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Preface

This book provides readers with a set of both theoretical and applied tools in order
to illustrate the correct implementation of modern micro-econometric techniques
for program evaluation in the social sciences. As such, the reader is offered a
comprehensive toolbox for designing rigorous and effective ex post program
evaluation using the statistical software package Stata. The theoretical statistical
models relating to each individual evaluation technique are discussed and followed
by at least one empirical estimation of the treatment effects using both built-in and
user-written Stata commands.

During the course of the discussion, readers will gradually become familiar with
the most common evaluation techniques discussed in the literature, such as the
Regression-adjustment, Matching, Difference-in-differences, Instrumental-
variables, and Regression-discontinuity-design, and will be offered a series of
practical guidelines for the selection and application of the most suitable approach
to implement under differing policy contexts.

The book is organized in four chapters.

The first chapter provides an introduction to the econometrics of program
evaluation, paving the way for the arguments developed in subsequent chapters,
laying out the statistical setup, standard notation, and basic assumptions used in the
estimation of a program’s treatment effects in the socioeconomic context. The
concept of selection bias, both due to observable and unobservable factors, is
discussed and an overview of the econometric methods available to correct for
such biases is illustrated. The chapter concludes with a brief discussion of the
principle Stata commands for the estimation of the treatment effects, along with the
various econometric methods for binary treatment proposed in the literature.

The second chapter focuses on the estimation of average treatment effects under
the assumption of “selection on observables” (or “overt bias”) and provides a
systematic account of the meaning and scope of such an assumption in program
evaluation analysis. A number of econometric methods (such as: Regression-
adjustment, Matching, Reweighting, and the Doubly-robust estimator) are
discussed, in order to ensure correct inference for casual parameters in this setting.
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The chapter ends with a series of empirical applications of these methods in a
comparative perspective.

The third chapter focuses on econometric methods for estimating average
treatment effects under “selection on unobservables” (or “hidden bias”). This
occurs when non-observable factors significantly drive the nonrandom assignment
to treatment. In such a situation, the methods discussed in Chap. 2 are no longer
appropriate for estimating program effects. In Chap. 3, therefore, we present three
techniques for correct estimation in the presence of selection on unobservables:
Instrumental-variables, Selection-models, and Difference-in-differences, the
implementation of which requires either additional information or further
assumptions.

The fourth chapter addresses two related subjects: the Local average treatment
effect (LATE) and the Regression-discontinuity-design (RDD), both considered as
nearly quasi-experimental methods. It offers a discussion of the theory underlying
the LATE approach, illustrating the setting of a randomized experiment with
imperfect compliance, and goes on to discuss the sample estimation of LATE.
The second part of the chapter focuses on the RDD, used when a specific variable
(the so-called forcing variable) defines a “threshold” separating—either sharply or
fuzzily—treated and untreated units. After presenting the econometric background
for the RDD model, the discussion focuses on both sharp RDD and fuzzy RDD
methodologies. A simulation model both for sharp RDD and fuzzy RDD is also
presented in order to illustrate the role played by each of the underlying assump-
tions of these differing approaches.

The chapters of this book can be considered as fairly self-contained units. The
more interested reader will however find it useful to have a thorough understanding
of the subjects singularly treated in each chapter. Finally, it should be noted that I
assume the reader to be familiar with basic econometric theory and to have some
prior knowledge of the use of Stata for econometric purposes.

Rome, Italy G. Cerulli
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Chapter 1
An Introduction to the Econometrics
of Program Evaluation

Contents

L1 INtrodUCHON ..ottt et

1.2 Statistical Setup, Notation, and ASSUMPLONS . ........ceeeriiiiiiiiiiieeeeiiiiiiiiaee...

1.2.1 Identification Under Random Assignment ................ccooviiiiiiiiniinnn...

1.2.2 A Bayesian Interpretation of ATE Under Randomization ......................

1.2.3 Consequences of Nonrandom Assignment and Selection Bias ..................

1.3 Selection on Observables and Selection on Unobservables ..................c.ooeeee...
1.3.1 Selection on Observables (or Overt Bias) and Conditional Independence

N 310014 T &

1.3.2  Selection on Unobservables (or Hidden Bias) .............ooeeiiiiiiiinnnnenn..

1.3.3 The Overlap ASSUMPLON .. ..oettttititiiee ettt et e e e e eeeeees

1.4 Characterizing Selection Bias ............ccoooiiiiiiiiiiiiiiiii

1.4.1 Decomposing Selection Bias ...........c.c.ooiiiiiiiiiiiiiiiii i

1.5  The Rationale for Choosing the Variables to Control for...............................

1.6  Partial Identification of ATEs: The Bounding Approach ....................oooooiiiie

1.7 A Guiding Taxonomy of the Econometric Methods for Program Evaluation ..........

1.8  Policy Framework and the Statistical Design for Counterfactual Evaluation ..........

1.9 Available Econometric Software ...

1.10 A Brief Outline of the BOOK ..o

REFEIENCES ...

1.1 Introduction

It is common practice for policymakers to perform ex post evaluation of the impact
of economic and social programs via evidence-based statistical analysis. This effort
is mainly devoted to measure the “causal effects” of an intervention on the part of
an external authority (generally, a local or national government) on a set of subjects
(people, companies, etc.) targeted by the program. Evidence-based evaluation is
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2 1 An Introduction to the Econometrics of Program Evaluation

progressively becoming an integral part of many policies worldwide.' The main
motivation resides in the fact that, when a public authority chooses to support
private entities by costly interventions, a responsibility towards taxpayers is
assumed. This commitment, constitutionally recognized in several countries,
draws upon the principle that, since many alternative uses of the same amount of
money are generally possible, any misuse of it is seen as waste, especially under
severe budget constraints.

In this spirit, results from program evaluation may serve two related goals:
“learning” aimed at providing improvements of various kinds for future policy
programs, generally directed to managers and administrators, and “legitimation”
directed to higher political levels and to participants and other stakeholders
involved in the program (Moran et al. 2008).

Ex post impact evaluation is part of the so-called cycle of policymaking, the
reference framework of public policy analysis in political science (Althaus
et al. 2007). Within this framework, ex post policy assessment is performed both
by qualitative and quantitative techniques. This book focuses on the quantitative
(or econometric) side of the coin, although it recognizes that a comprehensive and
accurate impact evaluation should integrate elements of quality assessment as well.
This is in the hope of avoiding “black box” results, as it is not only important to
measure the effects, but also to know the etiological mechanisms driving the
eventual policy success or failure.

A proper quantitative evaluation design should take into account at least three
key qualitative aspects: (1) the political, institutional, and normative context within
which the policy was implemented (the environment); (2) a clear understanding of
the motivations and incentive schemes underlying the behavior of the involved
public and private entities; (3) a clear-cut definition of direct and potentially
indirect effects generated by the intervention. Further preconditions are also impor-
tant for an econometric impact evaluation to be effective, for instance: (1) an
appropriate evaluation design, based on the declared policy goals; (2) detailed
and well-documented data and information; (3) a broad and appropriate coverage
of beneficiaries and non-beneficiaries; and (4) a broad coverage of the spatial
context when policies are geographically based.

In the last two decades, the literature on the econometrics of program evaluation
has evolved, with new econometric techniques becoming a fundamental tool of
analysis in many research areas both in economics and in other social sciences
(Millimet et al. 2008; Imbens and Wooldridge 2009). These include labor econom-
ics, industrial organization, development studies, and sociological and demo-
graphic empirical research. This book presents an exposition of the modern tools

' A wide range of literature witnesses this relevance. See reviews and books such as: Heckman
(2000); Heckman et al. (2000); Blundell and Costa Dias (2002); Shadish et al. (2002); Cobb-Clark
and Crossley (2003); Imbens (2004); Lee (2005); Morgan and Winship (2007); Imbens and
Wooldridge (2009); Angrist and Pischke (2008); Millimet et al. (2008); Imbens and Wooldridge
(2009); Cerulli (2010); Guo and Fraser (2010); Wooldridge (2002, Chap. 18); Wooldridge (2010,
Chap. 21).
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for an econometric evaluation of the effect of socioeconomic programs, with a
primary focus on practical issues and applications in order to provide an accurate
and rigorous empirical research in this field of study.

The econometrics of program evaluation has its roots in epidemiological statis-
tics and in the so-called literature on “treatment effect” estimation (Neyman 1923;
Angrist 1991; Rothman et al. 2008; Husted et al. 2000). In the simplest terms, the
treatment effect is defined as the effect of a specific treatment variable on an
outcome (or target) variable, once any potential confounders affecting the link
between the cause and the effect are ruled out. The treatment variable may be,
according to the disciplinary context, a new drug, a new type of physiotherapy
method, as well as, in the economic context, a training program for unemployed
workers, a subsidy to firms’ capital investment, and so on.

In this literature the terms “treatment” and “causal factor” are exchangeable,
thus meaning that the researcher is not looking for a mere association among
phenomena, but rather a precise causal link. In doing so, the econometric approach
makes use of observational data, whose character is inherently ex post (i.e., “after-
the-fact”). This places econometrics within the sphere of nonexperimental statisti-
cal designs, where the analyst has no capacity to manipulate the design of the
experiment. In contrast, experimental and quasi-experimental designs are charac-
terized by a scientist’s capacity of controlling the experiment. In the classical
experimental setting, the scientist deliberately produces a random assignment of
the units involved in the experiment. In contrast, in quasi-experimental designs,
although assignment is nonrandom, the scientist can manage the form of this
nonrandomness at least to some acceptable extent. The simplest case of a quasi-
experimental setting is the so-called non-equivalent groups design (NEGD) where
the control (or comparison) group is chosen beforehand to be as similar as possible
to the treatment group (Trochim and Donnelly 2007).

In experimental and quasi-experimental designs, the treatment effect is generally
estimated by the “counterfactual” approach, so that scientists in that field often refer
to measuring “counterfactual causality” (Pearl 2000, 2009). The concept of coun-
terfactual causality, as we will discuss, draws upon the assumption that causality
takes the form of a comparison between the outcome of a unit when this unit is
treated in a certain way, and the outcome of the same unit when it is not treated. If
one observes a unit only in its treated status, the untreated status is defined as the
counterfactual status that is—by definition—not observable.

To better clarify the concept of counterfactual causality, Fig. 1.1 shows a
representation of the effect of a policy taking place between t, and t; for a
representative unit. The solid line represents the unit observed performance, the
dashed line the unit counterfactual performance (i.e., what the unit would have
done, had it not been supported by the policy). This specific example refers to a
policy aimed at increasing company patenting activity. In t; (i.e., before the policy),
the company filed ten patents, whereas in t; (i.e., after the policy) it ends up with
filing six patents, fewer than before. At first glance, by only focusing on the
indication provided by the observed performance, one might be tempted to con-
clude that the policy failed in achieving its objective. Nevertheless, once taking into
account the counterfactual situation, one can clearly recognize that—without the
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Fig. 1.1 An instructional graphical representation of “counterfactual causality”

policy—the company would have been patenting even fewer patents. It might
appear surprising, but from a counterfactual point of view the policy was success-
ful, as the final effect is positive (indeed, a =6 —3 =3 > 0). In this case, we can
state that the policy “has reduced the damage.”

If a public agency had only considered the observed levels, its conclusion about
the usefulness of the policy would have been severely biased. This is the typical trap
an agency can come across when considering just one side of the coin, the observed
side. Only considering the observed performance is sometimes referred to as policy
monitoring, whereas policy evaluation in the proper sense always needs to encom-
pass the counterfactual comparison in order to draw reliable conclusions about the
actual causal effect.

The concept of counterfactual causality is not new to economists and econome-
tricians. For many years, however, the discipline mainly focused on macroeco-
nomic analysis, where the main interest was in conceptualizing and measuring
causality within structural econometric models (SEM). SEM involved systems of
simultaneous equations, where the key issue was that of achieving parameters’
identification by invoking some form of economic structure, generally driven by a
given theoretical framework (Hoover 2001).

This was in the spirit of the foundation of modern econometrics, as witnessed by
the famous Cowles Commission-NBER debate on “measuring without theory” of
the 1940s (Koopmans 1947, 1949; Vining 1949a, b). Yet, in the next decades,
quantitative macroeconomists went on to debate about identification and causality,
as shown by the 1980s’ Lucas-Sims debate on problems of identification under the
Rational Expectations Hypothesis (Lucas 1976, 1980; Lucas and Sargent 1981;
Sims 1980, 1996), or by the dispute among structuralists and empiricists in vector
auto-regressive (VAR) models (Cooley and LeRoy 1985).
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As microeconometrics has increased its relevance in many economic and social
fields, the task of measuring causality in a counterfactual way has become increas-
ingly appealing to economists and social scientists, especially for those involved in
policy evaluation at the micro-level. Therefore, in recent years, a huge number of
theoretical and applied studies for assessing the effect of policy interventions in the
labor market first and then in many other policy environments, have appeared.

In the SEM tradition, as distinct from epidemiology, scholars generally refer to
“probabilistic causality”:

In probabilistic causality one tries to find a (or the) cause for Y by checking whether the
possible cause changes the probability distribution for ¥ where no counter-factuals are
envisioned (Lee 2005, p. 196).

The difference between counterfactual and probabilistic causality is subtle and
not resolved:

Causal parameters based on counterfactuals provide statistically meaningful and opera-
tional definitions of causality that in some respects differ from the traditional Cowles
foundation definition. First, in ideal settings this framework leads to considerable simplicity
of econometric methods. Second, this framework typically focuses on the fewer causal
parameters that are thought to be most relevant to policy issues that are examined. This
contrasts with the traditional econometric approach that focuses simultaneously on all
structural parameters. Third, the approach provides additional insights into the properties
of causal parameters estimated by the standard structural methods (Cameron and Trivedi
2005, pp. 32-33).

Although taking a different perspective, the counterfactual approach to causality
is not in contrast with the traditional SEM framework, of which it can be considered
as a generalization.

To better shed light on this point, take the case of the traditional regression
model. It is usually specified assuming that causality assumes a linear form, where
the analyst is interested in assessing the effect of a (usually) continuous variable (x)
on a dependent variable (Y), by adding within the regression some control
(or conditioning) factors. As we are embedded in a nonexperimental framework
(a social experiment, as said above), at the heart of this causal framework there is
the exogeneity issue: the “true” causal effect of x on Y can be identified, as long as
independent changes of x only produce a direct effect on Y, by ruling out any
potential indirect effect of x on Y, via the relation of x with unobservable factors.
This is the condition under which x can be assumed to be exogenous; otherwise it is
said to be “endogenously determined” and traditional estimation via ordinary least
squares (OLS) produces biased estimates of the causal parameter.

It is easy to show that in this case, OLS estimates the so-called “pseudo-true
value” which is not the actual causal effect the analyst seeks (Cameron and Trivedi
2005, pp. 18-38). An example can better clarify this argument. Take the simple
regression model Y = fx+u, where f is the causal effect of x on Y and u is an
unobservable component, and differentiate by x, thus yielding:

dy/dx = f + du/dx (1.1)

The model is identified as long as du/dx =0, as in this case dy/dx = f3; otherwise,
autonomous changes in x are not exogenously determined, as x has also an indirect
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effect on Y through its effect on u. As du/dx is unobservable, the analyst is unable to
separate the direct effect () and the indirect effect (du/dx). The model is no longer
identified as a single equation and needs further information or assumptions to
recover f correctly (such as, for instance, the availability of an instrumental
variable). In this example, the “pseudo-true value” is equal to the sum of the
“direct” and “indirect” effect (equal in turn to the “total” effect, in the SEM
language).

The counterfactual approach to causality, in its simplest form, can be
reformulated in terms of the same regression model where the variable x assumes
in this case a binary form (x, for the treated and x; for the untreated status) instead
of a continuous form. By assuming to observe both Y and Y, (i.e., the outcomes in
the two states for the same individual), we can write that Y| =f x; +u, and Yo =pf
Xo+ up. By subtracting previous relations, we get Y| — Yo =/ (x; —xo) +u; — ugp, a
formula that, apart from the problem of a missing observation (Holland 1986), is
equivalent to Ay = f Ax+ Au. By dividing by Ax, we finally obtain:

Ay/Ax =+ Au/Ax (1.2)

which is the discrete version of (1.1). As in (1.1), the causal parameter of interest in
(1.2) is f, and if Au/Ax+ 0, a bias appears even in this case.

Yet, in many regards, the econometrics of program evaluation has opened up a
series of very interesting issues that conventional econometrics was unable to
address or that remained—in that tradition—substantially “hidden.” These issues
include a more rigorous definition of “causal parameters” and of their relations; the
importance of sample generation and selection; the role of unobservable heteroge-
neity, as well as the relative advantage of adopting parametric and nonparametric
methods have been highly developed in this field of econometrics (Angrist and
Pischke 2008).

Of course, as recognized by James J. Heckman (2001) in his Nobel Prize lecture,
the issue of parameters’ identification still remains at the center of the scene in both
traditions, so that econometric counterfactual methods should be considered just as
a different angle to look at previous efforts of conceptualizing and measuring
causality within structural econometrics. What is crucial is that the counterfactual
approach has opened up a new perspective on traditional estimation.

As an example, deriving the parameter of a binary regression as developed above
and showing that it is actually equal to the “average treatment effect” is much more
informative than just defining it as a regression coefficient, although this second
meaning is still correct.” Overall, the literature on the econometrics of program
evaluation, by contributing to the development of a new perspective to

2Probably more explicit in this direction might be the recent developments in the field of
“continuous treatment” where the treatment variable x assumes a continuous form. In this case,
although the setting is very close to the traditional econometric regression, the counterfactual
approach provides new insights on the meaning of causal parameters, as in the definition and
estimation of the Average Partial Effect (Wooldridge 2001) or of the Average Potential Outcome
(Hirano and Imbens 2004).
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nonexperimental settings and the causality issue, is also able to shed new light on
traditional econometric practice, thus widening both our technical knowledge in
this field and our capacity to apply more appropriate statistical tools to a variety of
old and new (micro)economic policy issues.

1.2 Statistical Setup, Notation, and Assumptions

As sketched above, from a statistical point of view, we are interested in estimating
the so-called “treatment effect” of a policy program in a nonexperimental setup,
where a binary treatment variable D—taking value 1 for treated and O for untreated
units—is assumed to affect an outcome (or target) variable Y that can take a variety
of forms: binary, count, continuous, etc. Throughout this book we will assume D to
be binary, although recent literature has provided a generalization of the counter-
factual methods both to the case of D taking more than two values (multiple
treatment) (Angrist and Imbens 1995; Frolich 2004; Cattaneo 2010) and to the
case of D taking continuous values (continuous treatment and dose—response
models) (Imbens 2000; Imai and Van Dyk 2004; Hirano and Imbens 2004; Cerulli
2014b).
To begin with, we define the unit i treatment effect (TE) as:

TE; =Y, — Yo (1.3)

TE; is equal to the difference between the value of the target variable when the
individual is treated (Y;) and the value assumed by this variable when the same
individual is untreated (Yy). As TE, refers to the same individual at the same time, it
goes without saying that the analyst can observe just one of the two quantities in
(1.3), but not both. For instance, it might be the case that we can observe the
investment behavior of a subsidized company, but we cannot know what the
investment of this company would have been had it not been subsidized, and vice
versa. The analyst faces a fundamental missing observation problem (Holland
1986) that must be tackled econometrically in order to reliably recover the causal
effect (Rubin 1974, 1977).

What is observable to the analyst is the observable status of unit i, obtained by:

Y=Yy +Di(Y1; — Yoi) (1.4)

Equation (1.4) is the so-called potential outcome model (POM), and it is the
fundamental relation linking unobservable with observable outcomes.

Both Y; and Yy, are assumed to be independent and identically distributed (i.i.d.)
random variables, generally explained by a structural component dependent on
observable factors and a nonstructural component comprised of an error term.
Recovering the entire distributions of Yy; and Y,; (and, consequently, the distribu-
tion of the TE;) may be however too demanding without further assumptions. The
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Fig. 1.2 Density distributions of Y;; and Y, treatment effect, and average treatment effect

literature has thus focused on estimating specific moments of these distributions
and in particular the mean, thus defining the so-called population average treatment
effect (hereinafter ATE) of a policy intervention as:

ATE = E(Y;, — Yio) (1.5)

where E(') is the mean operator. This parameter is equal to the difference between
the average of the target variable when the individual is treated (Y;) and the average
of the target variable when the same individual is untreated (Y;). In what follows,
for the sake of simplicity, we will not use the subscript referring to unit ; when not
strictly necessary.

Figure 1.2 provides a simple graphical representation of the density distribution
of Y;; and Y;o by showing a generic treatment effect (TE;) and the ATE. It is rather
intuitive that for distributions poorly concentrated around the mean, the ATE might
be a weak representation of the global effect of the policy. For this reason, some
scholars have recently proposed to consider an alternative set of (global) causal
parameters, the “quantile treatment effects,”3 allowing the identification of the
effect of a policy program in the Q-th quantile of the distribution of Y; and Y.
Figure 1.3 sets out a graphical representation of the quantile treatment effect.

3 For an in—depth study of this subject, see: Imbens and Wooldridge (2009, pp. 17-18); Frolich and
Melly (2013); Abadie et al. (2002); Chernozhukov and Hansen (2005). See also Frolich and Melly
(2010) for a Stata implementation.
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Fig. 1.3 Density distributions of Y;; and Y; and Q-th quantile treatment effect

Although the quantile approach may be complementary to the analysis based on
the mean, this book will focus on traditional average treatment effects, as widely
developed in the literature. A possible reason why the literature has mainly focused
on the mean rather than quantiles of TE; may depend on the fact that while for the
mean it holds that:

E(Yi —Yio) = E(Yi1) — E(Yio)

the same does not occur for quantiles. For instance, consider the 50th percentile
(i.e., the median) of TE,. In such a case we have that:

Med(Y” — Yl'()) §£ Med(Y“) — Med(Y,'())

These two median measures convey different and sometimes contrasting conclu-
sions about policy effectiveness. Consider, for instance, a policy aimed at increas-
ing the level of education. In such a case, it might be that:

MCd(Y,’l — Yi()) >0

meaning that at least 50 % of the population has a positive TE;, and at the same
time:

Med(Y”) — Med(Y,—O) <0

meaning that the median person’s level of education has decreased.* This possibility
has made the quantile treatment effect less appealing than that based on the mean.

“See Lee (2003, pp- 12—13) for a simple numerical example of such a situation.
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By relying on the mean, however, the mainstream literature has emphasized two
additional parameters as relevant to estimate. These are known as the average
treatment effect on the treated (ATET) and the average treatment effect on the
untreated (ATENT), defined respectively as:

ATET =E(Y, — Yo|D = 1) (1.6)
ATENT = E(Y, — Y,|D = 0) (1.7)

It is fairly easy to see that the ATET is the average treatment effect calculated
within the subsample of treated units (those with D = 1), while the ATENT is the
average treatment effect calculated within the subsample of untreated units (those
with D = 0). These two parameters can provide additional information on the causal
relation between D and Y. It is also useful to show the relation linking ATE, ATET,
and ATENT:

ATE = ATET - p(D = 1) + ATENT - p(D = 0) (1.8)

that is, the ATE is a weighted average of the ATET and the ATENT, with p(D=1)
representing the probability of being treated and p(D = 1) that of being untreated.
Equation (1.8) simply follows from the law of iterated expectations (LIE).

Nevertheless, another important ingredient is necessary to proceed with the
econometrics of program evaluation. For each unit, beyond the values of Y and
D, researchers (normally) have access also to a number of observable covariates
which can be collected in a row vector x. Usually, these variables represent various
individual characteristics such as age, gender, income, education and so on. The
knowledge of these variables, as we will see, is of primary usefulness in the
estimation of the treatment effects, as they may represent relevant confounding
factors that must be taken into account.

It is then worth stressing that, given the knowledge of x, we can also define the
previous parameters as conditional on X, as:

ATE(x) = E(Y; — Yo|x) (1.9)
ATET(x) = E(Y, — Yo|D = 1,x) (1.10)
ATENT(x) = E(Y, — Yo|D = 0,x) (1.11)

These quantities are, by definition, no longer single values as before, but functions
of x. They can also be considered as “individual-specific average treatment effects”
as each unit typically has specific values of x. Furthermore, the LIE implies that:

ATE = E,{ATE(x)} (1.12)
ATET = E,{ATET(x)} (1.13)
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ATENT = E,{ATENT(x)} (1.14)

making it clear that one can retrieve the global effects of a program by simply
averaging ATE(x), ATET(x), and ATENT(x) over the support of x.

What is the meaning and usefulness of relying on the ATE, ATET, and ATENT
measures in program evaluation? A simple example can shed light on this question.
Suppose that in evaluating a program through some econometric procedure, we find
a value of ATET equal to 100 and a value of ATENT equal to 200. Was this
program successful? At first glance, the answer seems to be positive: the group of
treated individuals received, on average, a treatment effect of 100. Thus, the policy
was successful in promoting good outcome for the individuals selected for treat-
ment. Nevertheless, the knowledge of the value of ATENT might question this
conclusion. As the value of ATENT is higher than that of ATET, if the average
untreated unit had been treated, then its outcome would have been raised by 200.
This is higher than the increase in outcome obtained by the treated units when
compared with their untreated status. If the agency had been treating those who
were not selected for treatment, the performance would had been better than in the
opposite case. In other words, one may conclude that the agency failed in selecting
the right group to support, as they were not able to maximize the outcome. It would
have been better to select those who actually were not selected.

Although we generally hold that the agency is trying to maximize the outcome
measure, in many cases this might not be the prime objective of an agency. If
welfare considerations are part of the policy’s purposes, the agency might have
been purposely aimed at supporting lower performing units. For instance, in a
microcredit program, a public agency may find it consistent with its (social)
objectives to support disadvantaged people living in depressed economic and social
areas who are clearly in a position of weakness compared to those better off. It is not
surprising that these people will ultimately perform worse than those better off.
This example also reminds us that we must understand the program’s direct
objectives as well as select a correct comparison (counterfactual) group. Evaluation
conclusions might be otherwise severely misleading.

Besides ATE, ATET, and ATENT, the knowledge of ATE(x), ATET(x), and
ATENT(x) may carry additional useful information on the characteristics of pro-
gram effects. In particular, an analysis of the distribution of those parameters
explicitly illustrates how results are dispersed around the mean effects. Figure 1.4
reports an example where we assume that the program target is a variable Y that the
program aims at increasing.

The figure shows that, as expected, the distribution of ATET(x) is localized on
the right compared to that of ATE(x) and ATENT(x). It means that there is a
tendency of the treated units to perform better than the untreated ones, thus proving
that the selection was correct. This is confirmed by the values taken by ATE, ATET,
and ATENT. But another aspect is useful to stress: the distribution of ATENT(x) is
much more dispersed around its mean (ATENT) than ATE(x) and ATET(x). This
implies that, while ATE and ATET are good proxies of the overall effect of the
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policy, the same cannot be maintained for ATENT. The larger tails in the distribu-
tion of ATENT(x) imply that untreated units are more diversified with regard to the
program effect. This questions the use of the mean for very dispersed and/or
asymmetric distributions of the effects. In this sense, Fig. 1.5 shows an example
in which ATE(x) presents a very strong asymmetry (i.e., very long right tail).

It is immediate to see that the value of ATE is in this case poorly representative
of the overall ATE(x) distribution, as indicated by the much lower value of the
median of ATE(x). In such a case, relying only on the mean of ATE(x)—, i.e.,
ATE—to draw conclusions about policy effectiveness may be seriously misleading,
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as around 80 % of the population receives an idiosyncratic ATE(x) lower than ATE.
In this sense, the knowledge of ATE(x), ATET(x), and ATENT(x) is an essential
ingredient for drawing more accurate conclusions about the actual effect of the
evaluated program.

Given these premises, the aim of the econometrician involved in program
evaluation is that of recovering previous parameters from observational data, that
is, from an i.i.d. sample of observed variables for each individual i of this type:

{Yl',D,',X,'} with i = l, .. .,N

Observe that, according to this specification, we exclude the possibility that the
treatment of one unit affects the outcome of another unit. However, assuming that
units are independent might be rather restrictive in many evaluation contexts. In the
literature (Rubin 1978) this occurrence is called SUTVA—or stable unit treatment
value assumption—and we will assume the validity of this hypothesis throughout
this book. Assuming a lack of interaction among individuals might be plausible in
many biomedical experiments, although even in this field there are many cases in
which such “neighborhood” or “proximity” effects may be pervasive and SUTVA
no more plausible. In epidemiology, for instance, when treatments are vaccines for
contagious diseases, it is quite intuitive that one unit treatment can influence the
outcomes of others in their neighborhood. Similarly and a fortiori, in economic
applications such as the support to companies’ research and development (R&D)
activity, it might be hard to believe in the absence of “spillovers” from treated to
untreated units activated by some form of subsidization. This rises relevant ques-
tions regarding the identification and estimation of treatment effects when interfer-
ence between units is plausible.

It is worth stressing, however, that the literature on the estimation of treatment
effects in the presence of interference is still a recent field of statistical and
econometric study, and so far only a few papers have dealt formally with this
relevant topic.’

1.2.1 Identification Under Random Assignment

As said above, the problem in estimating ATE (and thus ATET and ATENT)
resides in the fact that for each observation we observe only one of the two states
(and never both). Nonetheless, if the sample was drawn at random (i.e., under
random assignment), it would be possible to estimate the ATE as the difference
between the sample mean of treated and the sample mean of untreated units, which
is the well-known “Difference-in-means” (DIM) estimator of classical statistics.

5Key references are: Manski (1993, 2013), Rosenbaum (2007), Sobel (2006), Hudgens and
Halloran (2008), Tchetgen-Tchetgen and VanderWeele (2010), Cerulli (2014a).
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Correct estimation is feasible because in the case of random assignment “(Y;; Y)
are independent of D.” This means that the process generating the sample selection
and thus producing D has nothing to do with the realization of the outcome in both
states of the world. We call this the independence assumption (1A) formally stating
that:

(Y1;Yo) LD (1.15)

where the symbol L refers to probabilistic independence. Under randomization,
D is fully exogenous without other specifications. By using the POM of (1.4) and by
taking expectations under IA, we can show that:

E(Y|D =1) —E(Y|D = 0) = E(Y,|D = 1) — E(Y,|D = 0)
= E(Y,) — E(Y,) = ATE (1.16)

implying also that ATE = ATET = ATENT.
Thus, under random assignment, it is possible to apply the DIM estimator to
recover the ATE, being it the sample equivalent of (1.16):

— 1 1 &
DIM = —Y Yi;—— Yo, 1.17
W N -

where N, is the number of treated and N, that of untreated units. It is well known
that under the IA this estimator of ATE is consistent, asymptotically normal and
efficient, and it is also worth noting that, in this case, the knowledge of x is
unnecessary for a correct estimation of this casual effect.

1.2.2 A Bayesian Interpretation of ATE Under
Randomization

In Sect. 1.2, we gave a clear-cut definition of ATE and found that under
randomization:

ATE =E(Y|D = 1) —E(Y|D = 0)

that is equivalent to the group Difference-in-means (DIM) estimator. Since it is well
known that such an estimator can be obtained by an OLS of this type:

Y =u—+ ATE .- D + error

we can easily conclude that:
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Var(Y)
Var(D)

Cov(Y;D)

ATE =
Var(D)

= Corr(Y;D)

showing that ATE =0 if and only if the correlation between Y and D is zero. This
leads to the important conclusion that, under randomization, zero correlation
implies zero causation, and vice versa. Of course, ATE will be identified as long
as Var(D) # 0; indeed, since:

Var(D) = p(D=1)-[1 - p(D = 1)]
we can conclude that, for ATE to be identified, we need:
0<pD=1)<1

Although previous findings give to ATE a clear causal interpretation, it is less clear
which is the relation between ATE and the typical causal reasoning that epidemi-
ological and medical research poses between possible “causes” (treatments) and
observed “effects” (consequences). As known, this is generally embedded into a
Bayesian causal setting that is not apparently linked to the way in which ATE has
been defined, identified, and estimated above. However, ATE and Bayesian cau-
sality do not conflict; on the contrary, ATE can have a clear Bayesian interpretation
(Rubin 1978). In what follows, we briefly account for this.

Suppose there are two events, ¥ and D, and we are interested in the causal effect
of event D on event Y. Assume that both are represented by two dichotomous
variables taking value {O; 1}. For instance, D can be participation to a job training
(attendant vs. non-attendant), and Y subsequent employment status (employed
vs. unemployed), and so forth. The Bayes theorem states that:

S(yip) — PEIPOIY)
p(D)

where p(Y) is the unconditional probability function of Y generally assumed as
prior knowledge of the researcher; p(DIY) is the likelihood of observing the event
D, given the observation of event Y, and is generally estimated on observed data;
p(D), the unconditional probability of D, is assumed to be a scale parameter.

To see the relation between previous formula and ATE, consider the event
{Y=1} and write previous Bayes formula for the events {D =1} and {D =0}
separately:

p(¥ =1D=1)=
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p(Y =1)p(D=0]Y =1)
p(D =0)

p(Y=1D=0)=

By subtracting the two previous expressions, we get:

pY=1ID=1)- p(r =11 =0) = p(y =) | "L PO L)

p(D=1) p(D=0)

However, having Y a Bernoulli distribution, we can rewrite previous formula as:

E(Y|D = 1) —E(Y|D = 1) = E(Y) [P(D =1y=1) pD=0y= 1)}

pD=1) pD=0)

or equivalently:

ATE = E(Y)prior - [p(D =1y=1) pD=0= 1)]

p(D =1) p(D = 0)

likelihood

which provides a link between ATE and usual Bayesian causal inference. Indeed,
we can see that, given the unconditional mean of ¥, ATE is determined by the right-
hand-side (RHS) difference set out in squared brackets. What does this difference
refer to? And, what is its interpretation? The first term of that difference can be
interpreted as the relative likelihood to observe the event {D =1} once the event
{Y =1} has been observed first; as such, it returns a measure of how frequently the
event {D = 1} appears when the event {Y = 1} appears first. For the second term of
the difference, the one referring to {D =0}, the same argument follows. As a
consequence, if the first term is remarkably high compared to the second, it
means that the observation of the event {Y =1} is highly more associated to the
occurrence on the event {D =1} than to the occurrence of the event {D =0};
therefore, it seems more plausible (read “likely”) to consider the effect {Y =1} as
determined by the cause {D = 1} rather than {D = 0}; it means that a positive ATE
should lead to the conclusion that the treatment {D =1} has been the main factor
bringing about the observed outcome.

Finally, the last formula of ATE can also have a typical Bayesian learning
interpretation, as ATE can be seen as an update of the population mean of
Y (derived by some prior distribution of Y), where new information from observa-
tion is brought by the likelihood (i.e., the difference in brackets).
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1.2.3 Consequences of Nonrandom Assignment
and Selection Bias

Policy programs hardly select individuals to treat (and, equivalently, to not treat) at
random. This nonrandomness is inherent to a policy for two distinct reasons: (1) the
self-selection into the program operated by individuals and (2) the selection mech-
anism of the agency managing the program.

Self-selection concerns the choice of individuals to participate to a specific
supporting program. This generally entails a cost-benefit calculus, as applying for
a policy program can be costly to some reasonable extent. For instance, in industrial
incentives aimed at promoting company fixed investments, firms have to bear
opportunity costs, (private) information disclosure of ongoing business projects,
administrative costs needed for making an application, and so forth that should be
compared with the benefits of applying. As this decision is intrinsically “strategic,”
it should not be assumed to be done at random, as firms are “endogenously”
involved into this choice.

As for the program selection mechanism, generally operated by a public agency,
a nonrandom assignment process is even more evident, as agencies generally select
units to support according to some predetermined objectives. These objectives may
have a direct and indirect nature. The former refers to the main target of the policy
(such as, for instance, “reducing the rate of unemployment” in a certain area); the
latter may refer to collateral effects (such as alcohol abuse reduction in that area if
people get hired more easily). For project-funding programs, where units are
selected according to the submission of a proposal (as usual in industrial supporting
programs or in educational programs), individual’s and proposal’s characteristics
drive the selection-into-program, once specific selection criteria are established ex
ante (ex ante evaluation). In order to maximize the effect of the policy, an agency
could apply the principle of “picking-the-winner,” i.e., choosing to support those
units having the highest propensity to perform well; similarly, the agency objective
might be aimed at “aiding-the-poor”—as in the case of supporting economically
depressed areas or poorly educated people. This provides convincing arguments to
state that in socioeconomic programs, the sample of beneficiaries are far from being
randomly selected. On the contrary, they are not expected to be so at all, as they
have to comply at least with agency’s selection criteria that are, by definition, not
randomly established.

When the selection of treated and untreated units is done not randomly,
depending on either individual “observable” or “unobservable” characteristics,
the DIM estimator is no longer a correct estimation for ATE. In this case, in fact,
“(Y1; Yo) are probabilistically dependent on D,” so by using again the POM and the
expectation operator, we obtain:
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E(Y|D = 1) — E(Y|D = 0) = E("1|D = 1) — E(Yo|D = 0)
+ [E(Yo|D = 1) — E(Yo|D = 1)]
— [E(Yo|D = 1) — E(Yo|D = 0)] + ATET  (1.18)

Equation (1.18) states that a selection bias equal to [E(Yy | D=1) —E(Y, | D =0)]
arises using the DIM and it can be also proved that ATE # ATET # ATENT. To see
that, suppose that Y| =pu;+ U, and Yo=puo+ Uy, where y; and pu, are scalars and
E(U,) =E(Up) =0. By subtracting, we have:

Yl—Y():(//ll—ﬂ0)+(U1—UQ>=ATE+(U1—U0) (119)
By taking the expectation of this equation over D = 1, we have:
E(Y, —Yo|D=1) = ATET = ATE+ E(U, — Up|D = 1) (1.20)

where E(U; — UylD = 1) can be thought of as the average “participation gain” for
those who actually participated in the program. Similarly, by taking the expectation
of (1.20) over D =0, we can show that ATE # ATENT, since:

E(Y| — Yo|D = 0) = ATENT = ATE + E(U, — Uy|D = 0) (1.21)

As soon as E(U; — UglD =1) #E(U, — UglD =0), then ATET # ATENT. Only if
Y, were independent of D, that is E(YlD) = E(Y)), the selection bias does disappear
so that ATE = ATET = ATENT. Unfortunately, this event hinges on a too strong
assumption. Observe, furthermore, that the selection bias is unobservable since we
cannot recover E(YylD =1) from observation. This leads to looking for an addi-
tional assumption for estimating ATE, ATET, and ATENT under nonrandom
selection. Before going on, however, we need to distinguish two different forms
of selection: the “observable” and the “unobservable.”

1.3 Selection on Observables and Selection
on Unobservables

On the part of an analyst interested in ex post program evaluation, the factors
affecting the nonrandom assignment of beneficiaries could have an observable or
an unobservable nature.

In the first case, the analyst knows and can observe with precision which are the
factors driving the self-selection of individuals and the selection of the agency. In
this case, the knowledge of x, the structural variables that are supposed to drive the
nonrandom assignment to treatment, are sufficient to identify—as we will see
later—the actual effect of the policy in question once adequately controlled for.

Nevertheless, when other factors driving the nonrandom assignment are impos-
sible or difficult to observe, then the only knowledge of the observable vector x is
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not sufficient to identify the effect of the policy. The nature of the unobservables
can be twofold. On the one hand, there are unobservable elements due to some lack
of information in the available datasets. This is more a problem of data availability
than genuine incapacity of gauging specific phenomena. For convenience, we can
call them contingent unobservables. In project-funding programs, for instance,
researchers might have full access to a great bulk of information on units’ charac-
teristics, while poor data might be available on proposed projects. On the other
hand, there are genuine unobservables that would be fairly impossible to measure,
even in the case of abundant information. Examples of this kind are represented by
factors, such as entrepreneurial innate ability, propensity to bear risks, ethical
attitudes, and so on. This last class of unobservables could be relevant, although
complex and sometimes hard to translate into feasible indicators.

These two different situations are known in the literature as the case of “selec-
tion on observable” and “selection on unobservables,” respectively: they ask for
different methodologies to identify the effect of a policy program, and the greatest
effort of past and current econometric literature has been that of dealing with these
two situations and provide suitable solutions for both cases.

1.3.1 Selection on Observables (or Overt Bias)
and Conditional Independence Assumption

Under selection on observables, the knowledge of x, the factors driving the
nonrandom assignment, may be sufficient to identify the causal parameters ATEs,
even in case of nonrandom assignment. Of course, since the missing observation
problem still holds, we need to rely on an assumption (or hypothesis) able to
overcome that problem. Rosenbaum and Rubin (1983) introduced the so-called
conditional independence assumption (CIA), stating that “conditional on the
knowledge of x (sometimes called pretreatment covariates) Y| and Y are probabi-
listically independent of D.” Formally:

(Y]§Y0)J.D|X (122)

This assumption means that once the knowledge of the factors affecting the sample
selection is taken into account (or controlled for) by the analyst, then the condition
of randomization is restored. This assumption is too strong when we are interested,
as we are, in average effects, so it is usual to rely on a weaker assumption, the
so-called conditional mean independence (CMI), stating that:

E(Y1|x.D) = E(Y,|x) (1.23)
E(Y()|X,D) = E(Y()‘X) (124)
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Assumption (1.23) and (1.24) restricts the independence only over the mean. The
CMI is the basis for (consistent) estimation of ATE, ATET, and ATENT by both
parametric and nonparametric methods. Showing how these parameters are identi-
fied under CMI is straightforward. By considering the POM in (1.4), and taking the
average of this conditional on (x, D), we get:

E(Y[x,D) = E(Yo|x, D) + D[E(Y1|x, D) — E(Y,|x,D)]
— E(Yo[x) + D[E(Y1|x) — E(¥olx)] (1.25)

We can express (1.25) both for D =1 and D =0 as follows:

ifD =1:E(Y|x,D = 1) = E(Y,|x) (1.26)
ifD =0:E(Y[x,D = 0) = E(Yo|x) (1.27)

By subtracting (1.26) and (1.27) we obtain:
E(Y|x,D =1) —E(Y|x,D = 0) = E(Y;|x) — E(Yo|x) = ATE(x) (1.28)
that, once rewritten, shows that:
ATE(x) =E(Y|x,D = 1) —E(Y|x,D = 0) (1.29)
where the RHS consists of all “observable quantities,” meaning that ATE(x) is

correctly identified and no bias emerges. For the sake of simplicity, let’s then
define:

mi(x) = E(Y|x,D = 1) (1.30)
mo(x) = E(Y|x,D = 0) (1.31)
so that:
ATE(x) = my(x) — mo(x) = m(x) (1.32)
From (1.12) we have:
ATE = E,{ATE(x)} = Ex{m(x)} (1.33)

implying that an estimation of ATE can be obtained by the “sample equivalent” of
(1.33):

PO P A
ATE :N;m(xf) (1.34)
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provided that a consistent estimator of m(x), indicated by 7i (x) in (1.34), having
known asymptotic variance and distribution, is available. A similar procedure can
be used to obtain the estimation of ATET and ATENT. Indeed, since:

ATET = E,{ATE(x)|D = 1} (1.35)

we get, by relying again on the sample equivalent:

ATET :% iDi-ﬁ(xi)] (1.36)
i=1
; j
Similarly, as:
ATENT = E,{ATE(x)|D = 0} (1.37)
we also obtain:
ATENT = — 1 > (1-D)- A(xi)] (1.38)
i=1

showing that both the estimations of ATET and ATENT can be recovered once a
consistent estimator of m(x) is available.

1.3.2 Selection on Unobservables (or Hidden Bias)

When the selection-into-program is governed not only by observable-to-analyst
factors but also by unobservable-to-analyst variables (either contingent or genuine)
correlated with the potential outcomes, then the CI (or CMI) assumption is not
sufficient to identify program average effects. Indeed, in this case, what happens is
that:

E(Y1[x,D) #E(Y1[x) (1.39)
E(Yo|x,D) # E(Yolx) (1.40)

and an equivalent bias emerges as in (1.18) although, this time, conditional on x:
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w

Fig. 1.6 Path diagram of the causal relation between D and Y in case of unobservable selection

E(Y|x,D = 1) — E(Y|x,D = 0) = E(Y,|x,D = 1) — E(Yo[x,D = 0)
+ [E(Yo[x,D = 1) —E(Yo[x,D = 1)]
= [E(Yo[x,D = 1) — E(Yo[x,D = 0)]
+ ATET(x) (1.41)

Equation (1.41) illustrates that even in the subset of units identified by x, the DIM
produces a biased estimation of the causal effect of D on Y that cannot be retrieved
observationally as the quantity E(Y, | X, D = 1) is unobservable.

Figure 1.6 shows a path diagram offering an intuition of why the causal effect is
not identified when the selection depends on unobservables that affect also the
target variable.

Suppose that D, the selection (or treatment) variable, is affected by two factors,
one observable (x) and one unobservable (a). Suppose that @ determines not only
D but also the outcome Y in a direct way. In such a situation, we cannot produce
autonomous and independent modification of D without moving contemporane-
ously Y. For instance, suppose that a change in D—originated by a one unit change
in a—produces a change in Y of 20. One cannot conclude that the effect of D on Y is
20, as it might be the case that only 5 out of 20 is due to the actual effect of D on Y,
while the remaining 15 is due to the effect of a on Y. Since this latter effect is
unobservable, we do not have enough information for a correct conclusion about
the causal link between D and Y. This effect is thus not identifiable. To correctly
identify the direct effect of D on Y, more structural information needs to be added.
As we will see later in Chap. 3, this requires either further distributional hypotheses
(as in the Heckman Selection model) or the knowledge of at least one instrumental
variable for applying Instrumental-variables (IV) estimation.

1.3.3 The Overlap Assumption

Either in the case of selection on observables or selection on unobservables, the
identification of ATEs requires a second fundamental assumption besides CMI, i.e.,
the so-called overlap assumption. To show this, we first need to define a key notion
of the econometrics of program evaluation, the propensity-score, defined as the
“probability to get treated, given the knowledge of x,” that is:
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p(D = 1|x) = pro pensity—score (1.42)

Given this definition, the overlap assumption states that, for each unit 7, it must
happen that:

0< pDi=1]x) <1 (1.43)

i.e., units characterized by a set of attributes x have to belong both to the set of
treated and to the set of untreated units. For instance, if for x = x, the propensity-
score assumes zero value, it means that there are no units in the treated group
having that specific value of x, and this entails that ATEs cannot be calculated (i.e.,
identified). To better understand how overlap may prevent ATEs identification,
consider just eight units and a binary variable x taking value 1 or 0. Table 1.1 shows
a simple but instructive example.

Here, we have just two units with x =0 (unit 1 and 2), both in the untreated group
(D =0), and no units in the treated group having such a value of x. In a situation like
this, p(D =11 x=0) =0 and ATE cannot be identified. Indeed, we have seen above
that ATE can be defined as:

ATE = E,{ATE(x)}
=px=1)-ATE(x =1)+ p(x =0) - ATE(x = 0) (1.44)

where according to Table 1.1, p(x=1)=6/8 and p(x=0)=2/8. Nevertheless,
while when x = 1 ATE can be identified (both treated and untreated present in
fact this kind of attribute) so that:

ATE(x=1)=[(10+20+80+70)/4] — [(4+6)/2] =45 -5 =40 (1.45)

the same cannot be done for ATE(x =0), as:

ATE(x=0) = [?] = [(5+8)/2] =? => ATE =7 (1.46)

Table 1.1 An example of unfeasible identification of ATE when the overlap assumption fails

Treatment (D) Covariate (x) Outcome (Y)
1 0 0 5
2 0 0 8
3 0 1 6
4 0 1 4
5 1 1 10
6 1 1 20
7 1 1 80
8 1 1 70
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so that we are only able to identify ATE in the subpopulation of units having x = 1.
From a policy assessment perspective, this is a limitation, as relying only on the
effect in a subgroup can be insufficient for understanding the effect of a given
program. Nevertheless, if we restrict our attention to the set of untreated (D = 0), we
can properly identify at least ATENT since:

ATENT = (6 +4)/2——(5+8)/2 = —15 (1.47)

while ATET—for the same reason of ATE—is not identifiable. Thus, as a general
rule, the identification of ATET just requires that p(D=1 | x) <1 and that of
ATENT that p(D =1 1x) >0 (or, equivalently, p(D =0 | x) < 1 ). In other words,
we can conclude that in order to identify all ATEs, each cell built by crossing the
values taken by the various x—provided that they have finite discrete support—
must have both treated and untreated units.

In applications, as a large set of covariates are typically used and many of them
take on a continuous support, finding units where p(D; = 1Ix;) is exactly equal to one
or exactly equal to zero is unlikely, and this helps considerably the identification of
ATEs. However, weak overlap—as in situations where some specific values of
x appear mostly either in the treated or in the untreated group but not in both, has
some (intuitive) consequences in the estimation precision of ATEs. As it will be
more clear in Chap. 2, weak overlap entails comparing outcome of individuals
belonging to opposite groups having very different relative frequency, thus produc-
ing a less reliable estimation of their outcome differences. Statistically, it turns to
produce estimates with larger variances independently of the method employed—
although some methods might be more sensitive to weak overlap than others
(Imbens 2004, pp. 23-24). Some tests for assessing the degree of overlap have
been proposed in the literature and will be discussed in Chap. 2 along with
sensitivity tests for assessing the reliability of conditional (mean) independence.

1.4 Characterizing Selection Bias

From basic statistics, we know that the DIM estimator of (1.17) is equal to the
coefficient a obtained by an OLS regression of this simple univariate linear model:

Y=u+a-D+u (1.48)

Indeed, according to this equation we have, under randomization and for the two
regimes separately (treated and untreated):

EYD=1)=p+a (1.49)
E(Y|D =0)=u (1.50)
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so that:
a=E{Y|D=1)—-E(Y|D=0)=DIM (1.51)

Assume now that the selection-into-treatment was driven by a factor x. It entails
that the outcome is also a function of x:

Y=p,+a,D+ px+u, (1.52)
or equivalently:
Y =y, +a.D +u, (1.53)

with Y* =Y — x. Since the regression is of the same kind of (1.48), it is quite clear
that:

a,=E(Y'ID=1)—E(Y'|D=0) (1.54)

which leads to:
a,={EY|D=1)—EY|D=0)} —p{Ex|[D=1) —E(x|D=0)} (1.55)

or equivalently:
a, = DIM — BIAS (1.56)

where DIM=a={E(Y ID=1)—EY ID=0)} and BIAS={E(x ID=1) —E(x |
D =0)}. Equation (1.56) shows that the presence of a selection factor produces a
different result for the effect of D on Y compared to the random assignment case,
thus modifying the magnitude of the effect. This bias is exactly the difference
between the two effects:

BIAS = a — a, (1.57)

If the analyst erroneously assumes randomization in cases where this is not present,
a bias (different from zero) expressed as in (1.57) may arise. Algebraically, this bias
is equal to:

BIAS = S{E(x|D = 1) — E(x|D = 0)} (1.58)

It is easy to see that the bias in (1.58) increases either as soon as: (1) g is different
from zero, and (2) the average value of x in the treated and untreated group is
different. The first cause of bias variation depends on the degree of dependence of
the outcome on factor x; the second cause of bias variation depends on how
“balanced” are the two groups in terms of the factor x. If the two groups are



26 1 An Introduction to the Econometrics of Program Evaluation

severely unbalanced in terms of x and the analyst does not control for this, as it may
happen if we estimate the effect of the policy by using (1.51) instead of (1.55), then
we can obtain a misleading result. An example can help understand this line of
reasoning.

Suppose two groups of people, group 1 and group 0, are to be used as treated and
control groups, respectively, in the evaluation of a given training program. Suppose
that, because of the underlying selection process, group 1 is made of young people
(let’s say, people with an average age of 20), whereas group 1 is made of older
people (with an average age of 60). Furthermore, suppose that we are interested in
evaluating the effect of this training program on individuals’ comprehension
capacity of a complex text, measured by scores associated with a final exam. We
might find that group 1 is highly performing with, let’s say, an average score of
70, and group O is poorly performing with an average of 20. The simple groups’
DIM, equal to 50 in this case, would suggest that the training program was effective
in fostering people’s comprehension capabilities. Nevertheless, this result is mis-
leading as the two groups are far from being balanced in terms of age. In fact, if age
has a nonnegligible impact on comprehension, as the common sense would suggest,
a selection bias of the kind visible in (1.55) is present. As an acceptable statement,
suppose that comprehension is significantly and negatively related to age, so that
is negative and equal to, let’s say, —2. In this case we have that:

a, = {E(Y|D=1)~E(D =0)} = p _{E(x|D=1)

70 20 -2 60
—E(D =0)} = 50— (—2) -40 = —30 (1.59)
———

20

showing that the “actual” effect of the policy—once groups are balanced over
age—was even negative. In this case, in fact, the BIAS (—80) outweighs the
value of DIM (50), thus leading to a final negative value of a, (—30).

It is now quite clear that randomness is the way in which nature balances
samples. On the contrary, when some nonrandomness is at work, sample unbal-
ances can be pervasive and evaluation trickier. It is also more evident at this stage
that the knowledge of the unbalance and of the strength of the predicting power of
the x-factors on Y are key to restore unbiased results. But what happens when x is
not observable? The next chapters will provide a comprehensive exposition of
econometric tools to deal with all of these possible cases.
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1.4.1 Decomposing Selection Bias

In previous sections, we have been able to show what the selection bias is equal to
in a nonrandomized setting. However, a more in-depth analysis of the form
assumed by the selection bias can highlight some further interesting aspects. In
(1.18) we have seen that:

DIM = ATET + B, (1.60)

where B; =[E(Yy | D =1) — E(Yy | D =0)] is the selection bias. Nevertheless, it can
also be easily proved that:

DIM = ATENT + B, (1.61)

where B, =[E(Y; | D=1)—E(Y; | D=0)]. In other words, this shows that two
different selection biases exist, one related to ATET (B;) and the other related to
ATENT (B(). By summing (1.60) and (1.61), we obtain:

1 1
DIM = _(ATET + ATENT) + ~(B; + Bo) (1.62)

where B, + By =B is the overall bias. Equation (1.62) sets out that DIM is just the
simple average of ATET and ATET plus the simple average of B; and B,.

A more powerful decomposition of the selection bias has been proposed by
Heckman et al. (1998). They show that the selection bias B; (similar conclusions
can be drawn for Bj) can be decomposed into three sub-biases having interesting
interpretation. More specifically they prove that:

B; = Ba +Bg + B¢ (1.63)

In order to see how to get this result, it is first useful to provide some notation:
(1) define the bias B conditional on x as B(x); (2) define S = {x: fix| D =1) > 0}
and Sox = {x: f(x | D =0) > 0} as the support of x for D =1 and D =0, respectively,
with f(x | D) being the conditional density of x given D; (3) define Sx = S1x N Sox as
the overlap region; and (4) define Yoo = E(Yo|x,D = 0) and
Yo1 = E(Yo|x,D = 1). Given these definitions, we have:
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B, :J Yo1 dF (x,D = 1)—J Yoo dF (x,D = 0)
Six S

0x

Yoo dF (x,D = 0) +J Yo1 dF(x,D = 1)

:J ymdF(X’D:])_J
Slesx SX

Sox—Sx

Ba

y()O dF(X’D = 1) - J yo() dF(X,D = 1)

—J Yoo dF (x,D = 0) + J
Sx Sx

SX

=0
(1.64)

where with {S;x — Sk} and {Sox —Sx} we have indicated the two nonoverlapping
sets. By rearranging the terms of the previous equation, it can be shown that:

Slx SOx

ZJ ymdF(X’W:l)—J Yoo dF (x,w = 0) +
S]fox Slx*Sx

Ba

Yo1 dF (x,w = 1) —J Yoo dF (x,w = 1)

vaoo F(x.w=1) - dF(xw =0)] + .

Sx

BB BC

(1.65)

which proves (1.63). How can we interpret the three different biases B, By, and
B¢?

e Ba: bias due to weak overlap. Such a bias is present as soon as {S;x — Sx} and
{Sox — Sx} are nonempty. This means that there are subsets of x in the treated and
untreated population with no overlap and thus with no possibility of cross-
imputation. In other words, they are individuals that cannot be matched.

+ Bg: bias due to weak balancing. This bias arises when dF (x,D = 1) # dF(x,D
= 0) although the x of the two populations overlaps. As soon as covariates X in
the treated and untreated groups do not come from the same distribution—as it
occurs in randomization—a bias due to this unbalance emerges and it is mea-
sured exactly by Bg.

* Bc: bias due to the presence of selection on unobservables. Such a bias appears
when some differences in outcomes still remain even after controlling for the
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observable confounders included in x. This bias is zero when y,; = ¥, that is,
when E(Yy | x, D =1)=E(Y, | X, D =0), which is the condition implied by CMI.
In other words, B¢ appears when CMI fails so that the selection-into-program
was driven by unobservable confounders as well.

Econometric techniques for program evaluation are able to “cure” just some of
these biases and generally not all at once. For instance, Matching, as we will see, is
rather powerful to reduce the bias terms B, and Bg, but not B¢. IV methods are
generally more suitable to reduce bias B¢ than biases B, and Bg. Regression
methods may be particularly problematic in the case of very weak overlap and
failure of CMI. Further, in empirical applications, many other aspects than only
theoretical biases have to be considered to correctly judge the goodness of a specific
estimation procedure. We will discuss this aspect at length in the next chapters. It
goes without saying that mixing up different methods may be a good strategy to
minimizing biases and thus increasing estimation precision.

1.5 The Rationale for Choosing the Variables
to Control for

In previous sections, we saw that controlling for specific observable variables is a
“must” if one does not want to run the risk of overlooking important characteristics
of individuals that might have been relevant in producing the sample
nonrandomness. Fundamental assumptions such as CMI, for instance, strictly
require covariates X to be controlled for and suitably exploited in the estimation
phase.

Which is however the rationale for choosing the variables to control for? Or, in
other words, is there some conceivable rule to endorse some variables and discard
some others? Answers to these questions are not immediate and need some further
elaboration in terms of the “causal chains” the evaluator assumes to lay behind the
available data. In choosing confounders, in fact, one should have as clear an
understanding as possible of the causal relations linking the variables entering his
model. In other words, this suggests that one relies on a clear-cut “theoretical”
representation of the relation among treatment, potential confounders, and out-
comes. In this sense, context’s conditions, theoretical background, past evidence,
and even personal beliefs may play a fundamental role in selecting variables to
control for.

Lee (2005, pp. 43—49) provided an excellent guideline for establishing how one
can wisely choose confounders. In what follows, we will draw heavily on Lee’s
account, although a bit different organization of his arguments will be presented.

As said, the choice to include or exclude a given covariate x does depend on the
specific causal links assumed among x (the potential confounder), D (the binary
treatment), and Y (the outcome). Figure 1.7 reports six possible cases that, at least in
principle, should account for the majority of real situations. In what follows, we
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Case 1 Case 2
X D X D
Y Y
Case 3 Case 4
D Y
D—Y X
X Xpost
Case 5 Case 6
D
D—x,,—7Y
X

post

Fig. 1.7 Path diagrams representing causal links among x (the potential confounder), D (the
binary treatment), and Y (the outcome)

discuss all these situations, thus suggesting how to deal with x in each of these
cases. Observe, for the sake of clarity, that an arrow between A and B means that “A
affects (or causes) B.”

Case 1 In this pivotal case, x behaves as a pure pretreatment variable. Indeed,
x determines D that in turn determines Y. No relation between x and Y is assumed.
We show that, in this case, x does not need to be included as a confounder. We first
set out a formal explanation and then a more intuitive one.

Translated into equations, Case 1 can be represented by a system of two
equations, the selection equation (assumed to be linear for simplicity) and the
outcome equation, taking on this form:

D=a +a, -x+u (1.66)
Y=b;+b,-D+v (1.67)

Throughout this section, we assume that CMI holds, i.e., # L v | x. Since we are
working under CMI, we know that:

ATE = E {E(Y

x,D =1)—E(Y|x,D = 1)} (1.68)

This means that, using the previous Y-equation:
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E(Y|x,D = 1) =E(Y|D = 1) = b, +b, (1.69)
E(Y|x,D = 0) = E(Y|D = 0) = b, (1.70)

which results in ATE =b,,. Hence, either if the outcome is balanced or not over x,
this has no effect on the estimation of ATE. Therefore, conditioning on x is not
necessary in this case. The reason is quite clear: x is relevant in explaining D but
with no predictive power on Y; as a consequence, x has no effect on Y. In other
words, variables affecting only the selection without having an impact on the
outcome should be excluded from the analysis, as their presence does not modify
the sign and magnitude of ATE.

Case 2 In this second case, there is a direct effect of x on Y, as well as an effect of
xon D as above. The corresponding structural model is the following one (CMI still
holds):

D=a +a, -x+u (1.71)
Y=b+b,-D+b,-x+v (1.72)

In this case x appears in the Y-equation so that:

E(Y|D=1) =EfE(Y|x,D=1)} =b, + b, +b,-ExD=1)  (1.73)
E(Y|D = 0) = E{E(Y|x,D = 0)} = b; +b, - E(x|D = 0) (1.74)

resulting in:
ATE =b, + b, - [E(x|D = 1) — E(x|D = 0)] (1.75)

Without balancing the treated and untreated group on x we would get that E(x,
D =1)#E(x, D =0), thus conditioning (that is equivalent to “balancing”) on x is
required. Otherwise, a bias equal to b, - [E(x, D = 1) — E(x, D = 0)] would appear in
the estimation of ATE.

Case 3 1In this third case, we assume that D affects Y, x affects Y too, but there is no
relation between D and x. For this specific casual chain, we show that there is no
difference in controlling or not for x (thus becoming an “optional” choice). In fact,
the corresponding structural model becomes (again under CMI):

D=a +u (1.76)
Y=b;+b,-D+b,-x+v (1.77)

In this case, x appears in the Y-equation and thus:
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E(Y|D=1)=E{EY|x,D=1)} =b; +b, +b,-E(x|D =1)
=b; +b,+b,-E(x) (1.78)
E(Y|D =0) = E{E(Y|x,D =0)} =b; + b, - E(x|D = 0)
=b; +b, +b,-E(x) (1.79)

where we exploited E(x | D) =E(x), as x and D are assumed to have no relation in
this causal chain. This immediately leads to this result:

ATE = b, (1.80)

that is the same as what we can get without conditioning on x.

As a conclusion, Cases 1, 2, and 3 lead to the following result: x must be
controlled for only if x affects at the same time both D and Y. If x affects either
only the selection equation or only the outcome equation, then controlling for x is
not strictly necessary. Nevertheless, adding additional covariates in the Y-equation
could result in a more precise estimation of ATEs.

Case 4 This case refers to a situation similar to Case 2, but this time we consider
also that: (1) a pretreatment x may have an effect on its posttreatment status (self-
effect), and (2) the outcome Y can also affect the posttreatment status of x. In such a
situation, while it is clearly needed to control for the pretreatment x (as in Case 2), it
is not necessary to control for its posttreatment status. This is because x4 1S, in this
case, just the result of the whole causal chain not explaining any other variable. In
this sense, unbalancing on X, is harmless.

Case 5 In this case the treatment D affects x that in turn affects D. As such, x takes
the form of a posttreatment variable working as a mediating factor (i.e., a factor
causally laying between the treatment D and the outcome Y). The corresponding
structural system of such a causal chain is:

x=ci+c, -D+u, (1.81)

Y=b+b,-D+v (1.82)

In this case, conditioning on x is not needed as x does not appear in the Y-
equation. Thus, one does not need to control for this variable.

Case 6 1In this case, the treatment D affects both x and Y that in turn is affected also
by x. Again, x takes the form of a posttreatment variable working as a mediator. The
corresponding structural system is:

x=cy+c, -D+u, (1.83)
Y=b;+b,-D+b,-x+v (1.84)

In this case, by simple substitution, we obtain:
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Y=b+b,-D+b,-(ci+cyp-D+u)+v
=(by+by-c;)+(by+bi-c,)-D+n (1.85)

with # = (b, ‘u,+v) and where the Y-equation is the reduced-form of the previous
system of two equations. Within this framework, we can define three types of effect
of DonY:

» Direct effect: E(Y|D = 1,x) — E(Y|D = 0,x) = b,

* Indirect effect: [E(x|D =1) —E(x|D =0)- [E(Y|D, x=1) —E(Y|D, x = 0)]
=Cy - bx

e Total effect: E(YID=1)—E(Y|D=1)=b, +b,-c,

The total effect (b,, + b, - c,,) is the sum of the direct (b,,) and indirect effect (b, -
¢,,) and can be obtained—under CMI—by an OLS regression of the reduced form
of the outcome Y. Instead, the direct effect can be obtained by an OLS of (1.84),
where both b,, and b, are consistently estimated under CMI.

Therefore, it is quite clear that: if the analyst is interested in estimating the total
effect of D on Y, then x should not need to be controlled for. Since we are interested
in the direct effect of D on Y (i.e., the effect of D on Y “net of the effect of D on x”),
then controlling for x is mandatory.

In conclusion, choosing whether to control or not for a given observable variable
is not as straightforward as it might appear at first glance. Previous examples,
although not exhaustive of all possible situations, might however be a proper
point of departure for a wiser decision.

1.6 Partial Identification of ATEs: The Bounding
Approach

In Sect. 1.2, we have shown that ATEs cannot be identified because of the missing
observation problem of the counterfactual status. In this sense, without introducing
additional assumptions—such as the CIA—a point estimation of ATEs would be
impossible. Furthermore, imposing assumptions can be sometimes costly, not to say
misleading, when such assumptions cannot be tested, as in the case of the CIA.

An assumption-free approach for estimating ATEs, on the contrary, would be
more attractive, but it poses further limitations that we will discuss in what follows.
Manski et al. (1992) have proposed a simple model for estimating ATEs under
partial identification, i.e., without using too much a priori information or assump-
tions for identifying the causal relation of interest. In what follows, we will
reproduce their model.

First, suppose we have a binary target variable Y, a binary treatment D, and a
vector of confounders x. In such a case, being Y binomial, we have:
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ATE(x) = E(Y1 — Yo[x) = p(Y1 = 1|x) — p(Yo = 1|x) (1.86)

With no other information or assumptions available, the only conclusion we can
reach about the “true” value of ATE(X) is that it varies between —1 and +1, thus
having an interval width equal to 2, as given by the difference between the upper
and lower bound of such interval.

However, we can exploit some other information and restrict this width. In
particular, by applying LIE, we can show that:

ATE(x) = Ep{ATE(x)|D} = Ep{ATE(x,D)} (1.87)

This implies that, as for p(Y; = 1Ix) we have:

p(Y1=1x) = p(Y1 = 1x,D =0)- p(D =0[x) + p(Y1 = l|x,D = 1)
L p(D = 1]x) (1.88)

where it is clear that the only unidentifiable quantity of the RHS of the previous
equation is p(Y, = 1Ix, D = 0), while the others are identifiable, as no counterfactual
is implicated. Since, by definition:

0< p(Yy=1x,D=0) <1 (1.89)

The substitution of these bounds into (1.88) yields:

p(Yi=1x,D=1)-p(D = 1]x) < p(¥; = 1]x)
< p(D=0[x)+ p(Y1 =1|x,D=1)
S p(D = 1[x) (1.90)

where the width of this interval is p(D =0 Ix). Analogously, for p(Yy = 1Ix) we
follow a similar procedure thus getting:

p(Yo=1x,D =0)- p(D=0[x) < p(¥o = 1[x)
< p(D =1[x) + p(Yo = 1|x,D = 0)
- p(D = 0[x) (1.91)

whose width is p(D =1 | x). By considering these bounds for ATE(x) =p(Y; =1 |
x) — p(Yo=11x) using (1.90) and (1.91), we finally have®:

S Observe that the lower bound of ATE(x) is equal to the lower bound of p(Y; =1 | x) minus the
upper bound of p(Yy=1 | x), while the upper bound of ATE(x) is equal to the upper bound of
p(Y1=11x) minus the lower bound of p(Yy=1 | x).
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Late < p(Y1 = 1|x) — p(Yo = 1]x) < Uate (1.92)
where:
Lare =C— p(D=1|x) and Ut =C+ p(D =0|x) (1.93)
with:

C=pY=1x,D=1)-p(D=1x) = p(Yo=1[x,D =0)
- p(D = 0[x) (1.94)

It is immediate to see that, in such a case, the width of the interval for ATE(x) is
equal to:

p(D =0|x) + p(D = 1]x) = 1 (1.95)

which is half the width of the ATE(x) interval obtained above. Thus, as maintained
by Manski et al.: “using sample data alone, we can cut in half the range of
uncertainty regarding the treatment effect. Tighter bounds can be obtained only if
prior information is available” (1992, p. 30).

The information contained in the sample, therefore, allows for estimating the
quantities entering the lower and upper bounds. In particular, suppose that Y is
“obtaining or not obtaining a degree” and that D =1 “if at least one of the parents
holds a degree.” In such a case, using a sample {Y;, D;, x;}, what is needed to
estimate the bounds is:

e p(D=1Ix): propensity to have a graduated parent, estimated using all
N observations

e p(Y;=1Ix, D=1)=p(Y =1Ix, D=1): probability to get a degree, estimated
using only observations for treated units (N 1)7

e p(Yo=1Ix, D=0)=p(Y =1Ix, D=0): probability to get a degree, estimated
using only observations for untreated units (V)

Finally, both parametric and nonparametric estimation of previous probabilities
can be performed, and confidence intervals for Lotg and Uarg are possibly
obtained, for instance, via bootstrap.

Introducing further assumptions in the data generating process can allow to
reduce the range of variation of ATE(x) further. A possible way can be that of
assuming the so-called monotonicity entailing the following condition:

0<p(Yy =1[x,D=0) < p(Y1 =1[x,D=1) (1.96)

In the previous example, this condition assumes that, ceteris paribus, the probabil-
ity to receive a degree for a given individual is higher when at least one of the

7 Observe that an estimation of p(D =0 | x) is obtained as [l — p (D = 1|x)].
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parents owns a degree. This is a non-testable assumption as p(Y; = 11x, D =0) is
clearly unobservable. However, in many contexts, monotonicity may be a reason-
able assumption. We will come back to this assumption in Chap. 4 when discussing
identification in the context of the local average treatment effect (LATE).

It is easy to show that by substituting the monotonicity bounds in place of 0 <p
(Y, =1Ix,D=0) < 1into (1.88), we can find the following new bounds for p(Y; = 1I
X):

pYi=1x,D=1)-pD=1x) < p(Y;=1x) < pY1 =1x,D=1) (1.97)
whose width is:
p(D = 0x)- p(Y, =1|x,D=1) (1.98)

proving to be smaller than p(D =0 | x), i.e., the width of the baseline case. As for
p(Yy=11x), we can assume an analogous monotonicity assumption:

pYo=1x,D=0)< p(Yo=1x,D=1) <1 (1.99)
leading, similarly, to a new bounding relation for p(Yy =1 | x), that is:

p(Yo=1[x,D =0) < p(Yo = 1[x)
< p(D=1x)+ p(Yo=1]x,D =0)- p(D =0[x) (1.100)

Given these results, we can get the new bounds for ATE(x)=p(Y,;=1Ix)—p
Yo=1Ix):

p(Y1 = 1D = 1)- p(D = 1]x) = p(D = 1]x) = p(¥o = 1|x.D = 0)

- p(D = 0[x)
< p(Y1 = 1]x) — p(Yo = 1]x)
< p(Yi =1x,D =1) — p(Yo = 1|x,D = 0) (1.101)

In such a case (we can call the “monotonicity case”), the width of the range of ATE(x)
is smaller than in the baseline case. In particular, while the lower bound is the same, the
upper bound is smaller. To show this, call p(Y; =1Ix,D=1)=A, p(Yo=1Ix,D =0) =
B, p(Yo = 11x) = py, and p(Y; = 11x) = p,. The upper bound in the monotonicity case is
Umon = (A — B). Consider the upper bound of the baseline model:

Uate =po+A-pi—B-py=py+A — A-py—B-py+(B~—B)
=(A=B)+(pp—A-py) +(B—=B-py) > (A—B)=Uyon (1.102)

The last inequality follows from the fact that {py, A, B} are probabilities so that:
(po—A - po)>0and (B—B - pg) >0.
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Another assumption sometimes used to tighten the bounds of ATE(x) is based on
exclusion restrictions, occurring when one assumes that an exogenous variable
z affects D, while not affecting Y directly (but only through D). See Lee (2005,
pp- 163-167) for a discussion.

In conclusion, we can state that as soon as we increase the number of assump-
tions to be brought into a treatment model, the level of uncertainty related to the
effects’ estimation drops. Some assumptions are however generally non-testable
and this may cast doubts on the reliability of results thus obtained. This is a risk we
can run anytime we wish to achieve point identification of a treatment effect to
avoid uncertainty in results. On the contrary, the bounding approach responds to the
need of sensibly reducing the number of relied upon assumptions. But in doing so,
this approach implies interval rather than point estimates of the effects that might be
poorly informative for a policymaker to assess the actual effectiveness of a policy
program. Nevertheless, this seems to deal more with the ontology of evaluation
exercises than only with technical considerations.

In line with the mainstream literature, however, this book will focus on the more
traditional non-bounding approach to treatment effect estimation. This section,
however, has shown the limitation of such a choice; as such, it should be taken as
a cautionary argument when obtaining and communicating policy evaluation
results. More on bounding approach and partial identification can be found in
Manski (2003).

1.7 A Guiding Taxonomy of the Econometric Methods
for Program Evaluation

In order to reliably measure policy effects, the econometrics of program evaluation
has to cope with a very complex system of interrelated phenomena: missing
observation, observable and unobservable selection, endogeneity, data availability,
and so forth. Two main philosophies have been followed to address this complexity.
The first and more extensively adopted approach, developed especially in the last
few years, seems to prefer a more empirical-based point of view, where not a great
deal of theoretical speculation is brought into the models, except for those specific
factors accounting for the selection criteria of supporting programs. Examples of
this kind are econometric exercises such as those based on the Control-function
regression (CFR), a specific case of the Regression-adjustment (RA), and Matching
(MATCH) estimators. Conversely, the second stream of research has tried to make
the theoretical background behind the data more explicit by building proper “quasi-
structural models,” where causal relations are more clearly enlightened (this is the
case of, for instance, IV and Selection-models (SM)).

The boundary between these two viewpoints is somewhat less sharp than it
might appear at first glance. Nevertheless, for the sake of clarity, Table 1.2—
drawing upon a readjustment of that provided by Cerulli (2010)—provides a
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tentative taxonomy of (binary) treatment models for program evaluation, by
distinguishing among the following three analytical dimensions:

Identification assumption: distinguishing between methods suitable to work with
selection on observables and/or selection on unobservables, according to the ana-
lyst’s knowledge of what drives the self-selection of individuals and the selection of
the agency. Only instrumental-variables, Selection-models, and the Difference-in-
differences (DID) estimators are able to cope with unobservable selection.
Regression-adjustment, Matching, as well as Reweighting (REW) can only deal
with selection on observables. The RDD method should deserve a special treatment
because this approach—as we will see in Chap. 4—draws upon a different identi-
fication assumption, based on locally replicating an experimental setting. However,
we have put it into this taxonomy for the sake of comprehensiveness, and because
practical estimation follows the observable selection type for sharp RDD (OLS
approach), and the unobservable selection type for Fuzzy-RDD (IV approach).

Type of specification: distinguishing between models adopting a structural/
analytical approach, where the outcome and the selection-into-program processes
are separately modeled in a system of simultaneous equations, and nonstructural
models where only the outcome equation (the so-called reduced-form) is estimated,
once controlling for specific covariates.

Data structure: models based on a cross-section dataset and models exploiting a
longitudinal or repeated cross-section structure. As evident in the table, only the
DID estimator exploits in a substantial way the availability of longitudinal or
repeated cross-section data. In applications, the large majority of works uses
cross-section datasets, while fewer studies make use of longitudinal data. Longitu-
dinal data are however suitable for before/after policy comparison and for long-run
impact assessment.

Although approximate, this taxonomy seems useful for positioning the program
evaluation methods we will describe and analyze in detail in the next chapters. The
previous taxonomy also offers the opportunity to provide an assessment of the
comparative advantages and drawbacks of each econometric method, as illustrated
in Table 1.3. We do not discuss the content of this table now, as the reader will find
it more useful and understandable after reading the next chapters.

It is however relevant to notice that this table also shows that we cannot identify
the “best” method to apply in absolute terms, as each approach presents compar-
ative advantages and drawbacks which are dependent on the specific context of
analysis. By and large, at least three elements seem necessary to consider before
choosing a specific econometric approach for an ex post program evaluation:

» Program institutional setup and operation
e Subjects’ behavior and interaction
e Data availability and data consistency

Paying attention to these aspects is an important precondition for a program
evaluation to be econometrically sound. They refer to the qualitative dimension of
the analysis, generally based on pilot surveys, interviews to the policy actors
involved in the program, and on the collection of program-related documentation.
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Table 1.3 An assessment of the comparative advantages and drawbacks of econometric methods
for program evaluation

Method Advantages Drawbacks

Regression- Suitable for observable selection | Not suitable for unobservable selection

adjustment Not based on distributional Based on a parametric estimation

(Control-function | hypotheses

regression)

Matching Suitable for observable selection | Not suitable for unobservable selection
Not based on distributional Sensitive to sparseness (weak overlap)
hypotheses Sensitive to confounders’ unbalancing
Based on a nonparametric
estimation

Reweighting Suitable for observable selection | Not suitable for unobservable selection

Not based on distributional
hypotheses
Based on a semi-parametric
estimation

Sensitive to propensity-score specifi-
cation and/or weighting schemes

Selection-model

Suitable for both observable and
unobservable selection

Based on distributional hypotheses
Based on a parametric estimation

Instrumental-
variables

Suitable for both observable and
unobservable selection

Not based on distributional
hypotheses

Availability of instrumental variables
Based on a parametric estimation

Regression-dis-
continuity-design

Reproducing locally a natural
experiment (randomization)
No distributional hypothesis
Extendable to nonparametric
techniques

Availability of a “forcing” variable
Choice of the cutoff and of an appro-
priate bandwidth

Difference-in-
differences

Suitable for both observable and
unobservable selection

Not based on distributional
hypotheses

Specific form of the error term
Availability of a longitudinal dataset
Based on a parametric estimation

Relying on such information is a necessary step as a proper program evaluation
needs qualitative and quantitative analysis to be suitably combined.

1.8 Policy Framework and the Statistical Design
for Counterfactual Evaluation

Before describing and applying the various econometric approaches set out in
Table 1.2, it is worth stressing that a correct ex post program evaluation analysis
first needs to draw upon a rich and qualified set of information. This information
generally takes the form of: (1) suitable indicators, both qualitative and quantita-
tive, and (2) availability of an accurate sample of (treated and untreated) units.
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While indicators are primarily aimed at measuring specific aspects of the decisional
processes characterizing the subjects involved in the policy, an appropriate sample
of units is the basis for implementing a reliable statistical design, since both the set
of beneficiaries (the supported units) as well as that of the counterfactual (approx-
imated by a given set of non-supported units) are to be chosen carefully.

The use of suitable indicators and of an appropriate sample of subjects are the
product of the “framework” characterizing the functioning of the policy considered.
This framework may also suggest what econometric approach might be more suited
for the specific context under scrutiny. In a very simplified way, and by restricting
the analysis to project-funding programs, Fig. 1.8 tries to set out such a framework
showing the actors involved and their role and relation along the policy design. This
logical framework, although general, is an essential basis for steering both the
choice of indicators and the statistical design for the econometric ex post evaluation
exercise (Poti and Cerulli 2011).

In this scheme, we can observe the participation/decision process of two distinct
actors: a public agency (managing the program) and a set of units (undergoing the
program). Their strategies and interactions, along with those of other subjects that
we can roughly identify with the “environment” (whose role, at this stage, is left out
for simplicity), represent the basis for identifying the determinants of the policy
implementation and effect. Let us briefly describe this framework.

no
Unitstze/lzg;rill;ilitv fi Non-eligible units \
\L yes

no

Step 2. N N
Unit self-selection Non-applying units
yes
Step 3.

Agency’s unit /project no Non-supported

selection applying units
( Ex-ante evaluation) k

yes

Counterfactual !

Step 4.
Agency implementation and
control of the program
(In-itinere evaluation)

Step 7.
Using ex-post
evaluation to predict
Sfuture effect l
(Learning)

Step 5.
Units’ behavior

|

Step 6.
Estimation of the policy effect
by a treatment model
( Ex-post evaluation)

Fig. 1.8 Logical framework for an ex post assessment of a project-funding policy program
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It starts from step 1, where each single unit may be distinguished between
eligible and non-eligible for the program considered. If the unit is eligible
(according to some preconditioning factors, stated in the rules accompanying the
program), then it passes to the second step (unit self-selection); otherwise, it
becomes part of the potential counterfactual set, being untreated. In the second
step, the eligible subjects have to decide whether or not to apply for receiving a
given support: it is the process of unit “self-selection” into program. This choice is
generally guided by a specific objective function of the unit, comparing benefits and
costs of applying. Subjects deciding not to apply are then collected within the group
of “non-supported” individuals and potentially used to build the counterfactual set.

Units choosing to apply go to step 3 where the public agency “selects” the
beneficiaries of the program on the basis of a specific “welfare function” whose
arguments should be consistent with the declared objectives of the policy. Even in
this case, the choice might be thought to be driven by a cost-benefit comparison (ex
ante evaluation). Those subjects that are not selected to benefit from the program
become part of the counterfactual set.

Step 4 concerns the factual implementation and control of the policy as operated
by the public agency: after receiving applications and choosing beneficiaries, the
public agency has to decide—unit by unit and/or project by project—the magnitude
of the support, the number of instalments in the provision of potential monetary
assets, etc. and it has to monitor timely the state-of-the-art of supported projects at
specific dates (in itenere evaluation).

Finally, step 5 concerns the actual behavior of the selected subjects. At this step,
given the level and/or quality of treatment, units perform a behavior that might be
guided, also in this case, by comparing costs and returns associated to the conse-
quences of their choices.

Step 6 is the downstream part of the program logical framework, where the
policy impact is assessed by means of a counterfactual (econometric) method. For
estimation purposes, a proper counterfactual set of non-supported units, built along
the policy framework (represented in the round frame of Fig. 1.8) is exploited.

Step 7, finally, concludes the framework by producing a cyclical learning
process. Indeed, by taking stock of past evaluation results, a public agency may
upgrade the ex ante choice of beneficiaries in order to increase the likelihood of
success in future policy rounds. Of course, an agency’s learning process might
encompass various program’s steps, and not only the one concerning the selection
process. Nevertheless, we deem it to be highly related to the exploitation of past
impact evaluation results, an essential mechanism for correcting and/or improving
future policy performance.
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A final but essential ingredient to perform quantitative program evaluation concerns
the availability of specialized software for easily implement evaluation exercises.
In this book, we make use of the statistical and econometric software Stata 13 that
in recent years has seen a significant increase of both built-in and user-written
routines for applying program evaluation methods. Table 1.4 puts forward a list of
these Stata routines for treatment effect estimation. Many of them will be presented
and extensively used in the applications presented in the following chapters.

It is worth mentioning that Stata 13, the last release of Stata, provides a new far-
reaching package, called teffects, for estimating treatment effects for
observational data.

The teffects command can be used to estimate potential-outcome means
(POMs) and average treatment effects (ATEs) using observational data. As shown
in Table 1.5, this suit covers a large set of methods, such as regression adjustment
(RA); inverse-probability weights (IPW); “doubly robust” methods, including
inverse-probability-weighted regression adjustment (IPWRA); augmented
inverse-probability weights (AIPW); Matching on the propensity-score or
nearest-neighbor Matching. Finally, other sub-commands can be used for post-
estimation purposes and for testing results’ reliability (for instance: over lap plots
the estimated densities of the probability of getting each treatment level).

In applying teffects, the outcome models can be continuous, binary, count,
or nonnegative. Binary outcomes can be modeled using logit, probit, or
heteroskedastic probit regression; and count and nonnegative outcomes can be
modeled using Poisson regression. The treatment model can be binary or multino-
mial. Binary treatments can be modeled using logit, probit, or heteroskedastic
probit regression. For multinomial treatments, one can use pair-wise comparisons
and then exploit binary treatment approaches.

Table 1.4 Stata commands for performing econometric program evaluation

regress CFR (or linear RA), linear reweighting, DID (panel data)

ivreg Basic IV, LATE

treatreg Selection-model (HECKIT)

psmatch2? Matching (with nearest neighbor on covariates and on propensity-score)
pscore® Matching (with propensity-score)

nnmtach?® Matching (nearest neighbor on covariates)

rd® RDD (sharp and fuzzy)

ivtreatreg® IV and HECKIT with heterogeneous response to confounders
treatrew” Reweighting on propensity-score

diff? DID (repeated cross-section)

RA regression-adjustment, CFR control-function regression, HECKIT Heckman-type selection-
model, /V instrumental-variables, DID difference-in-differences, RDD regression-discontinuity-
design

“User-written routine downloadable from Stata SSC
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Table 1.5 Stata 13’s sub-commands of the teffects for estimating treatment effects for
observational data

aipw Augmented inverse-probability weighting

ipw Inverse-probability weighting

ipwra Inverse-probability weighted Regression-adjustment
nnmatch Nearest-neighbor Matching

overlap Overlap plots

psmatch Propensity-score Matching

ra Regression-adjustment

Depending on specific applications, this book will make use of either built-in or
user-written commands. Observe that the tef fects command deals mainly with
estimation methods suitable under selection on observables. For methods appropri-
ate for selection on unobservables, we will mainly rely on some user-written
commands.

1.10 A Brief Outline of the Book

This book deals with the econometrics of program evaluation in a binary treatment
context. It is split into four chapters. Chapter 1 provides a detailed introduction and
overview of the main (theoretical and empirical) issues concerning the economet-
rics of program evaluation. It defines and discusses literature milestone concepts
and provides notation for a binary treatment setting. It is greatly recommended to
read it before examining the next chapters, where concepts and notation—herein
presented—are extensively used. As such, this chapter serves as a basic toolbox for
the rest of the book.

Chapter 2 focuses on methods based on selection on observables. Methods such
as Regression-adjustment, Matching, and Reweighting are presented, discussed,
and applied to real datasets using Stata 13. Besides these methods, specific attention
will be devoted also to salient aspects such as results’ sensitivity analysis and
robustness.

Chapter 3 deals with methods based on selection on unobservables. It presents
and examines methods such as: Instrumental-variables (IV), Selection-model (SM),
and Difference-in-differences (DID). Moreover, mixture of approaches and
methods for time-variant binary treatment are also discussed. Applications to real
and simulated datasets are also performed in this chapter using built-in as well as
user-written Stata routines (including some developed by the author).

Chapter 4, finally, describes and examines the Regression-discontinuity-design
approach, both in its sharp and fuzzy forms. Here, a presentation of the local
average treatment effect (LATE) and of its conceptual meaning within a quasi-
natural experiment is also illustrated. An application of such methods using simu-
lated data is then provided and discussed at length.
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2.1 Introduction

This chapter deals with the estimation of average treatment effects (ATEs) under
the assumption of selection on observables. In Sect. 1.3.1, we provided a systematic
account of the meaning and scope of such an assumption in program evaluation
analysis. We argued that working under selection on observables basically means
that all the relevant information about the true nonrandom selection-into-treatment
process, producing the observed sets of treated and untreated observations, is
known to the analyst. Hence, by assumption, we are ruling out any possible
presence of loosely defined unobservables as hidden drivers of the selection
process.

A plethora of econometric methods have been developed so far in the literature
to provide correct inference for causal parameters in such a setting. Here, we
discuss the four most popular approaches: Regression-adjustment (RA), Matching
(MATCH), Reweighting (REW), and the Doubly-robust (DR) estimator. Along this
chapter, the presentation of these methods will follow this order.

Section 2.2 develops the main notation and formulas for estimating ATEs by
Regression-adjustment. We interpret such a method as a generalized approach to
ATEs’ estimation under observable selection and discuss inference for the para-
metric (linear and nonlinear), the semi-parametric, and nonparametric case.

Section 2.3 examines at length the popular Matching estimators. Here, we start
by introducing the main conceptual framework in order to understand the philos-
ophy underlying the implementation of Matching approach. We then distinguish
between covariates and propensity-score Matching, discussing also the implications
of ATEs’ identification assumptions in these cases. We go on to examine the large
sample properties of Matching, focusing on the propensity-score Matching
(PS Matching), probably the most frequently implemented Matching estimator.
Finally, we present some empirical tests for assessing Matching’s quality and
reliability.

Section 2.4 is dedicated to the Reweighting estimators. This class of ATEs’
estimators is a valuable alternative to Regression-adjustment and Matching;
although, in many ways, it is strictly linked to both approaches. Particular attention
is given to inverse-probability weighting estimators and to ATEs’ analytical stan-
dard errors formulas in such a case.

Section 2.5, which concludes the theoretical part of this chapter, presents the
Doubly-robust estimator, a robustness approach combining Reweighting on inverse
probabilities with Regression-adjustment.

Finally, Sects. 2.6-2.8 and subsections offer a number of applications in a
comparative perspective.
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2.2 Regression-Adjustment

This section presents and develops the main conceptual building blocks, notation,
and formulas for estimating ATEs using the Regression-adjustment (RA) approach.
In the course of the discussion, we illustrate how one can interpret such an estimator
as a generalized approach to ATEs’ estimation under observable selection, and
discuss parametric (both linear and nonlinear), semi-parametric, and
nonparametric RA.

2.2.1 Regression-Adjustment as Unifying Approach Under
Observable Selection

In this section, we present the Regression-adjustment (RA) approach for estimating
consistently ATEs and illustrate how it can be seen as a general estimation
procedure under selection on observables. Indeed, RA is suitable only when the
conditional independence assumption (CIA) holds. In order to obtain the form of
this estimator, we start by rewriting explicitly what CIA implies, that is:

(Y1;Yo) L D|x

where (Y;; Yo) are the two potential outcomes, X is a vector of pretreatment
exogenous covariates, D the treatment binary indicator, and the symbol L refers
to probabilistic independence. As stated in Chap. 1, however, in order to identify
ATEs, a less restrictive assumption which only limits independence to the mean is
required. It is known as conditional mean independence (or CMI) and implies that:

E(Y,
E(Yo

x,D) =E(Y1]x)
x,D) = E(Yy|x)

As showed, CMI leads to the following two identification conditions of the
unobservable counterfactual mean potential outcomes:

E(Y,
E(Y,

x,D =1) =E(Y,
x,D =0) =E(Y,

x,D =0) (2.1)
x,D=1) (2.2)

where the right-hand side (RHS) of both previous equations are observable quan-
tities used to “impute” the unobservable quantities in the left-hand side (LHS). We
have also seen that under CMI:
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ATE(x) =E(Y|x,D =1) —E(Y

x,D = O)
that can be interpreted as a conditional DIM estimator. By simply denoting:

my(x) =E(Y

x,D = 1) (2.3)
and

mo(x) = E(Y

x,D = 0) (2.4)
we have that:

ATE(x) = my (x) — mp(x)
This implies that as soon as consistent estimators of m;(Xx) and m(X) are available,

we can estimate causal parameters ATEs through the sample equivalents of previ-
ous formulas:

N
ATE = Il\,z [ 1 (x:) — mo(x;)] (2.5)
. N
ATET = 83 1 (x) — ol 26)
1 N

]70; (1= Di) - [71 (xi) = o (xi)] (2.7)

where the “hat” refers to an estimator of m;(x) and ni(x).

This estimation method is known as Regression-adjustment (RA) and can be
seen as a general estimation approach for ATEs; indeed, other approaches assuming
CMI can be seen as particular types of Regression-adjustment. Both m;(x) and
my(X) can be estimated either parametrically, semi-parametrically, or nonparame-
trically: the choice depends on the assumption made on the form of the potential
outcome, which can be modeled in a parametric as well as nonparametric or semi-
parametric way. Note that the Regression-adjustment approach only uses the
potential outcome means to recover ATEs and does not use the propensity-score. '

Table 2.1 presents a simple example explaining the estimation logic behind
RA. As will become evident, it is mostly based on an imputation logic, where
imputation can be performed in various ways. This example represents a case in

!'We have two different approaches for estimating ATEs under CMI (Imbens 2004): (1) the first
uses some specification and estimation of E(Y, | x) for g=0,1; (2) the second uses some
specification and estimation of E(D | x) =prob(D =1 | x), denoted as the propensity-score. We
start by considering case (1).
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Table 2.1 An example explaining the estimation logic of the Regression-adjustment

Unit D x m =E(Y|D=1;x)  my=E¥|D=0;x)  m;—my ATET ATENT  ATE
1 1 A 25 68 43
2 1 B 65 25 40 s
3 1 C 36 74 -38 o
4 1 D 47 / 12 35
5 0 B 65 25 40
6.3
6 0 D 47 12 35
7 0 D 47 12 35
115
8 0 A 25 68 43
9 0 C 36 74 38
10 0 B 65 25 40

which imputation is based on conditioning over the values of one single variable x,
which is supposed to take on four values: {A, B, C, D}. In the table, the numbers
reported in bold are those imputed according to the value assumed by x in the
sample. For instance, consider m; for unit 5. In the sample, this unit is untreated: for
such a unit, we observe m but we do not observe the counterfactual m;.

Given E(Y, ID=0,x)=E{; ID=1,x)=E{X | D=1, x), using CMI, we can
impute the missing observation m, ;_s=E(Y;;_5 | D;_5=0, x;_ 5 =B) with the
observable quantity E(Y,,_» | D;_,=1, x;_, =B) being equal to the value of m,
for another unit in the treated set having the same x=DB as unit 5, i.e., unit
2. Similarly, the value of my for unit 3 can be imputed using the value of m; of
unit 9, since both have x = C, and so forth.

In this example, once all missing observations are imputed (see the numbers in
bold in Table 2.1), we can calculate the differences (m; — myg,;). The average of
these differences over the treated units returns the ATET, the one over the untreated
units the ATENT; finally, the average over the whole sample provides the value of
ATE. Notice that, by definition, ATE = ATET - (4/10) + ATENT - (6/10).

This example clearly proves that RA imputation works well only if we are able
to “impute” m;(x;) to each individual i belonging to the control group with x =x;
and mg(x;) to each individual i belonging to the treatment group with x =x;.
Therefore, some minimal units’ overlap over x is necessary for imputation to be
achieved (and, thus, for identifying treatment effects).

Generally, however, perfect overlap between treated and untreated units (as in
the previous example) may not occur in real contexts. For instance, in the case of a
variable x assuming continuous values, it is unlikely that two units in the opposite
treatment status have exactly the same x. In such a case, imputation through RA can
be performed using “prediction” of Y conditional on x, using observations in the
opposite treatment status.

These predictions can be obtained by assuming either a parametric relation
between Y and x or a nonparametric one. Nevertheless, as it will be clearer later
on, a certain degree of overlap is still necessary for imputation to be reliable, both in
parametric and nonparametric approaches. In general, however, a lack of overlap



54 2 Methods Based on Selection on Observables

seems more problematic for semi- and nonparametric methods (Kernel and
Matching methods, for instance) than for parametric approaches, although even in
this case, poor overlap may have adverse effects on the estimation precision
of ATEs.

In order to illustrate clearly this important issue, Figs. 2.1 and 2.2 report the
imputation procedure, respectively, used by a parametric (linear, for simplicity) and
a nonparametric (Kernel) approach.

In this example, we have to impute the missing observation E(Y; | D =0, x=5)
using the prediction from a regression of Y on x on the set of treated units, i.e., we
have to first estimate:

E(Y,|D=1,x=5) =E(Y|D = 1,x=5)

and then use it for imputing E(Y; | D =0, x=5).
Figure 2.1 imputes this value by adopting a linear regression of the type:

E(Y|D=1,x) =a+px

so that E(Y; | D=0, x=5)=a+ 5. This imputation method—also known as the
Control-function regression (CFR)—is able to overcome identifying problems,
without excluding—however—possible overlap problems. To see this, suppose
we wish to impute the counterfactual mean potential outcome at, say, x =40, a

1500

. {yx} in {D=1}

1000

E(Y |x=5; D=1)= —
550 >§ i > Observable set
° L]
Imputation ]
2L " T ; ;
0 b 10 15 20
X
Imputed value at x=5
E(Y|x=5; D=0)=
550 Missing observations to
> be imputed
{y:x} in {D=0}

x=5

Fig. 2.1 Missing observation imputation in the linear (parametric) case
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xy in (D=1}

E(Y,|x=5; D=1)= °
600 . > Observable set
.
e
.
L]
.
.
Imputation
15 20
Imputed value at x=5
E(Y,[x=5; D=0)=
600 Missing observations to
> be imputed
{yix} in {D=0}

x=5

Fig. 2.2 Missing observation imputation using local (nonparametric) average

larger value than x=35. This implies that we need to find an imputation for
E(Y, | D=0, x=40). As evident from Fig. 2.1, there are no units in the set of
treated with x =40. Nevertheless, we could trust the reliability of the estimated
regression function and impute E(Y; | D =0, x = 40) with (a + $-40). This prediction
can be computed even if no treated units appear with x=40 in our dataset. Of
course, such an extrapolation might be worrying when the x of the untreated unit is
very far from the support of x in the treated set. Moreover, even if some of the
treated units have such a value, imputation remains problematic when such units are
few, as predictions for that part of the cloud are clearly less reliable (due to a lack of
data). Therefore, parametric imputation overcomes identification problems due to
weak overlapping, but with the caveat that prediction might be not reliable in the
nonoverlapping region.

Figure 2.2 imputes the same value by adopting a local smoothness approach.
Basically, it estimates E(Y | D=1, x=15) by fixing a bandwidth 2 =2.5 around
x =15 and by taking the average of Y within /= {x+h <x<x—h}:

E(Y,|D = 0;x =5) :]%ZY,» =550
i€l

This imputation method—also known as the local average—can have more com-
plicated identification problems due to weak overlap than a parametric approach.
Why? Suppose—as above—that we wish to impute the counterfactual mean
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potential outcome at, say, x =40. This means that we need to find an imputation for
E(Y, | D=0, x=40). As evident, there are no units in the set of treated within the
interval [x — h; x + h] =[37.5; 42.5]. This means that we cannot compute the value
to be imputed; thus, ATE is not identified. In order to obtain identification, one
possible solution might be to enlarge the bandwidth so as to obtain a new interval
containing at least some observations. The reliability of imputation under such an
enlargement is, however, highly questionable since, in order to calculate the
prediction, we are now considering values of ¥ whose x are very far from the
point of interest, that is, x =40. Moreover, even if some treated units were present
in the interval around x =40, smoothing techniques are very sensitive to observa-
tion sparseness: in points like, for example, x =15 imputation is based on an
average of few observations, thus questioning the quality of this imputation.

In conclusion, nonparametric imputation might be more reliable as it does not
assume a parametric form of the potential outcomes, but it barely overcomes the
identification problems due to weak overlap. In this sense, the use of parametric and
nonparametric methods depends on the degree of overlap and sparseness of the
available data.

In what follows, we first present identification and estimation of ATEs in both
parametric and nonparametric case. We begin with the parametric approach, by
presenting and discussing the linear parametric RA, i.e., the so-called Control-
function regression (CFR), and nonlinear parametric RA. Subsequently, we give an
account of the semi- and nonparametric approaches proposed in the literature
discussing their statistical properties. Among the nonparametric methods, special
attention will be devoted to the Matching approach.

2.2.2 Linear Parametric Regression-Adjustment: The
Control-Function Regression

The linear parametric RA assumes that my(x) =po+xpo and m(x) = p; +xp1,
where pg and p; are scalars and o and p, are two vectors of parameters. In such
a case, applying RA implies estimating two distinct OLS regressions: Y; = uo+X;8¢
only on untreated and Y; = u; + x,;; only on treated units, thus getting the predicted
values 7 1(x;) and 77 o(x;). These quantities can be used to recover all the causal
parameters of interest by inserting them into the RA formulas (2.5)—(2.7).

It seems worth to link this approach with the more familiar regression setting so
to get all the elements necessary for ordinary inference, including obtaining stan-
dard errors. We therefore develop a standard regression model that can be shown to
lead to exactly the same results as the linear parametric RA. In other words, we
show that CFR is just a particular case of RA, the one in which a parametric/linear
form of the conditional expectation of Y given x and D is assumed.

As a specific RA, the Control-function regression is a method identifying ATEs
under CMI. As such, it is still useful to stress that CFR is suited only when the
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selection-into-program is due to observable determinants (i.e., overt bias). We
know that CMI states that:

E(Y,
E(Yo

x,D) = E(Y1|x) (2.8)
x,D) = E(Y,|x) (2.9)

where (2.8) and (2.9) restrict the independence only over the mean. To proceed
further, we first need to model the potential outcomes in a simple additive form as
follows:

Y() = Ko + Vo (210)
Y1:ﬂ1+v1 (211)
Y =Yo+D(Y| —Yo) (2.12)

where vg and v, are random variables and y; and pq are scalars. In other words, we
are assuming that outcomes consist of a constant term plus a random component.
Additionally, we also assume that the random components take on the following
form:

v0 = g(X) + €0 (2.13)
VI = g (X) + 4] (214)

with E(ep) = E(e;) =0. This implies that:

Yo = po + g(x) + e (2.15)
Yi=m+aX)+e (2.16)

making it explicit the dependence of the potential outcomes on the observable
vector of covariates X. As seen in Chap. 1, we also assume X to be an exogenous set
of factors, a condition implying that:
E(eg|x) = E(ei|x) =0 (2.17)
By substituting (2.10) and (2.11) into (2.12), we thus obtain:
Y =y +D(uy — uo) +vo+D(vi —vo) (2.18)
and by plugging (2.15) and (2.16) into (2.18), we get:

Y = po +D(py — po) + go(x) +Dlg;(x) — go(x)] + ¢ (2.19)

where e =eg+D (e; — ep). Consider now a parametric form of the expected value
of the potential outcomes over X, i.e., go(X) = xf and g;(x) =xf;, where f, and f§;
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are two unknown vector parameters. By taking the expectation of (2.19) over the
support of (D, x) and assuming (2.17) we have, under CMI, that:

E(Y|D’X) = po + D (g — po) + go(x) + D[g; (x) — go(x)] (2.20)

since: E(e | D, x)=E(eq | D, X)+D [E(e; | D, x) —E(eqg | D, x)]=E(eg | X)+
D [E(ey | x) — E(eg | x)] =0, where the second equality comes from CMI, and the
third and final ones from assumption (2.17), i.e., the exogeneity of x.

According to (2.20), two different models can be drawn. The first under the
hypothesis of a homogenous reaction function of Y, and Y; to x and the second
under a heterogeneous reaction.

Case 1 Homogenous reaction function of Yy and Y7 to x: g1(x) = go(X).
In this case, we can show that:
ATE = ATE(x) = ATET = ATET(x) = ATENT = ATENT(x)
=H1—Ho (2.21)
E(Y|D,x) = py + D - ATE + xp8 (2.22)

Thus no heterogeneous average treatment effect (over x) exists. Indeed, by
definition:

ATE = E(Y1 — Yo) = E[(uy + g1(x) +e1) — (1o + go(X) + €0)]
=H1 — Ho (2.23)

is a scalar. Moreover, (2.22) follows immediately from (2.20); thus, the coefficient
of D in an ordinary least squares (OLS) estimation of (2.22) consistently estimates
ATE = ATET = ATENT, as the error term has by construction a zero mean condi-
tional on (D, x). This procedure can therefore be applied on a sample of units with
size N:

OLS: Y,=py+Dia+xp, +error;, i=1,....,N (2.24)

where a = ATE.
Case 2 Heterogeneous reaction function of Yo and Y, to x: g;(X) # go(X).

In this second case, we can show that:

ATE # ATE(x) # ATET # ATET(x) # ATENT # ATENT(x) (2.25)
E(Y|D,x) = py+D - ATE + xf) + D(x — ) (2.26)
where p, =E(x) and = (P, — Bo). In this case, heterogeneous average treatment

effects (over x) exist and the population causal parameters take on the following
form:
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ATE = (u; — po) + n,p 2.27

ATE(x) = ATE + (x — p,) Ez.zsi
ATET = ATE + Ex{x — p,|D = 1} (2.29)
ATET(x) = [ATE + (x — p,)B|D = 1] (2.30)
ATENT = ATE + Ex{x — p,|D = 0} (2.31)
ATENT(x) = [ATE + (x — p,)B|D = 0] (2.32)

Given these formulas for the population causal parameters, the sample estimates
can be obtained by relying on the sample equivalents, that is:

—

ATE =a (2.33)

ATE(x) =@ + (x—X)p (2.34)

ATET =a + (N,) IXN:D, (2.35)
ATET (x) = [a +(x— i)ﬂ o (2.36)
ATENT =& + (1/No)~ XN: -%)p (2.37)

~

ATENT (x;) = [a +(x —%)P (2.38)

LM)

In (2.33)—(2.38), the estimated causal parameters of interest depend in turn on the
unknown parameters: ui, po, P1, Po, and py. If a consistent estimation of these
parameters is available, then we can recover (consistently) all the causal effects,
thus using regression (2.26) and applying the following procedure:

e Estimate Y;=puo+ D; a + x;+D; (X; — p)P + error; by OLS, thus getting con-
sistent estimates of g, a, o, and p

e Plug these estimated parameters into the sample formulas (2.33)—(2.38) and
recover all the causal effects

¢ Obtain standard errors for ATET and ATENT via bootstrap.

Indeed, while the standard error of ATE is estimated directly within the regres-
sion, as ATE = «, no direct estimation is available for ATET and ATENT. Fortu-
nately, a bootstrap procedure can be reliably used in this case.

Before proceeding further, it might be useful to shed more light on the
implications of assuming heterogeneity in the potential outcome response to X.
Figure 2.3 draws the expected values implied by (2.13) and (2.14) on x =x (i.e., by
assuming just one confounding variable) when g;(x) = go(x) (Fig. 2.3a) and when
g1(x) # go(x) (Fig. 2.3b). In the first case, the ATE(x) does not vary over the support
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E(y, | x) = py + g,(x)

ATE(x) = o |

E(y | x) = pty + go(x)

ATE(x,) = %

X, X, X, X
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ATE(x,) = 0

- ATE(x,) < 0
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Fig. 2.3 A graphical representation of the potential outcomes function and of the corresponding
ATE(x) under homogeneous (a) and heterogeneous (b) response to x

of x. It is steadily constant and equal to @ = (4 — o). In the second case, in contrast,
the ATE(x) varies along the support of x, taking a positive value for x =x,, a zero
value for x = x,, and a negative one for x =x,.

In some contexts, however, assuming homogeneous response to confounders

might be questionable. For example, allowing that individuals or companies react in
the same manner to, let’s say, their gender, location, or size when they are treated
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and when they are untreated may be a somewhat strong assumption. In many
sociological environments, for instance, people’s perception of the context may
change according to a different state of the world (treated vs. untreated situations).
In the economic context, a company characterized by a weak propensity to bearing
risks may become more prone to invest in a riskier business when public funding is
available: for instance, such a company might change its reaction to, let’s say, its
stock of fixed capital when financed, by increasing its productive response to this
asset. Similar conclusions can be reached from many psychological or sociological
programs, as passing from the untreated to the treated status may produce different
mental, relational, and environmental situations.

Interestingly, this econometric framework allows one to test for the presence of
such heterogeneity. In (2.26), a simple F-test of joint significance for the coeffi-
cients in vector f can be exploited to check the presence of heterogeneity; if the null
hypothesis Hp: = (B; — Bo) = 0 is rejected, then it means that heterogeneity is at
work, and vice versa.

2.2.3 Nonlinear Parametric Regression-Adjustment

The Control-function regression method presented in the previous section assumes
a linear form of the potential outcome conditional means. When the outcome is
binary or count, however, the linearity assumption can be relaxed, and a proper
parametric form of my(x) and m;(Xx) can be assumed. Table 2.2 presents common
possible nonlinear models with the corresponding outcome conditional mean.

By substituting previous formulas into the Regression-adjustment formulas
(2.5)—(2.7), we can obtain the corresponding non linear Regression-adjustment
estimators for ATEs. For instance, when the outcome variable is a count, a
consistent estimation of ATET is:

1 ~ ~
ATET =—)» D;- [ex (x,« ) —ex (xi )}
M; p(xiB, p(xiBo

and similarly for ATE and ATENT.

Table 2.2 Type of outcome and distribution for parametric Regression-adjustment

Type of outcome Distribution my(x), g=1,0

Linear xp,

Binary Logit exp(xf,)/{1+exp(xf,)}
Probit D(xB,)
Heteroskedastic probit D[xP,/exp(zy,)]

Count Poisson exp(xp,)

Note: in the heteroskedastic probit, z and 7y, are the variables and the parameters (excluding the
constant) explaining the idiosyncratic variance of the error term of the latent single-index model
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The problem with nonlinear models of this kind is with the estimation of the
standard errors for ATEs estimators. More specifically, the previous equation
contains estimators from a first-step estimation (generally, of a maximum likeli-
hood (ML) type); thus, the implied nested estimation error has to be taken into
account. As illustrated in the following example, a solution can be obtained
however.

Consider the case of ATE (for ATET and ATENT, it is similar), and consider a
generic parametric nonlinear form of the Regression-adjustment estimator:

A/TT-E :]ivi {ml (X,';ﬁ1> —m (Xﬁﬁo”

Suppose that both ﬁ o and ﬁl are /N consistent and asymptotically normal
M-estimator with objective function g;(x;; ), score s;(x;; ), and expected Hessian
A, derived from a first-step estimation (a probit, for instance). For compactness
purposes, we assume that:

m(x;; B) = m (Xi;ﬁ1) —m (Xz‘;ﬁo)

with B = {ﬁo; 61} . As ATE is in turn an M-estimator, it eventually takes the form
of a two-step M-estimator (see Wooldridge 2010, pp. 409—420), thus implying that

ATE is also /N consistent and asymptotically normal for ATE. In such cases, it can
be showed that the estimated asymptotic variance is:

Asyvar [ ATE ] = L [Varin(x:8)] + G [asvar v (5~ $)] G|
where:
Vartntx: ) = 23 [ (51 ) = i (x:Bo) - ATE]
and

mm(ﬁ — ﬁ) — A 'BA!

At this point, we only need to see to which matrix A and B in the last formula are
equal. By defining the score of the first-step M-estimator as:
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one can prove that:

B = ]lvzsi(xi;ﬁ) ’Si<Xi§B\)/
and

1 a‘h("i?ﬁ)

N opop’

>)
|

In conclusion, once the asymptotic variance of ATE is computed using the above-
mentioned formula, the usual significance test can be correctly employed. Note also
that bootstrapping can in this case be a suitable option, provided that all sources of
uncertainty due to first-step estimation are taken into account when resampling
from the observed distribution.

2.2.4 Nonparametric and Semi-parametric Regression-
Adjustment

We have argued that the general estimator implied by the Regression-adjustment in
(2.5)—(2.7) takes the form of a sample average from the data that can be estimated
by parametric, nonparametric, or semi-parametric imputation methods for m;(x)
and m(x) based on conditioning on X. Control-function regression represents the
parametric case. Local smoothing techniques such as kernel or local linear regres-
sion can be used to obtain nonparametric estimation of m(x) and mgy(x). As
illustrated in Fig. 2.2, these approaches are, however, unfeasible when no minimal
overlap between treated and control group is present over X. This may occur in
datasets where the support of the covariates X in the treated and untreated group is
very different, and thus, the overlap is poor. Figure 2.4 shows two cases in which
the distribution of a covariate x in the treated and untreated group results, respec-
tively, in a good and a poor overlap. We will return to this issue in Sect. 2.3.11 and
illustrate how to test the degree of overlap in a given dataset.

Anyway, when an acceptable level of overlap is present, it is possible to use
(local) kernel methods for estimating m,(x), with ¢ =1,0. Heckman et al. (1997,
1998) consider kernel methods for estimating m,(x), focusing in particular on the
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Fig. 2.4 Overlap over the covariate x

local linear regression approach. The logic of this approach is very close to the
example provided in Fig. 2.2. Their simple kernel estimator has the following form:

Agx) =Y Y,.K(Xf;")/i;gK("f;")

i:Di=g

where x is the point in which the previous function is evaluated, K(-) a specific
kernel function, and / the bandwidth parameter. In the local linear kernel regres-
sion, the function m,(x) is instead estimated as the intercept by in the following
minimization problem:

The authors require specific kernel functions to control for the bias of their
estimators. Indeed, as known, kernel regressions are biased in finite samples,
although the bias disappears asymptotically if the bandwidth /& goes to zero as
N goes to infinity: it is only in this case that the kernel is a consistent estimator.
From the central limit theorem, however, we can prove that the bias-corrected
kernel estimators of mg(x) and m;(x) are (hNg)*” 2 consistent and asymptotically
normal with zero mean and finite variance. The problem here, however, is how to
deal with the estimation of the bias when it is thought to be non-negligible even if
N is sufficiently large; a further problem is then how to estimate the variance which
generally depends on unknown functions. We will come back to this issue in the
next section and again when analyzing Matching estimators, where it will become
clearer that kernel approaches are also inefficient in estimating ATEs.
Semi-parametric approaches can be also suitably exploited (Cattaneo 2010). In
such cases, however, the question is: which types of semi-parametric imputation
methods should be used and which are the related asymptotic properties of these
estimators? In a parametric case like CFR, we can invoke the classical asymptotic
theory suggesting that OLS are consistent, asymptotically normal, and efficient
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since they reach the Cramér—Rao lower bound of the variance when the normality
assumption of the population probability density is satisfied.

In the case of semi-parametric methods, things are a bit more complicated.
Nevertheless, in the specific case of semi-parametric Regression-adjustment, Hahn
(1998) has shown that, under CMI, it is possible to identify the semi-parametric
efficiency bound for ATE and ATET by exploiting a previous result on the semi-
parametric analog of the (parametric) Cramér—-Rao variance lower bound. Hahn’s
theorem states that if a N~/ consistent and asymptotically normal estimator of n1,(X)

and my(x) are available, then the asymptotic variance of ATE is equal to:

gl o) + (my (x) — mo(x) — ATE)?|  (2.39)

GATE? = .
No + N [p(x) 1 — p(x)

where aﬁ(x) = Var (yg|x> = Var (yg}x,D = g) with g = 1,0—i.e., the variances
of Yy and Y; conditional on x.

In the case of AﬁT, two different lower bounds, therefore, emerge: one when
the propensity-score is assumed to be unknown:

11 a3(x) - p(x)°
2 = . E|dx)- RUISA 4 A . - — ATET)?
O | () isunkeons) ~ No N1 2 [Gl(x) p(x) + W) + p(x) - (my(x) — mp(x) )

(2.40)

and one when the propensity-score is assumed to be known:

1 1 a3(x) - P(X)2 2 2
__ =——— — Elo:(x)- o . - — ATET
O sTET ‘{p(x)isknown) No + N, p? {01 () p(x) + 1 — p(x) + p(x)7 - (m (x) = mo(x) )

(2.41)

It is worth emphasizing that the variance in (2.41) is lower than that in (2.40), so
that knowledge of the propensity-score in this case increases efficiency.

Hahn (1998) also proposes a specific semi-parametric and efficient estimator of
ATE and ATET. Indeed, under CMI, he shows that:

E(D Y|x) =E(D-Y|x) =E(D|x) -E(Y,|x) =E(D|x) -m(x)  (2.42)
implying that:
_E(DY]Y)

- 1/ 2.43
E(DN) 243)

my(x)

and similarly:
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B E[(1 — D)Y|x]
mo(x) = W (2.44)

By using these results and (2.5), we obtain:

_ 1
ATE :N;

(2.45)

E\ED,YI|X,) _ E\ [(1 iD,’)Y,"X,’] 1
E (D,’|X,‘) 1-E (Dl“X,‘)

When x has a finite support, the previous formula can be directly estimated by
substituting the following three estimations of the elements included into (2.45):

E (DiYi|x = x) = ZDY = /Z (2.46)
E((1=D)Yilxi=x) = > (1= D)Yi- 1(x; :x)/z 1(x;=x)  (2.47)
E(Difxi=x) = Y Di-1(x :x)/ZI(x,- = x) (2.48)

On the contrary, when x has a continuous support, Hahn recommends estimating
the previous three conditional expectations using series estimators that are asymp-
totically normal. The efficient estimator proposed by Hahn for ATET takes there-

fore the following form:
/ Z p(x;) (2.49)

where p(x) =E (w[‘xi) is a series estimator of the propensity-score. Series
estimators are global smoothing techniques approximating—uniformly on x—an
unknown function m,(X) as linear combination of K + 1 basis-functions, that is:

K
= Z 0jp j(X)
=0

N E(D:Y:|x: E —
ATET = Zﬁx, ’ZYI'|)X') _E[(i_ YIXz
i—1 X;

with K + 1 representing the number of basis-functions to be used in estimation. The
set of basis-functions can be chosen among various typologies, for example, poly-
nomials (power series) such as ¢ j(x) = x/. The set of parameters {0y, ..., Ox} are
simply estimated by a linear regression of Y; on (p(x)l ={@o(xi), -, px(xi) }-
Under regularity conditions and, in particular, under the assumption that K is
chosen as a function of N growing slower than N, series estimators are uniformly
consistent and asymptotically normal with an estimable asymptotic variance

go(x),VK(p(X). See Newey (1997) for more technical details.
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Observe, finally, the difference between the nonparametric and the semi-
parametric approach; in the first case, just two unknown functions need to be
recovered in order to estimate ATEs, i.e., m;(x) and m(X); in the semi-parametric
estimator proposed by Hahn (1998), however, we also need to estimate p(x).

As far as the estimation of the asymptotic variance for ATEs is concerned, we
have illustrated above that it is theoretically possible to calculate nonparametric and
semi-parametric estimators of ATEs that are consistent, asymptotically normal, and
(semi-parametrically) efficient. The estimation of the asymptotic variance of such
an estimator may nonetheless be cumbersome to calculate since (2.39), for instance,
entails the estimation of three unknown functions: two regressions—m;(x) and
mo(X)—two conditional variances—o(X) and on(x)—and the propensity-score—
p(x). As suggested by Imbens (2004, p. 21), there are three possible estimation
approaches for these variances:

1. Brute force: consistent estimation of the five functions of the asymptotic vari-
ance can be estimated by kernel methods or by series.

2. Series polynomials: in the case where either the regression functions or the
propensity-score are estimated by series methods, they become parametric.
Thus, given the number of terms in the series, the analyst can directly calculate
the asymptotic variance of the ATEs from their formula. Under general condi-
tions, this will produce valid standard errors and confidence intervals.

3. Bootstrapping: given that previous nonparametric estimators of ATEs are rather
smooth, it is likely that bootstrapping will lead to valid standard errors and
confidence intervals.

2.3 Matching

Matching is a popular statistical procedure for estimating treatment effect param-
eters in nonexperimental settings (Stuart 2010). Developed in the statistic and
epidemiological literature, Matching has become a relevant approach also in the
current theoretical and applied econometrics, as illustrated by the increasing num-
ber of applications using this approach in many economic and social studies
(Caliendo and Kopeinig 2008). This section starts by introducing the main concep-
tual framework to understand the philosophy lying behind the development of
Matching. We start by distinguishing between covariates and propensity-score
Matching, discussing also the implications of ATEs’ identification assumptions in
the Matching case. We then both examine the large sample properties of Matching
and how to perform a correct inference when such an approach is used. Given
its popularity, special attention is devoted to propensity-score Matching
(PS Matching). Finally, some useful tests for assessing the reliability and quality
of the estimated Matching are presented in the last two subsections of this section.



68 2 Methods Based on Selection on Observables
2.3.1 Covariates and Propensity-Score Matching

From a technical point of view, Matching is equivalent to the nonparametric RA
estimator seen above where, instead of using a nonparametric estimation of the
observable conditional mean, one uses directly the observed outcome. The
Matching formulas for ATEs are:

ATETy = Nllz; D;-[Y; — ino(x)] (2.50)
I 1 N
ATENT y = ]70; (1 —D;) - [ (x;) = Y] (2.51)
ATE y = %Z {Di[Y: — iio(x))] 4+ (1 = D) [t (x;) = Yi]} (2.52)

As CFR and smoothing techniques, Matching also identifies ATEs under the CMI
assumption. In applications, Matching is sometimes preferred to parametric regres-
sion models as it entails a nonparametric estimation of ATE, ATET, and ATENT
and does not require to specify a specific parametric relation between potential
outcomes and confounding variables. Moreover, in contrast to the CFR approach, a
wide set of different Matching procedures can be employed, thus enabling one to
compare various estimators and provide robustness to results. Another characteris-
tic of the Matching approach is that it reduces the number of untreated to a
subsample (the so-called selected controls) having structural characteristics more
homogeneous to the those of treated units; furthermore, Matching usually considers
treated and untreated units to be compared only in the so-called common support,
dropping out all those controls whose confounders values are either higher or
smaller than that of the treated units. Many scholars interpret these characteristics
of Matching as more robust compared to usual parametric regression, although the
statistical justification for this conclusion is questionable (Zhao 2004).

The idea behind Matching is simple, intuitive, and attractive, and this can partly
explain its popularity. It can be summarized in the following statement: “recovering
the unobservable potential outcome of one unit using the observable outcome of
similar units in the opposite status.” To better understand this statement, take the
case of the estimation of ATET. We know from Chap. 1 that, for a single treated
unit i, the treatment effect and the ATET are, respectively, equal to:

TE; =Y — Yo
ATET = E(Yy;|D; = 1) —E(Y;|D; = 1) (2.53)

where we only observe Y;;, while Y, is unknown and TE; not computable. Suppose,
however, that Yy, is perfectly estimated by using some average of the outcome of
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(matched) untreated individuals and call this quantity YAo,u Then, we will simply
have that:

imputed through a distance function f  ~
Yo Yo

The choice of the function f corresponds to a specific distance metric between treated
and untreated units. Measuring such a distance can be done in two ways: either
(1) based on the vector of covariates X, so that one can calculate, in a meaningful
manner, how far x; is from x;, where unit j is assumed to be in the opposite treatment
group, i.e., D;=1— D; (covariates Matching or C Matching) (2) or on the basis of
only one single index-variable, the propensity-score p(X;), synthesizing all covariates
in a one-dimension variable (propensity-score Matching or PS Matching).

In either of the cases, we can use, however, different approaches: for example,
the one-to-one nearest-neighbor method selects only one unit j from the set of
untreated units whose X; or p(X;) is the “closest” value to x; or p(X;) according to a
prespecified metric. The kernel methods, in contrast, use all units in the untreated
set and downweights untreated observations that are more distant.

Irrespective of the specific method chosen, the estimation of the ATE(x;) would
be simply given by:

A/TTEI‘(Xi) =Y~ Yo (2.54)

and an estimation of ATE, ATET, and ATENT obtained by averaging properly
previous quantities over i:

1L . ~
ATE = N; (Y i Yo,-) (2.55)
1 ~ 1 & ~
ATET = 3 (Yl,- - Yo,-) =->"p (Yl,- - Y()i) (2.56)
Nlie{D:l} Nz
1 ~ 1 & ~
ATENT = — 3 (Y - Y0i> =S (1-D) (Y - YOi) (2.57)

Oie{D=0}

where {D = 1} identifies the set of treated units and {D = 0} that of untreated units.

By looking at previous formulas, it is easy to observe that Matching can be seen
as a special case of the nonparametric Regression-adjustment: ATET, for instance,
can be obtained from (2.6) by setting 71 1(x;) = Y; and m o(x;) = Y oi equivalently,
ATENT can be obtained by substituting 72 (x;) = Y. and 7 o(x;) = Y¢;. Thus,
Matching directly uses the observed outcome for treated (ATET) and untreated
(ATENT) instead of an estimation of the conditional predictions as in the
Regression-adjustment. However, before presenting how Matching is implemented
in practice, it is important to highlight the statistical properties of this estimator.
The next section will focus on this important aspect.
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2.3.2 Identification of ATEs Under Matching

In Sect. 1.4.1, we saw that the selection bias may be decomposed into three terms as
follows:

B; =Bas +Bg + B¢

Where, B, is the bias due to weak overlap; By is bias due to weak balancing; and
B is bias due to the presence of unobservable selection.

Under specific assumptions, Matching is suited for eliminating biases B, and By
but not B.. In principle, Matching identifies ATEs only under two hypotheses, i.e.,

A.1 Conditional mean independence (CMI), i.e., E(Y; | x, D) =E(Y; I x) and E(Y |
x, D)=E{Y, | x)
A.2 Overlap: 0 < p(x) < 1, where:

p(x) =Pr(D = 1|x) (2.58)

is the propensity-score, defined as the probability to be treated given the condition-
ing variables x (see, Sect. 1.3.3).
More precisely, however, ATEs are only identified under assumptions A.1 and

A.2 if the Matching is exact, i.e., only if it is possible to build a finite number of
cells based on crossing the values taken by the various x (see Sect. 2.3.7). When
this is not possible, as usually happens, when x contains at least one continuous
variable, then we need a third hypothesis in order to identify ATEs:

A.3 Balancing: {(D _|_ x) | Matching}, i.e., after matching, the covariates’ distri-
bution in the treated and control group has to be equal.

It would appear worthwhile to shed further light on the implications of these
three assumptions for the Matching estimator.

2.3.2.1 Implications of Assuming “CMI”
We know that the conditional independence assumption implies, for ATET(x), that:
ATET(x) = E(Y,|D = 1,x) —E(Yo|D = 1,x)
=E(Y,|D =1,x) — E(Y,|D = 1,x)
+ [E(Yo|D = 0,x) —E(Yo|D = 0,x)] (2.59)

However, since according to CMI the mean of Y, given X does not depend on
variation of D, this mean is the same for any value of D, so that:
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E(Yo|D = 1,x) = E(Y|D = 0,x) (2.60)

This relation suggests one should estimate (or impute) the unobservable
(or missing) value on the left side of (2.60) using the observable quantity on the
right side. Thus, following (2.59), ATET(x) becomes:

ATET(x) = E(Y,|D = 1,x) — E(Y,|D = 0,x)
=E(Y|D =1,x) —E(Y|D =0,x) (2.61)

that is a function of all observable quantities. An estimate of the “unconditional”
ATET is then obtained by averaging (2.61) over the support of x.
Similarly, the condition identifying ATENT is:

E(Y1|D =0,x) =E(Y1|D = 1,x) (2.62)

so that the unobservable quantity in the left side of (2.62) becomes equivalent to the
observable quantity on the right side. ATE can be finally obtained as the usual
weighted average of ATET and ATENT.

2.3.2.2 Implications of Assuming “Overlap”

As seen, the overlap assumption states that 0 < p(x) < 1. If this assumption does not
hold, there might exist units with specific characteristic x that either always receive
treatment (i.e., p(x) = 1) or never receive treatment (i.e., p(x) = 0), thus not permit-
ting us to identify ATEs. To better understand why, assume that there is an x* with
p(x*)=1. All units in the sample having exactly x =x* are included in the treated
group. No units with x =x* are in the untreated group, thus preventing to find a
similar untreated set for units characterized by x = x*. In this case then, the ATET
(x*) cannot be recovered and ATET is not identified.

In empirical practice, fortunately, finding cases in which p(x) =1 or p(x) =0 is
unlikely. Thus, in the case of Matching, some imprecision in the capacity of x to
explain all the variability of p(x) solves the identification problem. As a result, the
model used to predict program participation should not be “too” good!

2.3.2.3 Implications of Assuming ‘“Balancing”

As already mentioned, this assumption matters when Matching is not exact, a case
typically occurring when x presents at least one continuous variable. Indeed, in such
a case, finding two observations in the opposite status having the same covariates’
value might be infeasible, and frequencies are expected to be unevenly distributed
over X in a comparison between the treated and untreated set of observations. In
such cases, however, Matching should help to restore some balancing over X,
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Fig. 2.5 Distribution of the
covariate x by treatment
status. Case in which a good
overlap combines with
some imbalance. By
assumption, x varies within
[0; 1]

untreated

— — — - treated

although a perfect balancing is in general impossible to achieve empirically. In
order for Matching to be a reliable procedure for estimating the actual ATEs, we
have to rely on a “plausible degree” of balancing over the observables; this should
be possible to test using some suitable test statistics after Matching is completed.
Therefore, at least in principle, only when Matching passes the “balancing test,” can
we conclude that the unbalancing bias (Bg) has been eliminated. In all other cases,
conclusions to be drawn with respect to the actual value of the treatment effect
estimated by Matching remain questionable.

Observe that the overlap and the balancing one are two distinct, although
partially linked, assumptions. Indeed, in usual datasets, we might find a good degree
of covariates’ overlap, sometimes accompanied with some strong imbalance.
Typically, overlap should help balancing, but the two concepts remain distinct.
Figure 2.5 shows an example of a good overlap over the covariate x in the presence
of relevant imbalance.

2.3.3 Large Sample Properties of Matching Estimator(s)

As said, Matching can be seen as a particular nonparametric RA estimator.
Nevertheless, the procedure used by Matching to recover the unobserved out-
comes—based on some type of comparison between treated and untreated matched
units—generally involves algorithms characterized by high non-smoothness. This
renders the identification of Matching’s asymptotic properties rather problematic.
In the literature so far, large sample properties have been clearly singled out only
for some types of Matching methods, while for other types, no clear understanding
of the behavior of this method when N becomes sufficiently large has been achieved
(this is the case, for instance, of stratification Matching).
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Generally speaking, Matching might be neither N~ consistent nor efficient,
thus questioning sometimes the extensive use of this approach in empirical studies.
There are two types of Matching, however, for which asymptotic results are known:
kernel Matching (Heckman et al. 1998) and nearest-neighbor Matching (Abadie
and Imbens 2006, 2011).

Heckman et al. (1998), hereinafter HIT (1998), provided the following important
results for ATET. Assume that CMI and the overlap assumptions hold, that obser-
vations are i.i.d., and that we know the actual value of m(x;) = Y 0i = Yo;. Under
these assumptions, the Matching estimator of ATET:

1 1
ATET = — Z (Yii—Yo) = N Z [Y1; —E(Yo|D = 0.x=x;)] (2.63)
Lielp=1} Licip=1}

is consistent for ATET, and /N, (A/T—Iﬁ“ — ATET) is asymptotically normally

distributed with zero mean and variance equal to:
Vy =E[Var(Y{|D = 1,x)|D = 1] + Var[E(Y, = Yo|D = 1,x)|D = 1] (2.64)

Likewise, if Matching is done using only the known propensity-score (instead of the
entire bundle of x), then:

Vo =E[Var(Y,|D =1, p(x))|D = 1]
+ Var[E(Y) = Yo|D = 1, p(x))|D = 1] (2.65)

In this case, the two variances do not dominate each other (Theorem 1, p. 270).

In real applications, however, these variances are unknown, as both the condi-
tional expected outcomes and the propensity-score are unknown functions and have
thus to be estimated. HIT (1998) established large sample properties for a specific
class of Matching estimators of ATET, the kernel types, estimating the missing
observation as:

ZY

Xf') (2.66)
Jje{D=0}

JG{D 0}

where K(-) is a convenient kernel function, and a is a prespecified bandwidth
parameter. The authors show that /N, (A/T—E\T — ATET), using (2.66), is in this

case asymptotically biased but normally distributed with the mean as function of
the bias b and asymptotic variance equal to:
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1
V*m@wzn
Avarg [Ex(Y1 = Yi|x,D = 1)|D = 1] + Ex[vark (Y1|x,D = 1)}
+ %[Vl +2-covy + GVQ] (267)
Pr(x|D = 1)

Therefore, HIT (1998) show that kernel Matching is in general not N~ /? consistent
and only under particular sequence of the smoothing parameter N -2 consistency
can be guaranteed. To better understand previous formulas and how asymptotic
properties are drawn, HIT (1998) prove that the kernel Matching is a special case of
an asymptotically linear estimator that for a generic parameter 3 takes the following
form:

N
Py —F=N"D wiz)+b () +7 (=) (2.68)

where z; is the random sample of observations, y(-) a function of z; depending on

the type of estimator used (parametric or nonparametric type), b (z;) a stochastic
bias that is not N~"/? consistent, and 7 (z;) is a N~ /> consistent residual term.”
This explains why the kernel approach leads to a biased estimation of ATET
when N is large, but finite. Observe that in the last term of the previous variance, V
and V, represent respectively the asymptotic conditional variance of y, (-) and y (+)
as two distinct functions estimated from observations with D =1 and D = 0 have to
be set; cov, is a limit probability of the product of the conditional expectation of

v, (+) and the expectation of (Yl B N) , and O is the finite limit of N1/Ny. This last

definition means that as soon as N, increases in comparison with Ny, then the
variance reduces accordingly. In particular, HIT (1998) illustrate that if only
untreated observations are used (i.e., y, () = 0) for estimating the kernel function,
then V| +2-cov; = 0. As a consequence, the last variance term becomes 0V
implying that if one assumes 0 goes to zero with N going to infinity, the kernel
becomes N~/ consistent as the variance becomes approximately equal to the case
of HIT (1998) Theorem 1 (see Theorem 2).

As for the comparison between the asymptotic variances, when Matching is done
over all x or over p(x), the authors suggest that if one restricts the comparison to
kernel estimators that are N~/ consistent, no variance dominates each other even
in this case. Thus, Matching on covariates or Matching on propensity-score does
not provide ground for efficiency gain, even when the propensity-score is estimated
nonparametrically (pp. 269-271). Nevertheless, the use of the propensity-score—
by reducing dimensionality—can sensibly shrink the amount of calculation needed

2 An estimator by of the population parameter f is said to be N~/ consistent if VN(by — p) 2 0.
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when conditioning on all covariates, so that the use of propensity-score is justified
on the basis of computational burden but not in terms of efficiency.

Another fundamental contribution to the large sample properties of Matching
estimators is that provided by Abadie and Imbens (2006), focusing on the nearest-
neighbor Matching. The authors consider nearest-neighbor with replacement and a
fixed number of matched units M and show that although this Matching estimation
of ATE and ATET is consistent, it is generally not N~ '/* consistent being the order
of convergence of magnitude N~ /¥, where & is the number of covariates used to
match units. More in details, and taking for simplicity the case of ATE, they show
that:

ATE — ATE = Ay + Ey + By (2.69)

where Ay = {Ex [E(Yl ’x) — E(Yolx)] — ATE}, Eys is a residual term and By, a
bias term. Indeed, while the first two terms on the right side of previous equation are
N~ consistent and asymptotically normal with zero mean and finite variance, the
bias term By is only N~% consistent. It means that, as soon as N increases and
k>3, By goes to zero in probability slower than Ay and Eyy, thus dominating
asymptotically these two last terms. Of course, when Matching is exact, the bias
disappears and the nearest-neighbor procedure will be fully N~' consistent and
asymptotically normal. In real applications, however, exact matching is rare as
covariates usually take the form of continuous variables. However, when k=1,
then the bias has an order of convergence equal to N™' that is faster than N~ %; in
this case, as N becomes larger, the bias vanishes and the nearest-neighbor estimator
is N~ consistent and asymptotically normal. In the more general case of k higher
than one, Abadie and Imbens (2006) show, however, that:

(Va + VE)’I/Z\/N(A/TTE — ATE — BM) 4 N0, 1) (2.70)

where V, and Vg are the variance of Ay and Ey,, respectively, so that if a consistent
estimation of the bias term is available, then one can use the previous result for
doing usual inference.

Another important aspect related to the nearest-neighbor Matching is regarding
its asymptotic efficiency properties. The authors show that when k > 2, the nearest-
neighbor estimator is not efficient as it does not reach the Hahn (1998) lower bound.
In particular, they show that:

N’V/\—Veff 1

T} (271)

where the first term is the asymptotic efficiency loss of the nearest-neighbor
Matching (with V' the asymptotic variance lower bound) and M the fixed number



76 2 Methods Based on Selection on Observables

of matches. It is clear that, as soon as M becomes sufficiently large when N goes to
infinity, the efficiency loss becomes negligible.

As for the estimation of ATET, similar conclusions can be reached; in this case,
however, it can be proved that the bias can be approximately neglected if the
number of potential controls increases faster than the number of treated units as
N goes to infinity.

Finally, Abadie and Imbens (2011) propose a bias-corrected estimation making
Matching estimators N~ "/? consistent and asymptotically normal and provide an
estimation of the correct asymptotic variance. This approach is presented through a
Stata implementation in Sect. 2.7.1.

2.3.4 Common Support

We saw that the fundamental identification condition for Matching is (2.60):
E(Yo|D = 1,x) = E(Y|D = 0,x)

thus—to make it meaningful—we require that 0 < p(x) < 1. HIT (1998), neverthe-
less, illustrate that a weaker assumption is needed in order to identify Matching.
They call it common support and it states that Matching can be equally consistently
estimated not only over the all support of x but also on the support of X common to
both participant and comparison groups. We may define it as S:

S = Supp(x|w = 1) N Supp(x|w = 0) (2.72)

When the set in (2.72) is not empty, we may estimate Matching using a reduced
sample by applying a trimming rule, which is a rule to reduce the number of units
employed in estimation to the common support S. In general, the quality of the
matches may be improved by imposing the common support restriction. Note,
however, that in this way, high-quality matches may be lost at the boundaries of
the common support and the sample may be considerably reduced. Imposing the
common support restriction is not necessarily better, therefore, than not considering
it at all (Lechner 2008).

2.3.5 Exact Matching and the ‘“Dimensionality Problem”

Equations (2.1) and (2.2) suggest a simple strategy for the estimation of ATEs by
Matching when x has a finite support. This procedure exploits the idea that—within
cells identified by x—the condition for random assignment is restored so that
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intracell DIM is a consistent estimator. More specifically, the procedure suggests
that:

» The data are stratified into cells defined by each particular value of x.

e Within each cell (i.e., conditioning on x), one should compute the difference
between the average outcomes of the treated and that of the controls.

» These differences should be averaged with respect to the distribution of x in the
population of treated (for ATET) or untreated (for ATENT) units.

This procedure leads to the following estimators of ATEs:
ATET =E{E(Y;,— YD =1x} = TEc p(x=x|D; =1)

AﬁN\T = EX{E(Y” - Y0i|D = O,X} = Zﬁx . p(X[ = X|D,' = 0)
A/’—TE: :ED{EX{E(?“ — ?Oi‘D,X}}
= p(D =1)-ATET + p(D =0)- ATENT (2.73)

In other words, they are a weighted average of the treatment effects with weights
equal to the probability of x within the set of treated or untreated units.

The ATEs estimators in (2.73) is called exact Matching, and it is feasible only
when x has a very small dimensionality (taking, for instance, just three values). But
if the sample is small, the set of covariates x is large and many of them take discrete
multivalues or, even worse, they are continuous variables, then exact Matching is
unfeasible. For example, if x is made of K binary variables, then the number of cells
becomes 2%, and this number increases further if some variables take more than two
values.

If the number of cells (or “blocks”) is very large with respect to the size of the
sample, it is possible that some cells contain only treated or only control subjects.
Thus, the calculus of ATEs might become unfeasible and ATEs not identified. If
variables are all continuous, as happens in many socioeconomic applications, it
would be even impossible to build cells.

To avoid this drawback, known as the dimensionality problem, Rosenbaum and
Rubin (1983) have suggested that units are matched according to the propensity-
score (defined, as said above, as the “probability of being treated conditional on x”).
Using the propensity-score permits to reduce the multidimensionality to a single
scalar dimension, p(x).

In a parametric context, the estimation of the propensity-score is usually
obtained through a probit (or logit) regression of D on the variables contained in
x. Once the scores are obtained, one may match treated and control units with the
same propensity-score and then averaging on the differences so obtained. The
problem is that although the propensity-score is a singleton index, it is still a
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“continuous” variable, and this prevents us from being able to perform an exact
Matching.

Despite this, Dehejia and Wahba (1999) have provided a procedure estimating
ATEs using the propensity-score, which is capable of dealing with its continuous
nature. As we will see in Sect. 2.3.7, this procedure is based on the idea of building
intervals of the propensity-score so to transform it into a variable with finite
support. Before presenting the Dehejia and Wahba (1999) procedure, it is worth
to briefly discuss some fundamental properties of the propensity-score, which
justify its popularity and extensive use in many program evaluation applications.

2.3.6 The Properties of the Propensity-Score

According to the definition of Rosenbaum and Rubin (1983, 1984), the propensity-
score is the conditional probability of receiving the treatment, given the
confounding variables x. Interestingly, since D is binary, the following equalities

apply:

p(x) =Pr(D = 1|x) = E(D|x) (2.74)

that is, the propensity-score is the expectation of the treatment variable, conditional
on x. The propensity-score has fwo important properties which account for its
appeal: the balancing and unconfoundedness properties.

P1. Balancing of confounding variables, given the propensity-score:
If p(x) is the propensity-score, then:

D1x|p(x) (2.75)

which implies that, conditionally on p(x), the treatment and the observables are
independent. To prove relation (2.75), we can first observe that:

Pr[D = 1|x, p(x)] = E[D|x, p(x)] = E[D|x] = Pr[D = 1]x] = p(x) (2.76)
Similarly, using the law of iterated expectations (LIE):

Pr[D = 1| p(x)] = E[D|p(x)] = E ,x [EIDIx. p(x)]| p(x)]
= Ep[p(X)|p(¥)] = p(x) (2.77)

where the third equality uses the fact that p(x) is a function of x, thus setting x
implies setting p(x). By comparing (2.76) and (2.77), we obtain that:
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Pr[D = 1[x, p(x)] = Pr[D = 1| p(x)] = p(x) (2.78)

which entails that conditionally on p(x), the treatment D and the observables x are
independent.
P2. Unconfoundedness, given the propensity-score
Suppose that the conditional independence assumption (CIA) holds, in other
words:

(Y1,Yo) LD|x (2.79)

then assignment to treatment is random, also given the propensity-score, that is:
(¥1.Y0) LD| p(x) (2.80)
Property (2.80) is not tricky to prove. In fact, using LIE again, we initially have that:

Pr[D = 1|Y}, Yo, p(x)] = E[D|Y1,Y0, p(x)]
=E[E[D|x, p(x),Y1,Yo] |Y1. Yo, p(x)] =E[ED

X, Y1, Yo] ’Y], Y(), p(X)]
= E[E[D|x]|Y1,Yo, p(x)] = E[p(x)|Y1,Yo, p(x)] = p(x) (2.81)
where the last equality comes from (2.79). From (2.78) we saw that:

Pr[D =1

x, p(x)] = Pr[D = 1|p(x)] = p(x)
and looking at (2.81) this implies that:
Pr[D = 1|Y1, Yo, p(x)] =Pr[D = 1|p(x)] (2.82)

which shows that conditionally on p(x) the treatment D and the potential outcomes
(Y4, Yy) are stochastically independent.

Property P2 states that stratifying units according to p(x) produces the same
orthogonal condition between the potential outcomes and the treatment that is
stratifying on x, but with the advantage to rely just on one dimension variable.
Property P1, additionally, states that if the propensity-score is correctly specified,
then we should see that units stratified according to the propensity-score should be
indistinguishable in terms of their x (i.e., they are balanced). Thus, testing empir-
ically whether the balancing property holds is a way for assuring that the correct
propensity-score is being used to stratify units. As said, balancing observations is an
essential ingredient to draw reliable Matching results.
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2.3.7 Quasi-Exact Matching Using the Propensity-Score

Assumption P2 suggests to match treated units and controls directly on the basis of
the (estimated) propensity-score instead of using the larger set of variables in x. As
previously mentioned, even if the “dimensionality curse” is solved as a k-dimension
problem that reduces to just one dimension, the problem related to the continuous
form of the propensity-score still remains. In that, exact Matching with a continuous
variable is impossible, as none of the units have exactly the same value of such a
variable. Nevertheless, a discretization procedure of the propensity-score may still
be implemented to approximate the Exact-Matching approach.

Dehejia and Wahba (1999), hereinafter DW (1999), proposed a quasi-exact-
Matching procedure for estimating ATEs using propensity-score’s discretization.
The authors’ procedure exploits properties P1 and P2 to obtain reliable Matching
estimation of ATEs. A Stata implementation of this procedure has been provided by
Becker and Ichino (2002).

The idea underlying this approach is rather straightforward; in the first instance,
a stratification of the units is generated according to discrete intervals of the
propensity-score; secondly, DIMs within each interval are calculated; and thirdly,
ATEs by averaging over these DIMs are computed. This procedure is very close to
the exact matching, except that here strata have to be found empirically, whereas in
the exact matching, they are prior knowledge.

The problem with this approach, however, is how to choose the appropriate
number of strata to be considered in the averaging of the DIMs over strata.
Fortunately, the balancing property (P1) of the propensity-score suggests a criterion
to set the right number of strata, based on the idea that, when propensity-score is
used to stratifying units, in each stratum a quasi-randomization should be produced.
In this case, the values assumed by the covariates x for treated and untreated in each
stratum should be approximately equal. Thus, the optimal number of strata (also
called “blocks”) are those satisfying the balancing property as defined above.
Following DW (1999) and Becker and Ichino (2002), the algorithm to produce
the appropriate number of strata entails the following steps:

1. Estimating the propensity-score:

» First, start with a parsimonious specification in order to estimate the
propensity-score for each individual, using the following function:

p(x) =Pr{D = 1|x} = G[f(x)] (2.83)

where G[-] can be probit, logit, or linear, and f(x) is a function of covariates
with linear and higher order terms.

» Second, order the units according to the estimated propensity-score (from the
lowest to the highest value).



2.3 Matching 81

2. Identify the number of strata by satisfying the balancing property:

» Third, stratify all observations into blocks such that in each block, the
estimated propensity-scores for the treated and the controls are not statisti-
cally different:

— Start with five blocks of equal score range {0-0.2, ..., 0.8—1}

— Test whether the means of the scores for the treated and the controls are
statistically different in each block (balancing of the propensity-score)

— If they are, increase the number of blocks and test again

— If not, proceed to the next step

e Fourth, test whether the balancing property holds in all strata for all
covariates:

— For each covariate, test whether the means for the treated and for the
controls are statistically different in all strata (balancing for covariates)

— If one covariate is not balanced in one block, split the block and test again
within each finer block

— If one covariate is not balanced in all blocks, modify the logit/probit/linear
estimation of the propensity-score adding more interaction and higher
order terms and then test the balancing property again.

3. Estimating ATEs:

« Fifth, once the balancing property is satisfied and, thus, the optimal number of
strata is found, then an (weighted) average of the DIM estimators calculated
in the final blocks provides an estimation of ATEs.

It is clear that the previous procedure approximates the exact matching by a
discretization of the propensity-score. Nonetheless, the large sample properties of
such an estimator, called stratification Matching, have yet to be proved. Stratifica-
tion Matching is, however, only one of many types of Matching estimators that can
be implemented. Later on in this chapter, we will discuss other types of Matching
that do not require a stratification procedure to be reliably used (although they need
to satisfy some balancing test too). In fact, in standard applications, the quasi-exact-
Matching procedure proposed by DW (1999) may be rather demanding, as it may
be difficult to assure balancing for all covariates within all strata.

Other Matching methods provide a less restrictive and, thus, easier way to obtain
reliable estimates of ATEs, without requiring to build blocks. A typical procedure
for estimating ATEs by these approaches takes the following form (see also
Fig. 2.6):

« First, choose a specification of the logit/probit and calculate the propensity-score
for each unit (both treated and untreated).

» Second, identify a specific type of Matching using some distance metric between
treated and untreated units and then match all units with the other units of
opposite treatment.
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Step 1
Define a set of observables x and a specification f(x) for the
model (possibly with interactions)

Step 2
Estimate p(x), the propensity score, by a probit (or logit)
regression of w on x for the all sample (both treated and
untreated units)

Step 3 no
Test the Balancing Property on x and p(x)

yes

Step 4
Estimate the ATET by Matching formulas

Fig. 2.6 Flow diagram of a Matching protocol

» Third, test the balancing property by comparing, for each x in x, the mean of the
treated with the mean of the controls selected by the specific Matching type used.

e Fourth, if the balancing is satisfied, then calculate ATEs with the Matching
formula specified in step 2, otherwise modify the probit/logit specification until
the balancing is satisfied.

In this case, one should apply Matching estimation just when for each x and for
p(x), no difference emerges in terms of the mean of treated and matched untreated
units. The advantage of this approach is that it does not require balancing for each
x in x and for p(x) in each stratum since, comparatively, it is “as if”” only one single
block was built. The limits reside in the use of a less sophisticated test of the
balancing property.

Of course, in practical situations, one generally modifies the propensity-score
specification by adding other variables and/or interactions, or—in the worst case—
by dropping a given x if unbalancing persists after several modifications, only if x is
not relevant to explain the outcome Y. Of course, evaluators must ponder and clarify
any choice made in order to attain balancing, as reaching balancing—at least at an
acceptable level of statistical significance—is neither easy nor sure. That is, how-
ever, probably a limit of Matching compared, for instance, to regression approaches
that do not need to comply with this property (although they assume a parametric
form of the imbalance).

It is clear that perfect balancing is impossible due to the random nature of the
data and even more importantly because the analyst rarely has access to the entire
set of confounders explaining the selection-into-program. Nevertheless, some diag-
nostic test to evaluate the quality of the Matching provided is useful.
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As a good place to start, one could assume that a good Matching on propensity-
score occurs when treated and selected untreated units are similar in terms of x and
a fortiori in term of p(x). Thus, if treated and control units are largely different in
terms of observables, the reached Matching is not sufficiently robust and it might be
questionable. Comparison of the estimated propensity-scores across treated and
controls therefore provides a useful diagnostic tool to evaluate how similar treated
subjects and controls are and how reliable the estimation strategy is. More pre-
cisely, it would be useful to:

e Calculate the frequency of matched untreated cases having a propensity-score
lower than the minimum or higher than the maximum of the propensity-scores of
the treated units. Preferably, one would hope that the range of variation of
propensity-scores is the same in both groups.

¢ Draw histograms and kernel densities of the estimated propensity-scores for the
treated and the controls, before and after Matching when possible. In case of
stratification Matching, one should use histogram bins corresponding to the
strata constructed for the estimation of propensity-scores. One hopes to get an
equal frequency of treated and untreated units in each bin.

2.3.8 Methods for Propensity-Score Matching

Previous considerations have led to prefer propensity-score Matching over
covariates Matching for at least three reasons: (1) conditioning on p(x) rather
than x does not undermine consistency and does not increase the variance (preci-
sion) of estimation; (2) working with p(x) is easier than working with x, as p(x) is a
single variable indexing the overall x. It is computationally preferable to work on
only one dimension rather than on k dimensions; (3) knowing p(x) may be inter-
esting per se, having a meaningful theoretical interpretation as it derives from the
behavioral selection rule adopted by the individuals within the program/experi-
ment. Thus, in the remainder of this chapter, we will focus mainly on the
propensity-score Matching approach.

According to the previous procedures, once the balancing property is statistically
satisfied to a certain appreciable extent, results from Matching can be reliably
accepted. In the literature, different types of Matching methods have been pro-
posed: one-to-one nearest-neighbor, multiple-nearest-neighbors, radius (with vari-
ous calipers), kernel, local linear, ridge, and stratification are among the most used
(Busso et al. 2009; Caliendo and Kopeinig 2008; Dehejia and Wahba 2002;
Heckman et al. 1998).

What is interesting is that all these methods can be retrieved as specific case of a
general Matching formula, as showed by Smith and Todd (2005). Indeed, in the
case of Matching, the imputation of the missing counterfactual follows this rule:
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Y; if D; =0
Yo = Z h(i’j)Yj ifD; =1
JEC(i)
and
. > k(i j)Y; ifD;=0
Yi=9 jech)
Y; ifD;, =1

where the unobserved outcome is estimated as an average of the observed outcomes
for the observations j chosen as matches for i in the opposite treatment group of i.
Given this, we have:

ATET :Ni 3 (Y,-—I?O,-) :NL Y (v Z)h(i,j)Y_,- (2.84)

Licip=1} jec(i

o - 1
ATENT = — Y (YU - Yl-> == 5 [ Sy, -vi| (289
Oie{D=0} N Oicp=0} \ jec(i)

ATE = (;Z:D,-) . ATET + <;]Z(1 —D,~)> . ATENT (2.86)

1

where C(i), called the “neighborhood” of i, is the set of indices j for the units
matched with unit 7, that is: C(i) = {;j: matched with i}; 0 < h(i, j) < 1 are weights to
apply to the single j matched with 7, and they generally increase as soon as j is closer
to i. Observe that i may be treated or untreated.

Different propensity-score Matching methods can be obtained by specifying
different forms of the weights /(i, j) and of the set C(i) as showed in Table 2.3
(Busso et al. 2009).> We briefly review these methods.

Nearest-neighbor Matching The classical nearest-neighbor Matching suggests to
match each treated unit with the closest untreated unit in the dataset, where
“closeness” is defined according to some distance metric over p(X) (or X in the

3 Notation in Table 2.3 means as follows: A,;; = p(x;) — p(x)); Kij = K(K,-,-/h) where K(-) is a
kernel function and /4 a bandwidth; Ll-" = Z/‘GCK’./.E;]/' ford=1,2; K,-j = p(x;) — ﬁ(xj), where
ﬁ(xj) = Z/ECP(Xj)Kij/ZjGCKij; ry is an adjustment factor suggested by Fan (1992), r¢ is an
adjustment factor suggested by Seifert and Gasser (2000), B is an interval that gives the bth stratum
for the stratification estimator, and B is the number of blocks used. For a Gaussian kernel, r;, =0

and for an Epanechnikov kernel, rL:I/N2. For a Gaussian kernel, rz=0.35 and for an
Epanechnikov kernel, rp =0.31.
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Table 2.3 Different Matching methods for estimating ATEs according to the specification of C(i)
and A(i, j)

Matching C(@) h(i,j)
method
One-nearest- {Singleton j : minj|| p; — pj||} |1
neighbor ‘
M-nearest- {FirstM j : min;|| p; — p,||} 5
neighbors '
Radius {llpi=pill <r} oo
Kernel All control units (C) Ky
ZjECK'/
Local-linear All control units (C) Ky,L,Z—K;,Z,' L)
2 N -
ZjEC (K,'jL[ - K,'jA ,‘jL,-l + IL)
Ridge All control units (C) K n A
ZjecKij Zjec (Kf/Azi./ + "Rh|Ai/|>
Stratification All control units (C) ZB 1p(x;) € I(b)]l[p(x )el(v)]
b=1 ! !
B
th] 1[p(x;) € 1(b)]

case of Matching on covariates). When pair-wise matching is allowed, we have the
so-called one-to-one nearest-neighbor Matching. Generally, however, each unit in a
given treatment status is matched with the closest M neighbors in the opposite
status, and an average of them is thus produced as counterfactual. Observe that
matching may be done with and without replacement. When replacement is
allowed, then the same unit can be used for more than one unit in the opposite
status; on the contrary, when matching is done without replacement, the same unit
can be used only once per each unit in the opposite status. As we will see, adopting
replacement can have an impact on the variance of the Matching estimator.

The procedure for implementing the one-to-one Matching with replacement is
rather simple. Taking the case of ATET as example, we have:

« First, for each treated unit i find the nearest control unit j using the Mahalanobis/
Euclidean distance:

d = \/(Xj - Xi)’Q*I (x; —x;) for Covariates Matching
dij = Hp(x j) — p(x,-)H for Propensity score Matching

where € is the covariance Matrix of the covariates x.

e Second, if the nearest control unit has already been used, use it again
(replacement).

e Third, drop the unmatched controlled units.

« Fourth, calculate ATEs applying formulas (2.84)—(2.86).
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In the case of ATET estimation, this algorithm delivers a set of N; pairs of
treated and control units in which control units may appear more than once. Of
course, if for each treated i we consider M nearest-neighbors, then the mean of their
outcomes is considered as the counterfactual outcome of i.

Radius(or caliper) Matching A limit of the nearest-neighbor Matching is that it
does not consider the “level” of the distance between matches. This means that it
could match pairs even when they are very different (as p; and p; are far). To avoid
this shortcoming, radius Matching is sometimes preferred (Cochran and Rubin
1973). It can be seen as a variant of the nearest-neighbor, trying to avoid the
occurrence of “bad” matches by imposing a threshold on the maximum distance
permitted between p; and p;. It means that two units are matched only when their
distance in absolute terms is lower than a tolerance limit, identified by a
prespecified caliper “r” as illustrated in Table 2.3. Those treated units with no
matches within the caliper are eliminated. Thus, radius Matching naturally imposes
a common support restriction. Of course, defining a priori which is the correct
caliper to use can be sometimes difficult. There exists a tension between a larger
caliper and a higher precision: using a larger caliper increases the sample size but
reduces the extent of similarity among units; using a smaller caliper increases the
similarity but reduces the sample size. Thus, the choice of the correct caliper should
take into account this trade-off. The steps for implementing radius Matching with
replacement to calculate ATEs are as follows:

« First, for each treated unit i identify all the control units whose x differs by less
than a given tolerance r (the caliper) chosen by the researcher.

» Second, allow for replacement of control units.

¢ Third, when a treated unit has no control closer than r, take the nearest control or
delete it.

¢ Fourth, estimate ATEs applying formulas (2.84)—(2.86).

Observe that if in the third step, the unmatched unit is deleted, then the algorithm
delivers a set of N;(r) <N, treated units and N¢(;, untreated units, some of which
are used more than once. On the contrary, when this unit is matched with its nearest
control instead of being eliminated, then the algorithm delivers a set of N(r) =N,
treated units.

According to (2.84)—(2.86), the ATEs formulas for both nearest-neighbor and
radius Matching estimators are easy to be calculated:



2.3 Matching 87

/ﬁE\TzNi S vi= > nG, )y,

11’6{D:1} JEC()
SO E D o
ze{D 1} ze{D 1} jeC(i)
IE{D 1} jE{D 0} \ie{D=1}
ze{D 1} jE{D 0}
ml"_ > hojY, Z Y;
jE{D 1} IE{D 0}

ATE = (}lvzi:a) . ATET + (11]2(1 - )) . ATENT

1

where h,; = ZiE{D:g}hij» ¢=1,0 and h(i, j)=1/Ncg, if j € C(i) and h;=0
otherwise.

Kernel and local linear Matching The kernel Matching estimator can be
interpreted as a particular version of the radius Matching in which every treated
unit is matched with a weighted average of all control units with weights that are
inversely proportional to the distance between the treated and the control units.
Formally, the kernel Matching estimator for ATET (for ATE and ATENT formulas
can be similarly derived) is given by:

— 1 K(p;— pi/h)
ATET = — E Yi— E Yo; (2.88)
Nlie{D:I} I je{D=0} . {ED :O}K(l’j — pi/h) ]
e{D=

In (2.88), K(-) is a kernel function (Gaussian or Epanechnikov, for instance) and
h the bandwidth parameter, which has the same role of the caliper in radius
Matching.

Local linear Matching is a variant of the kernel Matching, where a linear
component in the weights is introduced. As showed by Fan (1992), Local linear
Matching can have some advantages compared with standard kernel estimation
methods including, for instance, a faster rate of convergence close to boundary
points and greater robustness to different data design densities.

Stratification Matching As seen above, this method exploits directly the
propensity-score property P2 as stated in (2.45), i.e., independence conditional to



88 2 Methods Based on Selection on Observables

the propensity-score. If this assumption holds, then it suggests that within cells
(or blocks), identified by splitting the sample according to the values assumed by X,
the random assignment is restored. Thus, by construction, stratification Matching
exploits the fact that in each block, defined by a given splitting procedure, the
covariates are balanced and the assignment to treatment can be assumed as random
within each block. Using the propensity-score, hence, and letting b index the
B blocks defined over intervals of the propensity-score, the stratification Matching
assumes for ATEs the following formulas:

- B NP
ATE = ZATE,, : {W]
b=1
D;
ATET — 3 ATE, - o
b= ’ ZDt
i

Z (1-Dy)

B R
ATENT = 3 ATE, - |

=1 Z(l - D)

i

(2.89)

ATD . b b . .
where ATE, = (I/Nl)zl‘el(h)yi - (I/NO)Zjel(h)yf’ I(b) is the set of units
present in block b, N’l’ is the number of treated units in block b, Ng is the number
of control units in block b, and N* = N2 4+ N?. The number of blocks B are those

obtained when the balancing property is satisfied according to the procedure
described in Sect. 2.3.7.

2.3.9 Inference for Matching Methods

As suggested in previous sections, large sample properties for previous matching
methods show—generally speaking—that Matching(s) generally have no really
appealing asymptotic properties. We saw, for example, that the nearest-neighbor
Matching on k covariates is not in general N~'/? consistent and its asymptotic
Normal distribution contains a nonzero bias when k > 3.

However, when k = 1, namely when matching is done over just one variable, the
bias has an order of convergence equal to N~ ' that is faster than N~ '/?; in this case,
as N becomes larger, the bias vanishes and the nearest-neighbor Matching estimator
is N~'2 consistent and asymptotically normal (although it is not fully efficient).
Thus, if the nearest neighbor is used by calculating only the propensity-score,
clearly equivalent to the case in which k=1, we could rely on its “well-known”
asymptotic properties. The problem is that the propensity-score is a “generated
variable,” and this introduces an additional complication into the model, especially
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when the parametric hypothesis behind the probit or logit specification can be
questionable.

However, a recent paper by Abadie and Imbens (2012) derives the asymptotic
distribution of the nearest-neighbor Matching when the propensity-score is esti-
mated. Abadie and Imbens (2006, 2012) show that for Matching with replacement,
using the “true” propensity-score as the only matching variable, we have that:

VN (A’TTE - ATE) < N(0,0%) (2.90)

where 6 takes on the following form:

6> =E

(m(l,p(x)) - m(Op(x)) - ATE)2

ool 010) (o g~ (#9)))

+E [0'2(0, p(x)) (l%p(x)jtﬁ(l%p(x)— (1- p(x))))} (2.91)

with 6*(D, p(x)) = Var(Y | D = g, p(x) =p), g = 1,0. Suppose we are now interested
in estimating p(x) using a parametric model (logit or probit) F(x0), and let O,y be
the maximum likelihood estimation of this model. Then, it can be proved that:

VN(ATE - ATE) %N (0,0 - 1), ) (2.92)

where Ig,, is the Fisher information matrix, ¢ a vector depending on the joint
distribution of the outcome, the treatment, and the covariates. Since g, is positive
semi-definite, nearest-neighbor Matching on the estimated propensity-score has, in
large samples, a smaller asymptotic variance than matching on the true propensity-
score. As for ATET, a similar formula appears; although in this case, it can be
shown that the variance adjustment can be either positive or negative, so that no
dominance emerges between knowing and estimating the propensity-score.

In practical applications, however, one could use the procedure implemented by
Abadie et al. (2004) (from here on ADHI (2004)). This approach is a Stata
implementation of the nearest-neighbor Matching as developed by Abadie and
Imbens (2006) reviewed above, thus it is suitable for nearest-neighbor on
covariates, although one could also use it for nearest-neighbor on the propensity-
score, even if it does not consider adjustment for estimating the propensity-score.
This approach might be useful as it provides the corrected standard errors compared
to other implementations of the nearest-neighbor Matching (see later on).

The ADHI (2004) approach, starts by considering the set C,,(i) defined as the
“set of indices” for the units matched with unit i that are at least as close as the M-th
match:
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Cu(i)={j=1,....N:Dj=1-D,

x; —xil| < du(i)}

where d,,(i) is the distance between the covariates of the unit i, i.e. X;, and the
covariates of the M-th nearest match of i in the opposite treatment status. Then, they
define the following quantity®:

1
Zl{’ <o} e,y

ZI{IGCM {#CM )}2

with #Cy,(7) indicating the number of elements in C,,(7), as the number of times i is
used as a match for all observations j of the opposite treatment group, weighted by
the total number of matches for observation j. It is quite clear that potential
outcomes are estimated as follows:

Y, ifD; =0
= 1
Yo = 72 Y, ifD;=1
. J i
#Cu (1) 570

and

1
_ — N ¥, D=0
Y= #CM(I)J»GCZM:(,») !
Y; ifD; =1

where the unobserved outcome is estimated as an average of the observed outcomes
for the observations j chosen as matches for i in the opposite treatment group. The
authors prove that estimators for ATEs are in this case equal to:

I A R LY

ATE =S (Vi —TVo) =3 (2D~ 1){1 + Ku(i)}Y; 2.93

o (T=Fu) = 532 o)1+ Ku()} (2.93)

o

ATETZEIE{%;}(Yl—YOz) Z{D Ku(i)}Y;  (2.94)
N

ATENT = L 3 (?li—Yo,»):LZ{DiKM(i)—(l—Di)}Yi (2.95)
Oic{p=0} Noi=

As discussed in Sect. 2.3.3, previous estimators are asymptotically biased as exact

#Observe that: ZiKM( =N, Zlew 1 =N, and Z (D= 0} m (i) = No.
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matching is not possible. When k continuous covariates are considered, they will
have a bias term depending on the matching discrepancies (i.e., difference in
covariates between matched units and their matches) that will be of the order
N~k The bias-corrected matching estimator eliminates the bias by adjusting the
difference within the matches for the differences in their values of x. In practice, the
adjustment is carried out by estimating the following two OLS regressions weighted
by Ky(i) using only the data on the matched sample:

Hy(x) :/zo,l JFXEl,l
Ho(X) =Poo+xB10

and then taking the difference of these predictions for estimating the bias, so that:
Y,» if D;=0
Yo= Y+ mo(x) X; ifD; = 1
#CM Z { Ho ( .1) }

JjeCu(

and

- #CM Z {Y;+i(x;)—f,(x;)} ifD;=0

Y 1i = J€Cu(
Y, ifD; = 1

Observe that one only estimates a regression function over the controls to get Yoi
and only a regression function over the treated to get Yis.

As for the estimation of the variance for the population parameters of (2.93)—
(2.95), ADHI (2004) provide these formulas:

Var(A/TTE) ZJ%EN; {(?1,- ~Voi— AT/\E>2 + {wa(i) + 2Ky (i) —K’M(i)}aw, (x,-)]
(2.96)
Var(KT’E\T) _];%XN; {D;(? 1[—170i—ff—]3\T>z+(1 —Di){K,zt,,(i) —K;w(i)}EDi (xi)}
(2.97)

I 1 & o~ N2

Var(ATENT) - ]7%; [(1 ~ D)) (Y =Y — ATENT)
+D{ K3y i) = Koy i)}, ()] (2.98)

In order to estimate these variances, it is necessary to estimate consistently the
conditional variance of the outcomes, op,(x;) = Var(Y|D; = g, X; =x;) with



92 2 Methods Based on Selection on Observables

g=1,0, using the available sample. ADHI (2004) distinguish between two cases:
(1) the case in which this variance is constant for both the treatment and control
group and for all values of x (homoskedasticity) and (2) the case in which it is not
constant but may depend either on D or x (heteroskedasticity). The authors provide
the formulas for both cases under the assumption of a constant treatment effect (i.e.,
Y —Y;=a=constant).

It should be noted that it may be possible to use the previous formulas by
considering the propensity-score as unique covariate. In this case, k=1 and the
previous formulas would return unbiased estimations. Nevertheless, those formulas
do not take into account the fact that the propensity-score is estimated in the first
step, so that they are not in principle “fully correct.” As discussed, however, Abadie
and Imbens (2012) have provided the correct formulas and estimation of the
variances for the nearest-neighbor Matching when k=1 and matching is done on
a parametric estimation of the propensity-score. A Stata implementation for the
latter case is available using the command teffects psmatch.

Although these important results, in many applications variances are still calcu-
lated using software which do not consider previous formulas. Normally, an approx-
imation is assumed treating weights as if they are fixed scalars, so that standard results
from Difference-in-means (DIM) estimation under randomization is exploited
(although it might be incorrect). Starting from (2.84) to (2.86), this approximation
assumes that if (1) CMI holds, (2) overlapping holds, and (3) {Y7;; x;} are i.i.d., then
previous Matching estimators are consistent statistics for ATEs with a normal
asymptotic distribution having mean zero and variance equal to:

_ N\ 2 _ No\ 2 _
Var(ATE) - (Wl) -Var(ATET) n (ﬁ) - Var (ATENT)

.\ 1
Var(ATET ) =z > VarlVi)+ oz > ki Var(¥o)

lie{D=1} 1 je{p=0}
1
N101+Go Z /’L —N01+N200 Z h
Jje{D=0} je{D=0}
1
—62 1+— > h; (2.99)
jE{D 0}
Var(ml") Z ho,Var(Y Z Var(Y;)
OJE{D 1} NOIE{D 0}
D D e oD DI
NO je{b=1} 7 No 0 0je(p=1} !

where we have assumed that 6, = 67 = o, since observations are i.i.d. (otherwise,
treatment group heteroskedasticity can also be assumed and in this case o} # o).
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Previous variances are thus used to perform usual inference tests on ATEs, once a
common sample estimation of ¢ (or o; and oy in the heteroskedastic case) is
computed and plugged-into (2.99).

As for kernel Matching, under specific conditions showed by HIT (1998) on the
bandwidth and on the kernel function used, the estimator in (2.88) is a consistent
estimation of ATET (and ATE and ATENT) and thus of the counterfactual out-
comes. In particular, one needs to assume that K(-) has a zero mean and integrates to
one and that 4 converges to zero as N and N-k go to infinity. Available software uses
bootstrap techniques to obtain standard errors, although it has however been shown
that bootstrapping may not be the correct technique to implement in the case of
Matching (Abadie and Imbens 2008).

In the case of the stratification Matching, by assuming once again independence
of outcomes across units (i.i.d.), the variance of the stratification Matching of ATEs
is easily shown to be equal to:

v (A/TE\T> ! +§B:N{)N{) (2.100)
ar =—I|o —— .
N[ = NiNg ’
I 1 | & N2ND
Var(ATENT) — |5 oo, 4 2.101
Vol Nanp (2100

Once again, this is only an approximation of the true variance, as weights should not
be considered as fixed. Unfortunately, to date, large sample properties for this
matching estimator have to be provided yet. It is, however, useful to consider the
previous formulas, as they emphasize that a penalty arises when an unequal number
of treated and control units appears in a given stratum; if there is a stratum in which
the number of controls is smaller than the number of treated, the variance increases,
and the loss of efficiency is larger, the larger is the fraction of treated in that stratum.
Observe that, if N f’ = N(’]’ , then:

1 2
Var (ATET) =yl ool =50
\ (A/T\ET) S
ar =—|o1 + 00 =—0
NO 1 0 N()

— 2
Var (ATE) — 4
N

Observe, finally, that one could obtain the outcomes within each stratum as
predicted values from the estimation of linear (or more articulated) functions of
the propensity-score. DW (1999) illustrated, however, that the gain from using this
approach does not appear to be significant.
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2.3.10 Assessing the Reliability of CMI by Sensitivity
Analysis

Generally speaking, the aim of sensitivity analysis is that of assessing whether
results obtained by applying a given estimation method are sufficiently reliable
when the main assumptions under which the results are drawn may not be fully
satisfied (Saltelli et al. 2008).

For observational studies invoking Conditional (Mean) Independence as in the
case of Matching, sensitivity analysis is an important post-estimation practice for
checking the robustness of treatment effects estimation when such an assumption
can be questionable.

Rosenbaum (2002, 2005) provides a powerful sensitivity analysis test when
Matching is used in observational studies. The aim of this test is that of assessing
the reliability of ATEs estimations when unobservable selection (and thus “hidden
bias”) might be present.’

Suppose we have a set of § matched pairs derived from one-to-one nearest-
neighbor Matching satisfying the balancing property. As such, two units (one
treated and one untreated) forming a single matched pair are indistinguishable in
terms of observables x, and if no hidden bias is at work, they must have the same
probability to be treated: in fact, the intent of propensity-score Matching is exactly
that of matching units with the same probability to be treated, given x. Neverthe-
less, if selection-into-program was due also to, let’s say, one additional non-
observable variable v, then two matched units should not have the same probability
to be treated although balanced on observable variables.

By assuming a logistic distribution, two matching units i and j, having x; =x;,
have the following odds ratio:

% pi(l=p;)  exp(xip+yv)

o pil=p)  exp(x;B+yv))

=exp{r(vi—v;)} (2.102)

showing that, as soon as v; # v;, the two probabilities to be treated are different,
actual balancing does not hold and a hidden bias arises. Suppose that v; and v; take
values in the interval [0; 1] and that y > 0. This implies that —1 <v; —v; <1, so that
the odds ratio is in turn bounded this way:

1. pi(l = p))

< e 2.103
'~ pi(1—p) ( )

Q

3 Stata implementations to deal with sensitivity analysis in observational studies under observable
selection can be found in: Nannicini (2007), Becker and Caliendo (2007), DiPrete and Gangl
(2004), and Gangl (2004).
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where odds are equal only when y =0, that is when no hidden bias is present
because unobservables have no effect on selection. Thus, given a positive value of
y, we can depict a situation in which the odds ratio is maximum (the best case) and
one in which it is minimum (the worst case). This reflects the uncertainty due to the
presence of an unobservable confounder. By putting I' = ¢”, we can also say that in
the presence of a potential hidden bias, one unit has an odds of treatment that is up
to I'>1 times greater than the odds of another unit. When randomization is
allowed, however, the odds ratio is equal to one by definition and I'=1.

Rosenbaum proposes a sensitivity analysis test based on the Wilcoxon’s signed
rank statistic. The procedure to calculate this statistic is quite straightforward. Con-
sider S matched pairs, with s =1, .. ., S, where each pair is formed by one treated and
one untreated unit. For each pair, calculate the treated-minus-control difference (DIM)
in outcomes and call it Dy, thus getting the absolute differences |D,l. Then, eliminate
from the sample any absolute difference score taking value zero, thereby yielding a set
of §" nonzero absolute differences, where §' < S becomes the new sample size. Assign
ranks R, ranging from 1 to S’ to each 1Dy, so that the smallest absolute difference gets
rank 1 and the largest one rank §'. If ties occur, assign the average rank. The Wilcoxon
test statistic W is obtained as the sum of the positive ranks:

S/
W = ZRj (2.104)
s=1

The Wilcoxon test statistic W varies from a minimum of O—where all the observed
differences are negative—to a maximum of §'(S" — 1)/2—where all the observed
difference scores are positive. For a quite large randomized experiment and under
the null hypothesis of equality in the two (treated and untreated) populations’
medians (i.e., no-effect assumption), the W statistic is approximately normal dis-
tributed with mean equal to S’(S’ — 1)/4 and variance S'(S'+ 1)(2S’ + 1)/24. If the
null hypothesis is true, the test statistic W should take on a value approximately
close to its mean. Rosenbaum, however, shows that for a quite large observational
study, again under the null hypothesis of equality in the populations’ medians, the
distribution of W is approximately bounded between two normal distributions with
the following expectations:

fy = AS (S’ + 1)/2
po = (1 2)S (S’ + 1)/2
and same variance:
o2 = A(1 - 2)S (S’ + 1) (25’ + 1)/6

where A =T7/(1+1). It is immediate to see that in the randomization case I'=1, the
two formulas become the same and are equal to the case of randomized experiment.
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Different levels of I' (and thus of 1) modify the p-value of the W-test, thus
producing uncertainty in the results. For I" > 2, the p-value is bounded between a
minimum and a maximum and one can use the upper bound to see up to which value
of I the usual 5 % significance is maintained in the experiment.

Suppose we have implemented a one-to-one Matching and the calculated treat-
ment effect is significant. Suppose we then test the robustness of this finding via the
W-test and discover that the 5 % significance of the test is attained up to a value of
I'=>5. In this case, we can then trust our initial finding of a significant effect, as such
a value of I is very high and thus unlikely: it should mean that the probability to be
treated is five times higher for one unit than for another one, a situation that should
be really rare in reality. If, on the contrary, for a value of I" equal, let’s say, to 1.2,
the p-value upper bound of W is higher than 0.05, thus very slight departures from
perfect randomization produce no significant results. In this case, we should be
really careful in coming to a positive effect of the treatment.

2.3.11 Assessing Overlap

As suggested several times in previous sections, a good overlap of treated and
control units over the covariates’ support is required in order to obtain reliable
estimates for ATEs. A question arises, however, how can we assess the goodness of
overlap in a given dataset? Imbens and Rubin (forthcoming) suggest three types of
overlap measures: (1) standardized difference in averages; (2) logarithm of the ratio
of standard deviations; and (3) Frequency coverage.

(1) Standardized difference in averages
Consider a covariate x. The formula for computing standardized difference
in averages is:
X1 — Xo

(st +55)/2

where the numerator contains the difference of the means of x in the treated
and control group and the denominator the squared root of the unweighted
mean of the two variances. This measure is scale-free (it does not depend on
the unit of measure of x), but it has the limit to refer to a specific moment of the
distribution, the average.

(i) Logarithm of the ratio of standard deviations
In addition to the previous approach, one may use a measure of the
differences in the dispersion of the treated and control distribution over x, by
computing the logarithm of the ratio of standard deviations:

In(sy) — In(so)

This approach is straightforward, but it fails to take into account the overall
shape of the two distributions.



97

2.3 Matching

7\ Density function of treated

/ \
Density function of controls

Overlapping area

/
/ \\
/
! \\
/
i N
! AN
I ~
[ N
/
/
/
/ / ~
~
/ / ~o
F,"(0.025) F,"(0.975) x

Overlap

Fig. 2.7 An example of frequency coverage measure

(iii) Frequency coverage
scope. A more reliable way to assess overlap is that of computing the share of
the treated (control) units taking covariate values that are near the center of the
distribution of the covariate values of the controls (treated). This can be

achieved for either the treated or control units by employing the following

Local measures described above are useful but somewhat limited in their

formulas:
2% = F1{F;'(0.975)} — F1{F,'(0.025)
0% = Fo{F'(0.975)} — Fo{F;'(0.025)
where F;(x) and F;(x) are the cumulative distribution functions for treated and
untreated units, respectively; F|'(a) and Fy'(a) are the a-th quintile of the
995 and 70 are the treated and

treated and control units distribution, and =
untreated units’ overlapping areas corresponding to a 95 % probability mass.

Figure 2.7 (referring just to z9-*%) shows why previous measures can assess the
degree of data overlap. The overlapping area drawn in the middle contains just a
small share of the treated units’ frequency. Most of the treated individuals have a
value of x laying on the left of Fy 1(0.025), thus implying that a very large number

of treated cannot find good control matches in that interval. As such, this figure
will be low and overlap for treated units weak. However, the

entails that z9-°
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opposite may happen for the control units, as in the same dataset, 7)°°> can be

sufficiently large. In general, we have that:

0<% <095 g=1,0

In the case of random assignment, one should have that 7[2'95 =~ (.95, so that the
higher this probability, the higher the overlap and the more reliable the ATEs
estimation. An advantage of the frequency coverage measures is that of offering
two distinct overlapping measures, one for treated and one for untreated units. A
further useful tool for assessing overlap is the inspection and comparison of the
various quintiles, plotting jointly the two distributions and doing a Kolmogorov—
Smirnov test for the equality of distributions.

In a multivariate context, when many covariates are considered, we need,
however, a synthetic measure of overlap. An overall summary measure of the
difference in location of the two distributions may be:

V& = %0) (21 +%0)/2] (%1 — %)

where X; and Xy are M x 1 vectors of averages for the M covariates, and X; and
X, are corresponding covariance matrices.

In a multivariate case, assessing overlap using the propensity-score, taken as a
synthesis of the entire set of covariates, can also be a suitable and proper strategy.
Instead of considering M dimensions, one can consider just one dimension, with
significant advantages. Indeed, it is easy to see that: (1) any differences in the
covariate distributions by treatment status involve variation in the propensity-score,
and (2) a change in the propensity-score is equivalent to nonzero differences in
average propensity-score values by treatment status. This is sufficient to allow for
assessing overlap with one of the previous univariate method using the propensity-
score as reference covariate.

2.3.12 Coarsened-Exact Matching

In this section, we discuss an alternative approach to standard Matching models,
known as coarsened exact Matching (CEM), proposed by Blackwell et al. (2009).
The basic idea behind CEM is that of allowing the analyst to choose ex ante the
degree of the balancing of covariates, thus avoiding the necessity for its ex post
assessment and repeatedly reestimating the propensity-score until balancing is
satisfied. CEM aims to overcome such a laborious procedure.

We saw that, when covariates are continuous or discrete with high dimension-
ality, exact Matching is infeasible. One could, however, discretize continuous
variables, as well as reduce the number of values that a discrete covariate can
take. Such a procedure, which the authors call “coarsening mechanism,” enables
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one to build a tractable number of cells by: crossing all covariates’ values, deleting
cells that do not contain at least one treated and one control unit, and estimating
ATEs on the remaining cells (over a reduced number of either treated or untreated
units). More specifically, the CEM algorithm is as follows:

1. First, start with the covariates x and generate a copy, which we indicate by x°.

2. Second, “coarsen” x° according to user-defined cut points (the CEM’s automatic
binning algorithm can also be exploited).

3. Third, produce cells by crossing all values of x° and place each observation in its
corresponding cell.

4. Fourth, drop any observation whose cell does not contain at least one treated and
one control unit.

5. Fifth, estimate ATEs by stratification Matching on the remaining cells (or,
equivalently, run a WLS regression of ¥ on D using the remaining cells’
weights).

It is clear that the CEM approach does not overcome the typical trade-off arising
in Matching methods “with pruning”: indeed, if one increases the level of coars-
ening (i.e., he chooses larger intervals), this will result in a lower number of cells.
With fewer cells, however, it is highly more likely to observe observations with
very diverse covariates. In other words, an increasing degree of coarsening is
generally accompanied by higher imbalance in the covariates. In the opposite
case, we have that reducing coarsening increases balancing, but it increases also
the likelihood of finding cells which do not contain at least one treated and one
control unit, thereby reducing sample size and estimation precision.

To assess CEM quality, Iacus et al. (2012) suggest to examine a specific measure
of (global) imbalance:

1 B
Li(f,8) =5 1fs = %l (2.105)
b=1

where b indexes the generic cell; B is the number of cells produced by coarsening; f,
and g, are the relative frequencies for the treated and control units within cell b,
respectively. It is easy to see that a value of L; equal to zero signals perfect global
balance; vice versa, the larger the L, is, the larger the extent of imbalance, until
reaching a maximum of one which occurs when there is complete separation of
treated and control units in each cell.

The authors suggest to take the value of L; obtained after coarsening (but
without trimming) as a benchmark to be compared with the value of L; obtained
when observations with cells not containing at least one treated and one control unit
are dropped (trimming). By calling the first L; yymch and the second Ly paech, We
expect that CEM has worked well if:

Ll,match S Ll,unmlach

i.e., if some improvement in balancing occurs. Of course, both values of L; in the
previous inequality will depend on the cut points chosen. Such a choice—similar to



100 2 Methods Based on Selection on Observables

fixing the caliper in the radius Marching—can be either theoretically or heuristi-
cally driven.

In conclusion, in order to obtain reliable estimates from CEM, one needs to find
a good compromise between the reduction of the imbalance achieved using CEM
on the one hand and the size of the sample obtained by deleting nonmatched cells,
on the other hand.

It is worthwhile noting that the ATEs’ standard errors obtained in the last-step
WLS regression take weights as fixed numbers, while they are subject to sampling
randomness. This implies—as in previous Matching methods—that the CEM
standard errors are not fully correct and should be taken just as approximations of
the actual ones.

2.4 Reweighting

Reweighting represents a large class of estimators of ATEs and is a powerful
approach to estimate (binary) treatment effects in a nonexperimental setting when
units’ nonrandom assignment to treatment is due to observable selection. As such,
Reweighting can be seen as an alternative option to previously discussed estimation
approaches, although we will illustrate that, in many regards, previous methods and
Reweighting are strictly linked.

Early developments and applications of Reweighting date back to the 1950s with
the works of Daniel G. Horvitz and Donovan J. Thompson who derived an inverse-
probability weighting estimator of totals and means for accounting for different
proportions of observations within strata in finite populations. As will be shown,
such an estimator can be also employed in program evaluation econometrics
without substantial changes.

This section provides an introduction to this subject. We set out by showing the
link between Reweighting and Weighted least squares (WLS) in estimating ATE:;
subsequently, we discuss a specific Reweighting estimator, the one based on the
propensity-score inverse-probability; Finally, we show how to obtain correct ana-
lytical standard errors for such an estimator when it is assumed that the propensity-
score is correctly specified.

2.4.1 Reweighting and Weighted Least Squares

The idea behind the reweighting estimation procedure is quite straightforward,
when the treatment is not randomly assigned, we expect that the treated and
untreated units present very different distributions of their observable characteris-
tics. As seen in Chap. 1, this may happen either because of the units’ self-selection
into the experiment or because the selection process is operated by an external
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entity (such as, for instance, a public agency). Many examples of such a situation
can be drawn both from socioeconomic and epidemiological contexts.

If this is the case, the distribution of the variables feeding into x could be strongly
unbalanced. To reestablish some balance in the covariates’ distributions, a suitable
way could be that of weighting the observations by suitable weights and then using a
Weighted least squares (WLS) framework to estimate the ATEs. As such, the WLS
framework can also be seen as a generalized approach to ATEs estimation under
selection on observables. Indeed, it can be proved that both Matching and
Reweighting estimators can be retrieved as the coefficient of the treatment indicator
D in a weighted regression, where different weighting functions are considered.

A general formula for the Reweighting estimator of ATEs takes the following
form:

_ 1 N 1 N
ATE =—> w1(i) -Di-Yi——S (1-D,)-ao(j)-Y; 2.106
Nl; 1 (i) No;( .1) o(]) J ( )
1 1 &
ATET =—> DY, ——> (1-D,)-o(j)-Y; 2.107
Nl; i i NO;( ./) (J) J ( )
S | _ _
ATENT = ]V(N -ATE — N, -ATET) (2.108)
0

where the weights w(-) and (") in previous equations add to one in specific cases
only. As for ATET, when the weights add to one, we have that:

1 N

[702(1—1)]-) co(j) =1

J=1

The Reweighting estimator of ATET can be obtained as the coefficient of the binary
treatment D in a regression of the outcome Y on a constant and D using:

W=D+(1-D) o)

as weights. Likewise, if the weights wo(-) and w(-) add to one, that is:
1 N

—— (I—Dj)a)o(J)Zl and —ZD,a)l(j):l

No4

then it can be showed that the Reweighting estimation of ATE can be obtained by
the same previous regression with weights equal to:

W=D w(-)+(1—-D) wo()

If weights do not add to one, then one can retrieve the estimations of ATEs by
directly implementing the previous formulas. The advantage of relying on a WLS
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framework is that standard errors for the Reweighting estimates of ATEs are
directly obtained by the regression analysis. Interestingly, one can notice that the
usual DIM estimator of standard statistics can be interpreted as a Reweighting
estimator where w(j) =1, that is:

— 1 e
DM =—» D;- Y, —— 1-D;)-Y;
Nl,':] NO;( .l) J

where, of course, (l/Nl)Z:il D; = (I/N())z:]i\[:1 (1-D;) =1, and the DIM is

simply obtained by an OLS regression of Y on D.

It appears worthwhile briefly commenting on the contents of Table 2.4 illustrat-
ing a number of weighting functions generally used in applications. The IPW, is a
popular weighting function provided by Rosenbaum and Rubin (1983) and consid-
ered in Dehejia and Wahba (1999), Wooldridge (2010), and Hirano et al. (2003).
When referring to Reweighting estimators, many scholars refer to IPW,. This
estimator has a number of interesting properties which will be discussed in more
depth in the following section. The drawback of IPW| is that its weights do not add
to one, thus WLS regression is not feasible. Johnston and DiNardo (1996) and
Imbens (2004) have therefore proposed the IPW, function which, by rescaling
weights in IPW, so to add to one, allows one to estimate ATEs by WLS and thus
obtain standard errors. Finally, weights for IPW3 have been derived by Lunceford
and Davidian (2004), but they are rarely used in the evaluation literature.

Interestingly, Matching estimators of ATEs can be seen as peculiar Reweighting
estimators, and thus performed by WLS (Busso et al. 2009). By taking the case of
ATET, in fact, we can show that:

— 1 ..
ATETMatching = ]\T Z Y, — Z h(la /)Y]
Liclp=1} Jjec(i)

1 N N 1 N
= N2 DY ; (1~ Dj)YWI;D,-h(i, )
1 & 1 —
= ]VH:Z] Diy; — ]702 (1 - Dj) Yja)(j) = ATET Reweighting

J=1

where o(j) = (NO/NI)ZZ1 D;h(i, j) are reweighting factors, C(7) is the untreated
units’ neighborhood for the treated unit i, and /(i,j) are matching weights that—
once appropriately specified—produce different types of Matching methods. A
valuable aspect of this version of the Matching estimator is that it can be directly
estimated by WLS, as we can show that:
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1 N

N (1-Dj)w(j) = NLOZN: {(1 -D))

J=1 J=1

x—‘jzl DihG, j)] }

SREADY 'y
=_— D; i, )|y =—> Di=1
N jec(d) N
since Zjec(i)h(i, j)=1 being hG, j)=1/N¢i so that Zjec(i)h(i, j)=

(/Ne) Y ! = Wew/Ne) = 1.

In the case of kernel Matching, a similar result can be achieved, since in that
case:

N

N
. No .. i:lDiKij/ZileiKij p
C()(j) :FZDth(lvj) = N N /1 .
Li=t Zi:l (1 _D')Kif/ZileiKij —P

Thus, a possible Reweighting estimation protocol for ATET is as follows:

1. Estimate the propensity-score (based on x) by a logit or a probit to obtain the
predicated probability p;.
2. Given a chosen specification of w(-), build regression weights as:

W,‘ ZD,‘—F (1 —D,‘) a)(l)

3. If weights satisfy (at least approximately) the property of summing to one, run a
WLS regression of the outcome Y; on a constant and D; using W, as regression
weights.

4. The coefficient of the binary treatment D in the previous regression is a consis-
tent estimation of ATET, provided that the propensity-score is correctly
specified.

This Reweighting procedure is a generalization of the popular inverse-probabil-
ity regression (Robins et al. 2000; Brunell and Dinardo 2004), and the intuitive idea
is that of penalizing (advantaging) treated units with higher (lower) probability to
be treated and advantaging (penalizing) untreated units with higher (lower) prob-
ability to be treated, thus rendering the two groups as similar as possible. In this
simplistic case, the previous procedure becomes:

1. Estimate the propensity-score (based on x) by a logit or a probit getting the
predicated probability p;;

2. Build weights as 1/p; for the treated observations, and 1/(1 — p;) for the untreated
observations.

3. Calculate the ATE simply by a comparison of the weighted means of the two
groups (this is what indeed the weighted regression does).
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For each observation, the weight eliminates a component induced by the extent
of the nonrandom assignment to the program (a confounding element).

Compared with previous approaches, Reweighting estimators have the very
attractive advantage that they do not require one to estimate the regression func-
tions m(x) and m;(x), but they provide estimations of ATEs only by relying on an
estimation of p(x), the propensity-score. This advantage may also be somewhat a
limitation, as Reweighting estimators are very sensitive to the specification of the
propensity-score, so that measurement errors in this specification could produce
severe bias.

As such, this approach relies on the assumption that the propensity-score spec-
ification is correctly estimated. This means that the Reweighting approach can be
inconsistent either if the specification of the explanatory variables is incorrect or the
parametric probit/logit approach does not properly explain the conditional proba-
bility of becoming treated.

Due to its popularity, the next section provides a more detailed treatment of
Reweighting under IPW;, showing how to obtain correct standard errors. This
seems relevant as weights for IPW; do not add to one.

2.4.2 Reweighting on the Propensity-Score Inverse-Probability

In what follows, we focus on type 1 Reweighting on propensity-score inverse-
probability (IPW) as proposed in the seminal paper by Rosenbaum and Rubin
(1983). In this case, we start with the following assumptions about the data
generating process (DGP)®:

Yy = g(x) + eo, E(e) =0
Yo = gi(x) + e1. E(e;) =0
Y ZDY1+Y0(1—D)

CMI

0<px)<1

X exogenous

(2.109)

where Y, and Y, are the unit’s outcomes when it is treated and untreated, respec-
tively; g;(x) and go(x) are the unit’s reaction functions to the confounder x when the
unit is, respectively, treated and untreated; ey and e, are two errors with uncondi-
tional zero mean; X is a set of observable exogenous confounding variables assumed
to drive the nonrandom assignment into treatment. It can be proved that, when
assumptions in (2.109) hold, then:

S As reminder, we consider the following version of the Law of Iterated Expectations: LIEI:
E,(Y) = uy=E4[E, (¥/x)]; LIE2: E (Y | X) = u5(x) = E, [E, (Y I X, 2) IX] = E, [y (X, 2) | x]; LIE3: E
(W =p1 - EIx))+p2 ECh1x0)+- - ~+py - E(h 1 xp).
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_ [D - p(x)]Y
ATE = E{ip(x) : _p(x)]} (2.110)
s
ATET = E{p(D e p(x)]} (2.111)
_ D — p(x)]Y
ATENT = E{p(D—O)p(x)]} (2.112)

To this purpose, observe first thatt DY=D[DY,+Y, (1—-D)]=
DY, + DYy — D*Yo=DY,, since D> =D. Thus:

-] = llnel
il o e

o
_ E{Dg } — a0 B0 | =50 E(Dlx)
(

p(x p(x)

- p(x) =g (x) (2.113)
since: E(D | x) = p(x). Similarly, we can show that:

a-Dy 1 _ .«
B ] =5 24

Combining (2.113) and (2.114), we have that:

ATE(x) = g,(x) — go(x) = E{%w B E[ él_—_pD(); |X}
[ D —py
- [p(X)[l —p(x)]} } (2.115)

provided that 0 < p(x) < 1. In order to obtain the ATE, it is sufficient to take the
expectation over X:

_ O — D—p]Y 1 _g[ [P-pX]Y
ATE = E{ATE(x)} = E:E L(x)[l el ] E L(x)[l - p(xﬂ (2.116)

It is interesting to show that the previous formula for ATE is equal to the famous
Horvitz and Thompson (1952) estimator of the population mean. Indeed:
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Table 2.5 Dataset coming  jq Y D Inclusion probability
from a nonexperimental
statistical setting 1 Y1 1 7 =pi(X)

2 Y2 0 7 =1-ps(x)

3 3 1 73 =p3(x)

4 Ya 1 74 =Ppa(X)

5 Js 0 75 =1-ps(x)

(D pY ] [DY — p(x)¥ + [p(x)DY — p(x)DY]
”m‘Epum—pwj‘E[ P — p() }
Gl DY DY p) Y }
PO —p(] T P = p@)] P — p()]

DY DY Y DY —-Y DY

J—p®+pufw—paﬂ L—mw*mw]

[ DY Y - DY DY 1-D)Y DY 1-D)Y
| =25~ =E Lol ~Eli= o)

lp(x) 1-px)] "~ [px) 1-p(x) p(x) — p(x)

Thus, by summing, we obtain:
DY 1-D)Y
ATE =E [—] —E [u] (2.117)
p(x) 1 p(x)
whose sample equivalent is:
N

— 1L DY, K(a-D)y;
ATE = =% —Z( ) (2.118)
N,-:1 P(X,‘) i—1 1 - pi(x)

This can be easily seen through the following example. Suppose we have a dataset
with variables {Y, D, x} as described in Table 2.5.
If we define the inclusion probability of unit i into the sample § as:

n=Pr{i e S}

it is immediate to see that:

e For treated units, the inclusion probability is equal to the propensity-score:
p(D=11x);

e For untreated units, the inclusion probability is equal to: p(D=0 | x)=1—
pD=11x).

Thus, applying formula (2.118), we have:
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s 1[ Y1 V3 Y4 1 Y2 Vs
ATE =- — =
5 o) T 1= pa) 1= pixs)

:p(xl) p(x3)  p(xa)] 5 p(xs
=5 :p<y§1> ot ) T T —y;fm)}
:é_myil) T T pe) T T —ﬁ(xg}
:é +ﬂ2+ + L+ ] ijr’ (2.119)

Thus, we have proved that:

ATE = fiyr Z;yz (2.120)

The inverse-probability Reweighting estimation of ATE is thus equivalent to the

Horvitz—Thompson estimator. As said previously, in sampling theory, it is a general

method for estimating the total and mean of finite populations when samples are

drawn without replacement and units have unequal selection probabilities.
Similarly, we can also calculate the ATET by considering that:

[D — p(x)]Y = [D — p(x)]
Yo + D-(Y1 =Yo) =D — p(x)- Yo+ D -D — p(x)]
(Y1 —Yy)
— D p(x)] - Yo+ D-[1— p(x)] - (Y1 — ¥o)

since D? = D. Thus, dividing the previous expression by [1 — p(x)]:

[D - pX]Y _ [D - p(¥)]¥o
[1 = p(x)] [1 = p(x)]

Consider now the quantity [D — p(x)]Y, in the RHS of (2.121). We have that:

+D(Y, —Yy) (2.121)

[D — p(x)]Yo = E{[D — p(x)]Yo|x} = E(E{[D — p(x)] )
=E([D - p(x)] - ) =E(ID - 'E{YOIXHX)
=E([D — p(x)] - g(x)| )—go -E([D — p(x)]|x)

= g(®) - [E(D[x) — E(p()[x)] = g(x) - [p () p(x)] = 0.

Taking relation (2.121) and applying the expectation conditional on x, we get:
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Wx = WX vk
E{ 1— p(x)] | } E{ ) ] }—i—E{D(Yl Yo)|x}

=E{D(Y, — Yo)|x}

since we have shown that [D — p(x)]Y, is zero. By LIE, we obtain that:

D— Pl |\ _pfID= P
{&E{u—p@n|} E{u—p&n}
EE{D(Y| - Yo)|x}  =E{D(Y,-Yo)}

In other words:

E{W} —E{D(Y, - Y)}

[1 = p(x)]

From LIE we know that if x is a generic discrete variable assuming values
x=(xy, X, ..., Xpy) with probabilities p = (py, p2, - .. , pm), then E(h)=p, - E(h |
xX1)+p2 - E(h | xp)+- - -+puy - E(h | xp7). Thus, by assuming h=D(Y| —Y,), we
obtain that: E(h)=E[D(Y; - Yy)l=pD=1) - E[DX;—-Yy | D=1]+pD=0) -
E[D(Y,—-Yy)|ID=0]=pD=1) E[(Y;—Yp) |D=1]=p(D=1) - ATET. Thus:

[D— p(x)IY\ _ YV = (D= 1)
E{ T p0a)] }E{D(Y1 Yo)} = p(D = 1) - ATET

proving that:

D~ ¥
AT = S ) 212

Recall that: ATE =p(D =1)-ATET + p(D = 0)-ATENT, thus:

ATE  p(D=1)
ATENTl_p( :[8) ’Zl))]Y: 0)ATET = .
E —PX — —PX _
p@Z@%M@%m®]waMD:m%m®ﬁ
_ 1 E{ [D — p(x)]Y _[DP(X)]Y}
pD=0) | pX)[l—px)] [1-px)]
_ 1 E{[D - p(X)]Y — p(x)[D — P(X)]Y} _
p(D=0) p(x)[1 — p(x)]
1 E{w—pwwh—qu LD peor|
p(D =0 p(x)[1 — p(x)] p(D =0) p(x)]
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This implies, finally, that:

ATENT = E{pg—[{m} (2.123)

2.4.3 Sample Estimation and Standard Errors for ATEs

Assuming that the propensity-score is correctly specified, we can estimate previous
parameters simply by using the “sample equivalent” of the population parameters,
that is:

— IZN D; — B (x;))Y;
= _ L ¢ [Di — p (x))]Y;
ATET = §i:1 SO =D - p.0] (2.125)

(2.126)

The estimation is a two-step procedure: (1) first, estimate the propensity-score p(X;)
getting p (x;); (2) second, substitute p (x;) into the formulas to get the parameter
estimation. Observe that consistency is guaranteed by the fact that these estimators
are M-estimators. In order to obtain the standard errors for these estimations, we
exploit the fact that the first step is an ML-estimation and the second step an
M-estimation. In our case, the first step is an ML based on logit or probit, and the
second step is a standard M-estimator. In such a case, Wooldridge (2007, 2010,
pp. 922-924) has proposed a straightforward procedure to estimate standard errors,
provided that the propensity-score is correctly specified. We briefly illustrate the
Wooldridge’s procedure and formulas for obtaining these (analytical) standard
erTors.

(i) Standard errors estimation for ATE
First: define the estimated ML score of the first step (probit or logit), which is
by definition equal to:

[Vyp (xi,7)] - [Di — P (x:,7)]
p(xi, 01— p(xi,7)]

a\i:a(thh?): (2127)

Observe that d is a row vector of the R — 1 parameters y and V,p (X;,7) is the
gradient of the function p(Xx, ¥).
Second: define the generic estimated summand of ATE as:
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[D; — p (x;)]Y;

ki=— il (2.128)
P (x;) [1 - D (Xi)}
Third: calculate the OLS residuals from this regression:

k; on (1, &;) with i=1,...,N (2.129)
and call them é; (i=1, ..., N). The asymptotic standard error for ATE is equal
to:

N 1/2
L - (2.130)

VN

which can be used to test the significance of ATE. Notice that d will have a
different expression according to the probability model considered. Here, we
consider the logit and probit case.

Case 1 Logit

Suppose that the correct probability follows a logistic distribution. This means
that:

exp(x;y)
X, Y) = ————=A(x; 2.131
P(xiY) =17 xp(x:7) (xiv) (2.131)
Thus, by simple algebra, we obtain that:
d; =x(Di—p;) (2.132)
~—~

I xR

Case 2 Probit

Suppose that the right probability follows a Normal distribution. In other words:
p(xi,7) = @(x;7) (2.133)
Thus, by simple algebra, we have that:

~  p(xi,Y)x; - [Di — D(x;y)]
d; == D (x;7)[1 — O(x;v)] 2139

Observe that one can add also functions of x to estimate previous formulas. This
reduces the standard errors if these functions are partially correlated with k.
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Observe that the previous procedure produces standard errors that are lower than
those produced by ignoring the first step (i.e., the propensity-score estimation via
ML). Indeed, the naive standard error:

N 12
D
i= \/]v

is higher than the one produced by the previous procedure.

(i) Standard error for ATET
Following a similar procedure to that implemented for ATE, define:

(2.135)

- [Di — p(xi)]Y;
q; == = 2.136
FO=D[t - p,x) (2130
and calculate:
7; = residuals from the regression of ¢; on (1, &’) (2.137)
Then, the asymptotic standard error for ATET is given by:
N 1/2
PO=0"F>(Fi-D; -AT’E\TY]
i—1
2.138
N (2138)
(iii) Standard error for ATENT
In this case, define:
~  [Di—p,(x)]Y;
b= Do bl (2.139)
p(D=0)p(x;)
and then calculate:
§; = residuals from the regression of b;on (1, &’) (2.140)

The asymptotic standard error for ATENT is therefore:
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1/2

?)
=)~

XN: - ATENT )?

i=1
VN

(2.141)

Previous standard errors are correct as long as the probit or the logit are the
correct probability rules in the DGP. If this is not the case, then measurement error
is present and previous estimations might be inconsistent. The literature has pro-
vided more flexible nonparametric estimation of previous standard errors; see, for
example, Hirano et al. (2003) or in Li et al. (2009). Under a correct specification, a
straightforward alternative is to use bootstrap, where the binary response estimation
and the averaging are included in each bootstrap iteration.

2.5 Doubly-Robust Estimation

Combining different methods may sometimes lead to an estimation of the treatment
effects having better properties in terms of robustness. This is the case of the
so-called Doubly-robust estimator, which combines Reweighting (through an
inverse-probability regression) and Regression-adjustment (Robins and Rotnitzky
1995; Robins et al. 1994; Wooldridge 2007).

The robustness of this approach lies in the fact that either the conditional mean or
the propensity-score needs to be correctly specified but not both. This in itself is a
non-negligible advantage of this method.

In practice, the application of the Doubly-robust estimator is as follows:

e Define a parametric function for the conditional mean of the two potential
outcomes as my(X, 8¢) and m(x, 8;), respectively, and let p(X, y) be a parametric
model for the propensity-score.

» Estimate p;(x;) by the maximum likelihood (logit or probit).

* Apply a WLS regression using as weights the inverse probabilities to obtain, by
assuming a linear form of the conditional mean, the parameters’ estimation as:

ming, b, Y Di(y; — a1 = bix))?/ B (x) (2.142)
ming, 0,3 (1= D)y — a0 —box /(1 — P(x))  (2143)

i=1

» Finally, estimate ATEs by Regression-adjustment as:
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ATE = 1/NEN: [(51 - le,-) - (ao - l/)\gx,-)} (2.144)
=1

N
ATET = 1/N12Di[(81 —le[) - (a(, - l/)\()x,»)} (2.145)
=1
—_— N o~ ~
ATENT = 1/N,>_ (1 - D)) [(al —b 1x,-> - (Zio - b()xi>} (2.146)
i=1

Two different arguments are invoked to illustrate why the Doubly-robust estimator
is consistent (see Wooldridge 2010, pp. 931-932):

1. In the first case, the conditional mean is correctly specified but the propensity-
score function is freely misspecified. In this case, robustness is assured by the
fact that WLS consistently estimate the parameters independently of the specific
function of x used to build weights. Thus, even an incorrect propensity-score
does not affect ATEs consistency.

2. In the second case, the conditional mean is misspecified but the propensity-score
function is correctly specified. In this case, the argument is somewhat tricky.
Under CML, it can be showed that the parameters (6;, 8]) estimated by the inverse-
probability regression (with the true weights) are also the (minimum) solution of
an unweighted “population” regression, such as E[(Y, — a, — ng)z] that identifies
the parameters of the linear projection of Y, in the vector space generated by (1, x).

A b;x), so that
ATE = E(Y;) — E(Yo) = E[(aj — b}x) — (ag — box)] independently of the
linearity of the conditional means. This also continues to hold when we consider
functions of x.

Since a constant is included in the regression, then E (Yg) =E (a

The previous results can be seen to hold, with slight modifications, even in the
case of binary, fractional and count response variables, provided that the
corresponding conditional mean function is considered (Wooldridge 2010,
pp. 932-934).

2.6 Implementation and Application of Regression-
Adjustment

In this section, we illustrate how to estimate ATEs in Stata using the parametric
linear and nonlinear Regression-adjustment approaches. We use the dataset
JTRAIN2.DTA, freely available in Stata by typing:

. net from http://www.stata.com/data/jwooldridge/
. net describe eacsap

. net get eacsap
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The dataset comes from the National Supported Work (NSW) demonstration, a
labor market experiment in which 185 participants were randomized into treatment
and 260 units were used as controls. In this experiment, treatment took the form of a
“on-the-job training” lasting between 9 months and a year in between 1976 and
1977. This dataset contains 445 observations.

The dataset, originally used by Lalonde (1986), was also used by Dehejia and
Wahba (1999, 2002) in their seminal papers on propensity-score Matching. In their
applications, the authors start by using the 260 experimental control observations to
obtain a benchmark estimate for the treatment impact. Subsequently, for the
185 treated units, they alternatively consider different sets of control groups coming
from the “Population Survey of Income Dynamics (PSID)” and the “Current
Population Survey (CPS).” In the empirical work of this section, we use the original
dataset of 445 observations.

Data refer to the real earnings and demographics of a sample of the men who
participated in this job training experiment. We are mainly interested in assessing
the effect of training on earnings. The objective is to calculate: (1) the simple
Difference-in-means (DIM) estimator; (2) the parameters ATE, ATE(x); ATET,
ATET(x); and ATENT, ATENT(x); (3) the combined density plot of ATE(x),
ATET(x), and ATENT(x); (4) the standard error and confidence interval for
ATET and ATENT by bootstrap. We begin with a description of the dataset:

. describe

obs: 445

vars: 19 5 Oct 2012 12:44

size: 16,910

storage display value

variable name type format label variable label
train byte %9.0g =1 if assigned to job training
age byte %9.0g age in 1977
educ byte %9.0g years of education
black byte %9.0g =1 if black
hisp byte %9.0g =1 if Hispanic
married byte %9.0g =1 if married
nodegree byte %9.0g =1 if no high school degree
mosinex byte %9.0g # mnths prior to 1/78 in expmnt
re74 float %9.0g real earns., 1974, $1000s
re75 float %$9.0g real earns., 1975, $1000s
re78 float %$9.0g real earns., 1978, $1000s
unem74 byte %$9.0g =1 if unem. all of 1974
unem75 byte %$9.0g =1 if unem. all of 1975
unem?78 byte %9.0g =1 if unem. all of 1978

lre74 float %$9.0g log(re74); zero if re74 == 0
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lre75 float %9.0g log(re75); zero if re75 == 0
lre78 float %9.0g log(re78); zero if re78 == 0
agesq int %9.0g age”2

mostrn byte %9.0g months in training

We wish to assess whether individual’s real earnings in 1978, measured in
thousands of dollars, were affected by participating in a training program up to
2 years before 1978. We consider a series of covariates as observable confounders,
such as real earnings in 1974 (“re74”) and 1975 (“re75”), individual age (“‘age”),
individual age squared (“agesq”), a binary high school degree indicator
(“nodegree”), marital status (“married”), and a binary variable for being black
(“black™) and hispanic (“hisp”).

In order to carry out this analysis we use two Stata commands: the user-written
ivtreatreg (Cerulli 2014b) and the built-in Statal3 teffects ra. The syntax
for both is reported below.

Syntax for ivtreatreg

The basic syntax of ivtreatreg takes the following form:

ivtreatreg outcome treatment [varlist] [i1f] [in] [weight], model (cf-ols)

[hetero (varlist_h) graphic]

where varlist represents the set of confounders x. This command allows one to
compute the parametric Regression-adjustment under the linear assumption (i.e.,
the Control-function regression). It assumes a heterogeneous response to the con-
founders declared in varlist_h and estimates ATE, ATET, and ATENT as well
as these parameters conditional on varlist_h. Since ivtreatreg also esti-
mates other treatment models (more of which is discussed in the next chapter), the
Control-function regression is estimated by adding the option model (cf-ols).’

Syntax for teffects ra

The basic syntax of teffects ra takes this form:

teffects ra (ovar omvarlist [, omodel noconstant)] (tvar) [if] [in]

[weight] [, stat options]

where ovar is the output variable, omvarlist the confounders x, tvar the
binary treatment variable, and omodel specifies the model for the outcome
variable that can be one of these depending on the nature of the outcome:

"Note that the ivtreatreg option cf-ols is only available in a previous version of this
command. The present version of the command, as published in The Stata Journal, does not
provide such option. The old version can be obtained on request.
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omodel Description
linear linear outcome model; the default
logit logistic outcome model
probit probit outcome model
hetprobit (varlist) heteroskedastic probit outcome model
poisson exponential outcome model

Including the 1inear option in teffects ra produces the same results as
ivtreatreg. The latter, however, permits one to also select a subset of hetero-
geneous confounders (depending on analyst’s choice), while the former does not.
Moreover, ivtreatreg also provides, by default, an estimation of ATET,
ATENT, and of ATE(x), ATET(x), and ATENT(x). In contrast, teffects ra
does not provide an estimation of ATENT. teffects ra is, however, more suited
in the case of binary and count outcomes. Of course, one can elaborate further on
the results from teffects ra in order to eventually recover that which is not
directly provided by the command.

We start by renaming the target variable (“re78”) and the treatment variable
(“train”):

. gen y = re78

. gen w = train

In order to simplify the notation, we put all the confounders into a global macro
Xvars:

. global xvars re74 re75 age agesq nodegree married black hisp

and generate a global macro called xvarsh affecting the heterogeneous
response to treatment, as follows:

. global xvarsh re74 re75age agesq nodegree married black hisp
Before going into ATEs estimation, it seems useful to look at some descriptive
statistics with regard to the variables employed in the model. To this aim, we use the

tabstat command:

. tabstat y w Sxvars, columns(statistics) s(n mean sd min max)

variable | N mean sd min max
v | 445 5.300765 6.631493 0 60.3079
w | 445 .4157303 .4934022 0 1

re74 | 445 2.102266 5.363584 0 39.5707
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re75 | 445 1.377139 3.150961 0 25.1422

age | 445 25.37079 7.100282 17 55
agesq | 445 693.9775 429.7818 289 3025
nodegree | 445 .7820225 .4133367 0 1
married | 445 .1685393 .3747658 0 1
black | 445 .8337079 .3727617 0 1
hisp | 445 .0876404 .2830895 0 1

It is also useful to report the descriptive statistics by treatment status:

. bysort w: tabstat y S$xvars , columns (statistics)

> w =0 -> w =1
variable | mean variable | mean
_____________ R, -
v | 4.554802 v | 6.349145
re74 | 2.107027 re74 | 2.095574
re75 | 1.266909 re75 | 1.532056
age | 25.05385 age | 25.81622
agesq | 677.3154 agesq | 717.3946
nodegree | .8346154 nodegree | .7081081
married | .1538462 married | .1891892
black | .8269231 black | .8432432
hisp | .1076923 hisp | .0594595

As we can see, the difference between the outcome means is quite high, but at
this stage, we cannot conclude that this observed difference was caused by attend-
ing the training course.

Given this preliminary analysis of the data, we can estimate a series of regression
using first ivtreatreg:

**% MODEL 1: SIMPLE DIFFERENCE-IN-MEAN (DIM) ***

. qui xi: regy w

estimates store DIM

**% MODEL 2: "cf-ols" WITH HOMOGENEOUS RESPONSE TO TREATMENT STATUS

. qui xi: ivtreatreg y w $xvars , model (cf-ols)

estimates store CFOLS1

**% MODEL 3: "cf-ols" WITH HETEROGENEOUS RESPONSE TO TREATMENT STATUS
. qui xi: ivtreatreg y w $xvars , hetero($xvarsh) model (cf-ols)
estimates store CFOLS2

*** COMPARE ESTIMATES OF ATE:

. estimates table DIM CFOLS1 CFOLS2 , /17
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b(%9.5f) star keep(w) stats(r2) ///
title("ATE comparison between DIM, CFOLS1, CFOLS2")

ATE comparison between DIM, CFOLS1, CFOLS2

Variable | DIM CFOLS1 CFOLS2
————— +
w | 1.79434%* 1.62517* 1.54472*
r2 | 0.01782 0.04896 0.06408

legend: * p<0.05; ** p<0.01; *** p<0.001

Results from previous estimators are very similar indeed. This reflects the
random assignment entailed by the NSW demonstration: in such a case, controlling
for covariates was expected not to provide significant change in the ATE estima-
tion, and this is properly confirmed.

We can, in such a setting, also calculate ATET and ATENT and then test their
statistical significance by applying bootstrap procedures as follows:

*** BOOTSTRAP STD. ERR. FOR "ATET" AND "ATENT"
. Xi1: bootstrap atet=e(atet) atent=e(atent), rep(200): ///

ivtreatreg y w $xvars , hetero($Sxvarsh) model (cf-ols)

Bootstrap replications (200)

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
Bootstrap results Number of obs = 445

Replications = 200

command: ivtreatreg y w re74 re75 age agesqg nodegree married black hisp,
hetero(re74 re75 age agesqg nodegree married black hisp) model (cf-ols)
atet: e(atet)

atent: e(atent)

| Observed Bootstrap Normal-based
| Coef. std. Err. z P>|z]| [95% Conf. Interval]
atet | 1.764007 .6654867 2.65 0.008 .4596768 3.068337

atent | 1.38869 .682661 2.03 0.042 .0506991 2.726681
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The results obtained in regression CFOLS2 can be obtained using teffects
ra:

teffects ra (y $xvars , linear) (w)
Iteration 0: EE criterion = 1.808e-27
Iteration 1: EE criterion = 1.929e-30
Treatment-effects estimation Number of obs = 445
Estimator : regression adjustment
Outcome model : linear

Treatment model: none

| Robust

v | Coef. std. Err. z P>|z| [95% Conf. Intervall]

(1 vs 0) | 1.544721 .6619304 2.33 0.020 .2473607 2.84208

POmean |

0 | 4.567414 .3374549 13.53 0.000 3.906015 5.228814

To obtain ATET, one simply types:

teffects ra (y $xvars , linear) (w) , atet
Iteration 0: EE criterion = 1.808e-27
Iteration 1: EE criterion = 9.663e-31
Treatment-effects estimation Number of obs = 445
Estimator : regression adjustment
Outcome model : linear

Treatment model: none

| Robust
v | Coef. std. Err. z P>|z| [95% Conf. Intervall
ATET |
L
(1 vs 0) | 1.764007 .6719526 2.63 0.009 .4470038 3.08101
POmean
w |

0o | 4.585139 .3576414 12.82 0.000 3.884174 5.286103
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while, to get the potential outcome means with confidence interval:

. teffects ra (y $xvars , linear) (w) , pomeans

Iteration 0: EE criterion = 1.808e-27

Iteration 1: EE criterion = 2.272e-30

Treatment-effects estimation Number of obs = 445
Estimator : regression adjustment

Outcome model : linear

Treatment model: none

| Robust
vy | Coef. std. Err. z P>|z| [95% Conf. Intervall
POmeans |
W
o | 4.567414 .3374549 13.53 0.000 3.906015 5.228814
1 6.112135 .5725393 10.68 0.000 4.989978 7.234291

Optionally, it is also possible to predict the ATE(x) by typing:
. predict ATE_x , te

thus showing that ATE, ATET, and ATENT are given by the following means:

. qui sum ATE_x

. display r (mean)

[

.5447205 // ATE
. sum ATE_x if w==1

. display r (mean)

i

.7640067 // ATET
. sum ATE_x if w==
. display r (mean)

1.38869 // ATENT

Observe that the standard errors for ATENT can be obtained by bootstrap (not
reported).

Sometimes, it may be useful to report the estimated treatment effect as a
percentage of the untreated potential outcome mean. To this aim, we can include
the coeflegend option so that teffects ra reports the names of the parame-
ters. One can then exploit the command nlcom to obtain the percentage change
with standard errors calculated with the delta method:
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teffects ra (y $xvars , linear) (w) , coeflegend
Iteration 0: EE criterion = 1.808e-27
Iteration 1: EE criterion = 1.929e-30
Treatment-effects estimation Number of obs = 445
Estimator : regression adjustment
Outcome model : linear

Treatment model: none

vy | Coef. Legend
ATE |
w |
(1 vs 0) | 1.544721 _b[ATE:rlvs0.w]
POmean |
w |
0o | 4.567414 _b[POmean:r0.w]

. nlcom _b[ATE:rlvs0.w]/ _b[POmean:r0.w]

_nl 1: _b[ATE:rlvsO.w]/_b[POmean:r0.w]
vy | Coef. std. Err. z P>|z]| [95% Conf. Interval]
_nl 1 | .3382046 .1589424 2.13 0.033 .0266832 .649726

The results indicate a significant 33 % increase in real earnings due to training.

One advantage of ivtreatreg over teffects ra is that it allows for
the possibility of plotting jointly the distributions of ATE(x), ATET(x), and
ATENT(x), by typing:

ivtreatreg y w $xvars , hetero($xvarsh) model (cf-ols) graphic

Source | ss af MS Number of obs = 445
F( 17, 427) = 1.72

Model | 1251.29175 17 73.6053972 Prob > F = 0.0367
Residual | 18274.3649 427 42.7971074 R-squared = 0.0641
————————————— e Adj R-squared = 0.0268
Total | 19525.6566 444 43.9767041 Root MSE = 6.5419

vy | Coef. Std. Err. t P>t [95% Conf. Interval]

w | 1.544721 .6426025 2.40 0.017 .2816628 2.807778

re74 | .0772563 .0976092 0.79 0.429 -.1145981 .2691106
re75 | .0580198 .1841072 0.32 0.753 -.3038494 .4198891

age | -.0710885 .3397475 -0.21 0.834 -.7388741 .5966972
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agesq
nodegree
married
black

hisp
_ws_re74
_ws_re75
_ws_age
_ws_agesq
_ws_nodegree
_ws_married
_ws_black
_ws_hisp
_cons

.0016875
-.3707108
-.7515524
-2.913191
-.6138299
-.0579181

.0232402

.9239745
-.0147917
-1.588303

1.748556

1.827491

.7387987

7.856682

.0055277
1.141044
1.222282
1.684909
2.055351
.1651987
.2744957
.5771688
.0094685
1.606886
1.80549
2.360635
3.273411
5.309304

.31
.32
.61
.73
.30
.35
.08
.60
.56
.99
.97
.77
.23
.48

0.
0.

760
745

.539
.085
.765
.726
.933
.110
.119
.323
.333
.439
.822
.140

-.0091773

-2.
-3.
-6.
-4.

613473
153992
224939
653694

-.3826219

-.5162907

210471

-.0334024

.746694
.800198
.812421
.695206
.578942

.0125523
1.872051
1.650887
.3985567
3.426035
.2667858
.5627711
2.05842
.003819
1.570088
5.29731
6.467403
7.172803
18.29231

to obtain:

Kernel density

Model cf-ols: Comparison of ATE(x) ATET(x) ATENT(x)

.25

15

ATE(x)

— — - ATENT(x)

ATET(x)

123

The graphical representation can be useful to analyze the dispersion of the effect
around the mean. As such, it may offer interesting information about the effect’s
heterogeneity over observations and about the potential presence of influential data.
Moreover, it can emphasize the presence of a different effect’s distribution pattern

between treated and untreated units.

A final remark relates to the standard errors of ATEs when using the
ivtreatreg versus using teffects ra command. As is evident from the
results, the standard errors are in fact slightly different due to the fact that
teffects ra does not make the small-sample adjustment that regression-based

methods do.

In addition, an interesting option available for teffects ra is that of
reporting the two potential outcomes estimations separately. In some contexts,
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this can be interesting in itself. To obtain this, we simply add the option
aequations as follows:

teffects ra (y $xvars , linear) (w) , aequations

Some output omitted

| Robust
vy | Coef. Sstd. Err. z P>|z| [95% Conf. Intervall
_____________ e
ATE |
w |
(L vs 0) | 1.544721 .6619304 2.33 0.020 .2473607 2.84208
POmean |
W
o | 4.567414 .3374549 13.53 0.000 3.906015 5.228814
OMEO |
re74 | .0772563 .0930324 0.83 0.406 -.1050838 .2595963
re75 | .0580198 .1697555 0.34 0.733 -.2746948 .3907345
age | -.0710885 .2469855 -0.29 0.773 -.5551712 .4129942
agesqg | .0016875 .0038335 0.44 0.660 -.005826 .009201
nodegree | -.3707108 .9035178 -0.41 0.682 -2.141573 1.400152
married | -.7515524 .994725 -0.76 0.450 -2.701178 1.198073
black | -2.913191 1.31429 -2.22 0.027 -5.489152 -.3372307
hisp | -.6138299 1.590098 -0.39 0.699 -3.730364 2.502704
_cons | 7.856682 4.031418 1.95 0.051 —-.0447516 15.75812
OME1 |
re74 | .0193382 .2576129 0.08 0.940 —-.4855738 .5242502
re75 | .0812601 .1941968 0.42 0.676 -.2993587 .4618788
age | .8528861 .5519752 1.55 0.122 -.2289655 1.934738
agesg | -.0131042 .0088728 -1.48 0.140 -.0304946 .0042862
nodegree | -1.959013 1.303733 -1.50 0.133 -4.514283 .596256
married | .9970032 1.50374 0.66 0.507 -1.950273 3.944279
black | -1.0857 1.602923 -0.68 0.498 -4.227372 2.055971
hisp | .1249687 2.646375 0.05 0.962 -5.061831 5.311769
_cons | -4.326628 8.146136 -0.53 0.595 -20.29276 11.63951

In conclusion, ivtreatreg and teffects ra provide similar and comple-
mentary reports of results. The combined use of both commands can be a beneficial
strategy for linear potential outcomes models.
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When linearity is not appropriate, as in the case of a binary or count outcome,
using teffects ra is preferable, although ivtreatreg also provides in this

case a consistent estimation of ATEs.

To illustrate how one can exploit the teffects ra command in a nonlinear
case, take a binary outcome within the same dataset. Suppose, we wish to study the
effect of training on the probability of becoming unemployed using as outcome the

variable “unem?78.” In this case, we can define

. teffects ra (unem78 $xvars

, probit) (w)

Some output omitted

Treatment-effects estimation Number of obs = 445
Estimator : regression adjustment
Outcome model : probit
Treatment model: none
Robust
unem78 | Coef. std. Err. z P>|z]| [95% Conf. Interval]
ATE |
W
(1 vs 0) | -.105289 .0432818 -2.43 0.015 -.1901198 -.0204583
POmean |
w |
0 | .3555628 .0298023 11.93 0.000 .2971513 .4139742

The coefficient is negative and significant, so that the probability to remain
unemployed decreases due to attending the training course. In order to estimate the

potential outcome means, we can type:

. teffects ra (unem78 S$xvars , probit) (w) , pomeans
Treatment-effects estimation Number of obs = 445
Estimator : regression adjustment
Outcome model : probit
Treatment model: none
| Robust
unem78 | Coef. std. Err. z P>|z| [95% Conf. Interval]

POmeans |

W

0o | .3555628 .0298023 11.93 0.000 .2971513 .4139742

1 .2502737 .0318015 7.87 0.000 .187944 .3126035
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These results indicate that on average over observations, the probability of being
unemployed when one is treated is around 25 %, while this probability increases to
around 35 % when one is untreated. Thus, the training has a positive effect on
employment.

2.7 Implementation and Application of Matching

In this section, we focus on ATEs estimation using nonparametric methods, in
particular, focusing on Matching. We consider the same dataset as we have used for
Regression-adjustment, and we proceed first by presenting an application using
covariates matching (C Matching) and then one using propensity-score matching
(PS Matching).

2.7.1 Covariates Matching

In order to apply C Matching, we use the Stata built-in command nnmat ch, part of
the teffects package. The syntax of this command is very similar to that of
Regression-adjustment and takes the form:

Basic syntax of teffects nnmatch

teffects nnmatch (ovar omvarlist) (tvar) [if] [in] [weight] [, stat options]
stat Description

ate estimate average treatment effect in population

atet estimate average treatment effect on the treat
Main options Description

nneighbor (#) specify number of matches per observation

biasadj (varlist) correct for large-sample bias using varlist

ematch (varlist) match exactly on specified variables

Note that the above table contains only some of the options available for the
teffects nnmatch command (see the Stata 13 manual for the other options).
As for those considered here, according to the Stata help file of this command, we
have that nneighbor (#) specifies the number of matches per observation. The
default is nneighbor (1); biasadj (varlist), which specifies that a linear
function of the specified covariates can be used to correct for a large sample bias
that exists when matching on more than one continuous covariate. By default, no
correction is performed. As we have seen, Abadie and Imbens (2006, 2012) have
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shown that nearest-neighbor matching estimators are not consistent when matching
is done on two or more continuous covariates and have proposed a bias-corrected
estimator that is consistent. The correction term uses a linear function of variables
specified in biasadj (); ematch(varlist) specifies that the variables in
varlist match exactly. All variables in varlist must be numeric and may
be specified as factors. tef fects nnmatch exits with an error if any observation
does not have the requested exact match.

Given this premise, we can apply teffects nnmatch to the previous job
training example in the following manner:

. teffects nnmatch (y S$xvars) (w)

Treatment-effects estimation Number of obs = 445
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 16
| AI Robust
v | Coef. std. Err. z P>|z| [95% Conf. Intervall
ATE |
w |
(1 vs 0) | 1.625655 .6652704 2.44 0.015 .3217487 2.929561

The results obtained are in line with those found using Regression-adjustment; in
other words, a significant positive effect of training on earnings.

We can now consider the possibility of performing an exact matching on some
specific covariates and of increasing, up to three, the number of neighbors. In this
case, we have:

. teffects nnmatch (y $xvars) (w) , nneighbor(3) ematch(hisp black)
Treatment-effects estimation Number of obs = 445
Estimator : nearest-neighbor matching Matches: requested = 3
Outcome model : matching min = 3
Distance metric: Mahalanobis max = 18
| AI Robust

v | Coef. Std. Err. z P>|z]| [95% Conf. Interval]

ATE |

w |

(1 vs 0) | 1.263357 .6265118 2.02 0.044 .0354166 2.491298
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Finally, we consider an estimation incorporating bias adjustment in large sam-
ples. We assume that such bias depends on aging (“‘age”) and real earnings in 1974
(“re74”), so that:

. teffects nnmatch (y $Sxvars) (w) , biasadj(age re74)
Treatment-effects estimation Number of obs = 445
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 16
| AI Robust
vy | Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE |
W
(1 vs 0) | 1.501995 .6651594 2.26 0.024 .1983066 2.805684

The adjustment provided slightly modifies the bias result, decreasing from
around 1.6 to 1.5.

2.7.2 Propensity-Score Matching

Matching on the propensity-score is probably the most diffused approach for
applying Matching within the program evaluation empirical literature. This popu-
larity can be understood given the previously discussed properties of the
propensity-score, but it is also due to its ability to provide direct information on
the factors driving the selection-into-treatment.

In what follows, we present three Stata commands available for PS Matching:
the first is the Stata built-in psmatch, part of the package tef fects; the second
is pscore a user-written command provided by Becker and Ichino (2002); the
third is psmatch2, a user-written command carried out by Leuven and
Sianesi (2003).

2.7.2.1 PS Matching Using teffects psmatch

We start by providing the estimation of ATEs on the JTRAIN2 dataset, using
teffects psmatch. The syntax of the command is as follows:
Basic syntax of teffects psmatch
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teffects psmatch (ovar) (tvar tmvarlist [, tmodel]) [if] [in] [weight] [,

stat options]

tmodel Description

Model
logit logistic treatment model; the default
probit probit treatment model
hetprobit (varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.
For multivariate treatments, only logit is available and multinomial

Logit used.

stat Description
ate estimate average treatment effect in population; the
atet estimate average treatment effect on the treated
options Description
nneighbor (#) specify number of matches per observation;
caliper (#) specify the maximum distance for which two

observations are potential neighbours
generate (stub) generate variables containing the observation

numbers of the nearest neighbors

Note that the syntax of teffects psmatch is slightly different from that of
teffects ra and teffects nnmatch, although easily manageable too.
Moreover, in contrast to C Matching, PS Matching does not require a bias correc-
tion, since it matches units on a single continuous covariate. Of course, the
underlying assumption is that the probability rule according to which the
propensity-score is estimated is correctly specified. Finally, teffects psmatch
also estimates standard errors adjusted for the first-step estimation of the
propensity-score, as suggested by Abadie and Imbens (2012).

We start with the baseline application, which by default is nneighbor (1) and
the estimation model for the propensity-score is a logit.

. teffects psmatch (y) (w S$xvars)

Treatment-effects estimation Number of obs = 445

Estimator : propensity-score matching Matches: requested = 1

Outcome model : matching min = 1

Treatment model: logit max = 16
| AI Robust

vy | Coef.  std. Err. z P>|z]| [95% Conf. Interval]
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(1 vs 0) | 1.936551 .7433629 2.61 0.009 .4795867 3.393516

As is evident from the table above, the result on ATE is a little higher than that
obtained in the previous estimations, although statistical significance and sign are
consistent.

An important post-estimation command that can be employed after running
teffects psmatch is the command teffects overlap, which enables
one to assess graphically the degree of overlap. In order to obtain the graphical
representation of the degree of overlap, we run the previous PS Matching command
using the option generate (stub):

. qui teffects psmatch (y) (w $xvars) , generate (near_obs)

. teffects overlap

25

20
|

density

T
3 4 5 .6
Propensity score, w=0

As it is clearly evident, problems of overlap do not appear in this dataset, neither
plot indicating the presence of a probability mass close to 0 or 1. Moreover, the
probability mass of the two estimated densities is concentrated in regions where
overlap occurs, thus indicating that the results obtained from the matching proce-
dure are reliable.

o
©

w=0 w=1 ‘

2.7.2.2 PS Matching Using pscore

In this section, we present an application of PS Matching performed using the user-
written command pscore provided by Becker and Ichino (2002). The basic syntax
of pscore is:
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pscore treatment varlist [weight] [if exp] [in range] , pscore(newvar)

[blockid (newvar) detail logit comsup level (#) numblo (#)]

The pscore routine estimates the propensity-score of the treatment on the
control variables using a probit (or logit) model and stratifies individuals in blocks
according to the propensity-score. It displays summary statistics of the propensity-
score and of the stratification. Moreover, it checks whether the balancing property is
satisfied or not; if it is not, it asks for a less parsimonious specification of the
propensity-score; it also saves the estimated propensity-score and optionally the
blocks’ number. The estimated propensity-scores can then be used together with the
sub-commands attr, attk, attnw, attnd, and atts to obtain estimates of the
average treatment effect on the treated using, respectively, radius Matching, kernel
Matching, nearest-neighbor Matching (in one of the two versions: equal weights
and random draw), and stratification Matching, the latter using the blocks number
as an input.

In this application, which is similar in sprit to the exercise presented in Cameron
and Trivedi (2005, Chapter 25), we use again data from the National Supported
Work (NSW) demonstration to evaluate the effect of training on earnings. In this
application, however, instead of considering the dataset with 260 control units (i.e.,
the dataset JTRAIN2.DTA), we consider a comparison group of individuals taken
from the Population Survey of Income Dynamics (PSID), and in particular the
subset PSID-1 including 2,490 controls.® We call this dataset JTRAIN_CPS1.DTA;
the dataset includes 2,675 units.

The benchmark estimate obtained from the NSW experiment is $1,794, which is
equal to the average of RE78 for NSW treated units minus the average of RE78 for
NSW controls. This value is obtained using the DIM estimator (see Sect. 2.4.1).

We perform PS Matching by pscore using the same specification of the
propensity-score proposed in Dehejia and Wahba (2002). Firstly, we fix the number
of bootstrap replications:

. global breps 100

We then create a global macro, xvars_ps, containing the variables entering
the propensity-score specification:

. global xvars_ps age agesqg educ educsq marr nodegree black ///

hisp re74 re74sqg re75 u74 u75 u74hisp

The command pscore tabulates the treatment variable; estimates the
propensity-score by visualizing the logit/probit regression results; and tests whether
the balancing property is satisfied by identifying the optimal numbers of blocks. In

8 The subset PSID-1 is made of “all male household heads under age 55 who did not classify
themselves as retired in 1975 (see Dehejia and Wahba 1999, p. 1055).
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other words, it implements the algorithm presented in Sect. 2.3.7. If the balancing
property is not satisfied, then we are asked to change the propensity-score specifi-
cation by introducing other variables, powers, and/or interactions. According to
Dehejia and Wahba (2002)’s specification, we can estimate:

pscore w $xvars_ps, pscore(myscore) comsup ///
blockid (myblock) numblo(5) level(0.005) logit
N I o
Algorithm to estimate the propensity-score

kok ok ok ok ok ok ok Kk Kk kKA KKK RRRRRAR KAk hkkkkkkkkhkkkkkkkkk kA kA KKk

The treatment is w

w | Freq. Percent Cum.

0 | 2,490 93.08 93.08

1 185 6.92 100.00
Total | 2,675 100.00

Estimation of the propensity-score

Logistic regression Number of obs = 2675
LR chi2(14) = 951.10

Prob > chi2 = 0.0000

Log likelihood = -197.10175 Pseudo R2 = 0.7070
w | Coef. std. Err. z P>|z| [95% Conf. Intervall

age | .2628422 .120206 2.19 0.029 .0272428 .4984416

agesg | -.0053794 .0018341 -2.93 0.003 -.0089742 -.0017846

educ | .7149774 .3418173 2.09 0.036 .0450278 1.384927

educsq | -.0426178 .0179039 -2.38 0.017 -.0777088 -.0075269

marr | -1.780857 .301802 -5.90 0.000 -2.372378 -1.189336
nodegree | .1891046 .4257533 0.44 0.657 -.6453564 1.023566
black | 2.519383 .370358 6.80 0.000 1.793495 3.245272

re75 | -.0002678 .0000485 -5.52 0.000 -.0003628 -.0001727

hisp | 3.087327 .7340486 4.21 0.000 1.648618 4.526036

re74 | -.0000448 .0000425 -1.05 0.292 -.000128 .0000385

re74sq \ 1.99e-09 7.75e-10 2.57 0.010 4.72e-10 3.51e-09

u74 | 3.100056 .5187391 5.98 0.000 2.083346 4.116766

u75 | -1.273525 .4644557 -2.74 0.006 -2.183842 -.3632088

u74hisp | -1.925803 1.07186 -1.80 0.072 -4.02661 .1750032
_cons | -7.407524 2.445692 -3.03 0.002 -12.20099 -2.614056

Note: 65 failures and 0 successes completely determined.
Note: the common support option has been selected
The region of common support is [.00036433, .98576756]

Description of the estimated propensity-score
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in region of common support

Estimated propensity-score

Percentiles Smallest

1% .0003871 .0003643

5% .0004805 .0003669
10% .0006343 .0003702 Obs 1271
25% .0016393 .0003714 Sum of Wgt. 1271
50% .0090427 Mean .1447205
Largest std. Dev. .2809511

75% .0897599 .9803043
90% .656286 .9830988 Variance .0789335
95% .9392306 .9855413 Skewness 2.049999
99% .9640553 .9857676 Kurtosis 5.748631

hok ok ok ok ok ok ok ok k kAR KRR KAk kkkkkkkkkkkkkkkkkkk ko kA XXX XX KKK K %

Step 1: Identification of the optimal number of blocks

Use option detail if you want more detailed output

ek ok ok ok ok ok ok ok Kk ok ok ok ok ok ok o K Kk ok ok ok ok ok K K Kk ok ko ok K K K R Kk ok

The final number of blocks is 6

This number of blocks ensures that the mean propensity-score
is not different for treated and controls in each blocks
ek ko ok ok ok ok ok ok Kk ok ok ok ok ok K Kk ok ok ok ok ok K K K Rk ko ok R K K Kk kK
Step 2: Test of balancing property of the propensity-score
Use option detail if you want more detailed output

ko o kKK K Kk K K kK K K K kX K K kR K K K K K K K kK K K K ok K
The balancing property is satisfied

This table shows the inferior bound, the number of treated

and the number of controls for each block

Inferior |

of block | w
of pscore | 0 1 Total
_______ - . -
.0003643 | 960 9 | 969
1 56 10 | 66
2 | 33 14 | 47
.4 22 24 | 46
6 | 7 33 | 40
.8 | 8 95 | 103
Total | 1,086 185 | 1,271

Note: the common support option has been selected

Kok Kk ok Kok ok ok ok ok kR KKKk Kk ok k k ok ok k k ok ok ok ok ok ok ok ok ok K ok kK kK K

End of the algorithm to estimate the pscore

ok kok ok ok ok ok ok k kKR KKK KKK KKK KKKk k ok ok ok ok ok ok ok ok ok ok Kk ok Kk
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The results indicate that the balancing property is satisfied with a final optimal
number of propensity-score blocks equal to 6. This is a good news, as it ensures that
we can reliably apply matching, since observable covariates are balanced within
blocks (i.e., PS strata); this implies that differences in the output between treated
and control units should only be attributed to the effect of the treatment variable.
Observe that the command, as it is written above, generates three important vari-
ables: the estimated propensity-score (“myscore”), the block identification number
(“myblock™), and the binary common support variable (“comsup”); each observa-
tion will have a given estimated propensity-score, will belong to a specific block,
and will be (or will be not) in the common support. We can perform the same
estimation without the common support option. In what follows, however, we will
use this option in calculating all causal effects.

After running pscore, once the balancing property is properly satisfied, one
can estimate ATEs with various Matching methods by typing the proper
sub-command:

(a) Nearest-neighbor Matching

. set seed 10101

. attnd re78 w S$xvars_ps , comsup logit

n. treat. n. contr. ATT Std. Err. t

185 60 1285.782 3895.044 0.330

Note: the numbers of treated and controls refer to actual

nearest neighbour matches
(b) Radius Matching for radius = 0.001

. set seed 10101
. attr re78 w $xvars_ps , comsup logit radius(0.001)
ATT estimation with the Radius Matching method

Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

51 541 -7808.241 1146.418 -6.811

Note: the numbers of treated and controls refer to actual

matches within radius
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(c) Radius Matching for radius =0.0001

set seed 10101
attr re78 w $xvars_ps , comsup logit radius(0.0001)
ATT estimation with the Radius Matching method

Analytical standard errors

27 91 -6401.345 2054.218 -3.116

Note: the numbers of treated and controls refer to actual

matches within radius
(d) Radius Matching for radius = 0.00001

set seed 10101
attr re78 w $xvars_ps , comsup logit radius(0.00001)
ATT estimation with the Radius Matching method

Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

16 17 -1135.184 3189.367 -0.356

Note: the numbers of treated and controls refer to actual

matches within radius
(e) Stratification Matching

set seed 10101
atts re78 w , pscore(myscore) blockid(myblock) comsup
ATT estimation with the Stratification method

Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

185 1086 1452.370 920.769 1.577

(f) Kernel Matching

set seed 10101
attk re78 w $xvars_ps , comsup boot reps($breps) dots logit

ATT estimation with the Kernel Matching method
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Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 1086 1342.016 864.064 1.553

Observe that for kernel Matching, the at tk routine does not provide analytical
standard errors, only bootstrapped standard errors. The results are reported in
Table 2.6, together with the results obtained by Dehejia and Wahba (2002).

The obtained results show a strong variability of the treatment effect across the
type of Matching procedure. In particular, radius Matching estimators set out a
dramatic bias, showing even a negative estimate of ATET. Dehejia and Wahba
(2002, p. 155, Table 3), on the contrary, reported positive effects using caliper
Matching. This difference is due to the fact that the approach adopted does not discard
those treated units which do not find matches within the caliper’s area, but they are
matched with the nearest-neighbor found outside the area identified by the caliper.
This is a simple but significant example of how slight changes in the algorithm used
to match units can lead to very different and, possibly, contrasting results.

2.7.2.3 PS Matching Using psmatch2

Another Stata routine available for implementing Matching is psmatch2 (Leuven
and Sianesi 2003). The basic syntax of psmatch? is as follows:

psmatch2 depvar [indepvars] [if exp] [in range] [, outcome(varlist) ///
pscore (varname) neighbor (integer) radius caliper (real) mahalanobis (varlist)

common

although many further options are included. The routine psmatch2 implements
full Mahalanobis Matching and a variety of propensity-score Matching methods to

Table 2.6 Comparison of ATET estimates over different matching methods

ATET ATET
as as Benchmark:
ATET (this % of Dehejia and % of NSW
application) 1,794 Wahba (2002) 1,794 experiment
Nearest-neighbor 1,286 72 1,890 105 1,794
Radius =0.001 -7,808 —435 1,824 102
Radius =0.0001 |-6,401 -357 1,973 110
Radius =0.00001 |-1,135 -63 1,893 106
Stratification 1,452 81
Kernel 1,342 75

Note: In the two ATET columns, nearest-neighbor estimates differ because of replacement
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adjust for pretreatment observable differences between a group of treated and a
group of untreated units. Treatment status is identified by depvar =1 for the
treated and depvar = 0 for the untreated observations. In this application, we use
psmatch?2 with the propensity-score calculated by pscore, but we may directly
calculate the propensity-score within psmatch2.

By considering again the JTRAIN_PSIDI.DTA, we can estimate a 3-NN
Matching:

. psmatch2 w , out(re78) pscore(myscore) neighbor (3) common

Variable Sample | Treated Controls Difference S.E. T-stat

RE78 Unmatched | 6349.14537 21553.9213 -15204.7759 1154.61435 -13.17
ATT | 6349.14537 5022.4331 1326.71227 2923.22823 0.45

Note: S.E. does not take into account that the propensity-score is estimated.

| psmatch2:

psmatch2: | Common

Treatment | support
assignment | On support| Total
Untreated | 2,490 | 2,490
Treated | 185 | 185
Total | 2,675 | 2,675

The ATET is equal to around 1,326 and, although not significant, it is of the
same magnitude of previous nearest-neighbor Matching estimates.

In order to test the balancing property, psmatch?2 takes a different route
compared to that of pscore. More specifically, it does not provide a test before
matching but after matching is realized. This is done by a useful accompanying
routine called pstest, which performs a difference-in-mean test for the covariates
before and after Matching. The syntax of pstest is:

pstest varlist [,summary quietly mweight (varname) treated(varname)

support (varname) ]

pstest calculates several measures of the balancing of the variables included in
varlist before and after matching. In particular, for each variable in varlist,
it calculates:

(a) t-tests for equality of means in the treated and untreated groups, both before
and after matching. t-tests are based on a regression of the variable on a
treatment indicator. Before matching, this is an unweighted regression on
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the whole sample; after matching the regression is weighted using the
matching weight variable “_weight” and based on the on-support sample;

(b) The standardized bias before and after matching, together with the achieved
percentage reduction in abs(bias). The standardized bias is the difference of
the sample means in the treated and untreated (full or matched) subsamples as
a percentage of the square root of the average of the sample variances in the
treated and untreated groups.

We first calculate a before/after difference-in-mean test for the estimated pro-
pensity-score:

. pstest myscore

| Mean $reduct | t-test
Variable Sample | Treated Control $bias |bias| | t p>|t|
myscore Unmatched | .69994 .02229 310.5 | 76.66 0.000
Matched | .69994 .70236 -1.1 99.6 | -0.08 0.937
and for all the covariates:
. pstest $xvars_ps
| Mean $reduct | t-test
Variable Sample | Treated Control %bias |bias| | t p>|t]
age Unmatched | 25.816 34.851 -100.9 | -11.57 0.000
Matched | 25.816 24.773 11.7  88.5 | 1.61 0.108
| \
agesq Unmatched | 717.39  1323.5 -97.1 | -10.59 0.000
Matched | 717.39 639.96 12.4 87.2 | 1.96 0.051
| \
educ Unmatched | 10.346 12.117 -68.1 | -7.69 0.000
Matched | 10.346 10.741 -15.2 77.7 | -2.01 0.045
| \
educsqg Unmatched | 111.06  156.32 -78.5 | -8.52 0.000
Matched | 111.06 118.43  -12.8  83.7 | -1.89 0.060
| \
marr Unmatched | .18919 .86627 -184.2 | -25.81 0.000
Matched | .18919 .13874 13.7 92.5 | 1.31 0.191
| \
nodegree Unmatched | .70811 .30522 87.9 | 11.49 0.000

Matched | .70811  .68288 5.5 93.7 | 0.53 0.599



2.7 Implementation and Application of Matching 139

black Unmatched ‘ .84324 .2506 148.0 ‘ 18.13 0.000
Matched | .84324  .87027 -6.7 95.4 | -0.74 0.459

\ \
hisp Unmatched | .05946 .03253 12.9 | 1.94 0.053
Matched | .05946 .05045 4.3 66.5 | 0.38 0.705

\ \
re74 Unmatched | 2095.6 19429 -171.8 | -17.50 0.000
Matched | 2095.6 2448.2 -3.5 98.0 | -0.67 0.504

\ \
re75 Unmatched | 1532.1 19063 -177.4 | -17.50 0.000
Matched | 1532.1 1700.4 -1.7 99.0 -0.49 0.621

\ \
re74sq Unmatched | 2.8e+07 5.6e+08 -85.7 | -8.30 0.000
Matched | 2.8e+07 3.3e+07 -0.8 99.0 | -0.45 0.655

\ \
u74 Unmatched | .70811 .08635 164.2 | 27.54 0.000
Matched | .70811 .64324 17.1 89.6 ‘ 1.33 0.184

\ \
u75 Unmatched | .6 1 122.8 | 20.70 0.000
Matched | .6 .56757 8.0 93.5 | 0.63 0.528

\ \
u74hisp Unmatched | .03243  .00361 21.7 |  5.09 0.000
Matched | .03243  .03063 1.4 93.7 | 0.10 0.921

It may be useful to show how to get pstest’s results by hand. As example, we
consider only the propensity-score:

*1. For Treated
sum myscore [aweight=_weight] if w==0
*2. For Untreated

sum myscore [aweight=_weight] if w==0

In order to assess the quality of the Matching, we can plot the distribution of the
propensity-score for treated and untreated before and after Matching in the same
graph. One should remember that weights can also be used when calculating the
density. We first define a label for the treatment status:

label define tstatus 0 Comparison_sample 1 Treated_sample
label values w tstatus

label variable w "Treatment Status"

The propensity-score density graph “before” Matching can be obtained by the
following command:
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. qui graph twoway (kdensity myscore if TREAT==1, msize(small) ) ///

(kdensity myscore if TREAT==0, msize(small) lpattern(shortdash_dot)), ///
subtitle(, bfcolor(none)) ///

xtitle("propensity-score (Before)", size(medlarge)) ///

xscale(titlegap(*7) ytitle("Density", size(medlarge)) yscale(titlegap(*5)) ///
legend (pos (12) ring(0) col(l)) ///

legend( label (1 "Treated") label (2 "Untreated")) saving(BEFORE, replace)

Similarly, the propensity-score density graph “after” Matching can be obtained
using:

. qui graph twoway (kdensity myscore [aweight=_weight] if TREAT==1,
msize(small)) ///

(kdensity myscore [aweight=_weight] if TREAT==0, msize(small)
lpattern(shortdash_dot)), ///

subtitle(, bfcolor(none)) ///

xtitle(" propensity-score (After) ", size(medlarge))
xscale(titlegap(*7)) ///

ytitle("Density", size(medlarge)) yscale(titlegap(*5)) ///
legend(pos(12) ring(0) col(1l)) ///

legend( label (1 "Treated") label (2 "Untreated")) saving (AFTER , replace)
Finally, we can combine the two previous graphs in a single graph by typing:

. graph combine BEFORE.gph AFTER.gph
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This above graph illustrates the improvement of post-matching propensity-score
and visually indicates that the matching operated was successful. When this does
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not occur, so that balancing is not fully achieved, one should find another specifi-
cation of the propensity-score or, in the worst case, try to carefully justify why
accepting results, despite the fact that full covariates’ balancing has not been
achieved. This is a limitation of Matching as an evaluation technique, since in
real datasets, it is not always possible to reach balancing (at least to some acceptable
extent), even in the presence of a rich set of covariates. This leads the researcher
sometimes to prefer methods for which such a problem is less relevant (e.g.,
Reweighting on the propensity-score).

Before concluding this section, we present an application of the Rosenbaum
sensitivity test, using the Stata user-written routine rbounds (Gangl 2004).

Syntax of rbounds

rbounds varname [if exp], gamma (numlist) [alpha (#) acc (#) sigonly dots]

Description

rbounds calculates Rosenbaum bounds for average treatment effects on the treated
in the presence of unobserved heterogeneity (hidden bias) between treatment
and control cases. rbounds takes the difference in the response variable
between treatment and control cases as input variable varname. The procedure
then calculates Wilcoxon sign-rank tests that give upper and lower bound
estimates of significance levels at given levels of hidden bias. Under the
assumption of additive treatment effects, rbounds also provides Hodges-
Lehmann point estimates and confidence intervals for the average treatment
effect on the treated. If installed, the input variable varname may be
generated from psmatch or psmatch2. Currently, rbounds implements the

sensitivity tests for matched (1x1l) pairs only.

Main options

gamma (numlist) specifies the values of gamma for which to carry out
the sensitivity analysis. Estimates at cap gamma = 1 (no heterogeneity)
are included in the calculations by default. gamma() is required by
rbounds.

alpha (#) specifies the values of alpha in the calculation of confidence
intervals for the Hodges-Lehmann point estimate of the average treatment
effect.

acc (#) specifies the convergence criterion of the line search algorithm
used to find the Hodges-Lehmann point estimates. Convergence level is set
to le-acc, the preset value is acc=6.

sigonly restricts rbounds to calculate Wilcoxon signrank tests for
significance levels only.

dots may be specified for status information. The option is useful for

checking total execution time with large samples.
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Although psmatch2 has been already run, we rerun it just for the sake of
completeness.

. global xvars re74 re75 age agesq nodegree married black hisp
. pscore w $xvars_ps, Pscore(myscore) comsup

. psmatch2 w , out(re78) pscore(myscore) common

Before running rbounds, we first calculate, for each unit, the difference
between the actual and the imputed outcome by typing:

. gen delta = RE78 - _RE78 if _treat==1 & _support==
Now, we run the rbounds command by writing:

. rbounds delta, gamma(l (1) 3)

Rosenbaum bounds for delta (N 185 matched pairs)

Gamma sig+ sig- t-hat+ t-hat- CI+ CI-
1 0 0 5251.77 5251.77 4318.09 6209.05
2 1.4e-15 0 3404.07 7255.29 2505.17 8674.72
3 5.7e-11 0 2443.75 8767.93 1598.29 10253
4 1.2e-08 0 1940.64 9678.02 976.635 11562.7
5 2.9e-07 0 1505.64 10548.3 647.205 12783 .4
* gamma - log odds of differential assignment due to unobserved factors
sig+ — upper bound significance level
sig- - lower bound significance level

t-hat+ - upper bound Hodges-Lehmann point estimate

t-hat- - lower bound Hodges-Lehmann point estimate
CI+ — upper bound confidence interval (a= .95)
CI- - lower bound confidence interval (a= .95)

The W-test’s p-value upper bound (sig+) maintains the 5 % significance up to a
value of I" equal to 5. In this case, we can therefore sufficiently trust our Matching,
since the results remain significant even with a very high and unlikely value of I’;
indeed, I' =5 means that the probability to be treated is five times higher for one
unit than for another one, a situation that should be really rare in reality. Therefore,
our matching can be taken as soundly reliable.

2.7.3 An Example of Coarsened-Exact Matching Using cem

This section provides an illustrative example of Coarsened-exact Matching (CEM)
using the user-written Stata command cem provided by Blackwell et al. (2009).
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We consider again the dataset JTRAIN_PSIDI1.dta. The basic cem syntax is
reported below.
Syntax of cem

cemvarnamel [ (cutpointsl)] [varname2 [ (cutpoints2)]] ... [, options]
Main options Description
treatment (varname) name of the treatment variable
showbreaks display the cutpoints used for each variable
autocuts (string) method used to automatically generate cutpoints
k2k force cem to return a k2k solution
Description

cem implements the Coarsened Exact Matching method described in Iacus, King, and
Porro (2012). The main input for cem are the variables to use and the
cutpoints that define the coarsening. Users can either specify cutpoints for
a variable or allow cem to automatically coarsen the data based on a binning
algorithm, chosen by the user. To specify a set of cutpoints for a variable,
place a numlist in parentheses after the variable’s name. To specify an
automatic coarsening, place a string indicating the binning algorithm to use
in parentheses after the variable’s name. To create a certain number of
equally spaced cutpoints, say 10, place “#10” in the parentheses (this will
include the extreme values of the variable). Omitting the parenthetical
statement after the variable name tells cem to use the default binning

algorithm, itself set by autocuts.

In this example, we start first by evaluating the degree of imbalance when cells
are not deleted. Of course, we first need to coarsen variables. To this aim, we leave
cemto apply its automated coarsening algorithm (although it is possible to choose a
user-defined level of coarsening). To calculate the state of “starting” imbalance
within our dataset, we make use of the imb command (provided by Stata when cem
is installed). The imb syntax is in what follows:

Syntax of imb

imb varlist [if] [in] [, options]
Main options Description
treatment (varname) name of the treatment variable
breaks (string) method used to generate cutpoints
Description

Imb returns a number of measures of imbalance in covariates between treatment
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and control groups. A multivariate L1 distance, univariate L1 distrances,
difference in means and empirical quatiles difference are reported. The L1
measures are computed by coarsening the data according to breaks and
comparing across the multivariate histogram.

Considering a simple model with a parsimonious specification of the covariates,
we run the imb command:

imb age educ black nodegree re74, treatment (treat)
Multivariate L1 distance: .94819277

Univariate imbalance:

Ll mean min 25% 50% 75% max

age .37598 -9.0344 -1 -6 -8 -15 -7

educ .44049 -1.7709 4 -2 -1 -2 -1
black .59264 .59264 0 1 1 0 0
nodegree .40289 .40289 0 0 1 0 0
re74 .72282 -17333 0 -10776 -18417 -25159 -1.0e+05

The overall multivariate imbalance, as calculated by the statistic L;, provides
evidence of a strong imbalance in this dataset, since the statistic is very close to one.
This is also reflected in univariate imbalances that are especially strong for real
earnings in 1974 (“re74”, with a value of 0.72) and the variable “black” (with a
value of 0.59).

Given this initial state of imbalance, we run the cem command to see whether
there is some balancing improvement when cells that do not contain at least one
treated unit and one control unit are dropped out:

. cem age educ black nodegree re74, treatment (treat)
Matching Summary:
Number of strata: 553
Number of matched strata: 61
0 1
All 2490 185
Matched 348 163
Unmatched 2142 22

Multivariate L1 distance: .69399345

Univariate imbalance:
Ll mean min 25% 50% 75% max
age .01132 -.29306 -1 0 1 0 1
educ .05817 .05608 1 0 0 0 0
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black 2.8e-16 3.3e-16 0 0 0 0 0
nodegree 4.2e-16 -7.8e-16 0 0 0 0 0
re74 .62824 -4832.4 0 -3526.7 -6857.4 -8249.6 -226.7

We immediately see from previous results that a quite significant improvement
of multivariate balancing is achieved; the statistic L, passes from 0.948 to 0.693
(with a decrease of around 27 %). The imbalance for “re74” (0.628), however,
remains fairly strong.

What is striking is the large number of cells deleted by the cem algorithm: we
started with 553 cells but only 61 out of them have matched. This is a rate of cells’
survivorship of just 11 %, which is quite low and is well reflected in the significant
decrease of untreated units, from 2,490 to 348 (just 13 %).

Although questionable, we accept this result at this stage and calculate the ATET
through a WLS approach, using as weights those automatically generated by cem,
i.e., cem_weights:

. regress re78 treat [iweight=cem_weights]

Source | sS af MS Number of obs = 511

- F( 1, 509) = 16.47

Model | 1.6537e+09 1 1.6537e+09 Prob > F = 0.0001
Residual | 5.1108e+10 509 100408432 R-squared = 0.0313

- Adj R-squared = 0.0294

Total | 5.2762e+10 510 103454192 Root MSE = 10020

re78 | Coef. std. Err. t P>t [95% Conf. Intervall]
_____________ o
treat | -3859.77  951.0692 -4.06 0.000  -5728.275 -1991.266

_cons | 10221.63 537.1499 19.03 0.000 9166.326 11276.93

The results indicate a negative, significant, and remarkable effect of training on
real earnings in 1978. The estimated value (—3,859) is, however, too far from the
true one (1,794), thus illustrating the bias induced by this Matching approach. As in
the case of radius Matching, this bias is probably due to a too strong trimming
process operated by the cem balancing algorithm. Thus, the trade-off between
estimation precision and balancing tended to be mainly against the first, implying
that one has to be very careful in drawing conclusions when a relatively high
reduction of observations is carried out by the Matching process. This is indeed
true for any Matching relying on some trimming procedure.
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2.8 Implementation and Application of Reweighting

In this section, we present a Stata implementation of the Reweighting method to
consistently estimate ATE, ATET, and ATENT. We first present the user-written
Stata command treatrew (Cerulli 2014a), to be going on, by comparing it with
the built-in Stata routine teffects ipw.

2.8.1 The Stata Routine treatrew

The user-written Stata module treatrew estimates ATEs by Reweighting on the
propensity-score as proposed by Rosenbaum and Rubin (1983). Either analytical or
bootstrapped standard errors are provided. The syntax follows the typical Stata
command syntax.

Syntax of treatrew

treatrew outcome treatment [varlist] [if] [in] [weight], model (modeltype)

[graphic range(a b) conf (number) vce (robust)]

Description

treatrew estimates Average Treatment Effects by reweighting on propensity-score.
Depending on the model specified, treatrew provides consistent estimation of
Average Treatment Effects under the hypothesis of "selection on observables".
Conditional on a pre-specified set of observable exogenous variables x -
thought of as those driving the non-random assignment to treatment - treatrew
estimates the Average Treatment Effect (ATE), the Average Treatment Effect on
Treated (ATET) and the Average Treatment Effect on Non-Treated (ATENT), as
well as the estimates of these parameters conditional on the observable
factors x (i.e., ATE(x), ATET(x) and ATENT (x)). Parameters standard errors
are provided either analytically (following Wooldridge, 2010, p. 920-930) and
via bootstrapping. treatrew assumes that the propensity-score specification
is correct.

Main Options

model (modeltype) : specifies the model for estimating the propensity-score, where
modeltype must be one out of these two: "probit" or "logit". It is always
required to specify one model.

graphic: allows for a graphical representation of the density distributions of
ATE(x), ATET(x) and ATENT (x)within their whole support.

range(a b): allows for a graphical representation of the density distributions
of ATE(x), ATET(x) and ATENT (x) within the support [a;b] specified by the

user. It has to be specified along with the graphic option.
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modeltype_options description
probit The propensity-score is estimated by a probit regression
logit The propensity-score is estimated by a logit regression

The user has to set: (a) the outcome variable, i.e., the variable over which the
treatment is expected to have an impact (outcome); (b) the binary treatment
variable (treatment); (c) a set of confounding variables (varlist); and finally
(d) a series of options. Two options are of particular importance: the option model
(modeltype) sets the type of model, probit or logit, that has to be used in
estimating the propensity-score; the option graphic and the related option
range (a b) produce a chart where the distribution of ATE(x), ATET(x), and
ATENT(x) are jointly plotted within the interval [a; b].

As treatrew is an e-class command, it provides an ereturn list of
objects (such as scalars and matrices) to be used in subsequent elaborations. In
particular, the values of ATE, ATET, and ATENT are returned in the scalars
e(ate),e(atet),and e (atent), and they can be used to obtain bootstrapped
standard errors. Observe that, by default, treatrew provides analytical standard
erTors.

To illustrate a practical application of treatrew, we use an illustrative dataset
called FERTIL2.DTA accompanying the manual “Introductory Econometrics: A
Modern Approach” by Wooldridge (2013), which collects cross-sectional data on
4,361 women of childbearing age in Botswana. This dataset is freely downloadable
at http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta. It contains 28 vari-
ables on various woman and family characteristics.

Using FERTIL2.DTA, we are interested in evaluating the impact of the variable
“educ?” (taking value 1, if a woman has more than or exactly 7 years of education,
and O otherwise) on the number of children in the family (“children”). Several
conditioning (or confounding) observable factors are included in the dataset, such
as the age of the woman (“age”), whether or not the family owns a TV (“tv”),
whether or not the woman lives in a city (“urban”), and so forth. In order to
investigate the relationship between education and fertility and according to the
model’s specification of Wooldridge (2010, example 21.3, p. 940), we estimate ATE,
ATET and ATENT (as well as ATE(x), ATET(x), and ATENT(x)) by “reweighting”
using the treatrew command. We also compare Reweighting results with other
popular program evaluation methods, such as (1) the Difference-in-means (DIM),
which is taken as the benchmark case, (2) the OLS regression-based random-
coefficient model with “heterogeneous reaction to confounders,” estimated through
the user-written Stata routine ivtreatreg (Cerulli 2014b), and (3) a one-to-one
nearest-neighbor Matching, computed by the psmatch2 Stata module (Leuven
and Sianesi 2003). Results from all these estimators are reported in Table 2.7.

The results in column (1) refer to the Difference-in-means (DIM) and are
obtained by typing:

. reg children educ?


http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta
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Results on column (2) refer to CF-OLS and are obtained by typing:

. ivtreatreg children educ7 age agesq evermarr urban electric tv , ///

hetero (age agesq evermarr urban electric tv) model (cf-ols)

In the case of CF—OLS, standard errors for ATET and ATENT are obtained via
bootstrap procedures and can be obtained in Stata by typing:

. bootstrap atet=r(atet) atent=r(atent), rep(200): ///
ivtreatreg children educ7 age agesqg evermarr urban electric tv , ///

hetero(age agesq evermarr urban electric tv) model (cf-ols)

Results set out in columns (3)—(6) refer to the Reweighting estimator (REW). In
column (3) and (4), standard errors are computed analytically, whereas in column
(5) and (6), they are calculated via bootstrap for the logit and probit model,
respectively. These results can be retrieved by typing sequentially:

. treatrew children educ7 age agesqg evermarr urban electric tv , ///
model (probit)

. treatrew children educ7 age agesqg evermarr urban electric tv , ///
model (logit)

. bootstrap e(ate) e(atet) e(atent) , reps(200): ///

treatrew children educ7 age agesqg evermarr urban electric tv , model (probit)
. bootstrap e(ate) e(atet) e(atent) , reps(200): ///

treatrew children educ7 age agesqg evermarr urban electric tv , model (logit)

Finally, column (7) presents an estimation of ATEs obtained by implementing a
one-to-one nearest-neighbor Matching on propensity-score (MATCH). Here, the
standard error for ATET is obtained analytically, whereas those for ATE and
ATENT are computed by bootstrapping. Matching results can be obtained by

typing:

. psmatch2 educ7 age agesq evermarr urban electric tv, ate out(children) com

. bootstrap r(ate) r(atu): psmatch2 educ7 $xvars , ate out(children) com

where the option com restricts the sample to units with common support. In order to
test the balancing property for such a Matching estimation, we provide a DIM on
the propensity-score before and after matching treated and untreated units, using
the psmatch?2’s post-estimation command pstest:
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. pstest _pscore
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| Mean g$reduct | t-test
Variable Sample | Treated Control $bias |bias| | t p>|t]
________________________ e
_pscore Unmatched | .65692 .42546 111.7 | 37.05 0.000
Matched | .65692  .65688 0.0 100.0 | 0.01 0.994

This test suggests that with regard to the propensity-score, the Matching proce-
dure implemented by psmatch?2 is balanced; thus we can sufficiently trust the
Matching results (indeed, the propensity-score was unbalanced before Matching
and balanced after Matching).

A number of results warrant commenting. Unlike DIM, results from CF-OLS
and REW are fairly comparable, both in terms of coefficients’ size and significance;
the values of ATE, ATET, and ATENT obtained using Reweighting on propensity-
score are only slightly higher than those obtained by CF-OLS. This means that the
linearity of the potential outcome equations assumed by the CF-OLS is an accept-
able approximation. Looking at the value of ATET, obtained by REW (reported in
column 3, Table 2.7), an educated woman in Botswana would have been—ceteris
paribus—significantly more fertile if she had been less educated. We can conclude
that “education” has a negative impact on fertility, resulting a woman having
around 0.5 fewer children. Observe that, if confounding variables were not consid-
ered, as in using DIM, this negative effect would appear dramatically higher, of
approximately 1.77 children. The difference between 1.77 and 0.5 (around 1.3) is
an estimation of the bias induced by the presence of selection on observables.

Columns (3) and (4) contain REW results using Wooldridge’s analytical standard
errors in the case of probit and logit respectively. As one might expect, these results
are very similar. Of more interest are the REW results when standard errors are
obtained via bootstrap (columns (5) and (6)). Here statistical significance is confirmed
when comparing these to the results derived from analytical formulas. What is
immediate to see is that bootstrap procedures seem to increase significance both for
ATET and ATENT, while ATE’s standard error is in line with the analytical one.

Some differences in results emerge when applying the one-to-one nearest-
neighbor Matching (column (7)) to this dataset. In this case, ATET becomes
insignificant with a magnitude that is around one-third lower than that obtained
by Reweighting. As previously discussed, ATE and ATENT’s standard errors are
obtained here via bootstrap, given that psmatch2 does not provide analytical
solutions for these two parameters. As illustrated by Abadie and Imbens (2008),
bootstrap performance is nevertheless generally poor in the case of Matching; thus,
these results have to be taken with some caution.
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Fig. 2.8 Estimation of the Reweighting: Comparison of ATE(x) ATET(x) ATENT(x)
distribution of ATE(x), N
ATET(x), and ATENT(x)
by Reweighting on © |
propensity-score with range '
equal to (=30; 30)

Kernel density
1

ATE()  ————- ATET(x)
—-—-- ATENT(x)

Model:logit

Finally, Fig. 2.8 sets out the estimated kernel density for the distribution of
ATE(x), ATET(x), and ATENT(x) when treatrew is used with the
options “graphic” and “range (-30 30)”. It is evident that the distribution
of ATET(x) is slightly more concentrated around its mean (equal to ATET) than
ATENT(x), thus indicating that more educated women respond more
homogenously to a higher level of education. On the contrary, less educated
women react much more heterogeneously to a potential higher level of education.

2.8.2 The Relation Between treatrew and Stata 13°s
teffects ipw

As said, stata 13 provides a new far-reaching package, teffects, for estimating
treatment effects for observational data. Among the many estimation methods
provided by this suit, the sub-command teffects ipw (hereafter IPW) imple-
ments a Reweighting estimator based on inverse-probability weighting.

This routine estimates the parameters ATE, ATET, and the mean potential
outcomes using a WLS regression, where weights are function of the propensity-
score estimated in the first step. To see the equivalence between IPW and WLS, we
apply the new command to our previous dataset by computing ATE:

. teffects ipw (children) (educ7 $xvars, probit) , ate

Iteration 0: EE criterion = 6.624e-21

Iteration 1: EE criterion = 4.111e-32

Treatment-effects estimation Number of obs = 4358
Estimator : inverse-probability weights

Outcome model : weighted mean

Treatment model: probit
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| Robust
children | Coef. std. Err. z P>|z| [95% Conf. Interval
ATE
educ? |
(1 vs 0) | -.1531253 .0755592 -2.03 0.043 -.3012187 -.0050319
POmean |
educ? |
0 | 2.208163 .0689856 32.01 0.000 2.072954 2.343372

In this results table, we see that the value of ATE is —0.153 with a standard error
of 0.075 resulting in a moderately significant effect of “educ7” on “children.”

We can show that this value of ATE can also be obtained using a simple WLS
regression of y on w and a constant, with weights /; designed in this way:

hi = hi
hi = hig

1/p(xi) ifD; = 1

The Stata code for computing such a WLS regression is as follows:

. global xvars age agesqg evermarr urban electric tv
. probit educ7 $xvars , robust // estimate the probit regression
. predict _ps , p // call the estimated propensity-score as _ps

. gen H=(1/_ps) *educ7+1/ (1-_ps) *(1l-educ7) // weighing function H for D=1 and D=0

. reg children educ7 [pw=H] , vce(robust) // estimate ATE by a WLS regression
Linear regression Number of obs = 4358
F( 1, 4356) = 2.00
Prob > F = 0.1576
R-squared = 0.0013
Root MSE = 2.1324

| Robust
children | Coef. std. Err. t P>t [95% Conf. Interval
educ7 | -.1531253 .1083464 -1.41 0.158 -.3655393 .0592887
_cons | 2.208163 .0867265 25.46 0.000 2.038135 2.378191

This table shows that the IPW and WLS values for ATE are identical. One
difference, however, is in the estimated standard errors, which are quite divergent:
0.075 in IPW compared to 0.108 in WLS. Moreover, observe that ATE calculated
by WLS becomes nonsignificant.
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Why do these standard errors differ? The answer resides in the difference in the
approach used for estimating the variance of ATE (and, possibly, ATET): WLS
regression employs the usual OLS variance—covariance matrix adjusted for the
presence of a matrix of weights, let’s say Q; WLS does not, however, consider the
presence of a “generated regressor’—namely—the weights computed through the
propensity-scores estimated in the first step. Stata 13’s IPW, in contrast, takes into
account also the variability introduced by the generated weights, by exploiting a
GMM approach for estimating the correct variance—covariance matrix in this case
(see StataCorp 2013, pp. 68-88). In this sense, Stata 13’s IPW is a more robust
approach than a standard WLS regression.

Both WLS and IPW in Stata make use by default of “normalized” weights, that
is, weights that add up to one. treatrew, instead, uses “non-normalized” weights
and this is the reason why the ATEs values obtained from treatrew (see the
previous section) are numerically different from those obtained from WLS and
IPW. Moreover, as illustrated by Busso et al. (2009, p. 7), it is easy to show that a
general formula for estimating ATE by Reweighting is:

— 1 1
ATE =—-) D;Y;hjyy — — 1 — Dy)Y;h; 2.147
N; i N; ( )Yihio (2.147)
treatrew employs non-normalized inverse-probability weights defined as above,
that is:

hiy = 1/ p(x;)
hio = 1/[1 — p(x;)]

The weights do not sum up to one; thus, analytical standard errors cannot be
retrieved by a weighted regression. The method suggested by Wooldridge
(implemented by treatrew) for obtaining correct analytical standard errors of
ATE, ATET, and ATENT is thus required, since a generated regressor from the
first-step estimation is employed in the second step.

The normalized weights used in WLS and IPW are instead:

hy = 1/p(xi)
l N
E;Di/P(Xt)
by = —— 1/[1 - p(x)]
1

Re= =2/l = plxi)

Cerulli (2014a, appendix B) shows that if the formula for ATE uses “normalized”
(rather than “non-normalized”) weights, then the treatrew’s ATE estimation
would become numerically equivalent to the value of ATE obtained by WLS
and IPW.
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To conclude, we can assert that both IPW and treatrew lead to correct
analytical standard errors, as both take into account the fact that the propensity-
score is a generated regressor from a first-step (probit or logit) regression. The
different values of ATE and ATET obtained in the two approaches lie in the
different weighting scheme (normalized vs. non-normalized) adopted.

In short, treatrew is useful when considering non-normalized weights,
i.e. when a “pure” inverse-probability weighting scheme is employed. Moreover,
compared to Stata 13’s IPW, treatrew also provides an estimation of ATENT,
although it does not provide by default an estimation of the mean potential outcome

(s).

2.8.3 An Application of the Doubly-Robust Estimator

This last subsection illustrates how one can estimate ATEs using the Doubly-robust
estimator discussed in Sect. 2.4. In Stata 13, this can be performed using the
command teffects aipw where aipw stands for “augmented inverse-
probability weighting” estimator. As discussed, the Doubly-robust estimator uses
jointly Regression-adjustment and Reweighting methods for estimating ATEs and
also for estimating the potential outcome means. The Doubly-robust estimator
performs the following three-step procedure: (1) estimate the parameters of the
selection equation and compute inverse-probability weights; (2) estimate two
regressions of the outcome, one for treated and one for untreated units, to obtain
the unit-specific predicted outcomes; (3) calculate the weighted means of the unit-
specific predicted outcomes, where the weights are the inverse-probability weights
estimated in the first step; (4) take the difference between these two averages to
obtain ATEs.

It is important to note that this command allows also for various choices of the
functional forms of the outcome, including the possibility to model count and
binary outcomes. The basic syntax of this command is as follows:

Basic syntax of teffects aipw

teffects aipw (ovar omvarlist [, omodel noconstant]) (tvar tmvarlist [,
tmodel noconstant)] [i1f] [in] [weight] [, stat options]
omodel Description
Model
linear linear outcome model; the default
logit logistic outcome model
probit probit outcome model
hetprobit (varlist) heteroskedastic probit outcome model

poisson exponential outcome model
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tmodel Description
Model
logit logistic treatment model; the default
probit probit treatment model
hetprobit (varlist) heteroskedastic probit treatment model
stat Description
Stat
ate estimate average treatment effect; the default
pomeans estimate potential-outcome means

The syntax follows the other tef fects package’s sub-commands, except that
in this case, we can specify two distinct set of confounders, one for the outcome
(omvarlist) and one for the selection (or treatment) equation (tmvarlist).
The treatment binary variable is indicated by tvar and the outcome variable
by ovar.

We apply an estimation of ATE and POMs to the FERTIL2.DTA dataset:

. global xvars age agesqg evermarr urban electric tv

. teffects aipw (children S$xvars) (educ7 $xvars) atet

Treatment-effects estimation Number of obs = 4358
Estimator : augmented IPW

Outcome model : linear by ML

Treatment model: logit

| Robust
children | Coef. std. Err. z P>|z| [95% Conf. Interval

_____________ o e
ATE |

educ?7 |

(1 vs 0) | -.4012974 .0587055 -6.84 0.000 -.5163581 -.2862367

POmean |

educ? |

0o | 2.494768 .0481193 51.85 0.000 2.400456 2.58908

The ATE value (—0.401) is significant and very close to the one obtained using
the treatrew command (—0.415), which simply implements a Reweighting
estimator. Moreover, the standard errors are very close (0.059 vs. 0.068). To
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conclude then, the use of a three, rather than two-step approach would not appear to
result in appreciable improvements in the ATE estimation within this dataset.

By including the options pomeans and aequations, we can obtain estimates
of both POMs and also visualize the results of the three regressions performed to
obtain previous estimation of ATE:

teffects aipw (children $xvars) (educ7 S$xvars) , pomeans aequations
Treatment-effects estimation Number of obs = 4358
Estimator : augmented IPW
Outcome model : linear by ML

Treatment model: logit

| Robust

children | Coef.  Std. Err. z P>|z| [95% Conf. Interval

POmeans |

educ?7 |
0o | 2.494768 .0481193 51.85 0.000 2.400456 2.58908
1] 2.093471 .0481605 43.47 0.000 1.999078 2.187864

OMEO |
age | .3606572 .0311193 11.59 0.000 .2996646 .4216498
agesqg | -.0031604 .0005198 -6.08 0.000 -.0041793 -.0021416
evermarr | .8375024 .0903669 9.27 0.000 .6603864 1.014618
urban | -.3860406 .0835026 -4.62 0.000 -.5497027 -.2223786
electric | -.3695401 .1851556 -2.00 0.046 —.7324384 -.0066419
tv | -.2011699 .2748112 -0.73 0.464 -.7397899 .3374501
_cons | -4.991605 .4118896 -12.12 0.000 -5.798894 -4.184316

OME1 |
age | .2356515 .0261468 9.01 0.000 .1844048 .2868983
agesg | -.0014569 .0005144 -2.83 0.005 —.0024652 -.0004487
evermarr | .5700708 .0562416 10.14 0.000 .4598392 .6803024
urban | -.1214004 .0449316 -2.70 0.007 -.2094648 -.033336
electric \ -.2762289 .0702917 -3.93 0.000 -.4139981 -.1384596
tv | -.3248643 .0820202 -3.96 0.000 -.4856209 -.1641077
_cons | -3.358809 .3099163 -10.84 0.000 -3.966233 -2.751384

TME1 |
age | -.0182638 .0312554 -0.58 0.559 -.0795233 .0429957
agesg | -.0013532 .0005193 -2.61 0.009 -.0023711 -.0003353
evermarr | -.5350235 .0799502 -6.69 0.000 -.691723 -.378324
urban | .5037746 .0709056 7.10 0.000 .3648023 . 642747
electric | .7766193 .1373618 5.65 0.000 .5073952 1.045843
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tv | 1.741456 .2073006 8.40 0.000 1.335154 2.147758
_cons | 1.61559 .434969 3.71 0.000 .7630665 2.468114

With the exception of the variable “tv” in the estimation of the untreated
potential outcome regression (OMEOQ in the previous table), all covariates are highly
significant in all three estimated regressions. Of course, one can be selective in
deciding which covariates have to explain the selection equation and which the
outcomes equations. One should, however, have convincing arguments to justify
which variables to include/exclude in the potential outcomes and the selection
equations, since this choice may remarkably change the causal links lying behind
the model (and, as a consequence, the magnitude and significance of estimates). We
will come back to this important question in the next chapter, where Instrumental-
variables (IV) and Selection-model (SM) approaches will be presented and exten-
sively discussed.
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3.1 Introduction

This chapter covers econometric methods for estimating ATEs under “selection on
unobservables,” also known in the literature as “hidden bias.” When nonobservable
factors significantly drive the nonrandom assignment to treatment, recovering
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consistent estimations of ATEs relying only on observables (basically, the vector of
covariates x) is no longer possible. As a consequence, econometric methods based
on the conditional independence assumption (CIA) reviewed in Chap. 2 are no
longer appropriate for estimating the actual program effect on target variables.

As already suggested in Chap. 1, the nature of the unobservables can be twofold.
On one hand, there are unobservable elements due to some lack of information in
the available datasets. This is more of a problem of data availability than genuine
incapacity of gauging specific phenomena; for convenience, we will call these
contingent unobservables. On the other hand, there are genuine unobservables
that would be fairly impossible to measure also in case of abundant information
(for instance, individual entrepreneurial innate ability, propensity to bear risks,
ethical attitudes, and so on).

Regardless of what kind of “unobservableness” the analyst has to deal with, the
problem becomes one of finding suitable econometric procedures in order to
produce consistent estimation of ATEs under this more complicated setting. For-
tunately, the literature has provided three methods to cope with selection on
unobservables: Instrumental-variables (IV), Selection-models (SM), and
Difference-in-differences (DID). All the three approaches offer a solution to the
hidden bias problem. Their implementation requires, however, either additional
information or further assumptions, which are not always available or viable.

More specifically, the application of IV requires the availability of at least one
instrumental-variable, i.e., a variable in the dataset which is directly correlated with
the selection process, but (directly) uncorrelated with the outcome. Similarly,
Selection-models restore consistency under the assumption of joint normality of
the error terms of the potential outcomes and of the selection equation. Finally, the
DID estimator requires to have observations before and after the policy event, either
for different or for the same set of individuals.

It is quite clear that in many program evaluation contexts, such additional
assumptions and information are not always available. For this reason, working
under the potential presence of a hidden bias is generally recognized as much more
tricky than working under overt bias. Nevertheless, it is possible to find a solution
for some situations, and knowing how to technically and computationally imple-
ment a correct estimation in these cases is of the utmost importance. For this reason,
this chapter presents and discusses program evaluation econometric approaches
which deal with hidden bias along with related applications either with real and
artificial data.

The chapter is organized as follows: Sect. 3.2 and subsections present various [V
approaches and discuss some of their limitations; Sect. 3.3 discusses the Heckman
Selection-model; Sect. 3.4 sets out the DID estimator in a repeated cross section and
in a longitudinal (or panel) data structure; Sect. 3.5 focuses on an application of IV
and Selection-model on simulated and real data; Sect. 3.6 offers an implementation
of DID both in repeated cross sections and panel data.
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When selection into a program is driven not only by observables but also by
unobservable-to-the-analyst factors, then the conditional mean independence
(CMI) hypothesis no longer holds and Regression-adjustment (including Control-
function regression), Matching, and Reweighting generally bring biased estimates
of ATE, ATET, and ATENT (see Chap. 1).

In the regression approach, the treatment binary variable D becomes endoge-
nous, that is, correlated with the error term, thus preventing ordinary least squares
(OLS) from producing consistent estimates of regression parameters, including
ATE, ATET, and ATENT. In the case of Matching (and propensity-score based
Reweighting, for instance), the bias depends on excluding relevant covariates from
the variables generating the actual propensity-score and/or from the matching
procedure applied on units (as, for instance, in the nearest-neighbor approach).

In a regression setting, the typical econometric solution to deal with endogeneity
problems is represented by Instrumental-variables estimation (Sargan 1958;
Angrist and Krueger 1991; Abadie et al. 2002; Angrist and Imbens 1995; Angrist
and Pischke 2008; Angrist 1991; Angrist et al. 1996; Imbens and Angrist 1994; Lee
2005). The virtue of this approach lays in its capacity to restore causal parameters’
consistency, even under selection on unobservables (Angrist and Krueger 2001).

In practical cases, however, the application of IV has important limitations,
mainly due to the need for at least one exogenous variable z, the “instrumental-
variable,” which is assumed to have the following two fundamental properties:

e z1is (directly) correlated with treatment D
¢z is (directly) uncorrelated with outcome Y

These two requirements imply that the selection into program should possibly
depend on the same factors affecting the outcome plus z, the instrument, assumed to
not directly affect the outcome. The relation between the endogenous variable
D and the outcome Y can exist (so that empirical correlation might not be zero),
but it can be only an “indirect link” produced by the “direct effect” of z on D.
Algebraically, this represents the classical exclusion restriction assumption under
which IV methods identify the casual parameters of interest (Heckman and Vytlacil
2001).

The causal rationale lying behind the IV approach has been widely discussed in
Chap. 1, where we acknowledged that finding good instruments is neither easy nor
so common in applications. Indeed, according to Angrist and Pischke (2008,
p. 117), sources of instruments come “from a combination of institutional knowl-
edge and ideas about the processes determining the variable of interest.” In this
sense, institutional constraints may play a key role in generating suitable instru-
ments, thus providing grounds for creating quasi-randomized settings approximat-
ing “natural experiments.” For instance, in the celebrated paper of Angrist and
Krueger (1991) looking for the causal relation between years of schooling and
personal earning, the authors use “quarter-of-birth” in order to instrument years of
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education, assumed to be endogenous. Why should this be a good instrument? The
authors argue that as it is compulsory to attend school until the age of 16 in many
US states (and only after this threshold can a student freely drop out of school), and
as individuals born in the first quarters of the year start school before the age of
6, while ones later born are more than 6 years old at that time, this induces a
situation in which earlier born children have a longer education time than those
born later. Empirically, the authors find a positive relation between years of
education and quarter-of-birth, thus showing that this variable can serve as a
good instrument for years of education. In fact, the date of birth seems unrelated
to the (unobservable) variables which may influence earnings such as family
background, personal motivation, and genetic attitude; as such, quarter-of-birth
can be reliably assumed as randomly determined and, as such, purely exogenous.
Further analytical developments on the connection between IV and causality will be
presented in the next chapter where the notion of local average treatment effect
(LATE) will be set out and discussed. In this chapter, we will focus mainly on how
to restore consistency using IV when program’s selection on unobservables is
assumed. Unless stated otherwise, we assume that a reliable instrumental-variable
is available.

3.2.1 1V Solution to Hidden Bias

In Chap. 1 we saw that the Difference-in-means (DIM) estimator is equal to the
coefficient a obtained by an OLS regression of this simple univariate linear model:

Y=u+aD+u (3.1)
so that:
a=E(Y|D=1) —E(Y|D =0) =DIM (3.2)
It is also known that in a univariate regression such as (3.1):
a = Cov(Y;D)/Var(D) (3.3)
Suppose now that the selection-into-treatment was driven by a factor x, that is
unobservable-to-the-analyst. We want to characterize this situation and show that
IV provides an unbiased estimate of a. Such a situation entails that the outcome is
also function of x. In other words, the true process generating Y is:

Y=pu+aD+px+u (3.4)

Since in (3.4) x is unobservable, it is part of the error term; thus the model becomes:
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Y=p+aD+u (3.5)

with u* = fx + u showing that the treatment D and the new error term u* are related,
for the selection-into-treatment is supposed to depend on x. A simple OLS of
regression (3.5), therefore, leads to a biased estimation of «; in fact:

aoLs = Cov(Y;D)/Var(D) = Cov(u + aD + px + u; D) /Var(D)
= aVar(D)/Var(D) + fCov(x; D)/Var(D) (3.6)

that is:
aoLs = a + fCov(x; D)/Var(D) (3.7)
where, similarly to what is stated in (3.3), we get that:
aoLs = a+ B{E(x|D =1) —E(x|D =0)} (3.8)

which is also equivalent to (1.58). Equation (3.8) proves that in the case of
unobservable selection, a standard OLS is a biased estimator. This depends on the
fact that the basic assumption for OLS to be consistent in (3.5), i.e., Cov(D; u*) =0,
fails when the error contains factors driving the selection-into-treatment, which
results in Cov(D; u*) #£0.

In such a situation, an IV approach can restore consistency, provided that an
instrumental-variable z, correlated with D but uncorrelated with u*, is available. If
we assume that u is a pure random component, thus uncorrelated by definition with
z, we can show that:

Cov(z;u’) = Cov(z; fx + u) = pCov(z;x) + Cov(z;u) = fCov(z;x) =0 (3.9)

implying that Cov(z; x) = 0. By starting from (3.5), and assuming that Cov(z; u*) is
zero, with z as an instrument, we have that:

Cov(z;u’) = Cov(z;Y — u — aD) = Cov(Y;z) — aCov(D;z) = 0 (3.10)
implying immediately that:
ary = Cov(Y;z)/Cov(D;z) (3.11)

We can now show that this estimator is consistent. In fact:



166 3 Methods Based on Selection on Unobservables

_ Cov(u+aD + px +u;z)
N Cov(D;z)

ary = Cov(Y;z)/Cov(D;z)

_a Cov(D;z) — - Cov(x;z)

Cov(D;2) - (3.12)

as Cov(x; z) =0 as assumed in (3.9). Equation (3.12) proves that the IV estimator of
the effect of D on Y is consistent for the true causal parameter a.

3.2.2 1V Estimation of ATEs

This section, which presents I'V methods for consistently estimating ATEs, relies on
a vast literature on IV methods in the econometrics of program evaluation. In what
follows, however, we will refer to the excellent review by Wooldridge (2010,
pp. 937-954) and Angrist and Pischke (2008, Chap. 4), as well as to papers by
Angrist et al. (1996), Heckman (1997), and Heckman and Vytlacil (1998).

To see how IV can consistently estimate ATE, ATET, and ATENT consider, as
done in Chap. 2, the switching random coefficient regression derived from the
potential outcome model (POM):

Y = py+D(uy — ptg) +vo+D(vi — vp) (3.13)
This equation, assuming that CMI does not hold, yields:
E(v1|D,x) # E(v]x) (3.14)
and
E(vo|D,x) # E(vo|x) (3.15)

As in the case of Control-function regression, we can distinguish two cases: (1) the
homogenous and (2) the heterogeneous cases.

Case 1 vi=vo (homogenous case)

As seen for Control-function regression, in this case one assumes that v = v,
thus:

Y = py+ D(uy — po) + vo (3.16)

This equation implies that:
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ATE = ATET = ATENT = 4, — y, (3.17)

Suppose, however, one has an instrumental-variable z. Formally, the two properties
that such a variable should have can be written as:

E (vo
E(D

x,z) =E(w|x) < zisuncorrelated withvg (3.18)

x,z) #E(D|x) <« ziscorrelated withD (3.19)

By considering firstly (3.18), we can assume that E(vy | x, z) = E(vq | x) = g(x) = x§,
which means that E(vy | x, z) #0. Simple algebra yields a regression model
containing an error term with zero unconditional mean of this type (see Wooldridge
2010, pp. 937-938):

Y =py+D -ATE+ xB+u (3.20)

that is a model in which (x, z) are uncorrelated with the error term u, i.e., (X, z) are
exogenous, but the error term u is still correlated with D, the treatment.

The previous assumptions and relationships can be more compactly summarized
in the following two-equation structural system:

(a) Yi://t0+DiATE+Xiﬁ+Mi
(b) D] =n+qd+e
_ 1 if D;>0 (3.21)
(c) D’_{o if D; <0
(d) q;=(xiz)

where ATE cannot be consistently estimated by an OLS of (3.21a), since without
invoking CMI, we have that Cov(u;; €;) # 0, thus D is endogenous in this equation.
In the previous system, (3.21a) is known as the outcome equation, whereas
(3.21b)—or, equivalently, (3.21c)—is known as the selection equation and
(3.214d) as the identifying exclusion restriction.

In program evaluation, (3.21b) represents the latent selection function derived
from: (1) an objective function of a supporting external agency choosing whether a
unit is, or is not, suitable for treatment; (2) self-selection into the program operated
by units themselves, according to some cost/benefit contrast within a proper unit
pay-offs function. Generally, it is assumed that D}, a rescaled scalar score associ-
ated with each eligible unit, is unknown to the evaluator as he only knows the (final)
binary decision indicator D; (selected vs. not selected for the program), along with
some other observable unit characteristics (covariates) affecting this choice.

In a system like (3.21), endogeneity arises when one assumes that the
unobservable factors affecting the selection into program (i.e., €;) are correlated
with the unobservable factors affecting the realization of units’ outcome (i.e., #;). In
the case of zero correlation between these two terms, OLS of (3.21a) produces
consistent estimation of ATE.
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Table 3.1 Com'rr}on binary Model p(D=11x)=ED=11x)=Fxp)
outcome probability rules for -
the selection-into-treatment Lineal xp

Probit D(xP)

Logit A(xf) = exp(xp)/[1 +exp(xf)]

An important question is: how can we estimate consistently ATE in system
(3.21) when Cov(u;; €;) # 0? In general, we may rely on three IV methods:

¢ Direct-2SLS
* Probit-OLS
* Probit-2SLS

They have different properties, and in what follows, we provide a brief exposi-
tion of these three approaches. As will be seen, an important role to qualify the
properties of such estimators is played by the assumption about the process gener-
ating the selection-into-treatment indicator D: Table 3.1 reports three classical
cases usually adopted in applications.

3.2.2.1 Direct Two-Stage Least Squares

This approach is the traditional IV procedure used in textbook econometrics
(Cameron and Trivedi 2005; Wooldridge 2010). It is based on two sequential
OLS regressions in order to calculate the predictions of the endogenous variable
D in the first step, and on using these predictions as a regressor in the outcome
equation in place of the actual D in the second step. This approach assumes that the
probability to be treated given x takes a linear form. As such, the selection equation
can be consistently estimated by OLS, regardless of the fact that the treatment
endogenous variable is binary. The implementation of direct two-stage least
squares (Direct-2SLS), therefore, follows this procedure:

1. Estimate the selection equation by running an OLS regression of D on x and z of
the type: D; = n + X;0x + 2,0, + error;, to obtain the “predicted values” of D;,
denoted by Dy, ;;

2. Estimate the outcome equation by running a second OLS of Y on x and Dy, ;. The
coefficient of Dy, ; is a consistent estimation of ATE.

It is evident that in step 1, what is fitted is a linear probability model, while in
step 2, a standard OLS regression is estimated. The second step also provides the
analytical estimation of ATE and of its standard error to perform usual significance
tests. As we will clarify later on, the robustness of this approach hinges mainly on
the quality of the chosen variable z, as a weak instrument (a z poorly correlated with
the treatment D) can inflate parameters’ standard errors, thus making estimates
highly imprecise.
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3.2.2.2 Probit-OLS (Logit-OLS)

Generally, assuming that the treatment probability varies linearly with x, and z is
too demanding, and nonlinear probability functions such as probit or logit are
generally preferred. The probit, for instance, assumes that the error term of the
latent selection equation in (3.21b) is standard normally distributed, while the logit
supposes a logistic distribution.

Take the case of the probit (the logit follows a similar argument), since it implies
the normality assumption of the selection error, using Direct-2SLS leads to effi-
ciency loss of estimations, as this latter method does not exploit suitably the
normality of the error term e. This is an important limitation of Direct-2SLS.
Nevertheless, a more efficient estimation procedure (we call here Probit-OLS)
can be found in the normality case. To see how, we have to first observe that:

E(D

x,z) = p(D =1

X, z) (3.22)

showing that, when D is binary, the propensity-score is equivalent to the orthogonal
projection of the vector D in the vector space generated by the exogenous variable
(x, z). Among all the projections of D on the (X, z) subspace, the orthogonal one
produces the “smallest” projection error: Fig. 3.1 provides a visual representation of
this important property of the orthogonal projection.

Figure 3.1 illustrates that the projection error of D is minimized when the
projection is E(D | x, z); in fact, the vector norm of the error e,, is always the
smallest one compared with the vector norm of any other generic projection vector
h. This derives from the following property of the conditional expectation:

X,z) = argmin ;(y ,) {Z D; — f(x, Z)]z}

i=1

E(D

eup N €

Fig. 3.1 Visualization of
the orthogonal projection of
D on the vector space
generated by (X, z) (x,2)

E(D|x,z) h
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Thus, if one (erroneously) uses Direct-2SLS when E(D =1 | x) = ®(xf), then one is
not using the best representation of D as function of (x; z). This reduces the
precision of the estimation of the selection equation and thus that of ATE. Note,
however, that in this setup, Direct-2SLS is still consistent.

If the selection equation is estimated by a probit, a higher level of efficiency is
obtained, since the correct orthogonal projection is used. This suggests, therefore,
that a slightly different procedure—the Probit-OLS (or Logit-OLS)—should be
implemented:

1. Estimate the selection equation by running a probit (or logit) regression of D on
x and z thus obtaining the “predicted probabilities” of D;, denoted by pp ;;

2. Estimate the outcome equation by running a second OLS of Y on x and pp ;. The
estimated coefficient of p,p; provides a consistent estimation of ATE.

Once again, the choice between a logit and a probit depends on whether a
standard normal or a logistic distribution of & is assumed. Focus on the probit
case although the same augments apply for the logit model. The Probit-OLS can be
directly derived from the outcome equation. By taking the expectation of
Y conditional on (x, z) in (3.21a), we obtain:

E(Y

X,z) = po + ATE - E(D|x,z) + xp (3.23)

since E(u | x, z) =0 being x and z exogenous by definition. Substituting (3.22) into
the previous equation we obtain:

E(Y

X,z) =g+ ATE - p(D =1

X,z) + xp (3.24)

This relation suggests that one is able to consistently estimate ATE with a simple
OLS regression of Y on (1, pip; X), which is exactly what Probit-OLS does.
Observe, however, that standard errors for ATE need to be corrected for both the
presence of a generated regressor in (3.24) and for heteroscedasticity.

This approach does, however, have an important limitation. In order to preserve
estimation efficiency, Probit-OLS requires that the probit is the “actual probability
rule” governing the conditional probability of being treated. This is somewhat of a
drawback, given that specification errors may occur frequently in applied work. It is
immediate to see that in such a case, inconsistency depends on the presence of a
“measurement error’” from the first-step estimation of the propensity-score, which
directly enters the outcome equation in (3.24).

3.2.2.3 Probit-2SLS (Logit-2SLS)

As previously mentioned, consistency for Probit-OLS depends on relying on a
correctly specified propensity-score model. When this assumption does not hold,
previous procedure can lead to inconsistent results. A way to overcome this



3.2 Instrumental-Variables 171

limitation is that of using instead of OLS a 2SLS after running the probit. This
alternative procedure, called here Probit-2SLS (or Logit-2SLS), works as follows:
first, apply a probit (logit) of D on x and z, thus obtaining the “predicted probability
of D”; then, use these probabilities to apply a (direct) 2SLS with the predicted
probabilities obtained from the probit (logit) estimation being used as an instrument
for D. In other words, the Probit-2SLS uses the estimated propensity-score as
instrument for D.

This procedure leads to higher efficiency than that of Direct-2SLS. Why? In the
case of Direct-2SLS, the instrument used for D is z; however, functions of (x; z)
might be more correlated with D than the z alone. In particular, as argued above,
there is a function of (x; z) which has the highest correlation with D, namely E(D | x,
z) = propensity-score , i.e., the orthogonal projection of D on all exogenous vari-
ables (including the instrument).

To conclude, when the probit (or logit, depending on the case) model is correctly
specified, Probit-2SLS uses the best instrument available in the class of all instru-
ments that are functions of (x, z). Probit-2SLS, therefore, is more efficient than
Direct-2SLS but generally no more than Probit-OLS (although with slight differ-
ences in this latter case).

The very advantage of using Probit-2SLS is that, unlike Probit-OLS, it returns
consistent estimations even when the first-step probit is incorrectly specified
(although, it is no more efficient in this case). This occurs since, unlike Probit-
OLS, the (incorrect) estimation of the probit does not enter directly in the outcome
equation. Furthermore, the propensity-score estimated by the probit, although
incorrect, still remains a function of x and z, and thus, it is a valid instrument. Of
course, in an incorrectly specified setting, Probit-2SLS loses efficiency. In practice,
Probit-2SLS follows these three steps:

1. Estimate a probit of D on x and z, getting pp ;, 1.€., the “predicted probability of
D.37

2. Run an OLS of D on (1, X, p1p ), thus getting the fitted values Dy ;.

3. Finally, estimate a second OLS of Y on (1, X, Doy, ).

The estimated coefficient of Dy, ; is a consistent estimate of ATE, which does
not require that the process generating D is correctly specified in order to obtain
consistency.

Finally, in contrast to Probit-OLS, a further robust characteristic of Probit-2SLS
is that the standard errors in this case do not need to be adjusted for the presence of a
generated instrument, given that this estimator meets the condition for consistency
required in cases like this (see Wooldridge 2010, pp. 124-125).

3.2.2.4 The Identification Issue

From a technical point of view, when using Probit-OLS or Probit-2SLS, identifying
(1o, ATE, B) in the outcome equation (3.21a) does not require one to introduce z as
additional regressor in the selection equation (3.21b). Indeed, for identification
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purposes, it is sufficient that the selection equation contains just the vector of
covariates x. Since F(xf) is a nonlinear function of x, then it is not perfectly
collinear with x. F(xf) can, therefore, be used as an instrument along with x,
since it does not produce problems of collinearity. Problems due to collinearity
can, however, emerge when F(-) is assumed to be linear (as in the case of the linear
probability model).

Nevertheless, since x and F(xf) are strongly correlated and are used jointly as
instruments, it can be proven that the previous IV estimators have larger variances,
thereby providing a more imprecise estimation of the actual policy effect. When
using IV methods such as Probit-OLS and Probit-2SLS, it is, therefore,
recommended to have access to at least one instrument z, which can be exploited
in the estimation of the selection equation.

3.2.3 IV with Observable and Unobservable Heterogeneities

The previous IV estimators did not take into account either observable or
unobservable heterogeneity. When we eliminate this assumption, minor changes
need to be incorporated into these IV procedures. It seems worth emphasizing how
one, however, proceeds in the case of both observable and unobservable heteroge-
neities, which we label as IV Case 2.

Case 2 v;# vy (heterogeneous case)

Consider now the case in which v #vg, so that Y=puq+D (1 — po) +vo+
D (vi —vp). As in the Control-function regression, this assumption implies that
ATE # ATET # ATENT. This is the case of observable heterogeneity, where ATE
(x), ATET(x), and ATENT(x) can be separately defined and estimated. As
suggested in Chap. 1, this assumption states that the same unit has a different
reaction to variations in the vector of observables x when it is treated and untreated.
For many empirical applications, this seems a more general and reasonable
assumption.

Suppose that v; and v, are independent of z: thus, z is assumed to be exogenous in
this model, that is:

E(VO
E(V]

x,z) = E(v|x) = gy(x) (3.25)
x,z) = E(vi[x) = g,(x) (3.26)

This is equivalent to writing:

Vo = g()(x) + (1) with E(‘—’O X, Z) =

vi=g/(x)+e with E(e

X,z) =


http://dx.doi.org/10.1007/978-3-662-46405-2_1
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By substituting these expressions for vy and v, into the POM for Y, we obtain that:
Y = o+ aD + gy(x) + Dg, (x) — g(x)] + eo + D(er — eo) (3.29)

By assuming in the previous equation that gy(x) =xfo, g:(X) =xf;, and e =¢o+
D(ey — ep) and by applying the same procedure as seen in Case 1, we obtain the
following regression model:

Y=py+ATE-D+xpy+D(x —p, )P +¢ (3.30)

This model contains two endogenous variables, D and D(x — px). How can we deal
with this additional endogenous variable? Intuitively, if # = A(X, z) is an instrument
for D, then a suitable instrument for D-(X — py) is #°(X — fy). Thus, IV estimation
can still be implemented. Nevertheless, before applying IV as in Case 1, we need to
distinguish between two further sub-cases related to Case 2:

Case 2.1 e;=eq (only observable heterogeneity)

Case 2.2 e, # eq (both observable and unobservable heterogeneities)
In what follows we examine the two cases separately.

Case 2.1 e;=eq (only observable heterogeneity)

This subcase assumes that unobservable heterogeneity is not at work and thus
only observable heterogeneity matters. This is a quite strong assumption, but one
that holds in many applications, especially when the analyst has access to a large set
of observable variables and is sure that diversity in units’ outcome response is
driven by these (available) observable factors. In this case, therefore, we have that
e = ¢p. Recalling that E(eq | X, z) =0, we can immediately conclude that:

Y = py +aD +xBy + D(x — py )P + eo (3.31)

with E(eg | X, z, D)=E(eo | D). Thus what remains in the model is simply the
endogeneity due to D and D(x — p). The following procedure is therefore suitable
in order to obtain a consistent estimation of the parameters in (3.31):

e Apply a probit of D on x and z, obtaining pp, i.e., the “predicted probability of
D‘77

o Estimate the following equation: Y;=pug+aD;+Xx;po+D;(X; — Px)P + error;
using as instruments: 1, pp, X;, pp (X; — Hy)-

This procedure is equivalent to the Probit-2SLS estimator presented in the
previous section. Of course, either Direct-2SLS or Probit-OLS procedure can, as
above, be applied here with minimal changes.'

! For the sake of brevity, we do not report the implementation of these procedures for this case,
although it is evident how they can be performed.
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A particularly attractive property of a model with heterogeneity is that various
functions and interactions of (X, z) can be used to generate additional instruments, in
order to obtain an overidentified setting and thus test the (joint) exogeneity of the
instruments.

Case 2.2 ey # eq (both observable and unobservable heterogeneities)

When the unobservable component affecting the outcome for a given unit is
different when such a unit is treated or untreated, unobservable heterogeneity
occurs. In this case, as seen above, the full and more general regression model
associated with the POM is:

Y = o + aD + go(x) + Dlg, (x) — go(x)] + e + D(e1 — eo) (3.32)

In this case, the error term contains the endogenous variable D so that the mean of
D(e; — ep) conditional on X and z is not equal to zero. Thus, to restore consistent
estimation, we need to assume some additional conditions.

One possible solution could be that of assuming that E[D(e; —eg) | X, z] =
E[D(e; — ep)]. Applying previous algebra yields the following form of the outcome
equation:

Y =pg+aD +xBy + D(x — )P + eo + D(e; — ep) (3.33)
By defining:
r=D(e; —ey) —E[D(e; — e)]
and by adding and subtracting E[D(e; — e()] in (3.18), we obtain:
Y=n+aD+xp, +D(x—p, )P +eo+r (3.34)

where n = ug+E[D(e; — ep)]. It is immediate to see that E(eq+ 7 | X, z) =0. Thus,
any function of (X, z) can be used as instrument in the outcome equation. One can,
therefore, apply an IV procedure identical to that of Case 2.1, that is, one based on
estimating:

Y: =n+ aD; + xify + Di(x; — Py )P + error; (3.35)

using as instruments 1, pp, X;, and pp (X; — ly). This IV estimator is consistent but
generally not efficient. In order to obtain an efficient estimation, one needs to
introduce some additional hypotheses. In what follows, we focus on the Heckman
(1978) Selection-model (known as “Heckit”) with unobservable heterogeneity. It is
a strong parametric model, but it can be useful in empirical applications to obtain
efficient estimation of ATEs.

It is also worth noting that a consistent estimation of ATET and ATENT can be
obtained using formulas analogous to those in (2.33)—(2.38) by replacing the
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unknown parameters of those formulas with those obtained from previous IV
estimation procedures. The IV estimations of ATEs therefore are:

—

ATE = ay (3.36)
ATE (x) = i + (x = X)B (3.37)

ATET =ay + (N1)~ EN: —X)p (3.38)
ATET (x) = [aw +(x— i)ﬁw} o (3.39)
ATENT :aw+(1/1v0)‘zN;(1 —D;) (x; —X)P 1y (3.40)
ATENT (x;) = [aw +(x—%)P W} oo (3.41)

As in the Control-function regression case, standard errors for ATET and ATENT
can be obtained via bootstrap procedures.

3.2.4 Problems with IV Estimation

IV estimation is a powerful tool to deal with treatment endogeneity produced by
selection on unobservables. As seen, in fact, IV methods are able to restore
consistent estimation of average treatment effects on the target variable without
taking on excessively strong parametric assumptions like, for instance, specific
distributional forms of the errors. Nevertheless, IV have a number of non-negligible
limitations; thus, the implementation of this approach is sometimes questionable in
empirical applications. In what follows, we consider three main drawbacks possibly
arising from the use of IV: (1) inconsistency; (2) lower efficiency; (3) small-sample
bias. See Cameron and Trivedi (2005, pp. 98—112) for a detailed review.

The inconsistency and lower efficiency limitations are related to problems
induced by so-called “weak” instruments (Bound et al. 1995), instruments that
are either not fully exogenous for the outcome or not sufficiently well correlated
with the treatment variable in a multivariate sense. If one of these two conditions is
not met, the reliability of IV estimation can be questionable due to possible
inconsistency and/or low precision (i.e., larger standard errors) of IV.

The third drawback refers to the bias of 2SLS when one cannot invoke the usual
asymptotic results. In finite samples, in fact, it can be proven that IV may be
inconsistent, with the bias possibly increasing with the number of instruments
used and the weakness of these instruments. In what follows, each of these
limitations are discussed separately.
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3.2.4.1 Inconsistency of IV

To illustrate how a weak instrument can produce inconsistent IV estimates, take the
case of a single-covariate/single-instrument linear regression of the type:

Y=aD+u (3.42)

where we assume that both Y and D are standardized with mean equal to zero and
unit variance. This is identical to (3.1), except for the fact that with standardized
variables the intercept is now zero. Adapting (3.7) and (3.12), we have that:

_ Cov(Y;D) Cov(Dj;u)

aoLs —T(D)—(XﬁLW (343)
_ Cov(Y;z) Cov(z; u)

o= Cov(D;z) ot Cov(z; D) (3.44)

implying that IV are also inconsistent when Cov(z; u) # 0, in other words, when z is
no longer fully exogenous. Furthermore, the bias increases as the covariance of
z and D decreases, showing that poor projection of D on z leads to a larger bias.
Interestingly, we can also perform a ratio between the OLS and IV bias to see that:

plim{aw —a}  Cov(z;u) " 1
plim{@os —a} Cov(D;u) =~ Cov(z;D)

(3.45)

since Var(D) =1 by definition. The previous ratio does not exclude the possibility
that the IV bias is greater than the OLS bias. For instance, if one supposes that
Cov(z; u)=Cov(D; u)=0.1, but that Cov(D; u)=0.20, then the IV bias is five
times that of the OLS bias, and this result is obtained with a very low degree of
endogeneity of only 0.1. Unless we can rely on a “pure” exogenous instrument, [V
are strongly sensitive to departures from this hypothesis. Moreover, the lower the
covariance between z and D, the more the IV bias outweigh of the OLS; finally,
introducing exogenous covariates in (3.42) does not change this result.

3.2.4.2 Lower Efficiency of IV

Even when the instrument z is purely exogenous, so that IV is by definition
consistent, the presence of a weak instrument, one poorly correlated with the
endogenous D, creates further problems. In particular, poorly correlated instru-
ments result in inflated standard errors of the IV estimator that may become
significantly larger than those obtained with OLS. To illustrate this, take the
usual formula for the asymptotic variance of the IV estimator:
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V(@) = o (D’z) - (z’z) (z’D) o (3.46)

Since we are assuming standardized variables and only one endogenous variable
and one instrument, we can write that:

v = o0) (50) {(07) (i) (o0)
=V(@oLs) (D’D) { (D’Z)’l (z’z> (z’D)l}

=V(aoLs)-N
1 1
- Var(D) {m "N - Var(z) - W}
v | 1 _ V(@ors)
= V(@oLs) {[COV(D;Z)}Z} = P%),z (3.47)

By assumption Var(D) = Var(z) = 1, thus the covariance between D and z is equiv-
alent to the coefficient of correlation pp, .. Simply rewriting previous expression, we
therefore obtain:

V(aw) = V@as) (3.48)

2
pD,z

implying that the variance of IV is always higher than that of OLS, since 1 /plz)‘z is
higher or at most equal to one. More specifically, assuming that the variance of the
OLS estimator is equal to one, and the correlation between D and z equal to 0.2,
implies that the variance of IV is 25 times larger than that of OLS. As a conse-
quence, a weak instrument (weak correlation between D and z) may result in a very
low precision in estimating a. This result can be extended in the case in which
additional (exogenous) covariates are added, provided that the one-endogenous/
one-instrument setting is maintained.

The previous result implies, somewhat strikingly, that in a situation in which the
instrument is exogenous (and thus IV consistent) but poorly correlated with the
endogenous variable, the loss in efficiency of IV can outweigh gain in bias-
reduction vis-a-vis OLS. Thus, in terms of the mean square error (MSE), the OLS
might actually be superior to the IV estimator. More specifically, the MSE of a

generic estimator 0 is equal to:

MSE(8) = v(6) +B<§>2

where V(-) is the variance and B(-) the bias. Thus, we might obtain that:
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Fig. 3.2 Example of a ~
consistent IV estimate of a

having a large variance (due

to the use of a weak B
instrument), compared with

an inconsistent OLS having
smaller variance. The value N
of the true parameter is

a="17; OLS is centered

around ¢ =3 =1

[\ oLs

MSE(@1v) > MSE(@oLs)

in which case OLS is more appealing than IV as an estimator of the true population
parameter a. Figure 3.2 provides a graphical example of previous situation by
plotting the distribution of the IV and OLS estimators.

It is immediate to see that—with a equal to 7 and the OLS centered in @ = 3—IV
is not a reliable estimator, as it presents very larger tails compared to those of OLS.
The probability mass of the OLS is, however, much more concentrated around the
true a, although this estimator shows a bias equal to 4. In such cases, OLS seems,
therefore, undoubtedly more reliable than I'V.

3.2.4.3 Small-Sample Bias of IV

It is a well-known result that 2SLS are biased in finite samples (Nelson and Startz
1990a, b; Phillips 1983). This bias is cumbersome to calculate and may be large;
thus, the behavior of an IV estimator when the sample size is small may be
problematic. Following the paper by Murray (2006), we limit our attention here
to the case in which we have only one endogenous variable in a univariate
regression model and a number L of instrumental-variables. The model is therefore:

Y=u+aD+u
D=u+zy+u

with z equal to a row vector of L instruments. Hahn and Hausman (2005) have
showed that, for a model of this kind, the 2SLS bias is approximately equal to:

L-p-(1-R?

3.49

E(@s1s) —a~
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Fig. 3.3 2SLS bias as function of R, when L =10, p=0.6, and N =100

where: L is the number of instrumental-variables; p is the correlation between D and
u, i.e., the degree of D’s endogeneity; and R” is the share of D’s variance explained
by the instruments z, i.e., the multivariate correlation between D and z.

It is clear that, as soon as L and/or p increases, the bias increases accordingly.
This means that adding additional instruments without obtaining a higher R? rate
actually worsens the extent of the bias. The simple addition of poorly explicative
instruments can therefore lead to further bias. Of course, as N increases, the bias
disappears. Figure 3.3 shows the 2SLS bias as function of R?, when L= 10, p = 0.6,
and N = 100; it is easy to see that, as function of R, the bias take a hyperbolic shape
with the bias disappearing when R* = 1.

Finally, Hahn and Hausman (2005) show that the ratio between the 2SLS’s and
OLS’s bias is approximately equal to:

Bias(&QSLs) - L
Bias(@oLs) “N-R?

(3.50)

implying that, as soon as the denominator is higher than the number of instruments,
the 2SLS bias is lower than that of OLS. For instance, suppose that the OLS bias is
100 and that L =3, N =20, and R*= 0.3; in this case, the bias of 2SLS is 50. When
we have few observations and a relatively weak instrument, the bias of 2SLS is,
therefore, smaller than that of OLS. Moreover, as L/NR? is positive, the bias of
2SLS has the same sign of the OLS bias”.

2 Stock and Yogo (2002) have proposed a test to establish when an instrument is good enough to
produce a 2SLS bias that is lower than a certain share of the OLS bias. With one single endogenous
variable, this test follows a standard F-statistics, while for more than one endogenous regressor, the
authors have tabulated the critical values. Performing this test, however, requires an overidentified
setting.
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To conclude, as it is difficult to find relatively good instruments in practice (i.e.,
variables capable of explaining the selection-into-program, while at the same time
being not directly related to the outcome), the evaluator has to weigh up the
advantages/disadvantages of using IV approaches. Recall, for example, that it can
sometimes be better to use a biased OLS than a consistent IV with weak
instruments.

Finally note that even when a relatively strong instrument (in terms of correla-
tion with the endogenous variable) is available, its exogeneity cannot be assured.
Testing the exogeneity of instruments requires an overidentified setting, that is, a
setting where the analyst has access to more than one instrument for the endogenous
treatment D. In typical micro-econometric studies, finding more than one instru-
ment is rather hard, given the particular properties that such variables have to
possess. Moreover, to further complicate things, with more than one instrument at
hand, the analyst can statistically test only the joint exogeneity of “all” instruments
used and not that of each single instrument separately. In the case of just-identified
settings (i.e., only one instrument for D), testing the exogeneity of the instrument is
not possible and analysts normally have to provide convincing arguments in order
to support the suitability of the (single) instrument chosen, especially with regard to
its assumed exogeneity. In fact, the multivariate correlation of a potential instru-
ment with the treatment variable can be properly tested through a first-step Probit
regression. Justifying instrument’s exogeneity, on the other hand, is a much more
subtle task than simply demanding an acceptable correlation with the treatment
variable.

3.3 Selection-Model

In this section, we present the Selection-model (SM) approach to estimate ATEs,
originally developed by Heckman (1978, 1979). Although initially proposed for
regression models using datasets with truncated (unobservable) outcomes due to
some form of unit selection process (tobit-type settings), this approach has become
increasingly popular in the applied program evaluation literature, where it is
generally known as the “Heckit” model. By and large, such a model can be easily
compared (if not included) with the IV approach to consistently estimate the
parameters in system (3.21) without the necessity of including an instrument.
Naturally, the cost of not having an instrument to rely on is the necessity for
additional assumptions, in particular the joint normality of the error terms in system
such as (3.21). Before proceeding to a formal treatment of the Selection-model, we
give an account of the selection bias in models represented by (3.21), in order to
show which is the direction of the OLS selection bias when one does not control for
unobservable factors. This is useful, as in Selection-models the direction of the bias
has a clear statistical interpretation, in that it is proportional to the correlation
between the unobservables of the selection and the unobservables of the outcome
equation in the joint normal distribution of errors.
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3.3.1 Characterizing OLS Bias within a Selection-Model

In this subsection, we consider a simplified version of system (3.21), of the
following type:

Y = uy + Pyx + aD +u Outcomeequation
D =pup+ppx+e Selection equation
u=y,0+ey
e=7.0+e.

(3.51)

where « is the ATE; x is a common observable control variable; O a common
unobservable component; and e, and e, are two exogenous random shocks with
zero unconditional mean. Since Q is unobservable, it is part of both error terms u
and e. In this type of model, it can be shown that the bias of the OLS estimator takes
the following form:

Cov(e; u)

= T 3.52
dos =&+ Var(D) ( )
that is:
Var(Q)
= . 3.53
aoLs = A+ 7Yy Var(D) ( )
Thus when:

e . >0, then OLS has an upward bias.
¢ 7.:<0, then OLS has a downward bias.
¢ 7..=0, then OLS is unbiased (consistent).

The proof of the previous expression is quite straightforward. The first problem

to overcome is the presence of the covariate x. By defining ¥ =Y — fyx, however,
we can rewrite the outcome equation as:

Y = Hy +aD +u
so that the OLS estimation of « is, by definition, equal to:
Cov (?; D)
Var(D)

aoLs =

Now, we can develop further the numerator as follows:
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Cov (?;D) = Cov(Y;D) — pyCov(x; D)
= Cov(uy + Pyx + aD + u; pp + Py + &) — ByCov(x; up + fpx + &)
= {pyPpVar(x) + ByCov(x; €) + appCov(D;x) + aCov(D;¢)
+hpCov(x; u) + Cov(esu)} — {ByfpVar(x) + fyCov(x; )}
By simplifying, this implies that:
Cov (7;D) = afipCov(D;x) + aCov(D; ¢) + Cov(e; u)
By developing further these covariates, we finally obtain:
Cov (?; D) = afpp Var(x) + aVar(e) + Cov(e; u)

Since Var(D) = Var(uy, + fipx + €) = 5 Var(x) + Var(e), we have that:

Cov (?;D) _ app Var(x) + aVar(e) + Cov(e; u) Cov(e;u)

Var(D) B Var(x) + Var(e) “t Var(D)

aoLs =

proving (3.52). At this point, we can develop further the previous equation by
plugging in the equations of u and &:

Cov(r,Q +ec;7.0 +eu) Var(Q)
Var(D) et

coLs =t 4 Var(D)

proving (3.53). Of course, when more than one unobservable is included in the error
terms, the bias has a different and more complicated formula: by assuming, for
instance, to have two unobserved confounders, Q; and Q,, we can show the OLS
bias to be equal to:

Cov(7.101 +7020s + ;7,101 + 7,002 + eu)
Var(D)

_ YerZur Yar(Qy) + 77,0 Var(Qs) + [y 70 + Yea71]Cov(Qy; 0s)
Var(D)

aoLs — & =

If the two unobservables are also uncorrelated, so that Cov(Q,; Q,) = 0, we obtain:

YerVu Var(Qy) + v Var(Q,) _ Var(Q,) Var(0,)
Var(D) VetVul Var(D) Ye2Vu2 Var(D)

aoLs — a4 =

thus the bias is a linear combination of the products of the two coefficients of Q;
(j=1, 2) of both errors. Observe that:
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* YerVu1 Var(Qy) > veoyu2 Var(Q,), then OLS has an upward bias.
¢ YerYur Var(Qy) < veaVu2Var(Q»), then OLS has a downward bias.
* YerYur Var(Qq) =YV Var(Q»), then OLS is unbiased (consistent).

Of course, with many unobservables, possibly also correlated, the conditions
required to identify the direction of the OLS bias become much more complicated,
no longer having a clear-cut meaning. One possible simplification is that of
assuming a distributional behavior of the joint distribution of the error terms &
and u, independently of the number of unobservables they may contain. As pretty
outlined above, this is the route taken by Selection-models, allowing one to
correctly identify ATE without using IV methods. Furthermore, it is also straight-
forward to estimate the OLS bias and determine whether it has a downward or
upward direction. This still requires to assume the joint normality of errors that in
many contexts may be heroic.

3.3.2 A Technical Exposition of the Selection-Model

In this section, we offer a detailed exposition of the Heckman Selection-model for
the case in which both observable and unobservable heterogeneities are assumed.
This is the most general Selection-model, simpler models being just peculiar
sub-cases.

We begin by considering the Case 2.2 from the IV section; in such a case, we had
the following form for the (observable) outcome equation:

Y =y + aD + gy(x) + D[g, (x) — gy(x)] + eo + D(e1 — eo)
which, under some manipulations leads to:
Y =y +aD +xBy + D(x — py)B + eo + D(er — eo)

This model contains both observable and unobservable heterogeneities, and a
consistent estimation in this case requires ad-hoc assumptions (see the previous
IV section). Nevertheless, a generalized Heckit model (Heckman 1979) can be
implemented to obtain consistent and efficient estimates of the parameters. Esti-
mation is based on these assumptions:

(a) Y=pg+aD+xPy+D(x—p)p+u
(b) E(ei|x,z) =E(eo|x,2) =0

(c) D=1[8 +x0; + 0,z +a > 0]

(d) E(alx,z) =0

(e) (a,ep,er)~>N

a~N(0,1) =o0,=1
I/l=€()—|-D(€1 —6()) (354)

—
-
NN
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where the most crucial hypothesis here is that of assuming a trivariate normal
distribution of the error terms of the potential outcomes (e, ey) and of the selection
equation (a), respectively. Observe that, although z is reported in (3.54) as regres-
sor, the identification of such a model does not require an instrumental-variable to
be specified. The normality assumption is sufficient to obtain consistent results.

Estimating such a model requires to directly calculate E(Y | x, z, D). To this end,
write the Y-equation (3.54a) as Y = A +u, with A =+ aD +xpo+ D(x — puy)p and
u=-ey+D(e; — epy). Thus:

Y:A+E(u

x,z,D) +e

with e = [u — E(u |1 x, z, D)]. In this case, it is immediate to see that E(Y | x, z, D) = A
+E(u | x, z, D) since, by definition, E(e | x, z, D) =0. Thus, once the expression of
E(u | x, z, D) is known in a parametric way, one may apply an OLS regression to
recover consistent estimates of the parameters. Therefore, to calculate what E(u | x,
z, D) is equal to, we can write:

E(u X, Z,D) = E(eo +D(e; — ep) x,z,D)
= E(eo x,z,D) —|—DE(€1 x,z,D) —DE(eo x,z,D)
= (1 — D)E(eo|x,z,D) + DE(ey|x,z,D)

Since (e, eg) are uncorrelated with (x, z), we have that:

E(u

x,z,D) = (1 — D)E(eo|D) + DE(e; D)

Now, write the previous formula in the two states:

E(u

x,z,D) = {E(u‘l) _ 0) :E(60|D :0) if D=0
This means that:

E(u

X,z,D) = (1 — D)E(eo|D = 0) + DE(e;|D = 1)
Since D = 1[0+ 0,x+ 0,z +a > 0], then:

E(u

x,2,D) = (1 — D)E(egla < —0p — 0:x — 0,2)
+DE(€1 ’a > —0y —0;x — 922)

From the properties of the trivariate normal distribution, we have that:
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0
E(egla < q0) = —era%
0 3.55
E(e|a > q0) = aela% (3:53)

q0 = *90 — 91X — 922

#(q0) #(q8) . . .
where T—®(q0) and B(qp) A€ known as “inverse Mills ratios,” sometimes also called

“selection hazards.” Thus, by putting:

$(q0) $(q8)
E(Y|x,z,D) =A+pD—=+po(l = D) ——————
( ) 1 <I>(q0) 0( ) 1— <I>(q0)
and by making explicit A, we finally get:
- (49)
¢(q6
E(Y D) = D — D—=
( X,z ) /,t0+(l +XBO+W(X ”X)ﬁ+p1 q)(qe)
$(q0)
1-D) ——— 3.56
Fol1 D) e (3.56)

A two-step procedure can be used to estimate this equation:
1. Run a Probit of D; on (1, x;, z;) and get: ((}i, (/IS,>

2. Run an OLS of Y; on: [I,Di,x,,Di(Xi — ), DL, (1 - D,-)‘ﬁ—fA]
D, 1-@;
The previous procedure produces consistent estimations of the parameters of
regression (3.56). Once these parameters’ estimates are available, one can also test
the null hypothesis:

Ho:py=py=0

that, if accepted, allows one to conclude that there is no selection on unobservables.
By setting:

$(q0)

¢(q0)
q0 1 — ®(q0)

A1(q0) = ——= and Ao(q0) =
®(q8)
we can also write previous regression as:

E(Y

X,z2,w) = o + aD + xBy + D (x — p, ) + p, D11 (q9)
+ po(1 = D)io(q0) (3.57)

Once all the parameters in the previous equation are estimated by the two-step
procedure, one can calculate the usual causal parameters ATEs. In this case,
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however, the formulas are slightly different to the case of the Control-function
regression and IV. First, it is immediate to see that:

ATE =«
ATE(x) =a+ (x —X)p (3:58)

which is obtained following the same procedure seen in the Case 2 of Control-
function regression. ATET(x), ATET, ATENT(x), and ATENT, however, assume a
different form compared to that of the Control-function Case 2. We start by
showing the formula for ATET(x) and ATET and then for ATENT(x) and
ATENT. Under previous assumptions, we have that:

ATET(x) = E()’l — Yo
= (w1 — o) + [21(X) — go(x)] + E(el - €0|X’D = 1)

x,D = 1)

We know that e; and ey are independent of x, so that E(e; —egl X, D=1)=
E(e; —eg | D =1). The value of the last expectation is easy to determine. Setting:

€r—e€ =1
we know that 7 follows a normal distribution. This means that:

E(np=1) = o‘,w%

From the linear property of the covariance, we have that:

640 = Cov(n;a) = Cov(e; — eg;a) = Cov(er;a) — Cov(ep; a) = Geja — Oega
=p1tpo

since pg = —06,¢ and p; = o0, . This implies that:

ATET(x) = [a+ (x— %)+ () + o) - 11 (a0)] o)

N N

ZDi =1 ZDz i=1
i=1 i=1

In a similar way, it is immediate to show that:
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ATENT(x) = [a+ (x=%)B + (o, + o) - 40 (q@)}
ATENT = a + ;Z[V:(l — D) (xi —X)B + (p, + po)

(D=1)

> (1=D) o (a0) (3.60)

Having estimated {a, pi, po, B, 41, 4o} using the two-step procedure, one can
substitute them into previous ATEs’ formulas to recover all the causal effects of
interest. Observe that standard errors for the ATET and the ATENT can be obtained
by bootstrap procedures.

Finally, since under the joint-normality assumption, the model is fully paramet-
ric, a maximum likelihood estimation can be employed, thus not only yielding
consistent but also efficient estimations of the causal parameters. Generally, how-
ever, maximum likelihood estimation can result in convergence problems, espe-
cially when many discrete control variables are used. In such cases, the two-step
procedure is a valuable (although less efficient) alternative.

3.3.3 Selection-Model with a Binary Outcome

In many program evaluation applications, it is common to come across situations in
which the outcome variable takes on a binary form. For a given set of individuals,
for instance, one might be interested in knowing whether the likelihood of finding a
job is increased by participating in a training program; in this case, the outcome
Y presents only two values: “employed” and “unemployed.” In such cases, by
eliminating the interaction term and the instrument z for the sake of simplicity,
system (3.54) becomes:

Y = 1[u+aD + xp + u
D=1[0+x0+a > 0]

where (Y; D) is still distributed as bivariate normal with mean zero, unit variance,
and correlation equal to p. It is immediate to see that in this framework, the ATE is
equal to:

ATE = ®(u + a + xB) — @(u + xP)

Since Y is binary, assuming a linear probability model for the outcome equation
would be incorrect and estimating the previous system using the Heckman two-step
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procedure, as if the outcome was continuous, would lead to biased results. As the
model is fully parametric, however, a maximum likelihood (ML) estimation can be
performed noting that the joint density distribution of (¥; D) can be written as:

f(¥.D[x) = f(¥|D.x) £ (D|x)

From this decomposition of the joint density of the endogenous variables condi-
tional on the exogenous observables, it is not difficult to obtain the log likelihood;
maximizing the log likelihood, however, requires nonstandard integrals computa-
tion (quadrature methods) and possibly may have a number of convergence prob-
lems (Wooldridge 2010, pp. 594-596). To avoid computational burden, Burnett
(1997) proposed a simple two-step procedure which mimics the two-step approach
adopted by Rivers and Vuong (1988) in the case of a binary outcome model with a
continuous endogenous regressor. This procedure works as follows:

1. Estimate a probit of D; on {1, x;}, and get an estimate of the probit residuals:

;‘\,‘ = D,‘ — (I)(X,O)
2. Estimate a second probit of Y; on {1,x;,D;,7;} to get parameters estimates.

Unfortunately, this does not lead to consistent estimates of ATE and other
parameters. Monte Carlo experiments conducted by Nicoletti and Peracchi
(2001), however, have shown that the bias of such a two-step procedure, especially
when taking heteroskedasticity into account, can be ignored and is not larger than
the ML estimator bias. Moreover, this result holds even when the correlation
coefficient between Y and D is remarkably high. Finally, note that while inconsis-
tent, the previous two-step approach offers a valid test for the endogeneity of D.
Indeed, under the null hypothesis of an exogenous D, the usual ¢ statistic for 7; is
consistent (Wooldridge 2010, p. 597).

3.4 Difference-in-Differences

A powerful approach to deal with endogenous selection without the need for
instrumental-variables or additional distributional assumptions is the so-called
difference-in-differences (DID) method (Abadie 2005; Angrist and Pischke 2008,
Chap. 5; Bertrand et al. 2004; Card and Krueger 2000; Donald and Lang 2007;
Meyer et al. 1995).

DID is suitable in evaluation contexts where observational data for treated and
untreated units are available both before and after treatment. It can be shown that
causal effects, under such a data structure, can be identified and estimated consis-
tently by DID.

Two types of DID estimators have been proposed in the literature, the choice of
which depends on whether the data are a pure longitudinal dataset (panel data) or a
repeated cross section. In the first case (panel), the same unit (either treated or
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Table 3.2 Two-way table of Location s
the DID statistical setting Rome Milan
Time ¢ to Untreated Untreated
t Treated Untreated

untreated) is observed before and after a treatment occurred; in the second case
(repeated cross section), the units observed before and after treatment (either
treated or not) may be different. Identification assumptions of both types of DID
are, however, the same. In what follows, we present the more conventional type of
DID, which is used in repeated cross section of individuals, before going on to
discuss DID in a longitudinal data structure.

3.4.1 DID with Repeated Cross Sections

In this section we illustrate the DID method using an example similar to that of Card
and Krueger (1994)°. We will focus on the estimation of the ATE. Following those
authors, suppose to have a dataset made of repeated cross sections of N different
restaurants, located in both Rome and Milan. The restaurants are observed at time 7,
and, successively, at time #;. Suppose that, in between #; and ¢, the restaurants in
Rome benefitted from an incentive to increase employment, the target variable
which we denote Y. It is clear, as indicated in Table 3.2, that only the restaurants
observed in Rome at time #; are those actually treated.

We can define a binary variable s to identify the restaurant location, where
s; =R, if restaurant i is located in Rome, and s; =M, if restaurant i is located in
Milan. Likewise, we can define a time binary variable ¢ taking the values ¢; = ¢, if
restaurant i is observed after policy implementation, and ¢; =t, if restaurant i is
observed before the implementation of the policy. Finally, let Y; indicate the
employment outcome of restaurant i after policy implementation occurrence. In
such a context, we can define the average treatment effect as:

ATE(s, t) = E(Y1isr — Yoist

s,t) = § = constant (3.61)

where the location index s = {R, M} and time index t = {t, t;}, and Y, and Y, are
the usual potential outcomes. It is immediate to see that this definition of ATE
assumes a constant effect over s and ¢. Indeed, as the counterfactual logic suggests,
in a two-period/two-location setting, one can define four average treatment effects
defined as:

3 Some econometrics of this section draws on Angrist and Pischke (2008, pp. 221-243).
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Yiirey — Yoiry,) = 61
Yiire, — Yoiry,) = 62
Yiiny — Yoims,) = 63
Yiive, — Yoimn,) = 64

E
E
E (3.62)
E

(
(
(
(

Thus, the first assumption lying behind the traditional DID estimator is that
61 =0, =03 =064=0=constant. This means that the ATE conditional on s and
t is equal to the unconditional ATE, i.e., ATE(s, t) = ATE.

The second assumption for identifying the causal effect using DID is the
so-called common-trend assumption, which states that:

E (Yoise

s, 0) =7+ A (3.63)

where y; is a location-specific effect and 4, a time-specific effect. This assumption
simply sets that the nontreatment employment time trend is in Rome (the treated
location) and Milan (the non-treated one) as the same. Indeed, it is easy to see that
this trend is equal to 4,, — 4, for both locations.

To see how these two assumptions identiy 6, we have to specify how the
potential outcomes are modeled. In this sense, we assume that:

Yois = 75 + 4 + eoist
Yig =y, +4 +6+eix (3.64)
Yist = YOist + Dst(Ylist - YOiSI)

where E(eg;; | s,t) =E(ey;i: | s, )=0, and Dy;=1 if s=R and t=ty, and D;;=0
otherwise. Moreover, we also assume that E(eq,,; | X)) =E(eq;, | Xi;) =0, so that
there is no need to control for state-time covariates in order to ensure consistency.
Given (3.64), by simple substitution, we obtain:

Yixt =7s + /1t + Dszé + Cist (365)

with E(em s, t) = E[eo,-s, + Dy (erise — eom)}s, t] = 0. Thus, a simple OLS regres-
sion of Y on a location and time variable and on D, provides a consistent estimation
of the ATE =6.

To understand better how the previous assumptions identify the ATE in DID, we
first consider an analytical example and then its graphical representation (Fig. 3.4).
By definition, ATE is equal to:

B =EW1iry) —E(Yoirs,) (3.66)
Kk ki

Suppose that E(Y 1z, ) = yg + A, + 6 = 3, whereas E(Yoirr,) = ¥g + 4, = 7. Thus:
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Number of

1
employees Observed time-trend in Milan
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Observed time-trend in Rome

3 -
21 - ATE:
S — o
S o 6=3>0
~
~
~
Counterfactugl time-trend in Rome — ————> S
(assumed equal to that in Milan) S -
| T~
| >
Time
o I f
| i |
| Policy ‘

Fig. 3.4 Identification of ATE by the difference-in-differences (DID) estimator

§=3—(rp+4)=3-7
so ¢ is not identified. Nevertheless, by observation, we know both these quantities:

E(Yoirs,) = vg + A4 = known =2
E(Yiiry,) =g + 4, +6 =known =3

entailing that § =1 — (4, — 4,). Using the data for s =R, we cannot, however,
calculate (4, — 4,). We can nevertheless exploit data from s=M, in order to
estimate quantity (4, — 4 ). In fact:

E(YOiMrO) =¥y + 4, = known =6
E(Y1imr, ) = vy + A4, = known = 3

implying that (4, — 4,) = 4 — 6 = 2; subsequently, we have that:
S=1—(Ay—Ady)=1—(-2)=3

and the ATE is identified and equal to 3. Note that this result is possible since we
assume that 4, — 4, i.e., the time trend is the same in both Rome and Milan. If the
trend was not equal, the ATE would have not been identified.

Figure 3.4 shows a graphical representation of DID, from which it is evident that
the common-trend assumption is a necessary one in order to identify ATE. If this
were not the case, the counterfactual trend in Rome would be different from that of
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Milan, thus implying a different value of ATE (e.g., ATE =2), while we errone-
ously set the ATE = 3.

Correcting for possible differences in time trends across the two cities is
necessary in order for DID to remain unbiased. One way to relax the common-
trend assumption would be to allow the DID equation to contain a location-specific
trend coefficient, in other words:

Yig =7y + A + 0y + Dy + eiy (3.67)

To estimate a model with an s-specific trend as (3.67), one needs unfortunately at
least three periods; using just three periods to infer the difference in pre- and post-
trend may, however, be questionable. Additional pre-and post-treatment observa-
tions are thus needed to obtain more reliable estimates. A second possibility may be
to add covariates as a source of omitted location-specific trends (an option which is
discussed in the next section). In fact, although (3.65) can be correctly used for
estimating the ATE by DID, in empirical work researchers usually adopt a slightly
different regression-type model, resulting in the same form as (3.67)"

Yi=p+PBsi+yti +6(si - Z‘,‘) + & (3.68)

where E(g; | s;, t;, 5;-1;,) = 0, so that an OLS of (3.68) yields a consistent estimation of
the parameters. Note once again that the treatment variable is in this case
D; = s; - t;. We can show which parameters in (3.68) are equal to and also what is
their relationship to the parameters in (3.65). Since:

E(Y|s=1,1=0)=E(Y])=u+58
E(Y|s=1,t=1)=E(Y|)=pu+B+yr+3s (3.69)
E(Y|s=0,1=0) =E(Y§) = u '
E(Y|s=0,t=1)=E(Y{)=pu+y
we can immediately see that:
B=71r+
B=ru—Ir (3.70)
Y =2 — Ay

Given this result, it seems worth proving what exactly a consistent estimation of § is
equal to, starting first from the two biased estimators:

1. BeforelAfter estimator
This estimator is equal to the difference between the average of the outcome
of the treated units, before and after the policy:

4Observe that in (3.68) we consider these codifications of s and : s={R=1; M=0} and t=
{f] = 1; l():O}.
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ssa =E(Y[) —E(Yg) =7 +6 (3.71)

which is biased as soon as y#0. It can be obtained by the following OLS
regression estimated on treated units (s; = 1) only:

.1 (3.72)

{Y,’ = M + Oga - t; + error;
2. Treatment/Control estimator
It is equal to the difference between the average of the outcome of treated
units and that of control units, once the policy intervention has taken place
(t;=1):

src =B(Y]) —E(Y{)=p+5 (3.73)

which is biased as soon as ff# 0. An estimation of §rc can be obtained by the
following OLS regression, performed only on units observed after policy
t;=1)

{ f i::l/’tz + Src - s + error; (3.74)
3. DID estimator
Finally, DID is defined as:
dow = [E(Y]) —E(Yy)] — [E(Y[) — E(Yg)]
=[(u+p+r+6) —w+pl—((u+y) —pu=56 (3.75)

thus proving that dpyp is an unbiased estimator of the average treatment effect 6.

3.4.1.1 Generalizing DID in Repeated Cross Sections

We saw that one way of relaxing the common-trend assumption may be that of
adding further covariates to the DID regression. This characteristic is in fact a
significant advantage of DID compared with other methods. Even when the
common-trend is not violated, including additional covariates (either t-invariant
or s-invariant or unit specific) helps to increase the precision of the ATE’s estima-
tion (efficiency) provided, of course, that the model is correctly specified (i.e., the
covariates are the correct predictors of outcome’s DGP). In such a case, the DID
assumes the usual regression form (Card 1992):

Yis =¥y + 4 +Dyb + BXiy + eisr (3-76>

where f is a vector of additional covariates parameters.
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An additional interesting generalization of the DID estimator is required when
Dy, changes over time in the different locations. This is a generalization of the
two-location/two-time DID to multiple-location/multiple-time case. It could, for
example, be the case that a similar policy is implemented in various locations at
different times. Angrist and Pischke (2008), following Autor (2003), suggest one
should use in this case the following regression with lags and leads of the treatment
variable Dg,:

m q
Yig = vs + A+ ZDS,tfféff + ZDS,I+75+T + ﬁxist + eis (377)
7=0 =1

Equation (3.77) allows for a dynamic interpretation of the policy effect. As we will
see in Sect. 3.4.4, it is possible to graph the pattern of the dynamic causal effects by
plotting over time coefficients point estimation and confidence intervals. Using lags
and leads can provide an interesting test to determine whether past treatments affect
current outcome, or for the presence of anticipatory effects, thus challenging the
conventional idea that causality works only “from the past to the present” (Granger
1969).

Anticipatory effects can also have a causal interpretation, once it is accepted that
individuals make decisions not only on the basis of past events but also by
formulating expectations of the future. This forward looking feature of the human
decision-making process can be seen to be rational; for example, if one expects to
become treated in 2 years from now, he (or she) could modify his (or her) current
behavior in order to be able to exploit the opportunity he (or she) will get. Consider,
for instance, a company expecting to receive support for R&D activity in 2 years
time; in this situation, the firm immediately increases its portfolio of innovative
projects so as they could potentially receive support in the future. An unemployed
worker, on the other hand, could be less keen to search for a new job if he (or she)
expects to be involved in a training course in the near future. Thus, future treat-
ments can have, as past treatments, a significant impact on the present outcome.

3.4.2 DID with Panel Data

The DID estimator can also be identified using longitudinal datasets, where the
same unit { can be observed before and after treatment (see, for instance, Lach
(2002)). Assume we have data for two points in time t= {0, 1} as in the cross-
section case. In a panel data setup, DID is defined as the OLS estimator of « in the
following regression:

t=1:Yy =p +aDj +uj
t=0:Y0=puy+ aDi + uio (3.78)
Djp=0
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where estimation is only carried out for those units which are untreated in t =0. By
subtracting, we then obtain:

AY; = pu+ aAD; + Auy
{Dio —0 (3.79)
with p=p—pug, which is equivalent to:
AYy = p+aDy + Auy
{Dio —0 (3.80)
The previous relationship can be written in matrix form as follows:
Ay, = [1;D] (Z) + Ay (3.81)

By definition, the OLS estimation of the previous regression is:

~ / —1 ’ / ’ —1 ’

[ L I O R i I
~ = ’ ,1) . r'Ay— / ’ . r'Ay—
(a)OLS [(Dl D, ] D,1 DD, D, 1

N N
. |:N NT:|1. ;Ayn ! i:ZlAYil

[NT —NT}.

N7 Nr Ni “Nr-Ne |-Nr N Nr
3 av, T 3 av,
i=1 =1
N Nr Ne l
| NTZ:AY,-] — NTZAYiI | NTZAYil
. = 1= — . = —
Nr-N¢ N Ny Nr-N¢ N Ny
*NTZAYH +NZAY1'1 _NTZAYI‘I +NZAY1'1
P - =1 =1
INC 1 1 1
B NT;AY,-I )
Ny -N¢ N Nr Nr -
—NrY AYy +NrY AYy+Nc) AY
=1 =1 =1
Ly
—>» AY, _ _
Nc i=1 — |: (Zil - Zio)control _ _
N
Jr < (Yﬂ - Yio)lrealed - (Yil - Yio)comrol

proving that:

&DID = (7“ - 7’Ao)treated - (Yﬂ - Yio)comrol (382)
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Rearranging the previous expression, we obtain:

@pp = (75 - 7£)

(75 -72) (3.83)

Before/After
estimator for
Treated

Before/After
estimator for
Untreated

or equivalently:
~ T wC T wC
aow = (V5 = 71) = (Yo~ Vo) (3.84)

where we have that:

~

= averageof Y on treated at t = 1

a=

= average of Y on untreated at r = 1
. = average of Y on treated at r = 0

a3~

~| o~~~

= average of Y on untreated at = 0

(=]

Now, since:

. (sT ST —C =C AT ~C
apID = (Yn - YiO) - <Yi1 - YiO) = Qpp — App
——

Before / After
estimator for
Treated

Before / After
estimator for
Untreated

it follows that the before/after estimator on treated units is biased and that bias is
equal to:

Bias(&gA) =dpp — (§D1D+&§A) Z—&\gA (3.86)
Nevertheless, note that DID is consistent as soon as:
COV(D“;AM”) =0 (387)

which is a stronger version of the CMI. Condition (3.87) is a shortcoming of DID,
although, as in the repeated cross-section case, one can control also for time and
individual effects in order to preserve exogeneity. Finally, DID with panel data can
also be easily extended to the case of dynamic treatment by introducing lags and
leads as we did in the cross-section case:
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m q
Yi=y,+4+ ZDz—r(S—r + ZD[+T5+T + Bxi; + et (3'88)
7=0 7=1

Equation (3.88) is equivalent to that of (3.77), except from the omission of the
location dimension s. In this case, building lags and leads reduces the sample size as
missing values are generated over time. However, an OLS regression of the
previous regression provides consistent estimation of the causal effects. In
Sect. 3.4.4, we will focus more in detail on DID within a time-varying treatment
setting.

3.4.2.1 A Comparison Between DID and FE Estimator

In many program evaluation applications using longitudinal setting, fixed effects
(FE) estimation of the outcome equation, possibly augmented by treatment-lagged
variables, is used.

How does the FE estimation differ from that of the DID? Does the choice
between FE and DID matter in terms of the precision of the estimates? Intuitively,
DID estimator should be more robust than FE since, by definition, DID takes into
account a ceteris paribus condition that the FE estimator overlooks. To see this, we
write the two regressions for DID and FE:

DID : { Yi=0;+ A4+ Dya+x;$ + u; (3.89)
Dj,1=0
FE : {Y,‘t = 9,‘ + /1[ + D,-,a + X,‘tﬁ -+ Uuj; (390)

where, by substitution and by differencing, we obtain (omitting Ax;, and A4, for
simplicity):

DID : AY;; = aD;; + Au; (3.91)
FE : AY;, = aAD; + Auy (3.92)

thus yielding two different conditions for consistency. For the DID equation we
need that:

Cov(Djs; uis — i 1—1) = Cov(Djs; uy) — Cov(Dys i —1) = 0 (3.93)
that is:
Cov(Djs; ui) = Cov(Djs; i 1) (3.94)

and for the FE equation, we require:
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Cov(Djs — Dj s—1; iy — uj 1) = [Cov(Djs; ur) — Cov(Dig; uj 1—1)]
+ [Cov(Dj 1—1; ti,—1) — Cov(Dj 1—1; uir)]
-0 (3.95)

that is:
[COV(DI‘,; Ll,',) — COV(D,’,; ui,,_l)] = [COV(Di,,_l 3 u,”[_l) — COV(Di,t_l 3 Mi[)] (396)

We observe immediately that when DID is consistent—i.e., (3.94) holds—(3.96)
becomes:

Cov(Dj,i—1;ti,i—1) — Cov(Dj -1 i) = 0 = Cov(Dj 15 1)
= COV(DM,I; l/tl‘t) (397)

Equation (3.97) implies that a second and more restrictive requirement with respect
to the correlation between D and u at different points in time is required by the FE
estimator. The condition under which the consistency of DID is achieved is
therefore less restrictive than that required for the FE estimator. In this sense,
DID is preferable to the FE estimator.

Nevertheless, even if estimation by DID entails less restrictive identification
conditions than FE, implementing DID reduces the number of observations
required to estimate the ATE due to the pre-period zero-treatment condition.
When reduction in observations is significant, the relative attractiveness of DID
vis-a-vis FE may reduce and a trade-off between identification requirements and
inferential precision can arise. If the number of observations falls dramatically, it is
likely that FE may produce a more robust estimation of the effect of the policy to be
evaluated than that obtained using DID.

3.4.3 DID with Matching

Hybrid program evaluation methods are generally more robust than stand-alone
approaches. In Sect. 2.5, we presented the case of the Doubly-robust estimator,
combining Reweighting on inverse-probability with Regression-adjustment.
Another type of hybrid method is the Matching-DID (M-DID), a combination of
DID with a propensity-score Matching (Heckman et al. 1998; Smith and Todd
2005). This estimator is similar to the DID estimator presented in Sects. 3.4.1 and
3.4.2, but it has the advantage that it does not require the imposition of the linear-in-
parameters form of the outcome equation. As such, it can be seen as a nonpara-
metric DID, reweighting observations according to a weighting function dependent
on the specific Matching approach adopted. As in the standard DID, there are two
types of M-DID: one for panel and one for repeated cross-section data. Both
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formulas are provided below, where our discussion is limited to the estimation of
ATET (the estimation of the ATENT follows a similar procedure).
In the case of panel data, the M-DID formula takes the following form:

J— 1 .
ATET o = — 3 | (VF = ¥h) = 3 (i) (v§-r5)
Lieny Jjec()

where t=1 is the after-policy time, and =0 is the before-policy time; T is the
treated set; C is the untreated set of units; A(7, j) the (specific) matching weights; and
C(i) is the neighborhood of the treated unit i.

For the repeated cross-section case, we have, respectively:

ATET 1 T .y C
ATETM—DID:N—Z Y, — Z h(i, )Y

Tty jeCi (i)
1 ..
s - s
T.0ie(1y) J€Coli)

where Np; is the number of treated units (7) at time = 1; Ny is the number of
treated units (7') at time t=0; T is the set of treated at time r=1; Ty is the set of
treated at time ¢t = 0; C;(7) is the neighborhood of unit i in time ¢ = 1; and Cy(7) is the
neighborhood of unit i in time =0 (see also Blundell and Costa Dias 2000).

As is usual with Matching, the advantage of using this nonparametric approach
should be reconsidered when the reduction in sample size, as a result of the
Matching trimming mechanism, is significant.

3.4.4 Time-Variant Treatment and Pre—Post Treatment
Analysis

In this section, we focus on treatment effect estimation in the presence of time-
variant treatment. Such a setting frequently characterizes numerous economic and
social phenomena, which generally change over time. One could, for example, be
interested in ascertaining both whether a certain treatment has had an impact on a
given target with some delays and whether there are possible anticipatory effects.
To begin with, consider a binary treatment indicator for individual i at time ¢:

1 ifunitiistreated attime ¢
D, = . .. .
0 ifunitiisuntreated attime ¢

and assume an outcome equation with one lag and one lead:
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Yii=p; + p_1Di—1 + poDis + B 1 Dirg1 + yXis + uy
In this setup, we have then the following sequence of treatments:

= (0,0
(1,0
(0,1
(0,0

)

R=R=R=
—_ ==

{Wj} = {Dil—l7fo)Dil+l} -

= = = =
RO RN

)

Where the sequence w' is the usual benchmark of non-treatment over time. The
generic treatment sequence is indicated by w/ (with j=1, ..., 4) and the associated
potential outcome as Y(w’). In this setting, we can easily define the “average
treatment effect between the two potential outcomes Y (w’ ) and Y(wk)” as:

ATE = E[Yy(w/) = Y (W")] V (i,1)
Under CMI, we have that:
ATE . = Bx{ATE i(x)} = Ex{E[Y;(w/,x) — Y;: (v}, x)]}
= E({E[(Yu|w’,x) — E(Y;|w",x)] }

In such a model with one lag and one lead, we can define and collect six ATEs as
follows:

w1 i) w3 Wy
w1 —
14%) ATE2 1 —
w3 ATE3 1 ATE32 —
W4 ATE4 1 ATE42 ATE43 -

Using the Y-equation we can also show that:

ATE,; = E|

[(Yie|w2) = E(Yu|w1)] = B+ By +¥%) — (7 + %) = B,
ATE3; =E[(Yi|ws) —E(Yu|wi)] =B,
ATEq = E[(Yi|ws) — E(Yu|w1)] = By
ATE3; = E[(Yi|ws) — E(Yu|w2)] = o — By
ATEy =E[(Yi|ws) —E(Yu|w2)] =B, — B,
ATEs3 = E[(Yul|wa) —E(Yu|ws)] = 1 — By

In general, we obtain a number of ATEs equal to (M2 —M)/2, where M is the
number of binary treatments considered in the dynamic treatment setting. An
important advantage of a dynamic treatment model of this kind is the possibility
to plot graphically the results, i.e., the estimated potential outcomes and the effects
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over time. To this end, define the predictions of Y;, given the sequence of treatment
as:

E(Yi|Dii—1.Dit, Dirs1.Xit) = Fy + B_1Dir—1 + PoDic + P11 Dir1 + VX,
Consider now only these two specific sequences of treatment:

w! ={Dj_1 =0,D;y = 1,Djryy = 0}
wC = {Dj_1 = 0,D;; = 0,D;1 = 0}

where:

w! : treatmentonly atthe ¢

WC : nevertreated overt

Define the prediction of Yat 7 — 1, ¢, and 7+ 1:

E(Yii—1|Dir1,Dits Dirs1) =y + B 1Di—2 + BoDic-1 + f1Dir + 1%
E(Yi|Dit—1.Di» Dirs1) = B, + B_1Dir—1 + PoDit + B 1Dirs1 + 1%
E(Yir1|Di1, D, Dis1) = Foet + B1Die + PoDir1t + PriDira + ¥Xis1

which can be used to calculate the expected outcome over {t—1, ¢, t+ 1} of the
previous two sequences. Thus:

(i) For w’, we have that:

E(Yi|w' =0,1,0) =1, + B 1 + VX1
E(Yy|w" =0,1,0) =& + fo + 1%
E(Yif+1|WT =0, 1’0> =W TP+ 0%

(i) For w, we have that:

E(Yi—1|w® =0,0,0) =7,y + 7%
E(Yy|w® =0,0,0) =&, + v,
E(YiHl ’WC = 0,0, O) = P T VX111

We can plot these predictions over time (Fig. 3.5) and depict these situations:

e p.1>0 and significant. In this case, there is a positive effect of the treatment at
t on the outcome at # — 1. This means that the current treatment had an effect on
past outcome (anticipatory effect). Therefore, the pretreatment period is char-
acterized by a positive effect of current treatment.

* fp>0 and significant. In this case, there is a positive effect of the treatment at
t on the outcome at ¢. This means that the current treatment had an effect on
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‘ PRE-TREATMENT ‘ ‘ TREATMENT ‘ ‘ POST-TREATMENT ‘
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Fig. 3.5 Pre (t — 1)- and post (¢ + 1)-treatment effect of a policy performed at ¢

current outcome (simultaneous effect). Therefore, the treatment period is char-
acterized by a positive effect of the treatment administrated in the same period.

e p_1>0 and significant. In this case, there is a positive effect of the treatment at
t on the outcome at 7+ 1. This means that the current treatment had an effect on
future outcomes (lagged effect). Therefore, the post treatment period is charac-
terized by a positive effect of current treatment.

This approach can naturally be extended to multiple lags and leads. See Autor
(2003) and Cerulli (2012) for more details.

3.5 Implementation and Application of IV and Selection-
Model

This section offers an application of the IV methods and Selection-model presented
in the theoretical sections. We begin by presenting the Stata user-written command
ivtreatreg (Cerulli 2014), performing IV and (generalized) Heckman
Selection-model estimations. Next, we illustrate a Monte Carlo exercise to assess
whether the theoretical properties of IV and Selection-model are confirmed in
practice. A subsection is dedicated to an application of IV and Heckit on real
data. Finally, an implementation of the Selection-model using the built-in Stata
routine etregress is also discussed.
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3.5.1 The Stata Command ivtreatreg

The Stata routine ivtreatreg (Cerulli 2014) estimates the four binary treatment
models presented in previous sections, i.e., Direct-2SLS, Probit-OLS, Probit-2SLS,
and Heckit, with and without idiosyncratic (or heterogeneous) average treatment
effects. As noted in Chap. 2, an older version of this command also estimated the
Control-function regression (CFR) model using the option model (cf-ols),
which can be now estimated using the built-in Statal3 command teffects ra.

Depending on the specified model, ivtreatreg provides consistent estimation
of ATEs either under the hypothesis of “selection on observables” (using, as said, the
optionmodel (cf-ols), but only in the older version) or “selection on unobserv-
ables” (using one of the three Instrumental-variables (IV) models or the Heckman
Selection-model reviewed in previous sections). Conditional on a prespecified subset
of exogenous variables—those driving the heterogeneous response to treatment—
ivtreatreg calculates for each specific model, the average treatment effect
(ATE), the average treatment effect on treated (ATET), and the average treatment
effect on non-treated (ATENT), in addition to the estimates of these parameters
conditional on the observable factors x (i.e., ATE(x), ATET(x), and ATENT(x)).

The syntax of the command is fairly simple:

Syntax of ivtreatreg

ivtreatreg outcome treatment [varlist] [if] [in] [weight], model (modeltype)
[hetero(varlist_h) iv(varlist_iv) conf (number) graphic vce (robust)

const (noconstant) head(noheader) ]

where outcome specifies the target variable that is the object of the evaluation;
treatment specifies the binary (i.e., taking 0 = treated or 1 = untreated) treat-
ment variable; var1list defines the list of exogenous variables that are considered
as observable confounders.

ivtreatreg allows for specifying a series of convenient options of different
importance:

model (modeltype) specifies the treatment model to be estimated, where modeltype must be

one of the following (and abovementioned) four models: "direct-2sls", "probit-2sls",
"probit-ols", "heckit". It is always required to specify onemodel
model type description
direct-2sls IV regression estimated by direct two-stage least squares
probit-2sls IV regression estimated by Probit and two-stage least squares
probit-ols IV two-step regression estimated by Probit and OLS

heckit Heckman two-step selection-model
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Optional options

hetero(varlist_h) specifies the variables over which to calculate the idyosincratic Average
Treatment Effect ATE (x), ATET (x) and ATENT (x) , where x=varlist_h. It is optional for all
models. When this option is not specified, the command estimates the specified model without
heterogeneous average effect. Observe that varlist_h should be the same set or a subset of

the variables specified invarlist.

iv (varlist_iv) specifies the variable(s) to be used as instruments. This option is
strictly required only for "direct-2sls", "probit-2sls" and "probit-ols", while it

is optional for "heckit".

graphic allows for a graphical representation of the density distributions of ATE(x),
ATET (x) and ATENT(x). It is optional for all models and gives an outcome only if

variables into hetero() are specified.

vce (robust) allows for robust regression standard errors. It 1is optional for all

models.

beta reports standardized beta coefficients. It is optional for all models.

const (noconstant) suppresses regression constant term. It is optional for all models.

conf (number) sets the confidence level equal to the specified number. The default is

number=95.

The routine also creates a number of variables which can be used to analyze the
data further:

_ws_varname_h are the additional regressors used in model’s regression when hetero
(varlist_h) is specified. They are created for all models.

_z_varname_h are the instrumental-variables used in model’s regression when hetero
(varlist_h) and iv(varlist_iv) are specified. They are created only in IV models.

ATE (x) is an estimate of the idiosyncratic Average Treatment Effect.

ATET(x) is an estimate of the idiosyncratic Average Treatment Effect on treated.

ATENT (x) is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated.

G_fv is the predicted probability from the Probit regression, conditional on the
observable confounders used.

_wL0, wLl are the Heckman correction-terms.
Interestingly, ivtreatreg also returns some useful scalars:

e(N_tot) is the total number of (used) observations.
e(N_treated) is the number of (used) treated units.

e (N_untreated) is the number of (used) untreated units.

e(ate) is the value of the Average Treatment Effect.

e(atet) is the value of the Average Treatment Effect on Treated.

e(atent) is the value of the Average Treatment Effect on Non-treated.
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Further information on ivtreatreg can be found in the help file of this
command.

3.5.2 A Monte Carlo Experiment

In this section, we offer a Monte Carlo experiment to ascertain whether the IV and
Selection-models are consistent with theoretical predictions. Performing a Monte
Carlo simulation is also an essential robustness check to assess the reliability of any
user-written command.

The first step is to define a data generating process (DGP) as follows:

D =1[0.5+0.5x; +0.3x, + 0.6z + a > 0]
Y() =0.1 + 0.2X1 + 0.2)(2 + €y
Y1 =03+0.3x; +0.3x; + ¢

where:

and

2 2
0, Ogey Oge 0, Paey0a0ey Pa,e;Ca0e
Q= 0 Oa,e, = O Pey,e10¢00¢;

2

O.el

0'5:1, 6t =3, ¢
0

pa,eg = 05’ pa,el = 037 peo,el =0

Assuming that the correlation between a and e (i.e., p,,, ) and the correlation
between a and ¢, (i.e., p, ,,) are different from zero implies that D—the selection
binary indicator—is endogenous. The variable z denotes an instrument, which is
directly correlated with D but (directly) uncorrelated with Y; and Y,. Given these
assumptions, the DGP is completed by the POM, Y; =Y,;+D; (Y, — Yy,), generat-
ing the observable outcome Y.

The DGP is simulated 500 times using a sample size of 10,000. For each
simulation, we obtain a different data matrix (x, xp, ¥, D, z) on which we apply
the four models implemented by ivtreatreg and the CFR model.
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Table 3.3 Simulation output. Unbiasedness of ATE estimators

No. of simulations Mean of ATE Std. dev. Min Max
Probit-OLS 500 0.229 0.098 —0.050 0.520
Direct-2SLS 500 0.250 0.112 —0.081 0.560
Heckit 500 0.216 0.090 —0.045 0.475
Probit-2SLS 500 0.235 0.092 —0.053 0.523
CFR (or CF-OLS) | 500 1.371 0.045 1.242 1.504

Monte Carlo for ATE - Comparison of methods under endogeneity
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Fig. 3.6 Distributions of ATE under the five models implemented by ivtreatreg

Table 3.3 and Fig. 3.6 present our simulation results. The true ATE value from
the DGP is 0.224. As expected, all the IV procedures provide consistent estimation
of the true ATE, a slight bias only being obtained with the Direct-2SLS model.

The CFR results are clearly biased, with a mean of 1.37, confirming that with
endogeneity, the implementation of CFR might lead to very unreliable conclusions.
Figure 3.6 confirms these findings, plotting the distributions of ATE obtained by
each single method over the 500 DGP simulations. This clearly emphasizes the very
different pattern of the CFR estimator.

Figure 3.7 shows the distributions of ATE using the IV methods. All methods
perform rather similarly, with the exception of Direct-2SLS which has a slightly
different shape with a larger right tail, thus suggesting we should look at the
estimation precision a bit more closely. Under our DGP assumptions, we expect
the Heckit model to be the most efficient method, followed by Probit-OLS and
Probit-2SLS, with Direct-2SLS being the worst performing. In fact, our DGP
follows exactly the same assumptions under which the Heckit is based
(in particular, the joint normality of a, eq, and ;).
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Monte Carlo for ATE - Comparison of methods under endogeneity - CF-OLS excluded
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Fig. 3.7 Distributions of ATE. Only instrumental-variables (IV) methods

The result in Table 3.4 confirms these theoretical predictions: the lowest stan-
dard error is obtained by Heckit (0.087) and the highest by Direct-2SLS (0.116), the
other methods falling in between. Note that the mean test presented in this table
indicates that standard errors values are precisely estimated, all being included
within the 95 % confidence interval. CFR, in particular, is very precisely estimated,
although it is severely biased. Table 3.4 contains simulation results also on
t-statistics and test size. The size of a test is the probability of rejecting a hypothesis
Hy when H, is true. In our DGP, we have set a two-sided test, where H:
ATE =0.224 against the alternative H,: ATE # 0.224.

The results presented under the heading Test size in Table 3.4 represent the
proportion of simulations which lead us to reject the H,. These values are the
“rejection rates” and have to be interpreted as the simulation estimate of the true test
size. As it is immediate to see, the rejection rates are all lower than the usual 5 %
significance, and the values are precisely estimated, since they are contained within
the 95 % confidence interval in the simulation mean test. The only exception being,
as expected, the CFR, whose test size is equal to 1: the two-sided test considered
always leads to reject Hy in this case.

Finally, it can be showed (although not reported) that under treatment
exogeneity, CFR proves to be the most efficient unbiased estimator of ATE
among the methods considered.
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Table 3.4 Simulation output. Mean Std. err. | [95 % Cont. interval]

Standard errors, t-statistic,

and test size of ATE Standard errors

estimators Probit-OLS 0.0977 0.0001 0.0975 0.0979
Direct-2SLS 0.1159 0.0001 0.1156 0.1162
HECKIT 0.0874 0.0001 0.0872 0.0875
Probit-2SLS 0.0971 0.0001 0.0969 0.0973
CFR 0.0419 0.0000 0.0419 0.0419
T-statistic

Probit-OLS 0.0553 | 0.0429 —0.0289 0.1395
Direct-2SLS 0.2371 0.0430 0.1526 0.3216

HECKIT —0.0757 0.0441 —0.1624 0.0110
Probit-2SLS 0.1245 0.0419 0.0420 0.2069
CFR 27.3690 | 0.0403 27.2897 27.4482
Test size

Probit-OLS 0.0380 | 0.0086 0.0212 0.0548
Direct-2SLS 0.0440 | 0.0092 0.0260 0.0620

HECKIT 0.0400 | 0.0088 0.0228 0.0572
Probit-2SLS 0.0420 | 0.0090 0.0244 0.0596
CFR 1 0

3.5.3 An Application to Determine the Effect of Education
on Fertility

In order to provide an application of IV and Selection-model to real data, we
consider an illustrative dataset called FERTIL2.DTA, which contains cross-
sectional data on 4,361 women of childbearing age in Botswana”.

This dataset contains 28 variables relating to various individual and family
characteristics. We are particularly interested in evaluating the impact of the
variable “educ7” (taking value 1 if a woman has more than or exactly 7 years of
education and 0 otherwise) on the number of children in the family (“children”).
Several conditioning (or confounding) observable factors are included in the
dataset, such as the age of the woman (“age”), whether or not the family owns a
TV (“tv”), whether or not the woman lives in a city (“urban”), and so forth. In order
to investigate the relationship between education and fertility, we estimate the
following specification for each of the four models implemented by ivtreatreg:

. set more off
. xi: ivtreatreg children educ7 age agesq evermarr urban electrictv , ///

hetero (age agesqg evermarr urban) iv(frsthalf) model (modeltype) graphic

5 This dataset is used in a number of examples in Introductory Econometrics: A Modern Approach
by Wooldridge (2008). It can be freely downloaded here: http:/fmwww.bc.edu/ec-p/data/
wooldridge/FERTIL2.dta.


http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta
http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta
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Following Wooldridge (2001, example 18.3, p. 624), this specification adopts—
as an instrumental-variable—the covariate “frsthalf” which takes a value equal to
1 if the woman was born in the first 6 months of the year and zero otherwise. This
variable is (partially) correlated with “educ7,” but should not be related to the
number of children in the family. The choice of “frsthalf” as an instrument follows
the same rationale of the choice of “quarter-of-birth” used as an instrument for
years of education in Angrist and Krueger (1991) discussed in Sect. 3.2.

Table 3.7 shows that the simple Difference-in-means (DIM) estimator (the mean of
children in the group of more educated women, the treated ones, minus the mean of
children in the group of less educated women, the untreated ones) equals —1.77 with a
t-value of —28.46. Thus the more educated women tend to have—without ceteris
paribus conditions—about two fewer children than the less educated ones. Adding
confounding factors in the regression specification, we obtain the OLS estimate of the
ATE that, in the absence of heterogeneous treatment, is equal to —0.394 with a t-value
of —7.94; although significant, the magnitude, as expected, is considerably lower
compared to that of the Difference-in-means estimation, indicating, therefore, that
confounders are relevant. When we consider OLS estimation with heterogeneity, we
obtain an ATE equal to —0.37, significant at 1 % (column CFR in Table 3.7).

When the IV estimation is considered, the results change, however, dramati-
cally. We estimate the previous specification for Probit-2SLS using ivtreatreg
with heterogeneous treatment response. Results are reported in Table 3.5, which
contains both results from the probit first step and from the IV regression of the
second step. The probit results indicate that “frsthalf” is sufficiently (partially)
correlated with “educ7”; thus, it can be reliably used as an instrument for this
variable. Step 2 shows that the ATE (again, the coefficient of “educ7”) is no longer
significant and, above all, it changes sign becoming positive and equal to 0.30.

The results are in line with the IV estimations obtained by Wooldridge (2010).
Nevertheless, having assumed heterogeneous response to treatment allows us to
now calculate also the ATET and ATENT and to investigate the cross-unit distri-
bution of these effects. ivtreatreg returns these parameters as scalars (along
with treated and untreated sample size):

. ereturn list

scalars:
e(N_untreat) = 1937
e(N_treat) = 2421
e(N_tot) = 4358
e(atent) = -.4468834318603838
e(atet) = .898290019555276
e(ate) = .3004007408742051

In order to obtain the standard errors for testing the significance of both ATET
and ATENT, a bootstrap procedure can be easily implemented in the following
manner:
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Table 3.5 Results form ivtreateg when Probit-2SLS is the specified model and treatment

heterogeneous response is assumed

Step 1. Probit regression Number of obs = 4358
LR chi2 (7) = 1130.84
Prob > chi2 = 0.0000
Log likelihood = -2428.384 Pseudo R2 = 0.1889
educ? | Coef std. Err. b4 P>|z| [95% Conf. Interval]
frsthalf | -.2206627 .0418563 -5.27 0.000 -.3026995 -.1386259
age | -.0150337 .0174845 -0.86 0.390 -.0493027 .0192354
agesqg | -.0007325 .0002897 -2.53 0.011 -.0013003 -.0001647
evermarr | -.2972879 .0486734 -6.11 0.000 -.392686 -.2018898
urban | .2998122 .0432321 6.93 0.000 .2150789 .3845456
electric | . 4246668 .0751255 5.65 0.000 .2774235 .57191
tv | .9281707 .0977462 9.50 0.000 .7365915 1.11975
cons | 1.13537 .2440057 4.65 0.000 .6571273 1.613612

Step 2. Instrumental variables (2SLS) regression
Source | sS df MsS Number of obs = 4358
————————————— e F( 11, 4346) = 448.51
Model | 10198.4139 11 927.128534 Prob > F = 0.0000
Residual | 11311.6182 4346 2.60276536 R-squared = 0.4741
7777777777777 Fmm Adj R-squared = 0.4728
Total | 21510.0321 4357 4.93689055 Root MSE 1.6133
children | Coef Std. Err t P>t [95% Conf. Interval]
,,,,,,,,,,,,, o
educ? | .3004007 .4995617 0.60 0.548 -.6789951 1.279797
_ws_age | -.8428913 .1368854 -6.16 0.000 -1.111256 -.5745262
_ws_agesq | .011469 .0019061 6.02 0.000 .007732 .0152059
_ws_evermarr | -.8979833 .2856655 -3.14 0.002 -1.458033 -.3379333
_ws_urban | .4167504 .2316103 1.80 0.072 -.037324 .8708247
age | .859302 .0966912 8.89 0.000 .669738 1.048866
agesq | -.01003 .0012496 -8.03 0.000 -.0124799 -.0075801
evermarr | 1.253709 .1586299 7.90 0.000 .9427132 1.564704
urban | -.5313325 .1379893 -3.85 0.000 -.801862 -.260803
electric | =-.2392104 .1010705 -2.37 0.018 -.43736 -.0410608
tv | -.2348937 .1478488 -1.59 0.112 -.5247528 .0549653
cons | -13.7584 1.876365 -7.33 0.000 -17.43704 -10.07977

Instrumented: educ7 ws _age ws_agesq Wws_evermarr ws urban
Instruments: age agesq evermarr urban electric tv G_fv _z age _z_agesq

Z evermarr

Z_urban

. xXi: bootstrap atet=r (atet) atent=r (atent),

rep(100) :

/17

ivtreatreg children educ7 age agesqg evermarr urban electric tv , ///

hetero (age agesq evermarr urban) iv(frsthalf) model (probit-2sls)

The results obtained are reported in Table 3.6. As it can be seen, both ATET and
ATENT are insignificant, indicating values not that substantially different from the
ATE. A simple check should show that ATE = ATET p(D = 1)+ ATENT p(D =0):

. di "ATE= " (e(N_treat)/ e(N_tot)) *e(atet)+ (e (N_untreat) /e (N_tot) ) *e(atent)

ATE= .30040086
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Table 3.6 Bootstrap standard errors for ATET(x) and ATENT(x) using ivtreatreg with
model Probit-2SLS

Bootstrap results Number of obs = 4358
Replications =
command: ivtreatreg children educ7 age agesq evermarr urban electric tv,
hetero (age agesqg evermarr urban) iv(frsthalf) model (probit-2sls)

atet: «r(atet)

atent: r (atent)
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
atet | .89829 .5488267 1.64 0.102 -.1773905 1.973971
atent | -.4468834 .4124428 -1.08 0.279 -1.255257 .3614897

Kernel density

ATE(X)  ————- ATET(x)
—-—-- ATENT(x)

Fig. 3.8 Distribution of ATE(x), ATET(x), and ATENT(x) in model Probit-2SLS

which confirms the expected result. Finally, Fig. 3.8 plots the distributions of
ATE(x), ATET(x), and ATENT(x).

What emerges from this analysis is that ATET(x) shows a substantially uniform
distribution, while both the ATE(x) and the ATENT(x) distributions are more
concentrated on negative values. In particular, ATENT(x) shows the highest
modal value of approximately —2.2 children; thus, less educated women would
have been less fertile if they had been more educated.

Table 3.7 shows the ATE results obtained for all the models and also for the
simple Difference-in-means (DIM). The ATE obtained by IV methods is not always
significant and is positive only in the Probit-2SLS estimation. The rest of ATEs are
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Table 3.7 Estimation of the ATE for the five models estimated by ivtreatreg

Variable DIM CFR  PROBIT-OLS  DIRECT-2SLS  PROBIT 2SLS  HECKIT
_____________ b Tl
educ? | -1.770%** —0.372%%* -1.044 0.300 -1.915%*x
| 0.06219 0.05020 0.66626 0.49956 0.39871
| -28.46 -7.42 -1.57 0.60 -4.80
G fv | -0.11395
[ 0.50330
\ -0.23

legend: b/se/t

always negative: thus more educated women would have been more fertile if they
had been less educated. The case of Heckit is a little more puzzling, as the result is
significant and very close to the DIM estimation, which is suspected to be biased;
this result could be due to the fact that the identification conditions of Heckit are not
satisfied in this dataset.

Figure 3.9, finally, plots the average treatment effect distribution for each
method. By and large, these distributions follow a similar pattern, although Direct-
2SLS and Heckit estimations show some appreciable differences. The Heckit, in
particular, exhibits a very different pattern, with a strong demarcation between the
plot of treated and untreated units. As such, it does not seem to be a reliable
estimation procedure in this example, and this result deserves further investigation®.

Finally, note that the distribution for Direct-2SLS is on the whole more uniform
than in the other cases where a strong left-side inflation dominates, with the ATENT
(x) being more concentrated on negative values than ATET(x) on positive ones.
What might this mean? It seems that the counterfactual condition of these women is
not the same: on average, if a less educated woman became more educated, then her
fertility would decrease more than the increase in fertility of more educated women
becoming (in a virtual sense) less educated.

3.5.4 Applying the Selection-Model Using etregress

Although ivtreatreg encompasses also the Heckman Selection-model
presented in Sect. 3.3.2, it seems useful to discuss the use of the Stata built-in
command etregress. In common with ivtreatreg, this command estimates
the ATE in a linear regression model with an endogenous binary treatment variable.
In contrast to ivtreatreg, the etregress module assumes a homogenous

S A possible explanation for understanding this poor behavior of the Heckit may be that “children”
is a count variable, thus presenting a strong asymmetric shape in its distribution with a high
probability mass where the number of children is small. As such, it does not comply with the
normality assumption of the outcome required by the Heckit model; a logarithmic transformation
of “children” is likely to be correct for this problem.
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Model cf-ols: Comparison of ATE(x) ATET(x) ATENT(x) Model probit-ols: Comparison of ATE(x) ATET(x) ATENT(x)
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Fig. 3.9 Distribution of ATE(x), ATET(x), and ATENT(x) for the five models estimated by
ivtreatreg

reaction of potential outcomes to confounders, but it offers the advantage of
exploiting a full maximum likelihood approach besides the two-step consistent
estimator. The basic syntax of this command is:

etregress depvar [indepvars], treat (depvar_t = indepvars_t) [twostep]
where depvar is the outcome; indepvars the exogenous covariates

explaining the outcome equation; depvar_t is the endogenous treatment; and
indepvars_t the confounders explaining the selection equation. This command,
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therefore, estimates the system represented in (3.51). The two-step procedure
follows the one provided by ivtreatreg; the ML approach is an original option
of this model.

Suppose that fertility depends not only on observable factors (those already
present in the dataset) but also—Ilet’s say—on one unobservable component, that
we call Q,, representing a woman’s genetic ability to have children more easily.
Suppose that this genetic factor has also some explicative power on women’s
predisposition to education. Since Q; is not observable in both the outcome and
selection equations, then it will be a part of the error terms in the two equations. We
saw in Sect. 3.3.1 that because of the presence of a common unobservable factor,
the covariance between u and ¢ in system (3.51) will be different from zero. There,
we assumed thatu =y, - Q+e¢, and e =y, - Q +e,, where y,, and y,. denote the effect
of O on u and &, respectively, with e, and e, being two purely exogenous random
shocks; these assumptions imply that Cov(u; €) =y,y.Var(Q), indicating that the
sign of the covariance between the two error terms depends on the sign of the
product y,y.. This sign can also provide us with an idea of the direction of the OLS
bias. We also saw in (3.53) that:

Var(Q
aoLs = asMm + ¥e¥y WED;

implying that when:

* 7> 0, then OLS has an upward bias.
* 7ure <0, then OLS has a downward bias.
e y.re=0, then OLS is unbiased (consistent).

We can easily estimate and compare the SM and the OLS treatment effects in
this example. We set out by estimating agy, typing:

. Xi: etregress children age agesqg evermarr urban electric tv , /17
treat (educ7 = age agesq evermarr urban electric tv)
Linear regressionwith endogenous treatment Number of obs = 4358
Estimator: maximum likelihood Wald chi2(7) = 5032.82
Log likelihood = -10134.112 Prob > chi2 = 0.0000
| Coef std. Err z P>|z| [95% Conf. Intervall
_____________ O
children |
age | .2479356 .0198391 12.50 0.000 .2090517 .2868195
agesq | -.0021111 .0003189 -6.62 0.000 -.0027362 -.001486
evermarr | .4919836 .06138898 .010 .000 .3716635 .6123036
urban | —-.0448949 .0540729 -0.83 0.406 -.1508758 .061086
electric | -.0706167 .0882316 -0.80 0.424 —.2435475 .1023141

tv | .1649312 .1063599 1.55 0.121 -.0435303 .3733927
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educ?

_cons

age
agesq
evermarr
urban

electric

/athrho

/1lnsigma

-2.310078
-1.715568

.1046295
.2956674

-22.08

.80

0.

000

.000

-2.515148
-2.295065
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-2.105008
-1.13607

.0060915
-.001163
-.2720595
.293575
.4497788
.965347
.7168491

.016699
.0002743
.0477597
.0420911
.0733312
.0938972
.2339981

-.0266379
-.0017007
-.3656669
.211078
.3060524
.7813118
.2582213

.0388209
-.0006254
-.1784521

.3760721

.5935053

1.149382

1.175477

.8739284
.5049432

.0487247
.0176032

.7784298
.4704415

.969427
.5394449

.7033646
1.656891
1.165399

.0246195
.0291666
.058385

.6518045
1.600701
1.050966

.7484524
1.715055
1.279831

Prob > chi2 =

0.0000

The results obtained indicate that the estimated correlation (rho) between the
treatment (“educ7”) and the outcome (“children”) errors is 0.7, thus offering
evidence that when the unobservable factor Q raises the observed number of
children, it increases contemporaneously a woman’s propensity to get educated
(and vice versa). The estimated ATE (that is asy) is equal to around —2.31.

Since the errors’ correlation is positive and quite high, we suspect that OLS
estimation is significantly upward biased. We estimate aop s typing:

. reg children educ7 age agesqg evermarr urban electric tv

Source | ss af MS Number of obs = 4358
———= + - F( 7, 4350) = 880.03
Model | 12607.4006 7 1801.05723 Prob > F = 0.0000
Residual | 8902.63153 4350 2.04658196 R-squared = 0.5861
Adj R-squared = 0.5855
Total | 21510.0321 4357 4.93689055 Root MSE = 1.4306
children | Coef. std. Err. t P> t| [95% Conf. Interval
educ7 | -.3935524 .0495534 -7.94 0.000 -.4907024 -.2964025
age | .2719307 .0171033 15.90 0.000 .2383996 .3054618
agesq | -.001896 .0002752 -6.89 0.000 -.0024356 -.0013564
evermarr | .6947417 .0523984 13.26 0.000 .5920142 .7974691
urban | -.2437082 .0460252 -5.30 0.000 -.333941 —.1534753
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electric | -.336644 .0754557 -4.46 0.000 -.4845756 -.1887124
tv | -.3259749 .0897716 -3.63 0.000 -.501973 —.1499767
_cons | -3.526605 .2451026 -14.39 0.000 -4.007131 -3.046079

We immediately see that ag; g = —0.393 is in fact higher than agy = —2.31, with
a bias calculated as agp s minus agy of 1.917. We can conclude that using OLS
provides an inconsistent estimate of ATE; of course, the results obtained are
acceptable, provided that the true data generating process is exactly the one
provided by the Selection-model’s assumptions.

3.6 Implementation and Application of DID

In this section, we implement the DID estimator in a repeated cross section and in a
longitudinal data structure. In repeated cross sections, each subject appears only
once in the dataset, either before or after treatment. In longitudinal data (panel), the
same subject is observed before and after the treatment occurs. In what follows, we
start illustrating first how to estimate DID in a repeated cross sections setting and
then in a longitudinal dataset by exploiting two ad-hoc artificial datasets built only
for illustrative purposes.

3.6.1 DID with Repeated Cross Sections

In this exercise, we make use of the dataset “DID_1.dta,” an artificial dataset very
similar to that analyzed in Card and Krueger (1994). Our aim is to measure the
effect of incentives offered to a number of restaurants in Rome, Milan being the
comparison location. More specifically, we are interested in measuring the incen-
tives’ effect on employment. The dataset, containing 20 restaurants, is reported
below:

Restaurant identifier | Number of employees | Location |Time | Interaction location/time
ID Y T S-T

1 34 1 0 0

2 67 0 0 0

3 5 0 0 0

4 150 1 1 1

5 78 0 1 0

6 98 0 0 0

7 200 1 1 1

8 45 0 0 0

(continued)
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Restaurant identifier | Number of employees | Location |Time |Interaction location/time
ID Y S T ST
9 33 0 0 0

10 45 0 1 0

11 22 1 0 0

12 12 0 0 0

13 34 0 1 0

14 180 1 1 1

15 88 0 1 0

16 9 0 0 0

17 56 1 0 0

18 4 0 0 0

19 3 0 0 0

20 190 1 1 1

The variable ID is the restaurant identifier; Y is the number of employees; S is the
location variable taking value 1 for “Rome” and O for “Milan™; T is the time
indicator equal to O if the restaurant is observed before the incentives are introduced
and 1 after incentives; and finally, S-T is the interaction variable between S and 7.
We can run regression (3.68) to obtain an estimate of the DID:

. regress Y S T ST

Source | ss af MS Number of obs = 20
F( 3, 16) = 26.93

Model | 65721.1333 3 21907.0444 Prob > F = 0.0000
Residual | 13015.4167 16 813.463542 R-squared = 0.8347
+ - Adj R-squared = 0.8037

Total | 78736.55 19 4144.02895 Root MSE = 28.521
Y | Coef . Std. Err. t P>t [95% Conf. Interval]

| 6.666667 19.01419 0.35 0.730 -33.64161 46.97494

T | 30.58333 17.13916 1.78 0.093 -5.750058 66.91672

ST | 112.0833 27.7177 4.04 0.001 53.32443 170.8422
_cons | 30.66667 9.507094 3.23 0.005 10.51253 50.82081

We see the DID estimation of the ATE is equivalent to the coefficient of the
variable S-T, which is significant and equal to about 112. As shown in Sect. 3.4.1,
however, we can also calculate DID by hand, by firstly estimating the Before/After
estimator of (3.72) as follows:
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. regress Y T if S==

Y | Coef. Std. Err. t P>t [95% Conf. Interval]
T | 142.6667 15.25487 9.35 0.000 103.4528 181.8806
_cons | 37.33333 11.5316 3.24 0.023 7.690414 66.97625

This estimate returns a coefficient equal to around 142. Thus, the comparison
within the group of treated subjects (restaurants located in Rome) before and after
support would lead to an overestimation (142 — 112 =30 more employees!) of the
treatment effect. This happens because the Before/After estimator fails to take into
account the counterfactual situation. Indeed, we saw that 5y, =y + §, so that we get
that y = 30.

In a similar way, we can compute the Treatment/Control estimator of (3.74):

. regress Y S if T==

Source | ss af MS Number of obs = 8

F( 1, 6) = 49.73

Model | 28203.125 1 28203.125 Prob > F = 0.0004

Residual | 3402.75 6 567.125 R-squared = 0.8923

e et Adj R-squared = 0.8744

Total | 31605.875 7 4515.125 Root MSE = 23.814

Y | Coef. std. Err t P>|t| [95% Conf. Intervall
e

s | 118.75 16.83931 7.05 0.000 77.54568 159.9543

_cons | 61.25 11.90719 5.14 0.002 32.11415 90.38585

This comparison between the treated (restaurants in Rome) and non-treated
(restaurants in Milan) after treatment leads to a level of treatment equal to around
118, which still overestimates the actual effect given by DID, i.e., 112. We saw that
Orc =P+ 9, thus f=6. We can obtain the same result “by hand” by typing:

e Average over treated units in T=0: y+f

.osum Y if S==1 & T==0

37.33333
e Average over treated units in T=1: y+f+y+6

.osum Y if S==1 & T==1

180
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» Average over untreated units in 7=0: p

sum Y if S==0 & T==

30.6
e Average over untreated units in T=1: y+y

sum Y if S==0 & T==

61.25

The same results can also be obtained using the user-written command diff
(Villa 2014). The Stata help-file of this command is displayed by typing:

help diff
Title
diff - Differences in differences estimation
Syntax
diff outcome_var [if] [in] [weight] , [ options]
Description

diff performs several differences in differences (diff-in-diff) estimations of the
treatment effect of a given outcome variable from a pooled base line and follow up
dataset: Single Diff-in-Diff, Diff-in-Diff controlling for covariates, Kernel-based
Propensity Score Matching diff-in-diff, and the Quantile Diff-in-Diff.

Options

required

period(varname) Indicates the dummy period variable (0: baseline; 1: follow up).

treated(varname) Indicates the dummy treated variable (0: controls; l:treated).

optional

cov (varlist) Specifies the pre-treatment covariates of the model. When option kernel

is selected these variables are used to generate the propensity score.

kernel Performs the Kernel-based Propensity Score Matching diff-in-diff. This option
generates _weights that contains the weights derived from the kernel density func-
tion, _ps when the Propensity Score is not specified in pscore(varname). This option

requires the id(varname) of each individual.

id(varname) Option kernel requires the supply of the identification variable.

bw (#) Supplied bandwidth of the kernel. The default is the optimum bw estimated by

Stata. See [R] kdensity
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ktype (kernel) Specifies the kernel function; the default is epanechnikov. See

[R] kdensity

gdid(quantile) Performs the Quantile Difference in Differences estimation at the spec-
ified quantile from 0.1 to 0.9 (qguantile 0.5 performs the QDID at the medeian). You
may combine this option with kernel and cov options. gdid does not support weights
nor robust standard errors. This option wuses [R] qgreg and [R] bsgreg for

bootstrapped standard errors.

pscore (varname) Supplied Propensity Score.

logit Specifies logit estimation of the Propensity Score. The default is Probit.

support Performs diff on the common support of the propensity score given the

option kernel.

SE/Robust

cluster (varname) Calculates clustered Std. Errors by varname.

robust Calculates robust Std. Errors.

bs performs a Bootstrap estimation of coefficients and standard errors.
reps (int) Specifies the number of repetitions when the bs is selected. The

default are 50 repetitions.

Balancing test

test Performs a balancing t-test of difference in means of the specified
covariates between control treated groups in period == 0. The option test
combined with kernel performs the balancing t-test with the weighted

covariates. See [R] ttest.

Reporting

report Displays the inference of the included covariates or the estimation of
the Propensity Score when option kernel is specified.
nostar Removes the inference stars from the p-values.

In order to run such a command, at least two options are required: period
(varname) indicating the dummy period variable (0: baseline; 1: follow up) and
treated(varname) indicating the dummy treated variable (0: controls; 1:
treated). Thus, we have all the ingredients to estimate our DID by dif £, that is:
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. diff Y, treated(D) period(T)

Number of observations: 20

Baseline Follow-up
Control: 9 4 13
Treated: 3 4 7
12 8

R-square: 0.83470
DIFFERENCE IN DIFFERENCES ESTIMATION

BASE LINE ———————————————————— FOLLOW UP ——————————

Outcome Variable(s)| Control| treated| Diff (BL)| Control| treated| Diff (FU)| DID

e | 30.667 | 37.333 | 6.667 | 61.250 | 180.000| 118.750 | 112.083
Std. Error | 9.507 | 16.467 | 19.014 | 14.261 | 14.261 | 20.168 | 27.718
t | 3.23 | 31.07 | 0.35 | 32.81 | 75.78 | 12.22 | 4.04
P>t | 0.005 | 0.038 | 0.730 | 0.001 | 0.000 | 0.000%** | 0.00L1***

* Means and Standard Errors are estimated by linear regression

**Inference: *** p<0.01l; ** p<0.05; * p<0.1

Although the results presented in the diff output table are identical to those
obtained previously, they are much better summarized and displayed. Note that
diff also performs DID adjusted for covariates and “DID with Matching”
(M-DID). As such, it is a valuable command for dealing with both observable
and unobservable selection in both the parametric and nonparametric case.

3.6.2 DID Application with Panel Data

In this section, we use the “DID_2.dta” dataset, an artificial longitudinal dataset of
12 units observed for 2 years: 2000 and 2001. The sample size is 24. We consider a
generic outcome Y, a binary treatment d, and two covariates x; and x,. As usual, we
are interested in measuring the causal effect of d on Y. The dataset needed to
calculate DID according to (3.80) is reported below:

X1, | X2, X1, X2, Axy, | Axs,
Id | Year |d; |yi it it Yie—1 | dic—1 i1 it —1 Ayir it it Ad;,
1 2000 |1 17 |73 |13 |- - - - - - - -
1 12001 |1 32 |46 |65 |17 1 73 13 15 =27 |52 0
2 12000 |0 79 193 |69 |- - - - - - - -
2 12001 |1 72 |66 |36 |79 0 93 69 -7 =27 |-33 |1
3 12000 |0 54 |57 |69 |- - - - - - - -
3 12001 |1 98 |55 |13 |54 0 57 69 44 -2 =56 |1

(continued)
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Xy, | X, Xq, X, Axy, | Axa,

Id | Year |di |ya it it Yie—1 | di—1 i1 ir—1 Ayir it it Ad;,
4 2000 |1 5 |22 |48 |- - - - - - - -
4 12001 |0 34 130 |15 |5 1 22 48 29 8 —-33 | -1
5 2000 |0 41 0 140 |- - - - - - - -

5 2001 |1 20 |60 |17 |41 0 0 40 —21 |60 -23 |1
6 2000 [0 46 |40 |69 |- - - - - - - -
6 2001 |1 7 |13 |61 |46 0 40 69 -39 | =27 | -8 1
7 12000 [0 39 |73 |66 |- - - - - - - —
7 2001 |0 91 |41 |91 |39 0 73 66 52 —32 |25 0
8 2000 |0 59 |29 |94 |- - - - - - - —

8 [2001 [0 |100 |51 |97 |59 0 29 94 41 22 3 0
9 12000 |1 77 |70 |23 |- - - - - - - —
9 (2001 |0 33 |69 |85 |77 1 70 23 —44 | -1 62 —1
10 [2000 |0 75 |61 6 |- - - - - - - —
10 (2001 |1 24 |75 5 |75 0 61 6 —51 |14 —1 1
11 [2000 |0 20 |68 |39 |- - - - - - - —
11 {2001 |0 75 3 |71 |20 0 68 39 55 —65 |32 0
12 12000 |1 53 |69 |65 |- - - — - - — —
12 {2001 |0 97 |16 |28 |53 1 69 65 44 =53 | =37 | -1

In order to calculate DID, we first generate one-lag variables for the outcome
Y and the covariates x; and x; (reported in the previous table):

. sort id year

. by id: gen Y_1 = Y[_n-1]

. by id: gen d_it_1 = d_it[_n-1]
. by id: gen x1_1 = x1[_n-1]

. by id: gen x2_1 = x2[_n-11

We then generate the first-differences for Y, x; and x,, and D:

. sort id year

. gen delta_Y = Y-Y_1

. gen delta_x1 = x1-x1_1
. gen delta_x2 = x2-x2_1

. gen delta_d = d_it-d_it_1

Thus, we have all the components necessary to calculate the simple DID
estimator with no covariates presented in (3.80):
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. reg delta_Y d_it if d_it_l==

Source | ss af

MS Number of obs 8

F( 1, 6) 8.32

Model | 7712.03333 1 7712.03333 Prob > F = 0.0279
Residual | 5561.46667 6 926.911111 R-squared 0.5810
——————— + - Adj R-squared 0.5112
Total | 13273.5 7 1896.21429 Root MSE 30.445
delta_Y | Coef. std. Err. t P>|t| [95% Conf. Intervall
d_it | -64.13333 22.23404 -2.88 0.028 -118.5381 -9.728594

_cons | 49.33333 17.57755 2.81 0.031 6.322611 92.34406
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We obtain a DID estimate of approximately —64, significant at 5 %. Observe
that the sample size passes from 24 to 8 due to the lagged variables and the ceteris
paribus condition implied by “d_it_1==0.” The same result can also be
obtained running alternative regressions:

. reg delta_Y d_it if delta_d==d_it

or:

. reg delta_Y delta_d if d_it_1==

It seems worth also looking at the OLS estimates for this dataset:

* OLS model (standard)
. reg Y d_it

Source | sS af MS Number of obs = 24
-— - - F( 1, 22) = 2.73
Model | 2267.14286 1 2267.14286 Prob > F = 0.1127
Residual | 18266.8571 22 830.311688 R-squared = 0.1104
Adj R-squared 0.0700
Total | 20534 23 892.782609 Root MSE = 28.815
Y | Coef. Std. Err. t P>t [95% Conf. Intervall]
d_it | -19.71429 11.9306 -1.65 0.113 -44.45683 5.028258
_cons | 60.21429 7.701167 7.82 0.000 44.24304 76.18553

OLS estimation returns a negative effect of the policy (roughly —20) but which
is no longer significant. When compared to DID, the OLS bias is approximately
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44 in absolute value (quite high and around 69 %). Looking at the results of the
First-difference (FD) model, we have:

* FD model (First-differences)

reg delta_Y delta_d , noconst
Source | sS af MS Number of obs = 12
F( 1, 11) = 0.83
Model | 1326.125 1 1326.125 Prob > F = 0.3817
Residual | 17569.875 11 1597.26136 R-squared = 0.0702
—_—— + - Adj R-squared = -0.0143
Total | 18896 12 1574.66667 Root MSE = 39.966
delta_Y | Coef. std. Err t P>|t| [95% Conf. Intervall]
delta_d | -12.875 14.13003 -0.91 0.382 -43.97498 18.22498

We see that FD shows a negative effect smaller than DID and OLS (about —13)
but is insignificant. Finally, we can estimate the previous model also by a Fixed-

effect (FE) regression:

* FE model (Fixed effects)

tsset id year

panel variable: id (strongly balanced)
time variable: vyear, 2000 to 2001
delta: 1 unit
. Xtreg Y d_it , fe
Fixed-effects (within) regression Number of obs = 24
Group variable: id Number of groups = 12
R-sg: within = 0.0702 Obs per group: min = 2
between = 0.1984 avg = 2.0
overall = 0.1104 max = 2
F(1,11) = 0.83
corr(u_i, Xb) = 0.1672 Prob > F = 0.3817
Y | Coef. std. Err. t P>|t] [95% Conf. Interval]
da_it | -12.875 14.13003 -0.91 0.382 -43.97498 18.22498
_cons | 57.36458 8.242516 6.96 0.000 39.22293 75.50624
sigma_u | 21.057042
sigma_e | 28.260055
rho \ .35699551 (fraction of variance due to u_i)
F test that all u_i=0: F(11, 11) = 1.08 Prob > F = 0.4508
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As expected, the FE estimator is equivalent to the FD, since we are only
considering 2 years. Indeed, it is known that when =2, then FE and FD return
the same result.

We can also calculate DID by hand to check whether the regression approach is
correct:

» Average Y over those treated units that were untreated in ¢ = 2000:

. sum delta_Y if d_it == 1 & d_it_1==0
. scalar mean_t = r (mean)

. di mean_t

Average Y over those untreated units that were also untreated in ¢ =2000:

. sum delta_Y if d_it == 0 & d_it_1==0

. return list

. scalar mean_c = r (mean)

. di mean_c

. scalar did = mean_t - mean_c
. di "DID = " did

DID = -64.133333

showing that the previous regression provides the correct causal parameter. Finally,
we calculate the DID conditional on the covariates:

. reg delta_Y d_it delta_x1 delta_x2

SS daf

Source |

MS Number of obs 12

F( 3, 8) = 2.33

Model | 8270.00495 3 2756.66832 Prob > F = 0.1507
Residual | 9465.66172 8 1183.20771 R-squared = 0.4663
——————— + —— - Adj R-squared = 0.2662
Total | 17735.6667 11 1612.33333 Root MSE = 34.398
delta_Y | Coef. Sstd. Err. t P>|t| [95% Conf. Intervall]
d_it | -39.89922 21.30604 -1.87 0.098 -89.03104 9.2326
delta_x1 | -.4002804 .3151978 -1.27 0.240 -1.127128 .3265671
delta_x2 | -.3985679 .2910458 -1.37 0.208 -1.069721 .2725849
_cons | 24.88193 15.47731 1.61 0.147 -10.80882 60.57268

The conditional-DID is around 40, but still significant at 1 %. Introducing
covariates has therefore resulted in some reduction in both the magnitude and
significance of the causal effect, but it has preserved the reliability of the simple
DID result.
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Chapter 4
Local Average Treatment Effect
and Regression-Discontinuity-Design
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4.1 Introduction

This chapter addresses two different but related subjects, both widely developed
and used within the literature on the econometrics of program evaluation: the Local
average treatment effect (LATE) and the Regression-discontinuity-design (RDD).
Considered as nearly quasi-experimental methods, these approaches have recently
been the subject of a vigorous interest as tools for detecting causal effects of
treatment on given target variables within a special statistical setting.
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A pioneering application of LATE can be found in the work by Angrist (1990)
seeking to detect the effect of Vietnam veteran status on civilian earnings. In his
work, the author makes explicit that LATE is equivalent to an Instrumental-
variables (IV) estimation (see Chap. 3), with the instrument taking a binary form
and assuming an explicit random nature. More importantly, Angrist proves that—in
an endogenous treatment setting—the whole population average treatment effect
cannot be identified; what is identified by IV is the treatment effect on a specific
subpopulation, the so-called compliers, defined as those individuals whose treat-
ment assignment complies with instrument inducement. In the specific case of
Angrist (1990), the assignment risk of military service associated to draft lottery
served as an instruments’ generator to produce a Wald (1940) type IV estimation of
the causal effect. Compliers are not observable but, quite surprisingly, Abadie
(2003) provided a powerful reweighting approach (Abadie’s kappas) to character-
ize the distribution of the treatment effect within this group, as only the average
treatment effect on compliers owns a causal interpretation.

The analysis of LATE is organized in the following manner: Sect. 4.2 presents
the theory behind LATE, illustrating how such approach can be embedded within
the setting of a randomized experiment with imperfect compliance (Sect. 4.2.1).
The discussion then goes on to present the Wald estimator and show its relation to
LATE (Sect. 4.2.2); then, Sect. 4.2.3 is dedicated to the sample estimation of
LATE, and Sect. 4.2.4 to the definition and estimation of average response for
compliers; Sect. 4.2.5 addresses the possibility of characterizing in the LATE
model the compliers’ subpopulation. Finally, Sect. 4.2.6 extends LATE in the
case of multiple instruments and multiple treatments. Section 4.4.1 presents two
LATE applications, one on real data and the other on simulated data: the former
makes use of the dataset CHILDREN.DTA containing a subset of data used in
Angrist and Evans (1998) to investigate the effect of childbearing on female labor
market participation; the latter exercise simulates a specific data generating process
(DGP) for LATE in order to assess the reliability of the Stata code developed in the
application on previous real data. Building such a DGP also provides a useful
laboratory experiment to help us better understand the findings presented in the
theoretical part of this chapter.

The Regression-discontinuity-design (RDD) is another powerful quasi-
experimental method to consistently estimate causal effects in program evaluation.
RDD can be applied when the selection-into-program is highly determined by the
level assumed by a specific variable (called the forcing variable) which is used to
define a threshold separating—either sharply or fuzzily—treated and untreated
units. What characterizes RDD is the fact that the treatment probability varies in
a discontinuous way at the threshold, thus producing conditions for correctly
identifying the effect of a given treatment. Basically, the idea is that, in a neigh-
borhood of the threshold, conditions for a natural experiment (i.e., random assign-
ment) are restored. Thus, as long as the threshold is well identified, and treatment
depends on the forcing variable, one can retrieve the effect of the policy simply by
comparing the mean outcome of individuals laying on the left and right of the
threshold (Van Der Klaauw 2008).
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As suggested by Cook (2008) in his survey paper, RDD was firstly conceptually
developed and applied by Thistlethwaite and Campbell (1960) in a paper studying
the effect of receiving scholarships on individual career. With no use of sophisti-
cated statistics, these authors proved that a correct identification of the actual causal
effect of receiving a scholarship on one’s career might be possible by exploiting
information about the selection criterion used by the institutions awarding scholar-
ships. As scholarships were awarded if a specific test score exceeded a certain
threshold, they suggested comparing the outcome of people on the right with that of
those on the left of such a threshold, assuming that—around a reasonable interval
around the threshold—the two groups might have been considered pretty similar.
Interestingly, it is only from about 1995 that the RDD approach was reconsidered as
a valuable estimation strategy for causal effects, while before that time its use was
relatively modest.

RDD has a remarkable potential to be applied in those social and economic
contexts where the rules underlying the program application can sometimes provide
certain types of discontinuities in the assignment to treatment. One example is the
Van Der Klaauw (2002) estimation of the impact of financial aid offers on college
enrolment, where the author relies on the discontinuity in students’ grade point
average and SAT score. Another example comes from the Angrist and Lavy (1999)
study, where the authors try to assess the impact of class size on students’ test scores
exploiting the rule which states that a classroom is added when the average class
size rises beyond a given cutoff.

Two types of RDD have been proposed in the literature: sharp RDD, used
when the relation between treatment and forcing variable is deterministic; and
fuzzy RDD, used when this relation is stochastic, thus subject to some uncer-
tainty. Interestingly, as we will see, the average treatment effect (ATE) estima-
tion in the case of a fuzzy RDD is simply a Wald estimator and thus equivalent
to LATE.

The part of this chapter dedicated to RDD is organized as follows: Sect. 4.3
presents the RDD econometric theoretical background; in particular, Sect. 4.3.1
discusses sharp RDD and Sect. 4.3.2 fuzzy RDD; Sect. 4.3.3 and subsections
discuss the choice of the bandwidth and of the polynomial order when nonpara-
metric RDD is applied, while Sect. 4.3.4 provides some insights into the case in
which additional covariates are considered; Sect. 4.3.5 examines a number of tests
for assessing the validity of an RDD experiment, while Sect. 4.3.6 suggests a
protocol for the empirical implementation of such approach. As applied example,
Sect. 4.4.2 presents a simulation model both for sharp RDD and fuzzy RDD: the use
of a simulation approach clearly illustrates the role played by each assumption lying
behind the applicability of RDD and provides a virtual laboratory to assess the
performance of such estimation approach in different settings.
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4.2 Local Average Treatment Effect

The following subsections present and discuss at length the econometrics of LATE.
They start from a discussion of a setting characterized by “randomization under
imperfect compliance,” and conclude with an examination of the form and proper-
ties of LATE with multiple instruments and multiple treatments'.

4.2.1 Randomization Under Imperfect Compliance

A straightforward way in order to understand what LATE actually identifies can be
seen by referring to a randomized experiment (or trial) where individuals do not
necessarily comply with assignment to treatment. For example: suppose one has an
experiment in which individuals are randomly assigned either to a treatment (a given
medicine, for instance) or to a placebo; moreover, assume the outcome of this random
draw is recorded in a variable z, which takes value one for those treated and zero for
those taking the placebo; assume, nonetheless, that individuals can arbitrarily decide
whether or not to comply with the value assumed by z; in this case then, we can have a
situation in which a person with z equal to one—that is, one drawn to be part of the
treated set—may refuse to be treated, thus becoming an untreated individual; on the
contrary, a person with z equal to zero—that is, one drawn to be part of the untreated
set—may refuse to stay untreated and decide to take the drug, thus becoming even-
tually a treated subject. Finally, suppose that the actual final treated/untreated status of
individuals are recorded into the treatment variable D, composed of ones and zeros: as
long as D # z such an experiment suffers from imperfect compliance on the part of
individuals, and the classical Difference-in-means (DIM) estimator, contrasting the
average outcome Y on treated with that on untreated, is likely to be biased. Why? If we
assume that the “choice to comply” is not random itself, but rather driven by individual
motivations and strategies that are not all observable to the analyst, we then find
ourselves in a hidden bias setting (selection on unobservables), the consequences and
solutions of which have been extensively discussed in Chaps. 1 and 3.

Under imperfect compliance, a single individual i can be classified in specific
subsets of units according to the realization of z and the perfect/imperfect compli-
ance to the treatment. By defining D as the unit i’s treatment status when z =1, and
Dy as the unit i’s treatment status when z = 0 (with both D and D, taking value one
or zero), we can build the following taxonomy of individual potential statuses in
such a setting, thus identifying four exclusive groups:

e Never-takers: individuals who, either if z=1 or z=0, decide not to get treated.
e Defiers: individuals who get treated when z =0 and are untreated when z=1.
e Compliers: individuals who get treated when z = 1 and are untreated when z =0.
e Always-takers: individuals who, either if z=0 or z =1, decide to get treated.

""The econometrics of LATE provided in these subsections draws mainly on: Imbens and Angrist
(1994); Angrist and Imbens (1995); Angrist and Pischke (2008, Chap. 4); Wooldridge (2010, Chap. 21).
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It is worth stressing that, by observation, it is not possible to know whether a
given individual in the sample is a never-taker, defier, complier, or always-taker.
Since we only observe the realization of the vector {Y;, D;, z;} for each unit i, we
cannot observe the realization of Dy; and D;; which remain missing values (more
precisely, only one of these two variables is observed for the same individual). For
example, for an individual with z=1 and D =1, we cannot know what realization
of D he would have chosen if he had received z = 0. In this sense, if the choice of
this individual under z =0 was D = 1, then he would be an always-taker; but if his
choice under z=0 was D =0, then he would be a complier. This argument is
similar to the missing observation problem presented at the outset of Chap. 1.

4.2.2 Wald Estimator and LATE

In light of the previous example, it seems interesting to derive the usual causal
parameters within such a framework. It is clear that, as long as z is taken as random
and thus strictly exogenous, it can be used as an instrument for D, D being endogenous
because of the presence of a hidden bias. An IV approach would therefore seem
appropriate. In such a context, characterized by a binary instrument, however, we can
go a bit further by giving to the IV estimation a more precise causal interpretation.
Consider the following definitions and assumptions: let ¥ be an outcome of interest,
D abinary treatment indicator, and z a binary instrumental variable. Y may be earnings,
D the event of having or not attended a high school, and z the event of having received
a scholarship by lottery. The following assumption justifies z as an instrument:

Assumption 4.1 Suppose that z was assigned randomly, but that D depends on z,
that is, D and z are correlated to some extent; one can then think about D as a
function of z, that is D = D(z) of this kind:

D(1) = D; = treatment status whenz = 1
D(0) = Dy = treatment status when z = 0

where both D and D can take values O or 1, given that for each unit we can only
observe one of these two variables and never both. This leads to the taxonomy of
potential statuses set out in Table 4.1.

For each individual, it is therefore possible to observe only his final status. Thus,
D is what is ultimately observed exactly in the same way as Y is the observable
counterpart in the potential outcome model encountered on numerous occasions in
our discussions above. Given its nature, we can make two assumptions about z:

Assumption 4.2 z is randomly assigned, that is, z is exogenous and uncorrelated
with potential outcome and potential treatments indicators:

Table 4.1 Classification of 7=0
unit { \'Jvhen z is random a.nd Doi=0 Doi— 1
compliance to treatment is
imperfect zi=1 D=0 Never-taker Defier
D= Complier Always-taker



http://dx.doi.org/10.1007/978-3-662-46405-2_1

234 4 Local Average Treatment Effect and Regression-Discontinuity-Design

{(Yo1,Y00,Y10,Y11),D1,D0} L2

where (Yo1, Yoo, Y10, Y11) are the four potential outcomes corresponding to com-
bining the values assumed by D, and D,

Assumption 4.3 z is correlated with D:
plD(z=1) = 1] # p[D(z=0) = 1]
that is, z has some predictive power on D.

The objective of this section is to provide an estimation of the average treatment
effect, by characterizing its causal interpretation under Assumptions 4.1 and 4.2 and
4.3. Before going ahead, however, it is worthwhile presenting a peculiar IV estima-
tor known in the literature as the Wald estimator (Wald 1940), taking on this form:

_E(Y|z=1) —E(Y|z=0) A

b= ED[:=1) —ED[:=0) B (41)

This estimator has an immediate causal interpretation, as the numerator A is the
difference of the mean of Y in the group of individuals with z = 1 and the group with
z =0, thus measuring the causal effect of z on Y. Part of this effect is due to the
effect of z on D, that is measured by the numerator B. Since both A and B can be
obtained by an OLS regression of ¥ on z and D on z (the two reduced forms),
respectively, one can also write that:

b Cov(Y,z) Cov(D,z) Cov(Y,z)
"~ Var(z) ' Var(z)  Cov(D,z)

(4.2)

Thus, it is clear that, in order to extract a correct measure of the effect of D on Y, we
need to divide A by B, as is represented graphically in Fig. 4.1, where the dotted line
between z an Y indicates that the relation between these two variables is only indirect,
that is, passing through the direct relation between z and D; as such, this offers a
graphical representation of the exclusion restriction of this specific IV estimator.

The effect of z on Y is the product of the effect of z on D (i.e., B) and of D on
Y (i.e., b), thatis: A =B - b. Hence, the Wald estimator measures the causal effect of
D on Y. As an estimator of b, we can rely on its sample equivalent, i.e.:

Fig. 4.1 Path-diagram
representation of the causal
link between z, D, and Y z
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ZY,‘Z,‘ ZY1<1 —Z,‘)
Zzi - Z(l_zi)

iD,‘Z,‘ iDl(l —Z,') -
ZZ,‘ - Z(] —Z,')

l/j\:

For the law of large numbers (LLN), being (4.3) function of sums, we have that:
b Lo
ie., b is a consistent estimation of b. It is possible to show under which conditions b

is a consistent estimator of ATE, and to this aim we distinguish two cases:

Case 1. The treatment effect is constant over observations.
Case 2. The treatment effect is heterogeneous over observations.

Case 1 The treatment effect is constant over observations.

In this case, we assume that Y,; — Yy, = a = constant for each unit i, and b
estimates consistently ATE =a. In order to prove this proposition, we start by
developing further the numerator A in (4.1). First, however, it is worth writing both
the potential outcome and the potential treatment equations, i.e.:

{YzD-Y1+(1—D)'Y0 (4.4)

DZZ-D1+(1—Z)'D0

Substituting the second into the first equation and using some simple algebra
gives us:

Y=Yo+Do- (Y1 —Yo)+z- (D1 —Do) (Y1 —Yo) (4.5)
Consider now the expectation of Y conditional on z=1 and z =0, thus:

E(Y |z=1) =E(Yo) +E[Do - (Y1 —Yo)] + E[(D1 — Do) - (Y1 — Yo)]

(4.6)
E(Y | = 0) = E(Yo) +E[Do - (Y1 — ¥o)]
Since by definition:

A=E({Y |z=1)—E(Y|z=0) =E[(D| —Do)(Y —Yo)] = a-E[(D| — Do)]
B=ED|z=1)—ED |z=0)=E[D; — Dy)]
(4.7)

this implies that:
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b‘E‘ﬂ_“ (4.8)

proving that b identifies ATE and thus b , the sample analog, consistently
estimates ATE.

Case 2 The treatment effect is heterogeneous over observations

In this case we have that Y; — Yo; # a and each observation i owns its own
treatment effect. In this case, it can be proved that the Wald estimator does not
consistently estimate the ATE, but another parameter called Local average treat-
ment effect (LATE), which is equal to ATE calculated for a specific subpopulation
of individuals, i.e., the compliers. In general, ATE cannot be identified.

In order to show what LATE is equal to, we start again from the numerator A in
(4.1). We saw that:

A=E(Y|z=1)—E(Y|z=0)=E[D) —Do)(¥, - Yo)] (4.9)

By defining 2 = (D — D) (Y| — Yy), we have that:
A =E[}] (4.10)

From the law of iterated expectation (LIE) we know that, if x is a generic discrete
variable assuming values x = (xy, x5, ... , X)) With probabilities p = (py, pa, - ..,
pm), then E(h) =p E(h | x1)+p-E(h | x2)+...+pym E(h | xMm). By defining 4 as in
(4.10), and x = (D — Do) =[1, 0, —1] with probabilities p = (p1, po, p_1), then:

A =E(h)
= piE[(D1 — Do) (Y1 = Yo) | Dy — Do = 1]
+ poE[(D1 — Do) (Y1 = Yo) | D1 — Do = 0]
+ p_iE[(D1 — Do)(Y1 = Yo) | D1 — Do = —1] (4.11)

that is:
A:E[(Yl —Y()) |D1 —D() = 1]p(D1 _DO = l)
—E[(Yl —Yo) |D1 —DOZ—I]p(Dl—D():—l) (412)

It is easy to see in (4.12) that as soon as the two addends are equal, then A =0 and
b =0 although there could be, for instance, a positive treatment effect for all the
individuals considered. This is sufficient to show that, in the case of heterogeneous
treatment, the ATE is not identified. In order to identify the causal effect of D on Y,
we have to rely on the so-called monotonicity assumption, which states that
p(Dy —Do=—1)=0; it occurs when:

Dy > Dy (4.13)
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Under monotonicity, we get that:

A—E(¥|z=1)—E(Y|z=0)
=E[(Y1 = Yo) | D1 — Do = 1]p(D1 =Dy = 1) (4.14)

since the second addend becomes equal to zero. As for the denominator B, we had
that:

B=EMD|z=1)—E(D |z=0)=ED; —Dy) (4.15)

Given monotonicity, (D; — D) is a binary variable taking value zero or one; we can
thus conclude that:

E(Dy — Do) = p(D1 =Dy = 1) (4.16)

thus implying that:

b:é:E(Y1—Y0 | Dy —Do=1)- p(Di —Dy=1)
B p(Dl — Do = ])

=EY,—-Yy|D;—Dp=1) (4.17)

To conclude, in Case 2 the Wald estimator of b is equal to the LATE, defined as the

ATE in the subgroup of compliers, those individuals having D; =1 and Dy =0 or
equivalently D > Dy

b=LATE =E(Y, — Yo | D, —Do = 1) (4.18)

It is important to observe that monotonicity, by assuming that D > D, rules out the
possible presence of defiers within the population; this assumption is however not
empirically testable.

4.2.3 LATE Estimation

This section illustrates the steps required in order to estimate LATE empirically and to
obtain usual standard errors for testing hypotheses. For the numerator A, we saw that:

A:E(Y|Z:1)—E(Y|Z=O)=E[(Y1—Y0) IDI—DOZI]p(Dl—DOZI)



238 4 Local Average Treatment Effect and Regression-Discontinuity-Design

that implies:
E(Y|z=1)—E(Y |z=0)

LATE =
p(Dl —D() = 1)

(4.19)

To estimate LATE, we need to have the denominator of the previous ratio in terms
of observables, that is:

p(Dl —DO = 1)

E(D, — Do) = E(D,) — E(Do)
E(D|z=1)—E(D|z=0)
pD=1]z=1)— p(D=1]z=0) (4.20)

From this we get:

(4.21)

which is expressed in terms of all observable components. Given the previous

population formula, a simple (consistent) estimation in the sample is:

CATE = 21— Yo (4.22)

Dy — Dy

which is equivalent to b in (4.3). Observe that the numerator in (4.22) is the

difference between the average of Y in the subsample with z=1 and that in

the subsample with z =0, whereas the denominator is the difference between the

frequency of individuals with D=1 in the subsample having z=1 and the fre-
quency of individuals with D =0 in the subsample having z =0.

It is immediate to see from (4.2) that a consistent estimation of LATE can be
obtained from an IV estimation of « in the following regression:

Y =u+aD + error (4.23)

using z as instrument for D. In this case, we can directly get the standard error
for LATE.

Observe, finally, that there is a special case in which LATE is equal to the
average treatment effect on treated (ATET): this occurs when E(D; | z;=0) =
pD;=11z;=0)=0, i.e., when individuals that were not drawn for treatment are
prevented from choosing to become treated. In such a case, Dy; can only take one
value equal to zero, as shown by Table 4.2.

The proof is straightforward (Bloom 1984). Using POM, we have that
EXlz=1)=EXylz=1D+EMDX;—Yp) | z=1), but E | z=0)=E(Yy | z=0),
since E(D(Y; —Yp) | z=0)=0 given that D =0 when z=0. As a result, we have
that EY 1z=1)—EXY 1 z=0)=E(DY| — Yp) | z=1) since, by independence of z,
E(Yy | z=1)=EY, | z=0). However, E(D(Y; —Yy) | z=1)=EY;—-Yy | z=1,
D=1)pD=11z=D)+EQO;-Y)!lz=1,D=0)p(D=01z=1)=E{; - Y, |
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Table 4.2 Classification of unit i when z is random, compliance to treatment is imperfect, but
individuals that were not drawn for treatment are prevented from being treated

z;=0
Dy =0
zi=1 D=0 Never-taker
D=1 Complier

z=1,D=1)pD=11z=1)=EY,—Yo I D=1) p(D=11z=1), where the last
equality derives from independence of z. Thus, we have that:

EY|z=1)—E{Y |z=0=EY,-Yy|D=1)pD=1|z=1)
Since, by assumption, p(D = 1l z=0) =0, we obtain that:
EY|z=1)—E(Y |z=0)

pD=1]z=1)—pD=1]z=0)

EY, Yo | D=1)pD=1|z=1) -
- 0p(D:1|z:1) =Ei ~Yo|D=1) (4.24)

LATE =

that is what we aimed at proving.

4.2.4 Estimating Average Response for Compliers

So far, we have considered identification and estimation of LATE without condi-
tioning on the covariates x. The previous framework, however, can be generalized
by assuming that the independence of z is conditional on x:

Assumption 4.4 Conditional independence of z. We assume that:
{(Yo1, Y00, Y10, Y11), D1, Do} Lz | x
Of course, it is also possible to define LATE conditional on x, that is:
LATE(x) = E(Y| — Yo | x,D; > Dy) (4.25)
An interesting property of LATE(X) is that it is possible to show that:

LATE(x) = E(Y | x,D = 1,D; > D) —E(Y | x,D =0,D; > D,)  (4.26)
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The relationship in (4.26) comes from the POM using the fact that for compliers
z=D and exploiting conditional independence of z, so that:

E(Y |x,D = 0,D; > Do) = E(Yo | x.z = 0,D; > Do) = E(Y, | x,D; > Dy)
E(Y | x,D = 1,D1 > D()) = E(Y1 ‘ X,z = 1,D1 > D()) = E(Yl |X,D1 > D())

Abadie (2003) calls E(Y | x,D,D; > Dy) as the local average response function
(LARF). By assuming to know the true form of previous expectations, one could
estimate LATE(x) by contrasting the result of an OLS regression of Y on x in the
subgroup of compliers with D =0, with that of compliers with D = 1. Although
interesting, it is not possible as we cannot know from the observations theirselves
which unit is a complier and which is not.

Abadie (2003) does however provide a fundamental theorem that allows us to
estimate previous expectations without knowing as to which units are compliers.

Ababie theorem Suppose that all previous LATE identification assumptions
(including monotonicity) hold conditional on x; let g(Y, D, X) be any measurable
function of (Y, D, x) with finite expectation; define:

(1-2) - pz=0]x)

o= 0D TP =11%) (427)

b DT 429

k=kop(z=0|x)+kipz=1|x)=1- pg(i:)?x) - pg - 1D|)ZX) (4.29)
Then we can prove that:

Els(¥.0.)| Dy > Do) =~ msElk-g(V.Dx)]  (4.30)

E[g(Yo,x) | D1 > Do] = mla[ko oY, %)] (431)

Elg(Y1,x) | D1 > Do) = mla[kl g, %) (4.32)

where we saw that p(D; > Dy) =E(D | z=1) — E(D | z = 0); thus all previous
formulas are functions of observable quantities. Furthermore, the last three relations
also hold conditional on x. Observe also that p(D; > Do) = E(k).

This theorem is extremely useful, as it allows to compare the characteristics of
treated and untreated individuals within the compliers’ subset, without knowing
who is and who is not a complier. In the case of LARF estimation, if we have a
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sample of i.i.d. observations {Y;, D, z;, X;,} and define the LARF as /A(D,x;0y) =
E(Y | x,D,D; > Dy) where:

0 = argmin(,e@E{(Y — h(D,x;0))* | D; > Do}
then, by applying the Abadie theorem, we can write that:
0 = argminee@E{k(Y — h(D,x; 0))2}

which is now expressed in terms of all observable quantities. Notice that, in
defining 0 as the solution, we eliminate p(D; > D) as this term does not affect
the population objective function of the previous minimization problem. Moreover,
since /() has the form of a minimum square errors estimator, one can also think
about LAREF as the best least square approximation under functional form misspeci-
fication. If we assume a linear parametric form for /(-) we obtain:

(po, @0, 80) = argmin<ﬂ7a,5)E{k(Y —u—aD — x8)2} (4.33)

thus we can provide the following two-step procedure for estimating LARF:

1. Calculate the weights & by first estimating parametrically (or nonparametrically)
pz=11x);

2. Estimate (ug, ag, 0o9) by a Weighted least square (WLS) with weights equal to
k and estimate the LARF.

Two problems arise with such a procedure: (1) the weights in step 1 are
generated variables to be used in the second step; thus, asymptotic standard errors
should be corrected for this; (2) the estimated weights can be negative, thus the
usual WLS cannot be feasible.

Regarding point (1), Abadie (2003) has provided analytical formulas for stan-
dard errors and also showed that bootstrap can be a valuable alternative; moreover,
Abadie et al. (2002) have provided a solution to the negative estimated weights
issue, suggesting to use the following weights:

D[l —E(z|Y,D =1
B(k|v.D,x) =1 - PL=ECIY, Xl

1—p(z=1]x)
_ (1-D)E(z|Y.D =0,x)
Go1Tx) (4.34)

instead of the weights expressed as in (4.29). The most important advantage of
using weights as in (4.34) is that:
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E(k | Y,D,x) = p(D; — Dy | Y.D,x) (4.35)

which is a probability and thus constrained to vary between zero and one. Using
such a weighting scheme, therefore, leads to the following modified procedure for
estimating LARF:

1. Calculate the weightsE(k | ¥, D, x) by first estimating parametrically (or nonpar-
ametrically) E(z | Y,D = 1,x), E(z | Y,D = 0,x), and p(z=1 | x) in (4.34). In
the parametric case, this involves:

» Estimating a probit of z on {Y, D, x} for D=1 and D =0, then saving the
fitted values
« Estimating a probit of z only on x, then saving the fitted values

2. Calculate E(k | Y,D,x) by plugging the previously fitted values into formula
(4.34), by replacing with one values that are larger than one and with zero values
that are lower than zero.

3. Estimate (ug, ap, 8o) by a WLS with weights equal to the estimated E(k | Y, D, x)
and get standard errors using the analytical formulas provided by Abadie (2003,
section 4.3) or by bootstrap to take into account the generated estimation from
the second step.

Finally, it is worth stressing that if in the minimization (4.33) we adopt,
in constructing &, a linear model for the probability of z=1 given x of the type
p(z=1| x) =xy, then the parameters estimated by (4.33) coincide with the usual
2SLS estimation; this is no longer true, however, if p(z=1 | x) is estimated
parametrically but nonlinearly or directly nonparametrically.

4.2.5 Characterizing Compliers

Previous analysis allows us for characterizing compliers, in the sense of making it
possible to both count the overall number of compliers and their characteristics by
treatment status. Indeed, under previous assumptions (including monotonicity), it is
possible to estimate consistently the following quantities:

N - p(Dy > Dy) = number of compliers
N - p(Dy > Dy | D = 1) = number of treated compliers
N - p(Dy > Dy | D = 0) = number of untreated compliers

Indeed, we have already proven in (4.20) that:
p(D1>Dg) =p(D1—=Dy=1)=p(D=1|z=1)-p(D=1|z=0)

which is a function of observable terms. We can also show how to express the
quantity p(D; > Dy | D =1) in terms of observables, namely:
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Dy >Dy)-p(D=1|Di>D
p(Dl>Do\D:1):1’( 1> Do) - p( | Dy > Dy)

p(D=1)
_[pD=1]z=1)—-p(D=1[z=0)]- p(z=1]| D1 > Dy)
p(D=1)
_[pD=1]z=1)-p(D=1[z=0)] - plz=1)
p(D=1)

(4.36)

where the first equality uses the Bayes theorem, the second equality the fact that for
compliers D =z, and the third equality exploits the independence of z.

A further attractive characterization of the compliers subgroup is that of com-
paring the distribution of the covariates for this set of individuals by treatment
status. This is relevant, as differences in attributes for compliers have a causal
interpretation. To this purpose, we can still use the Ababie theorem, using the k-
weighting scheme for the variables of interest; for instance, suppose that we wish to
compare the average value of a covariate x as taken in the treated and in the control
group of compliers; by using the weights as reported in (4.27) and (4.28), and
appropriately using formulas (4.31) and (4.32), we obtain:

E(x| D = 1:D; > Do) :%
p(D=1]z :El()kl_-;czD = @)

B0 1D =001 > 20) =505 £
~ D=1 |Z:El()ki';zl): TEE

whose sample equivalent is immediate. In such a way, it is possible to compare any
attribute we are interested in within the compliers subgroup by treatment status.
Computational implementation is also straightforward (see Sect. 4.4.1).

4.2.6 LATE with Multiple Instruments and Multiple
Treatment

Previous analysis regarding LATE can be quite easily generalized to the case of:
(1) multiple instruments and (2) multiple treatment.

In the case of multiple instruments, Imbens and Angrist (1994) and Angrist and
Imbens (1995) have shown that LATE takes the form of a weighted average of
single LATEs estimated using separately z; and z,, these being two mutually
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exclusive instrumental dummies. In this framework, we can define the two LATEs
as follows:

Q

ovirZ1

(Y;z21)
LATE =——>< 4.39
(1) Cov(D;z;) (4.39)

Cov(Y;z;)
LATE =—= 4.40
(22) Cov(D;z,) (4.40)

If we consider the first-stage fitted value as defined by:

5 :ZO +},\121—|—1222 (441)

we can immediately write down—as shown by Angrist and Pischke (2008, pp. 173—
175)—that 2SLS estimator of LATE as:

COV(Y,B) COV(Y;;0+;121 —|—;1\222)
LATE = £ = —
COV(D;D) Cov(D;D)

B 21Cov(Y;z1) + Cov(Y; )
Cov(D;B)

7;1\1C0V(Y;21) Cov(D;z1)  2,Cov(Y;z) Cov(D;z)
Cov(D;lA)) Cov(D;z1) Cov(D;lA)) Cov(D;z)

~ Cov(D;z1) | Cov(Y;z;) [A Cov(D;z;)
= ,11 . + _—

Cov(D;ﬁ) Cov(D;z)
. Cov(Y;z)
Cov(D; z3)

= ¢ -LATE(z)) + (1 — ¢) - LATE(z,) (4.42)

where:

B ;1\1COV(D;21)
21Cov(D; z1) + 2,Cov(D; 2)

(4.43)

is a weight ranging from zero to one depending on the first-stage importance of each
single instrument in explaining the treatment D. Equation (4.42), hence, shows that
the overall LATE is a weighting mean of the LATE obtained by exploiting one
instrument at time.
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In the case of multiple treatment, Angrist and Imbens (1995) have provided a
fundamental theorem linking this case with the ordinary LATE estimator. To
illustrate this, let the potential outcome take such a form:

Ya=f(d) (4.44)

withd € {0, 1,2,... ,3} indicating a multinomial treatment variable taking ordinal

values between 0 and d: one could think about d as the number of years of
education, the number of children some women had, and so forth.

As in the binary case, assume knowing an instrument z is randomly assigned,
with d depending on z; as such, d is a function of z, such that:

d; = treatment status when z = 1
dy = treatment status when z = 0

where d; and d, can take values within {07 1,2,... ,3}, and where for each unit we
can only observe one of these two variables, never both. Given the corresponding
independence assumption:

(Yo, Yi,..., YE),dl,doJ_Z
and the corresponding first-stage condition:
E[d,] # E[do]

which simply suggests that z has some predictive power on d, the monotonicity
assumption in such a multinomial case takes on this (corresponding) form:

dy > dp.

Given previous assumptions, it can be proved in such a setting that LATE takes on
the following form:

E(Y|z=1)—E(¥ |z=0
LATE =
E(d|z=1)—E(d|z=0)
a
= "0 B(Yy—Yq |do<k<d) (4.45)
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where we have that:

pldy < k < d)

a
> pldo <k < dy)
k=1

O = (4.46)

represents a weighting scheme with weights by definition adding to one. Equation
(4.45) suggests that with multinomial treatment, LATE is an average of single
LATEs singularly defined as the unit average treatment effect calculated in the
subpopulation of compliers at k. In other words, those individuals comply with the
instrument, so that when z =0 they get a treatment higher than d,, and when z =1
they get a treatment at most equal to d;.

Within the entire population, the share of compliers at £ can be calculated by
observing that:

pldo <k <d) = p(k<d)— p(k <do)
= [l = p(k >d)] = [l = p(k > do)]
= p(k >do) — p(k > d1) = p(do < k) — p(di <k) (4.47)

Since by independence we have that:
pldo<k)—pldi<k)y=pld<k|z=0)—pd<k]|z=1) (4.48)

we can calculate the share of compliers using observable data as showed by (4.48).
Finally, it is quite easy to show that:

E(d|z=1)—E(d|z=0)=> [p(d<k|z=0)— pd<k|z=1)]
k=1d

=3 pldo < k< d) (4.49)
k=1d

thus the weights @, can be consistently estimated, and both the numerator and
denominator can be computed using observable variables. The first equality of
(4.49) comes from the property of the mean of a finite count variable. Indeed, for a
finite count variable d € {0,1,2,...,d}, it can be proven that:

)
E@=Zwmw=zb—2m4 (4.50)
d=0

d=0d k=0d

where:
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zk: p(d) = p(d < k) = F(k) (4.51)

d=0

is the cumulative distribution function of the stochastic variable d. To prove (4.50),
consider the case of d = 2; in this case:

2

k
3 [1 = p(d)] =[1— p(0)] +[1 — p(0) — p(1)]
d=0

k=0
+[1=p(0) = p(1) - p(2)]
=3-3p(0) = 2p(1) - p(2) (4.52)

At the same time, the mean of d is equal to:

= > d-p(d) =0p(0) + 1p(1) +2p(2) = p(1) +2p(2) (4.53)
d=0d

However, since by definition p(0) = 1 — p(1) — p(2), then (4.52) becomes:

2 k
3 [1 -3 p(dﬂ =3-3p(0) —2p(1) — p(2)

=3-3+3p(1) = 3p(2) —2p(1) — p(2)
=p(1)+2p(2) (4.54)
which is equal to (4.53), thus proving relation (4.50). Observe that, since the first

value taken by d is zero, we can start previous summations directly from d=1
leading to the same result with:

dy=> d-pd)=) [l -3 p(d)] (4.55)

d=1d k=1d

where:
k
Z p(d) = p(d < k) (4.56)
=1

Given (4.55) and (4.56), we finally get—by substitution—(4.49).
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4.3 Regression-Discontinuity-Design

Regression-discontinuity-design (RDD) can be used when the selection-into-pro-
gram (D) is highly determined by the level assumed by a specific variable
s (sometimes called “forcing” variable), defining a threshold s separating treated
and untreated units (Imbens and Lemieux 2008; Lee and Lemieux 2009). In the
literature, two types of RDD have been proposed and studied:

e Sharp RDD: when the relation between D and s is deterministic, thus creating a
strict “jump” in the probability of receiving the treatment at the threshold

e Fuzzy RDD: when this relation is stochastic, thus producing a milder jump at the
threshold

The idea behind RDD is that, in a neighborhood of the threshold, conditions for a
natural experiment (i.e., a random assignment to treatment) are restored. Therefore,
as long as: (1) the threshold is well identified and (2) the treatment is dependent on
s, the analyst can obtain the policy effect simply by comparing the mean outcome of
individuals laying on the left and the mean outcome of individuals laying on the
right of the threshold. In what follows, we separately present and examine the sharp
and fuzzy RDD setting (Fig. 4.2).

1
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y

- |7
il MY Discontinuity in the probability to get treated < 1
1
2 %
= My

/ Sharp RDD

/
S — — — Fuzzy RDD
-~
o -
0 ——
3 Forcing variable s

Fig. 4.2 Discontinuity in the probability to be treated in the sharp and fuzzy RDD
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4.3.1 Sharp RDD

In sharp RDD, the selection-into-treatment follows a deterministic rule defined as:
D;=1[s >75] (4.57)

The idea behind such approach is that, in the threshold point s =75, random
assignment is in place so that independence assumption (IA) holds exactly in that
point (i.e., locally).

A fundamental assumption in order for RDD to be able to identify the actual
causal effect of interest is the so-called continuity of the mean potential outcomes at
the threshold. Although not strictly necessary, this assumption is generally strength-
ened by requiring the continuity to hold over all the support of s:

Assumption 4.5 The two potential outcomes E(Y, | s) and E(Y, | s) are continuous
functions over the support of s.

Under this assumption and using POM, i.e., Y=Yy + D (Y| — Y;), we have that:

E(Yo|s=5) = li%pE(Yo |S=y5) :li%pE(Yo |D=0,S=y5)

=lmE(Y [ $ =) (4.58)
B(Y1|s=5) =lmE(Y [ =) (4.59)

Consequently, ATE is equal to the difference between (4.59) and (4.58), that is:

ATESRD = E(Y1 | s = E) — E(Y() | s = E)
=limE(Y | §=3) ~ imE(Y | S = 5) (4.60)
sls sTs

or equivalently:
ATEgrp = mg(s) — m.(3) (4.61)

where, for simplicity, mg(s) = lifp E(Y|S=s) and m(5) = li{p E(Y|S =y5).
NUN S|s

Equation (4.61) implies that a simple Difference-in-means (DIM) of units laying
on the right and on the left of a neighborhood of the threshold gives a consistent
estimation of ATE.

In order to understand the relevance of Assumption 4.5 in the identification of
ATE, assume that E(Y | 5) is continuous while E(Y, | s) is discontinuous in s at the
threshold. Figure 4.3 presents such a situation; as clearly evident, E(Y | s) sets out a
discontinuity at the threshold, implying that its right side limit C is different from its
left side limit B. This means that the actual value of ATE is uncertain, equal to
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E(T,]5)

] - E(l,|=
/ e (Fol )

— Observable

— — — [Unobservable

5 Forcing variable s

Fig. 4.3 Ambiguity in identifying ATE when mean potential outcomes are discontinuous in s at
the threshold

(B-A) when seen from the left and equal to (C-A) when seen from the right. This
uncertainty is ruled out if the function E(Y; | s) crosses the vertical threshold line
only in one point: this is equivalent to assuming that E(Y | s) is continuous.

By assuming that Assumption 4.5 holds, one can estimate (4.60) nonparame-
trically, once a given interval around the threshold of width / has been selected
beforehand; for the moment, let us assume a given value for % so that the estimation
is restricted to observations in the interval (5 — A;5 + /). As a suitable nonpara-
metric estimation technique, one could use a kernel weighted average, thus esti-
mating (4.60) as:

Se( ) S

— i€{R ie{L
ATE srp = EAR} P —— ALy i (4.62)
ic{R} h ie{L} h

where K(*) is a specific kernel function and {R} and {L} the set of units laying on
the right and on the left of the cutoff, respectively. By choosing a uniform
(or rectangular) kernel, (4.62) becomes:
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Zl(si;§<1)Y Zl(”f@)y

— ic(R ielL _ _
ATE sgp = Sk P et P =Ypn— Yo, (4.63)
1(= !
E ( 7 < 1) E 1( i < 1)
ie{R} ie{L}

where the index function 1(a) is equal to one when expression a is true and zero
otherwise. Equation (4.63) shows that the use of a rectangular kernel simply returns
the difference between the mean of Y on the right and the mean of ¥ on the left of
the threshold, where only observations within (5 — A;5 + &) are used.

As other nonparametric methods, the estimator proposed in (4.62) presents some
problems when used at boundaries. It can be shown that the bias of such estimator at
boundary is O(h), whereas typical kernel regressions have a bias that is O(h?).
Porter (2003) shows that the limiting distribution of the Nadaraya—Watson estima-
tor at the boundary point 5 is:

VNh- (A/ﬁESRD - ATE) ~ N[Z -C-Kq(0) - mIR(E) — m/L(E)]A‘sOW
o3
(4.64)

where K(0) and &y depend on the kernel, and C is a finite number defined as the

following limit: /v/Nh — C, whenh — Oand Nh — oco. Therefore, given (4.64) we
have that asymptotically:

E[\/ﬁ (A/TTESRD - ATE)] ~ 2. h/Nh - K, (0) - [m;(g) - m’L(g)}
thus:
Bias (AT/\E SRD) —ATE+2-h-K;(0)- [m’R(ﬁ) - mlL(i)] (4.65)

which increases linearly with 4.

Since the rate of convergence of the bias to zero, as N approaches infinity, is
quite slow compared to other parametric methods, it seems convenient to search for
some alternatives such as local linear regressions, which have the advantage of a
bias O(hz) also at boundaries (Fan and Gijbels 1996; Lee et al. 2004)2.

2 For kernel regressions, the optimal bandwidth in interior points is O(h?) and is proportional to
N~' (Hirdle and Marron 1985), so that 1/5=0.2 is the speed of convergence of the bias to
zero; at boundaries, however, we saw that such convergence rate becomes O(/) that is propor-
tional to (N"'°)"2, that is, half time the usual rate of convergence in interior points. This
questions seriously the use of kernel regressions at boundaries.
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The local linear regression simply requires us to run the following two regres-
sions, estimated via standard OLS, on the left (L) and on the right (R) side of the
threshold:

Yi=a + 5L(Si —3)+en (4.66)
Y,' =ar + 5R(S,' — 5) + ER,i (467)

using only units belonging to (5 — /;5) in regression (4.66) and only units belonging
to (5;5 + h) in regression (4.67). Note that &, ; and &g ; are two pure random errors
with unconditional mean equal to zero. The conditional expectations are therefore:

E(Y, | S,‘) =0 + 5L(si — E) (468)
E(Yi | S,') = ar + 5R(Si — E) (469)

By combining the previous two equations into a unique local pooled linear regres-
sion, we obtain:

Y[ = + ATE - D,‘ -+ 5L(S,' — E) + (513 — 5L) . D,‘ . (S,' - E) + & (470)

where ATEgrp = (agr — ay) and €;=¢; ;+ D; (eg; — €r.;). This equation can in turn
be estimated by OLS on the full sample and locally around the cutoff point using
different sample windows h, ie., in the subsample identified by the set
Ss.n = {5 — h < s < 5§+ h}. Furthermore, regression (4.70) also provides the cor-
rect standard errors for ATE, provided that the rate of convergence of the bandwidth
to zero, as N goes to infinity, is “sufficiently” high and is assumed to be higher than
the usual rate 1/5 (see footnote 2). Indeed, if a rate of 1/5 is assumed, a bias would
arise also asymptotically. For the bias to disappear asymptotically, we need that the
bias goes to zero faster than the variance and, for this to happen, we have to assume
a rate of convergence § such that 1/5 <5 <2/5, where 2/5 is the fastest rate of
convergence for nonparametric estimators (Stone 1982). This assumption is known
as “undersmoothing.”

Interestingly, regression (4.70) has a powerful graphical representation
(as illustrated by Fig. 4.4) showing that, for sharp RDD, ATE is equal to the
discontinuity in the outcome at the threshold (assuming in this case a linear form
of the potential outcomes as function of s).

One limitation of estimating ATE by (4.70) lies in the linear assumption: when
potential outcomes are nonlinear functions of s, then bias due to functional
misspecification can arise. For robustness purposes, one can generalize (4.70)
using: (1) a local polynomial regression or (2) a kernel local polynomial regression,
as long as a bandwidth % has been properly specified. Figure 4.5 provides a
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Outcome 1

Discontinuity in the outcome = ATEgp,

Foreing variable s

|

Fig. 4.4 Sharp RDD. ATE = discontinuity in the outcome. Linear form of the potential outcomes
as function of s

Treated Non-treated

Bias due to non-linearity in E(I'| 5)

Outcome T

f.

— True Discontinuity in the outcome

Linear
----- Smoothed

K Forcing variable §

Fig. 4.5 Discontinuity in the outcome for sharp RDD: linear bias of ATE estimation due to
functional misspecification of the potential outcomes

graphical representation of the potential bias due to functional misspecification in
the sharp RDD case.
In the case in which a local polynomial regression is implemented, (4.70)

becomes:
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P P
Y,':(ZL-Q-ATE'D,'-FZBL’[,(S,'—S ZéRp_éL[? (Si—g)p+€
p=1 p=1
ie{§—h<s;<35+h}
(4.71)
where P is the degree of the polynomial function and /4 the bandwidth. One could

also fit a weighted local regression function on either side of the discontinuity point,
by using a kernel local polynomial regression:

. si—3S _ _\P]?
Min { 3" K -[Y,-— (=) — - }
m,éfl{ ( h ) o) orls =) }

I x;<xo
. Si— 3§ B _.pl2
vin {5 k() [ buats ) et ]
R ORI 1 >0
(4.72)

where K() is a prespecified kernel function. Observe that, in this case, all the
observations on the left and on the right of the cutoff are used in the estimation,
although the final number of observations considered depends on the specific kernel
function adopted, as well as on /. Estimation of ATE in the case of (4.72) proceeds
by estimating a regression like (4.71), weighting observations through a specific
kernel function. In general, and coherently with the semi-experimental nature of
RDD, kernel functions give more (less) weight to observations whose value of s is
closer to (farther from) the threshold.

4.3.2 Fuzzy RDD

In the fuzzy RDD, the probability of receiving the treatment does not change from
zero to one at the threshold, as in the deterministic case of sharp RDD. Even if
eligibility for treatment depends on a cutoff rule, not all the eligible individuals may
obtain the treatment because imperfect compliance at the threshold is assumed. In
this sense, the statistical setting of fuzzy RDD presents strong similarities with the
randomization under imperfect compliance presented in Sect. 4.2.1.

Fuzzy RDD allows for a milder jump in the probability of assignment to treat-
ment at the threshold. To see this, we can assume—with no loss of generality—a
linear probability model in the left and right side of the threshold as:

p(Di=1]s5=5) =p, +m(s; —5) (4.73)
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pD; =115 =5) = ug + 7rg(s; —3) (4.74)

As in the sharp case, in order to work more compactly, we can estimate both
previous regressions in a single pooled one by writing:

pDi=1]si=5)=py+ (g —p) - Ti+aL(si =5)+(ag —7) - T; - (si =5)  (4.75)

where T; = 1[s; >3]. Observe that in the fuzzy RDD, “T; can be different from D,”
because of imperfect compliance, while in the sharp RDD we have that T; is equal to
D;. In this sense, T; plays the same role as that played by z; in the LATE setting
presented in Sect. 4.2. Finally, observe that since D is a binary variable, we also
have:

Dl‘ = p(D, =1 | Si — E) + n; (476)
where #; is a genuine error term independent of s:
E(D;|si—5)=pDi=1]|s—=5)+E(n |si=5)=pDi=1|si—5) (477)

It can be proved that the estimation of the causal effect of D on Y in the case of
fuzzy RDD is equivalent to the following LATE:

ATEgp = E(Y1; — Yo; | unit is a complier N's =3) (4.78)

where, in this setting, compliers are those units i following this rule:

1. When T; =1, then D; =1
2. When T;=0, then D; =0

thus compliers are units having T7;=D;. As previously argued, we cannot
identify these units by observation, since for each unit i we observe either (1) or
(2), but never both. We can conclude that the identification and estimation of the
average treatment effect for fuzzy RDD strictly follows that of LATE. Thus, it
envisages a Wald estimator form of the treatment effect based on an IV estimation
of Y on D, with T playing the role of the instrumental variable for D in a
neighborhood of the threshold (Hahn et al. 2001). In this sense, fuzzy RDD leads
to an estimation procedure very close to that of other methods suitable under
selection on unobservables, with the advantage that in this case extensions to a
nonparametric environment are relatively easier to implement (Imbens and
Lemieux 2008).

In order to identify the ATE in the case of fuzzy RDD, we have to rely on a less
restrictive assumption than IA:
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Assumption 4.6 Identification of ATE for fuzzy RDD (IAgy,,y-rpD):
(Yi——Yo)LD | s

that is, the selection-into-treatment is independent of the participation gain, given s. In
fact, under this assumption, considering again Y =Yy + D (Y| — Yy)), we can show that:

E(Y |s) =E(Yo|s) +E(D(Y; —Yo)|s)=E(Yo|s)+ED|s) -EY, —Yo)]|s)
=E(Yo|s) +E(D|s)-ATE(s)
that is:
E(Y |s) =E(Yo|s) +E(D|s) - ATE(s) (4.79)

As in the case of sharp RDD, taking the limit from the left and from the right
produces:

ImE(Y |S=5s) = 11m E(Yo|S=s)+ 11m ED|S=s)- lifp ATE(s) (4.80)

sls

ImE(Y |S=5s) = 11m E(Yo|S=s)+ llm ED|S=5s)- li{pATE(s) (4.81)

s1s
and by taking (4.80) minus (4.81) we obtain:

HImE(Y |S=y) —hmE(Y |S=y5)

s|s

lim (D|S—s)—11mE(D|S—s)

sls

ATEgp =

HmE(Y | S=s) —lmE(Y |S=35)
sls s1s

= 4.82
lilrpp(Dzl|S:s)—li%pp(D:1|S:s) (482)

which formally shows that the ATE in fuzzy RDD is in fact a Wald estimator.
Observe that formula (4.82) generalizes the formula for ATE obtained for sharp
RDD, as in the sharp case:

limpw=1|S=s)=1
sls
limpw=1|S=s)=0

=limpD=1|S=s)—limpD=1|S=s)=1
sls sls s1s

meaning that in sharp RDD the denominator in (4.82) is equal to 1 (i.e., sharp
Jjump). Formula (4.82) states therefore that a comparison of treated and untreated
units around the threshold is a biased estimator, when the forcing variable does not
discriminate sharply between treated, and untreated (i.e., in the absence of perfect
compliance). This means that around the threshold individuals can be different for a
different propensity to be treated: this confounding effect needs to be taken into
account and the denominator in (4.82) properly clears out this effect.
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Formula (4.82) correctly allows to estimate this effect both parametrically and
nonparametrically. This formula is equal to “the ratio between the discontinuity of
the outcome and the discontinuity of the probability to be treated at the threshold.”
A consistent estimator is the sample analog:

A/’-l—?'EFRD ==

EW|S:@:—§W|S:@‘ (4.83)
pD=1[S=s)"—p

D=1]S=s)

provided that both the numerator and the denominator are consistent estimators of
the two discontinuities. A consistent estimation procedure for implementing (4.83)
may therefore be the following:

1. Estimate the numerator: calculate the average of the outcome Y on the sample on
the right and on the left of the cutoff, given a certain sample window, and take
the difference

2. Estimate the denominator: calculate the frequency of treated individuals on the
left and on the right of the cutoff, given a certain sample window, and take the
difference

3. Form the ratio between the numerator and the denominator to obtain:

ATE pp = SR =1L (4.84)
Dr—D.
where the standard error can be computed via bootstrap.

Since formula (4.83) is a special case of the Wald estimator, a simple IV
regression of Y on D using T as instrument for D, around the threshold, allows for
correct inference, including the analytical standard error.

An alternative to the previous approach is to use a more parametric approach
based on a linear specification of E (Y | S = s)and p (D = 1 | § = s), which can be
implemented as follows:

1. Estimate consistently the discontinuity in the outcome at the threshold as the
difference between the two intercepts of the right and left regression, which can
be obtained as the coefficient of 7; in an OLS of this regression:

Yi=o + ((lR - aL) -T; + 6L(Sj — E) + (5R — 5L) -T; - (S,‘ — f) + € (4.85)

2. Estimate consistently the discontinuity in the probability at the threshold as the
difference between the two intercepts of the right and left regression, which can
be obtained as the coefficient of 7; in an OLS of this regression:

Di=py+ (g —p) - Ti+60(si =5) + (mg — ) - Ti- (s; —=5) +n;  (4.86)



258 4 Local Average Treatment Effect and Regression-Discontinuity-Design

3. Obtain a consistent estimation of ATE as:

ATE prp = 24—k (4.87)
Hr—HyL

Observe that (4.85) and (4.86) can also be seen as the reduced forms associated

with a two-equation structural system in which Y and D are endogenous and

T exogenous; formula (4.87) can therefore be obtained by the IV estimation of

ATE of the following regression (Hahn et al. 2001):
Yi=a, + ATEgp - D; + 5L(Sf — E) + (5R - 5L) -T; - (S,‘ — E) + & (488)

using T; as instrument for D. In practice, one can first derive the fitted values of D
(Dy,) from the OLS of:

Di=pp+ (g —p) Ti+a(si —5) + (ap —m) - Ti- (si —5) +m;  (4.89)

and then run an OLS regression of (4.88) using Dy, instead of D. In this manner, we
apply a Direct-2SLS estimation (see Chap. 3, Sect. 3.2.2.1), thus providing standard
errors for all the parameters, including ATE.

Rather than using a local linear model for the probability of treatment, one can
use a local logit or probit model such as:

pD=1]s)" =GO, +y.(s—3)] if s<5
pD—1]5) —Glos+rels—35) if s>5 (4.90)
so that:
ATE rp = r =L (4.91)

G(0x) -G(0.)

where G(-) is the normal (probit) or logistic (logit) c.d.f. This approach corresponds
to the Probit/Logit-OLS procedure presented in Chap. 3.

Finally, one can estimate the ATE for fuzzy RDD by an IV local polynomial
regression, namely:

P P
Yl‘ = oy, + ATE 'D,‘ + Z&L,p(s[ —E)p —+ T,'Z(5R,p — 5L,p) . (S,' — E)p + &
p=1 p=1
P P
Di = py + (ug — pr) ‘Ti+Z”L,p(Si_S Z Hr.p—Hp.p) (5i=35)"+n
p=1 p=1
(4.92)

using 7; as instrument for D with i € {§ —h < s; <5+ h}. Thus, a kernel local
polynomial regression can be employed also for fuzzy RDD.
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4.3.3 The Choice of the Bandwidth and Polynomial Order

In the next subsections, we discuss methods for choosing correctly the bandwidth
for an RDD nonparametric estimation, as well as the order of the polynomial when
a local polynomial regression is used.

4.3.3.1 Computing Optimal Bandwidth

While it is straightforward to estimate previous regressions within a given window
of width / around the cutoff point, a more difficult question is how to select such a
bandwidth (Fan and Gijbels 1996). In general, choosing a bandwidth estimation
involves finding an optimal balance between estimation precision and estimation
bias:

¢ On the one hand, a larger bandwidth yields more precise estimates as a larger
number of observations can be used in the estimation phase (higher efficiency)

¢ On the other hand, when a larger bandwidth is used, estimation is less likely to be
accurate, for we are considering observations that are increasingly far from the
threshold (higher bias).

Figure 4.6 displays the trade-off between estimation efficiency and correctness
as function of the bandwidth /. It is easy to see that there exists a decreasing pattern
between efficiency and unbiasedness. Points A and B are two extreme situations in
which: a larger % allows for a larger efficiency with lower correctness (point B), and

Efficiency

Large /i

Small i

Correctness

Fig. 4.6 Trade-off between estimation efficiency and correctness as function of the bandwidth
h in nonparametric regression
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a smaller % allows for a larger correctness accompanied with a smaller efficiency
(point A).

The choice of the bandwidth % therefore seeks to balance efficiency and cor-
rectness. In the nonparametric statistics literature, two kinds of approaches have
been proposed to choose the bandwidth: (1) plug-in estimation and (2) cross-
validation (Pagan and Ullah 1999; Hérdle 1991).

Before presenting these methods in the RDD contexts, it is first necessary to
define the notion of “optimal” bandwidth for local nonparametric regressions.
Given a generic regression function m(x,) evaluated at x, and given a nonparamet-
ric estimation 77 (xo) of such a function, we define the optimal bandwidth as the one
minimizing the mean integrated square error (MISE) of i (x), i.e.:

h = argmin{ / MSE[ (x0)] f(xo)dxo} (4.93)

where MSE is the mean square error defined as:
MSE/7i (xo)] = E[i (xo) — m(xo)]? (4.94)
The MSE is in turn equal to:
MSE][i7i (x0)] = Var{i (xo)} + {E[i (x0)] — m(xo)}? (4.95)

i.e., the variance of the nonparametric estimator of m(xg) plus its squared bias. In
general, the optimal bandwidth is that which allows for the same asymptotic rate of
convergence of the variance and the squared bias as the sample size goes to infinity.
Thus, at least asymptotically, choosing a bandwidth different from the optimal one
implies either increasing the rate of convergence to zero of the bias at the expenses
of the rate of convergence of the efficiency (4 < h* or undersmoothing) or increas-
ing the rate of convergence to zero of the variance at the expenses of the rate of
convergence of the bias (h > h*, or oversmoothing).

Estimating the optimal bandwidth is not straightforward, since it is function of
unknown quantities that have to in turn be estimated nonparametrically, thus
requiring estimation of nested bandwidths. This produces a cyclicality which is
computational burdensome and imprecise. Furthermore, in the context of RDD, we
have to estimate two regressions around one single point, thus boundary problems
also arise.

Recently, methods for estimating optimal bandwidths for RDD have been
provided in the case of local linear regression. We distinguish between plug-in
and cross-validation approaches.

Plug-in approach 1In the case of sharp RDD, assuming an estimation of ATE based
on a local linear regression as in (4.70), Imbens and Kalyanaraman (2012) have
suggested estimating #* by minimizing the following MSE over /:
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® — 2
h = argmin E|ATE SRD — ATESRD

= argmin E[(@g — ag) — (@1 — ar)] (4.96)

Using a mean square error approximation of previous formula and adopting a
number of convenient assumptions (including “regularization”), the authors illus-
trate that the two-side unique estimation of the optimal bandwidth takes on the
following form:

~y &\2 5 *(/)'\2 3 5 N
h sharp-roD = CK - <A = x(5) - L(5) P -N75 (4.97)
R+TL

where ¢ 3(?) is an estimation of Var;(Y | s =5);m ;(?) is an estimation of the second

derivative (curvature) of the regression curve; ]?(E) is an estimation of the density

,.(5)}, with j=R, L.
Computing (4.97) requires estimating all previous quantities that are unknown,
which need to be nonparametrically estimated. Imbens and Kalyanaraman (2012),

however, provide a consistent procedure to estimate the optimal bandwidth, involv-
ing the following steps:

function of s at the threshold; 7 ; is an estimation of Var [ﬁ’

1. Estimate the sample variance of the forcing variable and call it V2. Use the
so-called Silverman rule-of-thumb to estimate a pilot bandwidth /; using uni-
form kernel thus obtaining:

hy=1-84-V, N7/ (4.98)

2. Using h; as bandwidth, estimate 5 %(5) and &7 (5) using sample equivalents and
f (5) by a kernel approach;
3. Estimate 77 (5) and 721, (5) in the following manner: first, fit globally a third-order

polynomial regression of this type:
Yi=yo+71-1si >3] +72- (s5i—=5)+73- (s5i—5) 474 (5:—5)° +error  (4.99)

and estimate the third derivative of this function as 71" (s) = 6-7,. Calculate two
pilot bandwidths as:

26 \7
hog=3-56- (ﬁ) NG (4.100)
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Az(_) 1/7 )
hyp =356 [—2L2 ) . N;V7 4.101
> (f (5)[m" (5)]2> (100

where Np and N, are the number of observations in the right and left of the
threshold. Given these pilot bandwidths, fit using OLS a local quadratic regres-
sion of Y on S on the right and left separately, using only those observations
falling in the interval defined by &, and h,;, respectively. For the RHS, for
example, this involves estimating:

Yi=Ao+ A -1[si >3] (si =35) + 43 (si — E)Z + error (4.102)
i€ {§< S <§+h2’R}
thus estimating the curvature as 7i ,(3) = 2 - 73, and similarly on the left side;
4. Finally, calculate the regularization terms as follows:

. 2160-5%(s)

_2160-52(3)
R = = 4
NZ,R . hg,R

and 7 =
4
Ny -hy,

and set Cx =3-4375, thus providing the final ingredients required to feasibly
calculate the optimal bandwidth as expressed in formula (4.97).

This procedure leads to a consistent estimation of the optimal bandwidth in the
case of sharp RDD (Imbens and Kalyanaraman 2012, Theorem 4.1).

As for the estimation of the optimal bandwidth in the case of fuzzy RDD, the
authors provide a formula and an estimation procedure very close to that previously
illustrated for sharp RDD. In the case of fuzzy RDD, the proposed formula takes the
following form:

~
h Fuzzy-RDD — Ck-
1

(73.46) +53.6)) + ATE Ry (53,4(9) +3,,6)) — 2ATE o (Fv0x8) + 5100 5))
f(@) [;”\/)//R(S) - f”\;,L(g)]z - A/TTEFRD [fﬁZ)R(K) - "72’)1_(3)] +TFyr+TyL+ A/T\EFRD[?D,R +7p,1]

1

N5

(4.103)

and estimation follows the same algorithm illustrated for the sharp RDD case, with
the exception of the presence of the covariances between Y and D and few other
terms that are to be additionally estimated. Of course, estimating such a formula is
computationally more intensive and generally less precise because of the presence
of a higher number of unknown terms. Fortunately, Imbens and Kalyanaraman find
that in general such a formula provides bandwidths that are close to those based on
the optimal bandwidth for estimation of only the numerator of the fuzzy RDD
estimator. In other words, it is possible to use the algorithm provided for sharp
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RDD, thus ignoring the fact that the Regression-discontinuity-design is fuzzy
(Imbens and Kalyanaraman 2012, p. 14).

Cross-validation approach Ludwig and Miller (2007) and Imbens and Lemieux
(2008) have proposed a cross-validation approach to select the optimal bandwidth
in a local linear regression setting for RDD. Cross-validation is a general compu-
tational technique used for estimating the optimal bandwidth for nonparametric
regressions when plug-in approaches may be problematic (Hirdle and Marron
1985). Cross-validation is based on the “leave-one-out” procedure, in which a
regression function is estimated by leaving out one observation at the time. In our
RDD context, the cross-validation procedure requires the following steps:

1. Fix a given bandwidth #;

2. Consider an observation i. In order to assess the goodness of fit associated to the
fixed A&, perform a linear regression of ¥ on s by leaving out observation i. If s;
falls on the left of the cutoff, then estimate the regression only on those
s belonging to {s; —h; s;}. If s; falls on the right of the cutoff on the other
hand, then estimate the regression only on those s belonging to {s;; s;+h};

3. Estimate the predicted value of previous regression calculated at s = s; and call it
Y_i(si);

4. Repeat steps 2 and 3 for each observation and finally compute the following
quadratic loss function:

CVy(h) = ]lvi (17,,» - f/,,»(sl-))2 (4.104)

i=1

which is the cross-validation criterion and is clearly a function of #;
5. The optimal bandwidth is the one which minimizes (4.104) over a grid of chosen
h and such a minimum is found numerically.

In order to increase the precision of the bandwidth’s estimate, Imbens and
Lemieux (2008) suggest a cross-validation criterion with frimming, using specific
quantiles of the distribution of s. On the left of the cutoff, one could, for example,
use only observations having a value of s falling on the right of the median of s in
that part. On the right of the cutoff, instead, one could use only observations having
a value of s falling on the left of the median of s in that part. Of course, it is also
possible to use a larger rule than the 50 % cutoff observations on both sides by
choosing other quantiles.

In the case of fuzzy RDD, an identical cross-validation criterion can be used for
estimating the conditional probabilities in the denominator of the fuzzy RDD
estimand. In practice, Imbens and Lemieux (2008) suggest to use only one band-
width, chosen as the smallest between CVy(h) and CVp(h).
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Finally, observe that the plug-in and the cross-validation approaches, although
asymptotically equivalent, can lead to different estimations of the optimal band-
width in finite samples.

4.3.3.2 Optimal Bandwidth for Local Polynomial Regression

The previous discussion regarding the choice of the bandwidth referred to the case
of a local linear regression. When a local polynomial is fitted, one can however rely
on the so-called rule-of-thumb (ROT) method of bandwidth selection based on a
plug-in approach. Although not yet specifically derived for RDD, we know that for
a generic function m(s) = E(Y | s) to be estimated nonparametrically, the ROT is the
asymptotically optimal constant bandwidth as it minimizes the conditional
weighted mean integrated squared error. Following (Fan and Gijbels 1996), the
ROT is estimated by:

) s
02/ wo(s)ds

l/’l\ROT, pol = Ck.p 2 ~
N / (A ®*0(5)) wols)7 (s)ds

(4.105)

where: Ck p is a constant depending on the kernel function used and the degree P of
the polynomial; & 2is the residual variance assumed to be constant over s; wo(s) is an
indicator function on the interval [min(s) +0.05 - range(s); max(s) — 0.05 - range(s)]
with min(s), max(s), and range(s) indicating the minimum, maximum, and the range
of s, respectively; m (P+1) is an estimation of the (P + 1)th derivative of m(s) and
7 (s) an estimation of the density of s.

In order to obtain an estimation of the constant residual variance and of the
(P + D)th derivative of m(s), a global polynomial fit in s of order (P + 3) is appro-
priate, thus estimating 62 by the standardized residual sum of squares of such
regression.

Heuristically, one could estimate (4.105) either on the right or on the left of the
cutoff, thus obtaining two different bandwidths on the two sides. One could then
choose the same bandwidth on both sides by taking, for instance, an average of the
two bandwidths or the lowest of them. Although this approach gives useful guid-
ance for selecting the bandwidth, it is not specific to RDD, given the additional
complication of finding an optimal bandwidth at a discontinuous point of s. It can
however be used as an acceptable approximation. It goes without saying that
checking robustness by providing a comparison of results for this and other possible
choices of the bandwidth is highly recommended.
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4.3.3.3 Choosing the Polynomial Order

Previous procedures detect the optimal bandwidth when a local linear regression is
interpolated. When a local polynomial regression is used instead, a comparable
optimal rule is not available and it becomes more important to decide in the first
instance the order of the polynomial, and then calculate the RDD causal effect for
different choices of the bandwidth (Lee and Lemieux 2009).

To detect the order of polynomial, one could use the traditional Akaike infor-
mation criterion by comparing the value of such index for models with different
polynomial order; the Akaike index takes the form:

RSS
AIC %N-ln(T> +2(P+1) (4.106)

where RSS is the residual sum of squares of the estimated regression and P the order
of the polynomial. The specification with the smallest AIC should be selected.

The problem with this measure is that it is based on a global parametric
regression, while in RDD we have stressed the role played by locality and non-
parametric approach. Thus, in order to take into account this aspect, an alternative
test for choosing the order of the polynomial has been proposed. The idea behind
this test is that of choosing the order by rendering the explicative power of local
information useless as explanation of the variance of the outcome Y. In practice, this
is done by including K bin dummies By, for k going from 2 to K — 1, into the
polynomial regression thus fitting:

P
Yi=a+ATE-Di+ Y 6 p(si —3)"
p=1
P K-1
Z 5Rﬂ_5Lp (i_E)p+Z¢kBk,i+€ (4.107)
=1 k=2
and then testing the null hypothesis that ¢, = ¢; = --- = ¢x_; = 0; one should

choose a P corresponding to the polynomial specification leading to accept such
hypothesis; one should continue to add higher order terms until it is rejected.

Of course, the choice of the number of bins to be included will depend on the
choice of the bandwidth 4 and should follow such a procedure:

1. For a given bandwidth £, fix the number of bins equal to K = K; + Kz, where K,
is the number of bins on the left and K the one on the right of the threshold;
2. Define the k-th bin as the interval (by; by (] for k going from 1 to K, where:

br=5—(Ko—k+1)-h (4.108)

3. For each observation i, construct the generic dummy By ; as:
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Uit i€ (bisbiy]
Bri= { 0 otherwise (4.109)

with k going from 1 to K.

It is worth stressing that in regression (4.107), two bin dummies are excluded
because of collinearity.

A further benefit of such an approach is that it is also useful to detect disconti-
nuity in the conditional expectation of the outcome different from that in the
threshold. To see how, assume we have built only two bins, so that regression
(4.107) becomes:

E(Y; | si;Di;Ba,i) = f(si;Di) + ¢,Bai (4.110)
where f(s;; D;) is the polynomial. Using (4.110), we see that
¢2 == E(Y, | Si;D,‘;BQ’,‘ = 1) — E(Y, ‘ Si;D,‘;BQ’,‘ = O) (4111)

thus, as long as ¢, # 0, a discontinuity in the conditional mean of the outcome
arises. Such a discontinuity can jeopardize the RDD continuity assumption; thus,

since testing ¢, =¢3=---=¢g_, =0 is equivalent to test whether
¢x_1 — Px_1 =0, accepting such an hypothesis is necessary to assure RDD
reliability.

For practical purposes, Lee and Lemieux (2009, p. 48) suggest to use: higher
order polynomials when the bandwidth is large (i.e., equal or more than 0.50);
lower order polynomials for bandwidths ranging between 0.05 and 0.50; finally,
zero order polynomials for bandwidths lower than 0.05. Note that the choice of zero
order polynomial coincides with the comparison of the two means as expressed by
(4.63).

4.3.4 Accounting for Additional Covariates

Although the identification assumptions behind a reliable use of RDD do not
involve any exploitation of the additional covariates X, usually present in standard
datasets, using such additional information may be worthwhile.

Firstly, additional covariates can be used to test whether, around the threshold,
conditions for a quasi-randomized experiment are correctly in place. In general, one
should not find any statistically significant discontinuities of x at the threshold. If
they are in fact found, we could erroneously attribute the effect to the treatment
when, on the contrary, the effect could have been driven by discontinuities in the
covariates. This is the typical “observable confounders’ effect” we met several
times in previous chapters. We will come back on this point more in detail in the
next section.
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Secondly, as long as discontinuities in x can be excluded, it may be wise to add
the variables x in previous RDD regressions in order to eliminate some minor biases
arising from the use of a too large bandwidth, including observations far from the
threshold. In such a situation, conditioning on x would provide a good account of
units’ observable differences either to the left or to the right of the threshold.

Thirdly, as also happens in pure randomized settings, including covariates which
have some nonnegligible explicative power on the outcome, generally increases the
precision of the estimations by reducing standard errors. Furthermore, they may
also increase the R? of the regression, thus providing a more compelling fit of the
model.

4.3.5 Testing RDD Reliability

It is essential, when applying RDD, to carry out a series of tests to assess the RDD
reliability. This allows to evaluate whether the assumptions under which RDD
should return correct inference are actually met in practice. In what follows, we
provide a number of tests that, taken altogether, should help practitioners when
running RDD analysis on real datasets.

Testing quasi-randomness at the threshold

In order to assess whether the “natural experiment” approximation at the threshold
characterizing RDD is appropriate, the calculation of difference-in-means (DIM)
estimators for the covariates x is recommended, comparing units’ characteristics on
the left and right of the threshold. If no significant differences are found, then the
assumption of randomness in a neighborhood of the cutoff can be accepted. In other
words, a sort of “balancing property,” very similar to the one defined for Matching
methods in Chap. 3, has to be tested. If the threshold is well defined, then the mean
of the x-variables on the right and left of the cutoff point should be approximately
the same. If not, the threshold is not a good demarcating point and the idea to
replicate a natural experiment around that point should be questioned.

Testing ‘“non-manipulation” of the forcing variable

To be reliable, RDD requires that the forcing variable is not manipulated by
individuals. Manipulation means that individuals may strategically modify the
value of the variable s in order to take advantage of changing position around the
cutoff. When this is the case, one cannot trust the idea that s is purely exogenous as
it becomes, on the contrary, a variable determined by individuals and thus inher-
ently endogenous.

For example, Article 18 of the Italian labour legislation (“workers’ statute”)
establishes that Italian companies with more than 15 employees must reinstate
unfairly dismissed workers, provided that the Italian courts decide whether or not
dismissals are justified. As judges usually tend to be sympathetic with workers, thus
deciding to reinstate workers most of the time, there is an ongoing debate in Italy
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around the suitability of such a rule. Since companies with less than 15 employees
are not subject to Article 18, the “15 threshold” might be a good candidate for a
cutoff point to assess, by means of an RDD, whether Article 18 produces or not
adverse effects on company activity. Yet, since companies can control, at least to
some relevant extent, the number of employees, the idea that around the 15 thresh-
old a natural experiment takes place is somewhat questionable. Companies may, for
example, not extend their workforce beyond the threshold in order to avoid Article
18 constrains. Many other examples of this kind are set out in the literature.

McCrary (2008) has suggested testing the presence of such manipulation by
assessing the continuity of the density of the forcing variable at the threshold.
Although the presence of a discontinuity should not be immediately interpreted as
representing some form of manipulation, when the discontinuity is relevant, some
doubts about pure randomization at the cutoff may be cast. Figure 4.7 displays two
different shapes of the density function of the forcing variable, with panel
(a) representing a continuity at the threshold (non-manipulation case) and panel
(b) a strong discontinuity (possible manipulation).

Note that in such graphical representations, it is recommended not to use kernel
density estimates, rather histograms with different numbers of bins.

Testing the continuity of the outcome conditional expectation

We have seen that continuity of the conditional expectation of the potential out-
comes at the cutoff is necessary in order to identify ATE in an RDD setting. As
suggested by Imbens and Lemieux (2008), one possible way to test whether such
condition holds in our data is to estimate the jump of the conditional expectation of
Y at points of the forcing variable different from that of the threshold. On both the
left and right side of the cutoff, one can consider a specific quantile of the (left and
right) distribution of s such as, for example, the median. One can then run an RDD
using formula (4.70) by substituting 5 with g, ., (in the left) and g, ., (in the right),
which indicate the value of the specific quantile 7 in the two sides, respectively. For
instance, 7 is equal to 0.5 for the median. If we accept the null hypothesis of a no

Density of the forcing variable

a Density of the forcing variable b :

Fig. 4.7 Density function of the forcing variable. Panel (a) sets out a continuity at the threshold
(non-manipulation case), whereas panel (b) shows a strong discontinuity suggesting some manip-
ulation on the part of the individuals
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jump on both the left and right side, we can conclude fairly reliably that the
continuity of the conditional expectation of the outcome is confirmed and RDD
results trustable.

Testing the sensitivity of results to different bandwidths and polynomial orders
As argued above, the choice of the bandwidth and that of the polynomial order can
remarkably affect the results of an RDD. Although the literature has suggested ways
to find optimal bandwidths and polynomial order, it is worthwhile conducting a
sensitivity analysis presenting results for a range of bandwidths and various poly-
nomial orders. Such a sensitivity test is important to guarantee transparence in the
results and, possibly, inconsistencies of the dataset (due, for instance, to the
presence of outliers).

4.3.6 A Protocol for Practical Implementation of RDD

As a final step, following Imbens and Lemieux (2008) and Lee and Lemieux (2009),
it seems useful to summarize previous discussions by providing some guidelines for
implementing RDD empirically.

A plausible protocol for implementing sharp RDD may be the following:

1. Visualizing outcome discontinuity. To this end, plot two overlapping histograms
of the outcome variable, one for values of Y on the left and one for values of Y on
the right of the cutoff by varying the number of bins. See whether there is
evidence of a significant difference of such distributions.

2. Testing balancing at the threshold. Once the discontinuity at the threshold has
been detected, look at whether, in a neighborhood of the threshold, the charac-
teristics x of individuals placed on the left and on the right of the cutoff are
sufficiently similar. If not, randomization may be questionable and RDD possi-
bly invalidated. If yes, local randomization can be accepted and one can proceed
to step 3.

3. Testing non-manipulation of the forcing variable. To assess whether the forcing
variable is properly exogenous, plot its density and see whether a discontinuity at
the threshold is visible. If yes, RDD may not be reliable; if not, proceed to step 4.

4. Estimating ATE by sharp RDD. If step 1, 2, and 3 have been satisfied, consider a
given bandwidth as, for instance, the optimal one provided in (4.97), and use a
local linear regression to calculate ATE by (4.70), with standard errors obtained
using robust OLS. For the sake of comparison, calculate ATE as the difference
of the outcome means in the left and in the right of the cutoff using a standard
t-test.

5. Checking robustness. First, look at the possible presence of discontinuities in the
covariates X, by using the quantile approach proposed by Imbens and Lemieux
(2008) presented in the previous section. If discontinuities are present, then
argue why (or why not) RDD results should be questionable. Second, try various
additional RDD estimation by varying the bandwidth and the polynomial order
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of the basic local regression. Third, add covariates to previous regressions to see
what happens to results. Finally, assess whether results are similar or signifi-
cantly different.

A similar protocol for implementing fuzzy RDD may encompass:

1. Visual analysis of outcome and treatment discontinuity. Plot two overlapping
histograms of the outcome variable and two overlapping histograms of the
probability of treatment, one for values of Y and p(D = 1) on the left and one
for values of Y and p(D = 1) on the right of the threshold by varying the number
of bins. See whether there is evidence of a significant difference of such
distributions.

2. Testing balancing at the threshold. Follow the same procedure outlined in step
2 for sharp RDD.

3. Testing non-manipulation of the forcing variable. Follow the same procedure
outlined in step 3 for sharp RDD.

4. Estimating ATE by fuzzy RDD. If previous steps have been successfully
implemented, consider a given bandwidth as, for instance, the fuzzy optimal
one in (4.103), and use a local linear regression to calculate ATE by (4.88)—
(4.89), standard errors being obtained by robust 2SLS, using the T variable as
instrument for treatment. Just for the sake of comparison, calculate ATE as the
ratio between the difference of the outcome means and the difference in the
probability of treatment in the left and in the right of the cutoff obtaining
standard errors by bootstrap.

5. Checking robustness. Follow the procedure outlined in point 5 for the practical
implementation of sharp RDD.

Of course, the guidelines presented above are to be considered tentative and the
minimal protocol to follow, as other relevant steps will depend on the specific
context of the application in hand.

4.4 Application and Implementation

This section is dedicated to the application and implementation of LATE and RDD.
We begin with LATE first to go on with RDD. Both the sharp and the fuzzy cases
are considered.

4.4.1 An Application of LATE

In this section we present an application of LATE to both real and simulated data. In
the first case, we consider an exercise using the same data as Angrist and Evans
(1998). In the second case, we simulated a specific data generating process (DGP)
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for LATE in order to check the reliability of the Stata code developed in the
application on real data.

4.4.1.1 LATE Estimation with Real Data

We consider the dataset CHILDREN.DTA containing a subset of data from the
paper by Angrist and Evans (1998) where the authors investigate the effect of
childbearing on female labor market participation (labor supply). The dataset
comes from the 1980 Census Public Use Micro Samples (PUMS) and considers a
sample of married women aged within 21 and 35 having at least two children. In
order to capture childbearing the authors assume a binary covariate having a value
equal to one for additional childbearing (more than two children), and zero
otherwise.

In order to deal with a potential omitted-variables bias that OLS would produce,
Angrist and Evans (1998) suggest estimating the relationship between childbearing
and labor participation of women by a LATE estimator using as an instrument a
binary variable accounting for “sibling sex composition,” indicating whether the
first two children are of the same sex or not. The choice of this variable as
instrument rests on the assumption that when parents have already had two children
of the same sex, they will be more prone to have a third children than in the case in
which the gender of the first two kids is different. On the one hand, having a mixed
pair of children can be taken as a random event, thus being independent of potential
outcomes or other characteristics of women; on the other hand, this is a variable
expected to be correlated with having had more than two kids. Sibling sex compo-
sition, therefore, seems a good candidate as instrument for childbearing.

As the outcome variable for this example, we consider the variable “weeksm,”
indicating the number of weeks worked by women; as treatment variable, we
consider the dummy “morethan2,” having a value one if the woman has had
more than two children and zero otherwise; as instrument, we use the variable
“samesex,” taking value one if the first two kids are same sex and zero otherwise.

We set out this application by declaring a series of global macros:

. set more off

. global Y weeksm // outcome

. cap drop morethan2

. gen morethan2=(kidcount>2)

. global D morethan2 // treatment

. global z samesex // instrument

As a first step, we calculate LATE by hand, to then observe that the obtained
value is equivalent to a 2SLS of Y on D, using z as instrument for D. To begin with,
we calculate the DIM estimator of ATE by running this OLS regression:
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. reg $Y $D
Source | sS af MS Number of obs = 254654
F( 1,254652) = 3696.02
Model | 1742078.14 1 1742078.14 Prob > F = 0.0000
Residual | 120027337254652 471.338679 R-squared = 0.0143
—_—— + - Adj R-squared = 0.0143
Total | 121769415254653 478.177816 Root MSE = 21.71
weeksml | Coef. std. Err t P>|t| [95% Conf. Intervall
__________ + _
morethan2 | -5.386996 .0886093 -60.79 0.000  -5.560667 -5.213324
_cons | 21.06843 .0546629 385.42 0.000 20.96129 21.17557

We find out an ATE equal to —5.38, which we assume to be biased as some
selection on unobservables is assumed. In such a situation, we can estimate the
value of LATE by using formula (4.22) as follows (observe that no use of the
covariates is needed at this stage):

Compute an estimate of E(Y | z=1) and put it into a scalar:

. qui sum $Y if Sz

r (mean)

. scalar mean_y_zl

Compute an estimate of E(Y | z=0) and put it into a scalar:

. gqui sum $Y if Sz

. scalar mean_y_z0 r (mean)

Compute an estimate of p(D =1 1z=1) and put it into a scalar:

. count if $D == 1 & $z ==
. scalar num_d_zl = r(N)

. count if $z==

. scalar num_zl = r(N)

. scalar p_1_1

num_d_z1/num_z1

Compute an estimate of p(D =1 |z=0) and put it into a scalar:

. count if $D == 1 & $z ==
. scalar num_d_z0 = r(N)

. count if $z==

. scalar num_z0 = r(N)

. scalar p_1_0

num_d_z0/num_z0
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e Compute the value of LATE and put it into a scalar:

. scalar late = (mean_y_zl-mean_y_z0)/(p_1_1-p_1_0)

We can finally look at the value of LATE typing:

. di late

-6.3136852

showing that LATE is equal to —6.313. Such a value can also be obtained by a
2SLS estimation as follows:

. ivreg $Y ($D = $z)

Instrumental variables (2SLS) regression

Source | ss af MS Number of obs = 254654

F( 1,254652) = 24.54

Model | 1690526.44 1 1690526.44 Prob > F = 0.0000

Residual | 120078889254652 471.541119 R-squared = 0.0139

————————————— B e it e Adj R-squared = 0.0139

Total | 121769415254653 478.177816 Root MSE = 21.715
weeksml | Coef. Sstd. Err. t P>t [95% Conf. Interval
morethan2 | -6.313685 1.274604 -4.95 0.000 -8.811875 -3.815496
_cons | 21.42109 .4869726 43.99 0.000 20.46664 22.37555

Instrumented: morethan2
Instruments: samesex

confirming what was expected. Observe that our results indicate a positive bias
of around 14.6 % in the OLS estimation.

We can move on to estimate LATE(x) using the Abadie-kappas in order to
estimate (4.26) and the so-called LARF. A set of exogenous covariates X is now
needed. Following the authors, we consider the following set: “agem,” age of the
mother at 1980 census; “agefstm,” age of the mother when she gave birth to the first
child; “boylst,” dummy taking one if the first child was a boy; “boy2nd,” taking
value one if the second child was a boy; “black,” dummy equal to one if the mother
is black; “hispan,” equal to one if the mother is Hispanic; and, finally, “othrace,”
taking value one if the mother belongs to other ethnic group.

To begin with, these covariates are placed into the global macro xvars:

. global xvars agem agefstm boylst boy2nd black hispan othrace
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We calculate the Abadie-kappas as follows:
e Start by computing E(z 1Y, D=1, x):

. probit $z $Y S$xvars if $D==

. predict p_zl , p // that is equal to E(Z|Y,D:1,x)
e Compute E(z1Y, D=0, x):

. probit $z $Y S$xvars if $D==

. predict p_z0 , p // that is equal to E(z|Y,D:0,x)
e Compute p(z=11|x):

. probit $z $xvars

. predict p_z , p // that is equal to p(z=1]|x)
e Compute E(k 1Y, D, x)
. gen Ek = 1- $D*(l-p_zl)/(l-p_z) - (1-$D)*p_z0/p_z
* Eliminate values of E(k | Y, D, x) not included within [0;1]:

. replace Ek=1 if Ek>=1 & Ek!=.

. replace Ek=0 if Ek<=0 & Ek!=.
« Compute the Weighted least squares (WLS) using E(k | Y, D, x) as weights:

regress $Y $D Sxvars [pwelight=Ek]

Linear regression Number of obs = 252248
F( 8,252239) = 1975.86
Prob > F = 0.0000
R-squared = 0.0748
Root MSE = 20.773

| Robust
weeksml | Coef. std. Err. t P>t [95% Conf. Interval]
morethan2 | -5.435849 .090615 -59.99 0.000 -5.613452 -5.258246
ageml | 1.411412 .0147141 95.92 0.000 1.382573 1.440251
agefstm ‘ -1.481689 .0181049 -81.84 0.000 -1.517174 -1.446204
boylst | -.4159261 .0902139 -4.61 0.000 -.592743 -.2391092
boy2nd | -.499382 .0901446 -5.54 0.000 -.6760631 -.3227009

|

o

black 10.51577 .2205934 47.67 .000 10.08341 10.94812
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hispan | .136516 .1939291 0.70 0.481 —.2435798 .5166118
othrace | 2.99749 .2269159 13.21 0.000 2.552741 3.442239
_cons | 7.531347 .4402346 17.11 0.000 6.668499 8.394195

The value of LATE is now found to be approximately —5.43 and is still
significant. We might however be interested in estimating LARF for D=1 and
D =0. For D=1, we want to obtain an estimate of:

E(Y|D=1,Dy > Dy) =E{E(Y | x,D =1,D; > Do)}
which can be obtained in Stata using the margins command as follows™:

. margins , at($D=1) atmeans

Adjusted predictions Number of obs = 252248

Model VCE : Robust

Expression : Linear prediction, predict()

at : morethan2 = 1
ageml = 30.83818 (mean)
agefstm = 20.57244 (mean)
boylst = .4338817 (mean)
boy2nd = .4310196 (mean)
black = .0388756 (mean)
hispan = .0643707 (mean)
othrace = .0511755 (mean)

| Delta-method

| Margin  Std. Err. t P>t [95% Conf. Intervall

_cons | 15.31421 .0669219 228.84 0.000 15.18305 15.44538

The result obtained suggests that, among the compliers’ subgroup, the average of
Y (number of weeks worked) for those compliers who are treated (i.e., D =1)—
once observable confounders are neutralized—is equal to 15.31; observe that it is
roughly the same as the unconditional average outcome of all treated we obtain by

typing:

3 Observe that variables’ mean at which predictions are calculated using margins are in this case
weighted means; for instance, for variable “agem!” this weighted mean can be got by typing: sum
ageml [iweight=Ek] returning exactly 30.83818.
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. sum $Y if $D==

Variable | Obs Mean Std. Dev. Min Max

weeksml | 96912 15.68143  20.76991 0 52
Similarly, we can get an estimate of LARF for D =0, i.e.:
E(Y|D=0,Dy > Dy) =Ex{E(Y | x,D =0,D; > Do)}
by typing:

. margins , at($D=0) atmeans

Adjusted predictions Number of obs = 252248

Model VCE : Robust

Expression : Linear prediction, predict()

at : morethan2 = 0
ageml = 30.83818 (mean)
agefstm = 20.57244 (mean)
boylst = .4338817 (mean)
boy2nd = .4310196 (mean)
black = .0388756 (mean)
hispan = .0643707 (mean)
othrace = .0511755 (mean)

| Delta-method

| Margin  Std. Err. t P>|t] [95% Conf. Interval]

_cons | 20.75006 .0610766 339.74 0.000 20.63036 20.86977

illustrating that, among the compliers’ subgroup, the average of Y for those
compliers that are untreated (i.e., D = 0)—when observable confounders are neu-
tralized—is equal to 20.75. Note that it is slightly lower than the unconditional
average outcome of all untreated obtained by typing:

. sum $Y if $D==

Variable | Obs Mean Std. Dev. Min Max

weeksml | 157742 21.06843 22.26841 0 52

Moreover, we can see that:



4.4 Application and Implementation 277

LATE =E(Y | D = 1,D, > Do) — E(Y | D = 0,D, > Dy)

since it is immediate to see that: (15.31-20.75) =-5.43

We can also calculate the predictions used by margins to calculate previous
means. In other words, we are interested in computing both
E(Y | x,D=1,D, > Dy) and E(Y |x,D =0,D; > Dy). In estimating previous
quantities, we proceed as follows:

» Estimate E(Y | x,D = 1,D; > Dy) calling it y_1lest by typing:

. cap drop y_lest

. qui regress $Y $xvars [pweight=Ek] if $D==
. predict y_lest

. sum y_lest [iweight=Ek]

Variable | Obs Weight Mean Std. Dev. Min Max

y_lest | 252248 17613.8365 15.30617 4.80354 2.605387 36.65147
« Estimate E(Y | x,D = 0,D; > D) calling it y_0Oest by typing:

. cap drop y_Oest

. qui regress $Y $xvars [pweight=FEk] if $D==0
. predict y_Oest

. sum y_Oest [iweight=Ek]

Variable | Obs Weight Mean Std. Dev. Min Max

y_Oest | 252248 17613.8365 20.73786 5.747229 5.344197 45.69891

Observe that: 15.30 —20.73 = —5.43 =LATE

» Obtain a joint density plot of the estimations by typing:

. graph twoway ///

(kdensity y_lest [aweight=Ek] , lpattern (solid)) /17
(kdensity y_0Oest [aweight=Ek] , lpattern(dash)) , ///
title("Outcome response distr. for compliers by treatment" , size(med)) ///

xtitle (E(Y|x,D;compliers)) ///
legend(label (1 "D=1: treated compliers") label(2 "D=0: untreated compliers"))
1177

note (Note: A linear form of the potential outcomes is assumed)
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Outcome response distr. for compliers by treatment

0 10 20 30 40 50
E(Y|x,D;compliers)

Note: A linear form of the potential outcomes is assumed

D=1: treated compliers D=0: untreated compliers ‘

The above graph shows that treated women compliers have a lower tendency to
supply work than untreated compliers. Furthermore, this difference can be
interpreted in a causal sense, as the difference in means of the two distributions
returns exactly the LATE equal to —5.43.

Finally, we can plot directly the distribution of LATE(x) as follows:

. cap drop late_x
. gen late_x = y_lest - y_0QOest

. tw (kdensity late_x) [aweight=Ek] , title(Distribution of LATE(x)) xtitle(LATE(x))

Distribution of LATE(x)

™
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LATE(x)

The density of LATE(x) has a clear bell-shaped form centered in LATE that is
equal to the mean of such distribution.
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4.4.1.2 LATE Estimation with Simulated Data

In this sub-section, we generate a simulated dataset. The usefulness of working with
a simulation is twofold. On the one hand, it is a good exercise itself obliging us to
determine the data generating process behind a quasi-randomized experiment (i.e.,
experiment with imperfect compliance). On the other hand, it allows us to compare
data results with simulated results, thus providing a useful tool to determine
whether our generating process and formulas are correct. The Stata code for the
data generating process (DGP) of LATE is as follows:

* Data generating process for LATE
. clear
set seed 10101
set obs 5000
. gen z = uniform()>.5 // assign the instrument randomly
sort z
. gen Dl=rnormal()>0 // generate D1
. gen DO=5+5*rnormal () >0 // generate DO
tostring D1 DO , replace
. gen group=D1+D0
. encode group , generate(group2)
la def gr_lab 1 never_taker 2 defier 3 complier 4 always_taker
la values group2 gr_lab
. drop if group2==
. destring DO D1 , replace
. gen D=DO0+z* (D1-D0)
. gen x=rnormal (0,1)
. gen yl = 20 + 3*x + (rchi2(1)-1)
. gen y0 = 10 + 6*x + 5*rnormal (0,1)
*LATE=E (y1l-y0)=(20-10)+(6-3)E(x)=10+3*0=10
. gen te=yl-y0 // treatment effect
sum te

. gen y=y0+D0* (yl-y0)+z*(D1-D0) * (yl-yO0)
In this DGP, LATE is fixed equal to 9.76. This is obtained by typing:

* LATE in the DGP
sum te if group2==
scalar LATE_dgp=r (mean)
. di LATE_dgp

9.7633642
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For the sake of comparison, we calculate LATE by hand using the Wald
estimator formula as follows:

*

E(y|z=1)
. qui reg y if z==1

. scalar yzl=_b[_cons]

*

E(y|z=0)
. qui reg y if z==0

. scalar yzO=_b[_cons]

*

E(D|z=1)
. qui reg D if z==1

. scalar Dzl=_b[_cons]

*

E(D|z=0)

. qui reg D if z==0

. scalar Dz0O=_b][_cons]

* Wald estimator

. scalar wald=(yzl-yz0)/(Dz1-Dz0)
. di wald

©

.8477456

The compliers can be characterized by counting their number and characteris-
tics, by treatment status. In our DGP, it is immediate to see that the number of
compliers is equal to:

. count if group2==3

404

We can estimate this value by using the formula provided in the theoretical part
of this chapter, that is:

N-p(Dy>Do) =N[p(D=1|z=1)=p(D=1]z=0)]
obtained in Stata by writing:

. scalar Num_compl=_N* (Dz1-Dz0)
. di Num_compl

397.43418

showing, as expected, that we do a slight sample error of around 1.7 %
(=1(404 — 397)/4041 x 100) when we use previous formula.
In order to characterize compliers, we can apply the formula:

E(x | Dy > Do) = E(k - x) /E(k)
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where first we need to compute k; to that aim, we write:

*compute p_xz=p (z=1]|x)
. probit z x

. cap drop p_zx

. predict p_zx , p

. cap drop k

. gen k = 1-D*(1-z)/(1l-p_zx)-(1-D)*z/p_zx
*compute E (k)

. sum k

. scalar sc_Ek=r (mean)
. di sc_Ek

*compute kx=k-x

. cap drop kx

. gen kx=k*x

. sum kx

. scalar sc_Ekx=r (mean)
Given k, we can compute the mean of x in the compliers’ subgroup as follows:

*Compute E(x|D1>D0)=E (k-x)/E (k)
. scalar sc_ExD1DO=sc_Ekx/sc_Ek
. di sc_ExDIDO

.09138501
where a mean equal to 0.091 is obtained. The true value obtained by our DGP is:

* Calculate E(x|D1>D0)=E(x|compliers) as from simulation
. sum x if group2==3
Variable | Obs Mean Std. Dev. Min Max

x| 404 .0855207 1.003132 -2.946875 2.853899

The value obtained, 0.085, is only slightly lower than the estimated value. If we
run the DGP using a larger sample size (as, for instance N = 200,000), we can see
that the simulated and estimated values are reasonably similar.

We can now go on to estimate LATE(x) using the Abadie-kappas to estimate
(4.26), the so-called LARF. To this end, we first calculate the Abadie-kappas as we
did with real data as follows:
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*start by computing E(z \ Y, D=1, x):

. probit z y x if D==

. predict p_zl , p // that is equal to E(z|Y,D=1,x)

*compute E(z | Y, D=0, x):

. probit z y x if D==0

. predict p_z0 , p // that is equal to E(Z|Y,D:O,x)

*compute p(z=1 | x):

. probit z x

. predict p_z , p // that is equal to p(z=1]|x)

*compute E(k | Y, D, x)

. gen Ek = 1- D*(1-p_z1)/(1l-p_z)-(1-D)*p_z0/p_z

*eliminate values of E(k | ¥, D, x) not included within [0;1]:
. replace Ek=1 if Ek>=1 & Ek!=.

. replace Ek=0 if Ek<=0 & Ek!=.

*compute the weighted least squares (WLS) using E(k|Y,D,x) as weights:

. regress y D x [pweight=Ek]

Linear regression Number of obs = 2909
F( 2, 2906) = 1715.83
Prob > F = 0.0000
R-squared = 0.7279
Root MSE = 3.979
| Robust
vy | Coef. std. Err. t P>|t| [95% Conf. Intervall
D | 9.15505 .2166926 42.25 0.000 8.730163 9.579936
x| 4.5947 .1187562 38.69 0.000 4.361845 4.827554
_cons | 10.315 .2132976 48.36 0.000 9.896768 10.73323

The value of LATE is now around 9.15, that is a bit lower than the true value 9.76.
We might also be interested in estimating LARF for D=1 and D =0. For D=1 and
D =0, we want to get an estimate of E(Y | D=1, D > D) and E(Y | D=0, D; > Dy),
respectively, which can be obtained in Stata using the margins command as follows:

. margins , at(D=1) atmeans

Adjusted predictions Number of obs = 2909
Model VCE : Robust

Expression : Linear prediction, predict()

at : D = 1

x = .0924395 (mean)
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| Delta-method

| Margin  Std. Err. t P>t [95% Conf. Interval]
_cons | 19.89478 .0364695 545.52 0.000 19.82327 19.96629
. margins , at(D=0) atmeans
Adjusted predictions Number of obs = 2909
Model VCE : Robust
Expression : Linear prediction, predict()
at : D = 0
x = .0924395 (mean)
| Delta-method
| Margin  Std. Err. t P>t [95% Conf. Intervall]
_cons | 10.73973 .2135455 50.29 0.000 10.32101 11.15845

We can see that LATE=EY |ID=1,D,>Dy) —EXY D=0, D> Dy =9.15.
We can also calculate the predictions used by margins to calculate previous
means. In other words, we are interested in computing both:

E(Y | x,.D = 1,D; > Dy)

and E(Y |x,D =0,D; > Dy)

In the simulated DGP, the true values of these quantities are computed as follows:

*

calculate now E(y|x,D=1,D1>D0) in the DGP:
. cap drop y_1ldgp

. gen y_1ldgp= 20+3*x if D==1 & group2==

*

calculate now E(y\x,D:O,Dl>DO) in the DGP:
. cap drop y_0dgp
. gen y_0dgp= 10+6*x if D==0 & group2==3

and a graph can be plotted as:

. graph twoway ///

(kdensity y_1ldgp , lpattern (solid)) ///

(kdensity y_0dgp , lpattern(dash)) , ///
title("Outcome response distr.

117

for compliers by treatment in DGP"

size (med))
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xtitle(E(Y|x,D;compliers)) ///
legend(label (1 "D=1: treated compliers") label (2 "D=0: untreated compliers"))

/117

note (Note: A linear form of the potential outcomes is assumed)

Outcome response distr. for compliers by treatment in DGP
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E(Y|x,D;compliers)

Note: A linear form of the potential outcomes is assumed

D=1: treated compliers D=0: untreated compliers ‘

In the estimation phase previous quantities are instead computed as follows:

qui regress y x [pweight=Ek] if D==
. predict y_lest
qui regress y x [pweight=Ek] if D==

. predict y_Oest
so that a graph can be plotted as:

graph twoway ///
(kdensity y_lest [aweight=Ek], lpattern (solid)) ///
(kdensity y_0Oest [aweight=Ek], lpattern(dash)) , ///
title("Outcome response distr. for compliers by treatment in estimation" ,
size(med)) ///
xtitle(E(Y|x,D;compliers)) ///
legend(label (1 "D=1: treated compliers") label(2 "D=0: untreated compliers"))
/77

note (Note: A linear form of the potential outcomes is assumed)
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Outcome response distr. for compliers by treatment in estimation

15
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E(Y|x,D;compliers)

Note: A linear form of the potential outcomes is assumed

D=1: treated compliers D=0: untreated compliers ‘

The two graphs look very similar, thus offering support for the correctness of our
estimation procedure for compliers’ characterization.

4.4.2 An Application of RDD by Simulation

The next subsections present two simulative experiments for sharp RDD and fuzzy
RDD, respectively. The virtue of such a simulation approach lies in being able to
write down the correct data generating process of each RDD type. Thus, it allows an
in-depth inspection of the assumption, properties, and expected results relative to
this quasi-experimental technique. Of course, the Stata codes presented can be
easily used in real datasets.

4.4.2.1 Simulating Sharp RDD

In this application we generate by simulation a sharp RDD setting producing a
forcing variable s with a cutoff at § = 10. Recall that, in the sharp RDD, the
treatment D is a deterministic function of s. The outcome Y is modeled as a cubic
function of s to allow for some nonlinearity in the response of Y to s. Given such a
simulative setting, the objectives of this application are: (1) to estimate ATE using
standard polynomial regression approach and graph the result; (2) to estimate ATE
using a nonparametric local polynomial regression and graph the result; (3) to write
a simple program to obtain the bootstrapped standard error of ATE in case (2); and
(4) to replicate these results using the user-written Stata command rd.

The first step is that of generating a sharp RDD (observe that the treatment D is
here indicated by the variable “w”):
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. clear all

. set scheme slmono

. set obs 1000 // generate N=1000
. set seed 1010 // set the simulation seed to get same results
. gen s = 10 +5 * invnorm(uniform())

. global s_star = 10

. gen x=s-$s_star // define x as (s-s*)

. gen w=1 1if s > $s_star // define w=treatment

. replace w=0 if s <= $s_star

. gen yl = 60046.5*x-2*x"2+0.001*x"3 + 300*invnorm(uniform()) // generate yl
. gen y0 = 20046.5*%x-0.20*x"2+0.01*x"3+ 300*invnorm(uniform()) // generate y0

. gen y=y0+w* (yl-y0) // generate the observable outcome by POM

Given such a data generating process, we saw that ATE is equal to the difference
between the intercept of “y/” and that of “y0,” that is 600 —200=400. As the
simulated value for ATE is 400, we take this value as benchmark for the next
analysis. Firstly, we visualize the outcome discontinuity at the cutoff. To that end,
we plot two overlapping histograms of the outcome variable, one for values of Y on
the left and the other for values of Y on the right of the cutoff by typing:

. twoway ///

hist y if s>$s_star, barw(60) bcolor(gray) ///

[ 777/

hist y 1f s<$s_star , barw(60) bcolor(black) ///

legend(order (1 "Right side" 2 "Left side") pos(1ll) col(l) ring(0)) ///

xtitle() ytitle(Frequency) ylabel ()
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This plot shows evidence of a significant difference in such distributions, leading
one to suspect that a relevant jump of the outcome at the threshold is present.
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We then illustrate that, by construction, manipulation in the forcing variable is

excluded plotting its density as follows:

. hist s , x1ine(10)

Density

30

Given this result (namely, non-manipulation), we can go on to apply sharp RDD
in the linear case using formula (4.70) and in the polynomial regression case using
formula (4.71). We set out by using a full parametric model interpolated globally
over all observations, so that no bandwidth has to be declared. Note that we adopt a
third degree polynomial, whose terms are calculated as follows:

. gen wx=w*x

. gen wx2=w*x"2
. gen wx3=w*x"3
. gen x2=x"2

. gen x3=x"3

Thus, we have all the ingredients necessary to estimate ATE in the first instance

by a linear regression:

. reg y w Xx wx // linear regression

Source | ss af MS Number of obs = 1000
+ F( 3, 996) = 144.39

Model | 41978638.2 3 13992879.4 Prob > F = 0.0000
Residual | 96521388.4 996 96909.0245 R-squared = 0.3031
Adj R-squared = 0.3010

Total | 138500027 999 138638.665 Root MSE = 311.3

vy | Coef. std. Err. t P>t [95% Conf. Intervall]

w | 417.6347 32.37368 12.90 0.000 354.1063 481.1632
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x| 13.70573 4.682043 2.93 0.003 4.517933
wx | -31.77256 6.53887 -4.86 0.000 -44.6041
_cons | 235.5256 22.89783 10.29 0.000 190.592

22.89353
-18.94102
280.4591

The obtained results provide us with an estimation of ATE (i.e., the coefficient of
“w”) equal to 417, which is highly significant too. Such a value is slightly biased in
that the true value of ATE is equal to 400: a (small) bias of around 4.25 %,
calculated as 1(400 —417)/400I - 100, appears. We conclude that the linear approx-
imation is a little imprecise with a small, but evident, overestimation of the true
causal effect. A graphical analysis may at this point be useful too. We save the fitted

values of previous linear regression by typing:

. predict y_hat_1 , xb // global linear fit

We can therefore plot the sharp RDD graph for the linear fit by typing:

. graph twoway ///
(scatter y s if s>=Ss_star , clstyle(pl)) ///
(scatter vy s if s<=$s_star , clstyle(pl)) ///
(scatter y_hat_1 s if s>=$s_star , msymbol (o)) ///
(scatter y_hat_1 s if s<=$s_star , msymbol (o)) ///
, xline($s_star, lpattern(dash)) ///

title("Sharp-RDD - Parametric linear regression") ///

legend( label(1l "Right Actual Data") label(2 "Left Actual Data") ///

label (3 "Right Prediction") label(4 "Left Prediction"))

Sharp-RDD - Parametric linear regression
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This graph clearly suggests the presence of a jump at the threshold, although the
global linear approximation results in a rather unsatisfying estimation.
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In an attempt to increase estimation precision, we subsequently estimate ATE by
a global third degree polynomial regression and save the fitted values as follows:

. reg y w x x2 x3 wx wx2 wx3 // global polynomial regression

Source | ss af MS Number of obs = 1000
F( 7, 992) = 64.01

Model | 43094373.3 7 6156339.05 Prob > F = 0.0000
Residual | 95405653.3 992 96175.0537 R-squared = 0.3112
————————————— e Adj R-squared = 0.3063
Total | 138500027 999 138638.665 Root MSE = 310.12

vy | Coef. std. Err. t P>|t| [95% Conf. Intervall

wo| 399.6854 54.4856 7.34 0.000 292.7652 506.6057

x | -14.40288 26.97959 -0.53 0.594 -67.34651 38.54074

x2 | -2.833962 4.92639 -0.58 0.565 -12.5013 6.833381

x3 | -.0177433 .2431435 -0.07 0.942 —.494878 .4593914

wx | 33.2883 37.41278 0.89 0.374 -40.12898 106.7056

wx2 | -1.101202 6.589222 -0.17 0.867 -14.03162 11.82921

wx3 ‘ .0810121 .313127 0.26 0.796 -.5334552 .6954794
_cons | 191.4839 37.43172 5.12 0.000 118.0295 264.9384

. predict y_hat , xb // polynomial fit

The previous Stata output table illustrates an estimation of ATE equal to
399, which is highly significant. This value of the ATE proves to be almost exactly
equal to the true value 400. As we did with the linear fit, we plot the sharp RDD
graph for this third degree polynomial by typing:

. graph twoway ///
(scatter y s if s>=$s_star , clstyle(pl)) ///
(scatter y s if s<=S$s_star , clstyle(pl)) ///
(scatter y_hat s if s>=Ss_star , msymbol(o)) ///
(scatter y_hat s if s<=S$s_star , msymbol(o)) ///
, xline($s_star, lpattern(dash)) ///
title("Sharp-RDD - Parametric Polynomial Regression") ///
legend( label (1l "Right Actual Data") label (2 "Left Actual Data") ///

label (3 "Right Prediction") label(4 "Left Prediction"))
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Sharp-RDD - Parametric Polynomial Regression
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where, again, the significance of the jump at the cutoff is clearly visible.

We can now proceed to estimate the ATE using a local polynomial regression
(i.e., a nonparametric approach) and graphing the results. To this end, we apply a
smoothing approach using the Stata command lpoly. Before proceeding, it is
useful to look at the help file of this command:

. help lpoly
Title
[R] lpoly -- Kernel-weighted local polynomial smoothing
Syntax
lpoly yvar xvar [if] [in] [weight] [, options]

options description

Main
kernel (kernel) specify kernel function; default is kernel (epanechnikov)
bwidth(#\varname) specify kernel bandwidth
degree (#) specify degree of the polynomial smooth; default is
degree (0)
generate ( [newvar_x]newvar_s) store the grid in newvar_x and smoothed points in
newvar_s
n(#) obtain the smooth at # points; default is min(N,50)
at (varname) obtain the smooth at the values specified by varname
nograph suppress graph
noscatter suppress scatterplot only
SE/CI
ci plot confidence bands
level (#) set confidence level; default is level (95)
e (newvar) store standard errors in newvar
pwidth (#) specify pilot bandwidth for standard error calculation

var(#|varname) specify estimates of residual variance
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The main options for 1poly are reported above. For our purposes, the most
relevant are: the one for the choice of the bandwidth, i.e., bwidth () ; the one for
the choice of the kernel, i.e., kernel (); the one specifying the degree of the
polynomial smooth, i.e., degree (#). As for the choice of the bandwidth, if not
differently specified, 1poly uses by default the rule-of-thumb (ROT) formula of
(4.105). As clearly discussed, this adopts a plug-in approach using all the observa-
tions present in the dataset. With regard to the choice of the kernel function, 1poly
uses, by default, the Epanechnikov kernel, although many other options are possible
as it is listed below:

kernel description

epanechnikov Epanechnikov kernel function; the default
epan?2 alternative Epanechnikov kernel function
biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

Moreover, 1poly also allows for considering a local varying bandwidth that
can be specified by the user as bwidth (varname), along with an explicit
smoothing grid using the at () option.

In this exercise, we fix a bandwidth equal to 5, we consider the forcing variable
as the grid, we call the left-side smoothing estimates “f0” and the right-side
estimates as “f/,” and we assume a third degree local polynomial:

. global bendw 5 // Fix the bandwidth

. capture drop f0 f1

* Left (smoothed) estimates are called "fO0".
* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly vy s if s<S$Ss_star, gen(f0) at(s) k(tri) bw($bendw) deg(3) nogr

* Right (smoothed) estimates are called "f1".
* The grid is "s".

* The bandwight is 5.

* The polynomial degree is 3.

. lpoly y s if s>=$s_star, gen(fl) at(s) k(tri) bw($Sbendw) deg(3) nogr
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Finally, we graph the results:

. graph twoway ///
(scatter y s if s>=S$s_star , clstyle(pl)) ///

(scatter y s if s<=S$s_star , clstyle(pl)) ///

(scatter f0 s if s<$s_star, msize(medsmall) msymbol (o)) /17
(scatter f1 s if s>=$s_star, msize(medsmall) msymbol (o)) ///
, xline($s_star, lpattern(dash)) ///

title("Sharp RDD - Local polynomial regression (LPR)") ///

legend(label (1 "Right actual data") label (2 "Left actual data") ///
label (3 "Right LPR prediction") label(4 "Left LPR prediction")) ///

note (Bandwidth = $bendw)
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Bandwidth = 5

We can now also calculate the ATE in this framework. The trick here is to put
the grid equal to a constant variable z = s returning a single value for “f/”” and “f0”
equal to the difference in the two curves in z = 5 (namely, in the threshold) that we
know to be exactly the ATE:

. cap drop f0 f1

. gen z=S$s_star

. qui lpoly y s if s<$s_star, gen(£f0) at(z) k(tri) bw($bendw) deg(3) nogr

. qui lpoly y s if s>=$s_star, gen(fl) at(z) k(tri) bw($Sbendw) deg(3) nogr
. scalar ate=f1[1]-£f0[1]

. display ate

. 306.80612

We see that the value of the ATE in this case is around 307, resulting in a bias of
around 23 % given by:

. di(400-307)/400%100
23.25
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indicating that the nonparametric approach has in this case reduced the estimate
precision, given that our DGP is perfectly interpolated by a cubic function over all
observations. Unlike the parametric case, however, the previous nonparametric
approach does not provide the standard error of the ATE estimate, so that the
usual test of significance cannot be implemented. Nevertheless, we can in this case
write a simple Stata program to recover the bootstrapped standard error for ATE.
We call such a program rdd_s; observe that this is not a Stata ADO program, but
just a program returning the estimate of ATE and taking as arguments the degree of
the polynomial degree (deg) and the type of kernel function (ker):

* Program "rdd_s"
. capture program drop rdd_s
. prog rdd_s, rclass
version 13
args deg ker band cut
cap drop f0 flz
gen z=‘cut’
qui lpoly y s if s<‘'cut’, gen(f0) at(z) k(‘ker’) bw('‘band’) deg(‘deg’) nogr
qui lpoly y s if s>=‘cut’, gen(fl) at(z) k(‘ker’) bw(‘'band’) deg(‘deg’) nogr
return scalar ate=f1[1]-£f0[1]

end

In order to get the estimation of ATE using, for instance, a three-degree
polynomial and a triangular kernel, we can type:

. rdd_s 3 tri 5 10
. return list
scalars:

r(ate) = 306.8061226179061

This returns an ATE equal to around 307 as obtained above. It is now possible to
bootstrap the ATE’s standard error in a straightforward way as follows:

. bootstrap r(ate), reps(50) seed(101): rdd_s 3 tri

Bootstrap results Number of obs = 1000
Replications = 50
command: rdd_s 3 tri
_bs_1: r(ate)

| Observed Bootstrap Normal-based

| Coef. std. Err. z P>|z| [95% Conf. Interval]

_bs_1 | 306.8061 93.06776 3.30 0.001 124.3967 489.2156
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From this result, we can conclude—as expected—that the previous ATE esti-
mation is still statistically significant.

Now, we can replicate the previous results using the rd . ado user-written Stata
command (Nichols 2007). The syntax of this command, along with its main options,
is displayed below (more information can be obtained by typing help rd):

Description

rd implements a set of regression-discontinuity estimation methods. rd estimates
local linear or kernel regression models on both sides of the cut-off, using
a triangle kernel. Estimates are sensitive to the choice of bandwidth, so by
default several estimates are constructed using different bandwidths. In
practice, rd uses kernel-weighted suest (or ivreg if suest fails) to estimate
the local linear regressions and reports analytic SE based on the

regressions.

Syntax

rd outcomevar [treatmentvar] assignmentvar [if] [in] [weight] [, options]
Note: there should be two or three variables specified after the rd command; if
two are specified, a sharp RD design is assumed, where the treatment variable
jumps from zero to one at the cut-off. If no variables are specified after the

rd command, the estimates table is displayed.

Main options

mbw (numlist): specifies a list of multiples for bandwidths, in percentage terms.
The default is "100 50 200" (i.e. half and twice the requested bandwidth) and

100 is always included in the list, regardless of whether it is specified.
z0(real) : specifies the cut-off Z0 in assignmentvar Z.
x(varlist): requests estimates of jumps in control variables varlist.

ddens: requests a computation of a discontinuity in the density of Z. This is
computed in a relatively ad hoc way, and should be redone using McCrary'’s

test described at: http://www.econ.berkeley.edu/~jmccrary/DCdensity/.

s (stubname) : requests that estimates be saved as new variables beginning with

stubname.

graph: requests that local linear regression graphs for each bandwidth be

produced.
bdep: requests a graph of estimates versus bendwidths.

bwidth(real): allows specification of a bandwidth for local linear regressions.

The default is to use the estimated optimal bandwidth for a "sharp" design as
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given by Imbens and Kalyanaraman (2012). The optimal bandwidth minimizes MSE,
or squared bias plus variance, where a smaller bandwidth tends to produce
lower bias and higher variance. Note that the optimal bandwidth will often
tend to be larger for a fuzzy design, due to the additional variance that

arises from the estimation of the jump in the conditional mean of treatment.

kernel (rectangle) : requests the use of a rectangle (uniform) kernel. The default

is a triangle (edge) kernel.

covar (varlist): adds covariates to Local Wald Estimation.

295

The rd command considers only local linear regressions, thus excluding the
possibility to fit local polynomial regressions as we did using rdd_s. One impor-
tant advantage, however, is that—by default—xrd considers bandwidth as the
optimal one provided by Imbens and Kalyanaraman (2012) expressed in (4.97).

Users can also choose to set different bandwidths.

First of all, we show that rd provides the same results as the program rdd_s,
provided that in rdd_ s we consider a polynomial of degree one (i.e., a local linear
regression) and in rd the same bandwidth. If we run program rdd_s with a

polynomial degree option equal to one, we get an ATE equal to:

. rdd_s 1 tri
. return list
scalars:

r(ate) = 379.8166986980401
which is the same as the one obtained by typing :

. rdy s , z0($s_star) bw(Sbendw)

Two variables specified; treatment is

assumed to jump from zero to one at Z=10.

Assignment variable Z is s
Treatment variable X_T unspecified

Outcome variable y is y

Estimating for bandwidth 5
Estimating for bandwidth 2.5

Estimating for bandwidth 10

vy | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
lwald | 379.8167 49.66377 7.65 0.000 282.4775 477.1559
lwald50 I 343.0671 66.97426 5.12 0.000 211.7999 474.3342

1wald200 | 410.6234 37.5783 10.93 0.000 336.9713 484.2755
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The result for the bandwidth equal to 5 is 379.81, that is rather close to the true
ATE value. rd also provides by default results for proportionally smaller and larger
bandwidths as displayed in the results’ table above. One can also declare a series of
proportional bandwidths separated by a specific step and then plot the various ATE
estimates versus bandwidths using the following command:

rdy s , z0($s_star) bw(Sbendw) mbw(10(10)200) bdep

Estimating for bandwidth 5
Estimating for bandwidth .5

Estimating for bandwidth 1

Estimating for bandwidth 1.5
Estimating for bandwidth 2
Estimating for bandwidth 2.5
Estimating for bandwidth 3
Estimating for bandwidth 3.5
Estimating for bandwidth 4
Estimating for bandwidth 4.5
Estimating for bandwidth 5.5
Estimating for bandwidth 6
Estimating for bandwidth 6.5
Estimating for bandwidth 7
Estimating for bandwidth 7.5

Estimating for bandwidth 8

©
o

Estimating for bandwidth
Estimating for bandwidth 9
Estimating for bandwidth 9.5

Estimating for bandwidth 10

vy | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ o e
lwald | 379.8167 49.66377 7.65 0.000 282.4775 477.1559
lwaldlo | 213.1167 136.7133 1.56 0.119 -54.83646 481.0698
lwald20 | 307.2441 96.9611 3.17 0.002 117.2039 497.2844
lwald30 | 318.5954 82.2223 3.87 0.000 157.4426 479.7481
lwald4o | 335.6237 73.66202 4.56 0.000 191.2488 479.9986
lwald50 | 343.0671 66.97426 5.12 0.000 211.7999 474 .3342
lwald60 | 350.7385 61.32289 5.72 0.000 230.5479 470.9292
lwald70 | 358.5919 57.70817 6.21 0.000 245.4859 471.6978
lwaldso | 369.8862 54.58116 6.78 0.000 262.9091 476.8633
1lwald9o | 376.8164 51.8844 7.26 0.000 275.1249 478.508
lwaldllo ‘ 384.7128 47.83083 8.04 0.000 290.9661 478.4595
lwaldl20 | 389.6336 46.09231 8.45 0.000 299.2943 479.9728
lwaldl30 | 394.7869 44.29958 8.91 0.000 307.9614 481.6125
lwaldl40 | 401.0488 42.76487 9.38 0.000 317.2312 484.8664
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lwaldl50 | 405.1497 41.47248 9.77 0.000 323.8651 486.4343
lwaldl60 | 407.381 40.40292 10.08 0.000 328.1927 486.5692
lwaldl70 | 408.767 39.51606 10.34 0.000 331.317 486.2171
lwaldl8o | 410.2129 38.75568 10.58 0.000 334.2531 486.1726
lwaldl90 | 410.7 38.12595 10.77 0.000 335.9745 485.4255
lwald200 | 410.6234 37.5783 10.93 0.000 336.9713 484.2755
o
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The graph obtained is particularly explicative in showing that, as soon as the
bandwidth increases, estimation becomes more precise. Observe, moreover, that the
optimal bandwidth can be obtained by default by writing:

. rdy s , z0($Ss_star)

Estimating for bandwidth 3.193236072866368
Estimating for bandwidth 1.596618036433184
Estimating for bandwidth 6.386472145732736
vy | Coef. std. Err. z P>|z| [95% Conf. Intervall
lwald | 352.2594 59.74646 5.90 0.000 235.1585 469.3603
lwald50 | 324.9141 80.21817 4.05 0.000 167.6893 482.1388
1lwald200 | 393.4936 44.70381 8.80 0.000 305.8757 481.1114

where it is visible that the optimal (default) bandwidth is equal to 3.16. Note that
for this bandwidth, the estimated value of the ATE is 352 that is quite far from the
true value, 400, with a bias of around 12 %. The fact we still obtain a bias with an
optimal bandwidth in large samples is not surprising. As argued in the theoretical
part of this chapter, the asymptotic normal distribution of nonparametric estimates
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presents an asymptotic nonzero bias with convergence occurring at rate N7 In
this case, however, since our DGP assumes a global parametric regression, it is not
surprising that precision increases as soon as the bandwidth increases.

4.4.2.2 Fuzzy RDD

For fuzzy RDD, we follow in the footsteps of the previous example but this time, for
the sake of simplicity, we generate a forcing variable with a cutoff at 0. Recall that
in the fuzzy RDD, the treatment variable is a stochastic (rather than deterministic)
function of s. Moreover, we assume, as in the case of sharp RDD, potential
outcomes to be nonlinear functions of s. In this exercise, once a fuzzy RDD data
generating mechanism has been produced, the objective will be that of: (1) estimat-
ing ATE using a global parametric regression approach and graph the results;
(2) estimating ATE using a nonparametric local linear regression and graph the
results; (3) writing a simple Stata program to obtain the bootstrapped standard error
for ATE in case (2); (4) replicating results using the rd Stata command.

We set out by producing the following fuzzy RDD setting, similar to that of
Yang (2013): the forcing variable is drawn from a uniform distribution in the
interval [—1; 1]. This implies that the variable s has mean equal to 0 and variance
equal to 1/3. As the threshold is at zero, we assume at that point a discontinuity in
the probability of getting treated. The binary treatment variable is thus defined
through the following index function:

D,’ = 1[—0.5+T,'+S,'+L{l' ZO]
Ti = I[S,‘ > 0]
u; ~N(0;1)

where T; is equal to 1 if unit 7 is located in the right and O if located in the left of the
zero cutoff. The previous DGP generates a discontinuity in the probability of
treatment at the cutoff equal to 0.383. In fact, we immediately see that:

lim p(D = 1] =) ~lim p(D = 1] S =5) = ®(0.5) ~ ®(-0.5) = 0383

with ®(-) representing the Normal cumulative distribution function. Finally, we
assume the following form of the potential outcomes:

Yi=2+4f(s)+v
Y()=1+f(s)—|—v
f(s) = s+ 5%+ 3s°
v~ N(0;1)
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This DGP for the potential outcomes results in this form of the observable
outcome Y:

Y=Yy+DX1—Yo)=14+D+ f(s)+v
Since:
E(Y|s)=14+ED|s)+ f(s)=1+pD=1]s)+ f(s)
we have that:
lgglE(Y |S=3s)— 1:%1E(Y |S=1s)=[1+®(0.5)] — [l + ®(-0.5)]
= ®(0.5) — ©(—-0.5) = 0.383

showing that the Wald estimator of such a DGP is equal to 1. In other words:

1Sig1E(Y |S=s)— lsi%lE(Y |S=ys)

0383

= =1
lifpp(D:1|S:s)—li%pp(D:1|S:s) 0.383

We now implement such a DGP in Stata as follows:

. clear all

. set seed 10101

. set scheme slmono

. set obs 1000 // Generate N=1000
. gen s = -1+2*runiform()

. gen T=(s>=0)

*

Generate w (binary treatment variable)

. gen v = rnormal(0,1)

. gen w = (-0.5+T+s+v>=0)

.genyl = 2 + s + 872 + 3*s”3 + invnorm(uniform())
.gen y0 = 1 + s + 872 + 3*s”3 + invnorm(uniform())

. geny = y0 + w*(yl-y0)

We show that, in this DGP, the actual value of ATE is equal to 1 by performing
an Instrumental-variables regression of Y on D using T as instrument:

. gen s2 = g2
. gen s3 = s”3
. regw T s s2 s3

. ivreg y (w=T) s s2 s3
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Instrumental variables (2SLS) regression

Source | ss af MS Number of obs 1000

F( 4, 995) 1088.22

Model | 4513.46408 4 1128.36602 Prob > F = 0.0000

Residual | 995.058127 995 1.00005842 R-squared 0.8194

—_—— + - Adj R-squared 0.8186

Total | 5508.52221 999 5.51403625 Root MSE 1

vy | Coef. Sstd. Err. t P>|t| [95% Conf. Intervall

wo| .9988115 .451382 2.21 0.027 .1130416 1.884581

s | 1.006081 .4235583 2.38 0.018 .1749108 1.837251

s2 | .8569674 .1030806 8.31 0.000 .6546871 1.059248

s3 | 3.051368 .3222467 9.47 0.000 2.419007 3.683729

_cons | 1.035791 .225424 4.59 0.000 .5934302 1.478152

Instrumented: w

Instruments: s s2 s3 T

which reports an ATE equal to 0.998, very close to 1, as expected.
We can go on by estimating nonparametrically the outcome discontinuity, using
a local third degree polynomial and then drawing the corresponding graph:

*

Outcome discontinuity

global s_star 0

global bendw 5 // Fix the bandwidth
capture drop f0 f1

Left estimates are called "f0".

*

The grid is "s".

*

The bandwight is 5.

*

The polynomial degree is 3.

lpoly v s if s<Ss_star, gen(f0) at(s) k(tri) bw(Sbendw) deg(3) nogr

*

Right estimates are called "fl".

*

The grid is "s".

*

The bandwight is 5.

*

The polynomial degree is 3.

lpoly yv s if s>=$s_star, gen(fl) at(s) k(tri) bw($bendw) deg(3) nogr

*

Make the graph:

graph twoway ///
(scatter y s if s>=$s_star , clstyle(pl)) ///
(scatter y s if s<=$s_star , clstyle(pl)) ///

(scatter f0 s if s<$s_star, msize(medsmall) msymbol(o)) ///
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(scatter fl s if s>=$s_star, msize(medsmall) msymbol (o)) /17
, xline(Ss_star, lpattern(dash)) ///
title("Fuzzy-RDD - Outcome Non-parametric Local Linear Regression" ,
size (medlarge)) ///
legend(label (1 "Right Actual Data") label (2 "Left Actual Data") ///
label (3 "Right LLR Prediction") label (4 "Left LLR Prediction")) ///

note (Bandwidth = S$bendw)

Fuzzy-RDD - Outcome Non-parametric Local Linear Regression

-1 -5

® Right Actual Data Left Actual Data
¢ Right LLR Prediction < Left LLR Prediction

Bandwidth = 5

Likewise, we can do the same for the probability discontinuity:

*

Probability discontonuity

global s_star 0

global bendw 5 // Fix the bandwidth
capture drop f0 f1

* Left estimates are called "gO".

*

The grid is "s".

*

The bandwight is 5.

*

The polynomial degree is 3.

lpoly w s if s<S$s_star, gen(g0) at(s) k(tri) bw(Sbendw) deg(3) nogr

*

Right estimates are called "gl".

*

The grid is "s".

*

The bandwight is 5.

*

The polynomial degree is 3.

lpoly w s if s>=$s_star, gen(gl) at(s) k(tri) bw($bendw) deg(3) nogr

*

Graph:

graph twoway ///
(scatter w s if s>=$s_star & w==1 , clstyle(pl)) ///
(scatter w s if s<=$s_star & w==0, clstyle(pl)) ///

(scatter g0 s if s<$s_star, msize(medsmall) msymbol (o)) /17
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(scatter gl s if s>=$s_star, msize(medsmall) msymbol (o)) ///
, xline(Ss_star, lpattern(dash)) ///
title("Fuzzy-RDD - Probability Non-parametric Local Linear Regression") ///

legend(label (1 "Right Actual Data") label(2 "Left Actual Data") ///
label (3 "Right LLR Prediction") label (4 "Left LLR Prediction")) ///

note (Bandwidth = S$bendw)

Fuzzy-RDD - Probability Non-parametric Local Linear Regression
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Finally, we write a simple program to obtain the bootstrapped standard error for
ATE in the nonparametric case. We call this program rdd_ f, taking as arguments
the degree of the polynomial (deg), the type of kernel function (ker), the band-
width (band), and the cutoff (cut):

* Program "rdd_f"

capture program drop rdd_f

prog rdd_f, rclass

version 13

args deg ker band cut

* Outcome discontinuity

cap drop z f0 f1

gen z='‘cut’

cap drop f0 f1

qui lpoly y s if s<‘'cut’, gen(f0) at(z) k(‘ker’) bw(‘'band’) deg(‘deg’) nogr
qui lpoly y s if s>=‘cut’, gen(fl) at(z) k(‘ker’) bw(‘band’) deg(‘'deg’) nogr
scalar disc_y=f1[1]-£f0[1]

* Probability discontinuity

cap drop g0 gl

qui lpoly w s if s<‘'cut’, gen(g0) at(z) k(‘ker’) bw(‘'‘band’) deg(‘deg’) nogr
qui lpoly w s if s>=‘cut’, gen(gl) at(z) k(‘ker’) bw(‘band’) deg(‘'deg’) nogr
scalar disc_w=gl[1]-g0[1]

return scalar ate=disc_y/disc_w

end
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. rdd_f 3 tri 50
. return list
scalars:
r(ate) = .681765296755097

It is now possible to bootstrap the standard error for ATE in a straightforward
way:
rdd £ 3 tri 50

. bootstrap r(ate), reps(10):

Bootstrap results Number of obs = 1000
Replications = 10
command: rdd_f 3 tri 5 0
_bs_1: r(ate)
| Observed Bootstrap Normal-based
| Coef. std. Err. z P>|z]| [95% Conf. Interval]
_bs_1 | .6817653 1.082933 0.63 0.529 -1.440745 2.804275

Finally, as in the sharp RDD case, we replicate results using the rd Stata
command. For the sake of comparison, however, we have to consider a polynomial
of degree 1, as rd implements a local linear approach:

. rdd_f 1 tri 5 0

. return list

scalars:
r(ate) = -1.747380009730471

that is equivalent to running:

.rdyws , z0(0) bw(5)

Estimating for bandwidth 5
Estimating for bandwidth 2.5

Estimating for bandwidth 10

v | Coef . Std. Err. z P>|z]| [95% Conf. Interval]
numer | -.7499524 .1483967 -5.05 0.000 -1.040805 -.4591003
denom | .4291868 .0534704 8.03 0.000 .3243868 .5339868
lwald | -1.74738 .4720134 -3.70 0.000 -2.672509 -.8222507

numer50 | -.6751287 .1489964 -4.53 0.000 -.9671563 -.3831011
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denom50 | .4246377 .0542582 7.83 0.000 .3182935 .5309819
lwald50 | -1.589893 .4671927 -3.40 0.001 -2.505574 -.6742127
numer200 | -.7828516 .1482526 -5.28 0.000 -1.073421 -.4922819
denom200 | .4311897 .0531644 8.11 0.000 .3269893 .53539
lwald200 | -1.815562 .4743201 -3.83 0.000 -2.745212 -.8859117

We can see that, according to the previous results, the Wald estimator obtained
using rd is equal to —1.747, the same as the one obtained using rdd_£f. Such a
value seems however really far from the true value of ATE, which we saw to be
equal to 1. This result is caused by an incorrect choice of the bandwidth, so that we
need to reestimate the model using the optimal bandwidth as follows:

.rdy ws , z0(0)

Estimating for bandwidth .4713549912056355
Estimating for bandwidth .2356774956028178
Estimating for bandwidth .942709982411271

vy | Coef. std. Err. z P>|z| [95% Conf. Intervall

numer | .2267855 .2365194 0.96 0.338 -.2367841 .6903551
denom | .3243078 .0919351 3.53 0.000 .1441183 .5044973
lwald | .699291 .6594338 1.06 0.289 -.5931755 1.991757
numer50 | .2075673 .3331399 0.62 0.533 —.445375 .8605096
denom50 | .2442051 .1298294 1.88 0.060 -.0102558 .498666
lwald50 | .8499711 1.219224 0.70 0.486 -1.539664 3.239606
numer200 ‘ -.1048066 .1662147 -0.63 0.528 -.4305815 .2209682
denom200 | .3901452 .0639885 6.10 0.000 .26473 .5155603
1lwald200 | —.268635 .4467665 -0.60 0.548 -1.144281 .6070113

The value of ATE with optimal bandwidth (equal to 0.471) is now equal to 0.7,
while is much closer to 1, it is not exactly one. The bias which occurs depends on
the fact that, in the case of nonparametric regressions, even asymptotically, the bias
does not disappear although it tends to become smaller when N is rather large.
Moreover, recall that the rate of convergence of nonparametric methods is N~ %4,
that is slower than that of parametric approaches. It is interesting to see that when
the bandwidth is chosen as half of the optimal one (see the value for lwald50 in
the previous table), then we have a reduction of the bias which moves from
(1—-0.699)=0.301 to (1 —0.849)=0.151. This is the case of undersmoothing,
which occurs with a choice of the bandwidth (0.235) lower than the optimal one
(0.471). Of course, undersmoothing has a price, since it returns a larger estimated
standard error (1.219) compared to the one obtained under optimal smoothing
(0.659).
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Finally, in what follows, we write a Stata code to calculate the value of the Wald
estimator for different sample sizes. We put the attained results into a matrix A with
six rows and two columns:

. mat def A=J(6,2,.)

. local k=1

foreach i of numlist 1000 10000 50000 100000 200000 300000 {
. clear

. set seed 10101

. set obs ‘i’

. gen s = -1+2*runiform()

. gen T=(s>=0)

*

Generate w (binary treatment variable)

. gen v = rnormal(0,1)

. gen w = (-0.5+T+s+v>=0)

. gen yl = 2 + s + 872 + 3*s”3 + invnorm(uniform())
.gen y0 = 1 + s + 872 + 3*s”3 + invnorm(uniform())

. geny = y0 + w*(yl-y0)

. qui rdyws , z0(0)

. matrix A[‘'k’,1]=_b[lwald]
. matrix A[‘k’,2]='1"

. local k=‘k’'+1

. matrix colnames A = Wald_est Sample_size

. mat list A

Al6,2]

Wald_est Sample_size

rl .69929098 1000
r2 1.0268281 10000
r3 .98720917 50000
rd .82719328 100000
r5 1.0884702 200000
ré6 .99637508 300000

As expected, we clearly see that—when using optimal bandwidth—and as long
as N becomes sufficiently large, the Wald estimator converges to 1. Finally, after
regenerating the simulation with N = 10,000, as we did at the outset of this section,
we can draw the Wald estimator for different bandwidths as follows:

.rdy ws , z0(0) mbw(10(10)100) bdep

Estimating for bandwidth .4713549912056355
Estimating for bandwidth .0471354991205636
Estimating for bandwidth .0942709982411271
Estimating for bandwidth .1414064973616906
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Estimating for bandwidth .1885419964822542
Estimating for bandwidth .2356774956028178
Estimating for bandwidth .2828129947233813
Estimating for bandwidth .3299484938439448
Estimating for bandwidth .3770839929645085
Estimating for bandwidth .424219492085072

vy | Coef.  std. Err. z P>|z]| [95% Conf. Interval]
numer | .2267855 .2365194 0.96 0.338 -.2367841 .6903551
denom | .3243078 .0919351 3.53 0.000 .1441183 .5044973
lwald | .699291 .6594338 1.06 0.289 -.5931755 1.991757
numerl0 | -.9352515 .500547 -1.87 0.062 -1.916306 .0458026
denoml10 | .1389788 .2854189 0.49 0.626 -.420432 .6983896
lwaldl0 | -6.729454 15.31744 -0.44 0.660 -36.75109 23.29219
numer20 | -.3321133 .4564705 -0.73 0.467 -1.226779 .5625524
denom20 | .1718275 .1987912 0.86 0.387 -.2177961 .561451
1lwald20 | -1.93283 4.102229 -0.47 0.638 -9.973051 6.10739
numer30 | -.1312488 .4242862 -0.31 0.757 -.9628345 .7003369
denom30 | .126333 .1716659 0.74 0.462 -.210126 .4627921
lwald30 | -1.038911 4.159927 -0.25 0.803 -9.192218 7.114396
numer40 | .0881357 .3747688 0.24 0.814 -.6463976 .822669
denom40 | .1784971 .1472767 1.21 0.226 -.1101599 .467154
lwald40 | .4937656 1.948472 0.25 0.800 -3.325169 4.3127
numer50 | .2075673 .3331399 0.62 0.533 —.445375 .8605096
denom50 | .2442051 .1298294 1.88 0.060 -.0102558 .498666
lwald50 | .8499711 1.219224 0.70 0.486 -1.539664 3.239606
numer60 | .1859986 .3084208 0.60 0.546 -.418495 .7904922
denom60 | .2625558 .1198433 2.19 0.028 .0276673 .4974443
lwald60 | .7084156 1.061916 0.67 0.505 -1.372901 2.789732
numer70 | .1985204 .2853907 0.70 0.487 -.3608351 .7578759
denom70 | .2687388 .1102866 2.44 0.015 .052581 .4848966
lwald70 | .7387114 .9581545 0.77 0.441 -1.139237 2.61666
numers80 | .2127692 .2653003 0.80 0.423 -.3072099 .7327483
denom80 | .289658 .102578 2.82 0.005 .0886087 .4907073
lwaldso | .7345531 .8263895 0.89 0.374 -.8851404 2.354247
numer90 | .2260461 .2495957 0.91 0.365 -.2631524 .7152446
denom90 | .3120691 .0968244 3.22 0.001 .1222967 .5018414
1wald9o | .7243465 .721625 1.00 0.315 -.6900126 2.138706
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The results obtained seem to confirm that a moderate undersmoothing reduces
the bias, although with a slighter increase in the variance of the estimator.
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