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Preface

This book is an outgrowth of courses we have offered on stochastic calculus and
its applications to derivative securities pricing over the last 15 years. The courses
have been offered several times to doctoral students and students in the Master of
Quantitative Finance and its forerunner programs in the Finance Discipline Group,
UTS Business School at the University of Technology Sydney (UTS), and three
times to students in the Financial Engineering program at Nanyang Business School
in Singapore. It has also served for shorter courses at the Graduate School of
International Corporate Strategy at Hitotsubashi University in Tokyo, the Faculty
of Economics at the University of Bielefeld in Germany, the Dipartimento di
Matematica per le Decisioni at the University of Florence and the Graduate School
of Economics at the University of Kyoto.

The aim of the book is to provide a unifying framework within which many
of the key results on derivative security pricing can be placed and related to
each other. We have also tried to provide an introductory discussion on stochastic
processes sufficient to give a good intuitive feel for Ito’s Lemma, martingales and
the application of Girsanov’s theorem. With the explosion of the literature on option
pricing in the last four decades, it would obviously not have been possible to cover in
one course even a fraction of the main results. Rather, it was our intention that those
completing the course would be able to more confidently approach that literature
with a good intuitive understanding of the basic techniques, a good overview of
how the different parts of the literature relate to each other, and a knowledge of
how to implement the theory for their own particular problems. Judging from the
feedback we have received, the book has been successful in these aims, and we
have been heartened by the very positive response we have had from people who
have read it. This includes not only our immediate circle of research collaborators
and doctoral students at UTS but also students, researchers and practitioners both in
Australia and overseas. The feedback we have received has left us more convinced
than we were 15 years ago that this book fills an important gap in the pedagogical
finance literature. There are now many excellent monographs and survey papers that
treat the revolution of stochastic methods in finance over the last 40 years. However,
many of these treatments require of the reader a high degree of, if not “fluency”,
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then certainly “maturity” with the concepts of measure theory or, are written in
the very formal lemma/theorem/proof style of modern mathematics. Readers who
are not comfortable with these concepts and formal mathematical approaches are
left with a feeling of not understanding the essential foundations of the subject
and always lack confidence in applying the techniques of stochastic finance. Our
aim in this book is to present to the reader a treatment which emphasises more
the financial intuition of the material, and which is at the same mathematical level
and uses the same basic hedging arguments of the early papers of Black–Scholes
and Merton, which sparked off the revolution to which we have referred above.
Uppermost in our mind has been the desire to give the reader an intuitive feel for the
many difficult mathematical concepts that will be encountered in working through
this book. Whilst the mathematical level is demanding, it should nevertheless be
attainable for readers who are comfortable with an intermediate level of calculus
and the non-measure theoretic approach to probability theory.

By the foregoing remarks, we do not intend to downplay or denigrate the
importance of the modern measure theoretic approach to the theory of diffusion
processes and semimartingale integration. We are acutely aware of the fact that
many of the subtleties of stochastic finance require these advanced techniques for
their proper elucidation. Furthermore, many of the important advances of the last
three decades would not have occurred, or would have been much slower in coming,
without their use. However, stochastic finance is rapidly evolving from its pure
science phase to its applied science and engineering phase. As a result, there is a
greater influx into the area of academics and practitioners who are neither “fluent”
nor even “comfortable” with measure theoretic arguments and the formal style of
modern mathematics. It is to this audience that this book is addressed. Of course
the challenge in writing a book at a more intuitive level is to do so in a way that
is respectful of the many subtleties that the measure theoretic approach and more
formal mathematical approach have been developed to address. We have done our
best to meet this challenge; however, we are mindful of many shortcomings that
may still exist.

Another feature of the book is the set of problems that has been developed
to accompany each chapter. Here, we have tried to include exercises that cover
many of the key results and examples that have become significant in applications
or in subsequent theoretical developments. As we very firmly believe that a full
understanding of stochastic methods in finance can only be attained when one can
simulate and compute the quantities that one is discussing, we have also included a
number of computational exercises.

The evolution of our thinking about stochastic methods in finance has been
greatly assisted by John Van der Hoek of the University of South Australia and
our UTS colleague Eckhard Platen. They have been most generous in sharing their
knowledge both in private conversations and in courses which they have kindly
presented at UTS. We would also like to thank some of our former doctoral students,
in particular Nadima El-Hassan, Garry de Jager, Ramaprasad Bhar, Oh Kang Kwon,
Adam Kucera, Shenhuai Gao, Thuy Duong Tô and Andrew Ziogas. Numerous
discussions and debates with them over recent years have helped, if not them,
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then certainly ourselves to clarify a number of technical points discussed in this
book. Thanks are also due to Andrew Ziogas, Nicole Mingxi Huang and Hing
Hung for developing the MATLAB programs used to do the various simulations.
We are grateful to Mark Craddok and Boda Kang for checking through a number
of mathematical derivations and making some valuable suggestions. We are also
indebted to Simon Carlstedt for checking thoroughly through the book and pointed
out a number of errors and inconsistencies. Finally, we would like to acknowledge
the efforts of Xiaolin Miao, Yuping Wu, Jingfeng He, Xuli Huang, Lifang Zhang,
Jenny Yixin Chen, Shing-Yih Chai, Laura Santuz, Gwen Tran, Stephanie Ji-Won
Ough and Linh Thuy Tô who have worked diligently and under much pressure to
prepare the various drafts and the many graphs. However, all of the aforementioned
persons should be totally absolved from any blame for any errors, omissions or
confusions that this book may still contain.

University of Technology Sydney Carl Chiarella
August 14, 2014 Xue-Zhong He

Christina Sklibosios Nikitopoulos
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Chapter 1
The Stock Option Problem

Abstract This chapter outlines the paradigm problem of option pricing and
motivates key concepts and techniques that we will develop in Part I when the risk-
free rate is deterministic.

1.1 Introduction

In this course we shall enter into a lot of the technical details involved in the pricing
of derivative securities. We shall first in Part I consider economies in which the
risk-free interest rate is deterministic and then in Part II is stochastic.

In this chapter we shall outline the paradigm problem of an option written on a
stock in an environment of deterministic interest rates. This paradigm problem will
motivate many of the concepts and techniques that we develop in Part I. We also
consider other more complicated derivative securities that are of interest in financial
markets, and the theory that will allow us to price.

1.2 The European Call Option

A European call option on a stock is a contract that gives the purchaser the right (but
not the obligation) to purchase the underlying stock at an agreed price (the exercise
price) at a fixed date (maturity) in the future. Thus if the stock price at maturity is
above the exercise price then the holder would exercise the option, but would not do
so if the stock price at maturity is below the exercise price.

The essential characteristics of the European call option situation are illustrated
in Fig. 1.1. We use S to denote the underlying stock price, E the exercise price, C
the value of the option and T the maturity date. The option contract is assumed to be
initiated at time 0, at which point in time our hypothetical investor seeks to value the
option. If the stock price realizes path 1 over the life of the option and finishes above
E then the payoff to the investor will be S.1/T � E (since he or she can purchase for
E something worth more than E). Conversely if the stock price realizes path 2 over
the life of the option then the investor will not exercise the option (since he or she
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Fig. 1.1 The characteristics of a European call option

Fig. 1.2 Visualising the distribution of ST conditional on S0

will not purchase the stock for E when it is worth less than E) and so the payoff
to the option will be 0. Using ST to denote the stock price at maturity and CT the
option payoff at maturity, then the option payoff may be written

CT D max.ST �E; 0/: (1.1)

The problem our investor faces is to determine the value of the option of some
time prior to maturity T , say time 0 in Fig. 1.2. Let us consider for a moment what
is involved in this valuation problem and what will be the mathematical concepts
and tools that we need to develop in order to finally carry out the valuation.
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The first, and perhaps most important, point to stress is that the option valuation
problem is nothing more than a discounted expected cash flow calculation of the
type that one encounters in elementary finance courses. The option has a positive
payoff if the stock price at maturity is aboveE . In fact for any particular stock price
path, the payoff is given by (1.1). Clearly the first thing we need to calculate is
the expected value of max.ST � E; 0/ and then discount this quantity back to time
zero. The two main problems (and these are the problems that make option pricing
technically complex) are first, to determine the precise distribution to be used in
calculating the expectation referred to and then actually perform this calculation,
and second, to determine the appropriate discount rate.

As far as the distribution is concerned Fig. 1.2 helps us to visualize what is
involved. We show the simulation of a number of stock price paths (think of each
of these as a possible realization of the market over the period .0; T /). The figure
also indicates the distribution of the stock price at final time (calculated using a large
number of simulations). Essentially we are interested in the probability that the stock
price at T finishes above E , and this is essentially the shaded area indicated on the
distribution.

It should by now be clear that an essential ingredient of the solution to our option
valuation problem is some theory about how stock prices (or asset prices more
generally) move stochastically and how to calculate the distributions such as the
one shown in Fig. 1.2. We will then need to develop some methods that allow us to
calculate expectations of payoffs such at (1.1) with respect to such distributions.

In Chap. 2 we will review the essential aspects of the theory of stochastic
processes, from the point of view of obtaining the distribution of the stock price
at time T conditional on observing a certain stock price at time 0. In Chap. 3 we
shall combine this understanding with the basic notion from finance of discounted
expected cash flow to make a first attempt at valuing a European option. The
expression we obtain involves (a lengthy) integration, the result of which is the
celebrated Black–Scholes option pricing formula. We go on to show how the integral
expression can be re-expressed as a partial differential equation. In the course
of these derivations we also encounter, albeit in a simple guise, the important
concepts of a martingale and the Feynman–Kac formula. Both of these concepts
are elaborated upon considerably in later chapters, and indeed play a very important
role in the development of the ideas in this book.

However the derivation of the option pricing formula in Chap. 3 leaves a lot of
loose ends, in particular it is not at all clear why we need to assume that investors
behave as if they were risk neutral. As a prelude to a derivation that tidies up the
loose ends we introduce stochastic integrals, stochastic differential equations and
Ito’s Lemma in Chaps. 4–6. Now the viewpoint on stochastic processes switches
from a focus on conditional distributions to a focus on sample paths. It is this
focus that in Chap. 7 allows us to derive the option pricing partial differential
equation using the continuous hedging argument. Chapter 9 outlines the use of
the Fourier transform technique to solve this type of partial differential equations
that is frequently encountered in financial economics. In Chap. 8 we develop the
martingale interpretation of the continuous hedging argument, which turns out to be
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a very powerful way of viewing derivative pricing problems as we shall see in later
chapters.

Part I deals with embellishments to the basic Black–Scholes–Merton framework
(allowing for more general stochastic processes for the underlying asset), with
various aspects of solution techniques, or with extensions such as American option
pricing. In Part II, we show how to allow for the risk free interest rate to be stochastic
in the standard stock option problem. Chapter 20 introduces the very powerful
change of numeraire technique. From Chap. 21 onwards we deal with derivatives
that gain their value from the stochastic evolution of interest rates. The contents
of these chapters will be previewed in Chap. 21 after we introduce the paradigm
interest rate option problem.



Chapter 2
Stochastic Processes for Asset Price Modelling

Abstract This chapter gives an intuitive appreciation and review of many important
aspects of the stochastic processes that have been used to model asset price
processes. We will be interested in a probabilistic description of the time evolution
of asset prices. After imposing some structure on the stochastic process for the return
on the asset, this chapter introduces Markov processes, time evolution of conditional
probabilities, continuous sample paths, and the Fokker–Planck and Kolmogorov
equations.

2.1 Introduction

We shall be much concerned with how asset prices evolve over time. It was realised
early in the development of the modern theory of finance that since asset prices
are evolving randomly over time the best description of price behaviour would
be a probabilistic one, which involves using ideas from the theory of stochastic
processes. The theory of stochastic processes is not an easy theory to master,
since many of its important concepts were developed roughly simultaneously in
a variety of disciplines such as electrical engineering, theoretical physics and pure
mathematics. The perspective taken in each of these disciplines is slightly different
and the same concepts can be presented at vastly different levels of mathematical
abstraction.

Our aim in this book is not at all to present a fully rigorous discussion of
the theory of stochastic processes. Rather we merely attempt to give an intuitive
appreciation and review of those aspects of the theory which have found application
in modern finance theory. In putting together the discussion and viewpoint on
stochastic processes from this chapter up to Chap. 8 we have drawn heavily on
Malliaris and Brock (1982), Astrom (1970), Harrison (1990), Baxter and Rennie
(1996) with some ideas from Gardiner (1985) and Horsthemke and Lefever (1984).
A more complete mathematical treatment of stochastic processes and stochastic
differential equations may be found in the books by Oksendal (2003), Krylov (1995)
and Kijima (2002). The book by Oksendal (2003) is particularly recommended.

We will be interested in a probabilistic description of the time evolution of
asset prices. Empirical examination of time series of asset prices and asset returns
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Fig. 2.2 Sample paths of stochastic processes

suggests that at least intuitively we might initially think of the return on the asset
as consisting of an average mean component (which we might regard as more or
less certain) and some volatile, stochastic component about this mean, as shown
in Fig. 2.1 which shows the time series of monthly returns on the S&P500 from
January 1980 to October 2003 together with the mean and one standard derivation
band of the entire series. Already with this intuitive notion we are imposing some
structure on the stochastic process for the return on the asset. Much of what we do
in Chaps. 2 and 3 will be to give some mathematical description to this intuitive
notion.

To make the discussion a little more formal let x.t/ denote either the price of
or return on the asset at time t . In Fig. 2.2 we represent a typical sequence of
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prices which would be observed over a given time period. Since, depending on the
application, we need to concentrate on prices or returns in both discrete time and
continuous time, both are represented in Fig. 2.2.1

The stochastic process for the prices (or returns) may be thought of as a family
of random variables fx.t/ j t 2 T g, where T denotes the set of values to
which the time parameter t belongs, more formally known as the index set. For
the discrete time process in Fig. 2.2a the index set is the set of non-negative integers
T D f0; 1; 2; : : :g, whilst for the continuous time process in Fig. 2.2b the index set
is the set of all t between 0 and infinity, i.e. T D f t j 0 � t < 1g.

The set of values which x.t/ may take is known as the sample space and is
denoted ˝ . For the price paths illustrated in Fig. 2.2 the sample space is all values
from 0 to infinity. Generally we will be interested in prices belonging to a subset of
˝ , such as the set of prices illustrated in the shaded area in Fig. 1.2. In more formal
discussions we may see the stochastic process denoted as fx.t; !/ j t 2 T ; ! 2
˝g. A set of particular values arising from the stochastic process is known as a
realisation of the process, or a sample path. In the preceding formal notation, the !
refers to one sample path out of the set ˝ of all possible sample paths.

A major technical problem in the theory of stochastic processes involves assign-
ing a probability distribution or more formally a probability measure to subsets ˝
of the sample space !. To do this mathematically correctly requires a great deal
of measure theory, however provided the stochastic process assumed for x.t/ is
not too “wild” then we are able to proceed with a fairly intuitive understanding
of probability distributions. However to deal with more sophisticated processes
(e.g. Lévy processes) then we do need to resort to a more formal mathematical
description.

2.2 Markov Processes

In order to put some mathematical flesh on the basic notion of a stochastic process
we need to introduce the concept of joint probability density function. As we said
at the end of the previous section, proving that such a density function can be
found is an intricate mathematical problem which we shall not touch on in this
book. Malliaris and Brock (1982) outline some of the intricacies involved and give
appropriate references (see their Chapter 1 and Section 7).

Given values x1; x2; x3; : : : ; xk of the asset price x.t/ at times t1; t2; t3; : : : ; tk ,
we assume that we can obtain a joint probability density function

p.xk; tk I xk�1; tk�1I : : : I x1; t1/ (note that t1 � t2 � � � � � tk)

1In terms of concepts to be developed later, Fig. 2.2a represents the simulation of a binomial
process, whilst Fig. 2.2b is the simulation of a geometric Brownian motion process starting at
xo D 1.
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Fig. 2.3 Conditional probability of a sample path

which measures the joint probability that x.t1/ D x1; x.t2/ D x2; : : : ; x.tk/ D xk .
Using joint probability density functions, we can also define conditional probability
density functions:

p.xk; tk I : : : I x2; t2I x1; t1 j yn; �nI : : : Iy2; �2Iy1; �1/

D p.xk; tk I : : : I x2; t2I x1; t1Iyn; �nI : : : Iy2; �2Iy1; �1/
p.yn; �nI : : : Iy2; �2Iy1; �1/ :

(2.1)

The left-hand side of (2.1) is the probability that the price sequence
.x1; t1I x2; t2I : : : I xk; tk/ will be observed given that the price sequence
.y1; �1Iy2; �2I : : : Iyn; �n/ has just been observed over the previous periods
f�1; �2; : : : ; �ng; see Fig. 2.3.

On the right-hand side of (2.1) the probability on the top line is that of
observing the price sequence .y1; �1/; .y2; �2/; : : : ; .yn; �n/; .x1; t1/; : : : ; .xk; tk/,
whilst the probability on the bottom line is that of observing the price sequence
.y1; �1/; : : : ; .yn; �n/. To see the sense of this last formula think of the probabilities
as observed frequencies and suppose the fyi g represent a sequence of prices growing
at a rate of 3 % and the fxig represent a sequence of prices growing at a rate of 4 %.
Then the formula states that the probability of observing a 4 % rise, given that a 3 %
rise has occurred equals the frequency of 3 % rises followed by 4 % rises divided by
the frequency of 3 % rises.

A very simple kind of stochastic process that we might deal with is a completely
independent one. A stochastic process is said to be completely independent if the
probability of observing a given price at time t is completely independent of the
probability of observing some price at any other time. This allows us to write the
joint probability density function as a product of independent probabilities, so that

p.xk; tk I : : : I x2; t2I x1; t1/ D p.xk; tk/ : : : p.x2; t2/p.x1; t1/: (2.2)
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Fig. 2.4 A Markov process

The next most simple stochastic process we might deal with is a Markov process
in which knowledge only of the present state of the process is relevant to the future
evolution of the process. Referring to the price sequences in Fig. 2.3 this idea may
be expressed in terms of conditional probabilities as

p.xk; tk I : : : I x2; t2I x1; t1 j yn; �nI : : : Iy2; �2Iy1; �1/
D p.xk; tk I : : : I x2; t2I x1; t1 j yn; �n/:

(2.3)

This idea is illustrated in Fig. 2.4 where we see two possible paths arriving at
.yn; �n/. Irrespective of which path has been followed to arrive at .yn; �n/, the future
evolution from �n is only conditional on .yn; �n/. Markov processes are clearly
related to the efficient markets concept.

The Markov assumption (i.e. Eq. (2.3)) is particularly important because it
enables us to define all relevant joint probability density functions in terms of simple
conditional probabilities, such as p.x1; t1 j y1; �1/.

To see this consider the following manipulations over the successive times
�n; t1; t2. By the definition of conditional probability density (Eq. (2.1)) and con-
ditioning on yn; �n,

p.x2; t2I x1; t1Iyn; �n/ D p.x2; t2I x1; t1 j yn; �n/p.yn; �n/: (2.4)

But conditioning on x1; t1Iyn; �n we have

p.x2; t2I x1; t1Iyn; �n/ D p.x2; t2 j x1; t1Iyn; �n/p.x1; t1Iyn; �n/: (2.5)

Combining these last two equations we obtain

p.x2; t2I x1; t1 j yn; �n/ D p.x2; t2 j x1; t1Iyn; �n/p.x1; t1Iyn; �n/
p.yn; �n/

D p.x2; t2 j x1; t1/p.x1; t1 j yn; �n/: (2.6)
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Fig. 2.5 Illustrating the joint density as a product of conditional density functions

The first equality is due to the definition of conditional probability (2.1), the second
follows by the Markovian assumption and uses again of (2.1). Substituting (2.6)
to (2.4) we finally have

p.x2; t2I x1; t1Iyn; �n/ D p.x2; t2 j x1; t1/p.x1; t1 j yn; �n/p.yn; �n/;

which simply states that the joint probability density function over the times �n, t1, t2
is the product of the conditional probability densities over successive time intervals.

The same argument can be extended to any number of realisations of the
stochastic process over successive times, to yield2

p.xn; tnI : : : I x2; t2I x1; t1/ D p.x1; t1/

n�1Y

iD1
p.xiC1; tiC1 j xi ; ti /: (2.7)

The essential feature of (2.7) from the point of view of applications is that the
joint density function can be expressed as a product of conditional density functions
(over successive time intervals), as illustrated in Fig. 2.5. Thus a statistical descrip-
tion of price and return dynamics is reduced to a description of the conditional
density function.

Certainly Markov processes provide the most convenient tool for the modelling
of asset prices and returns as we shall see throughout this book. On the one hand,
they accord very nicely with the notion of efficiency of financial markets. On the

2We recall the product notation ˘n
iD1Xi D X1X2 � � �Xn. Note that in (2.7) we change slightly the

notation and take .x1; t1/ as the initial point.
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other hand, they allow us to make use of the highly developed theories of diffusion
processes and semi-martingale integration. However it is nevertheless the case that
non-Markovian processes do also play a role in the modelling of some aspects
of financial markets behaviour. This is the case for instance when considering
stochastic volatility models. It is more particularly the case in the modelling of
interest rate sensitive derivative securities. It turns out that the most natural (and
general) process for modelling the dynamic evolution of the yield curve is a non-
Markovian one. We shall see in Part II that rather than working in a non-Markovian
framework it turns out to be more convenient to find ways to reduce the non-
Markovian process to a Markovian system of higher dimension. In this way the
great mathematical convenience of Markovian processes is preserved.

2.3 The Time Evolution of Conditional Probabilities

As discussed in the previous sub-section, the Markov assumption implies that
in order to obtain a statistical description of prices in a dynamically evolving
environment we need to know how the conditional probability density functions
evolve over time.

The equation which allows us to do this is the Chapman–Kolmogorov equation
which is a simple consequence of the Markovian assumption. If t1 < t2 < t3 then
the Chapman–Kolmogorov equation states that

p.x3; t3 j x1; t1/ D
Z
p.x3; t3 j x2; t2/p.x2; t2 j x1; t1/dx2: (2.8)

To see the sense of this equation consider the path I in Fig. 2.6. The probability
of going from x1 at t1 to x3 at t3 is the product of the probability of going from
.x1; t1/ to .x2; t2/, with the probability of going from .x2; t2/ to .x3; t3/. The integral
in (2.8) sums over all such probabilities by ranging over all possible paths through
values x2 at t2. Figure 2.6 shows three such paths.

The Chapman–Kolmogorov equation is in fact a complex, nonlinear functional
equation due to the fact that so far the nature of the stochastic process has been left
very general. In order to reduce it to a form easier to deal with mathematically we
need to put more restrictions on the nature of the stochastic process. In particular the
magnitude and type of change that can occur in x from one time period to the next.
In particular it can be shown that if the price changes are small over small intervals
of time in a way to be made more precise below then the Chapman–Kolmogorov
equation reduces to a partial differential equation for the conditional probability
which has a remarkable similarity to the partial differential equation governing stock
option prices. We will eventually show how these two partial differential equations
are related.
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Fig. 2.6 The Chapman–Kolmogorov equation

2.4 Processes with Continuous Sample Paths

As just indicated we shall for the moment focus on price (or return) processes that
change by small amounts over small intervals of time. The notion that the price
changes by small amounts over a small interval of time is made mathematically
more precise by introducing stochastic processes having continuous sample paths.

The mathematical condition that needs to be imposed on the conditional proba-
bilities in order that the sample paths be continuous functions of time is

lim
�t!0

1

�t

Z

jx�zj>"
p.x; t C�t j z; t/dx D 0; (2.9)

for any " > 0. The sense of this condition is easily understood by referring to
Fig. 2.7. Typically " would be small and the set jx� zj > " (indicated by the hashed
region in Fig. 2.7) represents the set of prices x at time tC�t which are further than
a distance " from the original price of z at time t . The probability p.x; t C�t j z; t/
is the probability of observing the price x at time tC�t , given that the price at time t
is z. Thus the integral in Eq. (2.9) represents the total probability of observing at time
t C�t a price which is further than " from the current price z at time t . The overall
condition in Eq. (2.9) states that this probability must decline more rapidly than �t
as �t becomes smaller and smaller (e.g. the total probability could be proportional
to .�t/2/:

The condition in Eq. (2.9) is known as the Lindeberg condition, and stochastic
processes whose conditional probabilities satisfy it will be expected to experience
small changes in x over small intervals of time. Such stochastic processes will also
display continuous sample paths as has already been stated.
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Fig. 2.7 The Lindeberg condition; the price changes remain within the band .z C "; z � "/

At this point it may be worth considering two particular forms of conditional
probability functions, one which satisfies the Lindeberg condition and one which
does not.

2.4.1 Brownian Motion

Consider the conditional probability density given by the formula

p.x; t C�t j z; t/ D 1p
2��t �

exp

��.x � z/2

2�2�t

�
; (2.10)

meaning that x is normally distributed, x � N.z; �2�t/, centred on the current
price z at time t and having variance �2�t . According to this distribution the prices
expected at tC�t are distributed normally about the current price z at t , as illustrated
in Fig. 2.8. As �t becomes smaller, the distribution becomes more peaked, thereby
reducing the probability that the price at t C �t will be very far from z. It is a
simple (albeit tedious) exercise in integration to show that the Lindeberg condition
is indeed satisfied for this distribution (the details are given in Appendix 2.2).

The stochastic process whose conditional probabilities are given by Eq. (2.10) is
known as Brownian Motion, and is widely applied in financial economics, partly
because of its mathematical tractability, and partly also because empirical studies
indicate that many (though no means all) important asset prices (or returns) are
reasonably well modelled by it.
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the distribution around the current price z

2.4.2 The Cauchy Process

In order that the reader not gain the impression that all bell shaped conditional
probability distributions satisfy the Lindeberg condition and therefore give rise to
stochastic processes having continuous sample paths, consider the distribution with
conditional probability density

p.x; t C�t j z; t/ D �t

�Œ.x � z/2 C .�t/2�
: (2.11)

This distribution also has the general bell shape, shown in Fig. 2.8 for the Brownian
Motion, which also becomes more peaked as �t becomes smaller. However it can
be shown that this distribution, known as the Cauchy distribution, does not satisfy
the Lindeberg condition (see Appendix 2.3) and therefore x is not a continuous
process. This means that as �t becomes small, the probability of observing a price
well away from current price z does not become small quickly enough, leaving a
positive probability that there will be large jumps in the price from time to time.

Indeed simulations of both processes indicate that the Cauchy process exhibits
large jumps not infrequently, as illustrated by the simulations in Fig. 2.9.3 There we

3The simulations were calculated as follows. For the Brownian motion process, the path was
calculated using xiC1 D xi C xi��t C xi�

p
�t �i ; where � D 0:1, � D 0:2, �t D 0:002
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display a typical sample path of both the Brownian motion process and the Cauchy
process.

2.5 The Dirac Delta Function

The two examples of the proceeding section can also serve as a vehicle for another
important concept that we shall need when we come to discuss the solution of option
pricing equations, namely the concept of the Dirac delta function.

Note first of all that integrating the conditional probability density func-
tions (2.10) and (2.11) with respect to x reveals that the area under the distribution
curves is equal to 1, irrespective of the value of �t . Of course this is a fundamental
requirement of conditional probability density functions. As �t ! 0 the
distribution in Fig. 2.8 becomes more and more peaked. Close to the limit �t D 0

and �i � N.0; 1/, with i D 1; 2; � � � ; 500. For the Cauchy process, the path was calculated using
yiC1 D yi C yi��t C �i��t cotŒ��i �:
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a b

Fig. 2.10 The sense of the definition of the Dirac delta function. (a) ı.x � z/ D 0; x ¤ z. (b)R
1

�1

ı.x � z/f .x/dx D f .z/

we would see a function which is almost zero everywhere except at x D z, and at
this point its value becomes very large; all in such a way that the area beneath the
distribution curve remains 1 for all �t .

In order to formally (as opposed to mathematically rigorously) carry out
mathematical operations involving the function obtained from this limiting process,
the so-called Dirac delta function has been introduced (see e.g. Lighthill 1980). This
function is usually denoted by the symbol ı and is formally defined by:

(a) ı.x � z/ D 0; x ¤ z; (b)
Z 1

�1
ı.x � z/f .x/dx D f .z/: (2.12)

The sense of both parts of this definition are illustrated in Fig. 2.10.
Both the Brownian motion distribution and the Cauchy distribution in the limit

�t ! 0 satisfy the formal definition of the Dirac delta function, i.e.

ı.x � z/ D lim
�t!0

p.x; t C�t j z; t/; (2.13)

as illustrated in Fig. 2.8.
To see the economic sense of the second condition in Eq. (2.12), suppose that

f .x/ is some payoff on the asset at time t C �t if the asset price is x at that point
in time. Then

Z 1

�1
p.x; t C�t j z; t/f .x/ dx;

is the expected payoff, calculated at time t when the asset price is z. The condition
(b) of (2.12) states that as �t ! 0, the expected payoff becomes the payoff that
would be obtained at the current price z.
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2.6 The Fokker–Planck and Kolmogorov Equations

The Chapman–Kolmogorov equation (2.8) tells us how the conditional probabilities
are evolving over time. Up to this point in the discussion we have imposed very little
structure on the stochastic process apart from the Markov assumption. We would
like to reduce the Chapman–Kolmogorov equation to something which is more
mathematically tractable and at the same time which involves parameters whose
values we could measure from statistical observations on past and current prices.

The above aim could be achieved in a number of ways, but the simplest would
be to restrict our attention to those stochastic processes having continuous sample
paths, such as those discussed in Sect. 2.4 but with the possibility of sudden large
jumps from time to time. In adopting this approach we shall give some mathematical
precision to the intuitive notion, which we mentioned in Sect. 2.1, of the asset return
consisting of a certain mean component about which there is a stochastic or volatile
component.

In particular we shall restrict our attention to stochastic processes whose
conditional probability density function satisfies the following three conditions. For
all " > 0,

(i) lim
�t!0

1

�t

Z

jx�zj<"
.x � z/p.x; t C�t j z; t/dx D A.z; t/; (2.14)

(ii) lim
�t!0

1

�t

Z

jx�zj<"
.x � z/2p.x; t C�t j z; t/ dx D B.z; t/; (2.15)

(iii) lim
�t!0

p.x; t C�t j z; t/

�t
D J.x j z; t/; (2.16)

where in (iii) the convergence is uniform in x, z and t , for j x � z j� ".
What are these conditions saying? Recall first of all that typically " is small, so

that j x � z j< " refers to the set of prices x at t C�t which have not moved very
far from the current price z at t , see Fig. 2.11, while j x � z j� " refers to the set of
prices x at t C�t which have moved more than a small amount from current price
z at t .

The integral in condition (i) is the mean of the small (i.e. within " of z) price
changes over the time interval .t; t C�t/. The condition thus states that

the mean of small price changes over .t; t C�t/ Š A.z; t/�t:

The choice of A.z; t/ may be imposed by the financial analyst but would usually be
obtained from empirical analysis of past behaviour of asset prices. For example for
common stock prices, the form A.z; t/ D �z where � is the mean stock return per
unit time fits fairly well with observed price behaviour. On the other hand for short
term interest rates empirical evidence suggests the form A.z; t/ D 	.Nz � z/ where Nz
is a long run average short term rate and 	 is a speed of adjustment constant, both
of which could be determined from observed interest rate behaviour.
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Fig. 2.11 The price range in conditions (i) and (ii)

The integral in condition (ii) is the second moment of small price changes over
.t; t C�t/ and thus states that

the second moment of small price changes over .t; t C�t/ Š B.z; t/�t:

As with A.z; t/ the form of B.z; t/ would be determined from the time series
behaviour of the asset of interest. Continuing the examples cited above, for common
stock prices empirical studies suggestB.z; t/ D �2z2 (� a constant), whilst for short
term interest rates B.z; t/ D �2z2
 (�; 
 constant, 0 < 
 < 2) seems to be the
consensus of a range of empirical studies.

The third condition concentrates on price changes which are not small (i.e. are
more than a distance " from the current price z). Condition (iii) states that

the probability of large changes over .t; t C�t/ Š J.x j z; t/�t:

In essence the quantity J.x j z; t/ captures the probability that the price will jump
from z to x at time t . As with the A and B functions, the J function would be
obtained from observations on past price movements.

If we assume, or confirm by observation, that J D 0, then the asset price will
only exhibit small price changes over small time intervals. The stochastic process
is then known as a diffusion process. We know from the discussion in Sect. 2.4 that
the sample paths of such processes are continuous.

If we allow J ¤ 0 then we are admitting the possibility of sudden large jumps
in the asset price. The frequency and magnitude of these jumps determine the
functional form of J . For instance, in order to model the large jumps in the prices
of some of the assets in which we will be interested (e.g. foreign exchange rates),
there is empirical evidence that the Poisson process is an appropriate form for J .

The A.z; t/ term is referred to as the drift term of the stochastic process, the
B.z; t/ term is referred to as the diffusion term of the stochastic process and the
J.x j z; t/ term is referred to as the jump term of the stochastic process. A stochastic
process in which all of these terms are present is known as a jump-diffusion process.
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The sample paths of such a stochastic process are not continuous in general (unless
of course the jump component is zero). Figure 2.9 illustrates the difference between
the sample paths of a diffusion process (the Brownian motion process) and a jump-
diffusion process (the Cauchy process). For most applications in option pricing
we will be concerned with pure diffusion processes. However in some of our
applications we will need to allow for jump terms.

Before proceeding to discuss the Fokker–Planck equation we should point out
that conditions (i) and (ii) imply that all the higher order moments of the conditional
probability density function of the stochastic process vanish, i.e.

lim
�t!0

1

�t

Z

jx�zj<"
.x � z/kp.x; t C�t j z; t/dx D 0

for all k � 3. See Appendix 2.4 for an outline of how this result may be proved.
Thus a pure diffusion process is completely specified by the drift and diffusion terms
A.z; t/ and B.z; t/.

Let us assume for the moment that the jump term is zero (i.e. J D 0) so that
asset prices are following a pure diffusion process. It can be shown that conditions
(i) and (ii) in (2.14) and (2.15) reduce the Chapman–Kolmogorov equation for
the evolution of conditional probabilities to the partial differential equation (see
Appendix 2.5 for details)

@

@t
p.z; t j y; �/ D � @

@z
ŒA.z; t/p.z; t j y; �/�C 1

2

@2

@z2
ŒB.z; t/p.z; t j y; �/�;

(2.17)
for the conditional probabilityp.z; t j y; �/ of observing asset price z at time t given
that the current price is y at time � . This equation is known as the Fokker–Planck
equation and must be solved for t � � subject to the initial time condition

p.z; � j y; �/ D ı.y � z/: (2.18)

It is also necessary to impose some boundary conditions (e.g. in the case of
interest rates, the probability of these becoming negative must be zero) but we will
discuss these as they arise in particular applications. It is important to emphasise that
the viewpoint adopted with the Fokker–Planck equation is a forward one, i.e., we
take the current price y and time � as fixed and consider the conditional probability
as a forward evolving function of the price z at the later time t .

However in order to price options we need to adopt the alternative perspective in
which the final time is fixed (i.e. the maturity date of the option) and the initial time
is varying. In other words we hold z and t fixed and allow y and � to vary. In this
case it can be shown that under conditions (i) and (ii) the Chapman–Kolmogorov
equation becomes (see Appendix 2.5 for details)

@

@�
p.z; t j y; �/ D �A.y; �/ @

@y
p.z; t j y; �/ � 1

2
B.y; �/

@2

@y2
p.z; t j y; �/;

(2.19)
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a b

Fig. 2.12 (a) Fokker–Planck equation for forward evolving probability; .y; �/ fixed. (b) Kol-
mogorov equation for backward evolving probability; .z; t / fixed

which is known as the Kolmogorov backward equation, and must also be solved for
� � t subject to the final time condition

p.z; t j y; t/ D ı.y � z/: (2.20)

Now p.z; t j y; �/ is a backward evolving function of the price, y, at the earlier
time � .

The different viewpoints of the partial differential equations (2.17) and (2.19),
i.e. probability evolving forwards or backwards are illustrated in Fig. 2.12. In this
figure, the reader should view the hashed wall as moving forward in Fig. 2.12a and
backward in Fig. 2.12b.

Since we shall be referring frequently to both the Fokker–Planck equation and
the Kolmogorov equation it is useful to introduce some short-hand notation for
writing them down. Thus in relation to diffusion processes with drift function A
and diffusion function B we introduce the partial differential operators F and K ,
defined by

Fp D � @

@z
ŒA.z; t/p.z; t j y; �/�C 1

2

@2

@z2
ŒB.z; t/p.z; t j y; �/�; (2.21)

and

K p D A.y; �/
@

@y
p.z; t j y; �/C 1

2
B.y; �/

@2

@y2
p.z; t j y; �/: (2.22)

The Fokker–Planck equation may then be written succinctly as

@p

@t
� Fp D 0; (2.23)
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Fig. 2.13 Explaining the jump term in the Fokker–Planck equation

whilst the Kolmogorov equation as

@p

@�
C K p D 0: (2.24)

Of course when using this more succinct notation we must be a little cautious in
keeping track of whether it is the final point (i.e. z; t in the Fokker–Planck equation)
or the initial point (i.e. y; � in the Kolmogorov equation) which is varying.

The forward Fokker–Planck equation and the backward Kolmogorov equation
are equivalent to each other in the sense that they yield the same conditional
probability. They differ only as to whether the initial point or the final point is
held fixed. Which form we use depends on the application at hand. In the technical
language of the theory of partial differential equations the partial differential
operators F and K are said to be adjoint operators.

To complete the discussion we show how the forward and backward equations
need to be modified in order to allow for a jump component, i.e. when J ¤ 0.
The technical details are also included in Appendix 2.5 where it is shown that the
Fokker–Planck equation becomes

@p

@t
� Fp D

Z 1

�1
ŒJ.z j x; t/p.x; t j y; �/ � J.x j z; t/p.z; t j y; �/�dx: (2.25)

Recalling that J.z j x; t/ essentially measures the probability that the price will
jump from x to z at time t , the sense of the integral term on the right-hand side
of (2.25) can be understood by referring to Fig. 2.13. The jump term, J , allows two
additional types of events which are not possible under the pure diffusion process
described by the operator F . Firstly the price may follow a path to the value x
at t , where x is not “close” to z, and then jump to the value z. The product J.z j
x; t/p.x; t j y; �/ is the probability of going from A to B , then B to C along such a
path, and the integral of this probability with respect to x measures the probability
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Fig. 2.14 Explaining the jump term in the Kolmogorov equation

of going from A to C along all such paths. Secondly the price may follow a path to
the value z at t , and then jump to a value x not “close” to z, this would be the path 2
in Fig. 2.13. The product J.x j z; t/p.z; t j y; �/ is the probability of going from A

to C , then C to B along such a path and the integral of this probability with respect
to x measures the probability over all such paths of the price reaching z at time t
and then immediately jumping away to some other price. The overall term on the
right-hand side of (2.25) is the probability of the price being at z at time t once the
probabilities of price jumps at t (both to and away from z) are fully accounted for.

Inclusion of the jump term in the Kolmogorov equation leads to

@p

@�
C K p D

Z 1

�1
J.x j y; �/Œp.z; t j y; �/ � p.z; t j x; �/�dx; (2.26)

as illustrated in Fig. 2.14.
In Chap. 13 we shall consider option pricing when the underlying asset follows

a jump-diffusion process. We shall see that the option price is determined by an
integro-partial differential equation of the form (2.26). The techniques of the theory
of stochastic differential equations that we develop in Chaps. 4, 6 and 8 allow us to
conveniently arrive at a specification of the J.z j x; t/ term.

2.7 Appendix

Appendix 2.1 Probability Density Functions

A function P.x/ is a cumulative distribution function if P is a non-decreasing
function and satisfies the properties

P.xmin/ D 0; P.xmax/ D 1;
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where xmin and xmax are respectively the minimum and maximum values attainable
by x. If X denotes the random variable of interest (e.g. a stock price) then

P.x/ D Prob.fX � xg:

Typically we will deal with cumulative distribution functions which are differen-
tiable and we write

P 0.x/ D p.x/

so that the cumulative distribution function can be written

P.x/ D
Z x

xmin

p.�/d�:

With this notation we can readily see that

p.x/dx D dP.x/ D Prob. fx < X � x C dxg :

The functionp.x/ is known as the probability density function and sinceP.xmax/ D
1 it satisfies the property

Z xmax

xmin

p.�/d� D 1: (2.27)

Sometimes it is convenient to transform to a new variable y related to x by

x D g.y/;

where g is increasing and differentiable. Making the change of variable � D g.�/

Eq. (2.27) becomes

Z ymax

ymin

p.g.�//g0.�/d� D 1;

where

ymax D g�1.xmax/; ymin D g�1.xmin/:

If we set �.y/ D p.g.y// then the last equation becomes

Z ymax

ymin

�.�//g0.�/d� D 1;
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from which we see that in the new co-ordinates the density function is �.y/g0.y/.
The corresponding c.d.f. is given by

˘.y/ D
Z y

ymin

�.�/g0.�/d�:

Thus the rule for transforming from x to y is

p.x/ D �.y/g0.y/

which in terms of x may be written

p.x/ D �.g�1.x// � g0.g�1.x//: (2.28)

Appendix 2.2 Brownian Motion is a Continuous Process

We seek to verify that Brownian motion (2.10) satisfies (2.9), that is, Brownian
motion is continuous. We need to use the following facts:

(i) In general, for ˛ > 0,

Z 1

�1
e�˛x2dx D

r
�

˛
:

(ii) For ı large enough,

Z

jxj<ı
e�x2dx � p

�
p
1 � e�ı2 :

For the conditional probability density function of the Brownian motion

p.x; t C�t jz; t/ D 1p
2��t�

e
� .x�z/2

2�2�t ;

we have

I WD 1

�t

Z

jx�zj>"
p.x; t C�t jz; t/dx D 1

�t

1p
2��t�

Z

jx�zj>"
e

� .x�z/2

2�2�t dx:

Let

y D x � zp
2�t�
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then

I D 1

�t

1p
�

Z

jyj> "
p

2�t�

e�y2dy D 1

�t

1p
�

"Z

jyj<1
e�y2dy �

Z

jyj< "
p

2�t�

e�y2dy

#

� 1

�t

1p
�

"
p
� � p

�

q
1 � e

� "2

2�t�2

#
D 1

�t

"
1 �

q
1 � e� "2

2�t�2

#
:

Let ˛ D 1
�t

and A D "2

2�2
, then

lim
�t!0

I D lim
˛!1 ˛

h
1 �

p
1 � e�A˛

i
D lim

˛!1
1 � p

1 � e�A˛
1=˛

D lim
˛!1

�Ae�A˛

2
p
1�e�A˛

�1=˛2 (applying l’HOopital’s Rule)

D lim
˛!1

A

2
p
1 � e�A˛

˛2

eA˛
D 0:

Hence (2.10) satisfies (2.9).

Appendix 2.3 The Cauchy Process is Not Continuous

We seek to verify that (2.11) does not satisfy (2.9). For the Cauchy process,

p.x; t C�t jz; t/ D �t

�..x � z/2 C .�t/2/
;

consider

I D 1

�t

Z

jx�zj>"
p.x; t C�t jz; t/dx D

Z

jx�zj>"
1

�..x � z/2 C .�t/2/
dx:

Let y D x � z, then dy D dx and

I D
Z

jyj>"
1

�.y2 C .�t/2/
dy:

Let y D �t tan � so that � D tan�1. y
�t
/ and dy D �t sec2 �d� . Hence

I D
Z

jyj>"
�t sec2 �

�.�t/2 sec2 �
d�
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D 1

��t

h
tan�1

� y
�t

� ˇ̌1
yD�1 � tan�1

� y
�t

� ˇ̌"
yD�"

i

D 1

��t

h
� � 2 tan�1 � "

�t

�i
:

Consider

lim
�t!0

I D lim
�t!0

1

�

� � 2 tan�1 � "
�t

�

�t

D lim
�t!0

1

�

 
�2 1

sec2
�
"
�t

�
!�

� "

.�t/2

	
D 1:

Here we use

sec2
� "
�t

�
D 1C tan2

� "
�t

�
! 1C

��
2

�2

as �t ! 0. Hence (2.11) does not satisfy (2.9).

Appendix 2.4 The Higher Order Moment Condition

Consider for example the third order moment (i.e. k D 3). Note that

ˇ̌
ˇ̌
Z

jx�zj<"
.x � z/3p.x; t C�t j z; t / dx

ˇ̌
ˇ̌ �

Z

jx�zj<"
jx � zj3 � p.x; t C�t j z; t / dx

�
Z

jx�zj<"
jx�zj � jx � zj2 � p.x; tC�t j z; t / dx

� "

Z

jx�zj<"
jx � zj2 � p.x; t C�t j z; t / dx:

Hence

lim
�t!0

1

�t

ˇ̌
ˇ̌
Z

jx�zj<"
.x � z/3p.x; t C�t j z; t/ dx

ˇ̌
ˇ̌

� " lim
�t!0

1

�t

Z

jx�zj<"
jx � zj2 � p.x; t C�t j z; t/dx

� "B.z; t/:

Since we may choose " as small as we like, this last term tends to zero. A similar
argument applies for k > 3.
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Appendix 2.5 Derivation of Fokker–Plank and Kolmogorov
Equations

The derivation is based on Gardiner (1985, Sect. 3.4). Consider the Chapman–
Kolmogorov equation in the form (see Fig. 2.15)

p.z; t C�t j y; �/ D
Z
p.z; t C�t j x; t/p.x; t j y; �/dx; (2.29)

from which we subtract p.z; t j y; �/. Hence

p.z; t C�t j y; �/ � p.z; t j y; �/

D
Z
p.z; t C�t j x; t/p.x; t j y; �/dx � p.z; t j y; �/:

(2.30)

Now introduce an arbitrary function R.x/, which together with all of its
derivatives, vanishes as x approaches the extremities of the range of interest (e.g.
0 and 1 for stock prices). Then multiplying both sides of (2.30) by R.z/=�t and
integrating with respect to z,

Z
R.z/

Œp.z; t C�t j y; �/ � p.z; t j y; �/�
�t

dz

D 1

�t

Z
R.z/

�Z
p.z; t C�t j x; t/p.x; t j y; �/ dx

	
dz

� 1

�t

Z
R.z/p.z; t j y; �/ dz:

(2.31)

The functionR is next expanded in a Taylors series about the point x, i.e.

R.z/ D R.x/C dR.x/

dx
.z � x/C 1

2

d2R.x/

dx2
.z � x/2 C o.z � x/3; (2.32)

and the integrals are considered over regions j z � x j< " and j z � x j� ".

Fig. 2.15 Evolution from � to t C�t via t
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If we assume a pure diffusion process, i.e. J D 0, then the Lindeberg condition
allows us to ignore integrals in the region j z � x j� ". The result in Appendix 2.4
allows us to ignore the o.z � x/3 term in integrals over the region j z � x j< ". We
are left with integrals involving terms up to .z � x/2 over the region j z � x j< ". In
the limit �t ! 0 the term on the left hand side of (2.31) becomes

Z
R.z/

@p

@t
dz:

On the right hand side, after substituting (2.32) and interchanging the order of the
integrations, we are left with

1

�t

Z
R.x/p.x; t j y; �/

�Z
p.z; t C�t j x; t/dz

	
dx

C
2X

nD1

1

nŠ

Z
dnR.x/

dxn
p.x; t j y; �/

�
1

�t

Z
.z � x/np.z; t C�t j x; t/dz

	
dx

� 1

�t

Z
R.z/p.z; t j y; �/dz;

(2.33)

where all the integrals are taken over the region j z � x j< ". Using conditions (i)
and (ii) in Eqs. (2.14) and (2.15) and the result in Appendix 2.4 we see that in the
limit �t ! 0 the terms in the big bracket on the middle line tend to A.x; t/ (when
n D 1), B.x; t/ (when n D 2) and 0 (when n � 3). Using the fact that

Z
p.z; t C�t j x; t/dz D 1;

Eq. (2.31) now reduces to

Z �
R.x/

@p

@t
� dR

dx
A.x; t/p.x; t j y; �/ � 1

2

d2R

dx2
B.x; t/p.x; t j y; �/

�
dx D 0:

(2.34)

The final step is to perform an integration by parts on the last two terms so that

Z
dR

dx
A.x; t/p.x; t j y; �/ dx D �

Z
@

@x
.A.x; t/p.x; t j y; �//R.x/ dx

and

Z
d2R

dx2
B.x; t/p.x; t j y; �/ dx D

Z
@2

@x2
.B.x; t/p.x; t j y; �//R.x/ dx:
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Note that in performing these integrations by parts we have invoked the properties
that R and all of its derivatives vanish at the extremities of the range of interest. So
Eq. (2.34) finally becomes

Z �
@p

@t
C @

@x
.A.x; t/p.x; t j y; �// � 1

2

@2

@x2
.B.x; t/p.x; t j y; �//

�
R.x/dx D 0:

Since this last expression holds for an arbitrary function R.x/, the term in the
squared bracket must be zero, i.e.

@p

@t
D � @

@x
.A.x; t/p.x; t j y; �//C 1

2

@2

@x2
.B.x; t/p.x; t j y; �//;

which is the Fokker–Plank forward equation.
If we are dealing with a jump-diffusion process then J ¤ 0 and we cannot invoke

the Lindeberg condition to ignore integrals in the region j x � z j� ". In this case
the expansion at Eq. (2.31) will involve the extra terms

lim
"!0

1

�t

�Z Z

jx�zj�"
R.z/p.z; t C�t j x; t/p.x; t j y; �/dzdx

�
Z Z

jx�zj�"
R.x/p.z; t C�t j x; t/p.x; t j y; �/dxdz

	
:

Recalling the definition of J.x j z; t/ from Eq. (2.16) we can write these terms when
�t ! 0 as

Z Z

jx�zj�"
R.z/J.z j x; t/p.x; t j y; �/dzdx

�
Z Z

jx�zj�"
R.x/J.z j x; t/p.x; t j y; �/dxd z:

Interchanging the roles of x and z in the first integral the two terms can be combined
to yield

Z Z

jx�zj�"
R.x/ ŒJ.x j z; t/p.z; t j y; �/ � J.z j x; t/p.x; t j y; �/� dzdx:

Incorporating this term into Eq. (2.34) and proceeding to the limit " ! 0 we obtain
Eq. (2.25) of the main text.

To obtain the Kolmogorov backward equation we consider

p.z; t jy; �/ D
Z
p.z; t jx; � C�t/p.x; � C�t jy; �/dx; (2.35)
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Fig. 2.16 Evolution from � to t via � C�t

the sense of which is illustrated in Fig. 2.16.
Note that

@

@�
p.z; t jy; �/ D lim

�t!0

1

�t
Œp.z; t jy; � C�t/� p.z; t jy; �/�

Consider

I D 1

�t
Œp.z; t jy; � C�t/ � p.z; t jy; �/�

D 1

�t

�
p.z; t jy; � C�t/ �

Z
p.z; t jx; � C�t/p.x; � C�t jy; �/dx

�

D 1

�t

Z �
p.z; t jy; � C�t/� p.z; t jx; � C�t/

�
p.x; � C�t jy; �/dx

D I1 C I2;

where

I1 D 1

�t

Z

jx�yj<"

�
p.z; t jy; � C�t/ � p.z; t jx; � C�t/

�
p.x; � C�t jy; �/dx;

I2 D 1

�t

Z

jx�yj>"

�
p.z; t jy; � C�t/ � p.z; t jx; � C�t/

�
p.x; � C�t jy; �/dx:

Assume first that there is no jump, then I2 D 0 as �t ! 0 and

I1 D 1

�t

Z

jx�yj<"

�
p.z; t jy; � C�t/ � p.z; t jx; � C�t/

�
p.x; � C�t jy; �/dx

� � 1

�t

Z

jx�yj<"

�
@p.z; t jy; �C�t/

@y
.x�y/C1

2

@2p

@y2
.x�y/2

�
p.x; �C�t jy; �/dx
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D �@p.z; t jy; � C�t/

@y

1

�t

Z

jx�yj<"
.x � y/p.x; � C�t jy; �/dx

�1
2

@2p.z; t jy; � C�t/

@y2
1

�t

Z

jx�yj<"
.x � y/2p.x; � C�t jy; �/dx:

Then

lim
�t!0

I1 D �A.y; �/@p.z; t jy; �/
@y

� 1

2
B.y; �/

@2p

@y2
:

Hence we have established that

@p

@�
.z; t jy; �/ D �A.y; �/@p.z; t jy; �/

@y
� 1

2
B.y; �/

@2p.z; t jy; �/
@y2

:

In the presence of jump, the only difference is that

lim
�t!0

I2 D
Z 1

�1
J.xjy; �/Œp.z; t jy; �/ � p.z; t jx; �/�dx:

Hence p.z; t jy; �/ satisfies

@

@�
p.z; t jy; �/ D �A.y; �/@p.z; t jy; �/

@y
� 1

2
B.y; �/

@2p.z; t jy; �/
@y2

C
Z 1

�1
J.xjy; �/Œp.z; t jy; �/ � p.z; t jx; �/�dx;

which is the result given in (2.26).

Appendix 2.6 The Mean Value Theorem

Suppose that f .x/ is a continuous and non-negative function on the interval Œa; b�.
There exists a value � satisfying a � � � b such that

Z b

a

f .x/dx D .b � a/f .�/:

Basically this result says that we can always find � such that the area under the
rectangle shown in the figure equals the area under the curve (Fig. 2.17).
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Fig. 2.17 Illustrating the mean value theorem for integrals

2.8 Problems

Problem 2.1

(a) Consider the Brownian notion whose transition probability density is given by

p.x; t jy; �/ D 1p
2�.t � �/�

exp

��.x � y/2

2�2.t � �/

�
:

By direct differentiation show that p satisfies the partial differential equations

1

2
�2
@2p

@y2
C @p

@�
D 0;

and

�1
2
�2
@2p

@x2
C @p

@t
D 0:

What is the boundary condition for both of these partial differential equations?
(b) Consider the Cauchy distribution whose transitional partial differential function

is given by

p.x; t jy; �/ D .t � �/

� Œ.x � y/2 C .t � �/2�
:

Show that the first and second moments of this distribution are given by

Z 1

�1
.x � y/p.x; t jy; �/dx D 0;

Z 1

�1
.x � y/2p.x; t jy; �/dx D 1:
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Explain why these results indicate that it would not be possible to obtain
Kolmogorov or Fokker–Planck equations as in (a).

Problem 2.2 Consider the function ı".x/ defined by

ı".x/ D



0; jxj > "=2;
1="; jxj � "=2:

(a) Sketch this function.
(b) Show that

Z 1

�1
ı".x/dx D 1

for all ".

Consider a function f , defined on R, which is continuous.

(c) Sketch the function f .x/ı".x/.
(d) Use the mean value theorem of integral calculus to show that

Z 1

�1
f .x/ı".x/dx D f .�/;

where �"=2 � � � "=2.
(e) Explain the intuition of this result in the sketch you have just drawn. Hence

show that

lim
"!0

Z 1

�1
f .x/ı".x/dx D f .0/:

(f) Explain how to use the foregoing arguments to establish the result

lim
"!0

ı".x/ D ı.x/;

where ı.x/ is the Dirac delta function.

Problem 2.3 Consider the transitional probability density function

p.x; t jy; �/ D 1p
2�.t � �/� exp

�
� .x � y � a.t � �//2

2�2.t � �/

�
:

Show by direct differentiation that p satisfies the partial differential equations

1

2
�2
@2p

@y2
C a

@p

@y
C @p

@�
D 0
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and

�1
2
�2
@2p

@x2
C a

@p

@x
C @p

@t
D 0:

Problem 2.4 Consider the function ı".x/ defined as follows:

ı".x/ D

8
ˆ̂<

ˆ̂:

0; x < �";
3
4"3
."2 � x2/; �" � x � ";

0; x > ":

(a) Sketch this function and show that

Z 1

�1
ı".x/dx D 1

for all ".
(b) Consider a function f , defined on R, which is continuous. Use the Mean Value

Theorem of integral calculus to show that

Z 1

�1
f .x/ı".x/dx D f .�/;

where �" � � � ". Hence show that

lim
"!0

Z 1

�1
f .x/ı".x/dx D f .0/:

(c) Explain how to use the foregoing result to establish the result

lim
"!0

ı".x/ D ı.x/;

where ı.x/ is the Dirac delta function.



Chapter 3
An Initial Attempt at Pricing an Option

Abstract This chapter uses the concepts developed in Chap. 2 to illustrate the
problem of option pricing as a discounted expected option payoff. By assuming that
investors are risk neutral and using the Kolmogorov equation for the conditional
probability, we demonstrate how the Black–Scholes option formula can be arrived.
We also illustrate how the option price can be viewed in a quite natural way
as a martingale and the Feynman–Kac formula, two very important concepts of
continuous time finance.

3.1 Option Pricing as a Discounted Cash Flow Calculation

To someone trained in basic finance, in particular discounted cash flow concept,
the problem of pricing an option would seem (at least conceptually) to be a fairly
straight forward one. After all it should just be the expected future payoff of the
option, discounted back to current time with an appropriate discount rate.

We shall now use the concepts developed in Chap. 2 to attempt to apply this
viewpoint to the problem of pricing a European option. Consider the simple example
of a European call option on a stock. Suppose maturity is at time T and exercise
price is E . If the stock price at maturity is ST , then as we have seen in Chap. 2, the
payoff on the option is h.ST / D max.ST � E; 0/ � .ST �E/C.

In order to calculate the expected payoff at T , the investor requires the condi-
tional probability density function, p.ST ; T jS; t/, for the stock price ST at T given
the price S at current time t . Assuming processes with continuous sample paths
this density function is obtained from the solution of the Kolmogorov backward
equation (2.19). We have already pointed out in Chap. 2 that for common stock a
great deal of empirical evidence suggests that the A and B functions appearing in
the Kolmogorov equation are given by

A.z; t/ D �z; B.z; t/ D �2z2; (3.1)

where � is the expected stock return per unit time and �2 is the instantaneous
variance of stock returns per unit time. The Kolmogorov backward equation for the
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Fig. 3.1 The investor obtains p.ST ; T jS; t/ from the Kolmogorov equation

conditional probability distribution p.ST ; T j S; t/ in our current notation assumes
the form (put z D ST ; t D T and y D S; t 0 D t in Eq. (2.19)),

1

2
�2S2

@2p

@S2
C �S

@p

@S
C @p

@t
D 0: (3.2)

Consider an investor who at time t wishes to value the option which matures at
T (see Fig. 3.1). If the stock price at maturity is ST then the expected payoff in the
stock price interval .ST ; ST C dST / is h.ST /p.ST ; T j S; t/dST . Integrating over
all possible values of ST then

expected payoff from
the option at maturity

�
D
Z 1

0

h.ST /p.ST ; T j S; t/dST : (3.3)

This expected payoff is measured in dollars at time T . In order to convert it into
dollars at time t the investor must discount this amount at an appropriate rate.

The choice of this discount rate is a crucial one in the approach to option pricing
that we are adopting in this section. The theory of finance tells us that utility
maximising investors discount risky payoffs at a rate 
, which is the sum of the
prevailing risk free rate, r , and a risk premium term depending on the investor’s
attitude to risk, i.e.


 D r C �; (3.4)

where � represents the risk premium term. If investors are risk averse � > 0, if
they are risk lovers � < 0, and if they are risk neutral � D 0. Let us assume
(without any reason being offered at this stage)1 investors value options as if they

1Actually one could give the justification for the investor doing the option valuation problem this
way as follows. The investor realises that the option valuation problem is a relative pricing problem
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were risk neutral then � D 0 and 
 D r . The discount term applied to the
options expected payoff would then be e�r.T�t /. Hence the investor would value the
option as

value of option
at time t when
stock price is S

9
=

; D C.S; t/ D e�r.T�t /
Z 1

0

h.ST /p.ST ; T j S; t/dST : (3.5)

If we solve the Kolmogorov equation (3.2) for the conditional probability
p.ST ; T j S; t/ then the problem of valuing the option is reduced to a problem
in integration. We will demonstrate later how the Black–Scholes European stock
call option formula can be arrived at via this route. However for the moment we will
pursue another approach which allows us to see the connection with the continuous
hedging argument approach to be developed in Chap. 7.

If we differentiate C as defined in (3.5) with respect to S and t we will see how
the option price changes as the current stock price changes and as we move closer
to maturity. In particular

@C

@S
D e�r.T�t /

Z 1

0

h.ST /
@p

@S
.ST ; T j S; t/dST ;

@2C

@S2
D e�r.T�t /

Z 1

0

h.ST /
@2p

@S2
.ST ; T j S; t/dST ;

@C

@t
D e�r.T�t /

Z 1

0

h.ST /
@p

@t
.ST ; T j S; t/dST C rC.S; t/:

With an eye to the structure of the Kolmogorov equation (3.2) for p.ST ; T j S; t/
note that

1

2
�2S2

@2C

@S2
C �S

@C

@S
C @C

@t

D e�r.T�t /
Z 1

0

h.ST /

�
1

2
�2S2

@2p

@S2
C �S

@p

@S
C @p

@t

	
dST C rC:

By virtue of Eq. (3.2) the square bracket under the integral sign is zero, and hence
the option price follows the partial differential equation

1

2
�2S2

@2C

@S2
C �S

@C

@S
C @C

@t
D rC: (3.6)

i.e. he/she seeks to value the option given that the market’s current assessment of the value of the
underlying stock is S (which will impound in it the market’s assessment of the risk-premium). The
relation between the stock and the option brings no additional source of risk. So the pricing relation
between them can be viewed as a risk neutral one.
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Finally we note that a risk neutral investor would expect the stock price to grow at
the risk free rate r , i.e. � D r . Hence a risk neutral investor would expect that as the
stock price S and current time t change, the option price would change according to

1

2
�2S2

@2C

@S2
C rS

@C

@S
C @C

@t
D rC; (3.7)

which must be solved subject to the final time condition

C.ST ; T / D max.ST �E; 0/: (3.8)

The partial differential equation (3.7) is the celebrated Black–Scholes equation
whose solution (solution techniques will be discussed in Chap. 9) is

C.S; t/ D SN .d1/ � Ee�r.T�t /N .d2/; (3.9)

where N .d/ is the cumulative normal function, defined by

N .d/ D 1p
2�

Z d

�1
e� x2

2 dx;

and

d1 D ln.S=E/C .r C 1
2
�2/.T � t/

�
p
T � t

; (3.10)

and

d2 D d1 � �
p
T � t : (3.11)

The quantity N .d/ is the probability that the standard normal variate lies in the
interval .�1; d /. As is clear from its definition it is in fact the area under the
normal density function curve from �1 to d and is illustrated in Fig. 3.2. This
figure displays N .�d/ on the left and on the right makes clear the relation

N .�d/ D 1 � N .d/; (3.12)

which is often used in later manipulations. The result (3.12) is easily proved by
formal mathematical manipulations.

The approach to option pricing we have just discussed, which is the so-called
risk-neutral valuation approach, seems to have been first proposed by Cox and Ross
(1976b), who extended it to value options under a variety of assumptions about the
stochastic process followed by the underlying asset price.
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0d d 0d d

Fig. 3.2 Symmetry of N .d/

We could also have proceeded to obtain the option value directly from Eq. (3.5).
If we solve the Kolmogorov backward equation (3.2) for the conditional probability
function we would obtain the solution2

p.ST ; T j S; t/ D
1p

2�.T � t/�ST
exp

"
�fln.ST =S/� .�� 1

2
�2/.T � t/g2

2�2.T � t/

#
:

(3.13)

The problem of pricing the option then reduces to performing the integra-
tion (3.5) using Eq. (3.13), with � replaced by r and p by Qp, by using

Qp.ST ; T jS; t/ D
1

p
2�.T � t/�ST

exp

"
�fln.ST =S/� .r � 1

2
�2/.T � t/g2

2�2.T � t/

#
;

(3.14)

where we use Qp to denote the transition density function obtained when� is replaced
by r . This density shall be referred to as the risk-neutral density. The option price is
thus given by

C.S; t/ D e�r.T�t /
Z 1

0

h.ST / Qp.ST ; T jS; t/dST : (3.15)

2Whilst we leave a formal discussion of the solution techniques for the partial differential equations
of financial economics to Chap. 9, the reader can easily verify that (3.13) is indeed the solution
to (3.2) as follows. First transform the partial differential equation (3.2) by the transformation
yT D lnST , y D lnS . The resulting partial differential equation is then of the form encountered
in Problem 2.3 whose solution was verified there. See Problem 3.3.
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Once Eq. (3.14) is substituted into (3.15) we are left to perform an exercise
in integration and the details are given in Appendix 3.1. The Black–Scholes
formula (3.9) is again the result. For more complicated stochastic processes for the
asset price, if we can find the conditional distribution p we can value the option by
integration and by making the assumption that investors behave as if they are risk
neutral. This is the so-called principle of risk-neutral valuation.

A loose end with this approach to option pricing is that it doesn’t seem an
obvious step to treat each investor as if he or she were risk neutral. However when
considering how the investor might react to small changes in the stock and option
prices over a small interval of time, the risk neutral argument occurs quite naturally.
In order to carry out such an approach we need to concentrate our attention on the
sample path rather than the conditional probability density function. We are then
led to a study of the stochastic differential equation, to which we turn in the next
chapter.

We shall devote the remainder of this chapter to demonstrating how the expres-
sions for the option price obtained above can be viewed in various alternative ways
that allow us to encounter in a quite natural way two very important concepts of
continuous time finance, namely the martingale concept and the Feynman–Kac
formula.

3.2 Our First Glimpse of a Martingale

We have argued in the previous subsection that if we assume investors are risk
neutral then the option is priced according to

C.S; t/ D e�r.T�t /
Z 1

0

h.ST / Qp.ST ; T jS; t/dST ; (3.16)

where the risk-neutral density Qp satisfies

1

2
�2S2

@2 Qp
@S2

C rS
@ Qp
@S

C @ Qp
@t

D 0;

subject to

Qp.ST ; T j S; T / D ı.ST � S/:

We could also use the notation of expectation operators and write

C.S; t/ D e�r.T�t / QEt Œh.ST /�; (3.17)
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where the expectation operator QEt is defined by

QEt Œh.ST /� D expectation of h.ST / calculated at time t
using the probability density function Qp.ST ; T j S; t/:

Recall that

h.ST / � C.ST ; T /;

so we can also write

C.S; t/ D e�r.T�t / QEt ŒC.ST ; T /�;

or alternatively

e�rtC.S; t/ D QEt Œe�rT C.ST ; T /�: (3.18)

Note that

ert D



Value at t of $1 invested at 0 and
continuously compounded at r .

This quantity is known as the money market account. Thus

V.S; t/ D C.S; t/

ert
D



Value of the option at time t measured in
units of the money market account.

(3.19)

Then (3.18) (after interchanging LHS and RHS) can be re-expressed as

QEt ŒV .ST ; T /� D V.S; t/ (3.20)

i.e.



the expected value of V for time T ,
calculated at current time t

D



the value of V
at current time t :

A stochastic process satisfying such a property (i.e. that its expected value at a future
time is just its current value) is known as a martingale.

Essentially such processes have the property that at each point in time, the
conditional distribution for future points in time is “centred at” (i.e. has as mean
value) the current point at which the process has arrived. Figure 3.3 illustrates this
concept. In Fig. 3.3a the conditional distribution of V.ST ; T / at time t is “centred”
at the current value V.St ; t/. On the following trading day, t C�t , the conditional
distribution for T is now “centred at” V.StC�t ; t C �t/, the value that V has
attained at this point in time, as illustrated in Fig. 3.3b. In a sense that could be
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a

b

Fig. 3.3 Illustrating the martingale concept over two successive “days”. (a) The martingale
relation at day t . (b) The martingale relation at day .t C�t/

made mathematically more precise, this restraint on the stochastic process stops its
sample paths from becoming “too wild”.3

Martingales will be formally introduced in Chap. 8 where we will also demon-
strate how to arrive at Eq. (3.20) via the continuous hedging argument.

3.3 Our First Glimpse of the Feynman–Kac Formula

We have argued in Sect. 3.1 that C.S; t/ satisfies the partial differential equation
(3.7),

1

2
�2S2

@2C

@S2
C rS

@C

@S
C @C

@t
D rC

3This is the sense of the term martingale. One of the meanings of this word in French is the harness
that one places around the head of a horse. This allows the jockey to control the horse and prevent
its movements from becoming too wild.
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with

C.ST ; T / D max.ST � E; 0/ � h.ST /:

It is of interest to enquire as to what partial differential equation the adjusted option
price V.S; t/, defined in (3.19), satisfies. To this end we note that

@

@S
V.S; t/ D @

@S
.e�rtC.S; t// D e�rt @C

@S
;

@2

@S2
V .S; t/ D @2

@S2
.e�rtC.S; t// D e�rt @

2C

@S2
;

@

@t
V .S; t/ D @

@t
.e�rtC.S; t// D �re�rtC.S; t/C e�rt @C

@t
:

Hence after some algebra and making use of (3.7), we find that

1

2
�2S2

@2V

@S2
C rS

@V

@S
C @V

@t
D 0; (3.21)

or, using the notation for the Kolmogorov partial differential operator K ,

K V C @V

@t
D 0:

Using the terminal conditions for C.ST ; T / we find that

V.ST ; T / D e�rT max.ST �E; 0/ � g.ST ; T /: (3.22)

On the other hand we have shown in Sect. 3.2 that V can be expressed as a
conditional expectation,

V.S; t/ D QEt ŒV .ST ; T /� D QEt Œg.ST ; T /�; (3.23)

where QEt is calculated using the risk-neutral probability density function Qp.ST ; T j
S; t/ which is the solution of (see Eqs. (3.5), (3.13) and (3.14))

K Qp C @ Qp
@t

D 0; (3.24)

with terminal condition

Qp.ST ; T j S; T / D ı.ST � S/: (3.25)
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What we have effectively shown with these various manipulations is that the
solution to the partial differential equation (3.21) generated by the operator K
subject to the terminal (payoff) condition (3.22) may be expressed as an expectation
of the payoff as in Eq. (3.23). The Kolmogorov partial differential equation yielding
the probability density function under which the expectation is calculated is also
generated by the same operator K under the conditional expectation defined by
Eq. (3.20).

We will show in Chap. 8 that this is in fact a specific instance of a quite
general result known as the Feynman–Kac formula. This will allow us to have two
alternative representations of the option price, either via the solution of a partial
differential equation subject to a terminal (payoff) condition or as an expectation of
the payoff, with the calculation of the expectation requiring a density function which
is the solution of the Kolmogorov partial differential equation. Depending on the
application under consideration one or other of these representations of the option
price may be more convenient. The equivalence between these two viewpoints is
shown by two of the boxes in Fig. 3.4. This figure shows a link to a third box,
this last box involves the viewpoint from using stochastic differential equations that
basically gives us another way to calculate the expectation QEt in Eq. (3.23) (namely
simulation) and also will allow us to develop the continuous hedging argument.
This viewpoint and the necessary technical apparatus shall be developed over the
next three chapters.

In this chapter we have already obtained what we will appreciate later the two
of the main representations of the option price, the partial differential equation
representation and the martingale representation. We have also seen how going
back and forth between these two representations throws up the results that we shall
formalise in Chap. 8 as the Feynman–Kac formula.

Fig. 3.4 The holy trinity of option pricing: different viewpoints on the option price representation
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We have been able to arrive at these representations, by combining the asset
price modelling concepts we developed in Chap. 2 with the very basic notion of
discounted expected cash flow. The only assumption we have had to make is that
investors act as if they are risk-neutral when pricing options. This assumption is
of course completely ad hoc (though to some extent justified by the comment in
footnote 1 that option pricing is a relative pricing problem) at this stage and must be
regarded as a loose end. However the rationale for the risk-neutral pricing principle
will become clear by the time we reach Chap. 8 .

3.4 Appendix

Appendix 3.1 Derivation of the Black–Scholes Formula

Letting � D T � t , the risk-neutral density (3.14) becomes

Qp.ST ; T j S; t/ D 1p
2���ST

exp

�
�fln.ST =S/� .r � �2=2/�g2

2�2�

�
: (3.26)

The option value (3.15) is then given by4

C.S; t/ D e�r�
Z 1

E

.ST�E/ 1p
2���ST

exp

�
�fln.ST =S/�.r��2=2/�g2

2�2�

�
dST :

(3.27)

Equation (3.27) is the difference of two integrals, which we evaluate separately.
Thus we define

A1 D 1p
2���

Z 1

E

exp

�
�fln.ST =S/� .r � �2=2/�g2

2�2�

�
dST ; (3.28)

and

A2 D Ep
2���

Z 1

E

exp

�
�fln.ST =S/� .r � �2=2/�g2

2�2�

�
dST
ST

: (3.29)

Then we can write

C.S; t/ D e�r� ŒA1 �A2�; (3.30)

and consider in turn the evaluation of A1 and A2.

4Note that we still denote the dependence of the option price on t rather than � . Some readers may
be tempted to write C.S; �/, but the dependence of C on � is properly denoted as C.S; T � t / D
C.S; �/.
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The evaluation of A1. Make the change of variable

ST D ex . i.e. x D lnST ; /

so that

A1 D 1p
2���

Z 1

lnE
exp

�
�fx � lnS � .r � �2=2/�g2

2�2�

�
exdx

D 1p
2���

Z 1

lnE
exp

��.x � ˛/2 C 2�2�x

2�2�

�
dx; (3.31)

where we let

˛ � lnS C .r � �2=2/�;

and have rearranged slightly. Overall, under the integral sign e is being raised to a
quadratic power, which may be simplified by using the procedure of completing the
square.5 Thus identifying the ˇ in footnote 5 with �2�2� we have

.x � ˛/2 � 2�2�x D .x � .˛ C �2�//2 � 2�2�˛ � .�2�/2

D .x � .˛ C �2�//2 � 2�2�.lnS C r�/C .�2�/2 � .�2�/2

D .x � .˛ C �2�//2 � 2�2�.lnS C r�/: (3.32)

So substituting (3.32) into (3.31) we now write

A1 D 1p
2���

Z 1

lnE
exp

�
�fx � ŒlnS C .r C �2=2/��g2

2�2�

�
elnSCr�dx;

i.e.

A1 D Ser�p
2���

Z 1

lnE
exp

�
�fx � ŒlnS C .r C �2=2/��g2

2�2�

�
dx:

5The procedure of completing the square simply makes use of the algebraic identity

x2 C ax D .x C a=2/2 � a2=4

for any a. This procedure may be used to perform the following type of re-arrangement:

.x�˛/2 C ˇx D x2�2˛x C ˛2 C ˇx D x2 C .ˇ�2˛/x C ˛2 D .x C .
ˇ

2
�˛//2 C ˛ˇ�ˇ

2

4
;

which is what is being used here to rearrange the exponent.
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Now let

y D x � ŒlnS C .r C �2=2/��

�
p
�

;

so that

A1 D Ser�p
2���

Z 1

�d1
e�y2=2�

p
�dy;

where we have put

d1 D lnS C .r C �2=2/� � lnE

�
p
�

: (3.33)

That is

A1 D Ser�
1p
2�

Z 1

�d1
e�y2=2dy:

Now it follows from the properties of the normal distribution (see Fig. 3.2) that

1p
2�

Z 1

�d1
e�y2=2dy D 1p

2�

Z d1

�1
e�y2=2dy � N .d1/:

Hence finally

A1 D Ser�N .d1/: (3.34)

The evaluation of A2. Recall that

A2 D Ep
2���

Z 1

E

exp

�
�fln.ST =S/� .r � �2=2/�g2

2�2�

�
dST
ST

:

Make the change of variable

x D ln.ST =S/� .r � �2=2/�:

Then

A2 D Ep
2���

Z 1

ln.E=S/�.r��2=2/�
exp

�
� x2

2�2�

	
dx:
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Make the further change of variable

y D x

�
p
�
;

then

A2 D E
1p
2�

Z 1

�d2
e�y2=2dy;

where

�d2 D ln.E=S/� .r � �2=2/�
�

p
�

;

i.e.

d2 D ln.S=E/C .r � �2=2/�
�

p
�

: (3.35)

Using the same manipulations with the normal distribution as in the calculation of
A1 we find that

A2 D EN .d2/: (3.36)

Substituting (3.34) and (3.36) into (3.30) we finally obtain

C.S; t/ D SN .d1/� Ee�r�N .d2/:

Observe from (3.33) and (3.35) that

d2 D d1 � �p
�:

3.5 Problems

Problem 3.1 (a) Consider the integral

I.b; x/ D
Z 1

x

e�.v2Cbv/dv:

By using the “trick” of completing the square show that

I.b; x/ D p
�eb

2=4N .�p
2x � bp

2
/;
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where the function N is defined as

N .x/ D 1p
2�

Z 1

�x
e�y2=2dy D 1p

2�

Z x

�1
e�y2=2dy:

(b) Consider the integral

J.a; b; x/ D
Z 1

x

e�.vCa/2�bvdv:

By making a suitable change of variable show that

J.a; b; x/ D ebaI.b; x C a/:

Hence write out the expression for J in terms of the function N .
(c) Consider the function

K.b; x/ D
Z 1

x

ve�.v2Cbv/dv:

Use the technique of integration by parts to show that

K.b; x/ D 1

2
e�.x2Cbx/ � b

2
I.b; x/:

Hence express K.b; x/ in terms of the function N .

Problem 3.2 It has been observed empirically that the price, x, of an asset has the
following properties:

(i) The mean of small price changes over time interval .t; t C�t/ ' a.x; t/�t ;
(ii) The second moment of small price changes over .t; t C�t/ ' b.x; t/�t .

(a) Write down the Kolmogorov backward equation for the conditional transition
probability density function p.xT ; T jx; t/ for t < T .

(b) A derivative instrument written on the asset and which matures at time T has
payoff g.xT ; T /.
If investors are assumed to be risk neutral, write out the integral expression for
the value, f .x; t/, of the derivative security at time t.< T / when the price of
the asset is x.

(c) By making use of the Kolmogorov backward equation, show that the function
f .x; t/ satisfies the partial differential equation

1

2
b.x; t/

@2f

@x2
C a.x; t/

@f

@x
C @f

@t
D rf;
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subject to the boundary condition

f .x; T / D g.x; T /:

Problem 3.3 Consider the partial differential equation (3.2). Use the transforma-
tion y D lnS (and yT D lnST ) and the transformed transitional density function

p.ST ; T jS; t/ D p.eyT ; T jey; t/ � q.yT ; T jy; t/

to express it as

1

2
�2
@2q

@y2
C
�
� � 1

2
�2
	
@q

@y
C @q

@t
D 0 (3.37)

which must be solved subject to the initial condition

q.yT ; T jy; T / D ı.yT � y/:

Use the result of Problem 2.3 to show that the solution to (3.37) is

q.yT ; T jy; t/ D 1
p
2�.T � t/�

exp

"
� .yT � y � .�� 1

2
�2/.T � t//2

2�2.T � t/

#
:

Hence obtain the solution (3.13).

Hint: Recall the result in Appendix 2.1 about how the density function transforms
under a change of variable.

Problem 3.4 Consider an option with the following payoff structure:-

h.ST / D

8
<̂

:̂

0; ST � E1;

H
�
ST �E1
E2�E1

�2
; E1 < ST � E2;

H; E2 < ST

where the (positive) quantitiesE1;E2 andH would be specified in the contract. Use
the techniques of Appendix 3.1 and integration by parts to show that the value of
this option contract is

C.S; �/ D H

.E2 � E1/2

�
S2e.rC�2/�fN Œd3.E1/� � N Œd3.E2/�g

� 2SE1fN Œd1.E1/� � N Œd1.E2/�g C E2
1e

�r�fN Œd2.E1/� � N Œd2.E2/�g
�

C He�r�N Œd2.E2/�;
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where

d1.K/ D
ln S

K
C
�
r C �2

2

�
�

�
p
�

;

d2.K/ D d1.K/� �p
�;

and

d3.K/ D
ln S

K
C
�
r C 3�2

2

�
�

�
p
�

:



Chapter 4
The Stochastic Differential Equation

Abstract To develop the hedging argument of Black and Scholes, this chapter
introduces stochastic differential equations to model the evolution of the price path
itself and the statistical properties of small price changes over small changes in
time. We then consider the stochastic differential equations for the Wiener process,
Ornstein–Uhlenbeck process and Poisson process and examine the autocovariance
behaviour of the Wiener process. Furthermore we introduce stochastic integrals to
define the stochastic differential equations.

4.1 Introduction

In the previous chapter our focus was on the conditional probability density function
and how it evolves through time. Once we know how this time evolution occurs we
are then able to obtain the expected value of some payoff contingent on future values
of the asset (e.g. an option). With the approach developed there we can consider a
wide range of contingent claim valuation problems that arise in practice, and indeed
we shall consider a number of these in later chapters. In this chapter we develop
an alternative approach to the valuation of contingent claims, which arises out of a
consideration of the statistical properties of the sample paths of the asset price. The
valuation approach to which we refer is the hedging argument developed by Black
and Scholes. In order to develop it we need to concentrate on the evolution of the
price path itself and on the statistical properties of small price changes over small
changes in time. We also need to develop a technique for determining how the value
of the contingent claim (e.g. an option) changes when the asset price undergoes a
small change. Consideration of these problems will lead us to the development of
stochastic integrals, stochastic differential equations and Ito’s lemma.

In order to develop techniques and concepts which shall be useful in this and
later chapters we shall consider some particular Markov processes such as the
Wiener process, the Poisson process and the Ornstein–Uhlenbeck process. In order
to clarify the significance of the white noise assumption and its relation to the
Wiener process, and the Ornstein–Uhlenbeck process we introduce a section on
autocorrelation functions, spectra and white noise. We then tackle the task of
defining the stochastic integral and the stochastic differential equation. In Chap. 6

© Springer-Verlag Berlin Heidelberg 2015
C. Chiarella et al., Derivative Security Pricing, Dynamic Modeling
and Econometrics in Economics and Finance 21,
DOI 10.1007/978-3-662-45906-5_4

55



56 4 The Stochastic Differential Equation

we undertake the derivation of Ito’s lemma. Once all of this machinery is assembled
we are then able to value a European call option by use of the continuous hedging
argument.

4.2 A First Encounter with the Stochastic Differential
Equation

If we consider a pure diffusion process then the jump term J (see Sect. 2.6) is absent
and the Lindeberg condition (see Sect. 2.4) is satisfied and so the sample paths are
continuous. We know from our discussion in Chap. 2 that the conditional probability
density function p.z; t j y; �/ satisfies the Fokker–Planck forward equation (2.17).
Since our focus in this chapter is on how the statistical properties of the sample path
evolve over a small interval of time .t; t C�t/, we are particularly interested in the
conditional probability density function p.z; t C �t j y; t/. We may calculate this
latter quantity by using the Fokker–Planck equation for which the appropriate initial
condition is

p.z; t j y; t/ D ı.z � y/: (4.1)

Figure 4.1 illustrates the initial ı function distribution and the corresponding
distribution �t time units later. For �t small the effect of the initial ı function
will still be quite pronounced and so the solution of the Fokker–Planck will be very

Fig. 4.1 Evolution of conditional probability over time interval �t
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peaked. This means that the derivatives of the drift and diffusion termsA andB will
be quite small in magnitude compared to those of p.

A reasonable approximation of the Fokker–Planck equation for the situation we
are considering may be obtained by replacing A.z; t/ and B.z; t/ by A.y; t/ and
B.y; t/ respectively. Thus the Fokker–Planck equation becomes

@

@t
p.z; t j y; �/ D �A.y; t/ @

@z
p.z; t j y; �/C 1

2
B.y; t/

@2

@z2
p.z; t j y; �/: (4.2)

The solution to Eq. (4.2) subject to the ı function initial condition turns out to be
(after identifying � with t and t with t C�t/1

p.z; t C�t j y; t/ D 1p
2��tB.y; t/

exp

�
� .z � y � A.y; t/�t/2

2B.y; t/�t

�
; (4.3)

since we are assuming that A and B undergo negligible changes over the small time
interval .t; t C�t/.

Equation (4.3) is a Gaussian distribution with variance B.y; t/�t and mean
y C A.y; t/�t . The picture of the asset price movement that is implied by (4.3)
is one in which there is an average price change of A.y; t/�t over the time interval
.t; t C�t/. This average price change is superimposed a Gaussian fluctuation with
variance B.y; t/�t as illustrated in Fig. 4.2.

Fig. 4.2 Price change broken down into a mean and a Gaussian fluctuation

1Here we are applying the result obtained in Problem 2.3.
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This type of price movement over the time interval .t; t C�t/ can be written in
the form

y.t C�t/ D y.t/C A.y; t/�t Cp
B.y; t/

p
�t�.t/; (4.4)

where the random variable �.t/ is normally distributed and has the properties

EŒ�.t/� D 0 and varŒ�.t/� D 1:

Here the expectation and variance are calculated at time t . In other words the price
change over the interval .t; t C�t/ can be written

�y.t/ D A.y; t/�t C
p
B.y; t/

p
�t�.t/: (4.5)

Equation (4.5) describes the stochastic evolution of the price over the small time
interval .t; t C �t/. Notice how our focus has now switched from following the
evolution of the conditional probability p.z; t j y; �/ to following the stochastic
evolution of the price path (i.e. the sample path of the stochastic process). Equa-
tion (4.5) is a discretised version of the stochastic differential equation for y.t/,
which we shall describe more formally later on.

To see why we cannot switch to the standard differential equation notation of
ordinary deterministic calculus note first of all that since

�y.t/ ! 0 as �t ! 0;

the sample paths are everywhere continuous (this we already know from Lindeberg’s
condition). However if we attempt to form the derivative of y.t/ by considering the
quotient�y.t/=�t and let �t ! 0, we encounter some difficulty. Note that

�y.t/

�t
D A.y; t/C

p
B.y; t/�.t/p

�t
: (4.6)

As we let �t ! 0, the first term on the right-hand side of (4.6) is a well defined
limit. However the second term presents some complications. We note that

E

�
�.t/p
�t

�
D 0 and var

�
�.t/p
�t

�
D 1

�t
:

Thus �.t/=
p
�t is a normal random variable with mean zero and variance 1=�t

as is illustrated in Fig. 4.3. As �t ! 0 the variance tends to 1 so that there is
an equally likely probability of this stochastic variable drawing a value anywhere
between �1 and C1. In other words this limit does not exist. What we are seeing
here in an informal way is that the sample paths are not differentiable. We shall
formally demonstrate this in Sect. 4.3.1. This non-differentiability is the reason why
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Fig. 4.3 The distribution of �.t/=
p
�t

we need to describe the stochastic evolution of the asset price with an equation
such as (4.5) which concentrates on the price change rather than its derivative. We
proceed to the limit �t ! 0 by writing Eq. (4.5) in the form

dy.t/ D A.y; t/dt C
p
B.y; t/dz.t/; (4.7)

where

EŒdz.t/� D 0; varŒdz.t/� D dt: (4.8)

This notation implies

EŒdy.t/� D A.y; t/dt and varŒdy.t/� D B.y; t/dt:

However at this stage this notation is purely formal and can only be given a proper
mathematical interpretation once we define the stochastic integral.

4.3 Three Examples of Markov Processes

In this section we consider some fundamental solutions of the Fokker–Planck and
Kolmogorov equations for certain special cases which have found wide application
in finance theory.

4.3.1 The Wiener Process

The Wiener process is a pure diffusion process whose drift coefficient is zero and
diffusion coefficient is unity, i.e.

A D 0 and B D 1:
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The Fokker–Planck equation in this situation reduces to

@

@t
p.z; t j y; �/ D 1

2

@2

@z2
p.z; t j y; �/; (4.9)

subject to the initial condition

p.z; � j y; �/ D ı.z � y/: (4.10)

The solution turns out to be2

p.z; t j y; �/ D 1p
2�.t � �/

exp

�
� .z � y/2

2.t � �/
�
; (4.11)

which is a Gaussian distribution with the properties

EŒz.t/� D y; (4.12)

varŒz.t/� D EŒ.z.t/ � y/2� D .t � �/: (4.13)

Thus the initial sharp of ı function distribution spreads out in time as shown in
Fig. 4.4. The Wiener process is also referred to as Brownian motion in the stochastic
processes literature.

Some notable features of the Wiener process are firstly, the highly irregular
nature of its sample paths. This arises from the fact that the variance becomes
infinite as .t � �/ ! 1. Figure 4.4 shows some different sample paths arising out
of the same initial price.3 Figure 4.4a shows just 4 paths, whilst Fig. 4.4b shows a
bundle of 1,000 paths. In the latter diagram we note the “spreading out” of the range
over which the paths vary. This is just another way of seeing the increasing variance
of the transitional probability density function as the time horizon increases.

Secondly the sample paths of the Wiener process are non-differentiable. We know
from the way we introduced diffusion processes that the sample paths are continuous
(because of the Lindeberg condition) and we saw at an intuitive level in Sect. 4.2
why they are not differentiable. To see more formally that they are not differentiable
consider (see Fig. 4.5)

I.h/ D Prob

�ˇ̌
ˇ̌ z.t C h/� z.t/

h

ˇ̌
ˇ̌ > k

	
: (4.14)

2Again we apply the result obtained in Problem 2.3.
3See Problem 4.6 for a discussion on how such paths are simulated.
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t‘ t
0

y

z

t‘ t
0

y

z

a

b

Fig. 4.4 Irregular nature of simulated sample paths of the Wiener process; (a) shows 4 typical
paths, (b) shows a bundle of 1,000 paths. Here t � t 0 D 1
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Fig. 4.5 The set
ˇ̌
ˇ z.tCh/�z.t/

h

ˇ̌
ˇ > k

Fig. 4.6 Shaded area D Prob.Œz.t C h/� z.t /� > kh/

Using the solution (4.11) for the conditional probability, this probability turns out to
be (see Fig. 4.6)

I.h/ D 2

Z 1

kh

1p
2�h

e�z2=2hdz;

which tends to 1 as h ! 0. In other words no matter what value of k we
choose,

ˇ̌
ˇ z.tCh/�z.t/

h

ˇ̌
ˇ is almost certain to be greater than it, which means that the

derivative at any point in time is almost certainly infinite. This argument renders
more mathematically precise the discussion in Sect. 2.4 showing intuitively that the
sample paths of a diffusion process are nowhere differentiable (put A D 0 and
B D 1 in Sect. 4.2 to make the two situations equivalent).

A third important property of the Wiener process is the independence of
the increments of z.t/. By the Markov property of the Wiener process the joint
probability of a price sequence .z0; t0/; .z1; t1/; : : : ; .zn; tn/ can be written

p.zn; tnI zn�1; tn�1I : : : I z0; t0/ D
n�1Y

iD0
p.ziC1; tiC1 j zi ; ti /p.z0; t0/: (4.15)
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Using the solution (4.11) and setting

�zi D z.ti / � z.ti�1/; �ti D ti � ti�1;

we see that

p.ziC1; tiC1 j zi ; ti / D 1p
2��tiC1

exp

 
� �z2iC1
2�tiC1

!
: (4.16)

Hence the joint probability density for the price changes, f�zigniD1, is

p.�znI�zn�1I�zn�2I : : : I�z1I z0/ D
"

nY

iD1

1p
2��ti

exp

�
� �z2i
2�ti

	#
p.z0; t0/;

(4.17)

which shows that the price changes �zi are independent of each other and of
z.t0/. The property of the independence of the increments �zi turns out to be very
important in the definition of the stochastic integral that we undertake below.

4.3.2 The Ornstein–Uhlenbeck Process

The Wiener process does not have a stationary distribution, since as t ! 1 the
distribution at any point y tends to zero, which means that ultimately the price
moves between �1 and C1 with probability one. Hence the Wiener process is
not stationary.

A process which does tend to a stationary distribution and is related to the Wiener
process in a way to be explained later is the Ornstein–Uhlenbeck (O–U) process.
This process has a linear drift term, �kz (for k a positive constant) and a diffusion
coefficientD. The Fokker–Planck equation for this process is then

@

@t
p.z; t j y; �/ D @

@z
Œkzp.z; t j y; �/�C 1

2
D
@2

@z2
p.z; t j y; �/; (4.18)

with the same ı function initial condition. It can be shown (see Gardiner for
technical details) that the solution is a Gaussian distribution with mean

EŒz.t/ j y; �� D ye�k.t��/; (4.19)

and variance

varŒz.t/ j y; �� D D

2k
Œ1 � e�2k.t��/�: (4.20)



64 4 The Stochastic Differential Equation
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Fig. 4.7 Time behaviour of mean and variance of the Ornstein–Uhlenbeck process

As t ! 1 the mean tends to 0 and the variance tends to the constant value ofD=2k,
as illustrated in Fig. 4.7.

In a later chapter we shall discuss some empirical evidence which suggests that,
at least in some bond markets, the variance behaviour shown in Fig. 4.7 is more
likely to be observed than that implied by the Wiener process.

Finally note that in the limit t ! 1, the Ornstein–Uhlenbeck process has a
stationary distribution with mean 0 and variance D=2k. Using ps to denote the
stationary distribution we can write

ps.z/ D
p
kp

�
p
D

exp.�kz2

D
/: (4.21)

In Fig. 4.8 we compare the density functions for the Wiener process and the
Ornstein–Uhlenbeck process at various points in time. We have taken � D 0,
y.0/ D 1, D D 1 (same diffusion coefficient as the Wiener process) and k D 1

(for this value the stationary distribution is approached fairly rapidly). We see
clearly how the distribution for the O–U process settles down fairly quickly onto
the stationary distribution, whilst the distribution for the Wiener process continues
to spread out.
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Fig. 4.8 Comparing the distributions of the Wiener and O–U processes at different times

4.3.3 The Poisson Process

We shall discuss the Poisson process within the framework of the Fokker–Planck
and Kolmogorov equations of Sect. 2.6, in particular, the Fokker–Planck equation
which allows for a jump component (i.e. Eq. (2.25)).

Let us concentrate on a pure jump process for the price movement, i.e. the drift
A D 0 and the diffusion B D 0. The Fokker–Planck equation (2.25) reduces to

@

@t
p.z; t j y; �/ D

Z 1

�1
ŒJ.z j x; t/p.x; t j y; �/ � J.x j z; t/p.z; t j y; �/�dx:

(4.22)

Suppose, on the basis of past observations, we know that a price jump occurs with
a frequency of � per time unit. Furthermore in order to concentrate on the essential
feature of the process, assume that when the price jumps it jumps by a positive
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amount of one unit. In Chap. 12, when we price options whose underlying asset
follows a jump process, we allow the magnitude of the jump to be also drawn from
a probability distribution. Thus after the occurrence of n jumps the price would be
at n, and the conditional probability in which we are interested in this situation is4

P.n; t j n0; �/ D probability that n price jumps have occurred by time t ;

given that n0 have occurred up to the earlier time � .

Since the integral is now evaluated at one point the integral equation in (4.22)
collapses to

@

@t
P.n; t j n0; �/ D �ŒP.n � 1; t j n0; �/ � P.n; t j n0; �/�: (4.23)

Assuming there is no initial jump at time zero, the solution for this probability is
(again see Gardiner for details)

P.n; t j 0; 0/ D .�t/n

nŠ
e��t ; (4.24)

which gives us the probability that n price jumps have occurred in the time interval
.0; t/.

4.4 Autocovariance Behaviour and White Noise

Market analysts are naturally interested in how the price at one point in time may
be related to the price at some other point in time. Such an effect is measured by the
autocovariance function EŒz.t/z.s/ j z0; t0� which in a sense measures the amount of
memory that the dynamics driving the price display. We give a brief review of this
concept in Appendix 4.1.

The autocovariance function of the Wiener process turns out to be

EŒz.t/z.s/ j z0; 0� D min.t; s/C z20: (4.25)

The result (4.25) is easily shown by rewriting the left-hand side as (for convenience
assume s < t)5

EŒz.t/z.s/jz0; 0� D E
�
z.s/Es.z.t//jz0; 0


 D EŒz2.s/jz0; 0� D s C z20: (4.26)

4Note that we are using P to denote probability of the number of jumps, whereas p refers to
probability of the value of the price. For this particular price jump process the two are equal of
course.
5Note the law of iterated expectation E.X/ D EŒE.X jY /�.
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Similarly if t < s, we find that

EŒz.t/z.s/jz0; 0� D t C z20: (4.27)

Hence we have established the result (4.25).
Many of the calculations of stochastic calculus reduce to calculating the autoco-

variance of the increment of the Wiener process. Arguing at an informal level this
amounts to considering EŒ�z.t/�z.s/� and then passing to the stochastic limit as
�t ! 0. To be done mathematically precisely we would need to consider stochastic
integrals.

Adopting the informal approach we first assume s ¤ t and s < t and consider

EŒ�z.t/�z.s/� D E
�
�z.s/Es.�z.t//


 D 0:

The case s ¤ t and s > t will yield the same result. Next consider s D t , then we
have

EŒ.�z.t//2� D EŒ.z.t C�t/ � z.t//2� D �t: (4.28)

Hence we have shown that

EŒ�z.t/�z.s/� D
(
0 if s ¤ t;

�t if s D t;
(4.29)

and so passing to the stochastic limit

EŒdz.t/dz.s/� D
(
0 if s ¤ t;

dt if s D t:
(4.30)

We note that (4.30) is another way (heuristically) of seeing that the Wiener
increments are independent. The result (4.30) may also be written

EŒdz.t/dz.s/ j z0; 0� D ı.t � s/pdtds; (4.31)

showing that the autocovariance of the increment of the Wiener process is a Dirac
delta function.

For the Ornstein–Uhlenbeck process, the stationary autocovariance function
turns out to be

EŒx.t/x.s/� D D

2k
e�kjt�sj (4.32)

and is illustrated in Fig. 4.9.
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Fig. 4.9 Autocovariance function of the Ornstein–Uhlenbeck process; here D D 1 and k D 0:5

It is more convenient to express the autocovariance function as a measure of the
distance between t and s, i.e. (see Appendix 4.1)

G.�/ D lim
T!1

1

T

Z T

0

x.t/x.t C �/dt D D

2k
e�kj� j: (4.33)

Recall that G.�/ measures the amount of memory in the stochastic process x.t/.
Figure 4.9 indicates that this memory drops off exponentially, the more rapidly the
larger is k. In this connection it is useful to have a measure of the average amount
of memory time of the stochastic process, which is defined as

�cor D 1

G.0/

Z 1

0

G.�/d� D 1

k
: (4.34)

Clearly as k ! 1, the average memory time �cor ! 0. This is another way
of seeing that the Ornstein–Uhlenbeck process tends to white noise as k ! 1.
However this limiting process needs to be treated with some caution. To appreciate
this comment consider the power spectrum (that broadly speaking, measures the
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strength of the noise) of the Ornstein–Uhlenbeck process which from Appendix 4.1
is given by

S.!/ D 1

2�

Z 1

�1
G.�/e�i!�d� D D

2�

1

!2 C k2
: (4.35)

If we proceed naively to the limit k ! 1 in (4.35) we will see that S.!/ ! 0.
However a zero power spectrum implies no noise at all! So the naive passage to
the limit k ! 1 (�cor ! 0) poses the dilemma that the limit represents a no
noise situation. The way out of this dilemma is to make the diffusion coefficient
D (which measures the intensity of the noise) also depend on k. With an eye to a
further discussion of this issue in Sect. 6.3.5, we set

D D �2k2; (4.36)

where � is a constant. Now we find that

lim
k!1S.!/ D �2

2�
: (4.37)

Thus with the choice of diffusion coefficient (4.36), the limit k ! 1 (�cor ! 0)
yields a noise process which has a flat power spectrum. Since a flat power spectrum
is a characteristic of white light (and is a consequence of the fact that in white light
all frequencies are present with equal power) this limiting noise process is known
as white noise.

WithD defined as in (4.36) we see that the maximum value of the autocovariance
function of the Ornstein–Uhlenbeck process in Fig. 4.9 is �2k=2. So as k ! 1 the
autocovarianceG.�/ becomes more peaked around the origin in such a way that

lim
k!1G.�/ D �2ı.�/: (4.38)

Thus white noise can be viewed as an Ornstein–Uhlenbeck process with zero
memory time and having infinite intensity all in such a way that the limits (4.37)
and (4.38) are satisfied. Of course white noise is a highly idealised process and
probably does not exist in the real world. Real market noise is probably best
modelled as an Ornstein–Uhlenbeck process with a high value of k (such a noise
process is often referred to as coloured noise). However it is mathematically
more convenient to use white noise. Whilst modern financial markets are highly
efficient they are nevertheless likely to display some small but nonzero memory
time dependent on some inevitable market frictions. The important issue is whether
the idealised white noise with �cor D 0 is a robust approximation to real noise with
�cor ' 0. It turns out that the answer to this question is yes. It is this fact that
allows us to proceed to build a theory of uncertainty in financial markets based on
the theory of Markov diffusion processes and semimartingale integration.
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4.5 Modelling Uncertain Price Dynamics

In a world of certainty we would use a differential equation such as

dx

dt
D �.x; t/; (4.39)

to model the price movements in continuous time, where the form of the function
� would depend on the characteristics of the particular market under consideration.
For example for stock prices we could write

dx

dt
D �x; (4.40)

where � (constant) is the average growth rate per unit time in stock prices over an
appropriate period. For � > 0 this would result in the upward trending price path
shown in Fig. 4.10a. On the other hand for short term interest rates we might use

dx

dt
D 	.x0 � x/; (4.41)
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Fig. 4.10 Deterministic long run price paths; (a) stock price path with � D 0:1, (b) short term
interest rate path with x0 D 0:1 and k D 0:1
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where x0 is the equilibrium short term rate and 	 > 0 is the speed at which this rate
is approached. The path of the short run rate is as shown in Fig. 4.10b.

Deterministic models of the type in Eq. (4.39) are adequate for an analysis of
long-run trends when the day to day fluctuations even out. However in option pricing
situations, the day-to-day fluctuations are of prime importance. Hence we need to
add to the right hand side of (4.39) a term which captures the short-term (i.e. day-
to-day) fluctuations caused by the market noise discussed in the previous section,
and whose parameters could eventually be estimated by statistical techniques.

Our initial temptation would be to add another term to the right-hand side
of (4.39) so that

dx

dt
D �.x; t/C �.x; t/�.t/; (4.42)

where �.t/ is a rapidly fluctuating random term and �.x; t/ measures the magnitude
of the fluctuations and its dependence on price and time. If we want to model the
noise as a white noise process we would demand of the random terms �.t/ that they
be statistically independent at different points in time, i.e.

EŒ�.t/�.s/� D ı.t � s/: (4.43)

The difficulty with trying to proceed with this approach is that if we wanted the price
path to be a Markov diffusion process (we would want to do this so as to be able to
make use of much of the established theory of stochastic processes discussed earlier)
then we are not really able to write down the derivative dx=dt, since, the sample
paths of the now random processes are not differentiable, as we saw in Sect. 4.2
when we tried to form the derivative. Indeed we see from the analysis in that section
(in particular equation (4.6)) the case in which the randomly fluctuating term is
modelled by

�.t/ D lim
�t!0

�.t/p
�t
; (4.44)

where the �.t/ is a standard normal variable (i.e. EŒ�.t/� D 0, varŒ�.t/� D 1),
which is statistically independent across time (i.e. EŒ�.t/�.s/� D 0, t ¤ s). When
the rapidly fluctuating random �.t/ term is viewed in this way, the origin of the ı
function term in (4.43) becomes clear since var.�.t// D 1=�t . In fact �.t/ has the
same probability density function as the one illustrated in Fig. 4.3.

Since the sample paths of diffusion processes are not differentiable we cannot
satisfactorily proceed with the differential equation (4.42). In order to cater for the
fact that sample paths are not differentiable what we need to do is go back to the
step before taking the limit�t ! 0 and consider the price change over a small time
interval .t; t C�t/. We would then have

x.t C�t/� x.t/ D �.x; t/�t C �.x; t/�.t/; (4.45)
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where �.t/ is an appropriate stochastic process. The first term on the right-hand
side represents the average price change whilst the second term represents the
random fluctuations around this average. The main point at issue is which stochastic
process is the most appropriate to use for the �.t/ term. To properly answer this
question we really need to look at the empirical behaviour of asset price time
series. The vast literature on market efficiency, initiated by Fama (1970), suggests
that the price changes at different points in time are statistically independent. This
evidence suggests that an appropriate stochastic process for �.t/ would be the
increments of the Wiener process, which we saw in Sect. 4.3.1 enjoy the property
of statistical independence. We shall see in later chapters that a richer class of
stochastic processes can be used in addition to the Wiener process. For instance we
could include in �.t/ a Poisson jump process, which also enjoys the independence
of increments properly. We could also allow the standard deviation of �.t/ to be
driven by another diffusion process and so obtain stochastic volatility models. At
a most general level we could use Lévy processes (see Eberlein 2001) to model
�.t/. All of those embellishments contribute to making asset returns exhibit fat
tails, skewness and peakedness that is characteristic of financial market data. Thus
the stochastic process term we shall use in (4.45) is

�.t/ D �z.t/; (4.46)

where�z.t/ is the increment of the Wiener process z.t/ over the interval .t; tC�t/.
From our discussion in Sect. 4.3.1 (see in particular equations (4.10) or (4.16))

EŒ�z.t/� D 0; (4.47)

varŒ�z.t/� D �t: (4.48)

Hence, the equation for the price change (4.45) becomes

x.t C�t/ � x.t/ D �.x; t/�t C �.x; t/�z.t/; (4.49)

which of course is (4.5) in a different notation.

4.6 Proceeding to the Continuous Time Limit

In order to proceed to the continuous time limit in (4.49), we let �t ! 0 as we do
in ordinary deterministic calculus (except that now we do not divide throughout by
�t before taking the limit). At this point we encounter some definitional problems.
Imitating the differential notation of ordinary calculus, it is easy enough to write, in
the limit,

dx D �.x; t/dt C �.x; t/dz; (4.50)



4.6 Proceeding to the Continuous Time Limit 73

Fig. 4.11 Time subdivisions for the price changes

however what meaning should we attach to these symbols? For instance, how do we
interpret lim

�t!0
�z.t/ which we have formally written as dz.t/?

The answer turns out to be that we should reinterpret the equation for price
change, (4.49), as an integral. To see how an integral may arise consider the interval
.0; t/ divided into n sub-periods each of length �t , as shown in Fig. 4.11.

Summing the price changes over successive intervals we see that

x.t/ � x.0/ D
n�1X

iD0
�.xi ; i�t/�t C

n�1X

iD0
�.xi ; i�t/�zi : (4.51)

In the limit as�t ! 0 the sums on the right-hand side will clearly become integrals,
so that we could write

x.t/ � x.0/ D
Z t

0

�.x; s/ds C
Z t

0

�.x; s/dz.s/: (4.52)

Since x.s/ is continuous and the function � is assumed to be reasonably well
behaved,6 the first integral on the right-hand side is readily seen to be the standard
Riemann integral of ordinary calculus. This integral is defined by considering the
maximum ( N�i ) and minimum (�

i
) values of� over each subinterval Œ.i�1/�t; i�t�

as shown in Fig. 4.12. The area under � over this interval, denoted Ai , satisfies

�
i
�t � Ai � N�i�t:

By summing over all n subintervals and taking the limit �t ! 0, n ! 1 in an
appropriate manner we are able to properly define

R t
0
�.x; s/ds.

6That is, � maps continuous functions into functions with at most a countable number of
discontinuities.
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Fig. 4.12 The typical subinterval for a Riemann integral; note the upper and lower bounds

Fig. 4.13 The typical subinterval for the stochastic integral; the open circle indicate points of
unboundedness

The problem that needs to be addressed is how to define and interpret the second
integral on the right-hand side. To see the nature of the problem here consider the
function �.x; s/�z.s/ over the subinterval Œ.i � 1/�t; i�t�. The term �z.s/ has
mean zero but can with positive probability take values (either up or down) larger
than any bound over this subinterval. Hence it is not possible to find the equivalent
of N�i , �i for this term. Also, because of the random term �z.s/ the function is
highly irregular over the subinterval. Figure 4.13 attempts to illustrate this situation
by plotting the integrand �.x; s/�z.s/ as a function of s, with the ı indicating points
where it becomes unbounded.
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To solve this problem properly we need the technical apparatus of measure theory
by means of which a new kind of integral, known as the stochastic integral, has been
developed. In the next section we merely develop the intuition of this concept using
ideas of classical analysis.

Before setting off on the task of defining the stochastic integral and after that
deriving Ito’s lemma, a word of caution should be sounded about an assumption
we have made on how to model the fluctuations of the price process. In deciding to
model the stochastic term, �.t/, in the price change equation (4.45) by the incre-
ments of a Wiener process, �z.t/, we refer to the literature on efficient markets to
justify this assumption. In spite of the wide spread acceptance within the academic
finance literature of the efficient markets hypothesis (and the attendant hypothesis of
random walk behaviour of asset price movements), there has nevertheless continued
to exist what could be described as a “counter-culture” literature which casts doubt
on the efficient markets hypothesis, at least in its purest form. This literature contains
a number of strands. One strand is the so-called anomalies literature which claims to
provide evidence that excess stock returns can be related to a variety of factors such
as firm size, market sentiment, day of the week, month of the year, dividend yield,
to name but a few. A good survey of this literature can be found in Keim (1986).
Another strand of literature studies variance properties of stock returns and finds that
these are not consistent with a random walk model; see Lo and Mackinlay (1988).
In yet another strand there is presented evidence that stock returns contain a sizable
predictable component e.g. French et al. (1987) and Fama and French (1988). There
is of large literature on the excess volatility of asset prices, e.g. West (1988), that
puts into question the view that asset prices are determined solely from rationally
expected fundamental values, which according to Samuelson (1965) should follow a
random walk. Then there are continual claims that it is possible to “beat the market”
with technical analysis. The article by Leroy (1989) surveys many of those issues,
and concludes that there does seem to be some dependency in returns.

It is well to bear in mind that in using the increments of the Wiener process
(i.e. white noise) to model the stochastic fluctuations we are excluding the types of
behaviour referred to in the above empirical studies. This is another reflection of the
fact that pure white noise is really a mathematical idealisation which does not exist
in the real world. Extending the �.t/ term of Eq. (4.45) to incorporate Poisson jump
processes, stochastic volatility or more generally Lévy processes can go some way
to explaining many (though not all) of the apparent anomalies.

4.7 The Stochastic Integral

Let us recall first of all the definition of the Riemann integral of ordinary deter-
ministic calculus. In this case the integral corresponds to the area under the curve
described by the function. Consider the function � on the interval Œ0; T �. Divide
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Fig. 4.14 Partitioning the time interval

this interval into n sub-intervals Œt0; t1�; Œt1; t2�; : : : ; Œti�1; ti �; : : : ; Œtn�1; tn�. Note that
the sub-intervals are not necessarily of equal length (Fig. 4.14).

Concentrating on the i th sub-interval Œti�1; ti �, we take a point �i in this sub-
interval such that

ti�1 � �i � ti ;

and form

�.�i /.ti � ti�1/:

This quantity represents an approximation to the area under the curve between ti�1
and ti . Now form the sum of all such terms, i.e.

Sn D
nX

iD1
�.�i /.ti � ti�1/:

The quantity Sn is known as the partial sum. If, as we let the number of partitions
tend to 1, the partial sum Sn tends to a limit, then we say the function� is Riemann
integrable over Œ0; T � and the limit to which the partial sums converge is known as
the integral of f over Œ0; T �. Mathematically this is written

lim
n!1Sn D S;

or

lim
n!1

nX

iD1
�.�i /.ti � ti�1/ D

Z T

0

�.t/dt: (4.53)

Figure 4.15 illustrates the convergence of the partial sums. It can be shown that
if the function � is continuous, or is piece wise continuous with a finite number of
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Fig. 4.15 Convergence of the partial sums converging

discontinuous points, then � is integrable in the above sense. It can also be shown
that the same result is obtained, no matter what the choice of �i in the interval
Œti�1; ti �. As we shall see below, the choice of �i does make a difference when we
come to define the stochastic integral.

Now let us set out to define a stochastic integral in the same way. Let �.x.t/; t/
be defined on Œ0; T � and let z.t/ be a Wiener process. Using the same partition as in
Fig. 4.14 form, over the interval Œti�1; ti �, the quantity

�.x.�i /; �i /Œz.ti /� z.ti�1/� D �.x.�i /; �i /�z.ti /: (4.54)

Given the properties of the increments of the Wiener process, �z.ti /, displayed in
Eqs. (4.12) and (4.13), the quantity in Eq. (4.54) is a random variable with mean 0
and variance �.x.�i /; �i /2.ti � ti�1/. The distribution of this term is illustrated in
Fig. 4.16.

Now form the sum of all such terms over Œ0; T � to obtain the partial sum

Sn D
nX

iD1
�.x.�i /; �i /Œz.ti /� z.ti�1/� D

nX

iD1
�.x.�i /; �i /�z.ti /: (4.55)

We will say that the stochastic integral of � exists if the partial sums Sn converge as
n ! 1. Now however the Sn are random variables and we have to define what we
mean by the limit of a sequence of random variables.

There is no unique way of defining the limit of a sequence of random variables,
however the way that turns out to be most useful in practical applications is the
mean square limit. The sequence of random variables Sn is said to converge to the
random variable S in mean square if

lim
n!1EŒ.Sn � S/2� D 0: (4.56)
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Fig. 4.16 The distribution of a typical term in the partial sum of the stochastic integral

Fig. 4.17 The distributions of Sn and S

Figure 4.17 attempts to illustrate this concept, showing that in the limit there will be
some limiting distribution. This limit is usually indicated by writing

ms-lim
n!1 Sn D S: (4.57)

If the partial sums in (4.55) converge in the mean square sense to a limit S in (4.56)
then we call this limit the stochastic integral and write

ms-lim
n!1 Sn D ms-lim

n!1

nX

iD1
�.x.�i /; �i /Œz.ti / � z.ti�1/� D

Z T

o

�.x.t/; t/dz.t/:

(4.58)
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However, unlike the Riemann integral of deterministic calculus, the limit obtained
in (4.58) above does depend on the choice of the intermediate point �i . This point is
most simply illustrated by an example.

4.8 An Example of Stochastic Integral

Let � itself be a Wiener process z.t/, so that the partial sum is

Sn D
nX

iD1
z.�i /Œz.ti /� z.ti�1/�:

We can obtain different values for the mean of the integral to which Sn converges,
depending on the choice of �i . Taking expectations of the last equation we have

EŒSn� D
nX

iD1
fEŒz.�i /z.ti /� � EŒz.�i /z.ti�1/�g

D
nX

iD1
Œmin.�i ; ti / � min.�i ; ti�1/� (using Eq. (4.25))

D
nX

iD1
.�i � ti�1/: (4.59)

If we choose

�i D ˛ti C .1 � ˛/ti�1; .0 � ˛ � 1/ (4.60)

so that by letting ˛ vary from 0 to 1, �i varies from ti�1 to ti , then

EŒSn� D
nX

iD1
˛.ti � ti�1/ D ˛T (4.61)

i.e.

lim
n!1EŒSn� D ˛T: (4.62)

Thus the mean value of the integral can vary between 0 and T , depending on the
choice of ˛.
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We are thus faced with a wide variety of possible definitions of the stochastic
integral. One definition which has turned out to be very useful in practical
applications is obtained by setting ˛ D 0 so that

�i D ti�1: (4.63)

The stochastic integral defined with this choice of ˛ is known as the Ito stochastic
integral of the function � . Formally the Ito stochastic integral is defined as

Z T

0

�.x.t/; t/dz.t/ D ms-lim
n!1

(
nX

iD1
�.x.ti�1/; ti�1/Œz.ti /� z.ti�1/�

)
: (4.64)

As a simple example of an Ito stochastic integral, we consider again the example
when the function � is the Wiener process z.t/ to illustrate some of the computa-
tional techniques involved. For the Ito stochastic integral the relevant partial sum is

Sn D
nX

iD1
zi�1Œzi � zi�1� D

nX

iD1
zi�1�zi : (4.65)

This expression may be manipulated as follows

Sn D 1

2

nX

iD1
Œ.zi�1 C�zi /

2 � z2i�1 � .�zi /
2�

D 1

2

nX

iD1
Œz2i � z2i�1 � .�zi /

2�

D 1

2
Œz.T /2 � z.0/2� � 1

2

nX

iD1
.�zi /

2:

We show in Appendix 4.2 that the mean square limit of the last term on the right-
hand side is T , i.e.

lim
n!1E

2

4
 

nX

iD1
.�zi /

2 � T
!23

5 D 0: (4.66)

Hence

ms-lim
n!1 Sn D 1

2
Œz.T /2 � z.0/2�� 1

2
T; (4.67)
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Fig. 4.18 Approximating
R T
0 z.t /dz.t / with the partial sums Sn

that is

Z T

0

z.t/dz.t/ D 1

2
Œz.T /2 � z.0/2� � 1

2
T: (4.68)

In order to give some idea of how quickly there is convergence, in Fig. 4.18 we
display the distribution for Sn (defined in (4.65)) with T D 2 for various value
of n where for each value of n we have simulated 100;000 sample paths for the
Wiener process. In this example we are able to compare with the exact distribution
calculated from (4.68). We see that for this example by 50;000 subdivisions con-
vergence to the exact distribution is reasonable. In computing the exact distribution
we note that z.T / � N.0; T / and that the square of a normal random variate has a
chi-squared distribution.

4.9 The Proper Definition of the Stochastic Differential
Equation

With the Ito stochastic integral properly defined we are now able to give a meaning
to the limit of the price change equation from Eq. (4.49) to (4.50). We shall say that
the stochastic variable x.t/ satisfies the Ito stochastic differential equation

dx.t/ D �.x.t/; t/dt C �.x.t/; t/dz.t/; (4.69)
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if for all t from initial time 0 to current time t it evolves according to the stochastic
integral equation

x.t/ D x.0/C
Z t

0

�.x.s/; s/ds C
Z t

0

�.x.s/; s/dz.s/; (4.70)

where the second integral is interpreted as an Ito stochastic integral. The first integral
term represents the accumulation of the mean changes over .0; t/, whilst the second
(stochastic) integral term represents the accumulation of the random shock terms.

It can be shown that provided the drift coefficient �.x; t/ and the diffusion (or
volatility) coefficient �.x; t/ are reasonably smooth and do not grow too quickly, in
ways that can be made mathematically precise, then the Ito stochastic differential
equation (4.69) generates a stochastic process x.t/ that is a Markov process.

Comparing with the analysis in Sect. 4.2 we see that the stochastic differential
equation (4.69) is the proper limit of the stochastic difference equation (4.5). We
recall that this latter equation is associated with the Fokker–Planck equation (4.2).
Thus the stochastic process described by the stochastic differential equation (4.69)
can also be described by the conditional probability density function p.x; t j x0; t0/
of the price reaching x at time t given that it was at x0 at time t0. This density
function satisfies the forward Fokker–Planck equation

@p

@t
D � @

@x
Œ�.x; t/p.x; t j x0; t0/�C 1

2

@2

@x2
Œ�2.x; t/p.x; t j x0; t0/�; (4.71)

or the Kolmogorov backward equation

@p

@t0
D ��.x0; t0/ @

@x0
p.x; t j x0; t0/ � 1

2
�2.x0; t0/

@2

@x20
p.x; t j x0; t0/: (4.72)

We emphasize that by analysing the process for x.t/ via the stochastic differential
equation (4.69) we are focusing on the sample path evolution, whilst with the
Fokker–Planck equation (4.71) and (4.72) we are focusing on the evolution of the
conditional probability density function.

4.10 The Stratonovich Stochastic Integral

As we have already pointed out there is no unique way of defining the stochastic
integral. Another definition of the stochastic integral which has also proved useful
in applications is that due to Stratonovich (1963). In this definition the function
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x.t/ is averaged over the interval Œti�1; ti �. The formal definition of the Stratonovich
stochastic integral is

S

Z T

0

�.x.s/; s/dz.s/

D ms-lim
n!1

"
nX

iD1
�

�
x.ti�1/C x.ti /

2
; ti�1

	
Œz.ti / � z.ti�1/�

#
:

(4.73)

Note the S in front of the integral sign to denote the Stratonovich integral. Referring
again to the example when the function � is a Wiener process , we find by applying
the definition that

S

Z T

0

z.t/dz.t/ D ms-lim
n!1

nX

iD1

z.ti�1/C z.ti /

2
Œz.ti /� z.ti�1/�

D 1

2
Œz.T /2 � z.0/2�; (4.74)

which is different from the result for the Ito stochastic integral (see Eq. (4.68)). In
fact (4.74) is the result that would be obtained by using the integration rules of
ordinary calculus. This is a general feature of the Stratonovich stochastic integral.

We can use the Stratonovich definition of the stochastic integral to define
the Stratonovich stochastic differential equation. Thus the Stratonovich stochastic
differential equation

dx.t/ D �.x.t/; t/dt C �.x.t/; t/ ı dz.t/;

(note use of the symbol ı to denote the Stratonovich stochastic differential equation)
is to be interpreted as

x.t/ D x.0/C
Z t

0

�.x.s/; s/ds C S

Z t

0

�.x.s/; s/dz.s/:

It can be shown by applying to its definition that (see Appendix 4.3) the Stratonovich
stochastic differential equation

dx D �.x.t/; t/dt C �.x.t/; t/ ı dz.t/;

is equivalent to the Ito stochastic differential equation

dx D
�
�.x.t/; t/C 1

2
�.x.t/; t/

@�

@x
.x.t/; t/

�
dt C �.x.t/; t/dz.t/:
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So situations requiring use of the Stratonovich stochastic differential equation can
still be reduced to a consideration of an appropriate Ito stochastic differential
equation.

4.11 Appendix

Appendix 4.1 Autocovariance Functions, Spectra and White
Noise

The measurements that we can perform on the output x.t/ of some market are rather
limited. We have discussed the distributions that x might follow and how these
distributions will evolve. In order to make use of these distributions normally all
that we have available for the time series of x.t/ are the mean, EŒx.t/� and the
variance, varŒx.t/�.

The mean and the variance only give us limited information about the underlying
dynamics. What we would also like to have is some quantity which is a measure
of the influence of x at time t on the value of x at time t C � . Loosely speaking
such a function would measure the amount of memory that the dynamics driving
the market display.

The mathematical concept which captures this memory effect is the autocovari-
ance function which is defined as

G.�/ D lim
T!1

1

T

Z T

0

x.t/x.t C �/dt:

An important related concept is that of the spectrum of the variable x.t/. This
concept arises if we consider the fluctuations of x.t/ to be represented as a linear
combination of sines and cosines. The spectrum picks out the frequencies of these
underlying sines and cosines which are dominant.

First we take the Fourier transform of x.t/

y.!/ D
Z T

0

e�i!tx.t/dt:

So if the fluctuations of x.t/ could be decomposed into a discrete number of
frequencies, i.e.

x.t/ D
NX

nD1
ane

i!nt ;
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then since

Z T

0

e�i.!�!n/tdt D ı.! � !n/;

we would have

y.!/ D
NX

nD1
anı.! � !n/;

which would look like Fig. 4.19a.
It is more likely that x.t/ would require a continuous spectrum of frequencies

to adequately represents its fluctuations. In which case the graph of y.!/ might
typically look like Fig. 4.19b.

y

y

S

a

b

c

Fig. 4.19 The Fourier transform, y, of the process x (a, b); and the spectrum (c). (a) The
Fourier transform at discrete frequencies, (b) the Fourier transform at continuous frequencies,
(c) the spectrum
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The spectrum is then defined in terms of the Fourier transform

S.!/ D lim
T!1

1

2�T
j y.!/ j2 :

One reason for not staying with the function y is that we want a measure of the
spectrum which is independent of T , a parameter whose value may not be obvious.
As with y, the spectrum S.!/ will peak around the dominant frequencies as shown
in Fig. 4.19c.

Using the mathematical techniques of Fourier transforms it can be shown that the
spectrum S and autocovariance functionsG are related via

S.!/ D 1

2�

Z 1

�1
G.�/e�i!�d�;

G.�/ D
Z 1

�1
S.!/ei!�d!:

A fluctuating function x.t/ which has a completely flat spectrum is known as white
noise. The name arises from the theory of light. White light has all colours of the
spectrum (i.e. all frequencies) present in equal proportions and hence will display
a flat spectrum. By using the above formulae relating G and S we find that the
autocovariance function,G, corresponding to a constant S is a Dirac delta function.
The spectrum and autocovariance function of white noise are illustrated in Fig. 4.20.

Of course, the autocovariance function for white noise (delta function) cor-
responds precisely with the efficient markets notion, that the x are completely
independent at different times.

Fig. 4.20 The spectrum .S/ and autocovariance .G/ of white noise
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Appendix 4.2 Evaluating the Ito Stochastic IntegralR T
0

z.t/dz.t/

The relevant partial sum is

Sn D
nX

iD1
zi�1.zi � zi�1/ D

nX

iD1
zi�1�zi D 1

2

nX

iD1
Œ.zi�1 C�zi /

2 � z2i�1 � .�zi /
2�

D 1

2

nX

iD1
Œz2i � z2i�1 � .�zi /

2� D 1

2
Œz.T /2 � z.0/2� � 1

2

nX

iD1
.�zi /

2:

We need to calculate the mean square limit of the last term on the right-hand side.
First of all

E

"
nX

iD1
.�zi /

2

#
D

nX

iD1
EŒ.�zi /

2� D
nX

iD1
.ti � ti�1/ D T

and then

E

2

4
 

nX

iD1
.�zi /

2 � T
!23

5 D E

2

4
 

nX

iD1
.�zi /

2

!2
� 2T

nX

iD1
.�zi /

2 C T 2

3

5

D E

2

4
nX

iD1
.�zi /

4 C 2

nX

jD1

X

i>j

.�zi /
2.�zj /

2 � 2T

nX

iD1
.�zi /

2 C T 2

3

5 : (4.75)

We have already noted the property that the increments of the Wiener process are
independent. Hence for i ¤ j

EŒ.�zi /
2.�zj /

2� D EŒ.�zi /
2� � EŒ.�zj /

2� D .ti � ti�1/.tj � tj�1/:

Using the fact that the Wiener process is Gaussian and a property of the fourth
moment of the Gaussian distribution we have that7

Ef.�zi /
4g D 3fEŒ.�zi /

2�g2 D 3.ti � ti�1/2:

7Note that, for x � N.�; �2/, EŒxn� D �EŒxn�1�C .n� 1/�2EŒxn�2�.
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Assembling all of the above results we find that the right hand side of (4.75) becomes

3

nX

iD1
.ti � ti�1/2 C

nX

i;jD1;i¤j
.ti � ti�1/.tj � tj�1/� 2T 2 C T 2

D 2

nX

iD1
.ti � ti�1/2 C

nX

iD1

nX

jD1
.ti � ti�1/.tj � tj�1/� T 2

D 2

nX

iD1
.ti � ti�1/2:

Hence we have shown that

E

2

4
 

nX

iD1
.�zi /

2 � T
!23

5 D 2

nX

iD1
.ti � ti�1/2;

This last term on the right-hand side tends to 0 as n ! 1. That is

ms-lim
n!1

nX

iD1
.�zi /

2 D T;

and so

Z T

0

z.t/dz.t/ D 1

2
Œz.T /2 � z.0/2 � T �:

Appendix 4.3 Link Between Ito and Stratonovich

Assume x.t/ follows the Ito stochastic differential equation

dx D �.x; t/dt C �.x; t/dz.t/: (4.76)

For the Stratonovich integral,

Z t

t0

�.x; s/odz.s/ '
nX

iD1
�

�
x.ti /C z.ti�1/

2
; ti�1

	
.z.ti /� z.ti�1//: (4.77)
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In (4.77) set x.ti / D x.ti�1/Cdx.ti�1/ so that the Ito stochastic differential equation
can be written as

dx.ti / D �.x.ti�1/; ti�1/.ti � ti�1/C �.x.ti�1/; ti�1/.z.ti /� z.ti�1//:

We can apply Taylor’s expansion to

�

�
x.ti /C x.ti�1/

2
;ti�1

	
D �

�
x.ti�1/C 1

2
dx.ti�1/; ti�1

	

D �.ti�1/C 1

2

@�

@x
.ti�1/dx.ti�1/

D �.ti�1/C 1

2

@�

@x
.ti�1/

�
�.ti�1/dti�1 C �.ti�1/dz.ti�1/

�
;

(4.78)

where to alleviate the notation we write dx.ti�1/, �.ti�1/ and �.ti�1/ to denote
x.ti /�x.ti�1/, �.x.ti�1/; ti�1/ and�.x.ti�1/; ti�1/ respectively. Substituting (4.78)
into (4.77), setting dz2 D dt and ignoring the .dt/2 and dtdz terms we obtain

S

Z
�.x; s/dz.s/ '

1X

i

�.ti�1/.z.ti /� z.ti�1//C 1

2

1X

i

�.ti�1/
@�

@x
.ti�1/.ti � ti�1/

which yields

S

Z t

t0

�.x; s/dz.s/ ' 1

2

Z t

0

�.x; s/
@�

@x
.x; s/ds C

Z t

t0

�.x; s/dz.s/:

Thus we obtain the result that the Stratonovich stochastic differential equation

dx D �.x; t/dt C �.x; t/ ı dz

is equivalent to the Ito stochastic differential equation

dx D
�
�.x; t/C 1

2
�.x; t/

@�

@x
.x; t/

	
dt C �.x; t/dz.t/:

4.12 Problems

Problem 4.1 Consider the Ornstein–Uhlenbeck process described in Sect. 4.3.2.
Obtain the solution (4.21).
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Problem 4.2 Derive the autocorrelations functions (4.25) and (4.32) for the Wiener
process and Ornstein–Uhlenbeck process respectively.

Problem 4.3 For the Wiener process z.t/ show that

corr.z.t/; z.t C s// D
r

t

t C s
; t � 0; s � 0:

Problem 4.4 Adapt the approach of Appendix 4.2 to show that

Z T

0

z.t/2dz.t/ D 1

3
Œz.t/3 � z.0/3� �

Z T

0

z.s/ds:

Problem 4.5 Using the techniques of Appendix 4.2 and Problem 4.4 show that

Z T

0

�Z s2

0

dz.s1/

	
dz.s2/ D 1

2

�
.z.T / � z.0//2 � T

�
:

(See Oksendal (2003, Problem 3.7) for a more general version of this problem.)

Problem 4.6 Computational Problem—Consider the process x.t/, driven in
discrete time by

�x.t/ D x.t C�t/ � x.t/ D �.x; t/�t C �.x; t/�z.t/

where z.t/ is a Wiener process. This is Eq. (4.49) before passing to the limit. Here
0 � t � T and �t D T=n where n is user specified.

Write a program to simulate this process on Œ0; T �. The program structure should
allow the user to specify T , n, the functions�.x; t/ and �.x; t/. As well the number
of simulationsM should be an input variable.

(a) Take x.0/ D 1, �.x; t/ D 0, �.x; t/ D 1 and T D 1 so that x.t/ is a pure
Wiener process on Œ0; 1�. Initially take n D 100 and simulate M D 1;000

paths.

(i) Use the output to compare graphically the distribution of x.t/ at t D 0:5

and t D 1.
(ii) Experiment with n and M to try to obtain better approximations to the

known distributions.
(iii) Constructing a table to compare these with the known theoretical distribu-

tions for x.t/ and comment on the effect of n and M .

(b) Take x.0/ D 1, �.x; t/ D �x, �.x; t/ D �x and T D 2 so that x.t/ is the
geometric Brownian motion for the stock price.

(i) Use � D 0:15 and � D 0:20 and take n D 100 and simulate M D 1;000

paths to obtain better approximations.
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(ii) Use the output to graph the distributions of x.t/ and ln.x.t/=x.0// at
t D 2.

(iii) Constructing a table to compare these with the known true distributions for
x.T / and ln.x.T /=x.0//. As in the previous question play with the values
of n and M and comment on the effect of n andM .

(c) Repeat the exercise by taking x.0/ D 0:06,

�.x; t/ D k.x � x/

with k D 0:5, x D 0:065 and �.x; t/ D � with � D 0:02, n D 100 and
M D 1;000. Calculate and graph the distribution of x at T D 6 months and
T D 12months, and compare these with the theoretical distributions. Comment
on the effect of n and M .



Chapter 5
Manipulating Stochastic Differential Equations
and Stochastic Integrals

Abstract Many of the calculations of derivative security pricing involve formal
manipulations of stochastic differential equations and stochastic integrals. This
chapter derives those that are most frequently used. We also consider transformation
of correlated Wiener processes to uncorrelated Wiener processes for higher dimen-
sional stochastic differential equations.

5.1 The Basic Rules of Stochastic Calculus

In our application of stochastic differential equations to the continuous hedging
argument in later chapters we shall frequently encounter the increment of the Wiener
process, dz.t/, raised to various powers, i.e. terms of the type .dz.t//2; .dz.t//3 etc.
as well as terms of the type .dt/dz.t/; .dt/.dz.t//2 etc. In general we need to interpret
.dz.t//2C˛ for ˛ � 0 and .dt/ˇdz.t/2C˛ for ˛ � 0; ˇ � 1 and we take ˛ and ˇ
as integers. Interpreting and computing these quantities is the key to the formal
mechanical manipulations of the stochastic calculus.

It is useful to think of these quantities on two levels. One is a mathematically
informal level which is useful to have in mind when one is doing the manipulations
of stochastic calculus. The other is the more mathematically formal level where
all manipulations are justified in terms of the convergence of appropriate partial
sums to stochastic integrals. We present the informal view first and follow with a
discussion of the more mathematically correct approach. We note that in all of our
manipulations in stochastic calculus we ignore terms of order higher than dt.

Consider first the random quantity .dz/2, which may also be written

.dz/2 D .dt/�2; (5.1)

where � � N.0; 1/. We note first that

EŒ.dz/2� D .dt/EŒ�2� D dt; (5.2)
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0.001 0.002 0.003 0.004 0.005
(dz)

2

pdf

dt

Fig. 5.1 The probability mass of .dz/2 concentrated at dt

and

varŒ.dz/2� D EŒ.dt�2 � dt/2� D .dt/2EŒ.�2 � 1/2�
D .dt/2ŒE.�4/ � 2E.�2/C 1� D 2.dt/2: (5.3)

Thus we can view .dz/2 as a random variable distributed with mean dt and variance
2.dt/2; see Fig. 5.1.1 However as we are ignoring terms of order higher than dt, we
can regard this variance as zero. So the distribution of .dz/2 can be considered as a ı
function with all probability mass concentrated at dt. Thus to order dt we can regard
.dz/2 as a deterministic variable equal to dt, and we write

.dz.t//2 D dt: (5.4)

Consider next .dt/dz.t/ which can be written

.dt/dz.t/ D .dt/3=2�; (5.5)

where � � N.0; 1/. We calculate

EŒ.dt/dz.t/� D .dt/3=2EŒ�� D 0; (5.6)

varŒ.dt/dz.t/� D EŒ.dt/3�2� D .dt/3EŒ�2� D .dt/3: (5.7)

1In fact since the square of a normal random variable is chi-squared distributed, .dz/2 � .dt/2�21
where �21 represents the chi-squared distribution with one degree of freedom.
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Fig. 5.2 The probability mass of dtdz concentrated at 0

Thus .dt/dz.t/ can be regarded as a stochastic variable distributed with mean 0 and
variance .dt/3; see Fig. 5.2. Again since we ignore terms of order higher than dt we
can regard this distribution as a ı function with all probability mass concentrated
at 0. Thus to order dt we can regard dtdz as a deterministic variable equal to 0. We
leave as an exercise for the reader to analyse in a similar fashion terms such as .dz/3,
.dt/.dz/2 etc.

We saw in the last chapter that stochastic differential equations are interpreted in
terms of stochastic integrals. Thus expressions of the type .dz.t//2C˛ , where ˛ is a
positive integer, would occur in connection with the stochastic integral

Z t

o

�.x.s/; s/.dz.s//2C˛ � ms-lim
n!1

nX

iD1
�.x.ti�1/; ti�1/.�zi /

2C˛: (5.8)

In Appendix 5.1 we indicate how it may be proved that

Z t

0

�.x.s/; s/.dz.s//2C˛ D

 R t

0 �.x.s/; s/ds; for ˛ D 0

0; for ˛ > 0:
(5.9)

It may similarly be proved that, for ˇ also a positive integer,

Z t

0

�.x.s/; s/.ds/ˇ.dz.s//˛ D 0 for ˛ > 0; ˇ > 0: (5.10)

The foregoing results are usually expressed in the shorthand notation

.dz.t//2 D dt; (5.11)

.dz.t//2C˛ D 0; for ˛ > 0; (5.12)

.dt/ˇ.dz.t//˛ D 0; for ˛ > 0; ˇ > 0: (5.13)
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The results (5.11)–(5.13) are the basic rules of stochastic calculus. We stress again
that it needs to be appreciated that the quantities on the left-hand side are random
variables and that these formulae apply when they appear under integral signs or
when we take their expectations (which are also integral operations).

5.2 Some Basic Stochastic Integrals

Consider the stochastic integral term in Eq. (4.70), namely

Y.t/ �
Z t

0

�.x.s/; s; t/dz.s/; (5.14)

which we have generalised slightly to allow a dependence of � on t as well. Recall
that by definition

Y.t/ D ms- lim
n!1

nX

iD1
�.xi�1; si�1; t/�zi ; (5.15)

where we use xi to denote x.si / and �zi to denote z.si / � z.si�1/. It is often the
case that we need to calculate the mean and the variance of stochastic integrals of
the type (5.14), i.e. the quantities

M.t/ D E0ŒY.t/� D E0

� Z t

0

�.x.s/; s; t/dz.s/

�
; (5.16)

and

V 2.t/ D var0ŒY.t/� D E0

��Z t

0

�.x.s/; s; t/dz.s/�M.t/

	2�
: (5.17)

Consider first that calculation of M.t/. Assuming we can interchange the
operations ms- limn!1 and E0 we have2

M.t/ D lim
n!1E0

nX

iD1
�.xi�1; si�1; t/�zi

D lim
n!1

nX

iD1
E0.Ei�1�.xi�1; si�1; t/.�zi //; (5.18)

2The operation ms- limn!1
becomes simply limn!1

since the quantities on the right hand side
in (5.18) will be deterministic after application of the expectation operation.
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Fig. 5.3 The investor’s perception of E0.�zi / and the law of iterated expectations

where we have used the law of iterated expectations. See Fig. 5.3 for an illustration
of this concept. Since at time si�1 the only stochastic quantity relevant to the
calculation of Ei�1 in (5.18) is �zi and Ei�1.�zi / D 0, we conclude that

M.t/ D E0

�Z t

0

�.x.s/; s; t/dz.s/

�
D 0: (5.19)

Thus from (5.17)

V 2.t/ D E0

"�Z t

0

�.x.s/; s; t/dz.s/

	2#

D E0

2

4
 

ms- lim
n!1

nX

iD1
�.xi�1; si�1; t/�zi

!23

5 : (5.20)

Using some informal mathematical reasoning, which should be seen as an intuitive
approach to understanding the calculation of V.t/ we write (5.20) as

V 2.t/ D lim
n!1E0

 
nX

iD1
�.xi�1; si�1; t/�zi

!2

D lim
n!1E0

0

@
nX

iD1

nX

jD1
�.xi�1; si�1; t/�.xj�1; sj�1; t/�zi�zj

1

A

D lim
n!1

� nX

iD1
E0Œ�.xi�1; si�1; t/�zi �

2

	

C2 lim
n!1

� nX

i;jD1;i<j
E0Œ�.xi�1; si�1; t/�.xj�1; sj�1; t/�zi�zj �

	
:

(5.21)



98 5 Manipulating Stochastic Differential Equations and Stochastic Integrals

Fig. 5.4 The time-line for the calculation of E0.�zi�zj /; note that �zi , �zj are independent for
i ¤ j

Figure 5.4 illustrates the time-line involved in the calculation of the expectations
in (5.21). By the independence of Wiener increments we have that

E0.�zi�zj / D


0; i ¤ j;

�si D si � si�1; i D j:

Hence, for i < j ,

E0Œ�.xi�1; si�1; t/�.xj�1; sj�1; t/�zi�zj �

D E0

�
�.xi�1; si�1; t/.�zi /�.xj�1; sj�1; t/Ej�1.�zj /

�
D 0:

Also

E0Œ�.xi�1; si�1; t/�zi �
2 D E0

�
�2.xi�1; si�1; t/Ei�1.�zi /

2

�

D E0Œ�
2.xi�1; si�1; t/��si :

Therefore

V 2.t/ D lim
n!1

nX

iD1
E0Œ�

2.xi�1; si�1; t/��si : (5.22)

The limit in (5.22) is just the Riemann integral so we finally have

V 2.t/ D
Z t

0

E0Œ�
2.x.s/; s; t/�ds:

We have thus demonstrated somewhat informally the important results

E0

�Z t

0

�.x.s/; s; t/dz.s/

	
D 0; (5.23)



5.3 Higher Dimensional Stochastic Differential Equations 99

and

E0

�Z t

0

�.x.s/; s; t/dz.s/

	2
D
Z t

0

E0Œ�
2.x.s/; s; t/�ds: (5.24)

The interchange of limit operations in going from (5.20) to (5.21) is more subtle than
we have indicated here. However in Chap. 8 we shall give a more formal derivation
of the result (5.24) using martingale ideas.

Finally we point out that in the special case when � is a function of s and t only,
that is a deterministic function, so that

Y.t/ D
Z t

0

�.s; t/dz.s/; (5.25)

then the partial sums in (5.15) form a weighted sum of quantities which are normally
distributed. Standard results from statistics tell us that in this case the partial sums
must also be normally distributed. Thus we argue that in the mean-square limit
the quantity Y.t/ is normally distributed (though this involves some subtle limit
arguments) with mean 0 and variance given by

Z t

0

�2.s; t/ds: (5.26)

5.3 Higher Dimensional Stochastic Differential Equations

In later chapters we shall encounter situations in which both the stochastic variable
x.t/ is a vector (i.e. think of several price processes) and the Wiener process z.t/
also becomes a vector (e.g. think of several sources of risk such as stochastic
volatility, inflation, etc.). In the most general situation we could have n stochastic
variables, i.e. x.t/ D .x1.t/; x2.t/; : : : ; xn.t//

> and m Wiener processes, i.e.
z.t/ D .z1.t/; z2.t/; : : : ; zm.t//>. The Wiener processes may be correlated, thus
for i; j D 1; � � � ; m,

EŒdzi .t/� D 0; EŒ.dzi .t//
2� D dt; EŒdzi .t/dzj .t/� D 
ijdt .i ¤ j /:

(5.27)

We consider the system of n stochastic differential equations

dxi .t/ D �i.x.t/; t/dt C
mX

jD1
�ij.x.t/; t/dzj .t/; for i D 1; 2; : : : ; n:

(5.28)
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Each stochastic differential equation needs to be interpreted mathematically as the
stochastic integral equation

xi .t/ D xi .0/C
Z t

0

�i .x.s/; s/ds C
mX

jD1

Z t

0

�ij.x.s/; s/dzj .s/ (5.29)

for i D 1; 2; : : : ; n, where the integrals under the
P

sign are interpreted as Ito
stochastic integrals. The definition of these integrals in terms of mean-square limits
as in Sect. 4.7 needs to take account of the correlation between the Wiener processes.

In some applications it turns out to be more convenient to convert the vector
of correlated Wiener processes to a vector of uncorrelated Wiener processes. Let
.w1.t/;w2.t/; : : : ;wm.t//> denote a vector of uncorrelated Wiener processes. We
seek a transformation

2

6664

dz1.t/
dz2.t/
:::

dzm.t/

3

7775 D

2

6664

a11 a12 : : : a1m
a21 a22 : : : a2m
:::

:::
:::

am1 am2 : : : amm

3

7775

2

6664

dw1.t/
dw2.t/
:::

dwm.t/

3

7775 ; (5.30)

where the .aij/m�m are to be chosen so as to preserve the correlation structure of the
zi .t/ as given by Eq. (5.27).

Consider each of the conditions of Eq. (5.27) in turn. Since the wi .t/ for i D
1; 2; � � � ; m are Wiener processes the condition

EŒdzi .t/� D 0

is satisfied for any choice of the aij. Next we note that the conditions

EŒ.dzi /
2� D dt

imposes the m conditions

mX

jD1
a2ij D 1; for i D 1; 2; : : : ; m: (5.31)

Finally the condition

EŒdzi .t/dzj .t/� D 
ijdt i ¤ j; i; j D 1; � � � ; m
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imposes the .m�1/m
2

conditions

mX

kD1
aikajk D 
ij; for i D 1; 2; : : : ; m � 1, j D 1; 2; : : : ; m: (5.32)

In all, we have a set of m C m.m�1/
2

conditions from which to determine the m2

quantities aij. Clearly these cannot be chosen uniquely. Normalising conditions will
help us to determine an appropriate set of aij. We give the explicit results for them D
2 and m D 3 cases which will cover most of the applications we shall encounter in
later chapters.

Note that if we useA to denote the matrix in (5.30) whose ijth element is aij, then
the conditions (5.31) and (5.32) can be succinctly written as

AAT D � D

2
6664

1 
12 : : : 
1n

12 1 : : : 
2n
:::

:::
:::


1n 
2n : : : 1

3
7775 : (5.33)

5.3.1 The Two-Noise Case

For m D 2, the conditions (5.31) and (5.32) reduce to

a211 C a212 D 1; (5.34)

a221 C a222 D 1; (5.35)

a11a21 C a22a12 D 
12: (5.36)

One possible characterisation of the aij is to set

a11 D a12 D 1p
2
: (5.37)

From Eqs. (5.35) and (5.36) we would then obtain

a21 D

12 �

q
1 � 
212p
2

; a22 D

12 C

q
1� 
212p
2

: (5.38)
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Thus the transformation becomes

dz1.t/ D 1p
2

dw1.t/C 1p
2

dw2.t/;

dz2.t/ D

12 �

q
1 � 
212p
2

dw1.t/C

12 C

q
1 � 
212p
2

dw2.t/:

(5.39)

Alternatively, we could set

a11 D 1; a12 D 0; (5.40)

in which case we would obtain

a21 D 
12; a22 D
q
1 � 
212: (5.41)

With this latter specification we would retain the first of the original noise processes.
Thus

dz1.t/ D dw1.t/;

dz2.t/ D 
12 dw1.t/C
q
1 � 
212 dw2.t/:

(5.42)

To see how the transformations (5.42) applies to specific models we consider
a one asset model and a two asset model both with two noise terms. We leave as
exercise for the reader the task of applying the transformation (5.39).

5.3.1.1 A One Asset-Two Noise Term Model

Consider the stochastic differential equation

dx D �.x; t/dt C �1.x; t/dz1.t/C �2.x; t/dz2.t/ (5.43)

where, as above, EŒdz1.t/dz2.t/� D 
12dt. After using the transformation (5.42)
to express the stochastic dynamics for x.t/ in terms of the independent Wiener
processes w1.t/, w2.t/ we obtain the stochastic differential equation

dx D �.x; t/dt C s1.x; t/dw1.t/C s2.x; t/dw2.t/; (5.44)
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where

s1.x; t/ D �1.x; t/C 
12�2.x; t/; (5.45)

s2.x; t/ D
q
1 � 
212 �2.x; t/: (5.46)

5.3.1.2 A Two Asset-Two Noise Term Model

Consider the two asset-two noise term stochastic differential equation system which
we express in matrix notation

�
dx1.t/
dx2.t/

�
D
�
�1.x; t/
�2.x; t/

�
dt C

�
�11.x; t/ �12.x; t/
�21.x; t/ �22.x; t/

� �
dz1.t/
dz2.t/

�
: (5.47)

Consider the second term on the right-hand side and apply (in matrix notation) the
transformation (5.42). Thus

�
�11.x; t/ �12.x; t/
�21.x; t/ �22.x; t/

� �
dz1.t/
dz2.t/

�
D
�
�11.x; t/ �12.x; t/
�21.x; t/ �22.x; t/

�"
1 0


12

q
1 � 
212

#�
dw1.t/
dw2.t/

�
:

Thus in terms of the independent Wiener processes w1.t/, w2.t/ the stochastic
differential equation system (5.47) becomes

�
dx1.t/
dx2.t/

�
D
�
�1.x; t/
�2.x; t/

�
dt C

�
s11.x; t/ s12.x; t/
s21.x; t/ s22.x; t/

� �
dw1.t/
dw2.t/

�
; (5.48)

where

s11.x; t/ D �11.x; t/C 
12�12.x; t/; (5.49)

s12.x; t/ D
q
1 � 
212 �12.x; t/; (5.50)

s21.x; t/ D �21.x; t/C 
12�22.x; t/; (5.51)

s22.x; t/ D
q
1 � 
212 �22.x; t/: (5.52)
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5.3.2 The Three-Noise Case

For m D 3 the conditions (5.31) and (5.32) reduce to

a211 C a212 C a213 D 1

a221 C a222 C a223 D 1

a231 C a232 C a233 D 1

a11a21 C a12a22 C a13a23 D 
12

a11a31 C a12a32 C a13a33 D 
13

a21a31 C a22a32 C a23a33 D 
23:

(5.53)

We have six conditions for nine unknown coefficients. A convenient choice for the
remaining three conditions is

a12 D a13 D a23 D 0: (5.54)

With this choice, system (5.53) reduces to

a211 D 1

a221 C a222 D 1

a231 C a232 C a233 D 1

a11a21 D 
12

a11a31 D 
13

a21a31 C a22a32 D 
23

(5.55)

which is readily solved to yield the transformation

2

4
dz1.t/
dz2.t/
dz3.t/

3

5 D

2

6664

1 0 0


12

q
1 � 
212 0


13

23�
12
13p

1�
212

r
1�
213�
212�
223C2
12
23
13

1�
212

3

7775

2

4
dw1.t/
dw2.t/
dw3.t/

3

5 : (5.56)

Consider for example a two underlying asset and three noise term model

�
dx1.t/
dx2.t/

�
D
�
�1.x; t/
�2.x; t/

�
dt C

�
�11.x; t/ �12.x; t/ �13.x; t/
�21.x; t/ �22.x; t/ �23.x; t/

�2

4
dz1.t/
dz2.t/
dz3.t/

3

5 : (5.57)
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Using (5.56) this transforms to

�
dx1.t/
dx2.t/

�
D
�
�1.x; t/
�2.x; t/

�
dt C

�
s11.x; t/ s12.x; t/ s13.x; t/
s21.x; t/ s22.x; t/ s23.x; t/

�2

4
dw1.t/
dw2.t/
dw3.t/

3

5 ; (5.58)

where the elements sij may be calculated from the matrix relationship

�
s11 s12 s13
s21 s22 s23

�
D
�
�11 �12 �13
�21 �22 �23

�
2

6664

1 0 0


12

q
1 � 
212 0


13

23�
12
13p

1�
212

r
1�
213�
212�
223C2
12
23
13

1�
212

3

7775 :

(5.59)

5.4 The Kolmogorov Equation for an n-Dimensional
Diffusion System

In later chapters we shall need to deal with multi-dimensional diffusion processes.
In particular, we will require the Kolmogorov backward equation for such processes.
In this section we merely summarise the relevant results from Oksendal (2003) (see
Chaps. 7 and 8).

Consider the n-dimensional Ito stochastic differential system

dxi D �idt C
nX

jD1
�ijdwj .t/ .i D 1; 2; : : : ; n/;

where w1.t/, w2.t/,. . . , wn.t/ are independent Wiener processes. Let � denote the
matrix whose elements are the �ij and define the matrix S as

S D .sij/n�n D ��>: (5.60)

The infinitesimal generator K for the process x is given by

K D
nX

iD1
�i

@

@xi
C 1

2

nX

iD1

nX

jD1
sij

@2

@xi @xj
(5.61)

so that the Kolmogorov backward equation for the transition probability density
function p.x.T /; T j x.t/; t/ is given by

@p

@t
C K p D 0: (5.62)
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Note that if we are dealing with correlated Wiener processes then a transformation
discussed in Sect. 5.3 allows us to transform them to a set of independent Wiener
processes and the correlation coefficients will appear in the �ij coefficients.

5.5 The Differential of a Stochastic Integral

The result of this section turns out to be very useful in manipulations required when
we come to study term structure of interest rate models.

Consider the stochastic quantity

x.t/ D
Z t

0

g.s; t/dz.s/; (5.63)

where g.s; t/ is a function that is at least once differentiable in both arguments. What
is the stochastic differential equation satisfied by x.t/? To answer this question we
proceed directly and form

dx.t/ D
Z tCdt

0

g.s; t C dt/dz.s/ �
Z t

0

g.s; t/dz.s/

D
Z t

0

Œg.s; t C dt/� g.s; t/�dz.s/C
Z tCdt

t

g.s; t C dt/dz.s/ (5.64)

D
Z t

0

�
@g.s; t/

@t
dt

�
dz.s/C

Z tCdt

t

�
g.s; t/C @g.s; t/

@t
dt

�
dz.s/C o.dt/;

where we have applied Taylor’s expansion and used the basic rules of stochastic
calculus in obtaining (5.64).

By applying to the definition of the Ito stochastic integral (in particular evaluation
of the integral at the left hand limit of each subinterval) we see that

Z tCdt

t

g.s; t/dz.s/ ' g.t; t/dz.t/; (5.65)

and

Z tCdt

t

@g.s; t/

@t
dtdz.s/ ' @g.t; t/

@t
dz.t/dt D o.dt/; (5.66)

where the last equality follows by the basic rules of stochastic calculus. Putting
together the result (5.64)–(5.66) we finally obtain (to o.dt/) the result

dx.t/ D
�Z t

0

@g.s; t/

@t
dz.s/

�
dt C g.t; t/dz.t/: (5.67)
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5.6 Appendix

Appendix 5.1 Proof of the Fundamental Rules of Stochastic
Calculus

Putting �i�1 D �.x.ti�1/; ti�1/, we are considering

ms-lim
n!1

nX

iD1
�i�1.�zi /

2C˛ for ˛ � 0:

Consider first ˛ D 0. Anticipating the result, define

I D lim
n!1E

"
nX

iD1
�i�1Œ.�zi /

2 ��ti �
#2

.�ti � ti � ti�1/

D lim
n!1E

2

4
nX

iD1
�2i�1Œ.�zi /

2 ��ti �2 C
nX

jD1

nX

i>j

2�i�1�j�1

	 Œ.�zj /
2 ��tj �Œ.�zi /

2 ��ti �
#
:

To obtain the noted statistical independencies we are assuming that the �i are
independent of all �zj for j > i . (i.e. the function � is non-anticipating). Making
use of the results

(a) EŒ.�zi /2� D �ti
(b) EŒ.�zi /2 ��ti �

2 D 2.�ti/
2

we find that

I D 2 lim
n!1

nX

iD1
E.�2i�1/.�ti /2 D 0 (provided the function � is bounded).

Since

ms-lim
n!1

nX

iD1
�i�1�ti D

Z t

0

�.x.s/; s/ds;

we have in effect shown that

Z t

0

�.x.s/; s/.dz.s//2 D
Z t

0

�.x.s/; s/ds:
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The proof that

Z t

0

�.x.s/; s/.dz.s//2C˛ D 0; for ˛ > 0

follows similar lines and makes use of standard results for the higher moments of
the Gaussian distribution.

5.7 Problems

Problem 5.1 Consider the stochastic differential equation system

dx1 D �1dt C �11dw1 C �12dw2;

dx2 D �2dt C �21dw1 C �22dw2;

where w1 and w2 are independent Wiener processes. For this system determine
the matrix S referred to in Eq. (5.60). Hence write out the Kolmogorov backward
equation for the transition probability density function for the joint process x1
and x2.

Problem 5.2 Consider the stochastic differential equation system

dx1 D �1dt C s11dz1 C s12dz2;

dx2 D �2dt C s21dz1 C s22dz2;

where z1 and z2 are correlated Wiener processes satisfying

EŒdz1dz2� D 
dt:

Transform this system to one involving uncorrelated Wiener processes. Hence
obtain the Kolmogorov backward equation for the transition probability density
function for the joint process x1 and x2.

Problem 5.3 Consider the quantity

�.t/ D dw1.t/dw2.t/

where w1.t/ and w2.t/ are two independent Wiener processes. Analyse this quantity
in the same way that .dz.t//2 is analysed in Sect. 5.1 and show why it can be ignored
to o.dt/.

Problem 5.4 Consider the quantity .dz/4. Calculate its mean and variance. Why
can it be ignored to o.dt/?
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Problem 5.5 Consider the two asset and two-noise model

dx1 D �1x1dt C �11x1dz1 C �12
p
x2x1dz2

dx2 D �2x2dt C �21x2dz1 C �22x2dz2;

where

EŒdz1dz2� D 
dt:

Write this system in terms of two independent Wiener processes w1, w2. Use the
transformation that expresses z1 in terms of just w1 and, z2 in terms of both w1 and
w2. Write out the Kolmogorov backward equation for this system.

Problem 5.6 Consider the stochastic integral

x.t/ D
Z t

0

�.s; t/dW.s/:

Calculate E0Œx.t1/x.t2/�, where t1 < t2.

Problem 5.7 Consider the stochastic integral

x.t/ D
Z t

0

�1.s; t/dW1.s/C
Z t

0

�2.s; t/dW2.s/

where W1, W2 are independent Wiener processes. Calculate E0Œx.t1/x.t2/�, where
t1 < t2.

Problem 5.8 Repeat the calculation of Sect. 5.1 for .dz/3 and dt.dz/2. Draw graphs
to illustrate the distribution of these quantities and show that, to order dt, they can
be regarded as deterministic quantities equal to 0.

Problem 5.9 Consider the one asset-two noise term model

dx D �dt C �1dz1 C �2dz2;

where EŒdz1dz2� D 
dt. Write out the Kolmogorov backward equation for the
transition probability density function p.xT ; T jx; t/. Be sure in particular to give
the form of the infinitesimal generatorK in terms of the coefficients�; �1; �2 and 
.

Problem 5.10 Consider the two asset-two noise model

dx1 D �1x1dt C �11x1x2dz1;

dx2 D �2x2dt C �21x2dz1 C �22x2dz2;
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where EŒdz1; dz2� D 
dt. Write this system in terms of two independent Wiener
processes w1 and w2 such that the stochastic differential equation for x1 contains
only one of these independent Wiener processes. Write out the Kolmogorov
backward equation for this system as well.

Problem 5.11 Re-work the proof of Appendix 5.1 for the case when ˛ D 1.

Problem 5.12 Computational Problem—Consider the stochastic integral

Y.t/ D
Z t

0

e�k.t�s/dz.s/;

where z.s/ is a Wiener process.

(i) Write a program that will approximate Y.t/ by

Yn.t/ D
n�1X

iD0
e�k.n�t�i�t/�zi

where �t D t=n and �zi D z..i C 1/�t/ � z.i�t/. The values of k, t , n and
the number M of simulated paths should be user defined inputs. Initially take
k D 0:5, t D 1, n D 100 and M D 1;000.

(ii) Compare the simulated distribution of Yn.1/ with the true distribution of Y.1/
[see Sect. 5.2 if you have forgotten how to calculate this]. Experiment with the
values of n and M .



Chapter 6
Ito’s Lemma and Its Applications

Abstract This chapter introduces Ito’s lemma, which is one of the most important
tools of stochastic analysis in finance. It relates the change in the price of the
derivative security to the change in the price of the underlying asset. Applications
of Ito’s lemma to geometric Brownian motion asset price process, the Ornstein–
Uhlenbeck process, and Brownian bridge process are discussed in detail. Extension
and applications of Ito’s lemma in several variables are also included.

6.1 Introduction

We saw in Chap. 4 that the stochastic differential equation

dx.t/ D �.x.t/; t/dt C �.x.t/; t/dz.t/; (6.1)

describing the price change dx.t/ over the time interval dt in the limit as dt ! 0 is
properly interpreted mathematically as the stochastic integral equation

x.t/ D x.0/C
Z t

0

�.x.s/; s/ds C
Z t

0

�.x.s/; s/dz.s/: (6.2)

The first integral is the standard Riemann integral. The second integral is the
stochastic integral which may be interpreted in a number of ways. For most practical
modelling situations the choice reduces to the definition of Ito and the definition of
Stratonovich.

The Stratonovich definition is probably more satisfactory from the model
building perspective as the random shock term associated with it corresponds to
modelling market noise with a small correlation time between successive price
shocks and then allowing the correlation to shrink to zero. Such a modelling
procedure would be suggested by a lot of the empirical literature that we briefly
surveyed in Chap. 4.

The Ito definition, on the other hand, does make the proofs of the mathematical
theorems easier (relatively!). This definition does however rely on the concept of
non-anticipating functions, which rules out any of the price dependency apparently
found in some of the empirical literature.
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We pointed out in Chap. 4 that every Stratonovich stochastic differential equation
has a corresponding Ito one. The difference being the effect of the volatility
on the drift term. It is therefore possible to develop the theory in terms of the
Ito definition and decide at the point of application which definition is most
appropriate.

In Chap. 5 we reviewed some of the pertinent properties of Ito stochastic
differential equations. In this chapter we will derive Ito’s lemma, which is one of the
most important tools of stochastic analysis in finance. Its importance from the view
point of our applications lies in the fact that it will enable us to relate the change
in the price of the derivative security to the change in the price of the underlying
asset. We are then naturally led into Chap. 7 that deals with the continuous hedging
argument and the derivation of the partial differential equation determining the price
of the derivative security.

6.2 Ito’s Lemma

6.2.1 Introduction

In keeping with our assumption that the noise in financial markets can be robustly
approximated by the mathematically idealized white noise process, we model asset
price movements as Ito stochastic differential equations. We shall henceforth refer to
the Ito stochastic differential equation simply as the stochastic differential equation.

In order to price a derivative security on the asset we shall make the assumption
that the derivative security price is a function of the price of the underlying
asset. If we wish to set up a hedged portfolio of the derivative security and
the underlying asset (as we will do in Chap. 7) then we would need to answer
the question: given the stochastic differential equation driving the asset price,
what is the stochastic differential equation satisfied by the price of the derivative
security?

Mathematically, this problem may be stated as follows: Let x.t/ denote the asset
price at time t , and let y D y.x; t/ denote the price of the derivative security. Given
that x.t/ satisfies the stochastic differential equation

dx D �.x; t/dt C �.x; t/dz;

what is the stochastic differential equation followed by y, the price of the derivative
security?
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6.2.2 Statement and Proof of Ito’s Lemma

The answer to the question at the end of the previous subsection is provided by

Ito’s Lemma Let the stochastic process x satisfy the stochastic differential equa-
tion

dx D �.x; t/dt C �.x; t/dz; (6.3)

and let y.x; t/ be a function of x and t (which is continuously differentiable in t and
twice continuously differentiable in x), then y satisfies the stochastic differential
equation

dy D
�
@y

@t
C �.x; t/

@y

@x
C 1

2
�2.x; t/

@2y

@x2

�
dt C �.x; t/

@y

@x
dz: (6.4)

The proof of Ito’s lemma involves use of Taylor’s expansion and the rules for
manipulating the increments of the Wiener process which we discussed in Sect. 5.1.
The change in y is given by

dy D y.x.t/C dx.t/; t C dt/� y.x.t/; t/: (6.5)

Expanding the first term on the right-hand side by Taylor’s theorem

dy D @y

@x
dx C 1

2

@2y

@x2
.dx/2 C @y

@t
dt C o.dt/; (6.6)

where o.dt/ denotes higher order terms in dt. By squaring (6.3) we observe that

.dx/2 D �2.x; t/.dt/2 C 2�.x; t/�.x; t/dtdz C �2.x; t/.dz/2: (6.7)

Applying the basic rules of stochastic calculus from Sect. 5.1 that

dtdz D 0; .dz/2 D dt;

and ignoring terms of higher order than dt, we see that (6.7) simply becomes

.dx/2 D �2.x; t/dt:

Substituting this last expression into (6.6) and ignoring terms of o.dt/ the expression
for dy becomes

dy D @y

@x
dx C

�
@y

@t
C 1

2
�2.x; t/

@2y

@x2

�
dt: (6.8)
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a b

Fig. 6.1 Ito’s lemma; the tool that determines the stochastic differential equation for y given the
stochastic differential equation for x. (a) dx D �dt C �dz. (b) dy D �ydt C �ydz

Finally substitute the expression (6.3) for dx into (6.8) to obtain

dy D �ydt C �ydz; (6.9)

where

�y D �.y; t/ D @y

@t
C �.x; t/

@y

@x
C 1

2
�2.x; t/

@2y

@x2
;

�y D �.y; t/ D �.x; t/
@y

@x
:

This leads to Ito’s lemma.
Figure 6.1 illustrates the basic content of Ito’s lemma. In the expansion (6.6) we

have not gone beyond the .dx/2 term. Inclusion of higher order terms, such as .dx/3,
leads to terms of the type .dz/2C˛ and/or .dt/ˇ.dz/˛ where ˛ and ˇ are positive
integers. As we have shown in Sect. 5.1 such terms are zero to order dt.

6.3 Applications of Ito’s Lemma

In this section we outline a number of applications of Ito’s lemma which are
frequently used in stochastic finance applications.
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6.3.1 Function of a Geometric Stock Price Process

A very relevant application for our purposes is to consider the price process

dx D �xdt C �xdz; (6.10)

(i.e. �.x; t/ D �x, �.x; t/ D �x). This process is known as geometric Brownian
motion (GBM) or log-normal since as we shall see below that ln x is distributed
according to the distribution for Brownian motion that we encountered in Sect. 2.4.1.
As we pointed out in Sect. 2.6 there is a deal of empirical evidence to suggest that
this is the process followed by common stock prices, where � is the expected stock
return per unit time and �2 is the instantaneous variance of stock returns per unit
time.

If y.x; t/ is the price of an option written on the common stock then by direct
application of Ito’s lemma in (6.9)

dy D
�
@y

@t
C �x

@y

@x
C 1

2
�2x2

@2y

@x2

�
dt C �x

@y

@x
dz; (6.11)

a result we shall have occasion to use shortly.

6.3.2 The Lognormal Asset Price Process

Let

y D ln x; .so that x D ey/; (6.12)

then a straight forward mechanical application of Ito’s lemma yields that y satisfies
the stochastic differential equation

dy D Œ�.x; t/e�y � 1

2
�2.x; t/e�2y �dt C �.x; t/e�ydz: (6.13)

If in particular x follows the stock price process (6.10) so that

�.x; t/ D �x D �ey; �.x; t/ D �x D �ey;

then (6.13) simplifies to

dy D .� � 1

2
�2/dt C �dz: (6.14)

The process for y.D lnx/ is of interest when x is a stock price process since
changes in log-price is one way to measure the stock return.
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Since � and � are here assumed to be constant we are able to integrate (6.14)
from 0 to t to obtain

y.t/ D y.0/C
Z t

0

.�� 1

2
�2/ds C

Z t

0

�dz.s/;

i.e.

y.t/ D y.0/C .� � 1

2
�2/t C �.z.t/ � z.0//: (6.15)

Recalling that x D ey we may also express (6.15) in terms of the stock price x to
obtain

x.t/ D x.0/e.�� 1
2 �

2/tC�.z.t/�z.0//: (6.16)

This last expression (6.16) is the solution1 to the lognormal stock price stochastic
differential equation (6.10). This is one of the rare occasions in which we can
obtain an analytical solution to a stochastic differential equation. We note that
Eq. (6.16) allows us to simulate the process for x.t/ up to time t without resorting to
discretisation (see Problem 6.16). Equation (6.16) shows explicitly how the sample
paths for the stock price can be viewed as random excursions around a growing
trend.

Equation (6.16) may be written

ln

�
x.t/

x.0/

	
D .�� 1

2
�2/t C �.z.t/ � z.0//: (6.17)

Since z.t/ is normally distributed it follows from (6.17) that ln.x.t/=x.0// is also
normally distributed with mean and variance readily calculated as

E0

�
ln

�
x.t/

x.0/

	�
D .� � 1

2
�2/t; (6.18)

var0

�
ln

�
x.t/

x.0/

	�
D �2t: (6.19)

If we use ˚.�; �2/ to denote the density function of the normal distribution with
mean � and variance �2 then we have just shown that

ln

�
x.t/

x.0/

	
� ˚

�
.� � 1

2
�2/t; �2t

	
: (6.20)

1We do not give a formal mathematical definition of what is meant by the term “a solution of a
stochastic differential equation”. But essentially it means what we see in Eq. (6.16). The value of
the process for x up to time t is a function of the initial condition, time t and the underlying driving
stochastic process (here z.t /� z.0/).
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If in going from (6.14) to (6.15) we integrate from t to T we would obtain the result

ln

�
x.T /

x.t/

	
� ˚

�
.� � 1

2
�2/.T � t/; �2.T � t/

	
: (6.21)

We note (6.21) is in effect the transition density function for the process y.t/ D
lnx.t/, which we denote q.yT ; T jy; t/. Using the expression for the density
function for the normal distribution, the function q can be expressed as

q.yT ; T jy; t/ D 1p
2�.T � t/�

exp

"
�fy.T / � y.t/ � �

� � 1
2
�2
�
.T � t/g2

2�2.T � t/

#
:

(6.22)

In most applications we require the transition density in terms of x, namely
p.xT ; T jx; t/. This is obtained by using the rule for transforming p.d.f.s, that is
(see Appendix 2.1)

p.xT ; T jx; t/ D q.yT ; T jy; t/dyT
dxT

from which

p.xT ; T jx; t/ D
1p

2�.T � t/�xT
exp

"
�fln.xT =x/� .�� 1

2
�2/.T � t/g2

2�2.T � t/

#
;

(6.23)

the lognormal density function. This is precisely the transition probability density
function that we used at Eq. (3.13), obtained by solving the Kolmogorov equation,
see Problem 2.3. Here we have obtained it by solving the stochastic differential
equation for x.t/. In Chap. 9 we shall see how to obtain the same result by solving
the Kolmogorov backward equation.

It is a simple matter to extend the result (6.23) to the case when � and � are
both functions of time. It turns out that we need replace the � and � in Eqs. (6.20)
and (6.21) by the time averaged drift and diffusion, namely

�.t; T / D 1

.T � t/

Z T

t

�.s/ds; (6.24)

�2.t; T / D 1

.T � t/

Z T

t

�2.s/ds: (6.25)
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6.3.3 Exponential Functions

Suppose x follows the process (6.3). Let

y D ex; .so that x D lny/:

Now an application of Ito’s lemma reveals that

dy D y

�
�.x; t/C 1

2
�2.x; t/

�
dt C y�.x; t/dz: (6.26)

Assume � and � in (6.3) are constant and consider the more general exponential
function

m D ex�.�C 1
2 �

2/t : (6.27)

Then after application of Ito’s lemma the stochastic differential equation form turns
out to be

dm D �mdz: (6.28)

Thus the quantity m satisfies a stochastic differential equation with zero drift term.
As we shall see in the next chapter,m is an example of a martingale.

6.3.4 Calculating EŒex.t/�

Quite often in stochastic finance we need to calculate the expectation of some
function of a Wiener process, for example E0Œe

z.t/� where z.t/ is a Wiener process
and E0 is the expectation operator conditional on information at time 0.

To proceed with this calculation we see that z.t/ may be viewed as the solution
of the stochastic differential equation

dx.t/ D dz.t/; x.0/ D 0 (6.29)

i.e. we have a stochastic differential equation with � D 0 and � D 1:Applying Ito’s
lemma we find that y D ex satisfies the stochastic differential equation

dy D 1

2
ydt C ydz.t/: (6.30)

Bearing in mind that E0Œdz.t/� D 0 we see that

m.t/ D E0Œy.t/� D E0Œe
x.t/� D E0Œe

z.t/�;
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satisfies the ordinary deterministic differential equation

dm D 1

2
mdt; m.0/ D y.0/ D ex.0/ D 1; (6.31)

whose solution is

m.t/ D e
1
2 t :

Hence we have established the result

E0Œe
z.t/� D e

1
2 t : (6.32)

Note how we may generalize the above result. Suppose we wish to calculate
E0Œe

x.t/� where x.t/ is a diffusion process with time varying drift and diffusion
coefficients, so that

dx.t/ D �.t/dt C �.t/dz.t/: (6.33)

Let y D ex then by Ito’s lemma

dy D Œ�.t/C 1

2
�2.t/�ydt C �.t/ydz:

Integrating between 0 and t the last equation implies

y.t/ D y.0/C
Z t

0

.�.s/C 1

2
�2.s//y.s/ds C

Z t

0

�.s/y.s/dz.s/:

Let m.t/ D E0Œy.t/� and using the result (5.19) then2

m.t/ D y.0/C
Z t

0

.�.s/C 1

2
�2.s//m.s/ds:

Thus, differentiating3 with respect to t

dm

dt
D .�.t/C 1

2
�2.t//m;

which has solution

m.t/ D m.0/ exp

�Z t

0

�
�.s/C1

2
�2.s/

�
ds

�
D y.0/ exp

�Z t

0

�
�.s/C1

2
�2.s/

�
ds

�
:

2Note that the operations E0 and
R t
0 commute (i.e. their order may be interchanged) as may be

easily shown by appealing to the definition of the integral.
3Note that m.t/ is a deterministic quantity so we can use ordinary calculus here.
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That is, we have shown that

EŒex.t/� D exp

�
x.0/C

Z t

0

�
�.s/C 1

2
�2.s/

	
ds

�
: (6.34)

To further interpret (6.34) we recall that (6.33) can be expressed as

x.t/ D x.0/C
Z t

0

�.s/ds C
Z t

0

�.s/dz.s/: (6.35)

For reasons we discussed in Sect. 5.2 the stochastic integral
R t
0
�.s/dz.s/ is normally

distributed, hence x.t/ is normally distributed. We readily calculate that the mean
of x.t/ is given by

E0Œx.t/� D x.0/C
Z t

0

�.s/ds � M.t/;

and the variance of x.t/ is given by4

E0Œ.x.t/ �M.t//2� D E0

"�Z t

0

�.s/dz.s/

	2#
D
Z t

0

�2.s/ds � V 2.t/:

Thus we can assert that

x.t/ � N.M.t/; V 2.t//; (6.36)

and the result (6.34) may be re-stated as

E
�
ex.t/


 D eM.t/C
1
2 V

2.t/: (6.37)

This is a result that will be used not infrequently in later chapters.
We can use the foregoing result to calculate Et Œx.T /� when x follows the

GBM (6.10). We note first from (6.12) that x D ey , so that

EŒx.T /� D Et Œe
y.T /�: (6.38)

By integrating (6.14) from t to T we obtain

y.T / D y.t/C .�� 1

2
�2/.T � t/C �.z.T /� z.t//: (6.39)

4The result at the second equality uses results demonstrated in Sect. 5.2.
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Hence we calculate the mean and variance of y.T / as

Et Œy.T /� � My.T / D y.t/C
�
� � 1

2
�2
	
.T � t/;

and

vart Œy.T /� � V 2
y .T / D �2.T � t/:

Thus by a direct application of (6.37) we obtain the result

Et Œe
y.T /� D ey.t/C�.T�t /: (6.40)

Recalling again the relation (6.12) between x and y we write (6.40) as

Et Œx.T /� D x.t/e�.T�t /: (6.41)

Some simulated paths for x.t/ as well as the trend are shown in Fig. 6.2. These paths
have been simulated using Eq. (6.16).

If x is interpreted as a stock price then dy is the instantaneous return (i.e. over the
time interval .t; t C dt/) and y.t/ � y.0/ from Eq. (6.15) is the accumulated return
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Fig. 6.2 Trend and simulated paths of the asset price process. Here � D 0:05, � D 0:20 and
x.0/ D 52
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t

y(0)

y

Fig. 6.3 Simulated paths of the accumulated return y.t/ over .0; t /

over .0; t/, which is plotted in Fig. 6.3. These simulations correspond to the paths
shown in Fig. 6.2.

6.3.5 The Ornstein–Uhlenbeck Process

We have discussed in Sect. 4.3.2 the Ornstein–Uhlenbeck process. It is characterized
by a linear drift coefficient and a constant diffusion coefficient. Thus the stochastic
differential equation for an Ornstein–Uhlenbeck process is5

dx.t/ D �kxdt C �dz.t/: (6.42)

With a view as to how we would solve (6.42) if it were an ordinary deterministic
differential equation with the second term on the right-hand side considered as a
forcing term we define the quantity

y D xekt:

5Note that the � of the discussion of this section is equivalent to
p
D of the discussion in

Sect. 4.3.2.
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By Ito’s lemma this quantity satisfies the stochastic differential equation

dy.t/ D �ektdz.t/: (6.43)

Integrating (6.43) from 0 to t we obtain

y.t/ � y.0/ D �

Z t

o

eksdz.s/:

In terms of the original variable x this result can be expressed

x.t/ D x.0/e�kt C �

Z t

0

e�k.t�s/dz.s/: (6.44)

We shall frequently have occasion to use this form of the solution to the stochastic
differential equation (6.42).

It is also of interest to calculate the mean and the variance of the Ornstein–
Uhlenbeck process. Taking expectations across (6.44) we calculate

E0Œx.t/� D x.0/e�kt; (6.45)

and

var0Œx.t/� D �2E0

"�Z t

0

e�k.t�s/dz.s/

	2#

D �2
Z t

0

e�2k.t�s/ds D �2

2k
.1 � e�2kt/: (6.46)

Equations (6.45) and (6.46) correspond to the results (4.19) and (4.20) when we
make the identification � ! 0, y ! x.0/ and D ! �2.

Figure 6.4 displays some simulated paths of the Ornstein–Uhlenbeck process as
well as the mean trend (x.0/e�kt; see Eq. (6.45)) and the standard deviation bands
(x.0/e�kt ˙ 2�.1 � e�2kt/1=2=

p
2k; see Eq. (6.46)). The parameter values are the

same as those used to generate the distributions in Fig. 4.8.6

6.3.6 Brownian Bridge Processes

In later chapters we will want to consider stochastic differential equations which
model bond prices. One of the key characteristics of bond prices is that at maturity

6In the current notation the values are � D 1, k D 1, x.0/ D 1.
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t

x(0)

x

Fig. 6.4 Simulated paths of the Ornstein–Uhlenbeck process. Also displayed are the mean and the
two standard deviation bands calculated from Eqs. (6.45) and (6.46)

the price must equal the par-value. This behaviour of bond prices is known as the
pull-to-par-effect.

One approach to modelling this behaviour uses stochastic processes that are
“tied-down” at both ends i.e. both the value at t D 0 and the value at t D T

are specified. The processes we have used to date to model stock prices do not enjoy
this property. Hence we need to introduce a new type of process.

The Brownian bridge is one such process. For convenience units are standardized
so that it is defined on the unit interval 0 � t < 1. The Brownian bridge process is
the process y.t/ satisfying the stochastic differential equation

dy.t/ D b � y.t/

1 � t
dt C �dz.t/; 0 � t < 1; y.0/ D a: (6.47)

We now want to show that7

lim
t!1

y.t/ D b: (6.48)

7In this subsection the limt!1 y.t/ should be interpreted as in the mean square sense.



6.3 Applications of Ito’s Lemma 125

To do this first consider the subsidiary variable

u D y

1 � t
: (6.49)

An application of Ito’s lemma easily shows that u satisfies the stochastic differential
equation

du.t/ D b

.1 � t/2
dt C �

1 � t dz.t/: (6.50)

Integrating (6.50) on .0; t/ we find that

u.t/ D aC b

Z t

0

ds

.1 � s/2
C
Z t

0

�

1 � s dz.s/

D aC b

�
1

1 � t � 1

	
C
Z t

0

�

1 � s dz.s/:

Re-expressing this last equation in terms of the original variable y we obtain

y.t/ D a.1 � t/C bt C
Z t

0

�

�
1 � t
1 � s

	
dz.s/: (6.51)

Whilst some subtle technical arguments are required to prove that lim
t!1

y.t/ D b, the

intuition is fairly clear from (6.51). Clearly the deterministic term Œa.1� t/Cbt� !
b as t ! 1.

As for the stochastic integral, it represents the sum of shock terms over .0; t/.
But each shock term is multiplied by the coefficient .1 � t/=.1 � s/ which ! 0 as
t ! 1. By considering appropriate limiting processes it can indeed be shown that

lim
t!1

Z t

0

�
1 � t

1 � s

	
dz.s/ D 0: (6.52)

Figure 6.5 illustrates 100 simulations of (6.47) for b D 1 (i.e. for par value D $1)
and � D 0:05 (i.e. bond price volatility D 5%).

We observe that there is a large probability of bond prices exceeding $1 which is
not satisfactory for zero-coupon bond prices that pay $1 for sure at maturity. Note
further that although negative bond prices are possible with this process, they are
not very likely with realistic values of � . We shall see in a later chapter how the
modelling procedure of Heath et al. (1992a) gives us processes for bond prices that
are more likely to keep zero-coupon bond prices in the range .0; 1/. The square
root process for the instantaneous spot interest rate introduced by Cox et al. (1985b)
certainly guarantees that interest rates remain non-negative and hence bond prices
remain below 1. All of these processes will be discussed in Chap. 22.



126 6 Ito’s Lemma and Its Applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Fig. 6.5 Simulation of the Brownian bridge process

6.3.7 White Noise and Colored Noise Processes

In Sect. 4.4 we discussed the autocorrelation behaviour of noise processes. There we
saw that the Ornstein–Uhlenbeck process having drift �kx and diffusion coefficient
�2k2 has a correlation time of 1=k. Such a noise process is known as coloured noise.
We also saw that as k ! 1, the correlation time �corr ! 0 and the coloured noise
process tends to white noise with an “intensity” of �2. In this subsection we want
to make explicit the relationship between white noise and coloured noise via the
language of stochastic differential equations.

Consider the following system of stochastic differential equations

dx D �.x; t/dt C 


"
dt; (6.53)

d
 D � 


"2
dt C �

"
dz; (6.54)

with 
.0/ D 0. The process (6.54) for 
 is the stochastic differential equa-
tion representation of the Ornstein–Uhlenbeck process having correlation time
�corr D "2.

The output of the Ornstein–Uhlenbeck process 
 generates the noise term 
dt="
driving the process (6.53) for x. In this case x is said to be driven by the process 
.
Note that by Ito’s lemma we can re-express (6.54) as

d
�

et="

2
�

D �

"
et="

2

dz.t/; (6.55)
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so that


.t/ D �

"

Z t

0

e�.t�s/="2dz.s/: (6.56)

It is thus possible to re-express the pair of stochastic differential equations (6.53)
and (6.54) as the single equation

dx D �.x; t/dt C �

"2

Z t

0

e�.t�s/="2dz.s/dt: (6.57)

We note that in (6.57) the noise term depends on the path followed up to t . Hence
the future evolution of the process does depend on the path history. Thus Eq. (6.57)
is our first example of a non-Markovian process.

Since the non-Markovian stochastic differential equation (6.57) is equivalent to
the pair of Markovian stochastic differential equations (6.53) and (6.54), we see that
at least in some instances it may be possible to express a non-Markovian system as
a higher order Markovian system. This is in fact a technique which we shall often
exploit when we come to consider term structure of interest rate models. There we
shall quite naturally encounter non-Markovian systems when we try to model the
stochastic evolution of the yield curve.

One final point about (6.57). We know that to give it proper mathematical
meaning it should be expressed as a stochastic integral equation. Integrating we
obtain

x.t/ D x.0/C
Z t

0

�.x; �/d� C �

"2

Z t

0

�Z �

0

e�.��s/="2dz.s/

	
d�: (6.58)

In order that this equation be in the form of a standard stochastic integral equation
we need the dz term of the last (double) integral to appear in the outer integral.
In order to do this we need to perform on this stochastic double integral the
operation of change of order of integration which is routine for Riemann integrals.
A theorem known as Fubini’s theorem8 allows us (under suitable conditions) to
manipulate such stochastic double integrals in the same way that we manipulate
double Riemann integrals. Thus

Z t

0

�Z �

0

e�.��s/="2dz.s/

	
d� D

Z t

0

�Z t

s

e�.��s/="2d�
	

dz.s/

D "2
Z t

0

Œ1 � e�.t�s/="2 �dz.s/:

8Fubini’s theorem is discussed in Sect. 22.4.
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So the stochastic integral equation equivalent to (6.58) is

x.t/ D x.0/C
Z t

0

�.x; �/d� C �

Z t

0

Œ1 � e�.t�s/="2 �dz.s/: (6.59)

The Fubini theorem technique used to go from (6.58) to (6.59) is frequently used in
term structure of interest rate modelling as we shall see in Chaps. 22–26.

Finally, let us return to the white noise, coloured noise issue. From our discussion
in Sect. 4.4 we know that as " ! 0, the stochastic differential equation (6.53) should
tend to one driven by the white noise process dz.t/. We see from Eq. (6.59) that this
is indeed the case since lim"!0 expŒ�.t�s/="2� D 0 (for s < t) and so the stochastic
integral in (6.59) becomes

R t
0

dz.s/. Thus Eq. (6.59) becomes

x.t/ D x.0/C
Z t

0

�.x; �/d� C �

Z t

0

dz.s/; (6.60)

which is equivalent to the stochastic differential equation

dx.t/ D �.x; t/dt C �dz.t/: (6.61)

In order to show the difference on sample paths of coloured noise and pure white
noise we display in Fig. 6.6 the simulation of

dx

x
D �dt C 


"
dt

t

x(0)

x
ε = 0.4
ε = 0.2
ε = 0.1
White Noise

Fig. 6.6 Comparing white noise and coloured noise for different values of "
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with 
 given by (6.54). We use the same parameters as for Fig. 6.4 and using the
same random sequence for dz display paths for " D 0:1; 0:2; 0:4 and the pure white
noise case (i.e. the limit " ! 0), we see how the sample paths are fairly smooth for
large " but become more like the non-differentiable sample paths of white noise as
" decreases towards zero.

Horsthemke and Lefever (see Sect. 8.4) consider the more general case in
which (6.53) is replaced by

dx D �.x; t/dt C 


"
g.x/dt

and 
 still follows (6.54). They show that in the limit as " ! 0 the stochastic
differential equation followed by x is the Stratonovich stochastic differential
equation

dx D �.x; t/dt C �g.x/ ı dz

which is equivalent to the Ito stochastic differential equation

dx D .�.x; t/C 1

2
�2g.x/g0.x//dt C �g.x/dz: (6.62)

For example if x is our standard stock price process then (6.62) would become

dS D
�
�C 1

2
�2
	
Sdt C �Sdz: (6.63)

Of course for option pricing the slightly different drift term .� C 1
2
�2/ is not of

importance since it disappears in the continuous hedging argument. However the
issue of whether noise in financial markets is best modelled as pure white noise
or as coloured noise with a very short correlation time is perhaps not yet clearly
resolved in the finance literature.

6.4 A More Formal Statement of Ito’s Lemma

As we have stressed in Chap. 4 the notation for the stochastic differential equation

dx.t/ D �.x.t/; t/dt C �.x.t/; t/dz.t/;

is merely a convenient shorthand notation for the more precise expression in terms
of the stochastic integral equation, namely,

x.t/ D x.0/C
Z t

0

�.x.s/; s/ds C
Z t

0

�.x.s/; s/dz.s/:
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Thus our statement of Ito’s lemma in Sect. 6.2.2 has been in terms of the shorthand
notation of the stochastic differential equation. The reason for this is that it is in this
form, i.e. Eq. (6.4), that Ito’s lemma finds its most common applications in finance.

However the more precise statement of Ito’s lemma is in terms of stochastic
integrals and should be written

y.x.t/; t/ D y.x.0/; 0/C
Z t

0

�
@y

@s
C �.x.s/; s/

@y

@x
C 1

2
�2.x.s/; s/

@2y

@x2

�
ds

C
Z t

0

�.x.s/; s/
@y

@x
dz.s/:

(6.64)

To formally prove this result we partition the interval .0; t/ into subintervals as in
Sect. 4.7. Then

y.x.t/; t/ D y.x.0/; 0/C
nX

iD1
�y.x.i�t/; i�t/; (6.65)

where �yŒx.i�t/; i�t� represents the change in y over the subinterval Œ.i �
1/�t; i�t�. This change may be approximated by the Taylor expansion

�y.x.i�t/; i�t/ ' @y

@t
�t C @y

@x
�xi C 1

2

@2y

@x2
.�xi /

2; (6.66)

where the partial derivatives are evaluated at .i � 1/�t (i.e. at the beginning of the
subinterval as is the case with Ito stochastic integrals). Note that we have omitted
the terms

@2y

@x@t
.�t/.�xi / and

@2y

@t2
.�t/2;

since by the results of Appendix 5.1 integrals over these are zero, at least to o.�t/.
Substituting (6.66) into (6.65) we obtain terms of the type

nX

iD1

@y

@x
�xi and

nX

iD1

@2y

@x2
.�xi /

2:

By taking the limit n ! 1 in the way described in Sect. 4.7 the stochastic integral
equation (6.64) will emerge. For full details we refer the reader to Theorem 4.5 in
Oksendal (2003).

The more formal statement of Ito’s lemma in integral form is required when we
come to consider the setting up of self-financing strategies in Chap. 7.
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6.5 Ito’s Lemma in Several Variables

In later chapters we shall have occasion to consider derivative securities dependent
on more than one asset price or factor, e.g. options written on two stocks (so as to
benefit from their correlation structure), or options on debt instruments that may
depend on long term and short term interest rates. In this case the derivative security
price, y, may depend on several stochastic price equations and so we shall need a
multi-dimensional version of Ito’s lemma. This is also derived by use of Taylor’s
expansion and the rules of Sect. 5.1 for manipulating the dz terms. Here we only
sketch the main ideas, for full details we refer the reader to Oksendal (2003).

We break our discussion up into two subsections. In Sect. 6.5.1 we consider the
case in which each factor is driven by a separate Wiener process, but the Wiener
processes may all be correlated. In Sect. 6.5.2 each factor is driven by a number
of uncorrelated Wiener processes. One case can always be reduced to the other by
changes of variable as discussed in Sect. 5.3 but it is useful for later applications to
state both cases separately.

6.5.1 Correlated Wiener Processes

In order to clarify the notation we shall first write out fairly explicitly the result
when there are two factors and then state the result in the case of n factors.

First consider the case of two asset prices. Let the stochastic processes x1; x2
satisfy the stochastic differential equations

dx1 D �1.x1; x2; t/dt C �1.x1; x2; t/dz1; (6.67)

dx2 D �2.x1; x2; t/dt C �2.x1; x2; t/dz2; (6.68)

where dz1 and dz2 are the increments of Wiener processes which may be correlated
i.e.

E.dz1/ D E.dz2/ D 0;

E.dz21/ D E.dz22/ D dt;

E.dz1dz2/ D 
dt:

(6.69)

Here 
 measures the degree of correlation between the two Wiener processes.
Let y.x1; x2; t/ be a function of x1; x2 and t . Using an entirely analogous

procedure to that used in Sect. 6.2.2 we calculate dy according to

dy D y.x1 C dx1; x2 C dx2; t C dt/ � y.x1; x2; t/: (6.70)
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Expanding (6.70) by Taylor’s theorem, applying the rules of stochastic calculus
(keeping in mind the relationships (6.69)) we find that y satisfies the stochastic
differential equation

dy D
�
@y

@t
C �1

@y

@x1
C �2

@y

@x2
C 1

2

�
�21
@2y

@x21
C 2
�1�2

@2y

@x1@x2
C �22

@2y

@x22

	�
dt

C �1
@y

@x1
dz1 C �2

@y

@x2
dz2: (6.71)

To handle the general case of n asset prices we need to introduce vector notation.
Let

x D .x1; x2; : : : ; xn/
>

denote the vector of asset prices. The stochastic differential equation for the price of
the i th asset is

dxi D �i .x; t/dt C �i .x; t/dzi ; (6.72)

and the increments of the Wiener process, dzi , satisfy

E.dzi / D 0; var.dzi / D dt; E.dzidzj / D 
ijdt:

Now we need to specify .
ij/n�n and the variance-covariance matrix of the
increments of the various Wiener processes. Let

y D y.x; t/;

be a function of x and t . We form dy D y.x C dx; t C dt/ � y.x; t/, expand by
Taylor’s theorem and applying the rules of stochastic calculus find that y satisfies
the stochastic differential equation

dy D
2

4@y
@t

C
nX

iD1
�i
@y

@xi
C 1

2

nX

iD1

nX

jD1
�i�j 
ij

@2y

@xi@xj

3

5 dt C
nX

iD1
�i
@y

@xi
dzi :

(6.73)

This is the n-factor version of Ito’s lemma in the case of correlated Wiener
processes.
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6.5.2 Independent Wiener Processes

In this subsection we consider the case in which each diffusion process is driven
by several Wiener processes. Since we have shown in Sect. 5.3 how to transform
such stochastic differential systems to ones in which the Wiener processes are
independent we only consider this latter situation here.

We first consider the two asset price case,

dx1 D �1dt C �11dw1 C �12dw2; (6.74)

dx2 D �2dt C �21dw1 C �22dw2; (6.75)

where we have suppressed the dependence of the�i and �ij on x1; x2 and t . Now the
w1.t/ and w2.t/ are independent Wiener processes so that EŒdw1dw2� D 0. Again
we let y.x1; x2; t/ be a function of x1; x2 and t . As in the previous subsection we
calculate dy by use of a Taylor’s expansion and applying the rules for manipulating
stochastic differentials, thus

dy D@y

@t
dt C @y

@x1
.�1dt C �11dw1 C �12dw2/C @y

@x2
.�2dt C �21dw1 C �22dw2/

C 1

2

@2y

@x21
.�211dt C �212dt/C 1

2

@2y

@x22
.�221dt C �222dt/

C @2y

@x1@x2
.�1dt C �11dw1 C �12dw2/.�2dt C �21dw1 C �22dw2/:

(6.76)

Note that by using the basic rules of stochastic calculus for manipulating increment
of Wiener processes

.�1dtC�11dw1 C �12dw2/.�2dt C �21dw1 C �22dw2/

D �11�21.dw1/
2 C .�12�21 C �11�22/dw1dw2 C �12�22.dw2/

2

D .�11�21 C �12�22/dt:

(6.77)

Using this last result and gathering together the dw1 and dw2 Eq. (6.76) simplifies to

dy D
�
@y

@t
C �1

@y

@x1
C �2

@y

@x2
C 1

2
.�211 C �212/

@2y

@x21
C 1

2
.�221 C �222/

@2y

@x22

C.�11�21 C �12�22/
@2y

@x1@x2

�
dt (6.78)

C.�11 @y
@x1

C �21
@y

@x2
/dw1 C .�12

@y

@x1
C �22

@y

@x2
/dw2:
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In the case of n asset prices we are dealing with the stochastic differential system

dxi D �i .x; t/dt C
mX

kD1
�ikdwk.t/ (6.79)

for i D 1; 2; � � � ; n. Note that we allow m ¤ n so that the number of independent
Wiener processes may not be the same as the number of price processes. Now
expanding by use of Taylor’s expansion we obtain

dy D@y

@t
dt C

nX

iD1

@y

@xi

 
�idt C

mX

kD1
�ikdwk

!

C 1

2

nX

iD1

nX

jD1

@2y

@xi @xj

 
�idt C

mX

kD1
�ikdwk

! 
�j dt C

mX

kD1
�jkdwk

!
:

(6.80)

Consider more closely the product in the last term

 
�idt C

mX

kD1
�ikdwk

! 
�j dt C

mX

kD1
�jkdwk

!

D
 

mX

kD1
�ikdwk

! 
mX

kD1
�jkdwk

!
D
 

mX

kD1
�ik�jk

!
dt;

(6.81)

where we have used the independence of the Wiener processes to obtain the last
equality. Ignoring terms of o.dt/ we finally obtain from (6.80) that

dy D
2

4@y
@t

C
nX

iD1
�i
@y

@xi
C 1

2

nX

iD1

nX

jD1

@2y

@xi @xj

mX

kD1
�ik�jk

3

5 dt C
nX

iD1

@y

@xi

mX

kD1
�ikdwk:

(6.82)

Note that if we define the matrix � D .�/n�m and set

S D .sij/n�n D ��>;

then

sij D
mX

kD1
�ik�jk:
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Referring to the definition of K in (5.61) we can write (6.82) more compactly as

dy D
�
@y

@t
C K y

	
dt C

mX

kD1

� nX

iD1
�ik
@y

@xi

	
dwk: (6.83)

Equation (6.83) is the most general, multivariable version of Ito’s lemma that we
shall require. In the more formal stochastic integral equation form (see Sect. 6.4) it
would be written

y.x.t/; t/ D y.x.0/; 0/C
Z t

0

�
@y

@s
CK y.s/

	
dsC

mX

kD1

nX

iD1

Z t

0

�ik.x.s/; s/
@y

@xi
dwk.s/:

6.6 The Stochastic Differential Equation Followed
by the Quotient of Two Diffusions

As an example of an application of Ito’s Lemma for several variables, consider the
two diffusion processes

dx1 D �1x1dt C �1x1dw; (6.84)

dx2 D �2x2dt C �2x2dw: (6.85)

We want to determine the stochastic differential equation followed by the quotient
of these two processes, namely

y D x1

x2
: (6.86)

To apply Ito’s lemma, we need to calculate

@y

@x1
D y

x1
;

@y

@x2
D � y

x2
;

@2y

@x21
D 0;

@2y

@x1@x2
D � 1

x22
and

@2y

@x22
D 2x1

x32
:

Thus (see Eq. (6.73))

dy D
�
�1x1

1

x2
C �2x2

�
� y

x2

	
C 1

2



0C 2�1x1�2x2

��1
x22

	
C �22 x

2
2

2x1

x32

� �
dt

C
�
�1x1

y

x1
C �2x2

��y
x2

	�
dw; (6.87)
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i.e.

dy D Œ.�1 � �2/y C f��1�2y C �22 yg�dt C .�1 � �2/ydw:

Simplifying further we finally have

dy D Œ.�1 � �2/C �2.�2 � �1/�ydt C .�1 � �2/ydw:

Another useful way to obtain the same result is by formal manipulations of
stochastic differentials using the basic rules of stochastic calculus. Thus calculate
dY directly as

dy D x1 C dx1
x2 C dx2

� x1

x2
D x1

x2

�
1C dx1

x1

�

�
1C dx2

x2

� � x1

x2
: (6.88)

Recalling the definition of y (Eq. (6.86)) this last equation can be written

dy

y
D 1C dx1

x1

1C dx2
x2

� 1

D
�
1C dx1

x1

	 
1 � dx2

x2
C
�

dx2
x2

	2!
� 1C o.dt/

D dx1
x1

� dx2
x2

� dx1
x1

dx2
x2

C
�

dx2
x2

	2
C o.dt/: (6.89)

By the rules of stochastic calculus

dx1
x1

dx2
x2

D .�1dt C �1dw/.�2dt C �2dw/ D �1�2.dw/2 D �1�2dt;

�
dx2
x2

	2
D .�1dt C �2dw/2 D �22 .dw/2 D �22 dt: (6.90)

Thus

dy

y
D Œ.�1 � �2/C �2.�2 � �1/�dt C .�1 � �2/dw (6.91)

as obtained previously.
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6.7 Problems

Problem 6.1 In relation to the log-normal asset price process discussed is
Sect. 6.3.4, show that

vart Œx.T /� D x.t/2e2�.T�t /Œe�2.T�t / � 1�:

Prove that more generally

Et Œx.T /
n� D x.t/n exp

�
n�.T � t/C �2n.n � 1/

2
.T � t/

�
:

Problem 6.2 Verify the results (6.24) and (6.25).

Problem 6.3 Consider again the Ornstein–Uhlenbeck Process (6.42) but now with
time varying coefficients, viz.

dx.t/ D �k.t/xdt C �.t/dz.t/:

Show that

x.t/ D x.0/e� R t
0 k.s/ds C

Z t

0

e� R t
u k.s/ds�.u/dz.u/;

and hence that

var0Œx.t/� D
Z t

0

e�2 R tu k.s/ds�2.u/du:

Problem 6.4 Consider the process y defined by

y.t/ D �

Z t

0

.˛ C .1 � ˛/e�	.t�s//dw.s/C y0 � .1 � ˛/.1 � e�	t /x0; (6.92)

where �; ˛; 	; y0; x0 are constants and w is a Wiener process.

(i) Explain why this process in non-Markovian;
(ii) Show that by defining a second process x as

x.t/ D x0e
�	t C �

Z t

0

e�	.t�s/dw.s/; (6.93)

the system for x; y can be written as the jointly Markovian system

dx D �	x.t/dt C �dw.t/; (6.94)

dy D �	.1� ˛/x.t/dt C �dw.t/: (6.95)
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Problem 6.5 Consider the stochastic differential equation

dx D �.x/dt C �.x/dz;

and define the transformation

y D g.x/ �
Z x

xo

du

�.u/
;

for some arbitrary x0. Apply Ito’s lemma to show that y satisfies the stochastic
differential equation

dy D m.y/dt C dz;

where

m.y/ �
�
�.g�1.y//
�.g�1.y//

� 1

2
� 0.g�1.y//

	
:

Problem 6.6 Consider the so-called CEV (constant elasticity of variance) process
for the process Y is of the form

dy D �1ydt C �1y
ˇdw;

where w is a Wiener process under the measure P: Define a new process

x D y2�2ˇ

and show that x satisfies

dx D .�x C 	/dt C �
p
xdw;

where

� D .2 � 2ˇ/�1; � D .2 � 2ˇ/�1 and 	 D .1 � ˇ/.1 � 2ˇ/.�1/
2:

Problem 6.7 Consider the two diffusion processes

dx1
x1

D �1dt C �11dw1 C �12dw2;

dx2
x2

D �2dt C �21dw1 C �22dw2;
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where the �i and �ij are constant and w1 and w2 are independent Wiener processes.
Show that y1 D lnx1, and y2 D ln x2 satisfy

dy1 D .�1 � 1

2
.�211 C �212//dt C �11dw1 C �12dw2;

dy2 D .�2 � 1

2
.�221 C �222//dt C �21dw1 C �22dw2:

By integrating from t to T show that the vector of random variables

.y1.T / � y1.t/; y2.T /� y2.t//

are jointly (bi-variate) normally distributed with mean

.�1 � 1

2
.�211 C �212//.T � t/; .�2 � 1

2
.�221 C �222//.T � t/

and variance-covariance structure

vart Œy1.T /� D .�211 C �212/.T � t/;
vart Œy2.T /� D .�221 C �222/.T � t/;

covt Œy1.T /; y2.T /� D .�11�21 C �12�22/.T � t/:

It is known (see Abramowitz and Stegun 1970) that if u1, u2 are two normal variables
with

EŒu1� D EŒu2� D 0;

varŒu1� D s1; varŒu2� D s2;

corrŒu1; u2� D covŒu1; u2�

s1s2
D 
;

then they have joint (or bivariate) probability density function

�.u1; u2/ D 1

2�s1s2
p
1 � 
2 exp

��.u21 � 2
u1u2 C u22/

2s21s
2
2.1 � 
2/

�
:

Use this result to show that the joint (or bivariate) probability density function for
y1; y2 is

p.y1.T /; y2.T /; T jy1.t/; y2.t/; t/

D 1

2�s1s2
p
1 � 
2.T � t/ exp

��.u21 � 2
u1u2 C u22/

2s21s
2
2.1 � 
2/.T � t/

�
;
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where

ui D yi .T / � yi .t/ � .�i � 1

2
s2i /; .i D 1; 2/;

s21 D �211 C �212; s
2
2 D �221 C �222; 
 D �11�21 C �12�22:

Problem 6.8 Consider the two diffusion processes

dx1 D x1.a1dt C �11dw1 C �12dw2/;

dx2 D x2.a2dt C �21dw1 C �22dw2/;

where w1 and w2 are independent Wiener processes. Find the diffusion process
followed by

y D x1x2:

First apply Ito’s lemma for several variables. Then use the definition of dy, namely

dy D .x1 C dx1/.x2 C dx2/ � x1x2
and the rules of stochastic calculus, to obtain the same result.

Problem 6.9 Consider the quantities

yi .t/ D
Z t

0

�i .u/dwi .u/; yj .t/ D
Z t

0

�j .u/dwj .u/;

where wi .t/, wj .t/ are independent Wiener processes when i ¤ j . Use Ito’s lemma
to find the stochastic differential equation followed by

z.t/ D yi .t/yj .t/:

Hence show that

E0

��Z t

0

�i .u/dwi .u/

	�Z t

0

�j .u/dwj .u/

	�
D
8
<

:

0, i ¤ j

R t
0
E0Œ�i

2.u/�du, i D j

:

Problem 6.10 Consider the two diffusion processes

dx1.t/ D m1.t/dt C �11.t/dw1.t/C �12.t/dw2.t/;

dx2.t/ D m2.t/dt C �21.t/dw1.t/C �22.t/dw2.t/;
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where w1.t/ and w2.t/ are independent Wiener processes. Use the techniques of
Problem 6.9 to show that

cov0 Œx1.t/; x2.t/� D
Z t

0

�11.u/�21.u/du C
Z t

0

�12.u/�22.u/du:

Problem 6.11 Suppose x is driven by the Ito stochastic differential equation

dx.t/ D �.x; t/dt C �.x; t/dw.t/:

The process y.t/ is defined by

y.t/ D
Z t

0

g.x.s//ds

where g is suitably well-defined function. Calculate

E0Œy.t/� and var0Œy.t/�:

Problem 6.12 Consider the stochastic differential equation

dx.t/ D .˛.t/C ˇ.t/x/dt C �.t/dw;

where ˛, ˇ and � are time deterministic functions. Show that

x.t/ D e
R t
0 ˇ.s/ds

�
x.0/C

Z t

0

˛.s/e� R s
0 ˇ.u/duds C

Z t

0

�.s/e� R s
0 ˇ.u/dudw.s/

�
:

Explain why x.t/ is normally distributed and show that

E0Œx.t/� D e
R t
0 ˇ.s/ds

�
x.0/C

Z t

0

˛.s/e� R s
0 ˇ.u/duds

�
;

and

var0Œx.t/� D
Z t

0

�2.s/e�2 R st ˇ.u/duds:

Problem 6.13 Consider the linear stochastic differential equation

dx D .˛.t/C ˇ.t/x/dt C .
.t/C ı.t/x/dw;

for some time deterministic functions ˛, ˇ, 
 and ı. Consider also the related
stochastic differential equations

du D ˇ.t/udt C ı.t/udw; u.0/ D 1;
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and

dv D a.t/dt C b.t/dw; v.0/ D x.0/;

where a.t/ and b.t/ are also time deterministic functions. Use the approach to
Sect. 6.3.2 to solve for u.t/. Then show by appropriate choice of the a.t/ and b.t/
that it is possible to express x.t/ as

x.t/ D u.t/v.t/:

Solve for v.t/ and hence show that x.t/ can be expressed as

x.t/ D u.t/

�
x.0/C

Z t

0

.˛.s/ � ı.s/
.s//
u.s/

ds C
Z t

0


.s/

u.s/
dw.s/

	
:

Problem 6.14 Consider the set of diffusion processes

dSi
Si

D �i.S; t/dt C
mX

jD0
sij.S; t/dwj .t/;

for i D 0; 1; : : : ; n, where S denote the vector .S0; S1; : : : ; Sn/ and the wj are
independent Wiener processes. Define the set of processes

yi .t/ D Si.t/=S0.t/; .i D 1; 2; : : : ; n/:

Show that these processes satisfy

dyi
yi

D
2

4.�i � �0/�
mX

jD0
soj.sij � soj/

3

5 dt C
mX

jD0
.sij � soj/dwj :

Problem 6.15 Consider the two diffusion processes

dx1
x1

D �1dt C �11dw1 C �12dw2; (6.96)

dx2
x2

D �2dt C �21dw1 C �22dw2: (6.97)

Show that the process y D x1=x2 satisfies the stochastic differential equation

dy

y
DŒ�1 � �2 C �

�221 C �222
� � .�11�21 C �12�22/�dt

C .�11 � �21/dw1 C .�12 � �22/dw2:
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Problem 6.16 Computational Problem—Use the solutions (6.16) and (6.17) to
simulate the stock price process x.t/ and the return process ln.x.t/=x.0// in the
interval .0; T / and in particular obtain the simulated distribution for these quantities.
Use the same values for x.0/, �, � and T as used in Problem 4.6(b).

Since now it is possible to draw the .z.T / � z.0// directly from a normal
distribution, discretisation error is avoided. Gauge the impact of the discretisation
error by comparing the distributions obtained here with the ones obtained in
Problem 4.6(b) and the true distribution.



Chapter 7
The Continuous Hedging Argument

Abstract This chapter develops a continuous hedging argument for derivative
security pricing. Following fairly closely the original Black and Scholes (1973)
article, we make use of Ito’s lemma to derive the expression for the option value
and exploit the idea of creating a hedged position by going long in one security,
say the stock, and short in the other security, the option. Alternative hedging
portfolios based on Merton’s approach and self financing strategy approach are also
introduced.

7.1 The Continuous Hedging Argument: The Black–Scholes
Approach

Black and Scholes in surveying some of the earlier attempts to price options, discuss
how the idea that they develop so effectively had already arisen in some of the
earlier literature. It is worth quoting here one of the key paragraphs in their now
celebrated paper where they reveal their key insight that the expected return on a
hedged position must equal the return on the risk free asset in equilibrium:

One of the concepts that we use in developing our model is expressed by Thorp and Kassouf
(1967). They obtain an empirical valuation formula for warrants by fitting a curve to actual
warrant prices. Then they use this formula to calculate the ratio of shares of stock to options
needed to create a hedged position by going long in one security and short in the other.
What they fail to pursue is the fact that in equilibrium, the expected return on such a hedged
position must be equal to the return on a riskless asset. What we show below is that this
equilibrium condition can be used to derive a theoretical valuation formula.

Let S denote the stock price and C the value of a European call option written
on the stock. The following “ideal market conditions” are assumed:

(a) the short term risk free interest rate is known and is constant through time;
(b) the stock price follows a stochastic process described by the stochastic differ-

ential equation

dS

S
D �dt C �dzI (7.1)
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(c) the stock pays no dividend;
(d) there are no transaction costs in buying or selling the stock or the option;
(e) it is possible to borrow, at the short-term risk-free interest rate, any fraction of

the price of a security to buy it or hold it;
(f) there are no penalties to short selling.

Our starting assumption is that the value of the option will depend on the stock
price S i.e.

C D C.S; t/:

Denote

� D @C

@t
; � D @C

@S
; � D @�

@S
D @2C

@S2
: (7.2)

Given that the stock price follows the stochastic differential equation (7.1), an
application of Ito’s lemma in the previous chapter leads to that the option price
satisfies the stochastic differential equation

dC

C
D �cdt C �cdz; (7.3)

where

�c D
�
� C �S�C 1

2
�2S2�

�

C
; (7.4)

can be interpreted as the option return per unit time, and

�c D �S�

C
; (7.5)

as the option volatility per unit time.
Now set up a hedging portfolio containing quantities Qs stock and Qc options

(we shall adopt the convention that Q > 0 indicates a long position whilst Q < 0

indicates a short position). If we use VH to denote the value of this portfolio then

VH D SQs C CQc: (7.6)

Over the time interval .t; t C dt/ the change in the value of the hedging portfolio is

dVH D QsdS CQcdC;

which after use of the expressions (7.1) and (7.3) for dS and dC becomes

dVH D Œ�SQs C �cCQc� dt C Œ�SQs C �cCQc�dz: (7.7)
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As with the stochastic differential equations for the stock price and option price,
the one for the value of the hedging portfolio has a drift term and a diffusion (or
stochastic) term. The crucial observation is that by varyingQs and Qc we can vary
the coefficient of the diffusion term. In fact, by an appropriate choice ofQs=Qc we
can make the (stochastic) diffusion term vanish entirely. This result is achieved by
choosingQs and Qc so that

�SQs C �cCQc D 0;

i.e.

Qs

Qc

D ��; (7.8)

where we have used the definition of �c from (7.5). This result tells us that for every
long (short) option position in the hedging portfolio, we must take � short (long)
positions in the underlying stock. If this ratio of stock to options is continually
maintained then the hedging portfolio yields a certain return over time interval
.t; t C dt/ given by

dVH D Œ��S�Qc C �cCQc � dt D Qc.��S�C �cC /dt; (using (7.8)).
(7.9)

Since this return is riskless, it must be the case that in an efficient capital market
the original hedging portfolio (with proportion of stock to option satisfying Qs D
��Qc) must earn the short-term risk-free rate, i.e.

dVH D r VHdt; (7.10)

where we use r to denote the short term risk-free rate of interest. If this were not the
case then it would be possible to set up a riskless arbitrage strategy to profit from
the strategy (either investment in the hedging portfolio or in the riskless instrument)
giving the higher sure return.

With Qs D ��Qc the expression for VH at Eq. (7.6) becomes

VH D Qc.�S�C C/: (7.11)

Use of (7.9) and (7.11) reduces the no riskless arbitrage condition (7.10) to

��S�C �cC D r.�S�C C/; (7.12)

i.e.

�c � r D .� � r/S�
C
; (7.13)
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which upon use of (7.5) may be written

�c � r
�c

D � � r
�

: (7.14)

Recalling the expressions (7.4) and (7.5) for �c and �c , (7.14) becomes

� C rS�C 1

2
�2S2� D rC: (7.15)

Referring back to the expressions for � , � and � this last condition appears as

@C

@t
C rS

@C

@S
C 1

2
�2S2

@2C

@S2
D rC; (7.16)

which is the partial differential equation for the option price, which we obtained in
Chap. 3 (Eq. (3.7)) by discounting, at the risk free rate, the expected payoff of the
option.

In Chap. 9 we outline a systematic approach to the solution of the partial differen-
tial equations of financial economics, of which (7.16) with boundary conditions for
a European call option is a particular example. The solution is of course the same
as obtained in Chap. 3 (Eq. (3.9)) by integration. In Appendix 9.1 we also show
the original solution technique based on transforming (7.16) into the heat equation,
whose solution may then be applied to obtain the Black–Scholes formula.

Finally we make the observation that (7.9) may be written

dVH D Qc

�
� C 1

2
�2S2�

	
dt (7.17)

upon use of the expression for �c . Equation (7.17) is important for practical
considerations of hedging strategies. It indicates how the value of the portfolio that
is now hedged instantaneously changes as the value of the underlying stock changes.
This change is in particular sensitive to the option’s � (i.e. its time decay) and its �
(i.e. its convexity). We refer the reader to Hull (2000) for further discussion of these
issues.

7.2 Interpreting the No-Arbitrage Condition

Equation (7.14) can be given a simple economic interpretation. The right-hand side
is the expected excess return on the stock, risk-adjusted by its standard deviation of
return, whilst the left-hand side is the corresponding quantity for the option. The no-
arbitrage condition (7.14) merely states that in an efficient capital market the option
will be priced such that the expected excess return on the option risk-adjusted equals
the expected excess return on the underlying stock risk adjusted.
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We shall denote this common risk-adjusted expected excess return by � , so that
from (7.14) we may write

� D r C ��; (7.18)

and

�c D r C ��c: (7.19)

The terms �� and ��c can be interpreted as risk premia above the risk free
rate required by investors to hold the stock and option respectively. We may in
fact interpret � as the market price of risk or Sharpe ratio for the uncertainty
associated with the d z term in the stochastic differential equations for S and C . The
sense of this interpretation can be appreciated by noting that � is the extra premium
required for a unit increase in � in the stock market and a unit increase in �c in the
option market.

It is also possible to relate the condition (7.14) to the capital asset pricing model
(CAPM) of modern portfolio theory. We show in Appendix 7.1 that if ˇ and ˇc
represent the CAPM beta of the stock and of the option respectively, then

ˇc

ˇ
D �c

�
: (7.20)

Thus the condition (7.14) may be rewritten

�c � r
ˇc

D � � r
ˇ

: (7.21)

This last condition has a simple interpretation in terms of the CAPM. The top line
on each side is the excess return of each security above the risk free rate, the bottom
line is the security’s beta which is a measure of its riskiness. The condition (7.21)
merely states that the excess return on each security, risk adjusted by its beta, is the
same for both the option and the stock. This result shows that the hedging argument
technique is compatible with modern portfolio theory. According to this theory the
above risk adjusted excess returns should equal the excess return on the market
portfolio, i.e.

�c � r

ˇc
D � � r

ˇ
D �m � r; (7.22)

where �m is the expected return on the market portfolio. By comparing (7.18)
and (7.19) with (7.22) and making use of (7.20) we see that the market price of
risk can also be related to the expected excess return on the market portfolio and the
stock beta, ˇ, or the option beta, ˇc , according to

� D .�m � r/
ˇ

�
; (7.23)
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or

� D .�m � r/
ˇc

�c
: (7.24)

Black and Scholes, in their original article give an alternative derivation that starts
from the CAPM relationship for the stock and the option, i.e.

� D r C .�m � r/ˇ; (7.25)

�c D r C .�m � r/ˇc; (7.26)

where �m is the expected return on the market portfolio. Eliminating .�m �
r/ yields (7.21), the relation (7.20) connecting ˇc=ˇ to �c=� may be used to
obtain (7.14), which upon use of the expression for �c and �c from Ito’s lemma
reduces to (7.15) which is the Black–Scholes option pricing partial differential
equation once again.

The approach of starting from (7.14), the condition that risk adjusted excess
return should be the same across all securities, turns out to be a very helpful idea
and will lead us into the general approach for pricing derivative securities, which
we will discuss in Chap. 10.

7.3 Alternative Hedging Portfolios: The Merton’s Approach

It is possible to arrive at the no-riskless arbitrage condition (7.14) by setting up a
number of alternative hedging portfolios. The hedging portfolio that we set up in
Sect. 7.1 consisted of positions in the stock and option and focused on the quantities
of these in the portfolio. This section considers a slightly different way of setting
up the hedging portfolio, which was used by Merton in an appendix to Samuelson
(1973). This approach sets up a hedging portfolio consisting of positions in the
stock, option and risk-free instrument. It also makes explicit how the hedging
portfolio may be set up with zero net investment and focuses on the dollars invested
in each asset rather than the quantity of assets purchased.

We set up a portfolio V of stock, options and riskless bonds with

Q1 D dollar amount invested in the stock,
Q2 D dollar amount invested in the option,
Q3 D dollar amount invested in the bond.

By short selling or borrowing we can constrain the portfolio to require net zero
investment, which implies that

V D Q1 CQ2 CQ3 D 0: (7.27)
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The instantaneous proportional change in the portfolio value is given by

dV

V
D Q1

dS

S
CQ2

dC

C
CQ3rdt

D Q1

�
dS

S
� rdt

	
CQ2

�
dC

C
� rdt

	
Œ using (7.27) �

D ŒQ1.� � r/CQ2.�c � r/�dt C .Q1� CQ2�c/dz (7.28)

using the stochastic differential equations for S and C . Choose Q1=Q2 so that the
stochastic term in (7.28) vanishes, yielding the condition

Q1

Q2

D ��c
�
; (7.29)

then the change in portfolio value is

dV

V
D Q2

h
��c
�
.�� r/C .�c � r/

i
dt: (7.30)

Since no net investment was required to set up the portfolio V , by no arbitrage
condition, it must be zero

��c
�
.� � r/C .�c � r/ D 0;

which reduces to

�� r

�
D �c � r

�c
:

The last equation is (7.14) again, and is equivalent to the Black–Scholes option
pricing equation as we have already derived.

7.4 Self Financing Strategy: The Modern Approach

In this section we derive the option pricing equation by using so-called self-
financing strategies. The approach we develop here will also make use of
the stochastic integral form of Ito’s lemma (see Sect. 6.4). Since this is the
mathematically correct way to view Ito’s lemma, we avoid the “sloppy”
mathematical reasoning that accompanied the use of the stochastic differentials
in the arguments of the previous sections. The approach we develop in this section
is the basis of what is now termed the modern approach, that would be regarded as
mathematically more complete.
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Suppose we invest in two financial assets whose values at time t are x1.t/ and
x2.t/ that are driven by the Ito stochastic differential equations

dx1 D �1.x; t/dt C �1.x; t/dz.t/; (7.31)

and

dx2 D �2.x; t/dt C �2.x; t/dz.t/; (7.32)

where x denotes the vector .x1; x2/ and we assume the same Wiener process z.t/
drives both prices. Denote by Q1.t/ and Q2.t/ the amount invested in assets 1 and
2 respectively at time t , and by V.t/ the value of the portfolio of the two assets. We
consider the investment strategy over a time interval .0; �/, when � will later be the
option maturity. We will initially develop the trading strategy in terms of the discrete
partitioning of the time interval used in Sect. 4.7, only here we assume a fixed time
step of length �t .

Consider the evolution of the portfolio value over the time interval .i�t; .i C
1/�t/. At time i�t we decide to invest the amounts Q1.i�t/ and Q2.i�t/ in x1
and x2 respectively and hold these amounts until time .i C 1/�t , when we will
revise our portfolio balance. The change in the portfolio value over the time interval
will be given by

V ..i C 1/�t/� V.i�t/ D Q1.i�t/ Œx1 ..i C 1/�t/� x1.i�t/�

CQ2.i�t/ Œx2 ..i C 1/�t/� x2.i�t/� :
(7.33)

If we let time � D n�t , then summing over n subintervals we obtain the value of
the portfolio at time � as

V.�/ � V.0/ D
n�1X

iD0
Q1.i�t/ Œx1 ..i C 1/�t/� x1.i�t/�

C
n�1X

iD0
Q2.i�t/ Œx2 ..i C 1/�t/� x2.i�t/� :

(7.34)

Using the definition of the stochastic differential prior to going to the limit (see
Eq. (4.49) we can also express (7.34) as

V.�/� V.0/ D
n�1X

iD0
ŒQ1.i�t/�1 .x.i�t/; i�t/CQ2.i�t/�2 .x.i�t/; i�t/� �t

C
n�1X

iD0
ŒQ1.i�t/�1 .x.i�t/; i�t/CQ2.i�t/�2 .x.i�t/; i�t/� �z.i�t/:

(7.35)
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By applying the idea of the mean square limit (see Sect. 4.7) Eq. (7.35) in the limit
can be written in integral form as

V.�/ � V.0/ D
Z �

0

ŒQ1.s/�1.x.s/; s/CQ2.s/�2.x.s/; s/� ds

C
Z �

0

ŒQ1.s/�1.x.s/; s/CQ2.s/�2.x.s/; s/� dz.s/:

(7.36)

Equation (7.36) merely tells us how our portfolio value evolves if we follow the
trading strategy .Q1.t/;Q2.t// at each time t . A trading strategy is said to be self-
financing if the increase in value of the portfolio V.t/ arises only from changes in
the prices of the assets x1 and x2. In other words we do not require the inflow of
some external source of cash to finance the strategy.1 This condition imposes on
Q1.t/ andQ2.t/ that

V.t/ D Q1.t/x1.t/CQ2.t/x2.t/; (7.37)

so that we cannot spread across the two assets any more wealth than what we have
in our portfolio.

We have deliberately gone back to the definition of the stochastic integral in
deriving Eq. (7.36) for the evolution of portfolio value. In subsequent discussion of
the setting up of self-financing portfolio strategies we proceed by going directly to
the limit in Eq. (7.34) to write

V.�/� V.0/ D
Z �

0

Q1.s/dx1.s/C
Z �

o

Q2.s/dx2.s/; (7.38)

which upon use of the stochastic differential equations (7.31) and (7.32) and some
re-arrangement reduces to (7.36).

We now apply the foregoing concept of a self-financing trading strategy to
the option pricing problem. We shall consider two portfolios, one consisting of a
position in the option, the other consisting of a self-financing strategy portfolio in
the underlying stock and a bond that pays the risk-free rate of interest.

Consider first the portfolio V1 consisting solely of a position in the option over
the interval .t; T /. By definition we have

V1.T / � V1.t/ D C.ST ; T /� C.S; t/; (7.39)

1Nor is the strategy required to generate some cash outflow, say in the form of dividends.
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which by application of Ito’s lemma in integral form (see (6.64)) may be written

V1.T / � V1.t/ D
Z T

t

�
@C.S; u/

@u
C �S

@C.S; u/

@S
C 1

2
�2S2

@2C.S; u/

@S2

�
du

C
Z T

t

�S
@C.S; u/

@S
dz.u/: (7.40)

Now consider a portfolio V2 consisting of a self-financing strategy in the
underlying stock and the bond. If the value of the bond at time t is denoted B.t/
then its value evolves according to

dB D rBdt; (7.41)

which does not involve any stochastic term. LettingQS andQB denote the positions
in the stock and bond respectively, so the evolution of the self-financing portfolio
V2 over the interval t to T can be obtained from (7.36) (after appropriate re-
interpretation of symbols2) as

V2.T / � V2.t/ D
Z T

t

ŒQS.u/�S.u/CQB.u/rB.u/� du C
Z T

t

QS.u/�S.u/dz.u/;

or, after application of the self-financing condition (7.37)3

V2.T / � V2.t/ D
Z T

t

ŒQS.u/.�� r/S.u/C rV .u/� du C
Z T

t

QS.u/�S.u/dz.u/:

(7.42)

If the evolution of the self-financing strategy portfolio V2 is to be the same as the
portfolio V1 consisting of the position in the option (i.e. (7.40) and (7.42) yield
the same evolution for V1.t/ D V2.t/ D V.t/) then the corresponding integrands
in (7.40) and (7.42) must be equal. Thus, from comparison of the stochastic integrals
(involving the d z.u/ term) we see that the stock position at time t must be chosen
to so that

QS.t/ D @C.S; t/

@S
: (7.43)

This of course is the hedge ratio that we obtained in Eq. (7.8), the difference in
sign merely being a reflection of the fact that here we are taking a long position in
the option. Using (7.43) and the fact that V.t/ D C.S; t/, comparison of the first

2In (7.36) we set � ! T , 0 ! t , Q1 ! QS , Q2 ! QB , �1 ! �S , �2 ! rB, �1 ! �S ,
�2 ! 0.
3Which here becomes V .u/ D QS.u/S.u/ CQB.u/B.u/.
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integrals in (7.40) and (7.42) yield the condition

@C

@S
.� � r/S C rC D @C

@t
C �S

@C

@S
C 1

2
�2S2

@2C

@S2
;

which after a little manipulation reduces to

@C

@t
C rS

@C

@S
C 1

2
�2S2

@2C

@S2
D rC; (7.44)

the familiar Black–Scholes partial differential equation.

7.5 Appendix

Appendix 7.1 Relation Between Stock and Option Betas

Recall the stochastic differential equations for the stock price and the option price
which may be written in return form as

dS

S
D �dt C �dz; (7.45)

dC

C
D �cdt C �cdz: (7.46)

We let M denote the value of the market portfolio and assume that it follows the
same type of stochastic process as the stock, i.e.

dM

M
D �mdt C �mdz: (7.47)

From portfolio theory the definition of the beta factors is

ˇ D cov
�

dS
S
; dM
M

�

var
�

dM
M

� ; ˇc D cov
�

dC
C
; dM
M

�

var
�

dM
M

� : (7.48)

Since

E

�
dS

S

	
D �dt and E

�
dM

M

	
D �mdt;

it follows that

cov

�
dS

S
;

dM

M

	
D E

��
dS

S
� �dt

	�
dM

M
� �m dt

	�

D EŒ.�dz/.�mdz/� D ��mE.dz2/ D ��m dt:
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Also var
�
dM
M

� D �2mdt, hence,

ˇ D ��mdt

�2mdt
D �

�m
: (7.49)

Similarly

ˇc D �c

�m
: (7.50)

Eliminating �m between (7.49) and (7.50) yields

ˇ

ˇc
D �

�c
; (7.51)

which is the result used in the main text.

7.6 Problems

Problem 7.1 Rework the hedging argument of Sect. 7.1 but now the hedging
portfolio consists of physical positions QS in the stock, QC in the option and QB

in risk free bonds. The risk free bond is an instrument whose market value is B and
whose return process is given by

dB

B
D rdt:

Problem 7.2 (a) Rework the continuous hedging argument of Sect. 7.1 but now
allow the underlying asset to pay a continuously compounded dividend at the
rate q.
Show that in this case the condition of no-riskless arbitrage (7.14) becomes

�c � r

�c
D �� .r � q/

�
:

Thus show that Eq. (7.16) becomes

@C

@t
C .r � q/S @C

@S
C 1

2
�2S2

@2C

@S2
D rC:

(b) Adjust the self financing strategy argument of Sect. 7.4 in the case that the
underlying asset pays a continuously compounded dividend at the rate q.



Chapter 8
The Martingale Approach

Abstract The martingale approach is widely used in the literature on contingent
claim analysis. Following the definition of a martingale process, we give some
examples, including the Wiener process, stochastic integral, and exponential mar-
tingale. We then present the Girsanov’s theorem on a change of measure. As an
application, we derive the Black–Scholes formula under risk neutral measure. A
brief discussion on the pricing kernel representation and the Feynman–Kac formula
is also included.

8.1 Martingales

8.1.1 Introduction

The seminal papers of Harrison and Kreps (1979) and Harrison and Pliska (1981)
ushered in a new approach to contingent claim pricing. This approach, the mar-
tingale approach, which is now widely used in the literature on contingent claim
analysis is expressed in the language of the modern theory of stochastic integration,
which relies on the abstract theory of semi-martingale integration. To properly come
to grips with these concepts would require a lengthy and high level mathematical
course involving measure theory. All we shall do here is to define, and try to explain,
at the level of mathematical discussion used in previous chapters the main themes
of this approach which occur in the modern contingent claims literature. Similar
approaches may be found in Sundaran (1997), Baxter and Rennie (1996) and Neftci
(2000). An excellent and more rigorous account of the modern martingale approach
to derivative security pricing can be found in Musiela and Rutkowski (1997).

The Wiener processes, which drive the stochastic differential equations that are
used to model asset prices have two main mathematical characteristics, namely (i)
the independence of increments, and (ii) the continuity of the sample paths. IfM.t/
represents such a stochastic process then the first property essentially says that the
probability distribution of M.t/ � M.s/.s < t/ is not affected by any information
about what the process does up to time s. This property is also shared by the Poisson
process.

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 8.1 The distribution of M.t/ given information at time �

The process M is said to be a martingale process if

E� .M.t// D M.�/; (8.1)

for all t > � . This notion is illustrated in Fig. 8.1 where, given the information at
time � , we regard M.t/ as a distribution whose mean is M.�/. We also refer the
reader back to Fig. 3.3 and the related discussion for more intuition on martingale
processes. Often prices, or price related functions, turn out to be martingales. In fact
the major task in applying martingale methods is to find the price related function
that is a martingale.

8.1.2 Examples of Martingales

(i) The Wiener Process—Since the increments of the Wiener process have the
property

EŒdz.t/� D 0; for all t;

it follows that the Wiener process itself is a martingale i.e.

E� Œz.t/ � z.�/� D 0; t > �;
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or

E� Œz.t/� D z.�/; t > �:

(ii) The Stochastic Integral—Consider the stochastic integral

x.t/ D
Z t

�

�.x.s/; s/dz.s/: (8.2)

It can alternatively be written as the stochastic differential equation

dx.t/ D �.x.t/; t/dz.t/: (8.3)

From this last equation we see that

EŒdx.t/� D EŒ�.x.t/; t/dz.t/� D 0:

As in the previous example it follows that

E� Œx.t/ � x.�/� D 0;

i.e.

E� Œx.t/� D x.�/: (8.4)

Hence the stochastic integral (8.2) is a martingale. By further noting that
x.�/ D 0 we can also express this result as

E�

�Z t

�

�.x.s/; s/dz.s/

�
D 0: (8.5)

8.1.3 The Exponential Martingale

Consider the process u.t/ defined by

du.t/ D �.u; t/dt C �.u; t/dz.t/; u.0/ D 0: (8.6)

Recall that (8.6) may also be expressed as the stochastic integral equation

u.t/ D
Z t

0

�.u.s/; s/ds C
Z t

0

�.u.s/; s/dz.s/: (8.7)
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Now define the quantity

M.t/ D exp

�
u.t/ �

Z t

0

Œ�.u.s/; s/C 1

2
�2.u.s/; s/�ds

	

D exp

�
�1
2

Z t

0

�2.u.s/; s/ds C
Z t

0

�.u.s/; s/dz.s/

	
:

(8.8)

For notational convenience define the subsidiary process

v.t/ D �1
2

Z t

0

�2.u.s/; s/ds C
Z t

0

�.u.s/; s/dz.s/; (8.9)

which can be written as the stochastic differential equation

dv.t/ D �1
2
�2.u; t/dt C �.u; t/dz.t/:

ThenM.t/ in Eq. (8.8) can be simply written

M.t/ D ev.t/: (8.10)

It is a straight forward application of Ito’s lemma (see Eq. (6.26) in Sect. 6.3) to see
that M.t/ satisfies the stochastic differential equation

dM.t/ D �.u; t/M.t/dz.t/: (8.11)

It follows that

EŒdM.t/� D 0; (8.12)

and hence M.t/ is a martingale. Equation (8.12) may also be expressed in the form

E0ŒM.t/� D M.0/ D 1;

which using the definition (8.8) states that

E0

�
exp

�
�1
2

Z t

0

�2.u.s/; s/ds C
Z t

0

�.u.s/; s/dz.s/

	�
D 1: (8.13)

In many of the applications of the exponential martingale that we encounter in
later chapters the drift coefficient and diffusion coefficient � are either constants
or functions of time only. In fact we have already encountered the constant case in
example (iii) of Sect. 6.3 and the time-varying case in example (iv) of Sect. 6.3.
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8.1.4 Quadratic Variation Processes

Consider again the stochastic integral

x.t/ D
Z t

0

�.x.s/; s/dz.s/;

or

dx.t/ D �.x.t/; t/dz.t/: (8.14)

As we have seen in example (ii) above x.t/ is a martingale. For reasons which we
describe later we consider the process

y.t/ D x2.t/: (8.15)

An application of Ito’s lemma shows that y satisfies the stochastic differential
equation

dy D �2dt C 2
p
y�dz.t/: (8.16)

Clearly y.t/ cannot be a martingale because of the nonzero drift term in Eq. (8.16).
However the process

m.t/ D x2.t/ �
Z t

0

�2.x.s/; s/ds (8.17)

is a martingale. This result follows since

dm.t/ D dy.t/ � �2.x.t/; t/dt;

which upon use of (8.16) reduces to

dm.t/ D 2x.t/�.x.t/; t/dz.t/; (8.18)

from which it follows that m.t/ is a martingale. Hence

E0.m.t// D m.0/ D x2.0/ D 0:

Using the definition of m.t/ in (8.17) the last equation implies

E0.x
2.t// D

Z t

0

E0Œ�
2.x.s/; s/�ds;
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or, in terms of the definition of x.t/,

E0

"�Z t

0

�.x.s/; s/dz.s/

	2#
D
Z t

0

E0

�
�2.x.s/; s/



ds: (8.19)

This result has already been derived using informal mathematical arguments in
Sect. 5.2.

The quantity
R t
0
�2Œx.s/; s�ds which appears in (8.17) is known as the quadratic

variation process of the martingale x.t/. It is often denoted hx; xit i.e.

hx; xit �
Z t

0

�2.x.s/; s/ds; (8.20)

though strictly speaking we only require this notation when considering a vector of
Wiener processes. In this notation the martingalem.t/ of Eq. (8.17) may be written

m.t/ D x2.t/ � hx; xit : (8.21)

The result we have established in this example is often stated that the square of a
martingale minus its quadratic variation process is a martingale. Note that since
m.t/ is a martingale E0Œm.t/� D 0 and hence we have established the result that

EŒx2.t/� D E0Œ< x; x >t �:

The concept of quadratic variation arises when we seek to determine the length
of a sample path of a Wiener process.

First let us review the notion of length of a path in ordinary calculus. Consider
the function f on the interval Œ0; t � and take the subdivision Œti�1; ti � .i D
1; : : : ; n/ .tn � t/. The length of the graph of f over .0; t/ is approximated by
(see Fig. 8.2)

Fig. 8.2 Approximating the path length over Œti�1; ti �
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An D
nX

iD1
j f .ti /� f .ti�1/ j : (8.22)

If An tends to a finite limit as we refine the partition (i.e. let n ! 1 and the
length of the subintervals tend to zero) then the graph of f has finite length over
Œ0; t �. In such cases the function f is said to be rectifiable. A function which is
rectifiable is said to have bounded variation. As the name implies such functions
cannot have a behaviour which is too “wild” over the interval Œ0; t �. It can be proved
using results of standard analysis that a function which has bounded variation is
almost everywhere differentiable.

As far as the sample paths of Wiener processes are concerned we have shown
in Sect. 4.3.1 that they are non-differentiable. It follows that no sample path of a
Wiener process has bounded variation. This means that if the function f in (8.22)
is a Wiener process then the quantity An tends to infinity as the partition is refined.

We have seen in Chap. 4 that we can define stochastic integrals by considering
the mean-square limit. This leads us to consider the idea of considering the square
of the function differences in (8.22). If this limit exists then the sample path has
“length” in a mean-square sense.

If x is a Wiener process we define the functionQn (Q � quadratic)

Qn D
nX

iD1
j x.ti / � x.ti�1/ j2 : (8.23)

It can be shown that we can find Q such that

ms-lim
n!1 Qn D Q: (8.24)

The quantity Q is known as the quadratic variation of x on .0; t/. The quadratic
variation of x on .0; t/ is usually denoted hx; xit .

Suppose that x is the sample path of the stochastic differential equation

dx D �.x; t/dt C �.x; t/dz; (8.25)

on .0; t/. Then by the rules of stochastic calculus (see Sect. 5.1)

.dx/2 D �2.x; t/dt: (8.26)
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The calculation of the quadratic variation essentially consists of summing all the
.dx/2 over .0; t/, i.e. integrating the right-hand side of (8.26). Thus

hx; xit D
Z t

0

�2.x; s/ds: (8.27)

For example if �.x; t/ is a constant � then

hx; xit D �2t: (8.28)

Of course to properly define the quadratic variation in (8.27) we should adopt proper
limiting arguments and this is done in Chung and Williams (1990). However the
beauty of the rules of stochastic calculus that we have adopted is that we can perform
the formal manipulations (8.26) to (8.27) confidently that they are valid.

8.1.5 Semimartingales

The concepts developed in this section allow us to define, at least in an intuitive
sense, semimartingales. Any process X which can be decomposed in the form

X D V CM; (8.29)

whereV is a continuous process this is of bounded variation andM is a martingale is
called a semimartingale. Certainly processes generated by the stochastic differential
equation (8.25) are semimartingales since

x.t/ D
�
x.0/C

Z t

0

�.x; s/ds

�
C
�Z t

0

�.x; s/dz.s/

�
� V CM:

Given our discussion in Chap. 5 we see that V � Œx.0/ C R t
0
�.x; s/ds� is of

bounded variation, whilst we have demonstrated that M � R t
0
�.x; s/dz.s/ is a

martingale.

8.2 Changes of Measure and Girsanov’s Theorem

Quite frequently we will be working with a diffusion process having drift/diffusion
.�; �/ with the uncertainty being drawn from a probability distribution or measure
P (i.e. the diffusion is defined on .˝;F;P/ to use the correct technical language),
that is

dx D �dt C �dz; x.0/ D x0; under P; (8.30)
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where typically x would be an asset price or some interest rate. Application of the
continuous hedging argument will lead us to consider the same quantity, x, having
a different drift coefficient which we designate .� � ��/. Usually � would involve
the market price of risk of x. Since there is now a different drift term we are in fact
dealing with a different diffusion process which we denote y if we remain under the
original probability distribution or measure P, that is

dy D .� � ��/dt C �dz; y.0/ D x0; under P: (8.31)

However in many applications we wish to remain with the original process x. One
way to do this is to change the original probability measure P to a new one QP such
that under QP the original process x has drift .� � ��/, that is

dx D .�� ��/dt C �dz; x.0/ D x0; under QP: (8.32)

Figure 8.3 illustrates these two different perspectives on the process x.
We know the calculation of the prices of contingent claims can be reduced to

calculating expectations of future payoffs. Hence the above change of measure
technique poses the problem of how to adjust the calculation of the expectation
operator when we change the drift coefficient of the underlying diffusion process.
Girsanov’s change of measure theorem provides the solution to this problem.

We use Et Œf .x.�//� to denote the expectation formed at t of some function f of
x at time �.> t/ under the measure P (i.e. the dynamics of x governed by (8.30)).

T
x0

x(μ)

y(μ−λσ)

The processes x and y under P

T
x0

x(μ−λσ)

The process x under P*

Fig. 8.3 Illustrating the change of measure result
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Similarly QEt Œf .x.�/� denotes the expectation operation under the measure QP (i.e.
the dynamics of x governed by (8.32)). Recall that

Et Œf .x.�//� D
Z
f .x.�//dP.�/ D

Z
f .x� /p.x� ; � j xt ; t/dx� ; (8.33)

and

QEt Œf .x.�//� D
Z
f .x.�//d QP.�/ D

Z
f .x� / Qp.x� ; � j xt ; t/dx� ; (8.34)

where P.�/ and QP.�/ are the cumulative density functions from x.t/ to x.�/ and
p.x� ; � j xt ; t/ and Qp.x� ; � j xt ; t/ are the corresponding conditional transition
density functions from x.t/ to x.�/. We note that these latter are respectively the
solutions to the Kolmogorov backward equations associated with the stochastic
differential equations (8.30) and (8.32).

The idea of the Cameron-Martin-Girsanov formula is to find a stochastic variable
�.t/ such that

d QP D �dP; (8.35)

i.e.

Qp.x� ; � j xt ; t/dx� D �.�/p.x� ; � j xt ; t/dx� :

For then

Et Œ�.�/f .x.�//� D
Z
f .x.�//�.�/dP.�/ D

Z
f .x.�//�.�/p.x� ; � j xt ; t/dx�

D
Z
f .x.�// Qp.x� ; � j xt ; t/dx� D

Z
f .x.�//d QP.�/

D QEt Œf .x.�//�:
(8.36)

Two requirements on the (yet to be specified) function �.t/ are that

(i) Prob.f� > 0g D 1, so that probabilities remain positive under QP,

and

(ii) E0Œ�.t/� D R t
0
�.s/dP.s/ D R t

0
�sp.�s; s j �0; 0/d�s D 1:

This last result in turn ensures that
Z
d QP.t/ D

Z
Qp.�t ; t j �0; 0/d�t D 1;

so that QP indeed qualifies as a probability distribution.
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We now construct a quantity �.t/ fulfilling the above requirements. We use the
quantity �.t/ appearing in Eq. (8.32) to define the Ito diffusion process u.t/ given by

du D �1
2
�2.t/dt � �.t/dz.t/; u.0/ D 0: (8.37)

Then let �.t/ be defined by

�.t/ D eu.t/ D exp

�
�
Z t

0

1

2
�2.s/ds �

Z t

0

�.s/dz.s/

	
; (8.38)

so that �.0/ D eu.0/ D e0 D 1. Note that since �.t/ is the exponential of a random
variable u.t/, it must always be positive i.e.

Prob.f� > 0g D 1: (8.39)

Thus our first condition, (i) above, on �.t/ is satisfied.
By Ito’s lemma (see our discussion in Sect. 8.1.2 on the exponential martingale)

�.t/ satisfies the stochastic differential equation

d�.t/ D ��.t/�.t/dz.t/; (8.40)

so that

EŒd�.t/� D 0;

which implies that �.t/ is a martingale. It follows that

E0Œ�.t/� D �.0/ D 1; (8.41)

which is our second requirement, (ii) above, on the function �.t/. Here E0 is the
unconditional expectation operator calculated at t D 0.

In fact �.t/ is a special example of the exponential martingale which we
encountered in Sect. 8.1.3. The simulation of four paths of (8.40) for �.t/ D 0:2

is displayed in Fig. 8.4. The figure shows how typical sample paths wander around
the initial value �.0/ D 1, as is implied by Eq. (8.41).

The quantity �.t/ is known as the Radon–Nikodym derivative of the measure
QP with respect to the measure P and sometimes (8.35) is written

d QP
dP

D �: (8.42)
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0

1

time

ξ(
t)

Fig. 8.4 Some typical sample paths of the exponential martingale process

The measures QP and P are said to be equivalent which means events having
zero probability under one measure have zero probability under the other, or more
formally

QP.A/ D 0 if and only if P.A/ D 0; (8.43)

where A is a set belonging to the sample space ˝ . In other words if x.t/ is a
price process then the set of prices attainable under P remains attainable under QP,
albeit with a different probability. The main result we require in our subsequent
applications is the following theorem.

Change of Measure Theorem Suppose that x is a .�; �/ diffusion process under
P. Given the stochastic process � and the probability measure QP as defined by (8.38)
and (8.42) respectively then x is a .� � ��; �/ diffusion process under QP.

The proof of this theorem is somewhat technical and we refer the reader to
Harrison (1990) for details. Versions of this theorem in a more general setting are
known as Girsanov’s theorem. The names of Cameron and Martin are connected
with earlier versions.

In our applications we rarely need to calculate directly the Radon–Nikodym
derivative �.t/ in Eq. (8.42). Rather we interpret the change of measure theorem
in the following way. Firstly let z.t/ and Qz.t/ respectively denote Wiener processes
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under the probability measures P and QP. Then we can view the diffusion process x
in two ways:

.i/ dx D �dt C �dz; (8.44)

where under P, dz � N.0; dt/,

.ii/ dx D .� � ��/dt C �d Qz; (8.45)

where under QP; d Qz � N.0; dt/. Note that we can rewrite Eq. (8.45) in the
following way:

dx D �dt C �.d Qz.t/ � �.t/dt/ D �dt C �

�
d Qz.t/ � d

Z t

0

�.s/ds

	
;

i.e.

dx D �dt C �d

�
Qz.t/ �

Z t

0

�.s/ds

	
: (8.46)

Contrasting (8.46) with (8.44) we see that the stochastic quantity Qz.t/ �
Z t

0

�.s/ds

must be a Wiener process under P. That is we have the relationship

z.t/ D Qz.t/ �
Z t

0

�.s/ds (8.47)

between the Wiener processes z.t/ and Qz.t/ under the two different probability
measures P and QP that are related via (8.42). It is this result which we shall mostly
use in our applications.

It is also possible to state the change of measure theorem in a form such that the
drift adjustment term �� appears in the diffusion process under P and the “clean”
drift term� appears in the process under QP. From this perspective a diffusion process
x could be viewed in the following two ways:

.i/ dx D .�C ��/dt C �dz; (8.48)

where under P; dz � N.0; dt/, or

.ii/ dx D �dt C �d Qz; (8.49)

where under QP, d Qz � N.0; dt/.
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Table 8.1 Summarising the
relation between the
processes z.t /, Qz.t / and the
measures P, QP

P QP
z.t / Wiener Not wiener

E.dz.t // D 0 QE.dz.t // D ��dt ¤ 0

Qz.t / Not wiener Wiener

E.dQz.t // D �dt ¤ 0 QE.dQz.t // D 0

Here z.t / D Qz.t /�R t0 �.s/ds, or dz.t / D dQz.t /��.t/dt

Now we could manipulate Eq. (8.48) as

dx D �dt C �d

�
z.t/C

Z t

0

�.s/ds

	
: (8.50)

Contrasting with Eq. (8.49) we see that z.t/C
Z t

0

�.s/ds can be equated to the

Wiener process Qz.t/ under QP i.e.

Qz.t/ D z.t/C
Z t

0

�.s/ds; (8.51)

which not surprisingly is a re-expression of (8.47). It is from this perspective that we
shall usually use the change of measure theorem in our applications. We shall see
that conditions which guarantee an arbitrage free economy will result in diffusion
processes of the form (8.48).

In Table 8.1 we summarise the key results of this section and indeed the ones
mostly required for applications.

8.3 Girsanov’s Theorem for Vector Processes

In later applications when considering options on multiple assets we shall require a
multi-dimensional (or vector version) of Girsanov’s theorem. To keep the notation
simple we first give the two-dimensional version and then extend the result to a
vector system.

Consider the two processes x1 and x2 given by

dx1 D �1dt C �11dw1 C �12dw2; (8.52)

dx2 D �2dt C �21dw1 C �22dw2; (8.53)
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where w1 and w2 are independent Wiener processes under the measure P. With the
quantities �1.t/ and �2.t/ (which in our applications will be market prices of risk
associated with w1 and w2 respectively) define the process

�.t/ D exp

�
�1
2

Z t

0

.�21.s/C �22.s//ds �
Z t

0

.�1.s/dw1.s/C �2.s/dw2.s//

	
:

(8.54)

Application of Ito’s Lemma yields

d�.t/ D ��.t/.�1.t/dw1.t/C �2.t/dw2.t//; (8.55)

so that �.t/ is a martingale under P. An argument exactly analogous to that leading
to (8.42) can be used to show that here also

d QP
dP

D �: (8.56)

The processes

Qw1.t/ D w1.t/C
Z t

0

�1.s/ds; (8.57)

Qw2.t/ D w2.t/C
Z t

0

�2.s/ds; (8.58)

will be Wiener processes under QP. Furthermore the dynamics for x1 and x2 under QP
are given by

dx1 D .�1 � �1�11 � �2�12/dt C �11d Qw1 C �12d Qw2; (8.59)

dx2 D .�2 � �1�21 � �2�22/dt C �21d Qw1 C �22d Qw2: (8.60)

Alternatively, one may start with the dynamics under P specified as

dx1 D .�1 C �1�11 C �2�12/dt C �11dw1 C �12dw2; (8.61)

dx2 D .�2 C �1�21 C �2�22/dt C �21dw1 C �22dw2; (8.62)

and the dynamics under QP then become

dx1 D �1dt C �11d Qw1 C �12d Qw2; (8.63)

dx2 D �2dt C �21d Qw1 C �22d Qw2: (8.64)

For full details on the multi-dimensional version of Girsanov’s theorem we refer the
reader to Oksendal (2003).
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More generally consider the vector process

dxi D �idt C
nX

jD1
�ijdwj ; i D 1; 2; : : : ; n: (8.65)

Using dw to denote the column vector (dw1; dw2; : : : ; dwn) and� the column vector
of corresponding market prices of risk we consider the process

�.t/ D exp

�
�1
2

Z t

0

�T .s/�.s/ds �
Z t

0

�T .s/dw.s/
	

(8.66)

that satisfies

d�.t/ D ��.t/�T .t/dw.t/: (8.67)

Hence �.t/ is a martingale under P and again we have Eq. (8.56) and that the
processes

Qwi .t/ D wi .t/C
Z t

0

�i .s/ds (8.68)

will be Wiener processes under QP. Note that in differential form and using vector
notation (8.68) may be written

d Qw D dw C �dt: (8.69)

The dynamics of xi under QP are then given by

dxi D
�
�i �

nX

jD1
�j �ij

�
dt C

nX

jD1
�ijd Qwj : (8.70)

Alternatively, we may start with the dynamics under P specified as

dxi D
�
�i C

nX

jD1
�j �ij

�
dt C

nX

jD1
�ijdwj ; (8.71)

under which QP becomes

dxi D �idt C
nX

jD1
�ijd Qwj : (8.72)
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Often we need to deal with the dynamics for the xi in the form

dxi D �idt C
nX

jD1
sijdzj ; .i D 1; : : : ; n/ (8.73)

where under the measure P the zi are correlated Wiener processes so that

EŒdzidzj � D 
ijdt; .i ¤ j /: (8.74)

Let

x D .x1; � � � ; xn/T ; � D .�1; � � � ; �n/T ; s D .sij/n�n:

Then, the stochastic differential equations (8.72) can be written as

dx D �dt C sd z: (8.75)

We know from Sect. 5.3 that we can find independent Wiener processes wi .t/ such
that

d z D Adw; (8.76)

where d z D .dz1; dz2; : : : ; dzn/T and dw D .dw1; dw2; : : : ; dwn/T . In this notation,
we will have processes �i (the market prices of risk of the zi ) so that the processes
for the xi under QP should look like

dx D .� � s�/dt C sd Qz; � D .�1; � � � ; �n/T (8.77)

and the relation between the zi and Qzi is given by

d Qzi D dzi C �idt; .i D 1; 2; : : : ; n/; (8.78)

or

d Qz D d z C �dt:

We use the same matrix A to transform the correlated d Qz to the independent d Qw,
thus

Ad Qw D Adw C �dt;

where we set � D .�1; �2; : : : ; �n/
T . Thus

d Qw D dw CA�1�dt; (8.79)
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which upon comparison with (8.69) indicates that the market prices of risk for the
independent and correlated Wiener processes are related by

� D A�1�: (8.80)

Substituting (8.76) (in the form dw D A�1d z) and (8.80) into (8.66) obtain the
expression for the Radon–Nikodym derivative in terms of the correlated Wiener
processes z and their corresponding market prices of risk �. In fact, we find that

�.t/ D exp

�
�1
2

Z t

0

�T .s/.A�1/T A�1�.s/ds �
Z t

0

�T .s/.A�1/T A�1dz.s/
	

which reduces to

�.t/ D exp

�
�1
2

Z t

0

�T .s/
�1�.s/ds �
Z t

0

�T .s/
�1d z.s/
	
: (8.81)

In achieving the last simplification we have used the fact that .d z/.d z/T D 
dt D
AAT dt and hence AAT D 
 where 
 is the correlation matrix (see Eq. (5.33)). Note
also that we have used the results from matrix algebra that

.A�1/T D .AT /�1 and .A�1/T A�1 D .AT /�1A�1 D .AAT /�1:

8.4 Derivation of Black–Scholes Formula by Girsanov’s
Theorem

Recall our standard assumption on stock price dynamics, namely,

dS D �Sdt C �Sdz: (8.82)

For the Ito process (8.82), the transition probability density functionp.ST ; T j S; t/
(the probability density of reaching stock price ST at T given that the stock price is
S at time t < T ) is the solution of the Kolmogorov backward equation

1

2
�2S2

@2p

@S2
C �S

@p

@S
C @p

@t
D 0; t � T; (8.83)

subject to the initial condition

p.S 0; t j S; T / D ı.S � S 0/; (8.84)

where ı is the Dirac delta function.
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As we have described in Chap. 2 and shown in Problem 3.3 the solution to this
Kolmogorov backward equation is

p.ST ; T j S; t/ D
1p

2�.T � t/�ST
exp

"
�
˚
ln .ST =S/� �

� � �2=2
�
.T � t/�2

2�2.T � t/

#
:

(8.85)

Since the option price is given by

C D C.S; t/;

and we have seen in Chap. 6 that by Ito’s lemma the option price dynamics are
given by

dC D �cCdt C �cCdz; (8.86)

where

�c D .� C �S�C 1
2
�2S2� /

C
; �c D �S�

C
:

By the continuous hedging argument (see Chap. 7), the risk adjusted expected excess
returns on the stock and the option are related by (see Eq. (7.14))

�c � r

�c
D � � r

�
D �; (8.87)

where �, the market price of risk of the uncertainty associated with the stock price
dynamics (i.e. z.t/) is defined in Sect. 7.2. Therefore, considering separately the two
equations in (8.87), we have

� D r C ��; (8.88)

�c D r C ��c: (8.89)

Substituting (8.88) into (8.82) and (8.89) into (8.86) the stochastic differential
equations followed by S and C , in an arbitrage free economy, become

dS D .r C ��/Sdt C �Sdz; (8.90)

dC D .r C ��c/Cdt C �cCdz: (8.91)
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Note that these can both be written

dS D rSdt C �Sd

�
z.t/C

Z t

0

�.u/du

	
; (8.92)

dC D rCdt C �cCd

�
z.t/C

Z t

0

�.u/du

	
: (8.93)

Now define a new process

Qz.t/ D z.t/C
Z t

0

�.u/du; (8.94)

then Eqs. (8.92) and (8.93) can be written

dS D rSdt C �SdQz.t/; (8.95)

dC D rCdt C �cCdQz.t/: (8.96)

Let P be the probability distribution underlying the Wiener process in (8.82) i.e. the
one whose probability density function is given by (8.85), so that under P

dz � N.0; dt/:

Then under the probability distribution P, we would have

d Qz � N.�dt; dt/: (8.97)

Hence Qz.t/ would not be a Wiener process under P because of its non-zero drift
term. However the change of measure theorem of the previous section tells us that
if we define a new probability distribution QP by

d QP.T / D �.t; T /dP.T /; (8.98)

i.e.

Qp. QST ; T j S; t/d QST D �.t; T /p.ST ; T j S; t/dST ;

where1

�.t; T / D exp

�
�
Z T

t

�.s/dz.s/� 1

2

Z T

t

�2.s/ds

	
; (8.99)

1Note that we use �.t; T / to denote �.T /=�.t/ where �.t/ is defined in Eq. (8.38).
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then with respect to QP, the process Qz.t/ is a Wiener process, i.e.

d Qz.t/ � N.0; dt/: (8.100)

Thus under the measure QP, the S and C in Eqs. (8.95) and (8.96) can be regarded
as Ito processes with drifts .rS; rC / and diffusion coefficients .�S; �cC / respec-
tively. Under the probability measure QP, the transition probability density function
Qp. QST ; T j S; t/ is the solution of the Kolmogorov backward equation determined

by the Ito process (8.95), namely,

1

2
�2S2

@2 Qp
@S2

C rS
@ Qp
@S

C @ Qp
@t

D 0; t � T; (8.101)

which is also subject to the initial condition

Qp.S 0; T jS; T / D ı.S � S 0/: (8.102)

Again using the results in Problem 3.3 the solution to (8.101) with initial condi-
tion (8.102) can be obtained as

Qp.ST ; T j S; t/dST D
1p

2�.T � t/� exp

"
�
˚
ln .ST =S/� �

r � �2=2
�
.T � t/

�2

2�2.T � t/

#
dST
ST

:

(8.103)

From Eq. (8.96) we note that

d.Ce�rt/ D e�rt�cCdQz.t/: (8.104)

Since d Qz.t/ is a Wiener increment under the probability measure QP it follows
from (8.104) that

QEt Œd.Ce�rt/� D 0; (8.105)

where QEt is the expectation operator under the equivalent probability measure QP.
The last equation implies that Ce�rt is a martingale under QP. Hence

QEt ŒCT e�rT � D Cte
�rt; for all T � t; (8.106)
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therefore

C.S; t/ D e�r.T�t / QEt ŒC.ST ; T /�

D e�r.T�t /
Z 1

0

maxŒST � E; 0� Qp.ST ; T j S; t/dST :
(8.107)

Equation (8.107) is precisely Eq. (3.15) (with h.ST / set equal to the payoff on a
European call option). Now we have obtained the option pricing relationship without
assuming the investors are risk neutral. The result that investors price the option as
if they were risk neutral arises naturally as a result of the hedging argument.

One way to operationalize (8.107) is to use the expression for Qp.ST ; T j S; t/
given in (8.103). We are then dealing with the integral we evaluated in Appendix 3.1
to yield the Black–Scholes formula.

Note that in cases where we cannot calculate Qp.ST ; T j S; t/ explicitly, we can
use Eq. (8.95) as the basis of numerical simulation by random drawings of d Qz.t/ �
N.0; dt/ (see Problem 8.1). As we shall see in later chapters this is the approach we
need to adopt for many exotic options.

Finally we note that the same set of operations that led from (8.104) to (8.106)
may also be applied to the stochastic differential equation (8.95) to yield

Ste
�rt D QEt ŒST e�rT �: (8.108)

Thus Ste�rt is also a martingale under QP. Equation (8.108) may be re-expressed as

St D e�r.T�t / QEt ŒST �: (8.109)

This equation simply states that under the risk-neutral-measure QP the current stock
price is the discounted (at the risk free rate) expected value of the stock price at the
future time T .

8.5 The Pricing Kernel Representation

We may use the relation between the probability measures P and QP in Eq. (8.98)
to re-express the option pricing relationship as an expectation under the original
measure P.

We note that by use of Eq. (8.36) we may express the first line of Eq. (8.107) as

C.S; t/ D e�r.T�t /
Et Œ�.t; T /C.ST ; T /�; (8.110)
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which upon use of Eq. (8.99) may be written

C.S; t/ D e�r.T�t /
Et Œe

� R T
t �.s/dz.s/� 1

2

R T
t �2.s/dsC.ST ; T /�:

D Et

�
M.T /

M.t/
C.ST ; T /

�
; (8.111)

where we set

M.t/ D exp

�
�rt �

Z t

0

�.s/dz.s/� 1

2

Z t

0

�2.s/ds

	
: (8.112)

Equation (8.111) may be expressed as

M.t/C.S; t/ D Et ŒM.T /C.ST ; T /�; (8.113)

and in this form we see that the quantity M.t/C.S; T / is a martingale under the
original probability measure P. The quantity M.t/ by which we have to adjust the
option price to obtain a martingale relationship under P is sometimes referred to as
the pricing kernel.

We note that the pricing kernel can be written

M.t/ D e�rt�.t/; (8.114)

from which by using of (8.40) we readily see that M.t/ satisfies the stochastic
differential equation

dM D �M.rdt C �dz/: (8.115)

The reader can readily verify that M.t/S.t/ is also a martingale under P, so that

S.t/ D Et

�
M.T /

M.t/
S.T /

�
: (8.116)

Equation (8.116) states that under the original measure P, the stock price at time t is
the expectation of the stock price at future time T , multiplied by M.T /

M.t/
; the stochastic

discount factor between these two times.

8.6 The Feynman–Kac Formula

Most applications of the theory of stochastic processes that we have been discussing
come down to calculating the value of contingent claims as the expectation of some
function or functional of a stochastic process. We also know that it is possible to
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derive such values as the solutions of certain partial differential equations, as for
example in the original Black–Scholes derivation. It is useful to know how these
alternative expressions for contingent claim values are related. The technical result
that allows us to express these expectations in terms of partial differential equations
and to go back and forth between the different ways of representing the option price
is the Feynman–Kac formula which we now discuss.

For later use we state the vector version of the Feynman–Kac formula. We use
x.t/ D .x1.t/; � � � ; xn.t// to denote the vector of n factors driven by set of n Ito
diffusion processes (the reader should refer again to Sect. 5.4)

dxi .t/ D �i .x; t/dt C
nX

jD1
�ij.x; t/dWj .t/; (8.117)

for i D 1; 2; � � � ; n on t0 � t < T , with x.t0/ D x0. Here�i.x; t/ and �ij.x; t/; .j D
1; 2; � � � ; n/ are the drift and diffusion coefficients associated with the process for
xi .t/. The w.t/ D .w1.t/;w2.t/; � � � ;wn.t// is a vector of n independent Wiener
processes.

We recall from Sect. 5.4 that from the matrix � (whose elements are the �ij

in (8.117)) we can form the matrix

S D ��> D .sij/n�n:

From the matrix S and drift coefficients �i we may form the infinitesimal generator
K for the process x, namely

K D
nX

iD1
�i

@

@xi
C 1

2

nX

iD1

nX

jD1
sij

@2

@xi @xj
: (8.118)

Then the Kolmogorov backward equation associated with the above diffusion pro-
cess generates the conditional transition probability density function p.X; T jx; t/
and is written

K p C @p

@t
D 0; t0 � t < T (8.119)

subject to the initial condition2

p.X; T j x; T / D ı.x � X/: (8.120)

2The notation ı.x � X/ should be interpreted as

ı.x1 �X1/ı.x2 �X2/ � � � ı.xn �Xn/:
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Let Ex;t denote the expectation operator3 associated with the Ito diffusion pro-
cess (8.117) when x.t/ D x. If f .x.s// is some sufficiently well behaved function
of the random variable x.s/ (for t � s � T ) then

Ex;t Œf .x.s//� D
Z
f .x.s//p.x.s/; s j x; t/dx.s/: (8.121)

Let

u.x; t/ D Ex;t Œf .x.T //�; .t0 � t < T /; (8.122)

then it turns out that u.x; t/ also satisfies the Kolmogorov backward equation. In
fact we can state:

Proposition 8.1 (Kolmogorov’s Formula) The function u.x; t/ defined in (8.122)
satisfies the partial differential equation

K u C @u

@t
D 0; (8.123)

subject to the initial condition

lim
t!T

u.x; t/ D f .x.T //: (8.124)

Proof See Appendix 8.1. �

We have in essence seen the basic idea of the proof of this result when we
derived the partial differential equation (3.7) for the option price in Sect. 3.1. The
above proposition allows us to handle the conditional expectation of a function of a
stochastic process, however, in many problems in continuous time finance we need
to deal with the conditional expectation of a functional of a diffusion process. For
instance, in the term structure of interest rate modelling we encounter quantities of
the type

v.x; t/ D Ex;t

�
exp

�
�

Z T

t

gŒx.s/; s�ds

	�
; (8.125)

for g a sufficiently well behaved function and � a constant. Typically v.x; t/ would
be the price at time t of a pure discount bond maturing at time T .

3For the purposes of the discussion in this section it is useful to have a notation for the expectation
operator that indicates both the time, t , as well as the initial value, x, of the underlying stochastic
process when expectations are formed. We shall not use this notation elsewhere.
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Proposition 8.2 (The Feynman–Kac Formula) The function v.x; t/ defined in
Eq. (8.125) satisfies the partial differential equation

@v

@t
C K v C �g.x; t/v D 0; (8.126)

subject to the initial condition

lim
t!T

v.x; t/ D 1: (8.127)

Proof See Appendix 8.2. �

A more general version of the Feynman–Kac formula involves the quantity

v.x; t/ D Ex;t

�
f .x.T // exp

�
�

Z T

t

gŒx.s/; s�ds

	�
; (8.128)

where g and f are sufficiently well behaved functions and � is some constant. In
later chapters we shall encounter such quantities when evaluating options within a
stochastic interest rate environment.

Proposition 8.3 (The Feynman–Kac Formula II) The function v.x; t/ defined in
Eq. (8.128) satisfies the partial differential equation

@v

@t
C K v C �g.x; t/v D 0; (8.129)

subject to the initial condition

lim
t!T

v.x; t/ D f .x.T //: (8.130)

Proof See Appendix 8.3. �
Of course Proposition 8.3 contains the previous two as special cases. Thus setting

� D 0 yields Proposition 8.1 and setting g D 1 yields Proposition 8.2. However we
have preferred to state them as separate propositions as each proposition relates
to specific problems that we encounter in stochastic finance. Thus Proposition 8.1
relates to the stock option problem, Proposition 8.2 to the bond pricing (or term
structure of interest rates) problem and Proposition 8.3 to the interest rate option
problem.

It may happen that we need to consider functionals involving integrals with
respect to increments of the Wiener process. It is possible to obtain a generalization
of the Feynman–Kac formula that allows us to deal with such functionals. Here we
consider just the one-dimensional case.
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We consider functions having the general form

 .x; t/ D Ex;t

�
f .x.T // exp



�

Z T

t

g.x.s/; s/ds C 


Z T

t

h.x.s/; s/dz.s/

��
;

(8.131)

where � and 
 are constants. By appropriate manipulations we can reduce this
function to one of the same form that occurs in Proposition 8.3.

Proposition 8.4 The function  .x; t/ defined in Eq. (8.131) satisfies the partial
differential equation

@ 

@t
C K  C 
�h

@ 

@x
C
�
�g C 1

2

2h2

	
 D 0; (8.132)

subject to the initial condition

lim
t!T

 .x; t/ D f .x.T //; (8.133)

Proof See Appendix 8.4. �

8.7 Appendix

Appendix 8.1 Proof of Proposition 8.1

This proof is based on that given in Gihman and Skorohod (1979) and here we
consider just the one-dimensional case so as to illustrate the essential ideas. We
note that (see Fig. 8.5)

u.x; t/ D Ex;t f .x.T // D Ex;t

�
ExtC�t ;tC�tf .x.T //


 D Ex;tu.x.t C�t/; t C�t/:

(8.134)

By Ito’s Lemma

u.x.t C�t/; t C�t/ D u.x; t C�t/

C
Z tC�t

t

�
�.x.s/; s/

@u

@x
.x.s/; t C�t/C 1

2
�2.x.s/; s/

@2u

@x2
.x.s/; t C�t/

�
ds

C
Z tC�t

t

�.x.s/; s/
@u

@x
.x.s/; t C�t/dz.s/: (8.135)



184 8 Martingale Interpretation of No-Riskless Arbitrage

Fig. 8.5 Successive initial points for u.x; t /

Applying the expectation operator Ex;t across the last equation and bearing in mind
that the expectation of the stochastic integral on the right hand side is zero and that
Ex;tu.x; t C�t/ D u.x; t C�t/ we obtain from (8.134) and (8.135) that

u.x; t/ Du.x; t C�t/C Ex;t

Z tC�t

t

�
�.x.s/; s/

@u

@x
.x.s/; t C�t/

C 1

2
�2.x.s/; s/

@2u

@x2
.x.s/; t C�t/

�
ds (8.136)

so that, on application of the mean value theorem for integrals

0 D u.x; t C�t/� u.x; t/C Ex;t

�
�.x.s0/; s0/

@u

@x
.x.s0/; t C�t/

C 1

2
�2.x.s/; s/

@2u

@x2
.x.s0/; t C�t/

�
�t (8.137)

where s0 2 .t; t C�t/. Dividing the last equation by �t and passing to the limit
�t ! 0 we obtain

@u

@t
.x; t/C �.x; t/

@u

@x
.x; t/C 1

2
�2.x; t/

@2u

@x2
.x; t/ D 0; (8.138)

which is Eq. (8.123). The initial condition limt!T u.x; t/ D f .x/ follows since the
Ex;t and lim operations may be interchanged. Thus

lim
t!T

u.x; t/ D lim
t!T

Ex;t f .x.T // D Ex;t lim
t!T

f .x.T // D f .x/:
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We can use (8.138) to prove an important subsidiary result that will be useful in
proving Proposition 8.2. Note that (8.134) may be written

Ex;tu.x.t C�t/; t C�t/� u.x; t C�t/

�t
D �.u.x; t C�t/ � u.x; t//

�t
:

Taking the limit �t ! 0 we obtain the result

lim
�t!0

Ex;tu.x.t C�t/; t C�t/ � u.x; t C�t/

�t
D �@u

@t
;

which by use of (8.138) and the definition of the operator K becomes

lim
�t!0

Ex;tu.x.t C�t/; t C�t/� u.x; t C�t/

�t
D K u: (8.139)

The relationship (8.139) holds for any functional of the process x.

Appendix 8.2 Proof of Proposition 8.2

We note first of all that by integration by parts

�

Z t 00

t 0
exp

�
�

Z T

s

g.x.u/; u/du

�
g.x.s/; s/ds

D exp

�
�

Z T

t 0
g.x.u/; u/du

�
� exp

�
�

Z T

t 00
g.x.u/; u/du

�
: (8.140)

Taking t 0 < t 00 and applying the operator Ex;t across the last equation, we obtain
(see Fig. 8.6)

v.x; t 0/� Ex;t 0

�
exp

�
�

Z T

t 00
g.x.u/; u/du

�	

D �

Z t 00

t 0
Ex;t 0

�
g.x.s/; s/ exp

�
�

Z T

s

g.x.u/; u/du

�	
ds

D �

Z t 00

t 0
Ex;t 0

�
g.x.s/; s/

� � Ex.s/;s
�

exp

�
�

Z T

s

g.x.u/; u/du

�	
ds

D �

Z t 00

t 0
Ex;t 0

�
g.x.s/; s/ � v.x.s/; s/

	
ds: (8.141)
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Fig. 8.6 The telescoping of expectations for Eq. (8.141)

Note also that

Ex;t 0

�
exp

�
�

Z T

t 00
g.x.u/; u/du

�	
D Ex;t 0

�
Ex.t 00/;t 00 exp

�
�

Z T

t 00
g.x.u/; u/du

�	

D Ex;t 0v.x.t
00/; t 00/; (8.142)

so that (8.141) becomes

v.x; t 0/� Ex;t 0v.x.t
00/; t 00/ D �

Z t 00

t 0
Ex;t 0

�
g.x.s/; s/v.x.s/; s/

	
ds: (8.143)

The rest of the proof consists in setting t 0 D t; t 00 D t C h and considering the limit
as h ! 0. Thus (8.142) becomes

v.x; t/�Ex;t v.x.tCh/; tCh/ D �

Z tCh

t

Ex;t Œg.x.s/; s/v.x.s/; s/�ds; (8.144)

or, adding and subtracting v.x; t C h/ on the left and applying the mean value
theorem for integrals on the right of (8.144)

v.x; t/ � v.x; t C h/C v.x; t C h/� Ex;t v.x.t C h/; t C h/

D �g.x.t/; t/ � v.x.t/; t/ � hC 0.h/: (8.145)

Dividing through the last equation by h, taking the limit h ! 0, we obtain

� lim
h!0

Ex;t v.x.t C h/; t C h/ � v.x; t C h/

h
D @v

@t
C �g.x; t/v:
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Applying the result (8.139) in the present context we have that

lim
h!0

Ex;t v.x.t C h/; t C h/ � v.x; t C h/

h
D K v.x; t/: (8.146)

Hence we obtain the result that v.x; t/ satisfies the partial differential equation

@v

@t
C K v C �gv D 0: (8.147)

The initial condition limt!t v.x; t/ D 1 follows fairly simply from the definition of
v.x; t/.

Appendix 8.3 Proof of Proposition 8.3

The proof of Proposition 8.3 turns out to be more convenient by defining a function
g such that (8.128) may be re-written as

v.x; t/ D Ex;t

�
exp

�
�

Z T

t

g.x.s/; s/ds C f .x.T //

	�
:

It suffices to modify the first line to the proof of Proposition 8.2 (i.e. Eq. (8.140)) to

�

Z t 00

t 0
exp

�
�

Z T

s

g.x.u/; u/du C f .x.T //

�
� g.x.s/; s/ds

D exp

�
�

Z T

t

g.x.u/; u/du C f .x.T //

�
� exp

�
�

Z T

t 00
g.x.u/; u/du C f .x.T //

�
:

(8.148)

Applying the operator Ex;t 0 across this last equation, bearing in mind the definition
of v.x; t/ and performing similar manipulations to those leading to Eq. (8.143), we
find that

v.x; t 0/ � Ex;t 0v.x.t
00/; t 00/ D �

Z t 00

t 0
Ex;t 0

�
g.x.s/; s/v.x.s/; s/

�
ds: (8.149)

This last equation is the analogue in the present context of Eq. (8.143) in Proposi-
tion 8.2. By letting t 0 D t; t 00 D t C h and considering the limit as h ! 0 we will
analogously find that v.x; t/ satisfies the partial differential equation

@v

@t
C K v C �g.x; t/v.x; t/ D 0:

The initial condition (8.130) follows easily by taking the limit t ! T in (8.128).
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Appendix 8.4 Proof of Proposition 8.4

We define the functionH.x; t/ satisfying

Hx.x; t/ D @H.x; t/

@x
D h.x; t/

�.x; t/
: (8.150)

By application of Ito’s lemma we find that

dH.x.s/; s/ D ŒHt .x.s/; s/C K H.x.s/; s/� ds C �.x.s/; s/Hx.x.s/; s/dz.s/

D ŒHt .x.s/; s/C K H.x.s/; s/� ds C h.x.s/; s/dz.s/; (8.151)

by use of (8.151), where Ht.x; t/ D @H.x; t/=@t . Hence integrating the last
equation over the internal Œt; T � we obtain

Z T

t

h.x.s/; s/dz.s/DH.x.T /; T /�H.x; t/ �
Z T

t

ŒHt .x.s/; s/

C K H.x.s/; s/� ds: (8.152)

Substituting Eq. (8.152) into Eq. (8.131) we find that  .x; t/ may be expressed as

 .x; t/ D e�
H.x;t/
Ex;t

�
exp



�

Z T

t

g.x.s/; s/ds

� 


Z T

t

ŒHt .x.s/; s/C K H.x.s/; s/� ds

�
e
H.x.T /;T /f .x.T //

�
:

Finally we apply Proposition 8.3 to the function �.x; t/ � e
H.x;t/ .x; t/ to obtain

@

@t

�
e
H.x;t/ .x; t/


 C K
�
e
H.x;t/ .x; t/




C Œ�g.x; t/ � 
Ht.x; t/ � 
K H.x; t/� e
H.x;t/ .x; t/ D 0: (8.153)

Noting that

K Œe
H.x;t/ .x; t/� D e
H.x;t/
�
1

2
�2
@2 

@x2
C 
�h

@ 

@x
C 1

2
.
�2

@2H

@x2
C 
2h2/ 

�

Ce
H.x;t/
�
�
@ 

@x
C �


@H

@x
 

�
;
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and that

K H.x; t/ D 1

2
�2
@2H

@x2
C �

@H

@x
;

we find after some algebraic manipulations that  .x; t/ indeed satisfies the partial
differential equation (8.132). Finally we note directly from (8.131) that

lim
t!T

 .x; t/ D f .x.T //;

which provides the initial condition (8.133).

8.8 Problems

Problem 8.1 Consider the expression (8.107) for the price of a European call
option, namely

C.S; t/ D e�r.T�t / QEt ŒC.ST ; T /�;

where QEt is generated according to the process

dS D rSdt C �SdQz.t/:
(i) By simulatingM paths for S approximate the expectation with

1

M

MX

iD0
C.S

.i/
T ; T /;

where i indicates the i th path. Take r D 5%p.a., � D 20%p.a., S D 100,
E D 100 and T D 6 months.

(ii) Compare graphically the simulated values for various M with the true Black–
Scholes value.

(iii) Instead of using discretisation to simulate paths for S , use instead the result
in Eq. (6.16). We know from Problem 6.16 that this involves no discretisation
error.



Chapter 9
The Partial Differential Equation Approach
Under Geometric Brownian Motion

Abstract The Partial Differential Equation (PDE) Approach is one of the tech-
niques in solving the pricing equations for financial instruments. The solution
technique of the PDE approach is the Fourier transform, which reduces the problem
of solving the PDE to one of solving an ordinary differential equation (ODE).
The Fourier transform provides quite a general framework for solving the PDEs
of financial instruments when the underlying asset follows a jump-diffusion process
and also when we deal with American options. This chapter illustrates that in the
case of geometric Brownian motion, the ODE determining the transform can be
solved explicitly. It shows how the PDE approach is related to pricing derivatives in
terms of integration and expectations under the risk-neutral measure.

9.1 Introduction

In this chapter we outline two ways in which the pricing equations of financial
instruments may be solved. The first starts from the expression

C.S; t/ D e�r.T�t / QEt ŒC.ST ; T /�

D e�r.T�t /
Z 1

0

maxŒST �E; 0� Qp.ST ; T j St/dST

that gives the derivative value in terms of an expectation under the risk-neutral
measure. To operationalise this expression we need to obtain an explicit expression
for the conditional transition density function, so that the problem of derivative
security evaluation reduces to an exercise in integration. It turns out that for the
case when the underlying asset price is driven by geometric Brownian motion it is
possible to obtain explicitly the conditional transition density function directly from
an analysis of the stochastic differential equation.

The second approach seeks to solve the (parabolic) partial differential equation

@C

@t
C rS

@C

@S
C 1

2
�2S2

@2C

@S2
D rC
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that determines the derivative price. Different problems (e.g. European options, put
options, digital options, exchange options or just simply the Kolmogorov equation)
are characterized by different boundary conditions for this equation. The solution
technique we propose to solve those partial differential equation is the Fourier
transform. Essentially this technique reduces the problem of solving the partial
differential equation first to one of solving an ordinary differential equation to obtain
the transform and then to one of carrying out an integration to invert the transform.
In the case of geometric Brownian motion this technique works very nicely because
the ordinary differential equation determining the transform can be solved explicitly.
Of course both approaches lead to the same final expression for the derivative price.
It is important to see how they are related to each other. Each has its advantages in
particular problems and we encourage the reader to always visualize the derivative
pricing problem from both perspectives.

The Fourier transform perhaps has the advantage that it provides quite a general
framework for solving the partial differential equations of financial instruments as
it generalizes quite nicely to handle the partial differential equations we encounter
when the underlying asset follows a jump-diffusion process and also when we come
to deal with American options.

9.2 The Transition Density Function for Geometric
Brownian Motion

Consider a derivative instrument written on an underlying asset whose price x
follows the diffusion process

dx D �.x; t/dt C �.x; t/dz:

Furthermore suppose that the derivative instrument is of European type that pays off
only at time T and use h.xT ; T / to denote the payoff function.

Under the further assumption of a constant risk-free rate of interest, r , we know
from the discussion of Chap. 8 that the value at time t of the derivative, that we
denote f .x; t/, is given by

f .x; t/ D e�r.T�t /
Z 1

0

h.xT ; T / Qp.xT ; T jx; t/dxT : (9.1)

In (9.1) the density function Qp.xT ; T jx; t/ is the one that is the solution of the
Kolmogorov backward equation associated with the asset price dynamics under the
risk-neutral measure, namely

dx D rxdt C �.x; t/d Qz: (9.2)
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The Kolmogorov backward equation associated with (9.2) may be written

@ Qp
@t

C rx
@ Qp
@x

C 1

2
�2.x; t/

@2 Qp
@x2

D 0;

subject to the terminal condition

Qp.xT ; T jx; T / D ı.xT � x/:

In this chapter we focus on the case when the dynamics under the risk-neutral
measure are geometric Brownian motion. This is the case when �.x; t/ D �x (�
constant) so that (9.2) become

dx D rxdt C �xdQz: (9.3)

We know from Sect. 6.3.2 that for the stochastic process defined by (9.3), if y D lnx
then the quantity y.T / � y.t/ over the interval t to T is normally distributed with
mean .r� 1

2
�2/.T � t/ and variance �2.T � t/. This means that the density function

Qp.xT ; T jx; t/ is log-normal i.e.

Qp.xT ; T jx; t/ D 1p
2�.T � t/�xT

exp

"
�
�
ln. xT

x
/ � .r � 1

2
�2/.T � t/�2

2�2.T � t/

#
:

(9.4)

Substituting this density function into (9.1) we obtain

f .x; t/ D e�r.T�t /
p
2�.T � t/�

Z 1

0

h.xT ; T /e
� .ln

xT
x �.r� 1

2 �
2/.T�t //

2

2�2.T�t /
dxT
xT

: (9.5)

The evaluation of the derivative then becomes an exercise in integration once the
particular functional form for h.xT ; T / is chosen. For example in the case of a
European call option h.xT ; T / D .xT � E/C and the integral in (9.5) reduces to
the integral (3.16) whose evaluation has been detailed in Appendix 3.1. We shall
consider other examples in later sections.

9.3 The Fourier Transform

Now we turn to the Fourier transform approach. The Fourier transform of the
function f .x/ is defined as

F Œf .x/� D Nf .!/ D
Z 1

�1
f .x/e�i!xdx:
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The Fourier inversion theorem states that

F�1Œ Nf .!/� D f .x/ D 1

2�

Z 1

�1
Nf .!/ei!xd!:

The Fourier convolution theorem states that for two functions f and g,

F

�Z 1

�1
f .x � u/g.u/du

�
D Nf .!/ Ng.!/;

which can alternatively be stated as

F�1Œ Nf .!/ Ng.!/� D
Z 1

�1
f .x � u/g.u/du: (9.6)

It is the result (9.6) that will generally be most useful in our applications.
We consider the partial differential equation for the case of one underlying asset

that pays a continuously compounded dividend at the rate q and whose dynamics are
driven by geometric Brownian motion. From Chap. 10 we know that the derivative
security price f satisfies

@f

@t
C .r.t/ � q.t//x @f

@x
C 1

2
�2.t/x2

@2f

@x2
� r.t/f D 0: (9.7)

Note that we have adopted a notation that allows the risk-free rate r , continuous
dividend yield and volatility � to all be functions of time. Equation (9.7) is to be
solved on the interval .t; T / subject to the final time condition

f .xT ; T / D h.xT /; (9.8)

when h.xT / is some payoff function. By considering different functions hwe obtain
different derivative securities, e.g.

h.xT / D .xT � E/CI European call option

h.xT / D .E � xT /CI European put option

h.xT / D EH .xT � E/I European digital option;

where the Heaviside function H .x/ is defined by1

H .x/ D
(
0; for x < 0,

1; for x � 0.
(9.9)

1Note that it is common in the literature to use instead of the Heaviside function notation, the
indicator function notation

1
fx�0g D

(
1; for x � 0,

0; otherwise:
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Before proceeding we first make the change of variable

y D ln x; F.y; t/ � f .ey; t/; (9.10)

in terms of which the partial differential equation (9.7) becomes

@F

@t
C c.t/

@F

@y
C 1

2
�2.t/

@2F

@y2
� rF D 0; (9.11)

where we set c.t/ D r.t/�q.t/� 1
2
�2.t/, the cost-of-carry. In terms of the variable

y the final time condition (9.8) becomes

F.yT ; T / D f .eyT ; T / D h.eyT / � H.yT /: (9.12)

Define the Fourier transform of the solution to (9.11) NF .!; t/ by

NF .!; t/ D
Z 1

�1
F.y; t/e�i!ydy: (9.13)

We note that
Z 1

�1
@F.y; t/

@y
e�i!ydy D ŒF .y; t/e�i!y �1�1 C i!

Z 1

�1
F.y; t/e�i!ydy

D ŒF .y; t/e�i!y �1�1 C i! NF .!; t/:

At this stage we shall tentatively assume that limy!˙1 F.y; t/e�i!y D 0 so that

Z 1

�1
@F

@y
.y; t/e�i!ydy D i! NF .!; t/: (9.14)

Next consider

Z 1

�1
@2F

@y2
.y; t/e�i!ydy D

�
@F

@y
.y; t/e�i!y

�1

�1
C i!

Z 1

�1
@F

@y
.y; t/e�i!ydy:

Here also we tentatively assume that limy!˙1 @F
@y
.y; t/e�i!y D 0. So that, upon

use of (9.14),

Z 1

�1
@2F

@y2
e�i!ydy D �!2 NF .!; t/: (9.15)
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Next we observe by differentiating (9.13) with respect to time that

Z 1

�1
@F

@t
.y; t/e�i!ydy D @ NF

@t
.!; t/: (9.16)

Thus as a result of applying the Fourier transform to Eq. (9.11) we have obtained
the ordinary differential equation

@ NF
@t
.!; t/ D Œ

1

2
�2.t/!2 C r.t/ � i!c.t/� NF .!; t/: (9.17)

This equation must be solved for the transform NF .!; t/, subject to the boundary
condition

NF .!; T / D
Z 1

�1
H.y/e�i!ydy � NH.!/; (9.18)

obtained by taking the Fourier transform of Eq. (9.12). Equation (9.17) can be
rewritten

@

@t

h NF .w; t/e� R t
0 .

1
2 �

2.s/!2Cr.s/�i!c.s//ds
i

D 0: (9.19)

Integrating (9.19) from t to T , using the final time condition (9.18) and rearranging
we obtain

NF .!; t/ D NH.!/e� R T
t .

1
2 �

2.s/!2Cr.s/�i!c.s//ds: (9.20)

For the purpose of subsequent manipulations it will be convenient to introduce the
time averaged quantities2

N�2.T � t/ D 1

T � t
Z T

t

�2.s/ds;

Nr.T � t/ D 1

T � t
Z T

t

r.s/ds;

Nc.T � t/ D 1

T � t
Z T

t

c.s/ds;

2Note that these may also be written

N�2.�/ D 1

�

Z �

0

�2.T � u/du; Nr.�/ D 1

�

Z �

0

r.T � u/du; Nc.�/ D 1

�

Z �

0

c.T � u/du:
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in terms of which (9.8) can be more succinctly written

NF .!; t/ D NH.!/e�Œ 12 N�2.T�t /!2CNr.T�t /�i! Nc.T�t /�.T�t /: (9.21)

Our next task is to use the Fourier inversion theorem to recover the function
F.y; t/ from (9.8). By the Fourier inversion theorem

F.y; t/ D 1

2�

Z 1

�1
NF .!; t/ei!yd!;

which by use of (9.21) becomes

F.y; t/ D 1

2�

Z 1

�1
NH.!/e�. 12 N�2.T�t /!2CNr.T�t /�i! Nc.T�t //.T�t /Ci!yd!

D e�Nr.T�t /.T�t /

2�

Z 1

�1
NH.!/ NK.!/ei!y/d!; (9.22)

where

NK.!/ D eŒ�
1
2 N�2.T�t /!2Ci! Nc.T�t /�.T�t /:

By the Fourier inversion theorem

K.y; t/ D 1

2�

Z 1

�1
e� 1

2 N�2.t/t!2Ci!. Nc.t/tCy/d!: (9.23)

Using the result that

Z 1

�1
e�p!2�q!d! D

r
�

p
e
q2

4p (9.24)

with p D 1
2

N�2.t/t and q D �i. Nc.t/t C y/, we obtain that

K.y; t/ D 1p
2�t N�.t/ e

� .Nc.t/tCy/2

2N�2.t/t : (9.25)

Application of the convolution theorem to (9.22) yields

F.y; t/ D e�Nr.T�t /.T�t /
Z 1

�1
H.�/K.y � �; T � t/d�

D e�Nr.T�t /.T�t /
p
2�.T � t/ N�.T � t/

Z 1

�1
H.�/e

� .Nc.T�t /.T�t /Cy��/2

2N�2.T�t /.T�t / d �:
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Finally we use (9.10) to transform back to the original variable x.D ey/ and
correspondingly make the change of integration variable u D e� , so that

f .x; t/ D e�Nr.T�t /.T�t /
p
2�.T � t/ N�.T � t/

Z 1

0

h.u/e
� .ln.u=x/�Nc.T�t /.T�t //2

2N�2.T�t /.T�t /
du

u
: (9.26)

9.4 Solutions for Specific Payoff Functions

In this section we consider various forms for the payoff function h, which yield
various cases of interest.

9.4.1 The Kolmogorov Equation

In Sect. 3.1 we stated the solution of the Kolmogorov equation, under both the
historical and risk-neutral measures (see Eqs. (3.13) and (3.14)). We can now
use (9.26) to obtain the results.

We note first of all that to obtain the Kolmogorov equation we interpret f .x; t/
in (9.7) as Qp.xT ; T jx; t/ and set q.t/ D 0 in the first derivative term and set r D 0

in the rf term to obtain the risk-neutral density, that is,

@ Qp
@t

C r.t/x
@ Qp
@x

C 1

2
�2.t/x2

@2 Qp
@x2

D 0:

Note that

h.u/ D ı.u � xT /: (9.27)

With these changes (9.26) gives the risk-neutral conditional transition density

Qp.xT ; T jx; t/

D 1p
2�.T � t / N�.T � t /

Z
1

0

ı.u � xT /e
�

.ln.u=x/�.Nr.T�t /� 1
2 N�2.T�t //.T�t //2

2N�2.T�t /.T�t /
du

u

D 1p
2�.T�t / N�.T�t /xT

exp

"
� .ln.xT =x/�.Nr.T�t /� 1

2
N�2.T�t //.T�t //2

2 N�2.T�t /.T�t /

#
:

(9.28)

We observe that (9.28) is precisely the same as (9.4) that was obtained directly from
analysis of the stochastic differential equation (9.3) generating the sample paths of
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this conditional transition density function. In the case r and � are constant (9.28)
reduces to (3.14).

To obtain the historical conditional transition density p.xT ; T jx; t/ given in
Eq. (3.13) we need to set q D r � � in the first derivative term of (9.7) and still
maintain r D 0 in the rf term. We leave the details as an exercise for the reader.

9.4.2 The European Digital Option

A European digital option with exercise price E pays E if the underlying asset
price at maturity is greater than E , and pays zero otherwise. Thus the payoff for this
option is given by

h.xT / D EH .xT �E/

and is illustrated in Fig. 9.1. Applying Eq. (9.26) the value of this option at time t is
given by

f .x; t/ D e�Nr.T�t /
p
2�.T � t/ N�

Z 1

E

Ee
� fln.u=x/�Nc.T�t /g2

2N�2.T�t /
du

u
: (9.29)

The integral involved in (9.29) is essentially A2 (Eq. (3.29)) of Appendix 3.1 and
we readily find that

f .x; t/ D Ee�Nr.T�t /N .d2/; d2 D ln.x=E/C .r � 1
2
�2/.T � t/

�
p
T � t

:

Fig. 9.1 Payoff on a European digital option
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Fig. 9.2 Payoff on a European all-or-nothing option

9.4.3 The European All-or-Nothing Option

A European all-or-nothing option with exercise price E pays the value of the
underlying asset if it is greater than E at maturity, otherwise it pays nothing. The
payoff for this option may be written

h.xT / D xTH .xT �E/

and is illustrated in Fig. 9.2. Applying Eq. (9.26) the value of an all-or-nothing
European option at time t is given by

f .x; t/ D e�Nr.T�t /
p
2�.T � t/ N�

Z 1

E

ue
� fln.u=x/�Nc.T�t /g2

2N�2.T�t /
du

u
:

This integral is essentially A1 (Eq. (3.28)) of Appendix 3.1 and as a result

f .x; t/ D xN .d1/; d1 D ln.x=E/C .r C 1
2
�2/.T � t/

�
p
T � t

:

9.4.4 The European Call Option

Equation (9.26) reduces to the value of a European call option by applying the
payoff condition that

h.u/ D .u � E/C;
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so that

f .x; t/ D e�Nr.T�t /
p
2�.T � t/ N�

Z 1

E

.u � E/e
� fln.u=x/�Nc.T�t /g2

2N�2.T�t /
du

u
:

This is precisely the integral we evaluated in Appendix 3.1, so that

f .x; t/ D xN .d1/� Ee�Nr.T�t /N .d2/; (9.30)

where

d1 D ln.x=E/C .Nr C N�2=2/.T � t/

N�p
T � t ;

d2 D d1 � N�p
T � t :

In order to interpret each term of Eq. (9.30) we note that the payoff at maturity,
max.S � E; 0/, could also be constructed by holding a portfolio consisting of a
short position in a European digital option and long position in a European all-or-
nothing option. As we have seen in the previous sections; the value at time t of a
long position in a European all-or-nothing option with exercise price E is xN .d1/,
and this is the first term of Eq. (9.30). The value of a short position in a European
digital option with exercise price E and payoff E is �Ee�Nr.T�t /N .d2/, and this is
the second term of Eq. (9.30).

9.5 Interpreting the General Pricing Relation

The solution (9.28) to the risk-neutral Kolmogorov equation allows us to give a very
simple economic interpretation to Eq. (9.26). In terms of the notation of Eq. (9.28)
we see that the exponential quantity multiplying the payoff h.u/ in the integrand
in (9.26) is in fact the risk-neutral conditional transition density Qp.u; T jx; t/. Thus
Eq. (9.26) may be written

f .x; t/ D e�Nr.T�t /.T�t /
Z 1

0

h.u/ Qp.u; T jx; t/du: (9.31)

Equation (9.31) has the discounted expected payoff interpretation that we have
already encountered back at Eq. (3.5). There however our financial arguments were
somewhat tentative. We have now arrived at the same result using precise financial
and mathematical arguments.

Because Qp.u; T jx; t/ is associated with the boundary condition (9.27) it can be
interpreted as the value at time t (where the price is x) of an elementary claim that
pays $1 at time T if the price is u, and $0 if any other price occurs at T . It is often
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convenient to incorporate the discount factor with the Qp.u; T jx; t/ and define the
function

G.u; T jx; t/ D e�Nr.T�t /.T�t / Qp.u; T jx; t/:

The functionG.u; T jx; t/ can be interpreted as the discounted value at time t (where
the price is x) of an elementary claim that pays $1 at time T if the price is u, and $0
if any other price occurs at T . In terms of this function the solution (9.31) may be
written

f .x; t/ D
Z 1

0

h.u/G.u; T jx; t/du; (9.32)

which may be interpreted as follows: If at time T the price u occurs the payoff on
the option is h.u/; this is multiplied by the discounted value of the elementary claim
that pays $1 if this state3 occurs to give the discounted value of the payoff in this
particular state; the integral in (9.32) then sums over all possible states to give the
discounted value of the total payoff.

In the literature on the solution of partial differential equations, the function
G.u; T jx; t/ is known as the Green’s function, and (9.32) is the Green’s function
representation of the solution of the partial differential equation (9.7) with boundary
condition (9.8). The Green’s function technique reduces the problem of solving a
partial differential equation subject to a given boundary condition to a two-pass
process.

First solve the partial differential equation subject to the ı-function boundary
condition (in financial economic applications thus usually means solving the
Kolmogorov equation associated with the problem at hand) to obtain the Green’s
function for this particular partial differential operator. In the second phase the
integral operation (9.32) combines the Green’s function with the boundary condition
(payoff function) to give the solution. In this way the problem of solving the partial
differential equation is reduced to an exercise in integration (often a very difficult
one). For a more extensive discussion on Green’s functions we refer the reader to
Greenberg (1971).

We obtain yet another important interpretation of expression (9.31) by recalling
that Qp.u; T jx; t/du is the probability of observing a price in the interval (u; uCdu) at
time T given that the price was x at time t . Thus the integral in (9.31) is the expected
value (where probability evolves under the risk-neutral Kolmogorov equation) at
time t of the payoff to be received at time T . The discount factor e�Nr.T�t /.T�t /
converts this expected payoff into dollars at time t . In terms of the notation we used
in Chap. 3 we could thus write (9.31) as

f .x; t/ D e�Nr.T�t /.T�t / QEt Œh.xT /�; (9.33)

3The state being the occurrence of the particular price u at time T .
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which is essentially (3.18) with some obvious changes of notation. We have shown
in Chap. 8 how to arrive at (9.33) via martingale arguments.

9.6 Appendix

Appendix 9.1 Transforming the Black–Scholes Partial
Differential Equation to the Heat Equation

The early literature on option pricing obtained the solution to the Black–Scholes
partial differential equation by transforming it to the heat equation and then applying
known solutions for that problem. We reproduce this approach here to give another
perspective on the solution of the Black–Scholes partial differential equation.

Consider the Black–Scholes partial differential equation

@C

@t
C rS

@C

@S
C 1

2
�2S2

@2C

@S2
D rC; (9.34)

subject to the boundary condition

C.0; t IE; �2; r/ D 0; (9.35)

and final condition

C.S; T IE; �2; r/ D maxŒ0; S �E�: (9.36)

Transform the time variable t to time-to-maturity � given by � D T � t in terms of
which (9.34) becomes

� @C

@�
C rS

@C

@S
C 1

2
�2S2

@2C

@S2
D rC; (9.37)

and the conditions (9.35) and (9.36) become

C.0; � IE; �2; r/ D 0;

C.S; 0IE; �2; r/ D maxŒ0; S � E�: (9.38)

The condition (9.38) is now an initial condition. The following sequence of
transformations reduce (9.37) to the classical heat equation.

First of all define a new function F.S; �/ by

C.S; �/ D e�r�F .S; �/: (9.39)
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Since

@C

@S
D e�r� @F

@S
;

@2C

@S2
D e�r� @2F

@S2
;

and

@C

@�
D �re�r�F C e�r� @F

@�
;

the partial differential equation satisfied by F is

�@F
@�

C rS
@F

@S
C 1

2
�2S2

@2F

@S2
D 0:

Next introduce a new state variable X related to the original state variable S by

X D Ser� or S D Xe�r�

and put F.Xe�r� ; �/ � f .X; �/. Since

@f

@S
D @f

@X
� @X
@S

D er�
@f

@X
D X

S

@f

@X
;

@2f

@S2
D er� � er� @

2f

@X2
D
�
X

S

	2
@2f

@X2
;

and

@f

@�
D @f

@X
� @X
@�

C @f

@�
D rX

@f

@X
C @f

@�
;

then the partial differential equation for f becomes

�@f
@�

C 1

2
�2X2 @

2f

@X2
D 0:

Next set � D �2� so that

�@f
@�

C 1

2
X2 @

2f

@X2
D 0:

Recall that this must be solved subject to the boundary condition

f .0; �/ D 0;
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and initial condition

f .X; 0/ D maxŒ0; X �E�:

If we let

Y D X=E

and

f .EY; �/ � g.Y; �/

then we have for g the partial differential equation

� @g

@�
C 1

2
Y 2
@2g

@Y 2
D 0; (9.40)

subject to

g.0; �/ D 0;

g.Y; 0/ D maxŒ0; Y � 1�:

Equation (9.40) could have been arrived at more readily by the original transforma-
tion

� D �2�; Y D S

E
er� ; g D er�

E
C: (9.41)

Finally we perform the change of variable

y D lnY C 1

2
�; �.y; �/ D g.Y; �/=Y;

to arrive at

1

2

@2�

@y2
D @�

@�
; (9.42)

subject to

(a) j � j� 1;

(b) �.y; 0/ D maxŒ0; 1 � e�y�:
(9.43)

The partial differential equation (9.42) for � is the heat conduction equation in an
infinite rod. The solution may be obtained either by the technique of separation of
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variables (see e.g. Greenberg 1978, pp. 533–536) or by use of the Fourier transform
discussed in this chapter. The solution may be written

�.y; �/ D
Z 1

�1
�.�; 0/

e�.��y/2=2�
p
2��

d�:

After substituting in the expression for �.�; 0/ from (9.43) and reversing the
transformations we arrive at the integral expression for the option price given in
Appendix 3.1 and which as we saw there becomes the Black–Scholes formula.



Chapter 10
Pricing Derivative Securities: A General
Approach

Abstract This chapter extends the hedging argument developed in Chap. 7 and
the martingale approach developed in Chap. 8 by allowing derivative securities to
depend on multiple sources of risks and multiple underlying factors, some are
tradable and some are not tradable. It provides a general PDE and martingale
approaches to pricing derivative securities.

10.1 Risk Neutral Valuation

A feature of the Black–Scholes option pricing model is that the theoretical option
price is independent of the drift of the price process of the underlying asset. This
is a reflection of the fact that the theoretical option price is preference free since it
does not involve in any way investor’s attitude to risk (i.e. an investor who is very
cautious about risky investments would price the option in exactly the same way as
an investor who is eager to gamble all on the riskiest of investment proposals). This
feature reflects the fact that the option pricing formula is a relative pricing formula
i.e. given the underlying asset price, the risk-free arbitrage argument tells us what the
option on that underlying asset should be worth in an efficient market. The factors
that do affect the option price are the exercise price (E), the current stock price (S),
the stock price volatility (�), the time to maturity (T � t) and the risk free rate of
interest (r), all of which are observable in the market (either directly or indirectly).

Finance theory classifies investors as risk averse, risk neutral or risk lover. A
risk averse investor would require an expected return in excess of the risk free rate
in order to hold a risky asset, the premium would depend in part on the investor’s
degree of risk aversion. An investor who is satisfied with an expected return below
the risk free rate is said to be a risk lover. An investor who is satisfied with an
expected return equal to the risk-free rate on all risky assets is said to be risk-neutral.

The expected return, 
, is the rate at which investors will discount the expected
payoff on risky investments. This discount rate may be expressed as


 D r C risk premium:
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To value at time t a risky asset yielding some expected payoff at time T in the future,
the investor uses the discounting rule

value of risky asset D e�
.T�t /
Et Œpayoff of risky asset at time T �;

where Et denotes expectation conditional on information up to and including time
t . Thus a European call option would be valued according to

value of call option D e�
.T�t /
Et Œmax.0; ST � E/�;

and the expectation operator Et would be calculated according to the log-normal
distribution, involving in particular the expected stock return �.

The Black–Scholes option pricing model tells us that investors value the option
as if they were risk-neutral i.e. with 
 D r and � D r . This is not to assert that
all investors are risk neutral. Certainly the values of 
 and � in the above valuation
formula vary as investor’s risk preferences vary. It turns out that in perfect capital
markets with investors maximizing profit or utility, these two effects offset each
other in such a way that apparently 
 D r and � D r .

This observation has given rise to the risk neutral valuation principle, namely
that investors value the options as if they were risk neutral and were expecting the
underlying stock to yield a return equal to the risk free rate. In the following sections
we shall see how this principle can be extended to yield a quite general framework
for the pricing of derivative securities.

10.2 The Market Price of Risk

The theory of option pricing that we developed in Chaps. 6 and 8 worked out so
neatly because we were dealing with one risk source (the Wiener process w.t/) and
one traded factor (the common stock) which when combined with the option in a
portfolio allowed us to hedge away the one risk source. In this chapter we want
to allow for multiple sources of risk and multiple underlying factors. Some of the
underlying factors may be traded (e.g. common stock, foreign currency) and some
may not be traded (e.g. interest rates, inflation, stochastic volatility). We will find
ourselves dealing with a situation in which the number of sources of risk is greater
than the number of underlying traded factors. The number of traded factors is then
insufficient to hedge away all sources of risk when combined in a portfolio with
an option dependent on the underlying factors. We are now dealing with a so-called
incomplete markets situation. In order to now hedge away all sources of risk we need
to complete the market in some fashion. This is usually done by placing a sufficient
number of options of different maturities in the hedging portfolio. It is then possible
to hedge away all sources of risk, but the resulting option pricing equations involve
a set of quantities which are the market prices of risk of some of the sources of risk,
the number of these being equal to the number of non-traded underlying factors. The
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market prices of risk are difficult to specify and to estimate because they depend on
investor preferences and attitudes to risk. One way to properly model the market
price of risk would be to develop a dynamic general equilibrium model involving
a representative investor. However we would obtain different expressions for the
market price of risk depending on the utility function we use. This is a source of the
non-uniqueness that we discuss later. For the moment we assume that the market
prices of risk can somehow be estimated.

10.2.1 Tradable Asset

Consider first of all the case of one traded factor whose stochastic dynamics are
driven by one source of risk (uncertainty) represented by the Wiener process z.t/. If
the factor’s price x (in return form) follows a diffusion process

dx

x
D mdt C sdz;

then the market price of risk of the source of uncertainty is defined as

� D m � r

s
;

which may be written as

m � r D �s;

where

m D expected return from the factor,

r D the instantaneous risk free rate,

s D the volatility of the return of the factor,

If the traded asset earns a continuously compounded dividend at the rate q, then

mC q � r D �s: (10.1)

We interpret s as the amount of risk associated with the uncertainty arising from
the stochastic factor z and � as the amount of compensation required by a rational
investor for bearing an additional unit of risk associated with z. Then (10.1) can be
interpreted as stating that the expected return on the risky factor equals the risk free
rate r plus a risk premium, �s, as compensation for bearing the risk associated with
the source of uncertainty z. The risk premium, �s, consisting of the product of the
cost of 1 unit of risk, �, with the amount of risk, s.
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Suppose the price of the factor x is driven by several sources of uncertainty
modelled by independent Wiener processes1 w1;w2; : : : ;wM , then there will be
a market price of risk �1; �2; : : : ; �M associated with each of these sources of
uncertainty. In particular we assume x follows the diffusion process

dx

x
D mdt C

MX

jD1
sj dwj : (10.2)

Now we interpret �j as the cost of 1 unit of risk associated with the source of
uncertainty wj and sj as the corresponding amount of risk, so that �j sj is the
risk premium required for bearing the risk associated with wj . If the traded asset
earns a continuously compounded dividend at the rate q, the expected excess return
relationship now becomes

mC q � r D
MX

jD1
�j sj ; (10.3)

with the sum on the right-hand side representing the total risk premium required as
compensation for bearing the risk associated with all of the sources of uncertainty
w1;w2; : : : ;wM . Equation (10.3) for the expected excess return on a risky factor has
a similar appearance to the multifactor arbitrage pricing theory of Ross (1976), and
is indeed closely related to it. It is important to stress that since x is a traded factor
then (10.3) is a relationship between returns and risk premia in a securities market
which would determine the �j as actual market prices of risk.

10.2.2 Non-tradable Asset

The market price of risk of a non-traded factor is more subtle as by definition this
factor is not traded and so there is no market in which a risk premium for holding it
can be earned. More specifically, let x be a factor which is the price2 of a non-traded
factor (e.g. an interest rate or volatility) and assume it follows the diffusion process

dx

x
D mdt C sdz:

1Recall from Sect. 5.3 that we can always transform a set of correlated Wiener processes to a set
of independent Wiener processes.
2The term price here is being used to in a broader sense to mean the level of x in the units in which
it is measured.
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We formally define � as the risk premium for bearing the risk of this non-traded
factor via

� D m � r

s
;

or

m � r D �s: (10.4)

It is probably best to think of �s as a shadow risk premium for bearing the risk
associated with the non-traded factor x, as there is no market in which this risk
premium can be earned. Similarly, m � r could be interpreted as a shadow excess
return. Expressions for the shadow risk premium �s could be obtained in a dynamic
general equilibrium model along the lines of Cox et al. (1985b).

In the case in which x is driven by several sources of uncertainty (again modelled
by the independent Wiener processes zj ), so that

dx

x
D mdt C

MX

jD1
sj dwj ;

then (10.4) generalizes to

m � r D
MX

jD1
�j sj : (10.5)

Now �j is the market price of risk associated with the source of uncertainty wj
and �j sj the corresponding shadow risk premium associated with this source of
uncertainty. The summation on the right-hand side of Eq. (10.5) is the total shadow
risk premium for bearing the risk associated with the non-traded factor x.

10.3 Pricing Derivative Securities Dependent on Two Factors

As we have stated above we will be interested in pricing derivative securities which
are dependent on several underlying factors (e.g. bond options depending on a long
term and a short term rate). In this section we shall go through the detail of the two
factors case and then consider the general result in the following section.
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Suppose the derivative security of interest depends on two underlying factors
whose values3 x1, x2 follow the diffusion processes

dx1
x1

D m1dt C s1dz1;

dx2
x2

D m2dt C s2dz2:

(10.6)

We would like to allow for the possibility that the stochastic terms dz1, dz2 may be
correlated. Thus E.d z1/ D E.dz2/ D 0; var.dz1/ D var.dz2/ D dt and E.dz1dz2/ D

12dt. Later in our discussion we will need to apply Girsanov’s Theorem in the
presence of two Wiener processes. As this theorem is usually stated in terms of
independent Wiener processes it will be more convenient to transform the diffusion
processes for the prices x1; x2 to ones involving independent Wiener processes.
We have already discussed the general procedure for transforming the Wiener
processes driving a system of stochastic differential equations from dependent to
independent ones. The general result required in the present context is outlined in
Sect. 5.3.1.2. Using w1.t/;w2.t/ to denote the independent Wiener processes, the
diffusion processes for x1; x2 become

dx1 D m1x1dt C s1x1dw1;

dx2 D m2x2dt C 
12s2x2dw1 C
q
1 � 
212 s2x2dw2:

(10.7)

Since such a transformation from correlated to independent Wiener processes is
always possible, we shall set up our general derivative pricing framework in terms
of independent Wiener processes. The final pricing relationship can always be re-
expressed in terms of the original variance-covariance structure by reversing the
transformations. Thus, we assume that the factors x1; x2 are driven by the diffusion
processes

dx1
x1

D m1dt C s11dw1 C s12dw2;

dx2
x2

D m2dt C s21dw1 C s22dw2;

(10.8)

where w1.t/;w2.t/ are independent Wiener processes and the coefficientsmi ; sij are
possibly functions of x1; x2 and t . Whenever xi is interpreted as a traded asset, it is
assumed to earn a continuously compounded dividend at the rate qi .

3The term “value” should be broadly interpreted here. It could refer to prices in the case of traded
factors, but could also to quantities such as inflation rates, level of volatility in the case of non-
traded factors.
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We denote by �1; �2; the market prices of risk associated with the risk sources
w1;w2, respectively. Thus,

the risk premium required
for bearing the risk

associated with factor xi

9
=

; D �1si1 C �2si2; .i D 1; 2/:

Depending on whether xi is a traded or non-traded factor, the risk premium may
be priced in a market or may be a shadow risk premium, in line with our earlier
discussion. In particular, when xi is a traded factor and it earns a continuously
compounded dividend at the rate qi , then

mi C qi � r D �1si1 C �2si2: (10.9)

The price, f , of the derivative security of interest (e.g. an option) depends on the
prices x1, x2 and time t , i.e.

f D f .x1; x2; t/:

We know that by application of Ito’s lemma (see Sect. 6.5.2) that the derivative
security inherits the dynamics

df

f
D �f dt C �1dw1 C �2dw2; (10.10)

where the expected return �f of the security is given by

f�f D � Cm1x1�1 Cm2x2�2 C Df; (10.11)

and the volatilities associated with each noise term are given by

f�1 D s11x1�1 C s21x2�2;

f �2 D s12x1�1 C s22x2�2:
(10.12)

Here the quantities � , �1, �2, �11, �22 and �12 are the various hedge ratios which
measure the sensitivities of the price f to changes in time and in prices of the
underlying factors, i.e.

� D @f

@t
; �1 D @f

@x1
; �2 D @f

@x2
;

�11 D @�1

@x1
D @2f

@x21
; �12 D @�1

@x2
D @2f

@x1@x2
D �21; �22 D @�2

@x2
D @2f

@x22
;

Df D 1

2
.s211 C s212/x

2
1�11 C .s11s21 C s12s22/x1x2�12 C 1

2
.s221 C s222/x

2
2�22:

(10.13)
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Equation (10.12) may be written in vector matrix notation as

�
f�1

f�2

�
D s>

�
x141

x242

�
; s D

�
s11 s12

s21 s22

	
(10.14)

10.3.1 Two Traded Assets

Consider the portfolio consisting of a position in one option,Q1 of asset x1 andQ2

of asset x2. The value of this portfolio is given by

V D Q1x1 CQ2x2 C f: (10.15)

When calculating the change in the value of V over .t; t C dt/ we need to keep in
mind that the positions in x1 and x2 earn not only the capital gains dx1 and dx2 but
also the dividends q1x1dt and q2x2dt. Thus the instantaneous change in value of V
is given by

dV D Q1.dx1 C q1x1dt/CQ2.dx2 C q2x2dt/C df;

which by use of (10.10) becomes

dV D ŒQ1.m1 C q1/x1 CQ2.m2 C q2/x2 C �f f �dt

C ŒQ1s11x1 CQ2s21x2 C �1f �dw1

C ŒQ1s12x1 CQ2s22x2 C �2f �dw2:

(10.16)

We stress that we are using �1; �2 as defined by Eq. (10.12). We choose the
proportionsQ1;Q2 so as to eliminate the noise terms, i.e.

Q1s11x1 CQ2s21x2 C �1f D 0;

Q1s12x1 CQ2s22x2 C �2f D 0;
(10.17)

which after use of the definitions (10.12) of �1; �2 result in (see Appendix 10.1)

Q1 D ��1; Q2 D ��2: (10.18)

This generalizes in a natural way the corresponding result in the single asset case
in Chap. 6 namely that the investor takes positions in the underlying asset according
to the delta with respect to the asset price. Also the investor takes a position in
the underlying asset opposite to that of the option position. Substituting (10.18)
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into (10.15) and (10.16) we find that in the resulting riskless economy V and dV
evolve according to

V D ��1x1 ��2x2 C f;

dV D Œ��1.m1 C q1/x1 ��2.m2 C q2/x2 C �f f �dt:
(10.19)

Given that the change in portfolio value is now riskless, it follows that in order to
avoid riskless arbitrage opportunities the portfolio must earn the riskless rate r , i.e.
V and dV in Eq. (10.19) must satisfy

dV D rVdt;

which simplifies to

.�f � r/f D �1.m1 C q1 � r/x1 C�2.m2 C q2 � r/x2: (10.20)

Substituting Eq. (10.11) for �f and making use of the definitions in Eq. (10.13),
Eq. (10.20) reduces to

Df C .r � q1/x1
@f

@x1
C .r � q2/x2

@f

@x2
C @f

@t
� rf D 0: (10.21)

To obtain a solution to (10.21) we would need to specify boundary conditions which
would depend on the type of option we are trying to evaluate such as European,
American etc.

We saw in Chap. 8 how it is possible to re-express the no riskless arbitrage
condition (10.20) by use of martingale concepts and hence obtain the derivative
security price as an expectation under a different probability measure. We now show
how to extend the same argument to the case of the two traded assets x1 and x2.

First we need to consider what the excess return relationship (10.3) becomes for
assets x1; x2 in the present context. Taking into account the dividends on each asset
and the risk premium terms defined in (10.9) we have for each asset the expected
excess return relationships

m1 C q1 � r D �1s11 C �2s12;

m2 C q2 � r D �1s21 C �2s22:
(10.22)

We can use (10.22) to re-express the underlying asset price dynamics x1; x2 as

dx1
x1

D .r � q1 C �1s11 C �2s12/dt C s11dw1 C s12dw2;

dx2
x2

D .r � q2 C �1s21 C �2s22/dt C s21dw1 C s22dw2:

(10.23)
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Next we seek an expression for the derivative security price dynamics in the
arbitrage free economy. To this end, we first substitute the expected excess return
relationships (10.22) into the no-riskless arbitrage relationship (10.20) to obtain

�f � r D .�1s11 C �2s12/
�1x1

f
C .�1s21 C �2s22/

�2x2

f
: (10.24)

Using (10.12), (10.24) becomes

�f � r D �1�1 C �2�2: (10.25)

This equation may be interpreted as stating that the expected excess return on the
derivative security is the sum of the risk premia .�i�i / associated with each source
of uncertainty. Substituting (10.25) into Eq. (10.10) we find that the derivative
security price dynamics follow the diffusion process

df

f
D rdt C �1Œdw1 C �1dt�C �2Œdw2 C �2dt�: (10.26)

Equation (10.26) suggests that we define adjusted Wiener processes

Qw1.t/ D w1.t/C
Z t

0

�1.u/du; Qw2.t/ D w2.t/C
Z t

0

�2.u/du;

in which case Eq. (10.26) becomes

df

f
D rdt C �1d Qw1 C �2d Qw2: (10.27)

After some algebraic manipulations we find that the asset price dynamics (10.23)
can also be written in terms of the adjusted Wiener processes Qw1.t/; Qw2.t/ as

dx1
x1

D .r � q1/dt C s11d Qw1 C s12d Qw2;
dx2
x2

D .r � q2/dt C s21d Qw1 C s22d Qw2:
(10.28)

We note that Qw1.t/; Qw2.t/ are not standard Wiener processes under the (so called
historical) probability measure P as they have non-zero means in general. However,
as we discussed in Chap. 8, we may apply Girsanov’s theorem to obtain an
equivalent probability measure QP under which Qw1.t/ and Qw2.t/ become standard
Wiener processes.

We note that ert is the money market account at time t , i.e. it is the value at time
t of an account formed by investing a dollar at t D 0 and reinvesting continuously
at the risk free rate r . The quantity fe�rt may be interpreted as the option value
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measured in units of the money market account. Applications of Ito’s lemma and
some simple manipulations of (10.27) reveal that

d.fe�rt / D e�rtf .�1d Qw1 C �2d Qw2/: (10.29)

Using QEt to denote expectation at time t under the equivalent probability distribution
QP, we have from (10.29) that

QEt Œd.fe�rt/� D 0: (10.30)

This generalizes the result we obtained in Chap. 8, namely that the option price,
measured in units of the money market account, is a martingale under the equivalent
probability measure QP. From (10.30) we may derive the result

ft D e�r.T�t / QEt ŒfT �: (10.31)

Application of the Feynman–Kac formula to their last expression would connect us
back to the partial differential equation (10.21).

10.3.2 Two Traded Assets-Vector Notation

In order to facilitate the discussion of the general case in Sect. 10.4 it is useful to
reconsider the derivation of Eq. (10.20) in vector-matrix notation.

First we introduce the notation that if v D v D .v1; v2/
> is a column vector then

V D diagv indicates the matrix4

V D diag.v/ D
�
v1 0

0 v2

�
:

We also introduce the unit vector 1 D .1; 1/>. Furthermore we write

x D .x1; x2/
>; f D .f1; f2/

>; m D .m1;m2/
>; q D .q1; q2/

>;

� D .�1; �2/
>; dw D .dw1; dw2/

>;

s D
�
s11 s12
s21 s22

	
; Q D .Q1;Q2/

>; � D .�1;�2/
>:

With these notations the stochastic differential equation system (10.8) can be written

dx D X � .m � dt C s � dw/; (10.32)

4It is useful to note the result that for any two vectors of the same length v and x, there holds
diag.v/ � x D diag.x/ � v:
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whilst Eq. (10.10) can be written

df D f .�f dt C �> � dw/: (10.33)

The hedging portfolio can be written as

V D Q>x C f; (10.34)

and the change in V is given by

dV D Q>.dx CXqdt/C df: (10.35)

Using (10.32), Eq. (10.35) can be written

dV D Q>X � .mC q/ � dt CQ>X � s � dw C f�f dt C f�> � dw

D ŒQ>X � .mC q/C f�f �dt C ŒQ>X � s C f�>�dw: (10.36)

We note that Eq. (10.12) may be re-expressed as5

f�> D 4> �X � s; (10.37)

so that (10.36) becomes

dV D ŒQ>X � .mC q/C f�f �dt C .QC 4/>X � s � dw: (10.38)

Clearly the dw term is eliminated by setting

Q D �4; (10.39)

or (as in Sect. 10.3)Q1 D �41 andQ2 D �42. Thus now

dV D Œ�4>X � .mC q/C f�f �dt: (10.40)

But since this change in portfolio value is riskless it must also be the case that

dV D r � V � dt; (10.41)

where now, by (10.34) and (10.39),

V D �4>x C f D �4>X1 C f:

5Take care to note that the matrix that appears on the right hand side of (10.12) is sT .
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Equating (10.40) and (10.41) and noting that rx D r diag.x/1, we obtain

.�f � r/f D 4>X � .mC q � r1/: (10.42)

When written componentwise Eq. (10.42) becomes Eq. (10.20). The expected
excess return relationships (10.22) can be written

.mC q � r1/ D s�; (10.43)

and hence substituting (10.43) into (10.42) the excess return relation for the
derivative security becomes

.�f � r/f D 4> �X � s�: (10.44)

We may use (10.37) to eliminate 4> �X � s in Eq. (10.44) to obtain (recall that f is
a scalar which cancels on both sides),

�f � r D �>�; (10.45)

which coordinate-wise becomes Eq. (10.25).

10.3.3 One Traded Asset and One Non-traded Asset

In this subsection we consider the case where the first asset, x1, is traded (e.g.
common stock, foreign currency) and the second asset, x2, is not traded (e.g.
stochastic volatility, expected inflation, interest rate).

Now we have two risks (x1 and x2) but only one traded asset (x1) to combine
with the option in a hedging portfolio.6 In order to hedge away the two risks we face,
we need another traded asset to place in our hedging portfolio. One way to create
an additional traded asset is to have two options (both written on x1) of different
maturity in the hedging portfolio. We use f .1/.x1; x2; t/, f .2/.x1; x2; t/ to denote
the values at time t of options (written on x1) of maturity T1, T2 respectively.

We need to generalize the notation used in Eqs. (10.10)–(10.13) to express the
dynamics of the option price. Application of Ito’s Lemma to f .i/.x1; x2; t/ (i D
1; 2) yields, for each option, the dynamics

df .i/

f .i/
D �

.i/

f dt C �
.i/
1 dw1 C �

.i/
2 dw2; (10.46)

6Note that the following argument needs to be modified in the special case s12 D s22 D 0. That is,
there is only one noise term. This special case is treated in the next section. Such a case arises for
instance in the stochastic volatility model of Hobson and Rogers (1998).
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where

f .i/�
.i/

f D �.i/ Cm1x1�
.i/
1 Cm2x2�

.i/
2 C Df .i/;

f .i/�
.i/
1 D s11x1�

.i/
1 C s21x2�

.i/
2 ;

f .i/�
.i/
2 D s12x1�

.i/
1 C s22x2�

.i/
2 ;

and

�.i/ D @f .i/

@t
; �

.i/
1 D @f .i/

@x1
; �

.i/
2 D @f .i/

@x2
;

�
.i/
11 D @2f .i/

@x21
; �

.i/
12 D @2f .i/

@x1@x2
D �

.i/
21 ; �

.i/
22 D @2f .i/

@x22
;

Df .i/ D 1

2
.s211 C s212/x

2
1�

.i/
11 C .s11s21 C s12s22/x1x2�

.i/
12 C 1

2
.s221 C s222/x

2
2�

.i/
22 :

We apply the hedging argument using the vector notation already introduced in
Sect. 10.3.2. It is now that we appreciate the advantages of the vector notation. The
alternative (and more cumbersome) approach without the use of vector notation is
laid out in Appendix 10.2. In vector notation Eq. (10.46) may be written

df D F � .�f � dt C � � dw/; (10.47)

where

f D .f .1/; f .2//>; �f D .�
.1/

f ; �
.2/

f /
>; F D diag.f /

and � is the matrix

� D
 
�
.1/
1 �

.1/
2

�
.2/
1 �

.2/
2

!
:

We consider a portfolio consisting of 1 unit of traded asset x1, Q1 units of f .1/

and Q2 units of f .2/. The value, V , of this portfolio, in vector notation, at time t is
given by

V D x1 CQ>f;

whilst the change in V is given by

dV D .dx1 C q1x1dt/CQ>df: (10.48)
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Using the first of Eqs. (10.8) and (10.47) we may express (10.48) as

dV D .m1 C q1/x1dt C x1.s11; s12/dw

CQ> � F � �f � dt CQ> � F � � � dw

D Œ.m1 C q1/x1 CQ> � F � �f �dt

CŒx1.s11; s12/CQ> � F � ��dw: (10.49)

The stochastic dw term is eliminated by choosingQ so that

Q>F� D �x1.s11; s12/: (10.50)

The dynamics of the now riskless portfolio is then given by

dV D Œ.m1 C q1/x1 CQ> � F � �f �dt: (10.51)

The condition, dV D rV dt, that the portfolio can only earn the riskless rate becomes

.m1 C q1/x1 CQ>F�f D r.x1 CQ>f /: (10.52)

Noting the result in footnote 4, Eq. (10.52) can be expressed in the form

.m1 C q1 � r/x1 CQ>F.�f � r1/ D 0: (10.53)

At this point we recall the expected excess return relationship for the asset x1 [see
the first of Eq. (10.22)],

m1 C q1 � r D s11�1 C s12�2 D .s11; s12/�; (10.54)

where

� D .�1; �2/
>:

Thus (10.53) may be written

x1Œs11; s12��CQ>F � .�f � r 1/ D 0: (10.55)

Using (10.50) to eliminate the first term in (10.55) we obtain

�Q>F��CQ>F � .�f � r 1/ D 0;

which may be re-expressed as

Q>F Œ���C �f � r1� D 0: (10.56)
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From Eq. (10.50) we have that

Q>F D �x1.s11; s12/��1;

which together with (10.56) implies that

x1.s11; s12/�
�1Œ�� � �f C r1� D 0: (10.57)

Equation (10.57) can hold for options of any arbitrary maturity only if the term in
square brackets is equal to zero. Equation (10.57) hence implies that

�f � r1 D ��:

Coordinate-wise this last equation states that

�f .1/ � r D �
.1/
1 �1 C �

.1/
2 �2;

�f .2/ � r D �
.2/
1 �1 C �

.2/
2 �2:

Since the maturities T1 and T2 were arbitrarily chosen and since each of the
relationships in (10.58) is maturity specific, a similar relationship holds for an option
of any maturity. Thus we can assert that for an option of any maturity there holds

�f � r D �1�1 C �2�2: (10.58)

Equation (10.58) merely states that for an option of arbitrary maturity the expected
excess return equals the sum of the risk premia .�i�i ; i D 1; 2/ associated with each
source of uncertainty.

Upon employing the expression for �f , �1, �2 and re-arranging, Eq. (10.58)
becomes

� C .m1 � s11�1 � s12�2/x1�1 C .m2 � �1s21 � �2s22/x2�2 C Df � rf D 0;

which upon use of (10.54) becomes

� C .r � q1/x1�1 C .m2 � �1s21 � �2s22/x2�2 C Df � rf D 0:

Replacing �;�1 and �2 by their partial derivative expressions we see that we have
the pricing partial differential equation

@f

@t
C .r � q1/x1 @f

@x1
C .m2 � �1s21 � �2s22/x2 @f

@x2
C Df � rf D 0: (10.59)
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In order to obtain the martingale representation we use (10.58) to replace �f in
the stochastic differential equation for f to obtain

df

f
D rdt C �1.dw1 C �1dt/C �2.dw2 C �2dt/;

which in terms of the adjusted Wiener processes

Qw1.t/ D w1.t/C
Z t

o

�1.�/d�;

Qw2.t/ D w2.t/C
Z t

o

�2.�/d�;

(10.60)

may be written

df

f
D rdt C �1d Qw1 C �2d Qw2: (10.61)

The argument involved in the last subsection to obtain the martingale representation
of the option price may also be applied to (10.61), so we obtain

ft D e�r.T�t / QEt .fT /; (10.62)

where QEt is the expectation under the equivalent measure QP.
In order to obtain the dynamics of x1; x2 under the equivalent measure we

use (10.60) to replace the dw1 and dw2 in (10.8) with d Qw1 � �1dt and d Qw2 � �2dt
respectively to obtain

dx1

x1
D .m1 � �1s11 � �2s12/dt C s11d Qw1 C s12d Qw2;

dx2

x2
D .m2 � �1s21 � �2s22/dt C s21d Qw1 C s22d Qw2:

By use of the expected excess return relationship for x1, we replace m1 � �1s11 �
�2s12 by r � q1 to finally obtain for the dynamics of the underlying factors under
the equivalent measure

dx1

x1
D .r � q1/dt C s11d Qw1 C s12d Qw2; (10.63)

dx2

x2
D .m2 � �1s21 � �2s22/dt C s21d Qw1 C s22d Qw2: (10.64)

We highlight the presence of the risk premium term �1s21 C �2s22, in the pro-
cess (10.64) for the non-traded underlying factor x2. Under the historical measure P
the adjusted Wiener processes Qw1, Qw2 are not standard Wiener processes. Again we
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may apply Girsanov’s theorem to obtain an equivalent probability measure QP under
which Qw1, Qw2 become standard Wiener processes. However in this non-traded asset
case, which is an example of an incomplete market, the measure QP is not unique.
This reflects the fact that we may specify a number of ways in which the market
may settle on a value for the risk premium, e.g. by appealing to utility maximization
arguments, by minimization of variance of trading costs, etc. Some authors argue
that the risk involved in x2 would be diversified away in an efficient market so we
may set �1s21 C �2s22 D 0. Discussion of these issues is beyond the scope of this
book. For the moment, we assume the risk premium �1s21C�2s22 is somehow deter-
mined empirically and we use this value to choose a particular QP. We note that QEt
could be calculated by simulating (10.63) and (10.64) over t to T . Again application
of the Feynman–Kac formula would yield the partial differential equation (10.59).

10.4 The General Case

Consider the general situation in which there are nt traded factors and nn non-
traded factors with nt C nn D n the total number of factors. In this discussion we
shall assume that each factor has its own driving source of uncertainty, zi .t/; .i D
1; 2; : : : ; n/: In general the sources of uncertainty may be correlated. Thus the
diffusion processes for the factors may be written

dxi
xi

D midt C sidzi .t/; .i D 1; 2; : : : ; n/: (10.65)

We assume that

EŒdzi .t/dzj .t/� D 
ijdt: (10.66)

We shall adopt the convention that the first nt factors are the traded factors. For
the reasons stated in Sect. 10.3 we prefer to express the factor dynamics in terms
of independent Wiener processes. Using the transformation procedure detailed in
Sect. 5.3 we can re-express the factor dynamics in terms of independent Wiener
processes wi .t/; i D 1; 2; : : : ; n as

dxi
xi

D midt C
nX

jD1
sijdwj .t/: (10.67)

The relationship between the sij of (10.67) and the si and 
ij of Eqs. (10.65)
and (10.66) can be determined in the manner outlined in Sect. 5.3. If �i denotes
the market price of risk associated with the risk source wi .t/ then

the risk premium required for bearing
the risk associated with factor xi

�
D

nX

jD1
�j sij: (10.68)
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As we shall consider a portfolio containing the nt traded assets we need a convenient
notation to keep track of the dynamics of just this subset of the underlying factors.
We denote by xtr the column vector of traded factors .x1; x2; : : : ; xnt /

>, mtr the
column vector .m1;m2; : : : ; mnt /

>, str the .nt 	 n/ matrix with elements sij.i D
1; : : : ; nt I j D 1; : : : ; n/. With this notation we can write the dynamics of xtr as

dxtr D Xtr � .mtr � dt C str � dw/; Xtr D diag.xtr/: (10.69)

In order to hedge away the nn non-traded risks we need to introduce .n�nt C1/

traded options of maturities T1; T2; : : : ; Tn�ntC1. We use f .l/.x1; : : : ; xn; t/.l D
1; : : : ; n� nt C 1/ to denote these options, which are assumed to depend (possibly)
on all the state variables. By application of Ito’s Lemma the dynamics of each option
are given by

df .l/

f .l/
D �

.l/

f dt C
nX

jD1
�
.l/
j dwj ; (10.70)

where

f .l/�
.l/

f D �.l/ C
nX

jD1
mjxj�

.l/
j C Df .l/; f .l/�

.l/
j D

nX

kD1
skj xk�

.l/

k ;

and

�.l/ D @f .l/

@t
; �

.l/
j D @f .l/

@xj
; �

.l/
ij D @2f .l/

@xi � @xj ;

Df .l/ D 1

2

nX

iD1

nX

jD1

� nX

kD1
siksjk

	
xixj �

.l/
ij :

We note that in vector notation (10.70) may be written

df D F � .�f � dt C � � dw/; (10.71)

where

f D .f .1/; f .2/; : : : ; f .n�ntC1//>; F D diag.f /;

�f D .�f .1/ ; �f .2/ ; : : : ; �f .n�ntC1/ />

and � is the .n�nt C1/	nmatrix whose .l; j /th element is �.l/j .j D 1; : : : ; nI l D
1; : : : ; n � nt C 1/.

We now form a portfolio consisting ofQi units of the traded underlying asset xi
for i D 1; : : : ; nt andQntCl units of the traded options f .l/ for l D 1; : : : ; n�ntC1.
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The value of this portfolio at time t is given by

V D
ntX

iD1
Qixi C

n�ntC1X

lD1
QntClf .l/: (10.72)

It is convenient to partitionQ according to

Qtr D .Q1; : : : ;Qnt /
>; Qf D .QntC1; : : : ;QnC1/>

so that

V D Q>
tr xtr CQ>

f f: (10.73)

Using (10.67), incorporating the continuously compounded dividend and (10.69)
we see that the instantaneous change in V may be written

dV D Q>
tr dxtr CQ>

f df

D ŒQ>
trXtr.mtr C qtr/CQ>

f F�f �dt

CŒQ>
trXtr � str CQ>

f � F � ��dw:

In order to render the portfolio riskless the vectorQ has to be chosen so that

Q>
trXtrstr CQ>

f F� D 0: (10.74)

The hedging portfolio is now riskless and evolves according to

dV D ŒQ>
trXtr.mtr C qtr/CQ>

f F�f �dt: (10.75)

Following the now standard argument, the riskless hedging portfolio can only earn
the risk-free interest rate, a condition which by use of (10.73) becomes

dV D rŒQ>
tr xtr CQ>

f f �dt: (10.76)

Equations (10.75) and (10.76) imply that the vectorQ also has to be chosen so that7

Q>
trXtr.mtr C qtr/CQ>

f F�f D rQ>
tr xtr C rQ>

f f: (10.77)

The last equation can be expressed as

Q>
trXtr.mtr C qtr � r1/CQ>

f F.�f � r1/ D 0: (10.78)

7We again make use of the result in footnote 4.
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At this point it is convenient to set Q> WD .Q>
t r ;Q

>
f /, so that (10.78) can be

rewritten as

Q>
�
Xtr.mtr C qtr � r1/

F.�f � r1/

	
D 0: (10.79)

We note that in terms of the vectorQ we can rewrite Eq. (10.74) as

Q>
�
ŒXtrstr�nt�n
ŒF��.nnC1/�n

	

.nC1/�n
D 0: (10.80)

Equations (10.79) and (10.80) constitute an .n C 1/-dimensional linear homoge-
neous equation system

Q>
�
Xtr 0

0 F

	

.nC1/�.nC1/

�
.mtr C qtr � r1/ str

.�f � r1/ �

	

.nC1/�.nC1/
D 0:

Recall that Q.of size .n C 1/ 	 1/ represent the hedging portfolio, so the linear
system must allow non-trivial solutions for Q. The condition for this is the rank
degeneracy of the matrix

Rank

�
.mtr C qtr � r1/ str

.�f � r1/ �

	
� n: (10.81)

The right hand part of the matrix, consisting of str, � comes from the volatility
structure of the factors. Usually we do not impose restrictions on the volatility struc-
ture so this part should have rank n. Therefore, the no-arbitrage condition (10.81)
requires that the vectors of the excess returns, .mtr C qtr � r1/, .�f � r1/ must be
represented as a linear combination of the vectors of the volatility, which is given by

�
.mtr C qtr � r1/
.�f � r1/

	
D
�
str

�

	
0
B@
�1
:::

�n

1
CA : (10.82)

Thus, as usual, the no-arbitrage condition turns out to be a restriction between
the excess returns and the asset volatility structures as given in (10.82). It follows
from (10.82) that

mtr C qtr � r1 D str�: (10.83)

and

�f � r1 D ��: (10.84)
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Equation (10.83) is simply the expected excess return relation for the underlying
assets, which componentwise reads

mi C qi � r D
nX

jD1
sij�j ; .i D 1; 2; : : : ; nt /:

Coordinate-wise Eq. (10.84) states that for the option of maturity Tl the no riskless
arbitrage condition is

�f .l/ � r D
nX

jD1
�
.l/
j �j : (10.85)

Since the maturity Tl is arbitrary the relation (10.85) must hold for an option of any
maturity, that is

�f � r D
nX

jD1
�j �j : (10.86)

Upon making use of the expressions for �f and �j defined below Eq. (10.70), the
condition (10.86) reduces to the parabolic partial differential equation

� C
nX

jD1
mjxj�j C Df � rf D

nX

jD1
�j .

nX

kD1
skj xk�k/: (10.87)

Consider separately the term

Z �
nX

jD1
mjxj�j �

nX

jD1
�j .

nX

kD1
skj xk�k/

D
nX

jD1
mjxj�j �

nX

kD1
xk�k.

nX

jD1
�j skj / (10.88)

From (10.83) we have that for k D 1; : : : ; nt

nX

jD1
�j skj D mk C qk � r;

hence (10.88) can be re-written

Z D
ntX

jD1
mjxj�j C

nX

jDntC1
mjxj�j �

ntX

kD1
xk�k.mk C qk � r/
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�
nX

kDntC1

xk�k.

nX

jD1
�j skj /

D
ntX

kD1
xk�k.r � qk/C

nX

kDntC1
xk�k

�
mk �

nX

jD1
�j skj

	
: (10.89)

Using (10.89) in (10.87), the pricing partial differential equation becomes

@f

@t
C

ntX

iD1
.r�qi/xi @f

@xi
C

nX

iDntC1
.mi �

nX

jD1
�j sij/xi

@f

@xi
CDf �rf D 0; (10.90)

where

Df � 1

2

nX

iD1

nX

jD1
.

nX

kD1
siksjk/xi xj

@2f

@xi@xj
:

Using (10.86) to eliminate �f the dynamics for f turn out to be

df

f
D .r C

nX

jD1
�j �j /dt C

nX

jD1
�j dwj :

Introducing the modified Wiener processes

Qwj .t/ D wj .t/C
Z t

0

�j .�/d�; .j D 1; : : : ; n/; (10.91)

the dynamics for f can be written

df

f
D rdt C

nX

jD1
�j d Qwj :

Under the original historical measure P the Qw are not standard Wiener processes,
but by Girsanov’s theorem we can find an equivalent measure QP such that the Qw are
standard Wiener processes. So we obtain the generalization of (10.62)

ft D e�r.T�t / QEt .fT /: (10.92)

Using (10.91) to express the factor dynamics in terms of the d Qwi .t/ we obtain

dxi
xi

D .mi �
nX

jD1
�j sij/dt C

nX

jD1
sijd Qwj .t/: (10.93)
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For the nt traded factors we may use the expected excess return relation

mi C qi � r D
nX

jD1
�j sij;

to eliminate the market price of risk factors from the dynamic for these factors. So
the factor dynamics may finally be expressed in the form

dxi
xi

D .r � qi /dt C
nX

jD1
sijd Qwj ; (10.94)

for .i D 1; 2; : : : ; nt / and

dxi
xi

D .mi �
nX

jD1
�j sij/dt C

nX

jD1
sijd Qwj ;

for .i D nt C 1; nt C 2; : : : ; n/. Simulating this stochastic dynamic system would
be one way that the expectation operator QEt in (10.92) could be calculated.

The comments at the end of Sect. 10.3 concerning the non-uniqueness of the
measure QP apply equally. The non-uniqueness is here expressed through the need
to choose the market prices of risk �1; �2; : : : ; �n. Again we assume here that these
have been chosen by one of the procedures discussed at the end of Sect. 10.3.

10.5 Appendix

Appendix 10.1 Derivation ofQ1 D ��1 andQ2 D ��2
Consider Eq. (10.17)

Q1s11x1 CQ2s21x2 C �1f D 0;

Q1s12x1 CQ2s22x2 C �2f D 0;

and substitute the definitions (10.12) of �1; �2. Then we obtain the equations

s11x1.Q1 C�1/C s21x2.Q2 C�2/ D 0;

s12x1.Q1 C�1/C s22x2.Q2 C�2/ D 0;

or

�
s11x1 s21x2
s12x1 s22x2

� �
Q1 C�1

Q2 C�2

�
D
�
0

0

�
:
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We note that the determinant

ˇ̌
ˇ̌ s11x1 s21x2
s12x1 s22x2

ˇ̌
ˇ̌ D .s11s22 � s12s21/x1x2 D G x1x2 ¤ 0

given our assumption that G D .s11s22 � s12s21/ ¤ 0. Therefore,

Q1 C�1 D 0;

Q2 C�2 D 0;

i.e.

Q1 D ��1;

Q2 D ��2:

Appendix 10.2 Alterative Derivation for One Traded and One
Non-traded Asset

We consider a portfolio consisting of 1 unit of traded asset x1, Q1 units of f .1/ and
Q2 units of f .2/. The value of this portfolio at time t is given by

V D x1 CQ1f
.1/ CQ2f

.2/: (10.95)

The instantaneous change in the value of V is given by

dV DŒ.m1 C q1/x1 CQ1f
.1/�f .1/ CQ2f

.2/�f .2/ �dt

C Œs11x1 CQ1f
.1/�

.1/
1 CQ2f

.2/�
.2/
1 �dw1

C Œs12x1 CQ1f
.1/�

.1/
2 CQ2f

.2/�
.2/
2 �dw2:

(10.96)

We choose the portfolio weights Q1, Q2 of the two options so as to eliminate the
noise terms in (10.96) i.e. we solve simultaneously the two equations

Q1f
.1/�

.1/
1 CQ2f

.2/�
.2/
1 D �s11x1;

Q1f
.1/�

.1/
2 CQ2f

.2/�
.2/
2 D �s12x1;

(10.97)

to obtain

Q1 D � x1

S f .1/
Œs11�

.2/
2 � s12�.2/1 �;

Q2 D x1

S f .2/
Œs11�

.1/
2 � s12�.1/1 �;

(10.98)
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where

S � �
.1/
1 �

.2/
2 � �

.1/
2 �

.2/
1 :

With this choice of portfolio weights the instantaneous change in V becomes

dV D Œ.m1 C q1/x1 CQ1f
.1/�f .1/ CQ2f

.2/�f .2/ �dt: (10.99)

By a now familiar argument, the absence of arbitrage opportunities implies that dV
and V with Q1;Q2 chosen according to (10.98) must satisfy

dV D rVdt;

which results in

.m1 C q1 � r/x1 CQ1f
.1/.�

.1/

f � r/CQ2f
.2/.�

.2/

f � r/ D 0; (10.100)

which upon use of (10.98) for Q1;Q2 becomes

m1 C q1 � r D s11�
.2/
2 � s12�

.2/
1

S
.�f .1/ � r/ � s11�

.1/
2 � s12�.1/1

S
.�f .2/ � r/:

(10.101)

Further re-arrangement yields

.m1 C q1 � r/S
.s11�

.1/
2 � s12�

.1/
1 /.s11�

.2/
2 � s12�.2/1 /

D �f .1/ � r

s11�
.1/
2 � s12�

.1/
1

� �f .2/ � r

s11�
.2/
2 � s12�.2/1

:

(10.102)

We note that8

S

.s11�
.1/
2 � s12�

.1/
1 /.s11�

.2/
2 � s12�.2/1 /

D 1

G

"
s22�

.1/
1 � s21�.1/2

s11�
.1/
2 � s12�.1/1

�s22�
.2/
1 �s21�.2/2

s11�
.2/
2 �s12�.2/1

#
;

so that (10.102) can be written

m1 C q1 � r
G

"
s22�

.1/
1 � s21�.1/2

s11�
.1/
2 � s12�.1/1

� s22�
.2/
1 � s21�

.2/
2

s11�
.2/
2 � s12�

.2/
1

#

8Recall that G D det.s/ D s11s22 � s12s21.
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D �
.1/

f � r
s11�

.1/
2 � s12�

.1/
1

� �
.2/

f � r

s11�
.2/
2 � s12�.2/1

:

Algebraic manipulations of this last equation yield

�
.1/

f � r � m1Cq1�r
G

.s22�
.1/
1 � s21�

.1/
2 /

s11�
.1/
2 � s12�

.1/
1

D �
.2/

f � r � m1Cq1�r
G .s22�

.2/
1 � s21�

.2/
2 /

s11�
.2/
2 � s12�.2/1

:

(10.103)

The quantity on the left-hand side of (10.103) involves only the option of maturity
T1 whilst the quantity on the right-hand side involves only the option of maturity
T2. Since the option maturities may be chosen arbitrarily it must be the case
that the quantity in question must be the same for an option of any maturity and
equal to a common factor which we set to .�1s21 C �2s22/=G .9 Thus we conclude
from (10.103) that for an option of any maturity T

�f �r D m1 C q1 � r
G

.s22�1�s21�2/C�1s21 C �2s22

G
.s11�2�s12�1/: (10.104)

Upon employing the expression for �f , �1, �2 and re-arranging, the last equation
reduces to

� C .r � q1/x1�1 C .m2 � �1s21 � �2s22/x2�2 C Df � rf D 0; (10.105)

or replacing �;�1 and�2 by their partial derivative expressions we see that we have
the pricing partial differential equation

@f

@t
C .r � q1/x1 @f

@x1
C .m2 � �1s21 � �2s22/x2 @f

@x2
CDf � rf D 0: (10.106)

We re-arrange (10.104) by expressing the expected excess return .m1 C q1 � r/ as
the risk premium [see Eq. (10.22)] �1s11 C �2s12 to obtain

�f � r D �1s11 C �2s12

G
.s22�1 � s21�2/C �1s21 C �2s22

G
.s11�2 � s12�1/:

(10.107)

9This choice for the common factor seems quite unintuitive. We could simply set this common
factor equal to �0, then we would find that the right hand side of (10.108) could only be interpreted
as the appropriate risk premia terms if �0 were chosen in the way indicated.
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A little algebra reduces this last equation to

�f � r D �1�1 C �2�2: (10.108)

This is (10.58) which can then be used to obtain the martingale representation.

10.6 Problems

Problem 10.1 An asset price x1 is driven by the diffusion process

dx1 D m1x1dt C s11.x1; x2; t/dw1: (10.109)

The factor x2 appearing in the s11 function is an exponentially declining weighted
average of past Wiener increment (shock) terms, i.e.

x2.t/ D
Z t

0

e�	.t�s/s21.x2; s/dw1.s/: (10.110)

Here 	 > 0 and s21 is a given function. By taking the differential of Eq. (10.110)
show that x2.t/ satisfies the stochastic differential equation

dx2.t/ D �	x2.t/dt C s21.x2; t/dw1.t/: (10.111)

An option is written on the asset x1 and has maturity T and payoff h.x1.T /; T /.
Write down the value of this option as a partial differential equation. Be careful to
specify the boundary condition.

Problem 10.2 An asset price is driven by the diffusion process

dx D mxdt C �xdz1:

The quantity v D �2 is driven by the diffusion process

dv D 	. Nv � v/dt C s.v/dz2;

where s.v/ is some function and the Wiener increments dz1; dz2 are correlated
according to EŒdz1 dz2� D 
dt. Express the stochastic differential system for x and
� in terms of independent Wiener increments.

An option written on the asset x has payoff h.x.T /; T / where T is the maturity
date. Obtain the partial differential equation satisfied by the option price and specify
its boundary condition.

Note: The quantity v is not a traded asset.

Problem 10.3 Fill in all the missing details in Appendix 10.2. In particular be sure
you can derive Eqs. (10.102)–(10.104).



Chapter 11
Applying the General Pricing Framework

Abstract This chapter applies the general pricing framework developed in
Chap. 10 to some standard one factor examples including stock options, currency
options, futures options and a two factor model of exchange option.

11.1 Introduction

The key to using the general framework of the previous chapter is to interpret the
excess return of each underlying factor to its market price of risk and its volatility

mi C qi � r D
nX

jD1
�j sij; (11.1)

where .mi C qi � r/ is the excess return of factor i . In calculating the excess
return we must account for any income, or costs, associated with holding the
asset underlying price xi . This is captured by the qi term which may be either
a continuously compounded dividend or cost. In the next two sections we show
how the general pricing structure of Sect. 10.4 may be applied, once Eq. (11.1)
has been appropriately interpreted for the situation at hand. Section 11.2 considers
some standard one-factor examples, whilst Sect. 11.3 considers some two-factor
examples.

11.2 One-Factor Examples

11.2.1 Stock Options

In this case we have one underlying factor, the price x of the stock, which we assume
here pays no dividend. It follows the diffusion process

dx

x
D mdt C sdw;

© Springer-Verlag Berlin Heidelberg 2015
C. Chiarella et al., Derivative Security Pricing, Dynamic Modeling
and Econometrics in Economics and Finance 21,
DOI 10.1007/978-3-662-45906-5_11

235



236 11 Applying the General Pricing Framework

and from (11.1) the excess expected return from holding the stock is

m � r D �s;

from which

m � �s D r: (11.2)

Substituting this last expression into the general pricing Eq. (10.90) with nt D n D
1; nn D 0 we obtain

@f

@t
C rx

@f

@x
C 1

2
s2x2

@2f

@x2
D rf; (11.3)

which is of course the Black–Scholes partial differential equation which we obtained
earlier.

If the stock does pay a continuously compounded dividend q then the expected
excess return relation becomes

mC q � r D �s

so that (11.2) is replaced by

m � �s D r � q: (11.4)

The partial differential equation (11.3) then becomes

@f

@t
C .r � q/x

@f

@x
C 1

2
s2x2

@2f

@x2
D rf:

11.2.2 Foreign Currency Options

Here we have one factor x which is the exchange rate (domestic currency/unit of
foreign currency) that is the price of a unit of the foreign currency. The foreign
currency yields continuously the risk free rate in the foreign country, which we
denote by rf . If the diffusion process followed by the exchange rate is written as

dx

x
D mdt C sdw;

the expected return from holding the foreign currency is .m C rf / and hence
the relationship (11.1) for expected excess return as it applies to foreign currency
becomes

.mC rf / � r D �s;
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and hence

m � �s D r � rf : (11.5)

Upon substituting this into the general pricing Eq. (10.90) with n D 1 yields

@f

@t
C .r � rf /x @f

@x
C 1

2
s2x2

@2f

@x2
D rf; (11.6)

which is the equation obtained by Garman and Kohlhagen (1983) for the pricing
of a foreign currency option. In the case of a European call option with exercise
exchange rate E on the foreign currency its solution turns out to be

f .x; t/ D x e�rf .T�t /N .d1/� Ee�r.T�t /N .d2/; (11.7)

where

d1 D ln.x=E/C .r � rf C s2=2/.T � t/

s
p
T � t

;

d2 D d1 � s
p
T � t :

It should also be noted that from (10.92) the foreign currency option value can
also be expressed as

f .x; t/ D QEt Œf .xT ; T /�: (11.8)

From (10.94) with qi D rf the dynamics for the exchange rate under the equivalent
measure QP is given by

dx

x
D .r � rf /dt C sd Qw (11.9)

It is the conditional transition density function associated with (11.9) that is required
to calculate the QEt in (11.8).

11.2.3 Futures Options

In this case the factor x is the price of a futures contract on an underlying asset
whose price is S . The derivative security in this case is an option on the futures
contract. Simple arbitrage arguments can be used to show that the relationship
between the futures price x and the price S of the asset underlying the futures
contract, is

x D Se˛.T
��t /; (11.10)
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where T � is the maturity date of the futures contract. Here

˛ D risk free rate � yield on the asset: (11.11)

For example if the underlying asset were a commodity, then ˛ would be, the risk-free
rate plus storage costs minus the convenience yield. If the price of the underlying
asset follows the diffusion process

dS

S
D �dt C �dw; (11.12)

then a straight forward application of Ito’s lemma reveals that x follows the diffusion
process

dx

x
D .�� ˛/dt C �dw � �xdt C �dw: (11.13)

It is well known that a futures price can be regarded as the price of a security paying
a continuous dividend yield at the risk free rate r which means we set ˛ D r

in (11.13) (see Hull 2000). Thus applying (11.1) here yields .rC�x/� r D �� , i.e.

�x � �� D 0;

and so the pricing equation becomes

@f

@t
C 1

2
�2x2

@2f

@x2
D rf:

In the case of a European futures option the solution to this partial differential
equation is

f D e�r.T�t /ŒxN .d1/� EN .d2/�;

where

d1 D ln.x=E/C .�2=2/.T � t/

�
p
T � t ; d2 D d1 � �

p
T � t ;

which is Black (1976) model. Note that formally Black’s model could be obtained
from the foreign currency option model by setting rf D r . From (10.92) the futures
option value can also be expressed as

f .x; t/ D QEt Œf .xT ; T /�; (11.14)
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where by use of (10.94) with qi D r , the dynamics of the futures price under the
equivalent measure QP are

dx

x
D �d Qw: (11.15)

The transition probability density function associated with (11.15) is used to
calculate QEt in (11.14). Incidentally we note that (11.15) indicates that the futures
price is a Martingale under the equivalent measure QP.

11.3 Options on Two Underlying Factors

As an application of options on two underlying assets, both of which are traded,
we consider exchange options which were first studied by Margrabe (1978). These
are the most basic of a class of multi-asset options (digital options, quotient
options, foreign equity options, quanto options etc.) which derive their value from
the correlation structure between two underlying traded assets. For much more
information and details about multi-asset options, we refer the reader to Zhang
(1997).

We consider the framework and notation of Sect. 10.3.1 dealing with two traded
underlying assets. A European exchange option to pay the second asset in exchange
for the first has payoff given by

fT D maxŒx1.T / � x2.T /; 0�:

This payoff differs from that of a standard European call option on x1 in that the
exercise price E is replaced by x2.T /, the value at maturity of the second asset.
Alternatively, it could be regarded as a European put option on x2 with exercise
price equal to x1.T /. An investor might be interested in this type of option if x1
and x2 were negatively correlated and the investor wished to have some insurance
against x2 performing “badly”.

The price of the exchange option satisfies the partial differential equation (10.21)
subject to the terminal condition

f .x1; x2; T / D maxŒx1.T / � x2.T /; 0�:

Alteratively, we may use the martingale representation (10.31) so that

f .x1; x2; t/ D e�r.T�t / QEt Œmax.x1.T / � x2.T /; 0/�; (11.16)
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where we recall that QEt is calculated using the distribution generated by the stochas-
tic differential equations (10.28), which may be re-expressed as (see Sect. 6.3.2 and
Problem 6.7)

d.lnx1/ D Œr � q1 � 1

2
.s211 C s212/�dt C s11d Qw1 C s12d Qw2;

d.lnx2/ D Œr � q2 � 1

2
.s221 C s222/�dt C s21d Qw1 C s22d Qw2:

(11.17)

We shall concentrate on the case represented by the stochastic differential equa-
tions (10.7) so that (11.17) becomes

d.lnx1/ D .r � q1 � s21
2
/dt C s1d Qw1;

d.lnx2/ D .r � q2 � s22
2
/dt C 
s2d Qw1 C

p
1 � 
2s2d Qw2:

Thus, the probability density function for the joint distribution of lnŒx1.T /=x1.t/�,
lnŒx2.T /=x2.t/� is1

Q�Œv1.T /; v2.T /; T � D 1

2�s1s2
p
1 � 
2.T � t/

exp

�
� u21 � 2
u1u2 C u22

2.1� 
2/

�
;

(11.18)

where vi .T / � ln Œxi .T /=xi .t/� (as we are expressing the distribution of relative
prices we have dropped the notation for conditioning on time t) and

ui � vi .T / � .r � qi � 1
2
s2i /.T � t/

si
p
T � t

; for i D 1; 2:

Equation (11.18) is the bivariate normal distribution for the logarithm of the
relative prices (see Fig. 11.1). Equation (11.18) may also be expressed as

Q�Œv1.T /; v2.T /; T � D Q�1Œv1.T /; T � Q�2Œv2.T /; T j v1.T /; T �;

where

Q�1Œv1.T /; T � D 1

s1
p
2�.T � t/ exp

�
�u21
2

	
; (11.19)

1See Problem 6.7. Note that the density function there denoted as p.y1/.T /, y2.T /, T jy1.t/, y2.t/,
.t / is here denoted as Q� Œv1.T /; v2.T /; T �.
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0

(r−q1−0.5s1^2)(T)−t

y1(T)

(r−q2−0.5s2^2)(T−t)

y2(T)

π

Fig. 11.1 Bivariate normal distribution

and

Q�2Œv2.T /; T j v1.T /; T � D 1

s2
p
1 � 
2p2�.T � t/

exp

�
� .u2 � 
u1/2

2.1� 
2/

	
;

(11.20)
or, alternatively as

Q�Œv1.T /; v2.T /; T � D Q�2Œv2.T /; T � Q�1Œv1.T /; T j v2.T /; T �;

where now (with a slight abuse of notation)

Q�2Œv2.T /; T � D 1

s2
p
2�.T � t/

exp

�
�u22
2

	
;

and

Q�1Œv1.T /; T j v2.T /; T � D 1

s1
p
1 � 
2

p
2�.T � t/ exp

�
� .u1 � 
u2/2

2.1� 
2/
	
:

We shall use Q�Œx1.T /; x2.T /; T � to denote the corresponding probabilities in terms
of the original asset prices x1; x2. In terms of these distributions, Eq. (11.16)
becomes

f .x1; x2; T / D e�r.T�t /
Z 1

0

�Z x1

0

.x1 � x2/ Q�.x1; x2; T /dx2
x2

	
dx1
x1
; (11.21)

where the region of integration is illustrated in Fig. 11.2.
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Fig. 11.2 Region of integration for the exchange option

Since the integration with respect to x2 is performed, whilst x1 is held constant,
it is more convenient to use the conditional distributions (11.19), (11.20) (after
converting to lnS ). Thus, we may express (11.21) as

f .x1; x2; T / D e�r.T�t /
Z 1

0

�Z x1

0

.x1 � x2/ Q�2.x2; T j x1; T /dx2
x2

	
Q�1.x1; T /dx1

x1

� e�r.T�t /
�Z 1

0

J1.x1; T / Q�1.x1; T /dx1

�
Z 1

0

J2.x1; T / Q�1.x1; T /dx1
x1

	
;

(11.22)

where

J1.x1; T / �
Z x1

0

Q�2.x2; T j x1; T /dx2
x2
; (11.23)

and

J2.x1; T / �
Z x1

0

Q�2.x2; T j x1; T /dx2: (11.24)

Our integration task is simplified by noting that the integrals J1; J2 are essentially
the integrals A1; A2 that we evaluated in Appendix 3.1. The same changes of
variables, completing the square etc., need to be applied to the evaluation of J1
and J2. In Appendix 11.1 we show that (setting � D T � t)

J1.x1; T / D N

0
B@
.1 � 
/ ln x1 C ln

�
x1.t/




x2.t/

�
�
�
r � 
 � s22 .1�
2/

2

�
�

s2
p
1 � 
2

p
�

1
CA ;

(11.25)



11.3 Options on Two Underlying Factors 243

when


 D 

s2

s1
; 
 � q2 C s22


2

2
C 


�
r � q1 � s21

2

	
; (11.26)

and

J2.x1; T / D x2.t/.
x1

x1.t/
/
e.r�
/�

N

0

B@
.1 � 
/ ln x1 C ln

�
x1.t/




x2.t/

�
�
�
r � 
 C s22 .1�
2/

2

�
�

s2
p
1 � 
2p�

1

CA :

(11.27)

Substituting (11.25) and (11.27) into (11.22) we have

f .x1; x2; T / D e�r�B1 � e�
�B2; (11.28)

where

B1 � 1p
2��s1

Z 1

0

N

0

B@
.1 � 
/ lnx1 C ln

�
x1.t/




x2.t/

�
�
�
r � 
 � s22 .1�
2/

2

�
�

s2
p
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2

p
�

1
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exp

2
64�

n
ln
�

x1
x1.t/

�
� .r � q1 � s21

2
/�
o2

2s21�

3
75 dx1;

and we show in Appendix 11.2 that

B1 D x1.t/e
.r�q1/�

Z 1

�1
e� 1

2 z2

p
2�

N .˛1 C ˇz/dz;

where

˛1 D
ln
�
x1.t/

x2.t/

�
C .1 � 
/.r � q1 C s21

2
/� �

�
r � 
 � s22 .1�
2/

2

�
�

s2
p
1 � 
2p� ;

ˇ D s1

s2

1 � 

p
1 � 
2 ;
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and that

B2 D x2.t/e

.r�q1C .
�1/s21

2 /�

Z 1

�1
e�z2=2

p
2�

N .˛2 C ˇz/dz;

where

˛2 D
ln
�
x1.t/

x2.t/

�
C .1 � 
/.r � q1 C s21.
 � 1

2
//� �

�
r � 
 C s22 .1�
2/

2

�
�

s2
p
1 � 
2p� :

Finally we use the result that (see Appendix 11.2)

Z 1

�1
e�z2=2

p
2�

N .˛ C ˇz/dz D N

 
˛p
1C ˇ2

!
;

from which we obtain

B1 D x1.t/e
.r�q1/�N

 
˛1p
1C ˇ2

!
;

B2 D x2.t/e

.r�q1C .
�1/s21

2 /�N

 
˛2p
1C ˇ2

!
:

The value of the exchange option (see (11.28)) is given by

f .x1; x2; T / D x1.t/e
�q1�N

�
˛1p
1C ˇ2

	
� x2.t/e

�q2�N
�

˛2p
1C ˇ2

	
:

11.4 Appendix

Appendix 11.1 The Integrals J1 and J2

A. Evaluation of J1.x1; T /

From Eq. (11.23) we have

J1.x1; T / D
Z x1

0

Q�2.x2; T jx1; T /dx2
x2
:
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By use of (11.20) (expressed in terms of x2, x1) we have (setting � D T � t)

J1.x1; T / D 1p
2��s2

p
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where to simplify notation we have set
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2
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�
:

Since J1 represents the area under the log-normal curve from .0; x1/, we may also
express it as
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p
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:

Now we are dealing precisely with the integralA2 in Eq. (3.29) of Appendix. 3.1, so
that after appropriate identifications we may write

J1.x1; T / D 1 � N
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where
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B. Evaluation of J2.x1; T /

From Eq. (11.24) we have

J2.x1; T / D
Z x1

0

Q�2.x2; T jx1; T /dx2

which by use of (11.20) may be expressed
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where we have employed the same completion of the square technique as was used
to simplify A1 in Appendix 3.1. Setting
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we then obtain

J2.x1; T / D x2.t/e
.r�q2�ı/�

p
2�

Z d

�1
e� 1

2 z2dz;



11.4 Appendix 247

where
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Recalling the definition of N .d/, we can finally write

J2.x1; T / D x2.t/e
.r�q2�ı/�N .d/:

Reexpressing this so as to highlight the dependence on x1,
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Appendix 11.2 The Integrals B1 and B2

The Integral B1

With a slight re-arrangement of the argument of the N function, B1 can be written

B1 D 1p
2��s1

Z 1

0

N

0

B@
.1 � 
/ ln

�
x1
x1.t/

�
C ln

�
x1.t/

x2.t/

�
�
�
r � 
 � s22 .1�
2/

2

�
�

s2
p
1 � 
2p�

1

CA

exp

2
64

�
n
ln
�

x1
x1.t/

�
� .r � q1 � s21

2
/�
o2

2s21�

3
75 dx1:

Setting

z D
ln x1

x1.t/
� .r � q1 � s21

2
/�

s1
p
�

we may re-express B1 as

B1 D x1.t/p
2�

Z 1

�1
e� z2

2 Cs1p�zC.r�q1� s21
2 /�N

0

@
.1 � 
/s1p�z C ln

�
x1.t/

x2.t/

�
C b1

s2
p
1 � 
2p�

1

A dz;



248 11 Applying the General Pricing Framework

where
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Completing the square in the exponent we can write
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which after a further change of variable becomes

B1 D x1.t/e
.r�q1/�

Z 1

�1
e� 1

2 z2

p
2�

N .˛1 C ˇz/dz;

where

˛1 D
ln
�
x1.t/

x2.t/

�
C .1 � 
/.r � q1 C s21

2
/� �

�
r � 
 � s22 .1�
2/

2

�
�

s2
p
1 � 
2

p
�

;

ˇ D s1

s2

1 � 
p
1 � 
2

:

The Integral B2
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We make the change of variable
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to obtain
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Completing the square and simplifying,
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A further change of variable allows us to write
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11.5 Problems

Problem 11.1 Solve Eq. (11.6) in the case of a European foreign currency option
to obtain the solution (11.7). Do this in two ways. First, by applying the Fourier
transform techniques of Chap. 9. Note that by setting q D rf you can take a
lot of the results set out there. Second, obtain the solution to the Kolmogorov
backward equation associated with (11.9) and then use (11.8) and integration.
To implement this approach you should use (6.23) (appropriately re-interpreted)
to obtain Qp.xT ; T jx; t/. The integration may be done by using the results in
Appendix 3.1. These will have to be extended slightly to accommodate the rf .



Chapter 12
Jump-Diffusion Processes

Abstract This chapter considers jump-diffusion processes to allow for price
fluctuations to have two components, one consisting of the usual increments of
a Wiener process, the second allows for “large” jumps from time-to-time. We
introduce Poisson jump process with either absolute or proportional jump sizes
through the stochastic integrals and provide solutions when both the stock price
and Poisson jump size are log-normal. We also extend Ito’s lemma for the jump-
diffusion processes.

12.1 Introduction

In the derivation of the Black–Scholes model we listed the “ideal market conditions”
which are assumed to hold. One important assumption is that concerning the asset
price dynamics, namely that the price follows a stochastic process with a continuous
sample path. Essentially this means that the asset price changes satisfy a local
Markov property, that in a short interval of time, the asset price changes only by
a small amount. The technical statement of this property is the Lindeberg condition
which we discussed in Sect. 2.4, and leads to the modelling of the uncertain
stochastic term by the increments of a Wiener process (i.e. the dz term in the
stochastic differential equation). Implicit in this approach to modelling the asset
price dynamics is the notion that the factors causing the random fluctuations around
the average trend (e.g. changes in market conditions, changes in general economic
conditions) cause only marginal changes in the asset price. This assumption is
important as it underlies the continuous hedging argument. Of course in real markets
continuous hedging is not possible. However Merton and Samuelson (1974) have
been able to demonstrate that the Black–Scholes continuous trading solution is
a reasonable approximation to the more realistic discrete time trading solution,
provided that the asset price dynamics are generated by a stochastic process with
continuous sample paths.

It is therefore of some interest to consider the effect of relaxing the continuous
sample path assumption and to allow for random fluctuations which have more than
a marginal effect on the price of the underlying asset. The stochastic process that
allows us to incorporate this type of effect is the jump process, which we have
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already discussed in Chap. 2. This process allows the random fluctuations of the
asset price to have two components, one consisting of the usual increments of a
Wiener process, the second allows for “large” jumps in the asset price from time-to-
time.

There is some empirical evidence to suggest that jump processes may be more
appropriate for describing the dynamics of foreign exchange rates (see e.g. Akgiray
and Booth 1988) and also for the dynamics of interest rates (see e.g. Ahn and
Thompson 1988). Furthermore, Merton (1982) shows that in a continuous trading
environment asset price dynamics can always be described by a mixture of diffusion
processes and Poisson jump processes.

12.2 Mathematical Description of the Jump Process

We have already shown in Sect. 2.6 how to modify the Fokker–Planck and Kol-
mogorov equations to incorporate jump process terms. However, in order to extend
the hedging portfolio approach, we need a sample path description of mixed jump-
diffusion processes. Stochastic differential equations incorporating both continuous
diffusion and Poisson jump elements are discussed by Kushner (1967) and Gihman
and Skorohod (1972).

The arrival of the “events” causing a “large” price jump is assumed to follow
a Poisson process. In particular, the arrivals of the “events” are independently and
identically distributed, so that the probability of an event occurring during a time
interval of length�t can be written

Prob



event occurs once in the
time interval.t; t C�t/

�
D ��t C o.�t/;

Prob



event occurs more than once

in the time interval.t; t C�t/

�
D o.�t/;

Prob



event does not occur in the

time interval.t; t C�t/

�
D 1 � ��t C o.�t/;

where � is the mean number of arrivals of events per unit time.
There are two ways in which we may expound the description of jump processes.

One is to describe the jump in absolute terms (this is useful if we are focusing on
prices or interest rates), the other is to describe the jump in proportional terms (this
is more useful if our focus is on returns). Since both points of view are useful we
shall describe both. We start our exposition in terms of jump sizes being measured
in absolute terms and then consider the situation of jumps being measured in relative
terms as a special case. Since this special case is relevant for the stock option pricing
framework we have developed in previous chapters we in fact enter into quite a deal
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of detail, particularly concerning the price distribution when returns are governed
by both diffusion and jump stochastic components.

12.2.1 Absolute Jumps

Consider the diffusion process generated by the stochastic differential equation

dx D �.x; t/dt C �.x; t/dw (12.1)

to which we wish to add Poisson jumps. Here � is the instantaneous expected return
on the asset, �2 is the instantaneous variance of the return (conditional on no arrival
of Poisson jump events) and, dw is the increment of a Wiener process w under the
physical measure P.

The jumps are modelled as arriving at random times ti with a jump intensity �.
If we use n.dt/ to denote the number of jumps occurring in the interval dt, then

PrŒn.dt/ D 0� D 1� �dt C o.dt/;

PrŒn.dt/ D 1� D �dt C o.dt/;

PrŒn.dt/ > 1� D o.dt/:

Furthermore if N is the number of jumps up to time t then

PrŒN D n� D e��t .�t/n

nŠ
: (12.2)

We shall use Qj to indicate the probability measure governing the jump arrival
times. Let the size of the jump be y, which is drawn from a distribution whose
density function we denote by g.y/ and the associated measure Qy . The behaviour
of the process at a typical jump point ti is displayed in Fig. 12.1a for absolute jumps
and Fig. 12.1b for proportional jumps. Thus, for the absolute jumps that we are
currently considering

x.tCi / D x.t�i /C y:

In order to express the jump process within the stochastic differential equation
framework it is convenient to introduce the Poisson increment dN which we
define as

dN D


1; with prob. �dt;
0; with prob. .1 � �dt/:
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a b

Fig. 12.1 Sample path description of a jump-diffusion process. (a) An absolute jump. (b) A pro-
portional jump

In other words, N.t C dt/ � N.t/ is drawn from a Poisson distribution with mean
�dt.

In setting up the notation for the stochastic differential equation with Poisson
jumps it is convenient to do so in such a way that the expected change in dx over
the infinitesimal interval dt remains �.x; t/dt, as it is in (12.1). But clearly the jump
process will alter the mean change in dx. To determine this mean change due to
jumps we note that when a jump occurs the mean jump size is

k � E
Qy Œy� D

Z
yg.y/dy;

where we write E
Qy to denote expectation with respect to the jump size measure

Qy . However the jumps only occur with probability �dt, so that the mean change
in x over an infinitesimal interval dt due just to jumps is given by (note that we are
assuming the independence of Qy and Qj )

E
QyE

Qj Œdx� D E
Qy Œ.1 � �dt/0C � .dt/ y� D �kdt; (12.3)

where we write EQy to denote expectation with respect to the jump-arrival measure
Qj . So if we want the mean change in dx, over dt, to be �.x; t/dt we need to
compensate for the mean jump component in (12.3). Keeping the above facts in
mind, we write the stochastic differential equation for a combined jump diffusion
process as

dx D .�.x; t/ � �k/dt C �.x; t/dw C ydN: (12.4)
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Following Cox and Ross (1976a) this stochastic differential equation can be
interpreted as

dx D


.�.x; t/ � �k/dt C �.x; t/dw; with prob. .1 � �dt/;
.�.x; t/ � �k/dt C �.x; t/dw C y; with prob. �dt:

(12.5)

From the latter interpretation and the assumption of the independence of P, Qy and
Qj we calculate

EŒdx� DE
QyE

QjE
PŒdx� D E

QyE
Qj Œ.�.x; t/ � �k/dt C ydN�

D.�.x; t/ � �k/dt C E
Qy .y/EQj .dN/ D �.x; t/dt; (12.6)

giving the desired property that the mean of the increment dx remains the same as
under the pure diffusion process. It is also sometimes convenient to write (12.4) as

dx D �.x; t/dt C �.x; t/dw C .ydN � �kdt/: (12.7)

Since

E.ydN � �kdt/ D E
Qy .y/EQj .dN/ � �kdt D k�dt � �kdt D 0;

we see that under the representation (12.7) both stochastic terms are martingales.
Of course, just as in Chaps. 4 and 6, the stochastic differential equation notations

in (12.4), (12.5) and (12.7) are just convenient shorthand notations. These equations
need to be properly mathematically defined in terms of stochastic integrals. Thus
we need to extend to Poisson jump processes the concept of a stochastic integral.
To this end we focus just on the pure jump component and define a process J.t/
which is the contribution to x.t/ arising purely from the jump components. Using
N.t/ to denote the number of jumps that have occurred up to time t and referring to
Fig. 12.2 (and assuming J.0/ D 0) we see that, for a particular path,

J.t/ D
N.t/X

iD1
yi ;

where yi denotes the change in x at jump time ti , i.e.

yi D x.tCi /� x.t�i /:

The stochastic properties of J.t/ are determined by the Poisson arrival process
and the jump size distribution of y. If the jump sizes are bounded then the definition
of the stochastic integral with respect to jump processes is much simpler than
the corresponding definition of the stochastic integral with respect to the Wiener
process, where the principal difficulty lies in the fact that the changes in the Wiener
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Fig. 12.2 A typical sample path of the pure jump process

a b

Fig. 12.3 (a) The simulated distribution of the jump-component J.t/ at t D 1 with L = 250
subdivisions of [0,1]. (b) Two simulated sample paths when y is normally distributed

process are of unbounded variation. If we were to limit our attention to jumps of
finite size we could define the stochastic integral with respect to jump processes by
using the Riemann-Stieltjes integral. However we do want to allow for the situation
where y could be drawn from a distribution of unbounded variation (e.g. y could be
drawn from a normal or log-normal distribution). So we would still need to appeal
to the mean-square limit definition of the stochastic integral. Thus we shall write

J.t/ D
Z t

0

y.s/dN.s/; (12.8)

and the stochastic integral (12.8) should be understood in the sense of the least
squares limit. To illustrate the stochastic nature of the quantity J.t/ we display in
Fig. 12.3 the distribution of J.t/ at t D 1 for the case where the jump sizes are drawn
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Fig. 12.4 The simulated distributions of J.t/ for varying values of L

from a normal distribution.1 We also display in Fig. 12.3 two simulated sample paths
for J.t/ when y was drawn from a normal distribution. The distribution for J.t/ has
been generated using a particular subdivision of the interval .0; t/. To reinforce the
notion that the stochastic integral (12.8) is the limit of such distributions, we show
in Fig. 12.4 how the distribution evolves as the number of subdivisions L takes the
values 250; 500 and 1,000. Here we again focus on the case where the jump sizes
are normally distributed as in Fig. 12.3.

To perform the manipulations of stochastic calculus for jump-diffusion processes
we need to be able to calculate the mean and the variance of the quantity J.t/. Thus

EŒJ.t/� D E
QyE

Qj

N.t/X

iD1
yi : (12.9)

In performing the calculation in (12.9) we note that for all i , EQy Œyi � D k. We also
note that the jump times are independent and that conditional on the .i � 1/st jump

E
Qj Œyi � D

�
1 �

Z ti

ti�1

�.s/ds

	
� 0C

�Z ti

ti�1

�.s/ds

	
� yi D

�Z ti

ti�1

�.s/ds

	
� yi :

1The distribution has been obtained by simulating 100,000 paths of the Poisson process up to
t D 1. The normal distribution has mean of 0:1 and standard deviation of 0:2. The value of � used
was 10 and �t D 0:004 (i.e. 250 subdivisions of the time interval).
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Then taking the expectation with respect to Qy we have, conditional on the .i �1/st

jump

EŒyi � D k

Z ti

ti�1

�.s/ds � :

Summing all such contributions we see that

EŒJ.t/� D E

�Z t

0

y.s/dN.s/

�
D k

Z t

0

�.s/ds:

It follows that the quantity

QJ .t/ D
Z t

0

�
y.s/dN.s/� k�.s/ds

	

is a martingale. The quantity
R t
0
k�.s/ds is known as the compensator. Thus

Eq. (12.7) should be more correctly written as

x.t/ D x.0/C
Z t

0

�.x; s/ds C
Z t

0

�.x; s/dw.s/C
Z t

0

.y.s/dN.s/ � k�.s/ds/ ;

and may be more simply interpreted as

x.t/ D x.0/C
Z t

0

�.x; s/ds C
Z t

0

�.x; s/dw.s/C .

N.t/X

iD1
yi � k

Z t

0

�.s/ds/:

Alternatively the compensator may be incorporated into the drift term so that
Eq. (12.4) should be interpreted as

x.t/ D x.0/C
Z t

0

.�.x; s/ � k�.s// ds C
Z t

0

�.x; s/dw.s/C
Z t

0

y.s/dN.s/;

or more simply as

x.t/ D x.0/C
Z t

0

.�.x; s/ � k�.s// ds C
Z t

0

�.x; s/dw.s/C
N.t/X

iD1
yi :
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12.2.2 Proportional Jumps

Now consider the special case when the underlying diffusion process (12.1) is
expressed in return form i.e.

dx

x
D �dt C �dw (12.10)

and � and � may be functions of x and t . Note also that in this subsection we
assume �, � and � are constants in order to obtain the particular distributional
results derived below.

If there is the arrival of just one jump event at time ti then now it is assumed that

x.tCi / D Yix.t
�
i /;

or alternatively,

x.tCi / � x.t�i / D .Yi � 1/x.t�i /;

where Yi is drawn at time ti from a jump-size probability distribution of Y
with measure QY and the set of Y from successive events are assumed to be
independently and identically distributed. In between the arrival of the price jump
events, the asset price follows the continuous diffusion process (12.10). The asset
price dynamics may be written

dx

x
D .� � �k/dt C �dw C .Y � 1/dN; (12.11)

where

k D E
QY .Y � 1/:

Thus .Y � 1/ is, as we have seen, the (random) percentage change in the asset price
if the Poisson jump event occurs and E

QY is the expectation operator taken over the
probability distribution of the random variable Y . If we denote this distribution by
G.Y / then

k D
Z
.Y � 1/G.Y /dY D

Z
YG.Y /dY � 1:

The stochastic integral equation (12.11) may be written

x.t/ D x.0/C
Z t

0

.���k/x.s/dsC
Z t

0

�x.s/dw.s/C
N.t/X

iD1
.Yi�1/x.t�i /: (12.12)
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Equation (12.11) can be interpreted in long hand form as

dx

x
D


.� � �k/dt C �dw; with prob. .1 � �dt/;
.� � �k/dt C �dw C .Y � 1/; with prob. �dt:

The sample path x will be continuous most of the time with finite jumps of differing
signs and magnitudes occurring at discrete points in time. Under the assumption that
the parameters�, �, k and � are constant then the random variable x.t/, conditional
on x.0/, can be written

x.t/

x.0/
D exp

��
� � �2

2
� �k

	
t C �.w.t/ � w.0//

�
XN ; (12.13)

where w.t/ is a standard Wiener process and the X process is defined by2

XN D 1; if N.t/ D 0;

and

XN D
N.t/Y

iD1
Yi ; if N.t/ � 1:

The Yi are assumed to independently and identically distributed, and N.t/, the
number of jumps in .0; t/, is again drawn from the Poisson distribution with
parameter �t .

Equation (12.13) is easily derived by noting that, illustrated in Fig. 12.5, between
two jump times tCi�1 and t�i the path for x is driven by the diffusion process

dx

x
D .� � �k/dt C �dw;

which may also be written

d.lnx/ D .� � �k � 1

2
�2/dt C �dw;

whose solution for tCi�1 � t � t�i can be written (see Eq. (6.16))

x.t/ D x.tCi�1/ expŒ.� � �2

2
� �k/.t � ti�1/C �.w.t/ � w.ti�1//�:

2Note that for notation simplicity we write XN instead of the more strictly correct XN.t/ .
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Fig. 12.5 Diffusion movements between a sequence of jump times

Thus

x.t�i / D x.tCi�1/ expŒ.� � �2

2
� �k/.ti � ti�1/C �.w.ti / � w.ti�1//�:

After the jump at ti we have that

x.tCi / D Yix.t
�
i /;

so that

x.tCi / D x.tCi�1/ expŒ.�� �2

2
��k/.ti � ti�1/C�.w.ti /� w.ti�1//�Yi : (12.14)

Applying (12.14) successively from t D 0 to a time t between jump times tn and
tnC1 we obtain (12.13).

If we make the further assumption that

dY

Y
D 
dt C ıdWY ;

where 
 and ı are constants and WY is an independent Wiener process. Then Yi are
log-normally distributed, hence x.t/=x.0/ will be log-normally distributed. More
specifically, if3

ln Yi � �.
 � 1

2
ı2; ı2/; (12.15)

3For later use note that the density function for Y which we denote G.Y /, is given by

G.Y /dY D 1p
2�ı

exp

"
�1
2

�
lnY � .
 � ı2=2/

ı

	2#
dY

Y

which follows from (6.23).
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then the distribution of lnŒx.t/=x.0/� is

ln

�
x.t/

x.0/

	
�

1X

nD0
e��t .�t/n

nŠ
�

�
.� � �k ��2=2/t Cn

�

 � ı2

2

	
; �2t Cnı2

	
:

(12.16)

This last expression tells us that, the log return distribution is stationary over time
and is described as a Poisson mixture of normal distributions.

To derive (12.16) we note that by taking logs Eq. (12.13) becomes

ln

�
x.t/

x.0/

	
D
�
� � �2

2
� �k

	
t C �.w.t/ � w.0//C

N.t/X

iD1
ln Yi :

Since w.t/ � w.0/ and each of the ln Yi are normally distributed it follows that
ln.x.t/=x.0// is normally distributed. Furthermore, conditional on n jumps having
occurred up to time t , ln.x.t/=x.0// has mean and variance given by

E0

�
ln

�
x.t/

x.0/

	�
D
�
�� �k � �2

2

	
t C n

�

 � ı2

2

	
;

and

var0

�
ln

�
x.t/

x.0/

	�
D �2t C nı2:

Equation (12.16) then follows by using the result (12.2) and summing over all
possible numbers of jumps.

In Fig. 12.6 we illustrate (on the left hand side) some typical sample paths when
the Yi are log-normally distributed.4 For the same simulated path of the Wiener
process we compare the � D 0 case (the pure diffusion case) with the case � D 2.
On the right hand side we display the outcome of the .Y � 1/xdq process on the
simulated path. To appreciate the significance of the size of � (the jump arrival rate)
note that a value of � D 2 corresponds to two jumps per year on average.

It can be shown that the distribution (12.16) is leptokurtic (i.e. has fat tails) and
therefore, captures an important feature of asset price movements that is not well
captured by the simple geometric Brownian motion process. In Fig. 12.7 we show
the effect on the distributions for ln.x.t/=x.0// and x.t/=x.0/ as � increases from
� D 0: The parameter values used are displayed in Table 12.1, and have been chosen

4For this simulation we took � D 0:15, � D 0:20, 
 D 0:05, ı D 0:02. The value of k.D e
 � 1/

was 0:05. The value of �t was 0:01.
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a b

Fig. 12.6 Simulating the jump diffusion process; (a) comparing the pure diffusion process
(� D 0) with a jump-diffusion process (� D 2), (b) the pure jump component of the simulated
.� D 2/ path in (a)

to maintain var0Œxt � D 0:2318, where var0Œxt � denotes the overall variance5 (as
opposed to the variance conditional on n jumps). The fat tails are clearly evident as
is the skewness and central peakedness as the jump intensity increases. These are
both features observed in financial market data.

Finally we note that as a stochastic integral equation, Eq. (12.11) may be written

x.t/ D x.0/C
Z t

0

.� � �k/ x.s/ds C
Z t

0

�x.s/dw.s/C
Z t

0

.Y.s/� 1/ x.s/dN.s/;

or more simply as

x.t/ D x.0/C
�Z t

0

.� � �k/ x.s/ds

	
C
Z t

0

�x.s/dw.s/C
N.t/X

iD1
.Yi � 1/x.ti /:

(12.17)

Written in this form the process for x is rather difficult to analyse. As we have seen
in this section it is simpler to work with the stochastic integral equation behind the
solution (12.13) which is

ln x.t/ D lnx.0/C
Z t

0

�
� � �2

2
� �k

	
ds C

Z t

0

�dw.s/C
N.t/X

iD1
lnYi : (12.18)

5Note that for the geometric jump-diffusion process (12.12)

vart ŒxT � D x2t e
2�.T�t/

h
exp..�2 � �.2e
 � e2
Cı2 � 1//.T � t //� 1

i
:

See Problem 12.5.
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Fig. 12.7 Effect of increasing values of � on the distribution at t D 2I (a) for the returns
ln.x.t/=x.0//, (b) for the relative price x.t/=x.0/

In the next section we will show how (12.18) can be formally derived from (12.17)
an application of Ito’s lemma for jumps.
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Table 12.1 Parameter values used to generate the distributions in Fig. 12.7

� � � 
 ı

0.15 0.2318 0 – –

0.15 0.2 1 0.05 0.10

0.15 0.1621 2 0.05 0.10

These have been selected so that for all distributions var0Œxt � D 0:2318

12.2.3 A General Process of Dependent Jump Size

Both the absolute and proportional jump sizes of the previous two subsections can
be generalised to allow the case when the jump size is some function of the process
x. In particular we shall assume that at a jump time ti

x.tCi / D x.t�i /C yih.x.t
�
i //; (12.19)

where h is some well behaved function of the process x. In the case of absolute
jumps of Sect. 12.2.1 we have h.x/ D 1. In the case of proportional jumps of
Sect. 12.2.2 we set h.x/ D x. If in addition we impose the restriction that at a jump
time x.tCi / cannot become negative then we would also require that the support for
the distribution of y be .�1;1/. In Sect. 12.2.2 this was indeed the case since there
the support for Y was .0;1/ and, y and Y are here related by y D Y � 1.

From (12.19) we calculate that

The mean jump size at time ti D E
Qy Œyh.x.t�i //� D h.x.t�i //k;

where we still use k to denote E
Qy Œy�. Now in this more general situation (12.7)

becomes

dx D �.x; t/dt C �.x; t/dw C .yh.x/dN � �kh.x/dt/; (12.20)

which may be interpreted as the stochastic integral equation

x.t/ D x.0/C
Z t

0

�.x; s/dsC
Z t

0

�.x; s/dw.s/C
Z t

0

�
yh.x.s//dN.s/��kh.x.s//ds

	
;

(12.21)

or more simply as

x.t/ D x.0/C
Z t

0

�.x; s/dsC
Z t

0

�.x; s/dw.s/C
N.t/X

iD1

�
yi � k

Z t

0

�.s/ds

	
h.x.ti //:

(12.22)

Equations (12.21) and (12.22) are easily re-arranged to give the forms where the
compensator is included in the drift term.
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12.3 Ito’s Lemma for Jump-Diffusion Processes

Suppose v depends on x and t , i.e.

v D v.x; t/;

where x is driven by the jump-diffusion stochastic process (12.20). We seek the
stochastic process driving v. The derivation we sketch out below is based loosely on
Kushner (1967) and Gihman and Skorohod (1972).

We first observe that in between the Poisson jump events x follows the
continuous diffusion given by the upper part of (12.5). Thus at times t ¤ ti (a
typical jump time), we calculate, the change in v using the same approach as in
Sect. 6.2.2. Thus

dv D @v

@t
dt C @v

@x
dx C 1

2

@2v

@x2
.dx/2

D
�
@v

@t
C .�� �kh.x//

@v

@x
C 1

2
�2
@2v

@x2

	
dt C �

@v

@x
dw: (12.23)

The change in v brought about by the jump at a typical jump time, t D ti , is given
by (see Fig. 12.8)

v.tCi /� v.t�i / D v.x C yih.x/; ti /� v.x; ti /:

At any time t , for the change in v brought about by the Poisson jump process we
may write

v.tC/ � v.t�/ D Œv.x C yh.x/; t/ � v.x; t/�dN.t/: (12.24)

Figure 12.1 illustrates the change in v at a typical jump time. It is convenient to
define the expected change in v over the jump distribution, namely

kv D E
Qy Œv.x C yh.x/; t/ � v.x; t/� D

Z
Œv.x C yh.x/; t/ � v.x; t/�g.y/dy:

The changes in v in (12.23) and (12.24) occur with probabilities .1 � �dt/ and �dt
respectively, thus calculating the expected change in v with respect to both the jump
time distribution and the jump size distribution we have

EŒdv� D E
QyE

Qj E
PŒdv� D

�
@v

@t
C .� � �kh.x//

@v

@x
C 1

2
�2
@2v

@x2

	
dt.1 � �dt/C kv�dt

D
�
@v

@t
C .� � �kh.x//

@v

@x
C 1

2
�2
@2v

@x2
C �kv

	
dt:
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a

b

Fig. 12.8 (a) The change in x and (b) change in v, at a typical jump time

Thus we see that if we define

�v D @v

@t
C .� � �kh.x//

@v

@x
C 1

2
�2
@2v

@x2
C �kv; (12.25)

and

�v D �
@v

@x
:

then

EŒdv� D �vdt;

in analogy with (12.6). Furthermore using the same logic as that behind the
representation (12.5) we can write

dv D



(�v � �kv/dt C �vdw, with prob. (1-�dt),
.�v � �kv/dt C �vdw C Œv.x C yh.x/; t/ � v.x; t/�, with prob. �dt,
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which in analogy with (12.4) may be written

dv D .�v � �kv/dt C �vdw C Œv.x C yh.x/; t/ � v.x; t/�dN: (12.26)

We may express (12.26) in a martingale representation by rewriting it in the form
(compare with Eq. (12.20))

dv D �vdt C �vdw C .Œv.x C yh.x/; t/ � v.x; t/�dN � �kvdt/: (12.27)

Equation (12.26) (or alternatively (12.27)) is the expression of Ito’s lemma for jump-
diffusion processes.

A simple (but important for future applications) example of the use of Ito’s
Lemma is to derive the jump-diffusion stochastic differential equation followed by
lnx where x is the geometric jump-diffusion process (12.11). This extends to the
jump-diffusion setting the example in Sect. 6.3.2. We set

u D ln x

to denote the log of the process x. Hence the function h.x/ in (12.19) is simply x,
so the jump in x can be denoted x C yx, or x C .Y � 1/x D Yx which is the form
we shall use. We calculate

@u

@t
D 0;

@u

@x
D 1

x
;

@2u

@x2
D � 1

x2
:

The quantity of (12.25) �v in the current context becomes

�v D .�x � �kx/ � 1
x

C 1

2
�2x2

�
� 1

x2

	
C �kv D � � �k � 1

2
�2 C �kv;

where

kv D
Z
Œln..1C y/x/ � lnx� g.y/dy D

Z
Œln.Yx/� lnx�G.Y /dY

D
Z

ln.Y /G.Y /d.Y /;

and

�v D �x � 1
x

D �:

Thus applying Eq. (12.26) the stochastic differential equation for u or (lnx) becomes

d.lnx/ D .�� �2

2
� �k/dt C �dw C ln YdN: (12.28)
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Integrating from 0 to t we obtain

lnx.t/ D lnx.0/C
Z t

0

.� � �2

2
� �k/ds C

Z t

0

�dw.s/C
Z t

0

ln Y.s/dN.s/:

(12.29)

Bearing in mind that

Z t

0

lnY.s/dN.s/ D
N.t/X

iD1
ln Yi ;

where N.t/ is the number of jumps that have occurred up to time t , we see that
Eq. (12.29) is equivalent to Eq. (12.18).

12.4 Appendix

Appendix 12.1 Kolmogorov Equation and Feynman–Kac
Formula for Processes with Jumps

In this appendix we merely summarise the key results concerning the Kolmogorov
equation and Feynman–Kac formula for jump-diffusion (sometimes called Wiener-
Poisson) stochastic differential equations. We refer the reader to Gihman and
Skorohod (1972) for details of proofs.

Consider the jump-diffusion stochastic differential equation (see Eq. (12.7))

dx D �.x; t/dt C �.x; t/dw C .ydN � �kdt/: (12.30)

The partial differential operator for the transition probability density function
p.xT ; T jx; t/.T � t/ associated with (12.30) (the so-called infinitesimal generator)
is given by

K p D �.x; t/
@p

@x
C 1

2
�2.x; t/

@2p

@x2
C
Z �

p.x C y/� p.x/ � �y
@p

@x

�
g.y/dy;

which can also be written

K p D .�.x; t/ � �k/
@p

@x
C 1

2
�2.x; t/

@2p

@x2
C
Z
Œp.x C y/� p.x/� g.y/dy:

The Kolmogorov equation for p is

@p

@t
C K p D 0;
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subject to the usual boundary condition

lim
t!T

p.xT ; T jx; t/ D ı.x � xT /:

The Feynman–Kac Formula

Set

v.t; x/ D Et;x

�
f .xT / exp


Z T

t


g.s; xs/ds

��

where f and g are sufficiently well-behaved functions, 
 is a constant, and x is
generated by the jump-diffusion process (12.30). Then the Feynman–Kac formula
in this situation states that v.t; x/ satisfies

@v

@t
C Av C 
g.t; x/v.t; x/ D 0

subject to the boundary condition

lim
t!T

v.t; x/ D f .xT /:

Note that for the applications in Chap. 13, 
 D 0.

12.5 Problems

Problem 12.1

(a) Show that

E0

�Z t

0

f .s/dN2.s/

�
D
Z t

0

f .s/�.s/ds;

for a suitably well behaved function f .
(b) Hence, evaluate

E0

�Z t

0

ˇi .u/dNi .u/
Z t

0

ˇj .u/dNj .u/

�

for well-behaved functions ˇi .t/; ˇj .t/ and independent jumpsNi ;Nj .
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Problem 12.2 Consider the independent Poisson processes Ni.t/ and Nj .t/ with
intensities �i .t/ and �j .t/ respectively. For well-behaved functions ˇi .t/ and ˇj .t/,
prove that

E0

� Z t

0

ˇi .u/ŒdNi .u/� �i .u/du�
Z t

0

ˇj .u/ŒdNj .u/� �j .u/du�

�

D
( R t

0
�i .s/ˇ

2
i .s/ds; i D j;

0; i ¤ j:

Problem 12.3 In the case when �, � and � are time dependent show that
Eq. (12.13) becomes

x.t/

x.0/
D exp

�Z t

0

�
�.s/� �.s/2

2
� �.s/k

	
ds C

Z t

0

�.s/dw.s/

�
XN :

Problem 12.4 Consider the mean-reverting jump-diffusion equation

dx D ˇ. Nx � �k=ˇ � x/dt C �dw C ydN:

Use the same idea as was used to derive Eq. (12.13) (that is, solve the underlying
diffusion equation between jump times) to show, for a path along which n jumps
have occurred up to time t , that

x.t/ D x.0/e�ˇt C
Z t

0

ˇ. Nx � �k=ˇ/e�ˇ.t�s/ds C
Z t

0

�e�ˇ.t�s/dw.s/

C
nX

iD1
e�ˇ.tn�ti /yi :

Problem 12.5 For the geometric jump-diffusion process (12.13), show that

Et ŒxT � D xte
�.T�t /;

and

vart ŒxT � D x2t e
2�.T�t /

h
exp

n
.�2 � �.2e
 � e2
Cı2 � 1//.T � t/

o
� 1

i
:



Chapter 13
Option Pricing Under Jump-Diffusion Processes

Abstract This chapter extends the hedging argument of option pricing developed
for continuous diffusion processes previously to the situations when the underlying
asset price is driven by the jump-diffusion stochastic differential equations. By
constructing hedging portfolios and employing the capital asset pricing model,
we provide an option pricing integro-partial differential equations and a general
solution. We also examine alternative ways to construct the hedging portfolio and to
price option when the jump sizes are fixed.

13.1 Introduction

Now let us turn to the problem of developing the hedging argument under the
assumption that the underlying asset price x is driven by the jump-diffusion
stochastic differential equation (12.11). To develop a hedging argument we need
to know the dynamics of the option price. If the option price f is given by

f D f .x; t/;

then application of the results (12.26) implies that

df

f
D .�f � �kf /dt C �f dw C .Yf � 1/dN;

where1

f�f D � C .� � �k/x�C 1

2
�2x2� C �fkf ;

f �f D �x�;

fkf D E
QY Œf .xY; t/ � f .x; t/� D

Z
Œf .xY; t/ � f .x; t/�G.Y /dY;

1We recall the definitions � D @f

@t
, � D @f

@x
, � D @2f

@x2
.
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and

Yf � 1 � .f .xY; t/ � f .x; t//=f .x; t/

is the random variable percentage change in the option price. If the Poisson event
for the asset occurs and the proportional jump size takes on the value Y , then the
Poisson event for the option occurs and the proportional jump size in the option
value is given by

Yf D f .xY; t/

f .x; t/
;

which is a nonlinear relationship connecting the random variables Yf and Y .

13.2 Constructing a Hedging Portfolio

Consider a portfolio which contains the asset, the option on the asset and the riskless
asset with return r per unit time in the proportions �x , �f , and �r , so that

�x C �f C �r D 1:

If V is the value of the portfolio then the return dynamics of the portfolio are
given by

dV

V
D �x

dx

x
C �f

df

f
C �rdr

D �xŒ.� � �k/dt C �dw C .Y � 1/dN�

C�f Œ.�f � �kf /dt C �f dw C .Yf � 1/dN�C �rrdt:

Collecting terms and using �r D 1 � �x � �f we obtain

dV

V
D .�V � �kV /dt C �V dw C .YV � 1/dN; (13.1)

where

�V D �x.� � r/C �f .�f � r/C r;

�V D �x� C �f �f ; (13.2)

YV � 1 D �x.Y � 1/C �f Œf .xY ; t/ � f .x; t/�=f .x; t/;
kV D E

QY ŒYV � 1�:
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Here .YV � 1/ is the random variable percentage change in the portfolio’s value if
the Poisson jump event occurs.

When the asset price follows a diffusion process the hedging portfolio is rendered
riskless by choosing the portfolio proportions �x , �f such that

�x� C �f �f D 0: (13.3)

However, this choice of portfolio weights in the case of a jump-diffusion process,
while eliminating the �V term will not eliminate the jump risk (i.e. the YV �1 term).
In fact, there is no choice of �x and �f which eliminates the jump risk term (i.e.
makes YV D 1).

Let us nevertheless determine the return characteristics of the portfolio when the
Black–Scholes hedge is followed. Letting ��

x and ��
f denote the values of �x , �f

satisfying (13.3) and V � the corresponding portfolio value we have from (13.1)

dV�

V � D .��
V � �k�

V /dt C .Y �
V � 1/dN: (13.4)

The portfolio return has thus been reduced to a pure jump process, and could also
be written

dV�

V � D



(��
V - �k�

V /dt, if the Poisson jump event does not occur,
(��

V - �k�
V /dt + .Y �

V � 1/ if the Poisson jump event occurs.
(13.5)

Equation (13.5) tells us that most of the time the portfolio return will be predictable
and earn .��

V � �k�
V /. However every .1=�/ units of time, on average, the portfolio

return takes an unexpected jump.
It is possible to say something about the qualitative characteristics of the portfolio

return. Note first of all that

Y �
V � 1 D ��

f

f .xY; t/ � f .x; t/ � fx.x; t/.xY � x/

f .x; t/
:

Since the option price is a strictly convex function of the asset price it follows that

f .xY; t/ � f .x; t/
xY � x > fx.x; t/;

for Y > 1, and

f .xY; t/ � f .x; t/
xY � x < fx.x; t/;

for Y < 1. Thus for all values of Y , it follows that

f .xY; t/ � f .x; t/ � fx.x; t/.xY � x/ > 0:
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Hence

sign.Y �
V � 1/ D sign.��

f /:

Suppose an investor is long the stock and short the option (i.e. ��
f < 0) then most

of the time he or she would earn more than the expected return on the hedge ��
V ,

since k�
V < 0. The investor will however suffer losses when the asset price jumps

from time to time. These losses occur at such a frequency so as to, on average,
offset the excess return ��k�

V . If we define as a “quiet” period, that period in
between the arrival of Poisson jump events, and if we assume that the jump events
are related to asset specific information then the above argument shows that during
quiet periods writers of options will tend to make what appear to be positive excess
returns. Purchasers of options on the other hand would make negative excess returns
and therefore appear as “losers”. However, at the arrival (relatively infrequently) of
Poisson jump events, the options writers will suffer loss and the buyers appear as
“winners”. Since the arrival of the Poisson events is random, there is no systematic
way of exploiting this understanding of the dynamics. The reverse argument applies
when the investor is short the asset and long the option (i.e. ��

f > 0).

13.3 Pricing the Option

The clue to pricing the option in the presence of jump-diffusion processes is the
alternative approach used by Black–Scholes employing the Capital Asset Pricing
model.

We have already stressed that the Poisson jump events are asset specific. It
follows that the jump component of the asset’s return represents non-systematic risk.
It also follows that, since the only uncertainty in the V � portfolio of the previous
section is the Poisson jump component, then its risk is uncorrelated with the market,
i.e. it contains only non-systematic risk. From modern portfolio theory we have the
result that portfolios containing only non-systematic risk have a beta factor of zero.
Furthermore, if the CAPM describes security returns then the return on a zero beta
portfolio must equal the riskless rate. It follows that

��
V D r;

or, from (13.2) that

��
x .�� r/C ��

f .�f � r/ D 0;

which when combined with

��
x � C ��

f �f D 0;
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yields

� � r
�

D �f � r

�f
: (13.6)

After applying the definitions of �f and �f in the last equation, we obtain the
following equation for the option price

@f

@t
C .r ��k/x @f

@x
C 1

2
�2x2

@2f

@x2
� rf C�EQY Œf .xY ; t/�f .x; t/� D 0: (13.7)

Because of the expectation operator EQY , Eq. (13.7) is an integro-partial differential
equation and solution techniques for it require a degree of complexity beyond those
for the Black–Scholes partial differential equation.

We may use (13.6) to obtain a martingale representation of the price. Using an
argument familiar from Chaps. 8 and 10, if we use � to denote the market price of
risk associated with the risk factor dw then (13.6) may be interpreted as

� D r C ��;

�f D r C ��f :

Thus in the absence of riskless arbitrage opportunities the stochastic differential
equations for x and f may be written

dx

x
D .r � �k C ��/dt C �dw C .Y � 1/dN;

df

f
D .r � �kf C ��f /dt C �f dw C .Yf � 1/dN:

Or alternatively as

dx

x
D rdt C �d Qw C Œ.Y � 1/dN � �kdt�; (13.8)

df

f
D rdt C �f d Qw C Œ.Yf � 1/dN � �kf dt�; (13.9)

where

Qw.t/ D w.t/C
Z t

0

�.s/ds:

Under the original measure P, Qw will not be a standard Wiener process, but
application of Girsanov’s theorem for processes involving jumps (see Bremaud
1981) allows us to assert that it is possible to obtain an equivalent measure QP under
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which Qw is a standard Wiener process and N remains a jump process with jump
intensity �.

We note that (13.9) may be written

d.fe�rt/ D e�rt�f fd Qw C e�rtf Œ.Yf � 1/dN � �kf dt�

so that under QP the quantity fe�rt, the option price measured in units of the money
market account ert, is a martingale, i.e.

f .x; t/ D e�r.T�t / QEt Œf .xT ; T /�;

where QEt is the expectation operator under QP.
We note that one way to calculate QEt would be to simulate the jump-diffusion

process (13.8) for x. Application of the Feynman–Kac formula for jump-diffusion
processes (see Appendix 12.1) would yield the integro-partial differential equa-
tion (13.7). Thus we have established the link between the martingale viewpoint
and the integro-partial differential equation viewpoint.

13.4 General Form of the Solution

Recall that in Eq. (13.7), t is the current time. If we switch the time variable to
� D T � t D time-to-maturity, then Eq. (13.7) becomes

� @f

@�
C .r � �k/x

@f

@x
C 1

2
�2x2

@2f

@x2
� rf C �EQY Œf .xY; �/ � f .x; �/� D 0:

(13.10)

To fully appreciate the nature of the pricing equation (13.10), recall thatG.Y / is the
probability density function for the random variable Y then (13.10) may be written

�@f
@�

C .r � �k/x
@f

@x
C 1

2
�2x2

@2f

@x2
� rf

C �

Z 1

�1
Œf .xY; �/ � f .x; �/�G.Y /dY D 0;

(13.11)

where

k D
Z 1

�1
YG.Y /dY � 1:
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This type of equation may be classed as a mixed integro-partial differential equation.
Whilst the solution of such equations is in general quite difficult, it turns out that the
general form of the solution may be expressed in a convenient form even before we
specify the density function G.Y /.

In the situation when the underlying asset is common stock equation (13.10) must
be solved subject to the boundary condition

f .0; �/ D 0; (13.12)

and the initial condition

f .x; 0/ D maxŒ0; x � E�; (13.13)

whereE is the exercise price of the option. LetM.x; � IE; �2; r/ denote the solution
to (13.10) in the absence of the jump component, i.e. when � D 0. ThusM would
be the Black–Scholes solution given by

M.x; � IE; �2; r/ D xN .d1/� Ee�r�N .d2/; (13.14)

where

d1 D ln.x=E/C .r C �2=2/�

�
p
�

; d2 D d1 � �
p
�:

Define the random variableXn D Qn
iD1 Yi as one having the same distribution as the

product of n independently identically distributed random variables, each identically
distributed as the random variable price change Y . It is assumedX0 D 1. Define En

to be the expectation operator over the distribution of Xn (Fig. 13.1).

Fig. 13.1 Constructing the random variable Xn
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We show in Appendix 13.1 that the solution to (13.10) subject to the boundary
and initial conditions (13.12), (13.13) can be written2

f .x; �/ D
1X

nD0

e��� .��/n

nŠ
E
nŒM.xXne

��k� ; � IE; �2; r/�: (13.15)

To apply the solution (13.15) we need to specify the probability distribution of
the random variable Y . Let us consider in particular the case when Y follows a
log-normal distribution lnY � �.
 � ı2=2; ı2/. It follows that


 D ln.1C k/;

and that Xn has a log-normal distribution with

E
nŒXn� D en
 ; varŒlnXn� D nı2:

If we let

Mn.x; �/ D M.x; � IE; v2n; rn/;
where

v2n D �2 C nı2

�
; rn D r � �k C n


�
;

then the solution (13.15) reduces to

f .x; �/ D
1X

nD0

e��0� .�0�/n

nŠ
Mn.x; �/;

where �0 D �.1C k/. The quantityMn.x; �/ is the value of the option, conditional
on knowing that exactly n Poisson jumps will occur during the life of the option.
The option price is then the expectation of all such values where the expectation
is taken over the Poisson distribution (with parameter �0�) that n jumps will occur
during the life of the option.

In Figs. 13.2 and 13.3 we show the effect on the option price and on delta of
increasing values of �. Here we have used the parameter values T D 1, E D 1,
r D 0:05, � D 0:2, 
 D 0 and ı D 0:25.

2The forms of the solution given here are from the original Merton (1976) paper. He only
demonstrates that these solutions indeed satisfy the integro-partial differential equation (13.11) and
relevant boundary conditions. Theory on uniqueness of solutions guarantees that this is indeed “the
solution”. Appendix 13.1 reproduces (modulo some notational changes) Merton’s calculations.
However this approach gives us no systematic method to solve the integro-partial differential
equations encountered in the jump-diffusion case. In Chap. 14 we outline the use of the Fourier
transform technique as one such systematic approach.
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E S

Call

λ = 3

λ = 2

λ = 1

λ = 0 

Fig. 13.2 Effect of increasing values of � on the option price

E S

Delta

λ=0
λ=1
λ=2
λ=3

Fig. 13.3 Effect of increasing values of � on the delta
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13.5 Alternative Ways of Completing the Market

As we have seen in the previous sections the incorporation of jumps into the
diffusion process governing the dynamics of the asset price introduces an additional
source of risk. Namely the risk associated with the Poisson stochastic process
governing the jump part of the process followed by the asset price. In order
to successfully apply the hedging argument we need some way of hedging this
additional risk. The way proposed by Merton in Sect. 13.3 is one way to do this.
However other ways are also possible and these usually involve introducing some
additional hedging instruments into the hedging portfolio. Such a procedure of
introducing a sufficient number of traded instruments to hedge away the number
of risk factors is known as “completing the market”.

One way of completing the market is to introduce additional options into the
hedging portfolio, an approach which was developed by Jones (1984). It is also
possible to complete the market by using interest rate market instruments as in
Jarrow and Madan (1995).

Here we follow the approach of Jones (1984) and introduce several options into
the hedging portfolio (for example, options with different strike prices). For instance
we may introduce two options on the stock under consideration. Since we have a
finite number of hedging instruments we can only hedge a finite number of “jump
risks”. Hence in this approach we have to restrict the type of jumps that can occur.
In the case of the availability of two options as hedging instruments we allow jumps
to have only two amplitudes, as shown in Fig. 13.4.

Hence we write the stock price process as

dx

x
D �dt C �dw C k1dN1 C k2dN2; (13.16)

where

Pr.dNi D 1/ D �idt; Pr.dNi D 0/ D 1 � �idt

Fig. 13.4 A finite number of fixed jump sizes
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for i D 1; 2; and k1; k2 measure the proportional price jumps in the case of Poisson
events.

Let g and h represent the prices of two options written on the stock and assume
that the option dynamics contain the same kind of risks as the stock itself. Then the
option price dynamics may be written

dg

g
D �gdt C �gdw C kg1dN1 C kg2dN2; (13.17)

dh

h
D �hdt C �hdw C kh1dN1 C kh2dN2; (13.18)

where the coefficients �, � , k represent expected return, volatility and proportional
price jumps for each option. All coefficients are assumed to be functions of x; g; h
and time t .

We note from (13.16)–(13.18) that the unconditional expected returns are
given by

E

�
dx

x

�
D .�C k1�1 C k2�2/dt;

E

�
dg

g

�
D .�g C kg1�1 C kg2�2/dt;

E

�
dh

h

�
D .�h C kh1�1 C kh2�2/dt:

Let f be the price of any other option on the stock having an expiry date earlier
than that of options g and h. We form a hedging portfolio consisting of the three
options, the stock and the risk-free asset. We assume that the price of option f is a
function f .x; g; h; �/ of the stock price, the other two option prices and its time-to-
maturity � in general.

By an application of Ito’s Lemma in several variables (see Sect. 6.5) and Ito’s
Lemma for jump processes (Sect. 12.3) the dynamics of the option f are given by

df

f
D �f dt C �f dw C kf1dN1 C kf2dN2;

where

�f � 1

f

�
Df C �x

@f

@x
C �gg

@f

@g
C �hh

@f

@h
� @f

@�

	
; (13.19)

Df � 1

2
�2x2

@2f

@x2
C 1

2
�2gg

2 @
2f

@g2
C 1

2
�2hh

2 @
2f

@h2



284 13 Option Pricing Under Jump-Diffusion Processes

C �x�gg
@2f

@x@g
C �x�hh

@2f

@x@h
C �gg�hh

@2f

@g@h
; (13.20)

�f � 1

f

�
�x
@f

@x
C �gg

@f

@g
C �hh

@f

@h

	
; (13.21)

kfi � 1

f
Œf .xY i ; gYgi ; hYhi ; �/ � f .x; g; h; �/�; .i D 1; 2/; (13.22)

where,

Yi D .ki C 1/; Ygi D kgi C 1; Yhi D khi C 1; .i D 1; 2/:

We note that all coefficients are functions of the stock price, the first two option
prices and time. The dynamics of x; g; h and f each contain the three risk terms dz,
dN1 and dN2. The stock x and options g; h span the three risk dimensions that they
have in common with the option f . Hence by forming a hedge of x; g and h we can
cancel any risk due to f . This reflects the redundancy of f since it can be viewed
as an instrument which duplicates a return pattern already available via a dynamic
portfolio strategy.

Consider the hedging portfolio and suppose that the weights of the risky asset
x, options g; h; f and riskless asset r are � , �g , �h, �f , �r respectively (so that
�r � �.� C �h C �g C �f / since the weights sum to zero). If V denotes the value
of the hedging portfolio then

dV

V
D �

�.� � r/C �g.�g � r/C �h.�h � r/C �f .�f � r/



dt

C Œ�� C �g�g C �h�h C �f �f �dw

C Œ�k1 C �gkg1 C �hkh1 C �f kf1 �dN1

C Œ�k2 C �gkg2 C �hkh2 C �f kf2 �dN2 :

The portfolio will be riskless if

�� C �g�g C �h�h C �f �f D 0; (13.23)

�k1 C �gkg1 C �hkh1 C �f kf1 D 0; (13.24)

�k2 C �gkg2 C �hkh2 C �f kf2 D 0: (13.25)

The return on the hedging portfolio would then be

dV

V
D �

�.� � r/C �g.�g � r/C �h.�h � r/C �f .�f � r/



dt:
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Following a now standard argument, this return must be zero so that

�.� � r/C �g.�g � r/C �h.�h � r/C �f .�f � r/ D 0: (13.26)

The four simultaneous Eqs. (13.23)–(13.26) in the weights .�; �g; �h; �f / may be
written in matrix form as

2

664

� � r �g � r �h � r �f � r

� �g �h �f
k1 kg1 kh1 kf1
k2 kg2 kh2 kf2

3

775

2

664

�

�g
�h
�f

3

775 D

2

664

0

0

0

0

3

775 : (13.27)

Using standard results in linear algebra (13.27) implies that there must exist
quantities �, 
1, 
2 such that

� � r D �� C 
1k1 C 
2k2; (13.28)

�g � r D ��g C 
1kg1 C 
2kg2 ; (13.29)

�h � r D ��h C 
1kh1 C 
2kh2 ; (13.30)

�f � r D ��f C 
1kf1 C 
2kf2 : (13.31)

Making use of (13.31) and substituting (13.28)–(13.30) and (13.21), we find that the
option price f must satisfy

Df C .r C 
1k1 C 
2k2/x
@f

@x
C .r C 
1kg1 C 
2kg2/g

@f

@g

C .r C 
1kh1 C 
2kh2/h
@f

@h
� .r C 
1kf1 C 
2kf2 /f � @f

@�
D 0:

(13.32)

Note that Eqs. (13.28)–(13.31) extend the familiar interpretation of the no-riskless
arbitrage condition. First we interpret � as the market price of risk associated with
the uncertainty due to the continuous diffusion part of the asset price process
and 
i as the market price of risk associated with the i th jump component. Then
Eqs. (13.28)–(13.31) assert that in equilibrium the expected return on each risky
asset equals the risk free rate plus the sum of the market price of each risk
component times the amount of associated risk.

A considerable simplification of the option pricing equation (13.32) is possible
if we assume that all parameters are functions of the stock price and time alone i.e.
f .x; g; h; �/ D f .x; �/: Then Eq. (13.32) reduces to

1

2
�2x2

@2f

@x2
C.rC
1k1C
2k2/x @f

@x
�.rC
1kf1 C
2kf2/f � @f

@�
D 0; (13.33)
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where we recall that

kfi D 1

f
Œf ..ki C 1/x; �/ � f .x; �/�; .i D 1; 2/:

If we assume that all parameters are constant then Eq. (13.33) may be solved in a
way similar to that used to solve Merton’s equation (13.11) and the solution turns
out to be

f .x; �/ D
1X

mD0

1X

nD0

�
e�.
Cı/� .
1�/m

mŠ

.
2�/
n

nŠ

�
	

MŒxYm1 Y
n
2 e

�.
1k1C
2k2/� ; � IE; �2; r�;
(13.34)

where Yi D ki C 1 for i D 1; 2. Suppose we maintain our assumption that all
parameters are functions of stock price and time only. Then in the argument leading
up to Eq. (13.34) the roles of f; g and h can be interchanged. It follows that g and h
must also satisfy an equation like (13.34).

If we assume knowledge of �; k1; k2 is already available, then we have
two unknown parameters 
1; 
2. Using market values of g; h we may solve
g.x; � I 
1; 
2/ D gmarket and h.x; � I 
1; 
2/ D hmarket to obtain b
1; b
2, which
may then be used to price the option f .

13.6 Large Jumps

In this section we restrict our attention to binomial jumps. That is we assume Y1 D
k1 C 1; Y2 D k2 C 1 satisfy Y1Y2 D 1. In this case, if we define

k2 D 1=Y1 � 1;

kf2 D 1

f
.f .x=Y1; �/ � f .x; �//;

then Jones (1984) shows that the option pricing formula (13.34) specialises to

f .x; �/ D
1X

nD�1
.
1=
2/

n=2e���In.2�
p

1
2/M.xYn1; e

�� � ; � IE; �2; r/;

where

In.z/ D
1X

jD1

znC2

j Š.nC j /Š
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is a modified Bessel function of the first kind of integer order n,

v � 
1 C 
2 D the probability of a jump,

and

 � .
1k1 C 
2k2/=v D the expected jump amplitude.

These last two results are derived in Feller (1966).
We wish to consider the limiting case in which the jump amplitude becomes

large, but at the same time the expected jump amplitude remains constant. In
such a case the expected returns on the stock remains finite. If we define � �
lnY1 D � lnY2, then we can define the conditional probabilities for upward versus
downward jumps as


1=v D . C 1 � e��/=2 sinh�; 
2=v D .e� �  � 1/=2 sinh�:

Note that

lim
�!1


1

v
D 0;

whilst

lim
�!1


2

v
D 1:

These results indicate that large positive jumps are “rare” compared to large negative
jumps.

The jump magnitude becoming large is captured by considering � ! 1. In this
case Jones (1984) shows that the conditional expected upward jump in the option
price satisfies

lim
�!1

h
1
v
.f .xe�; �/ � f .x; �//

i
D . C 1/x;

and that the conditional expected downward jump satisfies

lim
�!1

h
2
v
.f .xe�; �/ � f .x; �//

i
D f .0; �/ � f .x; �/ D �f:
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Note that in the present notation the partial differential equation (13.33) for f may
be written

1

2
�2x2

@2f

@x2
C .r � v�/x

@f

@x
� @f

@�

C 
1Œf .xe�; �/ � f .x; �/�C 
2Œf .x; e
��; �/ � f .x; �/� � rf D 0:

Taking the limit as � ! 1 we obtain the partial differential equation

1

2
�2x2

@2f

@x2
C .�� �/x

@f

@x
� �f C @f

@�
C �x D 0; (13.35)

where

� � r C v and � � v. C 1/:

The solution to (13.35) turns out to be

f .x; �/ D xŒ1 � e���N.�b1/�� Ed���N.b2/;

where

b1 � ln.x=E/C .� � � C 1
2
�2/�

�
p
�

; b2 � b1 � �
p
� :

13.7 Appendix

Appendix 13.1 The Solution of the Integro-Partial Differential
Equation

To simplify the notation put

Pn.�/ D e��� .��/n

nŠ
; Vn D xXne

��k� :

We note the derivatives

dPn.�/

d�
D ��e

��� .��/n

nŠ
C �

e��� .��/n�1

.n � 1/Š

D

 ��Pn.�/C �Pn�1.�/; .n > 0/;

��Pn.�/; .n D 0/;
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and

@Vn

@�
D ��kxXne

��k� D ��kVn:

Using the above notation the proposed solution (13.15) may be written

f .x; �/ D
1X

nD0
Pn.�/E

nfM.Vn; � IE; �2; r/g: (13.36)

We shall simply show that (13.36) satisfies the integro-partial differential equa-
tion (13.10) and the associated boundary and initial conditions (13.12) and (13.13).
Observe that

@f

@x
D

1X

nD0
Pn.�/E

n



@

@x
M.Vn; � IE; �2; r/

�

D
1X

nD0
Pn.�/E

n



@Vn

@x
M .1/.Vn; � IE; �2; r/

�

D
1X

nD0
Pn.�/E

nfXne��k�M .1/.Vn; � IE; �2; r/g: (13.37)

HereM.1/ indicates the first partial derivative ofM with respect to its first argument.
Upon multiplying through by x the last equation reads

x
@f

@x
D

1X

nD0
Pn.�/E

nfVnM .1/.Vn; � IE; �2; r/g:

Differentiating (13.37) again with respect to x we obtain

@2f

@x2
D

1X

nD0
Pn.�/E

n
˚
.Xne

��k� /2M .11/.Vn; � IE; �2; r/� ;

which after multiplication by x2 becomes

x2
@2f

@x2
D

1X

nD0
Pn.�/E

nfV 2
n M

.11/.Vn; � IE; �2; r/g;
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where M.11/ indicates the second partial derivative of M with respect to its first
argument. Finally

@f

@�
D

1X

nD0
Pn.�/E

n



d

d�
M.Vn; � IE; �2; r/

�
C

1X

nD0

dPn.�/

d�
E
nfM.vn; � IE; �2; r/g:

(13.38)

Since

d

d�
M.Vn; � IE; �2; r/ D dVn

d�
M .1/.Vn; � IE; �2; r/CM.2/.Vn; � IE; �2; r/;

Eq. (13.38) becomes

@f

@�
D

1X

nD0
Pn.�/E

nf��kVnM
.1/ CM.2/g C

1X

nD0
.��/Pn.�/EnfM g

C
1X

nD1
�Pn�1.�/EnfM g;

where M , M.1/ and M.2/ are all evaluated at .Vn; � IE; �2; r/. Upon rearranging,
the last expression can be written as

@f

@�
D ��f � �k

1X

nD0
Pn.�/E

nfVnM .1/g C
1X

nD0
Pn.�/E

nfM.2/g

C�
1X

nD0
Pn.�/E

nfM.VnC1; � IE; �2; r/g:

Now

�@f
@�

C .r � �k/x
@f

@x
C 1

2
�2x2

@2f

@x2
� rf

D �f C
1X

nD0
Pn.�/E

nf�kVnM
.1/ CM.2/g C .r � �k/

1X

n�0
Pn.�/E

nfVnM .1/g

C
1X

nD0
Pn.�/E

n



1

2
�2V 2

n M
.11/

�
� r

1X

nD0
Pn.�/E

nfM g

��
1X

nD0
Pn.�/E

nC1fM.VnC1; � IE; �2; r/g
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D �f � �

1X

nD0
Pn.�/E

nC1fM.VnC1; � IE; �2; r/g

C
1X

nD0
Pn.�/E

n



M.2/ C rVnM

.1/ C 1

2
�2V 2

n M
.11/ � rM

�
: (13.39)

The expression in the curly bracket in the third term of (13.39) is zero since
M.Vn; � IE; �2; r/ is the solution of

M.2/ C rVnM
.1/ C 1

2
�2VnM

.11/ � rM D 0:

Thus (13.39) reduces to

�@f
@�

C .r � �k/x @f
@x

C 1

2
�2x2

@2f

@x2
� rf

D �f � �

1X

nD0
Pn.�/E

nC1fM.VnC1; � IE; �2; r/g:
(13.40)

The final step in the proof is to show that the term on the right-hand side of (13.40)
equals

�EQY Œf .x; �/ � f .xY; �/�;

where we writeQY to indicate clearly that expectations are being taken with respect
to the distribution of the random variable Y . Replacing x by xY in (13.36) and
applying the operator EQY we have

E
QY ff .xY; �/g D E

QY

" 1X

nD0
Pn.�/E

nfM.Y Vn; � IE; �2; r/g
#
: (13.41)

Given the definition of Xn as the product of n independent drawings from the
distribution of Y and E

n as the expectation operator over the distribution of Xn
it should be clear that

E
QY E

nM.Y Vn; : : : :/ D E
nC1M.VnC1; : : : :/:

Thus (13.41) becomes

E
QY ff .xY; �/g D

1X

nD0
Pn.�/E

nC1fM.VnC1; � IE; �2; r/g:
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The summation on the right-hand side above is the same as the summation in the
second term on the right-hand side of (13.41), so that this last equation may be
written

�@f
@�

C.r��k/x @f
@x

C 1

2
�2x2

@2f

@x2
�rf D �f .x; �/��EQY ff .xY; �/g; (13.42)

which may be rearranged to

�@f
@�

C .r � �k/x
@f

@x
C 1

2
�2x2

@2f

@x2
� rf C �EQY Œf .xY; �/ � f .x; �/� D 0;

which is Eq. (13.10).
We have thus shown that Eq. (13.15) is the general form of the solution. It

remains only to show that this form of the solution also satisfies the boundary and
initial conditions. Since x D 0, implies Vn D 0 and given that

M.0; � IE; �2; r/ D 0;

it follows that

f .0; �/ D 0;

indicating that the boundary condition (13.13) is satisfied by the solution (13.15).
To show that the initial condition (13.13) is satisfied requires a little more analysis.
Note first of all that

M.Vn; 0IE; �2; r/ D maxŒ0; Vn � E�;

and so

E
nfM.Vn; 0IE; �2; r/g D E

nfmaxŒ0; Vn � E�g
� E

nfVng D E
nfxXng D xEnfXng D x.1C k/n:

The last equality follows from the definition of k as k D E
QY .Y � 1/ and the fact

that En is the expectation over the distribution of n independent drawings from the
distribution of Y . Now

f .x; 0/ D lim
�!0

1X

nD0
Pn.�/E

nfM.Vn; � IE; �2; r/g

D P0.�/E
0fM.V0; 0 W E; �2; r/g C lim

�!0

1X

nD1
Pn.�/E

nfM.Vn; � IE; �2; r/g:



13.7 Appendix 293

Since P0.�/ D 1 and

E
0fM.V0; 0IE; �2; r/g D E

0fM.x; 0IE; �2; r/g D maxŒ0; x � E�;

we have

f .x; 0/ D maxŒ0; x � E�C lim
�!0

1X

nD1
Pn.�/E

nfM.Vn; � IE; �2; r/g:

Thus we need to show that the summation term on the right-hand side is zero. To
show this proceed as follows:

lim
�!0

1X

nD1
Pn.�/E

nfM.Vn; � IE; �2; r/g

� lim
�!0

xe���
1X

nD1

Œ.1C k/���n

nŠ
(using (13.43))

D lim
�!0

xe��� Œe.1Ck/�� � 1�

D 0:

Thus we have shown that f .x; 0/ D maxŒ0; x � E� which is the final step in the
demonstration that Eq. (13.15) is the general form of the solution.



Chapter 14
Partial Differential Equation Approach Under
Geometric Jump-Diffusion Process

Abstract In this chapter we consider the solution of the integro-partial differential
equation that determines derivative security prices when the underlying asset price
is driven by a jump-diffusion process. We take the analysis as far as we can for
the case of a European option with a general pay-off and the jump-size distribution
is left unspecified. We obtain specific results in the case of a European call option
and when the jump size distribution is log-normal. We illustrate two approaches to
the problem. The first is the Fourier transform technique that we have used in the
case that the underlying asset follows a diffusion process. The second is the direct
approach using the expectation operator expression that follows from the martingale
representation. We also show how these two approaches are connected.

14.1 The Integro-Partial Differential Equation

Consider the integro-partial differential equation (13.11) that prices a derivative
security when the underlying asset price is driven by a jump-diffusion process, viz.

� @f
@�

C.r��k/ x @f
@x

C 1

2
�2x2

@2f

@x2
�rf C�

Z 1

0

Œf .xY; �/�f .x; �/�G.Y / dY D 0;

(14.1)

where we recall that � represents time-to-maturity and G.Y / is the density
function for the log-normal distribution (see (12.15) and the associated footnote).
Equation (14.1) may be rearranged into the form

@f

@�
D 1

2
�2x2

@2f

@x2
C.r��k/x @f

@x
�.rC�/f C�

Z 1

0

f .xY; �/G.Y /dY: (14.2)

We recall the boundary condition

f .0; �/ D 0; (14.3)
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which is applicable to all European style options. Here we consider a general initial
condition

f .x; 0/ D h.x/: (14.4)

We recall that x � 0 and Y � 0. We transform to the logarithmic variables u D lnx,
in terms of which we define the transformed price function. Thus

f .x; �/ D F.lnx; �/ D F.u; �/: (14.5)

In terms of the transformed variables (14.2) becomes1

@F

@�
D �2

2

@2F

@u2
C .r � �k � �2

2
/
@F

@u
� .r C �/F C �

Z 1

0

F.u C ln Y; �/G.Y /dY;

(14.6)
which must be solved subject to the boundary condition

F.�1; �/ D 0

and initial condition

F.u; 0/ D f .x; 0/ D h.eu/ � H.u/:

14.2 The Fourier Transform

Following the solution procedure established in Chap. 9, we consider the Fourier
transform of F.u; �/, namely

OF .�; �/ D
Z 1

�1
F.u; �/e�iu�du: (14.7)

Proposition 14.1 The Fourier transform (14.7) is given by

OF .�; �/ D OF .�; 0/eŒ� �2�2

2 C.r��k� �2

2 /i��.rC�/C�A.�/�� : (14.8)

1We note that

@f

@x
D 1

x

@F

@u
;

@2f

@x2
D � 1

x2
@F

@u
C 1

x2
@2F

@u2
D 1

x2

�
@2F

@u2
� @F

@u

	
;

and f .xY ; �/ D F.ln.xY/; �/ D F.u C lnY; �/.
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where

A.�/ D
Z 1

0

G.Y /ei� lnY dY: (14.9)

Proof As in Chap. 9 we apply the Fourier transform operation to the integro-
partial differential equation (14.6), note that in doing so we again make use of
the results (9.14) and (9.15). We thus obtain for OF .�; �/ the ordinary differential
equation

@ OF
@�

D
���2�2

2
C .r � �k � �2

2
/i� � .r C �/

�
OF

C
Z 1

�1

�
�

Z 1

0

F.u C ln Y; �/e�iu�G.Y /dY

�
du: (14.10)

Consider the integral term in (14.10), which is the new feature brought in by the
jump process, it can be rearranged as

Z 1

�1

�Z 1

0

�F.u C lnY; �/e�iu�G.Y /dY

�
du

D �

Z 1

0

Z 1

�1
F.u C lnY; �/G.Y / e�iu� du dY

D �

Z 1

0

Z 1

�1
F.Z; �/G.Y /e�i�.Z�lnY /dZdY .by setting Z D u C ln Y /

D �

Z 1

0

G.Y /ei� lnY dY
Z 1

�1
F.Z; �/e�i�ZdZ

D �A.�/ OF .�; �/;

where we set

A.�/ D
Z 1

0

G.Y /ei� lnY dY:

Hence the ordinary differential equation (14.10) becomes

@ OF
@�

D
���2�2

2
C .r � �k � �2

2
/i� � .r C �/C �A.�/

�
OF ;

whose solution is easily obtained and is given in (14.8). �

To obtain the solution we then apply the Fourier inversion theorem to the function
OF .�; �/. The result turns out to be
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Proposition 14.2 The solution to the integro-partial differential equation (14.2)
turns out to be

f .x; �/ D e�.�Cr/�
Z 1

�1
H.Z/K.Z; x; �/dZ; (14.11)

where

K.Z; x; �/ D 1

2�

Z 1

�1
e�. 12 �2�2��A.�//�Ci�Œ.r��k� �2

2 /�Cln x�Z�d�: (14.12)

Proof Applying the Fourier inversion theorem to OF .�; �/ defined in (14.8) we
obtain

F.u; �/ D 1

2�

Z 1

�1
OF .�; 0/eŒ� �2�2

2 C.r��k� �2

2 /i��.rC�/C�A.�/��eiu�d�

D 1

2�
e�.rC�/�

Z 1

�1
OF .�; 0/eŒ� �2�2

2 C�A.�/��Ci�Œ.r��k� �2

2 /�Cu�d �: (14.13)

By substituting u D lnx, we can express (14.13) in terms of the original variables,

f .x; �/ D 1

2�
e�.rC�/�

Z 1

�1
OF .�; 0/e�. 12 �2�2��A.�//�Ci�Œ.r��k� �2

2 /�Cln x�d�:

(14.14)
Recall that

OF .�; 0/ D
Z 1

�1
F.u; 0/e�iu�du D

Z 1

�1
f .eu; 0/e�iu�du: (14.15)

Upon substituting (14.15) into (14.14) we obtain

f .x; �/

D 1

2�
e�.rC�/�

Z 1

�1

�Z 1

�1
f .eZ; 0/e�iZ�dZ

�
e�. 12 �2�2��A.�//�Ci�Œ.r��k� �2

2 /�Clnx�d�

D e�.rC�/�

2�

Z 1

�1
f .eZ; 0/

�Z 1

�1
e�. 12 �2�2��A.�//�Ci�Œ.r��k� �2

2 /�Clnx�Z�d�
	

dZ

D e�.�Cr/�
Z 1

�1
H.Z/K.Z; x; �/dZ;

where we set

K.Z; x; �/ D 1

2�

Z 1

�1
e�. 12 �2�2��A.�//�Ci�Œ.r��k� �2

2 /�Clnx�Z�d�:

�
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The kernel function K.Z; x; �/ in (14.12) is analogue to the kernel K.y; t/
of (9.23) for the corresponding problem without jumps. The essential difference
is the A.�/ term which depends on the jump size distribution. The next step in the
solution procedure is to perform the integration in (14.12) and obtain the analogue
of (9.25).

Some standard manipulations of probability density functions and some well
known results on integrals involving exponential functions allow us to express the
kernel functionK.Z; x; �/ as a Poisson weighted sum of expectations over the jump
size distribution. It is interesting to observe that this result can be obtained without
specifying the nature of the jump-size distribution.

Proposition 14.3 The kernel functionK.Z; x; �/ may be expressed as

K.Z; x; �/ D 1

�
p
2��

1X

nD0

.��/n

nŠ
E
n



e

�ŒZ�ln �n�.r��k�

�2

2 /� �2

2�2�

�

where for a sequence of jump Y1; Y2; : : : ; Yn we have �n D xY1Y2 : : : Yn; �0 D 1

and we define the n-fold expectation operator En by

E
n.x/ �

Z 1

0

Z 1

0

� � �
Z 1

0

xG.Y1/G.Y2/ � � �G.Yn/dY1dY2 � � � dYn:

Note that

E
0.x/ � x:

Proof Expanding e��A.�/ in a Taylor series, the expression (14.12) reduces to

K.Z; x; �/ D 1

2�

1X

nD0

.��/n

nŠ

Z 1

�1
e� 1

2 �
2��2�i ŒZ�ln x�.r��k� �2

2 /���A.�/nd�:

(14.16)
Note that

A.�/n D
�Z 1

0

G.Y /ei� lnY dY

	n

D
Z 1

0

G.Y1/e
i� lnY1dY1

Z 1

0

G.Y2/e
i� lnY2dY2 � � �

Z 1

0

G.Yn/e
i� lnYndYn:

Hence

K.Z; x; �/ D 1

2�

1X

nD0

.��/n

nŠ

Z 1

�1
e� 1

2 �
2��2�i ŒZ�ln x�.r��k� �2

2 /���


Z 1

0

Z 1

0

� � �
Z 1

0

G.Y1/G.Y2/ � � �G.Yn/ei� ln.Y1Y2���Yn/dY1dY2 � � � dYn

�
d�
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D 1

2�

1X

nD0

.��/n

nŠ

Z 1

0

Z 1

0

� � �
Z 1

0

I.�n; �/G.Y1/G.Y2/ � � �G.Yn/I.�n; �/

	 dY1dY2 � � � dYn;

where

I.�n; �/ �
Z 1

�1
e� 1

2 �
2��2�i ŒZ�ln �n�.r��k� �2

2 /���d�

with

�n � xY1Y2 � � �Yn:

Consider I.�n; �/, which may be expressed as

I.�n; �/ D
Z 1

�1
e�p�2�q�d�;

where

p D 1

2
�2� and q D i ŒZ � ln �n � .r � �k � �2

2
/��:

Recalling the result

Z 1

�1
e�p�2�q�d� D

r
�

p
e
q2

4p ;

we have

I.�n; �/ D
r
�

p
e
q2

4p D
r
2�

�2�
exp


 �ŒZ � ln �n � .r � �k � �2

2
/��2

2�2�

�
:

Hence
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� � �
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0

G.Y1/G.Y2/ � � �G.Yn/
r
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�2�
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2
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gdY1dY2 � � � dYn
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E
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(
e

�ŒZ�ln �n�.r��k�
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)
; (14.17)
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where

E
n.x/ �

Z 1

0

Z 1

0

� � �
Z 1

0

x G.Y1/G.Y2/ � � �G.Yn/dY1dY2 � � � dYn: (14.18)

Note that

E
0.x/ � x and �0 � x:

�

Propositions 14.2 and 14.3 may be brought together to express the European call
option value as a Poisson weighted sums of n-fold expectations of Black–Scholes
values conditional on n-jumps. The actual result is

Proposition 14.4 In the case of a European call option Propositions 14.2 and 14.3
imply that

f .x; �/ D
1X

nD0

e��� .��/n

nŠ
E
n
˚
M
�
xXne

��k� ; � IX; �2; r�� (14.19)

where M is the Black–Scholes pricing function

M.x; � IX; �2; �/ D xN .d1/� Xe�r�N .d2/; (14.20)

d1 D ln.x=X/C .r C �2=2/�

�
p
�

; d2 D d1 � �p
�:

Here Xn � Y1Y2 : : : Yn, will X0 � 1 and E
n is the n-fold expectation operator

defined in Proposition 14.3.

Proof Substituting the simplified expression for the kernel function (14.17)
into (14.11) and using the European call option payoff H.Z/ D eZ � X and
interchanging integration and expectation operations we find that the call option
price, f .x; �/ is given by

f .x; �/ D
1X

nD0

e��� .��/n

nŠ
E
n
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�
p
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� X/ expŒ
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2
/��2

2�2�
�dZ

�

D
1X

nD0

e��� .��/n

nŠ
E
nff1.x; �/ � f2.x; �/g;
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where

f1.x; �/ D e�r�

�
p
2��

Z 1

lnX
eZe

�ŒZ�ln �n�.r��k�

�2

2 /� �2

2�2� dZ

and

f2.x; �/ D e�r�

�
p
2��

Z 1

lnX
Xe

�ŒZ�ln �n�.r��k�

�2

2 /� �2

2�2� dZ:

First consider f1.x; �/. By the change of variable

˛ D .Z � ln �n � .r � �k � �2

2
/�/=�

p
�

and setting

OD D lnX � ln �n � .r � �k � �2

2
/�

�
p
�

;

f1.x; �/ is simplified to

f1.x; �/ D e�r�

�
p
2��

Z 1

OD
eZe� ˛2

2 �
p
�d˛ D �ne

��k� 1p
2�

Z 1

OD
e� .˛��

p

�/2

2 d˛:

Making the further change of variable

! D ˛ � �p
�

and let

Od1 D ln �n
X

C .r � �k C �2

2
/�

�
p
�

we obtain

f1.x; �/ D �ne
��k�N. Od1/:

Next consider f2.x; �/. Let

˛ D Z � ln �n � .r � �k � �2

2
/�

�
p
�

;
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we obtain

f2.x; �/ D Xe�r� 1p
2�

Z 1

� Od2
e� �˛2

2 d˛;

where

Od2 D ln �n
X

C .r � �k � �2

2
/�

�
p
�

:

Thus

f2.x; �/ D Xe�r�N. Od2/:

Putting the above results together we find that

f .x; �/ D
1X

nD0

e��� .��/n

nŠ
E
nf�ne��k�N. Od1/ � Xe�r�N. Od2/g:

Finally, define

Xn � Y1Y2 � � �Yn; X0 � 1

and

M.x; � IX; �2; r/ D xN.d1/ � Xe�r�N.d2/

with

d1 D ln. x
X
/C .r C �2

2
/�

�
p
�

; d2 D d1 � �
p
�:

Then the value of the call option can be written as

f .x; �/ D
1X

nD0

e��� .��/n

nŠ
E
nfM.xXne

��k� ; � IX; �2; r/g:

�
To generate specific models we need to specify the jump-size distribution. The

most common assumption is that it is either log-normally distributed as discussed
in Sect. 12.2 or follows a multi-nomial distribution as in Sect. 13.5. In the following
sections we shall derive in detail the call option price when the jump-size is log-
normally distributed and sketch briefly the derivation where the jump-size is given
by a multi-nomial distribution.
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14.3 Evaluating the Kernel Function Under a Log-Normal
Jump Distribution

Proposition 14.5 For the case in which jump-size distribution is log-normally
distributed the kernel function becomes

K.Z; x; �/ D 1p
2��

1X

nD0

.��/n

nŠ
p
nC �

exp

�
� .Z � bn/
2�2.nC �/

�
(14.21)

where

bn D ln x C .r � �k � �2=2/� C n.
 � ı2=2/:

Proof Recall that when G.y/ is log-normally distributed the density function is
given by2

G.y/dy D 1

ı
p
2�
e

� 1
2
.lny�.
�ı2=2//2

ı2
dy

y
:

It follows in this case that the quantity A.�/ in (14.9) assumes the form

A.�/ D
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0

1

yı
p
2�
e

� 1
2

�
lny�.
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ı

	2
Ci� ln y

dy;

which by use of the transformation x D ln y becomes

A.�/ D
Z 1

�1
1

ı
p
2�
e

� 1
2
.x�.
�ı2=2//2

ı2
Ci�xdx:

The further transformationZ D .x � .
 � ı2=2//=ı allows us to write

A.�/ D
Z 1

�1
1

ı
p
2�
e�Z2

2 Ci�.ıZC
�ı2=2/ıdZ

D 1p
2�
ei�.
�ı2=2/� �2ı2

2

Z 1

�1
e� .Z�i�ı/2

2 dZ: (14.22)

Then by setting q D .Z � i�ı/=
p
2, we finally obtain

A.�/ D ei�.
�ı2=2/� �2ı2

2
2p
�

Z 1

0

e�q2dq D ei�.
�ı2=2/� �2ı2

2 : (14.23)

2See (12.15).
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Substituting (14.23) into (14.16) and rearranging slightly we obtain

K.Z; x; �/D 1

2�

Z 1

�1
e� �

2 �
2�2Ci�Œ.r��k� �2

2 /�Cln x�Z�
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Some further re-arrangement allows us to write
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where

˛ D .r � �k � �2

2
/� C lnx �Z C n.
 � ı2=2/: (14.24)

Thus

K.Z; x; �/ D 1
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D 1p
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1X

nD0

.��/n
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p
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e
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2�2.nC�/ ; (14.25)

where the last equality has been obtained by use of the result (9.24) (with p D
.nC �/ �

2

2
and q D �ix). �

It is of interest to observe that (14.21) generalizes the kernel function in (9.25)
in a very natural way. It is the weighted sum of the kernels conditional on n jumps
having occurred, the weights being the Poisson jump probabilities.

14.4 Option Valuation Under a Log-Normal Jump
Distribution

Propositions 14.2 and 14.3 may be combined to yield the option value under a
lognormal jump distribution. The result is

Proposition 14.6 In the case of a log-normal jump size distribution the European
option value is given by

f .x; �/ D
1X

nD0

e��0� .�0�/n

nŠ
M.x; � IK; v2n; rn/ (14.26)
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where M is the Black–Scholes pricing function defined in Proposition 14.4 and

�0 D �.1C k/; v2n D �2 C nı2=� and rn D r � �k C n
=�:

Proof We substitute the expression (14.25) for the kernel function into (14.11).
Consider a European Call option for which h.z/ D .ez � K/C, then (keeping in
mind that ˛ is a function of Z)
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where
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To evaluate I , recall that from (14.24) that

˛ D .r � �k � 1

2
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In (14.28) make the change of variable
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2
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Rearranging
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Making the further change of variable V D u C �
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which simplifies to (14.26). Note that en
 D en log.1Ck/ D .1 C k/n and the e���
and e��k� terms may be grouped to yield e��0� . �
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14.5 Using the Expectation Operator to Evaluate the Option
Under Log-Normal Jumps

The expression for the European call option price derived in the previous section
was obtained by using the expression for the kernel function under log-normally
distributed jumps, substituting this into the Fourier inversion formula (14.11)
and performing the integration. It is also possible to proceed directly from the
expression (14.19) in terms of expectation operators (which makes no assumption
about the jump size distribution), and calculate this expression when the jump-size
distribution is log-normal. These calculations are laid out in this section.

Proposition 14.7 In the case of log-normally distributed jump sizes the expres-
sion (14.26) in Proposition 14.6 may be obtained directly from the expectation
representation in Proposition 14.4 operator.

Proof From the definition of the functionM , (14.19) may be written
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E
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it follows that
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Thus
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:

As a result (14.31) may be written
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Next we note that the expectation operation in (14.30) may be rewritten

E
n
˚
xXne
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� D xe��k�A1 � Ke�r�A2 (14.33)

where
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In Appendix 14.1 we evaluate A1 and A2, given that Xn is log-normally distributed,
and find that
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where rn � r � �k C n
=� , v2n D �2 C nı2=� , and Od2 D Od1 � vn
p
� . Using the

results (14.33) and (14.34) the price of the call option becomes
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This result it may be more succinctly written

f .x; �/ D
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14.6 Appendix

Appendix 14.1 Calculating the A1 and A2

The Evaluation A1. Applying the result (14.32) we find that
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Introduce the changes of variable y D lnXn and v D u � lnXn=.�
p
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where
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Since Nd1 does not depend on y, we can readily change the order of the integration,
to obtain
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and completing the square in y, we have
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Thus3 we obtain
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where rn � r � �k C n
=� and v2n D �2 C nı2=� , we obtain
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Using the definition of ˛ in (14.35),
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3Referring to (14.35) we see that

v2 � ˇ21
4˛

D v2 �
n
�
v2ı4 � 2vı2�

p
�.
 C ı2

2
/C �2�.
 C ı2

2
/2
�

ı2.�2� C ı2n/

D �2�v2 C 2n�
p
�.
 C ı2

2
/v

�2� C ı2n
� �2� n.
 C ı2

2
/2

ı2.�2� C ı2n/

D
�
�

p
�v C n.
 C ı2

2
/
�2

�2� C ı2n
� n2.
 C ı2

2
/2

�2� C ı2n
� �2� n.
 C ı2

2
/2

ı2.�2� C ı2n/
:



14.6 Appendix 313

The evaluation of A2. By definition and use again of the result (14.32)
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Applying the change of variable y D lnXn; v D u � lnXn=�
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then we finally have
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Chapter 15
Stochastic Volatility

Abstract Empirical studies show that the volatility of asset returns are not constant
and the returns are more peaked around the mean and have fatter tails than
implied by the normal distribution. These empirical observations have led to models
in which the volatility of returns follows a diffusion process. In this chapter,
we introduce some stochastic volatility models and consider option prices under
stochastic volatility. In particular, we consider the solutions of the option pricing
when volatility follows a mean-reverting diffusion process. We also introduce the
Heston model, one of the most popular stochastic volatility models.

15.1 Introduction

The Black–Scholes model for the price of options on common stock that we derived
in Chaps. 6 and 8, as well as, the Garman–Kohlhagen formula and Black’s model
in Chap. 10, all relied upon the assumption that � , the volatility of returns on
the underlying asset is constant. This means that the transition probability density
function for the underlying asset is log-normal, which in turn enables us to perform
analytically the integral expressions for the option price, or to solve analytically
the pricing partial differential equations. However, it is well known from many
empirical studies (e.g. Blattberg and Gonedes 1974; Scott 1987) that volatility is not
constant. It is a feature of many financial assets that returns are more peaked around
the mean and have fatter tails than would be implied by a normal distribution for
returns.

Figure 15.1 plots the distribution of daily returns on the S&P 500 from May
1994 to 1999 and compares this with a normal distribution based on the mean and
variance of the same data set. Figure 15.2 plots the distribution of the percentage
changes in daily US$=£ exchange rate over the same period. Both Figs. 15.1 and
15.2 illustrate the point made earlier about fat tails and the peaking around the mean.

Empirical studies of implied volatility (the volatility that makes the Black–
Scholes model yield observed market option prices) also clearly show that the
assumption of constant volatility is far for being realised. Figure 15.3 shows the

© Springer-Verlag Berlin Heidelberg 2015
C. Chiarella et al., Derivative Security Pricing, Dynamic Modeling
and Econometrics in Economics and Finance 21,
DOI 10.1007/978-3-662-45906-5_15

315



316 15 Stochastic Volatility

0

100

200

300

400

500

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Empirical Distribution

Normal Distribution

Fig. 15.1 Distribution of daily returns on the S&P 500

0

100

200

300

400

500

-2.5 -1.5 -0.5 0.5 1.5 2.5

Empirical Distribution

Normal Distribution

Fig. 15.2 Distribution of percentage change in daily US$=£ exchange rate

Implied Volatility for Put Options on S&P 500

0.00

0.10

0.20

0.30

23-Jun-98 23-Jul-98 22-Aug-98 21-Sep-98 21-Oct-98 20-Nov-98

DATE

VO
LA

TI
LI

TY

Implied Volatility for Call Options on British
Airways

0.10

0.15

0.20

0.25

0.30

2-Jun-97 2-Jul-97 1-Aug-97 31-Aug-97 30-Sep-97

DATE

VO
LA

TI
LI

TY

Fig. 15.3 Implied volatilities for options



15.1 Introduction 317

implied volatility for put options on the S&P 500 and for call options on British
Airways. From both of these figures we see that implied volatility moves around
quite a lot. Indeed it seems to have the characteristics of a mean reverting stochastic
process.

The fat tails indicate a much larger probability of extreme movements in returns
and the peaking at the centre more of a gathering around the mean that is allowed
for by the normal distribution. These empirical observations have led a number of
researchers including Johnson and Shanno (1987), Scott (1987), Hull and White
(1987), Wiggins (1987) and Heston (1993) to consider models in which the volatility
(or the variance) of returns follows a diffusion process. It is hoped thereby to capture
some of the empirical features observed in financial markets.

To make the point that such an approach can indeed reproduce the fat tails and
peakedness observed empirically, consider the stock price process

dS

S
D �dt C �dzs; (15.1)

where � itself follows the diffusion process

d� D k.� � �/dt C ıdz� ; (15.2)

and E.dzsdz� / D 
 dt.
Using the values � D 0:15, k D 1, � D 0:2, ı D 0:2 and 
 D 0 we have

simulated (15.1) and (15.2) 10,000 times. Figure 15.4 illustrates the sample paths
of S for the case of constant �.D �/ and when � is stochastic according to (15.2).
The wider distribution of sample paths in the stochastic volatility case suggest that
the distribution is fat tailed. This is more clearly illustrated in Fig. 15.5 where the
two distributions are compared. In addition, the peakedness of the distribution under
stochastic volatility is also evident.

In Fig. 15.6 we illustrate a sample path for � and it is interesting to compare it
with the pattern of observed implied volatilities in Fig. 15.3.

Some authors have suggested modelling the variance v � �2 as a stochastic
process, for example Heston (1993) and Stein and Stein (1991). In the context
of (15.2), a version of the model considered by Heston can be obtained by setting
� D 0 and using of Ito’s Lemma to obtain for v the stochastic differential equation

dv D .ı2 � 2kv/dt C 2ı
p
vdz� : (15.3)

The fact that this is a mean reverting stochastic process with a volatility dependent
on

p
v allows particular solution techniques to be employed when evaluating

options. This is a point to which we return in a later section.
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15.2 Modelling Stochastic Volatility

In our discussion of stochastic volatility in this chapter we maintain the assumption
that the underlying asset price (typically this will be common stock, an index,
foreign exchange, futures contracts or commodities) follows the now familiar log-
normal diffusion process

dS

S
D �dt C �dzs: (15.4)

We use the subscript s in dzs to indicate the source of uncertainty impinging on the
asset market. We assume the volatility, � , is driven by the diffusion process

d� D a.�; t/dt C b.�; t/dz� ; (15.5)

whose drift and diffusion coefficients a and b respectively depend only on � itself
and time t . Of course, in a more general treatment these coefficients could also be
allowed to depend on the asset price S , however all stochastic volatility models
developed to date do not make this assumption, so we shall retain the general forms
specified in (15.5). The Wiener process z� (the source of uncertainty impinging on
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the asset price volatility) is possibly correlated with zs (the source of uncertainty
impinging on the asset price), that is we assume

E.dzsdz� / D 
 dt: (15.6)

As in Sect. 5.3.1, it will be more convenient to work in terms of independent
Wiener processes whose increments we denote dws and dw� . We know from (5.42)
that

dzs D dws ;

dz� D 
 dws C
p
1 � 
2 dw� ;

and so the stochastic dynamic system (15.4)–(15.5) may alternatively be written as

dS

S
D �dt C �dws; (15.7)

d� D a.�; t/dt C 
 b.�; t/dws C
p
1 � 
2 b.�; t/ dw� : (15.8)

By an appropriate choice of the functions a; b and the correlation coefficient 
,
the specification (15.7)–(15.8) encompasses most of the stochastic volatility models
developed in the literature.

Some authors prefer to model the variance v.� �2/ as a diffusion process. By
Ito’s lemma (see (6.78)) the stochastic differential equation for v implied by (15.8) is

dv D .2
p
vaC b2/dt C 2


p
v b dws C 2

p
1 � 
2

p
v b dw� : (15.9)

We shall return to processes for the variance when we consider the Heston model
in Sect. 15.5. Let us now consider some specific forms for the coefficients a and b
in (15.8). Almost invariably in the stochastic volatility literature, the drift coefficient
a.�; t/ has been chosen as

a.�; t/ D k.� � �/; .k > 0/; (15.10)

which implies a mean reverting process for � . Such behaviour is suggested by the
time series behaviour of the implied volatility in Fig. 15.3. The mean reverting form
of (15.8) is

d� D k.� � �/dt C 
 b.�; t/dws C
p
1 � 
2 b.�; t/ dw� : (15.11)

It is instructive to rewrite (15.11) in the form (by use of Ito’s lemma),

d.�ekt/ D k�ektdt C ekt
 b.�; t/dws C ekt
p
1 � 
2 b.�; t/ dw� ;
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so that

�.t/ D � C .�0 � �/e�kt C 


Z t

0

e�k.t��/b.�; �/ dws.�/

C
p
1 � 
2

Z t

0

e�k.t��/b.�; �/ dw� .�/:

(15.12)

First note that, if b D 0 so that volatility is not stochastic, then � is a time varying
deterministic function (which tends to � fairly quickly). We would then be back to a
model equivalent to one with a constant volatility (see Chap. 7). When b ¤ 0 and we
have a proper stochastic volatility model, the volatility can be viewed as having three
components. The first component is a deterministic function of time. The second
is an integral over past shocks impinging on the asset price. The third term is an
integral over past shocks impinging on the volatility. Both integrals are weighted
with the exponentially declining term, e�k.t��/, as well as, a function of past values
of the volatility via the b.�; �/ term. These integral terms show clearly the path
dependence of the volatility � , which is transmitted to the diffusion process for S .
Thus the stochastic process for S is non-Markovian. However, the form of this non-
Markovian process is such that it can be written as a two-dimensional Markovian
system. This is yet another example of a non-Markovian process that can be re-
expressed as a Markovian system by a suitable expansion of the state space. It is
also instructive to consider a discretised version of (15.12). Before discretising we
set �0 D � and note that by a simple change of variable

Z t

0

e�k.t��/b.�; �/dw.�/ D �
Z 0

t

e�kub.�; t � u/dw.t � u/: (15.13)

Thus using the simplest possible discretisation scheme and taking n�� D t and
˛i D e�ki�� we can write

Z t

0

e�k.t��/b.�; �/dw.�/ ' �
nX

iD1
˛ib.�t�i ; .n � i/��/

p
�� Q�t�i ; (15.14)

where Q�t�i � N.0; 1/ is the shock term over the time interval commencing at .t �
i��/, as shown in Fig. 15.7.

Fig. 15.7 Time line for discretisation of the integral in (15.13)
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With these notations the discretisation of (15.12) would become

�t D �0 � 


nX

iD1
˛ib.�t�i ; .n � i/��/p�� Q�S;N�i

�
p
1 � 
2

nX

iD1
˛ib.�t�i ; .n � i/��/

p
�� Q��;N�i ;

(15.15)

and Q�S;t�i ; Q��;t�i represent two sets of independent N.0; 1/ shock terms. Thus, in
discretised form, we have for the asset price process

ln
St

St��t
D .�� 1

2
�2t /�t C �t��t

p
�t Q�S;t ; (15.16)

with �t given by (15.15), which as we see depends on past values of �t and
past values of the shock terms. This representation of the asset price is somewhat
suggestive of the ARCH and GARCH representations of the econometrics literature
(see for example Bollerslev 1986), however it is the variance �2t rather than �t which
is modelled in this literature. In the ARCH and GARCH literature the dependence on
past values of �t and the shock terms occurs additively rather than multiplicatively
as in (15.15). If we were to model �t using the GARCH .p; q/ process then (15.15)
would be replaced by

�2t D �0 C
qX

iD1

i �

2
S;t�i C

pX

iD1
ˇi�

2
t�i : (15.17)

We note that the squared past volatility shocks, �2�;t�i , do not appear. The speci-
fications (15.15) and (15.17) for �t quite clearly differ in many respects but they
both share the common feature of modelling volatility as a function of past shocks
and past levels of volatility. It remains an open empirical question, as to, which of
these two different specifications is best from the point of view of option pricing.
Nelson (1991) has shown how ARCH models may be interpreted as approximations
to diffusion processes.

15.3 Option Pricing Under Stochastic Volatility

We assume that the underlying asset price S and volatility � are driven by the
diffusion processes (15.7)–(15.8). We consider the problem of pricing a derivative
security dependent on S and � and whose value we denote f .S; �; t/. We are now
precisely in the situation of one traded asset (S ) and one non-traded asset (�) which
we analysed is Sect. 10.3.3. We know from that analysis that the partial differential
equation (10.59) determines the derivative price. Using q to denote the continuous
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dividend yield on the underlying asset, and �s and �� to denote respectively the
market prices of risk associated with the sources of uncertainty dws and dw� , that
partial differential (10.59) in the current context becomes

@f

@t
C .r�q/S @f

@S
C .a.�; t/�
b.�; t/�s �

p
1 � 
2b.�; t/�� /

@f

@�
CDf � rf D 0;

(15.18)

where

Df D 1

2
�2S2

@2f

@S2
C 
b�S

@2f

@S@�
C 1

2
b2
@2f

@�2
: (15.19)

Alternatively, using (10.62), the derivative value may be calculated from

f .S; �; t/ D e�r.T�t / QEt Œf .ST ; �T ; T /�; (15.20)

where f .ST ; �T ; T / is the pay-off function at maturity T . Here QEt is calculated
from the conditional density function generated by the two-dimensional diffusion
process

dS

S
D .r � q/dt C �d Qws;

d� D .a � �s
b � ��
p
1 � 
2b/dt C 
bd Qws C

p
1 � 
2bd Qw� ;

(15.21)

and Qws ; Qw� represent Wiener processes under the equivalent probability measure QP.
In principle at least the stochastic volatility option pricing problem may be

considered solved, as all we need to do is to solve the two-dimensional partial
differential equation (15.18) or use Monte-Carlo simulation to evaluate (15.20). In
practice both of these tasks present formidable computational challenges and are
still the object of ongoing research. For this reason, most of the developments in
this area have focused on considering specifications of a.�; t/ and b.�; t/ that allow
explicit solutions of the partial differential (15.18). We consider one such solution
in the following section.

Before considering specific solutions we need to consider further the market
prices of risk, �s and �� . The first market price of risk, �s , is associated with the
shocks impinging on the asset price. It is common to assume that, as it is related
to a traded asset, this risk could be diversified away if investors held sufficiently
diversified portfolios. Hence, we set �s D 0. The second market price of risk, �� ,
cannot be diversified away to easily as generally volatility is a non-traded asset,1

so it remains in the analysis. For reasons of tractability one common form that is

1Of course in recent years there has been the growth of the so-called VIX options. There are options
on the so-called VIX implied volatility index. Within this framework volatility has become a traded
factor. We shall discuss VIX option in a later section.
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assumed is

�� D � �; (15.22)

where � is a constant. The assumption (15.22) also leads to the partial differential
equation for the option price having coefficients that are linear in � which is
convenient for some solution techniques. It implies that the risk premium demanded
for bearing volatility risk is proportional to the level of volatility. We shall
use (15.22) in much of the subsequent analysis.

15.4 The Mean Reverting Volatility Case

In this section we consider the solution of the pricing partial differential equa-
tion (15.18) in the case where volatility is driven by the mean reverting diffusion
process (15.11) with the diffusion coefficient b.�; t/, a constant, which we denote
by b. Thus under the equivalent probability measure QP and assuming �s D 0 and
�� D �� , the two-dimensional diffusion process (15.21) assumes the form

dS

S
D .r � q/dt C �d Qws ;

d� D Œk� � .k C �b
p
1 � 
2/��dt C 
bd Qws C

p
1 � 
2bd Qw� :

(15.23)

The partial differential equation (15.18) under specification (15.23) thus becomes

@f

@t
C .r � q/S

@f

@S
C Œk� � .k C �b

p
1 � 
2/��

@f

@�
C Df � rf D 0; (15.24)

with Df still given by (15.19) but b taken as a constant.
We note that it is also possible to express the two-dimensional diffusion

process (15.4) and (15.5) (with drift coefficient a.�; t/ D k.� � �/ and constant
diffusion coefficient), in terms of independent Wiener processes under the risk
neutral measure in the form (in conditions (5.34)–(5.36) set a11 D p

1 � 
2; a12 D

; a21 D 0; a22 D 1)

dS

S
D .r � q/dt C �

p
1 � 
2d Qws C �
d Qw� ; (15.25)

d� D Œk� � .k C �b/��dt C bd Qw� : (15.26)

Note that with this specification we would have s21 D 0 in (10.64), and hence the
change in the drift term in (15.26). Furthermore, since the s21 terms involves the
market price of risk �s , there is then no longer any need to make any assumption
about the value of this factor since it no longer appears explicitly in the stochastic
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dynamics. Using this formulation, the diffusion process for � evolves independently
of the diffusion process for S , because of the independence of the Wiener processes
Qws and Qw� . This fact will be significant in simplifying calculations at a later point.

We also note for later reference, that by application of Ito’s lemma

d.lnS/ D Œ.r � q/ � 1

2
�2�dt C �

p
1 � 
2d Qws C �
d Qw� ; (15.27)

d.�2/ D Œb2 C 2k�� � 2.k C �b/�2�dt C 2b�d Qw� : (15.28)

We shall consider the case where the derivative security is a European call option so
that the payoff function is given by

f .ST ; �T ; T / D .ST � E/C: (15.29)

Substituting the payoff function into (15.20) we have

f .S; �; t/ D e�r.T�t / QEt Œ.ST � E/C�

D e�r.T�t /
Et Œ.ST � E/ � 1fST >Eg�;

(15.30)

where 1fST >Eg is the indicator function. The solution of (15.24) can be written

f .S; �; t/ D QEt Œe�r.T�t /ST1fST >Eg� � e�r.T�t /E QEt Œ1fST >Eg�: (15.31)

In order to employ the solution technique of characteristic functions (see
Appendix 15.1) it is more convenient to express the indicator function in terms of
lnST , in terms of which (15.31) becomes

f .S; �; t/ D QEt Œe�r.T�t /ST1flnST >lnEg� � e�r.T�t /E QEt Œ1flnST >lnEg�: (15.32)

Using the technique of characteristic functions we show in Appendix 15.2 that the
solution can be expressed as

f .S; �; t/ D Se�q.T�t /I1 � Ee�r.T�t /I2; (15.33)

where

I1 D 1

2
� 1

2�

Z 1

0

.�1.�u/eiux � �1.u/e�iux/

iu
du; (15.34)

I2 D 1

2
� 1

2�

Z 1

0

.�.�u/eiux � �1.u/e�iux/

iu
du; (15.35)

�1.u/ D  .1C iu/

Se�q.T�t / ; �.u/ D  .iu/

e�r.T�t / ; (15.36)
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with

 .�/ D K � exp

�
1

2
D.t/�2 C B.t/� C C.t/

	
(15.37)

K � D exp

�
� ln.St e

.r�q/.T�t //� r.T � t/ � �


2b
�2t � �
b

2
.T � t/

�
: (15.38)

and

D.t/ D .k C �b/

b2
� 
1 sin h.
1�/C 
2 cosh.
1�/

b2m
;

B.t/ D .k N�
1 � 
2
3/.1 � cosh.
1�// � .k N�
1
2 � 
3/ sinh.
1�/


1b2m
;

C.t/ D �1
2

lnmC Œ.k N�
1 � 
2
3/2 � 
23 .1� 
22 /� sin h.
1�/

2 
31 b
2 m

C .k N�
1 � 
2
3/
3.m � 1/

31 b

2 m

C �

2
21 b
2
Œ.k C �b/
21 .b

2 � .k C �b/k N�/C 
23 �;


1 D
p
2b2s1 C .k C �b/2;


2 D k C �b � 2b2s3


1
;


3 D .k C �b/k N� � s2b2;
m D cosh.
1�/C 
2 sin h.
1�/;

� D T � t:

The key to evaluating (15.33) is the numerical evaluations of the complex integrals
I1 and I2 defined by Eqs. (15.34) and (15.35). Most computer packages (e.g.
MATLAB) have tools to do complex integration and these quantities can in fact
be readily calculated. The important point is although these quantities at first glance
seem complex, because of the way that they combine complex conjugate quantities
they turn out in fact to be real.

15.5 The Heston Model

One of the most popular stochastic volatility models is that of Heston (1993). Heston
models the stochastic dynamics of the variance v rather than the standard deviation
(volatility) � . In terms of the historical measure P the dynamics of S and v are
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assumed to be of the form

dS

S
D �dt C p

vdzs; (15.39)

dv D kv. Nv � v/dt C �v
p
vdzv; (15.40)

where

E.dzsdzv/ D 
dt: (15.41)

There are two important motivations for modelling the variance v with the
process (15.40), where we highlight the

p
v term in front of the dzv. The first is

that the
p
v ensures that the process for v remains away from zero. In fact this

square-root process, as it has become known, seems to have been first investigated
by Feller (1951) who showed that v > 0 is ensured if

2kv Nv > �2v ; (15.42)

a condition that typically will be satisfied by most data sets. The condition (15.42)
is sometimes known as the Feller condition. The second reason for the popularity
of the Heston model is that it is possible to calculate the characteristic function
of the joint distribution of S and v, which in turn allows semi-analytical formulas
to be obtained for derivative prices. This result also builds on the work of Feller
(1951) who solved the Kolmogorov backward equation associated with (15.40)
using transform methods to obtain an expression for the density function. We give
more discussion of the square root process in Chap. 22, where it is also used to
model interest rate processes (again because it can guarantee positive rates).

Transforming to independent Wiener processes as in (15.7), (15.8) the dynamics
for S and v become

dS

S
D �dt C p

vdws; (15.43)

dv D kv. Nv � v/dt C �v
p
v
dws C �v

p
v
p
1 � 
2dwv: (15.44)

In order to price an option written on the stock S , as in Sect. 15.3, we again appeal
to the general results in Chap. 10 and adapt them to the current situation. We note
that now the derivative price should be denoted as f .S; v; t/. We assume that the
market price of risk associated with the source of uncertainty dws is the constant �s ,
whilst the market price of risk associated with the uncertainty dwv is of the form
�v

p
v where �v is constant. Following the same argument on used in Sect. 15.3 we

find that the option price satisfies the partial differential equation

@f

@t
C .r �q/S @f

@S
C .kv. Nv�v/��s�v

p
v
��v�vv

p
1 � 
2/@f

@v
CDf � rf D 0;

(15.45)
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where

Df D 1

2
vS2

@2f

@S2
C �vv
S

@2f

@S@v
C 1

2
�2v v

@2f

@v2
: (15.46)

Alternatively, again using (10.61) the derivative price may also be expressed as

f .S; v; t/ D e�r.T�t / QEt Œf .ST ; vT ; T /� (15.47)

where f .ST ; vT ; T / is the payoff at maturity (typically independent of vT ) and QEt is
calculated using the conditional density function generated by the two dimensional
diffusion process

dS

S
D .r � q/dt C p

vd Qws; (15.48)

dv DŒkv Nv � 
�v�s
p
v � .kv C �v

p
1 � 
2�v/v�dt

C �v

p
vd Qws C �v

p
v
p
1 � 
2d Qwv: (15.49)

The term 
�v�s
p
v in the drift makes it difficult to do any analytical calculations

on the systems (15.48) and (15.49), for instance it would not be possible to obtain
the characteristic function with this term present. We could argue as in Sect. 15.3
that since the stock is a traded asset its risk could be diversified away and so we
may set �s D 0. Alternatively we could arrange the transformation from correlated
to independent Wiener process so that the stochastic differential equation for S has
both d Qws and d Qwv terms and the stochastic differential equation for v contains only
the term d Qwv . In this case we need make no assumption about �s since it no longer
appears explicitly in the stochastic dynamics and the dynamics for S and v then
become

dS

S
D .r � q/dt C

p
1 � 
2

p
vd Qws C 


p
vd Qwv; (15.50)

dv D Œkv Nv � .kv C �v�v/v�dt C �v
p
vd Qwv: (15.51)

One of the reasons for the popularity of the Heston model is that it admits semi-
analytical forms for the prices of simple put and call options. This in turn is a
consequence of the fact that it is possible to find the characteristic equation for the
joint distribution of S and v given by (15.48), (15.49) or (15.50), (15.51). We give
full details in Appendix 15.3.

The dynamics of v under QP in (15.51) can be written

dv D QkvŒ'v � v�dt C �v
p
vd Qwv
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where

Qkv � kv C �v�v;

'
v D kv Nv=.kv C �v�v/:

The new parameters Qkv , '
v are essentially the parameters kv , Nv appearing in (15.40)

but adjusted by the market price of volatility risk �v . If we adopt the view that we

allow calibration of the Heston model to market data to determine the Qkv and
'
v then

this procedure is really equivalent to setting �v D 0 and re-interpreting the kv and Nv
that are found in the calibration procedure as Qkv and

'
v . This is the justification for

often setting �v D 0 in the Heston model.
In the case of a European call option the payoff is given by

f .ST ; vT ; T / D .ST � E/C:

Substituting this latter expression into (15.47) and using the results referred to in
Appendix 15.3 it can be shown that the option price may be written as

f .S; v; t/ D Se�q.T�t /P1 � Ee�r.T�t /P2; (15.52)

where P1 and P2 are given by

Pj D 1

2
C 1

�

Z 1

0

R

�
e�iu lnE'j .u/

iu

�
du; (15.53)

with

'2.u/ D exp.B.T � t; u/C A.T � t; u/v C iu lnS/; (15.54)

'1.u/ D e�.r�q/.T�t /�lnS'2.u � i/: (15.55)

The A and B functions appearing in (15.54) are given by

A.�; u/ D �iu.1 � iu/e�=
.u/; (15.56)

B.�; u/ D �iu.r � q/� C kv Nv
�2v
.kv � iu
�v � d.u//� C 2kv Nv

�2v
ln

�
2d.u/


.u/

	
;

(15.57)



330 15 Stochastic Volatility

where

e˙ D 1˙ e�d.u/� ;

d.u/ D
q
.
�v iu � kv/2 C iu�2v .1� iu/;


.u/ D d.u/eC C .kv � iu
�v/e�:

It turns out that the quantities P1 and P2 are the probabilities that ST > E under the
historical (or spot) and risk-neutral probability measures respectively. The quantities
'1 and '2 are the characteristic functions respectively of the distribution of lnST at
time t under the two measures.

In the foregoing sections we have only been able to give the very basic notions
of stochastic volatility modelling—the hedging argument underlying the derivation
of the pricing equation, handling the market incompleteness issue through choice
of the functional form of the market price of volatility risk, the basic notions of the
solution methodology employed, and some of the standard models used.

We have not discussed the important calibration issues, which indeed are driving
much of the intense research activity that is ongoing in this area. In terms of
theoretical developments various authors have included jump processes either in
the stock price dynamics, using the modelling framework of Chaps. 12, 13, or both
the stock price dynamics and volatility dynamics (see Bates 1996; Cont and Tankov
2004). However most recent developments have been in models based on diffusion
processes, with the inclusion of more stochastic factors driving volatility being an
important consideration. We give some of the basic notions of these developments
in some of the problems. An important recent development has been the market for
VIX (volatility index) options which started trading on the CBOE in 2006. A good
survey of many of these recent issues can be found in Gatheral (2008).

15.6 Appendix

Appendix 15.1 Characteristic Functions

Let f .x/ be a probability density function. The characteristic function �.�/ is
defined as

�.�/ D
Z 1

�1
ei�xf .x/dx:

It follows by definition that

�.�/ D EŒei�x �:
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The original probability density function may be recovered from the characteristic
function via the Fourier inversion formula

f .x/ D 1

2�

Z 1

�1
ei�x�.�/d�: (15.58)

In many of our applications we are also interested in calculating the cumulative
density function F.x/ D Pr.X � x/; i.e.

F.x/ D
Z x

�1
f .s/ds:

It can be shown by integrating (15.58) (see Lamperti 1996) that the Fourier inversion
to obtain F.x/ becomes

F.x/ D 1

2
C 1

2�

Z 1

0

�.�u/eiux � �.u/e�iux

iu
du:

Appendix 15.2 Expressing the Option Price in Terms
of Characteristic Functions

The expression (15.32) involves the calculation of two expectations. We make the
change of variable x D lnS and write

I1 D QEt ŒexT 1fxT >lnEg�; (15.59)

and

I2 D QEt Œ1fxT >lnEg�: (15.60)

We use Q�.xT ; �T ; T jx; �; t/ to denote the conditional probability density function
underlying the operator QEt . This density function could be obtained by solving
the Kolmogorov backward equation associated with the stochastic differential
system (15.27) and (15.28), with x replacing lnS of course. This would in fact be
a difficult calculation. The point of the manipulations laid out in this and the next
section is to show how the quantities (15.59) and (15.60) may be calculated without
directly calculating the function Q�.xT ; �T ; T jx; �; t/.

We note first of all that I1 is of the general form

Z 1

�1
exT g.xT / Q�.xT ; �T ; T jx; �; t/dxT : (15.61)
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The task of performing the integration in (15.61) would be much simpler if we could
find another conditional probability density function Q�1.xT ; �T ; T jx; �; t/ such that
the integral in (15.61) reduces to an integral of the form

Z 1

�1
g.xT / Q�1.xT ; �T ; T jx; �; t/dxT :

Such an outcome can be achieved by defining Q�1.xT ; �T ; T jx; �; t/ as the condi-
tional probability density function satisfying the condition

R1
�1 exT g.xT / Q�.xT ; �T ; T jx; �; t/dxTR1

�1 exT Q�.xT ; �T ; T jx; �; t/dxT
D
Z 1

�1
g.xT / Q�1.xT ; �T ; T jx; �; t/dxT :

(15.62)

It is necessary to divide by the term
R1

�1 exT Q�1.xT ; �T ; T jx; �; t/dxT on the left
hand side to guarantee that Q�1.xT ; �T ; T jx; �; t/ satisfies the requirement that

Z 1

�1
Q�1.xT ; �T ; T jx; �; t/dxT D 1 (15.63)

when g.xT / is set equal to 1. In (15.59) the function g.xT / is 1.xT >lnE/, but for the
moment let us take

g.xT / D eiuxT ; (15.64)

this with a view to finding the alternative conditional probability density function
Q�1.xT ; �T ; T jx; �; t/. In this case (15.62) reads

R1
�1 e.1Ciu/xT Q�.xT ; �T ; T jx; �; t/dxTR1

�1 exT Q�.xT ; �T ; T jx; �; t/dxT
D
Z 1

�1
eiuxT Q�1.xT ; �T ; T jx; �; t/dxT :

(15.65)

The right-hand side of (15.65) is in fact the characteristic function2 of the density
function Q�1, and we use �1.u/ to denote it. If we could calculate �1.u/, then by
the Fourier inversion theorem we could in principle calculate the density function
Q�1.xT ; �T ; T jx; �; t/. Then by setting g.xT / D 1.xT >lnE/ in (15.62) we reduce the
calculation of I1 to the calculation of

QEt ŒexT � D
Z 1

�1
exT Q�.xT ; �T ; T jx; �; t/dxT (15.66)

2See Appendix 15.1.
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and of

QE.1/t Œ1.xT >lnE/� D
Z 1

lnE
Q�1.xT ; �T ; T jx; �; t/dxT ; (15.67)

where QE.1/t denotes expectation with respect to the density function Q�1. We shall see
in the next subsection that the integrals in (15.66) and (15.67) can be conveniently
handled.

To calculate I2 we note that it is of the general form

Z 1

�1
g.xT / Q�.xT ; �T ; T jx; �; t/dxT : (15.68)

By again setting g.xT / D eiuxT this last integral would be the characteristic function
of Q�.xT ; �T ; T jx; �; t/, which we denote as �.u/, then by the Fourier inversion
theorem we could in principle obtain Q�.xT ; �T ; T jx; �; t/. The calculation of I2
would also be an integral of the form

Z 1

lnE
Q�.xT ; �T ; T jx; �; t/dxT : (15.69)

Solving for the Option Price

The characteristic functions �1.u/ and �.u/ discussed in the last subsection can both
be expressed in terms of the function

 .�/ D QEt Œe�r.T�t /C� lnST �; (15.70)

where � is a complex number. We note that

 .0/ D QEt Œe�r.T�t /� D e�r.T�t /;

 .1/ D QEt Œe�r.T�t /ST � D Se�q.T�t /:

The last equality follows from (15.25) and manipulations similar to those yield-
ing (15.66). Thus

�1.u/ D  .1C iu/

 .1/
D  .1C iu/

Se�q.T�t / ; (15.71)

�.u/ D  .iu/

 .0/
D  .iu/

e�r.T�t / ; (15.72)
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respectively. These density functions are expressed in terms of the logarithm of the
asset price x D lnS . We shall use QE.1/t and QEt to denote expectations with respect to
these probability density functions. Using the results discussed in the last subsection
we can write

QEt Œe�r.T�t /ST1.xT >lnE/� D Se�q.T�t / QE.1/t Œ1.xT >lnE/�

D Se�q.T�t /
Z 1

lnE
Q�1.xT ; �T ; T jx; �; t/dxT ;

(15.73)

and

QEt Œ1.xT >lnE/� D
Z 1

lnE
Q�.xT ; �T ; T jx; �; t/dxT : (15.74)

In order to evaluate the integrals in (15.73)–(15.74) we apply the Fourier inversion
technique referred to in the previous section. To do this we require the characteristic
functions �1.u/; �.u/, which in turn require us to calculate the function  .�/. First
of all integrate the stochastic differential equations (15.27), (15.28) to obtain

lnST D lnSt C .r � q/.T � t/ � 1

2

Z T

t

�2.u/du

C
p
1 � 
2

Z T

t

�.u/d Qws.u/C 


Z T

t

�.u/d Qw� .u/;
(15.75)

and

�2T � �2t D b2.T � t/C 2k�

Z T

t

�.u/du � 2.k C �b/

Z T

t

�2.u/du

C 2b

Z T

t

�.u/d Qw� .u/:
(15.76)

Thus

� � �r.T � t/C � lnST

D �r.T � t/C � ln.Ste.r�q/.T�t //� �

2

Z T

t

�2.u/du

C �
p
1 � 
2

Z T

t

�.u/d Qws.u/C �


Z T

t

�.u/d Qw� .u/:

(15.77)
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and

 .�/ D QEt .e� /

D K QEt
�

exp

�
� �

2

Z T

t

�2.u/du C �


Z T

t

�.u/d Qw� .u/

C �
p
1 � 
2

Z T

t

�.u/d Qws.u/
	�

(15.78)

where

K � expŒ� ln.St e.r�q/.T�t //� r.T � t/�:

The first two stochastic integrals in the exponent in (15.78) are determined from the
diffusion process for � which evolves independently of the diffusion process for S ,
thus we may write

 .�/ DK QEt



exp

�
��
2

Z T

t

�2.u/du C �


Z T

t

�.u/d Qw� .u/
	

QEt
�

exp.�
p
1 � 
2

Z T

t

�.u/d Qws.u//
��
:

Since3

QEt
�

exp

�
�
p
1 � 
2

Z T

t

�.u/d Qws.u/
	�

D exp

�
1

2
�2.1� 
2/

Z T

t

�2.u/du

	
;

then we can write

 .�/ D K QEt
�

exp

�
�2.1 � 
2/� �

2

Z T

t

�2.u/du C �


Z T

t

�.u/d Qw� .u/
	�
:

(15.79)

Next we use (15.76) to remove
Z T

t

�.u/d Qw� .u/ from the last expression. Thus

 .�/ D K � QEt
�

exp

�
�s1

Z T

t

�2.u/du � s2

Z T

t

�.u/du C s3�
2
T

	�
; (15.80)

3In deriving this result we are relying essentially on the result (8.13), appropriately modified to
take account of the different interval of integration.
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where

s1 D ��
2.1 � 
2/

2
� �

�

.k C �b/

b
� 1

2

	
;

s2 D �

k�

b
;

s3 D �


2b
;

and

K � D exp

�
� ln.Ste

.r�q/.T�t // � r.T � t/ � �


2b
�2t � �
b

2
.T � t/

�
:

For convenience we set

y.�; t/ D QEt
�

exp

�
�s1

Z T

t

�2.u/du � s2
Z T

t

�.u/du C s3�
2
T

	�
; (15.81)

and note that y.�; t/ is of a functional of the form to which the Feynman–Kac
formula (as in Proposition 8.3) may be applied. Thus y.�; t/ is the solution of the
partial differential equation

1

2
b2
@2y

@�2
C Œk� � .k C �b/��

@y

@�
� .s1�2 C s2�/y C @y

@t
D 0: (15.82)

Equation (15.82) must be solved subject to the final time condition

y.�; T / D es3�
2

: (15.83)

It is known that (15.82) with terminal condition (15.83) has a solution of the form

y.�; t/ D exp

�
1

2
A.t/�2 C B.t/� C C.t/C s3�

2

	

D exp

�
1

2
D.t/�2 CB.t/� C C.t/

	
;

(15.84)
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where D.t/ D A.t/ C 2s3: Substituting (15.84) into (15.82), and gathering
coefficients of �0; �1 and �2, we obtain ordinary differential equations for D; B
and C , namely

1

2
PD D �s1 � .k C �b/D C 1

2
b2D2;

PB D �s2 C k N�D � .k C �b/B C b2BD;

PC D k N�B C 1

2
b2B2 C 1

2
b2D;

(15.85)

with

D.T / D 2s3; B.T / D 0 and C.T / D 0:

The solution to the set of ordinary differential equations (15.85) turns out to be

D.t/ D .k C �b/

b2
� 
1 sin h.
1�/C 
2 cosh.
1�/

b2m
;

B.t/ D .k N�
1 � 
2
3/.1 � cosh.
1�// � .k N�
1
2 � 
3/ sinh.
1�/


1b2m
;

and

C.t/ D �1
2

lnmC Œ.k N�
1 � 
2
3/2 � 
23 .1 � 
22 /� sin h.
1�/

2 
31 b
2 m

C .k N�
1 � 
2
3/
3.m� 1/


31 b
2 m

C �

2
21 b
2
Œ.k C �b/
21 .b

2 � .k C �b/k N�/C 
23 �;

where


1 D
p
2b2s1 C .k C �b/2;


2 D k C �b � 2b2s3


1
;


3 D .k C �b/k N� � s2b
2;

m D cosh.
1�/C 
2 sinh.
1�/;

� D T � t:
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The solution y.�; t/ then allows us to form (from (15.80))

 .&/ D K �y.�; t/:

Then we use this to obtain

�1.u/ D  .1C iu/

Se�q.T�t / ;

�.u/ D  .iu/

e�r.T�t / :

We can then use the inversion formula to obtain the expectations in (15.73). Thus

Z 1

lnE
Q�1.xT ; �T ; T jx; �; t/dxT D 1

2
� 1

2�

Z 1

0

�1.�u/eiux � �1.u/e�iux

iu
du;

and

Z 1

lnE
Q�.xT ; �T ; T jx; �; t/dxT D 1

2
� 1

2�

Z 1

0

�.�u/eiux � �.u/e�iux

iu
du:

Appendix 15.3 The Characteristic Function for the Heston
Model

We follow the traditional approach (following from Heston) and use the bivariate
characteristic function. This approach works directly from the stochastic differential
equations, the dynamics of which generate the transition density function G. We
note that in terms of the log stock price x D lnS the stochastic differential equation
system (15.50), (15.51) becomes

dx D .r � q � 1

2
v/dt C

p
1 � 
2pvd Qws C 


p
vd Qwv; (15.86)

dv D .kv Nv � .�C kv/v/dt C �v
p
vd Qwv: (15.87)

Integrating (15.86) from 0 to T we obtain

xT D x.0/C .r � q/T � 1

2

Z T

0

vtdt C 


Z T

0

p
vtd Qwv C

p
1 � 
2

Z T

0

p
vtd Qws

D x.0/C .r � q/T � 1

2

Z T

0

vtdt C 


�v

�
vT � v.0/� kv NvT C kv

Z T

0

vtdt

	

C
p
1 � 
2

Z T

0

p
vtd Qws: (15.88)
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The last equality follows by integrating (15.87) from 0 to T and solving for the termR T
0

p
vtd Qwv . Under the risk-neutral measure QP the bivariate characteristic function

of the two random variables v and x at time T is defined as4

'.u;w/ D QE Œexp.iuxT C iwvT /� :

Using (15.52) we find that

'.u;w/ D QE
�

exp.iu

�
x.0/C .r � q/T � 1

2

Z T

0

vtdt C 


�v

�
vT � v.0/� kv NvT

Ckv
Z T

0

vtdt

	
C
p
1 � 
2

Z T

0

p
vtd Qws

	
C iwvT /

�

D exp

�
iu.x.0/C .r � q/T � 


�v
v.0/ � 


�v
kv NvT /

	
QE
�

exp

�
iu

�
kv


�v

�1
2

	Z T

0

vtdt C
�

iu



�v
C iw

	
vT C iu

p
1 � 
2

Z T

0

p
vtd Qws

	�
:

In the following step, we take the conditional expectation value with respect to
Qwv.s/ for 0 � s � T , which represents the filtration generated by the Brownian
motion of the volatility process. Since all other terms in the above expectation are
Qwv-measurable, application of the law of iterated expectations leads the calculation

of the expectation of exp
�

iu
p
1 � 
2

R T
0

p
vtd Qws

�
. Thus we have

'.u;w/ D exp

�
iu.x.0/C .r � q/T � 


�v
v.0/ � 


�v
kv NvT /

	

	 QE
�

exp

�
iu

�
kv


�v
� 1

2

	Z T

0

vtdt C
�

iu



�v
C iw

	
vT

	

	 QE
�

exp

�
iu
p
1 � 
2

Z T

0

p
vtd QW2

	
j �. Qwv.s/ W 0 � s � T /

��
:

Given the knowledge of Qwv , the path of v is known from time 0 until T and
therefore deterministic. Since Qwv and Qws are independent it follows that the
integral

R T
0

p
vtd Qws is normally distributed with zero mean. The variance can

be calculated via the Ito isometry (see (5.24)) and is equal to
R T
0
vtdt. With the

4This amounts to taking the double Fourier transform.
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use of the characteristic function for a normally distributed variable X ,EŒeiaX � D
eiaEX� 1

2 a
2 varX (see Sect. 6.3.4), the above becomes

'.u;w/ D exp
�

iu.x.0/C .r � q/T � 


�v
v.0/ � 


�v
kv NvT /

	

	 QE
�

exp

�
iu

�
kv


�v
� 1

2

	Z T

0

vtdt C
�

iu



�v
C iw

	
vT

�1
2

u2.1 � 
2/
Z T

0

vtdt

	�

D exp

�
iu.x.0/C .r � q/T � 


�v
v.0/ � 


�v
kv NvT /

	

	 QE
�

exp
��

kv


�v
iu � 1

2
iu � 1

2
u2.1 � 
2/

	Z T

0

vtdt C
�

iu



�v
C iw

	
vT

	�
:

Introducing the abbreviations

a.u;w/ D iw C iu



�v
;

b.u/ D kv


�v
iu � 1

2
iu � 1

2
u2.1 � 
2/;

the characteristic function takes this form

'.u;w/ D exp

�
iu.x.0/C .r � q/T � 


�v
v.0/� 


�v
kv NvT /

	

	 QE
�

exp

�
b.u/

Z T

0

vtdt C a.u;w/vT

	�
:

This expectation contains two random variables,
R T
0
vtdt and vT , which both depend

on the volatility process up to time T . We apply the Feynman–Kac formula (see
Sect. 8.6) to calculate this expectation.

Define the function y as the value of the above expectation, so that

y.T; v.0// D QE
�

exp

�
a.u;w/vT C b.u/

Z T

0

vtdt

	�
:

Since v follows the mean-reverting square-root process (15.87) by the Feynman–
Kac formula, we have that y must satisfy the partial differential equation

@y

@�
D b.u/vy C kv. Nv � v/

@y

@v
C 1

2
�2v v

@2y

@v2
; (15.89)
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with the boundary condition

y.0; v.0// D exp.a.u;w/v.0//:

If we assume that y is log-linear and given by

y.T; v.0// D exp ŒA.�/v.0/C B.�/� ;

then the derivatives of y are

@y

@�
D y.A0v C B 0/;

@y

@v
D yA;

@2y

@v2
D yA2:

Therefore A and B satisfy the ODEs

A0.�/ � 1

2
�2vA

2.�/C kvA.�/C b.u/ D 0;

A.0/ D a.u;w/;

and

B 0.�/ � kv NvA.�/ D 0;

B.0/ D 0:

Solving these ODEs will give the unique solution to the above PDE. Making the
usual transformation for Riccati-type ODEs we have

U.�/ D exp

�
��

2
v

2

Z
A.s/ds

	
;

or equivalently

A.�/ D � 2

�2v

U 0.�/
U.�/

and B.�/ D 2kv Nv
�2v

lnU.�/:

We obtain the linear homogeneous second-order ODE

U 00.�/C kvU
0.�/ � 1

2
�2vU.�/b.u/ D 0: (15.90)
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This second order ordinary differential equation has the general solution with
parameters V and R of the form

U.�/ D Vex1� C Rex2�

x1 D �kv
2

C
r
k2v
4

C 1

2
�2v b.u/

x2 D �kv
2

�
r
k2v
4

C 1

2
�2v b.u/:

Then

U 0.�/ D Vx1e
x1� CRx2e

x2�

D 1

kv

�
1

2
�2v b.u/U.�/� U 00.�/

	

D V

kv
ex1�

�
1

2
�2v b.u/� x21

	
C R

kv
ex2�

�
1

2
�2v b.u/� x22

	
;

where the second equality follows from use of (15.90). The boundary conditions
U.0/ D V CR and U 0.0/ D � 1

2
�2v a.u;w/.V CR/ then yield

V D U.0/
�� 1

2
�2v a.u;w/ � x2

�

d
;

R D U.0/
�
d C 1

2
�2v a.u;w/C x2

�

d
;

with

d D x1 � x2 D
q
k2v C 2�2v b.u/:

Thus

A.�/ D � 2

�2v

U 0.�/

U.�/

D � 2

�2v

U.0/
�� 1

2
�2v a.u;w/ � x2

�
x1e

x1� C U.0/
�
d C 1

2
�2v a.u;w/C x2

�
x2e

x2�

U.0/
�� 1

2
�2v a.u;w/ � x2

�
ex1� C U.0/

�
d C 1

2
�2v a.u;w/C x2

�
ex2�

D � 2

�2v

�� 1
2
�2v a.u;w/ � x2

�
x1e

x1� C �
d C 1

2
�2v a.u;w/C x2

�
x2e

x2�

�� 1
2
�2v a.u;w/ � x2

�
ex1� C �

d C 1
2
�2v a.u;w/C x2

�
ex2�

D � 2

�2v

���2v a.u;w/C .kv C d/
�
x1e

x1� C �
2d C �2v a.u;w/ � .kv C d/

�
x2e

x2�

2de�d� C �
�2v a.u;w/ � kv � d� �e�d� � 1

�
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D 1

�2v

���2v a.u;w/C kv C d
�
.kv � d/C �

�2v a.u;w/ � kv C d
�
.kv C d/e�d�

2de�d� C �
�2v a.u;w/ � kv � d� �e�d� � 1

�

D da
�
1C e�d�

� � �
1 � e�d�

�
.kva.u;w/C 2b.u//

2de�d� C �
�2v a.u;w/ � kv � d

� �
e�d� � 1

�

Finally, we can solve for B.�/ by integration

B.�/ D �2kv Nv
�2v

Z �

0

U 0.s/
U.s/

ds D �2kv Nv
�2v

ln
U.�/

U.0/

D �2kv Nv
�2v

ln

�� 1
2
�2v a.u;w/ � x2

�C �
d C 1

2
�2v a.u;w/C x2

�
e�d�

de�x1�

D 2kv Nv
�2v

ln
2de

1
2 .kv�d/�

2de�d� C �
�2v a.u;w/� kv � d

� �
e�d� � 1

� :

Therefore the one-dimensional PDE (15.89) has been solved and the solution is

QE
�

exp

�
a.u;w/vT C b.u/

Z T

0

vtdt

	�
D expŒA.T; a.u;w/; b.u//v.0/

CB.T; a.u;w/; b.u//�;

with

A.�; a.u;w/; b.u// D �.1 � exp.�d�/.2b.u/Ckva.u;w//C da.1C exp.�d�//



;

B.�; a.u;w/; b.u// D kv Nv
�2v
.kv � d/� C 2kv Nv

�2v
ln
2d



;

d D
q
k2v C 2�2v b.u/;


 D 2d exp.�d�/C .kv C d � �2v a.u;w//.1 � exp.�d�//:

The characteristic function is therefore given by

'.u;w/ D exp

�
iux.0/C iurT � iu




�v
v.0/� iu




�v
kv NvT CA.T; a.u;w/; b.u//v.0/

CB.T; a.u;w/; b.u/// :

Note that the marginal characteristic functions '.u; 0/ and '.0; v/ are equal to the
univariate characteristic function of the logarithmic spot value and the volatility
value at time T .
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15.7 Problems

Problem 15.1 a) Consider the stock price process

dS

S
D �dt C �dZ:

Using simulation obtain and graph the distribution of S.t/ when � D 0:20,
� D 0:18.

b) Consider the stock price process

dS

S
D �dt C �dZ;

where � follows the diffusion process

d� D k. N� � �/dt C ıdW;

and

E.dZdW/ D 
dt:

Using simulation obtain and graph the distribution of S.t/ when � D 0:20,
k D 1, ı D 0:25, N� D 0:18 and 
 D �0:5; 0; 0:5.

c) Compare the distributions at part a) and b) and discuss the differences; partic-
ularly comments on any differences caused by the correlation between dZ and
dW.

Problem 15.2 Consider the mean reverting stochastic volatility model given by
Eqs. (15.1) and (15.2). The partial differential equation for the option price in this
case is given by the partial differential equation (15.18) with appropriately defined
coefficients. Consider this partial differential equation in the case when the volatility
between the noise terms is zero i.e. 
 D 0.

a) Make the change of variables

y D lnS; � D .k C �b/� � k N�

and obtain the partial differential equation for the transformed option price

F.y; �; t/ � f

�
ey;

� C k N�
k C �b

; t

	
:
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b) Consider solving this partial differential equation by the Fourier transform
technique of Chap. 9. To do so you will need to define the two-dimensional
Fourier transform

NF .!; �; t/ D
Z 1

�1

Z 1

�1
F.y; �; t/e�i!y�i��dyd�:

Use the same formal manipulations as in Chap. 9 and show that NF .!; �; t/
satisfies a first order partial differential equation of the form

@ NF
@t

C Œ: : :� NF C .k C �b/�
@ NF
@�

C 1

2
b2.k C �b/2�2 NF D 0:

Problem 15.3 Consider the stochastic volatility model

dS

S
D �dt C �dzs;

d.ln �/ D kv.ln N� � ln �/dt C ıdz�

where

E.dzsdz� / D 
dt:

What stochastic process does � follow in terms of independent Wiener processes?

Problem 15.4 Johnson and Shanno (1987) consider the stochastic volatility model

dS

S
D �dt C �S˛1dzs;

d� D 	�dt C ı�˛2dz� ;

where

E.dzsdz� / D 
dt

and ˛1; ˛2 � 0.
This model allows the instantaneous stock return to depend on both S (the S˛1

term—for which there is some empirical evidence) and a stochastic � , which follows
a so-called CEV (D constant elasticity of variance process) process.

a) Obtain the PDE that determines derivative prices under these dynamics.
b) Write out the dynamics for S and � under the risk neutral dynamics.
c) Give the expression for a European call option in terms of an expectation

operator.
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Problem 15.5 A slight variant of the model considered in Problem 15.4 is the so-
called stochastic ˛ˇ
 model, more popularly known as the SABR model. It has
become widely adopted in recent years because it enjoys convenient properties for
calibrating to the smiles and skews observed in markets because it is able to capture
the correct dynamics of the smile. The model is of the form

dS D �Sdt C ˛Sˇdzs;

d˛ D �˛˛dz˛;

with

EŒdzsdz˛� D 
dt:

a) Obtain the PDE that determines derivative prices under these dynamics.
b) Write out the dynamics for S and ˛ under the risk-neutral dynamics.
c) Give the expression for a European call option in terms of an expectation operator

under the risk-neutral measure.

For more on the SABR model the interested reader should consult Hagan et al.
(2002) and West (2005).

Problem 15.6 A model which generalises several of the models considered in this
chapter is the so-called double CEV (constant elasticity of variance) model. This
model has the general form

dS

S
D �dt C p

vdZs;

dv D kv.u � v/dt C �vv
˛dZv;

du D ku.Nu � u/dt C �uuˇdZu;

with

EŒdZsdZv� D 
svdt; EŒdZsdZu� D 
sudt; EŒdZvdZu� D 
vudt:

and typically ˛; ˇ 2 Œ 1
2
; 1�. An advantage of this model is that it introduces an

additional stochastic factor into the volatility dynamics (the Wiener processZu) and
this caters for the empirically observed fact that three factors seem to be driving
the dynamics of observed implied volatility surfaces. Note that when ˛ D ˇ D 1

2

we have the double Heston model and when ˛ D ˇ D 1 the double log-normal
model.
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a) Obtain the PDE that determines the derivative prices under these dynamics. Make
whatever assumptions about market price of risk factors that are necessary to
ensure affine coefficients of the first derivative terms.

b) Write out the dynamics for S; u and v under the risk-neutral dynamics.
c) Give the expression for a European call option in terms of an expectation operator

under the risk-neutral measure.

Problem 15.7 Computational Problem—Consider the stochastic volatility
process

dS

S
D �dt C p

vdZS

dv D 	v. Nv � v/dt C ıv
p
vdZv

where ZS and Zv are correlated Wiener processes so that

E.dzSdzv/ D 
dt:

Simulate the dynamics for S and v and obtain the distribution for S at t D 1

conditional on the initial stock price So.
Take � D 0:15, Nv D 0:04, ıv D 0:2, 	v D 1, and So D 0:5. Simulate from t D 0

to t D 1, using 10,000 simulations. Experiment with the step size until you get a
“good” distribution. Take 
 D �0:5, 0 and 0.5. Compare the distribution for S you
obtain with the log normal distributions obtained by using the mean and variance of
the simulated time series.

In order to see clearly the differences in the tails of the distribution also plot
the distributions on a log scale. As a further experiment to gauge the impact of ıv ,
simulate the 
 D 0 case with ıv D 0:5, 1 and 1.5 and compare the distributions (on
both standard scale and log scale).



Chapter 16
Pricing the American Feature

Abstract To understand the problems and techniques of pricing the American
feature of an option, this chapter introduces the American option pricing problem
from the conventional approach based on compound options and the free boundary
value problem which can be solved by using either the Fourier transform technique
or a simple approximation procedure. The framework developed is readily extended
to other option pricing problems.

16.1 Introduction

In this chapter we consider the problem of pricing an American put option on non-
dividend paying stock. It may be optimal to exercise the American put early in
this case, unlike the case of the American call. The American put is the simplest
framework in which to understand the problems and techniques of pricing the
American feature of an option. The framework developed is readily extended to
other option pricing situations.

This chapter considers the American option pricing problem from three perspec-
tives.

First, in Sect. 16.2, the conventional approach to American option evaluation that
consists of dividing the time to maturity into a number of subintervals and breaking
up the valuation problem into a sequence of compound option valuations over those
subintervals; this approach was developed by Geske and Johnson (1984).

Second, Sect. 16.3 describes how the problem of valuing an American option
can be posed as a free boundary value problem and describes a general formulation
for the solution, the Fourier transform technique used in Chap. 9 to evaluate the
European option is extended to solve this free boundary value problem; this
approach is based on the Mckean (1965) discussion and its further elaboration by
Kucera and Ziogas (2001).

Third, Sect. 16.4 discusses a simple approximation procedure for the solution of
the free boundary value problem, due to Macmillan (1986) and Barone-Adesi and
Whaley (1987).
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16.2 The Conventional Approach Based on Compound
Options

Let P.S; �/ denote the value of an American put when the underlying stock price is
S and time to maturity is �.D T � t/. The put value satisfies the partial differential
equation

1

2
�2S2

@2P

@S2
C rS

@P

@S
� rP D @P

@�
; (16.1)

subject to the maturity condition

lim
�!0

P.S; �/ D maxŒE � S; 0�; (16.2)

and boundary condition

lim
S!1P.S; �/ D 0: (16.3)

The put option value will also satisfy the early exercise condition

P.S; �/ � maxŒE � S; 0�: (16.4)

The time to maturity is divided into a finite number of subintervals t0; t1; : : : ; tn

of length �t

�
D T � t

n

	
and define t0 D T . We consider put values

P .1/; P .2/; : : : ; P .n/ defined on the domains D.1/;D.2/; : : : ;D.n/ respectively,
see Fig. 16.1, where

D.1/ D f.S; �/I 0 < S � 1; 0 < � � �tg
D.2/ D f.S; �/I 0 < S � 1; �t < � � 2�tg

:::
:::

D.n/ D f.S; �/I 0 < S � 1; .n � 1/�t < � � n�tg:

(16.5)

In the domain D.1/, with one period left to maturity the American put is
equivalent to a European put, i.e. the American put value P .1/, for 0 < � � �t ,
is the solution to

1

2
�2S2P

.1/
SS C rSP.1/S � rP .1/ D P .1/

� ;
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Fig. 16.1 Domains for American put option valuation

Fig. 16.2 Value of the American put option unexercised at � D �t

subject to

lim
�!0

P .1/.S; �/ D maxŒE � S; 0�;

lim
S!1P .1/.S; �/ D 0:

Here we denote fx D @f .x;y/

@x
; fxx D @2f .x;y/

@x2
and so on. The solution for P .1/.S; �/

is given by the Black–Scholes European put formula.
At � D �t; P .1/.S;�t/ represents the value of the American put unexercised

(see Fig. 16.2). The American put will be exercised if its value is less than the
immediate exercise value .E � S/. This will occur if the stock price falls below a
critical value a.�t/ defined by

P .1/.a.�t/;�t/ D E � a.�t/: (16.6)
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Fig. 16.3 Value of American put option over the interval �t < � � 2�t

Thus the value of the American put, at � D �t , is

V .1/ D maxŒP .1/.S;�t/; E � S�:

The value, V .1/, will be the maturity value for the American put over the interval
�t < � � 2�t (Fig. 16.3). That is over this interval P .2/.S; �/ must satisfy

1

2
�2S2P

.2/
SS C rSP.2/S � rP .2/ D P .2/

� ;

lim
�!�t

P .2/.S; �/ D V .1/ D maxŒE � S;P .1/.S;�t/�;

lim
S!1P .2/.S; �/ D 0:

(16.7)

The problem of solving (16.7) subject to a maturity condition which is itself
an option is known as a compound option problem and has been solved by Geske
(1979) and involves both univariate and trivariate normal distribution functions. As
with P .1/.S; �/, the value P .2/.S; �/ is the value of the American put unexercised,
over the interval �t < � � 2�t , if its value is less than the immediate exercise
value .E � S/. Early exercise will occur if the stock price falls below the critical
value a.2�t/ given by

P .2/.a.2�t/; 2�t/ D E � a.2�t/:

The value of the American put, at � D 2�t , is then

V .2/ D maxŒP .2/.S; 2�t/; E � S�;
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Fig. 16.4 Time profile of the critical stock price a

which becomes the maturity condition at � D 2�t for the problem of finding
P .3/.S; �/ over the subinterval 2�t < � � 3�t . This procedure is repeated
recursively until current time .� D T / is reached. Over the subinterval .n� 1/�t <
� � n�t , the value of P .n/ is given by

1

2
�2S2P

.n/
SS C rsP.n/S � rP .n/ D P .n/

� ;

subject to

lim
�!.n�1/�t P

.n/.S; �/ D maxŒE � S;P n�1.S; .n � 1/�t/�;

lim
S!1P .n/.S; �/ D 0:

The solution to this compound option problem involves the n-dimensional cumula-
tive normal distribution function. As a product of this computational procedure, we
obtain the time profile of the critical stock price a, below which the option would
be exercised early (Fig. 16.4).

16.3 A General Formulation

16.3.1 The Free Boundary Value Problem

Early work on the problem of valuing the American feature of an option was
carried out in apparent ignorance of the fact that this problem is essentially a free
boundary value problem as pointed out by Mckean (1965). Crucial to formulating
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the American put valuation problem as a free boundary value problem is an
understanding of the behaviour of the critical stock price a.�/.

It can be shown using no riskless arbitrage arguments that

(i) a.�/ is non-increasing in � ,
(ii) lim

�!0
a.�/ D a.0/ D E ,

(iii) a.�/ is continuous.

Furthermore, an American put held to expiration will have a zero value at � D 0.
This follows because from properties (i) and (ii) it is not possible for the stock price
to end up below E at � D 0 without crossing a.�/ for some larger value of � . This
would mean S � a.0/ D E at maturity and so the unexercised American put would
have zero value at maturity.

If we let U.S; � I a.�// be the unexercised value of the American put when the
critical stock price is a.�/ then U is the solution of

1

2
�2S2USS C rSUS � rU D U� ; (16.8)

subject to

lim
�!0

U.S; � I a.�// D 0; (16.9a)

lim
S!a.�/

U.S; � I a.�// D E � a.�/; (16.9b)

lim
S!1U.S; � I a.�// D 0: (16.9c)

Thus at any time � the value of the American put is given by

P.S; �/ D
(
U ŒS; � I a.�/�; for a.�/ < S < 1,

E � S; for 0 < S � a.�/.

We would like to choose a.�/ so as to maximise P.S; �/ and Merton (1973) has
shown that this is equivalent to imposing the condition

lim
S!a.�/

US D �1: (16.9d)

The solution to the partial differential equation (16.8) subject to the boundary
conditions (16.9a)–(16.9d) is a classical free boundary value problem whose
solution is discussed by Mckean (1965) and Kolodner (1956). It may be solved
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by use of the Fourier transform technique. Application of their techniques leads to
the solution

U.S; �/ D EV

�
ln

�
S

E

	
; �

	

where

V.x; �/ D
Z �

0

e�g.x;s/

�
p
2�.� � s/

�
�2c.s/

2
C
�
b0.s/

C k1 �
�
x � b.s/C k1.� � s/

2.� � s/
�	
.c.s/ � 1/

�
ds; (16.10)

with

g.x; s/ D .x � b.s/C k1.� � s//2
2�2.� � s/

C k2.� � s/; (16.11)

k1 D .r � 1

2
�2/: (16.12)

Furthermore c.�/.D eb.�// is given as the solution of the integral equation

1 � c.�/

2
D
Z �

0

e�g.b.�/;s/

�
p
2�.� � s/

�
�2c.s/

2
C
�
b0.s/

C k1 �
�
b.�/� b.s/C k1.� � s/

2.� � s/

�	
.c.s/ � 1/

�
ds: (16.13)

Since it is nonlinear, the integral (16.13) needs to be solved numerically. Once c.�/
is obtained, (16.10) becomes a simple exercise in numerical integration to obtain
U.S; �/.

In the following subsections we derive the result (16.10)–(16.13) by use of the
Fourier transform technique.1

16.3.2 Transforming the Partial Differential Equation

Firstly, transform the partial differential equation (16.8) to an equation with constant
coefficients and a “standardised” strike of 1. Let

U.S; t/ D EV.x; �/; (16.14)

1This discussion draws heavily on Kucera and Ziogas (2001).
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where

S D Eex: (16.15)

The transformed PDE is then

@V

@�
D 1

2
�2
@2V

@x2
C k1

@V

@x
� k2V; 0 � � � T; (16.16)

in the region b.�/ < x < 1, where

k1 D
�
r � 1

2
�2
	
;

k2 D r;

and the transformed free boundary is given by

b.�/ D ln

�
a.T � �/

E

	
D ln

�
a.t/

E

	
: (16.17)

The new initial and boundary conditions are

V.x; 0/ D max.1 � ex; 0/; �1 < x < 1 (16.18)

lim
x!�1V.x; �/ D 0; � � 0 (16.19)

V.b.�/; �/ D 1 � c.�/; � � 0 with c.�/ D eb.�/ (16.20)

lim
x!b.�/

@V

@x
D �c.�/: (16.21)

Henceforth, b � b.�/ and c � c.�/, for simplicity. In order to solve this PDE for
V.x; �/, the x domain shall be extended to �1 < x < 1 by expressing the PDE as

H .x�b/
�
@V

@�
� 1

2
�2
@2V

@x2
� k1 @V

@x
C k2V

	
D 0; �1 < x < 1; 0 � � � T;

(16.22)
where H .x � b/ is the Heaviside step function, defined as

H .x/ D
8
<

:

1; x > 0
1
2
; x D 0

0; x < 0:

(16.23)

The reason for this choice, in particular the 1=2 at x D b, will become clear later
on. The initial and boundary conditions remain as before (Fig. 16.5).
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a

b

Fig. 16.5 The continuation region. (a) Continuation region in S-space. (b) Continuation region in
x-space

16.3.3 Applying the Fourier Transform

Since the x domain is now �1 < x < 1, the Fourier transform of the PDE can be
found. Define F fV.x; �/g as

F fV.x; �/g D
Z 1

�1
ei�xV .x; �/dx:

Applying the Fourier transform to (16.22), we obtain

F



H .x � b/

@V

@�

�
D 1

2
�2F



H .x � b/@

2V

@�2

�

C k1F



H .x � b/@V

@x

�
� k2F fH .x � b/V g:

(16.24)
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By definition

F fH .x � b/V .x; �/g D
Z 1

�1
ei�xH .x � b/V .x; �/dx

D
Z 1

b

ei�xV .x; �/dx � F bfV.x; �/g: (16.25)

Additionally, denote

OV .�; �/ � F bfV.x; �/g:

We call F b an incomplete Fourier transform (applied to V.x; �/ for b < x < 1).
In Appendix 16.1 we show how the incomplete Fourier transform may be derived as
a consequence of the standard Fourier transform and there derive the corresponding
inversion theorem.

Proposition 16.1 The incomplete Fourier transform of (15.25) enjoys the proper-
ties

F b



@V

@x

�
D .c � 1/ei�b � i� OV .�; �/;

F b



@2V

@x2

�
D cei�b � i�

h
.c � 1/ei�b � i� OV

i
;

F b



@V

@�

�
D @ OV
@�

� b0ei�b.1 � c/:

Proof First consider

F b



@V

@x

�
D
Z 1

b

ei�x
@V

@x
dx D ŒVei�x�1b � i�

Z 1

b

ei�xVdx

D �V.b; �/ei�b � i� OV .�; �/: (by definition of OV )

Note that as in the corresponding derivation in Sect. 9.3 we tentatively assume that
limx!1V.x; �/ei�x D 0. Finally by use of boundary condition (16.20),

F b



@V

@x

�
D .c � 1/ei�b � i� OV : (16.26)
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Next consider

F b



@2V

@x2

�
D
Z 1

b

ei�x
@2V

@x2
dx D

�
@V

@x
ei�x

�1

b

� i�
Z 1

b

@V

@x
ei�xdx

D �@V.x; �/
@x

jxDb � ei�b � i�F b



@V

@x

�
;

where the last equality follows by use of the boundary condition (16.21) and use
of (16.26). As in Sect. 9.3 we tentatively assume that limx!1V.x; �/ei�x D 0 so
that the last equation simplifies to

F b



@2V

@x2

�
D ei�b.c � i�.c � 1//� �2 OV : (16.27)

Finally consider

F b



@V

@�

�
D
Z 1

b

ei�x
@V .x; �/

@�
dx D @

@�

�Z 1

b

ei�xV .x; �/dx

�
C b0ei�bV .b; �/

D @

@�
ŒF bfV g�C b0ei�bV .b; �/;

where b0 � db.�/

d�
. Applying the boundary condition (16.20) we have

@

@�
ŒF bfV g� D b0ei�b.c � 1/C F b



@V

@�

�
:

Hence, finally

F b



@V

@�

�
D @ OV
@�

� b0ei�b.c � 1/: (16.28)

�

By use of Proposition 16.1, (16.26) becomes

@ OV
@�

�b0ei�b.c�1/ D 1

2
�2Œei�b.c�i�.c�1//��2 OV �Ck1Œei�b.c�1/�i� OV ��k2 OV ;
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which may be re-arranged to yield

@ OV
@�

C
�
1

2
�2�2 C k1i�C k2

	
OV D ei�b

�
b0.c � 1/C 1

2
�2.c � i�.c � 1//C k1.c � 1/

�

D ei�b
�
1

2
�2c C

�
b0 � 1

2
�2i�C k1

	
.c � 1/

�

D F.�; �/; (16.29)

where we set

F.�; �/ D ei�b
�
�2c

2
C
�
b0 � �2i�

2
C k1

	
.c � 1/

�
: (16.30)

Equation (16.29) is an ordinary differential equation for OV .�; �/.
Proposition 16.2 The solution to the ordinary differential equation (16.29) is

OV .�; �/ D
Z �

0

e
�
�
�2�2

2 Ck1i�Ck2
	
.��S/

F.�; S/dS (16.31)

Proof The initial condition becomes

F fV.x; 0/g � OV .�; 0/:
The ordinary differential equation is of the form

d OV
d�

C a1.�/ OV D F.�; �/: (16.32)

Using the integrating factor ea1.�/� , (16.32) becomes

d

d�
. OV ea1.�/� / D F.�; �/ea1.�/�

whose solution may be expressed as

OV .�; �/ea1.�/� � OV .�; 0/ D
Z �

0

F .�; s/ea1.�/sds: (16.33)

Rearranging and substituting the explosion for a1.�/, the solution for OV .�; �/ is
given by

OV .�; �/ D OV .�; 0/e�. 12 �2�2Ck1i�Ck2/� C
Z �

0

e
�
�
�2�2

2 Ck1i�Ck2
	
.��s/

F .�; s/ds:

(16.34)
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From the definition of OV .�; �/, we can see that

OV .�; 0/ D
Z 1

b.0/

V .x; 0/ei�xdx:

At � D 0, b.0/ D 0. Hence

OV .�; 0/ D
Z 1

0

V .x; 0/ei�xdx D
Z 1

0

H.�x/.1� ex/ei�xdx D
Z 0

�1
0 � ei�xdx D 0:

�

16.3.4 Inverting the Fourier Transform

Taking the inverse (complete) Fourier transform of (16.31) gives

V.x; �/ D 1

2�

Z 1

�1
e�i�x

"Z �

0

e
�
�
�2�2

2 Ck1i�Ck2
	
.��s/

F .�; s/ds

#
d� (16.35)

D 1

2�

Z �

0

�Z 1

�1
e� �2�2

2 .��s/�i�x�k1i�.��s/�k2.��s/F .�; s/d�
�

ds

where b.�/ < x < 1.

Proposition 16.3 The inverse Fourier transform (16.35) may be expressed as

V.x; �/ D
Z �

0

e�g.x;s/

�
p
2�.� � s/

�
�2c.s/

2
C
�
b0.s/C k1

�
�
x � b.s/C k1.� � s/

2.� � s/
�	
.c.s/ � 1/

�
ds; (16.36)

where

g.x; s/ D .x � b.s/C k1.� � s//2
2�2.� � s/

C k2.� � s/: (16.37)

Proof Consider

F.�; s/ D ei�b.s/
�
�2c.s/

2
C
�
b0.s/ � �2i�

2
C k1

	
.c.s/ � 1/

�

D ei�b.s/
�
�2c.s/

2
C .b0.s/C k1/.c.s/ � 1/� �2i

2
.c.s/ � 1/�

�

D ei�b.s/ff1.s/ � �f2.s/g; (16.38)
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where

f1.s/ D �2c.s/

2
C .b0.s/C k1/.c.s/ � 1/;

and

f2.s/ D �2i

2
.c.s/ � 1/:

Thus we can rewrite (16.33) as

V.x; �/ D 1

2�

Z �

0

e�k2.��s/
�Z 1

�1
e�p�2�q�ff1.s/ � �f2.s/gd�

�
ds; (16.39)

where

p D �2

2
.� � s/; and q D i.x C k1.� � s/ � b/:

Using the result that

Z 1

�1
e�p�2�q��kd� D .�1/k

r
�

p

@k

@qk
e
q2

4p ;

subject to Re.p/ � 0, (which is true since p D �2

2
.� � s/, 0 < s < �), we have

Z 1

�1
e�p�2�q�2d� D

r
�

p
e
q2

4p ; (16.40)

and

Z 1

�1
e�p�2�q��d� D �

r
�

p

@

@q
e
q2

4p D �
r
�

p

q

2p
e
q2

4p : (16.41)

By use of (16.40) and (16.41), (16.39) becomes

V.x; �/ D 1

2�

Z �

0

e�k2.��s/

�
f1.s/

r
�

p
e
q2

4p C f2.s/

r
�

p
e
q2

4p
q

2p

�
ds

D
Z �

0

e�k2.��s/
e
q2

4p
p
�

2�
p
p

�
f1.s/C qf 2.s/

2p

�
ds (16.42)

D
Z �

0

e
�k2.��s/C

q2

4p

2
p
�p

�
�2c.s/

2
C .b0.s/C k1/.c.s/� 1/C �2i.c.s/� 1/q

2�2.� � s/
�

ds:
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To further simplify this expression and eliminate p and q, consider the following
manipulations:

(i)

2
p
�p D 2

r
��2

2
.� � s/ D �

p
2�.� � s/;

(ii)

q2

4p
D i 2.x C k1.� � s/ � b/2

2�2.� � s/
D � .x C k1.� � s/ � b/2

2�2.� � s/ ;

(iii)

.b0.s/C k1/.c.s/ � 1/C �2i.c.s/� 1/q

2�2.� � s/

D .c.s/ � 1/

�
b0.s/C k1 C �2i2.x C k1.� � s/ � b.s//

2�2.� � s/

	

D .c.s/ � 1/

�
b0.s/C k1 �

�
x C k1.� � s/ � b.s/

2.� � s/
�	
:

By use of the foregoing results (16.42) can be written

V.x; �/ D
Z �

0

 
expf�k2.� � s/� .x C k1.� � s/ � b.s//2=2�2.� � s/g

�
p
2�.� � s/

!

	
�
�2c.s/

2
C
�
b0.s/C k1 �

�
x � b.s/C k1.� � s/

2.� � s/

�	
.c.s/ � 1/

�
ds:

�

Equation (16.36) expresses the value of the American call option in terms of the
early exercise boundary b.�/. At this point it remains unknown, but we are able to
obtain an integral equation that determines it by requiring the expression for V.x; �/
in (16.36) to satisfy the early exercise boundary condition (16.20), application of
which yields

1 � c.�/

2
D
Z �

0

e�g.b.�/;s/

�
p
2�.� � s/

�
�2c.s/

2
C
�
b0.s/

C k1 �
�
b.�/� b.s/C k1.� � s/

2.� � s/

�	
.c.s/ � 1/

�
ds; (16.43)
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where

g.b.�/; s/ D .b.�/ � b.s/C k1.� � s//2
2�2.� � s/

C k2.� � s/: (16.44)

The factor of 1
2

on the left in (16.43) arises because we originally found the Fourier
transform of the function H .x � b/V .x; �/, which is piecewise continuous in the
region �1 < x < 1. From the theory of Fourier transforms, it can be shown that
if f .x/ is piecewise continuous, then

f .xC/C f .x�/
2

D 1

2�

Z 1

�1
e�i�x

Z 1

�1
f .x/ei�xdxd� (16.45)

for all x 2 R.
In (16.45) we set f .x/ D H .x � b/V .x; �/ and consider the point of

discontinuity of this function at x D b. Hence, at the point of discontinuity,
x D b.�/, we have

F�1f OV .�; �/g D H .b.�/� � b/V .b.�/�; �/C H .b.�/C � b/V .b.�/C; �/
2

D 0:V .b.�/�; �/C 1:V .b.�/C; �/
2

D 0C .1 � eb.�//

2
D 1 � c.�/

2
: (16.46)

The convergence of the inverse of the incomplete Fourier transform to the mid-point
at x D b.�/ is illustrated in Fig. 16.6.

Fig. 16.6 The convergence of the inverse of the incomplete Fourier transform to the mid-point at
x D b.�/
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Now the reasoning behind our initial choice for the form of H .x � b.�//

in (16.23) is clear. To more properly account for the discontinuity, the solution could
also be expressed as

H .x � b.�//V .x; �/

D
Z �

0

e�g.x;s/

�
p
2�.� � s/

�
�2c.s/

2
C
�
b0.s/C k1 �

�
x � b.s/C k1.� � s/

2.� � s/

�	

	.c.s/ � 1/� ds;

where g.x; s/ is given by Eq. (16.37), and �1 < x < 1. This will “neatly”
account for the behaviour of the solution at the discontinuity x D b.�/ when taking
the inverse Fourier transform of OV .�; �/.

Using the fact that b.�/ D ln.c.�// the integral (16.43) can be written as

1 � c.�/

2
D
Z �

0

e�g.c.�/;s/

�
p
2�.� � s/

�
�2c.s/

2
C
�
c0.s/
c.s/

C k1 �
"

ln. c.�/
c.s/
/C k1.� � s/
2.� � s/

#	
.c.s/ � 1/

�
ds (16.47)

where

g.c.�/; s/ D
�

ln
�
c.�/

c.s/

�
C k1.� � s/

�2

2�2.� � s/
C k2.� � s/: (16.48)

16.4 An Approximate Solution

The formulation in the previous subsection solves the American valuation problem
in a fairly general way. However often it is useful to obtain a simpler approximate
solution. Here we outline one such solution obtained by Macmillan (1986), this
solution has been generalised to the general commodity option situation by Barone-
Adesi and Whaley (1987).

Let e.S; �/ be the amount by which the American put option is worth more than
the European put option i.e.

P.S; �/ D p.S; �/C e.S; �/; (16.49)



366 16 Pricing the American Feature

where p is the European put option value. Since P and p both satisfy the partial
differential (16.1) it follows that e satisfies a partial differential equation of the same
form

1

2
�2S2eSS C rSeS � re D e� ; (16.50)

but with the boundary condition e.S; 0/ D 0. Defining M D 2r

�2
, (16.50) can be

written

S2eSS C MSeS � Me � M

r
e� D 0:

Introduce the change of time variable from � to � according to

� D K.�/ (16.51)

where the functional form of K will be specified later. The partial differential
equation for e then becomes

S2eSS C MSeS � Me � M

r
K�e� D 0:

We then write the early exercise premium in the form

e.S; �/ D e.S;K�1.�// � �f .S; �/

so that f satisfies

S2fSS C MSf S � Mf

�
1C K�

r�

�
1C �

f�

f

	�
D 0:

A useful choice of K.�/ would be such that most of the time dependence of the
early exercise premium is contained in this factor. One such choice turns out to be

K.�/ D 1 � e�r� ; (16.52)

for which K� D r.1 � �/. With this choice the last partial differential equation
becomes

S2fSS C MSf S � Mf

�

�
1C .1 � �/� f�

f

�
D 0: (16.53)
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The term �.1 � �/ is zero at � D 0 and � D 1 and has a maximum value of
1

4
at

� D 1

2
. Thus ignoring this term it should produce a reasonable approximation for

small � and large � without too much error for intermediate � . Setting this term to
zero reduces (16.53) to the ordinary differential equation

S2fSS C MSf S �
�
M

�

	
f D 0

which has the solution

f .S/ D a1S
q1 C a2S

q2 ;

where q1 and q2 are the negative and positive roots of the quadratic equation

q2 C .M � 1/q � M

�
D 0: (16.54)

In order that lim
S!1P.S; �/ D 0 be satisfied we ignore the positive root. Hence

f .S/ D a1S
q1 : (16.55)

To complete the solution we need to determine the constant a1 and the critical stock
priceB . Those are determined by forcing the solution derived from (16.55) to satisfy
the early exercise condition (16.9b) and the tangency condition (16.9d).

Details are given in Macmillan (1986) and the solution turns out to be

P.S; �/ D p.S; �/C A

�
S

B

	q
; (16.56)

where q is the negative root of (16.54), B is given by

B D � q.E � p.B//

N .d1.B// � q
; (16.57)

and A is given by

A D BN .d1.B//

�q : (16.58)
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16.5 Appendix

Appendix 16.1 The Incomplete Fourier Transform

To prove that if

f .x; �/ D H .a � x/g.x; �/; a � a.�/; H .a � x/ � Heaviside Function;

then the standard Fourier Œinversion theorem�

f .x; �/ D 1

2�

Z 1

�1

�Z 1

�1
f .x; �/ei�xdx

�
e�i�xd�; �1 < x < 1;

yields

g.x; �/ D 1

2�

Z 1

�1

�Z a

�1
g.x; �/ei�xdx

�
e�i�xd�; �1 < x � a;

On the left,

H .a � x/g.x; �/ D


g.x; �/; �1 < x � a

0; a < x < 1

On the right,

1

2�

Z 1

�1

�Z 1

�1
H .a � x/g.x; �/ei�xdx

�
e�i�xd�

D 1

2�

Z 1

�1

�Z a

�1
H .a � x/g.x; �/ei�xdx

C
Z 1

a

H.a � x/g.x; �/ei�xdx

�
e�i�xd�

D 1

2�

Z 1

�1

�Z a

�1
H .a � x/g.x; �/ei�xdx

�
e�i�xd�

C 1

2�

Z 1

�1

�Z 1

a

H .a � x/g.x; �/ei�xdx

�
e�i�xd�

D 1

2�

Z 1

�1

�Z a

�1
g.x; �/ei�xdx

�
e�i�xd�:
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Hence

H .a � x/g.x; �/ D 1

2�

Z 1

�1

�Z a

�1
g.x; �/ei�xdx

�
e�i�xd�; �1 < x < 1

or alternatively,

g.x; �/ D 1

2�

Z 1

�1

�Z a

�1
g.x; �/ei�xdx

�
e�i�xd�; �1 < x < a

and

g.x; �/

2
D 1

2�

Z 1

�1

�Z a

�1
g.x; �/ei�xdx

�
e�i�xd�; x D a:

16.6 Problems

Problem 16.1 Verify the approximate solution to the American put problem given
in (16.56) by using the boundary conditions for the American option to determine
the coefficients for A and B in Eqs. (16.57) and (16.58).



Chapter 17
Pricing Options Using Binomial Trees

Abstract This chapter presents the binomial tree approach to the option pricing
problem. We first illustrate the basic ideas of option pricing by considering the
one-period binomial tree model and then extend to a multi-period binomial tree
model. We then show that, by taking limits in an appropriate way, the binomial
expression for the option price converges to the Black–Scholes option price and
pricing equation. Alternatively, the continuous time model can be discretised
in a way that yields the same expressions as obtained by the binomial tree
approach.

17.1 Introduction

What distinguishes the approach of this chapter from the finite differences approach
is that the point in the modelling process where discretisation takes place. In the
finite-difference case we start with a continuous time model of the price process for
the underlying asset, derive a continuous time equation for the option price and then
discretise this. In the binomial tree case we start with a discrete time model of the
price process for the underlying asset and then derive a discrete time expression for
the option price.

Of course these two approaches can be shown to be equivalent. The continuous
time model can be discretised in a way that yields the same expressions as obtained
by the binomial tree approach. Similarly, by taking limits in an appropriate way the
binomial expression for the option price can be shown to converge to the Black–
Scholes option pricing equation. The distinction between the discrete time and
continuous time approaches is illustrated in Fig. 17.1.
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Fig. 17.1 The different ways to view discretisation of the option pricing problem

17.2 The Binomial Model

17.2.1 The Binomial Stock Price Process

Instead of the continuous time processes that we have employed hitherto we now
assume time evolves discretely in intervals of length h (h D 1 day, 1week etc.) as
shown in Fig. 17.2.

In this discrete time setting we allow the stock price to have only two possible
movements from one time period to the next, namely an up or a down movement as
illustrated in Fig. 17.3. Mathematically, this may be described as

SiC1 D
(

uSi ; with prob p;

dSi ; with prob .1 � p/; (17.1)

where the probability p relates to the underlying binomial distribution and the
parameters u; d relate to the variance of this distribution.

To see the connection with the continuous time framework discretise the
continuous time process

dS

S
D �dt C �dz; (17.2)

using the Euler–Maruyama method to obtain

SiC1 D .1C �h/Si C �Si
p
h Q�i ; (17.3)

where Q�i � N.0; 1/.
Suppose we replace the normal variate Q�i with a Bernoulli variate Q̌

i where

Q̌
i D

(
C1; with prob p

�1; with prob .1 � p/ (17.4)
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Fig. 17.2 Discrete time evolution of the stock price

Fig. 17.3 The one-period binomial tree for the stock price

then the discrete time process (17.3) reads

SiC1 D .1C �h/Si C �Si
p
h Q̌

i : (17.5)

In other words

SiC1 D
(
.1C �hC �

p
h/Si ; with prob p

.1C �h � �p
h/Si ; with prob .1 � p/.

(17.6)

Hence we can relate the u; d of (17.1) to the �; � of the continuous time approach,
namely

u D 1C �hC �
p
h;

d D 1C �h � �
p
h:

(17.7)

From the last equations we are able to derive the important result that

� D u � d

2
p
h
: (17.8)
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Fig. 17.4 The n-period binomial tree for the stock price

We also note from (17.6) that

E

�
SiC1 � Si

Si

�
D �hC .2p � 1/�

p
h; (17.9)

and

var

�
SiC1 � Si

Si

�
D 4p.1 � p/�2h: (17.10)

From (17.9) and (17.10) we observe that the choice p D 1=2 will yield the same
mean and variance for expected stock returns as in continuous time.

By extending the binomial stock price movements over n periods we generate
a binomial tree for the stock price process as illustrated in Fig. 17.4. Note that the
general period n stock price, un�id iS0, can be arrived at by

nŠ

i Š.n� i/Š
D
 
n

i

!

paths.

17.2.2 Option Pricing in the One-Period Model

Consider a one-period binomial stock price process and consider a European call
option written on this stock, as illustrated in Fig. 17.5. The option has exercise price
E and matures at the end of the period.
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Fig. 17.5 The one-period European call option

Fig. 17.6 Evolution of the hedging portfolio

We follow the now standard procedure of forming a hedging portfolio of short 1
call and long ˛ stock. The value of the portfolio at 0 is

V0 D C0 � ˛S0; (17.11)

and its evolution over the period is as shown in Fig. 17.6. If ˛ is chosen so that at
t D 1

Vu D Vd ; (17.12)

then the hedging portfolio is riskless. Equation (17.12) implies

�Cu C ˛uS0 D �Cd C ˛dS0;

from which

˛ D Cu � Cd
.u � d/S0

: (17.13)

Since the hedging portfolio is riskless, the initial investment of ˛S0 � C0 must earn
the risk free rate. That is

.˛S0 � C0/.1C rh/ D ˛uS0 � Cu; (17.14)

where r is the continuous time risk free interest rate. Since ˛ is given
by (17.13), (17.14) may be solved for C0 to yield

C0 D p�Cu C .1 � p�/Cd
R

; (17.15)

where

p� D R � d

u � d ; (17.16)
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and

R D 1C rh: (17.17)

We note how the expression (17.15) for C0 may be given a discounted cash flow
interpretation if we interpret p� as the probability of the stock price moving up
over the period. Of course, in general, p� will not equal the actual (or historical)
probability of an up-movement which we have denoted by p in (17.4). In fact p� is
a discretised version of the equivalent or risk neutral measure p�.ST ; T jS; t/ which
we encountered in Sect. 8.4. We recall from (8.107) that

C.S; t/ D e�r.T�t /
Z 1

0

maxŒS�
T �E; 0�p�.S�

T ; T j S; t/dS�
T : (17.18)

Here t D 0; T D h and under the measure p� there are only two possible outcomes
for Sh, i.e. p�.Sh; hjS; 0/ is approximated by the binomial distribution shown in
Fig. 17.7. Noting further that

e�rh ' 1 � rh ' 1

1C rh
; (17.19)

we see that indeed the continuous time expression (17.18) reduces to the one-period
binomial expression (17.15).

To prove this last assertion formally we note that the binomial approximation to
p�.Sh; hjS; 0/ may by written

p�.Sh; hjS; 0/ D p�ı.uS � Sh/C .1 � p�/ı.dS � Sh/ (17.20)

Fig. 17.7 The one-period binomial distribution
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Fig. 17.8 Two-period stock price and option price trees

and hence
Z 1

0

maxŒSh �E; 0�p�.Sh; hjS; 0/dSh D

p� maxŒuS � E; 0�C .1 � p�/maxŒdS � E; 0�:

(17.21)

Substituting (17.19) and (17.21) into (17.18) yields the one-period binomial option
price (17.15).

17.2.3 Two Period Binomial Option Pricing

Now we follow the evolution of the stock price over two periods .0; h/; .h; 2h/. The
evolution of the option price also follows a two period binomial process as shown
in Fig. 17.8.

There are a number of approaches to pricing the European call option in the
two-period binomial tree. These include:

(i) Breaking the two-period problem into a sequence of one-period problems.
Starting from maturity, use the one-period argument to compute Cu; Cd . Then
again use the one period model to compute C0. This approach provides the
basis for most computational schemes and extends easily to handle American
options.

(ii) Apply over the two-periods the discounted cash flow argument using p� as the
probability of an up-movement over one-period.

(iii) In the integral expression (17.18) approximate p�.S2h; 2hjS; 0/ by a two-
period binomial distribution.

Of course, all of these are equivalent, as we shall show by considering each one in
turn.

Applying the one-period argument over .h; 2h/ we readily obtain

Cu D p�Cuu C .1 � p�/Cud

R
;

Cd D p�Cud C .1 � p�/Cdd

R
:

(17.22)



378 17 Pricing Options Using Binomial Trees

Fig. 17.9 The two-period binomial distribution

Next applying the one-period argument over .0; h/ we obtain the option value at
current time

C0 D p�Cu C .1 � p�/Cd
R

: (17.23)

By means of this approach we are able to fill in the option values at all nodes
of the tree by stepping back from maturity to initial time. As we shall see, this
approach is easily adapted to evaluate options with special features such those as on
dividend paying stock and American options. By substituting (17.22) into (17.23)
and performing some algebraic manipulations we find that C0 may be expressed as

C0 D p�2Cuu C 2p�.1 � p�/Cud C .1 � p�/2Cdd

R2
: (17.24)

This expression has an obvious discounted cash flow interpretation once we
recognize that

p�2; 2p�.1 � p�/; .1 � p�/2 (17.25)

are the risk neutral probabilities associated with the final time stock prices

u2S0; udS0; d 2S0:

In fact the probabilities (17.25) represent the two period binomial distribution
approximation to p�.S2h; 2hjS; 0/, as shown in Fig. 17.9. If we substitute the
binomial distribution into the continuous time integral expression (17.18) we would
again obtain the two period binomial option price (17.24).

17.2.4 n-Period Binomial Option Pricing

Now we follow the evolution of the stock and option prices over n periods. We
work through the option pricing tree by backward induction. If the option prices at
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Fig. 17.10 The n-period binomial tree

Fig. 17.11 The n-period binomial distribution

all nodes at time ih are known then those at the nodes at time .i � 1/h are obtained
by considering the sequence of one-period problems linking .i � 1/h and ih. We
proceed backwards from i D n to i D 0. This procedure is easily programmed
(Fig. 17.10).

To obtain the alternative view-point note first of all that the risk-neutral probabil-
ity associated with the stock price uid n�iS0 is

 
n

i

!
p�i .1 � p�/n�i : (17.26)

Hence we have an n-period binomial distribution as shown in Fig. 17.11. Substitut-
ing the n-period binomial distribution into the continuous time integral (17.18) we
obtain

C0 D 1

Rn

nX

iD0

 
n

i

!
p�i .1 � p�/n�i maxŒui d n�iS0 �E; 0�; (17.27)

which has the, by now familiar, discounted cash flow interpretation.
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Suppose we let

a D the minimum number of upward moves that the stock must make
over the n-periods for the call option to finish in the money;

then a is the smallest non-negative integer such that

S0u
adn�a > E: (17.28)

The expression (17.27) for C0 may then be written

C0 D 1

Rn

nX

iDa

 
n

i

!
p�i .1 � p�/n�i .ui d n�iS0 � E/: (17.29)

The last equation may be re-expressed as

C0 D S0

nX

iDa

 
n

i

!
p�i .1�p�/n�i

� u

R

�i � d
R

	n�i
�ER�n

nX

iDa

 
n

i

!
p�i .1�p�/n�i

D S0

nX

iDa

 
n

i

!
Qp�i .1 � Qp�/n�i � ER�n

nX

iDa

 
n

i

!
p�i .1 � p�/n�i ; (17.30)

where Qp� D u

R
p�. Before proceeding we note that,

˚.aIn; p/ D the complementary binomial distribution

D
nX

iDa

 
n

i

!
pi .1� p/n�i (17.31)

D the probability of at least a upmoves

of the stock where p is the probability of an upmove.

Hence we can write (17.30) as,

C0 D S0˚.aIn; Qp�/� ER�n˚.aIn; p�/: (17.32)

17.3 The Continuous Limit

We shall defer to a later point the discussion on the choice of u and d . However
suppose we choose them according to

u D e�
p
h and d D e��p

h; (17.33)
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where � is the volatility of the corresponding continuous time stock price process.
Then1

u � d
2
p
h

D e�
p
h � e��p

h

2
p
h

' .1C �
p
h/� .1 � �p

h/

2
p
h

D �: (17.34)

So that the above choice of u and d satisfies reasonably well the relation (17.8)
between u; d and � .

17.3.1 The Limiting Binomial Distribution

With this choice of u and d it is possible to show that

lim
h!0

˚.aIn; Qp�/ D N .d1/ (17.35)

and

lim
h!0

˚.aIn; p�/ D N .d2/; (17.36)

where as usual

d1 D ln.S=E/C .r C 1
2
�2/.T � t/

�
p
T � t ; d2 D d1 � �p

T � t :

Noting also that

lim
h!0

R�n D lim
h!0

.1C rh/�n D lim
n!1

�
1C r

.T � t/

n

	�n
D e�r.T�t /;

we see in the limit h ! 0; n ! 1 that (17.32) reduces to the Black–Scholes
formula

C0 D S0N .d1/ � Ee�r.T�t /N .d2/:

1Note that

e�
p

h ' 1C �
p
hC 1

2
�2h; e��

p

h ' 1� �
p
hC 1

2
�2h:
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17.3.2 The Black–Scholes Partial Differential Equation
as the Limit of the Binomial

Now we show how the binomial expression (17.15) reduces to the Black–Scholes
partial differential equation in the limit h ! 0 and n ! 1.

We consider (17.15) in the form
�
R � d
u � d

	
Cu C

�
u � R

u � d

	
Cd � RC0 D 0: (17.37)

If we denote current time and stock price by t; S , respectively, then

C0 D C.S; t/;

Cu D C.e�
p
hS; t C h/;

Cd D C.e��p
hS; t C h/;

(17.38)

where again we use the values u; d given in (17.33). Next we note that

Cu D C.e�
p
hS; t C h/ ' C..1C �

p
hC 1

2
�2h/S; t C h/

D C.S C .�
p
hC 1

2
�2h/S; t C h/

D C.S; t/C @C

@S
�S

p
hC

�
1

2
�2S2

@2C

@S2
C 1

2

@C

@S
�2S C @C

@t

	
hC o.h/;

whilst

Cd D C.e��p
hS; t C h/ ' C..1 � �

p
hC 1

2
�2h/S; t C h/

D C.S C .��
p
hC 1

2
�2h/S; t C h/

D C.S; t/� @C

@S
�S

p
hC

�
1

2
�2S2

@2C

@S2
C 1

2

@C

@S
�2S C @C

@t

	
hC o.h/:

Using these expressions as well as (17.34) the expression (17.37) becomes

.R � e��p
h/

2�
p
h

�
C.S; t/C @C

@S
�S

p
hC

�
1

2
�2S2

@2C

@S2
C 1

2

@C

@S
�2S C @C

@t

	
h

�

C .e�
p
h �R/

2�
p
h

�
C.S; t/� @C

@S
�S

p
hC

�
1

2
�2S2

@2C

@S2
C 1

2

@C

@S
�2S C @C

@t

	
h

�

� RC.S; t/C o.h/ D 0:
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Combining these terms and using R D 1C rh reduces to

1

2
�2S2h

@2C

@S2
C rhS

@C

@S
� rhC.S; t/C h

@C

@t
C o.h/ D 0:

Dividing by h and letting h ! 0, we obtain the Black–Scholes partial differential
equation.

17.3.3 The Binomial as a Discretisation of the Black–Scholes
Partial Differential Equation

It is also instructive to see how the Black–Scholes partial differential equation can
be discretised to yield the binomial model, however first we need to express the
Black–Scholes partial differential equation in terms of the log of the stock price.

Consider the Black–Scholes partial differential equation

1

2
�2S2

@2C

@S2
C rS

@C

@S
� rC C @C

@t
D 0; (17.39)

and the change of variable

y D lnS: (17.40)

We readily calculate that

@C

@S
D 1

S

@C

@y
and

@2C

@S2
D 1

S2
@2C

@y2
; (17.41)

so that in the transformed variable the Black–Scholes equation becomes

1

2
�2
@2C

@y2
C r

@C

@y
� rC C @C

@t
D 0: (17.42)

If we wish to discretise the Black–Scholes partial differential equation, so as
to make a comparison with the binomial model then the changes in S have to be
proportional. This means the grid for S would be as shown in Fig. 17.12.

Fig. 17.12 The unequally spaced grid in S space
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It should be stressed that the grid points in S space are not equally spaced, unlike
the standard finite difference schemes described earlier that had a fixed step length.
To see that the above scheme for S leads to fixed a step length for y, consider the
change in S to uS . At uS the value of y is

yu D ln.uS/ D lnS C ln u D y C h;

where

h D ln u:

Thus the difference scheme in y has equally spaced intervals, as shown in Fig. 17.13.
Referring to Fig. 17.13 we have

Cu D C.y C h; t C k/ D C.y; t/C h
@C

@y
C 1

2
h2
@2C

@y2
C k

@C

@t
;

Cd D C.y � h; t C k/ D C.y; t/ � h
@C

@y
C 1

2
h2
@2C

@y2
C k

@C

@t
:

(17.43)

By subtraction of Eq. (17.43) we obtain

@C

@y
D Cu � Cd

2h
; (17.44)

whilst by addition we find that

@2C

@y2
D 1

h2
.Cu C Cd � 2C � 2k

@C

@t
/: (17.45)

Fig. 17.13 The equally spaced grid in y D lnS space
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Substituting the derivatives (17.44), (17.45) into the transformed Black–Scholes
partial differential (17.42) we obtain

�2

2h2

�
Cu C Cd � 2C � 2k

@C

@t

	
C r

�
Cu � Cd

2h

	
� rC C @C

@t
D 0: (17.46)

If we set

h D �
p
k

then the
@C

@t
terms are eliminated. Also k is the step-size in t , i.e.,

k D t=n

and so

h D �

r
t

n
:

With this specification of h and k, (17.46) reduces to

�
1C r

t

n

	
C D Cu

�
1

2
C 1

2

r

�

r
t

n

	
C Cd

�
1

2
� 1

2

r

�

r
t

n

	
: (17.47)

This last equation describes the binomial option pricing formula with2

u D 1C �
p
h; d D 1 � �

p
h; p� D 1

2
C 1

2

r

�

p
h; (17.48)

which gives us some insight into the choice of parameters u and d .

17.4 Choice of the Parameters u; d

Consider again the one-period binomial framework. Thus far we have not discussed
how to choose the parameters u; d . We saw from (17.8) that we would require as a
first property that

u � d D 2�
p
h; (17.49)

2In obtaining (17.48) we continue to impose u � d D 2�
p
h. Thus d D erh � 2�

p
hp� '

1� �
p
h; from which u D 1C �

p
h:
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at least in some approximate sense, in order that the binomial process be seen as a
first order approximation to the continuous time process. We note that the choice of
u; d in (17.33) in the discussion of the continuous limit viz

u D e�
p
h and d D e��p

h; (17.50)

satisfies the condition (17.49) to a first order of approximation.
The choice of u; d just discussed focussed on a comparison of the sample paths

generated under the continuous time and discrete time processes. An alternative
approach is to compare the distributions generated by both processes. We know
that under the continuous time process over the interval .0; h/, the quantity Sh is
lognormally distributed. In fact, the first two moments of the continuous distribution
are given by3

E
�
�

ln

�
Sh

S0

	�
D .r � 1

2
�2/h; (17.51)

and

var�
�

ln

�
Sh

S0

	�
D �2h; (17.52)

where the 
 indicates the risk-neutral distributionp�. One set of conditions we could
impose on u and d is that they be chosen so that the first two moments of the discrete
binomial distribution match the first two moments of the continuous distribution.

We note that under the binomial distribution

EbinŒlnSh� D p� ln.uS0/C .1 � p�/ ln.dS0/ D p� ln u C .1 � p�/ lnd C lnS0

i.e.

Ebin

�
ln
Sh

S0

�
D p� ln u C .1 � p�/ lnd; (17.53)

whilst

varbin

�
ln
Sh

S0

�
D p�.1 � p�/

h
ln.

u

d
/
i2
: (17.54)

3These results follow from (3.14) with T � t D h.
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Equating (17.51) with (17.53) and (17.52) with (17.54) we obtain

p� ln u C .1 � p�/ ln d D .r � 1

2
�2/h; (17.55)

p
p�.1� p�/ ln.

u

d
/ D �

p
h: (17.56)

Solving (17.55), (17.56) we obtain

u D e�
p
h; d D e��p

h (17.57)

which is the parameter set (17.33) used in the discussion of the continuous time
limit. This is the set originally proposed by Cox et al. (1979).

There exist many other ways to choose the parameters u; d . For instance, by
matching the moments of relative price changes .Sh � S0/=S0, by considering
trinomial models etc. This issue has been thoroughly investigated by de Jager
(1995).



Chapter 18
Volatility Smiles

Abstract It is commonly observed across many underlying assets that the implied
volatility of the Black Scholes model varies across exercise price and time-to-
maturity and has a pattern known as the volatility smile. In this chapter, we
first address the volatility smile using the stochastic volatility models which may
underestimate the size of the smile. We then develop an approach to calibrate
the smile by choosing the volatility function as a deterministic function of the
underlying asset price and time so as to fit the model option price to the observed
volatility smile.

18.1 Introduction

In this chapter we continue to consider options written on assets which pay a
continuous dividend such as stock, foreign exchange and futures.

Under the assumption that the underlying asset price, x, follows the geometric
Brownian motion

dx

x
D �dt C �dz; (18.1)

we know that the European call option price, f , is given by the Black–Scholes
formula

f .x; t/ D xN .d1/ � e�r.T�t /EN .d2/; (18.2)

with

d1 D ln. x
E
/C .r C 1

2
�2/.T � t/

�
p
T � t ; d2 D d1 � �

p
T � t : (18.3)
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We know also from Chap. 9 that the Black–Scholes model holds when � becomes a
function of time �.t/. In this case in Eq. (18.3) we merely replace � by

N� D
�

1

.T � t/

Z T

t

�2.s/ds

�1=2
: (18.4)

It is common practice amongst finance practitioners to calibrate the Black–
Scholes model by finding the value of � that makes the theoretical model match
option prices observed in the market, i.e. to solve

f .x; t I �/ D fmarket; (18.5)

to obtain the implied volatility O� . A common observation across many underlying
assets is that O� varies across exercise price and time-to-maturity. A pattern some-
thing like that in Fig. 18.1 is usually observed, this pattern is known as the volatility
smile.

Whilst (18.4) provides some theoretical basis for the dependency of O� on � D
T � t , the dependency of O� on the exercise price E is incompatible with the theory
underlying (18.2).

In the next section we show that the volatility smile suggests that the “true”
model for option pricing requires that we employ a stochastic process for the
volatility. However as we have seen in Chap. 15 models involving stochastic
volatility introduce a parameter which measures the market price of volatility risk.
Since this risk is not traded this parameter is difficult to estimate. An alternative
approach has developed which consists of replacing � in (18.1) by �.x; t/ and

Fig. 18.1 The volatility smile
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choosing this function so as to fit the model option price to the observed volatility
smile. In the final sections of this chapter we describe these methods.

18.2 Stochastic Volatility as the Origin of the Smile

Hull and White (1987) assume that volatility follows the stochastic process

d�2 D ˛�2dt C ��2dz� ; (18.6)

with z and z� being uncorrelated and volatility has zero systematic risk.
For convenience we set

vt D �2t ;

so that (18.6) may be written

dv D ˛vdt C �vdz� : (18.7)

For any given evolution of the process v over the internal Œt; T � we can define the
integrated variance (see Fig. 18.2)

NvT;t D 1

T � t

Z T

t

v.u/du: (18.8)

Fig. 18.2 The evolution of the variance and integrated variance
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We note that

Nvt;t D lim
T!t

NvT;t D vt ; (18.9)

and that by taking the differential of (18.8) the integrated variance satisfies

d NvT;t D . NvT;t � vt /
T � t dt: (18.10)

Equations (18.7) and (18.10) should be viewed as a linked system of stochastic
equations. The Kolmogorov equation for the transitional probability density func-
tion p. NvT;s ; vT ; T j Nvs;s; vs; s/ .t � s � T / satisfies (see Sect. 5.4)

@p

@s
C . NvT;s � vs/

T � s
@p

@ Nv C ˛v
@p

@v
C 1

2
�2v2

@2p

@v2
D 0; (18.11)

subject to the initial condition

p. NvT;T ; vT ; T j Nv0
T;T ; v

0
T ; T / D ı. NvT;T � Nv0

T;T /ı.vT � v0
T /:

In this notation Hull and White show that the price of a European call option is given
by

f .x; vt ; t/ D
Z
fBS.x; NvT;t ; t/p. NvT;t ; vT ; T j Nvt;t ; vt ; t/d NvT;t ; (18.12)

where

fBS.x; v; t/ D



the Black–Scholes value
with volatility given by v.

To emphasise the dependence on the exercise priceE we shall write f .E/ to denote
f .x; vt ; t/ and fBS.E; v/ to denote fBS.x; v; t/, so that (18.12) is rewritten

f .E/ D
Z
fBS.E; NvT;t /p. NvT;t ; vT ; T j Nvt;t ; vt ; t/d NvT;t : (18.13)

If we assume that the price given by the stochastic volatility model is the “true”
price then the implied volatility is given by the solution of

f .E/ D fBS.E; O�2/:

Using �v; �v to denote the mean and standard deviation of the distribution
p.vjx; �; t/ we expand fBS.E; v/ as

fBS.E; v/ ' fBS.E;�v/C .v � �v/
@fBS

@v
C 1

2
.v � �v/

2 @
2fBS

@v2
; (18.14)



18.2 Stochastic Volatility as the Origin of the Smile 393

where the partial derivatives are evaluated at v D �v . It follows that

Z
fBS.E; NvT;t /p. NvT;t ; vT ; T j Nvt;t ; vt ; t/d NvT;t ' fBS.E;�v/C 1

2
�2v
@2fBS

@ Nv2 :
(18.15)

Next we linearise fBS.E; O�2/ about �v , i.e.

fBS.E; O�2/ ' fBS.E;�v/C . O�2 � �v/
@fBS

@ Nv : (18.16)

Equating (18.15) and (18.16) we obtain

O�2 ' �v C 1

2
�2v
@2fBS

@ Nv2
�
@fBS

@ Nv
��1

: (18.17)

We note that the partial derivatives on the right-hand side of (18.17) depend on E
(as well as on other variables). Hence this equation relates O�2 to the exercise price
E . We now seek to determine the nature of this relationship.

In terms of volatility v the partial derivatives
@fBS

@ Nv and
@2fBS

@ Nv2 are given by

@fBS

@ Nv D 1

2

r
T � t

Nv xe�r.T�t /n.d1/;

and

@2fBS

@ Nv2 D 1

4

p
T � t
Nv3=2 xe�r.T�t /n.d1/.d1d2 � 1/;

where n.x/ D 1p
2�

e� 1
2 x

2

. Hence

@2fBS

@ Nv2
�
@fBS

@ Nv
��1

D d1d2 � 1

2 Nv : (18.18)

Recalling that the partial derivatives are evaluated at v D �v we find upon
substituting (18.18) into (18.17) that

O�2.E/ ' �v C �2v
4�v

"
fln.xer�=E/g2 � �v� � 1

4
�2v�

2

�v�

#
: (18.19)

Noting that fln.xer�=E/g2 has a quadratic shape as a function of E , we see
that (18.19) predicts a smile of the type observed. The above derivation comes from
Xu and Taylor (1994) who also undertake an empirical analysis of (18.19). They find
that it underestimates the size of the smile. This is probably due to the assumptions
about correlation of the noise terms and not pricing volatility risk.
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18.3 Calibrating Deterministic Models to the Smile

The analysis of Sect. 18.2 suggests that a proper option pricing model should allow
for stochastic volatility in the process for the underlying asset. Furthermore such a
model should probably allow for correlation between the noises driving the price
process and the volatility process, as well as the pricing of volatility risk (i.e. the
market price of volatility risk ¤ 0). However these further parameters, particularly
the market price of volatility risk, may be difficult to estimate in practice.

Therefore a technique has evolved amongst finance industry practitioners of
modelling the volatility as a deterministic function of the underlying asset price
x and time t , i.e. to replace (18.1) with

dx

x
D �dt C �.x; t/dz;

and then at each point in time choose the function �.x; t/ so as to be compatible
with the currently observed volatility smile.

In this section we discuss how this procedure is implemented in the binomial
lattice framework. Our discussion follows closely that of Derman and Kani (1994),
who build on the earlier contribution of Dupire (1994).

Firstly we assume that at each point in time an interpolating polynomial has been
fitted to the observed volatility smile in Fig. 18.1. From this we are able to calculate
a market option price for any strike price and time-to-maturity which we denote
fsmile.

E
x
; �/.

Next we observe that since the volatility is not constant the regular binomial tree
of Chap. 17 will become distorted as shown in Fig. 18.3.

The idea of the Dupire and Derman/Kani approaches is to determine risk neutral
probabilities and stock prices (i.e. nodes) at the next time level so that the tree does

Fig. 18.3 The regular (dotted line) and distorted (solid line) binomial tree
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Fig. 18.4 The implied binomial tree

recombine. This will result in the so called implied tree (which is also distorted). A
similar idea is also implemented by Rubinstein (1994).

Thus we seek to determine the implied tree displayed in Fig. 18.4. In particular
to determine the nodes and risk neutral transition probabilities so as to match the
volatility smile currently observed at the root of the tree.

In order to develop the required pricing relationships we need to recall the
concept of the Arrow–Debreu price. Consider the node .n; i/, at time level tn and
spot price si , in Fig. 18.4. The associated Arrow–Debreu price is denoted �i and it
is the value at the root of the tree (i.e. at t1) of a claim that pays $1 if the node .n; i/
is reached at time tn and $0 if any other node is reached at time tn. Thus

�i D
8
<

:

the sum over all paths, from the root of the tree
to node (n,i) of the product of the riskless-discounted
transition probabilities.

As the implied binomial tree is developed by forward induction the risk-neutral
transition probabilities to the next time level are calculated and these are then used
to calculate the Arrow–Debreu prices at the next time level.

Consider the first step of the forward induction displayed in Fig. 18.5. We seek
to determine three quantities. The risk-neutral transition probability p1 and the spot
price node values S1; S2 at the next time step. To calculate these we develop three
relationships.

At time t1 we are able to calculate from the volatility smile (i.e. the interpolated
function fsmile.

E
x
; �/) the market value of an option with strike price s1 and maturing

at time t2, we denote this value by C.s1; t2/. By the principal of risk-neutral
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Fig. 18.5 The first step of the forward induction

valuation we have the first relationship

C.s1; t2/ D �1e
�r�tp1.S2 � s1/: (18.20)

The �1 on the right-hand side discounts all quantities to the root of the tree. Of
course this discounting is trivial at the first time step since we are at the root of the
tree and �1 D 1.

The second condition is that under the risk-neutral measure asset prices are
expected to grow at the risk-free rate i.e.

er�ts1 D p1S2 C .1 � p1/S1: (18.21)

The final condition is to make the centre of the implied tree coincide with the
centre of the standard binomial tree that is obtained when volatility is assumed to be
constant i.e.1

s21 D S1S2: (18.22)

Equations (18.20)–(18.22) can be solved for p1; S1 and S2. Finally we use
forward induction to calculate the Arrow–Debreu prices at t2 (which at this point
we label �2;1; �2;2) from the knowledge of p1, thus

�2;2 D �1p1e
�r�t ; �2;1 D �1.1 � p1/e

�r�t : (18.23)

1In the standard binomial model the up and down probabilities are respectively e�
p

�t and e��
p

�t

where � is the constant volatility (see Sect. 17.4). Thus S1 D s1e
��

p

�t and S2 D s1e
�

p

�t from
which Eq. (18.22) follows.
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Fig. 18.6 The second step of the forward induction

Next consider the second forward induction step from t2 to t3 which is illustrated
in Fig. 18.6.

Note the notation of using si to denote the stock price node values which have
just been calculated and �i the associated Arrow–Debreu prices (which have been
relabelled from �n;i ; we always reserve this latter notation for the Arrow–Debreu
prices at the next step); Si denotes the unknown stock price nodes that we seek to
calculate and pi the associated up-movement risk-neutral transition probabilities.
From the volatility smile we can calculate C.s1; t3/ and C.s2; t3/, the value of
call options maturing at time t3 and having exercise prices s1; s2 respectively. It
is important to stress that these values are in terms of dollars at time t1.

Now we seek the five unknowns S1; S2; S3; p1 and p2 which are obtained from
the following relationships. By the principal of risk-neutral valuation of the options

C.s1; t3/ D �1e
�r�tp1.S2 � s1/C �2e

�r�t .1 � p2/.S2 � s1/C �2e
�r�tp2.S3 � s1/

D e�r�t Œf�1p1 C �2.1 � p2/g.S2 � s1/C �2p2.S3 � s1/�; (18.24)

C.s2; t3/ D �2e
�r�tp2.S3 � s2/: (18.25)

From the fact that under the risk-neutral distribution the stock price grows at the risk
free rate we have the further relationships

er�ts2 D p2S3 C .1 � p2/S2; (18.26)

er�ts1 D p1S2 C .1 � p1/S1: (18.27)

Finally the centering condition in this case of an even number of steps becomes

s0 D S2; (18.28)
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where s0 is the current spot price at time t1. Equations (18.24)–(18.28) may be
solved simultaneously for the five unknowns S1; S2; S3; p1 and p2.

To facilitate the development of the general algorithm note that (18.24) may be
rewritten

er�tC.s1; t3/ D �1p1.S2 � s1/C �2f.1� p2/.S2 � s1/C p2.S3 � s1/g
D �1p1.S2 � s1/C �2f.1� p2/S2 C p2S3 � s1g:

The second bracket is further simplified by use of (18.26), so that

er�tC.s1; t3/ D �1p1.S2 � s1/C �2fer�ts2 � s1g: (18.29)

Using the notation Fi to denote the forward price at level .nC1/ of the known stock
price si at level n i.e.

Fi D si e
r�t ;

then (18.29) can be written

er�tC.s1; t3/ D �1p1.S2 � s1/C �2.F2 � s1/: (18.30)

Note also that for consistency of notation (18.25) may be written

er�tC.s2; t3/ D �2p2.S3 � s2/; (18.31)

and (18.26), (18.27) may be written

p1 D F1 � S1
S2 � S1

; (18.32)

p2 D F2 � S2
S3 � S2

: (18.33)

The five unknowns S1; S2; S3; p1 and p2 may be calculated recursively as follows:
from Eqs. (18.30) and (18.32) we have

S2 D S1Œe
r�tC.s1; t3/� �2.F2 � s1/�� �1s1.F1 � S1/

Œer�tC.s1; t3/ � �2.F2 � s1/� � �1.F1 � S1/ ; (18.34)

and from (18.31) and (18.33)

S3 D S2e
r�tC.s2; t3/ � �2s2.F2 � S2/
er�tC.s2; t3/ � �2.F2 � S2/

: (18.35)

Recalling the centering condition (18.28) which yields the value of S2, we
use (18.34) to calculate S1 (moving down the tree) and (18.35) to calculate S3
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(moving up the tree). We can then use (18.32) and (18.33) to calculate p1 and p2.
We shall see shortly that this recursive procedure generalises to the n-node situation.

Using �3;i .i D 1; 2; 3/ to denote the Arrow–Debreu prices at t3 we calculate
these from

�3;1 D �1.1 � p1/e�r�t ;

�3;2 D �1p1e
�r�t C �2.1 � p2/e�r�t ;

�3;3 D �2p2e
�r�t :

The procedure for going from tn to tnC1 should now be clear.
From the smile we know

C.s1; tnC1/; C.s2; tnC1/; � � � ; C.sn; tnC1/:

By the principal of risk neutral valuation these option values should satisfy

C.si ; tnC1/ D e�r�t
nX

jDi
f�jpj C �jC1.1 � pjC1/g.SjC1 � si /; (18.36)

for i D 1; 2; � � � ; n, where we adopt the convention �nC1 D 0 to handle the last
term.

From the condition that the spot price grows at the risk-free rate through the
implied tree

Fi D piSiC1 C .1 � pi /Si ; .i D 1; 2; � � � ; n/: (18.37)

Finally to write the centering condition we define

n� D integer part of

�
nC 2

2

	
;

then (see Fig. 18.7)

(
s0 D Sn� if n is even,

s2n�
D S.n�C1/Sn� if n is odd.

(18.38)

Equations (18.36)–(18.38) provide .2n C 1/ equations for the .2n C 1/ unknowns
S1; S2; � � � ; SnC1; p1; p2; � � � ; pn. Using manipulations completely analogous to
those leading to (18.34), (18.35) it is possible to show that

SiC1 D
Si

h
er�tC.si ; tnC1/�Pn

jDiC1 �j .Fj � si /
i

� �i si .Fi � Si /
h
er�tC.si ; tnC1/�Pn

jDiC1 �j .Fj � si /
i

� �i .Fi � Si/
: (18.39)
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Fig. 18.7 The nth step of the forward induction

Fig. 18.8 Risk-neutral option valuation

Once the central value has been fixed using (18.38), the above equation may be used
recursively, moving up and down from the centre to calculate all remaining Si . We
then use (18.37) in the form

pi D Fi � Si

SiC1 � Si ; (18.40)
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to calculate the pi (see Fig. 18.8). Finally we calculate the Arrow–Debreu prices at
tnC1 from

�nC1;iC1 D �ipie
�r�t C �iC1.1 � piC1/e�r�t ; (18.41)

which we apply for i D 0; 1; � � � ; n with the notational convention �0 D �nC1 D 0.

18.4 Problems

Problem 18.1 Computational Problem—Use the data below for BHP Billiton
call options quoted in the Australian Financial Review on Tuesday 18 March 2014
to calculate the implied binomial tree by using the algorithm in Sect. 18.3 of the
notes. Use the maturities only up to and including June 14.

Take a time step of 1 week. Simply use linear interpolation to find option values
at strikes and maturities that do not correspond to traded ones.

Interest rate data is also given. For the purposes of this exercise apply the 90 day
rate for all maturities.
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Chapter 19
Allowing for Stochastic Interest Rates
in the Black–Scholes Model

Abstract The discussion in Chaps. 12 and 15 considered a relaxation of one of
the key assumptions of the Black–Scholes framework, namely that the asset price
changes follow a geometric Brownian motion. Another crucial assumption is the
assumption of a constant interest rate over the life of the option. In this chapter
we consider the specific case of stock options and retain all the assumptions of
the original Black–Scholes model, except that we now allow interest rates to vary
stochastically. Along the lines of Merton (Bell J Econ Manag Sci 4:141–183,
1973b), we develop the appropriate hedging argument to derive the stock option
pricing partial differential equation and provide the technical details of its solution.

19.1 Introduction

The issue raised by the interest rate being stochastic is that we can no longer
discount the expected future option pay-off using the deterministic discount factor
expŒ�r.T � t/�. Now we must find a corresponding stochastic discount factor and
adjust the pricing relationship accordingly. Our discussion follows closely that of
Merton (1973) who uses the price of a bond having the same maturity as the option
to capture the effect of stochastic interest rates. Problems 19.1 and 19.2 lead to a
formulation of this problem in the framework of Chap. 10.

Let T denote option maturity andP.t; T / the price at time t of a riskless discount
bond which pays $1 at time T .> t/. We shall use �.D T � t/ to denote time to
maturity. We allow for stochastic interest rates by allowing the bond price to vary
stochastically, in particular by assuming

dP

P
D ˛.P; t/dt C ı.P; t/dv; (19.1)
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where dv are the increments of a Wiener process which are the source of the
uncertainty in the evolution of the bond price.1 The mean return ˛.�/ could depend
on the level of bond prices as well as the time-to-maturity. To ensure that P.T; T / D
1 (i.e. the bond pays $1 at maturity) we could use a Brownian bridge process as
discussed in Sect. 6.3.6. In fact, the choice

˛.P; t/ D 1

2
ı2 � lnP.t; T /

T � t
;

ı.P; t/ D ı;

when ı is constant will provide the appropriate drift and diffusion coefficients.
However for the purposes of this chapter we do not need to be too precise about
the nature of the drift coefficient ˛.P; t/.

The traditional assumption of constant interest rate is recovered by setting
ı.P; t/ D 0 and ˛.P; t/ D r , in which case

P.t; T / D e�r.T�t /: (19.3)

We retain the assumption that the stock price follows a diffusion process given by

dS

S
D �dt C �dz; (19.4)

and allow for correlation between the Wiener increments dv and dz, i.e.,

EŒdvdz� D 
dt: (19.5)

Here we do not adopt our standard procedure of re-expressing the stochastic
dynamics for the stock and bond prices in terms of independent Wiener processes.
This is so as to enable us to follow Merton’s original derivation. However the
expression in terms of independent Wiener increment probably provides a “cleaner”
approach and this is the viewpoint adopted in Problems 19.1 and 19.2. Fig. 19.1
depicts possible paths of stock prices and bond prices under the Black-Scholes
model with a stochastic interest rate.

1Since the sources of uncertainty may be different for bonds of differing maturities we should
write dv.t; �/ to denote this dependency on � , and since the dv at differing maturities would not
be perfectly correlated we would have

EŒdv.t; �1/dv.t; �2/� D 
12dt: (19.2)

However since we only consider a bond having the same maturity as the option we do not need
such a notation here. Furthermore we shall see more clearly how to capture the correlation between
bonds at different maturities when we come to study the Heath–Jarrow–Morton interest rate model.
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Fig. 19.1 Illustrating stock
prices and bond prices (of
same maturity as the option)
in the B-S world with a
stochastic interest rate E

ts

P(t,T )

t T
t

1

19.2 The Hedging Portfolio

The option value will now be a function of both S and P as well as time, i.e.,

f D f .S; P; t/: (19.6)

The pricing of the option in the present situation would therefore seem to fall into the
case of pricing a derivative security dependent on several underlying state variables
which we encountered in Chap. 10. However the risk free rate in the discussion
of that chapter was constant, or at most a deterministic function of time. Hence we
need to reconsider the hedging argument for the situation at hand. Since S andP are
driven by stochastic differential equations we may apply Ito’s lemma to determine
the stochastic differential equation followed by f . Thus, the option price f is found
to follow the stochastic differential equation

df

f
D �f dt C �fz dz C �fvdv; (19.7)

where

�f D 1

f

�
@f

@t
C�S

@f

@S
C˛P

@f

@P
C 1

2
�2S2

@2f

@S2
C 
�ıSP

@2f

@S@P
C 1

2
ı2P 2 @

2f

@P 2

�
;

�fz D �S

f

@f

@S
; and �fv D ıP

f

@f

@P
: (19.8)

Extending the continuous hedging approach to the current problem, we form a
portfolio of the stock, the option and the riskless bond having time to maturity
equal to the expiration of the option. Letting Q1, Q2 and Q3 denote respectively
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the number of dollars of the portfolio invested in the stock, the option and the bonds
then the condition of zero aggregate investment can be written

Q1 CQ2 CQ3 D 0: (19.9)

The instantaneous dollar return on the portfolio is given by2

Q1

dS

S
CQ2

df

f
CQ3

dP

P
(19.10)

D ŒQ1.� � ˛/CQ2.�f � ˛/�dt C ŒQ1� CQ2�fz �dz

C ŒQ2�fv � .Q1 CQ2/ı�dv:

Following a now familiar argument we choose the proportions Q1, Q2 so that the
stochastic dz and dv terms vanish i.e.

Q1� CQ2�fz D 0; (19.11)

Q2�fv � .Q1 CQ2/ı D 0: (19.12)

From Eq. (19.11) we have that

Q1

Q2

D ��fz

�
;

and from Eq. (19.12)

Q1

Q2

D �fv

ı
� 1:

From these two equations we find that

�fz

�
D 1 � �fv

ı
;

which becomes [from the definitions of �fz and �fv in Eq. (19.8)]

f D S
@f

@S
C P

@f

@P
: (19.13)

2Note that the Qi.i D 1; 2; 3/ are in monetary units and since the rates of return dS=S , df=f and
dP=P are dimensionless, the units in Eq. (19.10) must be in monetary units.
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With this choice of Q1, Q2 the hedging portfolio is riskless and its instantaneous
dollar return is given by

�
Q1.�� ˛/ � Q1�

�fz

.�f � ˛/

�
dt D Q1�

�
�� ˛

�
� �f � ˛

�fz

�
dt:

This instantaneous dollar return should be zero, given that it involves zero net
investment. Thus

� � ˛
�

D �f � ˛
�fz

; (19.14)

which is a modified form of equality of risk adjusted excess return of risky
assets in the portfolio. Here, the constant risk free rate r is replaced by ˛, the
instantaneous return on a riskless bond having the same maturity as the option.
Applying the definitions of �f and �fz from (19.8) we may reduce (19.14) to the
partial differential equation

@f

@t
C �S

@f

@S
C ˛P

@f

@P
C 1

2
�2S2

@2f

@S2
C 
�ıSP

@2f

@S@P
C 1

2
ı2P 2 @

2f

@2P
� f̨

D S
@f

@S
.� � ˛/;

which simplifies to

@f

@t
C ˛.S

@f

@S
C P

@f

@P
/C 1

2
�2S2

@2f

@S2
C 
�ıSP

@2f

@S@P
C 1

2
ı2P 2 @

2f

@P 2
� f̨ D 0:

Note that by use of (19.13) the second term on the left hand side of the last equation
becomes f̨ and so (19.14) has reduced to the partial differential equation

1

2
�2S2

@2f

@S2
C 
�ıSP

@2f

@S@P
C 1

2
ı2P 2 @

2f

@P 2
C @f

@t
D 0: (19.15)

Equation (19.15) needs to be solved subject to the boundary conditions appropriate
for the option of interest, for instance a European call or put option.

For future reference note that it is often convenient to consider (19.15) in terms
of time to maturity � D T � t , so that 3

1

2
�2S2

@2f

@S2
C 
�ıSP

@2f

@S@P
C 1

2
ı2P 2 @

2f

@P 2
D @f

@�
: (19.16)

3Note that @f

@�
D @f

@t
� @t
@�

D � @f

@t
.
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19.3 Solving for the Option Price

Equation (19.15) is a linear partial differential equation of the parabolic type. Its
particular feature (and difficulty) lies in the fact that it involves two spatial variables
(S and P ). The solution of such equations is normally a difficult procedure and we
would expect to have to resort to numerical procedures. However, the relationship
(19.13) suggests that f is first degree homogeneous in .S; P /.4 If this were so, then
the type of transformation used in Appendix 9.1 to solve the basic Black–Scholes
equation could be used to reduce the dimensionality of the pricing equation (19.15)
to the first order heat equation, whose solution in our context is the Black–Scholes
equation. The transformations used in Appendix 9.1 would suggest introducing the
new state variable X defined by

X D S

EP
: (19.17)

Here P is used to discount between maturity and current time, so that X may be
interpreted as the price per share of stock in units of the present value of the exercise
price. In the case of a constant interest rate, P.t; T / D e�r.T�t /, and we would
recover the change of variable given in (9.41). Note that since P and S are driven
by the stochastic differential equations (19.1) and (19.4) respectively, then by an
application of the Ito’s lemma we find that X is driven by the stochastic differential
equation

dX

X
D Œ� � ˛ C ı2 � 
�ı�dt C �dz � ıdv: (19.18)

We note that the instantaneous variance of the return on X is given by

var

�
dX

X

�
D EŒ.�dz � ıdv/2�

D EŒ�2.dz/2 C ı2.dv/2 � 2�ıdzdv�

D .�2 C ı2 � 2
�ı/dt

� V 2.�/dt; (19.19)

4The function g.u; v/ is homogeneous of degree n in .u; v/ if g.�u; �v/ D �ng.u; v/. Differenti-
ation with respect to � yields

ugu.�u; �v/C vgv.�u; �v/ D n�n�1g.u; v/:

Setting n D 1, then � D 1 yields an expression of the form (19.13).
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where we define

V 2.�/ D �2 C ı2 � 2
�ı: (19.20)

At this point it is convenient to switch the time unit to � D T � t . Following
further the transformation of the option price used in (9.41) and also motivated by
the homogeneity property5 of f we define the price function h by

h.X; �/ D f .S; P; �/

EP
: (19.21)

In transforming from the variables .f; S; P; �/ to .h;X; �/ we make use of the
following partial derivative relationships6

@f

@S
D @h

@X
;

@f

@P
D Eh � S

P

@h

@X
;

@2f

@S2
D 1

EP

@2h

@X2
;

@2f

@S@P
D �S

EP2
@2h

@X2
;

@2f

@P 2
D S2

EP3
@2h

@X2
;

@f

@�
D EP

@h

@�
:

From the above we find that

1

2
�2S2

@2f

@S2
C 
�ıSP

@2f

@S@P
C 1

2
ı2P 2 @

2f

@P 2
D 1

2
V 2.�/X2 @

2h

@X2
EP;

5If f is first order homogenous in S; P , then f .�S; �P; �/ D �f .S; P; �/. Choose � D 1
EP )

f . SEP ;
1
E
; �/ D f .S;P;�/

PE
) h.X; �/ D f .S;P;�/

EP , since X D S
EP .

6These have been calculated as follows:

@f

@S
D EP

@h

@X
� @X
@S

D EP � 1

EP
� @h
@X

D @h

@X
;

@f

@P
D Eh C EP

@h

@X

@X

@P
D Eh C EP

�
� S

EP2

	
@h

@X
D Eh � S

P

@h

@X
;

@2f

@S2
D @

@X

�
@h

@X

	
� @X
@S

D 1

EP

@2h

@X2
;

@2f

@S@P
D @

@X

�
@h

@X

	
@X

@P
D � S

EP2
@2h

@X2
;

@2f

@P 2
D E

@h

@X

@X

@P
C S

P 2

@h

@X
� S

P

@2h

@X2
� @X
@P

D S2

EP3
@2h

@X2
;

@f

@�
D EP

@h

@�
:
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and so the second-order partial differential equation (19.15) for f in terms of S , P
and � has been reduced to the first-order partial differential equation

1

2
V 2.�/X2 @

2h

@X2
� @h

@�
D 0; (19.22)

for h in terms ofX and � . In the case of a European call option, Eq. (19.22) must be
solved subject to the boundary condition

h.0; �/ D 0;

and initial condition7

h.X; 0/ D maxŒX � 1; 0�:

We can solve Eq. (19.22) using the solution framework set up in Chap. 9. In
Eq. (9.7), if we set q.t/ D r.t/ D 0, then

1

2
�2.t/S2

@2f

@S2
C @f

@t
D 0:

This is basically Eq. (19.22) with �.t/ ! V.t/; f ! h; S ! X . Apply the
solution (9.30) with

E D 1;

Nr D 0;

N� D NV 2 D 1

T � t
Z T

t

V 2.s/ds

D 1

T � t

Z T�t

0

V 2.u C t/du

D 1

�

Z �

0

V 2.u C t/du; (change of variable u D s � t).

7Note that P.0/ D 1 and X.0/ D S.0/=E . So

h.X; 0/ D f .S; 1; 0/

E
D 1

E
max ŒS � E; 0� D max

�
S

E
� 1; 0

�
D maxŒX � 1; 0�:
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The solution then becomes

h.X; �/ D XN .d1/� 1N .d2/;

with

d1 D ln.X
1
/C NV 2

2
.T � t/

NVp
T � t ; d2 D d1 � NVp

T � t :

Changing back to the original variables we obtain

f .S; P; �/

EP
D S

EP
N .d1/� N .d2/

i.e.

f .S; P; �/ D SN .d1/� EPN .d2/ (19.23)

with

d1 D ln.X=1/C NV 2
2
.T � t/

NVp
T � t D ln.S=EP/C NV 2

2
�

NVp
�

D ln.S=E/� lnP.�/C �
2

NV 2

NVp
�

and

d2 D d1 � NVp
�:

The solution technique originally used by Merton involved various changes of
variables, and we reproduce his analysis in Appendix 19.1.

The pricing formula (19.23) generalises the Black–Scholes formula in a very
natural way. The bond with same maturity as the option is used to do stochastic
discounting and the “average” volatility NV replaces the � of the standard case.
If we adopt the common practice of calculating an implied NV from market data
then there is no need to estimate separately the 
; ı.�/ and � . This observation
also helps to explain the robustness of the Black–Scholes model, (when used with
implied volatility) as the volatility so calculated is compatible with a wide class of
deterministic time functions of �; 
 and ı, and not just with a constant � .
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19.4 Appendix

Appendix 19.1 Solving the P.D.E. by Change of Variable

If we introduce the new time variable8

� D
Z �

0

V 2.s/ds; (19.24)

and define

g.X; �/ D h.X; �.�//;

then g satisfies

1

2
X2 @

2g

@X2
� @g

@�
D 0; (19.25)

subject to

g.0; �/ D 0;

g.X; 0/ D maxŒ0; X � 1�: (19.26)

We can interpret (19.25) as the Black–Scholes option pricing equation for an option
with time � to maturity, exercise price of one dollar, when the underlying stock
has variance of unity and the market interest rate is zero. So we can use the known
solution to write

g.X; �/ D XN .d1/ � N .d2/; (19.27)

where

d1 D lnX C 1
2
�p

�
;

d2 D d1 �
p
�:

Working back through the transformations we obtain

f .S; P; �/ D EP.�/g

�
S

EP.�/
;

Z �

0

V 2.s/ds

	
: (19.28)

8Note that Eq. (19.24) defines a functional relationship between � and � .
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In addition to the usual inputs of the Black–Scholes model, (19.28) requires P.�/
as well as 
 and ı.�/. If we define

NV 2 D 1

�

Z �

0

V 2.s/ds: (19.29)

and make use of (19.27) then the expression for the option price in (19.28) can be
written

f .S; P; �/ D SN .d1/ � EP.�/N .d2/; (19.30)

where

d1 D
ln. S

EP.�/ /C �
2

NV 2

NVp
�

D ln. S
E
/� lnP.�/C 1

2
� NV 2

NVp
�

;

and

d2 D d1 � NVp
�:

19.5 Problems

Problem 19.1

(a) Redo the analysis of Sect. 19.2 when the underlying asset price and bond price
dynamics are specified in the following way:

dx1
x1

D m1dt C s11dw1 C s12dw2;

dxP
xP

D mP dt C sP1dw1 C sP2dw2;

respectively. Here dw1, dw2 are independent Wiener increments (recall that by
appropriate transformations we can always reduce to this situation).

(b) Allow for the situation in which the underlying asset pays a continuously
compounded dividend at the rate q1. In this case show that the pricing partial
differential equation is given by

@f

@t
� q1x1 @f

@x1
C Df D 0
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Hence show that the pricing formula (19.21) becomes

f .x1; xp; �/ D x1e
�Nq1.T�t /N .d1/� ExpN .d2/: (19.31)

d1 D ln
�
x1
E

� � lnxp C �
1
2

NV 2 � Nq1
�
.T � t/

NVp
T � t

and

Nq1 D 1

T � t
Z T�t

0

Nq1.s/ds:

Hint: In part (a) you will need to recall that in order that the system

a11Q1 C a12Q2 D 0

a21Q1 C a22Q2 D 0

have non-zero solutions then

ˇ̌
ˇ̌a11 a12
a21 a22

ˇ̌
ˇ̌ D 0: (19.32)

A consequence of (19.32) is that the columns of the matrix are linearly dependent,
this means that there exists a constant � such that

a12 D �a11; (19.33)

a22 D �a21:

If you use (19.32) you will need to persevere with a lot of algebra but you will
eventually obtain the key result that

f D x1
@f

@x1
C xP

@f

@xP

and hence the pricing equation

@f

@t
C Df D 0; Df D 1

2

2X

iD1

2X

jD1
Sijxixj

@2f

@xi @xj
:

This may be called the “brute force approach”.
If you use (19.33), and use matrix notation at the appropriate point, you will

obtain the same results with much less algebraic manipulations. This may be called
the “elegant approach”.
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Problem 19.2 Consider again the situation in Sect. 19.2 where we have a stochastic
interest rate in a Black–Scholes world.

Suppose that the option is written such that its payoff is a function of two
underlying assets x1 and x2, and that the dynamics of the asset prices and bond
price have been put into the form

dx1
x1

D m1dt C s11dw1 C s12dw2 C s1pdwp;

dx2
x2

D m2dt C s21dw1 C s22dw2 C s2pdwp;

dxP
xP

D mP dt C sP1dw1 C sP2dw2 C sPPdwP ;

where the dwi .i D 1; 2; P / are independent. Note that the option price will now be
a function f .x1; x2; xP ; t/.

Allow the underlying assets to pay continuously compounded dividends at the
rates q1 and q2 respectively. Show that

f D x1
@f

@x1
C x2

@f

@x2
C xP

@f

@xP

and hence derive the pricing partial differential equation.
Determine the transformation that is the equivalent of the transformation used in

Sect. 19.3. What does the pricing equation look like after this transformation?
Hint: You will need to use what is called the “elegant approach” in the hint to

Problem 19.1.



Chapter 20
Change of Numeraire

Abstract Many computational applications of derivative pricing models such as
the determination of derivative prices by simulation or the estimation of derivative
pricing models can be significantly simplified by a change of numeraire. In this
chapter we discuss the main idea behind the change of numeraire technique and the
formation of equivalent probability measures under which options can be priced.
In addition, the connection of the associated numeraires via the Radon–Nikodym
derivative are presented. We also consider an application of the technique for the
option pricing models with stochastic interest rate discussed in Chap. 19 and an
extension of the technique to accommodate multiple sources of risk in the dynamics
of the underlying assets is also considered.

20.1 A Change of Numeraire Theorem

Consider some traded asset S (e.g. stock) whose price follows the diffusion process

dS D �sSdt C �sSdW;

where the Wiener processW is generated by the measure P. Let U , V be the prices
of derivative instruments dependent on S , so that U D U.S; t/ and V D V.S; t/.
For instanceU and V could be options of different maturity orU could be an option
and V could be a bond.

From the discussion of Sect. 8.4, we know that if the economy is arbitrage free
then under P the dynamics of the stock price and the derivative securities are
given by

dS D .r C ��s/Sdt C �sSdW;

dU D .r C ��u/Udt C �uUdW;

dV D .r C ��v/Vdt C �vVdW;
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where � is the market price of risk associated with the uncertainty W and the
expressions for �u

�D �s
S
U
@U
@S

�
and �v

�D �s
S
V
@V
@S

�
are obtained from application of

Ito’s lemma. Applying Girsanov’s theorem we can re-express the above dynamics as

dS D rSdt C �sSd QW ; (20.1)

dU D rUdt C �uUd QW ; (20.2)

dV D rVdt C �vVd QW ; (20.3)

where

QW .t/ D W.t/C
Z t

0

�.�/d�; (20.4)

is a Wiener process under the equivalent risk-neutral measure QP. If we let r.t/ denote
the (possibly stochastic) risk-free rate of interest then we can form the money market
account

A.t/ D exp

�Z t

0

r.s/ds

	
;

satisfying the dynamics

dA D rAdt:

Applying the results of Sect. 6.6 concerning the stochastic differential equation
followed by the quotient of two diffusions, we show that

d

�
U

A

	
D �u

�
U

A

	
d QW ; (20.5)

d

�
V

A

	
D �v

�
V

A

	
d QW : (20.6)

Since the drift terms in Eqs. (20.5) and (20.6) are zero it follows that the relative
prices U=A, V=A are martingales under QP. That is,

Ut

At
D QEt

�
UT

AT

�
; (20.7)

and

Vt

At
D QEt

�
VT

AT

�
; (20.8)
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where QEt denotes the expectation under QP conditional on information at time t .
Equations (20.7) and (20.8) can easily be manipulated to yield

Ut D QEt
�

exp

�
�
Z T

t

r.s/ds

	
UT

�
; (20.9)

and

Vt D QEt
�

exp

�
�
Z T

t

r.s/P ds

	
VT

�
: (20.10)

Note that since we are now considering situations in which r is possibly
stochastic, we leave (stochastic) integrals involving it under the expectation
operator. In Eqs. (20.9) and (20.10) the term exp.� R Tt r.s// acts as a stochastic
discount factor. For a particular realisation of the interest rate process (under QP)
it discounts back to time t the realised values of UT and VT . The operation QEt
then basically averages over all such expected payoffs as is illustrated in Fig. 20.1.
In deriving (20.9) and (20.10) we have used the money market account as the
numeraire. However it is possible to use other instruments as numeraire. For
example, in pricing U we may use V as the numeraire (e.g. V could be a bond price
with the same maturity as U ), then we would consider the relative price

Y D U

V
:

Fig. 20.1 Discounting the value of UT from T back to t for the particular i th realisation r.i/.s/ of
the interest rate process. The expectation QEt in (20.9) averages over many such paths
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We continue to use the arbitrage free dynamics for U and V , viz. Eqs. (20.2)
and (20.3). Using again the results of Sect. 6.6, we find that

dY D .�v � �u/�vY dt C .�u � �v/Yd QW : (20.11)

If we introduce the new process

W �.t/ D QW .t/ �
Z t

0

�v.s/ds; (20.12)

then by Girsanov’s theorem, we can obtain an equivalent probability measure P
�

under which W �.t/ will be a Wiener process. It would then follow that under P�,
Y is a martingale since

dY D .�u � �v/Y dW�: (20.13)

Thus

Yt D E
�
t .YT /;

or, on using the definition of Y

Ut D VtE
�
t

�
UT

VT

�
: (20.14)

Equation (20.14) may provide a more convenient pricing relationship, especially
if V is the price of a bond that matures at the same time as the instrument U .
From (20.4) and (20.12) the relation between the processes W.t/ and W �.t/
becomes

W �.t/ D W.t/C
Z t

0

�.s/ds �
Z t

0

�v.s/ds: (20.15)

In Table 20.1 we represent the relation between the three measures P, QP and P
�

under which the financial market dynamics may be considered. We also show the
relation between the related processes W.t/, QW .t/ and W �.t/, in particular under
which measures they are and are not Wiener processes.
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Table 20.1 Summarising the relation between the processes W.t/, QW .t/ and W �.t / and the
measures P, QP and P

�

P QP P
�

W Wiener Not Wiener Not Wiener

E.dW/ D 0 QE.dW/ D ��dt ¤ 0 E
�.dW/ D .�v � �/dt ¤ 0

QW Not Wiener Wiener Not Wiener

E.d QW / D �dt ¤ 0 QE.d QW / D 0 E
�.d QW / D �vdt ¤ 0

W � Not Wiener Not Wiener Wiener

E.dW�/ D �.�v � �/dt ¤ 0 QE.dW�/ D ��vdt ¤ 0 E
�.dW�/ D 0

Here QW .t/ D W.t/ C R t
0 �.s/ds, W �.t / D QW .t/ � R t

0 �v.s/ds and so W �.t / D W.t/ CR t
0 �.s/ds � R t

0 �v.s/ds

20.2 The Radon–Nikodym Derivative

Comparing (20.7) and (20.14) we obtain a general result which allows us to change
numeraire, viz.

Ut D VtE
�
t

�
UT

VT

�
D At QEt

�
UT

AT

�
:

Rearranging we obtain

E
�
t

�
Vt

VT
� UT

�
D QEt

�
At

AT
� UT

�
: (20.16)

This last result allows us to obtain the Radon–Nikodym derivative which
underlies the change of numeraire result in Eq. (20.16). (Refer also to Sect. 8.2
for the Radon–Nikodym derivative.) Some formal manipulations allow us to
re-express (20.16) as

E
�
t

�
UT

VT

�
D QEt

�
AtVT

AT Vt
� UT
VT

�
: (20.17)

Introducing a notation similar to one employed in Sect. 8.2 we set

�.t; T / D AtVT

AT Vt
; (20.18)

so that (20.17) may be written

E
�
t

�
UT

VT

�
D QEt

�
�.t; T / � UT

VT

�
: (20.19)



424 20 Change of Numeraire

The quantity �.t; T / is thus the Radon–Nikodym derivative which allows us to
switch from calculating expectations under QP to calculating expectations under P�,
i.e.

dP� D �.t; T /d QP:

Considering the interval .0; T / we note from (20.18) that

�.0; T / D A0VT

AT V0
D VT

AT V0
; (20.20)

since A0 D 1.

20.3 Option Pricing Under Stochastic Interest Rates

An important application of the change of numeraire results is the Black–Scholes
model under stochastic interest rates that we have considered in Chap. 19. Consider
the no-arbitrage condition (19.14)

� � ˛
�

D �f � ˛
�fz

D �; (20.21)

where � is the market price of risk associated with the stock price noise, z.
Substituting (20.21) into the stochastic differential equations (19.4) for S and (19.7)
for f we obtain

dS

S
D .˛ C ��/dt C �dz; (20.22)

and

df

f
D .˛ C ��fz/dt C �fz dz C �fvdv; (20.23)

which together with the bond pricing equation

dP

P
D ˛dt C ıdv; (20.24)

give the arbitrage free financial market dynamics under P. By defining new
processes Oz and Ov Eqs. (20.22) and (20.23) may be written

dS

S
D ˛dt C �d Oz; (20.25)
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df

f
D ˛dt C �fzd Oz C �fvd Qv; (20.26)

where

Oz.t/ D z.t/C
Z t

0

�.s/ds;

and1

Ov.t/ D v.t/:

By Girsanov’s theorem we can find an equivalent measure OP under which Oz.t/ and
Ov.t/ are Wiener processes.2 Clearly by introducing the quantity

B.t/ D exp

�Z t

o

˛.s/ds

	
;

then S=B and f=B become martingales under the measure OP i.e.

ft D OEt
�
B.t/

fT

B.T /

�
: (20.27)

However following the discussion of Sect. 20.1, we could also allow the bond price
P to be the numeraire. Using P

� to denote the probability measure when P is the
numeraire, by the foregoing discussion we have the result that

ft D OEt
�
B.t/

fT

B.T /

�
D E

�
t

�
P.t; T /

fT

P.T; T /

�
;

i.e.,

ft

P.t; T /
D E

�
t ŒfT � ; (20.28)

since P.T; T / D 1 (recall the bond matures when the option does). In order to
operationalise (20.28), we need to make explicit the stochastic price dynamics from
which P

� and hence E�
t can be calculated. The dynamics are those for the stochastic

1Since v and Ov are the same process this seems a redundant transformation. However it is ‘cleaner’
to think of two new processes for z and v.
2In fact Girsanov’s theorem in a multidimensional setting is stated in terms of independent Wiener
processes. So the correct approach would be to follow the approach to stochastic interest rates in
the Black–Scholes model as suggested in Problem 19.1. This is pursued in Problem 20.1. Then we
find that we avoid the redundant transformation discussed in footnote 1.
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differential equation for S=P derived from (20.24) and (20.25). By an application
of Ito’s lemma we derive the dynamics for S=P as

d.S=P /

S=P
D .ı2 � 
�ı/dt C �d Oz � ıd Ov: (20.29)

Under OP this is a geometric Brownian motion with instantaneous variance

V 2dt D .�2 C ı2 � 2
�ı/;

since under OP
OEŒ�d Oz � ıd Ov� D 0;

and

varŒ�d Oz � ıd Ov� D OEŒ.�d Oz � ıd Ov/2� D V 2dt:

Equation (20.29) corresponds precisely to Eq. (19.18). Since a sum of a linear
combination of normal random variables is also normal we can define under OP a
new Wiener process Ow such that

�d Oz � ıd Ov D Vd Ow:

Equation (20.29) can then be written

d.S=P /

S=P
D .ı2 � 
�ı/dt C Vd Ow: (20.30)

Introducing the new Wiener process

w�.t/ D Ow.t/C
Z t

0

ı2 � 
�ı

V
ds

we can again apply Girsanov’s theorem to write (20.30) as

d.S=P /

S=P
D V dw�; (20.31)

under P
�. It is the stochastic equation (20.31) which generates paths under the

measure P
�. The associated Kolmogorov partial differential equation for the

transition probability density function under P�, denoted p�, is

1

2
V 2X2 @

2p�

@X2
C @p�

@t
D 0; (20.32)
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where X D S=P . Hence applying the Feyman-Kac formula to the expectation on
the right-hand side of (20.28), we see that f=P is given by the solution of

1

2
V 2X2 @

2.f=P /

@X2
C @.f=P /

@t
D 0;

subject to3

f .X; T / D maxŒ0; X �E�:

We are in fact dealing with the Black–Scholes model with r D 0, and will thus
again recover the solution given by Eq. (19.28).

20.4 Change of Numeraire with Multiple Sources of Risk

The previous sections introduced the change of numeraire idea in an economy with
just one source of risk. Suppose we have .n C 1/-risky assets whose dynamics are
driven by

dSi
Si

D �idt C
nX

jD0
sijdWj .t/ .i D 0; 1; : : :; n/; (20.33)

where theWj .t/ are independent Wiener processes. We consider here the case when
all assets are traded, though the framework we develop is easily extended to allow
the case in which some of the Si may not be traded. We use S to denote the vector of
risky asset prices .S0; S1; : : :; Sn/. Let fk.S; t/ .k D 1; 2; : : :; m/ denote a derivative
instrument written on the vector of processes S.

From the discussion in Chap. 10 (see Sect. 10.4) we know that there exists a
unique risk-neutral measure QP under which the dynamic for the Si and fk can be
written

dSi
Si

D .r � qi /dt C
nX

jD0
sijd QWj .t/; .i D 0; 1; : : :; n/; (20.34)

df k
fk

D rdt C
nX

jD0
�kjd QWj .t/ .k D 1; 2; : : :; m/; (20.35)

where the QWj .t/ are the Wiener processes under QP. In Eq. (20.34) the qi is
the dividend yield on Si , and in (20.35) the �kj are the volatility factors whose

3Recall that P.T; T / D 1.
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calculation is outlined in Sect. 10.4, and are given by

fk�kj D
nX

lD1
slj Sl �kl;

where

�kl D @fk

@Sl
:

Defining prices in terms of the money market account At D exp
�R t

0
r.s/ds

�
we

would of course obtain

fk.S; t/ D QEt
h
e� R T

t r.s/dsfk.S.T /; T /
i
; (20.36)

where the distribution QP under which QEt is calculated is generated by the .n C 1/

processes (20.34). Suppose instead we decide that it is convenient to use S0.t/ as the
numeraire (it is always possible to relabel the assets so that S0 is the new numeraire).
Thus we are interested in the processes

Zi.t/ D Si .t/

S0.t/
; .i D 1; : : :; n/; (20.37)

and

Yk.t/ D fk.t/

S0.t/
.k D 1; : : :; m/: (20.38)

Applying the result (6.83) for the stochastic differential of the quotient of two
diffusions the dynamics for the Zi and Yk processes become

dZi
Zi

D
2

4.q0 � qi /�
nX

jD0
s0j .sij � s0j /

3

5 dt C
nX

jD0
.sij � s0j /d QWj ; (20.39)

and

dYk
Yk

D
2

4q0 �
mX

jD1
s0j .�kj � s0j /

3

5 dt C
mX

jD1
.�kj � s0j /d QWj : (20.40)
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The dividend yields prevent us from obtaining martingales under the new measure,
but this problem is easily overcome by defining the new processes

Z�
i .t/ D Zi.t/e

�.q0�qi /t ; (20.41)

Y �
k .t/ D Yk.t/e

�q0t ; (20.42)

whose dynamics are easily calculated as

dZ�
i

Z�
i

D �
nX

jD1
s0j .sij � s0j /dt C

nX

jD1
.sij � s0j /d QWj ; (20.43)

and

dY�
k

Y �
k

D �
mX

jD1
s0j .�kj � s0j /dt C

mX

jD1
.�kj � s0j /d QWj : (20.44)

We know by Girsanov’s theorem that we can find a new measure P
� under which

the processes

W �
j .t/ D QWj .t/ �

Z t

0

s0j .�/d� (20.45)

are Wiener processes. Thus under this new measure the dynamics for the Z�
i and

Y �
k become

dZ�
i

Z�
i

D
nX

jD1
.sij � s0j /dW�

j : (20.46)

and

dY�
k

Y �
k

D
mX

jD1
.�kj � s0j /dW�

j : (20.47)

The last equation indicates that the Y �
k are martingales under P�, so that

Y �
k .t/ D E

�
t ŒY

�
k .T /�: (20.48)

By use of (20.42) this expression becomes

Yk.t/ D E
�
t Œe

�q0.T�t /Yk.T /�:
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In terms of the original variable fk.t/ we have

fk.t/ D S0.t/E
�
t

�
e�q0.T�t / fk.T /

S0.T /
:

�
(20.49)

Suppose for example that

fk.T / D max

�
0;

nX

jD0
˛j Sj .T /

�

when the ˛j are constants. Thus

fk.T /

S0.T /
D max

�
0; ˛0 C

nX

jD1
˛jZj .T /

�
D max

�
0; ˛0 C

nX

jD1
˛j e

.q0�qi /T Z�
j .T /

�
:

Equation (20.49) then becomes

fk.t/ D S0.t/E
�
t

�
eqt�qi T max

�
0; ˛0e

.qi�q0/T C
nX

jD1
˛jZ

�
j .T /

��
:

The process under which E
�
t is calculated is given by the system (20.46).

20.5 Problems

Problem 20.1 Consider the problem of stochastic interest rates in the Black–
Scholes model, but formulated as in Problem 19.1. Rework the change of numeraire
argument of Sect. 20.3 in this formulation (see the comments in footnote 2).

Problem 20.2 Computational Problem—Consider the valuation relation-
ship (20.9). Suppose the stochastic interest rate follows the stochastic differential
equation

dr D 	.Nr � r/dt C �dW:

Suppose that U.0; T / is a zero-coupon bond that pays $1 at time T .
Use simulation to evaluate U.0; 0:5/. Take the parameter values

	 D 0:6; Nr D 0:07; � D 0:024:

Experiment with the step size and number of paths so as to ensure two decimal
accuracy.



Chapter 21
The Paradigm Interest Rate Option Problem

Abstract There are a number of instruments in interest rate markets that are
equivalent to an option on an interest rate or an option on a bond. In this chapter
we focus on the interest rate caps, which are call options on an interest rate. We
show that they can be interpreted as a put option on a bond. The problem of pricing
such bonds, and hence the interest rate cap, shall motivate much of the discussion in
subsequent chapters. In the last section we briefly discuss the issues associated with
the interest rate option problem that distinguish it from the option pricing problem
in a world of deterministic interest rates.

21.1 Interest Rate Caps, Floors and Collars

21.1.1 Interest Rate Caps

An interest rate cap is an agreement written on some reference rate R (e.g. 6-month
LIBOR) that sets the borrowing rate at the market rate R if R < RCap and limits
the rate to RCap if the market rate R > RCap, see Fig. 21.1. The date at which the
comparison between R and RCap is made is known as the reset date.

An interest rate cap is a call option on the interest rate, and is an insurance against
the interest rate on an underlying floating rate asset rising above a certain level (i.e.,
the strike price or cap rate), Fig. 21.2.

If the interest rate rises above the cap rate, the buyer of the cap effectively
receives a payoff which is the difference between the current market rate and the
cap rate. There can be a series of rate resets over the life of the cap. Hence, the cap
is a portfolio of call options. Each component of the cap is known as a caplet. For
the caplet over the period between ti and tiC1, the cap rate RCap is compared with
the reference rate at ti (i.e.,Ri ). However, the payoff for this period is settled at tiC1
(i.e., payment in arrears).

© Springer-Verlag Berlin Heidelberg 2015
C. Chiarella et al., Derivative Security Pricing, Dynamic Modeling
and Econometrics in Economics and Finance 21,
DOI 10.1007/978-3-662-45906-5_21

431



432 21 The Paradigm Interest Rate Option Problem

Fig. 21.1 Payoff on a long position in an interest rate cap

RCap

time

R 

Fig. 21.2 Illustrating the actual (red) and capped (green) interest rates

Fig. 21.3 Payoff on a long position in an interest rate floor

21.1.2 Interest Rate Floors

An interest rate floor is the reverse of an interest rate cap. A long position would be
of interest to a lender who wants to guarantee that a lending rate will not fall below
a certain pre-specified rate. If the market rate R > RFloor the lender receives the
market rate R. If the market rate R < RFloor then the lender receives the floor rate
RFloor, see Fig. 21.3.
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RFloor

Time 

R 

Fig. 21.4 Illustrating the actual (red) and floor (green) rates

Fig. 21.5 Long a cap and short a floor

The interest rate floor is a put option on the interest rate and is an insurance
against the interest rate on an underlying floating rate asset falling below the strike
price or floor rate. The buyer will only receive a payoff if the current interest rate is
below the floor rate, see Fig. 21.4.

21.1.3 Interest Rate Collars

A collar is a combination of a long position in an interest rate cap and a short position
in an interest rate floor, see Fig. 21.5. The price for a collar will be lower than that of
just a cap or a floor. Investors often enter into such arrangements to offset the cost
of a cap with the premium from the floor. Effectively, they are selling off some of
the cap’s downside protection.
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21.2 Payoff Structure of Interest Rate Caps and Floors

A cap is a series of caplets whose payoff is the difference between the spot rate at
the reset date and the agreed cap rate. The present value at time ti of a caplet payoff
received at time tiC1 for a $1 principal amount is:

PV.caplet payoffi / D � max ŒRi � RCap; 0�

1CRi�
(21.1)

D � max ŒRi � RCap; 0�P.ti ; tiC1/ (21.2)

where � = tiC1�ti , and P.ti ; tiC1/ is the price at ti of a pure discount bond maturing
at time tiC1. It is assumed in this framework that the underlying reference interest
rate Ri is quoted so that

.1CRi�/
�1 D P.ti ; tiC1/; (21.3)

which allows us to use the prices of pure discount bonds as discount factors in
Eq. (21.2).

Conversely for an interest rate floor, the present value at time ti of the floorlet
payoff for period .ti ; tiC1/ is:

PV.floorlet payoffi / D � max ŒRFloor �Ri ; 0�
1CRi�

D � max ŒRFloor � Ri ; 0�P.ti ; tiC1/:

Figure 21.6 illustrates the payoff situation for an n-period interest rate cap.

Fig. 21.6 The payoff structure of an interest rate cap
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21.3 Relationship to Bond Options

The purpose of this section is to demonstrate that the problem of pricing interest
rate caplets and floorlets reduces to the problem of pricing put and call options on
bonds. Hence interest rate caps and floors can be reduced to a portfolio of options
on bonds. The significance of this observation lies in the fact that bonds are traded
instruments and so we may use them to form the hedging portfolios that are the
basis of derivative security pricing methodology. This reinterpretation of interest
rate caps and floors is necessary since we cannot form hedging portfolios directly
with the underlying reference interest rates as these are not traded instruments. From
Eq. (21.1), the caplet payoff can be written as:

PV.caplet payoffi / D �

1CRi�
max

�
Ri� �RCap�

�
; 0

�
(21.4)

D 1

1CRi�
max

�
1CRi� � .1CRCap�/; 0



(21.5)

D 1max

�
1 � 1CRCap�

1CRi�
; 0

�
(21.6)

D �
1CRCap�

�
max

�
1

1CRCap�
� 1

1CRi�
; 0

�
: (21.7)

Let Xc D 1=.1CRCap�/, Eq. (21.7) becomes:

PV.caplet payoffi / D .1CRCap�/max

�
Xc � 1

1CRi�
; 0

�

D .1CRCap�/ max ŒXc � P.ti ; tiC1/; 0�„ ƒ‚ …
payoff of a bond put option

:

Hence, the caplet payoff is equivalent (within the proportionality factor 1CRCap�) to
the payoff of a bond put option maturing at time ti on an underlying bond maturing
at time tiC1 with exercise price being Xc .

21.4 The Inherent Difficulty of the Interest Rate Option
Problem

In this section we briefly highlight why it is that the interest rate option problem
is a so much more difficult problem than the option pricing problem in a world of
deterministic interest rates. There are essentially two main reasons. The first is that
the number of underlying “assets” is infinite. The second is that it is not obvious
which underlying “asset” to use.
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Fig. 21.7 The term structure of interest rates in Australia 2010–2013

Fig. 21.8 The time line for interest rate processes

Consider the first issue, namely the infinite dimensional nature of the problem.
The basic object whose dynamics we seek to model is the yield curve out to a range
of maturities. Figure 21.7 graphs the yield curve in Australia during 2010–2013
with maturities up to 10 years. Interest rate derivatives derive their value from the
evolution of this surface. In principle this surface is an infinite dimensional object,
though in later chapters we shall see that its dynamic evolution can be captured
reasonably well by a finite number of fixed maturity forward rates.

On the second issue we note that one may use at least three different quantities
to describe the par rates that are measured on the vertical axis in Fig. 21.7, these are
(see the time line in Fig. 21.8);

r.t/ D instantaneous interest rate agreed at t for borrowing starting at t ,
P.t; T / D price at time t of pure discount bond maturing at time T ,
f .t; T / D instantaneous interest rate agreed at t for borrowing starting at T .

The relationship between these quantities is illustrated in Fig. 21.9, the details
of which will become clearer in subsequent chapters. We have used a ? in the
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r(t)

P(t,T)f(t,T)
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Fig. 21.9 Illustrating the relationship between spot rate, forward rate and bond price

Solve bond
pricing p.d.e.

X

CT BT

X

CT BT

Boundary
condition at CT

Solve option
pricing p.d.e.
subject to:

Fig. 21.10 Illustrating the two pass nature of bond option pricing

expectation operator linking r.t/ and P.t; T / to indicate that at this point the
probability measure with respect to which this expectation is calculated is not
known. Other quantities such as yields and the discretely compounded rates that
are quoted in markets can also be determined in terms of r.t/; f .t; T / or P.t; T /.

We have pointed out that the paradigm problem of pricing an interest cap (or
floor) reduces to the problem of pricing an option on a bond. A further difficulty
is that this process is in fact a two pass process. Suppose TB is the date of bond
maturity (at which point the bond has a payoff of $1) and TC is the bond option
maturity date. We first need to solve for the bond price over the interval TB to TC to
determine the possible option payoffs at TC . We then need to solve the bond option
pricing problem over the interval TC to 0. The nature of this two pass process is
illustrated in Fig. 21.10.



Chapter 22
Modelling Interest Rate Dynamics

Abstract In this chapter, we establish the fundamental relationships between
interest rates, bond prices and forward rates. We further discuss the modelling of
interest rates and analyse typical models for the spot interest rate and the forward
rates. As we desire interest rates to be non-negative, we seek stochastic processes
with this feature such as the Feller process. Thus we present the motivation of the
Feller process and its relevance to the interest rate modelling. We also summarise
the main results of Fubini’s theorem, that are very useful for modelling forward
rates.

22.1 The Relationship Between Interest Rates, Bond Prices
and Forward Rates

In this section we clarify the relationship between interest rates, bond prices, yield
to maturity and forward rates. Let P.t; T / denote the price at time t of a pure
discount bond paying $1 at time T . The yield to maturity 
.t; T / is the continuously
compounded rate of return causing the bond price to satisfy the maturity condition

P.T; T / D 1; (22.1)

that is, 
.t; T / satisfies (see Fig. 22.1)

P.t; T /e
.t;T /.T�t / D 1: (22.2)

The yield may also be expressed as


.t; T / D � lnP.t; T /

T � t
: (22.3)

The instantaneous spot interest rate, r.t/, is the yield on the currently maturing
bond, i.e.,

r.t/ D 
.t; t/: (22.4)
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Fig. 22.1 The yield to maturity 
.t; T /; satisfies P.t; T /e
.T�t/ D 1

By allowing t ! T in (22.3) and applying L’Hôpital’s rule we find that1

r.T / D Pt .T; T /; (22.5)

where Pt.T; T / denotes the partial derivative of P.t; T / with respect to its first
argument (running time t), evaluated at the time t D T .

The forward rate arises when we consider an investor who holds a bond maturing
at T1 and asking what return he or she would earn between T1 and T2.> T1/, if he
or she contracted now at time t . Figure 22.2 displays a time line that is useful when
thinking about the relation between forward rates and bond prices. The required rate
of return is the forward rate f .t; T1; T2/ defined by

P.t; T1/ D P.t; T2/e
f .t;T1;T2/.T2�T1/;

i.e.

f .t; T1; T2/ D 1

T2 � T1
ln

�
P.t; T1/

P.t; T2/

�
: (22.6)

To see how f .t; T1; T2/ represents the implicit rate of interest currently available (at
time t) on riskless loans from T1 to T2 consider the set of transactions illustrated

1We need to apply L’Hôpital’s rule since setting t D T in Eq. (22.3) yields the meaningless ratio
0=0. Thus by L’Hôpital’s rule

lim
t!T


.t; T / D lim
t!T

�
@
@t

lnP.t; T /
@
@t
.T � t /

D lim
t!T

�1
P.t;T /

Pt .t; T /

�1 D lim
t!T

Pt .t; T /

P.t; T /
D Pt .T; T /:
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Fig. 22.2 The forward rate f .t; T1; T2/ and bond prices P.t; T1/, P.t; T2/

Fig. 22.3 The net zero transaction that relates the forward f .t; T1; T2/ and bond prices P.t; T1/
and P.t; T2/

in Fig. 22.3. A set of transactions at time t involving zero net cashflow has the net
effect of investing P.t; T2/=P.t; T1/ dollars at time T1 to yield a dollar for sure at
time T2. The forward rate defined above is simply the continuously compounded
interest rate earned on this investment. Note that calculation of f .t; T1; T2/ involves
only bond prices observable at time t .

The Heath–Jarrow–Morton model to be discussed in a later chapter focuses on
the instantaneous forward rate defined by2

f .t; T / � f .t; T; T /; (22.7)

2There is a slight abuse of notation in that we use the symbol f to denote both the three variable
function f .t; T1; T2/ and the two variable function f .t; T /.
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and is the instantaneous rate of return the bond holder can earn by extending
the investment an instant beyond T . Letting T2 ! T1, in (22.6) and applying
L’Hôpital’s rule we see that3

f .t; T / D �PT .t; T /
P.t; T /

: (22.8)

It follows from (22.8) that the price of the pure discount bond may be written in
terms of the forward rate as

P.t; T / D e� R T
t f .t;s/ds: (22.9)

In a world of certainty all securities, in equilibrium, must earn the same instanta-
neous rate of return so as to exclude the possibility of riskless arbitrage opportuni-
ties. The application of this equilibrium condition to discount bonds implies

Pt.t; T /

P.t; T /
D r.t/; (22.10)

from which4 we obtain the relationship between pure discount bond prices and the
instantaneous spot rate in a world of certainty,

P.t; T / D e� R T
t r.s/ds: (22.11)

A comparison of (22.11) and (22.2) shows the relationship between the yield to
maturity and the spot rate in a world of certainty,


.t; T / D 1

T � t

Z T

t

r.s/ds: (22.12)

3It is best to set T1 D T , T2 D T C x in Eq. (22.6) and calculate as follows:

f .t; T / D lim
x!0

1

x
ŒlnP.t; T /� lnP.t; T C x/� D lim

x!0
�

@
@x

lnP.t; T C x/

@
@x
x

D lim
x!0

�PT .t; T C x/

P.t; T C x/
D �PT .t; T /

P.t; T /
:

4From Eq. (22.10)

d

ds
lnP.s; T / D r.s/:

Integrating .t; T / we obtain

lnŒP.s; T /�Tt D lnP.T; T /� lnP.t; T / D ln 1� lnP.t; T / D � lnP.t; T / D
Z T

t

r.s/ds:

Hence (22.11) follows.
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Next, substituting (22.11) into (22.8) reveals the relationship between the spot rate
and the forward rate in a world of certainty viz.

f .t; T / D r.T /; for all T � t: (22.13)

Note that this last equation is a degenerate version of the expectations hypothesis,
i.e., the expected instantaneous spot rate for time T is equal to the instantaneous
forward rate for time T , calculated at time t .

In subsequent chapters we shall see how the relationships (22.11)–(22.13) gener-
alise quite naturally in a world of uncertainty to be the corresponding relationships
under suitable probability measures.

Another important set of interest rates are LIBOR rates. They are akin to the
forward rates f .t; T1; T2/ in that they are rates that one can contract at time t for
borrowing over a fixed period in the future. However the time difference between
current time and that fixed period in the future remains constant. Whereas with
f .t; T1; T2/ the time difference between t and T1 decreases as time evolves, in fact
it would make no sense to consider t beyond T1. We shall discuss LIBOR rates
in Chap. 26 when we discuss the Brace–Gatarek–Musiela (BGM) LIBOR market
model.

22.2 Modelling the Spot Interest Rate

First we consider models for the dynamics of the spot interest rate. A number of
such models have been proposed and most of these are of the general form

dr D �.r; t/dt C �.r; t/dW: (22.14)

Typically the drift term is of the form

�.r; t/ D 	.r � r.t//; (22.15)

where r is the long run level of the spot rate of interest. This form implies mean
reverting behaviour of the spot interest rate which is confirmed in the empirical
studies discussed below. It is less clear what form the volatility function should
take. Forms usually used in empirical studies and in development of term structure
and interest rate derivative models to be discussed later are of the general form

�.r; t/ D �r.t/
 ; (22.16)

where usually 
 � 0 is assumed.
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With these drift and diffusion terms the interest rate process (22.14) assumes the
form

dr D 	.Nr � r.t//dt C �r.t/
dW: (22.17)

Chan et al. (1992) have estimated a discretised version of this model on US Treasury
bill data for the period 1964–1989 and found (in terms of our notation) 	 D 0:5921,
Nr D 0:0689, �2 D 1:6704 and 
 D 1:4999. The value of �2 may seem high
but it should be borne in mind that the average volatility is measured by � Nr
 D
0:0234.D 2:34%p.a./ which is a reasonable value for interest rate markets. Noting
the interpretation that 1=	 is the average time for reversion back to the mean we see
that the estimated value of 	 D 0:5921 implies that this average time is about 1.69
years. This value also looks reasonable.

In Fig. 22.4 we illustrate simulations of r.t/ given by (22.17) for varying values
of 
 which use the same sequence of random numbers. In these simulations we have
used the values 	 D 0:6; r D 0:07 [which are close to those found by Chan et al.
(1992)] and the values of � displayed in Table 22.1. The values have been chosen
so that the overall volatility term at r D Nr , viz. � Nr
 remains constant at the value
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Fig. 22.4 Bundles of simulated paths for the interest rate process (22.17) for various values of 
 .
The parameters used are calibrated to the estimates of Chan et al. (1992)
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Table 22.1 Values of � and 
 used in simulations of the interest rate process; here � Nr
 D 2:34%


 0 0.5 1 1.5

� 0.0234 0.08844 0.33429 1.26348
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Fig. 22.5 The density functions for r at t D 0:05 corresponding to the simulations in Fig. 22.4

0.0234 as 
 varies. We have used the initial value, r0 D 0:03. It is of interest to note
that when 
 D 0, interest rates can become negative though the probability of this
event is very low. As the value of 
 increases we can see that the bundle of interest
rate paths moves away from zero and the distribution becomes more peaked, as can
also be seen from Figs. 22.4 and 22.5.

It can be shown that for 
 � 1=2 the probability of interest rates becoming
negative tends to zero. Hence a commonly used form of the volatility function
is (22.16) with 
 D 1=2 and this is the basis of the Cox–Ingersoll–Ross model to
be discussed in a later chapter. Stochastic processes having a linear drift term such
as (22.15) and a square root volatility have been extensively investigated by Feller
(1951). He showed that the conditional transition density function for Eq. (22.14)
with

�.r; t/ D 	.r � r.t//; �.r; t/ D �
p
r.t/; (22.18)
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where 	; Nr and � are positive constants, is given by

p.r; t jr0; 0/ D gt

1X

nD0

e��t =2.�t=2/n.1=2/nCd=2

nŠ� .nC d=2/
.gt r/

n�1Cd=2e�.gt r/=2

� gtP�2.d;�t /.gt r/; (22.19)

where P�2.d;˛/.x/ is the density function of a non-central Chi-squared distribution
with d degrees of freedom and non-centrality parameter ˛. Alternatively, the density
function may be expressed as (which is really the form given by Feller)

p.r; t jr0; 0/ D gt
e�.gt rC�t /.gt r/.d�1/=2p�t

2.�tgt r/d=4
Id=2�1.

p
�tgt r/; (22.20)

where the modified Bessel function of the first kind I˛.x/ is defined as

I˛.x/ D
1X

nD0

.x=2/2nC˛

nŠ� .nC ˛ C 1/
:

In the above formula the parameters d; gt and �t are defined as

d D 4	 Nr=�2;

gt D 4	

�2.1 � e�	t /
;

�t D 4	r0

�2.e	t � 1/
:

We need the condition 2	 Nr > �2 to ensure that r.t/ is positive. A plot of p.r; t jr0; 0/
for a range of values of � and the values of 	; r indicated earlier is displayed
in Fig. 22.6. The process having drift and diffusion terms as specified in (22.18)
has become known variously as the square root process, the Cox–Ingersoll–Ross
process and the Feller process. We shall use the latter term as it is the results obtained
by Feller in the cited paper that are used in the quantitative finance literature. In
Sect. 22.3 we shall give some motivation for the Feller process that will give some
insight into why the underlying distribution is non-central chi squared.

An important criticism of modelling the volatility by use of functional forms
such as (22.16) is that volatility of interest rates depend on the level of interest
rates. This seems to run against what is often observed as it is possible to identify
historical periods when rates were high but relatively stable or rates were low but
fairly volatile. It is also often argued that volatility of interest rates should also
be a function of the news arrival process (i.e. the dW’s). One way to capture this
effect would be to allow � to itself follow a stochastic process—in this regard see
Problem 22.8.
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Fig. 22.6 The transition density function of the Feller process for different values of � . The
remaining parameters of the process correspond to those used for the simulations in Fig. 22.4

22.3 Motivating the Feller (or Square Root) Process

A very widely used stochastic process in finance is the Feller or square root process,
frequently referred to as the Cox, Ingersoll and Ross (or just CIR) process. As
we have stated earlier this process was originally studied by Feller (1951), but
introduced into the finance literature by Cox et al. (1985b). Its interest for finance
applications lies in the fact that (for certain parameter constellations) the process
is guaranteed to generate positive values and its density function is known. This is
clearly a desirable feature for a model of interest rate processes, but also in other
areas of finance e.g. models of credit spreads or risk-premia. In this section we seek
to give some insight into why this process generates positive (or at least non-negative
outcomes), and also why its conditional transitional probability density function is
a chi-squared distribution.

Consider the process (22.14) when �.r; t/ D .˛�ˇr.t// and �.r; t/ D �.t/, i.e.

dr D .˛ � ˇr.t//dt C �.t/dW.t/: (22.21)

This is essentially an Ornstein–Uhlenbeck process (see Sect. 6.3.5) whose solution
can be written

r.t/ D r.0/e�ˇt C
Z t

0

˛e�ˇ.t�s/ds C
Z t

0

e�ˇ.t�s/�.s/dW.s/: (22.22)
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Fig. 22.7 The possibility of negative interest rates from the distribution in Eq. (22.23)

It follows from Eq. (22.22) that

r.t/ � N.M.t/; V 2.t//; (22.23)

where

M.t/ D r0e
�ˇt C

Z t

0

˛e�ˇ.t�s/ds;

and

V 2.t/ D E0

"�Z t

0

e�ˇ.t�s/�.s/dW.s/

	2#

D
Z t

0

e�2ˇ.t�s/�2.s/ds:

The fact that r.t/ is normally distributed means that there is a positive probability
that r.t/ can become negative as illustrated in Fig. 22.7. This is not a desirable
feature of a process for interest rate dynamics, though in practice this probability
may be quite low as can be seen from the simulated distribution in Fig. 22.5 for the
value 
 D 0.

We are therefore motivated to find a process that has zero probability of r.t/
becoming zero or negative. Consider the set of u (mean reverting to zero) Ornstein–
Uhlenbeck processes

dXj D �1
2
ˇXj .t/dt C 1

2
�dWj ; .j D 1; � � � ; u/: (22.24)

By solving (22.24) we obtain

Xj .t/ D Xj .0/e
� 1
2 ˇt C 1

2
�

Z t

0

e� ˇ
2 .t�v/dWj .v/; (22.25)
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implying that

Xj � N.MXj .t/; VX.t//;

where

MXj .t/ D Xj .0/e
� 1
2 ˇt ;

and

VX.t/ D �2

4

Z t

0

e�ˇ.t�v/dv:

Consider the process

r.t/ D X2
1 .t/CX2

2 .t/C � � � CX2
u .t/:

Ito’s lemma for a multi-variable function and some algebraic manipulations imply
that

dr D
�

u�2

4
� ˇr.t/

	
dt C �

p
r.t/

 
uX

iD1

Xi .t/p
r.t/

dWi

!
: (22.26)

Consider the new process

W.t/ D
uX

iD1

Z t

0

Xi.v/p
r.v/

dWi .v/; (22.27)

so that

dW.t/ D
uX

iD1

Xi.t/p
r.t/

dWi .t/:

We calculate5

EŒdW.t/� D 0;

and

varŒdW.t/� D
uX

iD1

X2
i .t/

r.t/
EŒdW2

i � D
 

uX

iD1
X2
i .t/

!
dt

r.t/
D dt:

5Recall that E.dWidWj / D 0 .i ¤ j / .j D 1; 2; � � � ; d/.
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Furthermore we easily calculate that

EŒ.dW.t//m� D 0 for m � 3:

So dW.t/ has all the statistical properties of a Wiener increment. It thus follows that
W.t/ is a Wiener process. So we can write (22.26) as

dr D
�

u�2

4
� ˇr.t/

	
dt C �

p
r.t/dW; (22.28)

which enjoys the property r.t/ � 0 by construction. The process (22.28) is simply
the Feller process already encountered in Sect. 22.2. It is more simply written here
as

dr D .˛ � ˇr.t//dt C �
p
r.t/dW; (22.29)

where we choose u as

u D 4˛

�2
> 0: (22.30)

Now, for arbitrary ˛ and � , u is not an integer. It can be shown that results for the
CIR process with u equal to an integer are also true for u not an integer. The value
of u for the process affects very much its behaviour. We distinguish two cases:

(i) u < 2

We note that u < 2 implies ˛ < �2=2. In this case it can be shown that

Pr



r.t/ D 0 at infinite number

of values of t

�
D 1:

This implies behaviour shown in Fig. 22.8. The excursions at r.t/ D 0 are also
not a desirable feature of a process for interest rate dynamics since it does not accord
with what we observed empirically.

(ii) u > 2

In this case ˛ � �2=2 and it can be shown that

Pr f9 at least one t > 0 s.t. r.t/ D 0/ D 0

which is the desirable feature of the process for r that we seek. Figure 22.9 illustrates
what a typical sample path would look like.
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Fig. 22.8 The Feller process for r.t/ with ˛ < �2=2

Fig. 22.9 The Feller process for r.t/ with ˛ > �2=2

In order to give an intuitive feel for the result that the distribution for r.t/ is a
non-central Chi-squared distribution, we set

X1.0/ D X2.0/ D � � �Xu�1.0/ D 0

Xu.0/ D
p
r.0/:

Then from (22.25) it follows that

Xi.t/ � N.0; V 2
X.t// i D 1; � � � ; u � 1;

and so

Xu.t/ � N.e� 1
2 ˇt
p
r.0/; V 2

X.t//:

Thus

r.t/ D V 2
X.t/

u�1X

iD1

�
Xi.t/

VX.t/

	2
CX2

u .t/:
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Noting that X2
u .t/ is the square of a normally distributed variable with non-zero

mean and that each of the .u � 1/ terms in the sum on the RHS is the square of
a (zero-mean) normally distributed variable, it follows that r.t/ has a non-central
Chi-squared distribution with u�1 D 4˛��2

�2
degrees of freedom. The actual density

function is derived at Eq. (22.20).

22.4 Fubini’s Theorem

In the next section we shall consider models of the forward rate and shall use these
to derive corresponding processes for the bond price and spot interest rate. In this
analysis we shall frequently encounter stochastic double integrals of the form

Z �Z
g.u; v; !/dW.u/

	
dv; (22.31)

with a variety of different limits in the integrals. Here ! can be any stochastic
variable such as the forward rate, the bond price or the spot interest rate. We will
very often need to calculate the stochastic differential of terms like Eq. (22.31) and
this is more simply done if we can express it in the form

Z �Z
g.u; v; !/dv

	
dW.u/: (22.32)

In other words we need to change the order of integration in stochastic double
integrals. The result that allows us to do this under fairly mild conditions on g is
Fubini’s theorem. Essentially this result allows us to manipulate stochastic double
integrals in the same way that we manipulate ordinary double integrals. Three main
results may be derived from Fubini’s theorem, these are:

(I)

Z �

0

�Z t

0

g.u; v; !/dW.u/

	
dv D

Z t

0

�Z �

0

g.u; v; !/dv

	
dW.u/; (22.33)

for all 0 � t � � .
(II)

Z T

t

�Z �

0

g.u; v; !/dW.u/

	
dv D

Z �

0

�Z T

t

g.u; v; !/dv

	
dW.u/;

(22.34)
for all 0 � � � t � T .
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In these two results the integration limits do not involve the integration variables
u or v. These results state that in this case we may change the order of integration
as we do for the same situation with ordinary integrals.

(III)

Z t

0

�Z v

0

g.u; v; !/dW.u/

	
dv D

Z t

0

�Z t

u
g.u; v; !/dv

	
dW.u/: (22.35)

Now the integration limits depend on the integration variables, however the result
again shows that we can handle such stochastic double integrals in the same way that
we handle ordinary double integration. Figures 22.10, 22.11 and 22.12 illustrate the
relevant regions of integration for cases I, II and III respectively. In each case the
region of integration (the shaded area) can be swept out by left to right motion of

Fig. 22.10 Change of limits
for version I of Fubini’s
theorem

Fig. 22.11 Change of limits
for version II of Fubini’s
theorem
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Fig. 22.12 Change of limits
for version III of Fubini’s
theorem

the vertical line (the LHS double integrals) or, from top to bottom motion of the
horizontal line (the RHS double integrals).

22.5 Modelling Forward Rates

We recall that f .t; T / denotes the forward rate at time t for instantaneous borrowing
at time T . The time line for f .t; T / is illustrated in Fig. 22.13, where we display
f .t; T / and f .t C dt; T /. The important point to keep in mind is that the maturity
date T is fixed, as so the time to maturity decreases as t evolves. This is in contrast
to the Brace–Musiela notation that considers fixed period ahead forward rates, as
we shall see in Chap. 26 when we come to consider the LIBOR market model.

Heath et al. (1992a) propose to model the forward rate as the driving stochastic
process. They write the process for f .t; T / in the form of a stochastic integral
equation as

f .t; T / D f .0; T /C
Z t

0

˛.u; T; !.u//du C
Z t

0

�.u; T; !.u//dW.u/; (22.36)

for 0 � t � T .
Figure 22.14 illustrates how the forward curve at time .tCdt/ evolves from that at

t by the addition of two terms. The first, ˛.t; T; �/dt, represents the average change
across the maturities. The second, �.t; T; �/dW, represents the impact at different
maturities of the shock dW that occurs during .t; t C dt/.

More specifically, the quantities ˛.u; T; !.u// and �.u; T; !.u// are the drift
and volatility of the forward rate process and f .0; T / is the initial forward rate
curve which can be obtained from the currently observed yield curve. We allow for
possible dependence of ˛ and � on !.t/, a vector of path dependent variables such
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Fig. 22.13 The time line for the fixed terminal data instantaneous forward rate f .t; T /

Fig. 22.14 The evolution of the forward rate curve

as the instantaneous spot interest rate r.t/, discrete maturity forward rates or even
the entire forward curve itself. This would allow the model to capture the effect of
the level of interest rates on volatility. This general notation was indeed employed
in the original Heath–Jarrow–Morton paper. In the discussion of this section we
only allow one shock term dW in order to alleviate the mathematical notation.
Heath–Jarrow–Morton allow for multiple shock terms and we consider this case in
Chap. 25. In differential form we may write Eq. (22.36) as the stochastic differential
equation

df .t; T / D ˛.t; T; !.t//dt C �.t; T; !.t//dW.t/: (22.37)

We shall defer for the moment discussion of appropriate functional forms for
˛.t; T; !.t// and �.t; T; !.t//. The aim of the calculations in the rest of this section
is to determine the stochastic processes for the spot rate r.t/ and bond price P.t; T /
implied by Eq. (22.36).

The reader needs to be wary that the correct path from the forward rate dynamics
to the spot rate dynamics has to occur at the level of the stochastic integral equations.
Thus we must set T D t in the stochastic integral equation (22.36) for f .t; T / to
obtain the stochastic integral equation for r.t/. For this latter we can obtain the
stochastic differential equation for r.t/. It is not correct to obtain the stochastic
differential equation for r.t/ simply by setting T D t in the stochastic differential
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Fig. 22.15 The path from forward rate dynamics to spot rate dynamics

equation (22.37) for f .t; T /. This has to do with the fact that the path history matters
here and we need to work with the stochastic integral equations, which are properly
defined mathematical objects. The stochastic differential equation is merely a (very
convenient) short-hand notation as we stressed in Chap. 4. We illustrate the correct
path from forward rate dynamics to spot rate dynamics in Fig. 22.15.

Recalling that the spot interest rate and forward rate are related by r.t/ D f .t; t/

we see from Eq. (22.36) that r.t/ satisfies the stochastic integral equation

r.t/ D f .0; t/C
Z t

0

˛.u; t; !.u//du C
Z t

0

�.u; t; !.u//dW.u/: (22.38)

This may alternatively be expressed as the stochastic differential equation6

dr D
�
f2.0; t/C ˛.t; t; !.t//C

Z t

0

˛2.u; t; !.u//du C
Z t

0

�2.u; t; !.u//dW.u/

�
dt

C �.t; t; !.t//dW.t/:
(22.39)

Here f2; ˛2; �2 denote partial differentiation of f; ˛; � with respect to their second
arguments. Close inspection of (22.39) reveals that this process for r.t/ is more
general than the types of processes considered in Sect. 22.2. The difference stems
from the third component of the drift term, viz.,

Z t

0

�2.u; t; !.u//dW.u/: (22.40)

This term is a weighted sum of the shock terms dW.u/ from initial time 0 to current
time t , thus it is a path-dependent term. Hence the stochastic differential equation

6Here we make use of the result for the differential of a stochastic integral in Sect. 5.5, a result that
is used frequently in this and subsequent chapters.
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for r.t/, Eq. (22.39) is non-Markovian.7 Thus the spot interest rate process implied
by the forward rate process (22.36) is far more general than those discussed in
Sect. 22.2.

22.5.1 From Forward Rate to Bond Price Dynamics

In this section we determine the bond price dynamics implied by the forward rate
dynamics (22.36). Before proceeding we compute a quantity that will be useful in
simplifying the expression for the bond price that we shall calculate below. We note
from Eq. (22.38) that

Z t

0

r.s/ds D
Z t

0

f .0; s/ds C
Z t

0

Z s

0

˛.u; s; !.u//duds C
Z t

0

Z s

0

�.u; s; !.u//dW.u/ds;

which by use of result (III) of Fubini’ theorem in Sect. 22.4 can be written

Z t

0

r.s/ds D
Z t

0

f .0; s/ds C
Z t

0

�Z t

u
˛.u; s; !.u//ds

	
du

C
Z t

0

�Z t

u
�.u; s; !.u//ds

	
dW.u/:

(22.41)

In order to determine the stochastic differential equation for the bond price that
is implied by the forward rate process (22.36), we recall first the definitional
relationship between bond prices and forward rates, viz.,

P.t; T / D exp

�
�
Z T

t

f .t; s/ds

	
;

or

lnP.t; T / D �
Z T

t

f .t; s/ds: (22.42)

Substituting Eq. (22.36) into this last equation we have that

lnP.t; T /

D �
Z T

t

f .0; s/ds �
Z T

t

Z t

0

˛.u; s; !.u//duds �
Z T

t

Z t

0

�.u; s; !.u//dW.u/ds:

7In fact even without the term Eq. (22.40) we have non-Markovian dynamics because of the termR t
0 ˛2.u; t; !.u//du, which depends on the path followed by the path dependent variable ! between

0 and t .
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Applying result (II) of Fubini’ theorem (see Sect. 22.4) we can re-express
lnP.t; T / as

lnP.t; T / D �
Z T

t

f .0; s/ds �
Z t

0

�Z T

t

˛.u; s; !.u//ds

	
du

�
Z t

0

�Z T

t

�.u; s; !.u//ds

	
dW.u/;

which may further be re-arranged to8

lnP.t; T / D �
Z T

0

f .0; s/ds �
Z t

0

�Z T

u
˛.u; s; !.u//ds

	
du

�
Z t

0

�Z T

u
�.u; s; !.u//ds

	
dW.u/C

Z t

0

f .0; s/ds (22.43)

C
Z t

0

�Z t

u
˛.u; s; !.u//ds

	
du C

Z t

0

�Z t

u
�.u; s; !.u//ds

	
dW.u/:

From Eq. (22.41) we see that we can represent the last three terms of (22.43) asR t
0 r.s/ds, and from Eq. (22.42) we see that

�
Z T

0

f .0; s/ds D lnP.0; T /:

Hence Eq. (22.43) simplifies to

lnP.t; T / D lnP.0; T /C
Z t

0

r.s/ds �
Z t

0

�Z T

u
˛.u; s; !.u//ds

	
du

�
Z t

0

�Z T

u
�.u; s; !.u//ds

	
dW.u/:

(22.44)

Taking differentials it follows immediately that the log bond price B.t; T / �
lnP.t; T / satisfies the stochastic differential equation

dB.t; T / D Œr.t/� ˛B.t; T /� dt C �B.t; T /dW.t/; (22.45)

where we define

˛B.t; T / D
Z T

t

˛.t; s; !.t//ds and �B.t; T / D �
Z T

t

�.t; s; !.t//ds:

(22.46)

8Since
R T
t f .0; s/ds D R T

0 f .0; s/ds � R t
0 f .0; s/ds and for any function g we have

R t
0

�R T
t g.u; s/ds

�
du D R t

0

�R u
t g.u; s/ds C R T

u g.u; s/ds
�

du D R t
0

�
� R t

u g.u; s/ds C R T
u g.u; s/

ds/ du.
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Fig. 22.16 The steps from forward rate to bond price dynamics

By a straightforward application of Ito’s Lemma (since P.t; T / D eB.t;T // we find
the corresponding stochastic differential equation for the bond price to be

dP.t; T / D
�
r.t/ � ˛B.t; T /C 1

2
�2B.t; T /

�
P.t; T /dt C �B.t; T /P.t; T /dW.t/:

(22.47)

The stochastic differential equations (22.39) and (22.47) form a linked system for
the instantaneous spot rate and the bond price. This system will typically be non-
Markovian and many applications in the Heath–Jarrow–Morton framework seek
simplifications which reduce this system to Markovian form. We give one example
of how this may be done in the next section.

Since the steps from the forward price dynamics to the bond price dynamics are
rather round-about we feel it may be useful to summarise these in Fig. 22.16.

22.5.2 A Specific Example

For the forward rate volatility in Eq. (22.37) we assume that the path dependent
variable ! is associated to the instantaneous spot interest rate r.t/ in the functional
form

�.u; t; !.u// D �.u; t; r.u// D �e��.t�u/r.u/
 : (22.48)
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Note that in this case

�2.u; t; r.u// D ���e��.t�u/r.u/
 D ���.u; t; r.u//; (22.49)

so that the non-Markovian term in Eq. (22.39) may be written

Z t

0

�2.u; t; r.u//dW.u/ D ��
Z t

0

�.u; t; r.u//dW.u/

D ��
Z t

0

�e��.t�u/r.u/
dW.u/:

(22.50)

Define the subsidiary stochastic variable

�.t/ D
Z t

0

�e��.t�u/r.u/
dW.u/; (22.51)

and note that it satisfies the stochastic differential equation

d� D ���.t/dt C �r.t/
dW.t/: (22.52)

Using �.t/ to substitute the non-Markovian term in Eq. (22.39) we see that r.t/ and
�.t/ form a linked Markovian system9 viz.

dr D
�
f2.0; t/C ˛.t; t; r.t//C

Z t

0

˛2.u; t; r.u//du � ��.t/
�

dt C �r.t/
dW.t/;

(22.53)

d� D ���.t/dt C �r.t/
dW.t/: (22.54)

In this system the past levels of volatility and the news arrival process affect the
dynamics of r.t/ via the variable �.t/. This captures the type of processes estimated
by Brenner et al. (1996) though in a different way to their specification. Here the
drift rather than the volatility is affected directly by the �.t/ process.

In Fig. 22.17 we illustrate some simulations of r.t/ and �.t/ in the sys-
tem (22.53)–(22.54) for 
 D 0:5. For the drift term we have taken

˛.t; T; r.t// D �.t; T; r.t//

Z T

t

�.t; u; r.t//du; (22.55)

9We are assuming here that the term
R t
0 ˛2.u; t; r.u//du can be expressed in terms of the state

variable, r.t/ and �.t/. This will be the case if we assume the form Eq. (22.55) below that ensures
arbitrage free dynamics. Otherwise it may be necessary to introduce further state variables to obtain
a Markovian system.
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Fig. 22.17 Simulations of r.t/ and �.t/ for (22.53)–(22.54) with drift specified by (22.55)

which ensures that the economy is arbitrage free as we shall show in Chap. 25. The
values of �; � were taken from Bhar and Chiarella (1997b). The initial forward rate
curve f .0; t/ is relevant to 90-day bank bill futures data traded on the SFE in 1991,
and was calculated using the polynomial fitting procedure described in Bhar and
Hunt (1993).
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Fig. 22.18 Simulations of the process for forward rates and simulated distribution density of bond
prices

In order to give some intuitive feel for the type of dynamics implied by the
forward rate process, we also display in Fig. 22.18 simulations of the forward rate
process and the simulated distribution density of the corresponding bond prices
P.t; 2/ and P.t; 3/ when t D 0:5, for the same values of 
 .
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22.6 Appendix

Appendix 22.1 Calculation of Covariance

Consider the interest rate process equation (22.38) in the case of a deterministic drift
and volatility so that

r.t/ D f .0; t/C
Z t

0

˛.u; t/du C
Z t

0

�.u; t/dW.u/:

We can readily calculate that

mr.t/ D EŒr.t/� D f .0; t/C
Z t

0

˛.u; t/du:

We can then calculate the covariance between interest rates at two maturities s and
t as

cov.r.s/; r.t// D E0Œfr.s/ �mr.s/gfr.t/�mr.t/g�

D E0

�Z s

0

�.u; s/dW.u/
Z t

0

�.u; t/dW.u/

�
:

For definiteness suppose s < t

E0

�Z s

0

�.u; s/dW.u/
Z t

0

�.u; t/dW.u/

�

D E0

2
6664

Z s

0

�.u; s/dW.u/
Z s

0

�.u; t/dW.u/C
Z s

0

�.u; s/dW.u/
Z t

s

�.u; t/dW.u/
„ ƒ‚ …

these dW.u/ are non overlapping ) E0 D 0

3
7775

D E0

�Z s

0

�.u; s/dW.u/
Z s

0

�.u; t/dW.u/

�

D
Z s

0

�2.u; t/du:

In general (i.e. s < t or s > t) we have

cov.r.s/; r.t// D
Z min.s;t /

0

�2.u; t/du D
Z s^t

0

�2.u; t/du

where s ^ t � min.s; t/.
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22.7 Problems

Problem 22.1 Consider the spot rate process

dr D .�0 C �1r.t//dt C �rdW;

where �0; �1 and �r are constants. Calculate the expected average value of the spot
rate i.e.

Et

�
1

T � t

Z T

t

r.u/du

�
:

Problem 22.2 Consider the mean-reverting process

dr D 	.� � r.t//dt C �dW;

where 	; � and � are constants. Show that for s � t

r.s/ D e�	.s�t /r.t/C �.1 � e�	.s�t //C �

Z s

t

e�	.s�u/dW.u/:

Then by using the appropriate version of Fubini’s theorem, show that

Z T

t

r.s/ds D .r.t/ � �/B.t; T /C �.T � t/C �

Z T

t

B.u; T /dW.u/;

where

B.t; T / � 1

	
.1 � e�	.T�t //:

Problem 22.3 In Sect. 22.5 we have discussed how, starting with the dynamics for
the forward rate, we can obtain the dynamics for the spot rate and bond price.

Suppose that instead we start with the dynamics for the bond price, i.e. we assume

dP.t; T /

P.t; T /
D ˛P .t; T /dt C �P .t; T /dz.t/:

What process does this imply for f .t; T / and r.t/?
Suppose we take

�P .t; T / D N�e��.T�t /:

What will be the corresponding volatility for the forward rate process?
For this volatility function write out the stochastic differential equation for the

spot rate r.t/.



22.7 Problems 465

Is it still possible to write it in Markovian form in this case?
Hint: Determine the stochastic integral equation satisfied by B.t; T / D

lnP.t; T /. Then use this to determine the stochastic dynamics for G.t; T / D
@
@T
B.t; T /.

Problem 22.4 Following on from Problem 22.3, we could also take as our starting
point the dynamics of the yield to maturity. That is we assume

d
.t; T / D ˛
.t; T /dt C �
.t; T /d z.t/:

Now determine the stochastic integral equations and stochastic differential equa-
tions satisfied by P.t; T /, f .t; T / and r.t/.

Suppose that we take

�
.t; T / D N�e��.T�t /

what will be the corresponding volatilities for the bond price P.t; T / and forward
rate f .t; T /?

Write out the stochastic differential equation satisfied by r.t/ in this case. Can
you express it in Markovian form?

Hint: Recall the definition of the yield to maturity


.t; T / D � lnP.t; T /

T � t
:

Use Ito’s Lemma to find the stochastic differential equation satisfied by
B.t; T / D lnP.t; T /: A further application of Ito’s Lemma gives the stochastic
differential equation for P.t; T /:

Problem 22.5 In Sect. 22.5.1 consider the case in which � and ˛ depend on the
forward rate itself, i.e. �.t; T; !.t// D �.t; T; f .t; T //. Show that then the forward
rate, the derivative of the forward rate with respect to maturity time, the spot interest
rate and the bond price form the linked stochastic differential system

df .t; T / D ˛.t; T; f .t; T //dt C �.t; T; f .t; T //dW.t/; (22.56)

df2.t; T / D Œ˛2.t; T; f .t; T //C ˛3.t; T; f .t; T //f2.t; T /�dt

C Œ�2.t; T; f .t; T //C �3.t; T; f .t; T //f2.t; T /�dW.t/;
(22.57)

dr D


f2.0; t/C ˛.t; t; r.t//C

Z t

0
Œ˛2.u; t; f .u; t//C ˛3.u; t; f .u; t//f2.u; t/�du

�
dt

C
Z t

0
Œ�2.u; t; f .u; t//C �3.u; t; f .u; t//f2.u; t/� dW.u/dt C �.t; t; r.t//dW.t/;

(22.58)
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dP.t; T / D
�
r.t/ � ˛B.t; T; �/C 1

2
�2B.t; T; �/

�
P.t; T /dtC�B.t; T; �/P.t; T /dz.t/;

(22.59)
where

˛B.t; T; �/ D
Z T

t

˛.t; s; f .t; s//ds and �B.t; T; �/ � �
Z T

t

�.t; s; f .t; s//ds:

(22.60)
Comment on whether this system is Markovian or non-Markovian.

Problem 22.6 Work through the calculations leading to the stochastic differential
equation system (22.56)–(22.59). Obtain the form taken by this stochastic differen-
tial equation system when it is assumed that

�.t; T; f .t; T // D �0e
��.T�t /f .t; T /
 :

Problem 22.7 Computational Problem—Simulate the interest rate process

dr D 	.Nr � r.t//dt C � r
 dW:

Use the values that were used to generate Fig. 22.4.
Reproduce Figs. 22.4 and 22.5.

Problem 22.8 Computational Problem—Consider again the interest rate process
of Problem 22.7, but now suppose the volatility is stochastic. That is we have

dr D 	r.Nr � r.t//dt C
p
v.t/ r.t/
dZr ;

dv D 	v. Nv � v.t//dt C �v
p
v.t/ dZv;

where

EŒdZr dZv� D 
 dt:

For 	r and Nr use the same values as in Problem 22.7. For Nv use the values of �2 in
Table 22.1. Set the initial value of the v process to Nv.

Simulate this model to determine the impact of stochastic volatility on the
distributions in Fig. 22.5. In particular see how the skewness and kurtosis of the
distribution is affected. Experiment with values of 	v between 1 and 3, and values
of �v equal to

p
	v Nv=2. Consider 
 D 0:5; 0:0 and �0:5.

Problem 22.9 Computational Problem—Consider the forward rate process

f .t; T / D f .0; T /C
Z t

0

N�.s; T /ds C
Z t

0

�.s; T /dW.s/;
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where

N�.t; T / D �.t; T /

Z T

t

�.t; v/dv;

so that the dynamics are arbitrage free.
Take the volatility function

�.t; T / D ˇ0 Œ1C ˛0r.t/C a1f .t; T1/�

 e��.T�t /;

and the initial forward curve having the functional form

f .0; T / D 0:08 � 0:03 e�1:5T :

Using simulation obtain and graph the distribution for r.t/, f .t; T / and P.t; T /
when T D 3, T1 D 5, at t D 0:5 and t D 1:0 and for the following sets of parameter
specifications

.a/ 
 D 0; ˇ0 D 0:02; � D 0:6I

.b/ 
 D 1

2
; ˇ0 D 0:015; ˛0 D 4:41; ˛1 D 6:97; � D 0:6:

Problem 22.10 Computational Problem—Consider the stochastic differential
equation system (22.56)–(22.59) when it is assumed that �.t; T; f .t; T // D
�0e

��.T�t /f .t; T /
 (see Problems 22.6 and 22.5). Using simulation obtain and
graph the distribution for r.t/, f .t; T / and P.t; T / when T D 3 at t D 0:5 and
t D 1:0 for the parameter specification

(a) 
 D 0; �0 D 0:02; � D 0:6;
(b) 
 D 1

2
; �0 D 0:02236; � D 0:6.

Take f .0; T / as in Problem 22.9 and ˛.t; T / is given by Eq. (22.55) with r replaced
by f .t; T /.



Chapter 23
Interest Rate Derivatives: One Factor Spot Rate
Models

Abstract In this chapter we survey models of interest rate derivatives which take
the instantaneous spot interest rate as the underlying factor. The continuous hedging
argument is extended so as to model the term structure of interest rates and other
interest rate derivative securities. This basic approach is due to Vasicek (J Financ
Econ 5:177–188, 1977) and hence we shall often refer to it as the Vasicek approach.
By specifying different functional forms for the drift, the diffusion and the market
price of risk, we develop three well known spot rate models, namely the Vasicek
model, the Hull–White model and the Cox–Ingersoll–Ross model. Then we present
a general framework for pricing bond options and we apply this framework to obtain
closed form solutions for bond options under the specifications of the Hull–White
and the Cox–Ingersoll–Ross model. Finally we discuss the calibration of the Hull–
White model to the currently observed yield curve.

23.1 Introduction

The essential feature of pricing options on interest rate derivative securities is
that we need to take account of the stochastic nature of interest rates. Chapter 19
illustrated one approach to this problem, namely modelling the price of pure
discount bonds as a stochastic process and making this one of the stochastic
factors upon which the value of the option depends. The general approach is
due to Merton (1973). There are however a number of practical difficulties in
attempting to implement this approach. In particular it requires specification of
the average expected return variance over the time interval to maturity, together
with the covariance between return and the instantaneous short term rate. It is not
clear in practice how best to estimate these variances and covariances. Nevertheless,
Merton’s approach has guided the development of many of the subsequent interest
rate option models.

A characteristic of the stock option model is that there is one basic approach to
which can be added embellishments to account for different stochastic processes
for the underlying asset (e.g. a jump-diffusion process) or to account for different
boundary conditions (e.g. European or American options). For interest rate con-
tingent claims however there does not seem to be one basic approach but rather
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Fig. 23.1 The time line for the bond pricing problem

a range of alternative approaches. These differ according to what is taken as the
underlying factor, which is usually one of the instantaneous spot interest rate, the
bond price or the forward rate. Further, some models are presented in a discrete
time framework and some in a continuous time framework. An important distinction
between alternative approaches is whether the initial term structure (i.e. the currently
observed yield curve) is itself to be modelled or to be taken as given. This modelling
choice will determine whether the resulting models involve the market price of
interest rate risk.

23.2 Arbitrage Models of the Term Structure

In this section we consider the perspective of an investor who is standing at time
0 and observes various market rates that enable him/her to compute the initial
forward f .0; T / (or equivalently the initial bond price curve P.0; T /) for any
maturity T out to some maximum maturity (e.g. 30 years in US markets, 10
years in Australian markets). This investor wishes to price at any time t .< T / a
pure default-free discount bond that pays $1 at time T . The investor in particular
seeks the arbitrage-free bond price, i.e. one that does not allow the possibility of
riskless arbitrage opportunities between bonds of differing maturities. Furthermore
the investor wishes the bond price so obtained to be consistent with currently
observed initial bond price curve. Figure 23.1 illustrates the time line for the bond
pricing problem.

Initially, we assume that the price of a default-free bond is a function of only the
current short term interest rate, time and maturity. Thus we write P.r.t/; t; T / to
denote the price at time t of a discount bond maturing at time T , having maturity
value of $1, when the current instantaneous spot interest rate is r.t/, (which is
assumed to be riskless in the sense that money invested at this rate will always
be paid back) i.e.,

P.r.T /; T; T / D 1: (23.1)
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We assume the instantaneous spot rate follows the diffusion process

dr D �r.r; t/dt C �r.r; t/dz: (23.2)

By Ito’s lemma the bond price therefore satisfies the stochastic differential equation

dP

P
D �P .r; t; T /dt C �P .r; t; T /dz; (23.3)

where

�P .r; t; T / D 1

P

�
@P

@t
C �r

@P

@r
C 1

2
�2r
@2P

@r2

	
; (23.4)

�P .r; t; T / D �r

P

@P

@r
: (23.5)

Consider an investor who at time t invests $1 in a hedge portfolio containing two
default free bonds maturing at times T1 and T2 respectively and held in the dollar
amountsQ1 and Q2. Using Pi to denote the price of the bond maturing at time Ti ,
we can write

dollar return on the
hedge portfolio

�
D Q1

dP1
P1

CQ2

dP2
P2

D .Q1�P1 CQ2�P2/dt C .Q1�P1 CQ2�P2/dz; (23.6)

where �Pi , �Pi denote respectively the expected return and standard deviation of
the bond of maturity Ti .i D 1; 2/. This return can be made certain by choosing the
amountsQ1, Q2, so that

Q1

Q2

D ��P2
�P1

: (23.7)

Thus from (23.6) the dollar return on the now riskless hedge portfolio is

.Q1�P1 CQ2�P2/dt:

Absence of riskless arbitrage then implies that this return must be the same return
as a loan at the instantaneous spot interest rate r . Given that the original investment
is $1 (i.e. Q1 CQ2 D 1) then this last condition states that

.Q1�P1 CQ2�P2/dt D 1 � r.t/dt:

Rearranging we obtain

Q1.�P1 � r.t//CQ2.�P2 � r.t// D 0;
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which when combined with (23.7) yields the condition for no-riskless arbitrage
between bonds of any two maturities, namely

�P1 � r.t/
�P1

D �P2 � r.t/
�P2

: (23.8)

Since the maturity dates T1, T2 were arbitrary, it must be the case that the ratio

�P .r; t; T / � r.t/
�P .r; t; T /

is independent of maturity T . Let �.r; t/ denote the common value of this ratio for
bonds of an arbitrary maturity T . Thus

�P .r; t; T /� r.t/

�P .r; t; T /
D �.r; t/: (23.9)

The quantity � can be interpreted as the market price of interest rate risk per unit of
bond return volatility. Thus Eq. (23.9) asserts that in equilibrium bonds are priced
so that instantaneous bond returns equal the instantaneous risk free interest rate plus
a risk premium equal to the market price of interest rate risk times instantaneous
bond return volatility. Substitution from (23.4) and (23.5) of the expressions for
�P .r; t; T / and �P .r; t; T / respectively, after some simplification, in the partial
differential equation for the bond price,

@P

@t
C .�r � �.r; t/�r /@P

@r
C 1

2
�2r
@2P

@r2
� r.t/P D 0; (23.10)

which must be solved subject to the boundary condition

P.r.T /; T; T / D 1: (23.11)

In order to solve (23.10), either analytically or numerically, we need to specify the
drift�r and diffusion �r as well as form of the market price of risk term �.r; t/. One
common assumption is that this latter term is constant. However, to formally derive
this result, involves some very particular assumptions about how the capital market
operates. These conditions are discussed briefly in the next section, however to give
a proper theoretical basis to the choice of �.r; t/ it would be necessary to construct
a dynamic general equilibrium model and relate �.r; t/ to investor preferences. This
is the approach adopted by Cox et al. (1985b).
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23.3 The Martingale Representation

Just as in the case of the stock option model we were able to obtain a martingale
representation of the pricing relationships, so can we do the same thing in the present
context. We note from the no riskless arbitrage condition (23.9) that (we use �.t/
instead of �.r; t/ for notational convenience here)

�P .r; t; T / D r.t/C �.t/�P .r; t; T /: (23.12)

Substitution of (23.12) into (23.3) yields the stochastic bond price dynamics under
the condition of no-riskless arbitrage viz.

dP

P
D .r.t/C �.t/�P .r; t; T //dt C �P .r; t; T /dz: (23.13)

Following a line of reasoning identical to that used in Chap. 10 for the stock option
model we define a modified Wiener process Qz.t/ by

Qz.t/ D z.t/C
Z t

0

�.s/ds: (23.14)

Under the historical measure P, Qz.t/ is not a standard Wiener process (i.e. E.Qz.t/ ¤
0 where E is the expectation operation under P) but by an application of Girsanov’s
theorem we can obtain an equivalent measure QP under which Qz.t/ is a standard
Wiener process (i.e. QE.Qz.t// D 0 where QE is the expectation operation under QP).
Thus in terms of Qz.t/ the stochastic differential equation (23.13) for P under the
measure QP becomes

dP

P
D r.t/dt C �P .r; t; T /dQz: (23.15)

However unlike in the stock option situation, the spot rate r is here stochastic, so
we need to define the money market account (the accumulated value by time t of $1
continuously compounded at r since time 0) as

A.t/ D e
R t
0 r.s/ds: (23.16)

It is a simple matter to demonstrate that

dA D r.t/A.t/dt: (23.17)
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We then define the bond price in units of the money market account,1

Z.r; t; T / D P.r; t; T /

A.t/
; (23.18)

and a simple application of Ito’s lemma reveals that Z satisfies

dZ

Z
D �P .r; t; T /dQz: (23.19)

Thus Eq. (23.19) implies Z.r; t; T / is a martingale under QP, i.e.

Z.r; t; T / D QEt ŒZ.r.T /; T; T /�; (23.20)

which in terms of the original bond price can be expressed (after slight re-
arrangement) as

P.r; t; T / D QEt
�
A.t/

A.T /
P.r.T /; T; T /

�
;

or since P.r.T /; T; T / D 1, more simply as

P.r; t; T / D QEt
h
e� R T

t r.s/ds
i
: (23.21)

In order to derive the interest rate dynamics under QP we use (23.14) to replace dz by
.d Qz � �.t/dt/ in Eq. (23.2) to obtain

dr D .�r.r; t/ � �.r; t/�r .r; t//dt C �r.r; t/dQz: (23.22)

An application of the Feynman–Kac formula2 (in particular Proposition 8.2)
to (23.21) and (23.22) would take us back to the partial differential equation (23.10).
Thus, just as in the stock option situation, we have two representations of the bond
price, the partial differential equation (23.10) and the expectation operator (23.21)
under the interest rate dynamics (23.22). To use these representations we need
to specify the function �r ,�r and also the functional form for the market price
of interest rate risk �.r; t/. This we do in the following section for specific term
structure models.

1Recall that by the rules of stochastic calculus

dZ

Z
D dP

P
� dA

A
� dP

P
� dA

A
C
�

dA

A

	2
:

2Make the identifications x ! r; v.t; r/! P.r; t; T /; � D �1; f Œs; x.s/� ! r.s/.
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Fig. 23.2 Typical paths for the r process over Œt; T �. Equation (23.21) averages the quantity

e�

R T
t r.s/ds over many such paths under the QP measure

Before leaving this section we wish to emphasize the discounted cash flow
interpretation of the representation (23.21). The factor exp.� R T

t
r.s/ds/ discounts

back to t the dollar received at T , for one particular path followed by r.s/. Since r.s/
is stochastic this quantity is in fact a stochastic discount factor. To obtain the dis-
counted value at t of the $1 received at T we need to average over the range of possi-
ble paths followed by r.s/ under the measure QP. This is effectively what the QEt does;
Fig. 23.2 illustrates this idea. It is also of interest to contrast the bond price expres-
sion (23.21) with the corresponding expression in Eq. (22.11) for a world of cer-
tainty, and we see how this is generalised in a natural way to the world of uncertainty.

We thus have a complete analogy with the stock option price derivation of
Chaps. 6 and 7 with the exception that the pricing relationships here involve the
market price of interest rate risk �. But from our discussion in Chap. 10 this is to
be expected since the underlying factor, the spot interest rate r.t/, is not a traded
factor.

23.4 Some Specific Term Structure Models

A variety of term structure models are obtained by specifying different forms for
�r.r; t/ and �r .r; t/ in the interest rate process, Eq. (23.2), and/or different forms
for the market price of risk term �.r; t/.

23.4.1 The Vasicek Model

The Vasicek (1977) model holds a special place in the interest rate term structure
literature as it was the earliest model. Its basic assumptions are to take

�r.r; t/ D 	.
 � r.t// and �r.r; t/ D �; (23.23)
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where 	 > 0 and � > 0 are constant. We also assume a constant market
price of interest rate risk, i.e., �.r; t/ D �. The bond pricing partial differential
equation (23.10) in this case becomes

@P

@t
C .� � 	r.t//@P

@r
C 1

2
�2
@2P

@r2
� r(t)P D 0; (23.24)

where we set � D 	
 � �� . One way to solve this partial differential equation is to
see whether it is possible to find functions a.t; T / and b.t; T / such that the solution
can be written in the form3

P.t; T / D e�a.t;T /�b.t;T /r.t/: (23.25)

In order that the boundary condition (23.11) be satisfied for all possible r.T / it must
be the case that a.t; T / and b.t; T / satisfy

a.T; T / D 0 and b.T; T / D 0: (23.26)

From (23.25) we note that4

@P

@r
D �bP; @2P

@r2
D b2P and

@P

@t
D .�at � bt r.t//P: (23.27)

Substituting these relations into (23.24) and gathering terms in powers of
r.t/.r.t/0 D 1/ we obtain

�
�at � b� C 1

2
�2b2

�
C Œ�bt C 	b � 1�r.t/ D 0: (23.28)

If (23.28) is to hold for all t and all r it must be the case that each bracket
is separately equal to zero. Thus we obtain for a and b the ordinary differential
equations

bt D 	b � 1; (23.29)

and

at D �b� C 1

2
�2b2; (23.30)

3One motivation for the functional form Eq. (23.25) is that when r is constant, we have P.t; T / D
e�r.T�t/, and (23.25) is an obvious generalisation of this relation.
4We employ the notation at D @

@t
a.t; T /, bt D @

@t
b.t; T /.
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which must be solved subject to the boundary conditions (23.26). From (23.29) we
obtain5

b.t; T / D
�
1 � e�	.T�t /


	
: (23.31)

Substituting (23.31) into (23.30), integrating from t to T and, using the boundary
condition a.T; T / D 0 we find that

a.t; T / D
Z T

t

�
�b.s; T / � 1

2
�2b2.s; T /

�
ds; (23.32)

which after some elementary integrations reduces to6

a.t; T /D
�
�

	
� �2

2	2

	
.T � t/C

�
�

	2
� �2

2	3

	
.e�	.T�t / � 1/C �2

4	3
.e�	.T�t /�1/2:

(23.33)

5Equation (23.29) can be re-arranged into

d

dt

�
b.t; T /e�	t

� D �e�	t

and integrating t to T we obtain

b.T; T /e�	T � b.t; T /e�	t D �
Z T

t

e�	sds D � 1

	
.e�	t � e�	T /:

Use of the boundary condition b.T; T / D 0 and some re-arrangement yields (23.31).
6Note that
Z T

t

b.s; T /ds D
Z T

t

.1� e�	.T�s//

	
ds D

Z T�t

0

.1� e�	u/

	
du D .T � t /

	
C 1

	2
.e�	.T�t/ �1/

and
Z T

t

b2.s; T /ds D
Z T�t

0

.1� e�	u/2

	2
du

D 1

	2

�
.T � t /C 2

	
.e�	.T�t/ � 1/� 1

2	
.e�2	.T�t/ � 1/

�

D .T � t /

	2
� 1

2	3

˚
.e�	.T�t/ � 1/2 � 2.e�	.T�t/ � 1/

�
:
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By considering the corresponding expression for the yield to maturity 
.t; T / .D
� lnP.t; T /=.T � t/ D .a.t; T /C b.t; T /r.t//=.T � t// we find that


.t; T / D
�
�

	
� �2

2	2

	�
1C e�	.T�t / � 1

	.T � t/
	

C �2

4	3
.e�	.T�t / � 1/2

T � t
C .1 � e�	.T�t //

T � t r.t/: (23.34)

By letting .T � t/ ! 1 we find that the yield at infinite maturity is given by7


1 D �

	
� �2

2	2
: (23.35)

One may then express the bond price as

P.r; t; T / D exp

�
.e�	.T�t /�1/

	
.r.t/ � 
1/� 
1.T�t/ � �2

4	3
.e�	.T�t / � 1/2

�
:

(23.36)

Whilst the Vasicek model may now be of historical interest, it nevertheless contains
all the basic ingredients needed to deal with the more sophisticated models which
we consider in the following subsections. Namely a technique to solve the pricing
partial differential equation and the idea of relating the parameters of the model to
information that can be obtained from the currently observed yield curve. The last
observation also makes evident one of the widely perceived shortcomings of the
Vasicek model. By setting t D 0 in (23.36) we obtain

P.r.0/; 0; T / D exp

�
.e�	T � 1/

	
.r.0/ � 
1/� 
1T � �2

4	3
.e�	T � 1/2

�
:

(23.37)

If � is chosen so as to match the long term yield 
1 then we only have two
parameters, 	 and � , left to make expression (23.36) consistent with the entire
currently observed yield curve P.r.0/; 0; T /. Clearly this is impossible as at the
most we could choose 	 and � to fit two points exactly, or alternatively choose
them to obtain some sort of least squares fit. These observations suggest that one
possibility to develop a model that fits the currently observed yield curve is to make
at least one, if not more, of the quantities 	, 
 and � time varying. We would then
have at our disposition a whole set of values of say 	 (if it were allowed to be time
varying) with which to match the theoretical model to the currently observed yield

7One could use this insight to infer a value for the unknown factor � from the currently observed
yield curve, from which one could obtain an estimate of 


1
.
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curve. This is the essential insight of the Hull–White model to which we turn in the
next subsection.

However before turning to the Hull–White model we consider what the
solution (23.25) implies for the bond price dynamics. We know that under P the
bond price dynamics are given by (23.13). However at that point in our development
we did not have an explicit expression for @P

@r
. The solution (23.25) now enables us

to calculate this expression, in fact it is given in (23.27). Substituting this expression
into Eq. (23.13) and from Eq. (23.5), we find that the bond price dynamics are given
by

dP

P
D .r.t/ � ��b.t; T //dt � �b.t; T /dz: (23.38)

The last equation indicates that the standard deviation of bond return is ��b, the
minus sign simply indicates that a positive shock to the interest rate dynamics (i.e.,
a positive dz) results in a negative shock to the bond price dynamics. This is merely
a reflection of the fact that interest rates and bond prices are inversely related. As
we have seen in the discussion of the general case in Sect. 23.2, Eq. (23.38) can be
transformed, under the equivalent measure QP, to

dP

P
D r.t/dt � �b.t; T /dQz: (23.39)

The last equation leads, as we saw in Sect. 23.2 to the martingale representa-
tion (23.21). Furthermore the interest rate dynamics under QP becomes

dr D .� � 	r.t//dt C �dQz; (23.40)

where we recall that � has already been defined as � D 	
 � �� . These are the
dynamics with respect to which the expectation QEt in (23.21) is to be calculated.

23.4.2 The Hull–White Model

Hull and White (1990) take as the process for the short rate

dr D 	.t/.
.t/ � r.t//dt C �.t/dz: (23.41)

The difference from the Vasicek model being the time dependence of the coefficients
	.t/, 
.t/ and �.t/, the motivation being the points discussed at the conclusion
of the previous section. The bond pricing partial differential equation (23.10) now
becomes

@P

@t
C .�.t/ � 	.t/r.t//

@P

@r
C 1

2
�2.t/

@2P

@r2
� r(t)P D 0; (23.42)
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where we set

�.t/ D 	.t/
.t/ � ��.t/: (23.43)

The only difference from the partial differential equation (23.24) being the time
dependence of the coefficients �.t/, 	.t/ and �.t/. It seems not unreasonable to
attempt again a solution of the form (23.25). In fact precisely the same manipu-
lations yield for the time coefficients a.t; T / and b.t; T / the ordinary differential
equations

bt D 	.t/b � 1; (23.44)

and

at D �b�.t/C 1

2
�2.t/b2; (23.45)

the only difference being that the two ordinary differential equations we must solve
now have time varying coefficients. If we define

K .t/ D
Z t

0

	.s/ds; (23.46)

then the solution to (23.44) can be written8

b.t; T / D
Z T

t

eK .t/�K .s/ds: (23.47)

Substituting (23.47) into (23.45) and integrating t to T yields

a.t; T / D
Z T

t

b.s; T /�.s/ds � 1

2

Z T

t

�2.s/b2.s; T /ds: (23.48)

For general forms of the functions 	.t/, �.t/ and �.t/ it may be necessary to
perform numerically the integrations in (23.47) and (23.48). In fact to perform the
integrations we would need to also have some functional form for �, and this would
be difficult to obtain. It turns out that we can instead find from market data the

8Note that d
dtK .t / D 	.t/ so that d

dte
K .t/ D eK .t/	.t /. Multiplying across (23.44) by e�K .t/ and

re-arranging we obtain

d

dt
.e�K .t/b.t; T // D �e�K .t/:

The result then follows by integrating t to T and following manipulations similar to those in
footnote 5.
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function �.t/ (which contains �) and this is (together with 	.t/ and �.t/) all we
need to use the bond pricing formula.

Let us now consider the bond price dynamics implied by the bond pricing
formula (23.13) with a.t; T / and b.t; T / now given by (23.47) and (23.48). We
follow exactly the corresponding manipulations for the Vasicek model that led
to Eq. (23.38), which are not altered by the fact that 	, 
 and � are now time
varying. From the general expression (23.25) for the bond price and Eq. (23.5) for
the volatility of bond return we have

�P .t; T / D ��.t/b.t; T /: (23.49)

Thus for the Hull–White model we obtain for the bond price dynamics

dP

P
D .r.t/ � ��.t/b.t; T //dt � �.t/b.t; T /dz; (23.50)

where we highlight the time dependence of �.t/ and the fact that b.t; T / is given by
Eq. (23.47). Under the equivalent measure QP the bond price dynamics are given by

dP

P
D r.t/dt � �.t/b.t; T /d Qz; (23.51)

which leads to the martingale representation (23.21) as we have shown in the general
case in Sect. 23.2. The interest rate dynamics under which QEt is calculated are given
by (after setting dz D d Qz � �dt in (23.41))

dr D .�.t/ � 	.t/r.t//dt C �.t/d Qz: (23.52)

23.4.3 The Cox–Ingersoll–Ross (CIR) Model

Cox et al. (1985a) (CIR) consider the interest rate process

dr D 	.t/.
 � r.t//dt C �
p
r.t/dz: (23.53)

As we discussed in Sect. 22.3 the motivation for using this process is that it
guarantees non-negative (or positive if 	.t/
 > �2=2) spot interest rate sample
paths. Using a dynamic general equilibrium framework9 in order to obtain a
tractable bond pricing equation we assume that the market price of interest rate
risk is a function of r.t/ given by

�.r; t/ D �
p
r.t/; (23.54)

9In fact CIR employ a dynamic general equilibrium framework to derive the bond pricing equation
and under specific assumptions about investor preferences, end up with a market price of risk given
by (23.54).
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where � is a constant. The pricing partial differential equation (23.10) with this
specification of the market price of risk becomes

1

2
�2r.t/

@2P

@r2
C .	.t/
 � .	.t/C ��/r.t//

@P

@r.t/
C @P

@t
� r(t)P D 0: (23.55)

Given the very similar structure to the partial differential equation encountered in the
Vasicek and Hull–White models (the only difference is the r in front of the second
derivative) it seems not unreasonable to again try a solution of the same form viz.

P.t; T / D e�a.t;T /�b.t;T /r.t/: (23.56)

As already discussed when obtaining the corresponding solution for the Hull–White
model, the condition P.T; T / D 1 can only be guaranteed if

b.T; T / D 0; a.T; T / D 0: (23.57)

We note also that here

@P

@r
D �bP; @2P

@r2
D b2P;

@P

@t
D .�rbt � at /P;

which upon substitution into (23.55) and re-arrangement of terms yields

Œ�	.t/
b � at �C
�
1

2
�2b2 C .	.t/C ��/b � bt � 1

�
r.t/ D 0: (23.58)

In order that this relation hold for all r.t/ and all t it must be the case that

1

2
�2b2 C .	.t/C ��/b � bt � 1 D 0; (23.59)

and

� 	.t/
b � at D 0: (23.60)

The difference compared to the solution of the Hull–White model is the b2 term in
the ordinary differential equation (23.59), which makes its solution more difficult.
However this is in fact the well-known Ricatti ordinary differential equation whose
solution is known. We show in Appendix 23.1 that the solution to (23.59) is

b.t; T / D 2

�2
Œ1 � e�ˇ.T�t /�

Œ�1e�ˇ.T�t / � �2� ; (23.61)
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where

�1 D � .	.t/C �/

�2
C ˇ

�2
; �2 D �.	.t/C �/

�2
� ˇ

�2
;

and

ˇ D
p
.	.t/C �/2 C 2�2:

The expression (23.61) appears in many different forms in the literature. Equa-
tion (23.60) may be written

da

dt
D �	.t/
b.t; T /;

which upon integration from t; T yields (using a.T; T / D 0)

� a.t; T / D �	.t/

Z T

t

b.s; T /ds: (23.62)

We show in Appendix 23.1 that Eq. (23.62) integrates to

a.t; T / D 2	.t/


ˇ�2

�
�ˇ .T � t/

�1
� .�1 � �2/

�1�2
ln.
�1 � �2eˇ.T�t /

�1 � �2 /

�
: (23.63)

There are also many alternative representations of (23.63) in the literature. We saw
in the discussion on the Hull–White model, that in order to be able to calibrate the
model to market data we needed the additional flexibility required by allowing the
coefficients in (23.53) to be time varying. We can adopt exactly the same procedure
with the CIR model so that any or all of the coefficients � , 	.t/, 
 and � in the
partial differential equation (23.55) become time varying.

Again we try a solution of the form (23.56) and Eqs. (23.59) and (23.60) still
emerge as the equations determining the coefficients b and a. Only now it needs to
be borne in mind that the coefficients � , 	.t/, � and 
 are time-varying. We show
in the appendix that the functional form (23.61) is still valid for b.t; T / except that
the constant ˇ is replaced by the time averaged function

Ň.t; T / D 1

T � t

Z T

t

ˇ.s/ds: (23.64)

The expression for a.t; T / can only be left as the integral

a.t; T / D
Z T

t

	.s/
.s/b.s; T /ds; (23.65)
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since the integration would in general be impossible analytically because Ň.t; T /
could be a quite complicated time function. From (23.56) we can readily calculate
that

@P

@r
D �b.t; T /P

and hence Eq. (23.15) for the risk neutral bond price dynamics in the CIR case
become

dP

P
D r.t/dt � �b.t; T /

p
r.t/dQz: (23.66)

The interest rate dynamics under the equivalent measure QP are obtained by setting
dz D d Qz � �pr.t/dt in Eq. (23.53) and so are given by

dr D .�.t/ � ˛.t/r.t//dt C �
p
r.t/dQz

where

�.t/ D 	.t/
.t/ and ˛.t/ D 	.t/C ��:

23.5 Calculation of the Bond Price from the Expectation
Operator

We have seen in Sect. 23.4 how to obtain an explicit expression for the bond price by
solving the pricing partial differential equation (23.10) under various assumptions
about�r and �r . It is also of interest to see how to obtain the same result by starting
from the martingale or expectation operator expression (23.21). The particular spot
interest rate models with which we are working provide one of the rare instances
where we can carry out analytically, both the solution of the partial differential
equation and the calculation of the expectation operator.

The key to carrying out the expectation operation in (23.21) is to determine
the distributional characteristics of

R T
t
r.s/ds under QP. We shall now show that in

the case of the Hull–White model this quantity is normally distributed with mean
and variance that we calculate below. We know from Chap. 6 how to calculate
the expectation of the exponential of a normally distributed random variable. The
appropriate interest rate dynamics are given by Eq. (23.52), which using the quantity
K .t/ defined by Eq. (23.46), can be written

d.r.t/eK .t// D eK .t/�.t/dt C eK .t/�.t/dQz:
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Integrating from t to s .< T / and re-arranging we find that

r.s/ D r.t/eK .t/�K .s/ C
Z s

t

eK .u/�K .s/�.u/du C
Z s

t

eK .u/�K .s/�.u/dQz.u/:
(23.67)

Next integrate Eq. (23.67) from t to T to obtain

Z T

t

r.s/ds D r.t/

Z T

t

eK .t/�K .s/ds C
Z T

t

�Z s

t

eK .u/�K .s/�.u/du

	
ds

C
Z T

t

�Z s

t

eK .u/�K .s/�.u/dQz.u/
	

ds:

Interchanging the order of integration in the second integral and applying Fubini’s
theorem (Sect. 22.4 version III is being used here) to the stochastic integral the last
equation becomes

Z T

t

r.s/ds D r.t/

Z T

t

eK .t/�K .s/ds C
Z T

t

�Z T

u
eK .u/�K .s/ds

	
�.u/du

C
Z T

t

�Z T

u
eK .u/�K .s/ds

	
�.u/dQz.u/: (23.68)

By making use of the definition of b.t; T / at Eq. (23.47) we can write (23.68) more
compactly as

Z T

t

r.s/ds D b.t; T /r.t/C
Z T

t

b.u; T /�.u/du C
Z T

t

b.u; T /�.u/dQz.u/:
(23.69)

First we note that Eq. (23.69) implies that
R T
t
r.s/ds is normally distributed

(conditional on information at time t) since the coefficients on the right-hand side
are at most time functions (as opposed to being functions of r.t/). The mean,M.t/,
and variance V 2.t/, are easily calculated to be

M.t/ D b.t; T /r.t/C
Z T

t

b.u; T /�.u/du; (23.70)

and

V 2.t/ D
Z T

t

b2.u; T /�2.u/du: (23.71)
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From the above discussion we can assert that (under QP)

Z T

t

r.s/ds � N.M.t/; V 2.t//; (23.72)

and so

�
Z T

t

r.s/ds � N.�M.t/; V 2.t//: (23.73)

Finally using the results of (iv) in Sect. 6.3 we obtain the result

P.r; t; T / D QEt Œe� R T
t r.s/ds�

D e�M.t/C 1
2 V

2.t/

D exp

�
�b.t; T /r.t/ �

Z T

t

b.u; T /�.u/du C 1

2

Z T

t

b.u; T /2�2.u/du

�

D expŒ�b.t; T /r.t/ � a.t; T /�; (23.74)

by making use of the definition of a.t; T / in Eq. (23.48). We see that in Eq. (23.74)
we have recovered the bond pricing formula (23.25) obtained by solving the partial
differential equation (23.42).

23.6 Pricing Bond Options

We continue to assume that the short-term rate follows the continuous diffusion
process (23.2). We also assume that there are no riskless arbitrage opportunities in
the bond market. Thus the price of the discount bond of any maturity is still given
by the solution to the partial differential equation (23.10). Let C.r; t/10 denote the
price at time t of a call option of maturity TC written on a bond having maturity T
(> TC ) (see Fig. 23.3).

By Ito’s lemma

dC

C
D �Cdt C �C dz; (23.75)

10A more precise notation for the option value would be C.r; t; TC ; T /. However to ease the
notation we shall usually just write C.r; t /, unless we need to highlight the dependence on option
maturity .TC / or underlying bond maturity .T /, as in Sect. 23.7.
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Fig. 23.3 Time line for the bond option problem

where

�C D 1

C

�
@C

@t
C �r

@C

@r
C 1

2
�2r
@2C

@r2

	
; (23.76)

�C D �r

C

@C

@r
: (23.77)

Consider an investor who at time t invests $1 in a hedge portfolio containing the
bond of maturity T held in the dollar amount QP and the option of maturity TC
held in the dollar amount QC . The dollar return on this hedge portfolio over time
interval dt is given by

dollar return on the
hedge portfolio

�
D QP

dP

P
CQC

dC

C

D .QP�P CQC�C /dt C .QP�P CQC�C /dz:

The hedge portfolio is rendered riskless by choosingQP ,QC such that

QP

QC

D ��C
�P
: (23.78)

The absence of riskless arbitrage means that the hedge portfolio can only earn the
same return as the original $1 invested at the risk-free rate. In other words

.QP�P CQC�C /dt D 1 � r.t/dt: (23.79)

Recalling that QP CQC D 1, the conditions (23.78) and (23.79) imply

�C � r.t/

�C
D �P � r.t/

�P
: (23.80)

But by Eq. (23.9) we know that in an arbitrage-free bond market .�P � r.t//=�P
is equal to the market price of interest rate risk. Thus we arrive at the no-riskless
arbitrage condition between the option and bond markets, viz.

�C .t; s/ � r.t/
�C .t; s/

D �P .t; s/� r.t/

�P .t; s/
D �.r; t/: (23.81)
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Equation (23.81) has the now familiar interpretation that in the absence of riskless
arbitrage the excess return risk adjusted on both the bond and the option are equal.
Furthermore the common factor to which they are equal is the market price of risk
of the spot interest rate, the underlying factor. Equation (23.81) yields the partial
differential equation (23.10) for the bond price P , and for the option price C , the
partial differential equation

@C

@t
C .�r � �.r; t/�r /@C

@r
C 1

2
�2r
@2C

@r2
� r.t/C D 0; (23.82)

which in the case of a European call option (with exercise price X ) on the bond
must be solved on the time interval 0 < t < TC subject to the boundary conditions

C.r.TC /; TC / D maxŒ0; P.r.TC /; TC ; T / �E�;
C.1; t/ D 0:

(23.83)

The last condition is a consequence of the result that

P.1; t; T / D 0;

i.e. the bond value declines to zero as the interest rate becomes large.
Note the two-pass structure of the solution process. We must first solve the

partial differential equation (23.10) with boundary condition (23.1) for the bond
price P.r.s/; s; T / on the time interval TC � s � T . The value P.r.TC /; TC ; T / is
then used in the solution of the partial differential equation (23.82) (in fact the same
partial differential equation) via the boundary condition in (23.83). This two-pass
procedure is illustrated in Fig. 23.4. In order to obtain the martingale representation
for the option price we follow almost identical steps to those we followed in
Sect. 23.3 to obtain the martingale representation for the bond price. It follows from
Eq. (23.81) that

�C D r.t/C �.r; t/�C : (23.84)

Fig. 23.4 The two-pass procedure for solving the bond option pricing problem
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Substituting (23.84) into (23.75) the arbitrage free option price dynamics are given
by

dC

C
D .r.t/C �.r; t/�C /dt C �C dz:

The last equation may in turn be written in terms of Qz.t/ (see Eq. (23.14)) as

dC

C
D r.t/dt C �C d Qz.t/; (23.85)

where we recall that under the equivalent measure QP, the quantity Qz.t/ is a standard
Wiener process. If we set

Y.r; t/ D C.r; t/

A.t/
;

which is the option price measured in units of the money market account, then from
Ito’s lemma11

dY

Y
D �Cd Qz.t/:

The last equation implies that Y is a martingale under QP, thus

Y.r; t/ D QEt ŒY.r.TC /; TC /�;

which in terms of the option price itself can be expressed as

C.r; t/ D QEt Œe� R TC
t r.s/dsC.r.TC /; TC /�: (23.86)

If for example we wish to price a European call option on a bond then the maturity
condition is

C.r.TC /; TC / D maxŒ0; P.r.TC /; TC ; T /� X�:

The interest rate dynamics under QP are still given by (23.22), viz.

dr D .�r � �.r; t/�r /dt C �rd Qz:

11Alternatively we could use the result in Sect. 6.6 for the stochastic differential equation followed
by the ratio of the two diffusions (23.17) and (23.85).
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Fig. 23.5 Using P.t; TC / as numeraire—the forward measure

Application of the Feynman–Kac formula to (23.86) (see Proposition 8.312) will
take us back to the option pricing partial differential equation (23.82). Recalling the
discussion about stochastic discounting under QP at the end of Sect. 23.3 we see that
Eq. (23.86) has an obvious expected (under QP) discounted payoff interpretation.

One of the difficulties with evaluating the expectation in (23.86) is that one needs
the joint distribution of exp.� R TC

t
r.s/ds/ and C.r.TC /; TC /. The calculation of

this joint distribution may in practice be quite difficult. A simpler calculation may
be obtained by using the so-called forward measure,13 which consists in choosing
as numeraire a bond of maturity TC (see Fig. 23.5).

That is we consider14

Y.r; t; TC ; T / D C.r; t; TC ; T /

P.r; t; TC /
; (23.87)

the dynamics of which under QP are given by (see Sect. 6.6 and recall that under QP
the dynamics for P and C are given respectively by Eqs. (23.15) and (23.85))

dY

Y
D ��P .t; TC /.�C � �P .t; TC //dt C .�C � �P .t; TC //dQz: (23.88)

Equation (23.88) may be rearranged to

dY

Y
D .�C � �P .t; TC //.d Qz � �P .t; TC /dt/:

12Make the identification T ! TC , � ! �1, gŒx.s/; s� ! x.s/, x.s/ ! r.s/, � ! �1,
f .x.T // ! C.r.TC /; TC /.
13The measure P

� that we develop below is known as the forward measure because under this
measure the instantaneous forward rate equals the expected future forward rate, as we show in
Sect. 25.5.
14In the ensuing discussion we write the bond and option prices with their full functional
dependence, e.g. C.r; t; TC ; T / and P.r; t; TC / to give greater clarity.
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Following the discussion in Sect. 20.1 we can define a new process

z�.t/ D Qz.t/ �
Z t

0

�P .u; TC /du; (23.89)

and a new measure P� such that z�.t/ is a Wiener process under this measure. Thus
the dynamics for Y become

dY

Y
D .�C � �P .t; TC //dz�;

and it follows that Y is a martingale under P�. Using E
�
t to denote expectations

under P�, formed at time t , we can write

Y.r.t/; t; TC ; T / D E
�
t

h
Y.r.TC /; TC ; TC ; T /

i
; (23.90)

which upon use of the definition (23.87) becomes (keep in mind that
P.r.TC /; TC ; TC / D 1)

C.r.t/; t; TC ; T / D P.r.t/; t; TC / E
�
t

h
C.r.TC /; TC ; TC ; T /

i
: (23.91)

The difference between the expressions (23.86) and (23.91) for the value of the bond
option lies in the way the stochastic discounting is done. In (23.86), the stochastic
discounting is done along each stochastic interest rate path from t and TC , and
since these paths are stochastic this term must appear under the expectation operator.
In (23.91) the discounting from t to TC is done using the bond of maturity TC ,
which is known to the investor at time t and hence this term does not need to appear
under the expectation operator. It sometimes turns out that the expectation operation
in (23.91) can be calculated explicitly, as we shall see in Sect. 23.7 for the Hull–
White and CIR models.

If it is necessary to evaluate the expectation in (23.91) by simulation then we will
need the dynamics for r under P�, but these are easily obtained by using (23.89) to
replace d Qz in (23.22) by dz� C �P .t; TC /dt so that

dr D �
�r C �r.�P .t; TC / � �.r; t//�dt C �rdz�: (23.92)

It is also of interest to obtain the dynamics under P� for the relative bond price

X.r; t; TC ; T / D P.r; t; T /

P.r; t; TC /
: (23.93)

This follows by noting that under P� we have

dP.t; T /

P.t; T /
D �

r.t/C �P .t; T / �P .t; TC /
�
dt C �P .t; T /dz�;
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and using the results of Sect. 6.6, so that

dX

X
D �

�P .t; T /� �P .t; TC /
�
dz�: (23.94)

23.7 Solving the Option Pricing Equation

In this section we apply the general spot interest rate pricing framework of Sect. 23.6
to two special models that have become well known in the literature, perhaps
because they yield closed form solutions. First the Hull–White model, which
assumes a Gaussian process for the spot interest rate. Second the CIR model which
assumes a Feller or square root process for the spot interest rate. In both cases it
is convenient to use the bond of option maturity as numeraire as just discussed in
Sect. 23.6. In this way the option pricing formula is basically Black–Scholes in the
Hull–White case or Black–Scholes like in the CIR case.

23.7.1 The Hull White Model

We recall Eq. (23.52) that for the Hull–White model the spot interest rate dynamics
under QP are given by

dr D .�.t/ � 	.t/r.t//dt C �.t/dQz;

where �.t/ is defined at Eq. (23.43). In this case Eq. (23.82) becomes

@C

@t
C .�.t/ � 	.t/r.t//@C

@r
C 1

2
�2.t/

@2C

@r2
� r.t/C D 0; (23.95)

subject to the boundary condition (23.83). In turns out that the solution to (23.95)
can be very elegantly obtained by an application of the change of measure results
of Chap. 20. Instead of using the money market account as the numeraire, it is more
convenient to use the price of the pure discount bond P.r; t; TC / whose maturity
date is TC . We note from (23.49) with T D TC the volatility of the bond return for
the Hull–White model is

�P .t; TC / D ��.t/ b.t; TC / (23.96)

with b.t; T / defined by (23.47). The expression for the value of the bond option
under the measure P

� is given by (23.91) and we consider the specific case of a
European call bond option so that

C.r.TC /; TC ; TC ; T / D
�
P.r; TC ; T / �E

�C
:
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Recalling the definition of the relative bond price, see Eq. (23.93),15 then this payoff
may be written

C.r.TC /; TC ; TC ; T / D
�
X.TC ; TC ; T / �E

�C
:

Substituting (23.96) into (23.94) we find that the dynamics for X become

dX

X
D �.t/Œb.t; TC / � b.t; T /�dz�: (23.97)

In terms of the relative bond price X we can express (23.91) as

C.r; t; TC ; T /

P.r; t; TC /
D E

�
t Œ.X.TC ; TC ; T / �E/C�: (23.98)

Since the expectation in (23.98) is with respect to outcomes for the X variable,
the relevant stochastic dynamics underlying the probability distribution in the
calculation of E

�
t is the stochastic differential equation (23.97). We note from

Eq. (23.97) that dX=X is normally distributed under P�, with

E
�
t

�
dX

X

�
D 0; (23.99)

var�
�
dX

X

�
D �2.t/Œb.t; TC /� b.t; T /�2dt � v2.t/dt: (23.100)

The calculation of the expectation in (23.98) with driving dynamics (23.97) is
simply the Black–Scholes European call option pricing problem with risk free rate
of interest set to zero, exercise price E and with time varying variance v2.t/. Thus

E
�
t Œ.X.TC ; TC ; T / �E/C� D X.t; TC ; T /N .d�

1 / �EN .d�
2 /; (23.101)

where

d�
1 D ln.X.t; TC ; T /=E/C Nv2.TC � t/=2

Nvp
TC � t ;

d�
2 D d�

1 � Nv
p
TC � t ;

Nv2 D 1

TC � t
Z TC

t

v2.s/ds:

15Strictly speaking we should write X.r; t; TC ; T /. However it turns out (see Eq. (23.97) below)
that the dynamics for r do not enter directly into the dynamics for X .
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Substituting (23.101) into (23.98), the final expression for the call option price is
given by

C.r; t; T / D P.r; t; TC /XN .d1/� EP.r; t; TC /N .d2/

D P.r; t; T /N .d1/� EP.r; t; TC /N .d2/ (23.102)

with d1 given by

d1 D ln .P.r; t; T /=P.r; t; TC /E/C Nv2.TC � t/=2
Nvp
TC � t

and d2 by

d2 D d1 � Nv
p
TC � t :

By the put-call parity condition, the corresponding put option price can similarly be
expressed as

U.r; t; TC ; T / D EP.r; t; TC /N .�d2/� P.r; t; T /N .�d1/:

The structure of the option pricing formula (23.102) should be compared
with (19.23), the one obtained for the Black–Scholes model with stochastic interest
rates. One sees that they are identical in structure if one replaces the underlying
traded asset (the stock S ) of Chap. 19 with the underlying traded asset (the bond P )
of the current situation.

23.7.2 The CIR Model

In the case of the CIR model with the interest rate process given by (23.53),
Eq. (23.82) becomes

@C

@t
C Œ	.t/.
 � r/ � ��r.t/�@C

@r
C 1

2
�2r.t/

@2C

@r2
� r.t/C D 0: (23.103)

Equation (23.103) can also be solved by using the change of measure ideas
of Chap. 20. The derivation follows exactly the same lines as in the previous
subsection, the only difference is that now the bond price dynamics are given by
Eq. (23.66). As a result the dynamics for X are given by

dX

X
D v.t/

p
r.t/dW �; (23.104)
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where

v.t/ D �Œb.t; T / � b.t; TC /�; (23.105)

with b.t; T / given by Eq. (23.61). The Kolmogorov equation associated with
Eq. (23.104) is

1

2
v2.t/r.t/

@2�

@r2
C @�

@t
D 0: (23.106)

The probability density function arising from Eq. (23.106) is essentially given
by (22.19) in the limit 	 ! 0. Integration of the call option payoff with respect
to this distribution yields the option price. For instance, if the boundary condition is
given by (23.83) the expression for the option price turns out to be

C.r; t; TC IT;K/ D P.r; t; T /�2
�
2r�Œ�C CB.TC ; T /�I4˛


�2
;

2�2re�.TC�t /

�C CB.TC ; T /
	

(23.107)

� EP.r; t; TC /�
2

�
2r�Œ� C  �I 4˛


�2
;
2�2re�.TC�t /

� C  

	
;

(23.108)

where

� � ..˛ C �/2 C 2�2/1=2;

� � 2�

�2.e�.TC�t / � 1/
;

 � ˛ C �C �

�2
;

r� � 1

B.TC ; T /

�
log

�
A.TC ; T /

E

	�
;

�2.�/ is the noncentral chi-square distribution function and r� is the critical interest
rate below which exercise will occur, namely that obtained by solving E D
P.r�; TC ; T /.
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23.8 Rendering Spot Rate Models Preference
Free-Calibration to the Currently Observed Yield
Curve

Consider again the Hull–White model with interest rate dynamics under the
historical measure P given by Eq. (23.41). We know either from Sect. 23.4.2 or from
Sect. 23.5 that the bond price is given by

P.r; t; T / D e�a.t;T /�b.t;T /r.t/; (23.109)

where

b.t; T / D
Z T

t

eK .t/�K .s/ds; K .t/ D
Z t

0

	.s/ds; (23.110)

a.t; T / D
Z T

t

b.s; T /�.s/ds � 1

2

Z T

t

�.s/2b.s; T /2ds; (23.111)

and

�.t/ D 	.t/
.t/ � �.t/�.t/: (23.112)

In order to use this model we need estimates (from market data) for �.t/, 	.t/
and �.t/. Note that �.t/ impounds in itself the functions 
.t/ and �.t/, which do
not therefore need to be separately estimated, at least for the purposes of pricing
derivative securities.

We assume that we already have estimates of �.t/ from the prices of interest rate
caps using the corresponding option pricing formula (see Sect. 23.7), thus it only
remains to determine 	.t/ and �.t/. We assume that we also have available market
information on the volatility of bonds returns of all maturities at time 0. We know
from Eqs. (23.13) and (23.109) that the volatility of bond returns is ��.t/b.t; T /.16

Thus we assume �.0/b.0; T / is given as a function of maturity T . Putting t D 0 in
Eq. (23.83) we have

b.0; T / D
Z T

0

e�K .s/ds: (23.113)

Differentiating with respect to maturity T yields

K .T / D � ln.
@

@T
b.0; T //;

16From Eq. (23.13) we have that var
�

dP
P

� D �
�r
P
@P
@r

�2
dt and from Eq. (23.109), 1

P
@P
@r

D �b.t; T /.
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and since K 0.t/ D 	.t/, we obtain

	.T / D � @

@T
Œln.

@

@T
b.0; T //�: (23.114)

Next set t D 0 in the bond pricing equation so that

P.r.0/; 0; T / D e�a.0;T /�b.0;T /r.0/: (23.115)

The function P.r.0/; 0; T / would be available from the currently observed yield
curve. We consider (23.115) in the form

a.0; T / D � lnP.r.0/; 0; T / � b.0; T /r.0/: (23.116)

From the last equation a.0; T / can be considered as known (from market data) as
a function of T , we shall further assume that this function is sufficiently smooth to
be at least twice differentiable. Thus our remaining task is to determine the function
�.t/. We recall from Eq. (23.111) that

a.0; T / D
Z T

0

b.s; T /�.s/ds � 1

2

Z T

0

�2.s/b.s; T /2ds: (23.117)

The second term on the right hand side, perhaps via numerical integration, will
simply be a known function of T . Thus Eq. (23.117) constitutes an integral equation
for the unknown function � . By a process of successive differentiations we find that
(see Appendix 23.2)

�.T / D e�K .T / @

@T

�
eK .T / @

@T
a.0; T /

	

C e�K .T / @

@T

�
eK .T / @

@T

�
1

2

Z T

0

�2.s/b.s; T /2ds

		
: (23.118)

Whilst Eq. (23.118) involves awkward looking algebraic expressions, its numerical
evaluation would be a routine task. Consider the case where � , 	 are constant, so
that �.t/ is the only time varying parameter. Now we simply have K .t/ D 	t , and
hence

b.t; T / D
Z T

t

e	t�	sds D 1

	
.1 � e	.t�T //; (23.119)

from which

b.0; T / D 1

	
.1 � e�	T /: (23.120)
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Furthermore

a.t; T / D
Z T

t

b.s; T /�.s/ds � �2

2

Z T

t

b2.s; T /ds; (23.121)

and so

a.0; T / D
Z T

0

b.s; T /�.s/ds � �2

2

Z T

0

b2.s; T /ds: (23.122)

Differentiating (23.122) with respect to T we obtain

@a.0; T /

@T
D
Z T

0

�.s/
@

@T

�
1

	
.1 � e�	.T�s//

	
ds � �2

2

@

@T

�Z T

0

b2.s; T /ds

	

D e�	T
Z T

0

�.s/e	sds � �2

2

@

@T

�Z T

0

b2.s; T /ds

	
: (23.123)

Now, using (23.119), Eq. (23.122) may be written

a.0; T / D
Z T

0

1

	
.1 � e�	.T�s//�.s/ds � 1

2

Z T

0

�2b2.s; T /ds (23.124)

D 1

	

Z T

0

�.s/ds � e�	T

	

Z T

0

e	s�.s/ds � 1

2

Z T

0

�2b2.s; T /ds:

Using (23.124) to eliminate the e�K T
R T
0 �.s/e

K sds term in (23.123) we obtain

@a.0; T /

@T
D � 	a.0; T /C

Z T

0

�.s/ds � 	�2

2

Z T

0

b2.s; T /ds

� �2

2

@

@T

�Z T

0

b2.s; T /ds

	
;

which upon re-arrangement yields

Z T

0

�.s/ds D @a.0; T /

@T
C 	a.0; T /C �2

2

�
	

Z T

0

b2.s; T /ds

C @

@T

�Z T

0

b2.s; T /ds

	�
:

Differentiating the last equation with regard to T yields,

�.T / D @

@T

�
@a.0; T /

@T
C 	a.0; T /

�
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C �2

2

@

@T

�
	

Z T

0

b2.s; T /ds C @

@T

�Z T

0

b2.s; T /ds

	�
:

With the function �.T / now at our disposal we can compute the time function
a.t; T / and hence bond prices calibrated to market data. In the case of the CIR
model, the steps taken to calibrate the model to the initial yield curve and cap and
swaption data for example are similar to the Hull–White model. We do not provide
details here.

23.9 Appendix

Appendix 23.1 Solution of the Ordinary Differential
Equations (23.59) and (23.60)

Consider the ordinary differential equation

db

dt
D ˛0b

2 C ˛1b � 1 D ˛0

�
b2 C ˛1

˛0
b � 1

˛0

�
: (23.125)

where ˛0 and ˛1 are constants. The quadratic in the brackets on the RHS can be
factorised as

b2 C ˛1

˛0
b � 1

˛0
D .b � �1/.b � �2/;

where

�1 D � ˛1

2˛0
C ˇ

2˛0
;

�2 D � ˛1

2˛0
� ˇ

2˛0
; (23.126)

ˇ D
q
˛21 C 4˛0:

Thus the ordinary differential equation (23.125) can be written

db

dt
D ˛0.b � �1/.b � �2/; (23.127)

or as

db

.b � �1/.b � �2/
D ˛0dt:
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With some slight re-arrangement the last equation can be written

�
1

b � �1
� 1

b � �2
�
db D ˛0.�1 � �2/dt D ˇdt: (23.128)

Integrating the last equation from t to T we obtain

�
ln

�
b � �1
b � �2

	
/

�T

t

D ˇ.T � t/; (23.129)

i.e.

ln

�
b.T; T / � �1
b.T; T / � �2

	
� ln

�
b.t; T / � �1
b.t; T / � �2

	
D ˇ.T � t/;

which on making use of b.T; T / D 0 becomes

ln

�
b.t; T /� �1

b.t; T /� �2

	
D ln

�
�1

�2

	
� ˇ.T � t/;

i.e.

b.t; T / � �1
b.t; T / � �2 D exp

�
ln.
�1

�2
/� ˇ.T � t/

�
D �1

�2
e�ˇ.T�t /:

Solving the last equation for b.t; T / we obtain

b.t; T / D �1�2.1 � e�ˇ.T�t //
�2 � �1e�ˇ.T�t / : (23.130)

Using the fact that �1�2 D �1=˛0 this simplifies slightly to

b.t; T / D 1

˛0

Œ1 � e�ˇ.T�t /�
Œ�1e�ˇ.T�t / � �2�

: (23.131)

To solve (23.59), we set ˛0 D �2=2; ˛1 D ˛ C �, so that we obtain

b.t; T / D 2

�2
Œ1 � e�ˇ.T�t /�

Œ�1e�ˇ.T�t / � �2� ; (23.132)

where

�1 D � .˛ C �/

�2
C ˇ

�2
;
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�2 D � .˛ C �/

�2
� ˇ

�2
; (23.133)

ˇ D
p
.˛ C �/2 C 2�2:

Next from Eq. (23.62) of Sect. 23.4.3

a.t; T / D ˛


Z T

t

b.s; T /ds:

Making the transformation u D ˇ.T � s/ we see that

a.t; T / D C˛

ˇ

Z ˇ.T�t /

0

b.T � u

ˇ
; T /du:

Substituting the expression (23.132) for b.t; T / (and setting � D T � t) we obtain

a.t; T / D C˛


ˇ

2

�2

Z ˇ�

0

.1 � e�u/

.�1e�u � �2/
du:

Consider the integral

I D
Z ˇ�

0

�
1 � e�u

�1e�u � �2

	
du

D
Z ˇ�

0

du

�1e�u � �2 �
Z ˇ�

0

e�udu

�1e�u � �2

D
Z ˇ�

0

eudu

�1 � �2eu
�
Z ˇ�

0

e�udu

�1e�u � �2

D
��1
�2

ln.�1 � �2eu/

�ˇ�

0

C
�
1

�1
ln.�1e�u � �2/

�ˇ�

0

D .�1 � �2/

�1�2
ln.�1 � �2/� 1

�2
ln.�1 � �2eˇ� /C 1

�1
ln.�1e�ˇ� � �2/

D .�1 � �2/

�1�2
ln.�1 � �2/� 1

�2
ln.�1 � �2eˇ� /C 1

�1
lnŒe�ˇ� =.�1 � �2e

ˇ� /�

D �ˇ�
�1

C .�1 � �2/
�1�2

˚
ln.�1 � �2/ � ln.�1 � �2e

ˇ� /
�
:

Finally

I D � ˇ

�1
� � .�1 � �2/

�1�2
ln

�
�1 � �2eˇ�
�1 � �2

	
;
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and so

a.t; T / D 2˛


ˇ�2

��ˇ.T � t/
�1

� .�1 � �2/

�1�2
ln.
�1 � �2eˇ.T�t /

�1 � �2 /

�
:

Using the fact that �1�2 D �2=�2 and �1 � �2 D 2ˇ=�2 we finally obtain

a.t; T / D 2˛


�2

�
� .T � t/

�1
C ln

�
�1 � �2eˇ.T�t /

�1 � �2
	�
: (23.134)

When allowing for time-varying coefficients, the steps leading to (23.128) remain
the same as in the constant coefficients case, only now �1, �2, � and ˇ become
functions of time. Thus in order to use the same functional form for the solution we
need to define

Ň.t; T / D 1

T � t

Z T

t

ˇ.s/ds:

Thus integration of (23.128) will yield (23.132) with ˇ replaced by Ň.t; T /.

Appendix 23.2 Calculating �.T / in the Calibration
of the Hull–White Model

From Eq. (23.110) we note that

@b

@T
D eK .t/�K .T /:

Differentiating Eq. (23.117) with respect to T yields

@

@T
a.0; T / D b.T; T /�.T /C

Z T

0

eK .s/�K .T /�.s/ds� @

@T

�
1

2

Z T

0

�2.s/b2.s; T /ds

	

D e�K .T /

Z T

0

eK .s/�.s/ds � @

@T

�
1

2

Z T

0

�2.s/b2.s; T /ds

	
:

Rearranging

eK .T / @

@T
a.0; T / D

Z T

0

eK .s/�.s/ds � eK .T / @

@T

�
1

2

Z T

0

�2.s/b2.s; T /ds

	
:
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Differentiating again with respect to T we obtain

@

@T

�
eK .T / @

@T
a.0; T /

	
D eK .T /�.T /

� @

@T

�
eK .T / @

@T

�
1

2

Z T

0

�2.s/b2.s; T /ds

		
:

Rearranging this last equation we obtain

�.T / D e�K .T / @

@T

�
eK .T / @

@T
a.0; T /

	

C e�K .T / @

@T

�
eK .T / @

@T

�
1

2

Z T

0

�2.s/b2.s; T /ds

		
:

23.10 Problems

Problem 23.1 Equation (23.15) shows that under the equivalent martingale mea-
sure the bond price dynamics are given by

dP.t; T /

P.t; T /
D r.t/dt C �P .r; t; T /d Qz.t/

with �P .r; t; T / defined by (23.5). Use Ito’s lemma to show that the yield to maturity


.t; T / D � 1

.T � t/ lnP.t; T /

satisfies

d
.t; T / D 1

.T � t/

��

.t; T /C 1

2
�2P .r; t; T / � r.t/

	
dt � �P .r; t; T /d Qz.t/

�
:

Problem 23.2 Recall the relation (22.9) between the bond price P.t; T / and the
instantaneous forward rate f .t; T /. By considering the quantity

B.t; T / D lnP.t; T /

and assuming that

d

�
@B.t; T /

@T

	
D @

@T
dB.t; T /;
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show that f .t; T / satisfies the stochastic differential equations

df .t; T / D ��.t; T /�P .t; T /dt C �.t; T /dQz

where

�.t; T / D � @

@T
�P .t; T /:

Problem 23.3 Consider the Hull–White model of Sect. 23.4.2, for which the bond
price P.t; T / is given by (23.25) with a.t; T / and b.t; T / given by Eqs. (23.47)
and (23.48). Obtain the corresponding expression for the forward rate f .t; T /. Show
what this expression reduces to in the special case of the Vasicek model.



Chapter 24
Interest Rate Derivatives: Multi-Factor Models

Abstract In this chapter we develop a framework for term structure modelling
that allows factors other than the instantaneous spot rate itself to influence the
evolution of the term structure of interest rates. The framework allows for multi-
factor generalisations of the Hull–White model as well as of the CIR model. First we
present a two-factor extension of the Hull–White model. Then we develop a general
multi-factor term structure model and the corresponding bond option pricing model.
Finally as a specific application, we consider the so called Duffie–Kan affine class
of term structure models, which is widely applied in practice.

24.1 Hull–White Two-Factor Model

Hull and White (1994) introduced their two-factor model to allow their extended
Vasicek model to better calibrate to market data. The basic idea of the Hull–
White two-factor model is to add to the drift of the Hull–White one factor model a
mean-reverting-to-zero stochastic process. Since this second factor is also Gaussian
distributed it is still possible to obtain Black Scholes type option pricing formulae.
Thus the instantaneous spot rate r.t/ is assumed to follow the process

dr D 	.t/.
.t/C h.t/ � r.t//dt C �1.t/dz1; (24.1)

where the additional underlying factor h.t/ satisfies

dh D �ˇh.t/dt C �2.t/dz2; (24.2)

and the Wiener increments dz1; dz2 are correlated , i.e.

Et Œdz1dz2� D 
dt: (24.3)
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Fig. 24.1 The noisy long run
short rate of the Hull–White
two factor model

t

(t)+h(t)g

g (t)

r

The stochastic differential equation system (24.1) and (24.2) may be expressed in
terms of independent Wiener processesW1.t/, W2.t/ as

dr D 	.
 C h.t/ � r.t//dt C �1
p
1 � 
2dW1 C �1
dW2; (24.4)

dh D �ˇh.t/dt C �2dW2: (24.5)

The factor h.t/ essentially introduces a noisy long run short rate, as illustrated in
Fig. 24.1. Furthermore it introduces an extra source of risk, in the form of the extra
Wiener process (at least for 
 ¤ 1).

24.1.1 Bond Price

The bond price is now a function of the two underlying factors r and h and will be
denoted as P.r; h; t; T /. By Ito’s Lemma

dP

P
D �P dt C �P1dW1 C �P2dW2; (24.6)

where

�P D 1

P

�
@P

@t
C 	.
 C h.t/ � r.t//

@P

@r
� ˇh.t/

@P

@h
C DP

	
; (24.7)

�P1 D 1

P
�1
p
1 � 
2

@P

@r
; (24.8)

�P2 D 1

P

�
�1


@P

@r
C �2

@P

@h

	
; (24.9)

and

DP D 1

2
�21
@2P

@r2
C 
�1�2

@2P

@r@h
C 1

2
�22
@2P

@h2
:
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We set up a hedging portfolio as before, except that we now need bonds of three
maturities T1; T2 and T3 because of the extra source of risk W2. If initial $1
investment is spread in the proportions Q1;Q2 and Q3 amongst the three bonds,
then the return on the hedging portfolio is given by

Return on
hedging portfolio

�
DQ1

dP1
P1

CQ2

dP2
P2

CQ3

dP3
P3

D.Q1�
.1/
P CQ2�

.2/
P CQ3�

.3/
P /dt

C .Q1�
.1/
P1

CQ2�
.2/
P1

CQ3�
.3/
P1
/dW1

C .Q1�
.1/
P2

CQ2�
.2/
P2

CQ3�
.3/
P2
/dW2:

Here we use superscripts to denote maturity. We choose the proportionsQ1;Q2 and
Q3 to eliminate the stochastic Wiener increment terms, thus

Q1�
.1/
P1

CQ2�
.2/
P1

CQ3�
.3/
P1

D 0; (24.10)

Q1�
.1/
P2

CQ2�
.2/
P2

CQ3�
.3/
P2

D 0: (24.11)

The condition that the hedge portfolio can then only earn the risk free rate is
expressed as

Q1�
.1/
P CQ2�

.2/
P CQ3�

.3/
P D r.t/

or, using Q1 CQ2 CQ3 D 1,

Q1.�
.1/
P � r.t//CQ2.�

.2/
P � r.t//CQ3.�

.3/
P � r.t// D 0: (24.12)

The system (24.10)–(24.12) can only have non-zero solution for Q1;Q2;Q3 if
for each maturity there exist functions �1.r; h; t/ and �2.r; h; t/ (independent of
maturity) such that

�
.i/
P � r.t/ D �1.r; h; t/�

.i/
P1

C �2.r; h; t/�
.i/
P2
: (24.13)

Since the maturities were chosen arbitrarily a relation such as (24.13) must hold for
any maturity, thus we write (dropping the arguments of �1 and �2)

�P � r.t/ D �1.r; h; t/�P1 C �2.r; h; t/�P2 : (24.14)
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By use of expressions (24.7)–(24.9), Eq. (24.14) becomes the partial differential
equation

DP C Œ�r C 	h.t/� 	r.t/�
@P

@r
C Œ�h � ˇh.t/�

@P

@h
� r.t/P C @P

@t
D 0

(24.15)

where we set

�r D 	
 � �1�1
p
1 � 
2 � �2�1
 and �h D ��2�2:

Equation (24.15) must be solved subject to

P.r.T /; h.T /; T; T / D 1: (24.16)

Substituting (24.14) into (24.6), the bond price dynamics in the arbitrage-free
economy may be written

dP

P
D r.t/dt C �P1d

QW1 C �P2d
QW2; (24.17)

where

QWi.t/ D Wi.t/C
Z t

0

�i .r.s/; h.s/; s/ds .i D 1; 2/: (24.18)

Again appealing to Girsanov’s theorem we can find an equivalent QP under which the
QWi.t/ become Wiener processes. Using the now standard argument we can derive

from (24.17) that

P.r; h; t; T / D QEt
�

exp

�
�
Z T

t

r.s/ds

	�
; (24.19)

where the dynamics driving the measure QP are

dr D Œ�r C 	h.t/ � 	r.t/�dt C �1
p
1 � 
2d QW1 C �1
d QW2;

dh D .�h � ˇh.t//dt C �2d QW2:

In the partial differential equation (24.15) we note the linearity of the coefficients of
@P
@r

and @P
@h

in terms of r and h, and so seek a solution of the form

P.r; h; t; T / D exp.�a.t; T /� br.t; T /r.t/ � bh.t; T /h.t//; (24.20)
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where

a.T; T / D br.T; T / D bh.T; T / D 0: (24.21)

Collecting terms in r.t/, h.t/ and the constant term we obtain

�
�dbr

dt
C 	br � 1

�
r.t/C

�
�	br C ˇbh � dbh

dt

�
h.t/

C
�
�da

dt
� �rbr � �hbh C 1

2
�21 b

2
r C 
�1�2brbh C 1

2
�22 b

2
h

�
D 0:

Thus we obtain three ordinary differential equations for br , bh and a, namely

dbr
dt

D 	br � 1; (24.22)

dbh
dt

D ˇbh � 	br ; (24.23)

da

dt
D ��rbr � �hbh C 1

2
�21 b

2
r C 
�1�2brbh C 1

2
�22 b

2
h: (24.24)

Equations (24.22)–(24.24) may be solved sequentially for br.t; T /, bh.t; T / and
a.t; T /. Considering the special case when the coefficients 	, 
 , ˇ, �1 and �2 are all
constant the solutions for br and bh are readily obtained. Thus

br.t; T / D Œ1 � e�	.T�t /�
	

; (24.25)

and

bh.t; T / D 1

ˇ
Œ1 � e�ˇ.T�t /�C 1

	 � ˇ Œe
�	.T�t / � e�ˇ.T�t /�: (24.26)

From Eq. (24.24) the function a.t; T / is obtained from the integration

a.t; T / D
Z T

t

�
�rbr.s; T /C �hbh.s; T / � 1

2
�21 br.s; T /

2

�
�1�2br .s; T /bh.s; T /� 1

2
�22 bh.s; T /

2

�
ds:
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24.1.2 Option Prices

The bond option price in the Hull–White two-factor model will also be a function
of r and h, so we denote it as C.r; h; t/. By Ito’s Lemma its dynamics will be

dC

C
D �C dt C �C1dW1 C �C2dW2; (24.27)

where

�C D 1

C

�
@C

@t
C 	.
 C h.t/ � r.t//

@C

@r
� ˇh.t/

@C

@h
C DC

	
; (24.28)

�C1 D 1

C
�1
p
1 � 
2 @C

@r
; (24.29)

�C2 D 1

C
�1


@C

@r
C 1

C
�2
@C

@h
: (24.30)

The hedging argument follows exactly as in Sect. 23.6 except that the hedging
portfolio now consists of the underlying bond of maturity T and two options of
maturity T .1/C and T

.2/
C both written on the underlying bond. Furthermore it is

assumed that bonds are priced so that there exist no riskless arbitrage opportunities
in the bond market. The no-riskless arbitrage condition in the option market now
becomes

�P � r.t/ D �1.r; h; t/�P1 C �2.r; h; t/�P2 (24.31)

and

�
.i/
C � r.t/ D �1.r; h; t/�

.i/
C1

C �2.r; h; t/�
.i/
C2

.i D 1; 2/ (24.32)

where the superscript i refers to the option of maturity T .i/C . Since this maturity
was chosen arbitrarily a relation of the form (24.32) must hold for an option of any
general maturity TC , thus

�C � r.t/ D �1.r; h; t/�C1 C �2.r; h; t/�C2 : (24.33)

Upon use of (24.28)–(24.30) Eq. (24.33) has the familiar interpretation that under
the condition of no-riskless arbitrage opportunities options are priced so that their
expected excess return equals the risk premium term determined by the market price
of risk associated with each source of uncertainty. Equation (24.31) merely restates
the corresponding condition for the underlying bond already expressed by (24.14).
Equation (24.33) becomes the partial differential equation

DC C Œ�r C 	h.t/ � 	r.t/�@C
@r

C Œ�h � ˇh.t/�@C
@h

� r.t/C C @C

@t
D 0;

(24.34)
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which must be solved subject to the option payoff condition e.g. for a European call

C.r.TC /; h.TC /; TC / D .P.r.TC /; h.TC /; TC ; T /� E/C: (24.35)

As in the case of the Hull–White one-factor model, it is easier to solve (24.34) by
using the change of numeraire idea. Substituting (24.31) into (24.27) we find that in
the arbitrage free economy the option dynamics are given by

dC

C
D r.t/dt C �C1d

QW1 C �C2d
QW2; (24.36)

where the QWi are Wiener processes under the equivalent measure QP introduced
in Sect. 24.1.1. We use the bond whose maturity is option maturity TC , i.e.
P.r; h; t; TC / as the numeraire and form, respectively, the relative bond and option
prices

X.t; TC ; T / D P.r; h; t; T /

P.r; h; t; TC /
; (24.37)

and

Y.t/ D C.r; h; t/

P.r; h; t; TC /
: (24.38)

We note that by virtue of the solution (24.18) of the bond pricing equation, we have

@P

@r
D �brP and

@P

@h
D �bhP;

so the bond price dynamics under QP may be written

dP

P
D r.t/dt � �1

p
1 � 
2brd QW1 � .�1
br C �2bh/d QW2; (24.39)

where the QWi have been defined at Eq. (24.18). By an application of Ito’s Lemma
we find that the dynamics for X are given by

dX

X
D�1

p
1 � 
2Œbr .t; TC /� br.t; T /�dW�

1

C f�1
Œbr .t; TC /� br.t; T /�C �2Œbh.t; TC /� bh.t; T /�gdW�
2 ;

(24.40)
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where we set

W �
1 .t/ D QW1.t/C

Z t

0

�1
p
1 � 
2br .s; TC /ds;

W �
2 .t/ D QW2.t/C

Z t

0

Œ�1
br .s; TC /C �2bh.s; TC /�ds:

By Girsanov’s theorem we can find an equivalent measure P� under whichW �
1 ;W

�
2

are Wiener processes. Since the coefficients in (24.40) are only deterministic time
functions, we can find a Wiener process W � such that

dX

X
D vX.t/dW� (24.41)

where

v2X.t/ D�21 .1 � 
2/Œbr .t; TC /� br.t; T /�
2

C f�1
Œbr .t; TC /� br.t; T /�C �2Œbh.t; TC /� bh.t; T /�g2:
(24.42)

Application of Ito’s Lemma (see Sect. 6.6 on the quotient of two diffusions)
to (24.38) gives the dynamics for Y as

dY

Y
D .�C1 C �1

p
1 � 
2br/dW�

1 C .�C2 C �1
br C �2bh/dW�
2 : (24.43)

Under the P� measure Y is a martingale so that

Y.t/ D E
�
t ŒY.TC /�: (24.44)

Equation (24.44) may also be expressed as

C.r; h; t/

P.r; h; t; TC /
D E

�
t Œ.P.r; h; TC ; T /� E/C�; (24.45)

or, in terms of the relative bond price X as,

C.r; h; t/

P.r; h; t; TC /
D E

�
t Œ.X.TC ; TC ; T /� E/C�: (24.46)

The calculation of (24.46) is identical to the calculation of (23.98), with the
exception that the quantity v2.t/ defined at (23.100) is replaced by the quantity
v2X.t/ defined at Eq. (24.42). The Black–Scholes pricing formula at (23.101) still
applies, with vX.t/ replacing v.t/. We note that this change gives the model some
additional flexibility, via the 
, �2, and ˇ, to calibrate the model to the market
observed data.
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24.2 The General Framework

We shall denote the row vector of n underlying factors by X D .X1;X2; � � �; Xn/.
These underlying factors may or may not be directly interpretable as economic
quantities. We shall discuss some specific examples later.

Typically the instantaneous spot interest rate, r , itself may or may not be one of
the factors. In cases that it is not, it will usually be determined as some function of
the underlying factors. We shall see below how r is determined as a function of the
arbitrage free bond price. We assume that the dynamics of the underlying factors
follow diffusion process given by

dXi D �i.X; t/dt C
mX

jD1
�ij.X; t/dWj .t/ (24.47)

for i D 1; 2; � � �; n, where theWj .t/ are independent Wiener process. Here we allow
the vector of drift coefficients and matrix of diffusion coefficients to possibly depend
on all of the underlying factors.

24.2.1 Bond Pricing

Since the bond evolution may depend on all n underlying factors we denote its price
at time t by P.X.t/; t; T /. By Ito’s Lemma the bond price dynamics are given by

dP

P
D �P .X; t/dt C

mX

kD1
�Pk .X; t/dWk; (24.48)

where

�P .X; t/ D 1

P

0

@@P
@t

C
nX

jD1
�j

@P

@Xj
C DP

1

A ; (24.49)

�Pk .X; t/ D 1

P

nX

jD1
�jk.X; t/

@P

@Xj
; (24.50)

with

DP D 1

2

nX

iD1

nX

jD1

 
mX

lD1
�il�jl

!
@2P

@Xi@Xj
: (24.51)



514 24 Interest Rate Derivatives: Multi-Factor Models

We assume that in this economy the only traded instruments are pure discount
bonds of various maturities. Thus our investor now invests $1 in a hedge portfolio
containing .m C 1/ bonds of maturities T0; T1; � � �; Tm in the dollar amounts
Q0;Q1; � � �;Qm. As previously we use Pi to denote the price of the bond maturity
at time Ti and �.i/P , �.i/Pk the corresponding vectors of drift and diffusion coefficients.
The dollar return on the hedge portfolio is given by

mX

iD0
Qi

dPi
Pi

D
 

mX

iD0
Qi�

.i/
P

!
dt C

mX

kD1

 
mX

iD0
Qi�

.i/
Pk

!
dWk: (24.52)

The stochastic terms are eliminated by choosing proportionsQ0;Q1; � � �;Qm so that

mX

iD0
Qi�

.i/
Pk

D 0; (24.53)

for k D 1; 2; � � �; m. The hedge portfolio is then riskless and must thus only earn the
instantaneous risk-free rate r.t/, i.e.

mX

iD0
Qi�

.i/
P D r.t/: (24.54)

Since the original investment is $1 the proportions satisfy
Pm

iD0 Qi D 1; so that the
last equation becomes

mX

iD0
Qi

�
�
.i/
P � r.t/

�
D 0: (24.55)

Equations (24.53) and (24.55) constitute a system of .mC1/ linear equations for the
.mC 1/ unknownsQ0;Q1; � � �;Qm. To clarify the exposition we write the system
in matrix form as

2

66666666664

�
.0/
P1

�
.1/
P1

�
.2/
P1

� � �� �
.m/
P1

�
.0/
P2

�
.1/
P2

�
.2/
P2

� � �� �
.m/
P2

� � � �
� � � �
� � � �
�
.0/
Pm

�
.1/
Pm

�
.2/
Pm

� � �� �
.m/
Pm

.�
.0/
P � r/ .�

.1/
P � r/ .�

.2/
P � r/ � � �� .�.m/P � r/

3

77777777775

2
6666666664

Q0

Q1

�
�
�
�
Qm

3
7777777775

D 0: (24.56)
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This system can have a non-zero solution for Q0;Q1; � � �;Qm if and only if the
determinant of the matrix is zero. This latter condition is satisfied if and only if there
exist functions (independent of the bond maturities) �1.X; t/; �2.X; t/; � � �; �m.X; t/
such that

�
.i/
P � r.t/ D

mX

jD1
�j .X; t/�

.i/
Pj

(24.57)

for each maturity i D 0; 1; � � �; m. Since the bond maturities were arbitrarily chosen
the result (24.57) must hold for a bond of any general maturity T . Thus

�P � r.t/ D
mX

jD1
�j .X; t/�Pj : (24.58)

If we interpret �j .X; t/ as the market price of risk associated with the risk factor
Wj .t/ then (24.58) can be given the interpretation, familiar from Chap. 10, that
the absence of riskless arbitrage opportunities in the economy implies that bonds
are priced such that the expected excess return on the bond equals a risk premium
consisting of the sum of the market price of risk of each risk factor multiplied by its
bond return volatility. Use of the expressions (24.49)–(24.51) turn (24.58) into the
partial differential equation

@P

@t
C

nX

jD1

 
�j �

mX

kD1
�k�jk

!
@P

@Xj
C DP � r.t/P D 0; (24.59)

where we recall that D is the operator of second partial derivatives defined
at (24.51). This partial differential equation must be solved subject to the boundary
condition

P.X.T /; T; T / D 1: (24.60)

We shall consider some specific examples shortly.
Next we obtain the martingale representation of the bond price. Substitut-

ing (24.58) into (24.48) we obtain

dP

P
D r.t/dt C

mX

kD1
�Pk .X; t/d QWk; (24.61)
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here

QWk.t/ D Wk.t/C
Z t

0

�k.X; s/ds: (24.62)

By the now familiar procedure of appealing to Girsanov’s theorem we can find
a measure QP under which the QWk.t/ are Wiener process.1 The Radon–Nikodym
derivative relating the two measures P and QP is here given by

�.t/ D exp

"
�1
2

Z t

0

.

nX

iD1
�2i .s//ds �

Z t

0

.

nX

iD1
�i .s/dW i .s//

#
: (24.63)

The money market account is still given by (23.17) and again we form the bond
price measured in units of the money market account,

Z.X; t; T / D P.X; t; T /
A.t/

(24.64)

whose dynamics are given by

dZ

Z
D

mX

kD1
�Pk .X; t/d QWk: (24.65)

The last result implies that Z.X; t; T / is a martingale under QP. Manipulations
completely analogous to those that led to (23.21) yield

P.X; t; T / D QEt
h
e� R T

t r.s/ds
i
; (24.66)

where QEt is the expectation operator under QP. To derive the dynamics of the
underlying factors under QP we use (24.62) in Eq. (24.47) to obtain

dXi D
0

@�i �
mX

jD1
�ij�j

1

A dt C
mX

jD1
�ijd QWj : (24.67)

The Feynman Kac formula applied to (24.66) will again take us back to the partial
differential equation (24.59). It remains to determine the instantaneous spot rate,

1It is important to stress that the measure now is not unique because of the market incompleteness,
which manifests itself through the market prices of risk �k .
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r.t/, in terms on the factorsX1.t/; : : : ; Xn.t/. Assume that either by solving the par-
tial differential equation (24.59) or from the expectation operator expression (24.66)
we have obtained a solution for the bond price P.X.t/; t; T /. We know from (22.3)
that the yield to maturity is given by 
.t; T / D � lnP.X.t/; t; T /=.T � t/, so that
from (22.4) we have

r.t/ D � lim
T!t

lnP.X.t/; t; T /
T � t

D � @P.X.t/; t; T /
@T

ˇ̌
ˇ̌
TDt

: (24.68)

We shall see in subsequent example how Eq. (24.68) will yield a useful expression
for r.t/ in terms of the underlying factors X1.t/; : : : ; Xn.t/.

24.2.2 Bond Option Pricing

The bond option price will be a function of all n underlying factors so we denote
its value at time t as C.X.t/, t , TC , T ). The option maturity is TC and the bond on
which the option is written matures at time T .> TC /: By Ito’s lemma the option
price dynamics are given by

dC

C
D �C .X; t/dt C

mX

kD1
�Ck .X; t/dWk; (24.69)

where

�C .X; t/ D 1

C

0

@@C
@t

C
nX

jD1
�j

@C

@Xj
C DC

1

A ; (24.70)

�Ck .X; t/ D 1

C

nX

jD1
�jk.X; t/

@C

@Xj
; (24.71)

with

DC D 1

2

nX

iD1

nX

jD1

 
mX

lD1
�ij�jl

!
@2C

@Xi@Xj
: (24.72)

We assume that the traded instruments available for investment are bonds and
bond options of a range of maturities. The investor invests $1 in a hedge portfolio
containing the bond of maturity T in dollar amount Q0 and m bond options of
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maturities T .1/C , T .2/C , . . . , T .m/C in the dollar amountsQ1, Q2, . . . , Qm respectively.

In the subsequent discussion we shall use Ci to denote the option of maturity T .i/C ;

and �.i/C and �iCk its drift and diffusion coefficients respectively. Furthermore we
assume that the bonds are already priced so that there exists no riskless arbitrage
opportunities in the bond market. We recall from (24.57) that this condition means
that

�P � r.t/ D
mX

jD1
�j .X; t/�Pj :

The dollar return on the hedge portfolio over the time interval .t; t C dt/ is given by

dollar return on the
hedge portfolio

�
D Q0

dP

P
C

mX

iD1
Qi

dCi
Ci

D .Q0�P C
mX

iD1
Qi�

.i/
C /dt C

mX

kD1
.Q0�Pk

C
mX

iD1
Qi�

.i/
Ck
/dWk: (24.73)

The stochastic terms are eliminated by choosing the dollar amounts Q0, Q1, . . . ,
Qm so that

Q0�Pk C
mX

iD1
Qi�

.i/
Ck
/ D 0; (24.74)

for k D 1; 2; : : : ; m. The hedge portfolio is then riskless and must only earn the
instantaneous risk free rate r.t/ if riskless arbitrage opportunities are to be avoided,
that is

Q0�P C
mX

iD1
Qi�

.i/
C / D r.t/:

Since the original investment is $1 the proportions satisfy
Pm

iD0 Qi D 1 so that the
last equation becomes

Q0.�P � r.t//C
mX

iD1
Qi .�

.i/
C � r.t// D 0: (24.75)
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Equations (24.74) and (24.75) constitute a system of .m C 1/ linear equations for
the .mC 1/ unknownsQ0, Q1, . . . ,Qm, which in matrix rotation may be written as

2

66666666664

�P1 �
.1/
C1

�
.2/
C1

� � �� �
.m/
C1

�P2 �
.1/
C2

�
.2/
C2

� � �� �
.m/
C2

� � � �
� � � �
� � � �
�Pm �

.1/
Cm

�
.2/
Cm

� � �� �
.m/
Cm

.�P � r/ .�
.1/
C � r/ .�

.2/
C � r/ � � �� .�.m/C � r/

3

77777777775

2

6666666664

Q0

Q1

�
�
�
�
Qm

3

7777777775

D 0: (24.76)

This system can have a non-zero solution for Q0, Q1, . . . , Qm if and only if the
determinant of the matrix is zero. This latter condition is satisfied if and only if
there exist functions (independent of the bond and bond option maturities) �1.X; t/,
�2.X; t/, � � �, �m.X; t/ such that

�P � r.t/ D
mX

jD1
�j .X; t/�Pj ; (24.77)

and

�
.i/
C � r.t/ D

mX

jD1
�j .X; t/�

.i/
Cj
: (24.78)

for each bond option maturity i D 1; 2; : : : ; m. Equation (24.77) is just (24.58)
which must hold since we are assuming bonds are already priced so that no arbitrage
opportunities exist. Since the bond option maturities were arbitrarily chosen the
result (24.78) must hold for a bond option of any general maturity TC . Thus

�C � r.t/ D
mX

jD1
�j .X; t/�Cj : (24.79)

Clearly the �j .X; t/ have the same interpretation as in Sect. 24.2.1 and (24.79)
is simply stating the fact that the absence of riskless arbitrage opportunities in
the economy implies that bond options are priced such that the expected excess
return on the bond option equals a risk premium consisting of the sum of the
market price risk of each factor multiplied by its bond option return volatility.
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Substituting (24.70) and (24.71) into (24.79) we obtain the bond option pricing
partial differential equation

@C

@t
C

nX

jD1
.�j �

mX

kD1
�k�jk /

@C

@Xj
C DC � r.t/C D 0; (24.80)

which must be solved subject to the boundary condition relevant to the bond option
of interest. For example if the bond option is a European call option then the
boundary condition is

C.X.TC /; TC ; TC ; T / D .P.X.TC /; TC ; T /� E/C: (24.81)

The bond price P.X.TC /; TC ; T / would be obtained by first solving the bond
pricing problem for P.X.t/; t; T /. To obtain the martingale representation for the
bond option price we substitute (24.79) into (24.69) to obtain

dC

C
D r.t/dt C

mX

kD1
�Ck .X; t/d QWk; (24.82)

where the processes QWk.t/ are defined by (24.62). Just as in Sect. 24.2.1 the
processes QWk.t/ will be Wiener processes under the measure QP identified there.
We consider the relative bond price defined in terms of the money market account
[see Eq. (23.17)] as

V.X.t/; t; TC ; T / D C.X.t/; t; TC ; T /
A.t/

; (24.83)

and whose dynamics are given by

dV

V
D

mX

kD1
�Ck .X; t/d QWk:

The last result implies that V is a martingale, so that

V.X.t/; t; TC ; T / D QEt ŒV .X.TC /; TC ; TC ; T /�;

which can be rearranged to

C.X.t/; t; TC ; T / D QEt Œe� R TC
t r.s/dsC.X.TC /; TC ; TC ; T /�: (24.84)

The dynamics of the underlying factors under QP are given by (24.67). The Feynman–
Kac formula applied to (24.84) will yield the partial differential equation (24.80). It
is also possible to express the bond option price in terms of the forward measure.
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For this we consider the option measured in units of the bond maturing at TC , that
is the quantity

Y.X.t/; t; TC ; T / D C.X.t/; t; TC ; T /
P.X.t/; t; TC /

: (24.85)

Using the result concerning the stochastic differential equation followed by the
quotient of two diffusions, [recall that the dynamics for C under QP are given
by (24.82) and for P by (24.61) and substitute directly into the result (6.89)] the
dynamics for Y are given by (we highlight the time and maturity dependence of
�Pk )

dY

Y
D �

mX

kD1
�Pk .t; TC /.�Ck � �Pk .t; TC //dt C

mX

kD1
.�Ck � �Pk .t; TC //d QWk:

(24.86)

Following the same logic as in the last part of Sect. 20.4, we rearrange Eq. (24.86) as

dY

Y
D

mX

kD1
.�Ck � �Pk .t; TC //.d

QWk � �Pk .t; TC /dt/:

We define new processes

W �
k .t/ D QWk.t/ �

Z t

0

�Pk .u; TC /du; (24.87)

and we can use Girsanov’s theorem to assert that there exists an equivalent measure
P

� under which the W �
k .t/ are Wiener Processes. Thus under this measure the

dynamics for Y become

dY

Y
D

mX

kD1
.�Ck � �Pk .t; TC //dW�

k ;

which implies that Y is a martingale under P�. Hence

Y.X.t/; t; TC ; T / D E
�
t

h
Y.X.TC /; TC ; TC ; T /

i
;

which in terms of the original variables may be written

C.X.t/; t; TC ; T / D P.X.t/; t; TC /E�
t

h
C.X.TC /; TC ; TC ; T /

i
; (24.88)
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where E�
t denotes the expectation operation under the measure P�. The bond option

of interest could then be evaluated by substituting into (24.88) the appropriate
boundary condition, for instance in the case of a European bond option the
condition (24.81). The Hull–White two-factor model (discussed in Sect. 24.1)
provides one of the few examples where it is possible to calculate the bond option
price explicitly. The dynamics of the underlying factors X.t/ under P� are obtained
by substituting (24.87) into (24.67), so that

dXi D
0

@�i �
mX

jD1
�ij
�
�j � �Pj .t; TC /

�
1

A dt C
mX

jD1
�ijdW�

j : (24.89)

If it is necessary to evaluate the expectation in (24.89) by simulation then the
process (24.89) is the one that must be simulated.

24.3 The Affine Class of Models

In this section we consider the affine class of term structure models for which it turns
out that closed form solutions to the bond price partial differential equation (24.59)
are possible. The basis of this analysis is the work of Duffie and Kan (1996). For
expositional purposes we will deal with the two-factor case.

24.3.1 The Two-Factor Case

Consider the situation where there are two factors X1.t/; X2.t/ driven by the
stochastic differential equation system (in vector notation)

d

�
X1
X2

�
D
�
	11 	12
	21 	22

� � NX1 � X1.t/
NX2 � X2.t/

�
dt

C
�p

˛10 C ˛11X1.t/ 0

0
p
˛20 C ˛22X2.t/

� �
dW1

dW2

�
(24.90)

In terms of the notation of Eq. (24.47) we have

�1.X1;X2; t/ D 	11. NX1 � X1.t//C 	12. NX2 �X2.t//;
�2.X1;X2; t/ D 	21. NX1 � X1.t//C 	22. NX2 �X2.t//;
�11.X1;X2; t/ D

p
˛10 C ˛11X1.t/;
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�21.X1;X2; t/ D 0;

�12.X1;X2; t/ D 0;

�22.X1;X2; t/ D
p
˛20 C ˛22X2.t/:

The key to understanding the motivation for the choices of functional forms in the
affine class of models is the second term in the bond pricing partial differential
equation (24.59). The functional forms for the �j , �jk and �k are chosen so
that the coefficient .�j � Pm

kD1 �k�jk/ is affine in X1.t/ and X2.t/. So far we
have not specified a functional form for the market prices of risk �1.X1;X2; t/
and �2.X1;X2; t/. Note that with the choices of drift and diffusion coefficients as
in (24.90) the coefficient of @P

@X1
in (24.59) is

	11. NX1 � X1.t//C 	12. NX2 �X2.t// � �1.X1;X2; t/
p
˛10 C ˛11X1.t/:

(24.91)

Clearly if we make the choice

�1.X1;X2; t/ D �1
p
˛10 C ˛11X1.t/; (24.92)

with �1 on the R.H.S. a constant (this is a slight abuse of notation), then the
coefficient (24.91) assumes the affine form

ˇ10 C ˇ11X1.t/C ˇ12X2.t/; (24.93)

where

ˇ10 D 	11 NX1 C 	12 NX2 � �1˛10;

ˇ11 D �.	11 C �1˛11/;

ˇ12 D �	12:

Furthermore with the above choices for the �i , �ij and �i the expression for DP in
Eq. (24.51) becomes

DP D .˛10 C ˛11X1.t//

2

@2P

@X2
1

C .˛20 C ˛22X2.t//

2

@2P

@X2
2

:

Similarly assume

�2.X1;X2; t/ D �2
p
˛20 C ˛22X2.t/:
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Thus the bond pricing partial differential equation for the two-factor model under
consideration assumes the form

@P

@t
C .ˇ10 C ˇ11X1.t/C ˇ12X2.t//

@P

@X1
C .ˇ20 C ˇ21X1.t/C ˇ22X2.t//

@P

@X2

C
�
˛10 C ˛11X1.t/

2

	
@2P

@X2
1

C
�
˛20 C ˛22X2.t/

2

	
@2P

@X2
2

� rP D 0 (24.94)

subject to the boundary condition

P.X1.T /;X2.T /; T; T / D 1: (24.95)

Equation (24.94) can be solved by exactly the same procedure used to solve the
partial differential equation (24.15) for the Hull–White two-factor model. The result
is summarized in the following proposition.

Proposition 24.1 The solution to bond pricing partial differential equation (24.94)
is of the form

P.X1;X2; t; T / D exp.�A0.t; T /� A1.t; T /X1.t/ � A2.t; T /X2.t// (24.96)

where A0.t; T /, A1.t; T / and A2.t; T / are solutions of the ordinary differential
equation system

@A0

@t
D ��0 � ˇ10A1 � ˇ20A2 C ˛10

2
A21 C ˛20

2
A22; (24.97)

@A1

@t
D ��1 � ˇ11A1 � ˇ21A2 C ˛11

2
A21; (24.98)

@A2

@t
D ��2 � ˇ12A1 � ˇ22A2 C ˛22

2
A22; (24.99)

which must be solved subject to the terminal time conditions

A0.T; T / D A1.T; T / D A2.T; T / D 0: (24.100)

The bond price representation (24.96) implies that the instantaneous spot rate is
given by

r.t/ D �0 C �1X1.t/C �2X2.t/:

Proof Given the functional form (24.96) for the bond price, from Eq. (24.68) we
have for r.t/ the expression

r.t/ D �0 C �1X1.t/C �2X2.t/;
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where

�0 D @A0.t; T /

@T

ˇ̌
ˇ̌
.TDt /

; �1 D @A1.t; T /

@T

ˇ̌
ˇ̌
.TDt /

; �2 D @A2.t; T /

@T

ˇ̌
ˇ̌
.TDt /

:

Substituting the expression for rt into (24.94) the partial differential equation for P
becomes

@P

@t
C .ˇ10 C ˇ11X1.t/C ˇ12X2.t//

@P

@X1
C .ˇ20 C ˇ21X1.t/C ˇ22X2.t//

@P

@X2

(24.101)

C
�
˛10 C ˛11X1.t/

2

	
@2P

@X21
C
�
˛20 C ˛22X2.t/

2

	
@2P

@X22
� .�0 C �1X1.t/C �2X2.t//P D 0:

The solution technique consists in substituting the functional form (24.96) into the
partial differential equation (24.101) and gathering like terms. First we note that

@P

@t
D �. PA0.t; T /C PA1.t; T /X1.t/C PA2.t; T /X2.t//P

where � denotes the time derivative @
@t
: Also

@P

@X1
D �A1P; @2P

@X2
1

D A21P;
@P

@X2
D �A2P; @2P

@X2
2

D A22P:

Using the foregoing results the partial differential equation (24.101) reduces to

Œ� PA0 � ˇ10A1 � ˇ20A2 C ˛10

2
A21 C ˛20

2
A22 � �0�

C Œ� PA1 � ˇ11A1 � ˇ21A2 C ˛11

2
A21 � �1�X1.t/

C Œ� PA2 � ˇ12A1 � ˇ22A2 C ˛22

2
A22 � �2�X2.t/ D 0: (24.102)

The only way it is possible for the left hand side of b to be zero for all possible
evolutions of the factors X1.t/; X2.t/ is for each square bracket to be zero for all
time t . Thus we obtain the result that A0;A1 and A2 must satisfy the set of ordinary
differential equations (24.97)–(24.99) in the proposition. To obtain the appropriate
initial conditions we note that in order that the bond price satisfy the terminal payoff
condition (24.95) it must be the case that

A0.T; T / D A1.T; T / D A2.T; T / D 0

which are the terminal conditions (24.100) of the proposition. �
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Many authors present the ordinary differential equation system (24.97)–(24.99)
in terms of time-to-maturity �.� T � t/ and furthermore assume that A0;A1; A2
are functions of �: In this case (and with slight abuse of notation) the ordinary
differential equation system (24.97)–(24.99) becomes

dA0
d�

D �0 C ˇ10A1 C ˇ20A2 � ˛10

2
A21 � ˛20

2
A22; (24.103)

dA1
d�

D �1 C ˇ11A1 C ˇ21A2 � ˛11

2
A21; (24.104)

dA2
d�

D �2 C ˇ12A1 C ˇ22A2 � ˛22

2
A22; (24.105)

with initial conditions

A0.0/ D A1.0/ D A2.0/ D 0: (24.106)

The ordinary differential equation system (24.103)–(24.105) can be rapidly solved
using standard numerical techniques for ordinary differential equations. So far we
have not specified the initial values of the processesX1.t/; X2.t/ nor the parameters
�0; �1 and �2. Here the model builder has some flexibility. A reasonable choice for
initial values of X1.t/; X2.t/ would be their long run values, so that

X1.0/ D NX1 and X2.0/ D NX2: (24.107)

For the choices of �1; �2; one could leave them to be determined through a
calibration or econometric estimation procedure. Alternatively one could specify
them somewhat arbitrarily, for instance

�1 D �2 D 1 (24.108)

and that �0 is a constant. Once �1; �2 are chosen, the value of �0 could be obtained
from

r.0/ D �0 C �1X1.0/C �2X2.0/;

where r.0/ may be inferred from the currently observed yield curve.

24.4 Problems

Problem 24.1 Consider the following stochastic volatility extension of the Hull–
White model:

dr D 	r.
 � r.t//dt C �.t/dz1;



24.4 Problems 527

where �.t/ follows the diffusion process

d� D 	�. N� � �.t//dt C �dz2

and

EŒdz1dz2� D 
dt:

Now bond prices will be a function of r.t/, �.t/ and t and so denoted P.r; �; t; T /,
where T is bond maturity. Modify appropriately the hedging argument in the bond
market to obtain the arbitrage free pricing relationship for bonds in this market.

Give the bond pricing relationship in both partial differential equation form and
in expectation operator form. In the latter case be sure to indicate clearly what is the
s.d.e system that has to be simulated if one were to use the Monte-Carlo approach
to calculate the expectation operator.

Problem 24.2 It is assumed that the instantaneous spot interest rate depends
linearly on two factors X1 and X2 so that

r.t/ D ı0 C ı1X1.t/C ı2X2.t/;

where X1 and X2 are driven by the stochastic differential equation system

dX1 D 	11.˛1 � X1.t//dt Cp
X1.t/dW1;

dX2 D .	21.˛1 � X1.t// � 	22X2.t//dt Cp
1C ˇ21X1.t/dW2;

where W1 and W2 are independent Wiener processes. Assuming that the bond price
is a function of r and hence a function of X1 and X2 follow a similar procedure to
that of Sect. 24.1 to derive the bond pricing partial differential equation.

Furthermore assume that the market prices of risk, �1 and �2, associated withW1

andW2 respectively are given by

�1 D N�1
p
X1.t/; �2 D N�2

p
1C ˇ21X1.t/

where N�1, N�2 are constant. Try a solution of the form

P.X1;X2; t; T / D exp.�a.t; T /� b1.t; T /X1.t/ � b2.t; T /X2.t//:

Use a similar procedure to that outlined in Sect. 24.3 to obtain the ordinary
differential equations that determine a.t; T /, b1.t; T / and b2.t; T /. Make sure to
specify the boundary conditions.
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Use the fact that

r.t/ D lim
T!t


.t; T /;

where 
.t; T / is the yield to maturity, to relate ı0; ı1 and ı2 to the a; b1 and b2
functions.

Problem 24.3 Repeat Problem 24.2 for the model that may be represented by

r.t/ D ı0 C ı1X1.t/C ı2X2.t/C ı3X3.t/;

where the factors X1.t/; X2.t/ and X3.t/ are driven by the stochastic differential
equation system

d

2

4
X1
X2
X3

3

5 D
2

4
	11 0 0

	21 	22 	23
	31 	32 	33

3

5

2

4
˛1 � X1.t/

�X2.t/
�X3.t/

3

5 dt

C
2

4

p
X1.t/ 0 0

0
p
1C ˇ21X1.t/ 0

0 0
p
1C ˇ31X1.t/

3

5d

2

4
W1

W2

W3

3

5 ;

whereW1;W2 and W3 are independent Wiener processes.
Assume that the market price of risk, �i , associated with Wi (i D 1; 2; 3)

are proportional to the corresponding volatility, that is �1 D N�1
p
X1.t/, �2 D

N�2
p
1C ˇ21X1.t/, �3 D p

1C ˇ31X1.t/.



Chapter 25
The Heath–Jarrow–Morton Framework

Abstract Interest rate modelling can also be performed by starting from the
dynamics of the instantaneous forward rate. As we shall see the dynamics of all other
quantities of interest can then be derived from it. This approach has its origin in Ho
and Lee (J Finance XLI:1011–1029, 1986) but was most clearly articulated in Heath
et al. (Econometrica 60(1):77–105, 1992a), to which we shall subsequently refer
as Heath–Jarrow–Morton. In this framework, the condition of no riskless arbitrage
results in the drift coefficient of the forward rate dynamics being expressed in terms
of the forward rate volatility function. The major weakness in implementing the
Heath–Jarrow–Morton approach is that the spot rate dynamics are usually path
dependent (non-Markovian). We consider a class of functional forms of the forward
rate volatility that allow the model to be reduced to a finite dimensional Markovian
system of stochastic differential equations. This class contains some important
models considered in the literature.

25.1 Introduction

The interest rate derivative models developed in Chap. 23 took as their starting point
the dynamics of the instantaneous spot interest rate. The models we derived there
also had the characteristic that the market price of interest rate risk appears in the
pricing relationships. We saw in Sect. 23.8 that at least in principle it is possible to
remove this dependence of the models on preference related quantities. This can be
done by expressing terms involving the market price of interest rate risk in terms of
market observed quantities such as the currently observed yield curve and volatilities
of traded interest rate dependent instruments. However this procedure for rendering
spot rate models preference-free can be tedious and for some model specifications
may be computationally intensive.

An alternative interest rate modelling approach, originated by Ho and Lee
(1986), is the Heath–Jarrow–Morton approach which starts from the dynamics of
the forward rate and requires the specification of the initial term structure and the
volatility of the associated forward rate. The dynamics of the spot interest rate are
then developed from those of the forward rate. The spot interest rate is also an
important economic variable whose assessment determines the evolution of the
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bond prices. Heath et al. (1992b) describe how this framework can be used to
price and hedge the entire interest rate derivative book of a financial institution
thus offering a consistent approach in managing interest rate exposure. However,
the major shortcoming of the Heath–Jarrow–Morton approach is that the spot rate
dynamics are not path independent (i.e. it is non-Markovian) and the entire history
of the term structure has to be carried thus increasing the computational complexity.

The key unobserved input to this approach to term structure modelling is the
aforementioned volatility of the forward rates. Many of the forms of the volatility
functions reported in the literature have been chosen for analytical convenience
rather than on the basis of empirical evidence. In fact apart from the study of
Heath et al. (1990), Flesaker (1993), Amin and Morton (1994), Amin and Ng
(1993), Ho et al. (2001), and Bhar et al. (2004), there has not been a great deal
of empirical research into the appropriate form of the volatility function to be used
in the arbitrage free class of models. This is due to the fact that the non-Markovian
nature of the stochastic dynamical system makes difficult application of standard
econometric estimation procedures.

The non-Markovian feature also makes difficult the expression for prices of term-
structure contingent claims in terms of partial differential equations. In the Heath–
Jarrow–Morton approach these prices are expressed as expectation operators, under
the equivalent martingale measure, of appropriate payoffs. Nowhere in the existing
literature is it stated how to consistently turn this expectation operator into a partial
differential equation. It is important to be able to do so in order to apply to the
evaluation of interest rate sensitive contingent claims many useful computational
techniques, as outlined for example in Wilmott et al. (1993). These techniques are
the most appropriate to value various path dependent options such as American,
Asian etc., but require an expression of the contingent claim price in terms of partial
differential equation operators with appropriate boundary conditions.

The notation used in the original Heath–Jarrow–Morton paper allows for a very
general dependence of the forward rate volatility functions on path dependent
quantities. For the sake of definiteness we shall assume in this chapter that the path
dependence of the forward rate volatility functions arises from dependence on the
instantaneous spot interest rate and/or a set of discrete fixed-tenor forward rates. As
we shall see this specification allows us to develop a fairly broad class of interest
rate derivative models.

With such a specification, the instantaneous spot rate process in the Heath–
Jarrow–Morton framework can be expressed in terms of a finite dimensional
Markovian system. The dimension of the resultant system of stochastic differential
equations is dependent on the exact form of the volatility function and it usually
includes variables that at first sight seem not to be readily observable. But we shall
show how it is possible to express these in terms of forward rates or yields, which
may be observable.

The transformation to the Markovian form also allows easier comparison with
other approaches such as, Vasicek (1977), Cox et al. (1985a) and Hull and White
(1987, 1990, 1994). This is important in the sense that it allows us to easily reconcile
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many of the alternative approaches to the modelling of the term structure of interest
rates.

25.2 The Basic Structure

We denote as f .t; T / the instantaneous forward rate negotiated at time t for
instantaneous borrowing at time T .> t/. The starting point of the Heath–Jarrow–
Morton model of the term structure of interest rates is the stochastic integral
equation for the forward rate1

f .t; T / D f .0; T /C
Z t

0

˛.v; T; !.v//dvC
Z t

0

�.v; T; !.v//dW.v/; (25.1)

for 0 � t � T , where ˛.v; T; !.v// and �.v; T; !.v// are the instantaneous
drift and the volatility function at time v of the forward rate f .v; T /,
respectively. The instantaneous drift ˛.v; T; !.v// and volatility function
�.v; T; !.v// of the forward rate f .v; T / could depend through ! on path
dependent quantities, such as the instantaneous spot rate and/or a set of
discrete tenor forward rates. Thus the specifications in Eq. (25.1) allow for
functional forms of the type Ǫ .v; T; r.v/; f .v; �1/; f .v; �2/, � � � ; f .v; �m// and
O�.v; T; r.v/; f .v; �1/; f .v; �2/; � � � ; f .v; �m// where f .t; �i / is the instantaneous
forward rate at time t applicable at the fixed tenor �i .> t/ with m such tenors.
The noise term dW.v/ is the increment of a standard Wiener process generated
by a probability measure P. Note that for expositional simplicity in this section
we consider only one noise term affecting the evolution of the forward rate. The
stochastic integral equation (25.1), may alternatively be expressed as the stochastic
differential equation

df .t; T / D ˛.t; T; !.t//dt C �.t; T; !.t//dW.t/: (25.2)

It follows from Eq. (25.1) that the instantaneous spot rate r.t/.� f .t; t// is given
by the stochastic integral equation

r.t/ D f .0; t/C
Z t

0

˛.v; t; !.v//dv C
Z t

0

�.v; t; !.v//dW.v/: (25.3)

The corresponding stochastic differential equation for r.t/ [see Eq. (22.39)] is

dr D �r.t/dt C �.t; t; !.t//dW.t/; (25.4)

1We refer the reader to Sect. 22.5 for further discussion on the interpretation of (25.1).



532 25 The Heath–Jarrow–Morton Framework

where

�r.t/ D f2.0; t/C ˛.t; t; !.t//C
Z t

0

˛2.v; t; !.v//dvC
Z t

0

�2.v; t; !.v//dW.v/;

(25.5)

where f2, ˛2 and �2 denote the partial derivative of f , ˛ and � respectively, with
respect to their second arguments. We recall that the bond price at time t is related
to the forward rate by

P.t; T / D exp

�
�
Z T

t

f .t; s/ds

	
; 0 � t � T: (25.6)

By the use of Fubini’s theorem for stochastic integrals and application of Ito’s
lemma (see Sect. 22.5.1) the bond price satisfies the stochastic differential equation

dP.t; T / D Œr.t/C b.t; T /�P.t; T /dt C �B.t; T /P.t; T /dW.t/; (25.7)

where

�B.t; T / � �
Z T

t

�.t; s; !.t//ds; (25.8)

and

b.t; T / � �
Z T

t

˛.t; s; !.t//ds C 1

2
�2B.t; T /: (25.9)

A quantity of interest is the money market account

A.t/ D exp

�Z t

0

r.y/dy

	
; (25.10)

which is the value at time t of a dollar continuously compounded from 0 to t at the
instantaneous spot rate r . This quantity may be used to define the relative bond price

Z.t; T / D P.t; T /

A.t/
; .0 � t � T /: (25.11)

The fact that dA D r.t/A.t/dt and application of the rule for the quotient of two
diffusions (see Sect. 6.6) yields the result that the relative bond price satisfies the
stochastic differential equation

dZ.t; T / D b.t; T /Z.t; T /dt C �B.t; T /Z.t; T /dW.t/: (25.12)
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25.3 The Arbitrage Pricing of Bonds

Bonds can be priced using exactly the same hedging portfolio as was used in
Chap. 23, namely we use bonds of two different maturities. We know from the
arbitrage arguments of Chap. 23 that in order that there not exist riskless arbitrage
opportunities between bonds of different maturities then the instantaneous excess
bond return, risk adjusted by its volatility must equal the market price of interest
rate risk; see Eq. (23.9). The relevant bond dynamics in the current context are given
by (25.7), so that here Eq. (23.9) becomes

Œr.t/C b.t; T /� � r.t/
�B.t; T /

D market price of
interest rate risk

� ��.t/; (25.13)

which simplifies to

b.t; T /C �.t/�B.t; T / D 0: (25.14)

Using expressions (25.8) and (25.9) this last equation may be written explicitly as

Z T

t

˛.t; s; !.t//ds � 1

2

�Z T

t

�.t; s; !.t//ds

	2
C �.t/

Z T

t

�.t; s; !.t//ds D 0:

Keeping t fixed and differentiating with respect to maturity T , the above equation
reduces to

˛.t; T; !.t// �
�Z T

t

�.t; s; !.t//ds

	
�.t; T; !.t//C �.t/�.t; T; !.t// D 0;

which may be rearranged to

˛.t; T; !.t// D ��.t; T; !.t//
�
�.t/�

Z T

t

�.t; s; !.t//ds

�
: (25.15)

Equation (25.15) is the forward rate drift restriction that was first reported by Heath–
Jarrow–Morton (Eq. (18) of Heath et al. 1992a). It states that if the bond market
is free of riskless arbitrage opportunities then the forward rate drift, the forward
rate volatility and the market price of interest rate risk must be tied together as
shown by this equation. Heath–Jarrow–Morton show that in fact this condition is
both necessary and sufficient for the absence of riskless arbitrage opportunities.

Up to this point Heath–Jarrow–Morton have not done anything conceptually
different from the standard arbitrage approach of Chap. 23. However in the Heath–
Jarrow–Morton approach Eq. (25.14) is used in a different way. In the standard
arbitrage approach, Eq. (25.14) becomes a partial differential equation for the bond
price as a function of the assumed driving state variable (usually the instantaneous
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spot rate). In the Heath–Jarrow–Morton approach, the condition (25.14) becomes
the forward rate drift restriction that is used, as we shall see below, to conveniently
express the bond price dynamics under an equivalent probability measure. By use
of (25.14), the stochastic differential equations (25.7) and (25.12) for P.t; T / and
Z.t; T / respectively become

dP.t; T / D Œr.t/ � �.t/�B.t; T /�P.t; T /dt C �B.t; T /P.t; T /dW.t/; (25.16)

dZ.t; T / D ��.t/�B.t; T /Z.t; T /dt C �B.t; T /Z.t; T /dW.t/: (25.17)

At the same time, by substituting (25.15) into (25.3)2 the stochastic integral equation
for r.t/ becomes

r.t/ D f .0; t/C
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

�
Z t

0

�.v; t; !.v//�.v/dvC
Z t

0

�.v; t; !.v//dW.v/:

(25.18)

The key advance in the Heath–Jarrow–Morton approach is that, by an application
of Girsanov’s theorem to (25.16), Eqs. (25.16)–(25.18), can be written in terms of a
different Wiener process generated by an equivalent martingale probability measure
QP. Thus if we define a new Wiener process QW .t/ under QP by

QW .t/ D W.t/ �
Z t

0

�.s/ds; (25.19)

or in differential form by

d QW .t/ D dW.t/ � �.t/dt; (25.20)

then Eqs. (25.16)–(25.18) become

dP.t; T / D r.t/P.t; T /dt C �B.t; T /P.t; T /d QW .t/; (25.21)

dZ.t; T / D �B.t; T /Z.t; T /d QW .t/; (25.22)

2Note that from (25.15) we have

Z t

0

˛.v; t; !.v//dv D �
Z t

0

�.v; t; !.v//�.v/dvC
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv:
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and

r.t/Df .0; t/C
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdvC
Z t

0

�.v; t; !.v//d QW .v/:

(25.23)

Alternatively, Eq. (25.23) can be expressed as the stochastic differential equation

dr D
�
f2.0; t/C @

@t

�Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

	

C
Z t

0

@�.v; t; !.v//

@t
d QW .v/

�
dt C �.t; t; !.t//d QW .t/:

(25.24)

It is at times convenient to deal with the ln of the bond price B.t; T / � lnP.t; T /.
This quantity, by Ito’s lemma, satisfies (under QP)

dB.t; T / D Œr.t/ � 1

2
�2B.t; T /�dt C �B.t; T /d QW .t/: (25.25)

Furthermore, the arbitrage free stochastic integral equation for the forward rate
under QP can be written,

f .t; T / D f .0; T /C
Z t

0

�.v; T; !.v//

Z T

v

�.v; s; !.v//dsdvC
Z t

0

�.v; T; !.v//d QW .v/;
(25.26)

and the corresponding stochastic differential equation as

df .t; T / D �.t; T; !.t//

Z T

t

�.t; s; !.t//dsdt C �.t; T; !.t//d QW .t/: (25.27)

The essential characteristic of the reformulated stochastic differential and integral
equations (25.21)–(25.27) expressed in terms of Brownian motion, under the
equivalent probability measure QP, is that the empirically awkward market price of
risk term, �.t/, is eliminated from explicit consideration. From the discussion of
Girsanov’s theorem in Sect. 8.2 [in particular Eqs. (8.38) and (8.42)] we obtain the
expression for the Radon–Nikodym derivative

d QP
dP

D exp

�
�1
2

Z t

0

�2.s/ds C
Z t

0

�.s/dW.s/

	
: (25.28)

If we write QEt to denote mathematical expectation with respect to the equivalent
probability measure (i.e. the one associated with d QW .t/) then from Eq. (25.22)

QEt ŒdZ.t; T /� D 0:
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This last equation implies that Z.t; T / is a martingale under QP, i.e.

Z.t; T / D QEt .Z.T; T //;

or, in terms of the bond price

P.t; T / D QEt
�
A.t/

A.T /

�
D QEt

�
exp

�
�
Z T

t

r.y/dy

	�
: (25.29)

Equation (25.29) is the fundamental bond pricing equation of the Heath–Jarrow–
Morton framework, and it has the same discounted cash flow interpretation as

Eq. (23.21). Namely the quantity exp
�
� R T

t
r.y/dy

�
should be interpreted as the

stochastic discount factor under QP used to discount back to time t the $1 payoff
to be received at time T . We stress that the actual implementation of (25.29) will
depend on the form chosen from the forward rate volatility function. At the simplest
level, the expectation in Eq. (25.29) could be calculated by numerically simulating
Eq. (25.23). Note however that if the volatility function depends on discrete
tenor forward rates f .t; �1/; � � � ; f .t; �m/ then these would have be simulated at
the same time. Closed form analytical expressions for the bond price may be
obtained with appropriate assumptions on the volatility function as we shall see
below.

25.4 Arbitrage Pricing of Bond Options

Suppose we wish to price at time t an option on the bond, for example a European
call option on the bond, with the option maturing at Tc . As we saw in Chap. 21
this problem is relevant to the pricing of an interest rate cap. We know from the
discussion at the end of the previous section that under the risk-neutral measure
QP we can discount the payoff at Tc back to t using the stochastic discount
factor

exp

�
�
Z Tc

t

r.s/ds

	
: (25.30)

Multiplying the payoff by the discount factor we find that under one realisation of
the spot-rate process under QP the option value at t is given by

exp

�
�
Z Tc

t

r.s/ds

	
max ŒP.Tc; T / �X; 0� : (25.31)
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The value of the option, C.t; Tc/, is then obtained by taking the expectation of this
quantity under the risk-neutral measure QP (i.e. forming QEt ). Thus we obtain

C.t; Tc/ D QEt
�

exp

�
�
Z Tc

t

r.s/ds

	
maxŒP.Tc; T /� X; 0�

�
: (25.32)

In general, if we have some spot interest rate contingent claim with payoff at t D Tc
given by H.r.Tc/; Tc/,3 then its value at t is given by

U.t; Tc/ D QEt
�

exp

�
�
Z Tc

t

r.s/ds

	
H.r.Tc/; Tc/

�
: (25.33)

In order to obtain a pricing partial differential equation for U.t; Tc/ we need
to obtain the Kolmogorov backward equation associated with Eq. (25.24), the
stochastic differential equation for the spot rate process r.t/. It is difficult to do

this in general because of the non-Markovian term
Z t

0

@�

@t
d QW .v/ that appears in

the drift in Eq. (25.24). In Sect. 25.6 we discuss assumptions on � which allow
us to obtain Markovian representations for r.t/ and hence obtain pricing partial
differential equations.

The reader may wonder why in this section we have not mirrored the argument
of Sect. 23.6 and used the hedging argument approach to derive the bond option
pricing formula in the present context. The reason is that in Sect. 23.6 there was one
underlying factor, r.t/, driving the uncertainty of the market, so the option price
could be written in the formC.r; t/ and Ito’s Lemma applied to obtain its dynamics.
Similarly in Sect. 24.1 there were two underlying factors, r.t/ and h.t/, driving the
uncertainty of the market and we would write the option price as C.r; h; t/. Again
application of Ito’s Lemma gave us the dynamics for C . In both cases the dynamics
of the hedging portfolio could then be obtained. Here we have not so far been so
precise about the factors upon which the volatility function �.t; T; �/ depends, apart
from stating that it could depend on a vector of discrete tenor forward rates and the
instantaneous spot rate. In order to mirror the hedging argument approach used in
Chap. 23 we need to be more specific about the dynamics of these underlying rates
so that we could then obtain the option price dynamics by applying Ito’s lemma.
This we shall do in a later section, when we discuss the Markovianisation issue.
At this point we stress that the expressions (25.29) for the bond price and (25.33)
for the interest rate derivative hold for quite general specifications of the volatility
function. Of course if we want to implement these expressions, using for example
stochastic simulation, then we would need to specify the dynamics (under QP) of all
stochastic factors entering into the specification of �.t; T; �/.

3Here we allow the payoff function to depend on the instantaneous spot rate. It could of course
depend on various other rates as well.
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25.5 Forward-Risk-Adjusted Measure

We saw in Eq. (25.33) that the value of a spot interest rate contingent claim at time
t can be written

U.t; Tc/ D QEt
�

exp

�
�
Z Tc

t

r.s/ds

	
H.r.Tc/; Tc/

�
; (25.34)

where H.r.Tc/; Tc/ denotes the payoff on the claim at time Tc . Suppose P.t; Tc/
represents the price at time t of a pure discount bond maturing at time Tc . Then by
Eq. (25.29),

P.t; Tc/ D QEt
�

exp

�
�
Z Tc

t

r.s/ds

	�
: (25.35)

We can use the results of Chap. 20 to express the value of the interest rate contingent
claim, using P.t; Tc/ as the numeraire. By forming the quantity Y D U=P we
would obtain [see Eq. (20.14)]

U.t; Tc/ D P.t; Tc/E
�
t

�
U.Tc; Tc/

P.Tc; Tc/

�
: (25.36)

But in the current notation U.Tc; Tc/ D H.r.Tc/; Tc/ and P.Tc; Tc/ D 1, hence

U.t; Tc/ D P.t; Tc/E
�
t ŒH.r.Tc/; Tc/� : (25.37)

The advantage of (25.37) over (25.34) is that the stochastic discounting term

exp
�
� R Tc

t
r.s/ds

�
which appears in the expectation operation of (25.34) is

replaced by the non-stochastic discounting term P.t; Tc/ which appears outside
the expectation operator of (25.37). The value of this method depends on how easy
(or difficult) it is to calculate E

�
t in (25.37). We saw how this change of measure

result was useful in obtaining Merton’s bond pricing formula in Sect. 20.3. The
measure associated with the E

�
t operation, which we shall denote as P

� is known
as the T -forward measure. The reason for this nomenclature is that under P� the
forward rate at time t is the expectation of the instantaneous spot rate at T i.e.

f .t; T / D E
�
t Œr.T /�: (25.38)

To see this result recall that

P.t; T / D QEt
�

exp

�
�
Z T

t

r.s/ds

	�
:
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Differentiating this last equation with respect to T we obtain

@

@T
P.t; T / D QEt

�
@

@T
exp

�
�
Z T

t

r.s/ds

	�

D QEt
�
� exp

�
�
Z T

t

r.s/ds

	
� @

@T

Z T

t

r.s/ds

�

D � QEt
�

exp

�
�
Z T

t

r.s/ds

	
� r.T /

�

D �P.t; T /E�
t Œr.T /�: (25.39)

The last line was obtained by applying (25.37) with H.r.T /; T / D r.T /:

Rearranging the last result we obtain

� @

@T
lnP.t; T / D E

�
t Œr.T /�: (25.40)

However f .t; T / D � @
@T

lnP.t; T / hence we have established the result in
Eq. (25.38).

For some later applications we need to clarify what form the Radon–Nikodym
derivative assumes for the forward risk-adjusted measure. To do this we simply
identify VT with P.T; T / and V0 with P.0; T / in Eq. (20.20), so that the Radon–
Nikodym derivative becomes

�.0; T / D P.T; T /

A.T /P.0; T /
D 1

A.T /P.0; T /
: (25.41)

25.6 Reduction to Markovian Form

The principal difficulty in implementing and estimating Heath–Jarrow–Morton
models arises from the non-Markovian noise term in the stochastic integral equa-
tion (25.23) for r.t/. This manifests itself in the third component of the drift term of
the stochastic differential equation (25.24). This component depends on the history
of the noise process from time 0 to current time t . Depending upon the specification
of the volatility function the second component of the drift term could also depend
on the path history up to time t .

Our aim in this section is to consider a class of functional forms of �.t; T; �/
that allow the non-Markovian representation of r.t/ and P.t; T / to be reduced
to a finite dimensional Markovian system of stochastic differential equations. We
investigate volatility functions of the forward rate which have the general form of
a deterministic function of time and maturity multiplied by a function of the path
dependent variable !, i.e.

�.t; T; !.t// D Q.t; T /G.!.t//; 0 � t � T; (25.42)
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where G is an appropriately well-behaved function. A useful representation for
Q.t; T / would be

Q.t; T / D Pn.T � t/e��.T�t /; (25.43)

where Pn.u/ is the polynomial

Pn.u/ D a0 C a1u C : : :C anun:

This form would allow the term structure of the volatility to exhibit humps as
observed in implied forward rate volatilities from cap prices.4 We recall the
discussion of Sect. 22.5.2 when we considered forward rate volatility functions of
the form5

�.t; T; !.t// D N�e��.T�t /G.!.t//; (25.44)

for N� > 0 and � constant. This structure includes forward rate volatilities for a
number of important cases in the literature. Some of these models include

• � > 0;G.!.t// D 1 leads to a version of the extended Vasicek model of Hull–
White,

• � > 0;G.!.t// D g.r.t// leads to the generalised spot rate model of Ritchken
and Sankarasubramanian (1995).

• � > 0;G.!.t// D p
r.t/ leads to an extended version of the CIR model,

• � > 0;G.!.t// D g.r.t/; f .t; �// leads to a version of the model of Chiarella
and Kwon (1999).

Our aim is, under the volatility specification of (25.44), to express Eqs. (25.24) and
(25.27) as a Markovian system of stochastic differential equations. By considering
the drift term of the stochastic differential equation (25.27), under the volatility
specification of (25.44), we obtain

�.t; T; !.t//

Z T

t

�.t; s; !.t//ds D N�2G2.!.t//e��.T�t /
Z T

t

e��.s�t /ds

D N�2G2.!.t//e��.T�t /
�
e��.T�t / � 1

�

��

D �2.t; T; !.t//

�
e�.T�t / � 1

�

�
:

4Ritchken and Chuang (1999) assume Pn.u/ D P1.T � t / D .a0 C a1.T � t //.
5It is possible to carry through the discussion of this subsection with Eq. (25.44) generalised to

�.t; T; !.t// D N�e�

R T
t �.s/dsG.!.t//.
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Thus, we express the stochastic differential equation (25.27) for the forward rate as

df .t; T / D
�
�2.t; T; !.t//

e�.T�t / � 1

�

�
dt C �.t; T; !.t//d QW .t/: (25.45)

Similarly, we consider the stochastic differential equation (25.24) for r(t) and in
particular the first integral term

@

@t

�Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

	

D
Z t

0

�
�2.v; t; !.v//

Z t

v

�.v; s; !.v//ds C �2.v; t; !.v//

�
dv;

(25.46)

where the notation �2 represents the partial derivative of � with respect to its second
argument. Given the expression for � in (25.44), we have that,

�2.v; t; !.v// D ���.v; t; !.v//: (25.47)

Thus, the right hand side of (25.46) reduces to

Z t

0

�
���.v; t; !.v//

Z t

v

�.v; s; !.v//ds C �2.v; t; !.v//

�
dv: (25.48)

By using (25.47) the other two terms of (25.24) can be expressed as

�Z t

0

�2.v; t; !.v//d QW .v/

�
dt C �.t; t; !.t//d QW .t/

D
�
��

Z t

0

�.v; t; !.v//d QW .v/

�
dt C �.t; t; !.t//d QW .t/:

Thus, the stochastic differential equation (25.24) becomes

dr D
�
f2.0; t/� �

Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

C
Z t

0

�2.v; t; !.v//dv � �
Z t

0

�.v; t; !.v//d QW .v/

�
dt

C �.t; t; !.t//d QW .t/:

(25.49)
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We note from the stochastic integral equation (25.23) that

r.t/ � f .0; t/ D
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

C
Z t

0

�.v; t; !.v//d QW .v/:

(25.50)

Then by using (25.50), the stochastic differential equation (25.49) for the spot rate
is simplified to

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/� dt C �.t; t; !.t//d QW .t/; (25.51)

where we define the subsidiary variable  .t/ as

 .t/ D
Z t

0

�2.v; t; !.v//dv: (25.52)

The subsidiary variable  .t/ defined in Eq. (25.52) plays a central role in allowing
us to transform the original non-Markovian dynamics to Markovian form. Similar
subsidiary variables appear in the reduction to Markovian forms of Cheyette (1992),
Ritchken and Sankarasubramanian (1995), Bhar and Chiarella (1997a), Inui and
Kijima (1998), and Chiarella and Kwon (1999). It is clear from (25.52) that  .t/
may be interpreted as a variable summarising the path history of the forward rate
volatility.

25.7 Some Special Models

At this point the stochastic differential equation (25.51) is still non-Markovian
because the integral in the drift term involves the history of the path dependent
forward rate volatility. To proceed any further we need to consider specific
functional forms for G.!.t// in the volatility specifications (25.44).

25.7.1 The Hull–White Extended Vasicek Model

If G.!.t// D 1 then the subsidiary variable (25.52) becomes a time function, i.e.

 .t/ D
Z t

0

�2.v; t; !.v//dv D
Z t

0

N�2e�2�.t�v/dv D N�2
2�
.1 � e�2�t /:



25.7 Some Special Models 543

Thus by setting

�.t/ D f2.0; t/C �f .0; t/C N�2
2�
.1 � e�2�t /; (25.53)

the stochastic differential equation (25.51) for r.t/ finally becomes

dr D Œ�.t/ � �r.t/�dt C N�d QW .t/; (25.54)

which is a sought Markovian representation. Clearly this is the extended Vasicek
model with the long run mean allowed to be time varying.

Furthermore, note that the expression we have obtained for �.t/ is the same as
the one we obtained in Sect. 23.7 when we worked directly from the expression for
the bond price obtained from the continuous arbitrage approach—which takes the
spot rate process as the driving dynamics. It is also worth pointing out that by setting
� D 0 we obtain the continuous time specification of the Ho–Lee model. We have
already seen how to price European options in this framework in Sect. 23.7. To price
American options in this framework, the option pricing equation

1

2
N�2 @

2C

@r2
C Œ�.t/ � �r�@C

@r
C @C

@t
� rC D 0; (25.55)

must be solved subject to the boundary conditions for an American option, see
Chiarella and El-Hassan (1996) for details.

25.7.2 The General Spot Rate Model

If G.!.t// is a function of the spot interest rate r.t/, i.e. G.!.t// D g.r.t//,
then we need to separately handle the non-Markovian term appearing in the drift
of Eq. (25.51). The subsidiary variable (25.52) now becomes

 .t/ D
Z t

0

N�2e�2�.t�v/g2.r.v//dv: (25.56)

By differentiating (25.56) we have that

d D Œ N�2g2.r.t// � 2� .t/�dt: (25.57)

We are now dealing with the two-dimensional Markovian system

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/�dt C N� g.r.t//d QW .t/;

d D Œ N�2g2.r.t// � 2� .t/�dt:
(25.58)
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The representation (25.58) was obtained by Ritchken and Sankarasubramanian
(1995). If we define the partial differential operator K by

K D 1

2
N�2g2.r/ @

2

@r2
C Œf2.0; t/C �f .0; t/C ��r.t/� @

@r
C Œ N�2g2.r/�2� � @

@ 
;

then the Kolmogorov equation for the transition probability density � is

K � C @�

@t
D 0;

and derivative instruments are priced according to the partial differential equation

K V C @V

@t
� rV D 0;

(note V D P for bond price, V D C for option price) subject to appropriate bound-
ary conditions, e.g. V.r; T; T / D 1; for bonds, V.r; Tc; T / D max Œ0; P.r; Tc; T /�
K�; for European call options, etc. To evaluate American options we need to employ
numerical methods. Chiarella and El-Hassan (1998) have found the method of lines
to be very effective in this context.

Note that in the special case of g.r.t// D p
r.t/, we are dealing with the

extended CIR model

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/�dt C N�
p
r.t/d QW .t/;

d D Œ N�2r.t/ � 2� .t/�dt:
(25.59)

25.7.3 The Forward Rate Dependent Volatility Model

In this case, we further generalise the form of the volatility function to include
forward interest rates. Here G.!.t// can be a function of the spot interest rate, r.t/,
and of the forward interest rate, f .t; �/ of a fixed maturity � , so that G.!.t// D
g.r.t/; f .t; �//. For example, f .t; �/ could be some long-term forward rate. The
intuition behind such a specification is that not only the spot interest rate but also a
fixed maturity forward interest rate influence the evolution of the term structure.
The particular forward rate to be used may depend on the application under
consideration. This approach may be considered to be equivalent in some sense
to the Brennan and Schwartz (1979) model where a short-term rate and a long-term
rate are used to explain the evolution of the term structure. We need to determine the
additional state variables necessary to make the system Markovian although with a
higher dimension. The associated subsidiary variable (25.52) is given by

 .t/ D
Z t

0

N�2e�2�.t�v/g2.r.v/; f .v; �//dv: (25.60)
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By differentiating (25.60), we obtain the stochastic differential equation for  .t/ as

d D Œ�2.t; t; !.t// � 2� .t/�dt

D Œ N�2g2.r.t/; f .t; �// � 2� .t/�dt (25.61)

We have now reduced the non-Markovian stochastic dynamics to a three
dimensional Markovian stochastic dynamical system consisting of the stochastic
differential equation for the spot rate r.t/ [recall (25.51)]

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/� dt C N�g.r.t/; f .t; �//d QW .t/;

(25.62)

the stochastic differential equation for the discrete forward rate f .t; �/

[recall (25.45)], namely,

df .t; �/ D �2.t; �; !.t//
.e�.��t / � 1/

�
dt C �.t; �; !.t//d QW .t/;

D N�2g2.r.t/; f .t; �//e�2�.��t / .e�.��t / � 1/

�
dt

C N�e��.��t /g.r.t/; f .t; �//d QW .t/; (25.63)

and the stochastic differential equations (25.61) for  .t/. Finally we recall that the
dynamics of the forward rate to any maturity T , f .t; T / is given by (25.45) and
so are determined once r.t/ and f .t; �/ are determined. These latter quantities are
driven by the three stochastic differential equations (25.61)–(25.63) which together
form the Markovian representation. The price of any derivative instrument would
then have to depend on r.t/ and f .t; �/. Thus a bond of maturity T would have
a price at time t denoted by P.t; T; r.t/; f .t; �//, and this price is also driven by
the three-dimensional Markovian stochastic differential equation system referred to
above.

25.7.3.1 Interpreting the Subsidiary Variable  .t/

However, it would perhaps be more satisfying to relate  .t/ to the market rates r.t/
and f .t; �/. Indeed it turns out that such a relationship does exist for the forward
rate volatility function assumed in Eq. (25.44) for the generalised case ofG.!.t// D
g.r.t/; f .t; �//.
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Proposition 25.1 The subsidiary integrated square variance quantity  .t/ defined
in Eq. (25.60) is related to the rates r.t/ and f .t; �/ via

 .t/ D �˛ .t; �/ Œr .t/ � f .0; t/� � �e��.t��/˛ .t; �/ Œf .t; �/ � f .0; �/� ;
(25.64)

where ˛.t; �/ � e��t

e��� � e��t .

For the proof of Proposition 25.1 see Appendix 25.1.
An important consequence of Proposition 25.1 is that it allows us to reduce

by one the dimension of the stochastic dynamic system (25.61)–(25.63) to the
two-dimensional one consisting of the stochastic differential equations (25.62)
and (25.63) with  .t/ being defined by Eq. (25.64). This reduction in dimension is
quite significant if we seek to solve for derivative prices in this framework by use of
partial differential equations or lattice based methods as in Bhar et al. (2000), since
then we need to deal only with two rather than three spatial variables in the partial
differential operator. The reduction is less significant, though still useful, when
using Monte-Carlo simulation. This is so since Monte Carlo simulation requires
the simulation of the one Wiener increment, d QW .t/. The generation of  .t/ by
Eq. (25.64) rather than discretising Eq. (25.61) should lead to some computational
efficiency.

A consequence of Proposition 25.1 is that we are able to express the forward rate
to any maturity T in terms of the two rates r.t/ and f .t; �/.

Proposition 25.2 The forward rate f .t; T / to any maturity T is given by

f .t; T /� f .0; T / D

� e�2�.T��/ ˛.�; t/
˛.T; t/

Œf .t; �/ � f .0; �/�C e�2�.T�t / ˛.t; �/
˛.T; �/

Œr.t/ � f .0; t/� :

(25.65)

For the proof of Proposition 25.2 see Appendix 25.2.

25.7.3.2 The Term Structure of Interest Rates

We recall the Heath–Jarrow–Morton approach of defining a money market
account (25.10) and showing that the relative bond price

Z.t; T / D P.t; T /

A.t/
;

is a martingale, so that the bond price can be written

P.t; T / D QEt
�
A.t/

A.T /

�
D QEt

�
exp

�
�
Z T

t

r.y/dy

	�
: (25.66)
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Here, QEt is the expectation taken with respect to the probability distribution
generated by the stochastic differential system (25.62) and (25.63). We use

�
�
r.t�/; f .t�; �/ j r.t/; f .t; �/� ;

to denote the transition probability density function between t and t� (t � t�). This
quantity satisfies the Kolmogorov backward partial differential equation, which for
our case is given by,

K � C @�

@t
D 0;

where the operator K is the infinitesimal generator of the diffusion process for
f .t; �/, r.t/ driven by the stochastic differential equations (25.62) and (25.63). It
turns out that K is given by (see Appendix 25.3),

K � � �21

�
e�.��t / � 1�

�

@�

@f
C Œf2.0; t/C �f .0; t/C  � �r�

@�

@r

C 1

2
�21
@2�

@f 2
C 1

2
�2r
@2�

@r2
C �1�r

@2�

@f @r
;

(25.67)

where �1.t/ D �.t; �; !.t// and �r .t/ D �.t; t; !.t//. By application of the
Feynman–Kac formula to Eq. (25.66) we find that the bond price P.t; T; r; f /
satisfies the partial differential equation,

@P

@t
C K P � r.t/P D 0; (25.68)

subject to the terminal condition

P.T; T; r; f / D 1;

and the boundary conditions

P.t; T;1; f / D 0; .f � 0/;

P.t; T; r;1/ D 0; .r � 0/:

The further boundary conditions P.t; T; 0; f / and P.t; T; r; 0/ may be obtained
by an extrapolation procedure to be discussed in Bhar et al. (2000). Note that in
subsequent discussion we set

D.t/ � f2.0; t/C �f .0; t/:

A consequence of Proposition 25.2 is that it turns out to be possible to obtain
an analytical expression for the bond price. In fact we may state the following
proposition:
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Proposition 25.3 The price of bonds driven by the Markovian stochastic differen-
tial equation system (25.62) and (25.63) can be expressed as

P.t; T; r; f / D P.0; T /

P.0; t/
exp

�
�ˇ.t; T / .r.t/ � f .0; t//� 1

2
ˇ2.t; T / .t/

�
:

(25.69)

where ˇ.t; T / D 1

�

�
1 � e��.T�t /� ; and  .t/ is defined in Eq. (25.64).

For the proof of Proposition 25.3 see Appendix 25.4.
The bond pricing equation (25.69) has precisely the same form as the one derived

by Ritchken and Sankarasubramanian (1995) who (in current notation) assumed
a form for the volatility function in Eq. (25.42) with G.!.t// D g.r.t// which
is independent of the forward rate f .t; �/. In fact the results in Propositions 25.2
and 25.3 can be considerably generalised. Chiarella and Kwon (1999) have shown
that (25.69) holds in precisely the same form even when the forward rate volatility
depends on a set of discrete forward rates f .t; �1/; f .t; �2/; : : : ; f .t; �r / where
t � �1 < �2 < � � � < �r � T . Of course, under these different specifications the
history variable  .t/ will evolve differently but the functional relationship remains
the same.

25.7.3.3 Pricing European Bond Options

Consider an option written on the bond of maturity T . We suppose the option
matures at time Tc(< T ) and denote its price by C.t; T; r; f /. This price satisfies
the partial differential equation

@C

@t
C K C � rC D 0; .0 � t � Tc/: (25.70)

If we are dealing with a European call option with strike price E then the terminal
condition for (25.70) is

C.Tc; T; r; f / D ŒP.Tc; T; r; f /� E�C :

The boundary conditions at infinity are

C.t; T;1; f / D 0; f � 0;

C.t; T; r;1/ D 0; r � 0:

We recall that the bond prices at option maturity for any given values of
r.Tc/; f .Tc; �/ can be obtained directly from Eq. (25.69) without the need to
solve the bond pricing partial differential equation (25.68). In Bhar et al. (2000),
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we discuss the solution of the partial differential equation (25.70) by means of the
alternating directions implicit (ADI) method.

An alternative approach to pricing the European option is to use the result (also
derived by Heath–Jarrow–Morton) that

C.t; T; r; f / D QEt
�

exp

�
�
Z Tc

t

r.y/dy

	
ŒP.Tc; T; r.Tc/; f .Tc; �//� E�C

�
:

(25.71)

The expectation in Eq. (25.71) could be approximated by simulating an appropriate
number of times the stochastic differential equation system (25.62) and (25.63) from
t to Tc .

25.8 Heath–Jarrow–Morton Multi-Factor Models

In our previous discussion, we focussed on the case where only one noise factor was
impinging on the forward rate curve. However Heath–Jarrow–Morton framework
allows for the possibility of multiple noise sources, i.e.,

f .t; T / D f .0; T /C
Z t

0

˛.v; T; �/dvC
nX

iD1

Z t

0

�i .v; T; �/dWi .v/; (25.72)

where the n noise terms dW i are the increments of independent Wiener processes
and the �i .t; T; �/ are the volatility functions associated with each noise term. The
manipulations leading to (25.15) in Sect. 25.2 are identical in the multiple noise case
and merely involve a little more algebra. Thus setting T D t in (25.72) we have

r.t/ D f .0; t/C
Z t

0

˛.v; t; �/dvC
nX

iD1

Z t

0

�i .v; t; �/dWi .v/: (25.73)

Substituting (25.72) into (25.6) and following the same procedure that yielded (25.7)
we find that the stochastic differential equation for the bond price now becomes

dP.t; T / D Œr.t/C b.t; T; �/�P.t; T /dt C
nX

iD1
ai .t; T; �/P.t; T /dWi .t/; (25.74)

where

ai .t; T; �/ D �
Z T

t

�i .t; v; �/dv; (25.75)
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and

b.t; T; �/ D �
Z T

t

˛.t; v; �/dvC 1

2

nX

iD1
a2i .t; T; �/: (25.76)

The process for the relative bond price

Z.t; T / D P.t; T /

A.t/
;

is easily found to be

dZ.t; T / D b.t; T; �/Z.t; T /dt C
nX

iD1
ai .t; T; �/Z.t; T /dWi .t/: (25.77)

Now by forming a portfolio of bonds of .nC1/ different maturities and holding these
in proportions that ensure the existence of no riskless arbitrage opportunities results
in the condition (for interpretation compare with (10.5) that gives the expected
excess return condition in the multi-factor case)

Œr.t/C b.t; T; �/�� r.t/ D �
nX

iD1
�i .t/ai .t; T; �/; (25.78)

where �i .t/ is the market price of risk associated with the i th noise factor. The term
on the left-hand side of Eq. (25.78) is the expected excess return on the bond, the
term on the right hand side is the sum of the risk-premia (�iai ) for bearing the risk
associated with each source of uncertainty (Wi.t/). Equation (25.78) simplifies to

b.t; T; �/C
nX

iD1
�i .t/ai .t; T; �/ D 0; (25.79)

which is the multifactor analogue of the forward rate drift restriction (25.14). By
use of (25.75) Eq. (25.79) reads

Z T

t

˛.t; v; �/dv D
nX

iD1

�
1

2
a2i .t; T; �/C �i .t/ai .t; T; �/

�
: (25.80)

Differentiating this last equation with respect to maturity T we find that

˛.t; T; �/ D �
nX

iD1
�i .t; T; �/

�
�i .t/ �

Z T

t

�i .t; v; �/dv
�
; (25.81)
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which is the forward rate drift restriction in the multi-factor case. Thus substitut-
ing (25.81) into (25.73), (25.74) and (25.77) the stochastic differential equations for
r.t/, P.t; T / and Z.t; T / become respectively, in the arbitrage free environment,

dr D
"
f2.0; t/C @

@t

nX

iD1

Z t

0
�i .v; t; �/

Z t

v
�i .v; y; �/dydvC

nX

iD1

Z t

0

@�i

@t
.v; t; �/dW i .v/

�
nX

iD1
�i .t/�i .t; t; �/�

nX

iD1

Z t

0
�i .v/

@�i

@t
.v; t; �/dv

#
dtC

nX

iD1
�i .t; t; �/dW i .t/

dP.t; T / D
"
r.t/�

nX

iD1
�i .t/ai .t; T; �/

#
P.t; T /dtC

nX

iD1
ai .t; T; �/P.t; T /dW i .t/;

dZ.t; T / D �
nX

iD1
�i .t/ai .t; T; �/Z.t; T /dtC

nX

iD1
ai .t; T; �/Z.t; T /dW i .t/:

We then form the new set of processes

QWi.t/ D Wi.t/ �
Z t

0

�i .s/ds; .i D 1; 2; � � � ; n/:

By use of Girsanov’s theorem these become Wiener processes under the equivalent
measure QP. Thus the forgoing set of equations become

dP.t; T / D r.t/P.t; T /dt C
nX

iD1
ai .t; T; �/P.t; T /d QWi.t/; (25.82)

dZ.t; T / D
nX

iD1
ai .t; T; �/Z.t; T /d QWi.t/; (25.83)

dr D
"
f2.0; t/C @

@t

nX

iD1

Z t

0

�i .v; t; �/
Z t

v

�i .v; y; �/dydv

C
nX

iD1

Z t

0

@�i

@t
.v; t; �/d QWi.v/

#
dt C

nX

iD1
�i .t; t; �/d QWi.t/: (25.84)

Again under QP the relative bond price Z.t; T / is a martingale, so that

Z.t; T / D QEt ŒZ.T; T /� ; (25.85)

which in terms of the bond price becomes

P.t; T / D QEt
�

exp

�
�
Z T

t

r.y/dy

	�
; (25.86)
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which of course is the same as (25.29). The difference here is the QEt is generated
by (25.84) which in its turn is driven by the n independent noise terms QWi.t/. Thus
if we were to use simulation to directly evaluate (25.86) we would need to simulate
n independent sequences of normal random variables in order to simulate a path
for r.t/. Furthermore if the �i .t; T / depend on other factors, such as discrete tenor
forward rates, then the processes for these (under QP) would have to be simulated as
well.

25.9 Relating Heath–Jarrow–Morton to Hull–White
Two-Factor Models

We have already seen in Sect. 25.7.1 that the Hull–White extended Vasicek model
can be derived (far more simply) in the Heath–Jarrow–Morton framework once an
appropriate form for the volatility function is chosen. In this section we show that the
Hull–White two-factor model can be obtained as a special case of the multi-factor
Heath–Jarrow–Morton model.

First we recall the Hull–White two-factor model Hull and White (1994), as
summarised by Rebonato (1998). The instantaneous spot rate is assumed to follow
the process

dr D Œ�.t/C h.t/ � ar.t/�dt C 
1dz1; (25.87)

where the additional term h.t/ in the drift satisfies

dh D �b h.t/dt C 
2dz2: (25.88)

Here z1; z2 are correlated Wiener processes, i.e.

EŒdz1 dz2� D 
dt:

First we note that we may reexpress (25.87) and (25.88) in terms of the independent
Wiener processes w1; w2 as

dr D Œ�.t/C h.t/ � ar.t/�dt C 
1
p
1 � 
2 dw1 C 
1
 dw2; (25.89)

dh D �b h.t/ dt C 
2dw2: (25.90)

We consider a two-factor Heath–Jarrow–Morton model with volatility specifications

�i .t; T / D N�i e��i .T�t /; (25.91)
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where N�i and �i are constants, for i D 1; 2. Accordingly, the forward rate dynamics
are expressed as

f .t; T / D f .0; T /C
Z t

0

˛.v; T /dvC
Z t

0

�1.v; T /dW1.v/C
Z t

0

�2.v; T /dW2.v/;

which under the risk-neutral measure (see Sect. 25.8) becomes

f .t; T / D f .0; T /C
2X

iD1

Z t

0

�i .v; T /

Z T

v

�i .v; y/dy dvC
2X

iD1

Z t

0

�i .v; T /d QWi.v/:

The spot rate process under the risk-neutral measure satisfies

r.t/ D f .0; t/C
2X

iD1

Z t

0

�i .v; t/

Z t

v

�i .v; y/dy dvC
2X

iD1

Z t

0

�i .v; t/d QWi.v/;

(25.92)

or

dr D
"
f2.0; t/C @

@t

2X

iD1

Z t

0

�i .v; t/

Z t

v

�i .v; y/dy dv

C
2X

iD1

Z t

0

@�i

@t
.v; t/dfWi.v/

#
dt C

2X

iD1
�i .t; t/d QWi.t/:

(25.93)

The volatility functions (25.91) have the property

@�i .t; T /

@T
D ��i�i .t; T /:

Thus the stochastic differential equation (25.93) for the spot rate becomes

dr D
"
f2.0; t/C @

@t

2X

iD1
Si .t/ �

2X

iD1
�ixi .t/

#
dt C

2X

iD1
N�id QWi.t/; (25.94)

where we set

Si.t/ D N�2i
Z t

0

e��i .t�v/
Z t

v

e��i .y�v/dy dv;

and

xi .t/ D
Z t

0

N�ie��i .t�v/d QWi.v/;
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where i D 1; 2: The variables xi .t/ satisfy the stochastic differential equations

dxi D N�ie��i .t�t /d QWi.t/ �
Z t

0

�i N�ie��i .t�v/d QWi.v/dt

D ��ixi .t/dt C N�id QWi.t/: (25.95)

The system (25.94), (25.95) for r.t/; x1.t/, and x2.t/ is the Markovian system
that generates the probability distribution for QEt (i.e. this is the system we would
simulate if we use Monte-Carlo simulation to evaluate QEt ). To obtain the link with
the Hull–White two-factor model note that with the volatility functions (25.91) the
stochastic integral equation for r.t/, see Eq. (25.92), becomes

r.t/ D f .0; t/C
2X

iD1
Si .t/C x1.t/C x2.t/: (25.96)

This last equation may be used to eliminate x1.t/ in (25.94), thus

x1.t/ D r.t/ � f .0; t/ �
2X

iD1
Si .t/ � x2.t/;

which upon substitution into (25.94) yields

dr D Œf2.0; t/C �1f .0; t/C S.t/C .�1 � �2/x2.t/ � �1r.t/�dt C
2X

iD1
N�id QWi.t/;

(25.97)
where we have defined

S.t/ D
2X

iD1

�
@

@t
Si .t/C �1Si.t/

�
; (25.98)

and x2.t/ is driven by Eq. (25.95) with i D 2, viz

dx2 D ��2x2.t/dt C N�2d QW2.t/: (25.99)

To fully obtain the correspondence with the Hull–White two-factor model in
Eqs. (25.89), (25.90) set

�.t/ D f2.0; t/C �1f .0; t/C S.t/;

a D �1;

b D �2; (25.100)
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so that we are now dealing with the system

dr D Œ�.t/C .a � b/x2.t/ � ar.t/�dt C N�1d QW1.t/C N�2d QW2.t/; (25.101)

dx2 D �b x2.t/dt C N�2d QW2.t/: (25.102)

If we set

h.t/ D .a � b/x2.t/

then Eq. (25.102) becomes

dh D �bh.t/dt C .a � b/ N�2d QW2.t/: (25.103)

The system (25.101) and (25.103) for r.t/ and h.t/ is equivalent to the Hull–White
two-factor system (25.89), (25.90) if we set

N�1 D 
1
p
1 � 
2; N�2 D 
1
 and .a � b/ N�2 D 
2; (25.104)

from which the parameters of the Hull–White two-factor model may be related to
the parameters of the two-factor Heath–Jarrow–Morton model via


 D N�2q
N�21 C N�22

; 
1 D
q

N�21 C N�22 ; 
2 D .�1 � �2/ N�2; b D �2: (25.105)

It is certainly instructive to understand how the Hull–White class of models can
be derived within the Heath–Jarrow–Morton framework. However, the biggest
advantage is that the �.t/ function in the stochastic differential equation (25.101)
for r.t/ is automatically calibrated to the initially observed forward curve f .0; t/.

25.10 The Covariance Structure Implied
by the Heath–Jarrow–Morton Model

Another important issue to be considered is the analysis of the statistical properties
of the evolution of the forward rates and yields under the jump-diffusion framework.
As we have mentioned before one factor models allow for only parallel shifts of
the yield curve, so bond prices and forward rates of all maturities are perfectly
correlated. Multi dimensional models, on the other hand, impose a correlation
structure between forward rates of different maturities which based on empirical
studies shows an exponentially decaying behavior. Rebonato (1998) provides an
interesting discussion on forward rate correlations and examines the patterns
observed in financial markets. Here we seek to understand the effect on the forward
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rate correlation structure implied by the assumptions concerning in the forward rate
dynamics.

25.10.1 The Covariance Structure of the Forward Rate
Changes

Under the risk neutral measure, the changes of the forward rate follow the dynamics

df .t; T / D
nX

iD1
�i .t; T; !.t//�i .t; T; !.t//dt C

nX

iD1
�i .t; T; !.t//d QWi.t/:

(25.106)

Thus

QE0Œdf .t; T /� D
nX

iD1
�i .t; T; !.t//�i .t; T; !.t//dt: (25.107)

Denote T1 and T2 two different maturities, then the covariance of the changes on the
forward rate is calculated as

cov0Œdf .t; T1/; df .t; T2/�

D QE0Œ.df .t; T1/ � QE0Œdf .t; T1/�/.df .t; T2/� QE0Œdf .t; T2/�/�

D QE0
"

nX

iD1
�i .t; T1; !.t//d QWi.t/ �

nX

iD1
�i .t; T2; !.t//d QWi.t/

#
:

From the independence of the Wiener increments it readily follows that

cov0Œdf .t; T1/; df .t; T2/� D
nX

iD1
�i .t; T1; !.t//�i .t; T2; !.t//dt; (25.108)

and the variance of the forward rate changes df .t; Th/ (h D 1; 2) as

var0Œdf .t; Th/� D
nX

iD1
�2i .t; Th; !.t//dt: (25.109)

The correlation coefficient between the forward rates changes df .t; T1/ and
df .t; T2/ is then evaluated as


.t; T1; T2/ D cov0Œdf .t; T1/; df .t; T2/�p
var0Œdf .t; T1/�

p
var0Œdf .t; T2/�

; (25.110)
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where cov0Œdf .t; T1/; df .t; T2/� and var0Œdf .t; Th/�; .h D 1; 2/ are defined above.
To demonstrate these results, we assume the volatility functions are of the form

�i .s; t/ D �0i e
�	�i .t�s/; i D 1; : : : ; n; (25.111)

where the �0i ; 	� i are constant. Then the covariance (25.108) between df .t; T1/ and
df .t; T2/ is calculated as

cov0Œdf .t; T1/; df .t; T2/� D
nX

iD1
�20i e

�	�i .T1CT2�2t/; (25.112)

and the correlation coefficient between the forward rates changes df .t; T1/ and
df .t; T2/ is evaluated as


.t; T1; T2/ D
Pn

iD1 �20i e�	�i .T1CT2�2t/
p

var0Œdf .t; T1/�
p

var0Œdf .t; T2/�
; (25.113)

where the variance of the forward rate changes df .t; Th/ (h D 1; 2) is

var0Œdf .t; Th/� D
nX

iD1
�20i e

�2	�i .Th�t /: (25.114)

25.10.2 The Covariance Structure of the Forward Rate

The forward rate under the risk neutral measure is given by

f .t; T / D f .0; T /C
nX

iD1

Z t

0

�i .s; T; !.s//�i .s; T; !.s//ds

C
nX

iD1

Z t

0

�i .s; T; !.s//d QWi.s/:

(25.115)

Thus

QE0Œf .t; T /� D f .0; T /C
nX

iD1

Z t

0

�i .s; T; !.s//�i .s; T; !.s//ds: (25.116)
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Denote T1 and T2 two maturities then the covariance of the forward rates f .t; T1/
and f .t; T2/ is calculated as

cov0Œf .t; T1/; f .t; T2/�

D QE0Œ.f .t; T1/� QE0Œf .t; T1/�/.f .t; T2/� QE0Œf .t; T2/�/�

D QE0
"

nX

iD1

Z t

0

�i .s; T1; !.s//d QWi.s/ �
nX

iD1

Z t

0

�i .s; T2; !.s//d QWi.s/

#
:

(25.117)

Using the result

E0Œ

Z t

0

�i .s; T1/d QWi.s/

Z t

0

�i .s; T2/d QWi.s/� D
Z t

0

�i .s; T1/�i .s; T2/ds;

and the covariance is given by

cov0Œf .t; T1/; f .t; T2/� D
nX

iD1

Z t

0

�i .s; T1/�i .s; T2/ds: (25.118)

Considering again the volatility functions of the form

�i .s; t/ D �0i e
�	�i .t�s/; i D 1; : : : ; n; (25.119)

then
Z t

0

�i .s; T1/�i .s; T2/ds D �20i e
�	�i .T1CT2/

2	� i
.e2	�i t � 1/: (25.120)

The covariance between the forward rates f .t; T1/ and f .t; T2/ becomes

cov0Œf .t; T1/; f .t; T2/� D
nX

iD1

�20i e
�	�i .T1CT2/

2	� i
.e2	�i t � 1/; (25.121)

and the correlation coefficient 
.t; T1; T2/ between the forward rates f .t; T1/ and
f .t; T2/ is evaluated as

Pn
iD1

�20i e
�	�i .T1CT2/

2	�i
.e2	�i t � 1/

p
var0Œf .t; T1/�

p
var0Œf .t; T2/�

; (25.122)

where the variance of the forward rate f .t; Th/ .h D 1; 2/ is

var0Œf .t; Th/� D
nX

iD1

�20i e
�2	�i Th
2	� i

.e2	�i t � 1/: (25.123)
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25.11 Appendix

Appendix 25.1 Proof of Proposition 25.1

Recall that r.t/ satisfies the stochastic integral equation (25.23) and f .t; �/ satisfies
the stochastic integral equation (25.26) with T set equal to � . We assume the forward
rate volatility specifications

� .v; t; !.v// D N�e��.t�v/g .r.v/; f .v; �//

and set

�� .v; t; !.v// D � .v; t; !.v//

Z t

v

� .v; s; !.v// ds

D N�2e��.t�v/g .r.v/; f .v; �//
Z t

v

e��.s�v/g .r.v/; f .v; �// ds

D N�2g2 .r.v/; f .v; �// e��.t�v/
�
1 � e��.t�v/

�

	
:

Note that the first integral term in Eq. (25.23) can be written

Z t

0

�� .v; t; !.v// dv D N�2
Z t

0

g2 .r.v/; f .v; �// e��.t�v/
�
1� e��.t�v/�

�
dv

D e��t N�2
�

Z t

0

g2.r.v/; f .v; �//e�vdv

� e�2�t N�2
�

Z t

0

g2.r.v/; f .v; �//e2�vdv

� e��t

�
I.t I�/� e�2�t

�
I.t I 2�/:

Next note that the second integral in Eq. (25.23) may be written as
Z t

0

� .v; t; !.v//d QW .v/ D N�
Z t

0

e��.t�v/g .r.v/; f .v; �//d QW .v/

D N�e��t
Z t

0

g .r.v/; f .v; �// e�vd QW .v/

� e��t J.t I�/:
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Similarly the first integral term in Eq. (25.26) can be written

Z t

0

�� .v; �; !.v// dv D N�2
Z t

0

g2 .r.v/; f .v; �// e��.��v/
�
1 � e��.��v/�

�
dv

D e���

�
I.t I�/ � e�2��

�
I.t I 2�/:

The second integral term in Eq. (25.26) may be similarly treated, so that
Z t

0

� .v; �; !.v//d QW .v/ D N�
Z t

0

e��.��v/g .r.v/; f .v; �//d QW .v/

D N�e���
Z t

0

e�vg .r.v/; f .v; �//d QW .v/

� e���J.t I�/:
We may thus write the stochastic integral equations for r.t/ and f .t; �/ in terms of
the integrals I.t I�/; I.t I 2�/ and J.t I�/ as

r.t/ D f .0; t/C e��t

�
I.t I�/ � e�2�t

�
I.t I 2�/C e��t J.t I�/; (25.124)

f .t; �/ D f .0; �/C e���

�
I.t I�/� e�2��

�
I.t I 2�/C e���J.t I�/: (25.125)

We note that Eqs. (25.124) and (25.125) can be re-expressed as

r.t/ � f .0; t/C e�2�t

�
I.t I 2�/ D e��t

�
I.t I�/
�

C J.t I�/
�
;

f .t; �/ � f .0; �/C e�2��

�
I.t I 2�/ D e���

�
I.t I�/
�

C J.t I�/
�
:

We may combine the above equations to express I.t I 2�/ as a function of r.t/ and
f .t; �/, i.e.,

I.t I 2�/ D �e��

e��t � e��� Œf .t; �/ � f .0; �/� � �e�t

e��t � e��� Œr.t/ � f .0; t/�

(25.126)

Finally we note that

 .t/ D
Z t

0

�2 .v; t; !.v// dv D N�2
Z t

0

e�2�.t�v/g2 .r.v/; f .v; �// dv

D N�2e�2�t
Z t

0

e2�vg2 .r.v/; f .v; �// dv D e�2�t I.t I 2�/:
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Thus we finally have

 .t/ D �˛.t; �/ Œr.t/ � f .0; t/� � �e��.t��/˛.t; �/ Œf .t; �/ � f .0; �/� ;
(25.127)

where we set

˛.t; �/ � e��t

e��� � e��t :

Appendix 25.2 Proof of Proposition 25.2

It is readily verified that the manipulations that led to Eq. (25.125) of Appendix 25.1
are equally valid for t set to a general maturity T . Thus (25.126) holds for t set to
T , i.e.,

I.t I 2�/ D �e�T

e��t�e��T Œf .t; T /�f .0; T /��
�e�t

e��t�e��T Œr.t/�f .0; t/�

D e2�t .t/:

Substituting the expression for  .t/ we find that

I.t I 2�/ D �e2�t
�
˛.t; �/Œr.t/ � f .0; t/� � e��.t��/˛.t; �/Œf .t; �/ � f .0; �/��

D �

�
e�T

e��t � e��T Œf .t; T / � f .0; T /�� e�t

e��t � e��T Œr.t/ � f .0; t/�

	
:

On rearranging

e�T

e��t � e��T Œf .t; T /� f .0; T /� D e�t

e��t � e��T Œr.t/ � f .0; t/�

Ce2�t ˛.t; �/Œr.t/ � f .0; t/�

�e2�t e��.t��/˛.t; �/Œf .t; �/ � f .0; �/�;

from which

f .t; T /� f .0; T / D Œr.t/ � f .0; t/�
�
e�t

e�T
C e2�t .e��t � e��T /

e�T
˛.t; �/

	

� e2�t e��.t�T /

e�T
˛.t; �/.e��t � e��T /Œf .t; �/ � f .0; �/�:

(25.128)
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Consider the following:

(i)

e�t C e2�t .e��t � e��T /
e�T

˛.t; �/ D e�t

e�T
C e2�t .e��t � e��T /e��t

e�T .e��� � e��t /

D e�t .e��� � e��t /C e�t .e��t � e��T /
e�T .e��� � e��t /

D e�t .e��� � e��T /
e�T .e��� � e��t /

D e2�t

e2�T
e��t

e��� � e��t
e��� � e��T

e��T D e�2�.T�t / ˛.t; �/
˛.T; �/

(ii)

e2�t e��.t��/˛.t; �/
.e��t � e��T /

e�T
D e2�t��tC��˛.t; �/

.e��t � e��T /
e2�T e��T

D e�t e��e��t .e��t � e��T /
e2�T e��T .e��� � e��t /

D e2��

e2�T
e���

�.e��t � e��� /
.e��t � e��T /

e��T

D �e�2�.T��/ ˛.�; t/
˛.T; t/

:

Hence Eq. (25.128) can be rewritten

f .t; T /� f .0; T / D e�2�.T�t / ˛.t; �/
˛.T; �/

Œr.t/ � f .0; t/�

� e�2�.T��/ ˛.�; t/
˛.T; t/

Œf .t; �/ � f .0; �/�

where

˛.�1; �2/ � e���1
e���2 � e���1 :

We have thus proved Proposition 25.2.

Appendix 25.3 Details of the Infinitesimal Generator K

We recall the following result from Sect. 5.4 concerning the infinitesimal generator
of an n dimensional Ito process. In our application we set

X1 � f .t; �/;

a1 � �2.t; �; !.t//
.e�.��t / � 1/

�
;
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�11 � �1 � �.t; �; !.t//;

X2 � r.t/;

a2 � f2.0; t/C �f .0; t/C  .t/ � �r.t/;

�21 � �r � �.t; t; !.t//:

Thus the matrix S assumes the form
�
�21 �1�r

�1�r �2r

�
:

Using the foregoing expression for S the expression for the operator K in
Eq. (25.67) is readily derived.

Appendix 25.4 Proof of Proposition 25.3

Using the relationship

P.t; T / D exp

�
�
Z T

t

f .t; s/ds

	

and Eq. (25.26) for the forward rate f .t; s/ we obtain for the bond price the
expression

P.t; T /DP.0; T /

P.0; t/
exp

�
�
�Z T

t

Z t

0

��.v; s; �/dvdsC
Z T

t

Z t

0

�.v; s; �/d QW .v/ds

	�
;

where

�.v; T; �/ D N�e��.T�v/g.r.v/; f .v; �//

��.v; T; �/ D �.v; T; �/
Z T

v

�.v; s; �/ds

D N�2g2.r.v/; f .v; �//e��.T�v/
Z T

v

e��.s�v/ds:

Set

I D
Z T

t

Z t

0

��.v; s; �/dvds C
Z T

t

Z t

0

�.v; s; �/d QW .v/ds

� I1 C I2

D
Z t

0

Z T

t

��.v; s; �/dsdvC
Z t

0

Z T

t

�.v; s; �/dsd QW .v/;



564 25 The Heath–Jarrow–Morton Framework

where we have interchanged the order of integration to obtain the last equality. Next
note that

Z T

t

��.v; s; �/dsD� .r.v/; f .v; �//
Z T

t

e��.s�v/
Z s

v

e��.y�v/� .r.v/; f .v; �// dyds

D� .r.v/; f .v; �//
Z T

t

e��.s�v/

Z t

v

e��.y�v/� .r.v/; f .v; �// dy

C
Z s

t

e��.y�v/� .r.v/; f .v; �// dy

�
ds

D N�2g2.r.v/; f .v; �//
Z T

t

e��.s�v/ds
Z t

v

e��.y�v/dy

C N�2g2.r.v/; f .v; �//
Z T

t

e��.s�v/
Z s

t

e��.y�v/dyds

D N�2g2.r.v/; f .v; �//e��.t�v/
�Z T

t

e��.s�t /ds

	Z t

v

e��.y�v/dy

C N�2g2.r.v/; f .v; �//e�2�.t�v/
Z T

t

e��.s�t /
Z s

t

e��.y�t /dyds

D ��.v; t; �/ˇ.t; T /C �2.v; t; �/˛.t; T /;

where

ˇ.t; T / D
Z T

t

e��.s�t /ds D 1

�

�
1� e��.T�t /� ;

˛.t; T / D
Z T

t

e��.s�t /
Z s

t

e��.y�t /dyds D 1

2
ˇ2.t; T /;

i.e. we have shown that

Z T

t

��.v; s; �/ds D ˇ.t; T /��.v; t; �/C 1

2
ˇ2.t; T /�2.v; t; �/:

Next consider

Z T

t

�.v; s; �/ds D
Z T

t

e��.s�v/� .r.v/; f .v; �// ds

D � .r.v/; f .v; �// e��.t�v/
�Z T

t

e��.s�t /ds

	
;
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i.e. we have shown that
Z T

t

�.v; s; �/ds D �.v; t; �/ˇ.t; T /:

Returning to the expressions for I1, I2 we can now write

I1 D
Z t

0

�
ˇ.t; T /��.v; t; �/C 1

2
ˇ2.t; T /�2.v; t; �/

�
dv;

and

I2 D
Z t

0

ˇ.t; T /�.v; t; �/d QW .v/;

so that

I D 1

2
ˇ2.t; T /

Z t

0

�2.v; t; �/dv

Cˇ.t; T /
�Z t

0

��.v; t; �/dvC
Z t

0

�.v; t; �/d QW .v/
�
:

However we note from Eq. (25.23), for the instantaneous spot rate r.t/, that
Z t

0

��.v; t; �/dvC
Z t

0

�.v; t; �/d QW .v/ D r.t/ � f .0; t/:

Hence

I D 1

2
ˇ2.t; T /

Z t

0

�2.v; t; �/dvC ˇ.t; T / Œr.t/ � f .0; t/� :

Recalling the definition of the subsidiary stochastic variable  .t/ we can finally
write

I D 1

2
ˇ2.t; T / .t/C ˇ.t; T / Œr.t/ � f .0; t/� :

Hence the expression for the bond price may be written as in Proposition 25.3.

25.12 Problems

Problem 25.1 Show that the Hull–White model can be obtained within the Heath–
Jarrow–Morton framework by setting

�.t; T / D N�e�k.T�t /;

where N�; k are constants.
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Problem 25.2 The Heath–Jarrow–Morton model takes as its starting point a
stochastic differential equation for the instantaneous forward rate of the form

df .t; T / D ˛.t; T /dt C �.t; T /dW.t/;

and from this determines the stochastic dynamics of the instantaneous spot rate spot
rate r.t/ and pure discount bond price P.t; T /.

Suppose instead we take as the starting point a stochastic differential equation
for P.t; T / of the form

dP.t; T /

P.t; T /
D ˇ.t; T /dt C ı.t; T /dW.t/:

Determine the corresponding stochastic dynamics for r.t/ and f .t; T /.
Express in terms of ˇ.t; T / and ı.t; T / the Heath–Jarrow–Morton drift restric-

tion that guarantees no riskless arbitrage opportunities between bonds of different
maturities.

Problem 25.3 In Sect. 23.6 we considered the volatility function

�.t; T / D N�e��.T�t /

and showed how this allowed the system dynamics to be Markovianised.
Now consider the volatility function

�.t; T / D Œ�0 C �1.T � t/�e��.T�t /:

Show the system dynamics can be Markovianised in this case. In particular obtain
the stochastic differential equations for the bond price and the instantaneous spot
interest rate.

Hint: You will need to obtain a linked stochastic differential equation system for

Z1.t/ D
Z t

0

.t � v/e��.t�v/dW.v/;

and

Z0.t/ D
Z t

0

e��.t�v/dW.v/:

Problem 25.4 The Ho–Lee model is obtained within the Heath–Jarrow–Morton
framework by setting

�.t; T / D N�;
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where N� is a constant. Show that

f .t; T / D r.t/C f .0; T / � f .0; t/C N�2t.T � t/:

By obtaining the dynamics for r.t/ under the risk neutral measure, show also that

r.t/ D f .0; t/C 1

2
�2t2 C N� QW .t/:

Hence, show that for this model the bond price is given by

P.t; T / D expŒ�a.t; T / � .T � t/r.t/�;

where

a.t; T / D ln
P.0; t/

P.0; T /
� .T � t/f .0; t/C 1

2
N�2t.T � t/2:

Problem 25.5 Computational Problem—Consider the Heath–Jarrow–Morton
model with the volatility function

�.t; T / D �0e
��.T�t /:

We know in this case that the dynamics for the instantaneous spot rate are given by
[Eq. (25.54)].

Take �0 D 0:02 and � D 0:6. Assume also that the initial forward curve is
given by

f .0; T / D 0:08� 0:03e�1:5T :

Consider the bond pricing formula [Eq. (25.29)]. Write a program to calculate the
bond price by simulating the stochastic differential equation for r.t/ from 0 to t and
performing the QEt operation by simulating a large number of paths from t to T . This
will give the bond price conditional on the value of r.t/ that has been obtained.

You can check the accuracy of your algorithm (and hence choose appropriate�t
and number of paths) by using the fact that when t D 0 we have the exact solution

P.0; T / D exp

�
�
Z T

0

f .0; s/ds

	
:

Use this to check the accuracy for T D 0:5; 1:0; 1:5 and 2:0.
Then use the simulation procedure to calculate P.0:5; 1:0/, P.0:5; 1:5/ and

P.0:5; 2:0/.
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Note that the evaluation of 
.t; T / will be conditional on the interest rate r.t/.
Obtain r.t/ by simulating from 0 to t and be sure to specify the value of r.t/ that
you are using.

Check the accuracy of these approximations by using the exact bond-pricing
formula (here you need to refer to Sect. 23.4.2, but use the �.t/ that arises in the
Heath–Jarrow–Morton model).



Chapter 26
The LIBOR Market Model

Abstract The modifications to the Heath-Jarrow-Morton framework to cater for
market quoted rates such as LIBOR rates were carried out by Brace and Musiela
(Math Finance 4(3):259–283, 1994) (henceforth BM). In this chapter, we first
describe the BM parameterisation of the Heath–Jarrow–Morton model, and then
we outline the choice of volatility functions that produces lognormal dynamics for
LIBOR rates. We also discuss the pricing of interest rate caps and swaptions in this
framework. In the final section, we summarise the earlier effort to price an interest
rate caplet when the forward rate dynamics are Gaussian (i.e. the volatility function
is only time dependent).

26.1 Introduction

The Heath–Jarrow–Morton model provides the most general framework for the
analysis of interest rate derivatives—it calibrates automatically to the currently
observed forward curve and by appropriate choice of the forward rate volatilities
it can generate a wide range of specific models. However from the point of
view of practical implementations, the Heath–Jarrow–Morton model still requires
some further development since the underlying forward rate is an instantaneous
rate, whereas market quoted rates are for some discrete time period. A good
example would be LIBOR rates that are quoted for periods such as 3-months or
6-months. Such rates are typically the reference rate for the interest rate caps and
floors described in Chap. 21. The developments that led to what is now known
as the LIBOR market model were reported in Brace and Musiela (1994) and
Brace et al. (1997) (henceforth BGM), where it was in particular shown how to
choose the volatility functions (and a change of measure) so that LIBOR rates
follow log-normal processes. It was this latter assumption that allowed BGM to
obtain Black–Scholes type formulae for the value of interest caps and floors—these
formulae are of the same form as those obtained for the Merton model of stochastic
interest rates in Chap. 20 and the Hull–White model in Sect. 23.7.1. These results
brought together a soundly based theory of interest rate dynamics and the market
practice of using Black’s model to price interest rate caps, that prior to BGM had
been frowned upon by finance academics. The theoretical developments advanced
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the market practice by demonstrating how to properly specify the volatility function
and so to better calibrate the resulting models to market data. It should be pointed
out that similar results were also derived by Miltersen et al. (1997). Expressing
the forward rate dynamics in terms of discrete rates also overcame the bothersome
feature of the Heath–Jarrow–Morton model that log-normal instantaneous forward
rates are badly behaved (they can go to infinity in finite time). This feature is not
shared by discrete forward rates, which are well behaved as shown by Sandmann
and Sondermann (1997) and by BGM.

26.2 The Brace–Musiela Parameterisation
of the Heath–Jarrow–Morton Model

We recall the Heath–Jarrow–Morton stochastic integral equation for the instanta-
neous forward rates, under the risk-neutral measure, namely1

f .t; T / D f .0; T /C
Z t

0

˛.v; T /dv C
Z t

0

�.v; T /d QW .v/; (26.1)

where t the time at which the rate is quoted is regarded as variable and the maturity
time T at which the rate applies is fixed. Note that (26.1) is arbitrage free when
(see (25.26))

˛.v; T / D �.v; T /

Z T

v

�.v; s/ds: (26.2)

BM consider the constant period ahead forward rate

r.t; x/ � f .t; t C x/; x > 0: (26.3)

Thus r.t; x/ is the rate an investor can contract at time t for instantaneous
borrowing/lending at time t C x, where x is fixed e.g. x equals 3 months. The time
line for r.t; x/ is displayed in Fig. 26.1 and should be contrasted with Fig. 22.13 in
Chap. 22. Setting T D t C x in (26.1) we have

f .t; t Cx/ D f .0; tCx/C
Z t

0

˛.v; t Cx/dvC
Z t

0

�.v; t Cx/d QW .v/: (26.4)

BM further define

�.t; x/ � �.t; t C x/; (26.5)

1For notational convenience, we omit the dependence of the drift and volatility function to the path
dependent quantities !.
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Fig. 26.1 The time line for the instantaneous constant period ahead forward rate r.t; x/

and

a.t; x/ � ˛.t; t C x/;

though the latter quantity drops out of the preference free representation. With this
notation we can write

�.v; t C x/ D �.v; v C .t C x � v// D �.v; t C x � v/;

and

˛.v; t C x/ D ˛.v; v C .t C x � v// D a.v; t C x � v/:

The reason for this apparently roundabout notation will become apparent when
the Heath–Jarrow–Morton drift restriction is adapted to the BM notation in (26.7)
below. With the above identifications and noting that

f .0; t C x/ D r.0; t C x/;

then (26.4) can be written in terms of BM notation as

r.t; x/ D r.0; tCx/C
Z t

0

a.v; tCx�v/dvC
Z t

0

�.v; tCx�v/d QW .v/: (26.6)

In order to obtain the arbitrage free dynamics for r.t; x/ we use the drift restric-
tion (26.2), hence

a.t; x/ � ˛.t; t C x/ D �.t; t C x/

Z tCx

t

�.t; s/ds

D �.t; t C x/

Z x

0

�.t; t C y/dy

D �.t; x/

Z x

0

�.t; y/dy (26.7)

D �.t; x/ .t; x/; (26.8)
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where we define the integrated volatility function2

 .t; x/ D
Z x

0

�.t; y/dy: (26.9)

With this notation we obtain

a.t; x/ D @

@x

�
1

2
 2.t; x/

	
; (26.10)

and

�.t; x/ D @

@x
 .t; x/: (26.11)

These results will be useful in later calculations. We have already mentioned the
notation to define the BM volatility function at (26.5). This results in the function
 .t; x/ not having time t appearing in the second argument. This turns out to be
crucial in order to carry out the volatility transformations in Sect. 26.4. The arbitrage
free dynamics of r.t; x/ are given by (recall Eq. (26.6))

r.t; x/ D r.0; tCx/C
Z t

0

a.v; tCx�v/dvC
Z t

0

�.v; tCx�v/d QW .v/; (26.12)

with a.t; x/ given by (26.8). Equation (26.12) is the transformation to BM notation
of (25.26) for the instantaneous Heath–Jarrow–Morton forward rate under QP.

However this equation is in the form of a stochastic integral equation, we also
need to express it in the form of a stochastic differential equation. First of all by
differentiating (26.12) with respect to x, we note that

@

@x
r.t; x/ D r2.t; x/ D r2.0; t C x/C

Z t

0

a2.v; t C x � v/dv

C
Z t

0

�2.v; t C x � v/d QW .v/:
(26.13)

Now we form the differential with respect to time in Eq. (26.12), so that

dr.t; x/ D
�
r2.0; t C x/C a.t; x/C

Z t

0

a2.v; t C x � v/dv

C
Z t

0

�2.v; t C x � v/d QW .v/
�

dt C �.t; x/d QW .t/:

(26.14)

2Actually BGM use � , but here we prefer to use  , given that � is used for the Heath–Jarrow–
Morton volatility function.
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By making use of (26.13) the drift term above can be written more compactly,
thus (26.14) may be expressed as

dr.t; x/ D
�
@

@x
r.t; x/C a.t; x/

�
dt C �.t; x/d QW .t/: (26.15)

By use of (26.10) and (26.11), Eq. (26.15) may be written in the alternative form

dr.t; x/ D @

@x

��
r.t; x/C 1

2
 2.t; x/

	
dt C  .t; x/d QW .t/

�
; (26.16)

which is essentially BGM’s equation (1.1).3

The price at time t of a pure discount bond maturing at time T and the Heath–
Jarrow–Morton forward rate are related by

P.t; T / D exp

�
�
Z T

t

f .t; s/ds

	
;

which in terms of the BM forward rate notation becomes

P.t; T / D exp

�
�
Z T

t

r.t; s � t/ds

	
: (26.17)

We shall refer to the quantity P.t; T / as the Heath–Jarrow–Morton bond price and
emphasise that it matures at a fixed date ahead. This will be in contrast to the BM
bond price, which matures at a fixed period ahead. By changing the variable u to
u D s � t in Eq. (26.17), we have that

P.t; T / D exp

�
�
Z T

t

r.t; s � t/ds

	
D exp

�
�
Z T�t

0

r.t; u/du

	
: (26.18)

26.3 The LIBOR Process

We introduce the ı-period forward LIBOR rate L.t; x/ related to the BM instanta-
neous forward rate r.t; x/ according to

1C ıL.t; x/ D exp

 Z xCı

x

r.t; u/du

!
: (26.19)

3Note, BGM allow for a vector of noise processes.
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Fig. 26.2 The time line for the definition of the ı-period LIBOR rate

We refer the reader to the time line in Fig. 26.2 for the economic intuition behind
the definition of L.t; x/. This is the simply compounded rate that an investor can
contract at time t for borrowing/lending over the period .t C x; t C x C ı/. On
the RHS of Eq. (26.19) is the value to which $1 accumulates if it is invested at
the continuously compounded BM instantaneous forward rate over the period .t C
x; t C x C ı/. Equating (26.19) merely states that the simply compounded LIBOR
rate must be set so as to be equivalent to investing at the continuously compounded
rate. Strictly speaking we should use a notation such as L.t; x; ı/ or Lı.t; x/ to
denote this rate in order to emphasise the dependence on the compounding period
ı, but we will use the simpler notation L.t; x/.

Note that according to (26.18), the definition (26.19) relates LIBOR rates and
bond prices as

1C ıL.t; x/ D exp

 Z xCı

x

r.t; u/du

!
D exp

 Z xCı

0

r.t; u/du �
Z x

0

r.t; u/du

!

D P.t; t C x/

P.t; t C x C ı/
: (26.20)

We determine next the stochastic differential equation for L.t; x/. First we use the
dynamics (26.6) to evaluate the quantity

V.t; x/ D
Z xCı

x

r.t; u/du

D
Z xCı

x

r.0; t C u/du C
Z xCı

x

Z t

0

a.v; t C u � v/dvdu

C
Z xCı

x

Z t

0

�.v; t C u � v/d QW .v/du
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D
Z xCı

x

r.0; t C u/du C
Z t

0

Z xCı

x

a.v; t C u � v/dudv

C
Z t

0

Z xCı

x

�.v; t C u � v/dud QW .v/:

Taking the differential with respect to t we obtain

dV D
"Z xCı

x

r2.0; t C u/du C
Z t

0

Z xCı

x

a2.v; t C u � v/dudv

C
Z t

0

Z xCı

x

�2.v; t C u � v/dud QW .v/C
Z xCı

x

a.t; u/du

#
dt

C
 Z xCı

x

�.t; u/du

!
d QW .t/:

(26.21)

Next we replace x by u in (26.13) and integrate to obtain

Z xCı

x

r2.t; u/du D
Z xCı

x

r2.0; t C u/du C
Z xCı

x

Z t

0

a2.v; t C u � v/dvdu

C
Z xCı

x

Z t

0

�2.v; t C u � v/d QW .v/du;

which after performing the integration on the LHS becomes

r.t; x C ı/ � r.t; x/ D
Z xCı

x

r2.0; t C u/du C
Z t

0

Z xCı

x

a2.v; t C u � v/dudv

C
Z t

0

Z xCı

x

�2.v; t C u � v/dud QW .v/:

This last result may be used to rewrite (26.21) as

dV D
"
r.t; x C ı/ � r.t; x/C

Z xCı

x

a.t; u/du

#
dt (26.22)

C
 Z xCı

x

�.t; u/du

!
d QW .t/:
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We note from (26.10) and (26.11) that

Z xCı

x

a.t; u/du D 1

2

�
 2.t; x C ı/�  2.t; x/

�
;

and

Z xCı

x

�.t; u/du D  .t; x C ı/�  .t; x/:

Thus (26.22) may finally be written as

dV D �V dt C �V d QW .t/; (26.23)

where

�V D r.t; x C ı/ � r.t; x/C 1

2

�
 2.t; x C ı/ �  2.t; x/� ;

�V D  .t; x C ı/ �  .t; x/:
(26.24)

Since L.t; x/ D ı�1.eV.t;x/ � 1/ we may apply Ito’s lemma to determine the
stochastic differential equation satisfied by L.t; x/, thus

dL D ı�1eV .�V C 1

2
�2V /dt C ı�1eV �V d QW .t/:

From (26.24) we have that

�V C 1

2
�2V D r.t; x C ı/� r.t; x/C  .t; x C ı/. .t; x C ı/ �  .t; x//;

and as 1C ıL.t; x/ D eV.t;x/, we find that

dL D ı�1.1C ıL.t; x// Œr.t; x C ı/� r.t; x/C  .t; x C ı/ . .t; x C ı/

� .t; x//� dt C ı�1.1C ıL.t; x//. .t; x C ı/�  .t; x//d QW .t/:

(26.25)

Equation (26.25) together with the stochastic differential equation (26.14)
(or (26.15)) for r.t; x/ form a two-dimensional stochastic dynamic system for
r.t; x/ and L.t; x/. In general we would expect this system to be non-Markovian
unless we make special assumptions about the volatility function �.t; x/ of the kind
we investigated in Chap. 25.
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BGM prefer to express (26.25) in a slightly different form by observing
from (26.19) that

@

@x
L.t; x/ D ı�1 exp

 Z xCı

x

r.t; u/du

!
.r.t; x C ı/� r.t; x//

D ı�1eV.t;x/.r.t; x C ı/� r.t; x//

D ı�1.1C ıL.t; x//.r.t; x C ı/ � r.t; x//;

use of which yields the equation for the LIBOR rate L.t; x/ as

dL D
�
@

@x
L.t; x/

Cı�1.1C ıL.t; x// .t; x C ı/. .t; x C ı/�  .t; x//

�
dt

C ı�1.1C ıL.t; x//. .t; x C ı/�  .t; x//d QW .t/:

(26.26)

Because of the appearance of the @
@x
L.t; x/ in the drift, Eq. (26.26) is in fact a

stochastic partial differential equation and is quite a complicated mathematical
object. A great deal of the BGM article is devoted to demonstrating that Eq. (26.26)
yields a well defined stochastic process.

26.4 Lognormal LIBOR Rates

BGM then ask the question: “What volatility function would result in the LIBOR
process equation (26.26) having a lognormal volatility structure?” The answer is
that  .t; x/ must satisfy a relationship

ı�1.1C ıL.t; x//. .t; x C ı/�  .t; x// D 
.t; x/L.t; x/; (26.27)

where 
.t; x/ is some function of time and maturity. Equation (26.27) may be re-
expressed as

 .t; x C ı/�  .t; x/ D ıL.t; x/

1C ıL.t; x/

.t; x/ (26.28)

which defines .t; x/ for all x � ı, provided .t; x/ is defined on the initial interval
0 � x < ı. To see how  .t; x/ is built up, consider the maturity time line in
Fig. 26.3.



578 26 The LIBOR Market Model

Fig. 26.3 The sequential determination of the  k.t; x/

We use  k.t; x/ to denote .t; x/ on the interval kı � x < .kC1/ı and assume
 0.t; x/ is given. Then on ı � x < 2ı we have

 1.t; x/ D  0.t; x � ı/C ıL.t; x � ı/
1C ıL.t; x � ı/
.t; x � ı/;

whilst on 2ı � x < 3ı we have

 2.t; x/ D  1.t; x � ı/C ıL.t; x � ı/

1C ıL.t; x � ı/

.t; x � ı/

D  0.t; x � 2ı/C ıL.t; x � 2ı/
1C ıL.t; x � 2ı/


.t; x � 2ı/

C ıL.t; x � ı/

1C ıL.t; x � ı/

.t; x � ı/;

and we see that in general on kı � x < .k C 1/ı holds

 k.t; x/ D  0.t; x � kı/C
kX

jD1

ıL.t; x � jı/
1C ıL.t; x � jı/


.t; x � jı/: (26.29)

To finally recover the Heath–Jarrow–Morton volatility function we recall from
Eq. (26.11) that

�.t; x/ D @

@x
 .t; x/:

With the above choice of volatility function the stochastic differential equa-
tion (26.26) for L.t; x/ may be written4

4Note that by use of Eq. (26.28) the second term in the drift of Eq. (26.26) becomes  .t; x C
ı/L.t; x/
.t; x/. Then use again of Eq. (26.28) written as

 .t; x C ı/ D  .t; x/C ıL.t; x/

1C ıL.t; x/

.t; x/

yields the result.
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Fig. 26.4 The time line for the rate K.t; T /

dL D
�
@

@x
L.t; x/C L.t; x/
.t; x/ .t; x/C ıL2.t; x/
2.t; x/

1C ıL.t; x/

�
dt

C 
.t; x/L.t; x/d QW .t/;

(26.30)

which has a lognormal volatility structure. Whilst we have succeeded in finding a
volatility structure that yields log-normal dynamics for the LIBOR rate, we need
to keep in mind that the “cost” of this choice is a very complicated drift term.
However as we shall see the other technique upon which BGM rely, namely the
change of measure, makes irrelevant how complicated the drift term may be. The
dynamics (26.30) can further be simplified by considering the process

K.t; T / D L.t; T � t/; .0 � t � T /: (26.31)

We can obtain the appropriate time line forK.t; T / by setting x D T �t in Fig. 26.2,
as shown in Fig. 26.4.

Hence we see that K.t; T / is the rate an investor can contract at time t for
borrowing/lending between T and T C ı. Thus K.T; T / D L.T; 0/ is the rate an
investor can contract at time T for borrowing/lending between T and T C ı. By
taking differentials we see that K.t; T / satisfies

dK.t; T / D dL.t; T � t/ �L2.t; T � t/dt; (26.32)

whereL2 denotes partial derivative with respect to the second argument. In deriving
this last result we make use of the fact that L.t; �/ is a smooth function of its
second argument, a result which is proven by BGM. Using (26.32) in conjunction
with (26.30) (with x set to T � t) we find that the dynamics ofK.t; T / are given by

dK D K.t; T /
.t; T � t/

�
 .t; T � t/C ıK.t; T /

1C ıK.t; T /

.t; T � t/

�
dt

CK.t; T /
.t; T � t/d QW .t/: (26.33)

By use of (26.28) with x D T � t , this last equation reduces to

dK D K.t; T /
.t; T � t/
�
 .t; T C ı � t/dt C d QW .t/
 : (26.34)
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We define the new Wiener processW T .t/ by

dWT .t/ D  .t; T � t/dt C d QW .t/;

i.e.

W T .t/ D W.t/C
Z t

0

 .s; T � s/ds: (26.35)

Let us consider the Radon–Nikodym derivative of the T -forward measure. By direct
application of (25.41), the associated Radon–Nikodym derivative is given by

�.0; T / D 1

A.T /P.0; T /
:

This quantity can be calculated using the expression for the bond price in the
Appendix 26.1 (see Eq. (26.84)),

P.t; T /

A.t/
D P.0; T / exp

�
�1
2

Z t

0

 2.s; T � s/ds �
Z t

0

 .s; T � s/d QW .s/
�

so that, by setting t D T in the last equation, we obtain

�.0; T / D exp

�
�1
2

Z T

0

 2.s; T � s/ds �
Z T

0

 .s; T � s/d QW .s/
�
: (26.36)

Given the expression for the Radon–Nikodym derivative between QP and P
T in

Eq. (26.36), we see that W T .t/ will be a standard Wiener process under PT . Thus
we can re-express (26.34) as

dK D K.t; T /
.t; T � t/dWTCı.t/; (26.37)

which implies that K.t; T / is lognormally distributed with zero drift under PTCı.
The pricing of interest rate derivatives such as caps, floors and swaptions requires

the modelling of a series of forward LIBOR rates. Typically, forward rates reset
at certain reset dates during the life of the interest rate derivatives. If .T0; Tn/ is
the tenor and Tj D T0 C jı, for j D 0; 1; : : : ; n � 1; are the reset dates then
we denote as Lj .t/ WD L.t; Tj � t/ D K.t; Tj / the ı-period forward LIBOR
rate that resets at time Tj . By introducing the notation 
j .t/ D 
.t; Tj � t/ and
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 j .t/ D  .t; Tj � t/ and by using (26.34), the risk-neutral dynamics of the rate
Lj .t/ would be expressed as5

dLj D Lj .t/
j .t/
�
 jC1.t/dt C d QW .t/
 : (26.38)

Similarly from (26.37), the dynamics of the rate Lj .t/ under the TjC1-forward
measure would be6

dLj D Lj .t/
j .t/dWTjC1 .t/: (26.39)

Consequently we have shown that the rate Lj .t/ is lognormally distributed with
zero drift under the TjC1-forward measure, i.e.,

E
TjC1

t ŒLj .Tj /� D Lj .t/: (26.40)

Equation (26.40) also implies that the forward LIBOR rate Lj .t/ is a martingale
under the TjC1-forward measure.

26.5 Pricing Caps

Consider a forward cap on a unit principal amount settled in arrears at times
TjC1, for j D 0; 1; � � � ; n � 1. For the caplet over (Tj , TjC1), the associated
forward LIBOR rate Lj .Tj / resets at time Tj and the cash flow at time TjC1 is
ı.Lj .Tj /�E/C, whereE is the exercise rate of the caplet (see Fig. 26.5). Thus the
value Cpl.t; Tj / of this caplet under the risk-neutral measure can be expressed as

Cpl.t; Tj / D ı QEt
�

A.t/

A.TjC1/
�
Lj .Tj / �E�C

�
; (26.41)

5Note that

 .t; Tj C ı � t / D  .t; TjC1 � t / D  jC1.t /:

6Note that

dWTjCı.t / D dWTjC1 .t /:
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Fig. 26.5 The time line for the caplet that resets at time Tj

where A.t/ is the money market account (25.10). We switch to the measure with

numeraire the price of the bond maturing at time TjC1 and use E
TjC1

t to denote
expectation with respect to this measure (see Eq. (20.16) in Sect. 20.2)

Cpl.t; Tj / D ıE
TjC1

t

�
P.t; TjC1/

P.TjC1; TjC1/
�
Lj .Tj / �E�C

�
;

so that

Cpl.t; Tj / D ıP.t; TjC1/E
TjC1

t

h�
Lj .Tj /� E

�Ci
: (26.42)

Since the drift in Eq. (26.39) is zero, then (26.42) implies that we have a standard
Black–Scholes model with interest rate being zero. Thus the expectation in (26.42)
can be expressed as

Lj .t/N .h.t; Tj // �EN .h.t; Tj /� �.t; Tj //;

where

h.t; Tj / D ln.Lj .t/
E
/C 1

2
�2.t; Tj /

�.t; Tj /
; (26.43)

and

�2.t; Tj / D
Z Tj

t


2j .s/ds: (26.44)

We have also used the result that when the diffusion term is time varying the volatil-
ity of the Black–Scholes formula is replaced by the integrated volatility (26.44), as
we have seen in several previous chapters. Note that another common representation
of this result involves the average volatility

�2.t; Tj / D 1

Tj � t
�2.t; Tj /; (26.45)
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that re-expresses (26.43) as

h.t; Tj / D ln.Lj .t/
E
/C 1

2
�2.t; Tj /.Tj � t/

�.t; Tj /
p
Tj � t

: (26.46)

In order to implement the model we would need to specify some functional form
for 0.t; x/ and 
.t; x/. For implementation details we refer the reader to Brigo and
Mercurio (2006) and Brace (2007).

26.6 Pricing Swaptions

26.6.1 Swaps

An interest rate swap (IRS) is an agreement between two parties to exchange
floating-rate payments for fixed-rate payments on prespecified future dates. The
party who agrees to pay the fixed rate and to receive the floating rate holds a “payer
IRS” while the party who agrees to receive the fixed rate and to pay the floating rate
holds a “receiver IRS”. Note that in an IRS net payments are made. Consider a payer
IRS on a unit principal amount settled in arrears at times TjC1; j D 0; 1; � � � ; n� 1.
Thus the tenor of the swap is .T0; Tn/. At every reset date TjC1, the fixed cash flow
paid is ıR, where R is the fixed rate and the floating cash-flow received is ıLj .Tj /,
where the floating rate Lj .Tj / resets at Tj and pays at TjC1. Thus the floating rates
reset at dates T0; T1; : : : Tn�1 and pay at dates T1; T2; : : : Tn. Figure 26.6 illustrates
the cash flow of a payer IRS. The solid-line arrows represents the fixed cash flows
paid and the dashed-line arrows represents the floating cash flow received. Figure
26.7 depicts the net cash flow of a payer IRS with the initial net cash flow at T0
being zero by definition. Thus for a payer IRS, the net cash flow paid at TjC1 is
ı.Lj .Tj / �R/.

Fig. 26.6 The cash flow for a payer IRS
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Fig. 26.7 Net cash flow for a payer IRS

The value at time t � T0 of the payer IRS is denoted as IRSp.t; T0; Tn; R/ and
it can be evaluated under the TjC1-forward measure by using the price of the bond
maturing at time TjC1 as the numeraire, i.e.

IRSp.t; T0; Tn; R/ D ı

n�1X

jD0
E
TjC1

t

�
P.t; TjC1/

P.TjC1; TjC1/
�
Lj .Tj /� R

��

D ı

n�1X

jD0
P.t; TjC1/E

TjC1

t ŒLj .Tj /� � ıR

n�1X

jD0
P.t; TjC1/:

(26.47)

By using the fact that Lj .t/ is a martingale under the TjC1-forward measure (see
Eq. (26.40)), we express the value of the payer IRS (26.47) as

IRSp.t; T0; Tn; R/ D ı

n�1X

jD0
P.t; TjC1/Lj .t/ � ıR

n�1X

jD0
P.t; TjC1/: (26.48)

The fixed rate of the contract that makes the IRS a fair contract at time t is called the
forward swap rate for the tenor .T0; Tn/ and it is denoted as Ro;n.t/. This implies
that the condition IRSp.t; T0; Tn; Ro;n.t// D 0 should be satisfied. By setting the
expression (26.48) of the payer IRS equal to zero, the forward swap rate Ro;n.t/
may be expressed as

Ro;n.t/ D
n�1X

jD0
wj .t/Lj .t/; (26.49)

with

wj .t/ D P.t; TjC1/Pn�1
kD0 P.t; TkC1/

: (26.50)
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According to Eq. (26.49), the forward swap rate is a weighted average of the forward
rates over the tenor of the swap, as 0 < wj .t/ � 1 and

Pn�1
jD0 wj .t/ D 1.7

Another expression of the payer IRS value can be obtained by using the
relationship (26.20) between forward LIBOR rates and bond prices. Accordingly,
we have that

Lj .t/ D 1

ı

� P.t; Tj /

P.t; TjC1/
� 1

�
: (26.51)

Thus the value of the payer IRS (26.48) is simplified to

IRSp.t; T0; Tn; R/ D
n�1X

jD0
.P.t; Tj / � P.t; TjC1//C P.t; Tn/

� ıR
n�1X

jD0
P.t; TjC1/� P.t; Tn/

D P.t; T0/� ıR

n�1X

jD0
P.t; TjC1/� P.t; Tn/: (26.52)

From (26.52), it is clear that the value of an IRS does not depend on the volatility
or the correlations of the underlying forward rates, a well known property of IRS
pricing. By setting the IRS price (26.52) equal to zero, the forward swap rate is
expressed as

Ro;n.t/ D P.t; T0/� P.t; Tn/

ı
Pn�1

jD0 P.t; TjC1/
: (26.53)

By re-arranging (26.53) we have that

P.t; T0/ � P.t; Tn/ D ıRo;n.t/

n�1X

jD0
P.t; TjC1/: (26.54)

7This result can lead to a useful approximation. Empirically the variability of the wj ’s is relatively
small compared to the variability of theL’s. By approximating the wj ’s by wj .0/ then the volatility
of the swap rate can be estimated by the volatility of forward rates by using the approximation

Ro;n.t/ 	
n�1X

jD0

wj .0/Lj .t/:
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Substitution of (26.54) into the value of the payer IRS (26.52) leads to

IRSp.t; T0; Tn; R/ D ı

n�1X

jD0
P.t; TjC1/.Ro;n.t/ � R/: (26.55)

This representation will be used in the next section to price swaptions.
Note that by using (26.53), the forward swap rate can be expressed solely in

terms of the underlying forward LIBOR rates. By dividing the numerator and the
denominator of Eq. (26.53) by P.t; T0/ we obtain

Ro;n.t/ D
1 � P.t;Tn/

P.t;T0/

ı
Pn�1

jD0
P.t;TjC1/

P.t;T0/

: (26.56)

From (26.51) we have that

1

1C ıLj .t/
D P.t; TjC1/

P.t; Tj /
; (26.57)

therefore for j D 0; 1; : : : ; n � 1 the ratio P.t; TjC1/=P.t; T0/ can be expressed as

P.t; TjC1/
P.t; T0/

D
jY

mD0

P.t; TmC1/
P.t; Tm/

D
jY

mD0

1

1C ıLm.t/
D 1
Qj
mD0.1C ıLm.t//

:

(26.58)

Then the forward swap rate is expressed as a function of the underlying LIBOR
rates Lm.t/ as

Ro;n.t/ D
1 �Qn�1

mD0 1
1CıLm.t/

ı
Pn�1

jD0
Qj
mD0 1

1CıLm.t/
: (26.59)

26.6.2 Swaptions

A European payer swaption is an option giving the right to enter a payer IRS at a
given future time, which is the swaption’s maturity. The swaption maturity is usually
the first reset date of the underlying IRS, which is T0 in our setting. Thus the payoff
of the payer swaption at its maturity T0 is

˝n.T0/ D max
�
IRSp.T0; T0; Tn; R/; 0



:
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In order to price the swaption we express the price of an option on a swap as a
price of an option on the corresponding forward swap rate. Indeed, the payoff of the
swaption can be expressed as the payoff of a (call) option on the forward swap rate,
by using the expression Eq. (26.55) for the value of the payer IRS. Thus the payoff
of the swaption at T0 is given by

˝n.T0/ D ı

n�1X

jD0
P.T0; TjC1/.Ro;n.T0/ �R/C: (26.60)

The fixed rate R of the underlying IRS becomes the swaption strike. When the
forward swap rate at maturity T0 of the swaption is greater than the IRS fixed rate
R then the payer swaption will be exercised.

One may believe that by assuming lognormal dynamics for the forward swap rate
under the appropriate martingale measure will allow us to price the swaptions. Note
that the forward swap rate and its associated forward rates cannot simultaneously
be lognormal. To proceed, an approximation will be employed. Equation (26.60)
implies the payoff of the swaption can be expressed as the product of an option on
the forward swap rate and the annuity

Cn.t/ D ı

n�1X

jD0
P.t; TjC1/; (26.61)

for t � T0. Using this annuity as a new numeraire we switch to a new equivalent
martingale measure namely the forward swap measure P

S , where the value of the
swaption ˝n.t/ at time t satisfies8

˝n.t/

Cn.t/
D E

S
�˝n.T0/

Cn.T0/


 D E
S
�
.Ro;n.T0/� R/C



: (26.62)

The Radon–Nikodym derivative of the new measure P
S with respect to the risk-

neutral measure is QP, where

dPS

d QP D �Q.0; t/ D Cn.t/=Cn.0/

A.t/=A.0/
D ı

Cn.0/

n�1X

jD0

P.t; TjC1/
A.t/

: (26.63)

By using Eq. (26.49) that expresses the forward swap rate as a function of the
underlying forward LIBOR rates and the risk-neutral dynamics (26.38) of the

8From Eq. (26.53), the forward swap rate times the annuity Cn.t/ is equivalent to a bond portfolio
consisting of a long bond with maturity T0 and a short bond with maturity Tn. Thus the forward
swap rate evolves as the value of this bond portfolio denominated by the annuityCn.t/ and becomes
a martingale under the forward swap measure P

S .
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forward LIBOR rates and by applying the Ito’s lemma we derive the dynamics of
the forward swap rate Ro;n.t/ under the risk-neutral measure as, see Appendix 26.2
for details.

dRo;n D
n�1X

jD0

@Ro;n.t/

@Lj .t/

j .t/Lj .t/

�
d QW .t/ �

n�1X

mD0
wm.t/ mC1.t/dt

�
: (26.64)

We define the new Wiener processW S.t/ so that

dWS .t/ D d QW .t/ �
n�1X

mD0
wm.t/ mC1.t/dt;

where given the expression for the Radon–Nikodym derivative between QP and P
S in

Eq. (26.63) we see that W S.t/ is a standard Wiener process under PS . Thus we can
re-express Eq. (26.64) as

dRo;n D
n�1X

jD0

@Ro;n.t/

@Lj .t/

j .t/Lj .t/dWS .t/: (26.65)

These dynamics are not lognormal and we will use an approximation to obtain
lognormal dynamics. From Eq. (26.65) we have that for all � � t

dRo;n D Ro;n.�/

n�1X

jD0

@Ro;n.�/

@Lj

Lj .�/

Ro;n.�/

j .�/dWS.�/

� Ro;n.�/

n�1X

jD0

@Ro;n.t/

@Lj

Lj .t/

Ro;n.t/

j .�/dWS.�/

D Ro;n.�/

n�1X

jD0
$j 
j .�/dWS .�/; (26.66)

with

$j D @Ro;n.t/

@Lj

Lj .t/

Ro;n.t/
:

The Ro;n.t/ is now lognormally distributed with zero drift under PS . This approxi-
mate process was obtained by using the frozen coefficient technique that allows to
relax the dependence of state variables to the model coefficients. This is the well
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known lognormal forward swap model. Thus Black’s formula for swaptions can be
employed, by using the expectation at time t under the measure PS

˝n.t/ D Cn.t/E
S
t Œ
˝n.T0/

Cn.T0/
� D Cn.t/E

S
t Œ.Ro;n.T0/ �R/C�

D Cn.t/.Ro;n.t/N .d1/� RN .d2//; (26.67)

where

d1.t; T / D ln.Ro;n.t/
R

/C 1
2
�2n.T0 � t/

�n
p
T0 � t

; (26.68)

and

d2.t; T / D d1.t; T /� �n
p
T0 � t : (26.69)

with �n the variances of lnRo;n.t/ computed as

�2n D 1

T0 � t

Z T0

t

n�1X

j;kD0
$j$k
j .s/
k.s/ds: (26.70)

Note that for n D 1, Ro;1.t/ D L1.t/ and the swaption pricing formula
equation (26.67) is reduced to the caplet pricing formula equation (26.78).

26.7 Pricing a Caplet Under Gaussian Forward Rate
Dynamics

We present next the original BG derivation for pricing caplets. There is now
probably less interest in this model by practitioners due to the dominance of the
LIBOR market model, but it nevertheless constitutes an important model.

We recall the relation between the yield-to-maturity, y.t; T1/, and the bond price
P.t; T1/ over .t; T1/, namely

P.t; T1/ D e�y.t;T1/.T1�t /;

which we rewrite as

lnP.t; T1/�1 D y.t; T1/.T1 � t/: (26.71)
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Using the approximation

lnx ' �1C x;

we obtain

�1C P.t; T1/
�1 D y.t; T1/.T1 � t/:

Setting

f .t/ � y.t; T1/;

and rearranging we obtain

P�1.t; T1/ D 1C f .t/.T1 � t/;

which becomes the relationship used by Brace–Musiela at t D T , namely

P�1.T; T1/ D 1C f .T /ı:

From Eq. (26.71) we see that the stochastic differential equation followed by
y.t; T1/ (i.e. f .t/) is essentially the one followed by lnP.t; T1/ which is given by
Eq. (25.25) of our discussion on the Heath–Jarrow–Morton framework. In fact

df D
"
f .t/ � r C 1

2
�2B.t; T1/

T1 � t

#
dt � �B.t; T1/

T1 � t d QW .t/;

where

�B.t; T1/ D �
Z T1

t

�.t; u/du:

In this version of their model Brace–Musiela assume that the volatility of the
instantaneous forward rate is proportional to the yield-to-maturity, that is

�.t; u/ D Q�f .t/;

from which

�B.t; T1/ D �Q�.T1 � t/f .t/:
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Fig. 26.8 The time line for a caplet on a BM forward rate

Hence

df D
"
f .t/ � r C 1

2
Q�2.T1 � t/2f .t/2

T1 � t

#
dt C Q�f .t/d QW .t/:

An application of Girsanov’s theorem will yield

df D Q�f .t/dW�;

whereW � is a new Brownian motion under a new measure. In fact,

dW�.t/ D
"
1

Q�

 
f .t/ � r C 1

2
Q�2.T1 � t/2f .t/2

T1 � t

!
dt C d QW .t/

#
:

We denote with Cpl.t; T / the value at time t of a caplet maturing at T on a BM
“forward rate” maturing at T1 D T C ı.

See Fig. 26.8 for the appropriate time-line. Recalling the notation

A.t/ D exp

�Z t

0

r.s/ds

	

where r.s/ is the instantaneous spot interest rate, (i.e. using Heath–Jarrow–Morton
notation) and noting that settlement on the caplet is in arrears, so that

Cpl.t; T / D ıR QEt
�
A.t/

A.T1/
.f .T / � k/C

�

where R is the principal amount and k is cap rate. Since .f .T / � k/C is a payoff
dependent on P.t; T1/ we are able to price according to the Heath–Jarrow–Morton
framework using QE. We can re-express the value of the caplet in terms of P.T; T1/
since

f .T / D 1

ı

�
1

P.T; T1/
� 1

	
:
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Thus

Cpl.t/ D R QEt
"
A.t/

A.T1/

�
1

P.T; T1/
� .1C ık/

	C#

D R.1C ık/ QEt
"

A.t/

A.T1/P.T; T1/

�
1

1C ık
� P.T; T1/

	C#
: (26.72)

This looks very close to a put option (maturity T ) written on a zero coupon bond
maturing at time T1, we just need to adjust the discounting with respect to T rather
than T1. Thus

Cpl.t/ D R.1C ık/ QEt
"

A.t/

A.T /P.T; T1/

�
1

1C ık
� P.T; T1/

	C
QET
�
A.T /

A.T1/

	#
;

(26.73)

where we have used the (telescope) law of iterated expectations. However, we have
that

P.T; T1/ D QET
�

exp

�
�
Z T1

T

r.s/ds

	�
D QET

�
A.T /

A.T1/

�
:

Hence

Cpl.t/ D R.1C ık/ QEt
"
A.t/

A.T /

�
1

1C ık
� P.T; T1/

	C#
: (26.74)

This is now the payoff on a put option (maturity T ) written on a pure discount bond
(maturity T1). Using the forward measure we can re-express the caplet value as

Cpl.t/ D R.1C ık/P.t; T /ETt

"�
1

1C ık
� P.T; T1/

	C#
; (26.75)

where E
T
t is the expectation calculated under the forward measure. In order

to calculate expectations under the forward measure we need to determine the
dynamics of

FT .t; T1/ D P.t; T1/

P.t; T /
;
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since in terms of this quantity Eq. (26.75) becomes

Cpl.t/ D R.1C ık/P.t; T /ETt

"�
1

1C ık
� FT .T; T1/

	C#
:

We already know the dynamics of P.t; T / and P.t; T1/ under QW hence by Ito’s
lemma we find that (again we recall the result in Sect. 6.6)

dFT .t; T1/ D FT .t; T1/

Z T1

T

�.t; v/dv

Z T

t

�.t; v/dvdt

� FT .t; T1/
�Z T1

T

�.t; v/dv

	
d QW .t/;

(26.76)

so that

dFT .t; T1/ D �FT .t; T1/
Z T1

T

�.t; v/dv

��
�
Z T

t

�.t; v/dv

	
dt C d QW .t/

�
:

(26.77)

If we define a new Wiener process

W T .t; T / D �
Z t

0

Z T

s

�.s; v/dvds C QW .t/;

so that

dWT .t; T / D �
Z T

t

�.t; v/dvdt C d QW .t/;

then by Girsanov’s theorem W T .t; T / is a Wiener process under the forward
measure PT . Hence we reexpress Eq. (26.76) as

dFT .t; T1/ D ��.t/FT .t; T1/dWT .t; T /;

where

�.t/ D
Z T1

T

�.t; v/dv:

The distribution for PT will be the Fokker–Plank equation (or Kolmogorov equa-
tion) associated with this stochastic differential equation. The result will be
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equivalent to using Black’s formula for futures options but using �.t/ as the
volatility function. Thus

Cpl.t/ D R.1C ık/P.t; T /

�
1

1C ık
N .�hC �

p
T � t /� P.T; T1/N .�h/

�
;

(26.78)

where

h D ln..1C ık/P.t; T1//C 1
2
�
2
.T � t/

�
p
T � t

; �
2
.T � t/ D

Z T

t

�2.s/ds:

26.8 Appendix

Appendix 26.1 Bond Price Dynamics in BM Notation

In this section we derive the Heath–Jarrow–Morton bond price dynamics in terms
of the BM notation. To this end we consider the expression involving the integral of
the BM forward rate in (26.17). Thus in Eq. (26.6) set x D u � t and integrate with
respect to u to obtain

Z T

t

r.t; u � t/du D
Z T

t

�
r.0; u/C

Z t

0

a.s; u � s/ds C
Z t

0

�.s; u � s/dW.s/

�
du

D
Z T

t

r.0; u/du C
Z t

0

Z T

t

a.s; u � s/duds

C
Z t

0

Z T

t

�.s; u � s/dudW.s/ (using Fubini’s theorem version III)

Making the change of variable v D u � t in the integral on the LHS and the change
of variable k D u � s in the last two integrals on the RHS we obtain

Z T�t

0

r.t; v/dv D
Z T

t

r.0; u/du C
Z t

0

�Z T�s

t�s
a.s; k/dk

	
ds

C
Z t

0

Z T�s

t�s
�.s; k/dkdW.s/: (26.79)

Consider the second term on the right-hand side of Eq. (26.79), we know that in the
arbitrage free economy and under the equivalent martingale measure

˛.t; T / D �.t; T /

Z T

t

�.t; s/ds:
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Hence from Eq. (26.7) we recall that in the BGM notation this condition can be
expressed as

a.t; x/ D �.t; x/ .t; x/ D @

@x

�
1

2
 2.t; x/

	
: (26.80)

Therefore the inner integral in the second term of (26.79) becomes

Z T�s

t�s
a.s; k/dk D 1

2

Z T�s

t�s
@

@k

�
 .s; k/2

�
dk

D 1

2

�
 2.s; T � s/�  2.s; t � s/




D 1

2

"�Z T�s

0

�.s; v/dv

	2
�
�Z t�s

0

�.s; v/dv

	2#
:

Equation (26.79) then can be expressed as

Z T�t

0

r.t; v/dv D
Z T

t

r.0; u/du C 1

2

Z t

0

"�Z T�s

0

�.s; v/dv

	2

�
�Z t�s

0

�.s; v/dv

	2#
ds

C
Z t

0

�Z T�s

0

�.s; u/du �
Z t�s

0

�.s; u/du

	
d QW .s/; (26.81)

where we now use QW .t/, the Wiener process under the equivalent martingale
measure.

Next consider calculation of the money market account. First note that in BM
notation, the instantaneous spot interest rate is given by

r.t/ D r.t; 0/:

Thus setting x D 0, t D s and replacing the running integration variables
by u in Eq. (26.6) (but with a.u; s � u/ chosen according to the arbitrage free
relation (26.80)), the stochastic integral equation for the instantaneous spot interest
rate is given by

r.s/ D r.s; 0/ D r.0; s/C
Z s

0

a.u; s � u/du C
Z s

0

�.u; s � u/d QW .u/:
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Hence

Z t

0

r.s/ds D
Z t

0

r.0; s/ds C
Z t

0

Z s

0

a.u; s � u/duds C
Z t

0

Z s

0

�.u; s � u/d QW .u/ds

D
Z t

0

r.0; s/ds C 1

2

Z t

0

�Z t�s

0

�.s; u/du

	2
ds C

Z t

0

Z t�s

0

�.s; u/dud QW .s/;
(26.82)

where the last equality follows from manipulations9 similar to those leading up to
Eq. (26.81). Next we determine the relative bond price

P.t; T /

A.t/
D

exp
�
� R T�t

0 r.t; u/du
�

exp
�R t

0 r.s; 0/ds
�

D exp

�
�
Z T�t

0

r.t; u/du �
Z t

0

r.s; 0/ds

	

D exp

�
�
Z T�t

0

r.t; u/du �
Z t

0

r.s/ds

	
:

Taking logs and making use of (26.81) and (26.82) the last equation becomes

ln

�
P.t; T /

A.t/

�
D �

Z T

t

r.0; u/du �
Z t

0

r.0; s/ds � 1

2

Z t

0

�Z T�s

0

�.s; v/dv

	2
ds

�
Z t

0

�Z T�s

0

�.s; u/du

	
d QW .s/;

9Note that
Z t

0

Z s

0

a.u; s � u/duds D
Z t

0

Z t

u
a.u; s � u/dsdu D

Z t

0

�Z t�u

0

a.u; y/dy

	
du;

and
Z t

0

Z s

0

�.u; s � u/d QW .u/ds D
Z t

0

Z t

u
�.u; s � u/dsd QW .u/ D

Z t

0

Z t�u

0

�.u; y/dyd QW .u/:
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thus

P.t; T /

A.t/
D exp

�
�
Z T

0

r.0; s/ds � 1

2

Z t

0

�Z T�s

0

�.s; v/dv

	2
ds

�
Z t

0

�Z T�s

0

�.s; u/du

	
d QW .s/

�
(26.83)

D P.0; T / exp

�
�1
2

Z t

0

 2.s; T � s/ds �
Z t

0

 .s; T � s/d QW .s/
�
:

(26.84)

Note that Eq. (26.83) is of the form10

P.t; T /

A.t/
D exp

�
�˛0 �

Z t

0

˛1.s/ds C
Z t

0

˛2.s/d QW .s/
	
:

The application of Ito’s lemma yields

d

�
P.t; T /

A.t/

�
D P.t; T /

A.t/

�
�˛1.t/C 1

2
˛22.t/

	
dt C P.t; T /

A.t/
˛2.t/d QW .t/:

Since (see the definitions in footnote 7)

�˛1.t/C 1

2
˛22.t/ D 0;

the last equation shows that
P.t; T /

A.t/
is a martingale under the equivalent martingale

measure. Next consider Eq. (26.82) with t set to T , that is

Z T

0

r.s/ds D
Z T

0

r.0; s/ds C 1

2

Z T

0

�Z T�s

0

�.s; u/du

	2
ds

C
Z t

0

Z T�s

0

�.s; u/dud QW .s/:
(26.85)

Consider the calculation of the expectation at time t of this quantity. If we assume
that the volatility function �.t; T / is dependent only on t and T (i.e. is independent
of any path dependent quantity such as r.t/ or f .t; T /) then the right hand side

10Here ˛0 D R T
o r.0; s/ds, ˛1.s/ D 1

2
 2.s; T � s/ and ˛2.s/ D  .s; T � s/:
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of Eq. (26.85) is normally distributed. Furthermore we can derive that the mean is
given by

m � QEt
�Z T

t

r.s/ds

	

D
Z T

0

r.0; s/ds C 1

2

Z T

0

�Z T�s

0

�.s; u/du

	2
ds C

Z t

0

Z T�s

0

�.s; u/dud QW .s/:

The appearance of the last term integrated with respect to the Wiener may appear
unusual, but we note that it is only integrated from 0 to t , the time at which the
expectation is being calculated. At that point in time, this term is in the past and so
represents a known or realised quantity. We then calculate the variance as

v2 D QEt
"�Z T

t

Z T�s

0

�.s; u/dud QW .s/
	2#

D
Z T

t

�Z T�s

0

�.s; u/du

	2
ds:

Using the result (6.47) we have

QEt
�

exp

�
�
Z T

t

r.s/ds

	�
D exp

�
�mC 1

2
v2
	
:

Appendix 26.2 Forward Swap Rate Dynamics

Recall from (26.38) that the risk-neutral dynamics of Lj .t/ are

dLj D Lj .t/
j .t/ jC1.t/dt C Lj .t/
j .t/d QW .t/: (26.86)

for j D 0; 1; : : : ; n � 1. From (26.49) and (26.50) we have that

Ro;n.t/ D
n�1X

jD0
wj .t/Lj .t/; (26.87)

with

wj .t/ D P.t; TjC1/Pn�1
kD0 P.t; TkC1/

D ıP.t; TjC1/
Cn.t/

: (26.88)
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An application of the Ito’s lemma derives the dynamics of the forward swap rate
Ro;n.t/ under the risk-neutral measure as

dRo;n D
h n�1X

jD0
Lj .t/
j .t/ jC1.t/

@Ro;n.t/

@Lj .t/

C 1

2

n�1X

jD0

n�1X

hD0
Lj .t/
j .t/Lh.t/
h.t/

@2Ro;n.t/

@Lj .t/Lh.t/

i
dt

C
n�1X

jD0
Lj .t/
j .t/

@Ro;n.t/

@Lj .t/
d QW .t/: (26.89)

Note that from (26.88) we obtain that for m > j

@wm.t/

@Lj .t/
D ı

@P.t;TmC1/

@Lj .t/
Cn.t/ � P.t; TmC1/ @Cn.t/@Lj .t/

C 2
n .t/

: (26.90)

By using (26.58) we know that

P.t; TmC1/ D P.t; T0/Qm
	D0.1C ıL	.t//

: (26.91)

thus for j � m

@P.t; TmC1/
@Lj .t/

D � ı

1C ıLj .t/

P.t; T0/Qm
	D0.1C ıL	.t//

D � ı

1C ıLj .t/
P.t; TmC1/:

(26.92)

In addition, from (26.61) we have that (form � j )

@Cn.t/

@Lj .t/
D ı

n�1X

kD0

@P.t; TkC1/
@Lj .t/

D ı

n�1X

mDj

�ı
1C ıLj .t/

P.t; TmC1/

D ıCn.t/

n�1X

mDj

�ı
1C ıLj .t/

P.t; TmC1/
Cn.t/

D � ıCn.t/

1C ıLj .t/

n�1X

mDj
wm.t/:

(26.93)
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By substituting (26.92) and (26.93) into (26.90) we have that for m � j

@wm.t/

@Lj .t/
D � ı

1C ıLj .t/

hıP.t; TmC1/
Cn.t/

� ıP.t; TmC1/
Cn.t/

n�1X

kDj
wk.t/

i

D � ıwm.t/

1C ıLj .t/

h
1 �

n�1X

kDj
wk.t/

i
D � ıwm.t/

1C ıLj .t/

j�1X

kD0
wk.t/: (26.94)

From (26.87) the partial derivative of Ro;n.t/ with respect to Lj .t/ can be
expressed as

@Ro;n.t/

@Lj .t/
D wj .t/C

n�1X

mD0

@wm.t/

@Lj .t/
Lm.t/;

where by using (26.94)11

@Ro;n.t/

@Lj .t/
D wj .t/ � ı

1C ıLj .t/

n�1X
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h
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kDj
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i
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D wj .t/� ı

1C ıLj .t/

h n�1X

mDj
wm.t/Lm.t/� .

n�1X

kDj
wk.t//.

n�1X

mD0
wm.t/Lm.t//

i

D wj .t/ � ı

1C ıLj .t/

n�1X

mDj
wm.t/.Lm.t/ �Ro;n.t// (26.95)

D wj .t/C ı

1C ıLj .t/

j�1X

mD0
wm.t/.Lm.t/ �Ro;n.t//: (26.96)

11Note that

j�1X

mD0

wm.t/.Lm.t/�Ro;n.t//C
n�1X

mDj

wm.t/.Lm.t/� Ro;n.t//

D
n�1X

mD0

wm.t/.Lm.t/� Ro;n.t/ D
n�1X

mD0

wm.t/Lm.t/�
n�1X

mD0

wm.t/Ro;n.t /

D Ro;n.t/� 1�Ro;n.t/ D 0:
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For h > j; the second order derivative of Ro;n.t/ may be expressed as

@2Ro;n.t/

@Lj .t/@Lh.t/
D @

@Lj .t/

�@Ro;n.t/
@Lh.t/

�

D @wh.t/

@Lj .t/
� ı

1C ıLh.t/

n�1X

mDj

�
@wm.t/

@Lj .t/
.Lm.t/ � Ro;n.t//

�wm.t/
@Ro;n.t/

@Lj .t/

�
: (26.97)

Using (26.94)–(26.96), we have that for h > j
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i
: (26.98)
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For j D h, expression (26.98) reduces to zero. Finally by using the expres-
sion (26.98) for the second order derivative of Ro;n.t/12

n�1X

jD0

n�1X

hD0
Lj .t/
j .t/Lh.t/
h.t/

@2Ro;n.t/

@Lj .t/Lh.t/
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n�1X

jD0
Lj .t/
j .t/

n�1X

hDjC1
Lh.t/
h.t/
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h�1X

mDj
wm.t/; (26.99)

thus the drift of (26.89) becomes
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This result derives the dynamics (26.64).

12Note that
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26.9 Problems

Problem 26.1 Explain why a payer swaption has a value that is always smaller than
the value of the corresponding cap contract.

Problem 26.2 Consider a forward contract on a zero-coupon bond P.t; T1/ with
maturity T1 that at time T < T1 exchanges the bond price P.T; T1/ for FT .t; T1/.
Show that the forward price FT .t; T1/ satisfies the relation

FT .t; T1/ D P.t; T1/

P.t; T /
:

Given that the bond price follows the risk-neutral dynamics (recall Eq. (25.21))

dP.t; T /

P.t; T /
D r.t/dt C �B.t; T /d QW .t/; (26.101)

show that FT .t; T1/ is a PT -martingale and its reciprocal 1=FT .t; T1/ is a
PT1 -martingale.

Problem 26.3 Using the relationship equation (26.49) between the forward swap
rate and the forward rates

Ro;n.t/ D
n�1X

iD0
wi .t/Li .t/;

where

wi .t/ D P.t; TiC1/Pn�1
kD0 P.t; TkC1/

;

show that

@Ro;n.t/

@Li .t/
D wi .t/C ı

1C ıLi .t/

i�1X

kD0
wk.t/.Lk.t/ �Ro;n.t//:

Problem 26.4 Computational Problem—Assume that the initial forward curve is
given by

Li.0/ D 0:08 � 0:04e�0:2�Ti :

Under the market model, forward swap rates are assumed to follow lognormal
dynamics and assume that the volatility of the forward swap rate is 15 %. Swap
payments are made semi-annually.



604 26 The LIBOR Market Model

Table 26.1 Pricing swaptions

Maturity Tenor Strike Annuity MC price Black’s price

1 0.5

5 0.5

10 0.5

1 5

5 5

10 5

Use the information in Table 26.1. The maturity of the swaption is given in the
first column and the tenor of the underlying swap is given in the second column.

(a) Use Eq. (26.59) to calculate the prevailing forward swap rates. For ATM
swaption, the swap rates become the strike rates. Record your answers in the
third column of Table 26.1.

(b) Using Eq. (26.58), compute the annuity term Eq. (26.61). Record your answers
in the fourth column of Table 26.1.

(c) Price ATM swaptions with maturities and tenor of the underlying swap as
provided in Table 26.1.

(i) Consider the swaption pricing formula (26.71). Write a program to calculate
the swaption price by simulating a stochastic differential equation of the
type (26.77) for Ro;n.t/ from 0 to T0 to obtain Ro;n.T0/ and by simulating a
large number of paths (use 100,000 paths) to compute the ESt Œ.Ro;n.T0/�R/C�.
Record your answers in the fifth column of the table.

(ii) You can check the accuracy of your algorithm by comparing the simulated
swaption prices to the swaption prices obtained by Black’s formula equa-
tion (26.67). Record your answers in the sixth column of the table.

Problem 26.5 Computational Problem—Consider the parameter specifications
of Problem equation (26.4), where instead of a 15 % constant forward swap rate
volatility, the volatility of the forward rates has the following functional form


i.t/ WD 
.t; Ti � t/ D 0:15� 0:02e�0:15.Ti�t /:

Answer questions (a)–(c).



References

Abramowitz, M., & Stegun, I. A. (1970). The impact of jump risks on nomminal interest rates and
foreign exchange rates. Review of Quantitative Finance and Accounting, 2, 17–31.

Ahn, C. M., & Thompson, H. E. (1988). Jump-diffusion processes and the term structure of interest
rates. Journal of Finance, 43, 155–174.

Akgiray, V., & Booth, G. G. (1988). Mixed diffusion-jump processes modelling of exchange rate
movements. The Review of Economics and Statistics, 70, 631–637.

Amin, K. I., & Morton, A. (1994). Implied volatility functions in arbitrage-free term structure
models. Journal of Financial Economics, 35, 141–180.

Amin, K. I., & Ng, V. K. (1993). Option valuation with systematic stochastic volatility. Journal of
Finance, 48, 881–910.

Astrom, K. J. (1970). Introduction to stochastic control theory. New York: Academic Press.
Barone-Adesi, G., & Whaley, R. (1987) Efficient analytic approximation of American option

values. Journal of Finance, 42, 301–320.
Bates, D. (1996). Jumps and stochastic volatility: The exchange rate processes implicit in

Deutschemark options. Review of Financial Studies, 9(1), 69–107.
Baxter, M., & Rennie, A. (1996). Financial calculus-an introduction to derivative pricing.

Cambridge: Cambridge University Press.
Bhar, R., & Chiarella, C. (1997a). Transformation of Heath-Jarrow-Morton models to Markovian

systems. European Journal of Finance, 3, 1–26.
Bhar, R., & Chiarella, C. (1997b). Interest rate futures: Estimation of volatility parameters in an

arbitrage-free framework. Applied Mathematical Finance, 4(4), 181–199.
Bhar, R., Chiarella, C., El-Hassan, N., & Zheng, X. (2000). Reduction of forward rate dependent

HJM models to markovian form: Pricing European bond options. The Journal of Computational
Finance, 3(3), 47–72.

Bhar, R., Chiarella, C., & Tô, T. D. (2004). Estimating the volatility structure of an arbitrage-free
interest rate model via the futures markets. Working Paper.

Bhar, R., & Hunt, B. (1993). Predicting the short-term forward interest rate structure using a
parsimonious model. Review of Futures Markets, 12, 577–590.

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167–
179.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81, 637–659.

Blattberg, R., & Gonedes, N. (1974). A comparison of the stable and Student distributions as
statistical models for stock prices. Journal of Business, 47, 244–280.

© Springer-Verlag Berlin Heidelberg 2015
C. Chiarella et al., Derivative Security Pricing, Dynamic Modeling
and Econometrics in Economics and Finance 21,
DOI 10.1007/978-3-662-45906-5

605



606 References

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, 31, 307–327.

Brace, A. (2007). Engineering BGM. Boca Raton: Chapman & Hall/CRC.
Brace, A., Gatarek, D., & Musiela, M. (1997). The market model of interest rate dynanics.

Mathematical Finance, 7(2), 127–155.
Brace, A., & Musiela, M. (1994). A multifactor Gauss Markov implementation of Heath, Jarrow,

and Morton. Mathematical Finance, 4(3), 259–283.
Bremaud, P. (1981). Point process and queues: Martingale dynamics. New York: Springer.
Brennan, M. J., & Schwartz, E. S. (1979). A continuous-time approach to the pricing of bonds.

Journal of Banking Finance, 3, 135–155.
Brenner, R. J., Harjes, P. H., & Kroner, K. F. (1996). Another look of models of the short-term

interest rate. Journal of Financial and Quantitative Analysis, 31, 85–107.
Brigo, D., & Mercurio, F. (2006). Interest rate models theory and practice (2nd ed.). Berlin:

Springer.
Chan, K. C., Karolyi, G. A., Longstaff, F. A., & Sanders, A. B. (1992). An empirical comparison

of alternative models of the short-term interest rate. Journal of Finance, 47, 1209–1227.
Cheyette, O. (1992). Term structure dynamics and mortgage valuation. Journal of Fixed Income,

1, 28–41.
Chiarella, C., & El-Hassan, N. (1996). A preference free partial differential equation for the term

structure of interest rates. Financial Engineering and the Japanese Markets, 3, 217–238.
Chiarella, C., & El-Hassan, N. (1998). Pricing American interest rate options in a Heath-Jarrow-

Morton framework using method of lines. Quantitative Finance Research Group, School of
Finance and Economics, UTS.

Chiarella, C., & Kwon, O. K. (1999). Forward rate dependent Markovian transformations of the
Heath-Jarrow-Morton term structure model. Quantitative Finance Research Group, School of
Finance and Economics, UTS (Research Paper 5).

Chung, K. L., & Williams, R. J. (1990). Introduction to stochastic integration (2nd ed.). Boston:
Birkhäusen.

Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. CRC financial mathemat-
ics series. Boca Raton: Chapman & Hall.

Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985a). A theory of the term structure of interest rates.
Econometrica, 53(2), 385–406.

Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985b). An intertemporal general equilibrium model of
asset prices. Econometrica, 53(2), 363–384.

Cox, J. C., & Ross, S. A. (1976a). A survey of some new results in financial options pricing theory.
Journal of Finance, 31, 382–402.

Cox, J. C., & Ross, S. A. (1976b). The valuation of options for alternative stochastic processes.
Journal of Finance, 3, 145–166.

Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal
of Financial Economics, 7, 229–263.

de Jager, G. (1995). Option Pricing Properties and Techniques Using Binomial and Multinomial
Lattices. PhD thesis, School of Finance and Economics, UTS.

Derman, E., & Kani, I. (1994). Riding on a smile. Risk, 7(2), 32–39.
Duffie, D., & Kan, R. (1996). A yield-factor model of interrest rates. Mathematical Finance, 6(4),

379–406.
Dupire, B. (1994). Pricing with a smile. Risk, 7(1), 18–20.
Eberlein, E. (2001). Application of generalized hyperbolic Lévy motions to finance. In O. E.

Barndorff-Nielsen, T. Mikosch, & S. Resnick (Eds.), Lévy processes: Theory and applications.
Boston: Birkhäusser.

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of
Finance, 25, 383–417.

Fama, E., & French, K. R. (1988). Permanent and temporary components of stock prices. Journal
of Political Economy, 96, 246–273.

Feller, W. (1951). Two singular diffusion processes. Annals of Mathematics, 54, 173–182.



References 607

Feller, W. (1966). Infinitely divisible distributions and bessel functions associated with random
walks. SIAM Journal of Applied Mathematics, 14, 864–875.

Flesaker, B. (1993). Testing the Heath-Jarrow-Morton/Ho-Lee model of interest rate contingent
claims pricing. Journal of Financial Quantitative Analysis, 28, 483–495.

French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and volatility.
Journal of Financial Economics, 19, 3–30.

Gardiner, C. W. (1985). Handbook of stochastic methods for physics, chemistry and the natural
sciences (2nd ed.). Berlin: Springer.

Garman, M. B., & Kohlhagen, S. W. (1983). Foreign currency option values. Journal of
International Money and Finance, 2, 231–237.

Gatheral, J. (2008). Consistent modeling of spx and vix options. In The Fifth World Congreaa of
the Bachelier Finance Society, London.

Geske, R. (1979). The valuation of compound options. Journal of Financial Econometrics, 7, 63–
82.

Geske, R., & Johnson, H. (1984). The American put valued analytically. Journal of Financial, 39,
1511–24.

Gihman, I. I., & Skorohod, A. V. (1972). Stochastic differential equations. Berlin: Springer.
Gihman, I. I., & Skorohod, A. V. (1979). The theory of stochastic processes. New York: Springer.
Greenberg, M. D. (1971). Application of greens function in science and engineering. Englewood

Cliffs: Prentice-Hall.
Greenberg, M. D. (1978). Foundations of applied mathematics. Englewood Cliffs: Prentice-Hall.
Hagan, P. S., Kumar, D., Lesniewski, A. S., & Woodward, D. E. (2002). Managing smile risk.

WILMOTT Magazine, 84–108.
Harrison, M. J. (1990). Brownian motion and stochastic flow systems. Malabar, FL: Robert E.

Krieger Publishing Co.
Harrison, M. J., & Kreps, D. M. (1979). Martingales and arbitrage in multiperiod securities

markets. Journal of Economic Theory, 20, 381–408.
Harrison, M. J., & Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of

continuous trading. Stochastic Processes and Their Applications, 11, 215–260.
Heath, D., Jarrow, R., & Morton, A. (1990). Bond pricing and the term structure of interest rates: A

discrete time approximation. Journal of Financial and Quantitative Analysis, 25(4), 419–440.
Heath, D., Jarrow, R., & Morton, A. (1992a). Bond pricing and the term structure of interest rates:

A new methodology for continent claim valuations. Econometrica, 60(1), 77–105.
Heath, D., Jarrow, R., Morton, A., & Spindel, M. (1992b). Easier done than said. Risk, 5(9), 77–80.
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications

to bond and currency options. Review of Financial Studies, 6, 327–343.
Ho, L. C., Cadle, J., & Theobald, M. (2001). Estimation and hedging with a one-factor Heath-

Jarrow-Morton model. Journal of Derivatives, 8(4), 49–61.
Ho, T. S. Y., & Lee, S. B. (1986). Term structure movements and pricing interest rate contingent

claims. Journal of Finance, XLI, 1011–1029.
Hobson, G., & Rogers, L. (1998). Complete models with stochastic volatiltity. Mathematical

Finance, 8(1), 27–48.
Horsthemke, W., & Lefever, R. (1984). Noise-induced transitions - Theory and applications in

physics, chemistry and biology. Series in synergetics (Vol. 15). Berlin: Springer.
Hull, J. (2000). Options, futures and other derivatives (4th ed.). Boston: Prentice-Hall.
Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. Journal

of Finance, 42, 281–299.
Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. Review of Financial Studies,

3(4), 573–592.
Hull, J., & White, A. (1994). Numerical procedures for implementing term structure models II:

Two-factor models. Journal of Derivatives, 2, 37–48.
Inui, K., & Kijima, M. (1998). A Markovian framework in multi-factor Heath-Jarrow-Morrton

models. Journal of Financial and Quantitative Analysis, 33, 423–440.



608 References

Jarrow, R., & Madan, D. (1995). Option pricing using the term structure of interest rates to hedge
systematic discontinuities in asset returns. Mathematical Finance, 5(4), 311–336.

Johnson, H., & Shanno, D. (1987). Option pricing when the variance is changing. Journal of
Financial and Quantitative Analysis, 22, 143–151.

Jones, E. P. (1984). Option arbitrage and strategy with large price changes. Journal of Financial
Economics, 13, 91–113.

Keim, D. B. (1986). The CAPM and equity return regularities. Financial Analysts Journal, 42,
19–34.

Kijima, M. (2002). Stochastic processes with applications to finance. Boca Raton: CRC Press.
Kolodner, I. I. (1956). Free boundary problem for the heat equation with applications to problems

of change of phase. Communications in Pure and Applied Mathematics, 9, 1–31.
Krylov, N. V. (1995). Introduction to the theory of diffusion processes. Translations of mathemati-

cal monographs (Vol. 142). Providence: American Mathematical Society.
Kucera, A., & Ziogas, A. (2001). American options: An extension and elaboration of mckean’s

solution. Working Paper, QFRG, School of Finance and Economics, UTS.
Kushner, H. J. (1967). Stochastic stability and control. New York: Academic Press.
Lamperti, J. W. (1996). Probability: A survey of the mathematical theory (2nd ed.). New York:

Wiley
Leroy, S. F. (1989). Efficient capital markets and martingales. Journal of Economic Literature,

XXVII, 1583–1621.
Lighthill, M. J. (1980). An introduction to Fourier analysis and generalised functions. Cambridge:

Cambridge University Press.
Lo, A. W., & Mackinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence

from a simple specification test. Review of Financial Studies, 1, 41–66.
Macmillan, L. W. (1986). Analytic approximation for the American put option. Advances in

Futures and Options Research, 1(A), 119–139.
Malliaris, A. G., & Brock, W. A. (1982). Stochastic methods in economics and finance. Amster-

dam: North-Holland.
Margrabe, W. (1978). The value of an option to exchange one asset for another. Journal of Finance,

33, 177–186.
Mckean, H. P. (1965). A free boundary problem for the heat equation arising from a problem in

mathematical economics. Industrial Management Review, 6(2), 32–39.
Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Manage-

ment Science, 4, 141–183.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of

Financial Economics, 3, 125–144.
Merton, R. C. (1982). On the mathematics and economics assumptions of continuous-time models.

In W. F. Sharpe & C. M. Cootner (Eds.), Financial economics; essays in honor of Paul Cootner.
Englewood Cliffs: Prentice-Hall.

Merton, R. C., & Samuelson, P. A. (1974). Fallacy of the log-normal approximation of optimal
portfolio decision making over many periods. Journal of Financial Economics, 1, 67–94.

Miltersen, K., Sandmann, K., & Sondermann, D. (1997). Closed form solutions for term structure
derivatives with log-normal interest rates. Journal of Finance, 52, 409–430.

Musiela, M., & Rutkowski, M. (1997). Martingale methods in financial modelling. New York:
Springer.

Neftci, S. N. (2000). An introduction to the mathematics of financial derivatives (2nd ed.). New
York: Academic Press.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Economet-
rica, 59, 347–370.

Oksendal, B. (2003). Stochastic differential equations (6th ed.). New York: Springer.
Rebonato, R. (1998). Interest-rate option models (2nd ed.). Chichester: Wiley.
Ritchken, P., & Chuang, Y. (1999). Interest rate option pricing with volatility humps. Review of

Derivatives Research, 3, 237–262.



References 609

Ritchken, P., & Sankarasubramanian, L. (1995). Volatility structures of forward rates and the
dynamics of the term structure. Mathematical Finance, 5, 55–72.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13,
343–362.

Rubinstein, M. (1994). Implied binomial trees. Journal of Finance, 49, 771–818.
Samuelson, P. A. (1965). Proof that property anticipated prices fluctuate randomly. Industrial

Management Review, 6, 41–49.
Samuelson, P. A. (1973). Mathematics of speculative price. SIAM Review, 15(1), 1–42.
Sandmann, K., & Sondermann, D. (1997). A note on the stability of lognormal interest rate models

and the pricing of eurodollar futures. Mathematical Finance, 7, 119–128.
Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation and

an application. Journal of Financial and Quantitative Analysis, 22, 419–438.
Stein, E. M., & Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic

approach. Review of Financial Studies, 4, 727–752.
Stratonovich, R. L. (1963). Topics in the theory of random noise (Vols. 1 and 2). New York: Gordon

and Brach.
Sundaran, R. K. (1997). Equivalent martingale measures and risk-neutral pricing: An expository

note. Journal of Derivatives, Fall, 85–98.
Thorp, E. O., & Kassouf, S. T. (1967). Beat the market. New York: Random House.
Vasicek, O. (1977). An equilibrium characterisation of the term structure. Journal of Financial

Economics, 5, 177–188.
West, G. (2005). Calibration of the sabr model in illiquid markets. Applied Mathematical Finance,

12(4), 371–385.
West, K. D. (1988). Bubbles, fads and stock price volatility: A partial evaluation. Journal of

Finance, 43, 639–656.
Wiggins, J. (1987). Option values under stochastic volatility. Journal of Financial Economics, 19,

351–372.
Wilmott, P., Dewynne, J., & Howison, S. (1993). Option pricing: Mathematical models and

computation. Oxford: Oxford Financial Press.
Xu, G., & Taylor, S. (1994). The magnitude of implied volatility smiles: Theory and empirical

evidence for exchange rates. Review of Futures Markets, 13, 355–380.
Zhang, P. G. (1997). Exotic options. Singapore: World Scientific.



Index

Abramowitz, M., 139
Ahn, C.M., 252
Akgiray, V., 252
American option, 349

approximate solution, 365
call, 349
compound options, 350
critical stock price, 351, 367
early exercise premium, 366
free boundary value problem, 354
put, 349

Amin, K.I., 530
Anomalies, 75
Arbitrage

multifactor pricing theory, 210
no riskless arbitrage condition, 147, 175,

471
no-riskless arbitrage relationship, 216
riskless arbitrage opportunities, 215, 232

Arrow-Debreu price, 395
Asset. See security

cost, 235
dividend on, 215, 235
non-traded, 219
traded, 214, 219

Asset price, 9
expected payoff of, 18
stochastic process for, 7

Astrom, K.J., 7
Autocovariance, 66

function, 84

Barone-Adesi, G., 365
Bates, D., 330

Baxter, M., 7, 157
Bernoulli variate, 372
Bessel function, 287
Beta, 149, 155
Bhar, R., 461, 530, 542, 546–548
Binomial

Black–Scholes partial differential equation,
382

implied tree, 395
lattice, 394
limiting distribution, 381
model, 372–385
n-period tree, 374, 378
one-period distribution, 376
one-period tree, 372, 375
two-period tree, 377

Black, F., 145, 238
Black-Scholes formula, 40, 390

derivation by Girsanov’s theorem, 174
Black–Scholes model, 236, 315

stochastic interest rates, 405
Black-Scholes partial differential equation

binomial model, 382
Merton’s derivation, 150
option pricing, 40

Black’s model
for futures options, 238

Blattberg, R., 315
Bollerslev, T., 322
Bond option, 435

pricing of, 486, 548
Bond option price, 536

CIR model, 494
Hull–White model, 492

© Springer-Verlag Berlin Heidelberg 2015
C. Chiarella et al., Derivative Security Pricing, Dynamic Modeling
and Econometrics in Economics and Finance 21,
DOI 10.1007/978-3-662-45906-5

611



612 Index

Hull–White two-factor model, 510
multi factor model, 517

Bond price, 439, 442, 484, 532
CIR model, 482
dynamics, 457
HJM framework, 533
Hull–White model, 481
Hull–White two-factor model, 506
Merton’s approach, 405
multi-factor models, 513
Vasicek approach, 472, 476

Booth, G.G., 252
Bounded variation, 163
Brace, A., 569, 583
Bremaud, P., 277
Brennan, M.J., 544
Brenner, R.J., 460
Brigo, D., 583
Brock, W.A., 7, 9
Brownian bridge process, 124
Brownian motion, 15, 18, 60, See also Wiener

process
conditional probability of, 15
geometric, 115

Cadle, J., 530
Capital asset pricing model (CAPM), 149
Caplet, 591

pricing of, 435
Caps, 431

Brace–Musiela approach to pricing of, 591
payoff of, 434
pricing of, 581

Cauchy process, 16, 18, 27
conditional probability of, 16

Chan, K.C., 444
Change of measure theorem, 168
Chapman–Kolmogorov equation, 13, 21
Characteristic functions, 325
Cheyette, O., 542
Chiarella, C., 461, 530, 540, 542–544, 546–548
Chuang, Y., 540
Chung, K.L., 164
CIR, 125, 211, 447, 472, 481, 530
Collars, 433
Conditional probabilities, 11
Cont, R., 330
Contingent claim, 55
Continuous hedging argument, 145, 175, 251
Continuous time line, 72
Cox, J.C., 40, 125, 211, 255, 387, 447, 472,

481, 530
Cox–Ingersoll–Ross model. See CIR

De Jager, D., 387
Derivative security

on asset, 112
on more than one assets, 131

Derivative security pricing
dependent on traded asset and non-traded

asset, 217, 219
dependent on two traded assets, 214
general case, 224
martingale approach, 157
partial differential equation, 215, 222, 229,

233
two factors, 211

Derman, E., 394
Dewynne, J., 530
Diffusion, 20
Dirac delta function, 18, 86
Distribution

bivariate normal, 240
Drift, 20
Duffie, D., 522
Dupire, B., 394

Eberlein, E., 72
El-Hassan, N., 543, 544, 546–548
Euler-Maruyama method, 372
European call option

value of, 208
European option. See option
Expected excess return relationship, 210

dividends, 215

Factor
non-traded, 210
traded, 209

Fama, E., 72, 75
Feller process, 447
Feller, W., 287, 327, 445, 447
Feynman-Kac formula, 46, 179
Flesaker, B., 530
Floors, 432

payoff of, 434
Fokker–Planck equation, 21

derivation of, 29
initial time condition of, 21
jump, 23

Foreign currency option
Garman–Kohlhagen model, 237

Foreign exchange rate
dynamics of, 252

Forward rate, 440, 454, 529, 531
constant period ahead, 570



Index 613

covariance structure, 557
dynamics of, 454
Heath-Jarrow-Morton framework, 529
instantaneous, 441
LIBOR market model, 569
volatility of, 530, 539, 540

Forward-risk-adjusted measure, 538
Forward swap rate, 584
Fourier transform, 86, 193, 296, 357
French, K.R., 75
Fubini’s theorem, 452
Futures option

Black’s model, 238

Gardiner, C.W., 7, 15, 29, 63, 66
Garman, M.B., 237
Gatarek, D., 569
Gatheral, J., 330
Gaussian

distribution, 57, 60
Geske, R., 352
Gihman, I.I., 183, 252, 266, 269
Girsanov’s theorem. See change of measure

theorem
Gonedes, N., 315
Greenberg, M.D., 202, 206
Green’s function, 202

Hagan, P.S., 346
Harjes, P.H., 460
Harrison, M.J., 7, 157, 168
Heath, D., 125, 454, 529, 530, 533
Heath–Jarrow–Morton, 125, 454, 529, 530,

533
CIR extended model, 544
covariance structure, 555
forward rate dependent volatility, 544
Hull–White extended model, 542
multi-factor, 549, 552

Hedge, 208
Hedging portfolio, 146, 471, 487

binomial trees, 375
jump-diffusion process, 274
Merton’s approach, 150
stock, option, bond, 407

Heston, S.L., 317, 326
Heston model, 326
Ho, L.C., 530
Ho, T.S.Y., 529
Hobson, 219
Horsthemke, W., 7
Howison, S., 530

Hull, J., 148, 238, 317, 391, 479, 505, 530, 552
Hull–White, 317, 391, 479, 505, 530, 552

extended Vasicek, 552
two-factor, 552

Hunt, B., 461

Incomplete market, 208
Index set, 9
Ingersoll, J.E., 125, 211, 447, 472, 481, 530
Interest rate

dynamics of spot, 456
instantaneous spot, 439, 531
Markovian dynamics, 460
short term, 70
spot, 443
stochastic, 405

Interest rate options
pricing of, 435

Interest rate risk
market price of, 472

Inui, K., 542
Ito’s lemma, 113, 130

jump-diffusion process, 266
several variables, 131

Jarrow, R., 125, 282, 454, 529, 530, 533
Johnson, H., 317, 345
Jones, E.P., 282, 286, 287
Jump, 252

absolute, 253
lognormal, 261
lognormal, 304, 305, 308
proportional, 259

Jump term, 20
Kolmogorov equation and, 24

Jump-diffusion
process, 251–274

Kan, R., 522
Kani, I., 394
Karolyi, G.A., 444
Kassouf, S.T., 145
Keim, D.B., 75
Kijima, M., 7, 542
Kohlhagen, S.W., 237
Kolmogorov backward equation, 22, 31, 105

final time condition of, 22
with jump term, 24

Kolodner, I.I., 354
Kreps, D.M., 157
Kroner, K.F., 460



614 Index

Krylov, N.V., 7
Kucera, A., 349, 355
Kumar, D., 346
Kushner, H.J., 252, 266
Kwon, O.K., 540, 542, 548

Lamperti, J.W., 331
Lee, S.B., 529
Lefever, R., 7
Leroy, S.F., 75
Lesniewski, A.S., 346
LIBOR market model, 569
LIBOR process, 573
LIBOR rate, 573

lognormal volatility, 577
Lighthill, M.J., 18
Lindeberg condition, 14, 56
Lo, A.W., 75
Lognormal, 115

density, 117
Longstaff, F.A., 444

MacKinlay, A.C., 75
Macmillan, L.W., 365, 367
Madan, D., 282
Malliaris, A.G., 7, 9
Margrabe, W., 239
Market efficiency, 72
Market noise, 69, 71
Markov

diffusion process, 71
process, 11
property, 62

Markovian system, 321
finite dimensional, 530, 539

Martingale, 43
exponential, 159
quadratic variation of, 162

Mckean, H.P., 353, 354
Mean square limit, 77
Mercurio, F., 583
Merton, R.C., 251, 252, 280, 354, 405, 469
Miltersen, K.R., 570
Money market account, 216, 217, 420, 473,

532
Monte-Carlo simulation, 323, 546, 554
Morton, A., 125, 454, 529, 530, 533
Musiela, M., 157, 569

Neftci, S.N., 157
Nelson, D.B., 322
Ng, V.K., 530

Noise
coloured, 126
white, 126

Numeraire
Black-Scholes model with stochastic

interest rates, 424
change of, 419
multiple sources of risk, 427

Oksendal, B., 7, 90, 105, 130, 131, 171
Option

all-or-nothing, 200
bond, 435, 548
compound, 350–353
digital, 199, 239
European exchange, 239
European call, 3, 37
expected payoff of, 38
foreign currency, 236
foreign equity, 239
futures, 237
multi-asset, 239
path dependent, 530
quanto, 239
quotient, 239
stock, 235
value of, 39

Option pricing, 71
American style, 349
European style, 37
jump-diffusion process, 276
n-period binomial, 378
one-period binomial, 374
stochastic interest rate, 410
stochastic volatility, 322
two-period binomial, 377

Ornstein–Uhlenbeck process, 63, 69, 122
autocovariance function, 67
power spectrum, 69

Partial sum, 76
Pliska, S.R., 157
Poisson process, 65, 259
Price dynamics, 70
Pricing kernel representation, 178
Probability density function

conditional, 10
joint, 9

Probability distribution. See probability
measure

Probability measure, 164
equivalent, 422



Index 615

Process
binomial stock price, 372
coloured noise, 126
continuous time, 9, 371
diffusion, 20
discrete time, 9, 371
jump-diffusion, 20, 252
LIBOR, 579
lognormal, 115
log-normal diffusion, 319
Poisson jump, 252
pure jump, 65
quadratic variation, 162

Radon–Nikodym derivative, 167, 423
Random walk, 75
Rebonato, R., 552, 555
Rectifiable function, 163
Rennie, A., 7, 157
Riemann integral, 75, 79
Risk

averse, 38, 207
lover, 38, 207
market price of, 208, 323
neutral, 39, 207
premium, 38, 207, 210, 213, 224
shadow premium, 211
shadow risk premium, 213

Ritchken, P., 540, 542, 544, 548
Rogers, 219
Ross, S.A., 40, 125, 210, 211, 255, 387, 447,

472, 481, 530
Rubinstein, M., 387, 395
Rutkowski, M., 157

Sample path, 9
Sample space, 9
Samuelson, P.A., 75, 150, 251
Sanders, A.B., 444
Sandmann, K., 570
Sankarasubramanian, L., 540, 542, 544, 548
Scholes, M., 145
Schwartz, E.S., 544
Schwert, G.W., 75
Scott, L.O., 315, 317
Security, 145

beta of, 149
derivative (See derivative security)
excess return on, 149, 235

Self financing, 151, 153
Semimartingale, 164
Shanno, D., 317, 345
Skorohod, A.V., 183, 252, 266, 269

Sondermann, D., 570
Spectrum, 84
Spindel, M., 530
Spot interest rate, 529
Spot rate models

affine class, 522
calibration, 496
CIR, 481
Hull–White, 479, 496
Hull–White two-factor, 505
multi-factor, 513
one factor, 475
Vasicek, 475

Square root process, 447
Stambaugh R.F., 75
Stegun, I.A., 139
Stein, E.M., 317
Stein, J.C., 317
Stochastic differential equation, 56

higher dimensional, 99
Ito, 81, 83
quotient, 135
Stratonovich, 83

Stochastic integral, 75–82, 159
Ito, 80
Stratonovich, 82

Stochastic process, 7, 9
diffusion term of, 20
drift term of, 20
independent, 10
jump term of, 20
mean reverting, 317

Stock option
Black–Scholes model, 236
stochastic interest rate, 410

Stratonovich, R.L., 82
Sundaran, R.K., 157
Swap, 583
Swaption, 586

pricing of, 586

Tankov, P., 330
Taylor, S.J., 393
Term structure models

arbitrage, 470
CIR, 125, 211, 447, 472, 530
martingale representation, 473
multi-factor, 505
one factor, 469

Theobald, M., 530
Thompson, H.E., 252
Thorp, E.O., 145
Tô, T., 530



616 Index

Vasicek, O., 469, 475, 530
Volatility

constant, 317
implied, 315, 390
mean reverting, 320, 324
of returns, 315
smile, 389
stochastic, 317, 319, 391

Volatility risk
market price of, 390

West, G., 346
West, K.D., 75
Whaley, R., 365
White, A., 317, 391, 479, 505, 530, 552
White noise, 66, 69, 84
Wiener process, 59, 75, 77, 83, 87, 158

autocovariance function, 66
correlated, 99, 131
independent, 133
uncorrelated, 100

Wiggins, J., 317
Williams, R.J., 164
Wilmott, P., 530
Woodward, D.E., 346

Xu, G., 393

Yield to maturity, 439

Zhang, P.G., 239
Zheng, X., 546–548
Ziogas, A., 349, 355


	Preface
	Contents
	Part I The Fundamentals of Derivative Security Pricing
	1 The Stock Option Problem
	1.1 Introduction
	1.2 The European Call Option

	2 Stochastic Processes for Asset Price Modelling
	2.1 Introduction
	2.2 Markov Processes
	2.3 The Time Evolution of Conditional Probabilities
	2.4 Processes with Continuous Sample Paths
	2.4.1 Brownian Motion
	2.4.2 The Cauchy Process

	2.5 The Dirac Delta Function
	2.6 The Fokker–Planck and Kolmogorov Equations
	2.7 Appendix
	Appendix 2.1  Probability Density Functions
	Appendix 2.2   Brownian Motion is a Continuous Process
	Appendix 2.3  The Cauchy Process  is Not Continuous
	Appendix 2.4  The Higher Order Moment Condition
	Appendix 2.5  Derivation of Fokker–Plank and Kolmogorov Equations
	Appendix 2.6  The Mean Value Theorem
	2.8 Problems

	3 An Initial Attempt at Pricing an Option
	3.1 Option Pricing as a Discounted Cash Flow Calculation
	3.2 Our First Glimpse of a Martingale
	3.3 Our First Glimpse of the Feynman–Kac Formula
	3.4 Appendix
	Appendix 3.1  Derivation of the Black–Scholes Formula
	3.5 Problems

	4 The Stochastic Differential Equation
	4.1 Introduction
	4.2 A First Encounter with the Stochastic Differential Equation
	4.3 Three Examples of Markov Processes
	4.3.1 The Wiener Process
	4.3.2 The Ornstein–Uhlenbeck Process
	4.3.3 The Poisson Process

	4.4 Autocovariance Behaviour and White Noise
	4.5 Modelling Uncertain Price Dynamics
	4.6 Proceeding to the Continuous Time Limit
	4.7 The Stochastic Integral
	4.8 An Example of Stochastic Integral
	4.9 The Proper Definition of the Stochastic Differential Equation
	4.10 The Stratonovich Stochastic Integral
	4.11 Appendix
	Appendix 4.1  Autocovariance Functions, Spectra and White Noise
	Appendix 4.2  Evaluating the Ito Stochastic Integral 0T z(t)dz(t)
	Appendix 4.3  Link Between Ito and Stratonovich
	4.12 Problems

	5 Manipulating Stochastic Differential Equations and Stochastic Integrals
	5.1 The Basic Rules of Stochastic Calculus
	5.2 Some Basic Stochastic Integrals
	5.3 Higher Dimensional Stochastic Differential Equations
	5.3.1 The Two-Noise Case
	5.3.1.1 A One Asset-Two Noise Term Model
	5.3.1.2 A Two Asset-Two Noise Term Model

	5.3.2 The Three-Noise Case

	5.4 The Kolmogorov Equation for an n-Dimensional Diffusion System
	5.5 The Differential of a Stochastic Integral
	5.6 Appendix
	Appendix 5.1  Proof of the Fundamental Rules of Stochastic Calculus
	5.7 Problems

	6 Ito's Lemma and Its Applications
	6.1 Introduction
	6.2 Ito's Lemma
	6.2.1 Introduction
	6.2.2 Statement and Proof of Ito's Lemma

	6.3 Applications of Ito's Lemma
	6.3.1 Function of a Geometric Stock Price Process
	6.3.2 The Lognormal Asset Price Process
	6.3.3 Exponential Functions
	6.3.4 Calculating E[ex(t)]
	6.3.5 The Ornstein–Uhlenbeck Process
	6.3.6 Brownian Bridge Processes
	6.3.7 White Noise and Colored Noise Processes

	6.4 A More Formal Statement of Ito's Lemma
	6.5 Ito's Lemma in Several Variables
	6.5.1 Correlated Wiener Processes
	6.5.2 Independent Wiener Processes

	6.6 The Stochastic Differential Equation Followed by the Quotient of Two Diffusions
	6.7 Problems

	7 The Continuous Hedging Argument
	7.1 The Continuous Hedging Argument: The Black–Scholes Approach
	7.2 Interpreting the No-Arbitrage Condition
	7.3 Alternative Hedging Portfolios: The Merton's Approach
	7.4 Self Financing Strategy: The Modern Approach
	7.5 Appendix
	Appendix 7.1  Relation Between Stock and Option Betas
	7.6 Problems

	8 The Martingale Approach
	8.1 Martingales
	8.1.1 Introduction
	8.1.2 Examples of Martingales
	8.1.3 The Exponential Martingale
	8.1.4 Quadratic Variation Processes
	8.1.5 Semimartingales

	8.2 Changes of Measure and Girsanov's Theorem
	8.3 Girsanov's Theorem for Vector Processes
	8.4 Derivation of Black–Scholes Formula by Girsanov'sTheorem
	8.5 The Pricing Kernel Representation
	8.6 The Feynman–Kac Formula
	8.7 Appendix
	Appendix 8.1  Proof of Proposition 8.1
	Appendix 8.2  Proof of Proposition 8.2
	Appendix 8.3  Proof of Proposition 8.3
	Appendix 8.4  Proof of Proposition 8.4
	8.8 Problems

	9 The Partial Differential Equation Approach Under Geometric Brownian Motion
	9.1 Introduction
	9.2 The Transition Density Function for Geometric Brownian Motion
	9.3 The Fourier Transform
	9.4 Solutions for Specific Payoff Functions
	9.4.1 The Kolmogorov Equation
	9.4.2 The European Digital Option
	9.4.3 The European All-or-Nothing Option
	9.4.4 The European Call Option

	9.5 Interpreting the General Pricing Relation
	9.6 Appendix
	Appendix 9.1  Transforming the Black–Scholes Partial Differential Equation to the Heat Equation

	10 Pricing Derivative Securities: A General Approach
	10.1 Risk Neutral Valuation
	10.2 The Market Price of Risk
	10.2.1 Tradable Asset
	10.2.2 Non-tradable Asset

	10.3 Pricing Derivative Securities Dependent on Two Factors
	10.3.1 Two Traded Assets
	10.3.2 Two Traded Assets-Vector Notation
	10.3.3 One Traded Asset and One Non-traded Asset

	10.4 The General Case
	10.5 Appendix
	Appendix 10.1  Derivation of Q1 =-Δ1 and Q2 =-Δ2
	Appendix 10.2  Alterative Derivation for One Traded and One Non-traded Asset
	10.6 Problems

	11 Applying the General Pricing Framework
	11.1 Introduction
	11.2 One-Factor Examples
	11.2.1 Stock Options
	11.2.2 Foreign Currency Options
	11.2.3 Futures Options

	11.3 Options on Two Underlying Factors
	11.4 Appendix
	Appendix 11.1  The Integrals J1 and J2
	A. Evaluation of J1(x1,T)
	B. Evaluation of J2(x1,T)

	Appendix 11.2  The Integrals B1 and B2
	The Integral B1
	The Integral B2

	11.5 Problems

	12 Jump-Diffusion Processes
	12.1 Introduction
	12.2 Mathematical Description of the Jump Process
	12.2.1 Absolute Jumps
	12.2.2 Proportional Jumps
	12.2.3 A General Process of Dependent Jump Size

	12.3 Ito's Lemma for Jump-Diffusion Processes
	12.4 Appendix
	Appendix 12.1  Kolmogorov Equation and Feynman–Kac Formula for Processes with Jumps
	The Feynman–Kac Formula

	12.5 Problems

	13 Option Pricing Under Jump-Diffusion Processes
	13.1 Introduction
	13.2 Constructing a Hedging Portfolio
	13.3 Pricing the Option
	13.4 General Form of the Solution
	13.5 Alternative Ways of Completing the Market
	13.6 Large Jumps
	13.7 Appendix
	Appendix 13.1  The Solution of the Integro-Partial Differential Equation

	14 Partial Differential Equation Approach Under Geometric Jump-Diffusion Process
	14.1 The Integro-Partial Differential Equation
	14.2 The Fourier Transform
	14.3 Evaluating the Kernel Function Under a Log-Normal Jump Distribution
	14.4 Option Valuation Under a Log-Normal Jump Distribution
	14.5 Using the Expectation Operator to Evaluate the Option Under Log-Normal Jumps
	14.6 Appendix
	Appendix 14.1  Calculating the A1 and A2

	15 Stochastic Volatility
	15.1 Introduction
	15.2 Modelling Stochastic Volatility
	15.3 Option Pricing Under Stochastic Volatility
	15.4 The Mean Reverting Volatility Case
	15.5 The Heston Model
	15.6 Appendix
	Appendix 15.1   Characteristic Functions
	Appendix 15.2   Expressing the Option Price in Terms of Characteristic Functions
	Solving for the Option Price

	Appendix 15.3   The Characteristic Function for the Heston Model
	15.7 Problems

	16 Pricing the American Feature
	16.1 Introduction
	16.2 The Conventional Approach Based on Compound Options
	16.3 A General Formulation
	16.3.1 The Free Boundary Value Problem
	16.3.2 Transforming the Partial Differential Equation
	16.3.3 Applying the Fourier Transform
	16.3.4 Inverting the Fourier Transform

	16.4 An Approximate Solution
	16.5 Appendix
	Appendix 16.1  The Incomplete Fourier Transform
	16.6 Problems

	17 Pricing Options Using Binomial Trees
	17.1 Introduction
	17.2 The Binomial Model
	17.2.1 The Binomial Stock Price Process
	17.2.2 Option Pricing in the One-Period Model
	17.2.3 Two Period Binomial Option Pricing
	17.2.4 n-Period Binomial Option Pricing

	17.3 The Continuous Limit
	17.3.1 The Limiting Binomial Distribution
	17.3.2 The Black–Scholes Partial Differential Equation as the Limit of the Binomial
	17.3.3 The Binomial as a Discretisationof the Black–Scholes Partial Differential Equation

	17.4 Choice of the Parameters u, d

	18 Volatility Smiles
	18.1 Introduction
	18.2 Stochastic Volatility as the Origin of the Smile
	18.3 Calibrating Deterministic Models to the Smile
	18.4 Problems


	Part II Interest Rate Modelling
	19 Allowing for Stochastic Interest Ratesin the Black–Scholes Model
	19.1 Introduction
	19.2 The Hedging Portfolio
	19.3 Solving for the Option Price
	19.4 Appendix
	Appendix 19.1  Solving the P.D.E. by Change of Variable
	19.5 Problems

	20 Change of Numeraire
	20.1 A Change of Numeraire Theorem
	20.2 The Radon–Nikodym Derivative
	20.3 Option Pricing Under Stochastic Interest Rates
	20.4 Change of Numeraire with Multiple Sources of Risk 
	20.5 Problems

	21 The Paradigm Interest Rate Option Problem
	21.1 Interest Rate Caps, Floors and Collars
	21.1.1 Interest Rate Caps
	21.1.2 Interest Rate Floors
	21.1.3 Interest Rate Collars

	21.2 Payoff Structure of Interest Rate Caps and Floors
	21.3 Relationship to Bond Options
	21.4 The Inherent Difficulty of the Interest Rate Option Problem

	22 Modelling Interest Rate Dynamics
	22.1 The Relationship Between Interest Rates, Bond Prices and Forward Rates
	22.2 Modelling the Spot Interest Rate
	22.3 Motivating the Feller (or Square Root) Process
	22.4 Fubini's Theorem
	22.5 Modelling Forward Rates
	22.5.1 From Forward Rate to Bond Price Dynamics
	22.5.2 A Specific Example

	22.6 Appendix
	Appendix 22.1  Calculation of Covariance
	22.7 Problems

	23 Interest Rate Derivatives: One Factor Spot Rate Models
	23.1 Introduction
	23.2 Arbitrage Models of the Term Structure
	23.3 The Martingale Representation
	23.4 Some Specific Term Structure Models
	23.4.1 The Vasicek Model
	23.4.2 The Hull–White Model
	23.4.3 The Cox–Ingersoll–Ross (CIR) Model

	23.5 Calculation of the Bond Price from the Expectation Operator
	23.6 Pricing Bond Options
	23.7 Solving the Option Pricing Equation
	23.7.1 The Hull White Model
	23.7.2 The CIR Model

	23.8 Rendering Spot Rate Models Preference Free-Calibration to the Currently Observed Yield Curve
	23.9 Appendix
	Appendix 23.1  Solution of the Ordinary Differential Equations (23.59) and (23.60)
	Appendix 23.2  Calculating θ(T) in the Calibration of the Hull–White Model
	23.10 Problems

	24 Interest Rate Derivatives: Multi-Factor Models
	24.1 Hull–White Two-Factor Model
	24.1.1 Bond Price
	24.1.2 Option Prices

	24.2 The General Framework
	24.2.1 Bond Pricing
	24.2.2 Bond Option Pricing

	24.3 The Affine Class of Models
	24.3.1 The Two-Factor Case

	24.4 Problems

	25 The Heath–Jarrow–Morton Framework
	25.1 Introduction
	25.2 The Basic Structure
	25.3 The Arbitrage Pricing of Bonds
	25.4 Arbitrage Pricing of Bond Options
	25.5 Forward-Risk-Adjusted Measure
	25.6 Reduction to Markovian Form
	25.7 Some Special Models
	25.7.1 The Hull–White Extended Vasicek Model
	25.7.2 The General Spot Rate Model
	25.7.3 The Forward Rate Dependent Volatility Model
	25.7.3.1 Interpreting the Subsidiary Variable ψ(t)
	25.7.3.2 The Term Structure of Interest Rates
	25.7.3.3 Pricing European Bond Options


	25.8 Heath–Jarrow–Morton Multi-Factor Models
	25.9 Relating Heath–Jarrow–Morton to Hull–White Two-Factor Models
	25.10 The Covariance Structure Implied by the Heath–Jarrow–Morton Model
	25.10.1 The Covariance Structure of the Forward Rate Changes
	25.10.2 The Covariance Structure of the Forward Rate

	25.11 Appendix
	Appendix 25.1  Proof of Proposition 25.1
	Appendix 25.2  Proof of Proposition 25.2
	Appendix 25.3  Details of the Infinitesimal Generator K
	Appendix 25.4  Proof of Proposition 25.3
	25.12 Problems

	26 The LIBOR Market Model
	26.1 Introduction
	26.2 The Brace–Musiela Parameterisation of the Heath–Jarrow–Morton Model
	26.3 The LIBOR Process
	26.4 Lognormal LIBOR Rates
	26.5 Pricing Caps
	26.6 Pricing Swaptions
	26.6.1 Swaps
	26.6.2 Swaptions

	26.7 Pricing a Caplet Under Gaussian Forward Rate Dynamics
	26.8 Appendix
	Appendix 26.1   Bond Price Dynamics in BM Notation
	Appendix 26.2   Forward Swap Rate Dynamics
	26.9 Problems


	References
	Index

