which corresponds to a long memory Log-ACD model based on centered
standardized durations u; := x; /W¥; — 1 as innovations.
4. I Ao (n(®)) = p-n(@)?~'(1 + kn(z)?)"" and § = 1, then

R K1+1/pp(1+1/,<) o
b= [r(1+1/p)r<x—'—1/a)} =T

Y, =exp(Vi—7_,),
T =—w—a(l - L)~ - L) &,

corresponding to a special type of long memory ACD model with the (Burr
parameterized) centered integrated intensity as innovation term.

An obvious extension is to allow for component-specific acceleration effects by
re-formulating (11.19) as

o . poo
n(t) = x(t) ¢N(t)+l

NOKE (11.20)
where §¢ and §; are specific acceleration parameters separately affecting the
individual components. This specification allows to identify whether a possible
acceleration/decelaration effect is mainly driven by seasonality effects or intra-
day dynamics. For 84 = & = &, the model collapses to the basic specification
(11.19).

11.2.3 A Component ACI Model

Similarly to the component MEM discussed in Sect. 6.4.3, the (generalized) ACI
model can be extended to capture also daily dynamics. Denote 7(¢) as an integer
variable indexing the current trading day observed at time 7. Thus 7(¢) is constant
during a day and jumps only from day to day. Furthermore, define tj(z) and tf () 33
the time of the opening and closure of the trading day (¢), respectively. Then, the
ACI model might be re-specified as

At Fr) = Ao (@) ¥ (0)s (D) e o). (11.21)

where 7(2) is defined as in Sect. 11.2.2 and ¢, ;) is a function varying only on a daily
level. It is given by

Pe(ry = al(t) + bory-1, (11.22)
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where the innovation term £ (¢) is specified as

il i
A (tt(l)—l ’ tr(t)—l)

i t
N (tr(t)—l> - N (tr(t)—])

exploiting the basic results of the martingale theory of point processes. As shown
in Chap.4, (N(t) — N(s)) — A(t,s) is a mean zero martingale. Consequently,
1— A(t,s)/(N(t) — N(s)) and thus ¢ (¢) are mean zero martingales as well.

Hence, both types of dynamics @; and ¢, are driven by functions of the lagged
integrated intensity. In order to distinctly disentangle both types of dynamics, ®;
should be re-initialized at the beginning of each day. Then, intensity dynamics might
reveal long memory dynamics within individual trading days and short memory
dynamics across trading days.

¢@) =1-

(11.23)

11.2.4 Empirical Application

Table 11.1 shows estimates of different generalized ACI specifications based on
JPM 10bp price durations for June 2009. In summary, the most general specification
is given by

At Fr) = Ao (1) ¥ (@)s ()

w(t) = exp (B)41)
& =w+a(l—pL)'(1-L)%_,

+ 61 =BL)™' (1= L)~ (|- — E[l&-1]]),
Py = al(t) + br-1.

()"
1+ «kn()’
_ . oo 8¢ Ss
n0) = x(@)- B sy

i i
A (tr(t)—l’ tr(t)—l)

i f ’
N (tr(t)—l) -N (tr(t)—l>

9
sit) =1+ ZSj(li - Tj)]l{,i>fj}.
j=l1

Ao(n(2)) = exp(w)

) =1-
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Table 11.1 Maximum likelihood estimates of univariate generalized ACI models. Based on 10bp-
price durations of the JPM stock traded at the New York Stock Exchange, June 2009. 28,077
observations. The spline function is based on 6 equally spaced nodes between 9:30 a.m. and 4:00
p-m. Standard errors are based on the outer product of gradients

A B C D E

est. p-v. st p-v.  est p-v. st p-v.  est p-v.

Baseline intensity parameters

1) 1.587 0.000 1.306 0.000 1.260 0.000 2.071 0.000 2.071 0.000
p 1.124 0.000 1.125 0.000 1.123 0.000 1.327 0.000 1.327 0.000
K 0.160 0.000 0.158 0.000 0.153 0.000 2.512 0.000 2.512 0.000
Acceleration parameters

8o 1.061 0.000 1.061 0.000
85 1.017 0.000 1.061

8y 0.960 0.000 1.061

Dynamic parameters

0.087 0.000 0.089 0.000 0.151 0.000 0.172 0.000 0.172 0.000
0.035 0.000 0.039 0.000 0.069 0.000 0.084 0.000 0.084 0.000
0.988 0.000 0.982 0.000 0.076 0.000 0.082 0.002 0.082 0.002
0.104 0.000 0.090 0.000 0.089 0.000 0.089 0.000
0.335 0.000 0.489 0.000 0.462 0.000 0.462 0.000

0.338 0.000 0.343 0.000

LT ™NnN R

Seasonality parameters

Vi —1.836 0.000 —1.874 0.000 —1.907 0.000 —1.917 0.000 —1.917 0.000
%3 1.555 0.000 1.611 0.000 1.670 0.000 1.646 0.000 1.646 0.000
V3 0.195 0.020 0.173 0.027 0.151 0.018 0.183 0.002 0.183 0.002
Vy 0.160 0.016  0.164 0.009 0.156 0.003  0.141 0.002 0.141 0.002
Vs 0.068 0.379 0.057 0.433 0.011 0851 0.017 0.727 0.017 0.727
Ve 0.922 0.000 0.891 0.000 0.864 0.000 0.678 0.000 0.678 0.000
LL —18,080 —18,034 —17,956 —17,569 —17,569

BIC —18,141 —18,106 —18,032 —17,661 —17,661

Residual diagnostics

Mean of e; 1.012 1.012 1.017 1.009 1.009
S.D.of ¢; 1.088 1.087 1.093 0.989 0.989
LB(20) of ¢; 95.670 85.461 26.572 23.923 23.923

Note: In specification E, the restriction § := §%® = §¢ = §° is imposed

Hence, the model allows for long memory dynamics, a daily dynamic component
as well as acceleration effects of both intradaily and daily dynamics. Moreover,
the long memory specification of &; allows for asymmetric effects of past inno-
vations &; on the current intensity. It is specified in analogy with Nelson’s (1991)
EGARCH specification and allows for a kinked news impact curve governed by the
parameter ¢.
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Panel A shows the results of a basic ACI specification (with asymmetric
news impact) which is subsequently extended by an inter-day component (Panel
B), long memory dynamics (Panel C) and acceleration effects (Panels D and E).
Intraday periodicities are captured according to (5.33) using Q@ = 6 knots. The
estimates of ¢ reflect the presence of asymmetric news impact effects. Hence, in
periods where the price intensity, i.e., the instantaneous volatility, is higher than
expected, we observe a stronger impact on the expected intensity than in periods
where the intensity is lower than expected. Moreover, we observe clear evidence
for positive serial dependencies in the inter-day component (Panel B). Hence,
confirming the results by Brownlees et al. (2011), the (average) daily level of
price intensities is time-varying and positively autocorrelated. Nevertheless, even
though the specification leads to a better goodness-of-fit of the model, it is not
sufficient to fully capture the dynamic properties of the process. The inclusion of
a long memory component is necessary to achieve a significant improvement of
the model’s dynamic properties as indicated by the residual diagnostics and the
BIC. We find a value of d ranging around 0.33 indicating the presence of long
range dependence with the process being covariance stationary. Furthermore, clear
evidence for acceleration effects (Panel D) are found. The estimated acceleration
parameters support the idea of an accelerated specification in contrast to a propor-
tional model. We observe that the individual parameters are relatively similar and are
close to one yielding specification F as the most parsimonious one. Finally, though
a Burr parameterization allows for quite flexible shapes of the baseline intensity, the
residual diagnostics still reveal significant overdispersion and thus a limited ability
of the model to fully capture the distributional properties in the data. Actually, it
is shown that this overdispersion is mainly caused by very long price durations
which are not easily captured by a standard parametric form and requires even more
flexible baseline intensities.

11.3 Hawkes Processes

A valuable alternative to an autoregressive specification is to parameterize the
intensity function in terms of a self-exciting process. In general form, such a process
can be written as

t

A F) =¢ (/L(t) + /

—0o0

w(t — s)dN(s))
= | (@) + D Mg<wlt — 1) | | (11.24)
i>1

where ¢ is a possibly nonlinear function, p(¢) is a constant, and w(-) is a non-
negative weighting function. The processes are referred to as Hawkes processes



11.3 Hawkes Processes 285

as Hawkes (1971) was among the first who systematically studied this class
of processes. Hawkes processes serve as epidemic models since the occurrence
of a number of events increases the probability for further events. In natural
sciences, they play an important role in modelling the emission of particles from
a radiating body or in forecasting seismic events (see, for example, Vere-Jones
1970, Vere-Jones and Ozaki 1982 or Ogata 1988). Bowsher (2007) is among the
first applications using these types of processes to model financial data.

In self-exciting processes, the intensity is driven by a weighted non-increasing
function of the backward recurrence time to all previous points. Accordingly, the
intensity is high whenever we have observed many events in recent periods. Such
a specification naturally captures event clustering and thus positive autocorrelations
in event durations. If (1) # A, we obtain the class of non-linear Hawkes processes
which are studied, e.g., by Brémaud and Massoulié (1996). For instance, choosing
@A) = exp(4) allows to preserve the non-negativity of the process without
additional parameter constraints.

Note that the Hawkes model allows to estimate dependencies in the intensity
process without imposing parametric time series structures. The dependence is
rather specified in terms of the elapsed time since past events. Hence, the marginal
contribution of previous events on the current intensity is independent of the number
of intervening events.

In case of (A1) = A, we obtain the class of linear Hawkes processes as studied
by Hawkes (1971). In this case, the intensity is a linear function of the sum of the
time distance to all past points. The strength of the impact of past events is driven
by the function w which might be economically interpreted as an impulse response
function. Hawkes (1971) suggests parameterizing w(t) as

»
w(t) =Y a; exp(=B;1), (11.25)
=1

where a; > 0, ,Bj > 0for j = 1,..., P, are parameters and P determines the
(exogenously chosen) order of the process. The parameter «; determines the scale,
whereas f8; determines the time decay of the influence of past points of the process.
Accordingly, the response of a previous event on the intensity function in ¢ decays
exponentially and is driven by the parameter ;. For P > 1, the Hawkes(P) model
is based on the superposition of differently parameterized exponentially decaying
weighted sums of the backward recurrence time to all previous points. In this case,
identification requires some constraint on the parameters §;, e.g., f1 > ... > Bp.
As shown by Hawkes and Oakes (1974), a Hawkes process can be represented
(and generated) by clusters of Poisson processes. This principle can be exploited
to simulate a Hawkes process. For more details, see, Mgller and Rasmussen (2005)
or Daley and Vere-Jones (2005).

The function () can be specified in terms of covariates z 0 and z?\; o0 and a

seasonality function s(t), thus
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— / 07
nt) =ow+s() + ZyoY + z/\;o(t)ﬂ, (11.26)
which, however, does not ensure the non-negativity of w(¢). Alternatively, wu(t)
might be specified in logarithmic form. Seasonality functions might enter the model
also multiplicatively. Then, the model is given by

P N@)

Mt F) =s@) @)+ Y Y ajexp(=B;(t —1) ¢ - (11.27)

j=li=1

Obviously, alternative functional forms for the decay function are possible. For
instance, an alternative parameterization is

w(t) = (11.28)

@t +w)r’

with parameters H, «, and p > 1 featuring a hyperbolic decay. Such weight
functions are typically applied in seismology and allow to capture long range
dependence. Since financial intensity processes also tend to reveal long memory
behavior, this specification may be interesting in financial applications as well.

However, the choice of an exponential decay simplifies the derivation of the
theoretical properties of the model. More details can be found in Hawkes (1971),
Hawkes and Oakes (1974) or Ogata and Akaike (1982). As shown by Hawkes
(1971), stationarity of the process requires 0 < fooo w(s)ds < 1 which is ensured
by Zf=1 a;/B; < 1. For the special case P = 1 and j(f) = p, the unconditional
mean of A(¢; F;) is given by

E[A(1)] = a __MP (11.29)

1— [ aexp(—Buydu  p—a’

As in the case of ACI processes, the computation of the conditional expectation
of the next point of the process, E [¢;| F;,_,], cannot be expressed in closed form.
Therefore, #; is computed as the solution of

g = A(ti—1, 1)

" P -1
— [ wwis- % S {exp(—P ;= 1) = exp(—B, 11 ~ 1)}
fim j=1k=1"/
' (11.30)

where ¢; denotes an i.i.d. standard exponential variate. The solution of (11.30)
leads to a nonlinear function of an exponentially distributed random variable,
t; = gi(&i; Fi,_,). Its conditional mean can be calculated using the law of iterated
expectations (under the assumption of no time-varying covariates) as
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El4| Fi ]l = E[E[gi(ei: Fu)l &l Fii]- (11.31)

Then, the conditional expectation of A(#;) given the information set at z;_; is
computed as

i—1

,
B A Fioy] = (i) + Y Y ;B exp(—B;1)| Fiy Jexp(Biti). (11.32)

j=lk=1

This expressions requires to compute the conditional expectation of a function of
the time until the next point. However, this conditional expectation typically cannot
be expressed in closed form and requires to use simulation methods.

Figures 11.4-11.6 show the autocorrelation functions of the intensities A(#;; )
and of the resulting durations x; = f; — t;—;, evaluated at each event, for the
intensities following Hawkes processes with different parameterizations. It is shown
that the persistence of the intensity process and the resulting duration process
strongly depends on the ratio «/f. Figure 11.4 is based on a parameterization

ACF intensity function ACF durations
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Fig. 11.4 ACF of univariate Hawkes(1) processes. Left: ACF of A(t;; F;, ). Right: ACF of x;.
Based on 5,000,000 drawings. w = 0.2, « = 0.2, 8 = 0.21
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Fig. 11.5 ACF of univariate Hawkes(1) processes. Left: ACF of A(t;; F;, ). Right: ACF of x;.
Based on 5,000,000 drawings. = 0.2, « = 0.2, 8 = 0.25
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Fig. 11.6 ACF of univariate Hawkes(1) processes. Left: ACF of A(t;; F;,). Right: ACF of x;.
Based on 5,000,000 drawings. w = 0.2, = 0.2, 8 = 0.5

leading to a quite persistent intensity process. The ACF of the implied duration
process shows a pattern that is very realistic for financial duration series (compare
to the empirical autocorrelation functions shown in Chap. 3). Hence, the Hawkes
process allows for persistent duration processes implying a slowly decaying ACF.
It turns out that the persistence in the implied duration series is generally higher
than for ACI processes. Figure 11.5 shows a less persistent process associated with
autocorrelation functions that clearly decay faster than in Fig.11.4. In contrast,
Fig. 11.6 reveals only very weak serial dependencies.
The Hawkes(P) model is estimated by ML using the log likelihood function

n

InL£(Y;0) =Z —/ti w(s)ds

i=
P i—l1

XY F 2T Texp(—B; (6 — 1)) — exp(—B; (ti—1 — 1))]

j=1 k—l
i—1
+1n | p(t) + Z Yo exp(—Bi(t —1) [ ¢, (11.33)
j=lk=1
which can be computed on the basis of a recursion and can be re-written as

n

InL(Y;0) —Z —/Ii u(s)ds

i=1 li—1

P i—1
XY F T lexp(—B; (t; — 1)) — exp(—B; (ti—1 — 11))]
/—lk—l
P .
+In | pu(@)+ ) oAl | . (11.34)

=1
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where

i—1

Al =) exp(=B; (1 — 1)) = exp(—B; (i —tim)) (1 + AL_)).  (11.35)
k=1

An important advantage of the Hawkes parameterization is that A(¢;,#;—;), and
thus the log likelihood function, can be computed in closed form and require
no numerical integration. Nevertheless, the occurrence of time-varying covariates
requires integrating the function /4(s) piecewise over all intervening points {7; } with
i1 < f i =t.
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Chapter 12
Multivariate Dynamic Intensity Models

This chapter presents multivariate extensions of dynamic intensity models. Section
12.1 considers multivariate autoregressive conditional intensity (ACI) models which
have been originally proposed by Russell (1999). Applications of this framework
are presented in Sect. 12.2. We illustrate how a multivariate ACI model is used to
estimate simultaneous buy and sell trading intensities and to model order aggres-
siveness in an open limit order book market. Section 12.3 presents multivariate
Hawkes processes, discusses their statistical properties and shows in an empirical
illustration how Hawkes processes can be employed to estimate multivariate price
intensities. Finally, Sect.12.4 discusses Stochastic Conditional Intensity (SCI)
processes as introduced by Bauwens and Hautsch (2006). These models are based
on the assumption that the conditional intensity, given the (observable) history of
the process, is not deterministic but stochastic and follows a dynamic process.
Similarly to the Stochastic Multiplicative Error Model presented in Chap. 6, the
underlying idea is to introduce a latent dynamic factor which drives commonalities
in intensities. We discuss the model’s properties, statistical inference and present an
empirical application to the analysis of commonalities in intraday volatility.

12.1 Multivariate ACI Models

Recall the setup and notation of the univariate ACI model introduced in Chap. 11.
Then, a multivariate ACI model is a straightforward multivariate extension and is
based on the specification of the vector of K intensity functions

At F)
A2t F)
At Fy) = . , (12.1)
AR (e F)
N. Hautsch, Econometrics of Financial High-Frequency Data, 291
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where each component is parameterized as
M@t F) =AMk os @), k=1,... K, (12.2)

where WX (1), /1’5 (¢) and s*(¢) are the corresponding k-type dynamic component,
baseline intensity function and a deterministic function of time. Russell (1999)
proposes specifying ¥ (¢) as'
k _ 7L / k 0/ k
Wk (1) = exp (lpﬁ(t)ﬂ + 2 P+ 2 ? ) (12.3)
where the vector & := (¥, &2, ..., ¥K)' is parameterized in terms of a VARMA
type specification, given by

B = (A5 B L, (124)

with A% = {a’;} being a K x 1 vector associated with the innovation term &;_p,

Bf = {Bij} being a K x K matrix of persistence parameters and y{‘ defined as
an indicator variable taking the value one if the ith event is of type k and being
zero otherwise. Hence, each of the processes 431." ,k =1,...,K, correspond to a
univariate autoregressive process with regime-switching dynamics in dependence
of the type of the most recent point. The individual processes are linked together
since they are jointly updated by &; at each point of the pooled process.

As proposed by Russell (1999), ¢; can be specified in terms of the integrated
intensity associated with the type of the most current point leading to

K
=y (1= A%, 1) ¥f (12.5)
k=1
or
K
g = Z (—0.5772 — In A* (¢F_,, 1)) y¥, (12.6)
k=1
where
G
ARt = Z[k A (53 Fy)ds, (12.7)
i ol

Then, at each event ¢;, all K processes are updated by the realization of the integrated
intensity with respect to the most recent process, where the impact of the innovation

"For ease of illustration, we restrict our analysis to a lag order of one. The extension to higher order
specifications is straightforward.
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on the K processes can be different and also varies with the type of the most recent
point. As shown in Chap.4, under correct specification of A(¢; F;), the integrated
intensity functions {A(tf_l,tik)}{,-:l ..... k) are ii.d. standard exponential variates.
Consequently, &; corresponds to a (random) mixture of zero mean i.i.d. variates
and thus is itself a zero mean i.i.d. random variable. As a result, stability conditions
depend on the eigenvalues of the matrices BX. Because of the regime-switching
nature of the persistence matrix, the derivation of stationarity conditions is difficult.
However, a sufficient (but not necessary) condition is that the eigenvalues of the
matrices B¥ forall k = 1, ..., K lie inside the unit circle.

Alternatively, Bowsher (2007) suggests specifying the innovation in terms of the
integrated intensity of the pooled process, i.e.

& = 1= A(ti—1, ), (12.8)

where A(ti—1,t;) = Zle A¥(t;_1, 1;) denotes the integrated intensity of the pooled
process computed between the two most recent points. Consequently, &; is also a
mean zero i.i.d. innovation term.

Alternatively, we can exploit the fact that N(t) — fol A(s)ds is a martingale
difference (see Chap.4). Consequently, (N¥(t;) — N*(t,_,)) — ftf‘_ AK(s)ds is a
martingale difference as well. Then, an alternative specification of ACI dynamics is
obtained by

®;, = A& | +BY,; 4, (12.9)

where both A and B are (K x K) parameter matrices and

&= (8,8,... &

with
& = (N/(t;) = N’ (ti—1)) = A (ti—1, 1) = y] — A (ti-1, 1),
fork =1,...,K.
The baseline intensity functions are extensions of the univariate case. The most

simple way is to assume that A’(; (¢) is constant, but depends on the type of the event
that occurred most recently, i.e.,

Ag(z)zexp(wf)yg(t), r=1,....K, k=1,....K. (12.10)

Alternatively, the baseline intensity function may be specified as a product of
Weibulll hazard rates, i.e.,

K
A (1) = exp() [T 2" ()", ab > 0, (12.11)

r=1
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or of Burr hazard rates,

xr([)af‘—l

—— d" >0« >0 (12.12)
1+ kkxr(2)%

K
25(0) = exp(@) [ ]

r=1

A special case occurs when the kth process depends only on its own backward
recurrence time, which corresponds to a¥ = 1 and«* = 0, V r # s.

The computations of E [ | F;,_, | and E [ A*(#;)| F,,_, ] are complicated by the
fact that in the multivariate case, /\]5 (t) depends on the backward recurrence times of
all K processes. In that case, there exists no closed form solution for the integrated
intensity,2 and thus, A* (tik_1 , tik ) as well as the conditional expectations of tik and
AK(;) have to be computed numerically.

Figures 12.1-12.3 show the autocorrelation functions (ACFs) of bivariate sim-
ulated ACI(1,1) processes. In order to illustrate the dynamic interactions between
the two processes, the cross-autocorrelation functions (CAFCs) are shown as

2With the exception of the case of a constant baseline intensity function.
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well.3 All simulations are based on constant baseline intensity functions implying
no interdependence between the processes. Figure 12.1 is based on a completely
diagonal ACI specification. Thus, the processes do not interact, which is also
revealed by the CACF. In contrast, the process in Fig. 12.2 implies an asymmetric
interdependence (otf = 0) between the processes, while Fig. 12.3 is associated with
(symmetric) interactions in both directions (oc% = ozf = 0.05). The CACF shows an
increase around zero, which is the more pronounced the stronger the interactions
between the processes. The asymmetry of the dip results from the fact that the
process-specific serial dependencies are of different strengths. Thus, the higher
persistence of A!(t;: F;,) implies higher values of Corr [/\1 (ti: F), pRI( i F )]
for j < O than for j > 0.

The log likelihood function of the multivariate ACI model based on data Y and
parameters 6 is computed as

K n
InL(Y:0) =Y Y {=A*r.t) + yf Ak @2 F)) (12.13)
k

=1i=1

where A¥(t;_1, ;) is calculated according to (12.7).

3The graphs of the CACF depict the plot of Corr [/ll(t,» 3 Fu),s )tz(t,-_/- 3 F; )] vs. j.
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12.2 Applications of Multivariate ACI Models

12.2.1 Estimating Simultaneous Buy/Sell Intensities

Hall and Hautsch (2007) apply bivariate ACI specifications to model the simul-
taneous buy and sell trade arrival process at the Australian Stock Exchange in
dependence of the state of the underlying order book. For such an application, a
multivariate intensity model is particularly attractive as it avoids any aggregation
and allows to process all limit order book activities.

Exploiting information from fully re-constructed limit order books, Hall and
Hautsch (2007) construct various variables allowing to test hypotheses on the
trading behavior of market participants. As summarized in Table 12.1, four groups
of explanatory variables are used. The first type of variables captures the effect of
overnight returns and consists of the log ratio between the previous day’s closing
price and the current opening price (OCP) as well as its interaction with two time
dummies (OCP1 and OCP2) which allow to investigate whether the influence of
overnight returns changes over a trading day.

The second category consists of variables that are observed only when a market
order is executed, such as the difference between the posted log limit price and the
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Table 12.1 Definition of explanatory variables used by Hall and Hautsch (2007)
Variables observed at each transaction

TRVB Traded buy volume
TRVS Traded sell volume

Time-varying covariates associated with the limit order process

AVOL Total volume on the ask queue

BVOL Total volume on the bid queue

D_VOL AVOL-BVOL

Ay Price associated with the x % quantile of the cumulated
volume on the ask queue

B, Price associated with the x % quantile of the cumulated
volume on the bid queue

MQ Midquote ((4o + Bo)/2)

DFF2 DFF2 = |Byy — Byl — | A2 — Ayol

DFF4 DFF4 = |By — Byo| — [A40 — Ax

DFF6 DFF6 = |Bgy — Baol — |Aso — Auol

DFF9 DFF9 = |Boy — Bgol — | A9 — Aeol

SPRD Bid-ask spread

DMQ Midquote-change DMQ = MQ; — MQ;—;

QASK 1: if limit order is an ask, O: if limit order is a bid

QVOLA Quoted volume if limit order is an ask, (0 for bids)

QVOLB Quoted volume if limit order is a bid, (0 for asks)

prevailing log ask price in case of a buy or log bid price in case of a sell (DQP)
as a measure for the investor’s implicit marginal valuation of the asset. Moreover,
the change of the best ask/bid log quote due to a transaction is included (DP).
To control for potential non-linearities, DP is interacted with a dummy variable
indicating whenever best ask and bid prices are shifted by more than one tick (DP1).
Moreover, the signed log traded quantity at the most recent transaction (7TRV) as
well as its interaction with a dummy variable indicating volumes greater than the
median volume (7RV'1) and the signed difference between the quoted and the traded
log volume as a measure for the non-executed quantity of a market order (DV) are
used.

The third group of variables captures the most recent state of the order book as
well as characteristics of the most recent limit order arrivals, such as the signed log
volume of a limit order set below (above), at or above (below) the most current best
ask (bid) price (LO—;, LOy, LO4) and the signed log volume of a cancellation
above or below the current best ask/bid (CANO, CAN1). Moreover, the relative
price differential between limit prices associated with specific volume quantiles
(relative to the current mid-quote price) (ASL-, BSL-) capture the piecewise slopes
of the ask and bid curves. Further order book characteristics are the log aggregated
trading volume on the bid and ask queues (AV and BV) reflecting the overall
current aggregated demand and supply in the market and the relative spread between
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the current best bid and best ask price (SPR) relative to the midquote as a measure
for the tightness of the market.

The fourth group of variables are indicators for market movements during the
last 30 min. They contain the signed order flow computed as the cumulated change
of the pending log ask volume in excess of the log bid volume during the last 30 min
(OFL), the corresponding log midquote return (DM Q) as well as the changes of
the ask and bid slopes during the last 30 min (DASL and DB SL). Finally, the order
flow volatility measured by the square root of the cumulated squared (de-meaned)
differences between the pending log ask and bid volume (OFLV') during the last
30 min, and the midquote volatility, measured by the square root of the cumulated
squared de-meaned log midquote changes during the last 30 min (VOL A), reflect
the current uncertainty in the market.

Table 12.2 reproduces a part of the estimation results from Hall and Hautsch
(2007) for bivariate ACI models for the ASX stocks BHP Billiton Limited (BHP),
the National Australian Bank (NAB) and Telstra (TLS), during the period July to
August 2002. Hall and Hautsch (2007) estimate bivariate ACI(1,1) specifications for
buy (B) and sell (S) trades represented by k € {B, S}. The dynamics are specified
by (12.4) with B> = B* = B and innovations given by (12.5). The specifications
include time-varying covariates which are updated whenever the order book is
changed due to the arrival of new orders or changes of pending orders. All regressors
enter the model in lagged form. The baseline intensity function is specified in terms
of a Burr parameterization as given in (12.12) yielding the best goodness-of-fit in
terms of the BIC for specifications excluding spill-over effects, i.e., pf;, = p? =1
and k3 = k& = 0. The seasonality function is assumed to be common for both
processes and is specified as a linear spline function based on six equally-spaced
nodes between 10:30 and 16:00.

For all stocks, the intensity processes are very persistent with persistence
parameters close to unity and comparably small innovation coefficients. Moreover,
there is empirical evidence for mostly positive interdependencies between the buy
and sell side. The residual diagnostics are based on the estimated process-specific
integrated intensities A¥ := A (t£ |, 15), k € {B, S} which should be i.i.d. standard
exponentially distributed in case of correct specification (see also Chap.4). The
relatively low values of the Ljung—Box statistics based on the ACI residuals indicate
that the specifications widely capture the dynamics in the data. Testing for excess
dispersion according to Engle and Russell’s (1998) test as discussed in Sect.4.1.7
reveals remaining slight over-dispersion in the residuals. This shows that even the
flexible Burr distribution cannot fully capture the distributional properties of the
data. This is a well-known result for trade durations, see also Bauwens et al. (2004)
and the corresponding discussion in Chap. 11.

By denoting the buy and sell intensities as A (¢; ;) and A5 (¢; F;), respectively,
Hall and Hautsch (2007) define the so-called net buy pressure formally as

AB() :=mmAB(t; F)) —nAS (e ). (12.14)
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Table 12.2 Estimates of bivariate ACI(1,1) model for the buy (B) and sell (S) intensity with
covariates evaluated at each order arrival. Based on all market orders of NAB, BHP and TLS
traded at ASX from July 8 to August 30, 2002. Standard errors are computed based on the outer
product of gradients. The time scale is standardized by the average duration between two trades.
The time series are re-initialized at each trading day. Significance at the 1%, 5% and 10% levels

are denoted by ***, ** and *, respectively. Reproduced from Hall and Hautsch (2007)

Ask side Bid side

NAB BHP TLS NAB BHP TLS
ACI parameters
B —1.14%%*  —0.45***  —0.33 o8 —0.64"**  —0.40***  —0.51***
s 0.86™**  0.89***  0.87***  p3 0.87***  0.85%**  (.88***
KB 0.117%** —3.15*** 0.00 K5 0.117%** —3.36™**  0.00
al 0.12%**  0.04***  0.10***  of 0.05***  0.00 —0.02%**
oy 0.04*** 0.00 —0.02***  of 0.09***  0.07***  0.05%**
B 0.86***  0.99%**  0.93***  Bgp 0.01 0.01%¥*  0.04***
Bas —0.05%%*  0.02%**  0.02***  Bgg 0.97***  0.97***  0.98***
Impact of overnight price changes
OCP1 —0.56 0.11 0.78 OCP1  0.69 —0.02 0.56
oCcP2 —048 0.29 1.00 OoCP2 0.67 0.00 0.59
Impact of the most recent transaction
DQP —0.06 0.00 0.01 DQP 0.17* 0.07** 0.00
DP —9.60*** —6.18*** —3.34*** pp 8.70*** 7.927%+* 3.39%**
DP1 2.37%%* 1.427%%* —0.24 DP1 —1.42**  —0.07 0.27
TRV 0.17%** 0.07*** 0.02 TRV —0.18***  —0.20*** —0.04*
TRV1  0.07*** 0.15%** 0.15%** TRV1  —0.04 —0.12%**  —0.17***
DV —0.34%**  0.53%** 0.75%** DV 0.437%+* —0.30***  0.24
Impact of current limit order arrivals
LO_, 0.26™** 0.12%** 0.07*** LO_, —0.30***  —0.17***  —0.10%**
LOy 0.03 0.03* —0.01 LOy —0.01 —0.02 0.03*
LO4;  0.06™* 0.05*** 0.05** LO4, —0.02 —0.05**  0.00
CANO —0.09* 0.09** 0.13*** CANO 0.06 —0.07 —0.20%**
CAN1  0.06 0.02 —0.02 CAN1 —0.02 0.04 —0.06
Impact of the current state of the market
AV 1.17 —0.81 0.32 AV 0.25 0.29 0.41
BV 0.28 0.44 —0.32 BV —0.04 —0.90 —0.39
BSL02 —3.43*** —4.00*** —4.84*** BSL02 1.32%** 427 7.45%+*
ASLO2  2.04%** 3.42%%* 7.46%** ASLO2  —1.18%** —339%** _3(5%**
BSLO5 —0.57 —0.71***  —3.36*** BSL05 1.71"** 1.08*** 4.847%%*
ASLO5  1.49%** 0.69** 5.4717%%* ASLO5 —0.77**  —0.06 —2.32%%*
BSL10 0.34 —0.20 —1.42***  BSL10 0.40* —0.12 2.56%**
ASL10  0.10 —0.11 3.647%** ASL10 031 0.49** —0.88**
BSL20 0.27 —0.09 1.50** BSL20 0.24 0.87*** 1.00*
ASL20 0.46* —0.12 0.65 ASL20 0.31 0.00 0.13

(continued)
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Table 12.2 (continued)

Ask side Bid side

NAB BHP TLS NAB BHP TLS
BSL50 0.28 —0.55 —0.49 BSL50 0.73***  0.81** 0.59
ASL50 —0.16 —0.15 —0.01 ASL50 0.60 —0.15 —0.54
BSL90 0.20 —0.33 —0.46 BSL90 —0.17 0.72 —0.23
ASL90 1.89%** —0.02 0.39 ASL90 0.97 —0.11 0.62
SPR —10.32*%** —6.50*** —3.01"** SPR —8.91™** —538%** 267"

Impact of the market activity during last 30 min

VOLA 0.29 0.15 0.42 VOLA 024 0.04 0.08
DMQ —2.25 —2.26 —1.31 DMQ 0.14 1.75 1.81
DASL —0.76**  0.21 0.23 DASL —022 —0.44 0.60
DBSL 0.56 0.11 0.25 DBSL —0.43 —0.07 —0.87**
OFL —0.12 0.02 —0.21 OFL —0.14 0.15 0.05
OFLV 0.08%*** 0.04***  0.04***  OFLV 0.07*** 0.07*** 0.02**

Seasonality parameters

vy —1.37*%%*  —0.60™"** —0.88™** y, 1.53%%%  1.74%%*  1.43%**
vy 1.377%%* 0.28 0.86™** s —0.43*** 0.03 —0.05
V3 —0.80***  —0.65™** —(0.83%** g 0.17 0.69***  0.63***
Diagnostics
n 34,296 44,604 30,878
n° 84,164 107,568 73,682
LL —50,243 —67,475 —48,269
BIC —50,713 —67,957 —48,724
Residuals ask side Residuals sell side
Mean of /if‘ 1.00 0.99 1.00 1.00 1.00 1.00
S.D. of Af? 1.03 1.01 1.04 1.03 1.04 1.04
LB(20) of A{-‘ 57.15%*%*  78.64*** 27.14 27.50 34.52%*%  63.82%**
Exc. disp. 3.25%%* 0.86 371%%*  2.70%** 358 3,13%%*

Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC) and diagnostics (mean,

standard deviation, Ljung-Box statistic and excess dispersion test) of the ACI residuals /if‘ k €
{B, S}. n: number of trades, n°: number of total observations (including all limit order activities).

Then, the marginal change of A®(¢) induced by a change of z MO is computed as

AB(t
_2 O _pp_ s, (12.15)
ZMO(t)

The corresponding estimates of y# — p5 are reported in Table 12.3, where the
standard errors are computed by applying the Delta method using the estimated
covariance matrix of the parameter estimates shown in Table 12.2.
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Table 12.3 Estimates of the difference y2 — p° based on the estimates reported in Table 12.2.
Standard errors are computed by applying the Delta method. Significance at the 1%, 5% and 10%
levels are denoted by ***, ** and *, respectively. Reproduced from Hall and Hautsch (2007)

NAB BHP TLS
Impact of overnight price changes
OCPl1 —1.25 0.13 0.22
oCP2 —1.15 0.29 0.41
Impact of the most recent transaction
DQP —0.23* —0.07* 0.00
DP —18.30™** —14.10%** —6.74%**
DP1 3.79*** 1.49%* —0.51
TRV 0.35%** 0.26™** 0.06**
TRV1 0.10*** 0.277%** 0.33%**
DV —0.77*** 0.837** 0.51*
Impact of the current state of the market
AV 0.92 —1.10 —0.09
BV 0.32 1.34 0.07
BSL02 —4.76%** —8.27%** —12.29%**
ASL02 3207 6.817%** 10.517%**
BSLO5 —2.28%** —1.79%** —8.20™**
ASLO5 2.26%** 0.75 7.74%**
BSL10 —0.06 —0.08 —3.98%**
ASL10 —0.21 —0.60** 4.52%%*
BSL20 0.03 —0.95%** 0.50
ASL20 0.15 —0.12 0.52
BSL50 —0.45 —1.35%** —1.08**
ASL50 —0.76 0.00 0.52
BSL9 0.37 —1.05 —0.23
ASL90 0.91 0.10 —0.23
SPR —1.417%** —1.11** —0.34
Impact of the market activity during last 30 min
VOLA 0.05 0.11 0.33
DMQ —2.40 —4.01%** =3.12
DASL —0.55 0.65 —0.37
DBSL 0.99 0.18 1.12%*
OFL 0.02 —0.13 —0.26
OFLV 0.00 —0.03 0.01
Impact of current limit order arrivals
LO—, 0.56*** 0.297** 0.17***
LOy 0.04 0.04* —0.03
LO4, 0.08** 0.10™** 0.05*
CANO —0.15%* 0.16™** 0.33%**
CAN1 0.08 —0.02 0.04
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The major findings reported by Hall and Hautsch (2007) are as follows: First, the
distance of a limit price to the prevailing best ask or bid quote does not significantly
affect the overall trading intensity and the resulting net buy pressure. However,
the buy (sell) intensity is decreasing (increasing) after an upward (downward)
movement of the best ask (bid) quote as a result of an aggressive market order.
Then, traders obviously become reluctant to post a buy (sell) market order as
they face worse terms of trade. Secondly, the buy (sell) trading intensity increases
with the volume of a buy (sell) order and decreases with the volume of a sell
(buy) order. As indicated by the coefficient of TRV'1, the informational value of
transaction volumes seems to increase with the order size. Third, limit orders posted
in the spread significantly increase the trading intensity on the opposite side of
the market. Hence, traders tend to take the liquidity offered by aggressive limit
orders. Conversely, they refrain from trading when the offered liquidity on top of
the book vanishes. Fourth, an increase of the ask (bid) slope decreases (increases)
the buy intensity and increases (decreases) the sell intensity. Likewise the net buy
pressure significantly increases (decreases) when the steepness of the slope of the
ask (bid) reaction curve declines. Hall and Hautsch (2007) argue that this finding
supports the notion that standing limit prices provide information about traders’
upper tail expectations confirming the idea of crowding out effects according to
Parlour (1998). Hence, if the market is very deep on a particular side, the execution
probability of additionally posted limit orders (entering at the end of the queue)
shrinks. As a consequence, traders directly post a market order. Fifth, the bid-ask
spread is negatively correlated with the overall trading intensity. The results indicate
also a negative relationship between the bid-ask spread and the resulting buy-sell
pressure. Sixth, as long as the current state of the limit order book is taken into
account, recent market activities have only limited impact on trading intensities.
This finding suggests that the current state of the book carries sufficient information
to which investors particularly pay attention. Finally, it is shown that trading activity
on both sides of the market is significantly higher in periods of high order flow
volatility confirming the hypothesis that differences in traders’ expectations increase
the intensity in market order trading.

Overall, these results show that the limit order book has a significant impact on
the buy and sell trading intensity. Traders seem to monitor the book and strategically
post orders in order to reduce trading costs and to increase execution probabilities.
Moreover, the results by Hall and Hautsch (2007) indicate that market participants
seem to trade not only due to liquidity reasons but also tend to exploit information
on liquidity supplier’s price expectations revealed by the book.

12.2.2 Modelling Order Aggressiveness

Hall and Hautsch (2006) employ a six-dimensional ACI process to study traders’
order aggressiveness in the open limit order book market of the ASX. They apply
a modification of the order aggressiveness categorization scheme proposed by



12.2  Applications of Multivariate ACI Models 303

Table 12.4 Classification of order aggressiveness at the ASX as used by Hall and Hautsch (2006)

Aggressive buy order Quoted volume exceeds first ask level
Normal buy order Quoted volume does not exceed first ask level
Most aggressive ask order Limit price undercuts current best ask
Aggressive ask order Limit price is the current best ask

Normal ask order Limit price is above current best ask
Canceled ask order Cancellation of a limit ask order

Aggressive sell order Quoted volume exceeds the first bid level
Normal sell order Quoted volume does not exceed first bid level
Most aggressive bid order Limit price overbids current best bid
Aggressive bid order Limit price is at current best bid

Normal bid order Limit price is below current best bid
Canceled bid order Cancellation of a limit bid order

Biais et al. (1995) that classifies orders according to their implied price impact and
their position in the order book. Hall and Hautsch adapt this scheme to the ASX and
define a “normal” market order as a buy or sell order whose volume can be fully
matched with pending limit orders. Ask and bid limit orders are classified according
to the distance between the posted limit price and the current best bid and ask
price. Accordingly, “most aggressive” limit orders are orders whose price undercuts
or overbids the current best ask or bid limit price, respectively, “aggressive” limit
orders are orders placed directly in the current first level of the ask or bid queue, and
“normal” limit orders are orders entering the higher levels of the order book. Finally,
canceled limit orders are regarded as the least aggressive orders. The corresponding
classification is shown in Table 12.4.

To thin the point process, Hall and Hautsch (2006) suggest focusing only on most
aggressive market orders, limit orders and cancellations on both sides of the market
yielding a six-dimensional point process. On top of this classification scheme, only
those orders are selected whose volumes are substantially larger than the average
order volume. This is motivated by the notion that order aggressiveness is naturally
linked to the size of the posted volume. Actually, for larger volumes (greater or equal
than the 75%-quantile), the economic trade-off between the costs of immediacy and
the pick-off risk is much more relevant than for small orders.

Table 12.5 reproduces parts of the estimation results from Hall and Hautsch
(2006) based on a six-dimensional ACI specification similar to that presented in
the previous section. To reduce the number of parameters, the persistence matrix
B is specified as diagonal matrix. Moreover, there are no time-varying covariates
as regressors are treated as constant during each spell. To capture the state of the
market, Hall and Hautsch specify covariates using the log aggregated volumes
pending on the ask and bid queues, AV = In(avol) and BV = In(bvol), the
(signed) cumulative change in the logarithmic aggregated ask volume (DAV), the
logarithmic aggregated bid volume (DBV) as well as the mid-quote (MQ) process
during the past 5min. Moreover, the current volatility (VL), measured by the
average squared mid-quote changes during the past Smin as well as the current
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Table 12.5 Maximum likelihood estimates of six-dimensional ACI(1,1) models for intensity
processes of (1) aggressive buy orders, (2) aggressive sell orders, (3) aggressive ask limit orders, (4)
aggressive bid limit orders, (5) aggressive cancellations of ask orders, (6) aggressive cancellations
of bid orders. Backward recurrence functions are specified in terms of individual univariate Weibull
parameterizations. The persistence vectors A¥ are fully parameterized, whereas B is parameterized
as diagonal matrix. Three spline functions are specified for market orders (v!2), limit orders (v34)
and cancellations (1) based on one hour nodes between 10 a.m. and 4 p.m. All covariates except
VOL are scaled by 10. Standard errors are computed based on OPG estimates. The time series are
re-initialized at each trading day. Significance at the 1%, 5% and 10% levels are denoted by ***,
** and *, respectively. Reproduced from Hall and Hautsch (2006)

BHP NAB TLS BHP NAB TLS

Constants and backward recurrence parameters

o' —L059*FF —0.336%F*  —1.085%**  pl 0.844%FF  0.797FFF  (.832%**
w?  —0301%FF  —0.285%FF  —1207***  p2  0.845%FFF  0.778%**  (0.836%**
o} —0.793%FF —0.782%**  —0.722***  p3  0.834***  0.905%**  (0.825%**
ot —0.497FFF  —1.348%F*  —0.420* pt o 0.818*FF  0.862%**  0.700%**
¥ —1352%FF 1 397FFF 1 025%F*  pS 0.742%FF 0.749%%F  0.653%%*
w® = LT04FF —1.442%FF —1363%FF  p0 07627 FF  0.741%FF 0.671FFF
Innovation parameters
al 0115 0014 02357 ol 0.003 0.029** 0.046
of  —0.010 0.013 0.179*** o 0.120%%F  0.115%F*F  0.244%**
o) 0.052%**  0.038***  0.160 o3 —0.010 —0.009 —0.007
af  —0.033**  —0.009 0.076 of 0018 0.042%**  0.263*
o}  0.031** 0.037** 0.074** o5 0.046%**  0.049%**  —0.030
af 0.044%FF  0.027* 0.049** o8 0010 0.042%**  0.030*
o) 0.042%**  —0.002 0.085 o) 0.028** 0.053***  —0.079*
of  0.026* —0.007 —0.159** o  0.064***  0.048***  0.046
a3 0.097FF*  0.073***  0.438*** o 0012 0.008 —0.393**
af  0.076***  —0.004 0.010 af  0.116%**  0.083***  —0.042
of  0.051"**  0.034** 0.063 of  0.031* 0.056** 0.017
of  0.056%**  0.032** —0.038 af  0.022 0.010 —0.014
ol —0.008 —0.017 —0.019 ) 0.002 —0.054**  0.127***
o 0.023 0.013 0.185%** a2 0017 —0.024 —0.056***
o —0.007 0.017 0.186* o} 0.000 0.014 —0.451**
af  0.058* 0.015 0.129 af 0.001 —0.002 —0.088
o 0.002 0.097***  0.068** a;  0.005 0.030 0.029
af 0.0947F*  0.002 0.030 a8 00677 0.119***  0.019

Persistence parameters

B 0.980***  0.961***  (.922%** B 0.950%**  0.984***  —0.251***
B2 0.969%**F  0.968%**  0.820%** B> 0.980%*F  0.980%*F  (.948%**
B2 0.955%%*  0.991%%*  0.481*** B 0.979%*F  0.982%**F  —(0.973%**

Seasonality parameters

vz —0.673%F*  —0.646***  8.226%** v 0.160 —0.334 3.955%*
Vizg 0.138 0.266 —14.730%** i3, —1.159**  0.183 —7.780**
ViZgo —0.981%** —1341*** 2870* Vi —0.4387FF  —1.551FFF 3 13%%F

(continued)
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Table 12.5 (continued)

BHP NAB TLS BHP NAB TLS
V2o 3.161%F%  3553F%F  10.182%** ¥ 2.956 3.548%**  5.563**
vz, —0.286 —0.521* —6.032%* v} 0.025%*FF  —1.032%*  —4.674
vi2,, 0.468 0.516 6.824** v, —0.237 0.652 1.557
vl —0.572%  —1.387***  —0.264 Voo 3755FFF 2.814%F*  4.863***
ViS00 0.266 1.555%**  0.359 Vil —1313%F*  —1,044%%F 2 g7***
V%o —L.531FFF —1.605%*F*  —2265%*¥* % 1.071* 0.799* 3.798***

Explanatory variables
AD!  —7.287%** —2318*** —[8.057*** BD' 3.974***  1.903*** = 83]5***
AD?  4.400%%%  1.340%**  4.035%%*  BD?  —7.144%** —1247%%F —16.624%**
AD?  —7.708*** —2.072***  —28.527*** BD? 0.148 —0.185 4.385%**
AD*  0.709* —0.302 2.784** BD*  —8.672%** —2.400*** —26.667***
ADS  4.822%%%  6.074%**  2902***  BD® 1516***  —0.048 1.510%*
AD® 0.584 0.177 —1.085 BD®  6.410%**  6.437***  4.674%**
AV! 3.108%*F  1.579%** 10.325%**  DAV! —0.649**  —0.411%* —2.109%***
AVZ 0477 —0.006 1.283 DAV? —0.698**  —0.161 —1.309%**
AV3  8480%**  5378%**  23421%**  DAV? 0.172 —0456*  —0.662
AVH11.203%%%  —10.071*** —5.250*** DAV* —0.910** —0.232 —0.938***
AV —0.602 0.635 5.198*** DAV L[341***  1.811***  —0.390
AVO  —3.195%FF  —7.503%%%  _4753%%%  DAV® (.363 —0.968*** (.524*
BV! 0379 —1.420%%  —2.643* DBV' —0.440%*  —0.629%** —].498***
BV?  1.869***  —0.271 10.025***  DBV? —0.290 —0.549***  —].588***
BV?  —4.407*** —5105%** —6.776*** DBV? —0447*  —0.228 —0.991*
BV*  15485%** 11.177***  21.712***  DBV* 0.539**  —0.167 —0.105
BV®  —4.124%*% —5123%**  —8.142*** DBV® —1.576*** —0.289 0.112
BV® —L756%* 2.774%%*  2.399%* DBV® 0.543* 1.046***  —0.980%**
MQ! —1.849%** —0.305*** —0.925**  VL! = 3.773***  0.242%**  0.124
MQ? L551%**  0.248***  1.836***  VL? 4.790***  0.232***  0.073
MQ® —0.257*  —0.010 —0.770* VL?  3.936™**  0.042 0.055
MQ* 0.467***  —0.016 0.911* VLY 3.921%%*  0.144***  —0.090
MQ® —1.098*** —0.096 0.608 VL®  5.712%**  0.266***  0.055
MQ® 1.788***  —0.062 0.440 VLS 5.848***  0.273***  0.069
SP'  —1.925%** —0.386*** —1.594
SP2  —1.699*** —0.297*** —3223*

SP3  0.639%**  0.199%**  1.661***
SP*  0.549%**  (.173*** 1.753%**
SP>  —0.857*** 0.044 —1.218**
SP®  —0.969*** 0.124***  —0.887*

Diagnostics
Obs 9316 10463 3102
LL  —20145  —23836 —6343
BIC —20721  —24419 —6850

(continued)
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Table 12.5 (continued)

BHP NAB TLS BHP NAB TLS
Aggressive buy orders Aggressive sell orders
Mean of &; 1.014 1.001 0.952 0.994 1.000 1.042
S.D. of & 1.159 1.067 1.190 1.139 1.058 1.241
LB(20) of &; 13.039 18.503 14.846 14.905 28.017 26.972
Exc. disp. 5.379%**  2.533%* 3 360%** 5.106***  2.205%*  4.501***
Aggressive ask limit orders Aggressive bid limit orders
Mean of &; 1.020 0.999 0.978 1.015 0.997 1.032
S.D. of & 1.095 1.058 1.088 1.091 1.035 1.083
LB(20) of &; 10.806 22.876 29.364* 20.823 13.765 10.760
Exc. disp. 2.740%** 1.796* 1.009 2.714%**  (0.985 1.151
Aggressive ask cancellations Aggressive scellations
Mean of Af 0.991 1.004 1.029 1.006 1.023 1.005
S.D. of Af-‘ 0.975 0.963 0.975 0.932 0.972 0.905
LB(20) of A{-‘ 17.313 20.241 31.632%* 12.733 27.965 37.679***
Exc. disp. 0.549 0.744 0.464 1.368 0.578 1.701*

Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC) and diagnostics (mean,
standard deviation, Ljung—Box statistics and excess dispersion test) of ACI residuals Af-‘.

bid-ask spread (SP) are included. Finally, by denoting poos. (pPoosp») as the
limit price associated with the 5% level of cumulated ask (bid) depth and define
mgq as the midquote, then AD = In[0.05 - avol/(poosa — mq)] and BD =
In[0.05 - bvol /(mgq — po.os.p)] define the (log) ratio between the current 5% volume
quantile and the corresponding price impact.

Asin Sect. 12.2.1, dynamic spill-overs between the individual intensity processes
are primarily positive. This is true for dependencies between the two sides of
the market as well as across the different aggressiveness categories. For instance,
a higher market order activity also increases the intensity of order cancellations.
Summarizing the results by Hall and Hautsch (2006), one observes that an increase
of the depth on the ask side increases the aggressiveness in sell market order trading,
decreases it in sell limit order trading and increases it in ask cancellations. The
converse is true for the bid side and confirms the idea that high depth on one
side of the market induces a crowding out from limit orders to market orders on
the opposite side of the market (see Parlour 1998). This is also confirmed by a
significantly negative relationship between the depth on a particular side of the
market and traders’ preference to post aggressive market orders on that side. This
result, however, also supports the notion that traders might exploit information from
the book to infer on price expectations. Hence, greater ask (bid) depth might indicate
that a relatively higher proportion of volume is to be sold (bought) at a comparably
low (high) price.

Moreover, Hall and Hautsch observe that an increase in one-sided cumulated
depth during the past 5 min decreases the intensity of market and limit orders on
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both sides of the market, and simultaneously increases the cancellation intensity on
the same side. Hence, after periods in which significant one-sided volume has been
accumulated in the queues, mean reversion effects seem to cause a reduction of the
overall order flow and an increase in traders’ incentive to remove pending orders.

Finally, it is shown that recent downward (upward) movements of mid-quotes
have a significantly negative (positive) effect on traders’ aggressiveness on the buy
(sell) side. Obviously, a movement of the mid-quote accompanied by the absorption
of a substantial part of one-sided depth induces higher trading costs on that side
making traders more reluctant to post further aggressive orders.

12.3 Multivariate Hawkes Processes

12.3.1 Statistical Properties

The univariate Hawkes model, as discussed in Sect. 11.3, is readily extended to the
multivariate case. Hence, in a K -dimensional Hawkes process, the intensity function
associated with the kth process is given by

P N

K
M F) =ph )+ ) > o exp(=p5(t = 1,). (12.16)
=1 j=1m=1

with a’j‘-l >0, ,B’j‘-l > 0. Thus, in the multivariate case, A*(¢; ;) depends not only
on the backward recurrence time to all k-type points, but also on the backward
recurrence time to all other points of the pooled process.

The conditional moments of A¥ as well as the conditional expectation of the
arrival time of the next point of the process, E [tl-k| ]-',[_l] cannot be expressed in
closed form and are computed in a way similar to that shown in Sect. 11.3. Hawkes
(1971) provides parameter restrictions for o*’ and A%/ under which the multivariate
process given by (12.16) is weakly stationary. In general these conditions cannot be
explicitly expressed in closed form and have to be verified by numerical methods.*

Figures 12.4—12.6 show the autocorrelation and cross-autocorrelation functions
implied by simulated bivariate Hawkes(1) processes. In Fig. 12.4, it is assumed
that «'> = o?' = 0, i.e., both processes are not interdependent. This property is
reflected by the plot of the CACF, which is zero. Moreover, we observe distinct
differences in the autocorrelation patterns of the intensity function, as well as in
the resulting duration processes which are caused by the different persistence of
the processes. In Fig. 12.5, an asymmetric interdependence is assumed (' = 0).
Here, it is illustrated that even interdependencies in only one direction lead to
strong contemporaneous and nearly symmetric CACF patterns. This is obviously

4For more details, see Hawkes (1971).
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Based on 5,000,000 drawings

due to the strong serial dependence of the underlying single processes. Figure 12.6
shows the resulting plots of a bivariate Hawkes process where both single processes
are (symmetrically) interdependent. Despite the different parameterizations of the
individual processes, the resulting intensity functions and autocorrelation functions
are quite similar which is caused by the strong interdependence of both processes.

Since the parameters associated with A*(z; F;) are variation free, the log
likelihood function of the complete model can be computed as the sum of the log
likelihood contributions of each single process k = 1, ... K. Therefore,

ku)du

In L (Y; 0)—22 /

k=1i=1
K P NG
I=1j=1 m=1

k
Lk{exm B 1 = 1,)) = exp(—B} (11 — 1,)]
]

P N@)

+ In|p (t,)—i—ZZZaklA/k[ ,

=1 j=1 m=1

(12.17)
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Fig. 12.5 Simulated bivariate Hawkes(1) processes. Top: ACF and CACF of A!2(t;; Fi.). Bottom:
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B2 = 0.3. Based on 5,000,000 drawings

where

N (1)
j el ki
AT = E exp(—B% (6 — 1,) (vi—y + A]Z)), (12.18)

m=1

and yil takes the value one if event i is of type / and zero otherwise. Thus, a
multivariate Hawkes model can be estimated by separately maximizing the log
likelihood components of the individual processes. This property makes the model
attractive for the analysis of high-dimensional point processes.

12.3.2 Estimating Multivariate Price Intensities

This section illustrates the application of a Hawkes process to multivariate volatility
estimation based on price intensities. The study uses price durations generated
from a sample consisting of five NYSE stocks during the period 01/02/01 to
02/28/01: Boeing, Coca-Cola, General Electric, Home Depot and Philip Morris.
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Table 12.6 Descriptive statistics and Ljung-Box statistics of $0.20 midquote change durations
for the Boeing, Coca-Cola, General Electric, Home Depot and Philip Morris stocks traded at the
NYSE. Data extracted from the TAQ database, sample period from 01/02/01 to 02/28/01

Boeing Coca-Cola General Electric Home Depot Philip Morris
Obs 16,236 12,678 17,637 18,789 11,152
Mean 57.252 72.757 52.872 49.351 83.158
S.D. 69.222 99.296 66.507 65.094 129.665
LB(20) 2,974 2,248 7,695 3,824 3,442

Overnight spells are removed. Descriptive statistics of durations in seconds.

The generation of price durations is performed according to the procedure described
in Sect.3.2.2. The price durations are computed based on midquote changes of
the size $0.20. As shown by the summary statistics in Table 12.6, average price
durations are between 45 and 80 s, and thus are associated with an intraday volatility
measured at a very high frequency.’

The multivariate $0.20 price change intensity is modelled using a five-
dimensional Hawkes process. According to the BIC, a lag order of P=1 is chosen.

3Since the aggregation level is quite low, we neglect overnight effects.
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To capture intraday periodicities, the Hawkes component for each process
multiplicatively interacts with a linear spline function based on the nodes 9:30,
10:00, 11:00, 12:00, 13:00, 14:00 and 15:00. The model is estimated by maximizing
the log likelihood function given in (12.17) and exploiting the property that the log
likelihood components associated with the individual processes can be maximized
separately. For numerical reasons, the individual series are standardized by the
average duration mean of the pooled process. This is, however, only a matter of
scaling and does not change the order of the processes.

Table 12.7 gives the estimation results of the five-dimensional Hawkes model.
The entries in the table represent the coefficients X’ and B* associated with the

Table 12.7 ML estimates of a five-dimensional Hawkes(1) model for $0.20-price durations of the
Boeing (B), Coca-Cola (C), General Motors (G), Home Depot (H) and Philip Morris (P) stock
traded at the NYSE. Data from the TAQ database, sample period 01/02/01 to 02/28/01. Standard
errors based on OPG estimates

Boeing Coca-Cola GM Home Depot PM

est. S.E. est S.E. st S.E.  est S.E. est S.E.
0] 0.106 0.010  0.060 0.006 0.066 0.010 0.108 0.080 0.026 0.005
a® 0.021 0.001 0.011 0.000 0.023 0.001 0.006 0.056 0.013 0.000
a¢ 0.015 0.001 0.031 0.002 0.028 0.002  0.006 0.062  0.009 0.000
o€ 0.017 0.006 0.015 0.004 0.021 0.006 0.012 0.796 0.003 0.001
atl 0.012 0.005 0.005 0.001 0.020 0.008 0.038 1.005 0.009 0.005
a’ 0.004 0.002  0.004 0.001 0.011 0.003  0.009 0.314 0.038 0.011
Bt 0.016 0.009 0.210 0.110 0.176 0.070  0.554 0.386  0.419 0.152
B¢ 0.136 0.069 0.034 0.044 0.211 0.068 0.142 1.492 0.182 0.092
B¢ 0.303 0.190 0.188 0.326 0.013 0.005 0.108 1.998 0.019 0.013
B 0.209 0.266 0.646 0.437 0.182 0.106 0.043 0.455 0.229 0.110
Br 0.121 0.190 0.729 0.579 0.123 0.089 0.101 0.550 0.034 0.020
S —2.780 0.194 —1.893 0.265 —3.210 0.145 —1.898 0.210 —2.396 0.243

§2 2.684 0232 1.957 0.325 3.146 0.174 1.888 0.265 2.483 0.289
53 0.093 0.110 —0.197 0.162 0.076 0.091 —0.135 0.134 —0.292 0.149

S4 —0.025 0.106 0.103 0.161 —0.003 0.088 0.093 0.131 0.341 0.153
S5 0.185 0.110 0.019 0.164 0.031 0.092  0.231 0.134 —0.154 0.157
S6 —0.272 0.110 0.251 0.168 0.000 0.093 —0.199 0.133 —0.047 0.157
57 0.407 0.123  —0.655 0.187 0.061 0.102  0.075 0.147  0.209 0.171
Obs 76,492

LL —1,92,325

Diagnostics of Ak

Mean 0.99 0.99 0.99 0.99 0.99

S.D. 0.98 1.02 0.99 0.98 1.01

LB 4295 0.00 2606 0.16 10415 0.00 39.25 0.00 4832 0.00
Disp. 0.94 034 212 0.03  0.09 092  1.90 005 148 0.13
Diagnostics: Log Likelihood (LL) and diagnostics (mean, standard deviation, Ljung-Box statistic
with respect to 20 lags as well as excess dispersion test (the latter two statistics inclusive p-values))
of residuals /ik, k=1,...,5
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impact of the /-type backward recurrence times on the kth series. We observe highly
significant estimates in most cases. The significance of the interaction coefficients
(I # k) illustrates the existence of strong contemporaneous correlations and
cross-autocorrelations between the individual series. The estimated seasonalities
indicate the well known inverse U-shape intraday pattern and are very similar for
all series.® Diagnostics are computed based on /if‘ = Ak (tik_l , tik). The test against
excess dispersion provides satisfying results since the null hypothesis of no excess
dispersion is not rejected in most cases. In contrast, the relatively high Ljung—Box
statistics associated with the individual series Af indicate that the dynamics are
not completely captured by the model. These results show that particularly in the
multivariate case, there exists a clear trade-off between a satisfying goodness-of-fit
and model parsimony.

To illustrate the estimated dynamics graphically, the resulting autocorrelation and
cross-autocorrelation functions of the estimated intensity functions are plotted in
Fig. 12.7. Strong interdependencies between the single price intensity series yield
empirical evidence for significant co-movements in price change volatility.” The
contemporaneous correlation is around 0.6 for all series accompanied by highly
persistent cross-autocorrelations in both directions. Hence, volatility shocks in one
series lead to persistent spill-over effects in the other series causing strong multidi-
mensional clustering structures. The shape of the individual (cross-)autocorrelation
functions is quite similar and symmetric for all series and reveal no clear lead-
lag structure. These results can be readily explained in the light of a common
information flow that jointly influences the intraday volatility of individual stocks.

12.4 Stochastic Conditional Intensity Processes

12.4.1 Model Structure

An important property of Hawkes and ACI processes, as discussed in the previous
sections, is that the conditional intensity function, given the history of the process,
is completely deterministic. This is due to the fact that in both frameworks, the
intensity process is parameterized in terms of the history of observable factors.
However, the assumption that the intensity function is completely explained by the
observable process history is at least questionable.

The so-called stochastic conditional intensity (SCI) model introduced by
Bauwens and Hautsch (2006) captures time-varying unobservable heterogeneity
in terms of a joint latent component. The SCI model is based on the assumption

“For sake of brevity, the corresponding plots are not shown.

"Recall the close relationship between the price intensity A% (¢; F;) and the corresponding
instantaneous volatility 5(2)(1,p)(t) as given in (8.57).
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Fig. 12.7 Autocorrelation and cross-autocorrelation functions of the estimated intensity functions
based on a five-dimensional Hawkes(1) model for $0.20-price durations of the Boeing (B), Coca-
Cola (C), General Electric (G), Home Depot (H) and Philip Morris (P) stock traded at the NYSE.
Sample period 01/02/01 to 02/28/01. First row: left: ACF of Coca-Cola, middle: CACF C-G (solid
line) and C-B (broken line), right: CACF C-P (solid line) and C-H (broken line). Second row: left:
ACF of General Electric, middle: CACF G-B (solid line) and G-P (broken line), right: CACF G-H.
Third row: left: ACF of Boeing, middle: CACF of B-P (solid line) and B-H (broken line), right:
ACF of Philip Morris. Fourth row: left: CACF P-H, middle: ACF of Home Depot

that the conditional intensity function, given the process history, consists of two
components: a univariate latent one and an observation driven one. In this sense, the
SCI model combines features of parameter driven models and observation driven
models and mimics the structure of the Stochastic MEM discussed in Chap. 6.
The observable component can be specified univariately or multivariately. In the
latter case, the latent factor corresponds to a common component that captures the
impact of a general factor influencing all individual point processes and interacts
with their observable component. Two limit cases emerge naturally: one when the
latent factor is irrelevant and the intensity is driven by the dynamics of the specific
components and the other when the specific components are not relevant and the
latent factor completely dominates. In intermediate cases, the model dynamics
are driven by the interaction between the latent dynamic factor which is updated
by latent innovations and the observable dynamic component, which is updated
by process-specific innovations. In this sense, the model can be interpreted as a



314 12 Multivariate Dynamic Intensity Models

dynamic extension of a doubly stochastic Poisson process (see, e.g., Grandell 1976
or Cox and Isham 1980).

The basic SCI model is based on a decomposition of the intensity function into
a latent and an observable component. In this context, we define the information set
JF; more explicitly as F;, := o(F; U F;*), consisting of an observable conditioning
set £/ including the complete observable history of the process up to ¢ (inclusive
possible explanatory variables) and an unobservable history F;* of some latent

factor AN T Then, the basic SCI model is given by
k k .
. — o, . 0 *
M F) =24 F) (W) (12.19)

where A°* (¢; F?) denotes a k-type conditionally deterministic intensity component
based on the observable elements included in 7 and §** drives the process-specific
influence of A7. As in the Stochastic MEM, the latent factor is conditionally log-
normally distributed and follows an AR(1) process,

InAf =a*InA’ | +uf, u; ~1iid. N(0,1). (12.20)

The latent factor is indexed by the left-continuous counting function, i.e., it does
not change during a spell. In particular, it is assumed that A} has left-continuous
sample paths with right-hand limits which means that it is updated instantaneously
after the occurrence of #;_; and remains constant until (and inclusive) #;. In order
to obtain a valid intensity process, it is assumed that the latent innovations u}
are independent from the series of integrated intensities &; := A(t;—;,t;) which
are i.i.d. standard exponentially distributed (under correct model specification). An
important prerequisite for weak stationarity of the SCI model is weak stationarity
of the latent component which is fulfilled for |a*| < 1.8 The latent factor dynamics
can be extended to ARMA(P, Q) parameterizations, however, often, a simple AR(1)
dynamic is shown to be sufficient in capturing latent dynamics. Notice that a
constant is omitted since the observation driven component A°(z; ) encloses a
constant that would be not identified otherwise.

By defining Af* := §*InA} as the latent factor influencing the k-type
component, it is easy to see that

AR = a* Ak 4 sk

Hence, §* corresponds to a scaling factor that scales the latent component
influencing the k—type intensity process. This flexibility ensures that the impact of a

80f course, under the normality assumption, the latent factor is even strictly stationary.
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latent shock u} on the individual processes can differ and is driven by the parameter
51{*.9

This approach can be extended by specifying 6* in a time-varying fashion.
Then, the process-specific scaling factor can change over time in order to allow
for conditional heteroscedasticity. An important source of heteroscedasticity could
be intraday seasonality associated with deterministic fluctuations of the overall
information and activity flow. For example, it could be due to institutional settings,
like the opening of other related markets. Hence, a reasonable specification is to
index §* by the counting function and parameterize it in terms of a linear spline
function

M
85 = sp (1 + ) v lza () — fm)) : (12.21)

m=1
where t(¢) denotes the calendar time at ¢, T,, m = 1, ..., M — 1, denote the

exogenously given (calendar) time points and s; and Vom are the corresponding
coefficients of the spline function.

A further generalization of the SCI model is to allow for regime-switching
latent dynamics. Then, a more flexible SCI model is obtained by specifying
the autoregressive parameter in dependence of the length of the previous spell.
Such a specification is in line with a threshold model (see Chap.6) and is
obtained by

MA; = apls, ey <ty A Ul m=1,... M—1 (1222)

where X,, denotes the exogenously given thresholds (with X¢:=0), and a], are
regime-dependent latent autoregressive parameters.

The observation-driven component A% (¢; F°) is specified in terms of an ACI
model. For k = 1, parameterizing A%!(¢; 7°) = A°(z; F°) univariately by (11.1)
through (11.5) results in an univariate SCI(P,Q) model. In this framework, the
innovation term is specified either in plain or in logarithmic form, i.e., by

& =1-— Ao(lf_1, l‘,’) or (12.23)
& = —0.5772 —In A°(t;_1, 1;). (12.24)
where
T+ ) d
A1, 1) = Z/ A°(s: FO)ds = 2/1 (Skf;) S (1225)

lj

9Note that §* can be even negative. Hence, theoretically it is possible that the latent component
simultaneously increases one component while decreasing the other component.
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with j 1, <7; <f;and )_; f;_’“ A(s; Fy)ds = & ~ iid. Exp(1). Hence, the
innovation of an univariate SCI f)rocess is based on the integral over the observ-
able intensity component A°(¢; F) which equals an i.i.d. standard exponential
variate that is standardized by a stationary log-normal random variable. Of course,
A°(ti—1,t;) is not anymore i.i.d. exponentially distributed then. Nevertheless, it can
be centered by 1 or —0.5772, respectively, in order to make it comparable to the
innovation of the pure ACI model as benchmark case. Because A°(t;—1,¢;), and
thus the SCI innovation depends on lags of A*, the component A°(¢; F7) is directly
affected by lags of the latent factor. Hence, A* influences the intensity A(¢; ;) not
only contemporaneously (according to (12.19)), but also through its lags.

Due to the log-linear structure of both components A°(¢; 77) and A}, the model
dynamics are characterized by a direct interaction between the latent dynamlc factor,
which is updated by latent innovations «; and the observable dynamic component,
which is updated by the innovations &;. By excluding covariates and assuming for
simplicity Ag(z) = 1 and s(¢) = 1, the intensity function for the SCI(1,1) model is
rewritten in logarithmic form as

InA(t; F) = w(t) + 6 InAt

N(t)+1

— S . * Q3% * k ok
=afy, + ,B'IJ(INU)) +a*é lnAN(t) +8%u o)
= aéy, + %@ —pB) lnAN(t) + 8%y, BAN Ay s Fig,)-

0]
(12.26)

Hence, the SCI model can be represented as an ARMA model for the log intensity
function that is augmented by a further dynamic component.

By specifying A°(¢; ) multivariately, as described in Sect. 12.1, a multivariate
SCI model is obtained. In this case, A} is updated at every point of the pooled
process. The innovation term is specified in terms of innovations of multivariate
SCI models

. _ 0.k k
Evp =1-4 (N"(l) l’ZN"(t)> YN or (12.27)
. — k k
Eq) = —0.5772 — In A (m«m rfsz)) Yoy (12.28)
where
G+t AS(s; Fy)ds
AR @k Ry = Z/ Ak (51 FOYds = Z/ (A*Sk*) (12.29)

with j @ £ lft <t andZ f’+llk(s Fs)ds = g; ~ iid. Exp(1). Hence,

in the multivariate setting, A°* (tl 1 tk 1) corresponds to an i.i.d. exponential variate
that is piecewise standardized by a stationary log-normal random variable.
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12.4.2 Probabilistic Properties of the SCI Model

The computation of conditional moments of A(z; F;) given the observable informa-
tion set is difficult since the latent variable has to be integrated out. Bauwens and
Hautsch (2006) numerically compute conditional moments given F_ for arbitrary
parameterizations of A°(¢; F7). Lety; a row of the matrix of observable variables Y
and correspondingly, we define Y; = {y_/}3.=1. Accordingly, A7 = {A;f}3.=1 defines
the sequence of latent variables until 7;. Furthermore, let f(Y;, A7|6) denote the
joint density function of Y; and A}, and p(A}|Y;, A}, #) the conditional density of
Af given Y; and A;. Then, the conditional expectation of an arbitrary function of
AF, U(AT) given the observable information set up to #;_; can be computed as

fﬁ(kz*)l’(kﬂYi—l’ i— 1’0)f(Yz I,A,* 1|0)d/1*
ff(Yl—h i—1|9)d/1i—1

E[d() [F_ ] = . (12.30)

The integrals in this ratio cannot be computed analytically, but can be simulated
numerically, e.g., by efficient importance sampling. The computations of the
conditional expectations [ 7| F¢_ | and E[A(5)| F?_ ] can be performed by
exploiting the exponential distribution of the integrated intensity &; := A(t;—, ;).
Then, by conditioning on predetermined values of &; and A}, and applying the law
of iterated expectations, E [ #;| F7_ | is computed as'”

El[ulF_]= E[g1(~)|f,f_l] (12.31)
g10) =E[6|A7 1 F_ ] =E[0027: F_ ] (12.32)

where 1; = ga(e;; F_,, Aj_) is determined by solving the equation A(#;, 7;—1)=¢;
for given values of &;, A7 and F; . The complexity of the expression for
depends on the parameterization of A°(¢; 7). However, as discussed in Chap. 11,
at least for the multivariate case, closed-form solutions for g,(-) do not exist. After
computing the conditional expectation of #; given A}, (see (12.32)), the next step
is to integrate over the latent variable according to (12 31) based on the integrals in
(12.30). The computation of E[A(#;)| F,_,] is performed similarly.

Figures 12.8—12.12 show the (cross-)autocorrelation functions of the individual
intensity components and the corresponding duration processes based on
simulations performed by Bauwens and Hautsch (2006). Here, bivariate SCI(1,1)
processes are simulated using logarithmic innovations according to (12.28) and
constant baseline intensity functions. Figures 12.8 and 12.9 are based on SCI
specifications implying no interactions between the observation driven components
A0k (t, F7) but being driven by a highly autocorrelated latent factor. As expected, it
turns out that the impact of the latent factor strongly depends on the magnitude of

19For ease of notation, we neglect the existence of time-varying covariates.
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Fig. 12.8 Simulated bivariate SCI(1,1) processes. Upper: ACF and CACF of A%!(t;; F7) and
)L”'z(t,-;]-';;). Middle: ACF of A, as well as of )kl(t,-;]-',,) and )tz(t,-;]-',,). Lower: CACF of
A(ti3 Fy) vs. A2(tis Fiy), as well as ACF of x} and x?. o' = 0? = 0, al = o = 0.05,
al =a} =0, =0.97, B12 = o1 =0, B2y = 0.7, a* = 0.95, §'* = §2* = 0.01. Based on
5,000,000 drawings. Reproduced from Bauwens and Hautsch (2006)

the latent variances. In case of §'* = §2* = 0.01 (Fig. 12.8), only a very weak cross-
autocorrelation between A'(¢; F;) and A?(¢; F;) can be identified. In contrast, in
Fig. 12.9, the impact of the latent factor is clearly stronger. Here, it causes also slight
contemporaneous correlations between the observable components A% (t; ; F7) and
A2 (L F7). This is due to the fact that A} influences the intensity components not
only contemporaneously but also through the lagged innovations &;. It is shown
that the latent dynamics dominate the dynamics of the processes A!(#;; ;) and
A%(ti: F,), as well as of x; and x7, leading to quite similar autocorrelation functions.
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Fig. 12.9 Simulated bivariate SCI(1,1) processes. Upper: ACF and CACF of A%!(t;; F7) and
A%2(t;3 F2). Middle: ACF of A%, as well as of A'(1;3 F;,) and A%(1;; F;,). Lower: CACF of
ANt Fr) vs. A2t Fyy)s as well as ACF of x! and x2. ' = 0? = 0, a] = o} = 0.05,
o) =a? =0, =097, B12 = Po1 =0, B = 0.7, a* = 0.99, §'* = §2* = 0.1. Based on
5,000,000 drawings. Reproduced from Bauwens and Hautsch (2006)

Moreover, a clear increase of the autocorrelations in the duration processes is
observed.

Figure 12.10 shows the corresponding plots of symmetrically interdependent
ACI components (aé = 0512 = 0.05). Here, the latent variable triggers the con-
temporaneous correlation between the two processes and drives the autocorrelation
functions of the individual intensity components towards higher similarity. While
the CACF of 12! (#;; FP)vs. A2 (8 JF7) reveals the well-known asymmetric shape
as discussed in Sect. 12.1, the joint latent factor causes a more symmetric shape of
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Fig. 12.10 Simulated bivariate SCI(1,1) processes. Upper: ACF and CACF of A"'l(t,v;}'{i’) and
A°2(t;3 FY). Middle: ACF of A*, as well as of A'(t;; F,) and A*(t;; F,). Lower: CACF of
ANt F) vs. A2t Fr), as well as ACF of x! and x?. o' = 0> = 0,a] = o) = o} =
o = 0.05, B11 = 0.97, B2 = B = 0, B = 0.7, a* = 0.99, §'* = §>* = 0.1. Based on
5,000,000 drawings. Reproduced from Bauwens and Hautsch (2006)

the CACF between A'(1;; F,) and A%(t;; F,). The DGP associated with Fig. 12.11
is based on relatively weak dynamics in the individual intensity components
A"’l(t,-;]-"g) and /\”’z(ti;]-"g) while the impact of the latent factor is comparably
strong. Here, A} completely dominates the dynamics of the joint system. It causes
strong and similar autocorrelations in the components A% ! (z;; F7) and A%2(t;; F)
as well as in A!(¢;; F;,) and A%(t;; F;,). Moreover, its impact on the CACF is clearly
stronger than in the cases outlined above. In fact, the contemporaneous correlation
between A!(t;; F,) and A%(t;; F,) is nearly one. Nevertheless, the CACF dies
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Fig. 12.11 Simulated bivariate SCI(1,1) processes. Upper: ACF and CACF of A!(t;; F7) and
)L”'z(t,-;]-'g). Middle: ACF of A, as well as of A'(t;; F,) and A%(t;; F,). Lower: CACF of
M(ti; Fy) vs. A2(ti3 ), as well as ACF of x} and x?. 0' = 0? = 0, 0] = af = o} =
Ot% = 0.05, ﬂll = /322 = 0.2, 512 = 521 = O, a* = 0.95, 81* = 82* = (.5. Based on 5,000,000
drawings. Reproduced from Bauwens and Hautsch (2006)

out quite quickly which is due to the AR(1) structure in the latent process. The
parameterization underlying Fig. 12.12 resembles the specification in Fig. 12.10.
Here, the scaling factors are chosen as §'* = 0.1 and §2* = —0.1. It is shown that
the latent component influences A!(#;; F;,) positively while influencing A%(¢;; F,.)
negatively which causes clear negative cross-autocorrelations between A!(t;; F,.)
and A%(#;; F;,) as well as a flattening of the CACF between /\”’l(t,-;]-'t‘;) and
A%2(t;; 7)) compared to Fig. 12.10.
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Fig. 12.12 Simulated bivariate SCI(1,1) processes. Upper: ACF and CACF of A"'l(t,v;}'{i’) and
A°2(t;3 FY). Middle: ACF of A*, as well as of A'(t;; F,) and A*(t;; F,). Lower: CACF of
ANt F) vs. A2t Fr), as well as ACF of x! and x?. ' = 0> = 0,a] = o} = of =
a2 =0.05, 811 = 0.97, B = B21 = 0, Bp = 0.7, a* = 0.99, §'* = 0.1, §>* = —0.1. Based
on 5,000,000 drawings. Reproduced from Bauwens and Hautsch (2006)

12.4.3 Statistical Inference

If the latent variables A, := {InA}}’_, were observable, the likelihood function
would be given by
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LY. A 0)—H1_[exp( A (ti-1, 1)) [A“k(tl,]-“’))t*sk*] . (1233)

i=lk=1

where

AR (tioy, 1) = A?Sk* ARy, 1), (12.34)
As for stochastic MEMs discussed in Chap. 7, the main computationally difficulty
is that the latent process is not observable, hence the conditional likelihood function

must be integrated with respect to A using the assumed distribution of the latter.
Accordingly, the unconditional or integrated likelihood function is given by

LY; 0)—/1‘[1‘[“ Fexp(-ar 4% 1y, 1) o4 F))

i=lk=I
* * 2
e [_(m,\,. m;) }dA,f. (12.35)
2 2
/]_[f(yz,lnk Y1, AT, 0)d A, (12.36)

i=l1

where the last equality clearly defines the function f(-) and m} := E[lnA*|F* |]
denotes the conditional mean of the latent component.

The computation of the n-dimensional integral in (12.35) must be done numeri-
cally. Bauwens and Hautsch (2006) propose using efficient importance sampling as
discussed in Chap. 7. In order to implement the EIS algorithm, the integral (12.36)
is rewritten as

LSy S| Yoy, Af . 0) .
Y:0) = i InAX|AF ., ¢)d A, (12.37
£(¥:6) /1:[1 m(nA¥|AX . ¢) Ul mn A7l Ai. g A, (12.37)

and is approximated by

_ SO A Y 47, 9)
L(Y;0) ~ ﬁR(Y0)_—ZH A ) (12.38)

r=1i=1 i l’
where {In A*(r) }7_, denotes a trajectory of random draws from the sequence of
auxiliary importance samplers {m(InA*|A]_,,¢;)}’_,, and R is the number of
generated trajectories.

Let k(A}, ¢;) denote a density kernel for m(In Af|A7_,, ¢;), given by

k(A i) = m(n AT A} ¢i) x(A]_|. $1). (12.39)
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where the integrating constant is given by

XA p) = /k(A;‘,qs,-)d InA*. (12.40)

As discussed in Sect.7.2, the implementation of EIS requires the selection of a
class of density kernels k(-) for the auxiliary sampler m(-) that provide a good
approximation to the product f(y;, InA¥|Y,—1, A]_|,0) x(A7_,,$;). A convenient
and efficient possibility is to use a parametric extension of the direct samplers
implied by the assumed distribution of In A* and to approximate the function

K

kx| k *
l—lkl*é i exp(_/'\’;kﬁk A()'k(ti—lvti))’ (1241)
k=1

that appears in (12.35) by the normal density kernel
t(InA}) = exp(¢ri InA] + ¢ (InA))%). (12.42)
Including also the AN(m*,1) density function in the importance sampler

m(InAf|A7_,, ¢;) and using the property that the product of normal densities is
itself a normal density, a density kernel of m(-) can be written as

k(Al*,(pl) X exXp (((bl,i + mt*) ln)tl* + (¢2,i — %) (lnA’z*)z)

= exp (—2%2(1“;* — /,Ll‘)z) exp (2“—]512) , (12.43)

where
7t i=(1—2¢y;)7" (12.44)
i = (pri +m}) ], (12.45)

Then, the integrating constant (12.40) is given by

2 *2
* /‘Li mi
X(A;_y. ¢i) = exp (272 - T) (12.46)
(neglecting the factor 7; /27 since it depends neither on A]_; nor on ¢;).

The choice of the auxiliary parameters is optimized to minimize the MC variance
of Lr(Y; ). Then, following Richard and Zhang (2007), this problem can be split
into 7 minimization problems of the form
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R

; (r) (r) (r)
min Y[ 700 AT, 479, 00047, )|

r=1
*(r) 2
—¢w—mkm#,@ﬁ. (12.47)

The resulting EIS algorithm involves the following steps:
Step I: Generate R trajectories {In Af(r)}:.’zl using the direct samplers {N (m}, 1)}"_,.
Step 2: For each i (from n to 1), estimate by OLS the regression (with R
observations) implicit in (12.47), which takes precisely the following form:

§E k1 120 ( *(r)) ZAok(tl L)+ Zy, In 2% (11 F7)

+1In (X(Af('.)»¢i+l))

= goi + ¢ A7 4o, ATV 4 U, r =1, R, (12.48)

(where 1" is an error term), using y(A Z (’), ¢n+1) = 1 as initial condition, and then
(12.40).

Step 3: Generate R trajectories {In /\;k(r)}?zl using the EIS samplers {N (u;, 77)}'_,
(see (12.44) and (12.45)) to compute ﬁR (Y; @) as defined in (12.38). Per construc-
tion of the SCI model, the computation of the terms A%*(t;_;,#;) and A°*(t;; F7)
can be done separately and is done in a step before the EIS algorithm.

The first iteration can be started with a sampler other than the direct one. This is
achieved by immediately multiplying the direct sampler by a normal approximation
to §**InAF — /\;“’Sk* Zle A%K(t;_1.t;), using a second order Taylor expansion
(TSE) of the argument of the exponential function around In A} = 0. This yields

K
S yE Ay — A S A ()

k=1
K
~ constant + InA* — (In17)? Z AR (1), (12.49)
k=1
which implies that ¢;; = 1 and ¢,; = — Zle A (t;_y,t;) must be inserted into

(12.44) and (12.45) to obtain the moments of the TSE normal importance sampler.
In this way, the initial importance sampler takes into account the data and enables
one to reduce the number of iterations over the three steps.

The SCI residuals of the kth process are computed on the basis of the trajectories
drawn from the sequence of auxiliary samplers characterizing £(Y; ), i.e.,
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1

P Z‘I-k Sk* "
R N R T AT
tk

i—1

N P
§ +1 .
-y [x;‘m] [ Ak (wy FOydu. (12.50)
J=NGE ) i

The residual diagnostics are computed for each of the R sequences separately.'!

Under correct specification, the residuals éf’(r) should be i.i.d. Exp(1). Hence,
model evaluations can be done by testing the dynamical and distributional properties

of the residual series using the techniques described in Chap. 5.

12.5 SCI Modelling of Multivariate Price Intensities

Bauwens and Hautsch (2006) apply the SCI model to analyze price intensities of
several stocks and to test for the presence of a common underlying factor. They use
price durations generated from a the stocks AOL, IBM, Coca-Cola, JP Morgan and
AT&T, traded at NYSE, during the period from 01/02/2001 to 31/05/2001. The price
durations are computed based on multiples of the average size of absolute trade-to-
trade midquote changes of the corresponding stock. Using a multiple of 20 (i.e.,
dp corresponds to 20 times the average absolute trade-to-trade midquote change),
yields an aggregation level dp of $0.225, $0.463, $0.086, $0.196 and $0.193 for
AOL, IBM, Coca-Cola, JP Morgan and AT&T, respectively. The resulting average
price durations are within the range of 12 to 20 min.

The multivariate price intensities are modelled using a five-dimensional SCI(1,1)
process with a diagonal specification of B and parameter restrictions p¥ = 1 and
k¥ =0V, k # r ruling out interdependencies in the (Burr type) baseline intensities.
The seasonality function is assumed to be common for all five processes and is
specified as a linear spline function according to (5.33) based on 6 nodes dividing
the trading hours from 9:30 to 16:00 into equal-sized time intervals. The models
are estimated using the EIS technique discussed in Sect. 12.4.3 based on R = 50
Monte Carlo replications, while the efficiency steps in the algorithm are repeated
five times. The first iteration starts with the TSE normal importance sampler. The
standard errors are computed based on the inverse of the estimated Hessian.

Table 12.8 gives the estimation results reported by Bauwens and Hautsch (2006)
of four different five-dimensional SCI specifications with unrestricted innovation
impact vectors AX. Panel A gives the results of a basic ACI specification, whereas
Panel B to D account for a joint dynamic factor. It turns out that the autoregressive
common component is highly persistent with a* being close to one. Comparing

""Note that it is not reasonable to evaluate the model based on the average trajectory since dis-
persion and dynamic effects would eliminate each other then and would lead to non-interpretable
results.
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Table 12.8 ML(-EIS) estimates and corresponding p-values of five-dimensional SCI(1,1) models
for the intensities of price durations of the stocks of (1) AOL, (2) IBM, (3) Coca-Cola, (4) JP
Morgan, and (5) AT&T. Baseline intensity functions are specified in terms of individual univariate
Burr hazard functions. The innovation impact vectors A* are fully unrestricted, whereas B is
restricted to be a diagonal matrix. The innovation term is specified according to (12.28). One joint
spline function is specified for all processes based on six equally spaced nodes between 9:30 a.m.
and 4:00 p.m. Standard errors are based on the inverse of the estimated Hessian. The time series
are re-initialized at each trading day

A B C D

est. p-v. est. p-v. est. p-v. est. p-v.

Baseline intensity parameters

o! —0.73 0.00 —0.46 0.00 —0.73 0.00 —0.76 0.00
? —1.10 0.00 —0.81 0.00 —1.11 0.00 —1.13 0.00
3 —1.38 0.00 —1.12 0.00 —1.30 0.00 —1.33 0.00
o* —0.48 0.00 —0.21 0.01 —0.44 0.00 —0.47 0.00
»? —0.74 0.00 —0.47 0.00 —0.70 0.00 —0.73 0.00
p! 1.29 0.00 1.34 0.00 1.40 0.00 1.39 0.00
p? 1.25 0.00 1.31 0.00 1.36 0.00 1.36 0.00
p? 1.31 0.00 1.36 0.00 1.36 0.00 1.37 0.00
p* 1.29 0.00 1.34 0.00 1.36 0.00 1.36 0.00
P’ 1.33 0.00 1.37 0.00 1.40 0.00 1.41 0.00
k! 0.04 0.00 0.03 0.00 0.03 0.00 0.03 0.00
K2 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00
i3 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00
s 0.08 0.00 0.06 0.00 0.06 0.00 0.06 0.00
i3 0.06 0.00 0.05 0.00 0.05 0.00 0.04 0.00

Innovation parameters

ol 0.11 0.00 0.12 0.00 0.07 0.00 0.07 0.00
o) 0.04 0.00 —0.00 0.69 0.01 0.27 0.01 0.25
ol 0.05 0.00 —0.00 0.94 0.02 0.03 0.02 0.03
o 0.05 0.00 0.01 0.36 0.03 0.01 0.03 0.01
ol 0.02 0.12 —0.04 0.00 —0.01 0.38 —0.01 0.36
of 0.02 0.12 —0.03 0.08 —0.00 0.73 —0.00 0.93
o3 0.13 0.00 0.11 0.00 0.10 0.00 0.10 0.00
o2 0.03 0.01 —0.01 0.27 0.01 0.32 0.01 0.29
o 0.04 0.00 —0.01 0.36 0.02 0.06 0.02 0.04
o2 0.03 0.01 —0.02 0.14 0.01 0.38 0.01 0.30
o 0.02 0.10 —0.03 0.10 0.01 0.60 0.00 0.73
o3 0.02 0.12 —0.01 0.32 0.01 0.47 0.01 0.59
o 0.10 0.00 0.07 0.00 0.09 0.00 0.08 0.00
o 0.03 0.00 0.01 0.47 0.02 0.03 0.02 0.04
o 0.04 0.00 0.01 0.43 0.03 0.03 0.02 0.04
af 0.05 0.00 0.01 0.39 0.02 0.04 0.02 0.05
o 0.05 0.00 0.01 0.62 0.03 0.01 0.03 0.01
o 0.02 0.04 —0.03 0.01 0.00 0.76 0.00 0.85

(continued)
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A B C D

est. p-v. est. p-v. est. p-v. est. p-v.
af} 0.10 0.00 0.09 0.00 0.06 0.00 0.06 0.00
05‘5‘ 0.05 0.00 —0.00 0.88 0.02 0.02 0.02 0.03
(xls 0.05 0.00 —0.01 0.60 0.03 0.03 0.03 0.03
oeé5 0.05 0.00 —0.00 0.79 0.02 0.05 0.02 0.06
oe§ 0.06 0.00 0.01 0.28 0.04 0.00 0.04 0.00
ozf 0.05 0.00 —0.01 0.46 0.03 0.01 0.03 0.01
oeg 0.14 0.00 0.09 0.00 0.10 0.00 0.10 0.00
Persistence parameters
B 0.98 0.00 0.89 0.00 0.98 0.00 0.98 0.00
B2 0.99 0.00 0.96 0.00 0.98 0.00 0.99 0.00
B33 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00
Baa 0.98 0.00 0.93 0.00 0.99 0.00 0.99 0.00
Bss 0.98 0.00 0.96 0.00 0.98 0.00 0.98 0.00
Seasonality parameters
S —1.45 0.00 —1.50 0.00 —1.60 0.00 —1.59 0.00
S 1.13 0.00 1.13 0.00 1.28 0.00 1.27 0.00
53 0.15 0.05 0.20 0.04 0.16 0.12 0.16 0.14
Sy 0.41 0.00 0.35 0.00 0.33 0.00 0.35 0.00
S5 —0.03 0.74 —0.03 0.67 —0.03 0.80 —0.07 0.55
S6 0.66 0.00 0.46 0.00 0.52 0.00 0.55 0.00
Latent parameters
a* 0.98 0.00
a; 0.92 0.00 0.92 0.00
ay 0.80 0.00 0.82 0.00
ay 0.64 0.00 0.65 0.00
ay 0.60 0.00 0.57 0.00
o* 0.09 0.00
oy 0.28 0.00 0.28 0.00
oy 0.27 0.00 0.27 0.00
oy 0.16 0.00 0.17 0.00
oy 0.21 0.00 0.22 0.00
fop 0.22 0.00 0.24 0.00
V] —0.16 0.71
vy 0.18 0.83
vy 0.29 0.76
vy —0.07 0.95
v¥ —0.83 0.45
ve —0.82 0.40
LL —30,260 —29,562 —29,545 —29,536
BIC —30,501 —29,812 —29,828 —29,848
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Table 12.9 Average diagnostics (mean, standard deviation, Ljung—Box statistic), as well as excess
dispersion test (see Chap.5) over all trajectories of SCI residuals Af’(r) based on Table 12.8.

Significance at the 1%, 5% and 10% levels are denoted by ***, ** and *, respectively
A B C D A B C D
AOL IBM
Mean of /i; 0.98 0.98 0.98 0.98 0.97 0.96 0.97 0.97
S.D. of /il- 1.04 1.04 1.05 1.05 1.04 1.03 1.02 1.03
LB(20) of /i,- 31.82** 26.13 21.29 21.25 40.17*** 34.02%** 31.42** 30.78*
Exc. disp. 1.63 1.69* 1.79* 1.76 1.24 1.01 0.82 0.87
Coca-Cola JP Morgan
Mean of /i,- 0.95 0.95 0.95 0.95 0.98 0.98 0.98 0.98
S.D.of A;  1.00 1.02 1.01 101 101 1.00 1.01  1.00
LB(20) of /i,- 40.13%%*% 39.76™** 38.49*** 37.19™* 42.31*** 32.07"  35.67** 35.06**
Exc. disp. 0.12 0.54 0.31 0.33 0.37 0.39 0.38 0.37
AT&T

Mean of A; 0.97 0.97 0.97 0.97
SD.of A, 1.04 1.04 1.05 1.05
LB(20)of A; 22.14 2376  17.60  17.51
Exc. disp. 1.75* 1.62 1.88* 1.88*

Panels A and B shows that the inclusion of the latent component leads to a strong
increase of the model’s goodness-of-fit as indicated by the log likelihood and
the Bayes Information Criterion. Accounting for a common component induces
a reduction in the magnitudes of the persistence parameters B with most of
the innovation parameters associated with cross-effects, o, k # m, becoming
insignificant. As indicated by the Ljung—Box statistics (see Table 12.9), the SCI
model captures the dynamics in a better way than the pure ACI model. As in
Chap. 6 in the context of stochastic MEM processes, these results provide evidence
for the existence of a joint factor capturing common underlying dynamics and
interdependencies between the individual processes.

As reflected by the parameters ¢* shown in Panel C, the impact of the common
component on the individual processes varies to some extent. Moreover, the strength
of the serial dependence in the latent component is assumed to depend on the time
elapsed since the last price event according to (12.22). The thresholds X,, are fixed
exogenously and correspond to 50%, 100% and 200% of the average event waiting
time in the pooled process. It is shown that the serial dependence in the latent
component significantly declines with the length of past durations. Simultaneously,
the overall level of serial dependence in the latent factor is reduced whereas the
persistence in the observation-driven component is increased. Since a decline of
the serial dependence implicitly reduces the unconditional variance of the latent
component, we observe a counterbalancing effect by an increase of the scaling
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parameters o;". However, as indicated by the BIC, the extra flexibility implied by
specification C is not supported by the data.

Panel D gives the estimates of a specification where the dynamics of the
observation-driven component are excluded. As now the joint latent component has
to capture the dynamics of all individual processes, the parameters a; are driven
towards one. This effect is counterbalanced by a significant decline of the variance
scaling parameters o;". It is shown that, according to the BIC, a specification with
only one common parameter-driven dynamic but no observation-driven dynamics
outperforms the basic ACI model (specification A) in terms of goodness-of-fit.
This supports the idea of a common component as a major driving force of the
multivariate system. Nevertheless, as in Chap. 7, we observe that one latent factor
solely is not sufficient to completely capture the dynamics of the multivariate
process.
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Chapter 13
Autoregressive Discrete Processes
and Quote Dynamics

In this chapter, we discuss dynamic models for discrete-valued data and quote
processes. As illustrated in Chap.4, the time series of the number of events in
a given time interval yields a counting process and provides an alternative way
to characterize the underlying point process. Section 13.1 presents a class of
univariate autoregressive models for count data based on dynamic parameterizations
of the conditional mean function in a Poisson distribution. Moreover, we discuss
extensions thereof, such as the Negative Binomial distribution and Double Poisson
distribution. As illustrated in Sect. 13.2, these approaches have the advantage of
being straightforwardly extended to a multivariate framework.

Section 13.3 presents a simple and classical approach to model (mid-)quote and
price dynamics in terms of a vector autoregressive framework. Such a setting has
been proposed by Hasbrouck (1991) as a reduced-form approach to study price
dynamics. It is easily implemented and extended, however, faces the disadvantage
of not explicitly accounting for the discreteness of prices and quotes on transaction
level. The latter issue is addressed by dynamic models for integer-valued variables.
Such frameworks allow to model discrete-valued transaction price changes, bid-ask
spreads, indicators of the trading direction (buy vs. sell) or trade sizes which only
occur in round lot sizes. Section 13.4 presents an autoregressive conditional multi-
nomial model as proposed by Russell and Engle (2005) while Sect. 13.5 discusses
approaches decomposing integer-valued random variables into their directional
components (negative, zero, positive) and their magnitudes. These frameworks
open up flexible ways to model trade-to-trade price changes. Finally, Sect. 13.6
shows approaches to capture the joint dynamics of both ask and bid quotes. In
this context, we discuss a cointegration model for ask and bid quotes as proposed
by Engle and Patton (2004) as well as structural models which decompose the
bivariate quote process into a common stochastic trend and stationary idiosyncratic
components.
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DOI 10.1007/978-3-642-21925-2_13, © Springer-Verlag Berlin Heidelberg 2012
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13.1 Univariate Dynamic Count Data Models

13.1.1 Autoregressive Conditional Poisson Models

Autoregressive count data models are valuable approaches to model dynamic inten-
sity processes based on aggregated (equi-distant) data. A first textbook treatment of
time series of count data is given by Cameron and Trivedi (1998). For a state-of-
the-art overview, see Jung and Tremayne (2011). Dynamic count approaches might
also be used to model the behavior of positive-valued discrete variables, such as the
(absolute) magnitude of trade-to-trade price changes, bid-ask spreads or trade sizes
occurring only in round lot sizes.

Let {y;} denote a time series of counts or integer-valued variables. The so-
called Autoregressive Conditional Poisson (ACP) model belongs to the class
of autoregressive conditional mean models which dynamically parameterize the
conditional mean function. It is given by

P 0
YilFici ~ Po(hi), A=+ ajyi-j+ Y Biki-j (13.1)
j=1 j=1
where Po(A;) denotes the Poisson probability mass function (p.m.f.) given by

exp(—A) A

yi!

PO(A,’)I Yi =0,1,2..., /\,’ > 0. (]32)

The time-varying Poisson intensity, A;, equals the conditional mean as well as the
conditional variance, i.e.,

Elyi|Fi-1] = Vyi|Fi-1] = Ai. (13.3)

This specification has been originally proposed by Rydberg and Shephard (1998,
2003). Extensions of this model are considered by Heinen (2003). Ferland et al.
(2006) discuss (13.1) and call it an integer-valued GARCH (INGARCH) process
as it can be seen as an integer-valued analogue of a GARCH process. However,
though the ACP model captures the dynamics of both the conditional mean and the
conditional variance, (13.1) is essentially a conditional mean relation linking the
conditional mean to past values of y; and A;. In this sense, it is more in the spirit of
an ACD specification as discussed in Chap. 5 and is referred in this book to as an
Autoregressive Conditional Poisson (ACP) model.

As stressed by Fokianos et al. (2009), (13.1) can be restated in terms of a counting
representation. Denote N; as a Poisson process with unit intensity starting at time
pointi. Then, (13.1) can be expressed in terms of a sequence of independent Poisson
drawings, {N;,i = 1,2,...}. Define N;(A;) as the number of events of N; in the
time interval [0, A;]. Then, (13.1) is represented as
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P 0
yi=Nih), hi=o+Y ajyij+ Y Biki-j. (13.4)

J=1 =1

Model (13.1) (or, equivalently, (13.4)) belong to the class of observation-driven
models as also discussed in Chap. 10. Observation driven models for time series of
counts have been studied, among others, by Zeger and Qaquish (1988), Brumback
et al. (2000), Davis et al. (2003) and Jung et al. (2006).

Streett (2000), Heinen (2003) and Ferland et al. (2006) derive the stationarity
properties of the model. Process (13.1) is stationary if 0 < Zle a; +Z]'Q=1 B <1
with the unconditional mean given by

@

Elyi] =E/]:=p= 5 . (13.5)
1 - Zj:laj - Z,Q=1 B
The unconditional covariance function for an ACP(1,1) process is given by
(1—(a+B)* +aP)u .
1 —(« + 2 ’ - ’
Covlyi, yi+nl = («+ 5 et (13.6)
ad—plet+p)etp™n ,
1—(a+pB)? -
Rewriting the unconditional variance as
o?
V il — 1 + ) 13'7
[vi] M( 1_(a+ﬂ)2) (13.7)

it is easily seen that V[y;] > E[y;] (with equality if « = 0). Hence, there is a close
link between overdispersion and persistence. In order to ensure the non-negativity
of A;, the same conditions as for MEM processes apply (see Chap. 5).

Fokianos et al. (2009) consider an exponential version of the ACP model given by

Ai=(w+ B exp(—ykiz_l)))ui_l + ayi—1 (13.8)

mimicking the structure of the exponential autoregressive model proposed by
Haggan and Ozaki (1981). Geometric ergodicity of both specifications (13.1) and
(13.8) are proven by Fokianos et al. (2009).

The model is straightforwardly estimated by maximum likelihood. Denote 6 =
(w,a1,...,0p,B1,...,Bo) as the vector of unknown parameters associated with
the ACP(P,Q) model. Then, the log likelihood is obtained by (up to a constant)

InL(Y:6) = ) (yin2;(8) — 1:(6)). (13.9)

i=1
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where the score is given by

o OILY:0) Ny ) (0)
S(Y’o)_ZT_Z(Ai(o) 1) T (13.10)

i=1 i=1

and

i (6) _ (3/11-(9) 92i (0) %(9))'

30 do oo 0B
M{;—g))zki_l(()wrﬂak’g—éw).

For the asymptotic properties of the maximum likelihood estimator, see Fokianos
et al. (2009).

As the autoregressive count data models discussed above rely on parameteriza-
tions of the conditional mean function, various extensions discussed for MEMs in
Chap. 6 can be straightforwardly adapted. For instance, a long memory version of
the ACP model similar to long memory MEMS discussed in Chap. 6 are proposed by
GroB-KluBmann and Hautsch (2011a). In this context, A; is parameterized in terms
of long memory specifications as discussed in Chap. 6. Adapting, for instance, the
specification proposed by Koulikov (2003), a long memory ACP model is given by
parameterizing A; as

Ai=w+a(l—BL)'(1—L)yp_, (13.11)

with n; := y; — A;. For more details on long memory specifications, see Chap. 6
and Grof3-Klufmann and Hautsch (2011a).

Note that ACP specifications provide only one possibility to model time series
of counts. Alternative approaches are, for instance, integer autoregressive models
which preserve the discreteness of counts or generalized linear ARMA models. For
a survey and a comparison of the different classes of models, see Jung and Tremayne
(2011).

13.1.2 Extended ACP Models

A natural extension of the Poisson distribution is the Negative Binomial (NegBin)
distribution with parameters r and p and probability mass function given by
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NegBin(r, p) = (yi +y}'ﬁ B 1) (1-p)p”,
_I'i+r)
NG
_ Ii+r)
TN (r+1)

(I—=p)p"

A—=p)p", y=012,..., (312

where r > 0 and p € (0, 1). The unconditional mean and variance of the NegBin
distribution are given by

Ely,]=r (13.13)

I=p

p
(1-p)*
Hence, the NegBin distribution allows for overdispersion which is a typical feature
of most high-frequency time series, see also Chap. 3.

To define an autoregressive conditional NegBin model similar to the ACP model,
re-write the distribution in terms of the unconditional mean. Hence, by defining

Viyil=r (13.14)

Ai=E[y] =r—2—, (13.15)
I-p
the p.m.f. can be re-written as
| Fi+n (r N ( A\
NegBin(r, p) = , 13.16
cgBin(r. p) yvi!ll'(ry \A+r A4r ( )

with p = A/(r + 1) and V[y;] = A + A?/r.
Then, an ACP structure is straightforwardly adapted by dynamically parameter-
izing A as in (13.1) yielding

YilFi—1 ~ NegBin(r, p;), pi =Ai/(r + ), (13.17)

P 0
Ai=w+Y v+ Y Bk (13.18)
j=l

Jj=1

The ACP is nested by letting »r — oo. Such a distributional specification is
applied by Rydberg and Shephard (2003) to formulate a discrete generalized linear
autoregressive moving average (GLARMA) model to model the size of trade-to-
trade price changes.

While the NegBin distribution only allows for overdispersion, even more flexi-
bility is provided by the Double Poisson distribution introduced by Efron (1986).
Denote Po, (1) as the p.m.f. of the Poisson distribution of random variable y, then
the p.m.f. of the Double Poisson distribution of y; is given by
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DPo(4, ) = y'/*Po,, (1)"Poy (1)'

—Yi Vi 1\ "4
=C(%k)(y‘/2e‘”)(ey—"y') (ey—) . Ay>0, (13.19)

where c¢(y, A) denotes a multiplicative constant which ensures that (13.19) is a
proper density function which integrates to one. Efron (1986) shows that this
constant can be approximated by

LN et 4 PR (13.20)
c(y, ) 121y Ay )T '

The advantage of the Double Poisson distribution is that it allows for both overdis-
persion (y < 1) and underdispersion (y > 1) and nests the Poisson distribution for
y = 1. As shown by Efron (1986), the mean and variance of the Double Poisson
distribution is given by

E[y] = 4, (13.21)

iyl ~ —, (13.22)

| >

where the latter is a close approximation (see Efron 1986, for more details).

Using the Double Poisson distribution to specify a dynamic count data process is
proposed by Heinen (2003). He introduces the so-called Autoregressive Conditional
Double Poisson (ACDP) model given by

YilFi—1 ~ DPo(;,y), (13.23)

where A; is specified as in (13.1). As shown by Heinen (2003), the ACDP model
yields unconditional overdispersion, i.e., V[y;] > E[y;] if y < 1. Empirically, this
is observed whenever the overdispersion induced by the estimated autocorrelation
is not sufficient to match the overdispersion in the data.

A further advantage of the Double Poisson distribution is that the conditional
variance can be specified separately by parameterizing y. For instance, Heinen
(2003) proposes specitying the conditional variance as

Vil Fici] == 07 = A; + 877, (13.24)

corresponding to a quadratic relationship between variance and mean. This param-
eterization requires replacing y in (13.19) by A;/o; = (1 + 84;)~'. However,
note that this specification generates negative conditional variances whenever A; <
—&~!. This case might occur in cases of underdispersion when § < 0.

Alternatively, as proposed Heinen (2003), o7 might be parameterized in terms of
a GARCH specification yielding
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Table 13.1 Maximum likelihood estimates of ACP models based on the Poisson, NegBin and
Double Poisson distribution. Based on the number of trades per 30-sec intervals for the JPM stock
traded at the New York Stock Exchange, June 2009. 17,160 observations

Poisson NegBin Doub Poiss

par est p-value est p-value est p-value
w 0.573 0.000 0.438 0.000 0.763 0.000
o 0.207 0.000 0.194 0.000 0.204 0.000
B 0.706 0.000 0.742 0.000 0.687 0.000
rly 7.243 0.000 0.044 0.000
8¢ 0.152 0.000 0.113 0.000 0.164 0.000
851 0.049 0.000 0.031 0.005 0.058 0.000
85, 0.028 0.000 0.019 0.010 0.030 0.000
855 0.004 0.496 -0.001 0.846 0.007 0.232
854 0.005 0.347 0.000 0.967 0.006 0.250
8 0.118 0.000 0.108 0.000 0.130 0.000
8, 0.031 0.000 0.029 0.000 0.041 0.000
85 0.030 0.000 0.028 0.000 0.033 0.000
824 0.029 0.000 0.025 0.000 0.031 0.000
LB(20) 278.43 361.88 272.87

Standard errors are based on QML estimates of the covariance matrix. The distribution parameter
is denoted by r for the NegBin distribution and by y for the Double Poisson distribution. Ljung—
Box(20) statistics based on residuals y; — A; exp(5;).

0f =@+ a(yi1 —Aim)? + Bol . (13.25)

where @, & and /§ denote parameters. This specification opens up possibilities for
various extensions and modifications. Nevertheless, its theoretical properties are still
widely unknown.

13.1.3 Empirical Illustrations

Tables 13.1 and 13.2 show the maximum likelihood estimates of ACP models based
on the Poisson, NegBin and Double Poisson distribution for the number of trades
per 30s intervals for the JP Morgan and Microsoft stock traded at the NYSE. To
account for intraday seasonalities, the conditional mean function multiplicatively
interacts with a flexible Fourier form. In this case, the conditional mean is given
by A; exp(s;), where s; is given by (5.34). The lag orders and order of the flexible
Fourier form are chosen based on the Bayes Information Criterion.

Clear evidence for overdispersion is found. In both cases of the NegBin
distribution as well as Double Poisson distribution, the distributional parameters
r and y, respectively, indicate overdispersion. Moreover, it is shown that the ACP
model is not able to fully capture the dynamics in high-frequency trade counts.
The Ljung—Box statistics computed based on the residuals y; — A i exp(8;) provide
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Table 13.2 Maximum likelihood estimates of ACP models based on the Poisson, NegBin and
Double Poisson distribution. Based on the number of trades per 30-sec intervals for the MSFT
stock traded at the New York Stock Exchange, June 2009. 17,160 observations

Poisson NegBin Doub Poiss

par est p-value est p-value est p-value
w 0.540 0.000 0.487 0.000 0.785 0.000
o 0.184 0.000 0.177 0.000 0.183 0.000
B 0.684 0.000 0.709 0.000 0.656 0.000
rly 4.297 0.000 0.063 0.000
& 0.244 0.000 0.201 0.000 0.235 0.000
85y 0.099 0.000 0.083 0.000 0.104 0.000
85, 0.076 0.000 0.063 0.000 0.077 0.000
855 0.009 0.245 0.006 0.466 0.014 0.066
854 0.039 0.000 0.035 0.000 0.039 0.000
8 0.137 0.000 0.141 0.000 0.133 0.000
8, 0.073 0.000 0.069 0.000 0.080 0.000
85 0.041 0.000 0.037 0.000 0.048 0.000
84 0.035 0.000 0.025 0.000 0.043 0.000
LB(20) 393.45 468.46 518.79

Standard errors are based on QML estimates of the covariance matrix. The distribution parameter
is denoted by r for the NegBin distribution and by y for the Double Poisson distribution. Ljung—
Box(20) statistics based on residuals y; — A; exp(5;).

evidence for remaining serial dependence. The same is true even if higher order
lags are included. However, given Ljung—Box statistics of 30-sec trade counts of
approximately le6 and 7e5 for JPM and MSFT, respectively, the model implied
reductions of Ljung—Box statistics are quite satisfying. Further improvements could
be achieved by long memory ACP models, see GroB-KluBmann and Hautsch
(2011a).

13.2 Multivariate ACP Models

As proposed by Heinen and Rengifo (2007), an autoregressive count data model
can be extended to a multivariate setting by modelling the conditional mean in
terms of VAR(MA)-type system. Assume a K-dimensional count data process
{ yij }, j = 1,..., K, with the marginal distributions following a Double Poisson
distribution,

y/|Fioi ~ DPo(A),y7), j=1,....K, (13.26)
with E[N/ |Fi_i] = A/ and VIN/|Fi_i] = A/ /y/. Denote y; := (y}.....yK)

and A; := (A},...,AX)". Then, multivariate dynamics are captured by a VARMA
process,
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P 0
A =w+ZAjyi_j +ZBJA'i—./’ (13.27)
— —

which is stationary if the eigenvalues of (I — A — B) lie within the unit circle.

To capture contemporaneous dependencies, Heinen and Rengifo (2007) propose
using a copula function. Let F(y',..., yX) denote a continuous K-variate cumu-
lative distribution function with univariate marginal c.d.f’s F;( y),j=1....K.
As shown by Sklar (1959), there exists a function C — a so-called copula — mapping
[0, 11X into [0, 1] such that

FO'.....y5 =C(F (Y, .... Fx(%)). (13.28)

The joint p.d.f. is given by the product of the marginals and the copula density,

oF(y! y IC(FL (... Fx(y5))
a7 Hf’ "D SROD . R GE)

(13.29)

j=1

Correspondingly, the copula of a multivariate distribution with U [0, 1] margins is
given by

CE,....725) = F(F7'(@Y), ..., Fg'(Z5)), (13.30)

where ¥ 1= F(y*) fork =1,..., K.
Helnen and Rengifo (2007) propose using a Gaussian copula given by

cE,....25x)y=0k@7'(c),...,071(K); X), (13.31)
where ®X is the K-dimensional c.d.f. of the standard normal distribution and

&~ ! is the inverse of the standard univariate normal distribution function. The
corresponding copula density is given by

1
c@,.... K )= 12 exp (E(q/(lk - E‘l)q)) (13.32)
with q = (¢',...,¢%) and ¢¥ = ®7'(Z*), k = 1,..., K. If the variables
y!, ..., ¥ are mutually independent, the copula density equals one and X equals

the identity matrix Ig.

As shown by Sklar (1959), C is unique as long as the marginal distributions are
continuous. This is, however, violated in case of counting variables. In this case, the
probability integral transformation theorem stating that if Y is a continuous variable
with c.d.f. F, then Z = F(Y) ~ U|0, 1], does not hold. To overcome this problem,
Heinen and Rengifo (2007) propose applying the continued extension argument by
Denuit and Lambert (2005). The major principle is to continuously extend a discrete
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random variable Y by a U|[0, 1] distributed random variable U (independent of Y')
yielding

Y*=Y +U-1). (13.33)

Then, with [Y] denoting the integer part of Y and defining fy (y) := Pr[Y = y], it
is easily shown that

Fi=F() = F 4+ w-1)=F(yD+ fiyge(y*]+ Du
=F(y—-1+ fr(»u ~ U[0,1]. (13.34)

Applying this principle to multivariate count data with Double Poisson marginals
yields the joint c.d.f.

K
oL K0, 2y =[] foro! Ay )e(ai: ). (13.35)

J=1

where 6:=(w,vec(A), vec(B)), pog(yij,)Lij, y’/) denotes the Double Poisson
p.d.f. and ¢(q;, X') denotes the Gaussian copula density with q,-:=(<I>_1(zil), e
o! (zK))’. The variables le are the probability integral transform of the continued
extension of yij and are given by

d = Fr oM = F0] =D+ 0], (13.36)

where F;} is the c.d.f. of the continued extension and Fj; and f;; denote the c.d.f. and
p.d.f. of the Double Poisson distribution. Correspondingly, the log likelihood
contribution of the i th observation is given by

K
InL(Y:0) =Y In(fpro(y] . Al y7) + Inc(q;: ). (13.37)
j=1

Heinen and Rengifo (2007) suggest estimating the model in two steps, where in
the first step the individual marginal models are estimated using a Double Poisson
distribution. In the second step, the parameters of the copula are estimated given the
estimates of 6.

13.3 A Simple Model for Transaction Price Dynamics

A seminal paper on the modelling of trade-to-trade quote processes is Hasbrouck
(1991). Define p; as the mid-quote or alternatively transaction price at trade i and
define yl-b as an indicator variable which equals 1 for buyer-initiated trades and —1
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for seller-initiated trades. Then, Hasbrouck (1991) proposes a VAR(co) model to
study the effects of trade-related information on mid-quotes:

o0 o0
Amg; = Zaj Amg;—; + ijy,b_j + &1 (13.38)

ji=1 J=1

o0 o0
yf’ = Zc,Amqi_j + Zdjy,?’,j + &2, (13.39)

j=1 =1
where Amgq; := mq; — mq;_, represents the revision in the midquote, a;, b;, c;

and d; are coefficients and e;; and &, ; are two white noise processes. To estimate
the model by least squares, the lag order of the process is often truncated at a
certain number of lags (5). Then, the model can be seen as an approximation to a
VAR(00) process. However, an obviously more parsimonious alternative is to extend
the model by a moving average component.

Moreover, as the VAR specification does not account for the discreteness of quote
changes and yf’ is an indicator variable, OLS estimation is obviously not efficient
as due to the discrete nature of y?, model errors are subject to heteroscedasticity.
Therefore, robust standard errors should be used.

Hasbrouck’s (1991) VAR model can be seen as a reduced form approach to model
quote dynamics. Its major advantage is its flexibility to be easily extended in various
ways. For instance, Dufour and Engle (2000) propose to extend the Hasbrouck
(1991) model by accounting for the time between trades. They propose to replace
the parameter b; in equation (13.38) by

K
bj = )/jA + Zklf,jDkJ_j +8]A lnxj_l,
k=1

where Dy ;; is a set of time-of-day dummy variables, x; denotes the trade duration
between ¢; 1 and ¢; and yjA, )L,é I and 8]4 are coefficients. Then, the § coefficients
capture the influence of previous trade durations on the price impact of a trade.
Accordingly, the A’s allow to capture time-of-day effects in the price impact of a
trade.

Analogously, the coefficient d; in (13.39) is modified to

K
dj =y; + ZA?{C,_;Dk.i—j + 87 Inx;—;.
k=1

Here, the parameters A} j and 8; capture the impact of time-of-day-effects and past
trade durations on the autocorrelation of signed trades. Dufour and Engle (2000)
show that the time between trades has a significant impact on the price impact of a
trade. In particular, as the duration between consecutive trades decreases, the price
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impact of trades increases, the speed of price adjustment to trade-related information
increases, and the positive autocorrelation of signed trades increases.

Finally, the VAR approach has the advantage of being easily extended to higher
dimensions, for instance, to include also trade sizes, bid-ask spreads or depth. Recall
from Chap. 7 that a Vector MEM process can be re-written in terms of a VARMA
model. Consequently, a VAR(P) model can be re-written in terms of an MEM( P ,0)
whose parameters can be consistently (though not efficiently) estimated by least
squares. Such an approach is advantageous whenever datasets and/or dimensions
are huge making numerical optimizations (as, e.g., required for maximum likelihood
estimation) tedious. In such a situation, VAR estimates serve at least as best linear
predictors.! However, as stressed above, when the persistence of the underlying data
is strong, the lag order Q of the VAR process has to be chosen high requiring to
estimate a high number of parameters. This obviously limits the model’s usefulness
in such a situation. A further limitation of applications of VAR models to discrete-
valued variables is that implied predictions are difficult to interpret and to use as
they do not account for the discreteness of the underlying data.

13.4 Autoregressive Conditional Multinomial Models

As illustrated in Chap. 3, trade-to-trade quote changes, price changes or bid-ask
spreads can be very discrete, particularly if the underlying liquidity of the asset
is high. In such situations, VAR or MEM type approaches still yield consistent
estimates of the underlying dynamics but can be quite inefficient. Moreover, as
soon as we are interested in predictions of integer-valued variables, the discreteness
of the underlying variable has to be explicitly taken into account.? This calls for
dynamic models for integer-valued random variables. In this section, we discuss
the Autoregressive Conditional Multinomial model proposed by Russell and Engle
(2005) to model dynamic multinomial distributed random variables.

Consider an integer-valued process {y;} with y; € {1,...,K} defining a
multinomial random variable reflecting K states. A typical example is the trade-
to-trade price change which moves only in ticks and is very discrete (see Chap. 3).
Capturing the discreteness of trade-to-trade price changes motivated early work on
high-frequency data employing microeconometric concepts to model categorical
data. A seminal paper in this line of research is Hausman et al. (1992) applying
an ordered probit model to model trade-to-trade price changes. Bollerslev and
Melvin (1994) employ a similar approach to model the bid-ask spread at foreign
exchange markets. While these models straightforwardly allow to account for

ISee, for instance, GroB-KluBmann and Hautsch (2011b) for an application to estimate high-
frequency market responses to publications of automated news feeds.

2For an analysis of the effects of neglected discreteness, see Harris (1990), Gottlieb and Kalay
(1985) or Ball (1988).
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conditioning information by including appropriate regressors, the dynamic nature
of the underlying process is not easily captured. This is due to the fact that
in ordered response models, the underlying (continuous) process is unobservable
but is only categorically observed whenever it crosses an underlying threshold.
However, capturing dynamics in latent processes inevitably results in integrals
of the dimension of the underlying sample size, see, e.g., the discussion of a
stochastic MEM in Chap. 6. A possibility to overcome the difficulties implied by
a dynamic latent factor model is to rely on an observation-driven approach as
discussed in Chap. 10. Actually, the autoregressive conditional proportional hazard
model presented in Chap. 10 relies on an observation-driven dynamic extension of
an underlying ordered response model. This approach could be easily adapted to an
ordered probit model in the spirit of Hausman et al. (1992).

An alternative idea, however, is pursued by Russell and Engle (2005) by dynam-
ically extending a multinomial distribution. The major principle underlying the
so-called Autoregressive Conditional Multinomial (ACM) model is to capture the
dynamic behavior of y; by dynamically parameterizing the conditional probability
to observe the state y;. Denote d; as the K x 1 vector indicating the realization of y;.
In particular, d; is the jth column of the K x K identity matrix if ¥; = j. Let #;
denote the K x 1 vector of conditional probabilities associated with the states, i.e.,
the jth element of 7; corresponds to the probability that the jth element of d; takes
the value one. Then, the conditional distribution of d; is completely characterized
by T i

Russell and Engle (2005) assume that 7z; is driven by a first-order Markov chain

7, = Pd;_,, (13.40)

where P = {P;;}; j=1. .k is a K x K transition matrix with elements P; ; =
Pr(Y; = y:i|Yi—1 = j]. The fundamental principle behind the ACM model is to
dynamically parameterize the elements of P. To automatically guarantee that all
elements of P are non-negative and all columns sum to unity, Russell and Engle
(2005) propose dynamically parameterizing the log probability ratios (log odds
ratios). Let r; and d; denote the (K — 1) x 1 vectors consisting of the first K — 1
elements of 7; and (~1,-,

= Fig. .. Tik—1) = (T, k1) (13.41)

and

d,’ = (d~i1, e di,K—l)/ = (d”, ey d,',[(_l)/. (1342)

Furthermore, define P* as the (K — 1) x (K — 1) matrix of log ratios of transition
probabilities with m1j th element given by P = In(P,;/Pk;). Hence P* is given
by
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In(P11/Pk1) -+ In(Prg-1/Pk.x-1)
P* = " : : . (13.43)
In(Pg—11/P1) -+~ (Pg—1k-1/Prx—D) 1 41wk

Then, the log odds ratio of state m relative to state K with m < K is given by
K y K ~
In(7T;;m/7ix) = In Z Pyjdi—1; | —In Z Pxjdi—1j
j=1

J=1

K
= Z In(Poj/ Pxj)di-1

=1

=

I
it

1
In(Pyj/ Pxj)di—1; + In(Pyk/Prr)di—1

K—1
= > (n(Py;/Px;) — n(Pur/ Pkx))di-1; + In(Puk/ Px)
=

K—1
= Z P’:jdifl_j + cp-

Jj=1

Define ¢ := (cy,...,cx—1)’. Then, Russell and Engle (2005) suggest to
parameterize P*d; + c in terms of the inverse logistic function

P*d; +c¢ =In(w; /(1 —im)) := h(x;), (13.44)

where t is a conforming vector of ones. The conditional state probabilities are easily
recovered from the logistic transformation

T _ exp[P*dims + ] (13.45)
1—1vm;
yielding
P*d;_
= — SxpIPTdioi ] (13.46)
1 + ¢ exp[P*d;—; + ¢]
and thus
p, = 0P, + C’”] . (13.47)

l—}—Z_lexp el
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The ACM(P,Q) model is then given by

P 0
h(mi) =Y Ak + Y Bih(mi;)+17_y. (13.48)

j=1 /‘=1

where A; and B; denote (K — 1) x (K — 1) parameter matrices and z; is a
vector of explanatory variables with corresponding parameter vector y. To allow
for an intercept, the first element of z; is assumed to equal one. Moreover, &; with

& = (5i,...,Ek—1) is a vector of innovations with elements which can be
chosen as
Ejii=dji —mji (13.49)
or
£y = — Tt (13.50)

mi(l—1j)

Both specifications ensure that §;; are martingale differences. Specification
(13.50) is suggested by Rydberg and Shephard (2003) and ensures a variance
of one.

Due to the linear structure of the ACM model, the choice of the base state is
arbitrary. The first (K — 1) conditional probabilities are easily recovered from

P 0
T = exp ZAj(di—j —mi—j)+ Zth(ﬂi—j) +zi_yy
j=1 j=1

-1

P 0
x [T+ dexp | DA @iy —miey) + ) Bjh(miy) +2_yy :

Jj=1 J=1

where the K'th probability is given by the restriction ¢’z = 1.

As &; is a martingale difference sequence, the stationarity conditions solely
depend on the matrix B. In particular, if the eigenvalues of B are distinct and lie
inside the unit circle, we can rewrite the ACM(1,1) model with z; = 1 as

o0
h(mi) =Y PA/T'PIA@_; —m;;) + I—B) 'y, (13.51)
j=1

where B = PAP™! and A is the diagonal matrix with the eigenvalues of B along
the diagonal and I denotes a unity matrix. Russell and Engle (2005) prove the
positiveness of ; whenever the process is stationary.
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The log likelihood function is given by

N K N
L(Y:0) =YY dijIn(i;) =Y dIn(x). (13.52)
i=1j=1

i=1

where model diagnostics can be performed based on the vector of errors d; —
7;, which should form a martingale difference sequence under correct dynamic
specification.

As the ACM model resembles the structure of a MEM, many of the extensions
for MEM specifications discussed in Chap.6 can be straightforwardly adopted.
Russell and Engle (2005) combine the ACM model with an ACD model to jointly
model the time between trades and the resulting price movement. Based on IBM
transaction data they show that the ACM-ACD model successfully captures the
dynamic properties of the underlying process.

13.5 Autoregressive Models for Integer-Valued Variables

An alternative way to model dynamic integer-valued processes is to extend a count
data distribution to cover not only positive-valued but also negative-valued outcomes
and to capture zero outcomes in form of a hurdle approach. In this context, a so-
called integer count hurdle (ICH) model is proposed by Liesenfeld et al. (2006)
and is used to model discrete trade-to-trade price changes. Let Y; denote an integer
valued random variable with outcomes y; € Z. The main principle is to decompose
the process into three components determining the sign of realizations (positive,
negative, zero) as well as the size thereof given the realization is nonzero. Formally,
the conditional p.d.f. of ¥; given F;_; can be decomposed as

Pr(Y; < O|Fi—1]Pr[Y; = yi|Y: <0, Fi—] if y; <0,

PriY; = yil Fi-1] = {Pr[Y; = 0|.F;_{] if y; =0,
Pr[Y; > O|F;—1]Pr[Y; = y;|Y; > 0, F;—1] ify; > 0.
(13.53)

Hence, the processes Pr(Y; = y;|Y; > 0,F—1] and Pr[Y; = y;|Y; < 0, Fi—]
represent the size of y; conditional on its direction and are defined over the set of
strictly positive or negative integers, respectively. Accordingly, Pr[Y; < 0|F;i—i],
Pr[Y; > 0|F;—1] and Pr[Y; = 0|F;_1] drive the direction of y;.

Rydberg and Shephard (2003) propose to parameterize Pr[Y; = y;|Y; > 0, Fi_{]
and Pr[Y; = y;|Y; < 0, F;—1] by simply specifying the p.d.f. of ¥; — 1 given ¥; > 0
using a standard count data distribution, such as a Poisson or NegBin distribution.

Alternatively, building on the work by Mullahy (1986), Liesenfeld et al. (2006)
propose using the p.d.f. of a standard count data distribution which is truncated at
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zero. Correspondingly, Pr[Y; = y;|Y; > 0, F;—1] and Pr[Y; = y;|Y; < 0, F;_1] are
given by

il Fizy)
PriY: = yi|Y; > 0, Fii] := pT (i | Fic1) = —— | 13.54
r[ y| > 1] 14 (y| 1) 1_f+(O|Fi—l) ( )
_ S (=yilFiz1)
PriY; = yi|Y; <0, Fiy] := i|Fim) = 13.55
r[ y| < 1] 14 (y | 1) 1_f_(0|-/.'.i—1) ( )

where p*() and p~() denote the p.d.f. of standard count data distributions for
positive and negative realizations of y;, respectively.

If one assumes that the truncated p.d.f’s p*() and p~() stem from the same
distribution, it is sufficient to parameterize a (conditional) p.d.f. of absolute
realizations S; := |Y;],

Pr(S; = si|S; > 0, D;, Fi—1] := p(si|Di, Fi-1) (13.56)
with
~1 ify <o,
Di:=10 ify,=o0,
1 ifY, >0,

yielding to the p.d.f. of y; given by

o— o o+
PrY; = yi| Fimi] = Pr[¥; < O|Fi—1]% PriY; = O|Fi )V Pr{Y; > 0|F_]"
—g0
x [p(si| Di, Fim)] 7%, (13.57)

where 87 := Ly, gy, 87 := Lyy,—oy and 8" := L y,05.
Then, the resulting log likelihood is given by

LOY:0) =) InPr[Y; = yi|Fic] = Y Lin+ Y Lo, (13.58)
i=1 i=1 i=1
where

Z’C” =46 InPr[Y; < 0|.7-'i_1]+8? InPr[Y; = 0|.7-',-_1]—|-8i+ InPr[Y; >0|F;—1],

i=1

Zﬁl.z = (1—8))In p(s;| D, Fi-1).

i=1
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As long as there are no parametric restrictions on £;; and £, ;, both components
can be maximized separately.

Liesenfeld et al. (2006) propose modelling the dynamics of the sign of Y;,
represented by D;, in terms of an ACM specification as discussed in Sect. 13.4.
Denote nj; := Pr[D; = j|Fi—i] with j € {—1,0,1} and the bi-variate vector
w; := (m—y; /moi, 71 /70; ). Then, the inverse logistic transformation of =;, h(rw;),
with (r;) = In(r; /(1 — Z}-=_1 ;) is modelled according to a bi-variate version
of (13.48), i.e.,

P 0
h(m;) = ZA]‘&—J' +Zth(n,~_j)+zﬁ_1)/ﬂ, (13.59)
j=1 j=1

where z; are (weakly exogenous) explanatory variables with parameter vector y”
and §; is given by (13.49) or (13.50) with
(1,0) ifY; <0,
di == (d_1;,dii) = §(0,0) ifY; =0,
0,1) ify; >0.

Then, 7;; is recovered by

_ eXP(h(ﬂji)) _
L+ Y exp(h(my))

(13.60)

7le'

To evaluate the model, Liesenfeld et al. (2006) propose using the standardized
residuals

e i= (eii,en) = V[di|Fimi]7V2(d; — Eldi | Fio1]) (13.61)

where V[d,- | Fi—1]7"/? is the inverse of the Cholesky factor of \A/[d,- | Fi—1]. Under
correct specification, the series {e;} are uncorrelated with mean zero and identity
covariance matrix.

Liesenfeld et al. (2006) propose the dynamics of the size S; to be modelled by
generalized linear autoregressive moving average (GLARMA) model based on a
conditional NegBin distribution which is truncated at zero with p.m.f.

p(si|Di, Fi—y) = p(yilDi, Fi—1)/(1 = p(0|D;, Fi—1))

. I(si+r) r+A71 -1 A, 5;
IRAGITESY) ([ r }_1) (m) . (13.62)

withs; = 1,2,..., p(y;|D;, Fi—1) denoting the p.m.f. of a NegBin(r, p;) distribu-
tion with p; = A;/(r + A;) as given in Sect. 13.1.2.




13.5 Autoregressive Models for Integer-Valued Variables 349

Its conditional moments are given by

B[S:1S; > 0. D1, Fimt] i= A7 = 725

A A? 11—
i8S >0,D;, Fioy] =02t = —— — i 9 — — 1),
VI[Si[Si > Fi-i] 0; 11— (1—19;)2 ( r )

where ©¥; = [r/(r + A;)]". Then, In }; is parameterized in terms of a GLARMA
structure as proposed by Rydberg and Shephard (2003),

P Q
InA; =(1)+ZA]‘8,‘_/’ —i—ZE/ ll’lki_j +Z;_1)/A, (13.63)
j=1 J=1
where &; 1= (S; — /\;")/Jﬁ' which is evaluated based on the residuals é; := (S; —

Ahyet.
The integer count hurdle model is a modification of the decomposition model by
Rydberg and Shephard (2003) who decompose Y; into three components

Y; = A;S; D;, (13.64)
where A; := llyy,£0y, D; denoting the sign of ¥; given A4; # 0 and S; defined as

above. Rydberg and Shephard (2003) model the dynamics of A; and D; using an
autologistic model, formulated for A; by

Pri4; = 1|Fi_i] := p(6{), (13.65)
A
p(6) = _expl6) )A : (13.66)
1 + exp(6;)
P
0 = a;Aij +7_y. (13.67)
j=l1

Rydberg and Shephard (2003) and Liesenfeld et al. (2006) apply these models
to model the dynamics of transaction price changes. Alternative applications
might be the modelling of trade directions or the sum of signed trades in fixed
intervals. An extension of the integer count hurdle model to a multivariate setting is
proposed by Bien et al. (2011). The authors develop a model for the conditional
inflated multivariate density of integer count variables where contemporaneous
dependencies are captured by a copula. The model is applied to the modelling of
the conditional bivariate density of high-frequency ask and bid quote changes.

Finally, note that the models discussed in this section can be seen as reduced-
form approaches to capture the dynamics of transaction prices and quotes. More
structural approaches in line with classical market microstructure theory are dis-
cussed in Sect. 13.6.2.
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13.6 Modelling Ask and Bid Quote Dynamics

13.6.1 Cointegration Models for Ask and Bid Quotes

Modelling mid-quotes as, e.g., in Hasbrouck’s (1991) model (see Sect. 13.3), allows
to study underlying price evolutions but does not capture possible asymmetries in
ask and bid quote dynamics. To obtain a deeper understanding of quote dynamics
and their implications for bid-ask spread and mid-quote movements, Engle and
Patton (2004) propose modelling the processes of log bid prices (Inb;) and log ask
prices (Ina;) as a VAR system. As quote processes follow stochastic trends (i.e.,
are integrated of the order one), the corresponding model should be set up in most
generality in terms of a cointegrated VAR(P) model which is given in vector error
correction (VEC) form for Ay; := y; — yi—1,

P
Ay = p+apyioi+ ) TjAyie + e, (13.68)

j=l
where y; := [Ina;,Inb;]’, w is a 2 x 1 vector of constants, & and B denote the 2 x 1
loading and cointegrating vectors,and I' j;, j = 1,..., P —1,is a 2 x 2 parameter

matrix. The vector of noise terms ¢; is assumed to be serially uncorrelated with zero
mean and covariance X'.

The cointegration vector 8 can be estimated using Johansen’s (1991) maxi-
mum likelihood approach. In practice, however, estimates of B are very close to
B ~ (1,—1) revealing the bid-ask spread as natural cointegration relationship.
Consequently, Engle and Patton (2004) fix ef’y;—; in (13.68) to the log bid-ask
spread, i.e., B’y;—; = s; with s; := Ina; — Inb;. This leads to a straightforward
vector error correction model for the series of log ask returns and log bid returns
Alna; :=Ina; —Ina;—y and Alnb; := Inb; — In b;_; of the form

Alna;\ _ (v L (7). Alna;
Alnb,- o 80 8] 52 All’lbi_l
V3 V4 &f
+ (83) S Si—1 + (84) <z + (85’) R (13.69)

where z; denotes a vector of additional explanatory variables and ¢ and &? denote
white noise error terms. The model can be straightforwardly estimated by ordinary
least squares.

The advantage of this specification is that it leads to a corresponding model for
the difference in the log-spread As; := s; — s;—;, and the log difference in the
mid-quote, Alnmg; := Inmgq; —Inmg;_;, where Inmgqg; := 0.5(Ina; + Inb;). In
particular, multiplying the model by the matrix
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1 -1
0.50.5

yields
( As; ):( Yo — o )+( Y1 — & Y2 — 6 ).(Alnp?—l)
Alnmg; 0.5(y0 + 80) 0.5(y1 + 81) 0.5(y2 + 82) Alnpl_|
3 — 83 ( Va—84 )
+ cSi—1 + cZi—
(0.5<y3 + &)) T 0s +sn) !

gd — b
+ (0.5(8? + sg’)) :

Alternative manipulations of the above expression yield

( S ):( Y0 — 6o )+( Y4 — 04 )-z~1
Alnmg; 0.5(y0 + o) 0.5(y4 + 64) "

=(1+0-5(V1—51—72+52)+73—53 Vi—8i+y—0a )
0.25(y1 + 81 —y2—82) + 0.5(y3 + 83) 0.5(y1 + 81 + 2 + o)

. ( Si—1 ) + (—0.5(7/1 -8 —Y2+62) 0) ‘ ( Si—n )
Alnmg;— —0.25(]/] + 6 — Y2 — 52) 0 Alngi_»
e — sﬁ’
+ (0.5(8? + sf’)) :

Hence, the VEC(1) model is “rotated” into a VAR(2) model for the log spread
and the log-difference of the midquote. Similar approaches and modifications of
this framework are considered by Lo and Sapp (2006) and Escribano and Pascual
(2006).

Hautsch and Huang (2009) extend this model to include not only ask and bid
quotes but also several levels of order book depth on both sides of the market. They
illustrate that this approach serves as a convenient but powerful way to model limit
order book dynamics. For a deeper discussion of this framework in a limit order
book context, see Chap. 9.

Finally, note that this model captures the joint dynamics of ask and bid quotes
but does not capture the quote’s discreteness. A model capturing the dynamics of
discrete ask and bid quotes is proposed by Hasbrouck (1996). This approach builds
on the idea of decomposing ask and bid quotes into a common underlying random
walk component (capturing the “efficient price”) and market side specific market-
making costs inducing a bid-ask spread. Such a framework will be discussed in more
detail in the following section.
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13.6.2 Decomposing Quote Dynamics

While the dynamic models for integer-valued variables discussed in Sects. 13.4 and
13.5 can be seen as reduced-form type approaches, classical market microstructure
approaches aim for connecting quote dynamics to the dynamics of an underlying
(“efficient”) price process. A typical framework, as used, e.g., by Glosten and Harris
(1988), Hasbrouck (1996) or Madhavan et al. (1997) builds on the assumption
of an underlying random walk process for the unobservable efficient (“true”,
fundamental) price m;. Accordingly, m;, a; and b; are given by

m; =m;— + ¢, (13.70)
ai =m; +c, (13.71)
b,’ =m; —¢, (1372)

where ¢ denotes the market-making costs driving the bid-ask spread. This frame-
work can be used as starting point for capturing quote dynamics as well as
discreteness. To capture the latter, Hasbrouck (1996) adds the equation

round(b;) if yib =0,
round(a;) if yib =1,

where p; denotes the resulting transaction price and yib is a trading indicator taking
the value one (zero) for a sell (buy). Moreover, by modifying (13.71) and (13.72) by

b; = Floor(m; — b), (13.73)
a; = Ceiling(m; — a), (13.74)

Hasbrouck (1996) captures market side specific transaction cost components a
and b. For more extensions and modifications of this framework, see Hasbrouck
(2007).

Pascual and Veredas (2010) propose a generalization of the framework outlined
above by allowing the trading costs to be time-varying and all processes to be
conditionally heteroscedastic. The model is in the spirit of Hasbrouck (1993) and
Madhavan et al. (1997) and decomposes quotes into a common stochastic trend and
transitory noise components:

Sa.i

a\ _ o1 101 |
GGG e) o

where  captures the average half bid-ask spread and S,; := @, —p and Sp,; := Bi—
b denote the transitory (transaction cost induced) components of the corresponding
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quotes. Hence, the vector (1, —1)" correspond to the (a priori fixed) cointegration
vector as in Engle and Patton (2004), see Sect. 13.6.1.

Pascual and Veredas (2010) propose modelling the dynamics of the three
components m;, S,; and Sp; as

Sa,i ¢a ¢ab 0 Su,i—l Ea.i
Svi | = | Pva Pp O | Spi-1 | + | ebi (13.76)
m; 0 01 m;— Em.i
with
Ea.i 0
i | ~N|{|O)].Zi],
Em.i 0
and
o;; 00
=002 0
0 0 o2

This system allows for dynamic interdependencies between the transaction cost
components S, ; and Sp ;. Conversely, m; is driven by a random walk process which
does not interfere with S,; and Sj;. To capture conditional heteroscedasticity,
the conditional variances might be dependent on intraday seasonality functions
and/or GARCH processes. For instance, Pascual and Veredas (2010) allow the
long run variance o, ; to follow an EGARCH specification according to Nel-
son (1991), whereas the short-run variance components Uaz,l- and og_i vary only
according to intraday periodicities. In addition, conditional variances as well as
transaction cost components S,; and S,; might depend on additional regres-
sors. Pascual and Veredas (2010) illustrate how to estimate the model using the
Kalman filter and apply it to 5-min limit order book data of the Spanish Stock
Exchange.

Zhang et al. (2008) propose a similar decomposition inducing an asymmetric
rounding mechanism generating discrete bid and ask quotes from a latent continuous
process and estimate the model by Markov chain Monte Carlo methods. Hautsch
et al. (2011) adapt and extend the model by Pascual and Veredas (2010) to model
the ask and bid refurn processes and corresponding volatilities in periods of news
announcements. This setup is presented in Chap. 8.
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Appendix A

Important Distributions for Positive-Valued

Data

In the following, the gamma function I"(m) is defined as

r'(m):= /(;oo X" exp(—x)dx

form > 0.

Poisson Distribution

Acronym: x ~ Po(}).
Probability mass function:

P(X = x) = w x=012,...
Mean:
E[x] = A.
Variance:
V[x] = A.

Negative Binomial Distribution

Acronym: x ~ NegBin(r, p).
Probability mass function:

N. Hautsch, Econometrics of Financial High-Frequency Data,

, A > 0.
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358 A Important Distributions for Positive-Valued Data

o =n = ("I a- e

_F(x+r) R
o x!\I(r) (L=p)p

= %(1 -p)p*, x=0,1,2,...,r>0,pe(0,1).
Mean:
Elx] = %.
Variance:
pr
Vix] = —(1 R

Remark: If r — oo, then x — Po(A).

Log-Normal Distribution

Acronym: x ~ LN(u,0?).
Probability density function:

1 1
fx) = oV exp (—T‘z(ln(x) — /,L)z), x > 0.

Cumulative density function:

F(x) = @ (—ln(x) - “)

o

where @(-) denotes the c.d.f. of the standard normal distribution.
Uncentered moments:

2.2
E[x*] = exp (su + %)

Variance:

V[x] = exp (2u + 07) (exp(c?) — 1).

Remark: If x ~ LN(j,0?), then In(x) ~ N(u,0?).



A Important Distributions for Positive-Valued Data
Exponential Distribution

Acronym: x ~ Exp(}).
Probability density function:

X

f=ew(-3). Axo

A

Cumulative density function:

F(x) =1—exp (—%)

Uncentered moments:
Ex*] = A*L (1 + s).
Variance:
V[x] = A%
Hazard function:
A(x) = 1/2.

Gamma Distribution

Acronym: x ~ G(A,m).
Probability density function:

x"Vexp(—x/X)

= , 0,A >0, 0.
f(x) T ) X > >0,m >
Uncentered moments:
Ar
]E[xx]zﬂ, m+s > 0.
I(m)

Variance:

V[x] = mA%.
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Remark: If x ~ G(A,m), then x/A ~ G(1,m). A G(A,1) distribution is
equivalent to an Exp(A) distribution.

Weibull Distribution

Acronym: x ~ W(A,a).
Probability density function:

f(x) =al™xexp [— (%)a] , x>0,A>0,a>0.

Cumulative density function:

F(x) = 1—exp [— (’A—C)a]

Uncentered moments:
E[x*] = A*T'(1 + s/a).
Variance:
Vx] =A*[I(1 +2/a) — (1 + 1/a)*].

Hazard function:

i0=2G)"

Remark: A W(A,1) distribution is equivalent to an Exp(A) distribution. A
Weibull distribution with A = 1 is called standard Weibull distribution.

Generalized Gamma Distribution

Acronym: x ~ GG(A,a,m).
Probability density function:

f(x) = MmLF(m)x’”“_' exp [— (;—C)a] x>0,A>0,a>0,m>0.

Uncentered moments:

I'(m+s/a)

Bl = 4
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Variance:

F(m+2/a) (T(m+1/a)\>
r(m) _( I (m) )'

Vix] = A2 [

Remark: A GG(A, 1,m) distribution is equivalent to a G(A, m) distribution. A
GG(A,a, 1) distribution is equivalent to a W(A, a) distribution.

Generalized F Distribution

Acronym: x ~ GF(A,a,m,n).
Probability density function:

ax® [ + (x/A) )y

SO = Ty

x>0,A>0,a>0m>0,n>0.

Lm)I ()

where B(-) describes the complete beta function with B(m, ) = T -

Uncentered moments:
r(m+s/a)l"(n—s/a)
r(m)I"(n) ’

E[x*] = ASy*/a s <an.

Remark: For n — oo, the GF (A, a, m, n) distribution converges to a GG (A, a, m)
distribution. A GF (A, a, 1, 1) distribution is equivalent to a log-logistic distribution.

Burr Distribution
(according to Lancaster 1997)

Acronym: x ~ Burr(A,a,n).
Probability density function:

fx) = % (1—6)“_1 [1 +7 (;—C)a]_(lﬂil), x>0,1>0,a>00n>0.

Cumulative density function:
F(x) =1—(14+pA4x%~n,
Uncentered moments:

r(+s/a)l(n”" —s/a)
n'er1 4y

E[x*] = A° , s <a/n.
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Hazard function:

i) = % (%)“_1 (1 + pA=ax9)~".

Remark: A Burr(A,a, 1) distribution is equivalent to a log-logistic distribution.
For n — 0, the Burr(A, a, n) distribution converges to a W (A, a) distribution.

Extreme Value Type I Distribution
(Gumbel (minimum) distribution)

Acronym: x ~ EV (A, m).
Probability density function:

fx) = %exp(x;m —exp (x;m»

Cumulative density function:

X —m

F(x) = exp (— exp (T))

Mean:
E[x] =m + A-0.5772.
Variance:
Vix] = Azgrz
Hazard function:

;\(x) = exp (%) .

Remark: An EV(1,0) distribution is called standard extreme value type I
distribution (standard Gumbel (minimum) distribution).

Burr Type II Distribution
(according to Johnston et al. 1994)

Acronym: x ~ BurrlI(n).
Probability density function:



A Important Distributions for Positive-Valued Data 363

nexp(—x)
[1 + exp(—x)]"t"

fx) = n>0.

Cumulative density function:
F(x) = [l +exp(—x)]".

Remark: For n — oo, the BurrlI(n) distribution converges to an (type
I) EV(1,0) distribution. A BurrlI(1) distribution is equivalent to a logistic
distribution.

Pareto Distribution

Acronym: x ~ P(v,m).
Probability density function:

vm" 0
a7 x>m>0.

fx) =

X

Cumulative density function:
v
Fx)=1- (T) .
by

Uncentered moments:

, vm?®
E[x'] = , V>,
v—s

Variance:

1 v
— 20 _ - 7
V[x] =vm (v—2 (v—l)z)‘
Hazard function:

)I(x) = ;
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JF-martingale, 73

Absolute variation, 196

Accelerated failure time model, 84, 89

Acceleration effects, 280

ACI innovations, 275, 293

Additive misspecification, 129

Additive stochastic component, 144, 147

Adverse selection, 11, 19

Adverse selection risk, 230

AFT model, 100

AFT-type ACI model, 279

AMACD model, 144

Amihud illiquidity measure, 227

ARMA model for log durations, 249

ARMA-GARCH model, 100

Ask noise variance, 221

Ask quote, 29

Asymmetric information, 230

Asymptotic properties of ACD models, 105

Asymptotic properties of ACPH models, 253

Auction market, 13

Augmented ACD models, 143

Augmented Box—Cox ACD model, 145

Augmented Hentschel ACD model, 147

Australian Stock Exchange, 18, 181, 241

Autocorrelation function of ACI models, 294

Autocorrelation function of ACPH models,
250

Autocorrelation function of Hawkes processes,
307, 312

Autocorrelation function of SCI processes, 317

Autoregressive conditional double Poisson

Autoregressive conditional intensity (ACI)
model, 274

Autoregressive conditional mean model, 3, 99,
332

Autoregressive conditional multinomial
(ACM) model, 342

Autoregressive conditional Poisson (ACP)
model, 332

Autoregressive conditional proportional hazard
(ACPH) model, 248

Autoregressive integrated intensity model, 96

B-spline function, 240

Backward recurrence time, 71, 274, 285
Balanced trading, 230

Baseline hazard function, 85, 246, 253
Baseline intensity function, 275, 293
Baseline survivor function, 87, 250
BDS test, 120

Best ask quote, 10

Best bid quote, 10

Bid-ask bounce, 48

Bid-ask spread, 10, 22, 225

Bid noise variance, 221

Bipower variation estimator, 211
Bivariate ACI models, 298
Box—Cox ACD model, 144
Box—Cox transformation, 144
Box—Pierce test, 118

Broker-dealers, 10

Brokered market, 14

Brokers, 9

Bund future trading, 262

model, 336 Burr ACD model, 110
Autoregressive conditional duration (ACD) Burr distribution, 109, 298, 361
model, 102 Burr hazard, 275
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BurrIl distribution, 259, 362
Business time sampling, 36
Buy arrival process, 296

Buy trade duration, 36

Buy volume duration, 229
Buy-sell identification, 34
Buy-sell imbalance, 233, 300
Buy/sell trading intensity, 296
Buyer-initiated trade, 229

Call market, 12

Cancellation intensity, 306

Causality between volatility and trade
durations, 216

Causality in trading processes, 184, 192

Censoring, 91, 258, 263

Classification of ACD models, 148

Cointegrated VAR model, 236, 237

Cointegration between quote processes, 221

Common latent factor, 184, 315

Commonalities in trading processes, 190

Compensator, 73

Competing risks model, 170

Component ACI model, 281

Component MEM, 169

Conditional failure probability, 88

Conditional mean function, 100, 102

Conditional moment test for ACD models, 130

Conditional moments of Hawkes processes,
286

Conditional moments of SCI models, 317

Conditional survivor function, 94

Conditional variance function, 103

Conditional variance of counts, 336

Conditioning information, 133

Continued extension argument, 340

Continuous trading, 12

Continuous two-sided auction, 13

Copula function, 179, 339

Count data model, 90

Counting process, 70

Counting representation of a Poisson process,
75

Covariate path, 93

Covariates in ACD models, 114

Cox process, 76

Cross-autocorrelation function of Hawkes
processes, 307, 312

Cross-autocorrelation function of SCI models,
317

Cross-autocorrelation of ACI models, 294

Cross-dependencies of high-frequency
variables, 56
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Crowding out of orders, 24
Cubic spline regression, 41
Cumulative trading volume, 168

Data cleaning, 32

Dealer market, 13

Decomposition of price changes, 346

Decomposition of quote dynamics, 352

Demand schedule, 23, 235

Density forecast evaluation, 123

Density kernel, 324

Diagnostics for ACD models, 117

Diagnostics of ACPH models, 260

Diagonal ACI model, 295

Directional buy/sell volume, 229

Directional change duration, 36

Discrete baseline hazard, 88

Discreteness of price changes, 216

Discriminatory pricing rule, 15

Distribution tests, 123

Distributional properties of bid-ask spreads, 44

Distributional properties of cumulative trading
volume, 52

Distributional properties of financial durations,
37

Distributional properties of price changes, 44

Distributional properties of trade counts, 52

Distributional properties of trade sizes, 44

Doob-Meyer decomposition, 73

Double continuous auction system, 18

Double Poisson distribution, 335

Doubly stochastic Poisson process, 7, 76, 314

Duration categorization, 85, 248, 252

Duration dependence, 77

Duration model, 90

Duration process, 70

Duration representation of a Poisson process,
75

Duration volatility, 101, 172

Dynamic conditional correlation (DCC), 179

Dynamic conditioning, 80

Dynamic factor model, 238, 239

Dynamic integrated hazard process, 246

Dynamic latent factor, 314

Dynamic properties of ACPH models, 260

Dynamic properties of bid-ask spreads, 47

Dynamic properties of cumulative trading
volume, 54

Dynamic properties of financial durations, 39

Dynamic properties of market depth, 54

Dynamic properties of price changes, 47

Dynamic properties of SCI models, 317

Dynamic properties of trade counts, 54
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Dynamic properties of trade sizes, 47

EACD model, 145

Efficient importance sampling (EIS), 187, 317,
323, 325

Efficient price, 351

Efficient return, 221

Efficient return volatility, 222

Electronic communication network (ECN), 1,
10

Estimation quality of ACPH models, 253

Et buy pressure, 300

Event aggregation, 35

Event clustering, 285

EXACD model, 145

Excess demand, 229

Excess demand intensity, 232

Excess depth duration, 37

Excess dispersion, 103

Excess dispersion test, 82

Excess volume, 229

Excess volume duration, 37, 230

Execution probability, 24

Exogenous covariate process, 93

Exponential ACD model, 104

Exponential decay, 285

Exponential distribution, 75, 109, 359

Exponential formula, 80

Exponential regression model, 85

Extended ACP model, 334

Extreme value distribution, 87, 246, 362

Filtered estimation, 187

Filtered residuals, 188

Financial point process, 35

Finite sample properties, 253

First passage time, 216

Five-seconds rule, 31

Flexible Fourier form, 113

Forward recurrence time, 77

Fractional integration, 163

Fractionally integrated ACD model, 163

GAFT model, 89

Gamma compounded ACPH model, 267
Gamma distribution, 109, 359

GARCH model, 100

GARCH model for irregularly spaced data, 216
Gaussian copula, 179

Gaussian factor, 172

Generalized ACI models, 278
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Generalized error, 78, 248, 261

Generalized F ACD model, 110

Generalized F distribution, 110, 230, 361

Generalized gamma ACD model, 110

Generalized gamma distribution, 110, 232, 360

Generalized polynomial random coefficient
models, 143

Generalized residual, 257

Generalized spectrum test, 121

GLARMA model, 348

GMM estimation of ACD models, 108

Goodness-of-fit of ACD models, 153

Hawkes process, 284

Hazard function, 72, 84, 246
Hazard process, 84

Hazard shape, 86

Hentschel ACD model, 146
Hidden order, 12, 29
Homogeneous Poisson process, 74
Hurdle approach, 346

Hybrid trading system, 16

Iceberg order, 12, 29

IGARCH model, 106

Independence test, 120

Independent censoring, 92

Independent Poisson processes, 82

Information diffusion, 272

Information process, 190

Informational volatility, 222

Informed trading, 19, 20

Inhomogeneous Poisson process, 76

Integer count hurdle (ICH) model, 346

Integer-valued process, 346

Integrated ACD model, 162

Integrated baseline hazard function, 87

Integrated conditional moment (ICM) test, 133

Integrated hazard function, 86, 110, 246

Integrated intensity function, 73, 293

Integrated likelihood function, 323

Integrated quarticity, 197

Integrated variance, 197

Intensity function, 71, 273

Intensity model, 83

Intensity representation of a Poisson process,
74

Intensity representation of ACD models, 103

Intensity-based inference, 79

Intensity-based volatility estimation, 218, 220

Intensity-based volatility modelling, 310

Interdealer broker, 13
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Intraday GARCH, 207

Intraday periodicities of financial durations, 41
Intraday quadratic variation, 202

Intraday realized variance estimators, 209
Intraday seasonalities of bid-ask spreads, 50
Intraday seasonalities of price changes, 50
Intraday seasonalities of trade sizes, 50
Intraday seasonality, 113, 265, 315

Intraday variance forecasting, 210

Intraday volatility, 312

Inventory model, 19, 21

Inventory risk, 230

ITCH data, 30

Jump diffusion, 211
Jump-robust variance estimation, 211

Kalman filter, 222
Kaplan-Meier estimator, 86
Kernel function, 199
Kyle’s lambda, 21

Lagrange multiplier tests for ACD models, 127
Latent dynamic factor, 166

Latent factor model, 246

Latent innovations, 314

Latent score, 260

Left-censoring, 91

Left-right-censoring, 91

Likelihood function of point processes, 79
Limit order, 11

Limit order book, 11, 181, 296, 302

Limit order book construction, 28

Limit order book curves, 235

Limit order book market, 23

Limit order book modelling, 238, 241
Limit order duration, 36

Limit price, 11

Linear ACD model, 102

Linear spline function, 113, 147, 311
Liquidity, 225, 298

Liquidity costs, 229

Liquidity risk, 230

Liquidity supply, 181, 230, 298

Liquidity supply modelling, 241

Liquidity trader, 19, 234

Ljung-Box test, 118

Log ACD model, 115

Log durations, 100

Log likelihood function of ACI models, 295
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Log likelihood function of Hawkes processes,
308

Log likelihood of ACI models, 278

Log VMEM, 180

Log-normal distribution, 112, 358

Long memory ACD model, 162, 165

Long memory ACI model, 279

Long memory stochastic duration model, 167

Long range dependence, 162, 279, 284

Lunch time effect, 41, 269

Marked point process, 70

Market depth, 46, 236

Market depth dynamics, 236

Market impact, 11

Market maker, 29

Market microstructure noise, 198, 202

Market microstructure theory, 19

Market order, 11

Market resiliency, 225

Market-if-touched order, 12

Market-to-limit order, 11

Marketable limit order, 11

Markov switching ACD model, 161

Maturity seasonality, 265

Maximum likelihood estimation of Hawkes
processes, 309

MEM for realized variances, 207

Mincer-Zarnowitz regression, 209

Mixed ACPH model, 259

Mixture distribution, 109, 167

Mixture MEM, 166, 169

ML estimation of ACD models, 109

ML estimation of ACPH models, 250

ML estimation of Hawkes processes, 288

Modelling of excess volume durations, 230

Modelling of realized variances, 206

Modified renewal process, 77

Moments of ACD models, 103

Moments of ACI models, 276

Moments of ACP models, 333

Moments of Log-ACD models, 116

Multinomial distribution, 342

Multiplicative error model (MEM), 102

Multiplicative misspecification, 129

Multiplicative stochastic component, 144, 147

Multivariate ACI model, 291

Multivariate ACP model, 338

Multivariate Hawkes model, 310

Multivariate Hawkes process, 307

Multivariate point process, 70

Multivariate price intensities, 309, 310, 326
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Multivariate volatility estimation, 309

NASDAQ, 17

National Best Bid and Offer (NBBO), 10

Negative binomial distribution, 357

Negative binomial model, 334

NegBin distribution, 90

Nelson-Siegel model, 238

New York Stock Exchange (NYSE), 16

News impact curve, 115

News impact function, 145, 147, 155

Non-negativity restrictions, 100, 148, 150

Non-stationary Poisson process, 76

Non-trading period, 91

Nonparametric distribution test, 124

Nonparametric modelling of order book
curves, 240

Observation driven components, 185
Observation driven dynamic, 167, 247
Observation driven model, 313
One-sided trading flow, 234
Open outcry market, 14

Opening call auction, 18
Opening period, 269

Order aggregation, 34

Order aggressiveness, 302

Order book data, 28

Order book slope, 298

Order classification, 303

Order curve shapes, 239, 243
Order-driven market, 13, 14
Ordered response model, 88, 343
Order intensity, 306

Order level messages, 30

Order precedence rule, 14

Order statistics, 86

Ordinary renewal process, 77
Overdispersion, 39, 335
Overnight effects, 263

Parameter driven components, 185
Parameter driven dynamics, 167
Parameter driven model, 247, 313
Parametric proportional hazard model, 86
Pareto distribution, 173, 363
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Point process diagnostics, 81

Poisson distribution, 75, 357

Poisson model, 90

Pooled point process, 96
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Pooled process, 70
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Pre-averaged multipower variation estimator,
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Prediction error decomposition, 250
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Price change volatility, 265
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Price impact coefficients, 227
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SCI residuals, 325
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Temporal aggregation of GARCH processes,
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models, 148
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Time aggregation, 52

Time deceleration, 89

Time precedence, 14

Time-invariant covariates, 71

Time-price priority, 18
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Trade and quote matching, 30

Trade classification, 34
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Trade price dynamics, 340

Trade-based volatility estimation, 213
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Transaction costs, 226
Transaction data sets, 27-29
Transaction price, 11

Transaction time sampling, 36
Transaction volume, 22
Transition function, 159
Transition matrix, 161

Transitory noise components, 352
Truncation, 348

Tukey-Hanning kernel, 200
Two-component ACD model, 162
Two-component ACI model, 279
Two factor model, 172

Two-stage estimation, 180

Ultra high-frequency GARCH model, 213
Underdispersion, 336

Uniform pricing, 16

Unobservable heterogeneity, 109, 259, 267
Upper tail expectation, 23

Validity of trades and quotes, 29
VAR model, 173, 342

VAR model for quote dynamics, 341
Variance forecast evaluation, 210
Vector ARMA (VARMA), 178
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Vector error correction model, 236

Vector MEM (VMEM), 177

VNET measure, 229

Volatility clustering, 312

Volatility estimation based on ACPH models,
262

Volatility per time, 213, 218

Volatility spill-overs, 312

Volume duration, 37, 229

Weak GARCH process, 214

Weak stationarity of ACD models, 103
Weak stationarity of ACI processes, 275
‘Weibull ACD model, 110

Weibull ACPH model, 249

‘Weibull distribution, 109, 360

Weibull hazard, 275

Weibull regression model, 85, 87
Weighting function, 133

Wiener process, 196

Wold process, 95
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Zero outcomes, 182
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