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Preface

Econometrics is the application of mathematical, statistical, and computational
methods to economic data. Econometrics adds empirical content to economic
theory, allowing theories to be tested and used for forecasting and policy
evaluation.

The ultimate goal of economics in general—and of econometrics in particular—
is not only to describe the economic phenomena, but also to improve them, i.e., to
make production, distribution, and consumption of goods and services more effi-
cient and more fair. To be able to effectively control economic phenomena, it is
important to understand the causal relation between them. In view of this impor-
tance, the main emphasis of this volume is on casual inference in econometrics.

Analysis of causal inference is one of the most difficult tasks in data analysis in
general and in analyzing economic data in particular: when we observe that two
phenomena are related, it is often difficult to decide whether one of these phe-
nomena causally influences the other, or whether these two phenomena have a
common cause.

To get a good understanding of causal inference, it is important to have models
of economic phenomena which are as accurate as possible. It is therefore important
not only to further improve traditional econometric models, but also to consider
nontraditional economic models, such as Computable General Equilibrium
(CGE) models (that properly take into account non-economic factors such as
government regulations and tax policy), fuzzy models (that take into account expert
knowledge formulated in imprecise natural-language terms), and models obtained
by using nonparametric techniques of machine learning (in particular, neural net-
works) and data mining, techniques that uncover the general dependencies from the
data itself—instead of the usual assumption that the model belongs to a certain
predefined parametric family of models.

This volume contains several state-of-the-art papers which are directly or indi-
rectly related to causal inference in econometrics. Some of these papers directly
deal with causal inference. Others deal with models that seem promising for the
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future analysis of causal inference. These papers provide theoretical analysis of the
corresponding mathematical, statistical, computational, and economical models.

Several other papers describe applications of the related econometric models and
techniques to real-life economic situations.

We hope that this versatile volume will help practitioners to learn how to apply
new econometric techniques, and help researchers to further improve the existing
models and to come up with new ideas on how to best detect and analyze causality
in economics.

We want to thank all the authors for their contributions and all anonymous
referees for their thorough analysis and helpful comments.

The publication of this volume is partly supported by the Chiang Mai School of
Economics (CMSE), Thailand. Our thanks to Dean Pisit Leeahtam and CMSE for
providing crucial support. Our special thanks to Prof. Hung T. Nguyen for his
valuable advice and constant support.

We would also like to thank Prof. Janusz Kacprzyk (Series Editor) and
Dr. Thomas Ditzinger (Senior Editor, Engineering/Applied Sciences) for their
support and cooperation in this publication.

January 2016 Van-Nam Huynh
Vladik Kreinovich
Songsak Sriboonchitta
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Part I
Fundamental Theory



Validating Markov Switching VAR Through
Spectral Representations

Monica Billio and Maddalena Cavicchioli

Abstract We develop a method to validate the use of Markov Switching models in
modelling time series subject to structural changes. Particularly, we consider mul-
tivariate autoregressive models subject to Markov Switching and derive close-form
formulae for the spectral density of such models, based on their autocovariance func-
tions and stable representations. Within this framework, we check the capability of
the model to capture the relative importance of high- and low-frequency variability
of the series. Applications to U.S. macroeconomic and financial data illustrate the
behaviour at different frequencies.

1 Introduction

Issues about persistence and frequency variability of time series are often raised in
macroeconomics and finance. In particular, a large literature in econometrics has
developed parametric tools to capture the low-frequency behaviour of some time
series, which exhibit strong persistence in time. According to these recent findings,
the persistency characterizing some time series should be taken into account when
modelling the series as a non-linear model. In this paper we propose a method to
validate the use of Markov Switching (MS) models through the use of their spectral
density functions. We first apply some new tools recently proposed in Cavicchioli [1]
to detect the presence of structural changes in the data. Then we derive close-form
formulae for the spectral representations of Markov Switching VAR processes which
are necessary to evaluate high- and low-frequency variability of time series. The aim
is twofold: from one side, we investigate non-linear features of the data to correctly
specify the parametric model, from the other, we check the correct specification

M. Billio
Department of Economics, Universita Ca Foscari, Cannaregio 873, 30121 Venezia, Italy
e-mail: billio@unive.it

M. Cavicchioli (<)

Department of Economics, University of Modena and Reggio Emilia,
Viale Berengario 51, 41121 Modena, Italy

e-mail: maddalena.cavicchioli@unimore.it

© Springer International Publishing Switzerland 2016 3
V.-N. Huynh et al. (eds.), Causal Inference in Econometrics,
Studies in Computational Intelligence 622, DOI 10.1007/978-3-319-27284-9_1



4 M. Billio and M. Cavicchioli

analyzing their frequency contents through the spectral density function. If the
empirically detected persistency is captured by the chosen parametrization, then
we can be more confident in the application of our parametric model. Our results are
related to the work of Krolzig [6] in terms of state space representation and stable
representation and to the paper of Pataracchia [7] where a different Markovian rep-
resentation has been considered. However, note that in the latter paper, it is assumed
that the constant term (which is also governed by Markov chain) is zero. Here we find
more general and useful expressions. Thus our primary interest is to test non-linearity
in the data, study their behaviour at different frequencies through spectral functions
and validate the chosen model in relation with its empirical counterpart. The plan of
the paper is the following. In Sect.2 we study the spectral density functions of MS
VAR(0) and VAR(p) processes in close-form, both from their switching state-space
representations and from stable VARMA representations. Section 3 investigates the
presence of structural changes in real data. Then we check the ability of the chosen
models to capture high- and low-frequency variability, using arguments from Sect. 2.
Section4 concludes. Derivation of some formulae can be found in the Appendix.

2 Spectra of Markov Switching VAR

2.1 The Case of Hidden Markov Process

Let us consider the model
Yy, =V, + X u 2.1

where u, ~ IID(0, Ix), that is, E(u,) = 0, E(u,;u,) = Ix and E(u, u;) = 0if t # 7.
Furthermore, y;, v;, and u, are K x 1, ¥, is K x K and (s;) follows an irreducible
and ergodic M-state Markov chain. Let P = (p;;); j—1,...» be the transition matrix
of the chain, where p;; = Pr(s; = j|s,—1 = i). Ergodicity implies the existence of a
stationary vector of probabilities & = (77 ...y ) satisfying = P'm and i;wn =1,
where iy, denotes the (M x 1) vector of ones. Irreducibility implies that m,, > 0
for m =1, ..., M, meaning that all unobservable states are possibile. An useful
representation for (s;) is obtained by letting &, denote a random (M x 1) vector
whose mth element is equal to unity if s, = m and zero otherwise. Then the Markov
chain follows a VAR(1) process

Et = P,Sz—l +v

where v, = &, — E(§,]§,_,) is a zero mean martingale difference sequence.
Consequently, we have the following standard properties (2 > 0):

EE)=m E(£,E) =D = diag(m; ... my)
EEE.,,) =DP" v, ~IID(,D—PDP)
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Define A = (vy...vy) and ¥ = (X ... X)). We get a first state space represen-
tation of (2.1)

(2.2)

y: = AE: + E(Et Q Ix)u;
£§=P¢_ +v

In fact, for s, = m, §, = e,, the mth column of the identity matrix I;. So we get

0 0
y,:(vl...vM) 1 +(21~--2M) Ix | w,
0 0
=v,+ X, Ixu, =v, + X,u,.

The transition equation in (2.2) differs from a stable linear VAR(1) process by the fact
that one eigenvalue of P’ is equal to one, and the covariance matrix is singular due to
the adding-up restriction. For analytical purposes, a slightly different formulation of
the transition equation in (2.2) is more useful, where the identity i;wg , = 1is elimi-
nated; see Krolzig [6], Chap. 3. This procedure alters the state-space representation
by using a new (M — 1)-dimensional state vector

Sl,t—ﬂ'l
6;2 :

§M—1,z — TM—1

The transition matrix F associated with §, is given by

P11 —Pwm,1 oo PM—11—DPM1
F = : :

PiM—1 —PmMm—1 -+ PM—1,M—1 — PM,M—1

The eigenvalues of F are less than 1 in absolute value. Here the relations

M-1 M—1
Ee=1-> & y=1- ) 7
m=1 m=1
have been used. Then we have

§—m= P/(Er—l —T)+V
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hence
6 =Fé_1+w

where
w; = Iy —iy—)v;.

This gives a second (unrestricted) state-space representation

ye=An + AE, —m) + 2 (¢, —m) I, + X(w @ Ix)w,

hence _ _
Yi = Ar + Ad, + X (8, @ I)u, + X(w ® Ix)w, 2.3)
6 =Fd&_1+w '
where
Z:(V]-VM...VM_I—VM) E:(E]—EM...EM_1—2M).

We then have the following standard properties:
E@)=0 E,8)=D
E(,8,,)=D®)". h>0  w, ~IDO,D—FDF)

where
7T1(1—7Z1)... — T T —1

N
I

=7y .. Ty (L —my1)

The autocovariance function of the process (y;) in (2.3) is given by

[,(0) = ADA + ED®1x)Z + X((DPx) @ Ix) %
y(h) = AF'DA h>0

where DP,, =z’ and P, = lim, P* = iyn". The multivariate spectral matrix
describes the spectral density functions of each element of the state vector in the
diagonal terms. The off-diagonal terms are defined cross spectral density functions
and they are typically complex numbers. Here we are only interested in the diagonal
terms. Therefore, we can compute them, without loss of generality, considering the
summation

~+00
Fy@)= > Ly(h)e "

h=—00
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where the frequency w belongs to [—, 7 ]; see also Pataracchia [7] where a different

spectral representation was obtained. Since the spectral radius p (F) of F is less than
1, the spectral density matrix of the process (y,) in (2.3) is given by

Fy(®) = O + 2AFRe{(Iy_ e — F)~'}DA (2.4)
where Re denotes the real part of the complex matrix (Iy_ie® —F)~!, and
0=4ADA + DRI + Z(DP.) Q1) X .
Complete derivation of Formula (2.4) is given in the Appendix. An alternative
approach to the same problem is based on a stable representation of (2.3). Set
iy = Am. From (2.3) we get
8, =F(L) 'w,

where F (L) = I;_1 — F L (here L is the lag operator). Substituting this relation into
the measurement equation in (2.3) yields

IFL)|(y: — py) = AF(L)*W, + Z(F(L)*'w, @ I)u, + [F(L)| X (r ® Ix)u,

where F(L)*denotes the adjoint matrix of F/(L) and |F(L)| is the determinant of F'(L).
Thus we get a stable VARMA(p*, ¢*) representation of the process (y;) in (2.3)

¢ (L)Y — ny) = 0(L)e; 2.5
where p* = g¢* <M — 1, ¢(L) = |F(L)| is scalar and
0(L) = (AF(L)* Z(FL)®I) [F(L)Ik).
See also Cavicchioli [1], Theorem 6. The error term is also given by
€ = (w; u;(w; ® Ig) u;(n’ =3 9028}
with variance matrix
Z = Var(e,) = diag(D — FDF, (D — FDF) ® Iy, X((DP,) ® Ix) X').
Using (2.5) the spectral density matrix of the process (y;) in (2.3) is also given by

0 ()50 (e7)

F = -
v(@) 6 ()2

In fact, we can apply a well-known result (see, for example, Gourieroux and Monfort
[4], Chap. 8, Formula 8.3, p. 257). The spectral density of a VARMA process
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D(L)y; = ©®(L)e,,

with Var(e) = R, is given by

Fy(w) = %@‘1(exp(ia)))@(exp(iw))ﬂ@(exp(ia)))/ @~ exp(iw)) (2.6)

This formula can be applied when det @ (z) has all its roots outside the unit circle.
Moreover, we can also write Fy(w) as

i D*(exp(iw)) O (exp(iw)) RO (exp(iw)) P*(exp(iw))

Fy(w) = By | det @ (exp(iw))|?

where @* denotes the adjoint matrix of @. Here, we apply these formulae ignoring
the coefficient. Written in this form Fy(w) is a matrix whose elements are rational
functions of exp(iw). This property is a characteristic of the VARMA process.

2.2 The Case of MS VAR(p)

Let us consider the MS VAR(p), p > 0, process
A(L)y, = v, + Z‘v/ut 2.7)

where A(L) =Ix — AL —---—A,L” is a (K x K)-dimensional lag polynomial.
Assume that there are no roots on or inside the unit circle of the complex plane, i.e.,
|A(z)| # 0 for |z| < 1. Reasoning as above, the process (y;) in (2.7) admits a stable
VARMA(p*, ¢*) withp* <M +p—landg* <M — 1:

Y(L)(y: — iy) = 0(L)e; (2.8)

where W (L) = |F(L)|A(L) = ¢ (L)A(L) and 6(L)e, is as in (2.4). If we want the
autoregressive part of the stable VARMA in (2.8) to be scalar, we have to multiply
(2.8) on the left with the adjoint A(L)* to give a stable VARMA(p’, q/) representation,
where the bounds satisfy p <M + Kp — 1 and ¢ <M + (K — 1)p — 1. Thus the
spectral density matrix of the process (y,) in (2.8) is given by

A—l(eiw)9(eiw)Ee’(e—ia))[A’(e—iu))]—l
= 9 ()2
B A*(eiw)g(eiw)ge/(e—iw)A*'(e—iw)
1)’ det A(e)P?

From the above section we can also obtain the matrix expression
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Fy(@) = A" (€“)QIA (7)™ + 247" (¢) AF 09)
x Re{(Iy_1¢® — F)"}DA [A (e )] . '

A similar result can be obtained for a Markov Switching VAR(p), p > 0, process
A, (L)y; = v, + X0, (2.10)

where we assume that the state variable is independent of the observables.
Define
AL) = A(L)...Au(L))

where
Am(L) = IK - Al,mL - Ap,mLp

form=1,...,M. Recall that s, € {1, ..., M}. Then (2.10) can be written in the
form
AL)(E, @ Ix)y, = A§, + X (§, ® Ix)u,.

Assume that B(L) = A(L)(w ® Ig) is invertible. Then the spectral density matrix of
the process (y;) in (2.10) is given by

B B—l (eiw)e(eiw)EQ’(e—iw)[B’ (e—iu))]—l

Fy(w) = . (2.11)
! b (e)]?
Finally, we can also obtain the matrix expression
Fy(@) = B~ (¢“)QIB (7)™ +2B™"(¢) AF
(2.12)

% Rel(Iy_ 1€ — F)""\DA [B (e=)]".

3 Frequency Variability in Real Data

A recent paper by Miiller and Watson [5] has proposed a framework to study how suc-
cessful are time series models in explaining low-frequency variability. In fact, some
econometric models (local-to-unity or fractional) were specifically designed to cap-
ture low-frequency variability of the data. However, they provide reliable guidance
for empirical analysis only if they are able to accurately describe not only low-
frequency behaviour of the time series, but also high-frequency. In particular, the
authors focus on lower frequencies than the business cycle, that is a period greater
than eight years, and some inference is proposed on the low-frequency component of
the series of interest by computing weighted averages of the data, where the weights
are low-frequency trigonometric series. We propose to look at the relative impor-
tance of low- and high-frequencies in a time series from a different prospective.
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We assume that a suitable parametric model should be able to capture the rela-
tive importance of the different frequencies which characterize the behaviour of the
series. Our aim is to study some empirical questions of interest from Miiller and
Watson [5] with a different approach. In particular, we firstly use recent test from
Cavicchioli [1] to correctly parametrize the process we are considering. Then, by
using simple Maximum Likelihood Estimation (MLE) expressions from Cavicchioli
[2] we proceed to estimate the model. Finally, using spectral density results presented
in Sect.2, we check if the chosen model is able to extract frequency variability of
the initial process. Following Miiller and Watson [5], we investigate the following
questions: (1) after accounting for a deterministic linear trend, is real gross domestic
product (GDP) consistent with a I(1) model? (2) is the term spread consistent with
the I(0) model, that is are long term and short term interest rates cointegrated? (3)
are absolute daily returns, which are characterized by “slow decay of autocorrela-
tions” consistent with an I(1) or I(0) model? We study those questions allowing the
possibility that those series may be affected by structural changes and, if it is the
case, they should be taken into account when fitting a model on the data. We take
postwar quarterly U.S. data and focus on a period greater than 32 quarters, that is
frequencies lower than the business cycle, as in Miiller and Watson [5]. In particular,
we consider quarterly values (1952:Q1-2005:Q3) of the logarithm of de-trended real
GDP and de-meaned term spread—difference between interest rates for 10 years and
1 year U.S Treasury bonds. Moreover, we observe daily absolute returns (January
2nd, 1957-September 30th, 2013) computed as the logarithm of the ratio between
consecutive closing prices from S&P500. Data are taken from the FRED database.
Before proceeding with our analysis, we plot sample periodograms of the data in
order to have a preliminary idea on the different behaviour of the series. In Fig. 1 we
recognize a mixed pattern of low- and high-frequency cycles for real GDP and bond
spread which produces uncertainty on the relative importance of the two components.
On the contrary, we recognize the explosion at the low-frequency in the periodogram
of absolute returns, as we expected from “long-memory” considerations. To correctly
estimate the process, the first step is to test linearity or non-linearity of the model
and, if it is case, the number of regimes which characterizes the time series. For the
determination of regime number, we use results from Cavicchioli [1].

With regard to the real GDP, we select a linear model, that is one regime is sufficient
to describe the data. We include one lag for the autoregressive model (as suggested by
standard information criteria for the AR model) and plot its spectral density in Fig. 2
(upper panel). The spectra of this model is typical of an autoregressive model; here
low-frequencies are the most important, giving credit to an I(1) model. However, if
we take the first differences of the series, we somehow depurate the process from
the stochastic trend (not only from the linear deterministic one, as before). Here the
test suggests a MS(2) AR(1) model and the spectra in Fig.2 (lower panel) retains
only high-frequency movements. It suggests that the long-run pattern characterized
by two phases of the economy is captured by the switching model.

When considering the Treasury bond spread, a 2-state switching model is selected.
Thus, we estimate a MS(2) AR(1) model which turns to be as follows
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Fig.1 Periodograms of logarithm of detrended U.S. real GDP (fop panel), demeaned Treasury bond
spread as the difference between interest rates for 10 years and 1 year U.S Treasury bonds (middle
panel); those two series have quarterly frequency and the period is from 1952:Q1 to 2005:Q3.
Absolute daily returns (bottom panel) as the logarithm of the ratio between consecutive closing prices
from S&P500 (January 2nd, 1957-September 30th, 2013). Data are taken from FRED database

Fig. 2 Spectral density Real GDP
functions (solid lines) for the ‘ ‘ ‘
logarithm of detrended U.S.
real GDP modelled as a
linear AR(1) (upper panel)
and for the logarithm of
differenced U.S. real GDP
modelled as MS(2) AR(1)
(lower panel) along with

95 % confidence interval
bands (starred lines). Both
series have quarterly
frequency for the period
1952:Q1-2005:Q3. Data are
taken from FRED database
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Fig. 3 Spectral density Tbond spread
(solid line) of demeaned 25 ) ) )
Treasury bond spread

(difference between interest 20
rates for 10 years and 1 year)
at quarterly frequency
(1952:Q1-2005:Q3) 15T
modelled as a MS(2) AR(1),
along with 95 % confidence
interval bands (starred
lines). Data are taken from
FRED database 5
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o =10.4033 0.0047]
sd(ft) =[1.2356 0.4711]

~

¢ =[—1.1343 —0.8474]

sd($) = [1.3273 0.2711]
& =[0.8737 0.3331]
sd(6) = [0.6178 0.2356]

.~ [0760.24
~0.240.76

Then we use the estimated values in the spectral formulae of Sect.2 to depict the
spectral representation of the data, which is in Fig.3. The spectrum suggests that
only high-frequencies of the series matter. This seems to be consistent with an 1(0)
model, where high-frequency variability dominates the process.

Finally, we evaluate the behaviour of absolute returns from S&P500, which typi-
cally suffer of “long memory”. Here a 3-state switching model suits the data and we
estimate a MS(3) AR(1). The estimated parameters are the following

i =[—0.0408 0.0004 0.0049]
sd(fr) =[0.1276 0.0009 0.0084]

A~

¢ =[0.2013 —0.0001 —0.0819]

sd($) = [4.8271 0.2609 0.5717]
& = [0.0737 0.0005 0.0048]
sd(6) = [0.0471 0.0003 0.0031]

. 0.98 0.00 0.02
P =0.020.98 0.00
0.00 0.04 0.96
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Fig. 4 Spectral density Abs.Returns S&P500

(solid line) of absolute daily 0014 j j j j j
returns (logarithm of the
ratio between consecutive

0.012 b

closing prices from S&P500) 0.01
for the period January 2nd,
1957-September 30th, 2013, 0.008 +
modelled as a MS(3) AR(1),

along with 95 % confidence 0.006 |
interval bands (starred
lines). Data are taken from
FRED database

0.004

0.002

Using Formula (2.12), we construct the spectral density of the process having the
above estimated parameters. This is plotted in Fig. 4 and it is very close to the sample
periodogram, with very tight confidence bands, opening up a room for considering
structural change rather than long memory attributes of the process. Moreover, from
the estimated values, we recognize a first regime of high-volatility and negative
returns, a second regime of low volatility and high returns and a third state of moderate
volatility and average returns. In particular, estimated transition probabilities show
that regimes are very persistent, which is also in line with the conclusion given by
Diebold and Inoue [3].

4 Conclusion

In this work we study multivariate AR models subject to Markov Switching in the
most general form and derive close-form formulae for the spectral density functions
of such processes. The spectral densities of these models can be very useful as a
tool to infer information on the persistency characterizing the series and to check the
correct parametrization of the process. In particular, after having assessed linearity
or non-linearity of the series, spectral analysis gives some insights on the relative
importance of high- and low- frequency variability and help to validate the assumed
model. We applied the introduced methods to some macroeconomic and financial
data to evaluate their frequency variability via spectral analysis.
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Appendix

Derivation of Formula (2.4):
The spectral density of the process (y¢) in (2.3) is given by

Fy(w) = Z Iy(|h)e™ " = F(O)—i—ZF(h)e“‘“h—i— Z Iy(kye™™

h=—00 h=1 k=—00

400 +00
=0 + > Ly(e ™" + D" Iy (ke ",

h=1 h=1

Note that
(ZAh) I—A)=A+A*+ - +AHUT —-A) =4 — A"

which is equal to A when n goes to infinity with the spectral radius of A less than 1.
Hence

n +00
. h _ _ h __ _ -1
(nEToo;A )(1 A=A and ZA =AUl —A)"".

h=1

It turns out that spectral density of the process in (2.3) is given by
Fy(w)=ADA + ZDRIx)T + Z((DP,) @ Ix) X

+00 +00
+ Z AF'DA e~ + Z AF'DA "

h=1 h=1
_ +o00 . _ +o00 .
=0+A Z(Fe"“’)hDA +A Z(Fe"”)hDA
h=1 h=1

— O+ A(Fe @)1 —Fe ) 'DA + A(Fe®)(I — Fé®)"'DA
— 0+ 2AFRe{(Iy_ ¢ — F)"'\DA

where Re denotes the real part of the complex matrix (Iy_1e® —F)~!, and

0=ADA +IDRI)E + Z(DP.) @ 1) . 0
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Rapid Optimal Lag Order Detection
and Parameter Estimation of Standard
Long Memory Time Series

G.S. Dissanayake

Abstract Objective of this paper is to highlight the rapid assessment (in a few
minutes) of fractionally differenced standard long memory time series in terms of
parameter estimation and optimal lag order assessment. Initially, theoretical aspects
of standard fractionally differenced processes with long memory and related state
space modelling will be discussed. An efficient mechanism based on theory to esti-
mate parameters and detect optimal lag order in minimizing processing speed and
turnaround time is introduced subsequently. The methodology is extended using an
available result in literature to present rapid results of an optimal fractionally differ-
enced standard long memory model. Finally, the technique is applied to a couple of
real data applications illustrating it’s feasibility and importance.

Keywords ARFIMA process + Long memory * Fractional difference - Spectral
density - Stationarity

1 Introduction

Background Information and Literature Review:

The stochastic analysis of time series began with the introduction of Autoregressive
Moving Average (ARMA) model by [34], it’s popularization by [6] and subsequent
developments of a number of path breaking research endeavours. In particular, in the
early 1980s the introduction of long memory processes became an extensive prac-
tice among time series specialists and econometricians. In their papers [18, 23] pro-
posed the class of fractionally integrated autoregressive moving average (ARFIMA
or FARIMA) processes, extending the traditional autoregressive integrated mov-
ing average (ARIMA) series with a fractional degree of differencing. A hyperbolic
decay of the autocorrelation function (acf), partial autocorrelation function (pacf)
and an unbounded spectral density peak at or near the origin are two special char-
acteristics of the ARFIMA family in contrast to exponential decay of the acf and a
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bounded spectrum at the origin in the traditional ARMA family. In addition to the
mle (maximum likelihood estimation) approach, [16] have considered the estima-
tion of parameters of ARFIMA using the frequency domain approach. References
[11, 30, 31] have considered the estimation of ARFIMA parameters using the
smoothed periodogram technique. Additional expositions presented in [1, 4, 5, 7,
10, 17, 29, 32] and references their in provide a comprehensive discussion about
long memory series estimation. In yet another development, fractionally differenced
long memory model parameters were estimated using maximum likelihood and least
squares with their convergence rates, limiting distribution and strong consistency by
[35]. Another interesting parameter assessment study employing state space mod-
elling of ARFIMA series could be found in [19, 27].

An optimal lag order for the parent model of the ARFIMA series known as the
Gegenbauer autoregressive moving average (GARMA) process driven by Gaussian
white noise was established using state space modelling in [13] through the validation
of the model mean square error (MSE) by the predictive accuracy. The technique
was extended to a different dimension in [14] through the replacement of Gaussian
white noise by heteroskedastic errors employing a Gegenbauer process highlighted
in [12].

Unfortunately the fractionally differenced long memory model parameter assess-
ment often has a high turnaround time or a very slow processing speed depending
on the series length, lag order and the number of replications in delivering Monte
Carlo evidence. In such a context a rapid mechanism to estimate model parameters
and optimal lag order of even the simplest fractionally differenced standard long
memory model in the form of an ARFIMA series is seemingly absent in the cur-
rent literature. In lieu of it this paper addresses the void by presenting a mechanism
that revolves around recent advancements in information technology in slashing the
turnaround time and processing speed as an original contribution.

In summary, consideration of this paper will be given to a certain class of long
memory ARFIMA processes generated by Gaussian white noise. In following it the
paper will comprise of Sect.2 providing preliminaries of fractionally differenced
ARFIMA processes with long memory. ARFIMA processes and the use of truncated
state space representations and Kalman Filter (KF) in estimating it’s long memory
version will be considered in Sects. 3 and 4. The state space methodology will follow
the work of [2, 3, 8, 9, 13, 15, 19, 21, 22, 27, 28]. This will be followed by Sect.4
illustrating simulation results. Corroborating real data applications will be presented
in Sects. 5 and 6 will comprise of concluding remarks.

2 Preliminaries

Certain preliminary definitions and concepts that are useful in comprehending the
material in the subsequent sections of this paper are introduced next for clarity and
completeness.
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Definition 1.1
A stochastic process is a family of random variables {X,}, indexed by a parameter ¢,
where ¢ belongs to some index set .7 .

In terms of stochastic processes the concept of stationarity plays an important
role in many applications.

Definition 1.2
A stochastic process {X;; t € .7} is said to be strictly stationary if the probability dis-
tribution of the process is invariant under translation of the index, i.e., the joint prob-

ability distributions of (X, ..., X, ) is identical to that of (X; 4, ..., X;,+«), for
alln € Z°*(Set of positive integers), (¢1,...,t,) € T,k € Z(set of integers).
ie.,

F(.X],...,.xn;t], '~"tl‘l) = F(xla "-’xn;tl-‘rka -~~7tn+k)v (1)

Definition 1.3
A stochastic process { X, } is said to be a Gaussian process if and only if the probability
distribution associated with any set of time points is multivariate normal.
In particular, if the multivariate moments E(X;' ... X;") depend only on the time
differences, the process is called stationary up to order s, when s < sy + - + s,.
Note that, the second order stationarity is obtained by setting s = 2 and this weak
stationarity asserts that the mean p is a constant (i.e., independent of ¢) and the
covariance function y;, is dependent only on the time difference. That is,
E(X,) = u, forall ¢
and
Cov(X;, X;) = E[(X; — W) (X; — )] = Yjy—q), forall ¢, 7.
Time difference k = |t — | is called the lag. The corresponding autocovariance
function is denoted by y.

Definition 1.4
The acf (autocorrelation function) of a stationary process {X,} is a function whose
value at lag k is

ok = vi/vo = Corr(X;, X;41), for all t ke %, )

Definition 1.5

The pacf (partial autocorrelation function) at lag k of a stationary process {X;} is
the additional correlation between X, and X, ; when the linear dependence of X,
through to X, ;| is removed.

Definition 1.6
A time series is a set of observations on X/, each being recorded at a specific time ¢,
where ¢ € (0, 00).

Let {X,} be a stationary time series with autocovariance at lag k, y;, = Cov(X;,
X,+k), acf (autocorrelation at lag k) o = Corr(X,,X, 1) and the normalized spectrum
or spectral density function (sdf), f(w) = % Z,‘:C:_OO pre” 9% —1 < w < 7, where
w is the Fourier frequency. There are two main types of time series uniquely identified
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by the behaviour of p; and f (w). They are classified as memory types and their basic
definitions in advance time series analysis are given as follows:

Short Memory: A stationary time series {X,} is short memoryif >_ | px| < co. Then
o decays exponentially depicting properties of p; ~ a* for some |a| < 1 resulting
in a finite spectrum at @ = 0 or lim,_~ f (w) existing and being bounded.

A stationary ARMA process is, therefore, short memory.

Long Memory: A stationary time series {X,} is a standard long memory case if p; ~
k=%, d > 0 for large k and > | px| = 0o. Then p; decays hyperbolically resulting in
limy_~¢ f (w) being unbounded at w = 0.

In her paper [20] provides a number of alternative characteristics of long memory
processes. Interestingly, [33] introduced a characteristic-based clustering method to
capture the characteristic of long-range dependence (self-similarity).

Note: Processes in which the decay of p; takes a shape in between exponential and
hyperbolic arcs are known as intermediate memory. It implies the acf plot of such a
process will be neither exponential nor hyperbolic but corresponding to a curve in
between the shapes.

Remark: Partial autocorrelation function (pacf) of each memory type will provide
corresponding shapes related to that of the acf.

2.1 Fractionally Differenced Long Memory Processes

When a long memory process is subject to the technique of fractional differencing
it becomes a fractionally differenced long memory series. Due to it’s importance in
time series econometrics as a method, fractional differencing becomes the next topic
of interest.

2.1.1 Fractional Differencing

Suppose that {Y;} is a long memory stationary time series with an unbounded spec-
trum at the origin. It can be shown that the time series ¥; can be transformed to a
short memory series X, through a fractional filter of the form

X, = (1 — B)YY,, d €(0,0.5),

where d could take any real fractional value within the open interval (0, 0.5) such
that the full ARFIMA(p,d,q) model becomes

¢(B)(1 — B)'Y, = 6(B)s,, 3)
where ¢ (B) and 0(B) are stationary AR(p) and invertible MA(q) operators, B the

backshift operator such that ¢(B) =1—-¢ B —---—¢,B?, 6(B) =1+4+6,B +
-+ -+ 0, B7 have zeros outside the unit circle and {g,} ~ WN (0, a?).
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See for example [18, 23] for details.
The ARFIMA process is a special case of the GARMA(p,d,q) model given by

#(B)(1 —2uB + B*)?Y, = (B)s;, 4

in which the polynomial index # = 1 reduces the Gegenbauer expression (1 — 2uB +
B?)to (1 — B)? resulting in a standard long memory model with a polynomial power
term 2d.

The above fractional differencing is used in long memory time series modelling
and analysis.
Note: A fractionally differenced stationary ARFIMA process is considered long
memory if the memory parameter d € (0, 0.5).
Remark: For convenience a fractionally differenced ARFIMA(0,d,0) series is con-
sidered hereafter in the analysis of the paper.

3 State Space Representation of an ARFIMA Time Series

Consider the Wold representation of a Gaussian ARFIMA(0,d,0) process with &, ~
NID(0, o) given by

X, =y(Be, = D e, )
=0

where Yy = 1, Z;‘;O w} = oo and each of the coefficients are defined by the equation

Iﬂ‘ _ I'(j+d)
J = T@rg+n-

Now the mth order moving average approximation to (5) is obtained by truncating
the right hand side at lag m, such that

Xr,m = Z %‘8:7]', (6)
=0

where {X, ,, } is atruncated ARFIMA process that will vary with the chosen truncation
lag order m, which is fixed and finite.

3.1 State Space Representation of ARFIMA Model

In this approach, a dynamic time series is transformed into a suitable equivalent sys-
tem comprising of two fundamental (Measurement/Observation and State/Transient)
equations. As has been shown in the literature, this equivalent state space represen-
tation is not unique for time series. It will be similar to the state space representation
of the ARFIMA series of [9]. Following this approach, (6) is equivalent to:
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Xt,m =Zo + &, )
a1 = Ta, + Hey,
where o, = [X (¢ + 1|t), X (¢ + 2|t), X + 3]t), ..., X(¢ +m|t)]' is the m x 1
state vector with elements
Qjrr1 = E(Xt+j,m|gt)s f};t = {Xt,m’ thl,nu ..., }, and

010 0 U
001 .0 ()
Z=[1,0,...,0], T=]:@": ol H= .
R 0 1 :
00 - .- 0 | Y

Z, T, H are suitably chosen matrices with dimensions 1 x m, m x m, and m x 1.
Vector o, consists of stochastic elements that have evolved from the process. H
consists of an m number of ¥, coefficients. The specification comprises of the initial
state distribution, o1 ~ N(a;, P;), where a; = 0 and P; is the Toeplitz matrix with
elements pp, = D ; ViV j+in—k» such that the state space configuration will be based
on the Wold representation of (6).
Note: Similar results could be obtained using the corresponding AR (m') approxi-
mation by truncating (5) such that 7 (B) = (1 — B)¢ ~ Z?:o dje,—j. See 9, 19] for
a comparison of the two approximations in the fractionally integrated case.
The most popular algorithm utilized by state space modelling specialists for estima-
tion and prediction is known as the K F' and becomes the focal point of Sect.3.2.

3.2 KF and Estimation Process

KF was introduced by [25, 26] to provide estimates of parameters in a state space
model of a time series or a linear dynamic system disturbed by Gaussian white
noise. Approximate maximum likelihood estimation and prediction of time series
parameters can be executed by adopting a state space approach coupled with a set of
recursions called the KF.

Due to the presence of stochastic elements in the system it uses a series of
measurements observed over time containing random variations (noise) to return
pseudo-innovations of the model in creating the pseudo log-likelihood and quasi
profile likelihood functions. This gives the optimal quasi maximum likelihood esti-
mates (QMLE’s) of the model parameters as shown in Tables1 and 2 in Sect.4.
Let {x;,t =1, ..., n} be a time series. The likelihood function of an approximating
MA(m) model could be evaluated using the KF set of recursions fort = 1, ..., n:
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Table 1 QMLE results due to the MA approximation

23

m 29 30 31 32 33 34 35

d 0.2285 0.2288 0.2304 0.2317 0.2320 0.2376 0.2362
6 0.9664 0.9625 0.9622 0.9650 0.9649 0.9571 0.9660
Model-bias —0.0051 | —0.0087 | —0.0074 | —0.0033 | —0.0031 |—0.0053 |0.0022
Table 2 QMLE results due to AR approximation

m 9 10 11 12 13

d 0.2238 0.2223 0.2215 0.2222 0.2243

6 0.9638 0.9633 0.9643 0.9657 0.9662
Model-bias —0.0124 —0.0144 —0.0142 —0.0121 —0.0095

v, = x; — Zay, fi=ZPZ,

K =(TPRZ)/fi ®)

ary1 =Ta; + Kyvy, g =TPRT' + HH' — K/ K|/ f:,

where K, is the Kalman gain (which shows the effect of estimate of the previous
state to the estimate of the current state), and f; the prediction error variance

The KF returns the pseudo-innovations v,, such that if the MA(m) approximation
were the true model, v, ~ NID(0, o2 f;), so that the quasi log-likelihood of (d, o'2)
is (apart from a constant term)

1 - 1 2
d,o?) = —E(nlnoz—i-Zlnf,—i—;Z?’).
=1 =1 7!

(€))

The scale parameter o2 can be concentrated out of the likelihood function, so that

and the quasi profile log likelihood is

ly2(d) = _% |:n(ln62 +1)+ Zlnf{| ) (10)

t=1

The maximisation of (10) can be performed by a quasi-Newton algorithm, after a
reparameterization which constrains d in the subset of Z(0, 0.5). For convenience we
use the following reparameterization: 8; = exp(2d)/(1 + exp(2d)). Furthermore, a
discussion about the KF formulation of the likelihood function can be found in [24].
The simulation results given next provides an interesting assessment.
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4 Simulation Results

The Monte Carlo simulation experiment was based on the state space model of the
previous section and was executed through the KF recursive algorithm, which is
already established in the literature. To propel the speed of it Fast Fourier transforms
(FFT) were utilized and to a certain degree it could also be classified as a hybrid
model. It enabled to slash the processor speed and turnaround time illustrating the
rapidity of optimal lag order detection and estimation in proposing a creative com-
ponent. The programs were parallelized and run on high speed multiple servers with
random access memory (RAM) capacities ranging from 24-1024 gigabytes using
the MATLAB R201 1b software version. QMLE’s of d and 0% due to an approximate
likelihood through a state space approach using MA and AR approximations for an
ARFIMA model driven by Gaussian white noise are shown in Tables 1 and 2 utilizing
fast FFT.

By using FFT to convert functions of time to functions of frequency, the above
state space approach is illustrated by fitting a Gaussian ARFIMA process with model
initial values of d = 0.2, 0 = 1 and the results are as follows in terms of both the
MA and AR approximations:

For this particular simulation the likelihood is monotonically increasing with m
due to the use of a log likelihood function. Figure | displays the implied spectral
density of X, ,, corresponding to the above parameter estimates. For m > 1 they are
characterised by a spectral peak around the frequency cos~'0 and are side lobes
due to the truncation of the MA filter (A Fourier series oscillation overshoot near a
discontinuity that does not die out with increasing frequency but approaches a finite
limit known as Gibbs phenomenon). The autoregressive estimates do not suffer
from the Gibbs phenomenon. It is illustrated in Fig. 2.

6 T T T T T T

— m=29
— m=30

- = m=31|
— m=32
——— m=33
— M=34 ||

1 m=35

Fig.1 Spectral density of an ARFIMA(0,d,0) series using MA approximation
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Fig. 2 Spectral density of an ARFIMA(0,d,0) series using AR approximation

By recalling from Sect. 1 that the state space methodology presented in Sect. 3 was
utilized by [13] for a GARMA(0,d,0) series in concluding that the optimal lag order
falls within [29, 35] for an MA and [9, 13] for an AR approximation. The result is
applicable to the ARFIMA(0,d,0) model considered in this paper, since it is a special
case of the GARMA(0,d,0) series (Refer: the explanation related to Eq. (2) in Sect. 2).
By using the result and the minimum model-bias of estimators in Tables 1 and 2 it
is clear that for the series generated through the MA approximation the optimal
lag order is 30, and for the series created through the AR approximation it is 10.
More importantly the processing or turnaround times taken to deliver the results
were: approximately 3 minutes for the MA representation and approximately
5 minutes for the AR representation. It clearly proves the cost effectiveness of
the process, since if run without the FFT’s the processing time will vary between
45 min to 17 h depending on the utilized server, number of iterations and incorporated
lags. The difference in processing turnaround times of the two estimation techniques
(MA and AR) is due to the varying Monte Carlo error as explained in [13].

The simulation study of the MA approximation also revealed that the asymptotic
variance of long memory parameter d was % independent of the series length (n)
corroborating the result of [13]. These developments motivated the author to apply the
methodology of this paper towards real applications involving Nile river outflow and
Australia Consumer Price Index (ACPI) data, which depict characteristics of standard
long memory (based on literature) and becomes the topic of the next section.

5 Empirical Evidence

Nile River outflow and ACPI data have been premier real data sets utilized by time
series econometricians and statisticians over the years due to their close relation-
ship with standard long memory. The chosen data sets have a significant impact in
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Table 3 QMLE results for Method d
Nile River Data —
MA-Approximation 0.291 (0.012)
AR-Approximation 0.278 (0.019)
Table 4 QMLE results for Method d
ACPI data T
MA-Approximation 0.331 (0.009)
AR-Approximation 0.319 (0.015)

econometrics, since an assessment of the Nile river outflow is important to irrigation
and agricultural production yields that affect the economies of many third world
African nations, while an ACPI benchmark affects the economic stability of a devel-
oped first world country. The long memory feature becomes evident from the sdf
plots of the datasets with infinite peaks close to the origin. Furthermore the acf and
pacfplots depict long memory through hyperbolically decaying arcs. In lieu of it Nile
River data from 1870 to 2011 and ACPI data from 3rd quarter, 1948 to 2nd quarter
2015 were considered and fitted to the hybrid ARFIMA(0,d,0) state space model
discussed in this paper. The datasets were downloaded from https://datamarket.com
and http://www.abs.gov.au websites and the corresponding results are provided in
Tables 3 and 4.
Note: The values in brackets right adjacent to the parameter estimates of d are the
standard errors. From the estimate values it is evident that the long memory property
is preserved since with both the approximations of the applications 0 < d <0.5.
Concluding remarks are provided next based on the details and results of the
preceding sections.

6 Concluding Remarks

The facts provided in Sects. 1-5 of this paper highlight and address various issues
that are prevalent in the current literature. In terms of such issues one major void is
the lack of a rapid estimation process for standard long memory models. In lieu of
it a hybrid state space modelling technique based on the combined utilization of the
KF and FFT is introduced as a novel contribution to the existing body of knowledge.
Thereafter by employing the method and an existing result in the literature an optimal
lag order is established for a standard long memory process by way of two distinct
estimation techniques as a secondary contribution. It is established by ascertaining
the smallest bias of each estimator within the optimal lag order interval. Finally, the
developed methodology is applied to a real data sets in hydrology and economics in
symbolizing the long memory attribute.
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Spatial Econometric Analysis: Potential
Contribution to the Economic Analysis
of Smallholder Development

Renato Villano, Euan Fleming and Jonathan Moss

Abstract The stars appear to be aligned for a sustained effort to improve information
to rural development policy makers about the impact space has on the opportunities
for development of the ubiquitous smallholder households in rural areas of South-
east Asian countries. The influences of spatially heterogeneous resource constraints
on farming activities, distance to markets and institutions, and spatial interaction
among smallholders can now be better accounted for in modelling work as a result
of improvements in analytical methodologies, the growing availability of so-called
‘big data’ and access to spatially defined information in panel data sets. The scope for
taking advantage of these advances is demonstrated with two examples from a South-
east Asian country, the Philippines: spillovers and neighbourhood effects in impact
studies and the development of sophisticated spatial stochastic frontier models to
measure and decompose productivity growth on smallholdings.

Keywords Autoregressive - Philippines - Rural development * Space + Smallholder

1 Introduction

Space has long been recognised as a major factor influencing the welfare of small-
holders producing food, fibre and beverages in Southeast Asian and other developing
countries (where a smallholding can be considered as a plot of land, typically less
than 2 ha in developing countries, that is sufficient for a single farming family unit
with a limited resource base to sustain itself). These small production units are typ-
ically spatially dispersed, subject to variations in soils, topography, vegetation and
climate, and frequently are located long distances from agricultural markets and sup-
port services such as financial institutions and research and extension agencies. The
adverse effects of distance from markets are exacerbated by inadequate or absent
infrastructure and other public goods, and lack of competition among buyers of their
outputs in more remote areas.
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Marketing margins (the difference between what it costs an individual or firm
to produce a good or service and what revenue it receives from its sale) tend to
comprise a substantial proportion of the retail prices of agricultural products. This
is especially so where agricultural industries rely on export markets as a destination
for a significant part of their output. Furthermore, smallholders are not uniformly
distributed in rural areas; there is often a high degree of clustering, which may
vary according to the product being produced. Clustering is especially strong with
many horticultural products that are produced in a land-intensive manner. Hence,
space has had an enduring influence on the economics of smallholder development.
Given this importance of space, it is surprising that spatial analysis has not been
more prominent in agricultural development studies, in terms of spatial econometrics,
spatial equilibrium analysis (analysis of the volumes and trade direction across spatial
entities) or methods of exploratory data analysis such as cluster analysis. We are
concerned specifically with the potential role of spatial econometric analysis in this
sphere. The overriding factor that has retarded the use of spatial econometric analyses
to date has been in assembling the necessary data to undertake them effectively.
This drawback has been reduced in recent years and, together with advances in
econometric methods, there is now greater opportunity for a renewed emphasis on
accumulating knowledge of spatial impacts to inform agricultural policy making,
particularly how it affects smallholders.

In the next section of the paper, we outline these advances in data availability,
focusing on geographic information system (GIS) and global positioning system
(GPS) mapping, so-called ‘big data’ and panel data collection to reflect the pres-
ence of spatial and temporal heterogeneity (the uneven distribution of phenomena
of interest across space and time). In Sect. 3, we review the existing literature on
spatial econometric analysis, concentrating on recent progress in methodology and
analyses of smallholder development. This review leads us to examine potential areas
for analysis using spatial econometric methods in a Philippines context. We assess
opportunities to use spatial econometric analysis for assessing the impact of rural
development projects on smallholders, and for measuring and decomposing produc-
tivity of smallholder farming and explaining factors influencing it. In the final section,
we consider the prospects for more fruitful use of spatial econometric analysis for
smallholder policy formulation in the future and draw some conclusions.

2 Advances in Data to Capture Spatial Heterogeneity

2.1 GIS and GPS Mapping

GIS is a term used to define the set of tools available for collecting, storing, manip-
ulating, analysing and displaying spatial data [73]. GIS tools operate on standard
geographical primitives such as points, lines, areas and continuously varying sur-
faces. While remote sensing, scanning of the earth by satellite or high-flying aircraft,
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is a common technique to obtain conventional cartography and thematic (land-use)
maps, GPS have been the main factor behind the advancement of spatial data in
agriculture [21]. GPS is a worldwide radio-navigation network formed by a con-
stellation of satellites and their ground stations which allows users anywhere in the
world with a compatible receiver to accurately locate geographical positions through
triangulation. This technology allows data to be geo-referenced by linking spatial
dimensions. Coupled with low-cost personal computers and an increasing preva-
lence of GPS-capable smart phones and tablets [34, 84], this technology is resulting
in rapid collection and mapping of agricultural inputs and outputs.

A fundamental principle of spatial analyses is the calculation of distance between
geo-referenced data (that is, data defined according to location). Progress has been
made recently in calculating the shortest distance between two locations using one
of three different travel-distance estimation methods. The first method calculates the
shortest distance ‘as the crow flies” from each cell to a specific location using the
orthodromic algorithm, which calculates the shortest distance between two locations
on the surface of a sphere. The second method, called the Dijkstra algorithm [15],
calculates the shortest distance between locations along a road network. The third
method is called the least-cost algorithm and is based on the Dijkstra algorithm. It
accounts for differences in travel speed and fuel consumption along different road
classes, formations and gradients [14, 64]). This algorithm determines the shortest
route while simultaneously accounting for travel time and fuel consumption. These
three methods are now discussed in further detail.

First, the orthodromic algorithm estimates the shortest distance between geo-
graphical coordinates. For each cell in the area of interest, the distance to each
location is determined using the Haversine formula, an equation for calculating the
distance between two locations on a sphere using their latitudes and longitudes. For
smallholders, access to markets and institutions that support and facilitate their activ-
ities is not a simple matter of a direct distance, and so this algorithm provides an
inaccurate estimation of the likely distance between locations. However, it has the
advantage of requiring no information on the road network.

Second, the calculation of minimum travel distance using the Dijkstra algorithm
allows the shortest route from each cell to each location to be estimated along a
road network. The algorithm proposed by [15] has been applied and assessed in
minimum distance calculation studies by numerous authors (e.g. [17, 55, 83]). To
use the Dijkstra algorithm, a road network is divided into nodes (intersections) and
branches (road sections). The shortest path between two locations is solved by an
iterative process described by [15]. As the distance of the origin node is known, this
node is labelled with a distance of zero. The algorithm requires data on the road
network. For example, [53] obtained the data for his study in Australia from several
shapefiles (geospatial vector data formats) in the GeoScience Australia database [29].
The distance of each connected road section was determined using the Euclidean
distance.

Third, the least-cost travel algorithm to estimate distance builds on the Dijkstra
algorithm by including several physical characteristics of the road that may be crit-
ical for determining the optimal route. Several authors have shown that road class
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and formation are important factors when calculating shortest feasible routes. For
example, [18, 35] applied weights or penalties to the Dijkstra algorithm to account
for different road characteristics. This method allows for optimal routes to be deter-
mined based on a cost penalty as well as distance. It is desirable to use cost penalties
that reflect the impact of road class and formation on travel. Moss [53], for exam-
ple, used GIS shapefiles containing road network data including class and formation
from [29]. Considering topography when assessing the time and cost of travel is also
desirable but uncommon. Road gradient can be included in the least-cost algorithm
as a cost penalty, using topographical data.

For the latter two algorithms, not all start locations (smallholdings) are adjacent
to a road—a common situation for farmers in rural areas of developing countries.
Therefore, an additional ‘starting distance’ algorithm needs to be used to find the
nearest adjacent road for each source location. This algorithm is initialised by sub-
dividing all cells into three sets: cells assessed and for which no roads intersect;
cells from which the next iteration will assess whether any road intersects; and a set
containing all cells not yet assessed. The first step is to assess whether the starting
location cell is intersected by the road network. If so, the minimum start distance to
the road network is zero. Otherwise, all cells adjacent to the starting location cell
are placed in the second set and assessed to determine whether any are intersected
by part of the road network. Once a cell with an intersecting road is found, the dis-
tance from the starting location to this cell is determined. This location becomes
the starting node for the Dijkstra algorithm and the calculated distance is added to
the optimal distance. If no cell is found in the adjacent bundle, all adjacent cells to
the cells currently in the second set are found and moved to it while simultaneously
moving the cells currently in the second set to the first set.

2.2 Big Data

We follow [63] who, from 12 options, favoured defining big data as either ‘The
belief that the more data you have the more insights and answers will rise automati-
cally from the pool of ones and zeros’ or ‘A new attitude by businesses, non-profits,
government agencies, and individuals that combining data from multiple sources
could lead to better decisions’. Specifically in relation to smallholder agriculture,
the more comprehensive the data sets on the spatially heterogeneous environments
in which smallholders operate, the more likely it is that estimated models will cap-
ture this spatial heterogeneity and accurately represent smallholder performance and
opportunities for progress.

Comprehensive spatial data sets of interest include topography, climate, hydro-
logical systems, soils and geology, current land-use cover and land-use suitabil-
ity, livestock intensity levels, harvested areas, crop yields and cropping frequency,
population density, transportation networks and access to nearest markets. They are
becoming increasingly available through resources such as the [25, 52, 76] Geodata-
base, often at a resolution sufficient to capture spatial heterogeneity at a smallholder
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level. It is not just a question of big data now being more readily available; the time
and cost involved in its capture and use have decreased substantially.

2.3 Increased Availability of Panel Data Sets

Over time, data-collection programs have accumulated more panels that have
improved econometric analyses generally and spatial econometric analyses specifi-
cally. The advantages of panel data sets for econometric modelling have been well-
researched in the literature. Hsiao [38] outlined these advantages as: increasing the
degrees of freedom and reducing collinearity among explanatory variables, thereby
increasing estimation efficiency; enabling research questions to be explored that
would not be possible with either time-series or cross-sectional data (especially
important for spatial econometric analyses); better control for missing or unobserved
variables; simplification of computation and inference in certain circumstances; and
more accurate predictions for individual outcomes (such as an individual’s behav-
iour, which can be crucial in ascertaining how smallholders are likely to respond to
a particular intervention). The use of panel data allows us to control for individual
heterogeneity, which could result in biased results if not taken into account. More
importantly, the use of panel data enables study of the dynamics of adjustment that
are particularly crucial in studying smallholder agriculture. For example, it enables
the analyst to shed light on the patterns and sources of productivity growth, changes
in the dynamics of farming systems (defined by [16]) as ‘a population of individual
farm systems that have broadly similar resource bases, enterprise patterns, household
livelihoods and constraints, and for which similar development strategies and inter-
ventions would be appropriate’), and differential impacts of government policies and
other interventions.

3 Review of Existing Literature on Spatial Econometric
Analysis of Smallholder Development

3.1 Recent Progress in Spatial Econometric Modelling

Lesschen et al. [45] is a good place to start to review statistical methods for analysing
the spatial dimension—in their case, specifically in respect of changes in land use and
farming systems. They began with a summary of geographic ways to represent data
such as point, polygon and raster data (a matrix of cells in a grid formation) and how
to link different data representations. The methods covered include techniques for
exploratory data analysis (factor analysis, principal component analysis, canonical
correlation analysis and cluster analysis), various techniques for regression analysis,
Bayesian analysis and artificial neural networks. They then proceeded to discuss
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modelling issues relevant to the spatial analysis of land use and farming systems,
among them spatial autocorrelation.

More recently, [22] reviewed progress and prospects in the application of spatial
econometric modelling in the wake of the publication of an introductory book on
spatial econometrics by [44]. In particular, they considered ‘the argument in favour
of the spatial Durbin model, the use of indirect effects as a more valid basis for
testing whether spatial spillovers are significant, the use of Bayesian posterior model
probabilities to determine which spatial weights matrix best describes the data, and
[LeSage and Pace’s] contribution to the literature on spatiotemporal models’ [22].

Arbiaetal. [7] edited an issue of the journal, Economic Modelling, that featured 10
papers reflecting recent advances in the application of spatial econometric methods.
While its context is at the international level, the study by [24] in which they estimated
a theoretical growth model (a model for forecasting growth in national income per
head) accounting for technological interdependence among economies has relevance
to analysing growth at more disaggregated levels. This is especially so in the way
the authors examine the impact of spillover effects:

Technological interdependence is assumed to operate through spatial externalities. The mag-
nitude of the physical capital externalities at steady state, which is not usually identified in
the literature, is estimated using a spatial econometric specification. Spatial externalities are
found to be significant. This spatially augmented Solow model yields a conditional conver-
gence equation which is characterized by parameter heterogeneity. A locally linear spatial
autoregressive specification is then estimated providing a convergence speed estimate for
each country of the sample [24].

This statement by [24] introduces a key concept for spatial econometric analysts:
spatial externality. A negative spatial externality occurs where the action of one
neighbour adversely affects the welfare of another neighbour adjacent to or near it,
but the neighbour causing the impact does not have to recompense the adversely
affected neighbour. A positive spatial externality occurs where the action of one
neighbour increases the welfare of another neighbour adjacent to or near it, but the
neighbour generating the beneficial impact is unable to claim recompense from the
beneficiary. Spatial interdependence is an essential element for a spatial externality
to occur. Technological interdependence, the presence of interdependence between
production methods, is one particular kind of spatial interdependence that is important
when analysing a production system such as farming.

Schmidtner [68, p. 2] provided a good overall account of the development of spa-
tial econometric analysis. She began by citing [56] who posited its five key attributes
as the role of spatial interdependence, asymmetry of spatial relations, importance of
explanatory factors located in other spaces, differentiation between ex post and ex
ante interaction and explicit modelling of space. Schmidtner [68] then recounted how
[5] had developed these ideas within a formal framework of econometric model esti-
mation and specification tests. Use of spatial econometric methods enables unbiased
and consistent results to be obtained [43].

Baylis et al. [11] discussed recent contributions made in the theoretical and empir-
ical literature on spatial econometric methods for panel data. Of particular interest
in this paper is the focus they place on applications in agricultural economics. These
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applications cover finance and risk management, production and land economics,
development economics and environmental economics, with special emphasis on
climate change and agricultural applications. They opined that the spatial economet-
ric methods they describe ‘hold great potential for applied researchers’ [11].

Finally, [9, 42] provide arguably the most authoritative and up-to-date reviews of
spatial econometric models. The chapter by [42] is particularly valuable. The authors
rigorously discuss applicable spatial econometric techniques using panel data. They
begin with a discussion of static panel data models in which the spatial effects are
specified in the disturbance or regression part of the model, or both. Table 12.1
provides a good summary of different static spatial panel models. They then consider
dynamic panel data models that account for state dependence. Table 12.2 summarises
the various spatial dynamic panel data models. Next, other models with cross-section
dependence are examined. Finally, there is a valuable section on testing for spatial
effect.

3.2 Use of Spatial Econometric Analysis to Study Spillovers
and Spatial Interaction

Spatial interdependence takes two related forms: a spatial externality called the
‘neighbourhood effect’—where neighbours interact with each other or take collective
action (frequently with concomitant learning processes)—and a spillover—where
actions by one neighbour have an impact on the performance of other neighbours.
The latter requires neighbours to be interdependent but not to interact with each
other. It is often difficult to disentangle the two actions, which can be integral parts
of the same process.

3.2.1 Neighbourhood Effect

Holloway and Lapar [37] published a seminal paper on neighbourhood effects,
employing spatial econometric analysis. They estimated two quantities defining such
a spatial externality: the propensity for neighbours to make the same decision and
the magnitude of the neighbourhood. Employing recent advances in Bayesian esti-
mation and model comparison, they applied this method to a sample of smallholders
(producing mainly rice and onions but also raising livestock) in northern Philippines.

The difficulty in teasing out a neighbourhood effect from a spillover is exempli-
fied in the paper by [72] who discussed the neighbourhood effect between farms in
England. They were concerned with ‘coordinated environmental action’ [72] and its
effect on performance which entailed spillover effects in the form of greater envi-
ronmental benefits.
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3.2.2 Spillover Effect

Spatial spillovers at the micro level in the context of smallholder production refer to
impacts of activity undertaken by one unit involved in the production or provision
of a good or service on the performance of smallholders in proximity to that unit.
They are commonly mentioned in relation to the introduction of new production
technologies in which case they tend to be positive effects that raise the productivity
and ability to innovate of smallholders. The context can change: spillovers may be
analysed across production units, districts, provinces or even countries.

Min and Jiaying [50] applied spatial autocorrelation analysis to study the deter-
minants of spatial disparities in agricultural mechanisation in China. They found
evidence of spillovers in mechanisation across provinces.

Spillovers affecting smallholders need not be between farms and often follow
from the provision of public goods. For example, [13] undertook a spatial econo-
metric analysis of factors influencing smallholder income growth in Kenya, focusing
particularly on the spatial spillovers in public good impacts. His spatial impact model
comprised three modes of endogenous and exogenous interaction effects, and corre-
lated effects (shared unobserved factors that result in similar behavioural patterns).
He found strong support for the use of spatial models.

3.2.3 Organic Farming with Neighbourhood Effects and Spillovers

Organic farms (those applying technologies without the use of chemicals or syn-
thetic fertilizers during production or processing) are particularly sensitive to spatial
externalities, and hence to spillovers and neighbourhood effects. Schmidtner [68]
estimated spatial econometric models to study conversion to organic farming in
Germany, using county-level data. Her results revealed that ‘a high share of organ-
ically managed land in a region seems to be an ideal precondition for the decision
of a farmer to convert to organic production [and] available technical and juridical
knowledge in a region ‘as well as positive external effects at the plot level...might
increase the diffusion of organic farming as an innovation’ [68]. She concluded that
‘incentives to stimulate clusters of organic farming could support the exploitation of
economies of scale external to the farm’.

Parker and Munroe [59] were also concerned with organic farming, investigating
what they termed ‘edge-effect externalities’ (comparable to neighbourhood effects)
and the location and production patterns of organic farming in the Central Valley
of California in USA. They defined edge-effect externalities as ‘spatial externalities
whose marginal impacts decrease as distance from the border generating the negative
impact increases’ [59]. Conflicts arise, according to [59], because certain production
processes in farming systems are incompatible, leading to production losses between
neighbouring farms. The authors posited that the magnitude of these losses depends
on both the scale of each activity and patterns of land use. They used a generalised
method of moments spatially autoregressive model to show how parcel geometry
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and surrounding land uses affect the probability that a specified land area may be
certified as organic.

The above definition of edge-effect externalities implies they are negative exter-
nalities. But, as indicated above, positive spatial externalities also exist in smallholder
farming, as reflected above by neighbourhood effects. For example, [46] showed how
they can be brought about by the demonstration effect and information and knowledge
flow between neighbouring smallholders. Addressing the question whether spatial
spillovers exist in the adoption of organic dairy farming, they tested the hypothesis
that ‘neighboring farmers can help to reduce the uncertainty of organic conversion by
lowering the fixed costs of learning about the organic system’ [46]. Their estimated
reduced-form econometric model of the decision to convert to organic dairying using
a ‘spatially explicit 10-year panel dataset’ of dairy farms in southwestern Wisconsin
provided evidence that the presence of neighbouring organic dairy farms positively
influences a farmer’s decision to convert to organic production.

In a similar manner, [82] investigated factors influencing farmers’ decision to
convert to organic farming in Honduras by estimating a ‘spatially explicit adoption
model’ [82]. They noted that previous studies had focused on the influence of ‘spa-
tial patterns in the diffusion and adoption of agricultural technologies in general and
organic agriculture in particular’. Factors influencing these spatial patterns for which
they tested included ‘the availability of information in the farmer’s neighbourhood,
social conformity concerns and perceived positive external effects of the adoption
decision’. One of their key findings was that positive productivity spillovers to neigh-
bouring farm plots reduce the probability of adoption of organic farming methods.

Sutherland et al. [72] used organic farming as a proxy for coordination in their
multi-disciplinary analysis of the potential impacts of undertaking similar environ-
mental actions on many farms in a confined area. They concluded that ‘encouraging
local farmer co-ordination can have clear environmental benefits without high eco-
nomic cost, but must be undertaken with caution—specifically regarding the trade-
offs between benefits, local geophysical and social characteristics, and assumptions
made about inter-farmer trust’ [72].

3.2.4 Impact of Productivity on Rural Welfare

Minten and Barrett [51] collated spatially explicit data for Madagascar on soil con-
ditions, temperature, altitude and rainfall patterns in GIS format and then overlayed
them with a map of communes (local government entities). In model estimation they
corrected for spatial autocorrelation when conducting regression analyses to demon-
strate that communes adopting improved agricultural technologies have higher levels
of productivity and ‘enjoy lower food prices, higher real wages for unskilled workers,
and better welfare indicators’ [51, p. 797].
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3.2.5 Analysing Convergence

Paraguas and Dey [58] examined convergence in total factor productivity (TFP)
(a productivity measure involving all factors of production) among participants in the
Indian aquaculture industry by estimating a spatial econometric model. They tested
for the presence of spatial autocorrelation and spatial heterogeneity, and concluded
that spillover effects on TFP growth existed and that convergence was taking place.
Pede etal. [61] used province-level data in the Philippines to estimate a conditional
convergence growth model (a model for estimating how long it would take to achieve
convergence of income per head across countries or regions subject to the structural
constraints each faces). They used the estimated model to analyse the relationship
between growth and inequality and reported results showing inequality to have a
positive impact on growth in income per head. But the magnitude of this effect
was found to be unstable across regions. The literature on spatial convergence of
productivity is growing. A recent inter-regional example is the paper by [54].

3.2.6 Using Spatial Econometric Analysis in Multi-level Models

Herrero et al. [36] reported on their attempt to project future changes in smallholder
farming systems in Kenya by linking socio-economic scenarios with regional and
household models. The method they chose was multi-scale models and scenarios
that they found useful for linking global change and local-scale processes.

3.3 Environmental and Land Use Applications

3.3.1 Capturing the Effects of Spatial Heterogeneity
on the Environment

Bockstael [12] wrote a landmark paper on the important spatial perspective of the
environmental implications of agricultural production and capturing the economic
behaviour causing land use change in a spatially disaggregated manner. She made
the salient observations that:

The spatial pattern and distribution of land use at one scale or another has important environ-
mental consequences that range from local water quality to global biodiversity. In addition,
the pattern of land use affects costs of production and exchange [12].

[Economists’] treatment of space, in any manner, has been largely superficial. We often use
cross-sectional data that are inherently spatial but we rarely exploit the underlying spatial
relationships or acknowledge them in our econometrics. Or we aggregate spatially disperse
data causing artificially sharp intraregional distinctions and unrealistic interregional unifor-
mity [12].

Allaire [3] studied the determinants of participation by farmers in agriculture-
based environmental programs in France by estimating a spatial Durbin probit model.
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They implicitly modelled the spatial interactions between farmers’ decisions, paying
particular attention to the quality of the prediction of participation rates by using
successive geographical scales to improve the representation of spatial diffusion of
these programs.

3.3.2 Valuing Farmland

Bockstael [12] outlined econometric and other modelling problems induced by the
spatial heterogeneity associated with attempting to value land. One major problem
she identified was omitted variables that are spatially correlated:

In both the hedonic model and the land use conversion model, we can expect that the omitted
variables will be spatially correlated. Almost any variable of importance that affects the value
of a parcel of land or its likelihood of conversion will be highly correlated with its neighbor’s.
There are as yet no satisfactory solutions to the problem of spatial autocorrelation in discrete
choice models [12].

Methodological advances have since provided solutions to a significant degree,
particularly where the advent of big data has reduced the problem of omitted vari-
ables. In a much-cited paper, [66] estimated a hedonic equation for farmland in
areas of USA where non-irrigated farming is possible. Among the contributions they
claimed for the paper is the development of a data set that integrates the spatial dis-
tribution of soil and climatic variables within counties. They also let the error terms
be spatially correlated to obtain more accurate results. These results are presented to
show the potential impacts on farmland values of a range of warming scenarios.

Baylis et al. [11] constructed and estimated a hedonic model of farmland values
in USA using panel data. Their estimates included spatial error and lag models with
fixed and random effects.

3.3.3 Representing the Forest-Agriculture Spatial Interface

A few studies have examined spatial elements of land use involving forestry, often
focusing on the spatial interface with agriculture. Moss [53] investigated the potential
of different land-use options to produce carbon offsets in selected regions in Aus-
tralia. Options were assessed using spatio-temporal simulation models developed at
differing levels of resolution, ranging from 1.1 km? cells in a spatial grid to the farm
scale.

Wheeler et al. [81] used a panel data set to investigate the determinants of forest
clearing in Indonesia. They observed that, until recently, empirical research into
the economic dynamics of forest clearing has been hindered by a lack of spatially
disaggregated time-series data. However, they claimed that the emergence of more
effective ways of translating satellite images into credible estimates of forest clearing
have made it possible to conduct econometric analyses of these dynamics at a high
level of spatial and temporal disaggregation.
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Upton et al. [77] employed a panel data set of afforestation over small-area bound-
aries from vector and raster data sources in Ireland. They used these data to estimate
a spatial econometric model of the impacts of various physical, economic and policy
factors on afforestation rates.

Vera-Diaz et al. [78] assessed the environmental impacts of soybean expansion and
infrastructure projects in the Amazon Basin in Brazil. Subsequently, [79] combined
ecological and economic data with satellite imaging and GIS analysis to model
the impacts of infrastructure projects on land use in the same area using spatial
econometric techniques. This model has been used to estimate changes in the returns
to land for different infrastructure projects [28].

Roy Chowdhury [65] used remote sensing and spatial modelling to quantify land
use change in Mexico, and to analyse factors inducing this change in the largest
protected area in the country. Rates of land change were calculated for ‘prevailing
tenure regimes and for reserve core versus buffer zones by employing GIS layers
delineating the respective boundaries’ [65].

Entwisle et al. [23] estimated village-level models of the impacts of population
on land planted to upland crops in a district in Thailand. They partitioned land into
spatial units corresponding to villages, constructed radial buffers of 3km around
the nuclear village centres, and accounted for spatial autocorrelation by estimating
a spatial error model with the proportion of land planted to upland crops as the
dependent variable. Their main findings were that changes in land use associated
with population change appear to radiate outwards from village centres a and that
growth in the population of households better predicts the proportion of land planted
upland crops than growth in village population as a whole.

3.4 Accounting for Space in Analyses of Technology
Adoption and Productivity

3.4.1 Analysing Technology Adoption

Staal et al. [71] undertook a pioneering study in spatial econometric analysis of
smallholder development in using GIS to study the location and adoption of tech-
nology by dairy smallholders in Kenya. They concluded that although their study
required ‘large geo-referenced data sets and high resolution GIS layers, the method-
ology demonstrates the potential to better unravel the multiple effects of location on
farmer decisions on technology and land use’ [71].

Edirisinghe [20] examined the spatial interdependence of production choice by
smallholder rubber producers in Sri Lanka. Drawing heavily on the modelling work
by [37], he applied a Bayesian spatial autoregressive probit model to measure the
impact of this production choice on the choice made by neighbouring smallholders.
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3.4.2 Estimating Yield Functions

The increased use of GPS and GIS for managing crop production is exemplified by
[6]. These authors applied spatial econometric methodology to estimate crop yield
functions to optimise fertiliser application in Argentina.

Florax [26] undertook a spatial econometric analysis of millet yield in the West
African Sahel. The method enabled them to capture local differences in soil variation,
ecological characteristics and yield.

Ward [80] used spatially specific data to estimate a cereal yield response function
using an estimator for spatial error models to control for endogenous sample selec-
tion. While they found that their estimated elasticities did not differ greatly from
those of simpler models that ignore spatial features in the data, it cannot be assumed
that elasticities will be universally similar across other regions and farming systems.

Traditional methods of controlling for spatial heterogeneity in measuring and
decomposing TFP To date, space has mostly been incorporated in studies concerned
with measuring and explaining TFP using crude devices such as district or regional
categorical variables. A recent advance, but still quite limited approach, has been to
estimate individual regional production frontiers and a meta-frontier for all regions.
It is commonly used for studies of the productivity of smallholders to capture differ-
ences in agronomic, climatic and other physical conditions that they face. There are
numerous examples of this approach, with a recent one of Philippine rice producers
being [49].

Recent innovations in accounting for spatial heterogeneity and spillovers in TFP
studies [67] used Bayesian procedures to estimate a stochastic frontier model with a
latent spatial structure to control for spatial variations in outputs of Brazilian farmers.
They specified independent normal or conditional autoregressive priors for such
spatial effects. Two model comparison criteria were applied to lend support their
contention that latent spatial effects should be taken into account.

Areal et al. [8] considered the effect of spatial factors that affected production
and efficiency levels on 215 dairy farms in England between 2000 and 2005. Using
Bayesian methods, they included a spatial lag to account for the spatial component
and firm-specific effect in model estimations to predict technical inefficiencies. They
found that results for the conditional posterior of the spatial dependence parameter
were sensitive to the specification of the spatial weight matrix, which they concluded
may be due to whether a connectivity matrix or a distance-based spatial matrix is
used, and also to the cut-off size chosen.

Barrios and Lavado [10] demonstrated how a standard stochastic frontier model
could be augmented by a sparse spatial autoregressive component for a single cross-
section of data and a spatial-temporal component for a panel data set. They provided
two illustrations using Philippine rural data to explain how technical efficiency is
explained by exogenous factors when estimating such a model.

Hughes et al. [39] measured productivity for individual farms in broadacre farming
in Australia. In addition to the normal input-output data set used in productivity
analysis, they matched it with spatial climate data that enabled them to estimate
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a farm-level stochastic frontier model. Productivity was then decomposed into its
efficiency components.

Pavlyuk [60] specified a spatial stochastic frontier model that included spatial
lags, spatial autoregressive disturbances and spatial autoregressive inefficiencies.
He applied the model to a data set of 122 European airports to obtain inefficiency
estimates. A key conclusion drawn was that spatial relationships and spatial hetero-
geneity were present in the airport industry.

Eberhardt and Teal [19] modelled the nature of the cross-section dependence
for 128 countries using panel data employing a standard empirical model that was
extended to include common correlated effects estimators. These estimators enabled
the authors to ‘account for the presence of unobserved common factors with hetero-
geneous factor loadings by introducing cross-section averages for the dependent and
independent variables into the regression model, each with a country-specific para-
meter’ [19]. They concluded that the ‘agro-climatic environment drives similarity in
TFP evolution across countries with heterogeneous production technology’ [19].

Fusco and Vidoli [27] recommended an expansion of the composed error term of
stochastic frontier models into three rather than the standard two components, with
the additional term linked to a spatial lag. They tested this method for its ability to
control for spatial, global and local heterogeneity using simulated data on production
in the Italian wine industry. We further discuss the material in this paper below.

Moura e Sa Cardoso and Ravishankar [54] applied standard stochastic frontier
analysis to estimate production inefficiencies to assess the degree to which a given
region’s observed output falls short of the most efficient output. They then modelled
region-specific efficiencies as outcomes of the level of human capital and tested for
convergence among regional efficiency levels.

Pede et al. [62] investigated spatial dependency among technical efficiencies in
rice production separately for rainfed and irrigated ecosystems in the Philippines
using panel data. Their results divulged evidence of spatial correlation among these
technical efficiency estimates, with stronger spatial dependency among farmers in
the rainfed ecosystem. They also used spatial econometric analysis to find evidence
of spatial dependence in both household and farm plot neighbourhoods.

The most exciting recent methodological advances in measuring and decompos-
ing TFP have been the studies by [1, 30-32, 75]. These authors have merged meth-
ods common in the efficiency and productivity literature with spatial econometric
methods in an innovative fashion. Glass et al. [31] decomposed TFP growth in 40
European countries using a spatial autoregressive frontier model. Adetutu et al. [1]
used a multistage spatial method to analyse the effects of efficiency and TFP growth
on pollution in the same 40 European countries. Glass et al. [32] blended traditional
non-spatial stochastic frontier models with key contributions to spatial econometrics
to develop a spatial autoregressive stochastic frontier model for panel data for 41
European countries. They showed how to specify the spatial autoregressive frontier
to allow efficiency to vary over time and across regions.

In an important recent breakthrough, [75] developed a stochastic frontier model
based on Bayesian methods to decompose inefficiency ‘into an idiosyncratic and
a spatial, spillover component’ [75]. They derived exact posterior distributions of
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parameters and proposed computational schemes based on Gibbs sampling with data
augmentation ‘to conduct simulation-based inference and efficiency measurement’
of regions in Italy for the period from 1970 to 1993.

3.4.3 Combining Impact Analysis with Measuring
and Decomposing TFP

Studies have begun to emerge that combine the analysis of impacts from interven-
tions in farming with measuring and decomposing TFP. For example, [2] estimated a
spatial autoregressive stochastic production model to predict technical efficiencies of
matched subsamples of farmers participating in an agricultural extension program in
Tanzania. Samples of treated and control agents of farmers were obtained by using
propensity score matching. Travnikar and Juvancic [74] used a spatial economet-
ric approach to examine the impact of investment support on agricultural holdings
in Slovenia. They confirmed a positive relationship between farm investment sup-
port and agricultural labour productivity, and spatial spillovers in agricultural labour
productivity.

We discuss the opportunities that these methods provide for impact analysis and
analysing smallholder productivity in the Philippines in the next section.

4 Potential Areas for Analysis Using Spatial Econometric
Methods: Examples from the Philippines

The literature reviewed above exhibits four prominent features of interest in the con-
text of this paper. First, there is a wide range of methods now available to conduct
spatial econometric analyses suited to meeting a variety of research goals. Second,
the volume of such analyses of smallholder production and rural development that
have been undertaken using these methods remains small, notably in Southeast Asian
countries with the prominent exceptions of [37, 62] in the Philippines and [23] in
Thailand. Third, panel data sets are crucial for the effective use of many of these meth-
ods. Finally, the research papers vary in their coverage of all the elements needed to
conduct analyses to achieve their research aims: knowledge of the spatially hetero-
geneous production environment; formulation and estimation of the most suitable
spatial econometric model; use of panel data sets; use of big data to reduce omitted
variable problems; and application of a suitable distance measure.

It would take too much space covering the many potentially rewarding small-
holder and rural development research possibilities for Southeast Asian countries.
We confine ourselves to two key areas where recent methodological advances provide
promising research avenues in one country, the Philippines: analysing smallholder
response to interventions in the assessment of the impact of rural development inter-
ventions on smallholders; and measuring, decomposing and explaining TFP growth
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in smallholder farming. First, we briefly describe the nature of spatial heterogeneity
of rural Philippines, especially in relation to the dominant rice farming systems.

4.1 Spatial Heterogeneity in the Rural Sector
of the Philippines: Example of Rice Ecosystems

Rural areas in the Philippines exhibit a range of environments that influence the
ways in which production technologies are applied by smallholders and contribute to
spatial inequalities in income and welfare. For the predominant agricultural activity,
rice, various ecosystems can be observed that experience temporal variations in yields
within a cropping year where more than one rice crop is produced and/or various
cropping rotations exist [48, 49]. Inter-year variations in rice and rotational crop
yields are also a feature of rice-based ecosystems.

Smallholders operate in a wide range of physical environments of differing alti-
tude, climate and soil types that are largely beyond their control. According to the
Philippine Atmospheric, Geophysical and Astronomical Services Administration
(PAGASA), climatic conditions in the country are classified into four different types
based on rainfall distribution. Type 1 climate has two pronounced seasons—dry from
November to April and wet during the rest of the year. For Type 2 climate, there is no
dry season but minimum monthly rainfall occurs from March to May and maximum
rainfall is pronounced from November to January. In contrast, Type 3 climate has no
pronounced maximum rain period with a short dry season lasting only from one to
three months. Lastly, Type 4 climate has rainfall evenly distributed throughout the
year and has no dry season. Attempts have been made to classify the environments in
which rice is grown in these rice-based farming systems. Most use the water regime
as a basis for their classification system but it may also relate to topography and
the ability of the soil to retain water. The general classes of rice production are the
irrigated, rainfed lowland, upland and flood-prone environments [33, 40] depicted
in Fig. 1. All ecosystems are characterised by the natural resources of water and
land, and by the adaptation of rice plants to them. Irrigated rice may be found at any
point in the toposequence (defined by Allaby (2012) as a ‘sequence of soils in which
distinctive soil characteristics are related to topographic situation if water delivery
is available’).

The classification described here is that being used by the International Rice
Research Institute [40]. An irrigated environment is where rice is grown in bunded,
puddled fields with assured irrigation for one or more crops in one year. The irrigated
ecosystem is divided into the irrigated wet season and the irrigated dry season with
rainfall variability and supplementary irrigation as the basis for classification.

In an upland environment, rice is grown in areas where no effort is made to
impound water and where there is no natural flooding of the land. Upland rice is
planted in areas at higher slopes of an undulating landscape where the groundwater
table is at least 50cm below the surface. People who practise shifting cultivation
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Fig. 1 Rice ecosystem characteristics. Source [40], adapted from [33]

allocate a significant part of their land to upland rice, which is usually inter-cropped
with maize, cassava and other crops.

Another important rice ecosystem is the flood-prone environment. The fields are
slightly sloping or depressed. Rice may be submerged for 10 consecutive days during
crop growth. It is usually seeded immediately before the arrival of the floodwaters,
and little more is done until the time arrives for the crop to be harvested. In some
areas, the rice may be transplanted once or twice as the floodwaters advance, in an
attempt to save the young rice seedlings from drowning if the floods rise too rapidly
for the seedlings to survive.

The major characteristics of farming systems of the major rice production envi-
ronments are presented in Table 1, which demonstrates the environmental variations
within ecosystems. This can be demonstrated by discussing the important rainfed
lowland ecosystem. The literature reveals that rainfed rice environments have been
characterised for various purposes at different scales using a large range of techniques
[70]. The research ranges from broad regional-scale characterisation to detailed farm-
level studies.

The rainfed lowland environments are where the water supply for rice plants is
principally provided by rainfall, run-off water and underground water. The rainfed
lowland rice fields are usually bunded. The bunds serve to retain floodwaters, as
well as rainwater, which fall during the growing season. Rice fields, in general,
are submerged or flooded with water that may exceed 50cm for no more than 10
consecutive days [41].

Depending on environmental conditions, rainfed lowlands may be classified
into favourable and unfavourable ecosystems (drought-prone, submergence-prone,
drought and submergence-prone and medium-deep water). In favourable areas, which
are intermediate between rainfed and irrigated ecosystems, field water cannot be com-
pletely controlled but rainfall is usually adequate and well distributed. The favourable
rainfed areas account for 20 % of the total rainfed lowlands [47] and the remaining



46

R. Villano et al.

Table 1 Characteristics of rice-farming systems in major rice production environments

Rice environment

Characteristics

Irrigated rice, with
assured year-round
water

Continuous rice, with one or two crops per year, and occasionally a
third rice crop or an upland crop

Diversion irrigation
and (favourable)
rainfed lowland rice

Where the monsoon season is six months or more: Dry-seeded rice,
followed by transplanted rice (irrigated when water is available),
followed by an upland crop

‘Where the monsoon season is less than six months: Transplanted rice
(irrigated when water is available), followed by upland rice

In rainfed,
drought-prone areas
(mostly on alluvial
terraces)

One dry- or wet-seeded rice crop. Upland crops may follow in good
seasons

In flood-prone
(deepwater and floating
rice) areas

One transplanted or wet-seeded rice crop. (In some deepwaterareas,
double transplanting is practised.)

In upland rice areas Under shifting cultivation: Dry-seeded rice, often interplanted, e.g.,
with maize, and followed by another upland crop, e.g., cassava. Under
mechanised cultivation: Sole crop dry-seeded rice, grown annually for

several years, after which a grass pasture may be established

Source [33]

80 % of the rainfed lowland area is less favourable. Rice in the latter area suffers from
varying degrees of drought, submergence and both drought and submergence [57].

Rainfed lowland rice crops may suffer from both drought and flood. At higher
terraces, these environments may be drought-prone. In the back swamps, poor soil
conditions due to poor drainage are common. Farmers often cultivate rainfed lowland
rice at several toposequence levels such that on one farm some fields may be drought-
prone while others may be flood-prone in the same season.

The predominant cropping system in the rainfed environments is a single crop of
rice although, in some areas, farmers are able to grow rice and a post-rice crop in the
following season. For example, in the rainfed areas of the northern provinces of the
Philippines, farmers plant legumes, wheat, maize or vegetables as a second crop but
usually on a smaller area.

Understanding why variations in productivity exist between smallholders in dif-
ferent biophysical environments helps crop policymakers, scientists and extension
staff to develop and extend new technologies to smallholders and improve existing
ones that will significantly increase productivity. Furthermore, variations in produc-
tivity among groups of smallholders in different locations means that improved ways
of doing things have to be appropriate to their resource endowments, socioeconomic
conditions and biophysical and climatic environments. It requires the measurement
of the impacts of innovations over time to gain an appreciation whether it has been
possible to construct a new production frontier to increase production and incomes.
Rainfed lowland farmers have started adopting the new varieties, but the yields have
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remained lower in their environments than in more favourable environments. The
major concerns are low soil fertility and fertiliser use, drought and flood problems,
the lack of location-specific varieties and production technologies, poor weed man-
agement, inadequate availability and quality of inputs, inadequate and ineffective and
uneven extension support to farmers, slow adoption of recommended technologies,
and poor rural infrastructure.

4.2 Assessment of Smallholder Response to Rural
Development Interventions

We consider the most promising avenue in estimating spatio-temporal models of
smallholder response to project, program and policy interventions in rural areas in
the Philippines to be that pursued by [20, 37]. Holloway and Lapar [37, p. 41] posited
that ‘in targeting public resources to particular regions it is important to have some
understanding of the extent to which proactive agents influence neighbours, the extent
to which this “ripple-effect” is passed on and the range of its geographical dispersion’.
As mentioned above, [37] examined the propensity for neighbouring smallholders
in the Philippines to make the same decision employing Bayesian model estimation
methods. A key feature of their approach is the way in which they modelled the
interaction between farmers and how it affects an individual farmer’s decisions. This
interaction clearly has a spatial dimension.

Holloway and Lapar [37] stressed the need to get right the specification of the
‘spatial-weight’ or ‘spatial-contiguity’ matrix, which can be done by comparing alter-
native specifications of the spatial weights to arrive at the ‘correct neighbourhood
size’. They do this by using a Bayesian model comparison procedure. Their model of
market participation was undertaken in three steps: specifying the relationship that
a household has between its propensity to enter the market and its observed charac-
teristics; modelling the impact of neighbouring households’ decisions to affect the
decisions of the household; and formulating and estimating a spatial autoregressive
probit model (SAPM) and spatial error probit model (SEPM) of the discrete choice
of the household. They spell out five features of their probability model that direct
their estimation approach.

Data were obtained from a household survey conducted in the study site of the
Crop-Animal Systems Research Project using structured questionnaires [37]. Among
other variables, it includes a measure of distance between the household and the mar-
ket. It was found that a positive neighbourhood effect exists for market participation.
Among five SAPM and five SEPM models that were estimated, the largest marginal
and maximised likelihood values were found for a single model, the SAPM spanning
a three-purok radius (where a purok comprises 10-20 households).

Holloway and Lapar [37, p. 40] hinted at the wide range of application of SAPMs
and SEPMs to study neighbourhood effects and spillovers:
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Neighbourhood effects may arise from information provided by participant neighbours about
markets, prices, product quality or quantity. This is, in one sense, the impact of regional-
specific neighbourhood social capital provided by participating neighbours.

It shows that there is considerable potential for this form of analysis in studies of the
impacts of interventions in rural areas of the Philippines.

Adoption of improved production practices including new technologies is a key
area of concern for smallholder development in that agricultural research, develop-
ment and extension outcomes are a major avenue for improving smallholder farming
practices, and thereby the incomes and living standards of the families of smallhold-
ers. Edirisinghe [20], for instance, investigated the spatial correlation in production
choice by smallholders in Sri Lanka by analysing the choice of production of sheet
rubber. Like [37], he modelled spatial relationships by estimating a SAPM to dis-
cover that a strong spatial relationship (neighbourhood effect) existed. He inferred
from this result that it has important implications for designing extension services by
demonstrating that extending advice to all smallholders is unnecessary for reaching
and benefiting all farmers.

4.3 Measuring, Decomposing and Explaining TFP Growth
in Smallholder Farming

Several studies have attempted to account for firm-specific heterogeneity in the
measurement of TFP and decomposition into its efficiency components. In initial
empirical examples, heterogeneity has been taken into account by adding contextual
variables in the model to correct for differences between firms. But accounting for
the individual effects on estimates means that the spatial dimension is ignored. We
summarise just three of a number of useful approaches. First, we follow [27] by
defining a spatial stochastic frontier model as:

log(y:) = log(f (xi; B)) + vi — u; (1)
-1
log(yi) = log(f (x;; B)) + vir — (1 —p Zwi) i )

where u; is the inefficiency term that is dependent on w is a matrix that includes rela-
tive spatial information and p is spatial lag parameter (0 < p < 1);v; ~ iidN (0, UUZ);
u; ~ iidN+(0,1 —p > wi)‘za,%; and v; and u; are independently distributed of each
other and i; ~ N (0, 05). Details of the density function and log-likelihood function
are provided by [27, pp. 682—-683].

Second, [32] demonstrated how to formulate and estimate a spatial autoregres-
sive stochastic frontier model using annual data for 41 European countries over 22
panels. Their specification of the frontier allowed efficiency to vary over time and
across the cross-sections, a highly desirable attribute. The calculation of efficiency
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followed a standard composed error structure whereas the spatial frontier was esti-
mated innovatively by accounting for the endogenous spatial autoregressive variable
with a multivariate iterative search procedure combining algorithms used in spatial
econometrics with established stochastic frontier analysis. A key element of their
results was that of asymmetry between efficiency spillovers between countries.

Third, given both spatial and temporal variations in production conditions in rice-
based ecosystems, it is desirable to formulate models that capture both of these
dimensions. This has been achieved in the study by [31] who measured and decom-
posed TFP growth using a spatial autoregressive frontier model. Glass et al. [31]
explained how the marginal effect of an explanatory variable in the model is a func-
tion of the spatial autoregressive variable. The panel data set is for 40 European
countries over the period from 1995 to 2008. The usual components of TFP change
were measured technical efficiency change, scale efficiency change and technologi-
cal change and distance between countries was captured as either economic distance
or a composite variable of geographic and economic distance. Results revealed that
the largest spillover effect of TFP growth was the positive change in scale, which
was much larger across economic distance than across the composite measure of
geographic and economic distance.

Following [31] a spatial autoregressive production frontier model may be used to
evaluate the TFP growth in rice production. A general model is specified as:

N

Yie =k +o; + 1 +f(x, D + A Zwilyil + zi + € 3)
=1

i=1,...,N;t=1,....T

where N is a cross-section of farms; 7T is the fixed time dimension; y;¢ is the output
of the ith farm, « is a farm-specific fixed effect; 7, is a time period effect; f (x, 1);
represents a functional form of the production technology; x is a vector of inputs; A
is the spatial autoregressive parameter; w;f is an element of the spatial matrix W; z;
is a vector of farm or location-specific characteristics and ¢ is the associated vector
of parameters; and €; is an iid disturbance for i and ¢ with zero mean and variance
2. The specification of the above spatial autoregressive frontier allows efficiency
to vary over time and between farms. The formulation of marginal effects and TFP
decomposition can be obtained following [44] and [31, p. 292].

Combining impact analysis with the measurement of TFP by estimating a spatial
stochastic frontier, as done by [2, 74], could be exploited to understand the effects
on smallholder productivity and income of a multitude of government policies and
development plans implemented in the Philippines.

In the words of [69], the spatial stochastic frontier shows great promise, and of
[75], ‘Clearly, further theoretical and empirical research on the subject would be of
great interest’.
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5 Prospects and Conclusions

The timing is auspicious for rural development policy makers in Southeast Asian
countries to consider the potential to apply spatial econometric methods when
analysing options for smallholder development. The examples outlined above in
terms of options to study smallholders in the Philippines support this contention.
Panel data sets are becoming more common and individual smallholder data now
regularly come with GIS coordinates to identify their location. This enables the easy
collation of data on distances between smallholders and other points of interest in a
rural area.

Methods of analysis are improving and an increasingly broad set of powerful
techniques are becoming available to tackle specific research questions. In particu-
lar, substantial methodological progress has been made in the estimation of spatial
panel data models. It is incumbent on national researchers to apprise policy makers
of the analytical potential. Two essential elements in research processes will be: the
training of researchers in accounting for spatial heterogeneity in production con-
ditions, application of suitable spatial econometric techniques and interpretation of
model results; and use of spatial distance measures that truly capture the time and
costs of travel between two points.

Advances in big data have been beneficial in enabling analysts to account better
for spatial heterogeneity in income-earning conditions and potential in rural areas.
It has helped reduce model misspecification. But there are issues arising from the
potential for private ownership of some of the data, symbolised by the entry of a
multinational agribusiness firm, Monsanto, among others, into the big-data collection
and prescriptive-planting arenas:

Monsanto’s prescriptive-planting system, FieldScripts, had its first trials last year and is
now on sale in four American states. Its story begins in 2006 with a Silicon Valley startup,
the Climate Corporation. Set up by two former Google employees, it used remote sensing
and other cartographic techniques to map every field in America (all 25m of them) and
superimpose on that all the climate information that it could find. By 2010 its database
contained 150 billion soil observations and 10 trillion weather-simulation points.

...farmers distrust the companies peddling this new method. They fear that the stream of
detailed data they are providing on their harvests might be misused. Their commercial
secrets could be sold, or leak to rival farmers; the prescriptive-planting firms might even
use the data to buy underperforming farms and run them in competition with the farmers;
or the companies could use the highly sensitive data on harvests to trade on the commodity
markets, to the detriment of farmers who sell into those markets [4].

Researchers too might find they are restricted from using such big data sources
on individual farms in the future as the trend towards big data collection on farms
extends globally. Another risk is a recent trend towards diminishing agricultural
research budgets that endanger the continued collection of rich panel data sets of
farming activities. The capability of national research centres to maintain and collect
extensive longitudinal panel and spatially explicit data rest on the funding allocated
to these institutions. Even if current data-gathering processes are continued, there is
a risk that the quality of the data will diminish without the skilled research personnel
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needed to identify influential elements of spatial heterogeneity and to manage these
processes.

Our concluding observation is that the systems perspective should prevail: the
whole is greater than the sum of the parts. Skilled analysts with detailed understanding
of the production environment and its spatial heterogeneity are needed to formulate
and estimate panel data models that integrate methodological advances in spatial
econometric analysis with use of big data and an appropriate measure of distance.
Integrating all these components will provide much more insightful and useful results
than modelling without even one of these elements when analysing smallholder
development.
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Consistent Re-Calibration in Yield Curve
Modeling: An Example

Mario V. Wiithrich

Abstract Popular yield curve models include affine term structure models. These
models are usually based on a fixed set of parameters which is calibrated to the actual
financial market conditions. Under changing market conditions also parametriza-
tion changes. We discuss how parameters need to be updated with changing market
conditions so that the re-calibration meets the premise of being free of arbitrage.
We demonstrate this (consistent) re-calibration on the example of the Hull-White
extended discrete-time Vasi¢ek model, but this concept applies to a wide range of
related term structure models.

1 Introduction

Popular stochastic models for interest rate modeling include affine term structure
models such as the Vasicek [10] and the Cox-Ingersoll-Ross (CIR) [1] models. These
models are based on spot rate processes (r;);>0. No-arbitrage arguments are then
applied to obtain zero-coupon bond prices, yield curves, forward rates and option
prices from these spot rate processes. These term structure models have in common
that prices are calculated under a risk neutral measure for known static model para-
meters. In practice, one often makes an explicit model choice and then calibrates
the model parameters to the actual financial market conditions. Since financial mar-
ket conditions may change over time, models are permanently re-calibrated to new
financial market situations. These re-calibrations imply that model parameters change
over time. Therefore, these model parameters should be understood dynamically as
stochastic processes.

If we work under the premise of no-arbitrage, then re-calibration is severely
restricted by side constraints. The study of these side constraints has led to an
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interesting and tractable class of so-called consistent re-calibration (CRC) models,
see Harms et al. [3] and Richter—Teichmann [9]. The aim of this paper is to revisit
and discuss CRC models with the “simplest” tractable term structure model at hand.
Already this simple model leads to an interesting family of term structure models
which turns out to be rather powerful and which naturally combines spot rate models
with the Heath-Jarrow-Morton (HIM) [5] framework. To highlight this relationship
we choose the Hull-White extended discrete-time (one-factor) Vasi¢ek model. We
admit that in many cases this model is not appropriate for real world yield curve
modeling but it is suitable for this presentation because it allows to show all essential
features of CRC. More appropriate models for real world modeling are considered
in Harms et al. [3, 4]. Interestingly, these CRC models also allow to identify the
market-price of risk which describes the differences between the risk neutral (pric-
ing) measure and the real world measure under which we collect (historical) obser-
vations. The market-price of risk identification is a notoriously difficult problem but
it seems rather straightforward in the present set-up.

Organization of this manuscript. In Sect.2 we revisit the discrete-time one-
factor Vasicek model, we discuss its Hull-White extension, and in Theorem 1 we pro-
vide the calibration of the Hull-White extension to the actually observed market yield
curve. In Sect. 3 we describe the CRC algorithm which allows for stochastic model-
ing of model parameters. This section is complemented by the HIM representation of
the CRC algorithm. In Sect. 4 we introduce the market-price of risk which describes
the differences between the risk neutral pricing measure and the real world proba-
bility measure. In Sect.5 we give interpretations to the parameter processes and we
provide calibration and estimation of all model parameters. Finally, in Sects. 6 and 7
we summarize our results and we support our conclusions with an example based on
the Swiss currency CHF. The proofs of the statements are provided in the appendix.

2 Hull-White Extended Discrete-Time Vasic¢ek Model

In this section we revisit the Hull-White extended discrete-time (one-factor) Vasicek
model. Fix agridsize A > 0 and consider the discrete time grid {0, A, 2A, 3A, ...} =
ANjy. Choose a (sufficiently rich) filtered probability space (£2, .%#,P*, F) with
discrete-time filtration ' = (.%;),en,, Wwhere t € Ny refers to time point  A. Assume
that P* denotes a risk neutral measure (equivalent martingale measure) for the bank
account numeraire (money market account). A stochastic process X = (X;)en, will
be called [F-adapted if every component X, of X is .%,-measurable.

2.1 Discrete-Time (One-Factor) Vasicek Model

Choose parameters b, 8, o > 0 and define the spot rate process (r;);en, as follows:
choose initial value ry € R and define recursively for ¢ > 0
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rt=b+,3”t—1+0<9,*, (1)

with (¢]),en, being F-adapted and & being independent of .%,_; having a (one-
dimensional) standard Gaussian distribution under P* for ¢+ > 0. Under the risk neu-
tral measure P*, the no-arbitrage price at time A of the zero-coupon bond (ZCB)
with maturity date mA > t A is given by

yf} .

For notational convenience we drop the lower index A in P, (¢, m) (A is kept fixed
throughout the paper). Assume B # 1. The price of the ZCB in this discrete-time
(one-factor) Vasi¢ek model has the following affine term structure, see Theorem 3.6
in Wiithrich-Merz [11],

m—1
P(t,m) = PA(t,m) = E* |:exp [—A Zrk]
k=t

P(t,m) =exp{A(t,m) —r, B(t,m)},

with A(m — 1, m) = 0and B(m — 1, m) = A, and recursively for0 <7 <m — 1

2
A(t.m) :A(t+l,m)—bB(t+1,m)+%B(t+1,m)2, @)

A
B(t,m) = m (1 — ,Bm_t) .

In the case B = 1 we have B(t,m) = (m —t)A and A(t, m) is given by (2).
The yield curve takes at time ¢ A the following affine form in the discrete-time
Vasic¢ek model: for maturity dates mA > t A we have

A(t.m) B(t. m)
m—0A " m=—nA’

) 1
YVasl(t7 m) = _mlog P(t,m)=—

with spot rate at time t A given by YV%i(¢, 1 4+ 1) = r,.

The possible shapes of these Vasi¢ek yield curves (Y V®i(t,m)),,~, are rather
limited because of the restrictive functional form and because we only have three
parameters b, 8, o > 0 for model calibration. Typically, this does not allow to match
the observed market yield curve. Therefore, we consider the Hull-White [ 7] extended
version of the discrete-time Vasi¢ek model.

2.2 Hull-White Extended Version of the Vasicek Model

For the Hull-White [7] extended version of the discrete-time VasiCek model we
replace spot rate process (1) as follows: set initial value y € R and define recursively
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fort >0
re=b" + Br_i +oel, 3)

with constant » > 0 in (1) being replaced by 7-dependent constants b,(k) > (0 and all
other terms being the same (ceteris paribus). The upper index ® will be playing an
important role in the following text. This is going to be explained in detail below.

Assume B # 1. The no-arbitrage price of the ZCB under P* in the Hull-White
extended discrete-time Vasi¢ek model has affine term structure

PO, m) =exp{AP(t,m) —r, B(t,m)}, 4)

with A®¥(m — 1, m) = 0and B(m — 1, m) = A, andrecursively for0 <t <m — 1

2
AO@ m) = AD @+ 1,m) — b®, Bt + 1. m) + %B(r +1,m? ()

A
B(t,m) = m (1 — ,Bm_t) . (6)

The yield curve then takes at time A the following affine form in the Hull-White
extended discrete-time Vasi¢ek model: for maturity dates Am > Ar we have

A® (¢, m) B(t, m)

Y®O@, m)=— r )
(m—-—1A (m—1A

(7

Observe that the Hull-White extended Vasicek yield curves (Y ® (¢, m)),,~, have a
flexible form because the Hull-White extension (b,(k)), provides (infinitely) many
degrees of freedom for model calibration. This we are going to explain next.

2.3 Calibration of Hull-White Extension

The spot rate process (3) has the Markov property and initialization at time zero
is rather arbitrary. In other words, we could consider any other initial time point
kA e ANy, and study the (time-shifted) spot rate process (ris)sen, startinginr, € R
attime kA and for t > k

r = b,(k) + Bri_1 +o¢;.

The choice of the upper index in b,(k) now gains an explicit meaning: if we start the
spot rate process (rr+s)seN, at time kA we can calibrate the Hull-White extension
(b,(k>),>k to the actual market conditions at that time point kKA. More specifically,
the Hull-White extension is calibrated as follows. Assume that there is a fixed final
time-to-maturity date M A and assume that there is an observable market yield curve
at time kA given by the vector
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Yo = (YR kA1), ™k k o+ M) € R,
where y™(k, 1) is the yield rate at time kA for maturity date tA > kA. For the

same time-to-maturity dates we have Hull-White extended discrete-time Vasicek
yield curve based on Hull-White extension (b,(k) )isk» see (7),

ey

A® (ke k+1 Bk, k + 1

AOG k+M)  Blok+mY
k s - + i .
A A

MA MA

The upper index in y,({k) refers to the chosen Hull-White extension (b,(k)),>k and
the lower index to time point kA when the yield curve y,((k> is observed. Assume
re = y™(k,k + 1), 8 # 1and 0 > 0 are given. The aim is to calibrate Hull-White
extension (b,(k) )¢>k at time kA such that we obtain identity

v =y ®)

That is, the Hull-White extension (b,(k)),> « is calibrated such that the model perfectly
fits the observed market yield curve y,’(“kl at time kKA. This calibration problem can be
solved explicitly by induction. We define for 8 # 1 the left-lower-triangular matrix

C(B) = (ci )i<i,jem—1 € RM=DxM=D 1y

A o o
“ITT_8 (1= B"17) 1yziy = BG. i + 1) 1<y,
For y=(1,...,yu) € RY we define vector z(8,0,y) = (21,...,2m-1) €
RY-1 by
0_2 k+s
&= > B(ik+s+ 1> =Bl k+s+1)+ s+ DAy, 9
j=k+1

fors=1,..., M — 1.

Theorem 1 Assume B # 1 and o > 0 are given parameters. Denote by y,((k) the
yield curve at time k A obtained from the Hull-White extended discrete-time Vasicek
model (3)—(6) with Hull-White extension b® = (b,i’f:l, R b,E]zM_])/ e RM~!, Iden-
tity y,(ck) = y™ holds if and only if

b® =b® (B, 0, yi™) = C(B) 'z(B, o, y™).

Theorem 1 explains how the Hull-White extension b®) needs to be calibrated so that
the resulting yield curve in the Hull-White extended discrete-time Vasi¢ek model
exactly matches the observed market yield curve y}{“k‘ for given parameters 8 and o.
Theorem 1 motivates the basic concept of consistent re-calibration (CRC) models.
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Let in a first step the parameters 8 and o reflect actual financial market conditions.
In a second step we then calibrate the Hull-White extension b® using Theorem 1 so
that the resulting model does not allow for arbitrage under a change to actual market
parameters B and o. This algorithm termed CRC algorithm is going to be explained
next.

3 Consistent Re-Calibration Models

The crucial extension works as follows: assume that also model parameters § and
o (may) vary over time and we aim at constantly re-calibrating the Hull-White
extension in a consistent way. We will show that this allows for (stochastic) modeling
of model parameters (which could be interpreted as a state space model) and naturally
leads to a Heath-Jarrow-Morton (HIM) [5] point of view for term structure modeling.

3.1 Consistent Re-Calibration Algorithm

Assume that (By)ren, and (ox)ken, are F-adapted processes with 8, # 1 and oy > 0
for all k € Ny, a.s. The CRC algorithm reads as follows.

(i) Initialization &k = 0. Assume that the market yield curve observation at time 0 is
given by yo'. The .%)-measurable Hull-White extension at time 0 is then obtained
by, see Theorem 1,

b = C(Bo)™'2(Bo. 0. ¥5™).

This makes the Hull-White extended discrete-time Vasicek yield curve (for given

parameters Sy and op) identically equal to y{)nkt.

(ii) Spot rate dynamics from k — k + 1. Assume (ry, i, ox, b)) are given. The
spot rate process (¢4s)sen, 1S then for ¢ > k given by

ro=b® + Bury + orel. (10)

Note that parameters f; and oy are now .%;-measurable. This provides %, 1-
measurable yield rates at time (k + 1)A form > k + 1

A® (k + 1, m) B® (k + 1, m)

(k) = m—(k+t INA
) = A T Gt A

with A®(m — 1, m) = 0and B®(m — 1, m) = A, and recursively fork + 1 <t <
m—1
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AP@ my = AP +1,m) — b

2
® BO@ +1,m) + %‘B(")(t + 1 m)2,

B®(t,m) = (1-87).

1 — B
This is exactly the no-arbitrage price under P* if parameters S and oy remain constant
for all # > k. Note that also B® now depends on k.

(iii) Parameter update and re-calibration at k + 1. Assume that at time (k + 1) A
the parameters (B, ox) are updated to (Bg+1, 0x+1). This parameter update may be
initiated through a new .%; -measurable yield curve observation

¥ = POk + 1k +2), .. Y%+ 1k +1+ M) R,

or through a change of financial market conditions. This parameter update (B, o) >
(Br+1, oxy1) requires re-calibration of the Hull-White extension, otherwise there is
arbitrage. This re-calibration provides .%#;,-measurable Hull-White extension at
time (k 4+ 1) A given by

b = C(Bi) ™ 2(Brsts Okrts Yooy (11)

The resulting yield curve y,({lf:rll) under these updated parameters is identically equal

to y,({kﬁ]. Note that this CRC makes the upper index in y,(f) superfluous because the
Hull-White extension is re-calibrated to the new parameters such that the resulting

yield curve remains unchanged. Therefore, we will just write yj in the remaining text.

(iv) Iteration. Iterate items (ii)—(iii) for k > 0. U

Remark 1 There is a well-hidden issue in the above CRC algorithm, namely, if we
want to calibrate b%®' € RM, k > 0, and we start this algorithm at time O then the
maturities in y{)nkt need to go well beyond M A. Either these maturities are observable
and the length of b® is reduced in every step of the CRC algorithm or an appropriate

extrapolation method beyond the latest available maturity date is applied in every step.

3.2 Heath-Jarrow-Morton Representation of the CRC
Algorithm

We analyze the yield curve dynamics (y)i>0 obtained from the CRC algorithm of
Sect.3.1. Due to re-calibration (11) it fulfills the following identity (we drop the
upper index ® in Y (-, -))
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_ ABG+1,m) B®O(k 4+ 1, m)
Yk Lom) == v a T =kt A
A®D (k4 1, m) B®D(k +1,m)
= g — (12)
(m—(k+1)A (m—(k+1)A

The first line describes the spot rate dynamics of step (ii) of the CRC algorithm. This
is based on the .%;-measurable parameters (8, o, b®). The second line describes
the parameter update of step (iii) of the CRC algorithm and is based on the % ;-
measurable parameters (81, Ox+1, b*+D), after re-calibration. Note that the CRC
algorithm has two degrees of freedom because the Hull-White extension b*+1 is
used for consistency property (11). Our aim is to express Y (k + 1, m) as a function
of ry and Y (k, m). This provides the following theorem.

Theorem 2 (HJM representation) Assume the Hull-White extended discrete-time
Vasicek model satisfies the CRC algorithm (i)—(iv) of Sect. 3. 1. The yield curve dynam-
ics (Yx)r=0 has the following HIM representation under P* form > k + 1

m—Gk+1)AYk+1,m)=m—kAYk, m) —AYk k+1)

2
+ %k BP(k+1,m> +0p BP(k+1,m)ef,,.

with B (k +1,m) = 125 (1 = g0,

Remark 2

e Observe that in Theorem 2 a magic simplification happens. Simulating the CRC
algorithm (i)-(iv) to future time points kA > 0 does not require calculation of the
Hull-White extensions (b®));cn, according to (11), the knowledge of parameter
process (B, ox)ik=0 1s sufficient. The Hull-White extensions are fully encoded
in the yield curves y, k € Ny, and we can avoid inversion of (potentially) high
dimensional matrices C(8;).

e Theorem 2 provides a one-factor HIM model for the yield curve. This can easily be
extended to a multi-factor model by starting with a multi-factor Vasi¢ek model with
1.i.d. multivariate Gaussian innovations ¢, ¢ € N, under P*, see Harms et al. [4].

e One could also directly start with the HIM framework. However, then we would
lose the interpretation of the terms in the HIM equation. Moreover, this approach
combines classical spot rate models with HIM representations in such away that
well-known term structure models are combined with CRC of parameters.

e We can easily replace the Gaussian innovations ¢/, t € N, by other distributions,
for instance, gamma distributions. These replacements may also allow for closed
form solutions in the CRC algorithm of Sect. 3.1 and in the HIM representation of
Theorem 2. However, in general, the disappearance of the Hull-White extension
b® in the HIM representation will not (completely) happen but it will occur in a
weakened form in that only the first term b,((]:i , of the Hull-White extension needs
to be determined.
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There are still two missing pieces in this modeling approach, namely, the description
of the parameter process (S, ox)ir>0 and the modeling of the real world measure P.
So far we have described the process under a risk neutral pricing measure P*, and
next we are going to model the process under the real world measure, which will
allow for yield curve prediction.

4 Real World Dynamics and Market-Price of Risk

All previous derivations were done under a risk neutral measure P* for the bank
account numeraire. In order to calibrate the model to real data we also need to be able
to track the processes under the real world measure P. We present a specific change
of measure which provides tractable solutions for the spot rate process dynamics also
under the real world measure. For simplicity we choose a sufficiently large finite time
horizon T € N and we assume that %7 = .%. Choose a two-dimensional F-adapted
process (Ag)keN, = ()L,io), A,((D )ken, that describes the market-price of risk parameter
process. We define the following P*-density process (&) sen,

1 k+s 2 k+s
0 1 0 1
kts =eXP[—§ E ()\'f,,)l +)\'1(,,)1rv—l) - E ()\57)1 +)¥‘(,)1rv—1)8:<} >
v=k+1 v=k+1

(13)
with spot rate process (r¢is)sen, given by (10). The real world probability measure
P is then obtained by the Radon-Nikodym derivative

ar_ 14
P = ér. (14)

An immediate consequence is (see also Lemma 3.19 in Wiithrich-Merz [11]) that

o © 50
ksl = Epqgpt T Mgy T A Thots

is standard Gaussian-distributed under P, conditionally given .%;,. The spot rate
process (rr+s)sen, given by (10) is described under the real world measure P for
t > k by

k 0 1
r=b" — Uk)»,(_)l + (,Bk - Uk)»,(_)l) Ti—1 + Oké;

k k
=a® + o+ ore, (15)

where we define for ¢ > k the parameter processes

k k 0 k 1
a® =b® —o®  and o = — i, (16)
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with (a,(k), (x,(k)) being .%,-measurable. Formula (15) describes the spot rate process
under the real world measure P and formula (10) under the risk neutral measure P*
using change of measure (14). We are going to calibrate this process to real data
below.

Theorem 2 has provided the HIM view of the re-calibrated Hull-White extended
discrete-time Vasi¢ek model under the risk neutral measure P*. In order to predict
yield curves we need to study the dynamics under the real world measure PP. This is
done in the following corollary.

Corollary 1 Assume the Hull-White extended discrete-time Vasicek model satis-
fies the CRC algorithm (i)—(iv) of Sect.3.1. The yield curve dynamics (yi)i=o0 has
the following HIM representation for m > k + 1 under the real world measure P
satisfying (14)

m—(k+1)AYKk+1,m) = (m—k)A Yk, m)
— [A + oV BO Kk + 1, m)] Yk, k+1)

2
+ [%‘B(k)(k +1,m? — o rdOBO K + 1, m)i|
+ GkB(k)(k + 1, m)ery1,
1 pk) _ A (1 am—G+D

We obtain two additional drift terms and —oxil B® (k + 1, m)Y (k, k + 1) and
—Uk)»,io)B(k) (k + 1, m) which are characterized by the market-price of risk para-
meter A = ()»,((0), )\,((1)).

5 Choice of Parameter Process

The last missing piece is the modeling of the parameter process (8;, 0¢):en,- In this
section we give different interpretations to this parameter process which will lead to
different modeling approaches.

From (10) we get the one-step ahead development k — k + 1

Teel = b/i]i:l + Bri + orer s (17)
with .%;-measurable parameters b,({/il , Br and oy. Thus, on the one hand (r)en,
evolves according to (17) and on the other hand parameters (B;, o;),en, evolve accord-
ing to the financial market environment. Note that the Hull-White extension (b®),cx,
is fully determined through (11). In order to distinguish the two evolvements of
(re)ren, and (B;, 01):en,, respectively, we need to assume that the evolvement of the
financial market conditions is more viscous than the changes in the spot rate process.
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This implies that the evolvement of the parameter process (8, 0;):en, is taking place
at a lower pace or a wider time scale compared to (7;);cn,. We now give different
interpretations and calibration procedures for the parameter process.

5.1 Pricing Model Approach Interpretation

D> Mean reversion rate. Parameter § is the mean reversion rate of an AR(1) process.
Set for illustrative purposes b,((];)] =b,Br=p€(0,1) and o, = o in (17), then we
obtain fort € N

21_ﬁ2t
, O
p 1 - p?

b
rilg, ~ N (ﬂrro + - ﬂl)l ) , under P*.

The mean reversion rate 8 € (0, 1) determines at which speed the spot rate process
(r¢)ren, returns to its long-term mean b* = b/(1 — B), because ' — 0 for t — oo.
A sensible choice of g at time kA will adapt this mean reversion rate to the actual
financial market conditions.

> Instantaneous variance approach I. Parameter oy plays the role of the instantaneous
volatility parameter of the spot rate process (7;);cn,. The choice of o} should reflect
actual financial market conditions. This instantaneous volatility parameter can, for
instance, be modeled by a Heston [6] like approach, i.e. where (U,Z)zzo has a Cox-
Ingersoll-Ross (CIR) [1] process

datz =K (9 — 0'[2) dt + g\ o2dW,, (18)

in which (W;),» is a standard Brownian motion that maybe correlated with (¢7)en
under P*. In a more discrete time fashion we could choose a GARCH model for
the modeling of the instantaneous variance (akz)keNo. In applications, process (18)
should be chosen more viscous than the one of the spot rate process, in order to
distinguish and separate the two.

D> Instantaneous variance approach II. A second approach links oy in (17) directly
to the spot rate level r;, at time k A. If we replace (0’[2) >0 in (18) by (r/);>0 (assuming
continuous time ¢ € R, for the moment) we obtain the CIR [1] interest model. In a
similar spirit we could adapt the discrete-time spot rate version to

Tt =b,({]21 + Birr + g/ Irelegy g (19)

for a given parameter g > 0. However, there is a fundamental difference between
our CRC model using (19) and the CIR interest model. In our model the volatility
level /[ry] is only used for the spot rate dynamics in the next period and the yield
curve is calculated using the HIM representation of Theorem 2 which is based on the
Hull-White extended discrete-time Vasi¢ek model. Whereas the CIR model provides



68 M.V. Wiithrich

a different affine term structure model which results in non-central y2-distributed
yields.
This idea can be carried forward by replacing (19) by the spot rate model

rept = bE, 4 Bure + g(r)el (20)

for an appropriate function g: R — R, i.e. the instantaneous volatility parameter
oy is a function g(ry) of the actual spot rate level r; at time kA. This idea reflects
the empirical study of Deguillaume et al. [2] and a possible choice of g(-) could be
of the form of Fig.7 in [2].

The approaches presented in this section are fully based on the risk neutral measure
P* and calibration often uses actual option prices in order to choose the parameters
according to actual market conditions.

5.2 Historical Calibration of the Prediction Model

Assume the real world measure P on (§2, .%) is defined according to Sect.4. More-
over, assume for the moment that a,Ek) and a,((k), given in (15), and the instanta-
neous volatility parameter o}, are constantink € {s — K, ..., s} for a small window
length K, and denote them by a, @ and o. This is motivated by the assumption
that the parameter process is more viscous than the spot rate process and, there-
fore, is almost constant over small window lengths. Under these assumptions we
can try to estimate parameters (a, o, o) at time kA from historical observations. We
choose a fixed (small) window length K € N and we assume that we have observa-
tions r—x)x = (rt)i=k—x.... k for this window length. The log-likelihood function of
r—x): under (15) for constant parameters in {k — K, ..., k} is then given by

k
1
Criu (@ 0) o (— logo — 5~ (n —a— art1)2) :

202
1=k—K+1

To maximize the log-likelihood function over the parameters a, « and o we need to
solve the following system of equations, which provides the maximum likelihood
estimators (MLEs),

8£r K): 8£r —K): aer —K:
Wt @, 0,0) =0, —% g a,0) =0 and %(a,o{, o) =0.
o

da o

The MLEs at time kA for window length K are then given by, see Proposition 3.7
in Wiithrich-Merz [11],
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k k k
GMLE _ K2 ikt il = 2 gt Tt Dymp1 Tr—1 @1)
ko= k 2 k 2 )
K Zt:kaJrl - (Zz=k71<+1 Fi—1)
k
1
~MLE ~MLE
ag = E (rz - r,,l) ) (22)
t=k—K+1
k
~ MLE 1 2
2 ~MLE ~MLE
o = X (r, -0y T — ) . (23)
t=k—K+1

=R =R ~ MLE
Note that gME, GME and 62 are the MLEs for the parameters o, a and o2 at
time kA (for window length K). This motivates the “best prediction model” at time
k A by setting

~MLE
(k) _ ~MLE (k) _ ~MLE 2 _ 2
ay’ =a;, o, oy =0 and o; =0y (24)

for the one-step ahead prediction from time kA to time (k 4+ 1)A in (15). This
calibration was purely done under the (historical) real world measure P and we have
not used any no-arbitrage arguments. The choice of the window length K crucially
determines the viscosity of the parameter process.

Note that (24) describes the spot rate process under the real world measure P.
This is not sufficient for price predictions because we also need to understand the
risk neutral measure P* through the market-price of risk parameter (Ai)ken,, see
Corollary 1. This is exactly what we are going to consider in the next section.

5.3 Continuous-Time Modeling Motivated Inference

In this section we elaborate the differences between the risk neutral measure and
the real world measure. The basic idea is that volatility is the same under both mea-
sures which in turn allows to identify the residual parts under both measures. These
considerations are inspired by continuous time modeling which will be reflected by
choosing a small grid size A in our context, we also refer to Harms et al. [3].

5.3.1 Historical Inference on Spot Rates
Assume spot rate process (7);eN, is given under P by ry € R and for ¢ > 0

ry = a+ar_| +oé&.
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The n-step ahead prediction of (r;):en, for n > 0 has distribution

1— 2n
tulz, ~ N (a”ro + (1 —aYa*, o? 1 _0(12 ) , under P,

with long-term mean a* = a/(1 — «) for @ # 1. We define

1— 2
y =« and rzzoz—y.
1_y2/n

This implies for the n-step ahead prediction
Tl ~ N (yro + 1 —=y)a*, rz) , under P. (25)

Observe that we remain in the same family of models. Assume we have observations

70y Fns Fans - - . for a fixed time grid (An)Ng S {0, An, 2An, ...}. This allows to
estimate y, a™ and 72 on that time grid (An)Ny, for instance, using MLE as explained
in (21)—(23). From these estimates we can reconstruct o and o> on time grid ANy
as follows:

1 1
a=y = exp{;logyl = 1—|—;logy+0(l/n) asn — oo,

2/n 2 —1
02=12i = lw+o(l/n) asn — oo.
1—y2 n 1—y2
For the asymptotic statements we revert the interpretation of »n, that is, we assume
that a fixed time grid Ny is given for parameter estimation. Then we refine this
time grid according to A = A(n) = «/n for large n. Therefore, the spot rate process
(r¢)ren, has on A = A(n) approximation 7y = ry and for t > 0

~ 1 1 - /1 [272logy !
7= —a*logy~ '+ (1 — —log y_l) r—1+4/— —gJ;S,,
n n n 1—vy

for y, a* and 72 describing the dynamics on time grid ¥ Nj. The innovation of this
approximation is given by

- e~ 1, ., - _ /1 [272logy~!
D) & T —T = — (a - r,,l) logy ™' +,/— —g); & (26)
n n 11—y

The crucial observation is that the drift term and the random term live asymptotically
for n — oo on different scales, namely, we have
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127%logy~!

1 ~ 112
E[OG)|Fia] = — [(@ =Fnlogy '] + —=—— v
Therefore, if the grid size A = A(n) is sufficiently small, i.e. n sufficiently large, the
volatility part dominates the drift part and we may approximate
127%logy ! )
—_— X 0.

E[(DG))?| Fia] = = 5

PR 27)

This approximation suggests to estimate o with the realized volatility, i.e. for window
length K and observation r_ ).« we set realized variance estimator for observations

F(k—K):k

k
" = Z (h=raP == D D). (28)

t=k—K+1 r:k—K-H

Note that the realized variance estimator differs from the MLE akzMLE given in (23).
We are going to analyze this difference numerically. Approximation (27) motivates
to carry forward this idea to yield curve observations for general times-to-maturity.
This is done in the next section.

5.3.2 Historical Realized Co-Variation

We can carry forward the idea of the last section to calculate realized co-variations
within the discrete-time Vasic¢ek model of Sect.2.1. The innovation of the yield rate
for fixed time-to-maturity m A is in the discrete-time Vasi¢ek model given by

. . B t,t
YY) — YV 1 — 1 m) = (—Z’”) o —r). (29)
m

Note that this assumes viscosity of parameters over short periods. From formula (26)
we immediately obtain approximation (for small A = A(n))

D(YVa51 ) def. YVasi(t’ r+m)— YvaSi(t —1,t—14+m)

t,t+m
B(t,t+m) _ _
~——"0D
mA o)
B(t,t 1 2 21 -1
_Berem (@ =T )logy ™" + ‘ Ogy
mA

If we assume that times-to-maturity m; A and m, A are fixed and for A = A(n)
sufficiently small we get approximation for the co-variation, see also (27),
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CoV def. Vasi Vasi ~ =A™= 2
2[ (m],mZ) = E[D(Y )D(Y )‘ y[—l] ~ m1m2(1 _ /3)2 o .

t,t+my f,t+my
(30)
Note that the latter is interesting for several reasons:

e Formula (30) allows for direct cross-sectional calibration of 8 (which is the mean
reversion parameter under the risk neutral measure P*). That is, the mean reversion
parameter B for pricing can directly be estimated from real world observations
(without knowing the market-price of risk). This is always based on the assumption
that the volatility dominates the drift term.

e We have restricted ourselves to a one-factor Vasicek model which provides
comonotonic ZCB prices for different times-to-maturity. Of course, this
comonotonicity property needs to be relaxed and co-variations (30) are helpful
for determining the number of factors needed, for instance, using a principal com-
ponent analysis (applied to time series of co-variations).

Assume we have market yield curve observations y™ for a time window 7 € {k —

K, ..., k}. The co-variations can be estimated at time k A by the realized co-variation
estimators
k
~ 1
CoV kt kt
SV mo) = = > DO, DO,
t=k—K+1

for

DO, = y™ @t t +m) — y™ (@ — 1,1 — 1 +m).

5.3.3 Cross-Sectional Mean Reversion Parameter Estimate

-5 RVar
The realized variance estimator o} and the realized co-variation estimators
E,SOV (my, my) for given times-to-maturity m; A and m, A allow for direct estimation
of the mean reversion parameter 8 at time kA. We define the following estimator,
see (30),

2
TV (my, my) _d=p"a-=pgm"

ERCOV arg min Z w,
k = ny,ma - RVar _ 2 ’
e o mima (1 = B)

€2y

for given symmetric weights Wy, », = Wi, .m, = 0. This optimization needs care
because it is quite sensitive and it should be modified to the more robust version
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ZEVmi,my) (1= p")(1 = B™)

R mimy(1 = )2
k
o~ ml—l 1 mz—] 1l
kaCoV(m1 , mz) (lezo ,3 l) (lezo IB 2)
- ~ RVar - .
akz mimyp

-~ RVar ~
Werequire (0f )~ ZF°V(my, my) € [1/(mymy), 1] for obtaining mean reversion
rate 8 € [0, 1]. Therefore, we define its truncated normalized version by

A _1 . AZRVar -1 S CoV
Ex(my, my) = max { (m;m,)”", min (ok ) 2 my,my), 1. (32)

Below we use the following estimator for weights w,, > 0

ARCoV ) =
Br = argmin Zwm Er(m, m) —
m

(=)' 8)

e (33)

Remark 3 'We would like to emphasize that there is a subtle difference between
calibration of spot rate volatility in Sect.5.3.1 and the corresponding method for co-
variations of Sect. 5.3.2. For the spot rate process we know that the (one-dimensional)
observation r, always lies within the range of possible observations in the AR(1)
model described by (25). For the multi-dimensional observation yf‘k‘ this is not
necessarily the case because (29) prescribes a specific form of the range based on the
previous observation y;"_k} and the functional form of B(t, t 4+ m). If the observation
is too different from the range, then calibration (33) will fail. In the example below we
will observe exactly this failure after the financial crisis 2008, because (33) possesses

monotonicity properties that are not present in the observed data after 2008.

5.3.4 Inference on Market-Price of Risk Parameters

Finally, we aim at determining the market-price of risk parameter process (Ag)ken,
under the given density process (& )sen, assumption (13). From (16) we get )\,({1) =
op "B — a,ﬁk)). This immediately motivates inference of )\,((1) by

~ ~Rvary —1/2 /o
W=(a ) (B @), (34)

For inference of A,EO) we use the first term b,i’il of the Hull-White extension which

is explicitly given in the proof of Theorem 1 and reads as
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Ulcz mkt (k) (k) (0)
7A — (1 + Br) + 2y (k, k +2) Zbk_H = da; +ak)\k . (35)

This motivates the following inference of )L,(CO)

-5 RVar
~ ~ RVar\ —1/2 2 ~RCo
W=(02 ) [ Ea-na+ B 42y ke k+2) g

(36)

6 Conclusions

We have discussed an extension of classical spot rate models to allow for time depen-
dent model parameters. This extension is done such that the model remains consis-
tent in the sense that parameter updates and re-calibration respect the premise of
no-arbitrage. This leads to a natural separation of the drift term into two parts: one
correcting for the no-arbitrage drift and a second one describing the market-price of
risk. We have exemplified this with the discrete-time one-factor Vasic¢ek model at
hand, but this concept of CRC applies to a wide range of continuous and discrete-time
models, for more examples we refer to Harms et al. [3, 4].

Within the discrete-time one-factor Vasi¢ek model, formulas (11), (21)—(23), (28),
(31), (34) and (36) fully specify the inference of past parameters and the market-prices
of risk. The only choices of freedom there still remain in this inference analysis are
the choice of the window length K (which determines the viscosity of the parameters)
and the choices of the weights w,, attached to the different times-to-maturity m in
(33). The latter will require a good balance between short and long times-to-maturity
in order to make sure that not one end of the yield curve dominates the inference
process. For the example below we only choose short times-to-maturity, accounting
for the fact that the one-factor Vasi¢ek model is not able to model the whole range of
possible times-to-maturity. For the latter one should switch to multi-factor models
which are, for instance, considered in Harms et al. [4].

Going forward we will need to model stochastically the parameter process and
the market-price of risk process in order to predict future yield curves. An alternative
way that avoids explicit stochastic modeling of these processes is to push the yield
curve period by period through Corollary 1 and then make path-wise inference of the
parameters as described above. This reflects an empirical (or bootstrap) modeling
approach where parameters are fully encoded in the (new) yield curve observations.

In the next section we provide an example that is based on the Swiss currency
CHE. Since the discrete-time one-factor Vasicek model cannot capture the entire
range of possible times-to-maturity, we only consider the short end of the CHF yield
curve. Typically, one needs at least a three-factor model in order to reflect short and
long times-to-maturity simultaneously in an appropriate way.
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7 Swiss Currency CHF Example

We choose a business daily grid size A = 1/252. As historical observations, we
choose the Swiss Average Rates (SARs) for the Swiss currency CHF. The SARs
are available for times-to-maturity up to 3 months with the following explicit times-
to-maturity: the SAR Over-Night (SARON) corresponds to a time-to-maturity of A
and the SAR Tomorrow-Next (SARTN) to a time-to-maturity of 2A. The latter is not
completely correct because SARON is a collateral over-night rate and tomorrow-next
is a call money rate for receiving money tomorrow which has to be paid back the next
business day. Moreover, we have SARs for times-to-maturity of 1 week (SAR1W),
2 weeks (SAR2W), 1 month (SARIM) and 3 months (SAR3M), see also Jordan
[8] for background information on SARs. The data is available from December 8,
1999, until September 15, 2014. We illustrate the data in Fig. 1 (lhs) and the rooted

realized variations ,/ f,fov(m, m),m € {1,2,5, 10, 21, 63}, for a window length of
K = 126 business days is given in Fig. 1 (rhs). The vertical dotted lines indicate the
financial crisis in 2003 and the beginning of the financial crisis 2008.

Swiss currency interest data is known to be difficult for modeling. This is true
in particular after the financial crisis 2008, see Fig. 1. One reason for this modeling
challenge is that the Swiss National Bank (SNB) has strongly intervened at the
financial market after 2008, both to protect the Swiss banking sector which has two
very large international banks (compared to the Swiss GDP), and also to support
the Swiss export industry and the Swiss tourism which heavily depend on exchange
rates. One instrument applied by the SNB was a floor on the exchange rate EUR/CHF.
Of course, these interventions heavily influence the SARs and the yield curves and
these kind of actions cannot be captured by a simple one-factor CRC Vasicek model.
However, we would still like to perform the analysis. We therefore only consider short

Swiss Average Rates (SARs) rooted realized variations
SARON 7 SARON
- — SARTN — SARTN
DO m s SARTW SARTW
e N SAR2ZW
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Fig. 1 (lhs) Swiss average rates (SARs) and (rhs) rooted realized variations ,/ fkc"v(m, m) for
window length K = 126 from December 8, 1999, until September 15, 2014
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times-to-maturity, because if we would include longer times-to-maturity we should
(at least) choose a multi-factor spot rate model which allows for more flexibility
between the short and the long end of the yield curve.

In Fig. 1 we see that the interest rate level is roughly 0 % after 2008. Also interest-
ingly, the order of the levels of realized variations f]f,‘oV (m, m) changes in 2008 in
the times-to-maturity m € {1, 2, 5, 10, 21, 63}. We will see that this change in order
causes severe problems in the calibration of the one-factor Vasi¢ek model (see also
Remark 3).

In Fig.2 we provide the MLEs of the mean reversion rate (’x\}(v[LE, see (21), and
the intercept ay'“F, see (22). For window length K = 126 (which provides good
smoothing through viscosity but also a time lag) we obtain quite reasonable values,
with mean reversion rates in the interval (0.5, 1). Mostly they are well bounded away
from 1 which usually means that we cannot reject an AR(1) model. Intercepts 5,£‘ALE
also look reasonable, after the financial crisis 2008 intercepts collapse to 0, see Fig. 2
(rhs) and Fig. 1 (lhs). This means that the long-term rate of the spot rate process is

around 0 after 2008. Finally, in Fig.3 (lhs) we provide the MLEs akzMLE for the
estimated volatility parameter, see (23). We observe that the volatility adapts to the
level of the spot rate which is in the spirit of Deguillaume et al. [2], and we could
now investigate whether there is an explicit functional form. This provides all MLEs
(24) under the real world measure P.

-5 RVar
Next we investigate the rooted realized variance estimator \/ o>, see (28). This
estimator is based on the assumption that for sufficiently small grid size A we can

neglect the drift term because the volatility term is the dominant one. The results are

~MLE
presented in Fig. 3 (rhs). This should be compared to estimator/ o7 inFig. 3 (Ihs).

We see that both estimators provide very similar results which, of course, supports
the methods applied. In Fig.4 (lhs) we plot the ratio between the two estimates.

mean reversion rate alpha (MLE) intercept a (MLE)
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Fig. 2 MLEs (lhs) mean reversion rate &QALE and (rhs) intercept ’a\}c"[LE for window lengths K =

21, 126 under the real world measure PP from December 8, 1999, until September 15, 2014
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Fig. 3 (lhs) MLEs +/ o? and (rhs) realized volatility estimator 4/ akz ar for window lengths
K =21, 126 from December 8, 1999, until September 15, 2014
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Fig. 4 (lhs) ratio \/O'](T /\ 01(2 and (rhs) normalized spot rate innovations D(rg)/ okz
for window lengths K = 21, 126 from December 8, 1999, until September 15, 2014

Before 2008 this ratio is close to 1, however, it is not always close to one which
says that for a thorough estimation we need to carefully consider the drift term, or
choose a smaller grid size A if possible. Figure 4 (rhs) gives the normalized spot rate

-5 RVar
innovations D(ry)/ ak2 which are roughly centered but look too heavy-tailed to
support the Gaussian innovation assumption for (&,)en,-

In Fig. 1 (rhs) we provide the rooted realized variations ,/ fkcw (m, m) for times-
to-maturity m € {1, 2,5, 10, 21, 63}, see (30), and in Fig.5 (lhs) their truncated
normalized counterparts §k (m,m), see (32). We see that after the financial cri-
sis 2008 the truncated normalized values §k (m, m) look strange. This is caused
by the changed order of realized variations ff°v(m, m) for times-to-maturity
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m € {1,2,5,10, 21, 63}, see Fig. | (rhs). Since the one-factor Vasic¢ek model requires
monotonicity in these times-to-maturity m it cannot cope with the new situation after
2008 (see also Remark 3). Moreover, also the SARTN observations provide difficul-
ties. We have already mentioned in the introduction to this section that the quality
of SARTN is slightly different compared to the other SARs. This may explain this
picture and therefore we exclude SARTN for the further analysis, i.e. we choose
weights w,, = 1«2 in optimization (33). This then provides the mean reversion

=2 RCoV
rate estimates Sy given in Fig.5 (rhs). We can now compare it to the estimated

mean reversion rates a}(\’ILE of Fig.2 (rhs). From this we then estimate market-price

of risk parameter AU ), see (34). The results are presented in Fig.6 (lhs). We see
that before the financial crisis 2008 this market-price of risk parameter is negative.
However, we should not look at this parameter individually, but always at the total
market-price of risk drift that is determined by the following sum, see (13),

() =20 + 0 r. (37)

In order to study the total market-price of risk drift we first determine the first com-
ponent b(k) 41 of the Hull-White extension, see (35), and compare it to the estimated
intercept ay aME These time series are presented in Fig. 6 (rhs). From their difference
we then estimate the second market-price of risk parameter 3:,({0) using formula (36).
This provides the graphs in Fig. 7 (lhs). We see that this market-price of risk parameter
estimates have opposite signs compared to )\,((1) of Fig. 6 (lhs). We can then estimate
the total market-price of risk drift Ak (r) defined in (37). The results are presented
in Fig.7 (rhs). In the time frame where we can use the one-factor Vasi¢ek model
(before 2008) we obtain a positive total market-price of risk drift ’):k () (maybe this
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Fig.5 (lhs)truncated normalized variations §k (m,m)form € {2, 5, 10, 21, 63} for window length

2 RCoV
K = 126 and (rhs) estimated mean reversion rate S ’ for window lengths K = 21, 126 from
December 8, 1999, until September 15, 2014
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Fig. 7 (lhs) estimated market-price of risk parameter X,((O) and (rhs) total market-price of risk drift
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15,2014

still needs some smoothing). Of course, this makes perfect sense because market
risk aversion requires a positive drift of prices which results in an overall positive

market-price of risk term.

For yield curve prediction we now need to model the processes (a,ik) , ox) and
() for future time periods, see Figs.?2 (lhs), 3, 6 (lhs) and 7 (lhs). Based on these
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quantities all other parameters can be calculated with the CRC algorithm and yield
curve prediction is then obtain by considering conditional expectations of future
yield curves under the real world measure P, using Corollary 1.

Appendix: proofs

Proof (Theorem 1) The theorem is proved by induction.
(i) Initialization t = k 4 1. We initialize by calculating the first term b,(k) = b,((]fgl of
b® . We have A® (k + 1, k + 2) = 0. This implies, see (5),

2
APk +2) = —b) Bk + 1,k +2) + %B(k + 1,k +2)%.

From (8) we have
APk, k+2) = reBlk, k +2) —2Ay™ (k, k + 2).
Merging the last two identities and using r, = y™(k, k + 1) provides

b Bk + 1,k +2)
2
= %B(k + 1, k+2)* — y"™M(k, k + 1)B(k, k +2) + 2Ay™ (k, k + 2)

= 71(B, o, yI™).

This is exactly the first component of the identity
C(pY = z(B. o, yi™). (38)

and

(k)
t+1°

(ii) Induction step t — t + 1 < M. Assume we have calibrated b,ille, R b,(k)

these correspond to the first # — k components of (38). The aim is to determine b
We have A®)(t 4 1,1 + 2) = 0 and iteration implies

t+1 t+1 2
®) _ ®pei 9 B(i 2
AO K, 1 +2) = 2 b B(],t—|—2)+'§ 7 BU.+27
j=k+1 j=k+1

From (8) we obtain

AUt +2) =Bk, t +2) — (1 + 2 — k) Ay™ S (k, t + 2).
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Merging the last two identities and using 7, = y™ (k, k + 1) provides

t+1
> bB(.t+2)
j=k+1
i+l 2
= Z 715e(j,;+2)2 — y"™M(k, k + D)B(k, t +2)
j=k+1

+ (t+2—k)AY™(k, 1 +2)

kt
= Z[+l—k(ﬂ, g, y;T )

Observe that this exactly corresponds to the (r + 1 — k)th component of (38). This
proves the claim. (]

Proof (Theorem 2) Using (12) and (10) for # = k + 1 we have
m—(Gk+1))AYk+1,m)
= =AY+ 1)+ (B + B+ ovefy ) BO G+ 1,m),
We add and subtract —A® (k, m) + r B (k, m),

(m—(k+1)AYk+1,m) =— APk, m)+r Bk, m)
+ A© U, m) — APk + 1, m) — i BO (k, m)

(B8 + B+ oney ) BOG+ 1m).

We have the following two identities, the second simply follows from the definition
of A® (k, m),

AP &, m) +rBOk,m) = (m —k)A Y (k, m),
2
AO G, m) — APk +1,m) = —b%, BO (k + 1, m) + %"B(")(k +1,m)
Therefore, the right-hand side of the previous equality can be rewritten and provides

02
m—Gk+1)AYk+1,m)=m—k)AYk, m)+ 7k3<k>(k +1,m)?

+ 0o B® (k + 1, m)ef,
—re (BP(k,m) — B BY (k + 1,m))..

Observe that the bracket on the third line is equal to A and that r, = Y (k, k + 1).
This proves the claim. U
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Autoregressive Conditional Duration Model
with an Extended Weibull Error Distribution

Rasika P. Yatigammana, S.T. Boris Choy and Jennifer S.K. Chan

Abstract Trade duration and daily range data often exhibit asymmetric shape with
long right tail. In analysing the dynamics of these positively valued time series under
autoregressive conditional duration (ACD) models, the choice of the conditional dis-
tribution for innovations has posed challenges. A suitably chosen distribution, which
is capable of capturing unique characteristics inherent in these data, particularly the
heavy tailedness, is proved to be very useful. This paper introduces a new extension to
the class of Weibull distributions, which is shown to perform better than the existing
Weibull distribution in ACD and CARR modelling. By incorporating an additional
shape parameter, the Weibull distribution is extended to the extended Weibull (EW)
distribution to enhance its flexibility in the tails. An MCMC based sampling scheme
under a Bayesian framework is employed for statistical inference and its performance
is demonstrated in a simulation experiment. Empirical application is based on trade
duration and daily range data from the Australian Securities Exchange (ASX). The
performance of EW distribution, in terms of model fit, is assessed in comparison to
two other frequently used error distributions, the exponential and Weibull distribu-
tions.
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1 Introduction

With the recent advancements in computational technology, data capturing and stor-
age capabilities, the use of high frequency data (HFD) has gathered considerable
momentum in recent years. Consequently, there has been a surge in the interest of
research in many business related areas such as economics and finance. This was
propelled by the enhanced availability and easy access to HFD linked with financial
market transactions. As an important economic variable, the irregularly spaced trade
durations convey useful information about market dynamics. The literature on mar-
ket micro structure bears evidence to the economic significance of this variable [1].
Most often this is modelled by autoregressive conditional duration (ACD) models
introduced by [2].

Empirical evidence suggests that duration data generally has a unimodal distrib-
ution with high density around zero as the majority of transactions have durations
close to zero. The data display an asymmetric shape with a long right tail [3, 4]. Such
conditional distribution for the data has proven to be challenging to model paramet-
rically, in spite of there being significant methodological developments in analysing
the dynamics of ACD models. Frequently, the conditional distribution has been
modelled by the exponential and Weibull distributions while the log-normal, gener-
alised gamma and Burr have also been considered. However, most of these distribu-
tions have shown limitations in the specification of conditional duration distribution
[5-7]. They are unable to capture some of the characteristics of duration distributions
precisely, especially the long right tail. This may have a negative impact on fore-
casting and hence trading strategy formulation. Consequently, the choice of standard
parametric error distributions in the application to a dynamic duration model is still
of much interest in the literature.

The increased prevalence of rich data sources, particularly in financial markets
across the globe motivates the development of flexible financial time series models
to capture the subtle movements and intricacies of HFD distributions. In this context,
we propose a variation of the Weibull distribution with an extra parameter to add
flexibility in the tail behaviour. This will be referred to as the extended Weibull (EW)
distribution. The proposed distribution will prove useful to develop financial risk
management strategies and evaluating properties such as the Value-at-risk (VaR) and
Time-at-risk (TaR) for optimum capital allocation.

The modelling structure for an ACD model is not confined to modelling duration
data alone, but has been extended to other positive valued time series. One example
is the daily range of an asset price, which is defined as the difference between the
highest and lowest log asset price within a trading day. The daily range could be used
as an efficient measure of the local volatility of an asset price [8]. The conditional
autoregressive range (CARR) model [9] analyses the daily range data and showed
improved performance in out-of-sample volatility forecasts over other frequently
used volatility models. The CARR model shares the same model structure as the
ACD model and both models belong to the family of multiplicative error models
[10]. In this paper, we assess the performance of the ACD and CARR models with
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the EW distribution by simulation and demonstrate their applicability through two
real data sets from the Australian Securities Exchange (ASX), one of trade durations
for a stock and the other of daily range data for a market index.

In summary, the main objective of this paper is to introduce the EW distribution
to model the conditional distribution of positively valued time series in an ACD
or CARR framework. Secondly, we derive the salient features and moments that
characterise this distribution. Thirdly we assess the effectiveness of the estimation
procedure based on Bayesian methodology through an extensive simulation study.
The fourth objective is to produce empirical applications involving two different data
sets to ascertain the applicability and comparative performance of EW distribution.

The remainder of this paper is organised as follows. Section 2 introduces the EW
distribution with illustrations on the shapes of its probability density function (pdf)
and some properties. Section 3 discusses the model formulation under the ACD model
framework. Then the estimation of parameters based on the Bayesian approach is
described in Sect.4. A simulation experiment is performed in Sect.5 while Sect. 6
reports the outcomes of the empirical application for two stock market data on trade
durations and daily range. Further, this section compares the proposed model with
two models using exponential and Weibull distributions, respectively. Section 7 sum-
marises the results and concludes the paper.

2 Extended Weibull Distribution

Compared to the Weibull distribution, the EW distribution has an extra shape para-
meter, which allows for more flexibility in skewness and kurtosis. Suppose that X
is a random variable following the EW distribution, denoted by EW (A, k, y), with
scale parameter A > 0, shape parameter k > 0 and the additional shape parameter
y > 0. Then X has the following pdf

Y T N e P N T e
f(X)—(l—l—yk))ka e ( [1 e ],x>0. (D)

From (1), itis clear that EW distribution provides more flexibility than the Weibull
distribution. When y — o0, it becomes the Weibull (X, k) distribution. Figure 1
illustrates the varying shapes of the EW pdf for selected parameter values. Further,
it is evident that for the shape parameter k < 1, the distribution is more skewed and
the asymmetry is accentuated by the additional y parameter as well. However, the
impact of y is low whenbothk < 1 and A < 1.
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Fig. 1 Pdf of the EW distribution for selected sets of parameters

2.1 Properties of EW Distribution

The general expression for the rth moment of X is given by

o 1 k x x
EX") = / (1 + —k) —er th—1,-0) [1 - ef(VT)k] dx
0 yE) A
1 p r 1
:(HW))“ F(1+E) 1—m

The mean (u), variance (o2), skewness (p) and kurtosis (¢), which describes the
characteristics of the EW distribution can be obtained accordingly from E(X"). See
Appendix for derivations. The cumulative distribution function (cdf) F(x), survivor
function S(x) and hazard function i (x) of the EW distribution are given by
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k k
Fx) =1+ %e_ (;) e (%) —1-yk], @)

k k
Sx) = yk +1- e_ (¥) ie_ (;_C) , 3

h(x) = . “4)

respectively. For the derivations, see Appendix.

The intensity of transaction arrivals has important implications in analysing dura-
tions. Figure2 displays the various shapes of hazard function with different sets
of parameter values as in Fig. 1 for comparison. For k£ >1, the hazard function is

Fig. 2 Hazard function of the EW distribution for selected parameter values
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monotonically increasing at different rates. However, for 0 < k < 1, it is unimodal,
implying non-monotonocity. Further, this characteristic is more prominent for larger
values of y. In the special case of kK = 1, the hazard function converges to a constant
rate given by 1/, as x increases. Grammig and Maurer [3] assert that a distribution
with non-monotonic hazard function can better capture the behaviour of durations.

(a) 3.5

skewness (px)
&

-

o
2

kurtosis (¢ X)

Fig. 3 a Variation of skewness and b variation of kurtosis over y for selected values of k for the

EW distribution

R.P. Yatigammana et al.
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The relative impact of y on the skewness and kurtosis of the distribution, across
various values of k, is presented in Fig. 3. For smaller k (i.e. k < 2), both the skewness
and kurtosis tend to increase with y. However, for larger k, there exists a non-
monotonic relationship between these characteristics and y. For a given value of y,
skewness is inversely related to &, although there is no such a distinct relationship in
the case of kurtosis, particularly when k£ > 2.
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Fig. 4 Comparison of the EW distribution with a the Weibull and b the exponential with similar
shape and scale parameters
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In comparison to the Weibull distribution, the EW distribution tends to capture
more of the right tail indicating more flexibility, irrespective of the value of y.
Figure 4a compares the two distributions for similar values of k and A with varying y .
The same phenomenon is observed in the case of the exponential distribution where
the EW density is plotted for £ = 1 in Fig.4b.

3 ACD Model with EW Distribution

In modelling positively valued time series under an ACD model framework, the
exponential distribution is too restrictive and the Weibull distribution is superior to
the exponential distribution as it has a shape parameter that increases its modelling
flexibility considerably. Then our proposed EW distribution is motivated by an addi-
tional shape parameter y, which entails better capturing of the heavier tail than the
Weibull distribution. Hence, this distribution can provide a better fit.

Under the ACD model, the unit mean restriction for the innovations has to be
imposed. One option is to consider a standardised distribution, incorporating the
mean as a standardised parameter. The alternative is to directly restrict the mean to
be unity so that one parameter (usually the scale parameter) can be expressed as a
function of others, under the unit mean condition. In either case there will be one
less (free) parameter, reducing the number of parameters for the EW distribution to
two instead of three.

ACD model is generally applied to irregularly spaced financial market transaction
data. The most primary economic time series analysed under this framework is the
time interval between two consecutive trades of a given stock, popularly known
as trade durations. In such a scenario, let {#, #, ..., t, ...} be a sequence of time
points the stock under consideration is traded in the stock exchange, such that #, <
t) <---<t; <---. Here 1y denotes the starting time point and ¢ is the last time
point of the observed sequence, where T is the length of the series. Modelling a
financial point process in a duration framework, as waiting times characterises the
point process as a discrete time series. In a generic sense, x; = #; — t;,_; denotes the ith
duration between two transactions that occur at times ¢; and #;_;. Therefore, ignoring
simultaneous transactions, which is the preferred practice as evidenced in literature,
the sequence {x|, x2, ..., xy} will generate a time series of positive measurements.
ACD models are concerned with modelling such positive valued time series. On the
other hand, positively valued time series also arise in the study of price volatility
using price range such as the intraday high low prices. CARR models analyse range
data applying an identical model structure and hence the following description is
equally valid for CARR models.

Letx;,i =1, ..., T be a time series of trade durations under the ACD modelling
framework,

Xi = Vi€ &)
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in a multiplicative error structure, where the deterministic component, ; = E(X;)
is the conditional expectation of the ith duration, given the past information, that is,

Vi = E(xilxio1, ..., x1).
The main assumption here is that the standardized durations

Xi
€ = —
Vi
are independent and identically distributed (i.i.d), having a positive support and a
unit mean, and ; is formulated under the ACD(p, ¢) model as

P q
Yi=ao+ D oxi i+ > B,
j=1 I=1
where p and g are non-negative integers. The following restrictions

P q
a>0,0,>0.4>0.> aj+ > pi<1 (6)

j=1 =1

ensure positivity and stationarity of durations, respectively.

For most practical purposes, a basic version of ACD model suffices and hence
an ACD (1, 1) model is considered in this paper. The conditional expectation ; is
estimated via the following recursive formula

Vi =ao+onxi—1 + BYio @)
The long term mean is la—oﬁ. The random disturbance ¢; is assumed to follow
— o —

the EW (A, k, y) distribution; imposing the unit mean restriction using (11) yields

k)/k (1 + Vk)l/k

s [(1 Y R 1]

A= (8)

Then the distributional form of duration X; is as follows:
Xi ~ EWQYi, k, )

Substituting for X in (8), the parameters to be estimated are 6 = («g, @1, 8, k, ¥).
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Under this framework, the conditional likelihood has the following expression

T NS . \F 4
L<x|0>=1‘[%§ (1+%) (f;_) (%) [1_e(w)] o)

i=1

The ACD model incorporating EW errors is denoted as an EW-ACD model. The
exponential and Weibull distributions are also considered for comparison and their
ACD models are denoted as EACD and WACD models respectively.

4 Bayesian Estimation Methodology

The statistical inference is carried out using the Bayesian simulation approach, which
allows simultaneous finite sample inference. The main advantage of using Bayesian
techniques is the ability to incorporate prior knowledge into the estimation process.
Further, positivity and stationarity constraints given in (6) can be directly incor-
porated into the prior distribution. For fast convergence of the Markov chain, the
parameter generation is executed in blocks [11].

Without prior knowledge, most non-informative priors we adopted are flat over
the feasible region, with the likelihood function dominating the inference. Mostly
a uniform prior is adopted for a = (g, 1, B), over the constraint region in (6),
ensuring the enforcement of these restrictions. We also choose the uniform prior
for the shape parameter of k, while ensuring k > 0. On the other hand an inverse
prior is assumed for y, with positivity constraint, f(y) o +. Under the assumption
of independence of the individual blocks of parameters, the prior distribution can be
specified as follows

f(0) = fa(a)fi()f, (v)

The joint posterior pdf of 8 is proportional to the product of the prior density f ()
and the likelihood function of (9).1f0,, J = 1, 2, 3 represents a parameter block, o, k
or y at a given simulation step, then 6 _; represents the vector of paramters excluding
0. For each updating step, the posterior distributions for the chosen element 6,
conditional on the data and other parameters, in the MCMC setup is

f(0s1x,0_;) o< L(x|0)f(6,) (10)

where L(x|0) is given in (9). The posterior distributions for each choice of 6, do
not have a standard distributional form due to lack of conjugacy between the likeli-
hood function and the prior distributions. Therefore, the Metropolis-Hastings (MH)
algorithm is used to generate samples for each block of parameters from (10). This
method was introduced by [12] involving a symmetric transition density, which was
later generalised by [13].
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We adopted a two stage MH method to draw parameters in an adaptive MCMC
sampling scheme, similar to [14]. In the first stage, random walk (RW) Metropolis
algorithm is employed, to sample parameters from the posterior distribution. The
algorithm uses a multivariate normal (MVN) proposal density g(.|.) with its mean
at the current value 05"_1) at iteration k and the covariance matrix being a multiple
of that of a certain matrix, that is, aXy,, where X, is set to be an identity matrix
for convenience. The RW metropolis proposal density has proven to be quite useful
in Bayesian inference, where the acceptance rate of the draws could be tuned by
adjusting the scalar a attached to the covariance matrix to ensure optimal accep-
tance probability, around 0.44 for one dimension and could be as low as 0.23 as the
dimensionality increases [15]. The sample mean 6, and sample covariance Sy, are
formed using M iterates of 6, after burn-in, from the first stage. In the second stage,
an independent kernel MH algorithm is applied for parameter sampling, using the
Gaussian proposal distribution with mean @, and covariance So, -

In the simulation and empirical analyses, the burn-in sample is 15,000 iterates from
the MCMC to ensure proper convergence and 10,000 iterates are sampled thereafter
for estimation purposes, during the first stage. The burn-in value is chosen based
on the trace plots of the iterates. In the second stage, we use an independent MVN
density ¢(.), with the mean and the covariance being estimated using the 10,000
values generated from the first stage, after the burn-in. In this stage, a sample of
10,000 iterates is generated from the thus formulated independent proposal after a
burn-in of 5000 and the sample average form the parameter estimates.

5 Simulation Study

In order to assess the performance of the estimation methodology, a simulation study
is performed prior to its empirical applications.

5.1 Random Variates Generation

Simulation of the innovation ¢; of the ACD model from f (¢) is not straight forward
as the cdf is not invertible. Therefore, the rejection sampling method is used to draw
€; from the EW distribution. Weibull (X, k) is used as the envelope distribution g(¢),
as the EW pdf encompasses the Weibull pdf.

The algorithm for generating a sample from f(¢) as developed by [16] is given as
follows:

Sample € from g(e).

Generate a uniform (0,1) random number u.

Compute g = f(€)/Mg(e). where M is a quantity such that M > sup, f(€)/g(€).
If u < g, accept € as a realisation of f(¢).

Otherwise reject the value and repeat from step 1 onwards.

A
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The supremum of f(-)/g(-) happens to be (1 4 1/y¥); Therefore M could be fixed
ek
at this value as itis > 1. Accordingly g = 1 — e~ (),

5.2 Simulation

This simulation study validates the effectiveness of the proposed estimation method-
ology and is conducted under four sets of values for (k, y), where the series length
is T = 10,000 and the number of replications is R = 200. As the empirical evidence
suggested relatively large values for y, the simulated examples were generated by
fixing relatively high values for y, except for one case. The parameters of the mean
equation are kept fixed as its estimation is fairly straight forward but the estimation
of shape parameters (k, y) are more problematic.

The simulation results presented in Table 1 display the true values, average of
posterior mean estimates, standard errors and 95 % credible intervals of the 200
replications, for the model parameters. Coverage percentages indicate the number

Table 1 Simulation study of 200 replications from ACD (1, 1) with EW innovations and T =
10,000 for four sets of (k, y)

Parameter | True value | Estimate Std. Error | 95% CI Coverage (%)
%) 0.05 0.0535 0.0065 (0.0417,0.0671) |91.4
o) 0.10 0.1031 0.0078 (0.0886,0.1191) | 95.9
B 0.85 0.8436 0.0118 (0.8193,0.8654) |93.4
k 0.50 0.4994 0.0088 (0.4846, 0.5188) 89.8
y 0.5 0.6539 0.5694 (0.1126, 1.2137) 85.8
ap 0.05 0.0574 0.0067 (0.0456, 0.0716) 80.6
o 0.10 0.1069 0.0063 (0.0951, 0.1196) 82.1
B 0.85 0.8360 0.0109 (0.8133,0.8559) |75.0
k 1.40 1.3789 0.0299 (1.3177, 1.4343) 89.3
y 5.0 4.7003 0.5707 (3.6176,5.8500) |92.4
ap 0.05 0.0514 0.0064 (0.0398, 0.0648) | 96.0
o 0.10 0.1008 0.0072 (0.0872,0.1155) | 96.0
B 0.85 0.8479 0.0113 (0.8245,0.8691) | 97.0
k 0.70 0.6930 0.0180 (0.6583, 0.7264) 89.0
y 10.0 9.6000 2.7240 (5.0399, 15.4392) |90.0
ap 0.05 0.0514 0.0065 (0.0395,0.0651) | 94.5
o 0.10 0.1015 0.0076 (0.0873,0.1170) | 92.5
B 0.85 0.8474 0.0117 (0.8229,0.8690) | 94.0
k 0.70 0.6991 0.0092 (0.6802,0.7168) | 94.5
y 100.0 104.78 20.898 (69.738, 153.04) | 90.0
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of times the credible interval contains the true parameter value, as a percentage
of R. True values of all parameters are contained within the average 95 % credible
intervals of the posterior samples and the estimates are very close to their true values.
The precision of estimates is fairly good except for y, particularly when it is less
than one. Coverage percentages are quite satisfactory, except for 8 of the second
panel. Overall, the estimation of model parameters appears to perform well under
the proposed methodology.

6 Empirical Analysis

This section demonstrates the application of the ACD (1, 1) model with the EW
distribution fitted to two real life financial time series of trade duration and daily
range respectively.

6.1 Trade Duration Data

Adjusted duration data of Telstra (TLS) stock traded in the Australian Securities
Exchange (ASX) during the one week period from 1 to 7 October, 2014 is consid-
ered in the analysis. The relevant tick by tick trade data can be obtained from the
Securities Industry Research Centre of Asia-Pacific (SIRCA) in Australia. The orig-
inal durations were based on trades occurred during normal trading hours, ignoring
overnight intervals and zero durations. Thereafter, data was adjusted for its daily sea-
sonality. The observed trade durations are generally subjected to intraday seasonality
or ‘diurnal’ effect. Engle and Russell [2] and several other authors have recognised
this to be a deterministic component. This factor should be accounted for, prior to
carrying out any empirical analysis on the stochastic properties of duration processes.
The estimation of the deterministic diurnal factor, was done via a cubic spline with
knots at each half hour interval [17]. Thus adjusted duration, x;, which is referred to
as duration hereafter, is modelled under this framework.

The total length of the series is 19473. The time series plot of Fig. 5a reveals the
clustering effect generally observed in trade durations. On the other hand, Fig.5b
shows the excessive amount of values close to zero and the long right tail which are
common characteristics of such data.

The summary statistics reported in Table2 indicate overdispersion, generally
prevalent in trade durations. Moreover, the series is positively skewed with a heavy
tail according to the values of skewness and kurtosis. Sample autocorrelation function
(ACF) of the adjusted durations is given in Fig. 6. The ACF clearly shows longterm
serial dependence in the data, although the values appear to be small in magnitude.

Three competing models EACD (1, 1), WACD (1, 1) and EW-ACD (1, 1) are
fitted to TLS trade durations. The parameter estimates are given in Table 3 together
with the standard errors in parentheses. All the parameter estimates are significant at
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Fig. 5 a Time series plot and b histogram of adjusted trade durations of TLS stock during the
period 1 to 7 October, 2014

Table 2 Summary statistics of TLS trade durations during the period 1 to 7 October, 2014

Obs. Min

Max

Mean

Median

Std

Skewness

Kurtosis

19473 0.0013

25.7623

1.0000

0.2236

1.7809

3.4867

20.7528
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Fig. 6 Sample ACF for adjusted durations of TLS stock during the period 1 to 7 October, 2014

Table 3 Parameter estimates from ACD (1, 1) with errors from exponential, Weibull and EW
distributions fitted to TLS duration data

Parameter EACD WACD EW-ACD
o 0.0503 (0.0025) 0.0472  (0.0040) 0.0531 (0.0044)
o] 0.1759 (0.0056) 0.2726 (0.0120) 0.2714 (0.0119)
B 0.7868 (0.0062) 0.7257 (0.0119) 0.7268 (0.0119)
k 0.4988 (0.0026) 0.4734 (0.0031)
y 2088.44 (213.62)
BIC 33547.54 12195.25 11662.60
DIC 33523.86 12161.14 11641.02

the 5 % level. The EW-ACD model seems to be the best performing model, in terms
of model fit based on both BIC and DIC. For WACD as well as EW-ACD models,
the estimated shape parameter, k is less than one. This indicates a monotonously
decreasing hazard function for adjusted TLS trade durations. It is reasonable for
the high liquid asset. Although the extra shape parameter y of EW distribution is
considerably large, showing heavy skewness and approaching Weibull distribution
it still possesses a heavier tail than Weibull distribution and hence a better model fit.
That is the main reason for its superior performance.

The fitted conditional expected mean of trade durations ¥; from the EW-ACD
model is plotted against durations of TLS in Fig. 7a. The model seems to adequately
capture the mean durations. On the other hand, the P-P plot of the residuals from
the same model confirms adequate fit of the distribution as depicted in Fig.7b. In
regions of high probability mass for near zero durations, the difference between
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Fig. 7 a Fitted conditional mean of adjusted trade durations and b P-P plot of residuals from the
EW-ACD model fitted to TLS duration data during the period 1 to 7 October, 2014

theoretical and empirical cdfs is more apparent and negative than those in the low
density regions for higher level durations, where the difference is less and positive.
The pattern of the plot is consistent with heavier tail than observed and represent a
uni-modal distribution. For further details on P-P plots, refer [18].
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6.2 Daily Range Data

As mentioned earlier, the ACD model can be fitted to a time series with non-negative
observations, such as the daily range and trade duration. Hence, the second real life
example is on stock volatility modelling based on the daily range. We consider a time
series of daily range of the log of All Ordinaries index (AOI) of ASX for the period
from 1 May 2009 to 26 April 2013, consisting of 1008 observations. The data can
be downloaded from Yahoo Finance. The daily percentage log-range R; is given by

R; =100 x [In(max P; ) — In(min P; )],
Z Zz

where P; is the AOI measured at discrete time z in day i and max (min) is the
maximum (minimum) of P;, over all time z in day i.

Time series plot, histogram and sample ACF are given in Figs. 8a, b and 9, respec-
tively. Volatility clustering, heavy tailedness and long term serial dependence appear
to be common features of the AOI daily range series. On the other hand, the histogram
shows that it has a uni-modal distribution having the mode shifted away from zero
and has a relatively lower skewness and kurtosis, in comparison to the duration data,
as indicated by the descriptive statistics in Table 4. Hence, the two series considered
differ in their distributional shapes.

Again, three models EACD (1, 1), WACD (1, 1) and EW-ACD (1, 1) are fitted
to the range data. The parameter estimates are reported in Table 5 together with the
standard errors in parentheses. All the estimates are significant, at the usual 5 % level,
except «g of the EACD model. The best performing model is again the EW-ACD
model, while the worst performer is the EACD model, in terms of both BIC and
DIC. The estimated shape parameters, k for both WACD and EW-ACD models are
greater than one, contrary to those of duration data. This indicates a monotonously
increasing hazard function for the range data series of AOI. This is consistent with
the phenomenon of volatility clustering where large volatility tends to be followed
by large volatility and vice versa. Furthermore, the extra shape parameter y of the
EW distribution has a small value, which is less than 2, catering to the relatively low
skewness prevalent in range data.

The fitted conditional expected mean of daily range from the EW-ACD model
is plotted against the observed daily range of AOI in Fig. 10a. The model seems to
adequately capture the average volatility. On the other hand, the pdf plot fitted to
residuals from the same model displayed in Fig. 10b indicates a good fit of the EW
distribution and hence a suitable distribution for the residuals. The mean, standard
deviation, skewness and kurtosis of the standardised residuals are 1.000, 0.4364,
0.7248 and 3.6147 respectively, indicating positive skewness and higher kurtosis
than normal. Obviously, the skewness and kurtosis are lower than the original data
after modelling the mean structure. The hazard and the cdf are plotted in Fig. 11a
and b respectively, to get an idea about their behaviour.
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Fig. 8 a Time series plot and b histogram of daily range of AOI during the period 1 May 2009 to
26 April 2013

7 Conclusion

A new distribution named as Extended Weibull (EW) is developed to allow a more
flexible error distribution in ACD models. An additional shape parameter included
in the variant form of the existing Weibull distribution provides this added flexibility.
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Fig. 9 Sample ACF of daily range of AOI for the period from 1 May 2009 to 26 April 2013
Table 4 Summary statistics of AOI daily range during the period 1 May, 2009 to 26 April, 2013

Obs. Min Max Mean Median Std Skewness | Kurtosis
1008 0.2021 6.9083 1.0291 0.9199 0.5393 2.2998 17.9846

Table 5 Parameter estimates of the ACD (1, 1) model with errors from the exponential, Weibull
and EW distributions fitted to AOI range data

Parameter EACD WACD EW-ACD

o 0.0975 (0.0603) 0.1988 (0.0142) 0.1142  (0.0157)
o] 0.2659 (0.0655) 0.3215 (0.0136) 0.2788 (0.0213)
B 0.6418 (0.1047) 0.4861 (0.0107) 0.6112 (0.0269)
k 2.3493  (0.0400) 1.8521 (0.0661)
y 1.6577 (0.2496)
BIC 2033.56 1153.86 1056.98

DIC 2015.98 1042.03 984.08

This parameter tends to capture heavier tails better than the Weibull distribution,
which is a commonly used error distribution, due to its simplicity. In the presence of
high skewness and kurtosis, this parameter tends to be large, in general, especially
for small values of k.

The main attributes of the EW distribution are investigated, including the deriva-
tion of first four moments, cdf, survivor and hazard functions. The flexibility of the
distribution is envisaged not only in terms of different shapes of the density func-
tion but also the hazard function. Interestingly, unlike the exponential or the Weibull
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distributions, the hazard function could be non-monotonic when 0.5 < k < 1, which
is more prominent when y > 0.5. This is a useful feature, particularly in modelling
duration data.

The empirical performance of the EW distribution is investigated based on two
real life data sets from the ASX, which share some common features but yet different
in nature. One is the trade durations of TLS, characterising the mean duration and the
other is daily range data of AOI, characterising average volatility. Its performance
was compared with two other widely considered distributions, the exponential and
Weibull distributions. In terms of both data sets, the EW distribution outperformed
the other two distributions, irrespective of the magnitude of . Although theoretically
the EW distribution converges to the Weibull distribution, when y tends to infinity, it
showed an improvement in model fit. This highlights the EW distribution’s usefulness
as a potential contender for the error distribution of ACD models.

Appendix

Calculation of Moments and Main Characteristics
for EW Distribution

Let X be a random variable following the EW distribution with parameters A, k and
y. The distribution of X will be denoted as EW(A,k,y ) with the following pdf

1\ k [ a\k PN
f(X)z(l—i_W)F'xk 16 (A) [1_e (/)]

1. Derivation of mean, E(X)

EX)=n= / xf (x)dx
0
= % (1 + %) I:/Oooxke(;)kdx - /Oooxke_(ltkyk)(x)kdx}
—x(1+i)r(1+l) P
NS L sy

(1)
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2. Derivation of variance, Var(X)

Var(X) = 02 = E(X?) — [EX)]?

[e'9] 00 . '
E(X? = i 1+ L / e gy _/ xk+1e—(%)(x)‘dx
M vk 0 0
2 1 2 1
=A"|1+ — ry{1+- ] — ———
4 k (1+ yo)'te
2 2 1 2 1
o= A 14+ = {1+ - 1— _
v k (14 b
2
ESIERIE 1 (12)
yk k (1 + yk)1+%
3. Derivation of skewness, Skew(X)

EX-EXP _ S

Skew(X) = p = = = S_2

13)

where E[X — E(X)]3 = ﬁk (1 + Lk) (/OO (x— u)3xk_le_(%)kdx
A y 0
()
_/W(X—M)Bxk’le (‘k ) dx:|
0
3 1
Si=r 1+—) [
= { (1+V’<)1+’3‘}
3u ( 2) 1
-Zr(i+=2)|1-—
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172 2 1
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4. Derivation of kurtosis, Kurt(X)

EIX-EX]" K

Kurt(X) =¢ = = — 14
urt(X) = ¢ = % (14)
4k 1 > 4 k-1 —(2)*
where E[X — E(X)] :F 1+—k / x—w)'x""e G) dx
Y 0
o0 +Vk
[T (],
0
K r(1+4) 1 ! 4“r(1+3) 1 !
1= 7 T 7 - 3
g A+pFE ] A g A+ yltH
6> 2 1 4 1 1
(1+yh)FE (1+yk)FE
4
1% 1
Ladiy I T
+k4( 1+y’<)’
K (1+1) r(1+2) | !
2= — -
" L ey
212
1 1\7? 1
—(t+=) {1+ 1- 1
4 (1+y0 "
5. Derivation of the cumulative distribution function, cdf, F'(x)
Fo = [ fod
0
k 1 _ _ Ly® Yk
G | Ry S
1 x yx\k
=14+ _ke*(;u)k [(3*(7)A _1_ yk] (15)
14
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Across-the-Board Spending Cuts Are Very
Inefficient: A Proof

Vladik Kreinovich, Olga Kosheleva, Hung T. Nguyen
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Abstract In many real-life situations, when there is a need for a spending cut, this
cut is performed in an across-the-board way, so that each budget item is decreased
by the same percentage. Such cuts are ubiquitous, they happen on all levels, from
the US budget to the university budget cuts on the college and departmental levels.
The main reason for the ubiquity of such cuts is that they are perceived as fair and,
at the same time, economically reasonable. In this paper, we perform a quantitative
analysis of this problem and show that, contrary to the widely spread positive opinion
about across-the-board cuts, these cuts are, on average, very inefficient.

1 Formulation of the Problem: Are Across-the-Board
Spending Cuts Economically Reasonable

Across-the-board spending cuts are ubiquitous. When a department or even
a country faces an unexpected decrease in funding, it is necessary to balance the
budget by making some spending cuts.

V. Kreinovich ()

Department of Computer Science, University of Texas at El Paso,
500 W. University, El Paso, TX 79968, USA

e-mail: vladik@utep.edu

O. Kosheleva
University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
e-mail: olgak @utep.edu

H.T. Nguyen

Department of Mathematical Sciences, New Mexico State University,
Las Cruces, NM 88003, USA

e-mail: hunguyen @nmsu.edu

H.T. Nguyen - S. Sriboonchitta
Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand
e-mail: songsakecon @ gmail.com

© Springer International Publishing Switzerland 2016 109
V.-N. Huynh et al. (eds.), Causal Inference in Econometrics,
Studies in Computational Intelligence 622, DOI 10.1007/978-3-319-27284-9_6



110 V. Kreinovich et al.

In many such situations, what is implemented is an across-the board cut, when
all the spending items are decreased by the same percentage. For example, all the
salaries are decreased by the same percentage.

The ubiquity of such cuts is motivated largely by the fact that since they apply to
everyone on the same basis, they are fair.

Across-the-board cuts may sound fair, but are they economically efficient? The
fact that such cuts are fair do not necessarily mean that they are economically efficient.
For example, if we consistently take all the wealth of a country and divide it equally
between all its citizens, this may be a very fair division, but, because of its lack of
motivations to work harder, this clearly will not be a very economically efficient idea.

Current impression. The current impression that across-the-board cuts may not
be economically optimal, but they are economically reasonable; see, e.g., [1, 3-6,
8-11].

What we show in this paper. In this paper, we perform a quantitative analysis of
the effect of across-the-board cuts, and our conclusion is that their economic effect
is much worse than it is usually perceived.

Comment. To make our argument as convincing as possible, we tried our best to
make this paper—and its mathematical arguments—as mathematically simple and
easy-to-read as we could.

2 Let Us Formulate the Problem in Precise Terms

Formulation of the problem in precise terms. Let us start by formulating this
problem in precise terms.

What is given. First, we need to describe what we had before the need appeared
for budget cuts. Let us denote the overall spending amount by x, and the amount
originally allocated to different spending categories by xi, x3, . .., X, so that

n
E Xi = X.
i=1

Sometimes, it turns out that the original estimate x for the spending amount was too
optimistic, and instead we have a smaller amount y < x.

What we need to decide. Based on the decrease amount y < x, we need to select

n
new allocations, i.e., select the values y; < xi, ..., y, < x, for which > x; = x.
i=1
What is an across-the-board spending cut. An across-the-board spending cut
means that for each i, we take y; = (1 — §) - x;, where the common value § > 0 is
determined by the condition that (1 — §) - x = y. Thus, this value § is equal to
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§=1—-=.
X
What we plan to analyze. We want to check whether the across-the-board spending
cut y; = (1 — 8) - x; is economically reasonable, e.g., to analyze how it compares
with the optimal budget cut.

We need to describe, in precise terms, what is better and what is worse for the
economy. To make a meaningful comparison between different alternative versions
of budget cuts, we need to have a clear understanding of which economical situations
are preferable. In other words, we need to be able to consistently compare any two
different situations.

It is known that such a linear (total) order on the set of all possible alterna-
tives can be, under reasonable conditions, described by a real-valued functions
f1,...,y,) defined on the set of such alternatives: for every two alternatives
(1, ..., yn) and (y1, ..., ¥.), the one with the larger value of this function is prefer-
able (see, e.g., [12]):

o if f(y1,....y) > f(y{,...,y,), then the alternative (yj, ..., y,) is preferable;
e on the other hand, if f(y{,....y,) > f(yi,...,y,), then the alternative
(¥}, ..., y,) is preferable.

The objective function should be monotonic. The more money we allocate to
each item i, the better. Thus, the objective function should be increasing in each
of its variables: if y; < y/ for some i and y; < y/ for all i, then we should have
f(ylv“'syn) < f(y;v9y//1)

We consider the generic case. In this paper, we do not assume any specific form of
the objective function f (yy, ..., y,). Instead, we will show that the same result—that
across-the-board cuts are not efficient—holds for all possible objective functions (of
course, as long as they satisfy the above monotonicity condition). So, whether our
main objective is:

e to increase the overall GDP,
e or to raise the average income of all the poor people,
e or, alternatively, to raise the average income of all the rich people,

no matter what is our goal, across-the-board cuts are a far-from-optimal optimal way
to achieve this goal.

Resulting formulation of the problem. We assume that the objective function

f(i,s ..., yy) is given.
We have the initial amount x. Based on this amount, we selected the values
X1, ..., X, for which f(xy, ..., x,) attains the largest possible value under the con-
n

straintthat >_ x; = x. Letus denote the value of the objective function corresponding

i=I
to this original budget allocation by f,.

Now, we are given a different amount y < x. Ideally, we should now select the
values yi, ..., y, for which f(yi, ..., y,) attains the largest possible value under
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n
the constraint that > y; = y. Due to monotonicity, the resulting best-possible value
i=1
fy of the objective function f(yi, ..., y,) is smaller than the original value f;.
In the across-the-board arrangement, instead of selecting the optimal values y;,

we select the across-the-board values y; = (1 — §) - x;, where § = 1 — X. The
X
resulting allocation of funds is, in general, not as good as the optimal one. Thus, the
resulting value of the objective function f; is, in general, smaller than f,.
To decide how economically reasonable are across-the-board cuts, we need to
compare:

o the optimal decrease f, — f, in the value of the objective function, with
e the decrease f, — fs5 caused by using across-the-board spending cuts.

3 Analysis of the Problem

Possibility of linearization. Usually, the relative size of the overall cut does not
exceed 10 %; usually it is much smaller. By economic standards, a 10 % cut is huge,
but from the mathematical viewpoint, it is small—in the sense that terms which are

quadratic in this cut can be safely ignored. Indeed, the square of 0.1 = 10 % is
00l =1% < 10 %.

Thus, if we expand the dependence of the objective function f(yi,..., y,) in
Taylor series around the point (x, ..., x,), i.e., if we consider the dependence

n

FOL ) = FE LX) = D e (i =)+

i=1

=fimD e @—y)+, (1)
i=I

def Of

where ¢; = ——, then we can safely ignore terms which are quadratic in terms of

the differences zlmd conclude that

n
O = o= D ci - Ay,
i=1
where we denoted Ay; & x; — y; > 0, and thus, that:

fo=FQu ) =D ci- Ayi. )
i=1
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Comment. Since the objective function f(xy, ..., x,) is monotonic in each of the
variables, all the partial derivatives c; are non-negative: ¢; > 0.

Linearization simplifies the problem: general idea. Let us describe how the use of
linearization simplifies the computation of the two differences f; — f, and f, — f;.

Linearization simplifies the problem: case of optimal spending cuts. Let us start
with the computation of the difference f, — f, corresponding to the optimal spending

cuts. The optimal arrangement (yy, ..., y,) is the one that maximizes the value of
the objective function f(yy, ..., y,) under the constraint
n
Z Yi =Y.
i=1
Maximizing the value of the objective function f(yi,..., y,) is equivalent to

minimizing the difference f, — f(yi, ..., Y»), which, according to the formula (2),

is equivalent to minimizing the sum > ¢; - Ay;.
=
' n
To make the problem easier to solver, let us also describe the constraint > y; = y
i=1
in terms of the new variables Ay;. This can be achieved if we subtract this constraint

n n
from the formula >  x; = x. As a result, we get an equality > Ay; = Ay, where
i=1 i=1
we denoted Ay - y.
Thus, due to the possibility of linearization, the corresponding optimization prob-
n

lem takes the following form: minimize the sum »_ ¢; - Ay; under the constraint
i=1

n
> Ay = Ay.
i=1

Let us prove that this minimum is attained when Ay;, = Ay for the index i
corresponding to the smallest possible value of the derivative ¢;, and Ay; = 0 for all
other indices i # ij.

Indeed, for the arrangement when Ay;, = Ay and Ay; = O for all i # iy, the
minimized sum attains the value

n
ZAyi =c, Ay = (mjnc,-) - Ay.
1
i=1

Let us prove that for every other arrangement, we have a larger (or equal) value
of the difference f. — f(y1, ..., y»). Indeed, by our choice of iy, we have ¢; > ¢;,
for all i. Thus, due to Ay; > 0, we have ¢; - Ay; > ¢;, - Ay;, and therefore,
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n n n
Zci - Ay > Zcio - Ay = ¢, (Z Ayi) =, - Ay.
i=1 i=1 i=1

Thus, the difference f, — f, corresponding to the optimal spending cuts is equal to

o= fy= (minci) - Ay. 3

Linearization simplifies the problem: case of across-the-board spending cuts.
For across-the-board spending cuts, we have y; = (1 — §) - x; and hence,

Ayizxi—yi=6-x,-.

The coefficient § can be obtained from the condition that (1 — §) - x = y, i.e., that
A
Ay=x—y =268 -x,thus§ = _y

X
Substituting the corresponding values Ay; into the linearized expression for the
objective function, we conclude that

n n n Ay n n
Zci'AYi =Zci 8 x =5'Zci CX = T'Zci X :Ay-Zc,- - 8x;,
i=1 i=1 i=1 i=1 i=1

def Xi -
where we denoted §x; = —. From the constraint > x; = x, one can conclude that
x i=1

> 8x; = 1. Thus, the resulting decrease f, — f; is equal to:
i=1
fo—fs=Ay D> ci-dx;. €
i=1

What we need to compare. To compare the decreases in the value of the objective
function corresponding to the optimal cuts and to the across-the-board cuts, we
therefore need to compare the expressions (3) and (4).

Let us treat the values c¢; and dx; as random variables. The values of ¢; and Ax;
depend on many factors which we do not know beforehand, so it makes sense to treat
them as random variables. In this case, both expressions (3) and (4) become random
variables.

How we compare the random variables. Because of the related uncertainty, some-
times, the difference f, — f5 may be almost optimal, and sometimes, it may be much
larger than the optimal difference f, — fy.

A reasonable way to compare two random variables is to compare their mean
values. This is what we mean, e.g., when we say that Swedes are, on average taller
than Americans: that the average height of a Swede is larger than the average height
of an American.
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It is reasonable to assume that the variables ¢; and dx; are all independent. Since
we have no reason to believe that the variables ¢; corresponding to different budget
items and/or the variables dx; are correlated, it makes sense to assume that these
variables are independent. This conclusion is in line with the general Maximum
Entropy approach to dealing with probabilistic knowledge: if there are several possi-
ble probability distributions consistent with our knowledge, it makes sense to select
the one which has the largest uncertainty (entropy; see, e.g., [2, 7]), i.e., to select a
distribution for which the entropy

§= —/p(X) “In(p(x)) dx

attains the largest possible value, where p (x) is the probability density function (pdf).

In particular, for the case when for two random variables, we only know their
marginal distributions, with probability densities p; (x;) and p,(x3), the Maximum
Entropy approach selects the joint probability distribution with the probability density
p(x1,x2) = p1(x1) - p2(xy) that corresponds exactly to the case when these two
random variables are independent.

Consequence of independence. In general, the mean E[X + Y] of the sum is equal
to the sum E[X ]|+ E[Y] of the means E[X] and E[Y]. So, from the formula (4), we
conclude that

E[f— fil = Ay- D> Ele; - 8xil.

i=1

Since we assume that for each i, the variables ¢; and §x; are independent, we conclude
that

n
E[f. — fi] = Ay > Elci]- E[8x]. )
i=1
Here, we have no reason to believe that some values dx; are larger, so it makes sense

to assume that they have the same value of E[Sx;]. From the fact that > 8x; = 1,
i=1
7 1
we conclude that > E[Sx;] = 1, i.e., that n - E[8x;] = 1. Thus, E[8x;] = —, and
n

i=1

the formula (5) takes the form

] n
Elfe— fil= Ay~ > Elel. 6)
i=1

Let us select distributions for c¢;. Now, we need to compare:

e the value (6) corresponding to across-the-board cuts with
e the expected value of the optimal difference (3):
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Elfx — 1=A4y-E [miin c,} : (7

In both cases, the only remaining random variables are ¢;, so to estimate these expres-
sions, we need to select appropriate probability distributions for these variables.

‘We do not have much information about the values c¢;. We know that ¢; > 0. We
also know that these values cannot be too large. Thus, we usually know an upper
bound ¢ on these values. Thus, for each i, the only information that we have about
the corresponding random variable c; is that it is located on the interval [0, c].

Under this information, the Maximum Entropy approach recommends that we
select the uniform distribution on this interval. This recommendation is in perfect
accordance with common sense: if we have no reason to believe that some values from
this interval are more probable or less probable then others, then it is reasonable to
assume that all these values have the exact same probability, i.e., that the distribution
is indeed uniform.

Let us use the selected distributions to estimate the desired mean decreases (6)
and (7). For the uniform distribution on the interval [0, c], the mean value is known
c c

to be equal to the midpoint — of this interval. Substituting E[c;] = 3 into the formula

(6), we conclude that
1

E[fx—fa]zz-Ay-c. ®)

To compute the estimate (7), let us first find the probability distribution for the

minimum m < min ¢;. This distribution can be deduced from the fact that for each

value v, the minimum m is greater than v if and only if each of the coefficients ¢; is
greater than v:
m>v&(cp>v)& ... &(c, >v).

Thus,
Prob(m > v) = Prob((c; > v)& ... & (¢, > Vv)).

Since the variables cy, . . ., ¢, are all independent, we have
Prob(m > v) = Prob(c¢; > v) - --- - Prob(c, > v).

For each i, the random variable ¢; is uniformly distributed on the interval [0, c], so

Prob(c; > v) = - v’ and thus,

c—v n
Prob(m > v) = ( ) .
c

So, the cumulative distribution function (cdf)
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F,,(v) = Prob(m <v) =1 — Prob(m > v)

Fp(v)=1— (C_V) .
C

By differentiating the cdf, we can get the formula for the corresponding probability
density function (pdf)

is equal to:

dFm(v) — l . (C—V)n_l.
dv c

P (V) =

Based on this pdf, we can compute the desired mean value:

gl = [ vepmav= [0 D e—vtan
0 0 C

By moving the constant factor outside the integral and by introducing a new auxiliary
variable w = ¢ — v for which v = ¢ —w and dv = —dw, we can reduce this integral
expression to a simpler-to-integrate form

E[m] l'/(C—W)'WnldW:i.(c-/ w"’ldw—/ w"dw)
cn 0 Cﬂ O 0

n et nooa (1 1
= — lc- — — = —.C . - —
cn n n—+1 c" n n—+1

1 o
n-n+1) n+1

=c-n
Substituting the resulting expression

. c
E |ming | =
|: i ] n+1

into the formula (7), we conclude that

1
E[fx—f5]=m'ﬂ)"c7 )

which is indeed much smaller than the expression (8).

Conclusion: across-the-board spending cuts are indeed very inefficient. In this
paper, we compared the decreases in the value of the objective function for two
possible ways of distributing the spending cuts:

e the optimal spending cuts, and
e the across-the-board spending cuts.
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The resulting mean decreases are provided by the expressions (8) and (9). By com-
paring these expressions, we can conclude that the average decrease caused by the

.n
across-the-board cuts is

larger than what is optimally possible, where 7 is the

overall number of different budget items.
This result shows that on average, across-the-board cuts are indeed very inefficient.
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Invariance Explains Multiplicative
and Exponential Skedactic Functions

Vladik Kreinovich, Olga Kosheleva, Hung T. Nguyen
and Songsak Sriboonchitta

Abstract Inmany situations, we have an (approximately) linear dependence between

n
several quantities: y ~ ¢+ > a; - x;. The variance v = o% of the corresponding
i=1
n
approximation error € =y — (c +> a ~x[) often depends on the values of the
i=1
quantities xy, ..., x,: v = v(xy, .. ., X,); the function describing this dependence is
known as the skedactic function. Empirically, two classes of skedactic functions are
n

most successful: multiplicative functions v = ¢ - [] |x;|"" and exponential functions
i=1

n
vV = exp (oz +> - xi). In this paper, we use natural invariance ideas to provide a

i=1
possible theoretical explanation for this empirical success; we explain why in some
situations multiplicative skedactic functions work better and in some exponential
ones. We also come up with a general class of invariant skedactic function that

includes both multiplicative and exponential functions as particular cases.
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1 Why Are Multiplicative and Exponential Skedactic
Functions Empirically Successful: Formulation
of the Problem

Linear dependencies are ubiquitous. In many practical situations, a quantity y

depends on several other quantities xy, ..., x,: y = f(x1, ..., x,). Often, the ranges

0 0 . def 0
of x; are narrow: x; & xi( ) for some xi( ) , so the differences Ax; = x; — xl.( ) are

relatively small. In such situations, we can expand the dependence of y on x; =
0

X;~ + Ax; in Taylor series and keep only linear terms in the resulting expansion:

n
0
y=f(xX1,...,%,) = f(xi ) —i—Axl,...,x,(,O) + Axy) %ao—l—Zai - Ax;,
i=1
def o) ) def Of I ) - .
whereay = f(x,”,...,x,” )anda; = ——. Substituting Ax; = x; — x; into this
Xi

formula, we get

n
y~c+ E aj - Xi,

i=1

.

def 2
where ¢ = ap — > a; - x;

i=1
Linear dependencies are approximate. Usually, in addition to the quantities
X1, ..., X, that provide the most influence on y, there are also many other quan-
tities that (slightly) influence y, so many that it is not possible to take all of them
into account. Since we do not take these auxiliary quantities into account, the above
linear dependence is only approximate.
. S def <
The corresponding approximation errors ¢ = y — (c + > a ~x,~) depend on
i=1
un-observed quantities and thus, cannot be predicted based only on the values of
the observed quantities x, ..., x,. It is therefore reasonable to view these errors as
random variables.

Skedactic functions. A natural way to describe a random variable is by its moments,
starting with the mean—the first moment—and the variance—which enables us to
compute the second moment. If the first moment is not 0, i.e., if the linear approx-
imation is biased, we can always correct this bias by appropriately updating the
constant c.

Next, we need to know the second moment which, since the mean is 0, coincides
with the variance v. In general, for different values of x;, we may have different
values of the variance. For example, in econometrics, if we are trying to predict how
investment x; in an industry affects its output y, clearly larger investments result not
only in larger output, but also in larger output variations.
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The function v(xy, ..., x,) that describes how the variance depends on the values
of the quantities x, . .., x,, is known as the skedactic function.

Which skedactic functions are empirically successful. In econometric applica-
tions, two major classes of skedactic functions have been empirically successful:
multiplicative functions (see, e.g., [2], [3, Sect.9.3], and [4])

n
v, x) = [ ]l

i=1

and exponential functions ([5], Chap. 8)

(X1, ..., Xy) = €XP a+Zy,~~xi

i=1
According to the latest review [4]:

e neither of this functions has a theoretical justification, and
e in most situations, the multiplication function results in more accurate estimates.

What we do in this paper. In this paper, we use reasonable invariance ideas to
provide a possible theoretical explanation for the empirical success of multiplicative
and exponential skedactic functions.

We also use invariance to come up with a more general class of skedactic functions
to use when neither multiplicative nor exponential functions provide a sufficiently
accurate description of the desired dependence.

2 Natural Invariances

Scaling. Many economics quantities correspond to prices, wages, etc. and are there-
fore expressed in terms of money. The numerical value of such a quantity depends
on the choice of a monetary unit. For example, when a European country switches to
Euro from its original currency, the actual incomes do not change (at least not imme-
diately), but all the prices and wages get multiplied by the corresponding exchange
rate k: x; — x, =k - x;.

Similarly, quantities that describe the goods, such as amount of o0il or amount of
sugar, also change their numerical values when we use different units: for example,
for the oil production, we get different numerical values when we use barrels and
when we use metric tons.

When the numerical value of a quantity gets thus re-scaled (multiplied by a con-
stant), the value of its variance gets multiplied by the square of this constant.

Scale-invariance. Since changing the measuring units for measuring xi, . . ., x, does
not change the corresponding economic situations, it makes sense to require that the
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skedactic function also does not change under such re-scaling: namely, for each
combination of re-scalings on inputs, there should be an appropriate re-scaling of
the output after which the dependence remains the same.

In precise terms, this means that for every combination of numbers &, ..., k,,
there should exist a value k = k(ky, ..., k,) with the following property:
v =v(xi,...,x,) ifand only if v/ = v(x{, ..., x;,), where V' =k -vand x/ = k; - x;.

Shift and shift-invariance. While most economic quantities are scale-invariant,
some are not: e.g., the unemployment rate is measured in percents, there is a fixed
unit. Many such quantities, however, can have different numerical values depending
on how we define a starting point.

For example, we can measure unemployment in absolute units, or we can mea-
sure it by considering the difference x; — k; between the actual unemployment and
the ideal level k; > O which, in the opinion of the economists, corresponds to full
employment.

In general, for such quantities, we have a shift transformation x; — x; = x; + k;.
To consider dependence on such quantities, it is therefore reasonable to consider
skedactic functions which are shift-invariant, i.e., for which for every combinations
of numbers (k, ..., k,), there exists a number k for which

v=v(xi,...,x,) ifand only if v/ = f(x],...,x}), where v =k -vand x] = x; + k;.

3 Case of Scale Invariance: Definitions and the Main Result

Definition 1 We say that a non-negative measurable function v(xy, ..., x,) is scale-
invariant if for every n-tuple of real numbers (k, .. ., k,), there exists a real number
k = k(ky, ..., k,) for which, forevery xi, ..., x, and v, the following two conditions
are equivalent to each other:

o V=V(X1,...,X,);
eV =v(x{,...,x,),where V' =k -vand x] = k; - x;.

Proposition 1 A skedactic function is scale-invariant if and only it has the form
n

v(x1, ..., x,) = c - [ |xi|" for some values ¢ and y;.

i=1
Comment. For reader’s convenience, all the proofs are placed in the last Proofs
section.

Discussion. Thus, scale-invariance explains the use of multiplicative skedactic func-
tions.
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4 Case of Shift-Invariance: Definitions and the Main Result

Definition 2 We say that anon-zero non-negative measurable function v(xy, ..., x,)
is shift-invariant if for every n-tuple of real numbers (ki, ..., k,), there exists a real
number k = k(ky, ..., k,) for which, for every x, ..., x, and v, the following two
conditions are equivalent to each other:

o Vv=u(X1,...,X);
e VvV =v(x{,...,x,),where V' =k -vand x] = x; + k;.

Proposition 2 A skedactic function is scale-invariant if and only it has the form

n
v(X1, ..., X,) = exp (oc + 1% xi) for some values o and ;.
i=1
Discussion. Thus, shift-invariance explains the use of exponential skedactic func-
tions. The fact that most economic quantities are scale-invariant explains why, in
general, multiplicative skedactic functions are more empirically successful.

5 General Case

General case: discussion. A general case is when some of the inputs are scale-
invariant and some are shift-invariant. Without losing generality, let us assume that
the first m variables xi, ..., x,, are scale-invariant, while the remaining variables
Xma1, - - -, Xp are shift-invariant.

Definition 3 Let m < n be an integer. We say that a non-zero non-negative mea-
surable function v(xi, ..., x,) is m-invariant if for every n-tuple of real numbers
(ki, ..., k,), there exists a real number k = k(ky, ..., k,) for which, for every
X1, ..., X, and v, the following two conditions are equivalent to each other:

o Vv=u(x1,...,X,);
oV =v(x{,...,x,), where v/ =k - v, x, = k; - x; for i <m, and x] = x; + k; for
i >m.

Proposition 3 A skedactic function is m-invariant if and only it has the form

n

v(Xg, ..., X,) = exp a+2y,--ln(|xi|)+ Z Vit X (N

i=1 i=m+1
for some values (. and ;.

Discussion. For m = n, this formula leads to a multiplicative skedactic function, with
¢ = exp(a). For m = 0, this formula leads to the exponential skedactie function. For
intermediate valuesm = 1,2, ..., n — 1, we get new expressions that may be useful
when neither multiplicative not exponential skedactic functions work well.
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6 Proofs

Proof of Proposition 1. It is easy to check that the multiplicative skedactic function

n
is indeed scale-invariant: we can take k = [ |k;|".
i=1
Letus prove that, vice versa, if a skedactic function is scale-invariant, then it is mul-

tiplicative. Indeed, the above equivalence condition means that for every ki, ..., k,,
v =v(xi, ..., x,) implies that v' = v(x, ..., x;,), where vV = k - vand x; = k; - x;.
Substituting the expressions for v and &/ into the equality v = v(x{, ..., x),), we

conclude thatk - v =v(ky - x1, ..., k, - Xx).
We know that k = k(ky,...,k,) and v = v(xy, ..., x,). Thus, we conclude that
kki, ..., kp) - v(xy, ..., x,) =vlky - X1, ..o ky - Xp). 2)

From this equation, we infer that

V(k] 'xla"-akn'xl’l)

V(.Xl, ---»xn)

k(ky, ... k,) = 3)

The right-hand side of this formula is a non-negative measurable function, so we can
conclude that the ratio k(ky, ..., k,) is also non-negative and measurable.

Let us now consider two different tuples (ky, ..., k,) and (ki, ..., k). If we first
use the first re-scaling, i.e., go from x; to xlf =k; - x;, we get

VXl X)) =k Xy, e kX)) =k(ky k) V(X X)) ()

If we then apply, to the new values x;, an additional re-scaling x| — x;" = k! - x/, we
similarly conclude that

vixy, oo x))y =vky o xy, .ok x)) = k(K k) v(xg, ). (5)

Substituting the expression (4) for v(x{, ..., x,,) into this formula, we conclude that
vxy, oo x)) = kK, . k) kR, k) V(X e X)), (6)

On the other hand, we could get the values x;” if we directly multiply each value x;

by the product k' o ki - k;:

)C”:k;x;:kl/(k,x,):(k;k,)xlzklﬁxl

1

For the new values k', the formula (4) takes the form

vixy,ox)) =k k) v, LX) (7)
=k(ki -k|,...,k;,~k,,)-v(x1,...,xn).
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The left-hand sides of the formulas (6) and (7) are the same, hence the right-hand
sides are also equal, i.e.,

k(K] ko K k) V(XL LX)
= k(K. KLY k(K k) V(XL X). (8)

If the skedactic function is always equal to O, then it is multiplicative, with ¢ = 0.
If it is not everywhere O, this means that its value is different from O for some
combination of values x, ..., x,,. Substituting these values into the formula (8) and
dividing both sides by v(xy, ..., x,) # 0, we conclude that

k(ky ki, ... k, - ky) =k(ky, ... k) k(ki, ..., ky). ©))
When k; = k; = —1 for some i and k; = k; = 1 for all other i, we get
1=k(,....,0) =k(ky,....ky) - k(ky,... ky) =Kk>(ky, ... kp). (10)
Since the function k is non-negative, this means that k(ky, ..., k,) = 1. Thus, from
the formula (9), we can conclude that the value k(ky, ..., k) does not change if we
change the signs of k;, i.e., that

k(ky, ... k) =k(lkil, ..., |knl).

Taking logarithms of both sides of the formula (9), and taking into account that
In(a - a’) = In(a) + In(a’), we conclude that

In(k(k| - ky, ... K k) = In(k (K], ... k) + In(k(ky, - .. ky)). (11)

Let us now define an auxiliary function

K(Ki, ..., K») ¥ In(k(exp(K1), ..., exp(Kp)).

Since the function k(ky, ..., k,) is measurable, the function K (K4, ..., K,,) is also
measurable.

Since exp(a + a’) = exp(a) - exp(a’), we conclude that when k; = exp(K;) and
ki = exp(K}), then k; - k| = exp(K;) - exp(K/) = exp(K; + K7). Thus, from (11),
we conclude that for the new function K (K1, ..., K,), we get

K(K|+Ky,....,K,+K,)=K(K|,....K))+ KKy, ..., Kp). (12)

Functions that satisfy the property (12) are known as additive. It is known (see, e.g.,
[1]) that every measurable additive function is linear, i.e., has the form
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K(Ki,....K) = > v X (13)
i=1

for some values y;.
From K (K4, ..., K,) = In(k(exp(Ky), ..., exp(K,))), it follows that

k(exp(Ky),...,exp(K,)) = exp(K(Ky, ..., K,;)) =exp (Z Vi K,-).
i=1

For each ky, ..., k,, we have
k(ky, ... ky) =k(lkil, ..., |knl).
For K; = In(|k;|), we have exp(K;) = |k;|, hence
kiky, ... k) = exp(Z Vi 1n(|k,~|>) =[]k (14)
i=1 i=1
From (2), we can now conclude that

v(xy, ..., x,) =k(xy, ..., x,)-v(1, ..., 1).

Substituting expression (14) for k(xy, ..., x,) into this formula and denoting ¢ &
v(l,..., 1), we get the desired formula for the multiplicative skedastic function
v(X1, ..., X;) = ¢ [] |x]". The proposition is proven.

i=1
Proof of Proposition 2. It is easy to check that the exponential skedactic function is

n
indeed shift-invariant: we can take k = exp (Z v - ki
i=1
Let us prove that, vice versa, if a skedactic function is shift-invariant, then it is

exponential. Indeed, the above equivalence condition means that forevery ky, . . ., k,,
v =v(xi,...,x,) implies thatv' = v(x{, ..., x,), where V' = k - vand x| = x; + k;.
Substituting the expressions for v and k; into the equality v = v(x{, ..., x},), we

conclude that k - v = v(xy + ki, ..., x, + k).
We know that k = k(ky,...,k,) and v = v(xy, ..., x,). Thus, we conclude that
k(ki, ..., ky) - v(xy,...,x,) =v(xi +ki,...,x, + k). (15)

From this equation, we infer that

V(X] +kla-~-axn +kn)

V(.X], -~-9-xn)

k(ky, ... ky) = (16)
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The right-hand side of this formula is a non-negative measurable function, so we can
conclude that the ratio k(ky, . .., k,) is also non-negative and measurable.

Let us now consider two different tuples (ki ..., k,) and (ki, ..., k). If we first
use the first shift, i.e., go from x; to x/ = x; + k;, we get

V(xp, e ) = v ke Xy k) = ke, k) v, e x). (17)

If we then apply, to the new values x;, an additional shift x; — x = x/ + k;, we
similarly conclude that

vxy, oo x)) = v kx4 k) = k(K k) vy, xg). (18)

Substituting the expression (17) for v(x1, . . ., x,) into this formula, we conclude that
vix], oo x)) = k(K k) kR, k) V(X e X)), (19)

On the other hand, we could get the values x;’ if we directly shift each value x; by
s def .,
the sum k! = k; + k;:

x'=xl+ki =@ +k)t+k=xi+ Gk +k)=x;+k
For the new values k', the formula (17) takes the form

v(xy,ooox)) =k oo k) v, L X))

=k(ky + Ky, ky+K) - v(xr, .., X). (20)

The left-hand sides of the formulas (19) and (20) are the same, hence the right-hand
sides are also equal, i.e.,

k(kl+k/v-~'skn +k;/«,)'v(x19'-'s-xn)
= k(Koo KLY khr e ) V(X - X). Q1)

Since the skedactic function is assumed to be non-zero, its value is different from O
for some combination of values x1, .. ., x,,. Substituting these values into the formula
(21) and dividing both sides by v(xy, ..., x,) # 0, we conclude that

k(ki + ki kg + k) = k(K)o k) - k(ky, oo k). (22)

Taking logarithms of both sides of the formula (22), and taking into account that
In(a - a’) = In(a) + In(a’), we conclude that

In(k(ky + k), ... kg + k) =Intk (K}, ... k) +In(k(ky, ... kp)).  (23)
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Thus, the function In(k(ky, ..., k,)) is measurable and additive, and hence [1] has
the form

Inkkr, ... k) = D 7i - ki
i=1

Hence, by taking exp of both sides, we conclude that

k(ki, ... k) = exp(z Vi -ki). (24)
i=1

From (15), we can now conclude that
v(xi, ... x) =k(xy,...,x,)-v(0,...,0).

Substituting expression (24) for k(xy, ..., x,) into this formula and denoting « o

In(v(0, ..., 0)), so that v(0, ..., 0) = exp(«), we get the desired formula for the

exponential skedastic function v(xy, ..., x,) =expla+ Dy - xi) . The proposi-
i=1

tion is proven.

Proof of Proposition 3. It is easy to check that the skedactic function described in
the formulation of Proposition 3 is indeed m-invariant: we can take

k= ﬁ|ki|”" -exp( Zn: iz -k,-).
i=1 i=m+1

Let us prove that, vice versa, if a skedactic function is m-invariant, then it
has the desired form. Indeed, the above equivalence condition means that for

everyki, ..., ky,,v =v(xy, ..., x,) implies thatv' = v(x{, ..., x,), whereVv =k - v,
x; =k; - x; fori <m, and x{ = x; + k; for i > m. Substituting the expressions for
v and k! into the equality v' = v(x1, ..., x;), we conclude that
k-V:V(kl s X1 ~~-akm *Xms Xm41 +km+1»~-~axn +kn)
We know that k = k(ky, ..., k,) and v = v(xq, ..., x,). Thus, we conclude that

k(kl"-'akl’l) : V(xl, "'7xn)
= V(kl XLy 'skm Xy Xm+1 +km+lv sy Xp +kn)' (25)

From this equation, we infer that

V(kl © X1, -~~skm *Xms Xm4-1 +km+lv cees Xp +kn)

k(ki, ..., k,) =
(kr ) v(xy, ..., Xp)

(26)
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The right-hand side of this formula is a non-negative measurable function, so we can
conclude that the ratio k(ky, . .., k,) is also non-negative and measurable.

Let us now consider two different tuples (ki ..., k,) and (ki, ..., k). If we first
use the transformation corresponding to the first tuple, i.e., go from x; to x; = k; - x;
fori < m andtox] =x; +k; fori > m, we get

V(xiv"‘?x;;) =V(k] .xl5"-7km'xm5xm+1 +km+17‘-'axn +kn)
=kky,....ky) -vixy,...,x,). 27

If we then apply, to the new values x;, an additional transformation x; — x;" = k] - x]
fori <mandx] — x/ = x + k/ fori > m, we similarly conclude that

vl ox) = vk cxy, ok, X xR X, k)
N AR e ) (28)

Substituting the expression (27) for v(x{, .. ., x,) into this formula, we conclude that
v(xy, oo X))y =k(ky, o k) kkr, k) (X, e X)), (29)

On the other hand, we could get the values x/" if we directly apply to the tuple x; the
transformation corresponding to the product k = k; - k; for i < m and to the sum
k' =k + k! fori > m:

)C»” :kl, ')C[/ :kl, . (kl ')C,') = (kl/ kl) - Xi :k;'~xi

1

fori < m and
X =x| 4k = +k)+k =x + (ki +k) =x; + k!

fori > m.
For the new values k', the formula (27) takes the form

v(xy,.ooox)) =k oo k) v, LX)

= k(K} Kty o K Ko gt Kk KD V(e - x). (30)

The left-hand sides of the formulas (29) and (30) are the same, hence the right-hand
sides are also equal, i.e.,

T (k) - Ky e K o Kot A Kk A KL) V(XL )
= kK|, .. k) ko Ky) v X). 31)

Since we assume that the skedactic function is non-zero, its value is different
from O for some combination of values xi, ..., x,. Substituting these values into the
formula (31) and dividing both sides by v(xy, ..., x,) # 0, we conclude that
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Je(ky ey KD o Ko K  KL)
= k(K. k) k. k). (32)

When k; = k! = —1 for some i < m and k; = k; = 1 for all other i, we get
l=k(l,....,) =k(ky, ..., ky) -k(ky, ... k) =Kk>(ky, ... ky). (33)
Since the function k; is non-negative, this means that k(ky, ..., k,) = 1. Thus, from
the formula (32), we can conclude that the value k(ky, . .., k,) does not change if we
change the signs of k; for i < m, i.e., that

k(kl’ -"akmv karls '--’kn) :k(|k1|7 ceey |km|, km+lv ---skn)-

Taking logarithms of both sides of the formula (32), and taking into account that
In(a - a’) = In(a) + In(a”), we conclude that

(UL ARy Sy SREEY ANy FEy 1)
= In(k(K}, ..., k) + In(k(ky, ... k). (34)

Let us now define an auxiliary function

def
K(Ki,...,K,) = In(k(exp(Ky), ..., exp(Ku), Knit, ..., Kp)).
Since the function k(ky, ..., k,) is measurable, the function K (K1, ..., K,) is also
measurable.

Since exp(a + a’) = exp(a) - exp(a’), for i < m, we conclude that when k; =
exp(K;) and k! = exp(K;), thenk; - k. = exp(K;) - exp(K/) = exp(K; + K/). Thus,

from (34), we conclude that for the new function K (K, ..., K,), we get
K(Ki+Ki,....,K, + K,) =K(K},...,K})+ K(Ky, ..., K,). (35)
The function K (K4, ..., K,) is measurable and additive and hence [1] has the form
n
K(Ki,....K) = > v X (36)
i=1

for some values y;.
From

K(Kh ceey KV!) = ln(k(exp(K1)3 ceey exp(Km)9 Km+lv D) Kﬂ))?

it follows that
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n
k(exp(K1),...,exp(Km), K1, ..., Kn) =exp(K(Kq, ..., Ky)) =exp Zyi - K;

i=1
For each kq, ..., k,, we have
k(k], ce akm9 karls ce akn) = k(|k1|7 ey |km|, km+lv ey kn)

Let us take K; = In(|k;|) fori < m and K; = k; fori > m, then we have exp(K;) =
|k;i| fori < m and K; = k; for i > m. Hence,

kki, k) =exp( D v -k + D vi-ki ). (37)

i=1 i=m+1
From (25), we can now conclude that
VX1, ..., X)) =k(x1, ..., x) - v(1,...,1,0,...,0).

Substituting expression (37) for k(xy, ..., x,) into this formula, we get the desired
formula for the skedastic function

v, o x) =expla+ Dy -n(nh+ D vex ),

i=1 i=m+1
witho = In(v(1,...,1,0,...,0)). The proposition is proven.
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Why Some Families of Probability
Distributions Are Practically
Efficient: A Symmetry-Based Explanation

Vladik Kreinovich, Olga Kosheleva, Hung T. Nguyen
and Songsak Sriboonchitta

Abstract Out of many possible families of probability distributions, some families
turned out to be most efficient in practical situations. Why these particular families
and not others? To explain this empirical success, we formulate the general problem of
selecting a distribution with the largest possible utility under appropriate constraints.
We then show that if we select the utility functional and the constraints which are
invariant under natural symmetries—shift and scaling corresponding to changing the
starting point and the measuring unit for describing the corresponding quantity x—
then the resulting optimal families of probability distributions indeed include most
of the empirically successful families. Thus, we get a symmetry-based explanation
for their empirical success.

1 Formulation of the Problem

Some families of probability distributions are empirically successful. Theoreti-
cally, we can have infinite many different families of probability distributions, but in
practice, only a few families have been empirically successful; see, e.g., [20].
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In some cases, there is a clear theoretical explanation for the families’ success,
but not always. For some of these families, there is a good theoretical explanation
for their success. For example, the Central Limit theorem explains the ubiquity of
normal distributions in situations where we have a joint effect of numerous small
factors.

However, for many other empirically successful families of distributions, there is
no clear theoretical explanation for their empirical success.

What we do in this paper. In this paper, for many empirically successful families
of 1-D distributions, we provide a theoretical explanation of their success.

2  Our Main Idea

What we want: reminder. In general, we are looking for a family which is the best
among all the families that satisfy appropriate constraints.

Natural symmetries. In selecting appropriate objective functions (which describe
what is the best) and appropriate constraints, we use the fact that in practical appli-
cations, the numerical value of the corresponding quantity x depends:

e on the choice of the starting point for its measurement and
e on the choice of the measuring unit.

If we change the starting point to the one which is x; units smaller, then all the
values shift by xp: x — x + x¢. Similarly, if we change the original measuring unit
to a one which is A times smaller, then all the values are scaled by A: x — A - x.

For example, if we replace a meter with a centimeter, a 100 times smaller measur-
ing unit, then all numerical values multiply by 100: 2m becomes 200 cm. Another
example: shift and scaling describe the transition between Celsius to Fahrenheit.

Invariance. Since these shifts and scaling do not change the corresponding
quantities—just change the numbers that represent their values—it is therefore rea-
sonable to require that the appropriate objective functions and constraints do not
change (= are invariant) under these transformations.

What we do in this paper: an idea. Since it is reasonable to restrict ourselves to
invariant objective functions and invariant constraints, we describe all such objective
functions and constraints. We then describe the distributions which are optimal for
thus selected objective functions and constraints.

It turns out that the resulting optimal families indeed include many empirically
successful families of distributions. Thus, our approach explains the empirical suc-
cess of many such families.

Comments. The fact that natural symmetries explain the empirical success of families
of probability distributions is in good accordance with modern physics, where sym-
metries are one of the main ways to generate new physical theories; see, e.g., [11].
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This fact is also in good accordance with the fact that many empirically successful
formulas from neural networks, expert systems, etc., can also be explained by the
corresponding symmetries [31].

It should be noted that in this paper, we only consider 1-D families. Our pre-
liminary results show that a symmetry-based explanation of empirically success-
ful families can be extended to the multi-D case as well. Indeed, one of the ways

to describe a multi-D distribution F(xq,...,x,) = Prob(X; <x1 & ... &X,, < x,)
is to describe the corresponding marginal distributions F;(x;) = Prob(X; < x;) and
the corresponding copula, i.e., a function C(uy, ..., u,) for which F(xy, ..., x,) =

C(Fi(x1), ..., Fy(x,)) [25, 26, 30]. In [24], we have shown that symmetries can
explain the empirically successful families of copulas.

3  Which Objective Functions Are Invariant?

We should maximize utility. According to decision theory, decisions of a rational
agent are equivalent to maximizing a certain objective function known as utility; see,
e.g., [12, 27, 29, 40].

Localness property. Based on partial information about the probability distribution,
we want to reconstruct the values p (x) corresponding to all possible x. Itis reasonable
to require that if have two distribution which differ only in some local region, and
the first distribution is better, then if we replace a common distribution outside this
region by another common distribution, the first distribution will still be better.

It is known (see, e.g., [13]) that each utility function with this property is either a
sum or a product of functions depending only on alocal value p (x). Since maximizing
the product is equivalent to maximizing its logarithm, and logarithm of the product is
equal to the sum of logarithms, we can thus conclude, without losing generality, that
the utility function is a sum of functions of p (x). In the continuous case, with infinitely
many variables p (x), we have the limit of the sums, i.e., an integral. Thus, the general
expression of an objective function with the localness property is [ A(p(x), x) dx.

Shift-invariance. We want the resulting criterion not to change if we simply shift
X, i.e., replace each numerical value x with the shifted value x + xy. Thus, the above
integral expression should not change—which means that there should be no explicit
dependence on x, i.e., that we should have f A(p(x)) dx.

Scale-invariance: formulation of the requirement. We also want the resulting
comparison not to change if we simply re-scale x, i.e., replace each numerical value
x with the re-scaled value y = A - x. In terms of the re-scaled values, the pdf changes
to A~' - p(A~! - y), so the new objective function has the form

/A(A—‘ Oy dy.
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By changing the variable to x = A~" -y, we get A - J A(n - p(x)) dx, where we
def -1
denoted © = A7".

Scale-invariance: analysis of the requirement. Scale-invariance means, in partic-
ular, that if we add a small deviation 8p (x) to the original distribution in such a way
that the value of the objective function does not change, then the value of the re-scaled
objective function should not change either. The fact that we still get a pdf means that
f8p(x) dx = 0. For small deviations, A(p(x) + 3p) = A(p(x)) + A'(p(x)) - $p(x).
Thus, the fact that the value of the re-scaled objective function does not change
means that f A’(p(x)) - 8p(x) dx = 0. Similarly, the fact that the value of the origi-
nal objective function does not change means that

/A/(M () - 8p(x) dx = 0.

So, we arrive at the following requirement: for every function §p(x) for which
[8p(x)dx =0and [ A'(p(x)) - 8p(x) dx = 0, we should have

/A’(M -p(x)) - 8p(x)dx = 0.

Functions form a Hilbert space—an infinite-dimensional analog of the Euclidean

space, with the scalar (dot) product (a, b) & f a(x) - b(x) dx. In these terms, the

condition | A’(p(x)) - 8p(x)dx = 0 can be written as (A’(p), §p) =0, i.e., as the
condition that the functions A’(p(x)) and 8p (x) are orthogonal: §p L A’(p). In these
terms, the invariance requirement means that any function §p which is orthogonal to
1 and to A’(p(x)) should also be orthogonal to the function A’(i - p(x)). From this
geometric reformulation, one can see that the function A’(i - p(x)) should belong
to the linear space spanned by 1 and A’(p(x)), i.e., that we should have

A'(u-p(x)) =a(u, p) +b(u, p) - A'(p(x)) (D

for some constants a(u, p) and b(u, p).

Let us show that the values a(u, p) and b(u, p) do not depend on the pdf p(x).
Indeed, if we plug in two different values x; and x, into the formula (1), we get a
system of two linear equations for two unknowns a (i, p) and b(u, p):

Al - p(x1)) = a(u, p) + b, p) - A'(p(x1));
Al - p(x2)) = a(, p) + b, p) - A'(p(x2)).
From this system, we conclude that

b, p) = A p(x2)) — A1 - p(x1))
’ A'(p(x)) — A(p(x1))
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and a(u, p) = A'(u - p(x1)) — b(u, rho) - A’(p(x1)). From these formulas, we see
that the values of a(u, p) and b(u, p) depend only on the values p(x;) and p(x)
and thus, do not depend on any other value p(x) for x # xi, x,.

If we start with some other values x/, x5 which are different from x; and x,, we
conclude that a(u, p) and b(u, p) do not depend on the values p(x;) and p(x;)
either. Thus, a and b do not depend on p(x) at all: a(u, p) = a(w), b(u, p) = b(u),
and the Eq. (1) takes the form

Al(p - p(x) = a(u) + b(w) - A'(p(x)). @)

It is reasonable to consider the case when the function A(p) is twice different-
iable—we can do that since any continuous function can be approximated, with any
given accuracy, by twice differentiable functions. In this case, the derivative A’ is
differentiable. From the above expression for a and b in terms of A’, we conclude
that the functions a(w) and b(w) are also differentiable. Differentiating both side of
the equality (2) with respect to u and taking u = 1, we get

4

o = al)y+b'1)-Ap).
0

p .

We can separate A and p if we multiply both sides by dp and divide both sides by p
and by the right-hand side; we then get

dA’ dp

ad()y+b(1)-A p°

Let us consider two possible cases: »'(1) = 0 and b'(1) # 0.

When b'(1) = 0, then integrating this equation leads to the following expression
for the derivative A’ of the desired function A(p): A" = a’(1) - In(p) + const. Now,
the second integration leads to A(p) = a’(1) - p - In(p) + ¢1 - p + ¢,. Since for the
term ¢, - p, the integral is always constant f(cl -px)dx =cy - f,o(x) dx = cy,
optimizing the expression [ A(p(x))dx is equivalent to optimizing the entropy
—[p@) - In(p(x)) dx.

def a'(1) dB

When /(1) # 0, then for B = A’ + b we get
def

tion leads to In(B) = #'(1) - In(p) + const and B = C - p? for B = b'(1). Hence,
A’(p) = B — const = C - p# 4 const. Integrating one more time, when 8 # —1,
we get A(p) = const - pP*! 4 ¢ - p + ¢,. Similarly to the above case, optimiz-
ing the expression [ A(p(x))dx is equivalent to optimizing generalized entropy
J(p(x)*dx, fora =g + 1.

When B = —1, integration leads to A(p) = const - In(p) + ¢; - p + ¢2, so opti-
mizing [ A(p(x)) dx is equivalent to optimizing another case of generalized entropy
[ 1In(p(x)) dx.

o .
= —, SO 1ntegra-
b1)y-B  p
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Conclusion: which objective functions are invariant. There are exactly three shift-
and scale-invariant objective functions: entropy — f p(x) - In(p(x)) dx and general-
ized entropy [ In(p(x))dx and [(p(x))* dx, for o # 1.

Comment. From the purely mathematical viewpoint, this result is similar to a classi-
fication of invariant objective functions for selecting the best image [21].

4 Which Constraints Are Invariant?

Shift-invariance: formulation of the problem. We say that the constraints

/ﬁ(X) cp()dx = ¢

corresponding to the functions f;(x) (1 < i < n) are shift-invariant if the values of
the corresponding quantities [ f;(x) - p(x) dx uniquely determine the values of these
quantities for a scaled distribution.

To be more precise, after the re-scaling, for the same quantity, the original numer-
ical value x is replaced by the new value y = x + xo. In the new scale, the probability
density p, (y) has the form p,(y) = p(y — xo). Thus, when we compute the constraint-
related quantities based on shifted values, we get the integrals f fi) - p(y —x) dy.
Our requirements is that the values of all these new integrals should be uniquely
determined based on the values of # original integrals.

Analysis of the problem. In the new integral, we can consider x = y — x as the new
variable; in this case, each new integral takes the form

/ filx +x0) - p(x) dx.

Thus, our requirement is that if for every pdf, we know the values f fix) - p(x) dx,
then we can uniquely determine the values f filx + x0) - p(x) dx. So, for every small
change §p (x) for which:

e p(x) + ép(x) remains a pdf, i.e., f Sp(x) =0 and
e the values of the original integrals do not change, i.e., [ fi(x) - §p(x) = 0,

the values of the new integrals shall also remain unchanged, i.e., we should have
[ fitx +x0) - 8p(x) dx = 0.

In geometric terms, this means that any function §p which is orthogonal to all the
functions 1, fi, ..., f,, should also be orthogonal to the function f;(x + xp). Thus,
similarly to the case of invariant objective functions, we conclude that the function
Ji(x 4 xp) should belong to the linear space spanned by 1 and f;, i.e., that we should
have
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fix +x0) = ci(xo) + D ciplxo) - f(x) 3)

j=1

for some constants ¢;(xo) and c;;(xg).

It is reasonable to consider the case of differentiable functions f;(x). In this case,
by selecting sufficiently many values x;, we can get a system of linear equations
from which we can uniquely determine ¢;(xo) and c;; (xp):

fi +x0) = cixo) + D e (x0) - ().

J=1

By the Cramer’s rule [35], a solution to a system of linear equations is a differentiable
function of its parameters f;(x; + xo). Since the functions f; are differentiable, we
conclude that the functions ¢;(xo) and c;;(xo) are differentiable as well—as compo-
sitions of differentiable functions.
Differentiating both sides of the formula (3) with respect to xy and taking xy = 0,
we conclude that
afi _

— =
dx !

©) + D" cj(0) - fi(x).

j=1

Thus, the functions f;(x) together with a constant function 1 are solutions to a system
of linear differential equations with constant coefficients. Solutions to such systems
are known (see, e.g., [38]): they are linear combinations of functions of the type
x* . exp(a - x) - sin(w - x + @), where k > 0 is a natural number and @ + o - i is an
eigenvalue of the corresponding matrix. So, we arrive at the following conclusion:

Conclusion: shift-invariant constraints. The functions f;(x) corresponding to shift-
invariant constraints are linear combinations of the functions of the type
x* - exp(a - x) - sin(w - x + ¢).

Scale-invariance: formulation of the problem. We say that the constraints

/fi(x) ~p(xX)dx =c¢;

corresponding to the functions f;(x) (1 < i < n) are scale-invariant if the values of
the corresponding quantities f fi(x) - p(x) dx uniquely determine the values of these
quantities for a shifted distribution.

After the re-scaling, for the same quantity, the original numerical value x is
replaced by the new value y = A - x. In the new scale, the probability density o, (y)
has the form p,(y) = A~ - p(A~" - y). Thus, when we compute the constraint-related
quantities based on scaled values, we get the integrals f AU fi) - p ) dy.
Our requirement is that the values of all these new integrals should be uniquely
determined based on the values of n original integrals.
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Analysis of the problem. In the new integral, we can consider x = A~! - y as the
new variable; in this case, each new integral takes the form

/fi()» - X) - p(x)dx.

Thus, our requirement is that if for every pdf, we know the values f fix) - p(x) dx,
then we can uniquely determine the values [ f;(A - x) - p(x) dx. Similar to the shift-
invariant case, we can conclude that

fihx) = ci0) + D ey - f(x)
Jj=1

for some differentiable function ¢;(1) and c;;(X). Differentiating both sides of this
equality relative to A and taking A = 1, we conclude that

L i
dx

)+ () - fix).

j=1
dx . . .

Here, — = dzfor z = In(x). Thus, if we express all the functions f;(x) in terms of z,
X

i.e., consider f;(x) = F;(In(x)), with F;(z) &ef fi(exp(z)), then for the new functions

F;(z), we get a system of linear differential equations with constant coefficients:

dFi(z) =ci(1) + ZC;/(D - Fj(2).

j=1

Z

We already know that each solution is a linear combination of functions of the type
Zx- exp(a - 2) - sin(w - 7+ ¢). Substituting z = In(x) into this formula, we conclude
that each function f;(x) is a linear combination of functions the type

(In(x)* - x* - sin(w - In(x) + @).

Comment. Note that scaling only related values of the same sign, so we may have
two different expressions for x < 0 and for x > 0.

If instead of scaling relative to 0, we have scaling relative to some other value xo,
i.e., transformations x — xp — A - (x — x), then we get expressions

(In(x — xo))k - (x — x0)* - sin(w - In(x — xo) + @).

In this case, we may have different expressions for x < x( and for x > xj.
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Conclusion: scale-invariant constraints. Each function f;(x) corresponding to
scale-invariant constraints is a linear combinations of functions

(In(x — x0))* - (x — x0)* - sin(w - In(x — xo) + @),

where k is a natural number. Note that we may have different expressions for x < xg
and for x > xg.

Which constraints are both shift- and scale-invariant? To answer this question,
let us check when shift-invariant constraints are also scale-invariant. We cannot have
a # 0, since then the corresponding function grows too fast for scale constraints.
We similarly cannot have b # 0, so the only remaining terms are monomials x*.
Thus, each function corresponding to shift- and scale-invariant constraints is a linear
combination of monomials, i.e., a polynomial:

Conclusion: shift- and scale-invariant constraints. Each function f;(x) corre-
sponding to shift- and scale-invariant constraints is a polynomial.

5 Invariant Objective Functions and Constraints:
Summary

Let us summarize our results.

Symmetry-based criteria. There are three possible symmetry-based criteria: entropy
— [ p(x) - In(p(x)) dx and generalized entropy [ In(p(x))dx and [(p(x))* dx, for
o # 1.

Constraints which are both shift- and scale-invariant. The only such constraints
correspond to polynomials P(x).

Shift-invariant constraints. A function f(x) corresponding to each such constraint
is a linear combination of functions of the type x* - exp(a - x) - sin(w - x + @), where
k > 0 1is a natural number.

Scale-invariant constraints. For scaling around a point xy, a function f(x) corre-
sponding to each such constraint is a linear combinations of functions

(In(x — x0))* - (x — x0)* - sin(w - In(x — xo) + @),

where k is a natural number. Note that we may have different expressions for x < xg
and for x > xp.

In particular, we can have scale-invariant constraint f f(x) - px) =0 with
f(x) = 1forx > xpand f(x) = 0forx < xp. Since p(x) > 0, this constraint implies
that p(x) = 0 for all x > xy. Similarly, we can have a constraint implying that
p(x) = 0forall x < xo.
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By combining two such constraints, we get a restriction of a distribution to an
interval.
Optimizing an invariant objective function under invariant constraints: general
formulas. In general, we optimize an invariant objective function J(p) under the
constraints f p(x)dx = 1and f fi(x) - p(x) dx = ¢; for several invariant constraints
fi(x). For this constraint optimization problem, the Lagrange multiplier methods
results in an unconditional optimization of a functional

s+ ([ oar=1)+ 2 ([ 500 poar—c).

where A and A; are the corresponding Lagrange multipliers. Differentiating this
expression with respect to p(x) and equating the resulting derivative to 0, we get
the following equations:

In(p(x)) =—1+A1+ Z)"' - fi(x) for the usual entropy;

1

() = a4 D ke fiw) orJ () = [ InGo(a) ds and

(=) (o) = xS it for J(p) = [ (o) d.

6 Resulting Distributions

Let us now list effective families of distributions which result from our approach,
i.e., which are optimal with respect to some symmetry-based criterion under some
invariant constraints. In our listing:

e we start with the case when all constraints are both shift- and scale-invariant,

e then we consider the case when all constraints are scale-invariant, with respect to
the same value xy,

e then we consider the case when all constraints are shift-invariant,

e finally, we will consider the case when different constraints are invariant relative
to different transformations.

For each of these cases, we consider first situations when the objective function is
the usual entropy, and then situations when a generalized entropy is used.

Comments.

e Some distributions have several different symmetry-based justifications. For exam-
ple, among all distributions located on an interval, the uniform distribution has the
largest possible entropy and also the largest possible generalized entropy.
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e For most distributions, we mention one or two practical situations in which this
particular distribution has been effectively used. Of course, our list of examples
does not exhaust all efficient applications of the distribution: for many distributions,
the number of practical applications can fill a book (and such books have been
published; see, e.g., [22]).

e While our symmetry-based approach explains many empirically successful prob-
ability distributions, not all such distributions can be thus described. For example,
many infinitely divisible distributions do not have an analytical representations
and thus, cannot be represented in this form. It should be mentioned that this
omissions is not so bad, since most of such distributions already have a theoretical
explanation for their success.

6.1 All Constraints Are Both Shift- and Scale-Invariant,
Objective Function is Entropy

Towards a general formula. In this case, we optimize entropy — f px) - In(p(x))dx
under constraints f p(x)dx and constraints of the type f P;(x) - p(x)dx = ¢; for
some polynomials P;(x). For this constraint optimization problem, the Lagrange
multiplier method leads to optimizing the expression

—/p(X)~1n(p(X))dx+k~ (/p(X)dx— l) +Z)\i'(/Pi(x)'P(x)dx_Ci)»

where A and X; are Lagrange multipliers.
Differentiating this expression with respect to p (x) and equating the derivative to
0, we conclude that

—In(p(x)) = 1+ A+ D A+ Pi(x) =0,

2

hence
In(p(x) = =1+ A+ D A Pi(x).

The right-hand side of this formula is a linear combination of polynomials and is, thus,
also a polynomial. We will denote this polynomial by P(x). From In(p (x)) = P(x),
we conclude that the corresponding pdf has the form p(x) = exp(P(x)) for some
polynomial P(x). This is a general formula for such optimal probability distributions.

Example of a successful probability distribution of this type. The most widely
used distribution, the normal distribution with probability density
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(x) = ! . ex (_M)
P(X) = 5= - exp =)

is exactly of this type. It is a well-known fact that of all the distributions with given
mean and given variance, the normal distribution has the largest possible entropy.

6.2 All Constraints Are Both Shift- and Scale-Invariant,
Objective Function is Generalized Entropy

Towards a general formula. In this case, we optimize generalized entropy [ In(p(x))
dx or (p(x))*dx under constraints f p(x)dx and constraints of the type
f Pi(x) - p(x) dx = ¢; for some polynomials P;(x). For this constraint optimization
problem, we optimize

/ln(p(x))dx—i—)w(/p(x)dx— 1) +ZA5-(/P5(X)~p(x)dx—ci) or
/(p(x))"‘dx—i—)»- (/p(x)dx— 1) —‘l_z)\.j‘ (/Pi(x)'p(x)dx—c,-).

Differentiating this expression with respect to p(x) and equating the derivative to 0,
we conclude that

—a- (P =04+ D A Pilx) =0,

hence

1
(P)* = ——- (A + 2 h 'Pi<X>)-

The right-hand side P(x) of this formula is a polynomial, so we get the following
general formula for such optimal probability distributions: p(x) = (P(x))?, where

1
/3:

a—1

Example of a successful probability distribution of this type. An example of such
a distribution is Cauchy distribution, with probability density
1

(x—p?
e

A
pa) ==
b
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This distribution is actively used in physics, to describe resonance energy distribution
and the corresponding widening of spectral lines; see, e.g. [19]. It is also used to
estimate the uncertainty of the results of data processing [23].

Comment. It should be mentioned that while formally, we get the Cauchy distribution,
the above derivation is not fully straightforward: it includes a constraint of the type
[ x*- p(x) dx = const, but for the Cauchy distribution, the corresponding integral
is infinite. So, to make the above derivation mathematically correct, we should first
consider the problem limited to distributions located on an interval [T, T'] and then
tend T to infinity.

6.3 All Constraints Are Scale-Invariant Relative
to the Same Value x¢, Objective Function is Entropy

Half-normal distribution. By combining the constrains on mean and second
moment with the constraint implying that p(x) = 0 for x < 0, we get a half-normal
distribution, i.e., a distribution whose pdf for x < 0 is 0, and for x > 0 is twice that
of the normal distribution.

Generalized Gamma distribution. For f;(x) = In(x), f>(x) = x%, and for a scale-
invariant constraint corresponding to x > 0, optimization leads to In(p(x)) = A +
A1 - In(x) + Ay - x%, i.e., to the Generalized Gamma distribution

p(x) = const - x* - exp(A; - x%)

which is efficiently used in survival analysis in social sciences [4].
Several probability distributions are particular cases of this general formula. Let
us list some of them in alphabetic order.

Particular cases of Generalized Gamma: chi-square distribution. When 1, is a
natural number and o = 2, we get the chi-square distribution used to check how well
the model fits the data. Under the name of Nakagami distribution, this distribution
is also used to model attenuation of wireless signals traversing multiple paths [34].

Particular cases of Generalized Gamma: inverse Gamma distribution. When
o = —1, then we get the inverse Gamma distribution which is often used as a prior
distribution in Bayesian analysis [3, 14], e.g., to describe the prior distribution of
the variance. In particular, when 21 is a negative integer, we get the scaled-inverse
chi-square distribution, and for specific values of a, we get the inverse chi-square
distribution.

Particular cases of Generalized Gamma: exponential distribution. When
M =0 and a=1, we get the exponential distribution
p(x) = const - exp(—k - x). This distribution describe the time between consecu-
tive events, e.g., in queuing theory, in radioactive decay, etc. (It should be noted that
the exponential distribution can also be obtained by using generalized entropy.)
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Particular cases of Generalized Gamma: Gamma distribution. When « = 1, we
get the Gamma distribution which is often used as a prior distribution in Bayesian
analysis. In particular, when A; = k is a natural number, we get the Erlang distribu-
tion that describe the time during which k consecutive events occur [6].

Particular cases of Generalized Gamma: Fréchet distribution. When 1| = 0, we
get the Fréchet distribution which describes the frequency of extreme events, such
as the yearly maximum and minimum stock prices in economics [10] and yearly
maximum rainfalls in hydrology [5].

Particular cases of Generalized Gamma: half-normal distribution. When1; = 0
and @ = 2, we get the above-described half-normal distribution.

Particular cases of Generalized Gamma: inverse Gamma distribution. When
a = —1, we get the inverse Gamma distribution which is used to describe a prior
distribution for variance in Bayesian analysis.

Particular cases of Generalized Gamma: Rayleigh distribution. When A; = 1
and o = 2, we get the Rayleigh distribution which is used to describe the length of
random vectors—e.g., the distribution of wind speed in meteorology.

Particular cases of Generalized Gamma: type-2 Gumbel (Weibull) distribution.
When 1| = « — 1, we get the type-2 Gumbel (Weibull) distribution which is used to
describe the frequency of extreme events and time to failure.

Further generalization of Generalized Gamma: 3-parametric Gamma distrib-
ution. For f(x) = In(x — w), f2(x) = (x — w)%, and for a scale-invariant constraint
corresponding to x > u, optimization leads to

In(p(x)) =A+A;-In(x — w) + 21z - (x — pw)?,
i.e., to the 3-parametric Gamma distribution
p(x) = const - (x — )™ - exp(hy - (x — p)*)

which is efficiently used in hydrology [41, 42].

Inverse Gaussian (Wald) distribution. For scale-invariant constraints fi(x) =
In(x), fo(x) = x, f3(x) = x~!, and for a scale-invariant constraint leading to x > 0,
optimization leads to In(p(x)) = A + A - In(x) + X2 - x + Ay -x7l e, to p(x) =
const - x* - exp(Ay - x + A3 - x~1). In particular, for A; = —1.5, we get the inverse
Gaussian (Wald) distribution. This distribution describes the time a Brownian Motion
with positive drift takes to reach a fixed positive level.

Laplace distribution. For a scale-invariant constraint f}(x) = |x — u|, optimization
leads to In(p(x)) = A + A; - |x — p|, so we get Laplace distribution

p(x) = const - exp(Ay - |x — ul).
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This distribution has many applications [22]. For example, it is used:

e in speech recognition, as a prior distribution for the Fourier coefficients [9];
e in databases, where, to preserve privacy, each record is modified by adding a
Laplace-generated noise [8].

Lévy (van der Waals) distribution. For scale-invariant constraints

fi@) = In(x — ),

fr(x) = (x — w)~!, and for a scale-invariant constraint equivalent to x — u > 0,
optimizationleadstoln(p(x)) = A + Ay - In(x — ) + Ay - (x — )~ LLie,top(x) =
const - (x — )* - exp(Ay - (x — )~ 1). Inparticular, for A; = —1.5, we get the Lévy
(van der Waals) distribution. This distribution is used in spectroscopy, to describe
different spectra [7].

Log-normal distribution. For scale-invariant constraints f;(x) = In(x) and f>(x) =
(In(x))? and for a scale-invariant constraint equivalent to x > 0, optimization leads to
In(p(x)) = A+ A1 - In(x) + 1, - (In(x))?, i.e., to the log-normal distribution p (x) =
const - x*' - exp(As - (In(x))?). This distribution describes the product of several inde-
pendent random factors. It has many applications. In particular, it is used in econo-
metrics to describe:

e the compound return of a sequence of multiple trades,
e along-term discount factor, etc.

6.4 All Constraints Are Shift-Invariant, Objective Function
Is Entropy

Gumbel distribution. For a shift-invariant constraint f;(x) = exp(k - x), optimiza-
tion leads to In(p(x)) = A 4+ A; - exp(k - x), i.e., to the Gumbel distribution p(x) =
const - exp(A; - exp(k - x)) which is used to describe the frequency of extreme events.

Type I Gumbel distribution. For shift-invariant constraints f;(x) = x and f>(x) =
exp(k - x), optimization leads to In(p(x)) = A 4+ A1 - x + A, - exp(k - x) and thus, to
p(x) = const - exp(A; - x + Ay - exp(k - x)). In particular, for A; = k, we get rype 1
Gumbel distribution which is used to decrease frequencies of extreme values.

6.5 All Constraints Are Shift-Invariant, Objective Function
Is Generalized Entropy

Hyperbolic secant distribution. When we use the objective function f In(p(x)) dx
and a shift-invariant constraint fj(x) = exp(k - x) + exp(—k - x), optimization leads
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to (p(x)~'= -1 — A - (exp(k ix) + exp(—k - x)) = —A + ¢ - cosh(k - x). Thus,

we get p(x) = const -

. The requirement that x)dx =1
—A + ¢ -cosh(k - x) 4 f,o( )
leads to A = 0, so we get a hyperbolic secant distribution. This distribution is similar
to the normal one, but it has a more acute peak and heavier tails, so it is used when

we have a distribution which is close to normal but has heavier tails.

6.6 Different Constraints Have Different Symmetries,
Objective Function Is Entropy

In some cases, to get the desired distribution, we need to combine constraints with
symmetries of different type. Let us give examples of the resulting distributions.

Uniform distribution. If we impose constraints leading to x > @ and x < b, then
the largest values of the entropy is attained on the uniform distribution on the inter-
val [a, b].

Comment. It should be noted that the same result holds if we use generalized
entropy.

Beta and arcsine distribution. Constraints [ In(x) - p(x) dxand [ In(a — x) - p(x) dx
are both scale-invariant, but the first one is scale-invariant relative to xy = 0, while
the second one is scale-invariant relative to x) = a. Optimizing entropy under these
constraints — and under similarly scale-invariant constraints implying that 0 < x < a,
results in p(x) = A - x* - (a — x)? for some A, «, and B.

This formula describes a Beta distribution on the interval [0, a]. This distribution
has numerous practical applications in many areas including agriculture [18], epi-
demiology [43], geosciences [16], meteorology [39], population genetics [1], and
project management [28].

In particular, for a = 1 and o = B = 0.5, we get the arcsine distribtion, with

1
T-Ax- (1 —x)

ple, the measurement error caused by an external sinusoidal signal coming at a
random moment of time [37].

probability density p(x) = . This distribution describes, for exam-

Beta prime (F-) distribution. For scale-invariant constraints fj(x) = In(x) and
J2(x) = In(x 4 a) and for a constraint leading to x > 0, optimizing entropy leads to
In(p(x)) =X+ Ay - In(x) + Xy - In(x + a), i.e., to the Beta prime (F-) distribution
p(x) = const - x* - (x + a).

Log distribution. Let wus impose  scale-invariant  constraints
fi(x) =x and f>(x) = In(x), and constraints leading to x > a and x < b. Then the
largest entropy occurs when for x € [a, b], we have In(p(x)) = A+ X -x+ Ay -
In(x), hence

p(x) = const - exp(A; - x) - x*2. For .| = —1, we get the log distribution.
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Generalized Pareto distribution. For scale-invariant constraint f;(x) = In(x + x)
and a scale-invariant constraint leading to x > x,,, optimization leads to In(p (x)) =
A+ A1 - In(x + xp), hence to the Generalized Pareto distribution

p(x) = const - (x —i—xo)“.

This distribution describes the frequency of large deviations in economics, in geo-
physics, and in other applications areas [10]. The case xo = 0 is known as the Pareto
distribution.

Comment. The Generalized Pareto distribution can also be derived by using gener-
alized entropy.

Gompertz distribution. For shift-invariant constraints f)(x) = exp(b-x) and
fo(x) = x, and a scale-invariant constraint leading to x > 0, optimization leads to
In(p(x)) =X+ Ay - x+ Xy - exp(b - x), hence to Gompertz distribution

p(x) = const - exp(A; - x) - exp(ry - exp(d - x)).

This distribution describes aging and life expectancy [2, 36]; it is also used to in
software engineering, to describe the "life expectancy” of software [33].

Reciprocal and U-quadratic distribution. For a scale-invariant constraint fj(x) =
In(x — B) and scale-invariant constraints corresponding to x > a and a < b, opti-
mization leads to p(x) = A - x“ for x € [a, b]. In particular:

e fora = —1and B = 0, we get the reciprocal distribution p(x) = const - x~!. This
distribution is used in computer arithmetic, to describe the frequency with which
different numbers occur [17, 32];

o for o = 2, we get the U-quadratic distribution p(x) = const - (x — 8)?; this dis-
tribution is often effectively used to describe random quantities with a bimodal
distribution.

Comment. Please note that, as we show later in this paper, both distributions can also
be obtained by using generalized entropy.

Truncated normal distribution. By combining the constrains on mean and second
moment with the constraint implying that p(x) = 0 for x < a and for x > b, we get
the truncated normal distribution, i.e., a normal distribution limited to the interval
[a, b]. This distribution is actively used in econometrics, to model quantities about
which we only know lower and upper bounds [15].

von Mises distribution. For a shift-invariant constraint fj(x) = cos(x — w) and for
scale-invariant criteria corresponding to x > —m and x < m, optimization leads to
In(p(x)) = A + Ay - cos(x — ), i.e., to the von Mises distribution

p(x) = const - exp(A; - cos(x — i)

which is frequently used to describe random angles x € [—m, 7].
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6.7 Different Constraints Have Different Symmetries,
Objective Function is Generalized Entropy

Uniform distribution. If we impose constraints leading that x > a and x < b, then
the largest values of the generalized entropy is attained on the uniform distribution
on the interval [a, b].

Comment. 1t should be noted that the same result holds if we use the usual entropy.

Exponential and Erlang distribution. For the objective function f (p(x))? dx, for
the shift-invariant constraint f;(x) = x* - exp(—a - x), and a scale-invariant con-
straint corresponding to x > 0, optimization leads to the Erlang distribution

p(x) = const - Xk exp(—a - x);

in particular, for k=0, we get an exponential distribution p(x) =
const - exp(—a - x).

Comment. Exponential distribution can also be obtained by using the usual entropy.

Generalized Pareto distribution. For the objective function f (p(x))*dx and for
the scale- and shift-invariant constraint f(x) = x and a scale-invariant constraint
leading to x > 0, optimization leads to —a - (p(x))*~! = A 4+ A1 - x, hence to the
Generalized Pareto distribution p(x) = const - (x + xo) 7, wherey = —1 /(¢ — 1).

Comment. The Generalized Pareto distribution can also be derived by using the usual
entropy.

Raised cosine distribution. For the objective function f (p(x))? dx, for a shift-
invariant constraint fj(x) = cos(w - x + ¢) and scale-invariant constraints corre-
sponding to x > a and x < b, optimization leads to the raised cosine distribution
p(x) =c1+cr-cos(w-x+ ¢).

Reciprocal distribution. For the generalized entropy [ In(p(x))dx, a scale- and
shift-invariant constraint fj(x) = x and scale-invariant constraints corresponding to
x > aanda < b, optimization leads to the reciprocal distribution p(x) = A - x! for
x € [a, b].

Comment. Please note that this distribution can also be obtained by using the usual
entropy.

U-quadratic distribution. For the generalized entropy [ (p(x))? dx, a scale- and
shift-invariant constraint f;(x) = (x — 8)? and scale-invariant constraints corre-
sponding to x > a and a < b, optimization leads to the U-quadratic distribution
p(x) = const - (x — B)? forx € [a, b].

Comment. Please note that this distribution can also be obtained by using the usual
entropy.
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7 Conclusion

In the previous section, we listed numerous families of distributions which are opti-
mal if we optimize symmetry-based utility functions under symmetry-based con-
straints. One can see that this list includes many empirically successful families of
distributions—and that most empirically successful families of distributions are on
this list. Thus, we indeed provide a symmetry-based explanation for the empirical
success of these families.
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The Multivariate Extended Skew Normal
Distribution and Its Quadratic Forms

Weizhong Tian, Cong Wang, Mixia Wu and Tonghui Wang

Abstract In this paper, the class of multivariate extended skew normal distributions
is introduced. The properties of this class of distributions, such as, the moment gener-
ating function, probability density function, and independence are discussed. Based
on this class of distributions, the extended noncentral skew chi-square distribution is
defined and its properties are investigated. Also the necessary and sufficient condi-
tions, under which a quadratic form of the model has an extended noncentral skew
chi-square distribution, are obtained. For illustration of our main results, several
examples are given.

1 Introduction

In many real-world problems, assumptions of normality are violated as data possess
some level of skewness. The class of skew normal distributions is an extension
of the normal distribution, allowing for the presence of skewness. Azzalini [1, 2]
defined the random vector V to be a multivariate skew-normal distribution, denoted
by V~ SN, (n, ¥, o), if its density function is
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where ¢, (x; i, X') is the n-dimensional normal density function with mean vector
1 and covariance matrix X, and @ (-) is the standard normal distribution function.
Since then, the class of multivariate skew normal distributions have been studied by
many authors, see Azzalini [3], Arellano—Valle [4], Gupta [10], and Szkely [17].

In financial applications, specialized models for time series are used, notably the
ARCH model and its variants. Since the presence of skewness in financial time series
is a feature not easily accounted for by classical formulations, the tools discussed
here become natural candidates for consideration. De Luca and Loperfido [8] and
De Luca et al. [9] have constructed a autoregressive conditional heteroskedasticity
(GARCH) formulation for multivariate financial time series where asymmetric rela-
tionships exist among a group of stock markets, with one market playing a leading
role over the others. Their construction links naturally with the concepts implied by
the multivariate skew normal distribution, when one considers the different effect on
the secondary markets induced by ‘good news’ and ‘bad news’ from the leading mar-
ket. Corns and Satchell [7] have proposed a GARCH-style model where the random
terms have skew normal distribution, regulated by two equations, one as in usual
GARCH models which pertains to the scale factor, conditionally on the past, and an
additional equation of analogous structure which regulates the skewness parameter.
Li et al. [5] proposed two extended versions of Type I Wang transform using two
versions of skew-normal distributions on risk measure. Tian et al. [19] provided a
new skew normal risk measure and has been shown that the new skew normal risk
measure satisfied the classic capital asset pricing model.

Quadratic forms are important in testing the second order conditions that distin-
guish maxima from minima in economic optimization problems, in checking the
concavity of functions that are twice continuously dierentiable and in the theory
of variance in statistics. For the case where the location parameter was zero, the
quadratic forms under skew normal settings were studied by Gupta and Huang [10],
Gentonetal. [11], Huang and Chen [13] and Loperfido [15]. For the general cases, the
noncentral skew chi-square distribution was defined and new versions of Cochran’s
theorem were obtained in Wang et al. [18]. The matrix version of Cochran’s theorem
under multivariate skew normal settings was discussed in Ye et al. [20]. Also appli-
cations of using noncentral skew chi-square distribution in linear mixed model and
variance components models were obtained in Ye et al. [21, 22].

The class of distributions used in this paper is the modified version of Kumar [14]
defined as follows. A random variable Z is said to have an extended skew generalized
normal distribution with parameters y > —1, «; € :i, and «, > 0, if its probability
density function is given by

) _ 2 o1z
[z o, 00, y) = 1 J/<zﬁ(z) |:1 + y@(—m)} , 2)

where ¢ () and @ (-) are the standard normal density function and distribution func-
tion, respectively. For the case where o; = « and oy = 0, the distribution with the
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density f given in (2) is called the extended skew normal distribution, denoted by
Z ~ ESN(a,y).

In this paper, the class of multivariate extended skew normal distributions is
defined and its properties such as density functions, moment generating functions,
and dependence are discussed. The usefulness of this extra parameter y is emphasized
based on its density graphs. In order to study distributions of quadratic forms of
this model, the extended noncentral skew chi-square distribution is defined. Also
the necessary and sufficient conditions, under which a quadratic form is extended
noncentral skew chi-square distributed, are obtained. Our results are extensions of
those given in Gupta and Huang [10], Genton et al. [11], Huang and Chen [13] and
Loperfido [15], Wang et al. [18], Ye and Wang [21], and Ye et al. [22].

The organization of this paper is given as follows. The definition of the class
of multivariate extended skew normal distributions and its properties are given in
Sect. 2. Extended noncentral skew chi-square distribution with properties is discussed
in Sect.3. Necessary and sufficient conditions, under which a quadratic form is an
extended noncentral skew chi-square distributed, are obtained in Sect.4. Several
examples are given for the illustration of our main results.

2 The Multivariate Extended Skew Normal Distribution

Let .# . be the set of all n x k matrices over the real field % and W' = .# . For

nxk nx1*

any B, B € ., , B’ and r(B) denote the transpose and rank of B, respectively.

nxk?
Definition 1 The random vector Z € R follows a multivariate extended skew-
normal distribution, denoted by Z ~ ESN (X, a, y), if its density function is
given by

) —L ;2|1 @ (o 3
fz(Z7 1“)_2+y¢k(zv )[ +)/ (uz)]y ()

where ¢, (z; X') is the k-dimensional normal density function with mean vector 0
and covariance matrix X, and @ (-) is the standard normal distribution function.

Remark 1 several special cases of ESN, (X, a, y) are listed as follows.

(1) Whenae =0ory =0, ESN (X, a, y) is reduced to N, (0, 2'), the multivariate
normal distribution Ny (0, X).

(i1) As both y and o tend to +00, ESN, (X, e, y) is reduced to the multivariate
truncated normal distribution of N, (0, X') for x > 0.

(iii) When y = —1, ESN, (X, a, y) is reduced to SN (X, —a). Also it is reduced
to SN, (X, a) as y tends to oo.

(iv) For cases where y > 0, ESN, (X, ¢, y) is the mixture of a normal and a skew
normal distributions.

For emphasis the usefulness of this extra parameter y, the plots of density

functions of the bivariate extended skew normal distribution with o« = (_ 2) and
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Fig. 3 Density curves of ESN, (X, (5, -2y, 10)

Y= 015 OiS for different values of y. Figure1 is the density function corre-
sponding to y = —0.5. From Fig. I, we can see that the negative value of y changes

the directions of skewness as it changes the sign of a. From Figs. 2, 3 and 4, which
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Fig. 4 Density curves of ESN, (X, (5, —2)’, 1000)

corresponding to y = 0.5, ¥ = 10, and y = 1000, we can see both peaks and shapes
of density curves change as values of y varies.

The following Lemmas will be used to prove the properties of our multivariate
extended skew normal distribution.

Lemma 1 (Azzalini and Capitanio [3]) IfV ~ SN, (X, a), and A is a non-singular
n X n matrix, then

AV ~SN,(AZA, A ).

Lemma 2 (Zacks [23] and Chen [6]) Let U ~ N, (0, X). For any scalar p € W and
q € N, we have

, p
P(p+ =P —— 1. 4
E[®(p+qU)] [(1 quq)lﬂ] “4)

Proposition 1 [fZ ~ ESN; (X, «, y), and A is a non-singular n X n matrix, then
A'Z ~ESN,(A'XA, A &, y).

The proof of Proposition 1 is similar to that of Lemma 1.
Now we will extend about definition of multivariate extended skew-normal dis-
tribution to a more general case.

Definition 2 Let Z ~ ESN, (Ix, &, y). The random vector Y = p + B’Z is said to
have a generalized multivariate extended skew normal distribution with location
parameter g € R, scale parameter B € Mj,, skewness parameter a € R*, and
extended parameter y > —1, denoted by Y ~ ESN,, (i, B, «, ).

Remark 2 Note that the Definition 1 is the special case of Definition 2 where

ESN,(Z,a,y) = ESN,(0, 27, Z2a, y).
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Indeed, we know thatif Y = X 37 with Z, ~ ESN(1,, Z’%oc, y ), then we obtain the
result by the Proposition 1. Also the multivariate skew normal distribution given in
Wang et al. [18] is a special case of Definition 2 where y = —1.

Theorem 1 Suppose that Y ~ ESN,(u, B, o, ).
(i) The moment generating function of Y is given by

My() = —— ¢ [t/ + t/B/Bt] [1 + ds( o Bt )] )
= X — ).
¥ 24y P 2 v (1+ae)?

(ii) The density of Y, if it exits, is given by

2 B~y -
FOim B y) = 5otk 3 D) 114+ y @ * Sl e ©
4 [1+a'(y — BE~1B)a]?

where X = B’'B.
(iii) The mean vector and covariance matrix of Y are

2 B'a
EY]=p+-—1— /2 .
24y V(1 +aa):

2

2 /
cooY)=B (1, — -V 2% \p
QC+y)irl+ada

and

Proof For (i), the moment generating function of Y is,

My(t) = i/ ;exp tu+t'B'z— lz/z] [1+y@(@'z)]dz
Y +2 Jyk Qm)k/2 2
2 ' 1 / ! n! ] !
=m mkWexp t;L+tBZ—§ZZ]dZ
2 1 / ! ! 1 ! !
+m'mkWexp[tu—i—tBZ—gZZ]@(az)dz
2 1

2

: ! ’ t'B’'Bt
v 42 Jw o P T2 ¢ P (Z—Bt)]exf’[tu+ ]dz

I'n!

+ 2 / ! [ 1( Bt)'( Bt)} ’t’ +tBBt
e —— 7 €X ——=(Zz— z— €X]
v +2 o o2 P72 P

2 Ht/ +"B/B‘H1+ / : [ - By Bt)]«p( Wd]
= €X] —F—= €X ——(Z — z— o Z)dZ
yr2 P TT Y Jye @k P72

2 Ht, +t’B/Bt} [H (p( o' Bt )}
= exp {t'u vo|——) |-
y+2 2 (1 +'a)?

] @ (o'2)dz
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where, by Lemma 2,

/ . [ o Bty Bt)]@(a’z)dz @(—“/Bt )
X —_ J— — = .
w @2 P72 (1 +aw?

(i) LetZ; ~ ESN, (I, a1, y) and Y| = pu + Z’%Zl with ¥ = B’B. By Propo-
sition 1 and (3), the density of Y| is

2 I
YD) =—¢u(y1 — s X) [1 + V¢(a12‘5(y1 - u))]-
2+y
By part (i),
My, (t) = — [t/ +t/2tl Y i
y, (t) = expitu + —— yol———=) |-
1 y+2 2 (1+a’1¢x1)%
> Ba ]
Leto; = , we obtain

[1+a'( — BY'B)a]?

, l+o'a
I +ojo; =
l+a'(ly —BX'B)a
and ]
o Xzt o' Bt

(I +ala)?  (1+oa)

Therefore, we obtain My(t) = My, (t), so that fy(y; u, B, o, y) = fy,(y1), the
desired result follows.

(iii) The mean vector E (Y) and the covariance Cov(Y) of Y can be obtained using
the moment generating function of Y. (I

Theorem 2 Suppose thatZ ~ ESNi(Iy, &, y). LetY; = p; + B/Z with B; € My,
Then Y, and Y, are independent if and only if

(i) BB, = 0 and

(ii) either Bjoe = 0 or Bya = 0.

Proof The “if” part is trivial. We only prove “only if” part. Let Y = p + B'Z with
p' = (), py) and B = (By, By).

Suppose Y; and Y, are independent. Then we have My (t) = My, (t;) My, (t2) with
t' = (t/, ty), where

My(t) = T

2 . tB'Bt o' Bt
exp {t'n + l+ye\———=) |-
Y 2 (1 +a'a):
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2 ’ tl/B;Bltl Ol/Bltl
My, (t) = expitipy + —i|1l+ye | ———— ) |,
24y 2 (14 a'a)?2
and
2 tz/B/thz Ol/thz
My, () = exp it p, + ———tl14+yo [ ————)|.
Y, (t2) hy p{zﬂz > 14 TEPY

After simplification, we obtain,

2 o Bt o' Byt
=11 ) — 1 | =22+
2“[ T (<l+a'a>5)H i (<1+a'a>5)}
1+V¢ o' Biti+o’' Boty
(1+a’a)%

for all t; € " and t, € N"™2.

Assume that BB, # 0, then we choose s; € "' and s, € R such that s} B
Bysy > 0. Let t; = csy, t; = sy, ¢ € N. Then the right hand side of (7) approaches
to 00 as ¢ — 00. Note that, the left hand side of (7) is bounded for all t € R when
y # —1, and it approach 0 or oo when y = —1. Therefore, B; B, = 0 as (7) holds

for all t € \".
Now from (7), we have

/ / / /
22 |:1+7/¢( O[B]tll)i||:1+)/¢( OIthz1)1|:l+y¢(a31t1+a812t2)’
v (1 +aa)? (1 +aa)? (1 +/a)2
for all t; € W™ and t, € RN"2.
Note that we do not need the condition (ii) if ¥ = 0. Now, assume that both

a’'B; # 0 and o’ B, # 0. There exist s; € R and s, € N2 such that a’B;s; > 0
and a’'Bys> > 0. Lett; = ¢181 and ty = 8, ¢1, ¢» € K. Then as ¢; — oo we have,

1+ o' B>s

—"[1+y<p (%)} =1+,

2+y 1+ o)z
for all s, € M2, so that &’ Bys, must be zero. Similarly, as ¢, — oo, we obtain that
o’ B>s; must be zero. Therefore the desired result follows. O

=exp{t|B|B:t2}, (7)

From Theorem 2, it is easy to prove the following result.

Corollary 1 Let Y ~ ESN,(, B,a, y). Then A\Y and A)Y, with A; € My, xn,
are independent if and only if

(i) AiB'BA, = 0 and

(ii) either AiB'a = 0 or A,B'ae = 0.

E_xample 1 Let Y~ ESN,(0,B,a,y), Y = 1Y/n and W = (I, — J)Y, with
J, = 1,11; /n and 1, is the column vector of 1’s in R". From Corollary 1, we know
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that ¥ and W are independent if and only if 1/ B'B(I, — J,) = 0 and 1, Ba = 0 or
(I, — J,)B'a = 0.

In particular, if B'B = I,, we have 1, B'B(I, — J)=0and Y and W are
not independent if both 1,Ba # 0 and (I, — J_n)B/oz # 0. For example, even if
o= (1,0,...,0) and B =1,, then 1,Ba =1 and (I, — J,)Ba = (1 — 1, —

n’

1
n?
—Lly O

3 Extended Noncentral Skew Chi-Square Distributions

The noncentral skew chi-square distribution, with k degrees of freedom, noncentrality
A and skewness parameters §1, 6,, was defined by Wang et al. [18] ant Ye et al. [20].
Here we use a similar method to define the extended noncentral skew chi-square
distribution under the multivariate extended skew normal settings.

Definition 3 Let X ~ ESN, (v, I,, «, ). The distribution of X'X is defined as
the extended noncentral skew chi-square distribution with k degrees of freedom,
noncentrality parameter A = v'v, skewness parameters §, = «'v, §, = o’a and
extended parameter y, denoted by X'X ~ ES X: (A, 8,,6,, ).

In the following, we discuss the properties of the extended noncentral skew chi-
square distribution.

Theorem 3 Suppose thatY ~ ESN, (1, B, o, y). Let Q = Y'WY with symmetric
W € M, «,,. Then the M.G.F of Q is given by

2 exp{tW/Wpn+ 2020w WB'(I, — 2tBWB') "' BWn}
2+y |I, —2tBWB'|:

MQ(I) =

2ta’ (I, —2tBWB)"'BW
w14 y0 o' (I ) s ’ )

1
[1+a'(l —2tBWB) la]?

fort € N such that 2|t| < o (BW B’), where o (A) is the spectral of A.

Proof The moment generating function of Q is

Mo(t) =E (exp{tY/WY})
= E (exp{ti/'Wu +1(ZBWB'Z + 2/ WB'L)})

2 tuw'w 1 1
_ 2explin Wi expit\ZBWB'z+2u/WB'z — ~7'z) } dz
y+2 gk 27k/2 2
2 tuw'w 1 1
v explin Win) / expit(ZBWB'z+2u/'WB'z — -7z )} ®(«'z)dz,
y+2 o 2mk/2 2

by a similar argument given in proof of (i) of Theorem 1,
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2 exp{tWWpu+ 22w/ WB' (I —2tBWB") "' BWp}

Mo(t) =
¢ 2+y |I, — 2tBWB'|

2ta’ (I, — 2tBWB)"'BW
X|14+y® o ) e . g

| +a/(I, — 20 BWB)'a]
[ ]

Corollary 2 Let X ~ ESN,(v, I,, &, y), we have U = XX ~ ESx (1, 8,.6,.y),
then
(i) the moment generating function of U is

_ -1 _ -1
Mo (6) — 2 exp{r(1 —20)7'4) [1+y¢( 26(1 — 2) 18, )]

2+y  (1—20)k2 [1+1—20)716)]

fort € M such that 2|t] < 1,
(ii) the mean of U is

4y &

E U =)\, k )
@) * +(J/+2)«/27T(1+32)

(iii) the variance of U is

18, [VITy (r + 2@+ 82) = 22811 + 82

Var(U) =4y + 2k + -
m(y +2)2(1 +6)>

’

where X, 81 and &, are given in definition 3.

Remark 3 Note that Theorem 3 and Corollary 2 extend the results of Wang et al.
[18] from the case where y = —1 to cases where y > —1 . Also, when y =0 or
61 =0,ES sz (A, 4,,4,, y) is reduced to noncentral X2 distribution with degrees of
freedom k.

Theorem 4 The density function of U ~ ES)(E()\,(SI,&, y) with A #0 and
k>1,is

fou; x,8,,68,,y) =

Zexp{—%(k—i-u)} Ky (k Au)
7”2 OFl N4
v ror (2" 2
yexp{—%()»+u)}
v +20 (3) I (52"

h(u; 2,8,,8,) u>0, (9)

where

£ k=3
Va =

h(x: 2. 8,.8,) =/ exp (x'“s,) (x —sf)

BV
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—1/2

A TS,
= —— 5, and o F\ (b, 2) denotes th th tri -
o, (l+82—8f/k)]/2 and oF (b, z) denotes the confluent hypergeometric func
tion (Muirhead [16]).

Proof Let X ~ ESN,(v, I, a,y), and Y = KX, where K is an k x k orthogonal
matrix whose elements in the first row are v; /ﬁ, i=1,2,..., k. Whave Y ~
ESNy(Kv, I, Kee, y) with Kv = (v/2,0, ...,0), and for k > 1,

k
U=XX=YY=y+> y.
i=2

Note that Y| ~ ESN(«/X, 1, o, ¥) and (Y, ..., Yk)/ ~ ESNkfl(O, Ix_1, 02, 9).
By the Definition 3, we have zj;z Y? ~ x7_,. Then the conditional density function
of U given Y| = y; is

N
(u—y7)”’ [_M—)ﬁz]

Jom =y, ) = r (%) = exp 3

Therefore, the density function of U is

i
sy = [ oo, @y O

.ﬁ ~ '2 _ 2 A
: (“2”(1)]F(k1)zk52 /ﬁ“p[‘”””w] (-22) 7 ay
2 7

. /ﬁ ”—)’12+(y1—ﬁ)2
eX —
(V+2)F(%)F(%)2% v p

+

k=3

x (u - y12) 2o (010(}’1 - \/X)) dy;

Note that
! N u—y2+(yl—ﬁ)2 3
wror (1)) /ﬁ“”“ - ]@—y%) S
_ exp —%(u+k)} = /\/jexp{ﬁyl}(u_y%)%dyl.

oo (3) ()2 v

Let y; = /u cosd, we obtain
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k=3
2 Jusin6do

— /Dﬂ exp {«/Iﬁcos 9} (u sin” 9)

200 {10} expt—tu) w_, . (k Au)
01 B .

) e’ 28
Y F(%)zi
Similarly,
2
N u—y>+(y — v o
Y / exp 7#) (=) 7 @@y, — Vi)dy,
v+2r (5) (5527 v g

m=3

Ji
- [ el ) ) 2
2 2 —

Remark 4 From the density function given in (9), we know that the extended non-
central skew chi-square distribution is uniquely described by the parameters k, A, §,,
8, and y . Similarly, in order to emphasize the usefulness of the extended parameter y
in our noncentral extended skew chi-square distributions fork = 5,6, = —5,5, = 10
with different values of y are plotted in Fig.5. In Fig.5, we can see that the peaks
and shapes of ESx, (5, =5, 10, y) are changed and are reduced to Sy, (5, =5, 10),
as y goes to oo, which is given in Ye et al. [21].

4 The Distribution of Quadratic Form of Y

In this section, we talk about the distribution of quadratic forms of Y ~ ESN,
(m, B, o, y). We will say the matrix M is idempotent if and only if MM = M.

Lemma 3 (Wang et al. [18]) Lef us have B € Myxn, # € W', A >0, m <k be a
positive integer, and W € M, «,, be nonnegative definite. If

exp [t Wi +22W WB' (I, — 2tBWB)'BWp]  exp {521}

|I, — 2tBWB'|> (1 —20)ym/2°
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Fig. 5 Density curves of ESx, (5, —5, 10, —0.5) (Blue and stars), ESx;(5, =5, 10, 0.5) (Green
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for all t with 2|t| < min{l, c (BW’B)}, then
(i) BW B’ is idempotent of rank m, and
(i), =wWpu=puWB BWp.

Theorem 5 Let Y ~ ESN,(p, B, a, y) and Q = Y' WY with nonnegative definite
W e M,y,. Then the necessary and sufficient conditions under which
0~ ESX;(A, 8,,6,,y) for some a or y including 0, are

(i) BW B’ is idempotent of rank m,

(i)r=pu'Wpn=uWB BWp,

(iii) 6 = w’ WB'a/c,

(iv) 85 = «’/ BWB'a/c?,

where ¢ = /1 +a’' PP, and P = (P, P,) is an orthogonal matrix in My such
that

/ Imo / /
BWB:P(OO)PszP

Proof For “if” part, assume that conditions (i)-(iv) hold. By (i), there exists an
orthogonal matrix P € M such that

IITL 0

BWB:P(00

)P:am
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where P = (P; P,). Itis easy to see that (i) and BWB’'BW = BW are equivalent
for nonnegative definite W.

Let Z ~ ESNy(Ix, o, y) and Z, = P{Z. Then Z, ~ ESN,,(1,,, Pia, y) and the
density of Z, is

f(Z)_L(b(ZI)l‘i‘@ o' Pz,
2, (Zs _2+7/ m\ZLxs I Y [l—i-OC/(Ik_PlPl,)a]%

%‘pm(z*; Im) [1 + )/¢ (a;z*)] .

Therefore, we have Z, ~ ESN (I, ot.., y) with e, = Plat/c.
Letv = PiBWpn and X = v + Z,. By the Definition 3,

X'X ~ ESx2 (A, 81,82, 7).
/WB/
with A=v'v =@ WBBWBBWp, 8 =ve,=""2% and 5, =ale, =
Cc
o BWB'a
—

c
Next, we need to show Q 4 X'X.

O=YWY = (u+ BZ)W(u+ BZ)
=uWn+2ZBWu+27Z BWB'Z
= (v+ P|Z) (v + P/Z) = X'X,

so that the desired result follows.
For “only if” part, suppose Q = YWY ~ ESx2 (A, 81, 82, y), we have

2 exp{tW/'Wpn+ 220/ WB'(I, —2tBWB')"'BW .}
24y |I, —2tBWB'|:

Mo () =

2ta’(Iy — 2tBWB)"'BWpu
1
[1 4o/ (I —2tBWB") 'a]?

2 exp {r(1 —21)~'a} 2¢(1 = 26)716,
T 24y (1 = 2p)k/2 [Hy@([u(l—zm—laz] '

for all ¢ such that 2|¢| < min(1, 0 (BWB’)).
Note thatleta =0 ory =0,

x[1+yd (10)

exp {tw/'Wp + 202 W WB'(I, —2tBWB')"'BWp} _exp {r(1 —20)7"2}
|I, — 2tBWB'| (1 —20)k/2
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By Lemma 3, we get (i) and (iii).
By (10), we obtain

2ta/(Iy —2tBWB) 'BWp  2t(1=21)7'§,
[1+o(—2BWB)la]  [1+1=20718]

for all r € 9.
Fort =0,
o«BWp 81 (11
(I4+o/a)/2 (148)1/2

For t # 0, by Taylor expansion, the coefficient of ¢ term should be equal to each
other,

o BWps; = [a’BWB’(BWB’)a]% = (o' Py P{a)% 8. (12)

Compare (11) with (12), we have 8, = w'WB'a/c and 8, = «'BWB'a/c?, as
desired. O

Example 2 Consider the one-way balance random effect model with extended skew-
normal random errors given by

Y =ul, + (I, ®1)E + &, (13)

where n = am, Y is a n-dimensional random variable, u € %, & ~ N, (0, aazla),
é, ~ ESN (0, oozln, 1o, y)witha € N, y > —1, and &, and &, are independent.
Consider quadratic forms of Y:

g =YWY, i=12 W=I1®J, and W,=1 U, —J,).

m? m

For testing Hy : aﬂz =0vs H;: af # 0, we can rewrite it into an equivalent form
Hy:o? =c702 vs H:o? 75002.
Then under Hy, we know that
Y ~ ESN, (1,11, 0%1, 1, y).
(1) For the distribution of ¢,, note that le =W, r(W)=a and PP, =1, —
W,, we obtain ¢ =1, A = ul' W11, u = nu?, 8 = pl W 1o = nap, and 6, =
o1, W, 1,1, = na?.

Therefore, by Theorem 5,

q, ~ ESx;(np*, nap, ne, y).



168 W. Tian et al.

(i) Similarly, W =W, r(Wo)=n—a and P,Pj=1,—W,, we obtain
c=v1+na? r=pul’ W1 =0, 8 =pul' W,1,a/c =0 and 8, = «*1,W,1,
1,/c¢* =0.

i.e,

g, ~ ESx? ,(0,0,0,y),

which is Xia, chi-square distribution of n — a degrees of freedom.
(iii) Since B = I,,, we obtain W, B'BW, = 0 and W,B’1 o = 0. By Corollary 1, we
know, W,Y and W,Y are independent and hence ¢, and ¢, are independent. g

Example 3 Let Y ~ ESNs(1apt, B, 140, y) and g = YWY, where pu e i, W =
I, ® J, and

1200
2100
310012
0021

Note that

1100
1{1100
2loo11 |°

0011

BWB =

which is idempotent of rank 2, so that the condition (i) of Theorem 5 holds. Also the
orthogonal matrix P in Theorem5 is

L9 L2 9 2
V2 g _¥2 _¥2
P=| 2 2 with P, = 2 ,
02 0 oo 2
V2 V2 V2
02 o0 -2 0 -2

we obtain ¢ = /1 + a1} P, P;14oc = 1. For the calculation of parameters we have
1,W1l, =4, 1,WB'BW1,=4, 1,WB'1;=4, and 1,BWB'1,=4

so that
A=4p?, 8 =4dap, and & = 4da’.

Therefore, by Theorem 5,

q ~ ESx3(4u’ dap, 40?,y). O
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Multiple Copula Regression Function
and Directional Dependence Under
Multivariate Non-exchangeable Copulas

Zheng Wei, Tonghui Wang and Daeyoung Kim

Abstract In this paper, the multiple directional dependence between response vari-
able and covariates using non-exchangeable copulas based regression is introduced.
The general measure for the multiple directional dependence in the joint behavior
is provided. Several multivariate non-exchangeable copula families including skew
normal copula, and the generalized Farlie-Gumbel-Morgenstern copula models are
investigated. For the illustration of main results, several examples are given.

1 Introduction

The copulas have been increasingly popular for modeling multivariate data as they
account for the dependence structure and provide flexible representations of the mul-
tivariate distribution. And the copula based modeling has been extensively applied to
many areas including actuarial sciences, finance, neuroscience, and weather research
(e.g. Sriboonchitta et al. [14, 15]). The notion of copula has been introduced by Sklar
[13]. It has become one of the most significant new tool in statistical modeling. Cop-
ulas, multivariate distributions with standard uniform marginals, contain the most of
the multivariate dependence structure properties and do not depend on the marginals
of the variables. Standard references for a detailed overview of copula theory, see
Joe [6], Nelsen [12], Wei et al. [22], and WEei et al. [21].

The analysis of directional dependence in nonexperimental study has been applied
in various research contexts such as exchange rates (e.g. Dodge and Rousson [4]),
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deficit hyperactivity disorder (e.g. Kim and Kim [9]), gene networks from gene
expression data (Kim et al. [8]), and the development of aggression in adolescence
(Von Eye and Wiedermann [19]; Kim and Kim [7]). The directional dependence is an
asymmetric dependence/interaction between the variables. Sungur [16, 17] argued
that the best way of understanding the directional dependence between variables is
to study it through the copula regression model. As noted in Sungur [16], in order to
study the directional dependence stemming from the joint behavior of the variables
of interest, the non-exchangeable copulas should be utilized. This is because the
exchangeable copulas describes only directional dependence originating from the
marginals of the variables.

However, it is challenging to construct the multivariate non-exchangeable copulas
that allows delineation of the asymmetric dependence among multivariate variables.
In this paper we propose two new classes of multivariate non-exchangeable copula
families. The first is the skew normal copula based on the class of skew normal distri-
butions (Azzalini [1-3]). The second is the generalized Farlie-Gumbel-Morgenstern
(FGM) copulas extended from the works of Ubeda-Flores [18]. We illustrate the
application of the proposed multivariate non-exchangeable copulas to examples of
multiple regression-based directional dependence.

This paper is organized as follows. The multivariate copula based directional
dependence and the multiple directional dependence measures, and their properties
are given in Sect. 2. Multivariate skew normal copulas are provided in Sect. 3.1. Mul-
tivariate non-exchangeable copulas, which generalize the FGM copulas, are proposed
in Sect.3.2.

2 Multivariate Copula Based Directional Dependence

2.1 Multivariate Non-exchangeable Copulas

In order to investigate the directional dependence for multivariate data through copu-
las, we will first define subcopulas (Nelsen [12]) and then define copulas as subcopu-
las with the unit hypercube domain. Then we introduce an exchangeability property
commonly assumed in the copula and show its limitation in terms of the conditional
distribution of the copula.

Definition 1 A k-dimensional copula is a function C : [0, 1] — [0, 1], satisfying
following properties:
(a) C is grounded, i.e., if at least one u; = 0, C(uy, ..., ux) = 0;

(b) Forevery u; € [0, 1], Ci(u;)) = C(, ..., L,u;, 1,...,1) = u;
k
(c) C is k-increasing in the sense that, for any J = [][w;, vi] < [0, 11F with

i=1
u;, v; € [0, 1],
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volC(J) = ) sgn(@)C(a) > 0,

where the summation is over all vertices a of J, and fora = (aj, ..., a)’, with
(ai, ..., a7 is the transpose of (ai, ..., ax)", and a; = u; or v;,
1, if a; =v; foraneven number of i's,
sgn(a) = . .
—1, if a; =v; foran odd number of i’s.
Let X = (Xo,X1,...,X)7T be a (k + 1)-dimensional random vector having
the joint cumulative distribution function (CDF) H (xg, X1, ..., Xx), and marginal

CDF’s Fy(xg), F1(x1), ..., Fir(x;). Sklar’s theorem (Sklar [13]) states that if the
marginals of X are continuous, then there exist a unique copula C such that
H(xo, x1,...,x) = C(Fo(xo), F1(x1), ..., Fr(x;)). One can easily see that the
copula C of X represents information on dependence structures of H on a quan-
tile scale: for the random vector X with continuous margins, C(ug, Uy, ..., ux) =
H(FO_1 (up), F]_l (uy), ..., Fk_l (uz)) where F~! denotes the generalized inverse func-
tion of F such that F~'(u) = inf{x : F(x) > u).
For an absolutely continuous copula C, the copula density is defined as

U C(ug, uy, ..., uy)

8M08U1 s E)uk

c(uo, uy, ..., u) =

Given a random vector X, with an absolute continuous H with strictly increasing
continuous marginals Fy(xp), Fi(x1), ..., Fr(x;), the copula density defined above
is given by

h(Fy  (uo), Fy ' (ur), - i ()
c(uo, uy ..., ux) = — — —~ ;
Jo(Fy  wonfi (F7 ) - . fe (B (ug))

6]

where h(xg, X1, . .., X¢) is the joint density of H (xo, x1, ..., xx) and fo, f1, . .., f are
the marginal densities.

The conditional distribution of copulas can often provide the insightful informa-
tion on dependence structures between the variables of interest.

Remark 1 For a (k + 1)-dimensional random vector X = (Xo, Xi, ..., X)) with
the corresponding copula C(ug, uy, . .., ux) where U; = Fi(x;) andi =0, 1, ...k,
the conditional distribution of X given X1, ..., Xj is given by,
Fxyx,,..x. (o | x1,...,x) =PXo <xo | X1 =x1,..., Xk =xx)
_ KC(up, uy, - ., wp)
duy - - - duy uo=Fo(x0),u1=F1(x1),..., uk:Fk(xk).
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For a (k + 1) standard uniform variables Uy and U = (Uy, ..., Uy)T witha (k + 1)-
copula C, the conditional distribution of Uy given U = u is given by,

KC(ug, uy, - .., ur)

8u1 ~-~8uk

b

Copo (o) = P(Uo < uolU = u) =

whereu = (uy, ..., ).

For the bivariate continuous random vector (Xo, X1)” with (Up, U = (Fy(Xo),
F1 (X)), the conditional distribution of the corresponding copula Cyy, (o) implies
the probability that Xj is less than or equal to its ugpth quantile given that X, reaches
its u;th quantile.

An assumption commonly made in the copula for applied research is the exchange-
able (or symmetric) dependence structure between the variables of interest, and
several families of exchangeable copulas including Archimediean copulas and all
meta-elliptical copulas are widely used in the literatures (Nelsen [12]).

Definition 2 A (k + 1)-dimensional random vector X = (Xp, X;,..., X7 is
exchangeable if the joint distribution of X is the same as the joint distribution of X, =
(Xo0)s Xo(1)s «--» X(,(k))T for any permutation o € I where I" denotes the set of all
permutations on the set {0, 1, ..., k}. A (k+ 1)-copula C is exchangeable if it is the
distribution function of a (k + 1)-dimensional exchangeable uniform random vector
U= (U, Uy, ..., U7 satistying C(ug, uy, . .., ux) = C(Uy(0)» Uo(l)s - - - » Uo (k))-

The exchangeability assumption imposes a strong symmetry property on the cop-
ula describing the dependence structure of the data. For example, if the copula of
the bivariate random vector (Xp, X;) is exchangeable, then Copw, (o) = P(Up =
uo|Uy = uy) is equal to Culwo (1) = P(U; < u1|Uy = ugp). That is, the probability
that X, is larger than its u;th quantile given that X, reaches its uyth quantile is equal
to the probability computed the other way around.

2.2 Directional Dependence Using Copula-Based Multiple
Regression

The approach to the directional dependence using non-exchangeable copula devel-
oped in Sungur [16, 17] is limited to the bivariate regression case. However, in prac-
tice, the problem of directional dependence often occur in the setting of multivariate
data. In the following, we will extend the method of the directional dependence using
copulas to multiple regression problems.

Definition 3 Fora (k+ 1)-copula C(ug, uy, ..., u;) of Upand U withU = (Uy, ...,
Uy)T, the copula-based multiple regression function of Uy on U = u is defined by
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1
rC (u)EE(U0|U=u)=/ uowduo
0

¢, ()
1 1
=1- @) /0 CUOW(uo)duo, 2)
where Cy(u) = C(1, uy, . .., ug) is the marginal distribution of U, and
I Cug, uy, ..., akc
c(uo, ug, ..., ux) = (0. 1y uk), cy(u) = ﬂ,

dugouy - - - duy duy - - - uy
KC(up, uy, - ., wp)

8u1-~~8uk

Cypo (10) =

are the joint copula density of Uy and U, the marginal copula density of U and the
conditional distribution of Uy given U, respectively.

In multiple regression problems for the multivariate data, there are two types of
setting where one can consider the directional dependence (Wiedermann and von
Eye [23]). The first setting is where all variables of interest can be conceptually
the outcome variable due to no a priori distinction between outcome variables and
predictors. The second setting is where some variables are theoretically known to
be predictors of the other variables, and so there is need to adjust the effects of the
predictors on the directional dependence between the other variables of interest.

Accordingly, we define the directional dependence in joint behavior for the (k+ 1)
uniform random variates Uy and U = (Uy, ..., Uy, ..., Uy)T with the corresponding
copula C(ug, Uy, ..., Ug, ..., Ug).

Definition 4 The (k + 1) uniform random variates Uy and U have no multi-
ple directional dependence in joint behavior if the (k + 1) copula-based multi-

ple regression functions rUC v, (Us) for all permutations o € I' are all equal to
o(0)IY0
each other where I' denotes the set of all permutations on the set {0, 1, ..., k} and

U(r = (U()'(l)a ceey U(r(k))T‘

From the definitions above, we can say that (conditional) directional dependence
in joint behavior exists if there are at least two copula-based multiple regression
functions which differ. As an example of the Definition 4, for the three uniform
variates (Uy, Uy, U,),

C _.C _.C
Tl(U Un)=(1.0m) (D1 ©2) = TG, Uy Uy =(an.0) Q1> @2) = T0, 0 U))=(@y ) (@15 ©2)

implies no directional dependence in joint behavior where
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c 1 1 ! 32C(M0,M1,M2)d
Uoluy.Uy 0 92C(ug=1,u1,u2) du duy Uo,
8u16u2
c 1 82C(Mo, up, u)
= 1 — dl/l],
U1 |Uy.Uy 92C (ug,u1=1,ur) 814()81,{2
dugdun
c 1 32C(M0, up, u)
=1- 3 duz.
U, U, Uy 3%2C (up,uy,up=1) 8u08u1
Ougduy
Remark 2 For the multivariate exchangeable copulas satisfying C(ug, uy, . .., uy) =
C(us(0)> Us(l)s - - - » Us(ky) Tor all permutations o, there is no directional dependence

because all copula-based multiple regression functions of interest are the same. In
order to detect the directional dependence in joint behavior for the data, therefore, one
needs to consider using the multivariate non-exchangeable copulas. We will focus
on the development of multivariate non-exchangeable copulas in Sect. 3.

The following proposition gives a basic property of the copula-based multiple
regression function for uniform random variates, which will be useful for further
development.

Proposition 1 Let rgw (u) be the copula-based multiple regression function of U,
on U. Then

1
E[r¢ O] = 3.

Uglu

Proof From the definition of copula-based multiple regression function, we have

1
1
Elr SW(U)] / 11— e /CUOIU(uO) ¢, W)duodu
0

(0,1}
1

=1- / /CUOW(M()) du()du

[0, 1]" 0

*C(ug, uy, ...,
1_/ / (uo M1 uk)duduo
duy - - - duy

0 (0,17

1—/[C(uo, I,....,1) = C(uo, 0, ..., 0)]duoy

1
=1—/u0du0=—

0



Multiple Copula Regression Function and Directional Dependence ... 177

In order to quantitatively measure the directional dependence given the copula-
based multiple regression, say r¢ (w), we propose the following measure,
UglU

, Vet @) Bl O -1 e e
p(U—»UO) - Var(Up) - 1/12 = [(on\U( ) 1-=3. (3)

Note that the form of the copula-based multiple regression used to compute the
measure in Eq. (3) depends on Definition 4. If Uy, U, . .., Uy are independent, then
all copula-based multiple regression functions are equal to 1/2 (e.g., rfmv (m) = 1/2)
and so the corresponding directional dependence measures in Eq. (3) are all zero.

Remark 2.2. The idea of the measure in Eq. (3) is similar to the idea of the multiple
coefficient of correlation R> = % under the multiple regression model designed to
measure the proportion of regression sum of squares (SSR) and total sum of squares
(SST), of a dependent variable given independent variables. Thus, the proposed
measure in Eq. (3) can also be interpreted as the proportion of variance of a tentative
outcome variable explained by the other variables and so they can be used to compare

the predictive powers of given copula-based regression functions.

3 Multivariate Non-exchangeable Copulas and Their
Application to Directional Dependence

In this section we propose two new multivariate non-exchangeable copulas, skew
normal copula and new generalization of Farlie-Gumbel-Morgenstern (FGM) copu-
las. We then show their application to the directional dependence in the framework
of copula-based multiple regression.

3.1 Skew Normal Copulas

The class of skew normal distributions together with its extensions and applications
have been an important topic in past three decades, see Azzalini [2, 3], Gupta et al.
[5], Wang et al. [20], and Ye et al. [24]. A random variable X is said to have the
skew normal distribution with the parameter A € R, denoted by X ~ SN (1), if its
probability density function is

f&sA) =2¢0)P(hx), xeR, 4)
where ¢ (-) and @(-) are the probability density function and the CDF of a standard

normal variable. The following result of Azzalini [3] will be useful in building the
multivariate skew normal distribution,
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Lemma 1 If Zy and Z, are independent standard normal random variables with
mean 0 and variance 1, denoted by N(0, 1), and § € (—1, 1), then

X = 81Zo| + 1 — 822, (5)
is SN(A) where A = §//1 — §2.

LetZ = (Zy, ..., Z)" be the multivariate normal distributed random vector with
standard normal marginals, independent of Z ~ N (0, 1). The joint distribution of Z

and Z is given by
z 10"

where N;(u, X) is the k-dimensional multivariate normal distribution with mean
vector u and covariance matrix X', and Ris a (k+1) x (k+ 1)-dimensional correlation
matrix of Z. Consider random variables Xy, X1, ..., X; given by

X; = 52| + /1 - 87, @

where j = 0...,k and §; € (0,1). By Lemma 1, X; ~ SN(};) where 4; =
8/ 1 — (sz. Also, the joint density function of X = (Xo, X1, ..., Xp)T (see Azzalini

[3])is
h(x) = 2y 41(x; )P (a’x), (8)

where S
r AMR AT

=———— Y =AR+DHA,
(1+ATR-1a)1/2 ( )

A =diag((1—8)', ..., (1=8D)"), A= (..., 00,

and ¢y (x; X') denotes the density function of Ny4(0, ). The random vector X
with the joint probability density function in Eq (8) is said to be the multivariate
skew normal distribution with the location parameter 0, scale parameter X', and the
skewness parameter o, denoted by X ~ SN (X, o).

We now define the multivariate non-exchangeable skew normal copula using the
multivariate skew normal distribution defined above.

Definition 5 A (k 4 1)-copula C is said to be a skew normal copula if
Clug, ur, ..., u) = H (Fy ' (uos Ao}, Fy ' (uns ), o F s )i Zee), (9)

where F]fl(uj; Aj) denotes the inverse of Fj(x;, A;) with X; ~ SN (%;), X and o are
given in (8), and H is the CDF of SN;11 (X, o).
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Using the definition of the copula density in Eq (1), the multivariate non-exchangeable
skew normal copula density is given by

_h(Fy wo; 2o), Fy s M), s M) B, @)

= —— o w— . (10)
Jo(Fy ™ (uos o)) fr (Fy - (urs M) - - fie(Fy (s Ag))

c(uo, uy, ..., uy)

where h(xg, x1, ..., Xx; X, e) is the joint skew normal density in Eq. (8) and f; (x;; A;)
is the marginal density of skew normal variables, X; ~ SN (4,).

Remark 3 Itis easy to see that the skew normal copula (9) is exchangeable if and only
if o = §; = ... = §; and all off diagonal elements of R equal each other. Therefore,
the skew normal copula can be used for the analysis of directional dependence unless
the condition of exchangeability above described holds.

Remark 4 The regression function based on the non-exchangeable skew normal
copula in Eq.(9). For the skew normal copula given in Definition 5, the copula
regression function of Uy given U = u is

1 Fy'(uoiho)
oy =1 — / / b1 (o, wi (27 =Ty ™) (11)
¢, @)
0 —00
k
D (agxp + Z aw;)
X P =l dxoduy,
[T2(iw)
i=1
where
w=wi....ow)" = EF @), F s a0)
- 7‘ - 7 . . . . .
K=" Z‘k‘,(li‘lf‘lk“) ! , Iy = diag(0, It), and I is the k x k identity matrix.

Example 1 The density function of X = (Xo, X1, X2)7 in (8) is
h(xo, x1, x2) = 2¢3(x0, X1, x2; L) P (atpxo + 1% + c2x2), (12)
where X' and @ = («y, a1, @) are given in (8). To be specific,
1 oo 002

Y=o 1 o},
oo o1p 1

and o = 8:6; 4+ p;j,/1 —87,/1 —68;. Note that the marginal density of Xo, X;

and X»,
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fil) =20 (x)®@(\ix;), i=0,1,2. (13)
where A; = §;/,/1 — 8i2. The condition density of X, given X; = x1, X5 = x5 is

D
holx1, %2) = o (ol xp) 00 T Q101+ @2%2) (14)
D (a1x] + 02x2)

where ¢.(xo|x1, x») is the conditional density associated with the normal variable
with standardised marginals and correlation X, (&, &»)” is the shape parameter of
the marginal distribution of (X;, X>)”, to be specific,

001 —=012002 002012001
ar+ s y + T o
2 12

=2 Gp=-——"
J1+a2p? J1+a2p?
21— 0d — 2001002012 + 03y
pc - 2 .

1 -0,

The moment generating function of X given X; = x|, X, = x; is obtained as,

@ a0p3t+aoﬂf+a1x1+zx2xz
N 1+adp?

M, x o (1) = exp { et + p2t%/2 _ _ . 15
olxi, 2() p{M Pe / } @ (@1, + @rx) (15)
where @, = (Uol—002012))161_-‘;(2002—(701012)X2.
12
The mean regression of X given X; = x;, X, = xp,
1 e + QX1 + 02X
EXolX) =x1, X2 =x) = ﬁ[ﬂc(p
o1x) + axxn /1 +a(2)p3
o P> Qo + 01 X1 + 0o
n (s o [ 2o 1X1 + 02X ] (16)

V1 +adp? J1+adp?

For 8o = 0.3,8; = 0.5,6, = 0.8 and p; = 0.5, for all i,j = 0, 1, 2, the plot of the
mean regression function of Xy given X; = x;, X, = x, in Eq. (16) is given in Fig. 1.
For the case where k = 2, the skew normal copula model in (9) is,

C3N (uo, ur, un) = H(Fy  (uo, 2o), Fy ' (ur, 11), Fy Hua, 22); 2, @)

where H is the CDF of (12). We obtain the skew normal copula regression function
of U() giVCIl Ul = U, U2 = Uy,
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0.55
0.50

0.45
0.2

04 o6 02 ¥
u1 0.8

Fig. 1 The plot of the regression function E[Xo|X; = x1, X2 = x2] in (16) (left) and the plot of the
skew normal copula regression function rlC/0|U1,U2 (uy, up) in (17) (right) for 8o = 0.3, §; = 0.5,
82 =0.8,and p;; = 0.5, foralli,j =0, 1,2

1 Fy'(uoiro)
o ) =1 — ¢3(x0, wi, wo; (7' =)
Yolty U 57 cro(uy, un) B
—00
0]
(apxo + agwy + aawy) dxodito, a7
D (A w) P (Aaw2)

T —1_J,)-1 _ _ ~
where K = TS ow) = (F s ), By g 1)L Ty =
diag(0, I), and I, is the 2 x 2 identity matrix. The plot of the copula regression
function VSO\UI,Uz(ul"'Q) for 6o = 0.3,8; = 0.5,8, = 0.8 and p; = 0.5, for all

i,j=20,1,2in Eq.(17) is given in Fig. 1.

3.2 Multivariate Non-exchangeable Generalized
FGM Copula

Ubeda-Flores [18] proposed one class of bivariate non-exchangeable FGM copulas.
We provide a trivariate extension as follows.

Proposition 2 Let fy, fi and f> be non-zero real functions defined on [0, 1] and C be
the function on [0, 1]* given by

C(ug, ug, ur) = uouiuz + fo(uo)fi () uz + fo(uo)f> (u2)ur + fi (uy)fo(uz)ug.  (18)

Then C is a copula if and only if

(1)f;(0)=f(1)=0,i=0,1,2;,

(2) f; absolutely continuous, i = 0, 1, 2; and

(3) min{agB1 +aoB2+a B2, Boorr +0o B+ Ba, o B1+ Boaz +ai1 B2, o Br +aoBa+
Braz, Boar + Boaa + a1 B2, Poorr +ao B2+ Braz, aofi + Boaz + Braa, Poorr + Pooa +



182 7. Wei et al.

Biaz} > —1, where a; = inf{f/ (u;); u; € A;} < 0, and B; = sup{f! (w;); u; € A;} > 0,
with A; = {u; € I; f/ () exists }, fori =0, 1, 2.

Furthermore, the copula given in (18) is exchangeable if and only if fo(u) =
filw) = fo(u) forallu € [0, 1].

Proof Ttisimmediate that the function given by (18) satisfies the boundary conditions
in definition of copula if and only if f;(0) = f;(1) = 0,i = 0, 1, 2. We will show that
the copula C is 3-increasing if and only if (2) and (3) holds. First, we assume the
function C defined by (18) is an 3-copula, and we will show (2) and (3) holds. Let
Fi(x,y),i =0, 1, 2, denote the functions defined on the set T = {(x, y) € [0, 1%x <
y} by

Fi(x,y) for i=0,1,2.

_fO) —fi)
— x ’
Then, C is 3-increasing if and only if

— 1 < Fo(ug, vo)F1(ur, vi) + Foug, vo)Fa(ua, v2) + Fi(up, vi)Fa(ua, v2).  (19)

Hence, C is n-increasing if and only if the following inequalities holds:

=1 < yd1 +yd + 182, =1 = 3dy1 + Y02 + y1d2,
=1 < yd1 +8oy2 +y182,  —1 < Y081 + Y002 + d172,
=1 < doy1 +80v2 +v182, =1 =< doy1 + yod2 + b112,
=1 <981 + 8oy + 8172,  —1 < doy1 + oya + 8112,

where y; = inf{F;(u;, v;) : u; < v;,fi(u;) > fi(u;)} and §; = sup{F;(u;, v;) : u; <
vi, filu)) < fi(up)}, i = 0, 1,2. Since £;(0) = f;(1) = 0 and f;’s are non-zero, the
sets above are non-empty. Also, since (19) holds for all (i;, v;) € T, we know that
F;(u;, v;) is bounded for i = 0, 1, 2. Therefore, we have

vi = Inf{Fi(ui, vi) T wp < v, fi(u) > fiu)} = inf{F;(u;, vi) 1w < vi}

= inf{f{ (u),u € A} =; <0,
8 = sup{Fi(ui, vi) 1 w; < vy, fi(ui) < fi(u)} = sup{Fi(ui, vi) : u; < vi}

= sup{f/ (w),u € A} = B; <O.

In summary, we have shown that if C is a copula, then (1), (2), and (3) are

true. Conversely, the proof follows the same steps backwards, which completes
the proof. O

Using the generalized FGM copulas given in (18), the theorem below gives the
copula-based regression functions.
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Theorem 1 For the generalized FGM copula given in (18), the copula regression
Sfunction is

1
(LA @)fs ) + () + £5u2) [ fouo)dug
0

c
r U, up) =1-—
vpioy., (15 42) 1+ £ (u)f) ()
Proof The proof is straight forward. O

To illustrate the application of the two proposed multivariate non-exchangeable
FGM copulas and the corresponding copula regression functions to the directional
dependence, two examples are given below.

Example 2 Let f;(u;) = pju;(1 —u;)P",i =0, 1, 2 in (18). The copula C is given by

Cug, uy, up) = uguyuy + popiuo(1l — up)ur (1 — u) uz + pop2 (1 — up)™

x uy (1 — up)P?uy + prpaur (1 — u) up (1 — uz)”ug.

pi—1
After simplifications, we obtain ¢; = min{—p; (;’—:) , pi} and B; = max {p;,

pi—l pi—1 e 2 (=l pi—1 ) .
—pi\ ot }. Therefore, if p; =) <3 (eg.if -1 <p; <landp; > 2,
for alli = 0,1, 2, C is a copula by Proposition 2. From Theorem 1, the copula

regression function is

1
o =1 : C d
Tvoi01.0, (ur,up) = 1— m UlUy,Uy (uo)duy
0

1
=1— ———[1/2 + Beta(2, po + DIf{ (u2) + f5(u2)]
cio(ur, up)

+ 1/2f{ (u)fy (u2)],
where c1o(uy, u2) = 1+ p1p2(1—u)” ' [1 = (1+p)u](1—u)> ' [1— (1 +pr)us],
i
£ @) = pi(l—uy "1 = (1 +puil. i = 1,2, and Beta(a, b) = [~ (1 -1~ dr.

0
Furthermore, for pg = 2,p1 = 3,p» = 4, po = 0.9, p; = 0.8, and p, = 0.9,
the measures of the directional dependence in joint behavior for three copula-based

regression functions are p? = 0.007, p? = 0.002, and p? =
0.003 (Uy.Up—Up) (Ug.Up>Us) U, Ur—Uy)
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On Consistency of Estimators Based
on Random Set Vector Observations

Zheng Wei, Tonghui Wang and Baokun Li

Abstract In this paper, the characterization of the joint distribution of random set
vector by the belief function is investigated. A routine of calculating the bivariate
coarsening at random model of finite random sets is obtained. In the context of
reliable computations with imprecise data, we show that the maximum likelihood
estimators of parameters in CAR model are consistent. Several examples are given
to illustrate our results.

1 Introduction

Random sets can be used to model imprecise observations of random variables where
the outcomes are set valued instead of real valued. The theory of random sets is
viewed as a natural generalization of multivariate statistical analysis. Random set
data can also be viewed as imprecise or incomplete observations which are frequent
in today’s technological societies. The distribution of the univariate random set and
its properties can be found in [1, 8, 11]. Recently, the characterization of joint
distributions of random sets on co-product spaces was discussed by Schmelzer [9,
10], and Wei et al. [14-16]. In this paper, this characterization is extended to the
distributions of bivariate discrete random set vector.

In the univariate discrete application, we usually partition the set E into finitely
subsets A; € o7, the o-field of subsets of E, i =1,2,..., N. Consider the
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random set . that takes values from the class {A;, A,, ..., Ay} with probability
fo(A;) = P(Y = A;), and the random variable X with probability Px(A;) =
P(X € A;),i =1,2,..., N. Heitjan and Rubin [5] provide a definition of coarsen-
ing at random (CAR) model:

P(¥ = A|X = x) = constant, forany A € o/, x € A.

The importance of the univariate CAR model has been discussed by Li and
Wang [7], Griinwald and Halpern [4] and Jaeger [6]. The examples and applica-
tions of coarsening at random are discussed in Heitjan and Rubin [5], Gill et al. [2],
Tsiatis [12], Nguyen [8], Tsiatis et al. [13]. In this paper, the bivariate CAR model
is introduced based on the joint distribution of random set vector. Also, a routine for
calculating the bivariate CAR model solutions is provided.

For coarsened data (e.g. data grouping), suppose a bivariate random vector (X, Y)
with the sample space E; x Ej is distributed according to the density f (x, y|@) with
respect to some measure. Furthermore, assume that instead of observing the random
vector (X, Y) directly, only the set valued observations are obtained. One typical
such type of data coarsening is grouping. Under simple grouping, the random set
vector (.1, -%%) is a function of random vector (X, Y). One motivation example is
by considering the problem of heaping in epidemiologic studies of populations of
smokers. The distributions of cigarettes smoked per day tend to have large heaps at
integral multiples of twenty (a pack of cigarettes), particularly for a heavy smoker.
This is because the person who smoke only a few cigarettes are more likely to
report the exact number they smoke, but that a heavy smoker would tend to report
the number of cigarettes in complete packs. The statistician’s goal being to draw
inferences about the parameter 6. The general theory of the likelihood function for
the univariate random set has been developed by Heitjan and Rubin [5]. In this paper,
the consistency of the likelihood estimators based on random set vector observations
is obtained.

This paper is organized as follows. The characterization of the joint distribution of
random set vector by its joint belief functions is obtained in Sect. 2. As an application
of random set vector, the bivariate CAR model and its properties are investigated in
Sect. 3. Also, the computational aspects of CAR model are provided. The consistency
of the likelihood estimators based on random set vector observations is developed in
Sect. 4. To illustrate our main results, several examples are given.

2 Characterization of the Joint Belief Function of Discrete
Random Set Vector

Throughout this paper, let (£2, <7, P) be a probability space and let E; and E, be
finite sets, where £2 is sample space, .<f is a o -algebra on subsets of £2 and P is a
probability measure. Recall that a finite random set . with values in power set of a
finite E is amap .% : 2 — 2F such that ¥ '({A) = {w € 2 : L(0) = A} €
forany A C E.Let f : 2 — [0, 1] be f(A) = P(.¥ = A), then f is a probability
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density function of . on 2£. In the following, we will extend this definition to the
cases of the random set vector.

Definition 1 A random set vector (., .%) with values in 251 x 2% is a map
(A, S) 2 — 28 x 22 quch that {w € 2 : S (w) = A, F(w) = B} € o/, for
any ACE; and B C E,. The function h:2F x 282 —[0,1], h(A, B) =
P(S(w) = A, S (w)=B), AC E; and B C E,, is called a joint probability
density function of (.}, .%%).

Inspired by the distribution of univariate random sets, we are going to define
axiomatically the concept of joint distribution functions of the random set vector
(1, 22).

Let (%, .%) be a (nonempty) random set vector on 251 x 2F2 and H : 2F1 x
22 — 10, 1] be

H(A,B)=P(# C A, % CB)= Z Zh(C, D), Ae2f, Be2b,
CCA DCB
(D

It can be shown that H satisfies the following properties:

OHW, ¥ =HW,B)=H(A,?) =0,and H(E, E,) =1,
(i) H is monotone of infinite order on each component, i.c., for any B in 2E

and any distinct sets A1, A, ..., Ay in 281,k > 1,
k
H(U Ai,B)z > (—D’“H(ﬂ A,»,B), )
i=1 GLIC(2,... k) iel
and for any A € 2F1 and any distinct sets By, B, ..., B, in 2%, £ > 1,
¢
H{A B )= D D'™H[A B ]: 3)
j=1 PLIC(1,2,...,0) jed
and
(@iii) H(., .) is jointly monotone of infinite order, i.e., for distinct sets A, A,
..., Ay in 21 and distinct By, Bs, ..., B, in 252, where k, £ are positive integers,

H{Ja.UBi| = - > > =n"HE (AL () B
i

i=1 j=1 BAIC{1,2,...k} B£TC{1,2,..., iel jel

¢
+ > =n"E AL B
} j=I1

GAIC{1,2,...k iel

k
+ > =oHE (AL B - 4)
i=1

BAIC{1,2,...,0) jeJ
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It turns out that the properties (i), (ii) and (iii) of H above characterize the joint
distribution function of a (nonempty) random set vector.

Definition 2 A set function H : 21 x 282 — [0, 1] satisfying the properties (i), (ii)
and (iii) is said to be the joint belief function of random set vector (.7, .%%).

Given any given joint belief function H of (.}, .%%), there exists a probability
density function & : 251 x 22 — [0, 1] corresponding to H. In fact, let H : 251 x
2E2 5 [0, 1] be such that

O)H@ W) =HW,B)=H(A,») =0,and H(E{, E») = 1,

(i) H is monotone of infinite order on each component, and

(iii) H is joint monotone of infinite order. Then for any (A, B) € 2E1 % 2B there
exists a nonnegative set function 4 : 251 x 252 — [0, 1], called the Mdbius inverse
of H, such that

H(A,B)= > > h(C.D) 5)

CCA DCB

and

Z Z h(C,D) = 1. (6)

CCE, DCE,»

The function & : 281 x 22 — [0, 1] defined by

h(A,B) =D > ()M HEPIH(C, D), (7)

CCA DCB

where A\ C = AN C° and C¢ is the complement of C.

Given a set function H : 28 x 22 — [0, 1], it is natural to ask whether if it is
a well-defined joint belief function. By the conditions in (i), (ii) and (iii) of H, we
only need to check all distinct sets Ay, ..., Ay and By, ..., By.

Similar to conditions (i), (ii) and (iii) of H, there is a property called completely
monotone in each component, given by Schmelzer [9, 10] as follows.

A set function H; : 281 x 282 — [0, 1] is said to be completely monotone in
each component, if for any k > 2 and (4;, B;) € 2F' x 22, i =1,2...,k,

k k
H (U A,-,UIBZ-) > > (=H'"H (ﬂ Ai, ﬂB,-). ®)
i= k}

i=1 P#I<S(1,2,..., iel iel

It can be shown that (8) is equivalent to (ii) and (iii).
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3 Bivariate CAR Models

As an application of the joint belief function of random set vector, bivariate CAR
models are introduced and its properties are discussed in this section. Also, the
computational aspects of CAR model are provided.

Let (2, o7, P) be a probability space, E1 and E, be finite sets. Consider bivari-
ate random vector (X, Y) : 2 — E; x E,, and random set vector (.7, %) : 2 —
2E1 x 2F2_ A coarsening of (X, Y) is a non-empty random set vector (.}, .3) on
E|; x Ey;suchthat P(X € A,Y € %) = 1.

Definition 3 A coarsening (.}, .%3) is said to be a bivariate coarsening at random
(CAR) of the bivariate random vector (X, Y),if forall (4, B) € 2F1 \ {¢}) x 2F>\
{@}), there exists a number w (A, B) such that

P(N=A =Bl X=x,Y=y)=n(A,B) )

forany x € A, y € B. The constant 7 (A, B) is called a bivariate CAR probability.

Proposition 1 The condition of bivariate CAR of (X, Y) given in (9) is equivalent to

P(A=A, SH=BX=x,Y=y)=P(A =A,%=B|IXcAYEcB)
(10)
forany (A, B) € QE\ {¢}) x QB2 \(¢p)) andx € A,y € B.

Proof Assume that the condition (9) holds. Since (.7, .%3) is a coarsening of (X, V),
we have (1 =A, % =B)C(Xe€A,YeB)sothat P(Xe€A,Y € Bl.Y] =
A, % = B) = 1. Also,

P(XeAYeBA =A% =B= » PX=xY=y9=A%=B)
x€A,yeB
PN =A, =B X=x,Y=y)PX=x,Y=Y)
z P(S =A, 5 =B)

xeA,yeB

(A, B)
=52 , PX=x,Y=Y)
P(#1=4,7=8) xegeB

- (4, B) P(XeA YeB) =1
TP =A,5=B) ’ o

Therefore, which indicate that (10) holds,

(A, B) = P71 =47 =B) —P(A =A, % =B|XcA,Y e B).
P(X€A,Y €B)

It is easy to show the condition (10) implies the condition (9). O
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Remark 3.1 The characterization of CAR mechanism for univariate random set by
utilizing the concept of uniform multi-cover was given in Gill and Grunwald [3].
Their result can be extended to the bivariate CAR mechanism. Note that

> 7m(A,B)=1, foranyx € Ey y € Ey. (11)

A>x,B>y

Indeed, we know that 7 (A, B) = 0, for any set A that does not contain x or set B
that does not contain y. For any x € E| and y € E,, we have

I= > PA=ASH=BX=xY=y)
ACE,,BCE,
= > PHA=AS=BX=xY=y)
AZx or B¥y
+ D> P(SA=ASH=BX=xY=y)
A>x,B>y
= > P =ASA=BX=xY=y)= > x4 B).
A>x,B>y A>x,B>y

Note that the following Theorem is an extension of the result given in Gill et al.
[2] from univariate case to bivariate case.

Theorem 1 Let (.7}, %) be a non-empty bivariate random set vector with the joint
density h(A, B), (A, B) € 2F1\ {¢}) x 282\ {¢}). Then there exist bivariate CAR
probabilities, m (A, B), and ajoint mass function p(x, y) of a bivariate random vector
(X,Y)on E| x E, such that

h(A, B) = (A, B)p(A, B) forall (A, B) € 2E1E2\ (g},

where p(A, B) = >, > p(x,y). Furthermore, for each A, B with h(A, B) > 0,
yeEB xeA
(A, B) and p(A, B) are uniquely determined by the joint distribution of bivariate

random set vector (%, .55).

Remark 3.2 Note that the Theorem 1 proves the existence of the values 7 (A, B)
and p(A, B), it does not explain how to compute 7 (A, B) and p(x, y) based on
the values h(A, B). In the following, a computational method for computing values
p(x,y) and (A, B) is given, based on the joint density 2(A, B) of (.1, -%2).

Assume E; = {x, x2, .. S Xy, b, Ex={yi,y2, ..., yNz}. From Theorem1, we
know that

h(A,B)  h(A,B)
p(A,B) X > plx.,y)

xeA yeB

7(A,B) = for all (A, B) € 2E1<E2\ {4).
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Table 1 Joint density of (.1, .%2)

he {3} {4} {5} {3.4} {3.5} {45} {3.4.5}
{1} 5/48 13/144 11/144 0 0 0 1/16
{2} 1/12 1/12 1/12 0 0 0 1/12
{1,2} 1/16 11/144 13/144 0 0 0 5/48

Table 2 Bivariate CAR probabilities

() (3} {4} (5} (3.4 (3,5} {45} 3,45}
{1} 0.5825  |0.5412  |0.5001 |0 0 0 0.1254
{2} 0.5418  |0.5005  |0.4595 |0 0 0 0.1661
{12} 0.1879 02292  |02702 |0 0 0 0.1042

Note that (11) can be rewritten as:

h(A, B
1=ZZJT(A,B) Zzz(zp(s)t) forany x € Ey, y € E». (12)

A>x B>y A>sx B>y scAlcB
The expression (12) is a nonlinear system of N;N, equations with unknowns
pxi,yj))si=1,2,...,N,j=1,2,..., N>

We can now use, e.g., BB-package in CRAN-R for solving this system of N; N,
nonlinear equations with Ny N, unknowns. Once we have determined the N; N, values
p(xi, yj), we can then compute, for every pair of sets A C E|, B C E,, the value
(A, B) = h(A, B)/p(A, B).

Example 1 Suppose the joint density hc (A, B) is given in Table 1.
By using the above method, we obtain the joint mass function, p(x, y), bivariate
random vector (X, Y) on E| x Ej,

p(1,3) =0.1788, p(1,4) =0.1668, p(1,5) =0.1527,
p(2,3) =0.1538, p(2,4) =0.1665, p(2,5) =0.1814.

The corresponding bivariate CAR probabilities are listed in Table 2.

4 The Likelihood Function of Random Set Vector
Observations

Suppose arandom vector (X, Y) is distributed according to the joint density f (x, y|6)
with respect to some measure v, where § C @ is the vector of parameter. We would
like to make statistical inferences about #. Furthermore, assume that instead of
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observing (X, Y) directly, one only observes (.7, .-%2) = (V1 (X), #(Y)), a vector
of subsets within which (X, Y) has fallen. The following definition of likelihood
function generalizes Heitjan and Rubin’s definition into bivariate case.

One particularly straightforward type of data coarsening is grouping. Under simple
grouping, the random set vector (-7, .%) is a function of random vector (X, Y). The
conditional distribution of (.}, .%%) given (X = x,Y = y) is

1, ifA=.%(x), and B = .%
F(A. Blx,y.0) =1 1A=700an 20
0, otherwise.
Hence the likelihood function arising from (A, B), the observed value of
(A, S), is

Ls(0|A, B) = //r(A, Blx,y,0)f(x, y|@)dxdy

E, E;
- / / F(x. yi0)dxdy (13)
B A

Now consider a more general form of grouping in which the precision of reporting
is a function of a random variables G| and G, with sample space I"; and I';, respec-
tively. Conditional on X = x, Y = y, the joint distribution of G| and G, is given by
g(s,t; x,y, ¥). The random variables G| and G, determines the precision of report-
ing in the sense that the value of G| and G, determines which of a collection of possi-
ble mappings X — 1 (X)andY — % (Y)touseincoarsening X and Y. In this case
we only be able to observe the coarsened data (.1 (X, G1), %2 (Y, G;)). Therefore,
the conditional distribution of (%], %) given (X = x,Y =y, G| = g1, G, = g») is

1, if A=5(x,g1), and B = #(y, 82),

r(A Blx.y.81.82.0.7) = [0, otherwise.

In lots of cases, random variables G| and G are not directly observed, but can at
best be inferred from the observed coarse data. One motivation example is by con-
sidering the problem of heaping in epidemiologic studies of populations of smokers.
The distributions of cigarettes smoked per day tend to have large heaps at integral
multiples of twenty (a pack of cigarettes), particularly for a heavy smoker. This is
because the person who smoke only a few cigarettes are more likely to report the
exact number they smoke, but that a heavy smoker would tend to report the number
of cigarettes in complete packs.

Assume that G| and G, are not directly observed, but can at best be inferred from
the observed coarse value (A, B) of (. (x, g1), Z2(y, g2)). Thatis,ifx € A,y € B,
and (A, B) is consistent with g; and g», then (A, B) = (% (x, g1), % (y, g2)) will
be observed. In this case, the distribution of (.%}, .%3) given x, y and y is
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k(A, Blx,y, 7)=//r(A,B|x7y,g1,82,0,V)g(gn,gz|x,y, y)dgadg:.
ry r,

The following likelihood function for coarsened data of X and Y generalized the
likelihood function given by Heitjan and Rubin [5],

LG(0,V|A,B)=//f(x,y|0)k(A,B|x,y, y)dxdy. (14)

B A

Denote

Py(A,B)=Py(X € A,Y € B) = //f(x, y|@)dxdy.
B A

Let E; x E, be the finite sample space of random vector (X, Y), assume
that (.7, %) is a bivariate CAR of (X, Y), i.e., k(A, B|x, y, y) takes the same
value for all x € A, y € B, by the notation introduced in last section, we have
k(A, Blx,y,y) = m(A, B). Furthermore, by Theorem 1, the bivariate random set
vector (], %) has the following joint density:

he(F = A, % = B) = (A, B)Py(A, B) = (A, B)//f(x,y|0)dxdy.
B A

Let (A, By), ..., (A,, B,) be a random sample of the random set vector. The
likelihood function (14) for the parameter 6 is:

L(#|(A1, B1), ..., (An, By) = C((A1, B1), ..., (A, Bn))HPo(Ai, B;), (15)
where =

C((A1, BY), ..., (A, B) = [ | (A, B,

i=1

which is independent of parameter 6. Let

Ll(ol(AlaBl)a-~-’(AnaBn))ZHPO(Ai»Bi)» (16)

i=1
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then maximizing the likelihood function L(@|(A, By), ..., (A,, B,)) is equivalent
to maximizing the function L,(8|(A, By), ..., (A,, By)) overall 8 € ©.

For the proof of our main results, an extended version of Weak Law of Large
Numbers (WLLN) is needed and given as follows.

Lemma 1 Let Z be a random vector as a real valued function of (%1, %), which
is a random set vector over the finite range </ X <t and the density hg(A, B). Let
Z; be a sequence of i.i.d. random vectors as Z, then

1 n
— E Zi —p E¢(Z), asn — oo.
n

i=1

Proof Since the support for the random variable Z is finite, then

Ey(Z)= D > he(A.B)Z(A, B)

A€al| Beat,
exists. Applying the WLLN for usual random variables, the lemma is proved. U

The following lemma is a modification of Wald’s argument and will be used in
the proof of our main results.

Lemma 2 Let (., .%3) be the bivariate CAR of the random vector (X,Y), and
(A, ), n = 1} be a sequence of i.i.d. random sets distributed as (%1, 3) on a
finite support o7 x <f5. Then, for any fixed 0 # 0,

Jim Pg,[L1(B0l(A1, B1), ..., (An, Ba)) > L1(B1(Ar, By), ..., (An, B)))] = 1,

where Py, is the joint probability of (1, ﬂ)}f’zl, and Li(0|(Ay, By), ...,
(A, By)) is given in (16).

Proof Theevent Li(0o[(Ay, By), ..., (An, By)) > Li(8(A1, B1), ..., (A, By))is
equivalent to the event that

[ Py(A;, B;) ]

E <0

—1 PGO (Az s B )
Qi Py (S1,5)

By Lemma 1, the left hand-side converges to Ejy, [log P (7 y,)], the expected

0 » 2

value of a function of a random set. Jensen’s Inequality applied with the strictly
convex function log(x) yields
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E [10 (Po(yl,yz))] <l |:E (Po(ylyyz))}
o | % Po(Ah 7 8|0\ By (A, )

—t0g| 33 oy By 20D

| Ac<t| Bests P()U(A B)
Py(A, B)
= log Z > 7(A, B)Py, (A, B)P W)
_Ae;zfl Beat

=log| > > 7(A.B)Py(A.B)

Acol) Beatr

=log| D> > hy(A.B) | =0.

| Aest Best O

If the parameter space @ is finite, then Lemma?2 implies directly that the Maxi-
mum Likelihood Estimator (MLE) € is weakly consistent because it shows that the
likelihood is larger at 6 than that at any other § € ©.

Theorem 2 Under the same assumptions as in Lemma 2, if © is finite, then the MLE
of 0 exists, is unique with probability tending to one, and is weakly consistent.

Proof Suppose é,, maximizes L (@|(Ai, By), ..., (A,, B,)) over ®. Let ® = {6,
0y, ..., 0,) with 0, being the true parameter, and E,’s be the events that

. Py (A;, B;
> log Lo, A B 6 forj=1,2,om
Py, (A, B;)

i=1
By Lemma?2,

lim Py (E;;) =1, forj=1,...,m.
n—oQ

From Bonferroni’s inequality, we have

> 1= Po,(E5,),

-
st

where A€ is the complement of the event A. Therefore,

lim Po,((Ej) =1, forj=1,....m,
j=1

which means that 6 is unique and weakly consistent. (]
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Theorem 3 Let (., .%5) be the bivariate CAR of the random vector (X, Y), and
let the model for (X,Y) be &% = {f(x,y|0) : x,y € R,0 € ® C RP?}. Such that
(i) The joint density of (.71, -5),

ho(1=A,%=B)=n(A, B)Py(A, B) =7 (A, B)//f(x, y|0)dxdy,
B A

has same finite support <7| x <t for @ € O;

(ii) The parameter space © is an open ball in R?.

(iii) hg (A, B) is continuous in 0 for all (A, B) € o] x ab.

Then there exists a sequence of local maxima, {én, n > 1}, of the likelihood func-

tion L given in (16), which converges almost surely (a.s.) to the true parameter
0y ®asn — <.

Proof Let ¢ > 0, we need to show that if n is sufficiently large, then there exists a
local maximum @, of L;(#|(A, By), ..., (A, B,)) such that

9,1 € B(#, &) with probability one.

Here, B(#, ¢) denote the open ball centered at 8 with radius €.
Let

n

1 Py(A;, B;
L*(0|(A1, By), ..., (A,, By) = - Zlog (%)

i=

1 1
= log Li(0](A1, By), ..., (A, By)) — ;L1(00|(A1, By), ..., (A, By)).

It suffices to show that L*(@|(A;, By), ..., (A,, By)) has a sequence of local
maxima converging a.s. to 6. By the strong law of large numbers, for each § € ©,

Py(S, S
L*0|(Ay, By), ..., (An, By)) = Ejg, |:10g (%)] , as. Py,

When 0 # 0, Jensen’s Inequality applied with the strictly convex function log(x)
yields
Py (A1, ) )i| [ (Po(yl,yz))]
Eg, [log| ————= )| <log| Eg | ———=) | =0
b0 [ g (Poo(yl, ) g5 Py, (A, S5)
Let¥ ={ @0 =6, L %e,,}, where e, = (1, ..., )T € R? and k is a pos-

itive integer. Then for each 6 € ©, there is a set .4; such that Py [.4,°] =0 and
When (Als B]), ey (Ans Bn)) € e/‘/a

Py( A, S
L*8|(Ay, B)). ..., (A, B,)) — Eq, |:log (%)} <0. (17
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Since ¥ is countable, we have

Pg,(N) =0, where A = U N

ocv

Therefore, when ((Ay, By), ..., (A,, By)) € A, (17) holds for any @ € W. Let
01 =00 — e, with - < &, and 6, = 0o + {-e, with £ < &, then

0p—epe <01 <0y <0:00+ep,e,

where < means componentwise less than. Further more, for ((A;, By), ..., (A, By))
¢ ./ and n large enough, we have

L*(all(Ah B])a M) (An’ Bl‘l)) < O? L*(02|(A17 Bl)7 MR (An7 Bn)) < 07

and L*(09|(Ay, By), ..., (A,, By,)) =0.

By the hypothesis, L*(#|(A;, By), ..., (A,, By)) is a continuous function of
0, this implies 0y — e,¢, < én < 0o + e,e, which maximizes L*(0[(Ay, By), ...,
(An, By)). U

Example 2 Let (X, Y) be adiscrete random vector having binomial marginal distrib-
utions with parameter (m1, 0;) and (m,, 6,), respectively. m;, i = 1, 2, is the number
of independent and identical trials in a binomial experiment which is known, and
0; € (0, 1), i =1, 2, is the probability of success in each trial. The marginal densi-
ties is
fitkil6) = CUof (1 —gy™ ™k, i=1,2.
Suppose m| = 4 and m, = 3 and their copula is FGM-copula-C, (4, v) = uv(l +

o (1 —u)(1 + v)). First, we can estimate two marginal distributions parameter 6; and
6,. Suppose that the set observations are given as follows,

(A1, B) = ({4}, {1, 2}), (A2, By) = ({2, 3}, {1, 3}), (A3, B3) = ({3, 4}, {2, 3}),
(A4, By) = ({4}, {1, 3}), (As, Bs) = ({2, 4}, {2, 3}), (A6, Bs) = ({3}, {1, 2}).

We can get the joint density f(x, y|p) by copula C,(u, v).

Cp(Fx(x), Fy(y)), ifx=0,y=0,
Cp(Fx(x), Fy (y)) — Cp(Fx(x — 1), Fy(y)), ifx #£0,y=0,
S, ylp) = 3 Co(Fx(x), Fy (y)) — Cp(Fx(x), Fy (y — 1)), ifx=0,y #0,

Co(Fx(x), Fy (y)) = Cp(Fx(x), Fy (y — 1))
—Cp(Fx(x), Fy(y = D) + Cp(Fx(x = 1), Fy(y — 1)), ifx #0,y #0.
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Then by maximizing

6
Ll(pl(Al’ Bl)’ R (An’ Bn)) = HP,D(Ai’ Bi)’

i=1

where P,(A;, B)) = 2. > f(x,y|p).After calculations, we getél =0.889,60, =
x€A; yeB;

0.75, and p = 0.216.
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Brief Introduction to Causal Compositional
Models

Radim Jirousek

Abstract When applying probabilistic models to support decision making processes,
the users have to strictly distinguish whether the impact of their decision changes
the considered situation or not. In the former case it means that they are planing to
make an intervention, and its respective impact cannot be estimated from a usual
stochastic model but one has to use a causal model. The present paper thoroughly
explains the difference between conditioning, which can be computed from both
usual stochastic model and a causal model, and computing the effect of intervention,
which can only be computed from a causal model. In the paper a new type of causal
models, so called compositional causal models are introduced. Its great advantage
is that both conditioning and the result of intervention are computed in very similar
ways in these models. On an example, the paper illustrates that like in Pearl’s causal
networks, also in the described compositional models one can consider models with
hidden variables.

1 Introduction

In this paper, by causal models we understand (multidimensional) probability distrib-
utions with specified causal relations among the variables, for which the distribution
is defined. We accept the philosophy of Judea Pearl [16], whose causal networks are
Bayesian networks [6, 13] in which orientation of directed edges is interpreted as
causal relations. In our models, Bayesian networks are substituted by compositional
models [7], and the causal relations are encoded in the ordering describing how the
multidimensional model is assembled from its low-dimensional parts. In this way,
this paper is the natural continuation of paper Brief Introduction to Causal Com-
positional Models [8] presented at the 6th International Conference of the Thailand
Econometric Society in 2013.
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Let us stress at the very beginning the main difference between classical multi-
dimensional probabilistic models (joint distributions without causal relations) and
causal models. This idea is aptly expressed by Judea Pearl (page 22 in [16]): A joint
distributions tells us how probable events are and how probabilities would change
with subsequent observations, but a causal model also tells us how these probabili-
ties would change as a result of external interventions— such as those encountered in
policy analysis, treatment management, or planning everyday activity. Such changes
cannot be deduced from a joint distribution, even if fully specified.

To illustrate this statement consider just two related events: s—smoke is in a room;
a—fire alarm is on. Denoting 7 a two-dimensional distribution (fourfold table), = can
fully describe the stochastic relation between these two events (and their negations).
We can see from 7 that these events are dependent but there is no way to deduce (just
from this fourfold table), which event is a cause and which is an impact. In fact, there
is not even a way to deduce from this fourfold table whether this relation is causal or
not. As Pearl says, we can read from & how the probabilities change with subsequent
observations. We can read what we quite naturally expect that w(a|s) > m(a), and
m(s|a) > m(s). These relations say that if we see a smoke in the room then we expect
that the alarm sounds, and also if we hear the alarm we can expect there is a smoke
in the room.

However, the situation changes when, instead of observations, we consider inter-
ventions. For this, we use Pearl’s notation: do(s) means that we make a smoke in the
room, for example, by smoking a cigar, or burning a piece of paper. Analogously, by
the intervention do(a) we understand the situation when we set the alarm siren on
disregarding whether there is a smoke in the room or not. This can be realized just
by pushing an alarm test push-button, which is used to test the functionality of the
alarm siren. In this case, we naturally expect that w(aldo(s)) > m(a), because we
expect that the alarm performs well. On the other hand, if we push the test button,
it activates the alarm siren but we cannot expect that it fills the room with smoke.
Therefore, obviously, m(s|a) = m(s).

The importance of causal models and their popularization follows, among oth-
ers, also from the fact that quite often we witness confusing the intervention for
observation. As a typical example the rather frequent piece of news can serve:
Researches from the Top World Institute proved that regular drinking of New-Drink
averts the development of a Special disease, which is followed by a recommendation
to start/increase drinking New-Drink. Such a report is usually based on a screening
among several thousand respondents initiated by the producer of New-Drink. If the
screening questionnaire was properly prepared then, as a rule, at least one from the
monitored diseases evinces significantly higher incidence in the group of those who
do not drink New-Drink in comparison with the group of New-Drink consumers.
Even if we did not object to such a goal oriented research, we must object to the
conclusion that drinking New-Drink averts the development of the Special disease,
because making anybody to start drinking New-Drink is an intervention, the impact
of which cannot be derived from the observational data. As we will see later in Sect. 6,
starting drinking New-Drink may have actually a negative impact on the genesis of
Special disease.



Brief Introduction to Causal Compositional Models 201

We would be carrying coals to Newcastle if we brought more reasons to highlight
the importance of causal models. For this, see, for example, [5, 17]. What is really
new on our models is that we do not use (directed) graphs to represent the asymmet-
ric relations of causes and effects. Instead, we use so called compositional models
to represent multidimensional probability distributions. These models are based on
a non-commutative operator of composition, and it is this non-commutativity what
makes representation of asymmetric relation possible. Therefore, before introducing
causal models in Sect.4, we have to start the exposition by introducing the notation
in Sect. 2, and a brief recollection of compositional models in Sect. 3. The advantages
of the new approach will be seen in Sect. 5, where we will show how to compute the
impact of conditioning and intervention. The power of the described causal compo-
sitional models arises from the possibility to eliminate hidden variables, which will
be illustrated in Sect. 6 on a simple example.

2 Notation and Basic Concepts

This paper is self-contained, its reading does not require the preliminary knowledge
of neither causal nor compositional models. Nevertheless, to facilitate its reading for
the reader familiar with [8], we use notation from the preceding paper. We consider
a finite set of variables N = {u, u,, ..., u,}, each variable u € N having a finite
(non-empty) set of values that is denoted by X,,. The set of all combinations of the
considered values (we call these combinations states) is denoted Xy = X ey X,.
Analogously, for a subset of variables K C N, the set of all statesis Xxg = X, X,.

Distributions' of the considered variables are denoted by Greek letters «, X, ...
possibly with indices; for K € N, we can consider distribution « (K), which is a
| K |-dimensional probability distribution, and « (x) denotes the value of distribution
K« for state x € Xg.

For a probability distribution « (K) and J C K, we will often consider a marginal
distribution k*’ of «, and, analogously, y*’ denotes the projection of y € X into
Xy, i.e., y*’/ is the state from X; that is got from y by deleting all the values of
variables from K \ J. Note that we do not exclude situations when J = @, for which
we get k¥ = 1.

Like in [8], the most important notion of this paper is the operator of composition.
Recall, it is a binary operator that constructs from two probability distributions, say
k (K) and A(L), one distribution of variables K U L. Before presenting its definition
let us introduce the concept of dominance. Having two distributions defined for the
same set of variables 7 (K') and « (K), we say that k dominates 7 (in symbol 7 < «)
if for all x € Xg, for which «(x) = 0 also 7 (x) = 0.

!nstead of probability distributions we could speak, equivalently, about probability measures on
Xy . From the computational point of view it is important to realize that such a distribution/measure
as a set function can be, thanks to the additivity of probability, represented by a point function
Xy — [0, 1].
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Definition 1 For two arbitrary distributions x (K) and A(L), for which x+K" «

AVEOL their composition is, for each x € Xk, given by the following formula?
1K IL
K(XYM)AX
(K > )\.)(X) — ¢.
AVKNL (xLKNL)

In case k VKN & AVKNL the composition remains undefined.

Let us summarize the most important properties of the composition operator that
were proved in [7]

Proposition 1 Suppose «(K), A(L) and w(M) are probability distributions for
which MWEOL s ( VKOL Then the following statements hold:

Domain: « > A is a distribution for K U L.

Composition preserves first marginal: (« > A)VK = k.

Reduction: If L € K then, k > X = k.

Non-commutativity: In general, k > A # A > k.

Non-associativity: In general, (k > A) > # k> (A > ).

Associativity under a special condition I: If K D (L N M) then,

(k> A)> =k > (A> ), if the right hand side formula is defined.

Associativity under a special condition II: If L D (K N M) then,

(k> A) > = k> (A> ), if the right hand side formula is defined.

8. Stepwise composition: If M is such that (K N L) € M C L then,
kK> AMYp A =k A

9. Exchangeability: If K D (L N M) then, (k > A) > = (k > 1) > A, if the right

hand side formula is defined.

10. Simple marginalization: Suppose M is such that (K N L) € M € K U L. Then
(K > )\)lM — K\LKOM l>)\’\LKﬂM'

SR W~

N

3 Compositional Models

As said in the preceding section, for two probability distributions «; (K ;) and k, (K>)
their composition (if defined) is a probability distribution of variables K; U K.
For example, if k; is two-dimensional and k, four-dimensional distribution, their
composition « > k is a probability distribution whose dimensionality equals four,
five or six. Generally, for |K||-dimensional distribution «; and | K;|-dimensional
distribution «,, the dimensionality of the composed distribution «; >k, equals
|K1| 4+ |K3| — | K1 N K3|. This trivial consideration leads us to a natural idea that
the multiple application of the operator of composition may result in a multidimen-
sional distribution. Such a multidimensional distribution, called a compositional
model, will be used in this paper to represent causal models. To avoid some technical

2Define % =0.
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problems and the necessity of repeating some assumptions to excess, let us make the
following three conventions that were made also in [8].

Whenever we speak about a distribution &y, if not explicitly specified otherwise,
the distribution «; will always be assumed to be a distribution of variables K. Thus,
for example, k, > k| > k4, if it is defined, will determine the distribution of variables
K1 UK, UK.

Our second convention pertains to the fact that the operator of composition is
not associative. To avoid having to write too many parentheses in the formulae, we
will apply the operators from left to right. Thus considering a multidimensional
compositional model

T(KiU...UK,) =K DKy >K3>...D>Ky
we always mean
Kib koD k3D ... Ky = (.. (K1 >K2) > K3) B> oo . D> K1) > Ky

and the parentheses will be used only when we want to change this default ordering.
The last convention is of a rather technical nature. To avoid repeating the assump-
tion on dominance under which the operator of composition is defined, we will
always assume that all the compositions we speak about are defined.
Recall from [8] that a compositional model k; >k > k3> ... > kyy, 1s said to be
perfect if all the distributions from this sequence are marginals of the distribution
KI>Ky>...> Ky, le,ifforalli =1,2,...,m

(K1|>K2>...l>/<m)“(" = K;.

It is important to realize that each compositional model can be transformed into a
perfect model: for all compositional models w = k| > k3 > ... >k, the following
equality holds true

KB Ky . ..bky =7 s g | pg bl €))

For the respective proof see Theorem 10.9 in [7].

When considering compositional models just for the efficient representation of
multidimensional distributions (like in [8], or [14]), we can take advantage of several
properties making possible to rearrange distributions in a sequence without changing
the resulting distribution. This is the characteristic property of so called decompos-
able models, in particular. However, as we will see in the next section, for causal
models the ordering of distributions is important, because it describes the given
causal relations. Therefore, not to spoil these relations, possibilities to change the
ordering of the distributions in a sequence are strictly limited. In connection with
this, notice that only one of the properties from Proposition 1, the Exchangeability
property (Property 9), makes the swap of distributions in a sequence possible. This
property will be discussed in more details in the next section.
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Letus present, now, how to compute a conditional distribution using the operator of
composition. Consider distribution x (K), variable u € K, and its arbitrary value a €
X.- Adopting notation from [20], let us introduce a one-dimensional distribution,’
which fixes the given value of variable u:

1 ifu =a,
Ba(u) = {O otherwise.
So, distribution 8, (u) carries the sure information that ¥ = a, which, as already
showed in the TES 2013 paper [8], enables us to compute conditional probability
distribution (for a formal proof see Theorem 2.3 in [2])

k(Llu = a) = (82 () > k (K)*E, (2)
forany L C K \ {u}.
4 Causal Models
Let us consider a set of variables N = {uy, u,, ..., u,}, and for each variable u; € N

let €(u;) C N be the set of its causes. In this paper we consider only Markovian
models [16], i.e., the models in which variables can be ordered (without loss of
generality we assume it is the ordering uy, us, ..., u,) such that the causes are
always before their effects. So, we assume that

up € Cu;)) = k<i,

which, as the reader certainly noticed, means that €(u;) = @, and excludes feedback
models from our consideration.

To keep with the above notation, denote K; = €(u;) U {u;}, and thus «; (K;) denote
the distribution describing local behavior of u;. The corresponding causal composi-
tional model is the probability distribution 7w (N) expressed in the following way

T(N) = k1 (K > 2(K2) > ... >k, (Ky). 3)
To realize how the causal relations are encoded into this causal model notice that,
having a causal model 7 (N) given in a form of Eq. (3), one can ascertain the set of

causes for each variable u in a simple way: first find i = min{k : u € K}, and then

Cw)=K;,N{1,...,i —1} = K; \ {u}. “)

3In [8] this degenerated distribution was denoted by 7T|u:a» Which appeared to be slightly misleading.
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In other words, ifu,v € K;,andu ¢ {K, U...UK;_1},andv € {K; U...UK;_}
then, v € €(u).Recalling the properties of perfect models in the preceding section, we
realize that a compositional model can be uniquely defined also by a multidimensional
distribution 7 and a sequence K, K>, ..., K,, because of Equality (1). However,
this is just a theoretical property because the representation of a joint probability
distribution 7 for the number of variables corresponding to practical problems, and
the subsequent computations of the necessary marginals 77 X7, is usually not possible.

From what has been said above, we see that the ordered sequence of sets
K, K», ..., K, bears the information about the causal relations in the considered
causal model. Nevertheless, it is important to realize that though we cannot arbitrarily
change the ordering of distributions in model (3), the ordering is usually not unique.
Recall that among the properties from Proposition 1 there is one (Property 9) that
makes the replacement of distributions possible. Nevertheless, as it can immediately
be seen, the condition under which Property 9 holds true, guarantees that the above
presented way of causes identification specifies the same sets of causes before and
after the application of Exchangeability rule.

Thus, having a causal model represented in a compositional form, we can use it for
inference by the application of any of the computational procedures describedin[1, 7,
8], decompose it into two submodels [1], read the conditional independence relations
incorporated in the model using procedures from [10], and compute conditional
distributions as described in the preceding section. Naturally, we have to apply all the
procedures with caution, not to make the forbidden change of distribution ordering in
the sequence, keeping in mind that the only legal swap is that according to Property 9
of Proposition 1.

5 Intervention

In this section we consider a causal compositional model
T(N) = k1(K1) > k2(K2) > ... >k (Ky),

variable u € N, and its value a € X,,. From Eq.(2) we see how to compute the
respective conditional distribution for any L € N \ {u}:

L
n(Llu =a) = ((Sa(u) I>JT(N))“‘ = ((Sa(u) > (Kl(Kl) >k2(K2) > ... > kp (Kn)))

To find an analogous formula for computing the result of intervention, we have
to follow the respective ideas of Judea Pearl (page 23 in [16]): Note the difference
between the action do(u = a) and the observation u = a. The effect of the latter is
obtained by ordinary Bayesian conditioning, ..., while that of the former by condi-
tioning in a modified model. The modification mirrors the difference between seeing
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and doing. We are doing the intervention regardless any causes of variable u, which
means that in the modified model we have to consider €(u) = . Let us find a gen-
eral form of this modified model. Denote i = min{k : u € K;}. Obviously, we must
consider a modified causal compositional model

ki (KD > ook 1 (Kim) > k () > ki 1 (Kip) > .o k6 (K,
which is equivalent, due to Property 3 of Proposition 1, to
k(KD > .ok 1(Kim) o ki (u) > k(K > ki1 (Kip) > .o kg (K)o (5)
Applying Property 9 of Proposition 1 to Expression (5) (i — 1)times we get

ki (KD > ook (Kiop) >k (u) >k (K > k1 (Kip) > o k0 (K)
=k (KD > ..ok 2(Ki2) b i (u) > i1 (K1) > i (Ki) > oo i, (Ky)
=...=kiw)e k(K> ...>k,(K,) (6)

(notice the last modification is also possible because K is a singleton different
from {u}). The advantage of this formula is that we do not need to know, which
set K; contains u, and the effect of intervention 7 (L|do(u = a)) is computed as a
conditioning in the model (6)

L
7 (Lldo(u = a)) = (Sa(u) > (ki () & k1 (K1) > ko (Ko) o Kn(Kn)))

The right hand side expression from this formula can further be modified applying
n times Property 7 of Proposition 1

8a) & (1) & K1 (K)) & ka2 (K)o o kn(K))
= 8a0) & (11 00) & K1 (KD) & K2 (K)o b1 (K 1)) o K (K

= =85 (kW) & k1 (K1) e 2(Ka) > o kit (K1) o k(K
= Sa(u) 5 k1 (K1) > 12(K2) & .5 ket (K1) 5 e (Ko),

where the last modification is just the application of Property 3 of Proposition 1. Thus
we see that the computations of conditioning, and the effect of intervention in causal
compositional models differ just in a pair of parentheses:

L
7(Llu = a) = (Sa(u) > (k1 (K)o ko (Kp) b . K,,(Kn))) , 7

and
L
7 (Lldo(u = a)) = (Sa(u) o iy (K1) o ko (K)o . Kn(Kn)) . ®
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Let us illustrate this computations on the simplest example mentioned in Intro-
duction.

Smoke-Alarm Example

Consider two binary variables s and a with values {s*, s~} and {a™, a™}, respectively.
In accordance with the example in Introduction, we assume that €(s) = #and €(a) =
{s}, which means that we consider a causal model

w(s,a) =k(s)>k(s,a).

Computing conditioning and intervention according to Formulae (7) and (8), respec-
tively, one gets (Properties 8, 3 and 10 are used)

n(als = s+) = (85+ (s) > (/c(s) > Kk (s, a)))“a} = ((Ss+ (s) >k (s, a))“a}

= k(als =sT),
7(sla =a®) = (84 @ > (c(5) > ks, a)))“‘” (@ x5 a))““}

= k(sla =a™),
w(aldos =) = (3¢ (4) 5 k() > (5, 0)) Ha_ (55510 (5. ) Hal

=w(als =sT),

7(sla = do(a™)) = (83+ (a) > k(s) >k (s, a))“S} = (5a+ (a) > K(s))“s} =Kk (s).

6 Hidden Variables

Quite often, when solving practical problems we face the fact that some causes are
unobservable. For example, going back to the New-Drink example from Introduc-
tion, we do not know why some people like this beverage, and some others not. This
obliges us to incorporate into the model a hidden variable that influences the taste,
and therefore also the behavior of respondents. Such a variable is called hidden,
or unobservable, because we do not have any corresponding data. The goal of this
section is to show that though hidden variables do not cause problems when com-
puting conditional distributions, they may be the source of unsurpassable obstacles
for the computations of the effect of an intervention.
Consider a causal compositional model

7(N) = k(K> ka(Ko) > ... >k, (Ky),

with (for the sake of simplicity) one hidden variable w € N. It means that we have

data at out disposal from which we can estimate only marginals of 7 (N \ {w}).
When computing conditional distribution (for some u € (N \ {w}), and a € X))

using Formula (7) we get rid of variable w just using Property 10 of Proposition 1
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i vE
A(Llu =a) = (8a(w) > 7(N))*" = (Sa(u) > (k1 (K1) & k2 (K)o K,,(Kn)))

N
= (3aw) > (1 (KD > k2(K2) oo sen(K) ) ©)

The computation of the effect of an intervention is analogously simple* only when
there existsk < nsuchthat L U{u} C M = K, U...UK,andw ¢ M. Inthis case

VL
7 (Ldo(u = a)) = (Sa(u) b1 (K)o Ky (K)o K,,(K,,))
1L
- ((8a(u) b 16 (K1) > ko (Ko) >...>K,,(K,,))¢M)
VL
= (Sa(u) >k (Ky) > k(K)o . .. > Kk(Kk)) .

In other situations one has to try to modify Formula (8) using the properties from
Proposition 1. In case that this effort fails, one should try to modify the causal model
into a form that makes the computations of the intervention possible. The description
of these possibilities is far beyond the scope of this “brief introduction”, so we will
illustrate them just on the New-Drink example.

New-Drink Example

Assume there was a statistical survey showing that a disease d™ has a lower incidence
among New-Drink consumers than among those who do not drink New-Drink. Since
not all people like New-Drink, we assume that tendency to drink this beverage is
influenced by another cause, say genetic disposition, which influences also devel-
opment of disease d*. So, let us start considering a simplest possible causal model
with three variables

b — drinking New-Drink X, = {b*,b"} €&(b) = {g},

d — disease Xy={d",d7} &) ={b,g}

g — genetic disposition X, unknown C(g) =0,
i.e., the causal compositional model

w(b,d, g) =xi1(g)> Kb, g)>k3(b,d, g).

In this case, unfortunately, the computations of

Ha}
7(dldo(b = b)) = (85 (b) > k1(8) > k2(b, &) 3(b. . )

“Let us stress here that we do not speak about computational complexity of the respective procedures,
which may be pretty high even for computation of Formula (9). For a solution of computational
problems see [15].
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is obviously impossible; because we can estimate only «, (b), and «3(b, d). The only
way, how to overcome this problem, is to introduce an additional observable variable.
Since the New-Drink producer claims that, say, the positive impact of drinking their
beverage is based on the fact that it decreases the level of cholesterol, let us add
the result of the respective laboratory test into the model, and consider, now, a new
causal model

n(b,c,d, g) =ki(g)>ka(b, 8) > k3(b, ¢) > ku(c, d, 8),
which means that now we are considering variables

b — drinking New-Drink X, = (b, b™} () = {g},

¢ — cholesterol Xe = {c"sh "} €(c) = {b},
d — disease Xy ={d*",d"} &(d) = {c, g},
g — genetic disposition X, unknown C(g) =9.

Now, though not simple, the computation of

Id}
7(dldo(b = %) = (3p: (b) b 1 (2) > 2(b, ) & k3(b, ©) & Ka(e, d. 9))

is possible, regardless the fact that from the available data we can estimate neither k|,
nor k,, NOr k4, but only k3. The computations (for the one page computations, which
we do not repeat here, the reader is referred either to [9], or to [2]; in the latter source
they were performed even in a more general form) take advantage of the fact that
the available data allows also the estimation of the three-dimensional distribution of
variables c, d, g, which do not appear in the definition of the model. Denoting the
estimate of this three-dimensional distribution x4, we get

w(d|do(b = b)) = <5b+ (b) > k3(b, ¢) > (;c3(b) -k3(c) > ka(b, c, d))i{c,d})ud},

which is quite different from the conditional distribution that can be, for this example,
computed

(b =b*) = (5[,+ (b) > 14 (b, c, d))“d}.

So, it may easily happen that 7 (d|b = b*) < 7(d), and simultaneously 7 (d|do(b =
b*)) > m(d). The reader can check these inequalities with the data from Table 1, for
which we get

n(d = db) = 0.033,
n(d = dt|b = b") = 0.027,
7(d = d*|do(b = b)) = 0.044.
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Table 1 Frequency table for New-Drink Example
b=b" b=b"

high c= clow c= chigh

c=C c=¢cC

d=d* d=d" | d=d" | d=d” | d=d" | d=d" d=d" |d=d"
0.010 0.122 0.008 0.520 0.009 0.263 0.006 0.062

From these values one can see that regardless the value of conditional probability
7(d = d*|b =b") = 0.027 may seem promising, the impact of intervention 7 (d =
d*|do(b = b*)) = 0.044 is in fact negative.

7 Conclusions

The goal of this paper is twofold. For the readers not familiar with causal networks
it can serve as a brief introduction to causal models, from which they can learn the
difference between the notions of conditioning and intervention. The reader familiar
with this type of models can see a rather unusual way of causal model representation
without oriented graphs. This algebraic modeling results in elegant formulae enabling
us to compute both conditioning and the effect of intervention in a surprisingly similar
way. Though the respective formulae differ just in a pair of parentheses, the result
may be substantially different, as illustrated on the example in the last section.

Another advantage of compositional models consists in the fact that compositional
models where introduced not only within the framework of probability theory, but
also in possibility theory [4, 21], theory of belief functions [3, 12, 18], and recently
also for Shenoy’s Valuation-Based Systems [11, 19]. Thus, causal models can easily
be extended into the all above mentioned theoretical frameworks.

Acknowledgments This work was supported in part by the National Science Foundation of the
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References

1. Bina, V., Jirousek, R.: Marginalization in multidimensional compositional models. Kybernetika
42(4), 405-422 (2006)

2. Bina, V., Jirousek, R.: On computations with causal compositional models. Kybernetika 51(3),
525-539 (2015)

3. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math.
Stat. 38(2), 325-339 (1967)

4. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty. Plenum Press, New York (1988)



Brief Introduction to Causal Compositional Models 211

13.
14.

16.

17.

18.
19.

20.
21.

Hagmayer, Y., Sloman, S., Lagnado, D., Waldmann, M.R.: Causal reasoning through interven-
tion. In: Gopnik, A., Schulz, L. (eds.) Causal Learning: Psychology, Philosophy, and Compu-
tation, pp. 86—101. Oxford University Press, Oxford (2002)

Jensen, F.V.: Bayesian Networks and Decision Graphs. IEEE Computer Society Press, New
York (2001)

Jirousek, R.: Foundations of compositional model theory. Int. J. Gen. Syst. 40(6), 623-678
(2011)

Jirousek, R.: Brief introduction to probabilistic compositional models. Uncertainty analusis in
econometrics with applications. In: Huynh, V.N., Kreinovich, V., Sriboonchita, S., Suriya, K.
(eds.) AISC 200, pp. 49-60. Springer, Berlin (2013)

Jirousek, R.: On causal compositional models: simple examples. In: Laurent, A. et al. (eds.)
Proceedings of the 15th International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems. Part I, CCIS 442, Springer International
Publishing, Switzerland, pp. 517-526 (2014)

Jirousek, R., Kratochvil, V.: Foundations of Compositional Models: structural properties. Int.
J. Gen. Syst. 44(1), 2-25 (2015)

. Jirousek, R., Shenoy, P.P.: Compositional models in valuation-based systems. Int. J. Approx.

Reason. 55(1), 277-293 (2014)

Jirousek, R., Vejnarova, J., Daniel, M.: Compositional models of belief functions. In: de
Cooman, G., Vejnarova, J., Zaffalon, M. (eds.) Proceedings of the Fifth International Sym-
posium on Imprecise Probability: Theories and Applications, Praha, pp. 243-252 (2007)
Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)

Malvestuto, F.M.: Equivalence of compositional expressions and independence relations in
compositional models. Kybernetika 50(3), 322-362 (2014)

. Malvestuto, EM.: Marginalization in models generated by compositional expressions. Kyber-

netika 51(4), 541-570 (2015)

Pearl, J.: Causality: Models, Reasoning, and Inference, Second Edition. Cambridge University
Press, Cambridge (2009)

Ryall, M., Bramson, A.: Inference and Intervention: Causal Models for Business Analysis.
Routledge, New York (2013)

Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Shenoy, P.P.: A valuation-based language for expert systems. Int. J. Approx. Reason. 3(5),
383-411 (1989)

Tucci, R.R.: Introduction to Judea Pearl’s Do-Calculus (2013). arXiv:1305.5506v1 [cs.Al]
Vejnarova, J.: Composition of possibility measures on finite spaces: preliminary results. In:
Bouchon-Meunier, B., Yager, R.R. (eds.) Proceedings of 7th International Conference on Infor-
mation Processing and Management of Uncertainty in Knowledge-based Systems [IPMU’98,
Editions E.D.K. Paris, pp. 25-30 (1998)


http://arxiv.org/abs/1305.5506v1

A New Proposal to Predict Corporate
Bankruptcy in Italy During the 2008
Economic Crisis

Francesca di Donato and Luciano Nieddu

Abstract Timely Corporate failure prediction is a major issue in today’s economy
especially considering the financial crisis that has affected the World Economy in
the last decade. Any prediction technique must be reliable (good recognition rate,
sensitivity and specificity), robust and able to give predictions with a sufficient time
lag to allow for corrective actions. In this paper we have considered the case of
Small-Medium Enterprises (SMEs) in Italy during the 2008 crisis, introducing a
non-parametric classification algorithm to predict corporate failure based on financial
indicators up to 8 years in advance.

1 Introduction

Since the early 60s great interest has been focused on the ability of financial indicators
to predict or at least give information on the possible state of insolvency of a firm.
Beaver’s [5] and Altman’s [2] seminal papers have given rise to many studies devoted
to exploring the use of accounting information to predict business failures.

The failure of a limited company is related to two strictly connected situations
(see, e.g., [2, 7, 19]):

e The inability to pay financial obligations when they come due (i.e. lack of liquidity
and very high leverage).

e The inability to generate operating profits (i.e. negative or very low income and
profitability).

Such failure in fulfilling its obligations is measured by a systematic worsening in
the values of performance ratios (both financial and profitability ratios) [16].
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The possibility to predict, with a sufficient time lag, the state of distress of a firm
can be useful for a number of reasons, namely the availability of an efficient and
timely classification algorithm could be useful for:

e the firm itself, that, if the time span is large enough, could be allowed to take
actions in order to try to correct the state of distress and try to avoid bankruptcy,

e the banks or financial institutions that could avoid lending money to firms that are
destined to fail or are likely to be in distress in the forthcoming future. The financial
investment sector could improve the risk return trade-off from investments by not
investing in businesses that are bound to fail.

e the companies willing to try to establish long-term relationships with other firms
and therefore eager to get involved with companies that will not likely fail in the
future, thus increasing the longevity and viability of their business relationships.

e regulators that could promptly identify business destined to failure, preventing
illegal activities, such as avoiding taxes or diluting debt [12].

When dealing with corporate failure one of the main difficulties is a non unam-
biguous definition of “failure”. The state of failure of a firm could be defined as:

e actual filing for bankruptcy or liquidation (see, e.g., [2, 9])
o suffering financial stress or an inability to pay financial obligations [5].

When financial distress leads to bankruptcy usually it is difficult to discern the
precise moment that bankruptcy occurs. According to McKee [18] a firm goes through
various stages of financial distress before bankruptcy (i.e. inadequate income and
liquid asset position, difficulties with paying the invoices) and any of those stages
could be considered as failure.

In our work we will use the “filing for bankruptcy” as definition of failure.

In his seminal work, Beaver [5] used only univariate statistics on US market data
to predict bankruptcy, finding out a high predictive ability of financial ratios up to 5
years before failure. Altman [2], applied Linear Discriminant Analysis (LDA) [11].
Altman’s LDA outperformed Beavers model for one year prediction intervals. He
went back up to 5 years prior to failure but the results deteriorated already at 3 years
yielding a prediction rate below 50 % which is below the random recognition rate for
a two-class problem. It could be argued that a good recognition rate one year prior
to failure is not sufficient to enact strategies to save the firm.

Following Altman’s model, many studies have been conducted in the USA using
accounting data to predict big corporate failures in different industries. Before
Storey’s [20] work, only few studies dealt with the failure of small-medium firms
(SMEs) [10].

Hall [13] studied the factors affecting small companies failure distinguishing
failing and surviving firms but only considering the construction sector. Recently di
Donato and Nieddu [9] have analyzed the effect of various classes of indicator (finan-
cial or profitability) on the prediction of SMEs in the Italy for a period spanning the
latest economic crisis using very well established standard classification techniques
to assess what type of indicators is best suited to timely predict a possible state of
distress for a firm.
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The reason to distinguish the set of indicators relies mainly in the peculiar structure
of SMEs in Italy which are often under-capitalized and mostly rely on external
financial sources provided financial institutions, which then need reliable prediction
models to evaluate the risk of a possible failure and then of a possible loan loss.

Another important issue when dealing with failure prediction models is how far
in advance the model is able to accurately predict bankruptcy. Many studies have a
high accuracy rate one year prior to failure although some argue that such short time
frame could not be enough, in general, to allow to repair the financial situation of
the firm or for a lending institution to extricate itself without incurring the risk of a
significant loan loss. In general, the farther back in time we go the less the accuracy
level of the model is and therefore its usefulness. In the literature there are studies
going back up to 6 years prior to failure [6].

The main goal of this paper is to present a new approach to predict corporate fail-
ures using a non parametric statistical method. The algorithm that is being proposed
is a supervised classification algorithm, i.e. it must be trained on a data-set (training
set) of already classified firms.

The results concern a retrospective study of the financial statements of a sample
of 50 active firms and 50 failed firms randomly selected over a period of 12 years.

To our knowledge, besides the work of Appetiti [3] and di Donato and Nieddu [9],
there are no other studies trying to propose a model to predict corporate failure in
Italy for SMEs although they represent around 90 % of the overall Italian enterprises.

The layout of the paper is as follows. In Sect.2 the proposed algorithm will be
presented, while in Sect.3 the data and the experimental setup will be outlined.
Finally in Sect. 4 some conclusions will be drawn.

2 The Algorithm

The algorithm presented in this paper is a supervised classification algorithm, i.e.
a data set, called training set, of elements with known classes is supposed to be
available. For each element in the training set a vector of measurements (pattern
vector) is available together with the class the object belongs to.

The performance of the algorithm is assessed via cross-validation [21].

Given a training set of n pattern vectors in R?, let us assume a partition defined
on the data-set, i.e. each pattern vector is assigned to one and only one of K known
classes. Let us assume a Euclidean norm defined on the data-set and let ¢ be a
function from R? onto the set ¥ = {1, 2, ..., K} which maps each pattern vector
X;, j =1,...,ninto the class ¢ € € that it belongs to. The function v (-) is what is
called classifier. The aim of any classification algorithm is to get an estimate of such
a function based on the dataset at hand.

The proposed algorithm works as follows: compute the barycentre of each class
and compute the distance of each vector from each barycentre. If each vector is closer
to the barycentre of its class the algorithm stops, otherwise there will be a non empty
set . of pattern vectors which belong to a class and are closer to a barycentre of a
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Stepl:Let

—  Xj, j=1,...,n be the pattern vectors in the training set
— By be the set of K initial barycentres b;, i = 1,...,K

Step2:

Compute the distances of each x; from all the b; € By
Let .7 be the set of x,, that are closer to a barycentre of a class different from their own.
t+0

Step3: while .7 # 0

— Let x,, € . be the vector with the greatest distance from its own barycentre.

- o y(x)

— LetB,. + B, Ux;

— for all the elements of class ¢ perform a k-means routine using as starting points the barycentres of B, that
belong to class ¢

- tt+1

— Compute the distances of each x; from all the b; € B,

— Let . be the set of x,, that are closer to a barycentre of a class different from their own.

end

Fig. 1 Algorithm in meta-language

different class. These vectors are those that would be misclassified using a minimum
distance criterion to assign elements to a class.

In . select the pattern vector x,, that is farthest from the barycentre of its class.
This pattern vector will be used as a seed for a new barycentre for class ¥ (x,,).

A k-means algorithm [17] will then be performed for all the pattern vectors in
class ¥ (x,,) using, as starting points, the set of barycentres for class ¥ (x,,) and the
vector X,,. Once the k-means has been performed, the set of barycentres for class
¥ (x,,) will be increased by one more element.

It should be noticed that the barycentres at the new iterations need not be computed
for all classes, but only for class ¥ (x,), since the barycentres for the other classes
have remained unchanged.

In the following step, the distance of each pattern vector from all the barycentres
is computed anew, and therefore the set ./ is updated (see Fig. 1).

If the set . after computing the distances of all the elements from all the barycen-
tres is not empty then there are still elements in the training set that are misclassified.
Therefore the pattern vector in .# which is farthest from a barycentre of its own
class is once again selected to serve as a seed for a new barycentre. This procedure
iterates until the set .7 is empty.

Upon convergence all the elements in the training set will be closer to a barycentre
of their own class.

Upon convergence, the sets of barycentres can be used to classify new elements
(query points) assigning the new element to the class of the barycentre it is closest to.
If elements from the training set are used as query points, then the algorithm always
classify them correctly because, once converged, all pattern vectors in the training
set are closer to a centroid of their own class.
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The algorithm yields a set of barycentres which, in the worst case, are in a number
equal to the number of elements in the training set and which has a lower bound in
the number of classes.

The aim of this algorithm is to find sub-classes in the data-set which can be used
to classify new vectors of unknown class. It is worth noticing that if the partition
defined on the data-set is consistent with the features considered, i.e. if the pattern
vectors are linearly separable, then the algorithm generates a number of barycentres
equal to the number of classes. On the other hand, if the classes in the data-set are
not linearly separable, then the algorithm continues splitting the classes until the
sub-classes obtained are linearly separable. It is obvious that it can continue splitting
until all the sub-classes are composed of only one vector (singleton). It must be
stressed that it will not converge if two vectors in the training set belong to different
classes and are represented by the same pattern vector. This problem can be easily
overcome increasing the dimension of the vector space.

The algorithm can be generalized allowing for impurity in the result, i.e. the
recursive partitioning of the feature space can be performed until the percentage of
elements that are closer to a barycentre of another class has decreased under a certain
threshold which can be set to a value different from zero. This can be helpful when
the training set has been classified with error (imperfect supervisor): in this case
allowing for impurity in the sub-classes can prevent the algorithm from over-fitting
the data.

3 Experimental Results

3.1 The Data

In this study, we will be testing the proposed algorithm on an original sample of 100
non-listed Italian SMEs during the years 2000-2011, 50 that filed for bankruptcy
and 50 still operating at the end of 2011, using business sector as stratifying variable,
choosing only firms with turnover in the range 250 million euros at the beginning of
the analyzed period. The sample was randomly selected from the firms operating in
Italy at the year 2000.

The case of Italian SMEs is peculiar because these companies mainly depend
on external source of finance, basically provided by banks. In such a bank-oriented
industry, any subsequent contagion on the inter-banking market side would be able
to jeopardize the principal source of external finance for the firms, because of banks
tightening the credit access to their borrowers.

Following the approach of Abdullah et al. [1], financial companies and property
industries were not considered in the analysis since their ratios are highly volatile.
Besides, the interpretation of the ratios is slightly different since financial compa-
nies, for example, have different nature of income and expenses from non-financial
companies.
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Due to the longitudinal nature of the data, the sample dimension will decrease
from 100 companies at 2000 to a plateau of 50 companies at 2011. The data used
in this work were collected through CERVED database (www.cerved.com), related
to economic and financial data of Italian non-listed companies. Using the available
financial statements of each firm, the most common ratios for every year in the period
2000-2011 have been computed.

According to Barnes [4] we selected the ratios throughout the criterion of popu-
larity, meaning their frequency of appearance in the literature [6]. Following there
are the ratios that have been used, that could be further grouped into two sub-groups:

e Profitability Ratios, related to the economic dimension of the company: Return on
Equity, Capital Turnover, Net Income/Total Assets, Return on Investment, Earn-
ing/Sales, Return on Sales, Financial Interests/Ebitda, Financial Interest/Sales;

e Leverage and Liquidity Ratios, related to the financial dimension of the company:
Financial Debts/Equity, Short Term Bank Loan/Working Capital, Cash Flow/Total
Debt, Structure Ratio 1, Structure Ratio 2, Working Capital/Total Assets, Quick
Ratio, Working Capital Cycle, Financial Debt/Working Capital, Current Ratio,
Retained Earnings/Total Assets.

All these ratios will be used to test the ability of the proposed algorithm to predict
bankruptcy up to 8 years prior to failure.

3.2 Performance Assessment

Once a classifier has been trained on the available data-set, its performance must be
determined. The performance of the proposed classification method will be evaluated
according to correct recognition rate, sensitivity and specificity. Namely, consider a
statistical test that allows choosing between two hypotheses (Hjy and H;). Let Hy be
the firm belongs to the non-failed ones and H be the firm belongs to the failed ones:

e sensitivity of a test is the statistical power of the test and is related to the type II
error (non rejecting Hy when it is false). It is the probability of recognizing a failed
firm as failed. It can be estimated using the proportion of firms that have failed
that are actually recognized by the test. A highly sensible test is good for ruling
out the condition under testing. Positive results in a highly sensitive test are not
useful to rule in the firm as being failed since sensitivity does not take into account
false-positives. Consider for instance a bogus test that would classify all firms as
having failed: such a test would have a perfect sensitivity but would not be useful
in determining those that actually fail.

e specificity of a test is related to the type I error of a statistical test (rejecting the
null hypothesis when it is true). It is the probability of recognizing a sound firm
as sound. It can be estimated using the proportion of sound firms that have been
recognized as “healthy” by the test. Specificity is therefore the ability of a test to
exclude a condition correctly. Specificity is not useful for ruling out a hypothesis.
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A fake test that would classify all firms as healthy would have a perfect specificity.
If a firm tests positive (failed) to a highly specific test than it would have a great
probability of being a failed firm.

e correct recognition rate of a test is the probability of correctly classifying a new
element. It can be estimated using the proportion of correctly classified firms over
the total number of firms.

Unbiased estimates of these quantities can be obtained via cross-validation, i.e.
part of the sample is selected to train the classifier and part, independent of the
previous one, is used to assess the performance of the classifier. Usually a k-fold
cross-validation scheme is used. A special version of the k-fold cross validation
is the leave one out scheme (LOO), where in turn each element of the sample is
singled out to be tested on the classifier trained on the remaining n — 1 elements.
The performance of the classifier is then a synthesis (usually an average) of the
outcomes on each unit. LOO is particularly useful when the data-set at hand is not
large and therefore splitting the data-set in two could cause too much variability in
the results. In such a situation as many elements as possible should be retained in
the training set.

The use of holdout sample and cross-validation is not so frequent in the literature
related to bankruptcy as it should be. Although in the specialized literature it was
suggested the need of an independent sample to test the classifier [15], several works
have continued testing the performance of various techniques on different sets of
variables using only resubstitution error. The estimates obtained using resubstitution
are biased estimates of the real performance, giving an error which is, on average,
lower than the actual error. Any algorithm trained on a data-set will perform well on
the data-set it has been trained on. To get a glimpse at the actual potential perfor-
mance of the proposed methodology a cross-validation approach must be used which
provides a nearly unbiased estimate [ 14] of the future error rate. With LOO this small
bias is further reduced. Besides, using LOO or k-fold cross-validation assures that
all the elements of the data-set will in turn be tested, avoiding any subjectivity in the
choice of the hold-out sample.

The performance of the proposed technique will be compared with that of Clas-
sification Trees [8]. The reason for such a choice is twofold: first both Classifica-
tion Trees (CARTS) and the proposed technique are non parametric classification
algorithms, i.e. no prior assumption is necessary on the data-set. Second they both
partition the pattern space into disjoint regions and therefore use a similar approach
to the estimation of the classifier.

Although the data is longitudinal in nature, the study we have carried out is a cross-
sectional study: the failed companies have been considered at various years prior to
failure, from 1 to 8 years. Similar studies have only considered data up to 6 years
prior to failure (see, e.g., [6] for a detailed review). Each distressed company was
randomly matched with a healthy company belonging to the same industry sector
and had the closest total assets. The criteria were set as control factors to ensure
minimum bias in the selection of the control sample used in the development of the
failure prediction model.
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Due to the randomness of the matching mechanism, the selection mechanism
has been repeated 300 times to get an average estimate of the performance of each
prediction technique.

3.3 Results

In Table I the average correct recognition rates, sensitivities and specificities over
300 trials for the proposed method have been displayed for up to 8 years prior to
failure. The corresponding standard deviations for the rates over the 300 trials have
been reported as well.

As it was to be expected, the average correct recognition rate decreases as the
time lag increases although the performance experiences a great decrease only after
7 years prior to failure. Until 6 years prior to failure the recognition rate is always
greater than 80 % with a variability around 2—3%. Also the standard deviation of the
performances increases when the time lag is over 6 years. This may be due to the
fact that, with such a large time lag, the financial performance ratios were not able
to signal a distress situation probably because there was none to signal.

Table 1 details also the average sensitivities for the same set of experiments. Sen-
sitivities are the probabilities of predicting a firm as failed given that the firm has
failed. It is also known as test power. The result of a highly sensitive test can be used
as an indicator of the health of the firm, since such a test can be used to rule out the
condition under testing (failure). From the obtained results, the most sensitive results
(i.e. the most powerful) are those that obtained in the time span that goes from 3 to
5 years prior to failure.

Finally, the average specificities and their standard deviations over the 300 trials
have been displayed. A test with high specificity is good as a warning signal, since a
firm that is classified as failed by a highly specific test is likely to actually be a failed

Table 1 Proposed technique: average recognition rates sensitivities and specificities and corre-
sponding standard deviations over 300 replications

Offset Correct recogn. rate Sensitivity Specificity

(years) Average Std. dev. Average Std. dev. Average Std. dev.
1 0.8697 0.0288 0.7788 0.0497 0.9605 0.0232
2 0.8326 0.0310 0.7224 0.0499 0.9429 0.0289
3 0.8878 0.0264 0.8259 0.0442 0.9497 0.0271
4 0.8776 0.0256 0.8192 0.0389 0.9349 0.0265
5 0.8891 0.0298 0.8448 0.0483 0.9335 0.0273
6 0.8387 0.0414 0.7883 0.0707 0.8892 0.0501

7 0.7620 0.0518 0.7391 0.0735 0.7848 0.0824
8 0.6731 0.0639 0.5927 0.0991 0.7535 0.0984
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Table 2 CARTS: average recognition rates sensitivities and specificities and corresponding stan-
dard deviations over 300 replications

Offset Correct recogn. rate Sensitivity Specificity

(years) Average Std. dev. Average Std. dev. Average Std. dev.
1 0.9159 0.0260 0.9299 0.0239 0.9019 0.0412
2 0.8487 0.0529 0.8341 0.0581 0.8634 0.0640
3 0.8108 0.0528 0.7676 0.0780 0.8539 0.0628
4 0.8101 0.0638 0.8024 0.0878 0.8177 0.0677
5 0.7926 0.0630 0.7393 0.0793 0.8459 0.0761

6 0.7124 0.0869 0.6630 0.1091 0.7618 0.1098
7 0.7339 0.0954 0.6993 0.1160 0.7686 0.1120
8 0.6301 0.1476 0.5878 0.1967 0.6724 0.1504

firm. The inverse is not true, i.e. a company that is classified as healthy by a highly
specific test does not mean that it will not fail. The performance with the highest
specificities are those obtained up to 6 years prior to failure. Once again the standard
deviation of the performance has the same trend it showed for the recognition rate.

In Table2 the results for correct recognition rate, sensitivity and specificity
obtained using CARTSs on the same data-sets have been displayed together with
the corresponding standard deviations over the 300 trials.

CARTSs perform better than the proposed technique w.r.t. correct recognition rate
and sensitivity for 1 and 2 years prior to failure. In all the other cases the proposed
technique more than holds its own. It always shows a better recognition rate, sensi-
tivity and specificity than CARTSs for the time span from 3 to 8 years prior to failure.
It shows a better specificity over CARTS. As the time lag increases the variability of
the performance of CARTS increases much more than the corresponding one for the
proposed technique, suggesting a more robust behavior.

4 Conclusions

We have introduced a new non parametric method to predict the possible failure of
a firm with a time lag from 1 to 8 years prior to failure.

We performed a cross sectional study based on a sample of 100 Italian non listed
SME:s over the time period from 2000 to 2011, considering 50 firms that have declared
bankruptcy during this time period and 50 still active on the market at 2011.

In this paper the performance of the proposed method has been compared to that
of classification trees.

The proposed algorithm has a very high recognition rate, resulting in a very high
prediction power, sensitivity and specificity and therefore is good at providing a nice
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trade off between the ability to detect firms that are likely to fail in the short time
and to rule out firms that will not.

The recognition rates are quite good, and the predictive ability of the methods has
been tested up to 8 years prior to failure. These results are in line with those available
in the literature going from 90 % correct recognition rate one year prior to failure to
66 % 8 years prior to failure.
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The Inflation Hedging Ability of Domestic
Gold in Malaysia

Hooi Hooi Lean and Geok Peng Yeap

Abstract Among the investment assets, gold is historically been thought as a pow-
erful inflation hedge to many households in Malaysia. This paper examines and
compares the hedging properties of gold against both consumer and energy inflation
risks in Malaysia. Using the monthly domestic gold price, we test the long-run and
short-run relationships between gold return and consumer inflation as well as energy
inflation. We find that gold investment in Malaysia is a good hedge against consumer
inflation and energy inflation in the long run but not for the short run. We also could
not find any evidence of short-run causality between gold return and both consumer
and energy inflations.

1 Introduction

According to Worthington and Pahlavani [45], gold is durable, transportable, gener-
ally acceptable and easily authenticated. Moreover, gold fulfils the basic functions of
money as a reliable store of value and has long been regarded as an effective inflation
hedge. Gold is proved to be the most effective portfolio diversifier and outperform
other financial assets held by typical US investors [14]. Gold is a counter-cyclical
commodity and it is always perceived as a safe haven asset [4-6, 37]. Nevertheless,
gold is now getting lesser attention of investors. This is because the holding period
for gold is usually longer than other financial assets. Moreover, unlike other type of
financial assets, gold does not have periodic payments.'

Bonds provide coupon payments and principal upon the maturity date. Stocks provide dividend
that could offer inflation protection to the investors.
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There are several ways to define inflation hedging of an asset. As defined in Bodie
[10], a security is an inflation hedge if and only if its real return is uncorrelated with
the rate of inflation. Bekaert and Wang [8] clarify that the minimum requirement for
an asset to be considered as a good inflation hedge is to show a positive correlation
between its nominal returns and inflation. Ghosh et al. [22] suggest that gold is an
effective inflation hedge in the long-run if the nominal price of gold and the general
price level are moving together. According to Ghosh et al. [22], gold must be able to
maintain its real value over time to be considered as an effective inflation hedge.

Although inflation rate is low in Malaysia, several sudden events such as unan-
ticipated oil price changes and the depreciation of Ringgit, will cause unexpected
change in the inflation. When oil price hikes, people will change their expectation
on the general price level because oil is one of the most important resources for
production and transportation. A rise in oil price leads to higher production cost
and induces supply side inflation. On the demand side, higher energy price leads to
a lower household’s disposable income and reduces the household’s consumption
[43]. Thus, through the income effect, households lose their purchasing power due
to the inflation associated with increasing oil price (Kilian [29]).

The expected inflation is basically the market view on the future general price level
in the country. When price changes are expected, the expected inflation is apparently
incorporated into the current asset prices. It is considered less risky because people
are ready and plan their investment portfolio based on the expected inflation. As a
result, the existence of inflation risk is mainly the concern about unexpected inflation.
The unexpected inflation is the unpredictable component of inflation and may have
serious impact on people real wealth. The unexpected inflation is an uncertainty and
it has been shown as one of the important causes of inflation [12, 13]. When an
unexpected change on general price level occurs, analysts will revise their forecasts
on future inflation to account for the unexpected changes. Hence, we also examine
whether gold is able to hedge the expected and unexpected inflation.

This study examines the inflation hedging ability of gold in Malaysia. We con-
tribute to the literature in several aspects. First, two types of inflation are considered
in this study, the consumer inflation and energy inflation. Previous studies have exam-
ined the long-run and short-run relationships between oil price and gold price but
few consider energy inflation.> Second, there are many studies on the inflation hedg-
ing ability of gold in the developed markets but the studies in emerging markets are
relatively fewer. We add to the literature by examining the case in Malaysia. Third,
we decompose the inflation into expected and unexpected components to analyse
the risk involves in gold investment to the unexpected changes in both consumer and
energy prices. Lastly, we make the first attempt to examine the causal relationship
between gold return and both consumer and energy inflation.

2Breitenfellner et al. [11] on energy price and house price is the only study found.
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The remainder of the paper is organised as follows. The following section provides
an overview of gold investment in Malaysia. It follows by literature review on gold
and inflation and the relationship between gold and oil markets in Sect. 3. Section4
presents the data and methodology. Section5 reports the empirical results and the
last section concludes the study.

2 Gold investment in Malaysia

Gold investment in Malaysia is divided into two major trading medium—the physical
gold and the paper gold [23]. The physical gold, in the form of gold jewellery, gold
bar, gold coin and gold bullion, is the most traditional way of investment. Gold
jewellery is easily available at goldsmiths and it is the most common type of gold
trading in Malaysia. Besides serving the purpose of investment, gold jewelleries
mainly act as luxury jewellery wear especially for women.

Another type of physical gold investment is gold bullion coins. Kijang Emas Gold
Bullion Coins is the Malaysia’s gold bullion coins which is issued by the Bank Negara
Malaysia and can be purchased at selected Maybank branches. The Kijang Emas is
available in three different sizes, 1 Troy ounce, % Troy ounces and i Troy ounces
with fine gold content of 99.99 %. The purchase and selling prices of Kijang Emas
are quoted daily based on the international gold price [33]. Moreover, the physical
gold bars and coins can also be purchased at some banks and jewellery shops in a
variety of weights and sizes. These gold bars and coins are traded based on the daily
buying and selling prices.

The paper gold is available in the form of gold saving or investment account
which is offered by banks. The investors will be given a passbook to record all the
transactions of buying and selling. The buying and selling price of gold is quoted
by each individual bank in Malaysia Ringgit per gram based on 999.9 (24 Karat)
gold price. This type of gold investment is gaining popularity today as it is more
convenient and investors do not have to worry about the safe storage of holding
physical gold [24]. Investors or account holder will not be given dividend or interest
based on their investment. Investors will only gain if they sell the gold at a higher
price than their initial buying price. It is a long term saving and is believed to provide
a good hedge against inflation like holding physical gold. Another type of paper gold
is Gold Exchange Traded Funds (Gold ETF). Gold ETF is listed in the stock market
and allow investors to buy and sell like shares during stock market hours. The Gold
ETF will invest in physical gold or gold related companies and then issue shares to
its investors. Investors of Gold ETF gain exposure to gold price where the value of
the shares will increase with the increase price of gold bullion [23].
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3 Literature Review

The relationship between inflation and gold. Studies that consider the long run
inflation hedging ability of gold investment based on consumer inflation are Taylor
[41], Ghosh et al. [22], Worthington and Pahlavani [45], Wang et al. [44], Beckmann
and Czudaj [7], Shahbaz et al. [39] and Bampinas and Panagiotidis [4]. Among
these studies, Worthington and Pahlavani [45], Shahbaz et al. [39] and Bampinas
and Panagiotidis [4] account for structural breaks in their analysis and show that
gold prices and inflation rate are strongly cointegrated in the long run.

Wang et al. [44] and Beckmann and Czudaj [7] assess the nonlinear relationship
between the inflation rate and gold prices. Wang et al. [44] find the that inflation
does not affect god return in high momentum regime or low momentum regime
in Japan which shows the inability of short run gold investment to hedge against
inflation in Japan. The result is opposite in the US. It shows positive bilateral causality
between gold return and inflation which means that gold investment in the US could
hedge against inflation in the short run. Beckman and Czudaj [7] test using two
measures of inflation e.g. consumer price index and producer price index and they
find significant results for both inflation measures. They conclude that gold price
moves in accordance with inflationary expectation and it is an effective hedge against
inflation.

Taylor [41] study based on two sample periods namely Post-War period from
1968M1 to 1996M4 and Pre-War period from 1914M1 to 1937M12. The results show
that gold acts as short run hedge during particular periods, specifically in the second
OPEC oil crisis in 1979. In contrast, gold was not hedge against inflation around the
first oil crisis in 1973/74. Ghosh et al. [22] find a cointegration relationship between
gold price, U.S. price index and world price index. Gold return and inflation rate seem
to show positive relation in the short run but it may be caused by other influences such
as convenience yield, leasing rate and the supply and demand dynamics. Andrangi
etal. [1] also find inflation hedging potential for gold in the long run based on positive
relationship between CPI and gold prices.

Some other authors study the inflation hedging of gold based on expected and
unexpected inflation. Feldstein [18] find that a higher expected inflation causes a
rise in the relative price of land and gold. It shows a positive relationship between
expected inflation and gold prices. Among other papers that study the impact of
expected inflation on gold prices are Jaffe [28], Larsen and McQueen [30], Adrangi
et al. [1], Blose [9] and Bampinas and Panagiotidis [4].

Earlier study by Jaffe [28] uses Treasury bill as a proxy for expected inflation. A
significant positive relation between gold return and unexpected inflation is found
but show negative sign. This result suggest that gold is not a good inflation hedge but
the author believes that there is a long run relationship between gold and inflation as
gold remarkably preserves its purchasing power over long run. Larsen and McQueen
[30] study the hedging ability of gold and real estate and their securitized form, gold
stocks and REITs. They use three different measures of expected inflation namely
Treasury bill, ARIMA and naive model and find that gold return has significant
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positive relationship with unexpected inflation at 10 % level. As such, gold is a good
hedge against inflation but gold stock is not as it shows insignificant relationship
with expected and unexpected inflation.

Moreover, Adrangi et al. [1] attempt the study on real gold return. They find
a significant positive relationship between real gold returns and expected inflation
but unexpected inflation is found not affecting gold prices. The test on long run
relationship show significant positive results and they confirm gold is a long run
hedge against inflation. However, Blose [9] does not find gold price changes to
significantly react to expected and unexpected changes in consumer price index.

In Malaysia, the inflation hedging ability of domestic gold is examined by Ghazali
et al. [20]. Using monthly data from July 2001 to November 2011, they can only find
positive relationship between gold return and inflation with insignificant coefficient.
Both expected and unexpected inflation are also found to have positive relationship
with gold return but the coefficients are not significant as well. They conclude that
domestic gold is not a store of value and does not help Malaysian investors to hedge
against inflation in the short run. Ibrahim and Baharom [27] have studied the invest-
ment role of gold in Malaysia and they find that gold does not perform its role as
a strong hedging, diversifying and safe haven asset. The role played by gold as an
investment asset may vary depending on different market conditions. Ibrahim [26]
further confirm the diversification ability of domestic gold against the Malaysian
stock market. Domestic gold also tends to be a good hedging asset during declining
stock market conditions. On the other hand, more recent studies by Ghazali et al.
[19] and Ghazali et al. [20, 21] show that Malaysian domestic gold acts as a hedge
against stock market but not a safe haven during extreme market conditions.

The relationship between oil and gold prices. The literature that examines the
direct linkage between oil prices and gold market has received more attention. The
earlier study that finds a strong positive response of gold prices to the changes in
crude oil prices is Baffes [3] based on the annual data from 1960 to 2005 and a
simple econometric model. Baffes [3] opine that the demand for precious metals
is expected to increase when crude oil price spikes as people view these metals
as more secure ways for storing wealth. However, using exponential generalised
autoregressive conditional heteroskedasticity (EGARCH) model, Hammoudeh and
Yuan [25] find insignificant effect of oil price shocks on gold returns and its volatility.
These authors show that gold is a better investment during crises or high inflation
times as it has significant negative leverage effect.

Similar result is found by Soytas et al. [40] in Turkey who examine the long run
and short run dynamic relationship between world oil prices, local gold and silver
sport prices and the Turkish lira/USD exchange rate. The world oil price does not
Granger cause the price of gold in emerging economy in the long run. Domestic gold
acts as a safe haven in Turkey during the country’s currency devaluation. However,
the domestic spot prices of gold seem to have significant positive impacts on oil
price in the short run. Sari et al. [38] only find weak long run relationship between
oil price return and gold return thereby oil explaining 1.7 % of gold price returns.
In their opinion, gold is considered safe haven asset due to their strong response to
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inflationary expectations. In the long run, investors may benefits from diversifying the
risk of price fluctuations into gold since there is only weak evidence found between
oil and gold prices.

With the aforementioned empirical results, Narayan et al. [35] contribute a the-
oretical framework for the understanding of the relationship between oil and gold
prices. Their theoretical motivation is explained by the inflation channel where they
argue that a rise in oil price will lead to the increase in general price level. The higher
price level causes inflation which in turn drives up the price of gold. Hence, an oil
price rise causes a rise in gold price. Their results reveal that oil market and gold
market are cointegrated and they believe that gold could be used to hedge against
inflation.

Zhang and Wei [46] analyze the cointegration relationship and causality between
gold and oil markets. Their results indicate that crude oil and gold prices are high
positively correlated. They evident a long-term relationship between oil and gold
market and only linear Granger causality exist from oil price to gold price. Moreover,
Reboredo [37] examines the role of gold as a hedge or safe heaven against oil price
movement. His results reveal that gold and oil are dependent significantly which
imply that gold is not a hedge against oil prices but he has evidence to show that gold
is an effective safe haven during oil market stress.

In conclusion, most of the above studies show that gold is an effective hedge
against inflation in the long run. The short run hedging ability against expected and
unexpected inflation remains mixed and inconclusive due to different country of
study and different sample period. None of the studies on the link between oil price
and gold price express the changes in oil price as energy inflation. The idea of the
term energy inflation is initiated from Breitenfellner et al. [11] who use this term in
the study of housing price.

4 Data and Methodology

Data. The domestic gold price is represented by the selling price of one troy ounce of
Kijang Emas that collected from Bank Negara Malaysia. Inflation rate is computed
from Consumer Price Index (CPI) collected from the International Financial Statis-
tics. We use the benchmark West Texas Intermediate crude oil price and the data is
collected from the U.S. Energy Information Administration. The sample period is
from July 2011 until April 2015. All data are in monthly frequency and are trans-
formed into natural logarithm series.

Estimating expected and unexpected inflation. The theory of hedging against
inflation refers to Fisher [17] hypothesis that nominal interest rate is the total of
expected real rate of return and expected rate of inflation. Fama [15] believes there
are two sources of inflation uncertainty, i.e. the expected inflation and unexpected
inflation; and the uncertainty about future expected inflation would affect the return
of a portfolio. As a result, Fama and Schwert [16] propose a model that reflects the
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unanticipated component of inflation. The model suggests an asset return as a linear
function of expected and unexpected inflation in which it has been extensively used
to examine the inflation hedging characteristic of an asset.

Expected inflation is the market expectation on general price level in the coming
period. There are three popular measures of expected inflation: (1) time series method,
(2) Treasury bill method and (3) survey forecast. The time series method utilizes
univariate autoregressive integrated moving average (ARIMA) to model the expected
inflation rate. The fitted value of inflation rate is taken as expected inflation and the
residual is the unexpected inflation. In the gold market studies, several authors have
used this method such as Larsen and McQueen [30] and Adrangi et al. [1].

The second method is considered as ‘traditional’ method in the inflation hedging
literature. It follows Fama and Schwert [16] framework where Treasury bill rate is
used as a proxy for expected inflation. Expected inflation is calculated as Treasury bill
rates minus constant real rate of return. This method is not common in the literature
because it assumes constant real rate of return which is less appropriate in the time-
varying model. The last approach s a survey-based approach where expected inflation
is collected from survey on inflationary expectations. The adequacy of this method
remains debatable although some authors regard this method as better forecast of
expected inflation than other alternatives [2, 42]. We will not consider this method
in this study due to unavailability of survey data of expected inflation in Malaysia.

In this study, we employ the first measure, i.e. an ARIMA model to estimate the
expected and unexpected inflation. We choose the best-fitted model with the lowest
value of Schwarz Information Criteria (SIC) to estimate the expected and unexpected
inflation. The estimated value is used as expected inflation. The residual which is the
actual inflation minus expected inflation, will be the unexpected inflation.

Table 1 Descriptive statistics

Variables Mean Std. Dev. Skewness Kurtosis
GP 7.9391 0.5134 —0.2886 1.6991
CP 4.5558 0.0985 —0.0396 1.6435
EP 4.1191 0.4825 —0.6663 2.3421
GR 0.0088 0.0491 —0.3845 3.8444
CI 0.0019 0.0043 3.6837 35.8635
ECI 0.0021 0.0020 0.4054 10.8011
UCI —0.0001 0.0038 4.3155 39.3503
EI 0.0045 0.0886 —0.9934 4.9775
EEI 0.0010 0.0467 —1.1628 6.4387
UEI 0.0035 0.0786 —0.2338 2.7918

Note GP gold price; CP consumer price index; EP energy price (as proxy by WTI crude oil price);
GR gold return; CI consumer inflation; ECI expected consumer inflation; UCI unexpected consumer
inflation; EI energy inflation; EEI expected energy inflation and UEI unexpected energy inflation.
Inflation = Expected Inflation 4+ Unexpected Inflation
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The summary statistics of the data are presented in Table 1. The level series show
that mean gold price is relatively higher than the consumer and energy prices over
the sample period. The energy price is five times more volatile than the consumer
price. Gold has an average monthly return of 0.88 % which is higher than the average
consumer inflation (0.19 %) and energy inflation (0.45 %). Energy inflation shows
a much higher standard deviation than consumer inflation over the sample period.
It seems that gold investment in Malaysia is exposed to higher energy inflation risk
than the risk comes from consumer inflation.

For the expected and unexpected components of inflation, the expected consumer
inflation has a mean of 0.21 % which is higher than the expected energy inflation
(0.10%). Conversely, the mean of unexpected energy inflation (0.35 %) is higher
than the mean of unexpected consumer inflation (—0.01 %). We note that the unex-
pected component has a bigger weight in energy inflation but this is not the case for
consumer inflation. A possible explanation is that a sudden hike of oil price causes
unexpected increase in consumer inflation. In anticipation of the higher consumer
inflation, central bank will tighten the monetary policy to stabilize the general price
level (Kilian [29]; Mozes and cooks [34]; [11]). So, the unexpected component of
consumer inflation is smaller because the unexpected changes in oil price have been
reflected in the expected component of consumer inflation.

Methodology. The analysis of this study is divided into two parts. The first part is
to examine the long run relationship between gold price and consumer price and
energy price respectively. The second part is to test the inflation hedging ability of
gold based on the Fama and Schwert [16] model.

Long run relationship. Johansen cointegration test is applied to examine the exis-
tence of long-run equilibrium relationship between gold and consumer prices and
between gold and energy prices. After the establishment of cointegration, we proceed
to estimate the long-run relationship using Fully Modified Ordinary Least Square
(FMOLS) method with the following equations:

GP,=a+ BCP; + & (D
GP, = o + BEP; + ¢, 2)

where Eq. (1) shows the relationship between gold price (GP) and consumer price
(CP) and Eq.(2) is to test the link between gold price and energy price (EP). To
examine the inflation hedging ability of gold in the long run, the coefficients (8,) of
CP and EP must be positive and significant.

Relationship between gold return and inflation. Following Lee and Lee [32] and
Lee [31], we adopt the model developed by Fama and Schwert [16] to test the
relationship between gold return and two types of inflation. There are two models.
The first model tests whether gold is an effective hedge against actual inflation:

GR[ =o+ ﬂCI[ + €t (3)
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where GR represents gold return and CI is the actual consumer inflation. Gold is
considered as a hedge against actual inflation if 8 is significantly greater than zero.
The second model is based on Eq. (4):

GR; = a + B1ECI, + BUCI, + ¢, 4

where ECI and UCI are the expected and unexpected inflation respectively. In Eq. (4),
gold is hedged against expected inflation if 8> 0 while it is considered a hedge
against unexpected inflation if 8,> 0. If these coefficients, 8jand B,, are equal to 1,
gold is a complete hedge against expected and unexpected inflation respectively. In
addition, gold is a partial hedge against inflation if these coefficients are less than 1,
but greater than zero. A negative coefficient shows inability of gold to hedge against
inflation.

To examine the impact of energy inflation on gold returns, Egs. (3) and (4) are
re-written as:

GRZ =o+ ,BEI[ + €t (5)
GR, = o + BIEElL, + BUEI + ¢, (6)
where El is actual energy inflation, EEI represents expected energy inflation and UEI

represent unexpected energy inflation. The parameters 8, 8 and B, have similar
interpretation as consumer inflation.

Granger causality test. Granger causality test based on the vector error correction
model (VECM) is applied to determine the causality direction between gold return
and consumer inflation and between gold return and energy inflation. The following
VECM models will be investigated.

AGP: | _ |« n A1 A || AGP_ "
ACP; ay Azi1 Axy || ACP,_,

Ak Ak || AGP— 1 &1
’ ’ ECT,;_ 7
+ |:A2],k A22,ki| |:ACPt—k:| + |:¢2] X [BCT ]+ |:€2r] @

AGP: | _ |« n A1 A || AGP_ "
AEIL az Az Ay | | AEP,
Ajrx A | | AGP 1 el
+ ’ ’ + X |ECT;_1| + 8
|:A2],k A22,ki| |:AEPt—k:| |:¢2 [ECTi] &2 ®
where ECT,_ is lag error correction term which is estimated as below:

ECT,_y = GP;,_; — a — b CP,_, for Equation (7) and ECT;_1 = GP;_ —a —
b EP,_, for Equation (8).
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Long-run causality exists if the coefficient of ECT,_, is negative and statistical
significant. The existence of short-run causality is indicated by the significance of
the x? test between the variables.

5 Results

We perform the augmented Dickey-Fuller (ADF) and Phillip-Perron (PP) unit root
tests to access the stationarity of the series. The results are presented in Table 2. The
results clearly show that all level series are not stationary and their first differences
are stationary which suggest that all series are I (1).

Next, we test for the long run equilibrium between gold and consumer prices and
between gold and energy prices respectively. The results in Table3 show a long-
run equilibrium exists among these variables. Trace statistic and max-eigen statistic
show that there is at least one cointegrating equation between gold price and consumer
price. The results also show that there are at least two cointegration equations between
gold price and energy price. Normalized cointegrating coefficients for both consumer
price and energy price are both positive and statistically significant. This infers that
a one percent increase in consumer price leads to 7.72 percent increase in Malaysian
gold price in the long run and a one percent increase in energy price leads to 0.96
percent increase in the Malaysian gold price in the long run.

Table 2 Unit root test

Level series Return series
Variable ADF PP Variable ADF PP
GP —1.7745 —1.9723 GR —15.5489%** | —15.9324%**
CP —0.2609 —0.1434 CI —9.0360%** | —8.9141%**
(0) —2.0895 —2.0161 ECI —5.5183%** | —10.7718%**
ucCl —12.7925%** | —12.7925%**
EI —8.9793%** | —9,0242%**
EEI —8.5812%** | —4.3958%**
UEI —12.9670%** | —13.4771%**
Note *** indicates significant at 1 % level
Table 3 Johansen Cointegration Test
r=0 r=1 Normalized
cointegrating coefficients
Trace statistic | Max-Eigen | Trace statistic | Max-Eigen | CP EP
statistic statistic
GP and CP | 29.1379%* 25.6372%%* | 3.5007 3.5007 7.7214%%% | —
GP and EP | 29.7394%#* 18.4372%%* 11.3022%* 11.3022%* - 0.9606%**

Note ** and *** indicate significant at 5 % and 1 % respectively
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Table 4 FMOLS estimation results

GP; =« + BiCP; + ¢ GP; =« + BIEP, + &
o —14.7615%*x 4.0227 %%
B 4,982 0.9524 %
R? 0.9139 0.7139

Note *** indicates significant at 1 % level

Table 4 reports the FMOLS results of long run inflation hedging ability of gold.
Consistent with the normalised equations above, the coefficients of CP and EP are
positive and statistically significant at 1 % level. This indicates that gold price varies
positively with the consumer price and energy price in the long run and suggests that
gold hedges both consumer inflation and energy inflation over the long term period
of time. The results are also consistent with the findings of Taylor [41], Ghosh et al.
[22], Worthington and Pahlavani [45] and Shahbaz et al. [39]. So far, none of the
study in Malaysia attempts to test the long-run relationship between gold price and
inflation. Our results reveal that Malaysian gold maintains its value against both types
of inflation over long investment horizons. Malaysian domestic gold is a good hedge
against consumer inflation (8 > 1) and a partial hedge against energy inflation (0 <
B < 1). As Malaysian domestic gold shows its ability to hedge against inflation over
a long investment horizon, investors who wish to store the value of wealth can hold
gold for a longer period of time. The hedging ability is more useful for consumer
inflation than the energy inflation.

VECM is estimated to examine the short-run dynamics between gold return and
consumer and energy inflation respectively. The results are reported in Table 5. The
lagged error correction term (ECT) for both consumer and energy inflation are neg-
ative and significant. None of the independent variable is significantly affect the
changes in gold price (or gold return). We also could not find any significant short-run

Table 5 VECM results

Panel A: gold return and consumer inflation Panel B: gold return and energy inflation
Variable Coefficient Variable Coefficient
ECT(-1) —0.0310* ECT(-1) —0.0295%*
AGP(-1) —0.2025%** AGP(—-1) —0.1741%%*
AGP(-2) —0.0754 AGP(-2) —0.0314
AGP(-3) —0.0274 AEP(-1) —0.0364
ACP(—1) 0.3663 AEP(-2) —0.0609
ACP(-2) —0.8822

ACP(=3) —0.0175

Granger causality %2 Granger causality x2

ACP — AGP 0.8875 AEP — AGP 3.0265
AGP — ACP 2.6918 AGP — AEP 0.8568

Note * and ** indicate significant at 10 % and 5 % respectively
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Table 6 OLS estimation results

Variables Equation (3) Equation (4) Equation (5) Equation (6)
Constant 0.0100%* 0.0084 0.0103%** 0.0099%*%*
GR(—1) —0.1982%* —0.2014%#* —0.1996%* —0.2030%%**
Actual inflation 0.2329 - 0.0407 -

Expected inflation - 0.7900 - —0.0444
Unexpected inflation | — 0.1069 - 0.0718
F-statistic 3.344 1% 2.3445% 3.7766%* 3.1984%%*

Note *, ** and *** indicate significant at 10 %, 5 % and 1 % respectively

causality between gold return and consumer inflation and energy inflation respec-
tively. Hence, Malaysian gold is not hedging against both consumer and energy
inflation in the short run.

The best fitted model for consumer inflation and energy inflation respectively is
ARIMA (2,1,4). The inflation hedging ability of gold based on Egs. (3), (4), (5) and
(6) is tested using the Ordinary Least Square (OLS) method. The estimation result
shows there is autocorrelation problem in all models. We solve the problem by adding
the lagged of gold return into the models. The results are presented in Table 6. Gold
return show positive relationship with the actual, expected and unexpected consumer
inflation but are not significant. This indicates that domestic gold in Malaysia is not a
significant consumer inflation hedge in the short run supporting Ghazali et al. (2012).
Conversely, the result contradicts with studies on consumer inflation such as Adrangi
etal. [1] and Larsen and McQueen [30] who find significant relation with unexpected
inflation in the U.S.

For the energy inflation, gold return is positively related to the actual and unex-
pected energy inflation but negatively related to the expected energy inflation. How-
ever, all coefficients are not significant as well showing that domestic gold in Malaysia
is not a good hedge against energy inflation in the short run. The finding is in line
with Hammoudeh and Yuan [25] who reported insignificant relationship between oil
price shock and gold return.

Comparing the consumer inflation and energy inflation, higher coefficient of actual
consumer inflation showing that domestic gold seems to demonstrate better ability
to hedge the consumer inflation than the energy inflation. While Malaysian domestic
gold investment showing its ability to protect investors against consumer inflation,
the expected energy inflation adversely affects the domestic gold return. It is likely to
have some important implications to Malaysian gold investors as the country’s fuel
price is currently under managed float system. Domestic gold investors are exposed
to greater volatility of world crude oil price. Investors may not be able to protect their
wealth due to the inflation stemming from rising price of energy. As domestic gold
only shows its inflation hedging ability in the long run, Malaysian gold investors
may lose their purchasing power over inflation in the short run especially against the
energy inflation.
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Conclusion. This study investigates the relationship between gold and consumer
prices and between gold and energy prices in Malaysia. We would like to know
whether domestic gold provides a reliable hedge against both consumer and energy
inflation in Malaysia. We find that gold investment is neither hedge the short-run
inflation risk against the consumer inflation nor energy inflation. Bampinas and Pana-
giotidis [4] also document that gold is a poor inflation hedge in the short run but as the
investment horizon increases they may provide adequate long-run hedging abilities.
This argument holds true for the case of Malaysia.

The domestic gold investors should consider both consumer and energy inflation
in making their investment decisions. The government’s move to abolish fuel subsidy
renders Malaysian households and investors to more uncertainty in energy inflation.
Moreover, the introduction of Goods and Services Tax (GST) has severely increased
the consumer inflation in the country. These two recent policies may cast investors
with the worry of greater inflationary pressure. Investors who wish to protect their
wealth against the inflation risk can consider gold in their investment portfolio for
long term investment horizon. Indeed, the disability of domestic gold in hedging
the short-run inflation should not be ignored especially for the case of poor hedge
against unexpected energy inflation. Gold investors may need to gain higher returns
from other investment alternative that can provide more protection against energy
inflation.
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To Determine the Key Factors for Citizen
in Selecting a Clinic/Division in Thailand

Lee Tzong-Ru (Jiun-Shen), Kanchana Chokethaworn and Huang Man-Yu

Abstract This paper presents an integrated methodology to find out key factors
that affects people choose for different types of clinic and hospital department. The
requirements of the methodology not only consider factors before, during and after
treatment, but also identified clinic, dental clinic, aesthetic clinic, dental depart-
ment in hospital, department of family medicine in hospital, and department of
orthopedics. Although there are multiple and contradictory objectives to be con-
sidered respectively, grey relational analysis (GRA) can sort out key factors to each
clinic/department and be the decision maker.

1 Introduction

Nowadays, people go to hospital not only for illness, but also try to become more
attractive. Since most of people can afford medical treatment, the demand to clinic
and hospital now not only effectiveness, but also comfortable environment, advanced
equipment, high quality service, and kindness of staffs, etc. Patients can be redefined
as customers since clinic and hospital focus on promoting medical environment to
be more attracted. The key factors present the tendency of customers when they
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choose select a clinic/hospital. Therefore, these key factors are significant to medical
organizations.

There are ranges of reasons for people to choose a hospital or clinic. Lanes Hospital
choice: A summary of the Key Empirical and Hypothetical Findings of the 1980s
(1988) is one of the earliest papers that provided complete factors that affect peoples
choice. More scholars have noticed topics and studied more factors since then.

In order to provide better service quality, clinics and hospitals have to know what
are the key factors for patients when they chose medical organization. Following the
trend of clinic/hospital taking enterprise approach, the paper collected the factors
that affect customers when they select a clinic/hospital. In the end of the paper, the
result of analysis and conclusion is presented.

2 Literature Review

2.1 Decision Customers Make Before Going
to Clinic/Hospital

Due to not all the people go to clinic/hospital because of illness, the paper applied the
word customer instead of patient. Thanks to competitive medical industries, we take
medical service with more choice and affordable price. Nowadays, we do the survey
and compare different clinics before we go just like buying a product. Nevertheless,
service is much harder to be compared with products since service is intangible and
unquantifiable.

Engel (1995) described five stages model of consumer buying process to reveal
the process when consumers make decision. To find out the key factors that affect
customer to choice a clinic/hospital, the paper redefined EKB consumer buying
process into consumer receiving treatment process as follows.

Stages 1. Basic Purchase Decision When a potential customer has a need (e.g.
toothache, tooth correction, orthopedics, etc.), he would see how serious the situation
is, and decides if he really has to go to the clinic/hospital.

Stages 2. Product Category Decision If the potential customer determines to go to
clinic/hospital, he needs to think which levels of the clinic/hospital he should go.

Stages 3. Brand Purchase Decision If the need is not emergency, the potential
customer would do a bit of research about the clinic/hospital he might go to. For
example, he would go to the clinic/hospital that he trust after determining which
levels of clinic/hospital.

Stages 4. Channel Purchase Decision The potential customer would evaluate the
place and if he is able to go. For example, he would think about if he should walk or
drive, how to drive there, etc.
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Stages 5. Payment Decision When every decision mentioned above has been con-
sidered, payment decision would become an issue, such as pay by cash or pay by
card.

2.2 Grey Relational Analysis (GRA)

Grey relational analysis (GRA) is grounded on the concept of Grey System Theory,
which was firstly formally introduced by Deng [1]. Grey system theory uses white,
grey and black to refer to how well do people know about the system. White means
all the information can be fully realized, while black means nothing about the con-
struction, figure can be known. But in most of the situation, at least some incomplete
information can be hold.

Grey relational analysis (GRA) conquers the issues that need a large number of
data in statistic, and can deal with incomplete information. It is suitable for studies
that take limitation time or restriction interviewees (e.g. a large number of doctors
or nurses).

Grey relational analysis (GRA) is an impact evaluation model that measures the
degree of similarity or difference between two sequences based on the grade of rela-
tion [2]. It can also be used to find out key factors even with incompletely information
by comparing the similarity and difference between two sequences based on grade of
relation [2]. Grey Relational Analysis (GRA) has been successfully used in variety
field [3]. It does not need either statistic resume or statistic software to compile. The
method is specific and easy to calculate. Once the medical organizations learn the
algorithm, they can find out the key factors by themselves through excel. It can be a
help to identify different key factors. Also, the organization can build their own data
to compare which factors are more important to customers in certain time.

The main process of Grey Relational Analysis (GRA) is as steps as follows. For
better understanding, the paper takes clinic data as example. And the rest of the clinic
and department in hospital followed the same process.

Step 1. List the result from the response questionnaire. Calculate the difference
between full marks and response marks. The numbers under three treatments are 23
(= 10 + 8 4+ 5) questions inquired in the questionnaire. The numbers below to No
are quantity of questionnaires. The rest of numbers refers to the difference between
full marks and response marks. For example, the answer to question 1 for the first
questionnaire is 4, which become 1 (= 5 — 4) after calculation (Tables 1, 2 and 3).

Step 2. Calculate the different sequence based on Eq. 1. Find out the max and min
difference in all the factors. Then calculate the different sequence based on Eq. 1.
In Eq. 1, ¢ is the identification coefficient and is equal to 0.5, Xy = X, (1), Xo(2),
..., Xo(k) is the comparison sequences. A Likert five-point scale is used to evaluate
the criteria for calculating grey relational coefficients of all factors, and the highest
score is 5. Moreover, each factor is graded with a score of 5, 4, 3, 2, or 1, X;(k) is
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Table 1 List of calculated difference between factors

L. Tzong-Ru (Jiun-Shen) et al.

No. Before treatment During treatment After treatment
1 10 1 8 1 5

1 1 0 0 2 1 1

2 1 1 1 1 0 1

3 2 1 1 0 0 1
180 0 0 0 2 2 2
Table 2 List of grey relational coefficient

No. Before treatment During treatment After treatment

1 10 1 8 1 5

1 0.33 1 1 0.42 0.67 0.5
2 0.5 0.5 0.5 0.6 1 0.5
3 0.5 0.5 0.5 1 1 0.5
180 0.5 1 1 0.43 0.5 0.33
Table 3 List of grey relational degree

Rank Key factor Question no. | Grey relational grade

1 Doctor’s skill 15 0.79

2 Result of treatment 20 0.79

3 Doctor’s explanation before 14 0.76

treatment

4 Reputation of the clinic 13 0.75

5 Other staff’s attitude 11 0.74

6 Doctor’s attitude 8 0.74

the score that the kth respondent answers factor i, wherei = 1,2, ..., 17, k =1, 2,
..., n, and n is the number of valid questionnaires.

A min 4 £ A max

r[Xo(k), X;(k)] = yoi (k) =

AXoi (k) + ¢ Amax

(D

Step 3. Calculated the grey relational coefficient according to Eq.(2). The grey
relational degree, which is equal to the arithmetic mean of the grey relation coeffi-
cients, was calculated. The grey relational degree represents the relationship between
sequence and comparison sequence. If the changes in two factors have the same trend,
this means that the extent of synchronous change is high, as well as the extent of the
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correlation. Then, grey relational degree, which is equal to grey relational coefficient
under equal weighted index, is calculated.

I'(Xo, Xi) = Toi = D_ By [Xo(k), Xi(k)] @)
k=1

Step 4. Sort out key factors by raking the sequences. Finally, Re-order the rela-
tional degree by descending. The higher relational degree is, the more important the
factor is.

The above data calculated are for clinic. But all the data for clinics and departments
in hospital were analyzed in the same process. The line graphs, which refer to the
results, can be found in Sect.4. Analysis Results.

3 Questionnaire Design

People go to dental and aesthetic clinic not all because of illness or scars. Conversely,
they go for better looking and gain more confidence in most of the cases. Therefore,
the paper used the words customer instead of patient. The paper had collected factors
from papers and trend.

Based on medical clinic by types, total amount of clinic and dental clinic are
over 50 %, the questionnaire included these two types of clinic. Since esthetic clinic
has become a trend these years, esthetic clinic is considered in the paper as well.
Also, the paper thought about the different departments in the hospital, so dental
department, department of family medicine in hospital and department of orthope-
dics were discussed in the paper. In short, the paper adopted six types of medical
organization, including clinic, dental clinic, aesthetic clinic, dental department in
hospital, department of family medicine in hospital and department of orthopedics.

Likert five-point scale is the criteria in the paper. Customers marked their opinions
about how important the factors in by choice point from one point Very unimportant
to five points Very important.

The factors that affect customers choices are presented in three stages in the
questionnaire: before treatment, during treatment, and after treatment. All the factors
in three stages are explained as follows.

Factors before treatment

(1) Number of Units in the clinic
Since doctors have different specialty, and customers think over doctors specialties
when decide a clinic/hospital [4, 5].

(2) Expert Recommendation
Bayus [6] claimed that whether positive or negative evaluation makes huge influence
to customer before making choice with insufficient information. Realizing about
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other doctors recommendation is one of the most efficient ways to know the credibility
of doctors or clinics/hospitals [7, 8].

(3) Social Recommendation on the Website
Gu [9] noticed that customers do more research before doing high involvement treat-
ment, such as dental correction and plastic surgery. So the questionnaire contained
social recommendation on the website.

(4) Distance to the clinic
Boscarino and Steiber [4], Malhotra [7], Wolinsky and Kurz [8], Lane and Lindquist
[5] viewed distance to the clinic as a significant factor to customers in 20th century
since distance to the clinic is another vital cost beside money for customers.

(5) Parking Convenience
People would be more willing to go a shopping mall that provides parking space
than the mall that does not. In the same reason, parking convenience could be an
influential factor to customers of clinic/hospital. So parking convenience is contained
in the questionnaire.

(6) Waiting Time
Longer waiting time refers to less dominant time of customers. Holtmann and Olsen
[10] shared similar opinion in their paper. The paper brings waiting time into the
questionnaire as well.

(7) Explanation of the Reservation
More and more clinics/hospitals provide reservation service before treatment. Some
organizational clinics/hospitals even only accept reservation. Owing to the trend, the
paper takes explanation of the reservation as a question item in questionnaire.

(8) Reputation of the Clinic
Trust and reputation systems represent a significant trend in decision support for
Internet mediated service provision [11]. An improper evaluation can negatively
affects reputation and profitability of a clinic/hospital. Therefore, the paper adopted
reputation of the clinic in questionnaire.

(9) Doctors Background
Doctors background is one of the prime information that customers know about
a doctor. Professional background somehow implies better skills than normal one.
Since dental treatment, orthopedics require especially skilled technique, a doctor can
acquire more credit if he has professional or experienced background.

(10) Past Experience at the Clinic
Kuehn [12] noted that customers make decision by their experience accumu-
lated in the past. Unpleasant experience could cause customers look for another
clinic/hospital that make them feel more comfortable. Past experience of customers
decides whether they would come back to a clinic/hospital again.

Factors during treatment

(11) Doctors Attitude
Doctor is the key person who gets alone with customers in the treatment procedure.
Naturally, the paper included doctors attitude as one of the factors.

(12) Nurses’ Attitude
Nurses attitude is an important issue that mentioned in many medical related papers
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[5, 8, 13]. Otani [14] defined nurses caring as nurses response when customers need
assistance. In spite of different title, nurses caring is contained in nurses attitude. So
the paper combined the element into nurses attitude in the questionnaire.

(13) Other Staffs Attitude
Other staffs refer to clinic staff except doctors and nurses, i.e. pharmacists, counter
staff etc. Although other staffs do not interact with customer as much as doctors and
nurses do, their attitude still affect customers choice since they are included in the
treatment procedure. In addition, counter staffs present first impression of the clinic
or hospital. And pharmacists are usually in the last service station, which cause deep
impression to customers. Because of the reasons, the paper contained other staffs
attitude in questionnaire.

(14) Doctors Explanation before doing treatment
Boudreaux [13] notified that use anticipatory guidance (i.e. explain to patient what
to expect next) influents the most in all the factors that affect satisfaction in his paper.
Doctors explain to next phase is highly related to customers satisfaction with clinic
(Koichiro et al. 2005). Based on the studies, the paper put doctors explanation before
doing treatment into questionnaire as well.

(15) Doctors Skill
Doctors skill is deeply correlated with the expectation result of customers. Customers
want to reduce the risk of fall result down to the basement. Thus, the paper takes
doctors skill in the questionnaire.

(16) Physical Environment
Physical environment is one of the considerable factors in the paper, and including
light, quietness, and sanitation. Noise and dirty environment cause healthy people
disease, not mention about customers in the clinic/hospital.

(17) Privacy of Treatment Room
Inhorn discussed about privacy in clinic in 2004, he also said that medical privacy
speak about doing no harm to informant, and whether oral and written guarantees of
anonymity and confidentiality can assuage informants anxieties and fears. Thus, the
paper sees privacy of treatment room as a factor in questionnaire.

(18) Medical Equipment
Earlier medical related papers define medical equipment as if equipment can operate
smoothly or is the equipment clean [4, 5, 7, 8]. But people care more about if the
equipment is advanced nowadays. No matter which definition, medical equipment
is mentioned in the decades, so medical equipment is considered in questionnaire of
the paper.

Factors after treatment

(19) Cost of Treatment
Cost of treatment reflects how much service could customers have in treatment pro-
cedure. Customers gain more satisfaction if the cost lower than their expectation.
Boscarino and Steiber [4], Wolinsky and Kurz [8], and Lane and Lindquist [5] dis-
cussed cost of treatment in their papers. For the reasons, the paper included cost of
treatment in questionnaire.



250 L. Tzong-Ru (Jiun-Shen) et al.

(20) Result of Treatment
Since customers spend money, time, and effort on survey, result of treatment is
definitely what they concern about. And result of treatment is the direct way that how
customers evaluate the treatment. So the questionnaire takes result of treatment in.

(21) Could Pay by Credit Card
The service in dental clinic and aesthetic clinic are usually expensive. Because Credit
card allows customers enjoy first, pay latter, customers might more eager to go to a
clinic that accept credit card. Thus, could pay by credit card is one of the questions
item in questionnaire.

(22) Could Pay by Installment
For the same reason in (21), the expense of service in dental clinic and aesthetic
clinic could be a burden to customers. If they are allowed to pay by installment, the
services will be more affordable. Therefore, the paper included in the questionnaire
could pay by installment as well.

(23) Explanation for Residential Care and Medication Usage
Explanation for residential care and medication usage is an extension of the relation
between the clinic and customers. Since pharmacist response to inform customers
suggested use of medicine, the following care etc., there are even some papers regard
pharmacists attitude as question in the questionnaire (Woilinsky and Kurz 1984), [5].
Through the reasons, the paper takes explanation for residential care and medication
usage as well.

The questionnaire turns to doctors and nurses who have worked in medical organi-
zation that included in the paper (clinic, dental clinic, aesthetic clinic, dental depart-
ment in hospital, departmenrt of family medicine in hospital, and department of
orthopedics). The questionnaires had been released and collected during November
to December in 2014. And total 180 valid questionnaires (30 for) had been received.

The questionnaire is divided into three sections. An introduction of this study,
and appreciation are given in the first section. Next, some simple explanations and
evaluated questions before, during and after treatment are offered in the second
section. The paper adopted Likert five-point scale that interviewees marked from 1
point (very unimportant) to five points (very important) to present their preference
to each question. Finally, the basic information of the interviewees inquired in the
third section.

4 Analysis Results

The paper collected that mentioned about the influential factors to customers when
choose a clinic/department. Also we used grey relational analysis (GRA) to sort out
key factors for each type.

Daniel [15] pointed out that there are three to six factors for enterprise to survive in
an industry. Identify three to six key factors does not promise success to the enterprise,
but the enterprise might never be success without three to six key factors. The paper
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accepts the point, and adopted three to six key factors in 23 factors. By the restriction
of length, the paper only discusses key factors of each types of clinic/department in
the hospital.

(1) Clinic
After calculated process, the analysis result of clinic is revealed through Fig. 1 Grey
relational degree of clinic. The six factors are ‘doctor’s skill’ (0.79), ‘result of treat-
ment’ (0.79), ‘doctor’s explanation before doing treatment’ (0.76), ‘reputation of the
clinic’ (0.75), ‘other staff’s attitude’ (0.74), and ‘doctor’s attitude’ (0.74).

(2) Dental Clinic
According to Fig.2 Grey relational degree of dental clinic, group B1-BS5 contained
six key factors. They are: ‘doctor’s explanation before doing treatment’ (0.91), ‘med-
ical equipment’ (0.86), ‘doctor’s skill’ (0.81), ‘doctor’s background’ (0.79), ‘past
experience at this clinic’ (0.78), and ‘reputation of the clinic’ (0.76).

(3) Aesthetic Clinic
By Fig.3 Grey relational degree of aesthetic clinic, we can find six factors form
group C1-C5. The six key factors are: ‘expert recommendation’ (0.83), ‘past expe-
rience at this clinic’ (0.82), ‘doctor’s skill’ (0.8), ‘result of treatment’ (0.8), ‘doctor’s
background’ (0.79), and ‘doctor’s explanation before doing treatment’ (0.78).
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(4) Department of Family Medicine in Hospital
Since key factors ‘expert recommendation’ has the some grey relational degree with
key factors nurses attitude, six key factors for department of family medicine in hos-
pital can find in group E1-E3. The six key factors in order are: ‘could pay by credit
card’ (0.89), ‘result of treatment’ (0.86), ‘explanation for residential care and med-
ication usage’ (0.84), ‘doctor’s explanation before doing treatment’ (0.79), ‘expert
recommendation’ (0.78), and ‘nurses attitude’ (0.78) (Fig. 4).

(5) Dental Department in Hospital
According to the calculation result of grey relational degree for dental department in
hospital, key factor ‘doctor’s skill’ has the same result as ‘could pay by credit card’.
Also, key factors ‘doctor’s explanation before doing treatment’ and key factors ‘med-
ical equipment’ own the same result. We can find Key factors for dental department
in group D1-D3. It will be exceed over six key factors if included group D4, so
five key factors are adopted here. There are: ‘result of treatment’ (0.93), ‘doctor’s
skill’ (0.91), ‘could pay by credit card’ (0.91), ‘doctor’s explanation before doing
treatment’ (0.84), and ‘medical equipment’ (0.84) (Fig.5).

(6) Department of orthopedics
In Fig. 6 Grey relational degree of department of orthopedics, the paper will take
more than six factors if contained group F2. So there are key factors for department
of orthopedics in group F1: ‘doctor’s skill” (0.96), ‘medical equipment’ (0.93), ‘past
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experience at the clinic’ (0.91), and ‘doctor’s explanation before doing treatment’
(0.87).

The paper reveals the key factors for each types of clinic or department in hospital
in this section. Every type of medical organization has different combination of
factors. These key factors are the main points that the clinics or departments for
improving service quality. In all the key factors, doctors explanation before doing
treatment is the factors that shows in six types medical organization (clinic, dental
clinic, aesthetic clinic, dental department in hospital, department of family medicine
in hospital, and department of orthopedics). Based on the results, the condition for
clinic to survive in the medical market neither necessary to buy expensive equipment
to compete with big clinic, nor too much worry about accessible location. In a word,
doctors explanation before doing treatment, is the easy but vital to customers.

5 Conclusion

The study sorted out key factors for clinic, dental clinic, aesthetic clinic, dental
department in hospital, department of family medicine in hospital, and department of
orthopedics. It is appropriate to use methodology Grey Relational Analysis (GRA)
since the limitation of quantity of interviewees. Grey Relational Analysis (GRA)
prevents the issue that standard statistical method has to conquered, insufficient
data. The paper collected total 180 questionnaires, 30 for each kind of medical
organization. The key factors are sorted out and available by 30 questionnaires for
each medical organization.
The results that we found in this paper are as follows:

1. ‘Doctor’s explanation before treatment’ crosses all kinds of medical organiza-
tions.

2. ‘Doctor’s skill’ covers all kinds of medical organizations except department of
family medicine in Thailand.

3. ‘Result of treatment’ is important to all kinds of medical organizations except
dental clinic in Thailand.

4. The key factors that affect people when they determine a medical organization
are mostly the factors during, and after treatment.

5. ‘Expert recommendation’, a factor that is before treatment, is an exception, and
is important to aesthetic and department of family medicine.

Different medical organizations develop different key factors through different symp-
tom and demand. For example, customers put more attention on expert commend for
aesthetic clinic, while they care more about doctors skill for department of orthope-
dics. Although aesthetic clinic and department of orthopedics operate similar func-
tions, there are different factors between two organizations to notice. Thus, it is
noteworthy to know about the key factors indicated. The key factors can be new
management focus points to these organizations. The key factors can be the indica-
tors for clinics and hospitals to improve and provide better service quality. If whole
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medical industries environment raises to higher service standard, it will attract more
patients to these organizations. In such a way, the income of these organizations will
increase. Hence, it can be an impact to domestic economic.
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ARIMA Versus Artificial Neural Network
for Thailand’s Cassava Starch Export
Forecasting

Warut Pannakkong, Van-Nam Huynh and Songsak Sriboonchitta

Abstract Thailand is the first rank cassava exporter in the world. The cassava export
quantity from Thailand influences cassava trading in international market. Therefore,
Thailand’s cassava export forecasting is important for stakeholders who make deci-
sion based on the future cassava export. There are two main types of cassava export
which are cassava starch and cassava chip. This paper focuses on the cassava starch,
which is around 60 % of the total cassava export value, including three following
products: native starch, modified starch and sago. The cassava starch export time
series from January 2001 to December 2013 are used to predict the cassava starch
export in 2014. The objectives of this paper are to develop ARIMA models and the
artificial neural network (ANN) models for forecasting cassava starch export from
Thailand, and to compare accuracy of the ANN models to the ARIMA models as
benchmarking models. MSE, MAE and MAPE are used as accuracy measures. After
various scenarios of experiments are conducted, the results show that ANN models
overcome the ARIMA models for all three cassava starch exports. Hence, the ANN
models have capability to forecast the cassava starch exports with high accuracy
which is better than well-known statistical forecasting method such as the ARIMA
models. Moreover, our finding would give motivation for further study in develop-
ing forecasting models with other types of ANN models and hybrid models for the
cassava export.
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1 Introduction

Cassava (Manihot esculenta Crantz) is one of most important source of calories for
the world’s population, after rice and maize [4]. According to statistic of FAO in
2012, cassava production quantity is the ninth rank of agricultural production in the
world and main producers are Nigeria, Thailand, Indonesia, Brazil and Congo.

Forecasting the international trade of agricultural products is difficult because
demand and supply are affected by many unpredictable factors that interact in a
complex manner [2]. International trade of cassava in 2012, major exporters are
Thailand and Vietnam, and major importer is China. In the cassava products trading,
Free on Board (FOB) price—the price of goods that has been placed on the ship
at a port of shipment—at Bangkok is used as the reference price and it is driven
by supply and demand in the market. Recently, there are factors that influence the
supply of the market such as increasing of environmental problems (e.g., drought and
pests), cause decreasing of cassava production. For the demand, China needs more
cassava for animal food and for producing ethanol in beverage and energy industries.
Similarly, domestic demand in Thailand is increasing due to growth of ethanol using
as an alternative energy for vehicles. Therefore, the cassava price would be increased
and more fluctuated because demand is increased while supply is deceased and the
related factors are increased in term of number and uncertainty [12].

Past researches related to other agricultural products (e.g., rice, sugar cane, natural
rubber and durian) prove that ANN models can outperform the statistical forecasting
techniques [2, 7, 9, 11]. Objectives of this research are to develop autoregressive
integrated moving average (ARIMA) models and artificial neural network (ANN)
models for forecasting the cassava export from Thailand and to compare accuracy
of the ANN models to the ARIMA models as benchmarking models. Results of
this research would be useful in decision making for stakeholders such as Thai
government, Thai Tapioca Starch Association (TTSA) and traders in cassava future
trading market. Moreover, it is a challenge to develop a forecasting model to dominate
the ARIMA model which is an effective and well-known time series forecasting tool.

In Thailand, the cassava is an important agricultural product because it is the third
rank in production quantity and the seventh rank in export value (Table 1). Around
68 % of total production is exported. There are two main types of the cassava export
which are cassava starch and cassava chip (or pallet) [13]. The cassava starch export
value is 50,037 million Baht which is around 60 % of total the cassava export value.
The remaining 40 % is the cassava chip which has export value 33,817 million Baht.
In term of the export value, the cassava starch export has more impact in economic
than the cassava chip and pallet. Thus, the cassava starch is focused in this paper.

There are three kinds of the cassava starch export including native starch, modified
starch and sago. The native starch is extracted from cassava root. The modified starch
is the native starch that has been modified by a chemical or a physical process in order
to change its molecular structure to obtain suitable properties for various purpose in
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Table 1 Thailand’s export value of major agricultural products (in THB)

Item 2009 2010 2011 2012
Total export value 5,194,445 | 6,176,170 | 6,707,851 | 7,082,333
Value of major agricultural products 964,945 1,135,754 | 1,444,996 | 1,341,826
Natural rubber 174,984 296,380 | 440,547 |336,304
Rice and products 183,433 180,727 |208,253 158,433
Fishes and products 97,566 99,039 112,179 131,369
Cassava and products from cassava 50,581 66,889 77,689 84,322
Sugar and products 68,748 76,327 116,950 132,129
Fruits and products 60,757 63,072 81,334 77,307
Shrimps and products 93,605 101,141 110,665 96,522
Chicken meat and products 48,847 52,223 60,295 67,751
Vegetables and products 19,482 19,238 21,420 21,035
Residues and waste, prepared animal fodder | 14,891 18,023 19,583 16,772
Other agricultural products 152,051 162,695 196,081 219,882

industries. The sago is also made from the native starch but there is no change in the
properties. In sago manufacturing process, the native starch is formed into globular
shape and screened its size by sieving.

2 Literature Review

The forecasting related to several agricultural products, the ARIMA models, the ANN
models and other conventional time series forecasting methods are developed and
compared in several past researches. Pokterng and Kengpol [11] design and develop
the models that are capable to forecast the quantity of fresh durian production in
Thailand. The ANN models and four time series models which are moving average
model (MA), weight moving average model (WMA), single exponential smoothing
model and Holt’s linear exponential smoothing model are compared. Correlation
analysis is applied for screening the input variables for ANN. The finding is that the
ANN has the least value of mean absolute percentage error (MAPE). Moreover, the
production quantities optimizing the profit in each region are suggested by the linear
programming (LP) model. Additionally, Udomsri et al. [14] construct and compare
various five conventional time series models (e.g., moving average, deseasonalised,
exponential smoothing, double exponential smoothing and regression), and the ANN
models in order to forecast demand of Thailand’s durian for export markets. The
results reveal that the ANN model is the most accurate model for durian chip with
the lowest MAPE. However, deseasonalised model is the most accurate model for
fresh durian, frozen durian and durian paste which means that the ANN model is not
always the best model. After getting the models, the appropriate quantity of each type
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of durian for domestic and export markets are determined by the linear programming
(LP).

Co and Boosarawongse [2] compare forecasting accuracy of exponential smooth-
ing methods, the ARIMA models and the ANN models in Thailand’s rice export
forecasting. The results show that the ANN model outperforms the other models in
several accuracy measures (e.g., MAE, MAPE, MSE and RMSE) because the ANN
model can track the dynamic non-linear trend, seasonality and their interaction better.

Kosanan and Kantanantha [7] construct forecasting models for Thailand’s natural
rubber by the ARIMA model, the ANN model and support vector machine (SVM).
The ANN model is the most accurate model obtaining the lowest MAPE. However,
the ARIMA model obtain lower MAPE than the SVM. Moreover, Pattranurakyothin
and Kumnungkit [10] determine the suitable ARIMA model for fitting natural rub-
ber’s export sale from Thailand and the result is that the ARIMA model gives the
lowest MAPE.

Obe and Shangodoyin [9] develop the ANN model to forecast sugar cane produc-
tion in Nigeria. The ANN based model can get 85.70 % accuracy. Thus, the ANN
based model can be applied for forecasting with a high accuracy.

Zou et al. [16] investigate the Chinese food grain price forecasting performance
of the ARIMA model, the ANN model and the hybrid model. The hybrid model is a
linear combination of the ARIMA model and the ANN model. The outcomes reveal
that ANN model overcomes the ARIMA model. The hybrid model is more accurate
than ANN model in term of MAE, MSE and MAPE. However, the ANN model is
the best model for tracking the turning point.

Until now, there are technical reports of Thai government and domestic researches
which uses statistical time series forecasting techniques such as exponential smooth-
ing linear regression analysis and ARIMA to forecast annual cassava export [12].
However, to our best knowledge, there is no past research that applies the ANN
model to forecast the cassava starch export from Thailand.

3 Cassava Starch Export Time Series

Historical time series of cassava starch export from Thailand is used for the analyses
in this paper. The time series is obtained from Thai Tapioca Starch Association. There
are three types of cassava starch export which are native starch, modified starch and
sago, and their characteristics are respectively shown in Figs. 1, 2 and 3 that express
non-stationary characteristics such as trend and seasonality of the cassava starch
export.

The time series data start from January 2001 to December 2014. They are recorded
in monthly (168 months). The data from January 2001 to December 2013 are used
for models fitting and training. The data in last year, January 2014 to December 2014,
are applied for models validation which such data are treated as unseen future data
that the forecasting models do not know and do not use as an input.
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In addition, Thai government often has a policy to help cassava farmers every
year. The farmers can pawn their cassava to the government. The cassava must

be redeemed within three months otherwise farmers’ cassava will be seized to the

government cassava stock. Normally, the government decides to clear the stock in

every September. This policy would cause annual seasonality of the time series.
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Fig. 3 Sago export quantity

4 Forecasting Accuracy Measures

Accuracy of the forecasting in this paper is measured by mean square error (MSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE). Their
mathematical formulas are shown in (1)—(3). The parameters involved in the formulas
are following: actual value in period ¢, Z;; average of forecasted values in period ¢,
Z,; and total number of forecasted period, N. To interpret the forecasting accuracy
of these three methods, lower value means better accuracy of the forecasting result.

N
1 Z\2
MSE = N ;‘(zt -7) 1)
1 N
MAE= = > 17— Z| @)
=1
N A
1 1Z: — Z|
MAPE = — > 221 3)
N2z

5 ARIMA Models for Cassava Starch Export Forecasting

The ARIMA model is a well-known statistical method time series forecasting
invented by Box and Jenkins in 1970 [1]. This method is integration of autoregressive
(AR) model and moving average (MA) model, that can deal with non-stationary time
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series such as the cassava starch export. This section explains details of using the
ARIMA model to predict future cassava starch export, and evaluation of its forecast-
ing accuracy.

5.1 ARIMA Models

To understand the ARIMA model, the AR model and the MA model should be
presented first. The AR model, (4), expresses a time series value at time ¢, Z;, by
regressing lagged values Z;_i, . .., Z;_, as independent variables, which produces a
constant ¢, and adding a random error term a,. The amount of the lagged values used
in the AR model depends on an order of AR, p. The MA model, (5), represents Z; as
weight sum of previous random errors a, and time series mean, jt. An order of MA,
q, specifies how many previous random errors included in the MA model.

P
Zi=ct$iZin+$Ziat -+l ta=ct Y diZiita @

i=1

q
Zi=p+a —01ay — a0 — - — yQi—q = 1+ a; — Zejaz—j )
j=1

A combination of the AR model and the MA model is autoregressive moving
average (ARMA) model as shown in (6). We can use the backward shift operator, B,
which is defined by B'Z; = z,_;, to produce (7). After that, the AR term is moved to
the left side and (7) is then rearranged to be (8). If an autoregressive operator ¢, (B)

isdefinedby ¢,(B) =1 — ¢ B — B> — . — ¢,B” and a moving average operator
0,(B) is defined by 6,(B) = 1 — 6B — B> — - — 0,B9, AR model can be written
economically as (9).
P q
Zi=c+ z%ZH' +a — Zejazﬁ' (6)
i=1 j=1
Z, =c+ Z &:ZB + a, — z 6, B’ (7)

i=1 j=1

p q
(1 - Z@Bf)z, =c+|[1-D 68 |a 8)
i=1 j=1

$p(B)Z; = ¢ + 04(B)ay €))
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The ARMA model is suitable for stationary time series which has no trend and
a constant variance. However, normally, time series has some trend that means the
time series usually is non-stationary so that another step called differencing with
a degree of differencing, d, is needed to transform the time series to be station-
ary. The differencing can be applied by replacing Z; in (9) with (1 — B)?Z, to get
(10) which is called autoregressive integrated moving average (ARIMA) model or
ARIMA(p, d, q).
$p(B)(1 = B)'Z; = ¢ + 6,(B)a (10)

Moreover, when pattern or event is repeated over a time span, it means that there
is seasonality in time series, and the time span of repeating seasonal pattern, s, can
be determined. To deal with this situation, seasonal autoregressive operator, ®p(B*);
seasonal moving average operator, ®¢(B*) which are defined as:

Op(B)=1— DB  — &,B* —--- — ®pB™

Op(B) =1—0OB° — @B — ... — ©pBY
and seasonal differencing, (1 — B*)P, are added to (10) and it can then be written as
(11) and called seasonal autoregressive integrated moving average (SARIMA) model
or ARIMA(p, d, q¢) x (P, D, Q),, where P is an seasonal order of autoregressive; Q
is an order of seasonal moving average and D is a degree of seasonal differencing.

$p(B)Pp(B")(1 — B)!(1 — B")’Z, = c + 6,(B)Oo(B")a, (11

In this paper, SARIMA model is chosen because the cassava is a commodity
product which has cycles of production, harvesting, export and the government policy
which leads seasonality in the time series. Inputs of the SARIMA models are cassava
starch export quantities from January 2001 to December 2013 as Zy, Z5, ..., Zis6.
In addition, time span of repeating seasonal pattern, s, is 12 months. Box et al. [1]
shows method to manually select the suitable parameters of the SARIMA model
to fit the time series. However, IBM SPSS Statistics software is used to determine
appropriate values of the parameters for the best-fit model of each cassava starch
export. After that, model validation is conducted. The best-fit models are applied
to forecast the future export for next 12 months Z;s7, Zissg, . .., Zi¢g. Forecasting
accuracy is evaluated by comparing the forecasted exports and actual exports in
2014.

5.2 Forecasting Accuracy of the ARIMA Models

This part shows the best-fit models of ARIMA for each cassava starch export, which
are analyzed by the IBM SPSS Statistics software. The forecasting accuracy measures
MSE, MAE and MAPE of validation period are computed to express effectiveness
of the ARIMA models in the cassava starch export forecasting. The best-fit model
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Table 2 Accuracy measures of the best-fit ARIMA models

Cassava export ARIMA model MSE MAE MAPE (%)

Native starch ARIMA(1, 1,0) |1,717,324,982.39 | 32,888.64 15.15
0,1, D12

Modified starch | ARIMA(1, 1,0) |48,712,546.51 5,281,85 6.31
0,1, D12

Sago ARIMA(1,0,1) |276,612.18 423.72 16.43
(1,0,0)12

for the native starch and the modified starch is ARIMA(1, 1, 0)(0, 1, 1),,. For the
sago, the best-fit model is ARIMA(1, 0, 1)(1, 0, 0),,. The accuracy measures of these
ARIMA models are shown in Table 2.

Regarding the results in Table 2, the modified starch can be forecasted with excel-
lent accuracy (i.e., MAPE 6.31 %). However, the forecasting result of the native starch
and the sago have good accuracy with lower than 20 % of MAPE which means that
the ARIMA models have capability to forecast the cassava starch export time series
and can be use as a benchmarking method for this paper.

6 Artificial Neural Network Models for Cassava Starch
Export Forecasting

Artificial neural network (ANN) model is a mathematical model that was developed
based on concept of human brain neuron working. Advantages of the ANN model
over traditional statistical methods are self-learning and not making assumption of
characteristic of the data [15].

The structure of the ANN model is identified by number of layers and nodes
(neurons). There are three kinds of layer such as input layer, hidden layer and output
layer. Normally, the number of the input layer and the output layer is only one but
the number of the hidden layer is one or more. However, one hidden layer is enough
to fit any continuous function [5].

At each node in the ANN model (Fig.4), inputs p from previous layer are aggre-
gated as (12) to produce a net input n. Then, the net input n is passed through a
transfer function to compute an output a which will be an input of next layer.

R
n:Zp,-wi—i—b (12)
i=1

After the output of the ANN model (i.e., forecasted export) is generated from the
output node, the output is compared with the target (i.e., actual export) to compute
a gap. The ANN learns to minimize the gap via an training algorithm attempting
to determine weight w and bias b that fit to relationship between the inputs and the
target.
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The proper number of the node in each layer depends on type of problem and
the ANN architect because until now, there is no exact theoretical knowledge to find
the best way to identify number of layer and node in the network. Thus, trial and
error method is widely used to find the ANN model structure [6, 15]. Feed-forward
ANN [3] is used in this research (Fig.5). The feed-forward ANN model used in
this research has three layers (one layer for each layer type). Levenberg-Marquardt
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algorithm with Bayesian regularization [8] is used as training algorithm for the ANN
models in this paper.

This section consists of three main parts in order to identify an appropriate struc-
ture of the ANN models. First, input variables are selected and screened to design
scenarios of the input layer. Second, output variable of the output layer is defined
and a method to get reliable results from the output layer is explained. Third, trial
and error experiments with purpose of getting suitable number of the hidden nodes
are demonstrated.

6.1 Input Layer

The input layer consists of the input nodes representing set of independent variables
related to a dependent variable (i.e., export quantity in period ¢, Z;). Theoretically,
there are two types of the input variables such as technical variables and fundamen-
tal variables [6]. The technical input variables are lagged values including variables
calculated from the lagged values as well. The fundamental input variables are eco-
nomic variables believed that they have effect to the dependent variable. In this paper,
nine input variables are considered which consist of three lagged values (i.e., Z,_1,
Z,_3 and Z,_,), moving averages of Z, (i.e., MA(3) and MA(12)), an annual seasonal
index and three time indices (i.e., sequence, month and quarter). The lagged values,
the moving averages and the annual seasonal index are the technical variables. The
three time indices are fundamental variables.

Three scenarios of the input nodes are formed to test effect of different input
types on the forecasting accuracies. First scenario, the input nodes include only time
indices. This scenario is an intention to test how well the ANN models can forecast
unseen future while including only simple time indices as the input nodes. Second
scenario, all nine input variables are included. Third scenario, the input variables are
screened by correlation analysis (Tables 3, 4 and 5). The inputs that have statistically
significant correlation to the export quantity Z, will be chosen as the input nodes.

Table 3 Correlation analysis of ANN inputs for native starch

Type Input Correlation p-value

Fundamental Sequence 0.786 <0.001*
Month 0.107 0.183
Quarter 0.108 0.181

Technical Zi1 0.862 <0.001*
Zi-3 0.717 <0.001*
Zi—12 0.571 <0.001*
MAQ3) 0.842 <0.001*
MA(12) 0.767 <0.001*
Seasonal index 0.534 <0.001*

*Significant at 5 % (p-value < 0.05)
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Table 4 Correlation analysis of ANN inputs for modified starch

W. Pannakkong et al.

Type Input Correlation p-value

Fundamental Sequence 0.827 <0.001*
Month 0.072 0.369
Quarter 0.064 0.431

Technical Ziq 0.801 <0.001*
Zi3 0.715 <0.001*
Zi—12 0.740 <0.001*
MAQ3) 0.828 <0.001*
MA(12) 0.829 <0.001*
Seasonal index 0.484 <0.001*

*Significant at 5 % (p-value < 0.05)

Table 5 Correlation analysis of ANN inputs for sago

Type Input Correlation p-value

Fundamental Sequence 0.264 0.001*
Month —0.018 0.826
Quarter —0.071 0.380

Technical Zi 0.165 <0.040*
Zi3 0.131 <0.102
Zi—12 0.181 <0.024*
MAQ3) 0.204 <0.011*
MA(12) 0.206 <0.010*
Seasonal index 0.906 <0.001*

*Significant at 5 % (p-val

ue < 0.05)

Table 6 ANN inputs for native starch and modified starch

Scenario 1: fundamental Scenario 2: fundamental and | Scenario 3: correlated
technical
Sequence Sequence Sequence
Month Month Zi1
Quarter Quarter Zi—3
Zi—1 Zi-12
Z—3 MA(3)
Zi—12 MA(12)
MAQ3) Seasonal index
MA(12)
Seasonal index
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Table 7 ANN inputs for sago

267

Scenario 1: fundamental Scenario 2: fundamental and | Scenario 3: correlated
technical
Sequence Sequence Sequence
Month Month Zi—1
Quarter Quarter Zi—12
Z— MA(3)
Zi—3 MA(12)
Zi_12 Seasonal index
MAQ)
MA(12)
Seasonal index

From the correlation analysis, month and quarter are removed for all cassava starch
exports; moreover, for sago, Z;_3 is cut out as well. The input nodes of these three
scenarios for the cassava starch export are summarized in Tables6 and 7.

6.2 OQutput Layer

The output layer is the last layer with only one node which is represented by fitted and
forecasted cassava starch export quantities. The output node aggregates the outputs
from the hidden layer to compute the net input n as (12). After that, linear transfer
function represented by (13), is used to transform the net input » into the output a.
Then, the outputs are recorded for every experimental run for further analyses.
a=n (13)
Generally, each experimental run, the output is not the same on each run because
the weights are randomly initialized and the outputs depend on them. To ensure that
the average of the output is reliable, the experiments are repeated until the amount
of recorded outputs is enough to provide the average with margin of error which is
below 5 %. The margin of error can be calculated as shown in (14).

Half width of 95 % confidence interval of average

Margin of error = (14)

Average

6.3 Hidden Layer

The hidden layer is the layer between the input layer and the output layer. For
each hidden node, the input variables of the input layer are aggregated by (12) to
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a = tansig(n)

Fig. 6 Tan-sigmoid transfer function

compute the net input n. Then, the net input 7 is passed through a non-linear transfer
function which is tan-sigmoid transfer function presented as (15) and Fig. 6. Finally,
the output a is produced and sent to the next layer (the output layer). In the trial
and error experiment, the number of hidden nodes is varied from one to ten in order
to find the appropriate number which give the lowest MAPE. Ninety ANN models
are constructed based on three cassava starch exports, three input scenarios and ten
scenarios of the hidden nodes. The number of experimental runs for each ANN model
and the proper number of the hidden nodes are presented in following parts.

2

- 1 15
14e2n (15

a

6.3.1 Number of Experimental Runs

To obtain the reliable average of the output which are forecasted quantities in 2014,
replication run is required. The experiment is repeated until the average of the output
has at most 5 % of margin of error. From the result, the numbers of experimental
runs are not the same for each scenario due to difference of the input variables
and the number of hidden nodes. Characteristic interpretations of the number of
experimental runs, when the input variables and the numbers of hidden nodes are
varried, are presented below.

For the native starch (Fig.7), the ANN models with fundamental inputs require
two replications except when the number of hidden nodes is seven, the number of
runs is eight replications. The ANN models with fundamental and technical inputs
need four replications when the number of hidden nodes is one. After increasing
the numbers of hidden nodes to two and three, the numbers of runs are dropped to
three and two replications. Then, increasing the numbers of hidden nodes from four
to nine, the numbers of runs are increased rapidly from seven to 116 replications.
However, when the number of hidden nodes is ten, the number of runs is reduced
to 40 replications. The ANN models with significant correlated inputs require two
replications when the numbers of hidden nodes are one, two and three. The numbers
of runs are fluctuated when the numbers of hidden nodes are four or more. There is
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Fig. 8 Number of experimental runs for modified starch

increasing trend of the numbers of runs from two to 15 replications when the numbers
of hidden nodes are four to seven. From eight to ten hidden nodes, the numbers of
runs show decreasing trend from 11 to three replications.

In case of the modified starch (Fig. 8), the ANN models with fundamental inputs,
from one to ten hidden nodes, require only two replications. The numbers of runs
of the ANN models with fundamental and technical inputs have increasing trend
from two to six replications when the numbers of hidden nodes are one to nine.
Nevertheless, the number of runs is dropped down to four replications when the
number of hidden nodes is ten. For the ANN models with significant correlated
inputs, from one to four hidden nodes, the numbers of runs are two replications.
From five to seven hidden nodes, the numbers of runs are increased from three to ten
replications. However, eight hidden nodes or more, the numbers of runs are decreased
to three replications.

For sago (Fig.9), for all input scenarios, the numbers of runs are two for one
to three hidden nodes. The numbers of runs of the ANN models with fundamental
inputs are still two replications until the number of hidden nodes is five. At six
hidden nodes, the number of runs is promptly increased to 16 replications. Then,
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the numbers of runs are moved back to two replications again when the numbers
of hidden nodes are seven to nine. At ten hidden node, the number of runs is raised
to seven replications. For the ANN models with fundamental and technical inputs,
the numbers of runs are increased from four to 15 replications when the numbers of
hidden nodes are four and five. After that, the numbers of runs are decreased from
seven to three replications when the numbers of hidden nodes are six to nine. Then,
the number of runs is increased to seven replications when the number of hidden
nodes is ten. The number of runs of the ANN models with significant correlated
inputs is slightly increased to three at four hidden nodes. Then the number of runs
is turned back to two replications when the number of hidden nodes is five. The
numbers of runs starts increasing from five to seven replications when the numbers
of hidden nodes are six and seven. After that, the numbers of runs are decreased to
two replications again when the numbers of hidden nodes are eight to ten.

In summary, in order to get the reliable average of outcome, minimum and max-
imum numbers of the runs are two and 116 replications. In addition, it is difficult
to give clearly explanation of relationship between the number of the experimental
runs and the number of hidden nodes because there is no consistent pattern and rela-
tionship among them. According to the results, however, we may suggest that for the
ANN models, using same number of the experimental run for every scenario may
not a good approach because it may not give the reliable results or consume more
time without necessity.

6.3.2 Number of Hidden Nodes

In this part, after obtaining the reliable average forecasted export quantities for each
ANN model from the previous part, they are compared with the actual export quan-
tities, and MSE, MAE and MAPE for all 90 ANN models are computed. However,
MAPE is chosen for the interpretation because it expresses the meaning of error in
percentage which is a standardized scale and can be understood easily. The suitable
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number of hidden nodes for each ANN model is the number that gives the lowest
MAPE. The MAPEs of each model are plotted with various numbers of hidden nodes
and their patterns are interpreted. Moreover, MAPEs of the best-fit ARIMA models
are also plotted as a benchmark.

The MAPEs of ANN models for the native starch are presented in Fig. 10. The
MAPE:s of the ANN models with fundamental inputs are higher than the ARIMA
models in all cases. The ANN models with fundamental and technical input and
the ANN models with significant correlated inputs seem to have the same pattern
of the MAPE changing when the numbers of hidden nodes are varied. When the
numbers of hidden nodes are two to nine, their MAPESs are lower than the ARIMA
model. However, when the number of hidden nodes is nine, the MAPE of the ANN
model with fundamental and technical input is kept increasing until it is over the
MAPE of the ARIMA model when the number of hidden nodes is ten. On the other
hand, the MAPE of the ANN model with significant correlated inputs is reduced
continuously. In addition, one hidden node gives the highest of the MAPE in every
the ANN models. The suitable numbers of the hidden nodes for the ANN models
with fundamental inputs, fundamental and technical input and significant correlated
inputs are seven, five and four respectively. The best model for the native starch is
the ANN(7-4-1) model with significant correlated inputs.

In case of the modified starch (Fig. 11), the ARIMA model outperforms almost all
the ANN models except the ANN model with fundamental and technical inputs at one
hidden node, and the ANN models with significant correlated inputs at one and seven
hidden nodes. The MAPEs of the ANN models with fundamental inputs are highest
at one hidden node, then they are decreased continuously. Besides, the MAPEs of the
ANN models with fundamental and technical inputs are lowest at one hidden node.
When the numbers of hidden nodes are increased, the MAPEs are also increased
until nine hidden nodes, then the MAPEs are dropped at ten hidden nodes. For the
ANN models with significant correlated inputs, their MAPEs seem to be stable on
a mean even the numbers of hidden nodes are changed. The suitable numbers of
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the hidden nodes for the ANN models with fundamental inputs, fundamental and
technical input and significant correlated inputs are ten, one and one respectively.
The best model for the modified starch is the ANN(7-1-1) model with significant
correlated inputs.

For the sago (Fig. 12), there are around half of the ANN models that can overcome
the ARIMA model. The ANN models with fundamental inputs have lower MAPEs
than the ARIMA model when the numbers of hidden nodes are two to six. The
MAPE:s are increased when the numbers of hidden nodes are close to one and seven.
The ANN models with fundamental and technical inputs get the highest MAPE at five
hidden nodes. Farther from the five hidden nodes gives lower MAPEs. Nevertheless,
there is increasing trend of the MAPEs when the numbers of hidden nodes are one
and ten. The ANN models with significant correlated inputs with one to four hidden
nodes give lower MAPEs than the ARIMA model but there is slightly increasing of
the MAPEs when the numbers of hidden nodes reach to four. At five hidden nodes,
the MAPE is shifted up continuously above the ARIMA model until seven hidden
nodes. Then, the MAPEs are reduced a little bit but they are still above the ARIMA
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model. The suitable numbers of the hidden nodes for ANN model with fundamental
inputs, fundamental and technical input and significant correlated inputs are three,
nine and one respectively. Surprisingly, the best model for the sago is not the ANN
model with significant correlated inputs as the previous two cassava starch exports but
it is the ANN(3-3-1) model with fundamental input which includes only the simple
time indices as the input nodes. The screening input variables by the correlation
analysis removes month and quarter variables from the input nodes because they
are not significant correlated to the export quantity. However, it does not give the
best prediction quality. Therefore, this result reveals that using significant correlated
inputs does not guarantee better result than non-screening inputs.

In summary, the results show that, for all cassava starch exports, there is at least
an ANN model with appropriate number of hidden nodes can outperform ARIMA
models. However, there is some ANN model that cannot surpass ARIMA in all
numbers of hidden nodes. The effect of changing the number of hidden nodes is
varied among different type of the cassava starches and the ANN input scenarios.
Moreover, it seems to be strange that in all ANN models, some additional hidden
nodes do not improve the accuracy.

7 Comparison of the ANN Models with the ARIMA Models

The forecasting performances are summarized in Table 8 that compares all models
of ANN and ARIMA to obtain the best forecasting model for each cassava export
which can be determined by the lowest MAPE. The ANN(7-4-1) and the ANN(7-1-1)

Table 8 Summary of forecasting performances of ARIMA versus ANN

Cassava export Forecasting MSE MAE MAPE (%)
model
Native starch ARIMA(1, 1,0) |1,717,324,982.39 | 32,888.64 15.15
©, 1, D12
ANN(3-7-1)* 3,073,242,729.02 | 44,625.84 16.23
ANN(9-5-1)P 1,033,191,608.52 | 27,663.97 11.76
ANN(7-4-1)¢ 954,105,575.48 | 27,609.28 11.58
Modified starch | ARIMA(I, 1,0) |48,712,546.51 5,281.85 6.31
O, 1, D12
ANN(3-10-1)? 53,068,291.63 5,665.33 6.84
ANN(9-1-1)° 43,992,351.32 5,026.13 6.01
ANN(7-1-1)¢ 43,781,080.25 4,961.80 5.91
Sago ARIMA(1, 0,0) |276,612.18 423.72 16.43
(1,0,0)12
ANN(3-3-1)* 186,966.78 309.26 12.91
ANN(9-1-1)° 188,874.53 363.29 15.64
ANN(6-1-1)¢ 188,170.14 363.05 15.63

2ANN with fundamental inputs (Time Indices)
Y ANN with technical and fundamental inputs

°ANN with significant correlated inputs
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models with significant correlated inputs are the most suitable models for the native
starch and the modified starch respectively. The ANN(6-1-1) model with fundamental
input variables is the most suitable model for the sago.

The forecasted cassava export quantities of the best models of the ANN models and
the ARIMA models are compared with the actual cassava export quantities in order
to find out reasons why the ANN models can outperform the ARIMA models. The
forecasted and actual cassava starch export quantities of the native starch, modified
starch and sago are plotted in Figs. 13, 14 and 15 respectively.

From Fig. 13, the best ANN model for the native starch is the ANN(7-4-1) model
with significant correlated inputs. The forecasted export quantities from January 2014
to September 2014 of the ANN(7-4-1) model are close to actual export quantities
than the ARIMA(1, 1, 0)(0, 1, 1);, model. However, after September 2014, the
forecasted export quantities are quite same. For other ANN models, the forecasted
export quantities of the ANN(9-5-1) model with technical and fundamental inputs
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are quite the same as the ANN(7-4-1) model with significant correlated inputs. In
case of ANN(3-7-1) model with fundamental inputs, it seems to have low ability to
track the actual export quantities.

For the modified starch (Fig. 14), the best model is the ANN(7-1-1) model with
significant correlated inputs. The ANN(7-1-1) model and the ARIMA(1, 1, 0)(0, 1,
1)12 model have almost the same forecasted pattern but from April 2014 to December
2014, the ANN(7-1-1) model give a little bit more accurate forecasted export quan-
tities. In addition, the ANN(9-1-1) model with technical and fundamental inputs
produces approximately similar forecasted export quantities as the the ANN(7-1-1).
The ANN(3-10-1) with fundamental inputs has low capability to trace the pattern of
the actual export quantities.

In case of sago (Fig. 15), the best model for the sago is the ANN(3-3-1) model
with fundamental input. The ANN(3-3-1) obviously outperforms the ARIMAC(1, O,
0)(1, 0, 0);, model. The ARIMA model has low proficiency to track the pattern
of actual export quantities. The ANN(9-1-1) with technical and fundamental inputs
gives nearly the same forecasted export quantities as the ANN(6-1-1) with significant
correlated inputs.

In summary, the ANN models with significant correlated inputs are the best model
and the ANN models with fundamental inputs has low ability to track the pattern
of the forecasted cassava export quantities except for the sago. The ARIMA models
are quite accurate model for the native starch and the modified starch. However, they
have low forecasting capability for the sago. Perhaps, an outlier in the sago time
series causes this problem.
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8 Conclusion

The ARIMA models and the ANN models are developed to forecast the three types
of cassava starch export; the native starch, the modified starch and the sago. The
data from January 2001 to December 2013 are used to predict the cassava starch
export in 2014. The experiments are run for several replications to obtain reliable
results with 5 % margin of error. The models’ forecasting accuracies are evaluated and
compared. The results show that the ANN models can overcome the ARIMA models
in all three types of cassava starch export. For the native starch and the modified
starch, the ANN(7-4-1) and the ANN(7-1-1) models with significant correlated inputs
respectively give the most accurate forecasting. Surprisingly, the ANN(3-3-1) with
fundamental input variables, which uses only simple time indices as the inputs, is
the best model for the sago. In case of the sago, it shows that applying the correlation
analysis to screen the inputs for the ANN models does not always give the good result.
Thus, we should not rely on only scenario using the significant correlated variables
as the inputs but the other scenarios, which may include non-significant correlated
variables, should also be experimented and compared. There are limitations in the
experiments of this paper. In the model validation, one year ahead prediction—export
quantities in year 2014—are considered. Additionally, the ANN model structure is
feed-forward with one layer of hidden node and the numbers of hidden nodes are
varied from 1 to 10.

In conclusion, the feed-forward ANN models show their capability in forecasting
the cassava starch export with higher accuracy than the ARIMA models. Therefore,
these models are useful for the stakeholders who make a decision based on the future
cassava starch export. In future work, two years ahead prediction will be conducted
in the model validation. The reason for why some additional hidden nodes in all
cases do not improve the accuracy will be investigated. Moreover, it is interesting to
continue developing other type of the ANN model (e.g., recurrent ANN model) and
the hybrid model which is a combination of ANN model and other models.
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Copula Based Volatility Models and Extreme
Value Theory for Portfolio Simulation
with an Application to Asian Stock Markets

Apiwat Ayusuk and Songsak Sriboonchitta

Abstract Many empirical works used risk modeling under the assumption of
Gaussian distribution to investigate the market risk. The Gaussian assumption may
not be appropriate for risk estimation techniques in some situations. In this study, we
used the extreme value theory (EVT) to examine more precisely the tail distribution
of market risk and incorporate high dimensional copulas to explore the dependence
between stock markets. We gathered data of stock markets from Asean countries
(Thailand, Singapore, Malaysia, Indonesia and the Philippines) to simulate the port-
folio analysis during and post subprime crisis. The results found that D-vine copula
GARCH-EVT model can simulate the efficient frontier of portfolios greater than
other models. Furthermore, we also found the positive dependence for the overall
markets.

1 Introduction

For asset allocation models, the risk-return characteristics are the most important
issue for investors to consider. The conventional portfolio theory uses standard devi-
ation and linear correlation coefficient to measure portfolio risk under multivariate
normal distribution. To construct the optimal portfolio, this theory uses the risk-return
framework to allocate assets by minimizing the risk of the portfolio subject to the
portfolio return being greater or equal to the risk free rate.

The Value at Risk (VaR) is one of the most important and popular tool to measure
the financial risk. It measures the maximum amount of loss that is not exceeded
on a given confidence interval. An alternatively risk measure is the Conditional
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VaR (CVaR), which is used to estimate the expected loss from VaR. Rockafellar
and Uryasev [30] showed a representation of CVaR based approachs to optimize
portfolios. Moreover, Artzner et al. [3] and Rockafellar and Uryasev [31] explained
that VaR is not coherence whereas CVaR satisfies the properties of the risk of a
diversified portfolio, which are the sub-additive and convex properties. For these
reasons, CVaR has the advantages over VaR.

The most widely used econometric approach to volatility modeling is the fam-
ily of autoregressive conditional heteroscedasticity (ARCH), which is introduced by
Engle [10]. It assumes that the conditional variance takes into account the conditional
heteroskedasticity inherent in time with the assumption of normally distributed inno-
vations. Bollerslev [6] then improved the ARCH to generalized ARCH (GARCH)
model, which can yields VaR and CVaR as well.

Inrecent years, the EVT has been utilized to analyze financial data. Itis a statistical
tool to examine the extreme deviations from the median of probability distribution.
It is very popular and useful for modeling in rare events. Hence, the EVT can be an
alternative for an effective framework to estimate the tail of financial series when
there are extreme financial events, such as the Asian financial crisis, Subprime crisis
and European debt crisis. Embrechts et al. [9] provided examples for applications
of EVT in finance and insurance. Bali [5], Wang et al. [34], Ren and Giles [29] and
Jess et al. [16] applied EVT to calculate VaR for risk management.

The EVT based method combines ideas from the GARCH models with the tail
of the innovations distribution using EVT to estimate VaR and CVaR. Exemplary
works by McNeil and Frey [24] introduced EVT based method (or conditional EVT
models) to forecast VaR. Karmakar [18] applied this method to estimate VaR in dif-
ferent percentiles for negative and positive BSE India returns. Furio and Climent [11]
found that GARCH-EVT model is more accurate than the GARCH models assum-
ing Gaussian or Student’s t distribution innovations for VaR simulation analysis.
Meanwhile, Allen et al. [2] used both unconditional and conditional EVT models
to forecast VaR. Marimoutou et al. [22] found that this model performs better than
other methods without EVT, such as conventional GARCH, historical simulation
and filtered historical simulation.

To study the dependence among stock markets using traditional methods, Pearsons
correlation has been the most commonly used in empirical works. However, Pearsons
correlation used to measure the degree of linear dependence between multivariate
normally distributed data. More precisely, Copulas can relax the dependence structure
beyond normal distribution. Moreover, the copula is flexible as it can be used to
analyze linear, nonlinear or tail dependence. In the context of the copula in financial
studies, Embrechts et al. [8] introduced copula in finance to relax the assumption of
dependence structures between random returns. Patton [28] explained an overview of
copula based models for financial applications. In the study of multivariate copulas,
Kole et al. [19] and Wang et al. [35] found that the multivariate t copula is the best
measure of the dependence structure between multiple assets because it can capture
the dependence both in the center and the tails. Aas et al. [1] introduced the flexible
way to set the pair copula construction, namely, D and C-vine copula. The recent
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study such as Low et al. [21], Hernandez [14], Ayusuk and Sriboonchitta [4], Mensi
et al. [25] have applied vine copula with applications to portfolio management.

There are researchers on the effects of the subprime crisis. Hemche et al. [13]
found the dynamic linkages between the US and developed stock markets (as France,
Mexico, Italy and the UK) with strong comovements in times of financial crisis. The
correlation between the US and other markets (as China, Japan, Tunisia, Egypt and
Morocco) were weak and thus they suggested that the investors should also invest
in some emerging countries. Moralesa and Callaghan [26] and Wang [33] suggested
that the US stock markets are less generating effects into the Asian stock markets.
In 2015, Asean Economic Community (AEC) is set to be implemented. There will
be free trade of goods, services, skilled labor and investment capital following the
liberalization and most countries in AEC are still emerging economies. Hence, to
take advantage of the portfolio allocation for international stock market, this study
focused on VaR and CVaR based on the econometric approaches with the application
on the Asean stock markets during and post subprime crisis.

In this paper, the primary objective is to compare the econometric approaches to
portfolio simulation. These econometric approaches include the multivariate t copula
GARCH-EVT, C-vine copula GARCH-EVT and D-vine copula GARCH-EVT. The
secondary objectives to measure the dependence among Asean stock markets.

The remainder of this paper is organized as follows. In Sect. 2, we provide details
about the GARCH model, EVT, copulas and the portfolio simulation procedure. In
Sect. 3, discuss the data selection, descriptive statistics and the results of the empirical
work. In the final section, we present concluding remarks.

2 Methodology

2.1 Marginal Models

Generally, data on market returns present conditional heteroscedasticity. Hence, this
study focuses on the marginal returns through the autoregressive conditional het-
eroskedasticity model. To capture the asymmetry property under the sense that shocks
not have the exact same impact on volatility in between negative and positive shocks,
we used the GJR GARCH model that was proposed by Glosten et al. [12].

re=PBo+ Biri1+& = Po+ Piri—1 + o1z (D
of =p+ae | +002, +yel I )
where r, is a market return at time ¢, I, =1 if ¢,_; <0, I,_; = 0 if other-

wise, Bo, B1, .o, 0,y are parameters. For stationarity and positivity, the GJR
GARCH model has the following properties: « > 0,0 > 0,y > 0, +y > 0 and
a+60+y/2 <1,e = o,z is residual return, oy is the volatility of the return and z,
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is standardized residual that must satisfy independently and identically distributed.
Traditionally, the standardized residuals follow a normal distribution.

2.2 The Distributions of Standardized Residuals

In this study, we focus on EVT, which is an appropriate approach to define the behav-
ior of extreme tail observations. We apply the semi parametric approach to generate
the standardized residuals of the GIR GARCH model. To capture the extreme tails,
we use the generalized Pareto distribution (GPD) to select the extreme tails that are
peaks over the threshold. To capture the interior distribution, we define by using the
Gaussian kernel distribution (¢(z)). The distribution is given by

-1
k L_' 7(’7)
() e

F(z) =19k Jul <z <uf (3)

-
s Ky
(e () e

where u’ and u® are lower (L) and upper (R) thresholds, z is the standardized
residuals that excess over the thresholds, k,. and k& are the number of observations
that excess over thresholds, # is the number of observation, 9~ and 9 ¥ are the scale
parameters, n~ and n® are the shape parameters.

2.3 Copula Approach

A copula is a function that connects univariate marginals to construct the multivariate
distribution with uniformly distributed marginals U (0, 1) — [0, 1]. It also can be
used to portray the dependency of random variables in each event. This study used
the copula approach for describing the dependence between international markets.
Originally, Sklar [32] introduced the important theorem for copula function as follows

Theorem 1 Let xi,...,x, are random variables for i =1,...,n, Fi(xy),...,
F,(x,) are the continuous marginal distributions and F(xy, ..., x,) be a multi-
variate distribution. Then, n-dimensional copulas C(-) : [0, 11" —> [0, 1] can be
defined by

F(xp, ..., x) = C(Fi(x1), ..., F(xy)) “4)

Inversely, Eq. (4) can be written as

Cuy,...,up) = F(F7 (), ..., F, () (5)
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where F[_1 (u;) are the inverse distribution function of the marginals and u; € [1, 0].
We can determine the copula density c(u, . .., u,) by using n order partial deriv-
ative as follows

anc(ul» cee un)
cuy, ..., up) = —88—— 6
(a1 ) uy,...,0u, ©)
According to the joint density function f(xi, ..., x,), it can be defined by n order

partial derivative of a multivariate distribution as follows

_O"F(x1, ..., Xy)
f(X],...,xn)_m v

f(x1,...,xn)—gfl(x’) duy, ..., duy, v

f(xly...,Xn)ZHfi(Xi)'c(ulv"”u”) (9)

i=1

Equation (9) shows that the joint density function is the combination between the
copula density and the product of marginal densities. In the study of copulas, Mashal
and Zeevi [23], Breymann et al. [7], Kole et al. [19] and Wang et al. [35] suggested
that t copula is the better measure of the dependency structure for multiple assets.
Hence, this study considered t copula for measuring the market dependence. We can
define a multivariate t copula for n dimensional as follows

Cluy, ..., uy) =t 5t ), ..., 17 (uy)) (10)

where 7, x is the distribution function of the multivariate t copula, X is a correlation
matrix and v is the degree of freedom. Moreover, This study also applied C and D-vine
structures with t copula to determine the market dependence. The two vine copulas
were introduced by Aasetal. [1]. Inn dimensions, "("2 1 is the number of pair copula,
n — 1 is the number of trees in vine copulas and n! is the number of possible tree
structures. To select the tree structures, this study determines the appropriate ordering
of the tree structures by choosing the maximum of absolute empirical Kendall’s tau

values for all bivariate copula. C and D-vine density functions can be defined by

n—1ln—j

FECI xn>—Hﬁ<xl>HHcH+k“ _____ o (FGjlv), Flejedve) (A1)

j=1k=1

n—1ln—j

FACII xﬁ-]’[ﬁ(xl)HHckkﬂ‘kH ..... kot (FQalva), F (g j1v2))
i=1 j=1k=1
(12)
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where vi = X1, ..., Xj_1, V2 = Xg41, ..., Xk4+j—1, j is the tree in vine copulas, k is
the edge in each tree, ¢; ji1,...j—1 in Eq. (11) and ¢ gy jjk+1,...k+j—1 in Eq. (12) are
bivariate copula densities. In order to compute the conditional distribution functions
F(x|v) in Egs. (11) and (12) by following Joe [17], as in Eq. (13)

.....

ava/-\v,j (F()C|V_j), F(vj|v—j))

Flxlv) = OF (v;|v_;)

13)

where the vector v_; is the vector v; that excludes the component v;. Cy,,y_; is
the bivariate copula distribution between x and v; that is taken conditional on v_;.
The estimated dependence parameters of various copulas are obtained by maximum
likelihood (see Aas et al. [1]).

2.4 Portfolio Simulation

We forecast one-day-ahead for VaR, CVaR based on t copula GARCH-EVT at 95
and 99 % confidence level with the procedures as follows:

(1) We estimate the parameters of the GARCH model for each market return series.
We obtain the standardized residuals over the threshold follow the generalized
Pareto distribution (GPD), because GPD can capture the upper and lower tails.
Additionally, we also use the Gaussian kernel estimation for the interior part.

(2) We transform each standardized residuals (z;) of each univariate distribution to
approximate i.i.d. uniform data (u#,) on [0, 1] by using empirical distribution
functions and then fit t copula for estimating its parameter.

(3) Given the parameters of copula function, we simulate the uniform series 100,000
dimensional time series and obtain the standardized residuals by using the inverse
functions of the estimated marginals.

(4) We converse the standardized residuals from step (3) into the returns at ¢ + 1,
calculate the empirical one-day-ahead VaR, CVaR at 95 % and 99 % confidence
level, and optimize the portfolio based on CVaR minimization problem at 99 %
confidence level (or Min,cyw CVaR) by following the procedure of Rockafellar
and Uryasev [30, 31].

3 Empirical Results

We used the daily data of five main stock market indices in Asean countries from
DataStream: The indices composed of SET index (Thailand:TH), Straits Times
index (Singapore:SP), KLSE Composite index (Malaysia:MS), JSX Composite index
(Indonesia:ID) and PSE Composite (the Philippines:PP). We defined the market
returns by r, = log(p,) — log(p;—1). Following Horta et al. [15] and Lee et al. [20],
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Table 1 Descriptive measures for Asean markets

Index TH SP MS ID PP
A: crisis period
Mean —0.000221 —0.000341 —9.38E-05 0.000210 —0.000220
Max 0.086167 0.102705 0.057165 0.190719 0.083854
Min —0.085892 —0.129279 —0.102374 —0.257802 —0.136399
S.D. 0.018798 0.020622 0.012513 0.026211 0.019945
Skewness —0.104720 —0.034376 —0.873542 —1.404863 —0.687729
Kurtosis 6.331662 8.140576 13.30447 27.81636 9.093367
Jarque-Bera | 243.3070 577.0605 2384.952 13618.47 851.9586
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
ADF statistics | —20.55669 —21.93688 —21.54766 —22.41699 —21.35143
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
B: after crisis period
Mean 0.000667 0.000141 0.000304 0.000651 0.000818
Max 0.057515 0.029001 0.047228 0.070136 0.055419
Min —0.058119 —0.037693 —0.026757 —0.092997 —0.069885
S.D. 0.011965 0.008567 0.006207 0.012800 0.011732
Skewness —0.367571 —0.423877 0.108370 —0.822461 —0.500209
Kurtosis 6.294566 4.813557 8.424547 10.33282 6.756750
Jarque-Bera |509.4336 179.1765 1317.675 2524951 675.7222
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
ADF statistics | —30.01431 —30.38082 —29.13288 —22.97933 —22.97933
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Note In parentheses are standard errors of the coefficient estimates

this study focuses on subprime crises period and then we divide it into sub periods:
the subprime crisis period (1 August 2007-29 December 2009) and the post subprime
crisis period (4 January 2010-29 December 2014).

Table 1 shows summary statistics. We found that almost all markets of the average
yield (mean of market return) are negative during the subprime crisis. SP has the most
negative returns. After the subprime crisis, the average yield has a positive sign in
every market and the standard deviation (SD) is less than a period of the subprime. The
Jarque—Bera rejects the null hypothesis which indicated that returns of the markets
are not following the normality assumption. The ADF test approved the stationary
property of all markets.

Table2 shows GJR GARCH parameter estimation. The mean equation is in the
simplest form of first autoregressive (AR(1)). The Q-statistics confirm that the mar-
ginals mostly accept the null hypotheses which suggested that there are no serial
correlations and satisfy an i.i.d. assumption for almost all the markets. Then, we
transform standardized residuals into the uniform (U [0, 1]) by using the empirical
distribution functions. The Kolmogorov—Smirnov test (KS-test) is used to test the null
hypothesis that the transformed data are uniformly distributed, because all data series
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Table 2 Parameter estimates for AR(1)-GJR GARCH-EVT models

Index TH | SP | MS D PP
A: crisis period
Mean equation
Bo 0.000549 0.000135 0.000199 0.000541 0.000142
[0.000665] [0.000651] [0.000392] [0.000688] [0.000678]
B1 0.009793 0.001870 0.065287 0.11054 0.086547
[0.045931] [0.046813] [0.044449] [0.046162] [0.046992]
Variance equation
m 1.69e-005 3.22e-006 1.17e-005 0.000137 7.79e-005
[8.32e-006] [3.16e-006] [5.24e-006] [3.16e-005] [2.59e-005]
a 0.83871 0.91095 0.80145 0.38876 0.57183
[0.051076] [0.023375] [0.059008] [0.083337] [0.097427]
0 0.045528 0.035349 0.018407 0.000000 0.063385
[0.036726] [0.020904] [0.028609] [0.040953] [0.048436]
y 0.13214 0.1004 0.23656 0.88391 0.30257
[0.064542] [0.040892] [0.095621] [0.25269] [0.12236]
Q(2) 9.0621 0.8644 0.8474 4.3689 0.3434
[0.0108] [0.6491] [0.6546] [0.1125] [0.8423]
Q(6) 16.4338 13.7795 3.5713 6.9328 5.8217
[0.0116] [0.0322] [0.7345] [0.3271] [0.4435]
KS-statistics 0.0027 0.003 0.003 0.0036 0.0032
[0.4771] [0.3156] [0.3438] [0.1599] [0.2709]
Jarque—Bera 82.0629 85.3962 789.3312 1316.8 231.8684
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
B: after crisis period
Mean equation
Bo 0.001186 0.000277 0.000306 0.000988 0.000791
[0.000282] [0.000210] [0.000146] [0.000289] [0.000293]
B1 0.027503 0.010368 0.083798 0.004194 0.085756
[0.032322] [0.03082] [0.028665] [0.032237] [0.033591]
Variance equation
m 5.95e-006 8.02e-007 1.97e-006 6.29e-006 8.96e-006
[1.68e—-006] [3.40e-007] [6.75e-007] [1.99e-006] [2.63e-006]
a 0.83591 0.92912 0.85629 0.87223 0.81495
[0.029077] [0.015984] [0.03229] [0.027457] [0.036924]
0 0.035536 0.014864 0.024771 0.019357 0.020671
[0.024681] [0.018464] [0.021801] [0.025768] [0.025987]
y 0.16857 0.085624 0.14827 0.125 0.18828
[0.041524] [0.0243] [0.043269] [0.04037] [0.048925]
Q(2) 3.0135 0.2932 2.4969 4.1248 0.7148
[0.2216] [0.8636] [0.2870] [0.1271] [0.6995]
Q(6) 6.5855 7.2224 3.3907 24.2223 8.8284
[0.3609] [0.3008] [0.7585] [0.0005] [0.1835]
KS-statistics 0.0161 0.0164 0.0227 0.0208 0.0154
[0.9339] [0.945] [0.6376] [0.7443] [0.9651]
Jarque—Bera 114.0268 40.9454 1319.4 968.1900 160.1151
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Note In parentheses are standard errors of the coefficient estimates
In parentheses of Q, KS and JB-statistics are p-value for testing the null hypothesis
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Table 3 GPD estimation of each markets residuals

Index TH SP MS ID PP
A: crisis period
Uy 1.1663 1.2225 1.1225 1.1281 1.1864
0y 0.4929 0.7693 0.5947 0.5580 0.4916
N 0.1237 —0.0712 0.1764 0.1827 0.1447
u —1.3113 —1.3290 —1.1794 —1.2537 —1.2979
Uy 0.4835 0.4938 0.3622 0.6470 0.6831
n 0.0875 0.0625 0.4554 0.2680 —0.0168
B: after crisis period
Uy 1.2222 1.2172 1.0998 1.0367 1.1718
Oy 0.5245 0.4665 0.4004 0.4673 0.4097
nr 0.0178 —0.0380 0.3282 0.0805 0.1942
u —1.3012 —1.2407 —1.1444 —1.1542 —1.2279
7} 0.6973 0.7277 0.7322 0.6031 0.5931
0 —-0.0715 —0.1496 0.0092 0.1908 0.0282

Semi-Parametrics CDF- Crisis Period Semi-Parametrics COF-After Crisis Period

1 —
Parato Lower Tail Pareto Lowr Tail
0.9 | —— Karnel Smocthed Interior : 0.9 | ——Kamel Smaothed Interior
08 Pareto Upper Tail 08 Pareto Upper Tail
0.7 0.7
E‘ 06 ;‘ 06
8 05 8 o5}
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Fig. 1 Semi-parametric CDFs of Singapore residuals

support the null hypothesis and use this results to carry out the copula procedure.
Jarque—Bera statistics suggested that the standardized residuals of are non-normality
distribution. These findings from statistical testing confirm that the GJR GARCH
model can apply EVT to handle on the standardized residuals.

Table 3 shows parameter estimation of extreme value theory, we use the GPD in
our study where 9, n are the scale parameter and the shape parameter and we fixed
the threshold value u at 10 % level of confidence. Figure 1 is a sample of the CDF by
using semi-parametric form of Singapore market, in the subprime period, obviously,
the valued of upper tail was higher than the after-crisis period.

Table4 shows the values of Kendall’s rank correlation,which were computed by
using the parameter of the multivariate t copula function from Eq. (10). The results
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Table 4 The matrixes of the Kendall’s tau from the multivariate ¢ copula

Index TH Sp MS ID PP
A: crisis period

TH 1

Sp 0.4410 1

MS 0.3524 0.4289 1

ID 0.3970 0.4866 0.3741 1

PP 0.2306 0.2808 0.3498 0.2721 1
B: after crisis period

TH 1

Sp 0.3435 1

MS 0.2520 0.3291 1

ID 0.3206 0.3831 0.3550 1

PP 0.2274 0.2574 0.2662 0.2890 1

Table 5 The matrixes of the Kendall’s rank correlation from C and D vine copula

A: crisis period B: after crisis period

C-vine copola D-vine copula C-vine copula D-vine copula

751 0.2501 T41 0.4024 751 0.2386 731 0.2654
752 0.3101 ™3 0.3668 750 0.2681 T41 0.3262
753 0.3685 751 0.2500 753 0.2760 752 0.2681
Ts4 0.2749 752 0.3101 Ts4 0.2965 753 0.2760
315 0.2851 015 0.3876 315 0.1931 325 0.2676
T32|5 0.3307 31|14 0.2094 732|5 0.2676 T43|1 0.2836
7435 0.2826 Ts4(1 0.1817 7435 0.2865 513 0.1522
21|53 0.3100 42|51 0.3007 21|53 0.2447 21|53 0.2448
T41|53 0.2655 T53|41 0.2548 T41|53 0.2057 T54/31 0.1488
T42|531 0.2627 732|541 0.1576 T42|531 0.1892 T42531 0.1886

Note 1 =TH,2=SP,3=MS, 4=1D,5=PP

show that five markets have a monotonic relationship because of the Kendall’s tau
is more than zero. During the crisis, the highest relationship is SP & ID, SP & TH
and SP & MS, respectively. While, PP & ID has the weakest relationship. After the
crisis, the strongest relationship is still SP & ID, ID & MS and SP & MS, respectively.
While, TH & PP has the weakest relationship.

Table 5 shows the values of Kendall’s tau that compute by using the parameter of
vine copula function follow Egs. (11) and (12). In Table 5, we found that five markets
have a positive dependence. The highest relationship is ID & TH by D-vine copula
in during and after the crisis period.

Table 6 shows the simulation results of one step ahead forecasting in portfolio
risk using the multivariate t copula GARCH-EVT, C-vine copula GARCH-EVT and



Copula Based Volatility Models and Extreme Value Theory for Portfolio ... 289

Table 6 Portfolio risk of the equally weighted market strategy

The multivariate t C-vine copula D-vine copula
copula
GARCH-EVT GARCH-EVT GARCH-EVT
A: crisis period
VaRyos 0.0148 0.0144 0.0147
VaRy99 0.0246 0.0217 0.0224
CVaRy.os 0.0212 0.0215 0.0218
CVaRp.99 0.0330 0.0325 0.0328
B: after crisis period
VaRy.os 0.0137 0.0137 0.0141
VaRop.99 0.0207 0.0208 0.0215
CVaRyp.os 0.0183 0.0203 0.0205
CVaRy.g9 0.0263 0.0306 0.0307
o Crisis Period 13 110° After Crisis Period
0s 12 1
£ e
2 21 1
g o4 g
2 o 10} ]
S 03 ]
15 £ 9 ]
o 02 o
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-0.10,02 0.025 0.03 0.035 0.04 0.045 0.05 g023 0.024 0025 0026 0.027 0028 0022 003 0.031
CVaR of Portfolio CVaR of Portfolio

Fig. 2 Efficient frontier from minimizing CVaR at 99 % confidence level

D-vine copula GARCH-EVT under the same strategies for all markets. The sim-
ulation results found that VaR and CVaR values during the crisis are higher than
after-crisis at 0.95 and 0.99 significant level. In the crisis period, the multivariate t
copula GARCH-EVT gives the values of VaR higher than both vine copula GARCH-
EVT and D-vine copula GARCH-EVT gives the values of VaR and CVaR higher
then C-vine copula GARCH-EVT . Then we also found that the computational of
VaR and CVaR using D-vine copula GARCH-EVT gives higher value than the mul-
tivariate t copula GARCH-EVT and the C-vine copula GARCH-EVT after the crisis
period.

Figure2 shows the efficient frontier of Asean portfolio by minimizing portfo-
lio risk. A left Fig.2 is the efficient frontier during the crisis period and a right
Fig.2 is the efficient frontier after the crisis period. From the Fig.2, we can con-
clude that at the same level of CVaR, D-vine copula GARCH-EVT generates
portfolio return higher than the multivariate t copula GARCH and C-vine copula
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Table 7 The optimal portfolio weights in efficient frontier for Asean markets

Portfolios | TH SP MS ID PP Return CVaRo99
A: crisis period by the multivariate t copula GARCH-EVT
0.0483 0.0483 0.6923 0.1032 0.1080 0.0343 0.0257
0.1129 0.1129 0.4703 0.1306 0.1734 0.1507 0.0268
0.1752 0.1752 0.2400 0.1801 0.2295 0.2671 0.0289
0.2646 0.2646 0.0000 0.0000 0.4709 0.4417 0.0343
crisis period by C-vine copula GARCH-EVT
0.1506 0.0000 0.5981 0.0000 0.2513 0.0506 0.0258
0.1982 0.0589 0.3768 0.0000 0.3661 0.1584 0.0273
0.2372 0.1306 0.1612 0.0000 04711 0.2661 0.0297
0.0000 0.5310 0.0000 0.0000 0.4690 0.4277 0.0365
crisis period by D-vine copula GARCH-EVT
0.2902 0.1128 0.0000 0.0000 0.5969 0.0781 0.0240
0.2700 0.2532 0.0784 0.0000 0.3984 0.1966 0.0264
0.2566 0.3569 0.1833 0.0000 0.2032 0.3152 0.0300
0.0083 0.5311 0.4606 0.0000 0.0000 0.5524 0.0376
after crisis period by the multivariate t copula GARCH-EVT
0.0000 0.0000 0.5158 0.3826 0.1016 0.0006 0.0250
0.0000 0.0000 0.3575 0.5084 0.1341 0.0007 0.0258
0.0000 0.0000 0.1997 0.6349 0.1654 0.0008 0.0272
0.0000 0.0000 0.0000 0.8604 0.1396 0.0010 0.0302
after crisis period by C-vine copula GARCH-EVT
0.3534 0.0642 0.5117 0.0707 0.0000 0.0006 0.0241
0.4165 0.1553 0.3626 0.0656 0.0000 0.0007 0.0249
0.4930 0.2324 0.2099 0.0648 0.0000 0.0009 0.0264
0.6017 0.3682 0.0000 0.0301 0.0000 0.0011 0.0296
: after crisis period by D-vine copula GARCH-EVT
0.4440 0.0423 0.3284 0.0000 0.1853 0.0006 0.0236
0.2887 0.1340 0.3893 0.0000 0.1880 0.0007 0.0244
0.1309 0.2273 0.4455 0.0000 0.1964 0.0009 0.0259
0.0000 0.4152 0.5826 0.0000 0.0022 0.0011 0.0299

£2J NG VCR [FCY UG ¢ N ROCH I O) N o P VO (O (S 0 B R IO IO N == S PR (O e
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GARCH-EVT during the crisis period. After the crisis period, D-vine copula
GARCH-EVT gives portfolio return higher than C-vine copula GARCH-EVT and
the multivariate t copula GARCH-EVT at the same level of CVaR. Finally, We calcu-
late the optimal weights of the portfolio at the efficient frontier as Table 7. All three
approaches generate the return and CVaR of the portfolio in the crisis period higher
than the post crisis period.
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4 Conclusions

In this study, we adopt copula based volatility models to measure the dependence
between Asean stock markets and then we used a semi-parametric approach from
extreme value theory to capture the tail distribution of standardized residuals from
the data in the context of the subprime crisis. We examine the portfolio simulation
produced by each model and emphasize comparing three models. The models con-
sist of the multivariate t copula GARCH-EVT, C-vine copula GARCH-EVT and
D-vine copula GARCH-EVT. Regarding dependence, all copulas provide evidence
of positive dependence in every pair. The dependences are mostly strong between
Singapore and other markets by the multivariate t copula, which may imply that
Singapore market plays an important role in Asean markets. Meanwhile, the risk
measure was simulated with equally weighted strategy. This result indicates that
D-vine copula GARCH-EVT can be estimates VaR and CVaR greater than C-vine
copula GARCH-EVT and the multivariate t copula GARCH-EVT in the post sub-
prime crisis period. The values of VaR and CVaR during the subprime crisis are
higher than those after the subprime crisis. Moreover, the results of the portfolio
optimization problem using CVaR objective show that D-vine copula GARCH-EVT
is a more efficient tool to simulate the portfolio optimization. Finally, the optimal
portfolio weights suggest that the international investors should concentrate on the
Malaysian market at the high risk and return, and should invest in Thailand market
at the low portfolio risk and return after the subprime crisis.
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Modeling Dependence of Health Behaviors
Using Copula-Based Bivariate Ordered
Probit

Kanchit Suknark, Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract This study simultaneously determines the factors affecting each pairing
of health behaviors such as alcohol-consumption and physical activity, tobacco-
consumption and physical activity, and alcohol-consumption and tobacco-
consumption. The measure of dependence between these pairs was quantified using
the copula approach. The Copula-based Ordered Probit Model was used to control
any common unobserved factors that might affect the random errors related to each
pair of health behaviors. The results is more efficient parameter estimates, in terms
of lower standard errors, in comparison with separate estimations. Moreover, under-
standing the dependencies between ordinal choices for each pair of health behaviors
gives useful information for designing more efficient health care programs.

Keywords Copula - Bivariate ordered probit - Alcohol consumption + Tobacco
consumption * Physical activity

1 Introduction

Thailand is a medium-high income country where morbidity and mortality are pri-
marily related to chronic rather than infectious diseases. Cardiovascular disease is
the main cause of death with cancer as the next highest [11]. The risk factors for
raising the mortality rate were health behaviors. For example, alcohol consumption,
smoking, poor eating habits and diet, urban air pollution, obesity, physical inactivity,
and unsafe sex [4]. Health behaviors are particularly important factors for health
policy planning.

The explicit burden on society due to health-risk behaviors, particularly alcohol
and tobacco consumption, includes health care costs, productivity loss, property
damage costs, costs of criminal justice as well as law enforcement. To reduce health-
risk behaviors, Thailand should aim to reduce alcohol consumption and prevent
initiation of drinking. While Thailand already implements alcohol related policies,
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such as high alcohol taxation, restricted alcohol sale times, more effective measures
at the societal level to control alcohol consumption and alcohol-related harms are
still required. The national survey in 2011 reported that about 17.7 million people or
20.8 % of the population aged 15 years and over are alcohol users. Men used alcohol
at a higher rate than women [10].

Equally, tobacco consumption control policies have been implemented to reduce
tobacco consumption and prevent initiation of smoking, especially in younger people.
Current policies include high rates of tobacco taxation, control of tobacco advertis-
ing, non-smoking areas and bans on smoking in public places, workplaces, public
transport, schools and other areas and facilities, supporting quit-smoking programs
and publicity campaigns. These policies have been shown to be successful in decreas-
ing the proportion of smokers in the Thai population (aged 15 years and older) from
32% in 1991 to 20 % in 2013 [10].

Since 2010, the Thai Health Promotion Foundation has promoted physical activ-
ity in the Thai population by sponsoring and supporting several public campaigns
nationally on the benefits of physical activity and advising people on the effective
levels of frequency, duration and intensity required to achieve physical fitness. Such
programs have also been supported at the local and regional level in many areas
of the country. Most of the projects are mainly focused on increasing perceptions,
attitudes, and practices related to physical activity generally [3]. The national survey
in 2011 reported that about 26.1 % of the population played some form of sport or
physical exercised, but this is actually a decrease of about 3 % when compared with
the 2007 levels [10].

The previous studies on the factors affecting alcohol consumption, tobacco con-
sumption, and physical activity were based on a single equations [3, 6, 7, 9]. In
this paper, we simultaneously determined the factors affecting each pair of some
important health behaviors including alcohol-consumption and physical activity
pair, tobacco-consumption and physical activity pair, and alcohol-consumption and
tobacco-consumption pair, and attempted to quantify the dependence measures
between these pairs using the copula approach. A bivariate ordered probit model
was used to control for the common unobserved factors that might affect the random
errors in each pair of health behaviors. If these random errors are ignored, and not
correlated, inefficiency in parameter estimation is likely [1]. Moreover, understand-
ing the dependencies between the ordinal choices for each pair of health behaviors
will give information useful for designing more efficient health care programs.

2 Data

The data used in this study are from the Thai National Health Examination Survey,
No. 4 (NHES IV) from 2009. The data consists of a sample of 20,450 individuals.
The ordered dependent variables are alcohol consumption (Y;), tobacco smoking
(Y>), and physical activity in leisure time (¥3). The independent variables are sex,
age, income, chronic diseases, marital status, education level, and occupation. The
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Table 1 Main statistics and description of variables
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Variables

Description

N

Mean

SD

Min.

Max.

Y1

Level of alcohol
consumption

20450

0.446

0.697

Y2

Level of Tobacco
consumption

20450

0.052

0.339

Y3

Level of Physical
Activity

20450

2.201

0.845

Sex

1 if individual is
male; 0 otherwise

20450

0.524

0.499

Age

In year

20450

52917

18.236

98

Income

In 1,000 Baht

20450

3.310

5.698

32.480

Bachelor

1 if individual
graduated from
Bachelor degree or
higher; 0 otherwise

20450

0.061

0.24

Agr

1 if individual works
in agricultural
sector; 0 otherwise

20450

0.176

0.381

Whi

1 if individual is
white-collar worker

20450

0.035

0.184

Police

1 if individual works
as police or soldier;
0 otherwise

20450

0.012

0.108

Labor

1 if individual is in
labor sector; O
otherwise

20450

0.48

0.499

Married

Marital status where
1 indicates married;
0 otherwise

20450

0.636

0.481

pe_bmi25

1 if individual has
body mass index
more than 25; 0
otherwise

20450

0.348

0.476

pe_tc200

1 if individual has
chloresterol level
more than 200; 0
otherwise

20450

0.561

0.496

qlhealth

Self health quality
assessment, where 5
is the highest level

20450

3.708

0.867

NCD

Number of chronic
diseases

20450

0.632

0.959

10
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alcohol consumption variable (¥7) was stated as an amount of ethanol consumption
on average per day in a year, and was classified into four levels: O for non-alcohol
consumption; 1 for less than or equal to 40 g of ethanol on average per day (considered
to be a responsible level of consumption); 2 for 41-60 g of ethanol on average per day
(aharmful level); and 3 for over 61 g of ethanol on average per day (hazardous level).
For the tobacco consumption variable (Y,), measured as an amount of cigarettes per
day, it can be classified into four levels: 0 for non-smoking; 1 for up to 10 cigarettes
per day; 2 for more than 10 and up to 20 cigarettes per day; 3 for more than 20
cigarettes per day. For the physical activity variable (Y3), the levels of physical
activity or exercise in leisure time were: O for non-physical activity; 1 for low level
of activity; 2 for moderate level of activity; and 3 for high level of activity. These
are obviously indicative levels rather than attempting to quantify physical activity by
number of hours or some other more precise measure. Table 1 presents the description
of variables and main statistics.

3 Copula-Based Bivariate Ordered Probit Models

A Bivariate Ordered Probit Model is a system of two equations that can be used to
model a simultaneous relationship of two ordinal outcome variables. The traditional
Bivariate Ordered Probit Model uses the bivariate normal distribution to model the
dependence between two equations [1]. In this study, we used a copula distribution
function to model the dependence between two ordinal outcome responses. This
is more flexible than the bivariate normal distribution. The Copula Function is a
joint distribution with uniform margins. Let Uy, ..., U, be the possibly dependent
uniform random variables on [0, 1]-interval. Copula can be defined as

Co(uy,...,ug) =Pr(Uy <uy,...,U; Suy), (D
where Cy(-, ..., ) is a Copula Function with the dependent parameter 6, and u,,,
form =1, ..., g is arealization of U,,. The Copula Function must be grounded and

increasing on the unit hypercube on its domain [0, 1]¢ (see, [S] for more details).
By Sklar’s Theorem (1959), for ¢ marginal distribution functions, Fi(-), ..., F,(-)

and (zi, ..., z4) are arbitrary, we can derive the joint distribution H (-, ..., -) for the
random variables, Zi, ..., Z, as follows:
Co(F1(21), ..., Fglzg) =Pr(F W UD < z1,..., F (U <29) = H(z1, .., 29),
(2)
where Z,, = F]fl(Um), m = 1,...,q. Thus, we can construct a joint distribution

function from a set of margins by using the Copula Function to combine them.

Now we can start deriving our copula-based bivariate ordered probit model. Sup-
pose that each individual i selects the level of two dependent ordinal responses based
on the following system of two equations:
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Yi = Xupi + e, 3)
Y5 = XinPo + €in, €]
where i indexes individual i = 1, ..., N, Y} and Y} are latent variables, X;; and

X;» are the K x N matrices of explanatory variables, 8; and B, are conformable
vectors of parameters to be estimated, and ¢;; and &;; are random errors.
We can model the observed level of two dependent ordinal responses, Y;;, and ¥;,
by the following threshold crossing conditions:
Yijzrj if Tr/,jSYij‘<Tr/+l.ja I‘j:l,...,Rj, j:l,z 5)
where R; are the number of ordinal levels of ¥; j and 7, ; are threshold parameters
to be estimated from the model, with 7; ; = —oo and Tg;,j = +o00. The joint

distribution of the individual selected the level of two ordinal response outcomes can
be expressed as follows:

Pr(z, 1 <Y/ < T 41,1, T2 S V)5 < Tpy11,2)
=Pr(ty 1 < Xi181 +&i1 < Tr+1,1: T2 < Xi2B2 + &2 < Try41,2)
=Pr(ty 1 — Xi181 S i1 <Tr+1,1 — Xi1B1, Ty 2 — Xi2f2 < €12 < Try412 — Xi262)
= Co(F1(tr 41,1 — Xi1B1), F2(try 11,2 — Xi282))
= Co(F1(tr,1 — Xi1B1D)s F2(Try41,2 — Xi2B2))
= Co(F1(tr +1,1 — Xi1B1), F2(ty 2 — Xi2B2))
+ Co(Fi1(7ry,1 — Xi1B1), Fa(try,20 — Xi282)).-

For the traditional Bivariate Ordered Probit Model, the marginal distribution 7 (-)
and F,(-) are specified as the standard normal distribution and the copula function
is specified as a Gaussian copula. Therefore, the traditional Bivariate Ordered Probit
Model is the special case of copula-based Bivariate Ordered Probit Model. To capture
a wider range of dependencies and distributional shapes of random errors, we use
different type of copula functions and a mixture of two normal components for
random errors.

The most general form of normal mixtures can be expressed as

Fi@) = n;0 (M) +(1—7)® (M) ©)
oj1 Oj2

where @ is the standard normal distribution, 7; is the mixing parameter, (;; and
M j2 are location parameters, and o;; and o, are dispersion parameters. The location
and dispersion parameters have to be constrained to satisfy the mean and variance
normalizations as follows:

T+ A —mpup =0, 7} +uj)+0—7)0h+us) =1 ()
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This normal mixtures distribution can capture the varieties of skewness or
bimodality in the shape of random errors.
The log-likelihood of the copula-based Bivariate Ordered Probit Model is given by

LL = 10g(Cy(Fi (T 111 — Xi1B1), Fa(Try412 — Xi2f2))

— Co(Fi(7r,,1 — Xi1B1), Fa(Tryq12 — Xi2B2))
— Co(Fi(tr,+1,1 — Xi1B1), Fa(1,0 — Xi2B2))
+ Co(Fi (7,1 — Xi1B1)s Fa(Tr, 2 — Xi2B2))).

The corresponding vector of parameters 1, B2, Tr,.1, Tr,.2, parameters of random
errors 1y, (i1, 112, 011, O12, T2, Ma1, U22, 021, 022, and dependence parameter 0
can be estimated simultaneously using the maximum likelihood estimation. This
study uses STATA software [8] and user written command BICOP [2] to estimate all
parameters in the models.

4 Results and Discussion

We consider both Frank copula and Gaussian copula that allow for both positive
and negative dependence. For the marginal distribution of each residual, we consider
three specifications including specifying each marginal as a standard normal distri-
bution, and specifying one of the random errors as a normal-mixture distribution
and another as a standard normal distribution, and specifying each marginal as a
normal-mixture distribution. For all three pairs, the best fitted model (in terms of
Akaike Information Criteria, AIC) is the Frank copula with standard normal distrib-
ution for both random errors. In comparison with the two separate univariate ordered
probit model (independent copula), we found that the estimated standard errors of
bivariate models are lower than those of univariate models (the results are not shown
here). However, the differences are very small (five digits after the decimal point)
corresponding with the low level of correlation between each random error.

4.1 Factors Affecting Alcohol Consumption and Physical
Activity Behaviors

Table 2 presents the model estimation results for the level of alcohol consumption
and physical activity behaviors pair. The first dependent variable to be discussed
is alcohol consumption level. The explanatory variables included in the model that
significant are age, income, high cholesterol, gender, non-communication diseases,
occupation, education, and Body Mass Index. The coefficient interpretations are: (1)
young individuals, individuals with higher income, individuals with lower cholesterol
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Table 2 Parameter estimates for level of alcohol consumption and level of physical activity model

Variables Y1 Y3

Coeff. Std. err Coeff. Std. err
Sex 0.956 0.019 0.143 0.017
Age —0.012 0.001 —0.005 0.001
Income 1.48E—05 1.71E-06 —2.40E—06 1.60E—06
Bachelor —0.08 0.042 0.035 0.038
Agr 0.249 0.031 0.523 0.027
Whi 0.179 0.057 0.125 0.052
Police 0.251 0.079 0.194 0.077
Labor 0.168 0.027 0.339 0.023
Married 0.025 0.02 0.097 0.018
pe_bmi25 —0.034 0.02 0.059 0.018
pe_tc200 —0.062 0.019 —0.053 0.017
qlhealth —0.011 0.011 0.09 0.009
NCD —0.12 0.011 —0.041 0.009
Ty, —1.626 0.072 —2.244 0.068
,j —0.135 0.071 —0.576 0.064
73, 0.107 0.071 0.205 0.064
0 0.623 0.060
LL —35,863.919

of 200 mg/dl or a lower number of chronic diseases, individuals who have education
lower than bachelor degree, and individuals who are non-obese (BMI < 25) are
more likely to alcohol consumption; (2) males are more likely to consume alcohol
than females; (3) individuals who work in the agricultural sector and work in risky
occupations such as police and soldiers are more likely to consume alcohol than
white-collar workers and those from the labor sector.

The second dependent variable is physical activity level. The explanatory vari-
ables included in the model that are significant are age, high cholesterol, health
quality assessment, gender, non-communicable diseases, occupation, married sta-
tus, and Body Mass Index. The coefficient interpretations are: (1) young individuals,
individuals with higher health quality assessment, individuals with lower cholesterol
of 200 mg/dl or lower, number of chronic diseases, individuals who are married, and
individuals who are non-obese (BMI < 25) are more likely to undertake physical
activities; (2) males are more likely to undertake physical activities than females; (3)
individuals who work in the agricultural sector are more likely to undertake physical
activities than those from the other sectors.
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4.2 Factors Affecting Tobacco Consumption and Physical
Activity Behaviors

Table 3 presents the model estimation results of tobacco consumption and physical
activity behaviors. For the first dependent variable, namely, the level of tobacco
consumption, the explanatory variables included in the model that significant are age,
quality of health assessment, gender, non-communication diseases, occupation only
agriculture and labor, married, and Body Mass Index. The coefficient interpretations
are: (1) Young individuals, individuals who lower health quality assessment or lower
number of chronic diseases, individuals who education lower than bachelor degree,
and individuals who non-obese (BMI < 25) are more likely to tobacco consumption;
(2) male are more likely to alcohol consumption than female; (3) individuals who
work in agricultural sector are more likely to tobacco consumption than labor sector.

For the second dependent variable, which is physical activity level, the explana-
tory variables included in the model that significant are age, high cholesterol, health
quality assessment, gender, non-communication diseases, occupation, married sta-
tus, and Body Mass Index. The coefficient interpretations are: (1) Young individuals,
individuals who higher health quality assessment, individuals who lower choles-
terol 200 mg/dl or lower number of chronic diseases, individuals who married, and

Table 3 Parameter estimates for level of tobacco consumption and level of physical activity model

Variables Y2 Y3

Coeff. Std. err Coeff. Std. err
Sex 1.426 0.088 0.143 0.017
Age —0.009 0.002 —0.005 0.001
Income 5.70E—06 3.85E—06 —2.40E—-06 1.64E—06
Bachelor —0.533 0.131 0.035 0.038
Aagr 0.259 0.072 0.523 0.027
Whi 0.048 0.159 0.124 0.052
Police 0.135 0.156 0.194 0.077
Labor 0.161 0.069 0.339 0.023
Married —0.06 0.049 0.097 0.018
pe_bmi25 —0.157 0.05 0.06 0.018
pe_tc200 0.06 0.043 —0.053 0.017
qlhealth —0.098 0.024 0.09 0.009
NCD —0.08 0.029 —0.041 0.009
T1,j —0.569 0.174 —2.244 0.068
,j —0.413 0.174 —0.576 0.064
73, 0.051 0.176 0.205 0.064
0 —0.528 0.170
LL —23,904.808
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individuals who non-obese (BMI < 25) are more likely to physical activities; (2)
male are more likely to physical activities than female; (3) individuals who work
in agricultural sector and labor are more likely to physical activities than the other
sector.

4.3 Factors Affecting Alcohol Consumption and Tobacco
Consumption Behaviors

Table4 presents the model estimation results of alcohol consumption and tobacco
consumption behaviors. The estimated parameters are similar to the previous subsec-
tions. More information from Table4 is just the dependence parameter estimation,
which will be discussed in the next subsection. The marginal effects of each depen-
dent variable are shown in Tables 5, 6 and 7.

Table 4 Parameter estimates for level of alcohol consumption and level of tobacco consumption
model

Variables Y1 Y2

Coeff. Std. err Coeff. Std. err
Sex 0.956 0.019 1.429 0.088
Age —0.012 0.001 —0.009 0.002
Income 1.48E—05 1.71E—06 5.00E—06 3.87E—06
Bachelor —0.081 0.042 —0.529 0.131
Aagr 0.249 0.031 0.263 0.072
Whi 0.182 0.057 0.046 0.158
Police 0.253 0.079 0.154 0.155
Labor 0.169 0.028 0.156 0.069
Married 0.025 0.02 —0.056 0.05
pe_bmi25 —0.034 0.02 -0.15 0.05
pe_tc200 —0.062 0.019 0.066 0.043
glhealth —0.01 0.011 —0.1 0.024
NCD —0.12 0.011 —0.081 0.029
Ty, —1.622 0.072 —0.581 0.175
,j —0.131 0.071 —0.425 0.175
3, 0.111 0.071 0.039 0.176
0 0.979 0.178
LL —17,171.767
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Table 5 Marginal effects for level of alcohol consumption
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Variables Level of alcohol consumption
Level 0 Level 1 Level 2 Level 3
Age 0.0037 —0.0026 —0.0003 —0.0008
Income —4.65e—06 3.28e—06. 4.13e—07 0.000000957
pe_tc200 0.0195 —0.0138 —0.0017 —0.004
qlhealth 0.0033 —0.0023 —0.0003 —0.0007
Sex —0.3007 0.2119 0.0267 0.0621
NCD 0.0377 —0.0266 —0.0033 —0.0078
Agr —0.0786 0.0554 0.007 0.0162
Whi —0.0573 0.0404 0.0051 0.0118
Police —0.0792 0.0558 0.007 0.0164
Labor —0.0533 0.0375 0.0047 0.0111
Married —0.0077 0.0054 0.0007 0.0016
Bachelor 0.0255 —0.018 —0.0022 —0.0053
Pe_bmi25 0.0109 —0.0077 —0.001 —0.0022
Table 6 Marginal effects for level of tobacco consumption
Variables Level of tobacco consumption
Level 0 Level 1 Level 2 Level 3
Age 0.0005 —0.0001 —0.0002 —0.0002
Income —3.14E—-07 7.19E—08 1.44E—-07 9.81E—08
pe_tc200 —0.0034 0.0008 0.0015 0.0011
qlhealth 0.0052 —0.0012 —0.0024 —0.0016
Sex —0.0753 0.0172 0.0344 0.0237
NCD 0.0042 —0.0009 —0.0019 —0.0014
Agr —0.0136 0.0031 0.0062 0.0043
Whi —0.0017 0.0004 0.0008 0.0005
Police —0.0068 0.0016 0.0031 0.0021
Labor —0.0082 0.0019 0.0037 0.0026
Married 0.0031 —0.0007 —0.0014 —0.001
Bachelor 0.0281 —0.0064 —0.0128 —0.0089
Pe_bmi25 0.0081 —0.0019 —0.0037 —0.0025

4.4 Dependence Measures of Health Behaviors Pairs

The dependence parameters for three different pairs are significant, indicating the
need to model these behaviors simultaneously. The dependence parameter estimated
from the Frank copula bivariate ordered probit for alcohol consumption and phys-
ical activity behaviors is 0.623. This dependence parameter can be interpreted as



Modeling Dependence of Health Behaviors Using Copula-Based ...

Table 7 Marginal effects for level of physical activity
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Variables Level of physical activity

Level 0 Level 1 Level 2 Level 3
Age 0.0002 0.0014 0.0004 —0.002
Income 7.00E—08 6.53E—07 1.85E—07 —9.08¢—07
pe_tc200 0.0016 0.0147 0.0041 —0.0204
glhealth —0.0026 —0.0246 —0.0069 0.0341
Sex —0.0042 —0.0392 —0.0111 0.0545
NCD 0.0012 0.0113 0.0032 —0.0157
Agr —0.0154 —0.1433 —0.0405 0.1992
Whi —0.0036 —0.0339 —0.0096 0.0471
Police —0.0057 —0.0534 —0.0151 0.0742
Labor —0.0099 —0.0929 —0.0262 0.129
Married —0.0028 —0.0265 —0.0075 0.0368
Bachelor —0.001 —0.0097 —0.0027 0.0134
Pe_bmi25 —0.0017 —0.0162 —0.0046 0.0225

a concordance measure (Kendall’s Tau) equal to 0.07. The dependence parameter
estimated from the Frank copula bivariate ordered probit for tobacco consumption
and physical activity behaviors is —0.528. This dependence parameter can be inter-
preted as a concordance measure (Kendall’s Tau) equal to —0.06. For the parameter
estimated from the Frank copula bivariate ordered probit for alcohol consumption
and tobacco consumption behaviors, the dependence parameter is 0.979, correspond-
ing with 0.108 as the concordance measure. The concordance measure for all three
models are quite small but statistically significant. Thus, we can not ignore these
dependencies in model estimation.

5 Concluding Remarks

From the empirical results previously discussed, the followings are the recommended
policies designed to reduce health-risk behavior and increase health inducing behav-
ior for Thai citizens:

(a) Campaigns aimed at reducing alcohol consumption should have a greater focus
on workers in the agricultural sector and in risky occupations.

(b) The empirical results show that there is a negative correlation between tobacco
consumption behavior and physical activity behavior. Thus, anti-smoking policies
would have a more positive impact when the policy makers promote physical activity
campaign.

(c) Finally, the empirical results confirm that there is some dependence between
alcohol and tobacco consumption as discussed in the Alcohol Alert, 2007. This study
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found that people who smoke are much more likely to drink, and people who drink
are much more likely to smoke. Thus, the alcohol consumption reduction policies
and anti-smoking policies would have more positive impact when they are more
closely associated.

For further study, the copula-based ordered probit model should be generalized
to a multivariate model. However, the main concern on this issue is the curse of
dimensionality. When the level of ordinal outcomes and the number of outcomes itself
increase, it will give more computational burden on model estimation. Practitioners
have to consider about the trade-off between computational cost and efficiency gain.
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Reinvestigating the Effect of Alcohol
Consumption on Hypertension Disease

Kanchit Suknark, Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract The researchers reinvestigate the effect of alcohol consumption on hyper-
tension from observational data, taken from the Thai National Health Examination
Survey. In the observed samples, the treatment assignment is not ignorable, thus
using treatment as a dummy variable in the statistical model will lead to the bias esti-
mation of treatment effects. Factors affecting self-selection (drink/not drink) may
cause the dummy variable of treatment to be correlated with random errors in the
outcome model, which leads to the biased parameters estimation. We propose to
use copula-based endogenous switching regression for ordinal outcomes as the more
appropriate model for treatment effect estimation. The new results should give us
more a accurate and reliable treatment effect for causal inference.

Keywords Alcohol consumption *+ Hypertension disease + Copula + Endogenous
switching regression

1 Introduction

Hypertension is a major risk factor for cardiovascular disease. Tobacco consumption
and alcohol consumption are the most important avoidable causes of cardiovascular
diseases worldwide [14]. In Thailand, cardiovascular disease and hypertension are
major health problems. The cardiovascular morbidity rate and Hypertension have
been reported as an important cause of morbidity for past several years (1) The
cardiovascular disease was ranked fourth largest cause of death in 2012 (32.9 people
per 100,000) (2) Hypertension was the third largest cause of death (37.4 people per
100,000). Both causes are increasing in frequency [22]. Table 1 presents the causes
of death in Thailand.

Epidemiological and experimental investigations have established a close associ-
ation between alcohol consumption and hypertension [6]. A number of population
studies have almost unanimously shown an empirical link between high levels of
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Table 1 Causes of death in Thailand (per 100,000 inhabitants)

Cause groups 2008 2009 2010 2011 2012
1. Malignant neoplasm, | 87.6 86.3 91.2 95.2 98.5

all forms

2. Accident and 55.1 55.6 51.6 52.8 51.6
poisonings

3. Hypertension and 24.7 24.7 314 - 374
cerebrovascular disease

4. Disease of the heart 29.8 29.0 289 31.4 329

5. Pneurmonia and 23.0 229 25.7 26.3 26.1

other diseases of lung

Source Bureau of Policy and Strategy, Office of the Permanent Secretary, Ministry of Public Health

alcohol consumption and hypertension. In many former studies, risk factors were
assessed using multiple regression models; i.e. age, gender, family history, weight
and height for hypertension [2, 9, 12, 15, 21, 24, 25].

In 1985, [15] studied the direct effects of alcohol consumption. He received
responses from 46 male drinkers (22-55 years) to a questionaire. Similar research
has been conducted by Yadav et al. [25] and Taraman et al. [21]. They studied both
tobacco and alcohol consumption among people in Southern India [21]. The results
suggest that hypertension becomes more frequent among women of advancing age
who are alcohol users, especially if they smoke [25]. Yadav studied the prevalence
of Hypertension in northern India among subjects of approximately 30 years of age.
The results indicate that increasing age, body mass index, obesity and impaired glu-
cose tolerance were significantly associated with Hypertension [25]. They all used
regression analysis in their research. Oyunbileg used regressive methods to assess
the correlation between alcohol consumption and arterial hypertension among the
population of the Gobi region of China [12].

In Thailand, multiple regression modeling research shows an empirical link
between high levels of alcohol consumption and hypertension. Leelarassme et al.
studied a sample in Bangkok [7]. Pati and Siviroj studied a sample in Northern Thai-
land [13, 19]. Howteerakul studied people living in the rural areas in Thailand [5].
In these studies the researchers used data collected in a national survey [13, 19].

In this paper, the researchers reinvestigate the effect of alcohol consumption on
the levels of hypertension. Moreover, the researchers investigate whether alcohol
consumption may be a cause of hypertension by introducing the switching regression
model for observational data analysis. This investigation of causality has been done
using the Neyman-Rubin counterfactual framework [17]. In this framework, groups
were compared to extract the differences that are due to changes in the level of alcohol
consumption and the affect on levels of hypertension.

Ideally, we just want to compare two groups that only differ with regard to whether
they consumed alcohol or not. Two groups should be identical in all relevant char-
acteristics, so that we can deduce changes due to the effect of alcohol consumption



Reinvestigating the Effect of Alcohol Consumption on Hypertension Disease 309

on hypertension level. This idea can be done in practice by randomly assigning indi-
viduals to each group by using the same probability of being assigned to either the
control or treatment groups. The characteristics of the individuals in each group may
be viewed as interchangeable and are the same, at least on average, if we have a large
enough sample.

The potential outcomes framework [10] uses a what-if scenario as the baseline for
making causal inferences. This baseline allows each individual the same chance for
potential outcomes. However, we can only observe the individual in one treatment
condition. Under the interchangeable assumption and given that each group only
differs with regard to the treatment condition, the causal effect can then be statistically
estimated as the difference in the means of an outcome of interest between the control
and treatment groups [1].

To consistently estimate the average treatment effect, we have to satisfy the ignor-
able treatment assignment assumption [16]. This condition ensures that the outcome
of interest is independent of the treatment assignment mechanism [10]. This assump-
tion can be satisfied when we assign each individual randomly to the treatment and
control groups. In other words, we can only consistently estimate the average treat-
ment effect if there is no selection bias in the treatment assignment.

In our study, the survey participants self-selected themselves into treatment condi-
tion (whether to drink alcohol or not), thus it is hard to believe that the independence
assumption holds in this situation. In the observed data, the treatment assignment is
not ignorable, thus using treatment as a dummy variable in the statistical model will
lead to the bias estimation of the treatment effect. Factors affecting the self-selection
might cause the dummy variable of treatment condition to be correlated with the ran-
dom errors in the outcome model, which leads to the biased parameters estimation.
By introducing the endogenous switching regression model for ordered outcomes,
the new treatment effect estimation should give us more accurate and reliable results
for causal inference.

2 Data

This study uses the Thai National Health Examination Survey, No. 4 (NHES IV) data
0of 2009. The ordered dependent variables are the blood pressure levels of participants.
Blood pressure levels may be classified into three groups of individuals as follows
(Thailand context). First, those with an average diastolic blood pressure (DBP) and
systolic blood pressure (SBP) of <80/120mmHg as normal blood pressure level,
second, those with DBP and SBP of 80-90/120-140mmHg as pre-hypertension
level; and third those with DBP and SBP of greater than 90/140 mmHg as regarded
as having hypertension. The independent variables are gender, age, income, chronic
diseases (if any), marital status, level of education, and occupation. Table 2 presents
a description of the variables and related statistics.



310 K. Suknark et al.

Table 2 Description of variables and statistics

Variables | Description N Mean SD Min. Max.

BP Level of blood 20,450 0.446 0.697 0 2
pressure

Gender 1 if individual is 20,450 0.524 0.499 0 1
male; 0 otherwise

Age In Year 20,450 52917 18.236 14 98

Income In Baht 20,450 3.31 5.698 0 32.48

Bachelor | 1if individual 20,450 0.061 0.24 0 1

graduated in
Bachelor degree or
higher; 0 otherwise
Agr 1 if individual works | 20,450 0.176 0.381 0 1
in agricultural
sector; 0 otherwise

Whi 1 if individual is 20,450 0.035 0.184 0 1
white collar
Police 1 if individual 20,450 0.012 0.108 0 1

works as police or
soldier; 0 otherwise
Labor 1 if individual is 20,450 0.48 0.499 0 1
classified as labor; 0
otherwise

Married Marital status where | 20,450 0.636 0.481 0 1
1 indicates married;
0 otherwise
pe_bmi25 | 1 if individual has 20,450 0.348 0.476 0 1
body mass index
more than 25; 0
otherwise
pe_tc200 | 1 if individual has 20,450 0.561 0.496 0 1
cholesterol level
more than 200; 0
otherwise
glhealth Health quality 20,450 3.708 0.867 0 5
assesment where 5
is the highest level
NCD Number of chronic | 20,450 0.632 0.959 0 10
diseases

3 Switching Regression Model for Level of Hypertension

In the sample used to estimate the effect of alcohol consumption on the level of
hypertension, the participants are not randomly drawn from the population from
which we wanted to draw inferences, but participants who self-selected themselves
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into treatment. The approach to self-selection used, is that proposed by Heckman
[4]. The assumption is that the self-select mechanism may be modeled by a binary
choices model. The switching regression model, was supplemented with copula by
using copula to model the correlation between the random errors from a decision
model and outcome models [4].

Consider two decisions, S = 0, 1, where 1 is ‘drink alcohol’ and O is not. Let
S* = Zy + v be the latent variable for the decision mechanism. The decision rule is
the following condition

§— [1 ifs* >0

0 ifs* <0

where Z is the matrix of the explanatory variables explaining the self-select mecha-
nism, and y is the corresponding vector of parameters to be estimated. The individuals
are observed either in decision S = 0, or in decision S = 1, but never in both.

Consider the outcome of interest, the level of hypertension Y; =0, ..., J, can be
modeled using the latent variable framework and can be determined by the following
condition:

Yo=j iff Ks,j—1<Ys*§Kx,j» s=0,1, j=0,...,J (D)

where «,; are the threshold values, which form a partition of the real line, i.e.,
K50 = —00, kg y = 00, and k,; > K j_1 for all j.

Let Y = X By + o be the latent variable for the individual decision not to drink
S =0, and ¥Y{ = XB, + ¢ be the latent variable for the individual to consume
alcohol § = 1, where, X is the vector of all the explanatory variables, By and §; are
the vector of the parameters to be estimated.

As previously discussed, there might be some unobserved factors affecting both
the self-selected mechanism and the response outcome, therefore the probability of
observing Y; = j depends on the self-selected variable S. Given that S and Y| are not
necessarily independent. We have

PriYo=j,S=0|X,2) = PV(ICQ!jfl —XPBo <& < Ko, —XPBo, v < —Zy)
= Pr(go < koj — XPo, v < —Zy)
— Pr(so < kgj—1 —XPo,v < —Zy)

PriY1=j,S=1|X,Z) = Pr(k1j-1 — XB1 < &1 <k1j—XB1,v < —Zy)
= Pr(e; <k1j—XPB1) — Pr(e;r < k1j-1 —XPB1)
—Pr(ey =k —XB1,v < —Zy)
+ Pr(e; < k1 j-1 —XB1,v < —Zy)
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To model the above probability, we have to specify the appropriate joint distrib-
ution functions. In this paper, we suggest combining the marginal distributions (g
and v) by using copula.

Copula was introduced in 1959 by Abe Sklar. Sklar’s Theorem succinctly states
that there is a copula function that connects multivariate distributions to their uni-
variate marginal distributions being uniformly distributed on the unit interval [0,1].
Therefore, copula is the joint distribution of a multivariate uniform random vector.
Introduction and standard reference on copula theory can be found in [11].

For a bivariate joint distribution H with marginal distributions F| and F,, the
copula C : [0, 11> — [0, 1], which combines these two marginal distributions, can
be expressed as follows:

H(x1, %) = C{Fi(x1), Fa(x2)}, (x1, x2) € R? 2)

The copula function is uniquely determined for the continuous random vector
(F1, F3). For a discrete random vector, the copula function is unique only over the
Cartesian product of the range of the marginal distribution function [3]. Thus, in
discrete cases the mapping from two marginal distributions and copula to a bivariate
joint distribution is not one-to-one. However, the region outside the Cartesian product
of the range of the marginal distribution function is not of interest [11]. Moreover, [3]
demonstrated that parametric modeling of discrete random vector by copula acquires
dependence properties in a way that is similar to the continuous case.

For any copula, the marginal distribution implied by bivariate copula are C(u, v) <
Cu,1) =uand C(u,v) < C(1l,v) = v, forall 0 < u,v < 1, and so W(u,v) =
max(u +v — 1,0) < C(u,v) < min(u,v) = M(u,v). The copula M(u,v) and
W (u, v) are called the Frechet upper bound and Frechet lower bound, respectively.
We can interpret the Frechet lower bound as the copula with the maximum negative
dependence and Frechet upper bound as the copula with the maximum positive
dependence. In modeling switching regression, it is essential that the copula should
allow for both positive and negative dependence, since the direction of the selection
bias can be in both directions. We should not restrict the direction of selection bias
a priori. The selection pattern should be explained by the data itself.

Copula has had limited use in the endogenous switching regression models. Some,
but not all examples, are [18, 23] for modeling endogenous switching regression in
count outcomes, [20] for modeling endogenous switching regression of continuous
variables and [8] for modeling endogenous switching regression in ordered outcomes.

In this paper, we consider six copula functions, namely, the Normal copula, the
FGM (Farlie-Gumbel-Morgenstern) copula, AMH (Ali-Mikhail-Haq) copula, the t
copula, and the Frank copula. However, only the Normal copula, t copula, and Frank
copula can reach the Frechet lower bound and upper bound, and thus can span the
full range of dependence.

For any given copula, the two required joint distribution, Pr(Yy =j, S = 0|X, Z)
and Pr(Y; =j, S = 1|X, Z) are fully determined. Therefore,
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Pr(Yy=j,S =0|X,Z) = Co(Fi(xgj—1 — XBo), Fo2(=Zy); Op)
— Co(F1(koj—1 — XPo), F2(—=Zy); 6)

PriY1=j,S=1X,Z) = Ci(Fi(k1j—1 — XB1), 1, 01) — C1(F(k1; — XB1), 1, 01)
— C(Fi(k1; — XB1), Fa(=Zy); 01)
+ Ci(Fi(k1j-1 — XB1), Fa(=Zy); 61)

where Cy(u, v) and C (i, v) are copula functions and F; and F, are marginal functions
which can be either normal or logistic distribution which correspond to the Probit
and Logit models, respectively.

4 Results and Discussion

A total of three models were estimated using the Independence copula, the Normal
copula, and the Frank copula. We selected the best fitted model based on Akaike
Information Criteria (AIC), which is the Frank copula model. Table4 shows the
log-likelihood values for the Independence copula and the Frank copula models.
A likelihood ratio test rejects the Independence copula model in the Frank copula
model. Therefore, the results provided here are only from the Independence copula
and the Frank copula models. In the following subsection, we will discuss the results
from the Frank copula model for the policy implications.

4.1 Binary Choice Equation for Alcohol Consumption

Table 3 gives the results of the selection equation. The results of the binary outcome
equation of self-selected alcohol consumption provide the effects of the variable
on the propensity toward alcohol consumption relative to non-alcohol consumption.
All the parameter estimates were statistically significant at the standard level. The
coefficient interpretations are: (1) young individuals, individuals income, individuals
who are married are more likely to consume alcohol; (2) males are more likely to use
alcohol than females; (3) individuals who work in the agricultural sector and work in
high risk occupations such as the police and military are more likely to use alcohol
than white-collar workers and those in the labor sector.
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Table 3 Estimation results of selection equation for alcohol consumption

Variables Independent Frank

Coeft. Std.err Coeff. Std.err
Selection equation
Intercept —0.347 0.050 —0.343 0.050
Age —0.014 0.001 —-0.014 0.001
Income 1.34E—05 1.88E—06 1.36E—05 1.88E—06
Sex 0.946 0.02 0.946 0.020
Agr 0.345 0.032 0.347 0.032
Whi 0.200 0.061 0.203 0.061
Police 0.315 0.088 0.317 0.088
Labor 0.181 0.029 0.184 0.029
Bachelor —0.044 0.044 —0.042 0.045
Married 0.048 0.022 0.048 0.022

4.2 Factors Affecting Hypertension Level for Non-alcohol
Users

Table 4 presents the model estimation results of hypertension levels for non-alcohol
users. The significant explanatory variables included in the model are age, income,
high cholesterol, gender, non-communicable diseases, occupation, education, and
Body Mass Index. The coefficient interpretations are: (1) older individuals, individ-
uals with lower income, individuals who have higher cholesterol 200 mg/dl, or the
number of chronic diseases, or obese (BMI < 25) individuals, or individuals with
education lower than bachelor degree level are more likely to develop hypertension;
(2) females are more likely to have hypertension than males; (3) individuals who
work in the agricultural sector are more likely to have hypertension.

4.3 Factors Affecting Hypertension Level for Alcohol Users

Table4 also presents the model estimation results of hypertension levels for alco-
hol users. The explanatory variables included in the model that are significant are
age, income, high cholesterol, gender, non-communicable diseases, occupation, edu-
cation, and Body Mass Index (BMI). The coefficient interpretations are: (1) older
individuals, individuals who have a higher health quality assessment, individuals
who have higher cholesterol 200 mg/dl, or higher numbers of chronic diseases, or
individuals who are obese (BMI < 25), individuals whose educational levels are
lower than bachelor degree, and individuals who are married are more likely to have



315

Reinvestigating the Effect of Alcohol Consumption on Hypertension Disease

91'vTe0e— SIPeEe0e— T1
484\ L60°0— 8860 €8S C— 0
8100 SvO'1 00 9L6'0 8100 SPO'T ¥10°0 820’1 1y
8200 SYTo 1200 9¢T0 8200 0ST0 200 sT0 007 od
1€0°0 2150 200 09t°0 1€0°0 1160 200 18%°0 Geruq-od
6100 091°0 1100 134 N0) 6100 091°0 110°0 6¥1°0 ddN
L10°0 00°0 110°0 9000 L10°0 0¥0'0— 100 900°0 preayrb
€00 €80°0— 00 wo0— €00 S80°0— 200 €00~ PaLLIBIA
2900 S61°0— 1S0°0 9¢1'0— 1900 S61°0— €600 9L1'0— Jloeyoeq
S¥0°0 1o 6200 6£0°0 ¥+0°0 210 6200 080°0 loqe]
601°0 8¢0°0 SN0 cIro— 801°0 1¥0°0 921°0 8¢0'0— adlod
L800 1€0°0 cLO0 01'0— 980°0 €00 SLO0 990°0— M
1S0°0 00— 9¢0°0 £€80°0— LY0'0 0v0'0— €00 010°0— 18y
1S0°0 8¢S0 9%0°0 8¢€10— €00 8€S°0 €200 861°0 XaS
90—HIST 90—HCI'Y 90—H8C'C 90—dI16tv— 90—d¥¥'C 90—H9Ct 90—H8¢'C 90—H89'1— Quodug
100°0 7200 100°0 LT00 100°0 00 100°0 9200 a3y
9210 10L'1— €L0°0 8¢8T— 001°0 8ILT— SLOO 969 1— 1doxayug
I9'PIS “JJ90D) 19°PIS ‘190D 19°'PIS Riclg) I0°PIS Ricle) SO[qeLIBA
198N [0YOI[B-UON I9sn [0YOI[Y 1SN [OYOd[B-UON 19sN [0YOd[Y
Yuer] juopuadopuy qusay

suonjenba [oA9] amssaid poo[q Jo s}nsar uonewnsy § AqeL,



316 K. Suknark et al.

Table S Predicted probabilities of blood pressure level within sample for the Frank copula model

Outcome | Mean of predicted probabilities
Sober Drink Difference
Min Mean Max Min Mean Max of mean
Normal 0.035 0.52 0.942 0.009 0.404 0.907 0.116
Moderate | 0.053 0.289 0.375 0.084 0.34 0.399 —0.051
High 0.005 0.191 0.797 0.009 0.256 0.904 —0.065

hypertension; (2) males are more likely to hypertension than females; (3) individuals
who work in the agricultural sector are more likely to have hypertension.

4.4 Effect of Alcohol Consumption on Blood Pressure Level

From Table 4, the dependence parameter 6 tells us about the direction of self-selection
biases. The t-test is used for hypothesis testing. The null hypothesis that 6 = 0
implies that there is no self-selection bias. If the null is rejected, the quantification
of the selection effects can be computed by comparing the outcome distribution of
Pr(Yy = j|S = 1) with the counterfactual predicted distribution Pr(Yy = j|S = 0)
of an individual who chooses to consume alcohol but is hypothetically allocated to
non-alcohol user regime [8].

The parameter 6 for alcohol user regime is negative and significant. This indicates
that the two random errors (gy and v) tend to move in the opposite direction. The
negative correlation means that the alcohol user counterfactual blood level of those
who actually chose not to drink are below than that of an average. For the non-alcohol
user regime, the dependence parameter is not significant, indicating that the blood
pressure level distribution of those who are non-alcohol users do not differ from the
distribution of an arbitrary individual with the same characteristics.

To quantify the effect of alcohol consumption on the probability of each level
of blood pressure, we compute the average of predicted probabilities of each level
of blood pressure for alcohol user and non-alcohol user regimes. Table 5 shows the
results of the mean of predicted probabilities of outcome within the sample. The
results indicate that alcohol consumption is more likely to lead to higher level of
blood pressure and hypertension disease.

5 Concluding Remarks

This paper applied a copula-based endogenous switching regression for ordinal out-
comes to examine the effect of alcohol consumption on levels of hypertension, using
the data from National Health Examination Survey in 2009. We present the Frank
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copula and Independence copula models in this paper. We found statistical evidence
for positive self-selection on alcohol users

From the empirical results previously discussed, the following are the recom-

mended policy designs to reduce the levels of hypertension in alcohol users. In non
alcohol users, other policies may help reduce levels of hypertension:

(a)

(b)
(©)

The protection and prevention program for hypertension for non-alcohol users,
should focus more on the needs of women, individuals from lower income groups
and those with lower educational levels.

For alcohol users, the protection and prevention program for hypertension should
be focus more on male alcohol users, undergraduates, and manual workers.
The high risk group includes individuals who are older,have higher numbers of
chronic diseases, high cholesterol, and who may be obese. These people should
receive regular follow-up medical examinations and take appropriate measures,
including life-style changes to prevent hypertension.
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Optimizing Stock Returns Portfolio Using
the Dependence Structure Between Capital
Asset Pricing Models: A Vine Copula-Based
Approach

Kittawit Autchariyapanitkul, Sutthiporn Piamsuwannakit,
Somsak Chanaim and Songsak Sriboonchitta

Abstract We applied the vine copulas, which can measure the dependence structure
of uncertainty in portfolio investments. C-vine and D-vine copulas based on capital
asset pricing models were used to exhibit portfolio risk structure in the content of
asset allocation. With this approach, we employed the Monte Carlo simulation and the
empirical results of C-vine and D-vine copulas to determine the expected shortfall of
an optimally weighted portfolio. Furthermore, we used the condition Value-at-Risk
(CVaR) model with the assumption of C-vine and D-vine joint distribution to gain
the maximum returns in portfolios.

Keywords CAPM - Vine-copulas - CVaR - Conditional value at risk

1 Introduction

An important task of financial institutions is evaluating the exposure to market and
credit risks. Market risks arise from variations in prices of equities, commodities,
exchangerates, and interest rates. Credit risks refer to potential losses that might occur
because of a change in the counterparty’s credit quality such as a rating migration or
a default. The dependence on market or credit risks can be measured by changes in
the portfolio value, or gains and losses.

The classical portfolio theory was originally conceived by Markowitz in 1952,
the idea that explained the return of the portfolio by mean and variance. Since econo-
metrics concerns quantitative relations in modern economic life, its analysis consists
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mainly of determining the impact of a set of variables on some other variable of
interest. For example, we wish to determine how return on market X affects return
on asset Y in a stock exchange. Now this problem is a regression problem, namely,
capital asset pricing model (CAPM). We regress the values of the variable of interest
Y, usually called the dependent variable in the explanatory variable X, often called
the independent variable. This regression problem is formulated by Sharpe [1] and
Lintner [2].

Many pieces of research on the CAPM model is used to explain the diversification
of the risk parameter and the performance of portfolios. The investigated issue from
Zabarankin et al. [3] purposed drawdown parameter in CAPM model to provide
tools for hedging against market drawdowns. Fabozzi and Francis, Levy used CAPM
measure risk parameter for a various period. The contributions to the CAMP are the
papers of Vassilios [4], Chochola et al. [5], Zhi et al. [6].

A typical risk assessment situation is this. Consider a portfolio consisting of n
assets whose possible losses are random variables X, Xy, ..., X,,. We are interested
in the overall risk of the portfolio at some given time, i.e., the total loss Y =X; + X, +
-+ 4 X,,. The value-at-risk (VaR) is a commonly used methodology for estimating
of risks. The essence of the VaR computations is an estimation of high quantiles
(see, Autchariyapanitkul et al. [7]) in the portfolio return distributions. Usually,
these computations are based on the assumption of normality of the financial return
distribution. However, financial data often reveal that the underlying distribution is
not normal. The standard value-at-risk is F, ! (v), the maximum possible total loss
atlevelx € [0, 1], i.e.,

PY>F (@) <1-a

In order to obtain the distribution Fy of Y, we need the joint distribution of
X1, X5, ..., Xy), since, clearly, we cannot assume that the X/s are mutually inde-
pendent. A multivariate normal distribution will not work, since empirical work of
Mandelbrot and Fama showing that financial variables are rather heavy-tailed. Not
only we need copulas to come up with a realistic multivariate model (i.e., a joint dis-
tribution for (X1, X3, ..., X,)), but we also need copulas to describe quantitatively
the dependence among assets.

Vine copulas started with Harry Joe in 1996. He gave a construction of multivariate
copulas in terms of bivariate copulas, expressed in terms of distribution functions.
Thus, it suffices, besides estimating the marginals, to come up with a high dimensional
copula to arrive at a joint distribution for the marginal. In one hand, while lots of
parametric bivariate copulas models exist in the literature, there seems not to be the
case for higher dimensional copulas. On the contrary, we want a high dimensional
copula to capture, say, pairwise dependencies between capital asset pricing models.
First, We modeled pairwise dependencies by bivariate copulas and then glue them
together to obtain the global high dimensional copula. Zhang et al. [8] used vine
copula methods estimate CVAR of the portfolio based on VaR measurement, and
showed that D-vine copula model is superior to C-vine and R-vine copulas. Also, to
study construct dependence structure, So and Yeung [9] used the time varying vine
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copulas based GARCH model to show that Kendalls tau and linear correlation of
the stock return change over time. Moreover, an enormous number of papers about
vine copulas that we can found in a study of Aas et al. [10], Gugan and Maugis [11],
Roboredo and Ugolini [12].

In this paper, we intend to use C-vine and D-vine copulas to examine the depen-
dence structure between CAPM models. Then, use the joint distribution that minimize
expected shortfall with respect to the expected returns to show the optimal weight
of stocks in portfolios. Similarly to the work of Autchariyapanitkul [13] introduced
multivariate t-copula to optimize stock returns in portfolio analysis.

This study concentrated on the top 50 largest companies by market capitaliza-
tion on the Stock Exchange of Thailand (SET50). With this method, we used it to
measure the risk of a multi-dimensional stock returns in portfolios. Thus, the pri-
mary benefaction of this paper can be reviewed as follows: First, we emphasize that
the dependence structure is determined by vine copulas and evaluates the compli-
cated nonlinear relations among financial portfolio management. Second, we use
the high-dimensional of bull ship stocks show the notable proportion of stocks to
the returns of the portfolios. In this studied the selection of the optimal portfolio
depends on the underlying assumption on the behavior of the assets under various
situations. An unreliable model for dependence structure can cause the damage on
portfolios.

The remains of this paper is designed as follows: Sect. 2 provides a short theoretical
framework of copulas, covering C-vine and D-vine copulas. Section 3 conducts the
empirical results, and final Section gives the conclusion and extension.

2 Copulas and Vine Copulas

Consider the situation where we know the marginal distributions F' and G of the
random variables X and Y, respectively (or to be more realistic in term of their esti-
mates). We wish to model and quantify, among other things, the correlation between
X and Y. So far, It is all about Sklar’s theorem that says: If H is the joint distribution
of (X, Y), then there is a copula C such that

H(x,y) = C(F(x), G()

for (x,y) € R%.

However, everybody only looks as the “nice” case where both F and G are con-
tinuous. It is a nice case since the Sklar’s theorem becomes:

(i) The copula C is unique.

(i1) It can be extracted as

Cu,v) =HF 'w),G'(v)
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(iii) C characterizes dependence structures and dependence measures (with desir-
able properties). For example,

Cu,v) =uv<==X 1Y
Cu,v) =unv<FX)=GY)
Cuv)=u+v—-1N Vv FX)=1-GY)

and dependence measures for (X, Y) can be defined nicely in terms of C (with
invariant property).

2.1 Vine Copulas

Suppose, we have a data set on random vector of interest, let say, X = (X1, Xo, .. .,
X4). We are focused in making inference about some functionof X, e.g., Y = ¢(X) =
Z?: 4 iX; (say, in financial (portfolio) investments), where, e.g., the interest is on
deriving the value-at-risk VaR, (Fy).

We need the joint distribution Hx of X to determine the distribution Fy of Y in
order to derive

VaR,F(Y) = Fy'(a) = infly € R : Fy(y) > &} (D

The accurate specification of Fy is crucial! It comes from the specification of Hy.
Now, we have data on X and wish to specify a joint Hy which seems to generate
the observed data (a problem of curve fitting). Moreover, since the dependencies
among the components X;, i = 1, 2, ..., d are of enormous importance, they should
be captured as accurate as possible. Thus, the problem of specifying Hy should take
into account, at least, two things in mind: generating the observed data, and modeling
pairwise dependencies faithfully.

To accomplish the above program, first recall that, according to Sklar’s theorem,
we have

Hy(xi,x2,...,x3) = C(F1(x1), F2(x2), ..., Fa(xq)) ()

2.2 Drawable Vine (D-vine)

The decomposition of the joint density in terms of bivariate (pairwise) copulas and
marginals is Drawable and hence is called a D-vine. With this drawable vine copula,
the joint density is obtained simply by multiplying all (bivariate) copula densities
appeared in the tree together with all marginal densities (Figs. 1 and 2).
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The usefulness of graphical displays is this. When trying to model dependencies
in a multivariate model (i.e., we do not know the joint distribution!), we choose a D-
vine, according to important pairwise dependencies of interest. We have a “formula”
to arrive at the joint distribution, i.e., to come to a model capturing the dependencies
of interest. How to use D-vine copulas to build multivariate models? In general,
we should figure out that, any d-dimensional copula density can be decomposed in
@ different ways. d = 8, X = (X1, X», X3, X4, X5, X¢, X7, Xg) a possible D-vine
is resulting in the multivariate (density) model

8
S, x0, ..., x8) = Hfi(xi) © C12€23C34C45C56C67CT8

i=1

+ €1312€24|3C3514C46|5C5716C68|7
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2.3 Canonical Vine (C-vine)

A C-vine is a regular vine such that each tree T} has a unique node of degree d-j.
The node with maximal degree in T} is the root, for eight-dimension (d = 8) C-vine
copulas can written as

The decomposition of joint densities in terms of C-vines copulas is illustrated as
follows

8
fex, . xg) = [ [fit) - cia(F1, F2) - c13(F1, F3) - c14(F1, Fy) - c15(Fy, Fs)
i=1
~c16(F1, Fg) - c17(F1, F7) - c18(F1, Fg) - 2311 (F2)1, F311)
o411 (F2)1, Fag1) - eos)1 (F2p1 - Fs)1) - 261 (F2)1 - Fej1)
~eo711(F)1 - Frp7) - cagpi (F2p1 - F8p1) - 34112 (F3)12, F4y12)
- e35112(F3)12, F5112) - ¢36)12(F3112, Fe12) - ¢37112(F3)12, F7)12)
- ¢38112(F3)12, F3)12) - c45)123(F41123, F51123) - 46123 (F4123, F6j123)
- cq71123(F4123, F71123) - c481123 (F41123, F§1123) - ¢56]1234 (F5)1234, F6)1234)
- ¢5711234 (F'511234, F711234) - ¢5811234 (F5)1234, F8]1234)
- ¢67112345 (F6)12345, F7112345) - ¢68|12345 (F6| 12345, F8|12345)
- 781123456 (F7, F'8) 4

3 An Application and Empirical Results

3.1 Capital Asset Pricing Model: CAPM

The Capital Asset Pricing Model (CAPM) was formerly conceived by Sharpe [1]
and Lintner [2]. The CAPM is the linear combination of the expected excess return
on asset and expected market returns. A linear function of CAPM model can be
addressed as follows:

E(R4) — Rp = Bo + BLE(Ry — RF), )

where E(R4) and Ry, describe the expected return on stock and the expected market
returns, sequentially, 8y show the intercept and Rp is the risk-free rate. E(Ry; — Rp)
is the expected risk premium, and B, is the risk parameter. We can calculate the
systematic risk of each stock by this mathematical statement

B = M’ (6)

Om
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where o7 is the variance of the expected market returns. Given CAPM equation of
each stock returns, we can calculate the joint dependency structure via C-vine and
D-vine to carry out the optimization process.

3.2 Optimal Portfolio with Conditional Value
at Risk via Vine-Copulas

We start our calculation of VaR and CVaR of an equally weighted portfolio and then,
the optimal portfolio can be constructed by minimizing CVAR subject to maximum
returns. The procedure of optimization, we refer to the paper from Autchariyapanitkul
[13]. The following formula can show as below:

Min CVAR = E[rp|r < r4], (7a)
subject to E(r,) = wiE(r)) +woE(r2) + - - + w,E(ry), (7b)
wit+twr+---4+w, =1, (7¢)

O0<w; <1, wherei=1,2,...,n,

where 7, is the lower o — guantile, and r,, is the return on individual asset at time 7.

We use vine copulas to extract dependence structure between CAPM equations
and then use the solutions of C-vine and D-vine copulas parameters to create an effi-
cient portfolio and find the optimal solutions for the expected returns with minimum
lost.

Now, we simulate the error terms of each stock form the CAPM equations by
using the estimated vine-copulas to generate a set of 1,000,000 samples. Then, we
obtained a possible price of each stock under CAPM models and vine-copulas to
optimization problem.

3.3 Data

The data contains 260 weekly returns during 2010-2014 are retrieved from DataS-
tream, we calculate the log returns on the tracking stocks. The data consist of the
returns from the 8 big capitalization companies such as Banpu Public Company Lim-
ited (BANPU), Bank of Ayudhya Public Company Limited (BAY), Bangkok Bank
Public Company Limited (BBL), Central Pattana Public Company Limited (CPN),
Land and Houses Public Company Limited (LH), Pruksa Real Estate Public Com-
pany Limited (PS), Thanachart Capital Public Company Limited (TCAP) and Thai
Oil Public Company Limited (TOP). Table 1 supplies a summary of the variables
(Table2).
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Table 1 Summary statistics

SET50 BANPU | BAY BBL CPN LH PS TCAP TOP
Mean 0.0025 | —0.0036 | 0.0028 0.0020 0.0055 0.0015 0.0020 0.0016 | —0.0002
Median | 0.0041 | —0.0051 0 0.0025 0.0048 0.0000 0.0000 | 0.0000 0.0000
Max. 0.0706 0.1802 0.1341 0.1002 0.1268 0.1638 0.1650 0.1475 0.1377
Min. —0.0766 | —0.1324 | —0.1658 | —0.1039 | —0.1406 | —0.1947 | —0.1926 | —0.1581 | —0.2173
SD. 0.0253 0.0422 0.0425 0.0344 0.0426 0.0503 0.0567 0.0382 0.0413

Skew. | —0.3412 0.1823 | —0.1674 0.1789 | —0.1494 0.1803 | —0.3417 | —0.2854 | —0.3675
Kurt. 3.8347 4.6789 42171 3.2542 3.6822 4.2344 3.8459 4.6276 6.2557
J.B. 12.5927 | 31.9757 | 17.2625 2.0867 6.0089 | 17.9156 | 12.8106 |32.2261 | 120.6802
PROB. | 0.0080 0.0010 0.0034 0.3097 0.0454 0.0030 0.0077 0.0010 0.0010

All values are the log return

Table 2 Parameters estimation from CAPM models

BANPU | BAY BBL CPN LH PS TCAP TOP
Bo —0.0060 | 0.0003 —0.0005 | 0.0030 —0.0014 | —0.0009 | —0.0008 | —0.0028
(0.0021) | (0.0021) (0.0014) | (0.0022) (0.0024) | (0.0029) | (0.0018) | (0.0020)
B 0.9653 1.0098 1.0248 | 0.9695 1.2592 1.2617 0.9556 1.0543
(0.0846) | (0.0835) (0.0554) | (0.0855) (0.0956) | (0.1153) | (0.728) (0.0773)
o? 0.0012 | 0.0012 0.00005 | 0.0012 0.0015 0.0022 0.0009 0.0010
R? 0.3350 | 0.3620 0.5700 | 0.3320 0.4020 0.3170 0.4000 0.4190
KS test 0.0811 | 0.7856 0.4211 | 0.8055 0.4854 0.6835 0.4326 0.0678

3.4 Experimental Results

Given equations from (5) and (6), we can estimate parameters of CAPM models as
the following

Tables 3 and 4 show the estimation results for C-vine and D-vine copulas, respec-
tively.

Given a market return Ry; = 0.01 and a risk free rate Rr = 0, we considered all
possible ordered of vine-copulas with the lowest AIC. Note that, this method does
not guaranteed the best ordered of vine-copulas but in this paper we only have one
set of vine-copulas with the lowest AIC. In general, it is possible to have many set of
vine-copulas with the same minimum AIC values. Then, we compare the AIC values
of the C-vine and D-vine copulas, we found that the D-vine copula structure gives
a better results. We can use values of the D-vine copula to estimate the CVAR and
efficient portfolio with the maximum expected return for a minimum loss.

Table 5 shows the expected returns of VaR and CVaR at levels of 1, 5 and 10%
with an equally weighted stock. We notice that the estimated CVaR converges to
—1.4289, —1.8687 and —2.7599 at 10, 5 and 1 % levels in period ¢ + 1, respectively.

We applied the Monte Carlo simulation to produce a set of 1,000,000 samples.
Then, provided a significant level of 5 %, we optimized the portfolio by employing the
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Table 3 Estimated Results of C-vine copula

Pairs Families Parameter | | Parameter 2 | AIC

*1,2 Frank —1.1185 — —5.2231
(0.4130)

1,3 Gumbel 1.0630 - —9.6632
(0.0370)

1,5 Frank —1.2610 — —6.7918
(0.4220)

2,41 Clayton 0.2010 - —10.3094
(0.0697)

2,51 Clayton 0.2151 - —8.1258
(0.0784)

3,4|1,2 Rotated BB8 —1.2777 —0.9540 —4.8876
(0.2005) (0.0753)

3,5|1,2 Gaussian —0.1833 — —6.7201
(0.0595)

3,7|1,2 Gaussian —0.1952 — —7.8331
(0.0593)

4,5|1,2,3 Rotated Gumbel 1.1671 — —19.7762
(0.0527)

4,6/1,2,3 Rotated BBS 1.2728 0.9608 —4.9537
(0.1545) (0.0572)

4,711,2,3 Frank 0.8335 — —2.3229
(0.4005)

7,8]1,2,3,4,5,6 |Frank 0.7930 — —1.8701
(0.4031)

() standard error is in parenthesis, 5 % level of significant. *1 = BANPU, 2 = CPN, 3 = TOP, 4 =
PS,5=LH, 6 = TCAP, 7 =BBL, § = BAY

mean-CVaR model and received the efficient frontier of the portfolio under different
expected returns, as displayed in Fig. 3.

Eventually, we also obtained the optimal weight of the portfolios varies to the
CVAR. Table6 exposes some of the results of optimal weight with the expected
returns in the frontier.
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Pairs Families Parameter | | Parameter 2 | AIC

*1,2 Gaussian —0.1928 — —7.8570
(0.0586)

2,3 Frank 0.8544 — —2.2602
(0.4129)

4,5 Frank —1.1185 — —5.2231
(0.4133)

6,7 Clayton 0.1536 — —3.9440
(0.0737)

1,312 Rotated BBS —1.3060 —0.9489 —5.9783
(0.2259) (0.0833)

3,54 Clayton 0.2010 — —10.3093
(0.0696)

5,716 Survival BB8 1.4622 0.9138 —9.5663
(0.2565) (0.0972)

1,412,3 Gumbel 1.05627 - —9.0128
(0.0349)

3,6/14,5 Survival BB8 1.2374 0.9864 —7.9990
(0.1098) (0.0202)

4,715,6 Frank —0.9626 — —3.4873
(0.4092)

3,714,5,6 Survival Gumbel 1.1833 — —20.7914
(0.0530)

1,7|12,3,4,5,6 Rotated Clayton —0.1281 — —3.4141
(0.0648)

2,8|3,4,5,6,7 Frank 0.8412633 | — —2.2348
(0.4084)

() standard error is in parenthesis, 5% level of significant. *1 = TOP, 2 = BBL, 3 = PS, 4 =
BANPU, 5 = CPN, 6 = TCAP, 7 = LH, 8 = BAY

Table 5 Expected shortfall of equally weighted portfolios

Expected Returns VaR CVaR
10% 0.9405 —-0.7537 -1.4289
5% 0.9405 -1.2657 —-1.8687
1% 0.9405 —2.2458 —2.7599
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Fig. 3 The efficient frontiers of CVaR under mean

Table 6 Optimal weighted portfolios for CVAR 5 %

Portfolios BANPU,,, BAY,, BBL,, CPN,,, LH,4 PS¢ TCAP,,, | TOP,, Returns
1 0.1086 0.1024 |0.2725 |0.1179 |0.0759 | 0.0154 | 0.1229 0.1845 | 0.9129
2 0.0604 0.1152 | 0.2866 |0.1415 |0.0715 |0.0246 |0.1187 0.1814 | 0.9522
3 0.0130 0.1259 | 0.2979 |0.1662 | 0.0695 |0.0339 |0.1153 0.1782 | 0.9916
4 0.0000 0.1449 | 0.2857 |0.2270 | 0.0695 | 0.0467 | 0.0873 0.1391 1.0320
5 0.0000 0.1676 | 0.2652 | 0.3020 | 0.0667 | 0.0618 | 0.0500 0.0867 1.0727
6 0.0000 0.1872 | 0.2512 | 0.3798 | 0.0626 | 0.0729 |0.0143 0.0320 1.1133
7 0.0000 0.1985 | 0.1801 0.4810 | 0.0530 |0.0874 | 0.0000 0.0000 1.1539
8 0.0000 0.1961 0.0530 |0.6114 |0.0329 |0.1065 | 0.0000 0.0000 1.1942
9 0.0000 0.1164 | 0.0000 |0.7714 |0.0000 |0.1123 | 0.0000 0.0000 1.2340
10 0.0000 0.0000 | 0.0000 1.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 1.2736

4 Concluding Remarks

In this paper, we have determined the risk in portfolio management by employing
CVaR and used the mean-CVaR model to optimize portfolios. We used the C-vine
and D-vine copula to measured dependence structure between capital asset pricing
model (CAPM) affects the returns of portfolios. We carried our analysis in two
steps. First, we examined the dependence structure of stock returns obtained from
CAPM equations. Second, we investigated how the dependence structure of the asset
pricing model influences portfolio optimization. We used an optimization procedure
to allocate risk in the portfolios. It is feasible to reason that vine copulas can be
explained dependency structure of the asset in the portfolio management.
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Analysis of Transmission and Co-Movement
of Rice Export Prices Between Thailand
and Vietnam

Duangthip Sirikanchanarak, Jianxu Liu, Songsak Sriboonchitta
and Jiachun Xie

Abstract Copulas have become one of the most significant new tools to measure
nonlinear dependence structure and tail dependence. Combining time-varying copu-
las and VAR model with kernel density function, this paper proposes a new method,
called the time-varying copula-based VAR model, to analyze the transmission and
co-movement of rice export prices between Thailand and Vietnam. The time-varying
BB1 and BB7 copulas are proposed to measure asymmetric tail dependences. The
main findings of this study reveal that there exists obvious co-movement between
rice export prices of Thailand and Vietnam, and the time-varying BB7 copula has a
better performance than others. In addition, the price transmission between the two
markets is bi-directional, and the Vietnamese price is more suitable as price leader
in terms of the results of impulse response functions.

Keywords Price transmission + Causality tests - Time-varying copulas * Rice export

1 Introduction

Thailand and Vietnam are the the world largest and the second largest rice exporters
occupying about 28 and 17 % of global rice market share. In the past five years,
Thai and Vietnam rice exports have been highly competitive due to rice export prices
have gone down during that time. To a large extent, a relatively small amount of
rice being traded in Thailand and Vietnam can generate a large influence on the
world rice prices. The fluctuations of rice export prices in Thailand and Vietnam are
correlated, and the two rice export markets are competing each other as evident by
the co-movement of export rice prices of Thailand and Vietnam. The co-movement
implies that the price movement in a rice export market will affect that in another one
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in the same direction. Price transmission is extremely important for the functioning
of competitive markets as these price signals help policy makers, buyers and sellers
understand what would be in the future. Then, the issues of price transmission and co-
movement between Thailand and Vietnam are of considerable interest to international
rice market researchers, policy makers, and investors. Considering the issues above,
the objectives of this paper are to examine the co-movement between rice export
prices of Thailand and Vietnam, to test whether there do exist price transmissions
between Thailand and Vietnam rice export markets, and to judge whether Thailand
or Vietnam is actually a price leader on the basis of direction and magnitude of price
transmission.

In recent years, there have been few studies with focus on testing the rice export
price relations between Thailand and Vietnam. In addition, the Granger causality
test, vector auto-regression (VAR) and cointegration regression models have been
usually used to explore the relationship between the rice export prices of Thailand
and Vietnam. For example, Ghoshray [4] used cointegration regression approach to
test the price relations between Thailand and Vietnam rice export markets. Some
empirical evidences suggested that the two rice prices have a long-run relationship,
and Thailand is a price leader for higher quality grades. John [9] used the Granger
causality test and VAR model to examine price transmission among five major rice
exporters including Thailand, Vietnam, USA, Pakistan and Argentina. He found that
there exist price transmissions across these major rice export markets and Asia acts
as a price leader. Vietnam’s export price is a more suitable world reference price than
Thailand’s. John [8] found that the price transmission between Thailand’s domestic
and export rice markets is bi-directional by using VAR and Granger causality test.

The VAR and cointegration regression models assume that the rice prices follow
a multivariate normal or Student-t distribution with linear dependence. However, the
actual relationship between the rice export prices of Thailand and Vietnam is possi-
bly non-linear or asymmetrical. Also, the linear correlation may fail to capture the
potentially asymmetric dependence between the rice export prices of Thailand and
Vietnam. Therefore, we use the time-varying copula-based VAR models to describe
the dynamic non-linear correlations and tail dependences between the rice export
prices of Thailand and Vietnam. The time-varying copula-based VAR models allow
for better flexibility in joint distributions than bivariate normal or Student-t distribu-
tions. On the one hand, the VAR model, Granger causality test and impulse response
function are used to interpret the causality relationship and test the price transmission
between the rice export prices of Thailand and Vietnam. On the other hand, the VAR
model is employed to filter the rice export price returns of Thailand and Vietnam,
thereby transforming the residuals in VAR model into Uniform (0, 1) by Gaussian
kernel cumulative distribution function.

The contribution of this research is fourfold: First, a new approach, the time-
varying copula-based VAR with kernel density function model is proposed. Second,
we propose the time-varying BBl and BB7 copulas to estimate and forecast the
co-movement between the rice export prices of Thailand and Vietnam. BB1 and
BB7 copulas not only measure the dynamic non-linear correlation, but also capture
the dynamic and asymmetric tail dependences between the rice export prices of



Analysis of Transmission and Co-Movement of Rice Export ... 335

Thailand and Vietnam. Third, a simulation test is invented to judage the accuracy of
the prediction of non-linear correlation between the rice export prices of Thailand
and Vietnam. Last, our contribution also is to show especially practitioners in the
area of agricultural economics how to use time-varying copula-based models so that
they can obtain more reliable conclusions from their data.

The remainder of this paper is organized as follows. In Sect.2, we describe the
methodology corresponding to the time-varying copula-based VAR with kernel den-
sity function model. In Sect. 3, empirical study is described and results are presented.
Section4 gives us some conclusions.

2 Methodology

2.1 VAR Models

VAR model is appropriate for characterizing the multivariate relationship among
the price series. Compared it with structural equation models, VAR model is more
simplicity, and it does not need any economic theories to support the relationship
between the studied variables. For the empirical purposes of our study, the model
involves Thai rice export price (y) and Vietnam rice export price (x). Therefore, the
VAR model can be expressed by

k k
Y =0 +ZW1i}’r—i+Z§01ixz—i+ 21t (D

i=1 i=1

k k
Xe=0+ D Vuvei+t D Qu%iit 2 @)

i=1 i=1

where k is the number of lagness, z; is a vector of random disturbances. We use
ordinary least squares to estimate the VAR models. However, the VAR model is
generally applied to study the causality relations and assess what impact each of the
variables has on one another. So, the Granger causality tests and impulse response
functions (IRFs) within the VAR model are used to assess price transmission between
the rice export prices of Thailand and Vietnam. From the Granger causality tests,
we can infer whether the price transmission exists or not, and what is the direction
of the price transmission between the rice export prices of Thailand and Vietnam.
While IRFs may help us identity the magnitude of price transmission between the
rice export prices of Thailand and Vietnam. There are many papers and books that
explain the Granger causality tests and IRFs in details, such as Gujarati [5], Enders
[3] and John [9] etc.
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2.2 Copulas

Researchers and academics always used some classical families of bivariate distrib-
utions such as bivariate normal and Student-t distributions to estimate the pairwise
dependence of different variables empirically. It is well known that bivariate nor-
mal and Student-t distributions are symmetric with linear correlation parameters. In
addition, there exist some limitations in bivariate Student-t distribution, such as each
element of bivariate Student-t distribution has a univariate Student-t distribution with
the same degrees of freedom parameter. Copula models could circumvent this lim-
itation because their joint distribution can be decomposed into two parts: marginal
distribution and dependence structure.

Sklar [14] first gave the definition of a copula as follows: Let x = (x, x;) be a
random vector with the joint distribution function H and the marginal distribution
F1, F,. Then, there exists a function C called copula such that

H(x1,x2) = H(F (), Fy ' (1)) = C(F1(x1), Fa(x2)), 3)

where u; = F(x;) and uy = F»(x;). In this study, we consider that the marginal
distributions F; and F, are Gaussian kernel cumulative distribution functions. The
formula for F| and F, can be expressed as

~ 1 " —Z
P =—3 k(=2
O=rn s K

)s “)
where the Gaussian kernel K is the standard Gaussian cumulative distribution func-
tion, and the optimal choice of bandwidth h is 1.0661n~'/5 in the Gaussian kernel.
The G is the standard deviation of the samples, and n is the number of the samples.
The residuals z; are generated by the VAR model. Because the non-parametric kernel
density estimation looses the assumption of marginal distribution, then we use the
kernel density estimation to fit the marginal distributions of rice export prices, which
should be more efficient than and superior to an empirical distribution or t-GARCH
(see Sriboonchitta et al. [15], Huang et al. [6]).

There are many advantages of using copulas. For example, they can be used to
measure both rank dependence and tail dependence. One could use Kendall’s tau to
measure the monotonic dependence between variables:

_c—d_2(c—d)
T c+d nmn=1"

®)

where c is the number of concordant pairs, and d is the number of discordant pairs.
It is well known that the copula can be used to measure the Kendall’s tau coefficient
(Nelsen [10]), as follows:

= 7= 4 / / Clur, ) dCur, ) — 1, ©)
[0,1]%
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where C is the copula, and u; and u, are the values of the kernel cumulative distrib-
ution functions. One advantage of using the copula over the Kendall’s tau is that the
former can measure the upper tail and lower tail dependences:

C(u, u)

AL = 11%1 PlY <F,'w|X < F'w)] = 11%1 (7)
u—0+ u—0+ u
and
1 —2u+ Cu,
hup = lim PIY > F; ' X > Fi' )] = lim L;;(””) ®)
u—1- u—1- — U

where X and Y are continuous random variables. To capture the co-movement
between the rice export prices of Thailand and Vietnam, we follow the framework
of Wu et al. [16] to construct the time-varying Gaussian, T, Clayton, Gumbel, BB1
and BB7 copulas. The time-varying Gaussian and T copulas are given as

pr=o+Bp"+y@i,—1 —0.5)(ur,—1 —0.5), 9
1—
where we define p; = —In % for guaranteeing the dependence parameter with
Pt

the interval (—1, 1), and p; is the correlation coefficient and 0 < 8 < 1. The time-
varying Clayton and Gumbel copulas can be specified as follows:

T =a+ B8t +yWi—1 —0.5) @, —0.5), (10

(I—1)

(. + 1)

BB1 and BB7 copulas have two parameters 6 and § which control asymmetric tail
dependences for variables. The formulas of BB1 and BB7 copulas are followed from
Joe and Hu [7].

where 1 = —In , and 7, represents the rank correlation Kendall’s tau. Both

Com (i, ) = (14 [ — 1D 4 (7 — 1)°1/%)719, (11)
where 6 € (0, 400) and § € [1, +00), A,y = 2 — 2%, &y, = 271/00

Cob ) =1-(—[1 =1 =up))™ + (1 —[1 -1 —up?)™0 = )~1/H1/
(12)

where 6 € (1, +o00) andd € [0, +00), A,y =2 — 21 diow = 271/ To measure the
dynamic tail dependences of rice export price between Thailand and Vietnam, we
use the time-varying BB1 and BB7 copulas to capture dynamic Kendall’s tau and tail
dependences between the rice export prices of Thailand and Vietnam. The formulas
of the time-varying BB1 and BB7 copulas can be expressed as

0r = Al + -0, + v (u1,-1 — 0.5) - (uz,1—1 — 0.5)) 13)

S =Ma+ B-6—1 +y -1 —0.5) - (uz,-1 — 0.5)), (14)
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where the A(x) and A(x) are used to ensure the parameters 6 and ¢ fall within their
intervals, respectively. In the time-varying BB1 copula A(x) = exp(x) and A(x) =
exp(x) + 1 are defined, while A(x) = exp(x) + 1 and A(x) = exp(x) for the time-
varying BB7 copula. Among all the time-varying copulas, the preferable time-varying
copula is selected in terms of AIC and SIC.

2.3 Model Validation

The time-varying copulas are used to estimate and forecast the dynamic dependences
between the rice export prices of Thailand and Vietnam. Then, how to evaluate the
forecasted abilitiy of the preferable time-varying copula, which is a crucial problem
for us and practitioners in the area of applying copulas. Thus, we propose a copula
ratio approach to evaluate the forecast function of the preferable time-varying copula.
A copularatio is defined as the preferable copula C,, divided by the empirical copula
C.. The formula is given as

C,(u U ; é
CR — (UL i1, U2 415 Org1) (15)
Ce(ul,t-Hv U 141)

where §t+l repesents the estimated parameters of the preferable time-varying copula
at t4-1 period. The CR should be close to one if the model has a good prediction.
A confidence interval can be calculated from Monte Carlo simulation method. We
simulate 10,000 values of copula distribution from the preferable time-varying copula
with @r+l . Therefore, the simulated copula ratio CR! for each time can be expressed
as

Cpuy i, uzi; Ory1)

Co(tty 1415 U2,141)

CR. = (16)
where i = 1,2, ..., 10,000, and u; ; and u, ; are from copula simulation. If the CR

drops in the credible interval, such as 95 % confidence interval, then our prediction
should be regarded as correct.

3 Empirical Results
3.1 The Data

This study uses monthly export rice prices for Thailand and Vietname white rice 5 %
broken rice (F.O.B) from January 1996 to December 2014. The data were obtained
from the World Bank and both prices are measured in a common currency, namely US
dollars per metric ton. From Fig. 1, we can find that Thailand and Vietnam rice export
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Fig. 1 Rice export price (F.O.B) of Thailand and Vietnam (USD per metricton)

prices have seemed to move with each other closely. It can be clearly seen that both
prices increased to record levels in 2008 that was called the period of “Global rice
crisis”. Hereafter, both prices seemed to have fluctuated much more than previous
years. There is a large gap between the rice prices of Thailand and Vietnam from
2011 to 2014. This is because Thai government implemented the paddy pledging
program during this period. We use the difference between the logarithmic rice
export prices for Thailand and Vietnam to calculate the log returns, and there are
228 observations for each country. This is one way to guarantee that the returns are
stationary. We partition the data into two parts: in-sample and out-of-sample. The
in-sample data from January 1996 to December 2013, with 216 observations were
used for estimating the copula-based VAR model. So, there are 12 months left as
out-of-sample data from January 2014 to December 2014. The out-of-sample data
were used to predict the Kendall’s tau and tail dependences of rice export prices of
Thailand and Vietnam.

3.2 Causality Tests and Impulse Response

First, we should decide the number of lag order for VAR model. Table 1 reports the
results of VAR lag order selection criteria. There are five selection criteria includ-
ing likelihood ratio (LR), final prediction error (FPE), Akaike information criterion
(AIC), Schwarz information criterion (SIC) and Hannan-Quinn information crite-
rion (HQIC). We can find that the lagness should be two in terms of FPE, AIC and
HQIC. Therefore, we use a VAR(2) structure to model the price returns of Thai-
land and Vietnam. Hereafter, Granger causality tests are performed under two lags.
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Table 1 The results of VAR lag order selection criteria

Lag LogL LR FPE AIC SIC HQIC

0 642.7011 NA 9.86e—06 | —5.8511 —5.8202 —5.8386
1 680.5834 74.7268 7.24e—06 | —6.1605 —6.0677% | —6.1230
2 687.4661 13.4510 7.05e—06* | —6.1869*% | —6.0321 —6.1244*
3 688.5750 2.1469 7.24e—06 | —6.1605 —5.9438 —6.0730
4 693.9888 10.3827* 7.15e—06 | —6.1734 —5.8948 —6.0609
5 697.8584 7.3505 7.15e—06 | —6.1722 —5.8317 —6.0347
6 700.5020 4.9733 7.24e—06 | —6.1598 —5.7574 —5.9973
7 704.1570 6.8092 7.27e—06 | —6.1566 —5.6924 —5.9691
8 706.6101 4.5253 7.37e—06 | —6.1425 —5.6164 —5.9300

Note that: * indicates lag order selected by the criterion; LR: sequential modified LR test statistic
(eachtestat5 % level); FPE: Final prediction error; AIC: Akaike information criterion; SIC: Schwarz
information criterion; HQIC: Hannan-Quinn information criterion

Table 2 Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic Prob.
Vietnam does not Granger Cause Thailand 213 15.0767 0.0000
Thailand does not Granger Cause Vietnam 10.2185 0.0001

Table 2 reports the results of Granger causality tests. The results of the tests show that
both the null hypotheses are rejected at 0.01 significant level, which implies there
does exist causality relationships between Thailand and Vietnam. Also, the short run
price transmission exists with bi-directional price transmission between Thailand
and Vietnam. The analysis is consistent with opinion of the market and the results of
past study (John [9]). We would suggest that Thailand and Vietnam rices are almost
completely substitute goods. Therefore, we can conclude that the rice export prices
of Thailand and Vietnam are important to each other.

Figure2 displays the results of impulse response function. The IRFs are esti-
mated by using Sim’s Cholesky factorization which takes the recursive structure of
the error variance-covariance matrix. The IRFs are presented in 10 months’s period.
The results show that shocks originating in Thailand and Vietnam prices will transmit
to each other. First, the impact of shocks in Thailand and Vietnam presents a per-
sistent process that is consistent with macroeconomic theory. The impact of shocks
gradually decreases to negative value, and then rice export prices of Thailand and
Vietnam rebound to normal level. Second, although there exists bi-directional price
transmission between Thailand and Vietnam by Granger causality tests, the magni-
tudes of the price transmission are different. Thailand’s shocks in Vietnam market is
slightly less than Vietnam’s shocks in Thailand, which implies Vietnam is closer to
be a price leader than Thailand. Third, Thailand’s shocks in Vietnam market persist
for 7months, and Vietnam’s shocks in Thailand probably persist for 7 months as
well. In addition, the main finding from the IRFs is that price transmission occurs
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Fig. 2 Impluse response functions

between the two rice markets is so enormous, which can probably be explained by
the fact that strong competition prevails between the rice markets of Thailand and
Vietnam.

3.3 Estimate Results of Copulas

After we estimate VAR(2) model for the returns of rice export prices of Thailand and
Vietnam, we generate the residuals from the VAR(2) model. Then, the residuals are
transformed into Uniform (0,1) by using cumulative Gaussian kernel distribution.
Figures 3 and 4 show the scatter plot of the marginals and the copula density from
kernel density estimation (see Duong [2]), respectively. It can be seen that there are
obvious tail dependences between the rice export prices of Thailand and Vietnam,
and the tail dependences are asymmetric. Seemingly, the lower tail dependence is
stronger than the upper tail dependence between the rice export prices of Thailand
and Vietnam.

We now turn to estimate the time-varying copulas by using maximum likelihood
method. Table3 presents the estimated results of the time-varying copula models
and the values of information criteria. It can be seen that the time-varying BB7
copula has the best performance in terms of AIC and SIC. The second best model
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is the time-varying BB1 copula, while the time-varying T copula is the third best
model. These findings can tell us that there exists obviously tail dependences, which
is consistent with Figs. 3 and 4. The time-varying Clayton and Gumbel copulas only
can capture either lower tail dependence or upper tail dependence, so they cannot
properly measure the dependence structure between the rice export prices of Thailand
and Vietnam. Also the time-varying Gaussian copula does not fit very well because
tail dependences cannot be captured. There are two parameters in BB7 copula. The
parameters 6 and § control the magnitudes of lower tail and upper tail dependences,
respectively. We can see the autoregressive parameters 8 in the time-varying BB7
copula equal to 0.976 and —0.856 for the parameters 6 and §, implying a high degree
of persistence pertaining to the dependence structure and tail dependences between
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Table 3 The results from the time-varying copula models

Copulas a B y DoF LL AIC BIC
Gaussian | p | 0.025 0.995%%% | —0.535%* 30390 | —54.781 | —58.701
(0.022) (0.018) (0.265)
T o |0.021 0.999%%% | —0.601* |5.418%* |34.622 | —61.244 | —67.165
(0.029) (0.028) (0.312) (1.122)
Clayton |6 | —0.098 0.863%% | —0.358 30.022 | —54.044 | —57.964
(0.167) (0.192) (0.609)
Gumbel |6 |0.009 0.999%%% | —0.405 26265 | —46.53 | —50.450
(0.019) (0.038) (0.366)
BBI 0 | —1.755% | —0.863*%** | 4.131 37591 | —63.182 | —71.023
(0.775) (0.070) (2.599)
s | 3601 | 09730k | —1.344
(0.841) (0.026) (0.963)
BB7 0 10019 0.976%%% | —1.635% 39.266 | —66.531 | —74.373
(0.032) (0.032) (0.895)
s | —0.942% —0.856%#% | 2.758%*
(0.492) (0.075) (1.353)

Note: *, s, * x * denoted significance at 10, 5 and 1 % respectively
Source: computation

the rice export prices of Thailand and Vietnam. The latent parameters y are also
significant and display that the latest return information is a meaningful measure.
Specially, y in the time-varying BB7 copula are much larger than others, which means
they have a greater short-run response than other copulas. Therefore, we conclude
that the information at the last period has effect on the time-varying dependences
between the rice export prices of Thailand and Vietnam.

Figure 5 plots the Kendall’s tau and tail dependences estimates and forecasts of
the rice export prices of Thailand and Vietnam based on the time-varying BB7 copula
model. First, the Kendall’s tau, a kind of rank correlation, always has positive values
implying that Thailand and Vietnam have competitive relationship. Second, we can
find that the the smallest Kendall’s tau was about 0.21in 201 1. This phenomenon was
caused by the pledge paddy program in minor crop season. The biggest correlation
happened in 2005 and 2008, respectively. In 2005, Thailand’s government modified
some policies to increase agricultural income of farmers, such as pledging domestic
rice at a higher price than the market price. The global food and financial crisis
in 2008 had a large influence on the dependence between the rice export prices of
Thailand and Vietnam. Third, the lower tail dependences between the rice export
prices of Thailand and Vietnam have volatility clustering due to the persistence of
the dependence structure. While the upper tail dependences change wave upon wave.
Last, the forecasts of Kendall’s tau and tail dependences can effectively link up with
their estimates, and keep the same changeful trend. According to our prediction, the
upper tail dependences in 2014 seem to gradually increase with months, and the
lower tail dependences have a strong fluctuation.
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Fig. 5 Results of Kendall’s tau estimated and forecasted values
Table 4 The copula ratio test for prediction
Forecast time | Kendall’s tau | BB7 copula | Empirical Ratio Interval of 95 %
copula
Jan-14 0.3001 0.1331 0.1388 0.9587 [0.0642, 6.5595]
Feb-14 0.3869 0.1309 0.1382 0.9472 [0.0931, 6.6095]
Mar-14 0.2951 0.2471 0.2385 1.0358 [0.0314, 3.8491]
Apr-14 0.3966 0.1547 0.1369 1.1297 [0.0953, 6.7420]
May-14 0.3179 0.4458 0.4409 1.0112 [0.0196, 2.0836]
Jun-14 0.4045 0.6558 0.6606 0.9927 [0.0177, 1.4088]
Jul-14 0.3623 0.7412 0.7297 1.0158 [0.0121, 1.2828]
Aug-14 0.415 0.8052 0.7982 1.0088 [0.0139, 1.1604]
Sep-14 0.3551 0.2591 0.2455 1.0555 [0.0384, 3.7714]
Oct-14 0.3457 0.2398 0.2088 1.148 [0.0453, 4.4587]
Nov-14 0.3826 0.1216 0.1194 1.0178 [0.0901, 7.7926]
Dec-14 0.3645 0.0602 0.0837 0.7203 [0.1170, 11.0426]

Source: computation

Table 4 reports the forecasted values of Kendall’s tau and the copula ratios. As can
be seen in Fig.5, the Kendall’s tau keeps much high values, specially in February,
April, June, August and November. This might due to the fact that February, April,
June and August are harvest months for second season crops while November is
harvest month for main season crops. Harvest season is able to direct the rice export
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prices to increase or decrease at the same time in Thailand and Vietnam. Moreover,
we can see that all copula ratios are very close to 1 and drop in the interval of 95 %,
which implies that our prediction is very accurate.

4 Conclusions

The correlation among the price behavior of crops usually is measured by using
cointegration regression and VAR model within IRFs and Granger causality test.
However, the models are confined to the analysis of the linear correlation, and cannot
reflect any time-varying characters. Hence, the time-varying copulas are appropriate
for making up for the deficiencies.

This paper describes a model for analyzing the transmission and co-movement
of Thai and Vienamese rice prices by the time-varying copula-based VAR model, in
which the empirical evidence shows that this method can be quite robust in estimat-
ing and forecasting non-linear correlation. The results reveal that there exists price
transmission between Thai and Vietnamese rices, and they are causality interrelated.
Also, the time-varying BB7 estimates reflect a high degree of persistence pertaining
to the dependence structure and tail dependences between the rice export prices of
Thailand and Vietnam. Moreover, the predicted Kendall’s tau in 2014 describes rel-
atively high correlation, especially in February, April, June, August and November,
which coincide with the harvest months. An implication of these findings is that Thai-
land (Vietnam) has the ability to destabilize the rice market of Vietnam (Thailand).
Maybe, both countries also can distort international rice market. According to our
findings, we firstly suggest that Thailand and Vietnam should enhance cooperation
and communication. Export volume should be managed by them through dialogue
and consultation thereby turning competition into cooperation, which is also bene-
ficial to the stability in international rice market. Second, farmers in Thailand and
Vietnam need to produce wide variety of rice, which can reduce their competition.
Third, Thai and Vietnamese authorities should regularly adjust their minimum export
prices together in order to keep their rice exports competitive in world markets. In
short, Thailand and Vietnam should enhance communication among nations, such
as US, China and India etc., and establish a strategic rice reserve for emergencies
and stabilizing markets.
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Modeling Co-Movement and Risk
Management of Gold and Silver
Spot Prices

Chen Yang, Songsak Sriboonchitta, Jirakom Sirisrisakulchai
and Jianxu Liu

Abstract This paper aims to model volatility and correlation dynamics in spot price
returns of gold and silver, and examines the corresponding market risk management
implications. VaR (value at risk) and ES (expected shortfall) are used to analyze the
market risk associated with investments in gold and silver. Many GARCH family
models are employed to describe the volatility. This work applied the copula based-
GARCH model in the estimation of a portfolio VaR and ES composed of gold and
silver spot prices. The empirical results exhibit that the NAGARCH and the TGARCH
families performed better than other GARCH family members in describing the
volatility of gold and silver returns, respectively. Furthermore, the time-varying T
copula has the most appropriate performance in capturing the dependence structure
between gold and silver returns. The out-of-sample forecast performance indicates
that the time-varying T copula-based GARCH model can measure the VaR and ES
with the accurate estimates of gold and silver.

Keywords Value at risk + Expected shortfall - Copulas -+ Metal prices

1 Introduction

One of the dominant trends we are witnessing right now is the increasing number of
individuals and investors globally who seek to own gold and silver in a fashion of
securities. Gold and silver are precious metals with uniqueness and non-renewable
nature, which can function as commodity and monetary assets. They have played as
multifaceted metal down through the centuries, conducting similar features to money
in that they act as a medium of exchange, a store of wealth and a unit of value. They
also act important roles as precious metals with crucial portfolio diversification prop-
erties. As precious metals, they are also largely used in industries, such as jewelry,
machine, electronic and medicine as well.

C. Yang - S. Sriboonchitta - J. Sirisrisakulchai - J. Liu (B<1)
Faculty of Economics, Chiang Mai University, Chiang Mai 50200, Thailand
e-mail: liujianxu1984 @ 163.com

© Springer International Publishing Switzerland 2016 347
V.-N. Huynh et al. (eds.), Causal Inference in Econometrics,
Studies in Computational Intelligence 622, DOI 10.1007/978-3-319-27284-9_22



348 C. Yang et al.

That is true—investors can certainly get benefit as long as they invest into the gold
and silver markets at an appropriate time. With a solidified upward trend in spite of
the falling value of dollar and other currencies, investing in gold and silver can
help investors avoid a personal financial crisis. However, in order to be successful,
investors must constantly monitor the markets and understand the industry. As a
result, model and forecast volatility and dependence structures accurately of gold
and silver spot prices seems important for researchers, portfolio managers, investors,
and policy makers.

To analyze financial market movement and co-movement is significant for effi-
cient diversity in a portfolio management. Some researchers, like Chang et al. [4]
employed multivariate GARCH models to estimate time-varying dependence struc-
tures, but this is always grounded on strict restrictions for the sake of guarantee-
ing a well-defined covariance matrix. Moreover, the VAR (vector auto-regression)
and multivariate GARCH models suppose that the asset returns is linear depen-
dence following a multivariate normal or Student-t distribution. This hypothesis has
clashed with many empirical researches which display that gold and silver returns
are asymmetric, leptokurtic time-varying and fat-tailed, with very different marginal
distributions and disparate degrees of freedom parameters. In addition, the actual
gold and silver correlation is potentially non-linear, time-varying or asymmetric.
Embrechts et al. [5] found that using linear correlation to model the dependence
structure revealed many shortcomings. On the one hand, a severe defect of lin-
ear correlation is that under non-linear severely increasing transformation it is not
invariant; on the other hand, capturing dependence structures of variables is one of
the particular difficulties in evaluating VaR (Value at Risk), and linear correlation
may fail in capturing the possibly asymmetric dependence between gold and silver.

To overcome these drawbacks mentioned above, we applied copula-based GARCH
families to capture the volatility and dependence structures of gold and silver. The
copula-based GARCH models show better flexibility of joint distributions comparing
with both bivariate normal and Student-t distributions.

Our contribution to the literature is as follow as: first of all, our work proposed
GARCH family models to model the volatilities of gold and silver spot prices. The
results showed that the NAGARCH model has the most appropriate performance
compared with others on measuring the volatility of gold. For sliver, the TGARCH
model behaved better than others. Second, we employed copula-based GARCH fam-
ilies to describe the dependence structures of gold and silver spot prices. The copula-
based GARCH family models can be applied for capturing the likely leptokurtosis
and skewness of gold and silver spot prices. We found that the time-varying copulas
outperformed the static copulas with respect to describing dependence structures of
gold and silver spot prices. Third, we evaluated VaR and ES through the copula-based
GARCH models with Monte Carlo simulation. The results showed that the returns
of gold and silver are always existing dependence except for some special periods.
For example in 2000-2003, with world economic recession, the dependence between
gold and silver was very weak. The tail dependencies of gold and silver also exhib-
ited the same characteristic in that period. VaR and ES backtests across copula-based
portfolio showed that the number of violations by the time-varying T copula-GARCH
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model is in proximity to the expected number of violations. It means our model is
correct for gold and silver returns in risk management.

The format for this paper is as follows. Section 2 we introduce the methodologies
of many GARCH families, copulas, VaR and ES-based copula-GARCH model in
detail. Section 3 presents empirical estimation results and provides the out-of-sample
forecasted results of the copula-based GARCH models. Finally, Sect. 4 presents the
conclusions.

2 Methodology

2.1 ARMA-GARCH Families

For analysing time series data, GARCH family models have been employed widely,
especially when we aim to analyze and forecast volatility. Bollerslve [3] came up
with GARCH model to replace the ARCH model in application, then, the GARCH
has been extensively used in econometric and economic fields. Following Ling [13],
the ARMA (p, q)-GARCH (k, 1) model shown as:

p q
n=c+ Y Girit+ Y Vit +a. ()
i=1 i=1
3y = Oy * &, 2)
k 1
ol =w+ z a7+ Z Biolk,, 3
i=1 i=1

k i

where i ¢ <1l,0>0,0;>0,8>0,and > o; + > pi < 1 with o denoting the
conditilorllal variance, w being the intercept, arlldlthe Gi’\ll(CH order is defined by (1, k)
(GARCH, ARCH). The standardized residual ¢, is supposed to be a Skewed Student-t
distribution (SSTD), which can be applied to describe the potentially asymmetric and
heavy-tailed features of gold and silver returns. In our study, other GARCH families
are also proposed, such as TGARCH, AVGARCH, NAGARCH, GJR-GARCH. The
GARCH family models following Alexios [1] are described as follows:

k l
o} =+ Y o] (z-i = nil —mi(z—i —m))’ + D Biol . (4

i=1 i=1

ForEq.(4), when A = § = 2 and ny; = n; = 0, itis the sample GARCH model of
Bollerslev [3] and when |ny;| < 1, it represents TGARCH (the Threshold GARCH
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model) of Zakoian [22]; when A = § = 1 and |7ny;| < 1, it exhibits AVGARCH (the
Absolute Value GARCH model) of Taylor [20] and Schwert [17]; when A = § = 2
and ny; = 0, it displays NAGARCH (the Nonlinear Asymmetric GARCH model)
of Engle and Ng [6]; when A = § = 2 and 1,; = 0, it demonstrates GJR-GARCH
(the Glosten-Jagannathan-Runkle GARCH model) of Glosten et al. [§]. Following
Fernandez and Steel [7], generated a Skewed Student-t distribution, which exposes
both flexibility of tails and possibility of skewness, each entirely controlled by a
separate scalar parameter. The formula of Skewed Student-t distribution is shown as

2 .
Pl )= {000 ) +h Do)} )

where f,,(.) is unimodal and symmetric around zero, and y is the skewness parameter
that is defined from O to oo; I indicates the indicator function and v is the degree of
freedom.

2.2 Copulas

Sklar’s theorem (Sklar, [18]), named after Abe Sklar, gives the theoretical founda-
tion for the application of copulas. Sklar’s theorem states that every multivariate
cumulative distribution function

Hxp, ..., x0) =PXi <x1,...,Xq < x4l (6)
of a random vector (X|, Xz, ..., Xy) with margins F;(x) = P[X; < x] can be written
as

H(xy, ..., xq) = C(F 1 (x1), ..., Fa(xa)) (7N

where C is a copula.

Kendall’s tau for measuring a pair (X, Y), distributed following H, can be defined
as the disparity between the probabilities of consistency and in consistency with
respect to two independent pairs (X, ¥;) and (X», Y>) each with distribution H (Jose
et al. [9]); namely

Ty = Pr{(X; —Xo)(Y1 — Y2) > 0} — Pr{(X; —X5)(Y1 = Y2) <0}.  (8)

These probabilities can be estimated through integrating over the distribution of
(X3, Y»). So that, related to copulas, Kendall’s tau () turns into

1 1
e =4 / / Clur, un)dClur, ) — 1 ©)
0 0

where C is the copula associated with (X, Y).
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As a mathematical tool, copulas were used in finance to help identify economic
risk, market risk, capital adequacy, operational risk and credit risk (Nelsen, [14]).
The correlation coefficient is usually used to calculate interdependence of returns
of two or more assets. But, correlation only works well with normal distributions,
while distributions in financial markets are mostly skewed. The copula, therefore,
has been applied to financial areas such as option pricing and portfolio VaR to handle
the skewness.

Additionally, copulas can be employed to typify the dependence in tails of the
distribution. In terms of tail dependence, two measures known as the upper and the
lower tail dependence coefficients are especially helpful in measuring the trend of
market crashing or booming together. Following the concept of Aloui et al. [2], the
lower and the upper tail dependencies were presented as in the following:

Let X, Y display variables related to marginal function F and G. Then the coeffi-
cient of lower tail dependence A, and the coefficient of upper tail dependence Ay are

A= m&Pr[Y <G'w|x <F' W] (10)
Ay = lir?iPr[Y >G ' |X > F W] (11)

Our work applied a diverse range of parametric copulas to describe different
dependence structures between spot prices of gold and silver. Following Sriboon-
chitta et al. [19], Gaussian copula, T copula, Frank copula, (rotate) Clayton copula,
(rotate) Gumbel copula, (rotate) Joe copula, (rotate) BB1, (rotate) BB6, (rotate BB7)
and (rotate) BB8 copula, all are the static copula candidates. This study also employed
a series of time-varying copulas [19], such as time-varying T copula, time-varying
Gaussian copula, time-varying (rotate) Gumbel copula, and time-varying (rotate)
Clayton copula. Both elliptical copula (e.g.: Gaussian copula) and Archimedean’s
copula (e.g.: Clayton copula) functions are applied to describe diverse dependence
structures. One of the advantages of elliptical copulas is specifying the correlation
with different levels between the margins; but, these copulas must master radical
asymmetry. The property of T copula is symmetric and which can indicate symmet-
ric dependence in the extreme tails. The T copula converges to the Gaussian copula
which exhibits dependencies on the two side tails of zero, as long as the degree
of freedom increases to infinity. Archimedean copulas are typified by their genera-
tor function with many significant properties. They can take upper tail dependence,
lower tail dependence, or both; therefore, they can make better description for the
reality of the behavior with respect to financial markets.

Gaussian copula has a critical flaw, it cannot capture tail dependence. On the
contrary, T copula can capture tail dependence with symmetric structures, which is
its biggest advantage compared with Gaussian copula. Both Gaussian and T copulas
belong to the elliptical-copula family. The Gumbel copula is an asymmetric copula,
weightier in the right tail with higher probability, while it can capture both upper tail
and lower tail dependencies. Clayton copula can catch lower tail dependence. The
Joe copula can help us capture the upper tail dependence. BB1 and BB7 copulas
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reflect different tail dependence between upper tail and lower tail, while BB6 and
BB8 can capture the upper tail dependence structure.

There are many copulas that cannot exhibit negative tail dependence such as
BBX copula and Gumbel, Clayton etc. These copulas will not fit once the bivariate
random variable has negative dependence. While they may be rotated and then could
be applied again.

2.3 Time-Varying Copulas

Time-varying copula has been considered as the dynamic generalization of a Pear-
son correlation or Kendall’s tau. Pearson’s coefficient (p) is generally used in the
Gaussian copula and the T copula. Moreover, we follow the concept of Wu et al. [21]
supposing that the dependence parameters depend on past dependence and historical
information (ug,,—1 — 0.5) (s ;—1 — 0.5). If both (u, ;—1 — 0.5) and (us,,—; — 0.5) are
either bigger or smaller than 0.5, we deduce that the dependence is higher than pre-
viously. Let p; displays a proper logistic transformation of dependence parameters
Pr» so that the time-varying parameters p;* can be shown as:

pz* =ac+ ﬂclof*_l + yc(ug.t—l - O~5)(us,t—l - 05) (12)

the proper logistic transformation is employed to guarantee the dependence parameter
with the interval (—1, 1), which can be written as p; = —In[(1 — p,)/(p; + 1)].

2.4 Inference Function for Margins (IFM)

Sklar’s theorem was extended by Patton [15] who also introduced the conditional
copula function to model time-varying conditional dependence. Let r, ; and r;, be
stochastic variables that indicate gold price and silver price at time t respectively, fol-
lowing marginal conditional cumulative distribution function u, ; = G, ,(rg,l] v,_)
and u,, = G_Y,t(rS,,| Y,_1), where ¥,_; indicates past information. Then, the condi-
tional copula function C(ug ;, us; |¥—1) can be shown using the two time-varying
cumulative distribution functions. Extending Sklar’s theorem, the bivariate condi-
tional cumulative distribution functions of stochastic variables r,; and 7, can be

written as
F(rgs, rs: ¥_1) = Cug,, U, [Wi1). (13)

Suppose the cumulative distribution function can be differentiated, and the con-
ditional joint density can be shown as

azF(rg,ra Tor |Wi—1)

0rg,,0rs,

f(”g,t» Vst W) =

= C(ug,tv Us, |Wi—1) X gg(rg,z [Wi_1) x gs(rs [Wim1), (14)
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where the conditional copula density function is ¢ (i, Us; |W—1) = 92C (g1, Us, s
|W,_1)/0ug du,, and g;(-) is the density function in accordance with G;(-).
From Eq. (14), the likelihood function can be shown as:

L s(0) = Lg(Op) + Ls(O) + Le(O,), 15)

where the parameters vectors of marginal distributions of gold and silver are ®, and
O, respectively and the vector of parameters in the copula function C is ®&.. When
implement the maximum likelihood method over a high dimension case, the prob-
lems related to extensive calculation and estimator accuracy will be faced by opti-
mization process. Therefore, we apply the two-stage estimation method, known as
inference functions for margins (IFM), to evaluate the parameters of our copula-based
GARCH models. Joe [10, 11] demonstrated that this estimate is approximated well
and asymptotically effective to the maximum likelihood estimator under some regu-
larity conditions. Consequently, the estimators can be calculated effectively without
losing any real information.

2.5 VaR and ES-based Copula-GARCH Model

The VaR and ES are estimated by using copula-based GARCH with Monte Carlo
simulation. First, use the estimation results of the preferred copula to generate the
random number 10,000. Second, apply the inverse function of the corresponding
marginal distribution (Skewed Student-t distribution) of each variable to get the
standardized residuals. Third, forecast the value of each variable at the t+1 period
by using the GARCH model; thus, 10,000 possible values are generated at the t+1
period for each variable, which can be expressed as

P q
Tmp+1 = €+ E ¢m.irm,t—i+l + E 1ﬂm,izm,t—i-H + O t+18mn,t+1> (16)

i=1 i=1
where n = 1,2, ..., 10000, m equals to the number of variables, &, , ,+1 = F,;l

(Um.n.1+1), and uy, , is from the simulation of the preferable copula. Then, the portfolio
return approximately equals to the following:

Ripi=w-ri g+ 0 —w) -y (17)

where the portfolio weights of asset 1 and asset 2 are w and 1 — w respectively. Last,
the VaR can be defined as:

VaRy(W)e1 |¥r = inf{Ryyy 1 F(Ry) = o} (18)
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where F is empirical cumulative distribution function of a portfolio return R at
time t+1.

In risk management, VaR is probably the most popular risk measure. But, it does
not satisfy the property of subadditivity. There is an alternative method which is called
ES, which satisfies the property of subadditivity and provides a more conservative
measure of losses relative to VaR. By following the method discussed by Rockafellar
and Uryasev [16], the ES can be formulated as follows:

q
ESﬂ(W) = {VaR,g(W) + ﬁ Z [—WTRk — VaRﬂ(W)]Jr}’ (19)
k=1

n
where [#]7 = max(z, 0), D> w; = 1, g represents the number of samples generated
i=1
by Monte Carlo simulation. VaRg(W) is the VaR under the 8 confidence level and
the W portfolio allocations, and Ry is the k" vector of simulated returns.

3 Empirical Results

3.1 The Data

Both gold and silver spot prices time series were taken from the EcoWin database
from 4th Jan 2000 to 31th Dec 2014, yielding a total of 3885 observations. These are
calculated to logarithm form and the market returns r; is performed by equation (20):

Pt
Pr—1

re = log(—), (20)

where r; is daily returns, p; is price at time t, p,_; is price at previous time t—1. We
divided the data into two groups, sample-in and sample-out data. The sample-in data
contain the first 3365 observations, and the leftover 520 observations are sample-out
data for the test.

Table 1 exhibits the descriptive statistics for the two assets. Over the sample period,
all of the series exhibit approximately zero mean, and negative skewness which
indicate both silver and gold returns are skewed to the left. In terms of kurtosis, the
values of both gold and silver returns are greater than three, thereby implying the
empirical observations of returns have fatter tails in comparison with the normal
distribution. In other words, their distributions are leptokurtic. Analogously, since
the Jarque—Bera statistics are large and significant, the supposition of the Skewed
Student-t distribution should be appropriate in our study.
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Table 1 Data description and statistics

Gold Silver
Mean 0.0004 0.0003
Median 0.0004 0.0000
Maximum 0.1039 0.1393
Minimum —0.0888 —0.1698
Std. Dev. 0.0114 0.0196
Skewness —0.2783 —1.1179
Kurtosis 8.6894 11.6410
Jarque-Bera 5291.270 12899.01
Probability 0.0000%** 0.0000%**

Note: this table represents the descriptive statistics for daily gold and silver spot prices returns
for the sample period from 4th Jan 2000 to 31th Dec 2014. The symbols *, **, and *** present
statistical significance at the 10, 5 and 1 % levels respectively

3.2 Volatility Analysis

The ARMA-GARCH families were applied to analyze the volatility of gold and silver
returns respectively. Table 2 and 3 report the results of selection criteria of 5 ARMA-
GARCH families. We used the Akaike’s information criterion (AIC), Bayesian infor-
mation criterion (BIC), Shibata’s information criterion (SIC) and Hannan-Quinn’s
information criterion (HQIC) to evaluate the models’ performance. The model selec-
tion criteria AIC, BIC, SIC and HQIC suggest the best fit of data for gold is ARMA
(1, 0)-NAGARCH (1, 1) model. NAGARCH model is a generalization of the stan-
dard GARCH model which takes the asymmetric through shift into consideration.

Table 2 The results of selection criteria of ARMA-GARCH family models for gold returns

Information ARMA(1,0)- ARMA(1,0)- ARMA(1,0)- ARMA(1,0)- ARMA(1,0)-
criteria GARCH(1,1) TGARCH(1,1) | AVGARCH(I,1) |NAGARCH(1,1) | GIRGARCH(1,1)
Akaike —6.3425 —6.3511 —6.3505 —6.3524 —6.3471

Bayes —6.3297 —6.3365 —6.3341 ~6.3379 —6.3326

Shibata —6.3425 —6.3511 —6.3505 —6.3525 —6.3471
Hannan-Quinn | —6.3379 —6.3459 —6.3446 —6.3472 —6.3419

Table 3 The results of selection of ARMA-GARCH family models for silver returns

Information ARMA(0,0)- ARMA(1,0)- ARMA(L,1)- ARMA(L,0)- ARMA(L,0)-
Criteria GARCH(1,1) TGARCH(1,1) | AVGARCH(1,1) |NAGARCH(1,1) | GIRGARCH(1,1)
Akaike —5.4124 —5.4330 —5.4318 —5.4220 —5.4220

Bayes —5.4033 —5.4203 —5.4155 —5.4093 —5.4083

Shibata —5.4124 —5.4330 —5.4318 —5.4220 —5.4210
Hannan-Quinn | —5.4091 —5.4284 —5.4260 —5.4174 —5.4165
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Table 4 Parameter estimates of TGARCH model of silver and NAGARCH model of gold

Parameter Silver Gold
ARMA(1,0)-TGARCH(1,1) ARMA(1,0)-NAGARCH(1,1)
Estimate S.E Estimate S.E
c - - 0.0006%** 0.0001
o1 —0.0379%%* 0.0157 —0.0482%** 0.0164
® 0.0000 0.0000 0.0000 0.0000
o] 0.07 1473 0.0089 0.0370%** 0.0032
B 0.9502%** 0.0049 0.9330%** 0.0006
N —0.3084%** 0.011 - -
21 - - —0.8481%%* 0.0476
y 0.8993%x3 0.0164 0.9738 *** 0.0226
v 3.5238%** 0.2929 5.4182%** 0.6945
LLF 9148.02 10696

Signif.codes: “***’0.001; “***0.01; “*’0.05
Source computation

It implies there does exist significant leverage and size effects for gold and silver.
And the best fit of data for silver is ARMA (1, 0)-TGARCH (1, 1) model, which has
the most appropriate performance compared to others in terms of 4 kinds of infor-
mation criteria. TGARCH model adds an additional term to account for possible
asymmetries, and it permits a rotation of news impact, but does not allow a shift.
Table4 presents the maximum likelihood results of parameter estimates of
TGARCH model of silver and NAGARCH model of gold. We fitted ARMA (1,
0)-TGARCH (1, 1) and ARMA (1, 0)-NAGARCH (1, 1) models for the returns
series of silver and gold, respectively. All parameters in the TGARCH model for sil-
ver and NAGARCH model for gold are significant except w. Thus we concluded that
these models are adequate. The asymmetry parameters, y, are significant and less
than 1 for both silver and gold returns, indicating that both silver and gold returns are
skewed to the left. Furthermore, in the variance equations, the parameters oy and 8,
are significant and similarly interpreting that silver and gold returns have volatility
clustering. The asymmetry rotation parameter 7, is significant and negative, which
means that negative shocks introduce more volatility than positive shocks of the same
size in the next period. And the asymmetry shift parameter n,; is negative, which
means that the news impact curve is shifted to the left by the distance 0.8481.

3.3 Estimated Results of Copulas and VaR

Table 5 presents copula modeling results of the 18 static copula models and the time-
varying T copula. The AIC criterion is used for model selection here. In terms of the
values of AIC, T copula is superior to other selected static copula models because
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Table 5 Results of the static and the time-varying T copulas

Copulas Parameters | Values S.E Kendall’s tau | Tail dependence AIC
lower upper
Gaussian o 0.6695%** | 0.0079 0.4669 0 0 —1994.939
T 0 0.7027##* | 0.0093 0.4961 0.4078 0.4078 —2337.68
DoF 3.7228%%* 1 0.2829
Clayton 0 1.3713%** | 0.0400 0.4068 0.6032 0 —1819.255
Gumbel 0 1.8704*** | 0.0264 0.4653 0 0.5514 —2010.991
Frank 0 5.9277*%% | 0.1358 0.5104 0 0 —2137.205
Joe 0 2.0665*** | 0.0366 0.3695 0 0.6015 —1500.528
BB1 0 0.5369*** | 0.0422 0.4861 0.4310 0.4288 —2222.77
8 1.5341%** 1 0.0319
BB6 0 1.001%#%* 0.3402 0.4653 0 0.5516 —2008.544
8 1.8691#** | 0.4251
BB7 0 1.6571%** | 0.0406 0.4591 0.5154 0.4806 —2145.736
8 1.0459%**% | 0.0462
BB8 0 [ 0.4535 0.4858 0 0 —2057.008
8 0.6492%** | 0.0308
R-Clayton 0 1.2152%%% 1 0.0375 0.3780 0 0.5653 —1536.972
R-Gumbel 0 1.9190*** | 0.0273 0.4789 0.5649 0 —2171.298
R-Joe 0 2.2168*** | 0.0394 0.3996 0.6329 0 —1782.112
R-BBI 0 0.2666*** | 0.0370 0.4886 0.5056 0.6691 —2227.907
8 1.7253%** 1 0.0353
R-BB6 0 1.001##* 0.1154 0.4789 0.5651 0 —2169.03
8 1.9177#%* | 0.1474
R-BB7 0 1.8784*** | 0.0427 0.4592 0.5537 0.4163 —2140.111
8 0.7908*** | 0.0447
R-BB8 0 [ 0.6144 0.4993 0 0 —2136.598
8 0.6665%** | 0.0429
Time-varying T | o, 0.0007 0.0020 —2774.11
copula
Be 0.9815%** | 0.0031
Ve 0.6346*** | 0.0973
% 8.4724%%% 1 0.3135

* Indicates statistical significance at the 5 % level.

** Indicates statistical significance at the 1 % level
**% Indicates statistical significance at the 10 % level
Source computation

it has the smallest AIC value. p is Pearson’s correlation coefficient which is used to
describe the dependence structure in Gaussian and T copulas. The estimated coeffi-
cient p in T copula model is significant, which shows silver and gold has significant
linear relationship. The value of Kendall’s tau is close to 0.5, which indicates that the
rank correlation between silver and gold is not very strong. Moreover, the estimated
parameters of the upper and lower tail dependence are equal to 0.4078, which implies
that the dependence between silver and gold returns during bull markets and bear
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markets is the same. Since the T copula reports the best explanatory ability of all
selected static copula models, we choose the time-varying T copula to describe the
dependence structure of silver and gold returns series. Comparing static T copula
with the time-varying T copula, the time-varying T copula has a better performance
in terms of AIC. As can be seen in the time-varying T copula equation, the autore-
gressive parameter 8 is approximate to 1, indicating a high degree of persistence
concerning the dependence structure between silver and gold returns. The latent
parameter y is significant, which exhibits the newest return information is a relevant
measure.

Figure 1 plots estimated and forecasted dependencies and tail dependencies of
gold and silver based on the time-varying T copula model. For the dependence
between gold and silver, we can see an obvious fluctuation during 2000-2002, in
this period, the volatility interval is around 0.65-—0.15. Particularly, in the middle
and later periods of 2001, their dependence approximated to 0, and even less than
0, which showed a very weak dependence and negative dependence. Following the
stock market crash of NASDAQ in April 2000, American economy gradually fell into
crisis, which implicated many countries, whose economy slowed down. Meanwhile,
the oil price increased. After the 9.11 happened in America in 2001, the whole world
economy went into growth recession. Because of special physical and chemical
properties, silver was widely used in electricity, medicine, chemistry, optics materials
industries. Due to the slowed down industry development, the industry demand for
silver deduced, which caused the price of silver to decline. Unlike silver, gold does
not have many industrial uses; even the industry development slowed down, the
price of gold did not changed like silver. Apart of this, during the economic recession
period, central banks were enthusiastic about increasing gold reservation which urged
gold price rising. Furthermore, People prefer investing in gold to investing in stock
markets which also resulted in increasing price increasing of gold. Eventually, gold

Fig. 1 Estimated and ——  Dependences
forecasted dependencies and o out-of-sample

. . - tail dependences
tail dependencies. -

Source: computation
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price increased, while silver price unchanged or even decreased during the world
economic recession period, their dependence to be very weak or even negative. After
2002, the dependence of gold and silver returned to a point about 0.8 in 2003, then,
their dependence exhibited a stable volatility with the fluctuation around 0.65-0.85
during 2003-2014. As we can see the plots of the forecasted dependence between gold
and silver in the figure, it displayed a gentle volatility which is similar to the volatility
during 2003-2014, which means that our model for forecasting the dependence of
gold and silver shows a good fit. In terms of tail dependence of gold and silver, it
consists of two parts during 2000-2014. The tail dependence between gold and silver
was decreasing from 2000 to 2002. In this period, their tail dependence was closed
to 0, which means the returns of gold changed, the returns of silver didn’t change
with similar reasons mentioned above. Their returns are independent. After 2002,
their tail dependence parameter rose to the point 0.35 in 2003, then, the parameter of
tail dependence between gold and silver fluctuated in the interval of 0.2-0.5 during
2003-2014, which indicates that their returns exist as dependence, or their returns
simultaneously increased or decreased. The forecasted tail dependence resembles
the tail dependence during 2003-2014, which shows a float volatility. These proved
that our model matched our study very well.

Figure 2 shows the estimated VaR by using time-varying T copula with GARCH-
SSTD model at « = 0.1, « = 0.05 and « = 0.01. As it can be seen, most of the
portfolio returns are located above the VaR curves, and the portfolio returns of VaR
gradually decreases with the increase of confidence level, both of which are consistent
with the reality. The number of violations of the VaR estimation and VaR and ES
backtests across copula-based portfolio are shown in Table 6. We can see that the
number of violations by the time-varying T copula-GARCH model is approximate
to the expected number of violations. Moreover, the Percentage of Failure (PoF) and
the Conditional Coverage Likelihood Ratio (CCLR) tests [12] are used to evaluate
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Table 6 Backtesting VaR based on the time-varying T copula-GARCH models

VaR

90 % 95 % 99 %
Violations 48 30 6
Expected num. 52 26 5
POF test stats. 0.3499 0.6185 0.1185
CCLR stats. 5.7666 0.5069 1.0904

the performance of the time-varying T copula-GARCH model. Both PoF and CCLR
statistics are less than critical values 3.84 and 5.99, respectively. These mean they
do not reject the null hypotheses, thus the time-varying T copula-GARCH model is
correct for gold and silver returns in risk management. As everyone knows Basel
committee replaced VaR with ES in 2013, which means ES is more powerful as
complementary tool than VaR. Figure 3 shows the ES plots we estimated using the
time-varying T copula with GARCH-SSTD model with a 99 %, 95 % and 90 % levels
of confidence. The portfolio return of ES with a 90 % confidence is certainly lower
than that with a 95 % confidence; and with a 95 % confidence is certainly lower than
that with a 99 % confidence. From the plots, we can see clearly that in the middle
and later periods of 2013, all the paths exhibited huge fluctuation. The reasons for
such a big volatility are three-fold: first, after the crisis of Cyprus, the Eurozone
governments, like Germany came up with harsh additions for giving help to Cyprus.
This led the government of Cyprus to declare the selling of gold reserve to raise
money to enable debt repayment. Other European countries who sank into the same
situation like Cyprus also took the same measure. Large-scale gold underselling
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urged gold price to drop down. Second, the gold price is in US dollar, meaning
that the changing exchange rate against US dollar will somehow influence gold
price. After the American economic recovery, people sold gold to get money to
invest in stock market. With a hut of gold in the market, gold price went down.
Third, a great quantity fund of gold ETF flowed out from the gold market, and this
decreased the gold price. The silver price is more sensitive than gold price in terms
of precious metal investment. So when faced the situations mentioned above, silver
price decreased more significantly than gold price. After 2014, the ES tracks of three
different confidence levels display slight volatility, and all tracks present similar
fluctuation trajectories, indicating that our model is best suited for calculating ES
with respect to a portfolio of gold and silver.

4 Conclusions

Because gold and silver have important and various industrial uses in jewelry, medi-
cine, machine, and electronics, gold and silver investments are always interested by
policy makers, portfolio managers and manufacturers. Quantifying the volatility and
dependence changes is fundamental in designing risk management strategies for gold
and silver investments.

This paper analyzed the VaR and ES predictions of gold and silver with long
memory volatility models under the Skewed Student-t distribution. Our empirical
results are threefold. First, we applied many GARCH family models to fit our data.
According to the model selection criterions, the NAGARCH and TGARCH models
with Skewed Student-t distribution were found to have the best fit for matching the
conditional variances of gold and silver, respectively, this indicated that the returns
of gold and silver have asymmetry and leverage effect. Second, by comparing the
performances of selected copula models in our study, we found that the time-varying
T copula model is very well suited for our data. For the dependence of gold and
silver, we can see an obvious fluctuation during 2000-2003, and their dependence
exhibited a stable volatility after 2003. Third, the time-varying T copula-GARCH
with Skewed Student-t distribution has been employed to compute for VaR and ES
of gold and silver returns. VaR backtesting proved that the time-varying T copula
based-GARCH model is correct and accurate to estimate and forecast the VaR and
ES of gold and silver returns.
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Efficient Frontier of Global Healthcare
Portfolios Using High Dimensions
of Copula Models

Nantiworn Thianpaen, Somsak Chanaim, Jirakom Sirisrisakulchai
and Songsak Sriboonchitta

Abstract This paper aims to find the optimal Global Healthcare Portfolios at differ-
ent levels of risks and returns to obtain the efficient frontier. The risks are measured
by expected shortfall. The dependency of selected stocks in portfolios cannot be
ignored. The high-dimension copula-models are used to capture the dependency pa-
rameters of the selected stocks. Five largest market capitalization stocks in the global
healthcare sector are selected for this analysis. According to the Akaike Information
Criterion (AIC), the empirical results show that #-copula is better fitted between the
t- and the Gaussian copulas. Based on the #-copula, the result of this study which is
the efficient frontier of the global healthcare portfolios is finally shown in Table 4 for
related decision makers.

Keywords Copulas + Expected shortfall - Efficient frontier

1 Introduction

This research is devoted to the analysis of the healthcare sector which is a bigger
market in the United States than others, globally. The signals from this country will
have remarkable effects in healthcare sectors throughout the world. As a result, we
selected the five largest market capitalization healthcare equities from the New York
Stock Exchange (NYSE). They consist of healthcare stocks which are (1) Abbott
Laboratories (abt), (2) GlaxoSmithKline plc (gsk), (3) Johnson & Johnson (jnj), (4)
Novartis AG (nvs), and (5) Stryker Corporation (syk). The S&P 500 healthcare index
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(Sphc) is required to be the benchmark of the global healthcare market in this research
study.

The objective of this study is to obtain the efficient frontier of those five largest
market capitalization healthcare stocks. To estimate the expected return of each stock,
we used the Capital Asset Pricing Models (CAPMs) with the S&P 500 healthcare in-
dex (Sphc) as the explanatory variable. Since the five stock returns are normally
interdependent, to capture the dependency parameter of these stock returns, the
Gaussian and the t-copulas are usually employed. Sriboonchitta et al. [4] focused
on vine copula-cross entropy evaluation of a dependence structure to reasonably ex-
plain more appropriate ordering of the vine copula, for financial risks in agricultural
commodities in terms of index return figures. Other studies by Sriboonchitta et al.
[5-8] made use of copulas. However, it is better to use the high dimension copula
to analyze the efficient frontier since we could obtain all parameters involved in this
analysis simultaneously.

From the appropriate copula model selected by AIC, the expected shortfalls (ESs)
were estimated. By minimizing the portfolio expected shortfalls with respect to the
weight for each stock of the portfolio subject to each level of the expected portfolio
return, the efficient frontier of the portfolios is obtained.

This paper is organized as in the following. Section 2 provides the methodology of
this study. Section 3 describes the data background of this study. Descriptive statistics
of the data in this study are presented in Sect.4. The empirical results are shown in
Sect.5. Conclusion is drawn in Sect. 6.

2 Methodology

2.1 Capital Asset Pricing Model (CAPM)

The expected excess return for each stock of interest is estimated by
riy = o + BiSphc + €, fori=1,....,5, (D)

where ry, = abt, ry = gsk, r3, = jnj, r4 = nvs, and rs, = syk are stock excess
returns. The Sphc represents the market excess returns of the S&P 500 healthcare
index. The risk free rate used to compute the excess return in this paper is the three-
month U.S. Treasury Bill. The market coefficient g is the representative of the risk
measure. The smaller value of 8, the lower risk of the asset. &, ~ N(0, 0%) or
white noise for each model. The marginal distribution for each stock excess return is
investigated and then used to fit the Gaussian and #-copulas, after Embrechts et al. [2].
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2.2 Copulas

Both the Gaussian and #-copulas are used to fit our data in this study. Following
Embrechts et al. [2], the Gaussian copula is the multivariate normal distribution over
M by taking the probability integral transformation. Moreover, the copula reaches to
the results of random variables which have continuous distributions and a uniformed
distribution [0,1]. The Gaussian copulas can be written in the form of

C[({;aussian(u) — F%(Ffl(ul), ..... y FJI(Md))» @)

where F,‘f. is a joint density function of multivariate normal distribution function for
d dimensions.

F'u)\’ F~ ')

Gaussian 1 -1
Cy (n) = exp 5 . (R =1)- . , 3

1
v detR

F“Jkud) F“*(ud)

where Eq. (3) is the density equation for d dimensions of the Gaussian copulas, I is
the identity matrix, and R the matrix of correlation.

Compared with Gaussian copula, by Demarta and McNeil [1], the #-copula can
detect the symmetric extreme dependence. The 7-copula can be evaluated in the
form of,

Ch(u) = FA(F 1), ooy F ' (a)), 4)

where Eq. (4) is the joint density function of #-copulas for d dimensions.
, 7 ) 17 (ua) r (#) YR~ 1x —ufe
C, p(u) :/ / e (1 + —) dx, (5
—00 —00 r (%) VvV (JTU)d|R| v

where Eq. (5) is the density equation for d dimensions of the 7-copulas, v is the degree
of freedom, and R the matrix of correlation.

2.3 Estimation of Efficient Frontier

To estimate the efficient frontier, investors need to minimize portfolio with respect
to expected returns. Therefore, the following procedure is utilized.

Min ES.(r;) = E[r; | r; <r:], (6)

subject to r; = Wir 41 +War@ 1) + 0 F WaF ity @)
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where r; are expected returns on asseti fori = 1, 2, ..., n, r; is the lower t-quantile,
7@+ 1s the return on each assetattime t + /,and wy +wy 4+ -+ - +w, = 1,ifn =5
then w; +wy + w3z +wys +ws = 1.

We prefer to consider the left tail, or negative risk, on “long positions” which are
the norm of this literature. Finally, we build efficient frontiers for copula models with
weights allocated to ten portfolios of the five assets.

3 Data Background

The research investigates the financial investment of the United States in its health-
care market, where is the most remarkable area in the world. The healthcare data
series are extracted from creditable databases such as Thomson Reuters Eikon and
Yahoo Finance websites. The series includes potential data sets, which are Abbott
Laboratories (abt), Glaxo Smith Kline plc (gsk), Johnson & Johnson (jnj), Novartis
AG (nvs), and Stryker Corporation (syk). The interest rate on a three-month maturity
for the U.S. Treasury Bill (T-Bill) is substituted for the risk-free rate for CAPMs. The
S&P 500 healthcare price index (Sphc) is the representative of the market portfolio
for this research. Finally, every data set has a “weekly” set of data from April 4, 2005
to April 17, 2015.

4 Descriptive Statistics of the Data

Table 1 presents the summary statistics of the interest rate on a three-month maturity
for the U.S. Treasury Bill (T-Bill), “the market return” (rt-Sphc), and other stock
returns (including rt-abt, rt-gsk, rt-jnj, rt-syk, and rt-nvs). Evidently, every data set

Table 1 Typical statistical test of log return data sets

Statistic T-Bill rt-Sphc | rt-abt rt-gsk rt-jnj rt-nvs rt-syk
value

Mean return | 1.3596 0.1889 0.1889 0.0932 0.1291 0.2077 0.1439
Standard 0.0837 0.1166 0.1166 0.1296 0.0924 0.1167 0.1505
error (se)

Median 0.1270 0.1998 0.1998 0.1826 0.2399 0.3061 0.2210
Standard 1.9105 2.6617 2.6617 2.9589 2.1087 2.6638 3.4350
deviation

(sd)

Skewness 1.0148 —0.4096 | —0.4096 |—0.7682 | —0.8642 |—0.8400 |—0.9095
Excess —0.7194 | 4.4579 4.4579 4.6028 9.6758 8.5046 4.2880
kurtosis

Min. value 0.0030 —16.1046 | —16.1046 | —19.3988 | —16.9407 | —20.0215 | —17.6106
Max. value 5.1890 11.4700 |11.4700 |10.4391 |11.4894 |14.9874 |11.5681
Observations | 521 521 521 521 521 521 521
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has 521 observations in the analysis. The market return and five stock returns have
a range of value from —20.02 to 14.99 %. Additionally, most mean returns are also
close to zero which possibly reflects a normal distribution for each data set. However,
the excess kurtosis statistic shows the “skewed Student ¢ distribution” (see Hansen
[3]). The statistic kurtosis as in Table | tells the shape of an asymmetric probability
distribution in residuals. Nonetheless, these log return data sets are prepared to apply
for CAPMs.

5 Empirical Applications

We analyze five healthcare stocks which consist of the world’s greatest healthcare
markets for capitalization, from New York Stock Exchange (NYSE), to exhibit our
goal model. Weekly excess returns from five stocks have always relied on the market
excess return. The weekly rate of returns on the 3—month U.S. Treasury Bill is also
the risk-free proxy rate to cope with CAPMs.

5.1 Estimation Results of CAPMs

Table2 demonstrates the statistical inference for the capital asset pricing models
(CAPMs) of the Sphe or market excess returns and other stock excess returns. Coef-
ficients or B’s are obtained from Maximum likelihood estimation (MLE) in CAPMs.

Table 2 Statistical inference for capital asset pricing models

CAPMs* Sphc versus Sphc versus Sphc versus Sphc versus Sphc versus
abt gsk inj nvs syk

Intercept («) | 0.0005 —0.0005 —1.6323e-05 | 0.0008 —0.0003

Coefficient 0.8144 0.8054 0.7412 0.7544 1.0509

()]

Standard error | 0.0379 0.0459 0.0255 0.0403 0.0489

(se)

t-Statistic 21.4700 17.5420 29.1030 18.7030 21.4740

p-Value 1.1894e—73 | 1.9509e—54 |3.8633e—111 |4.7302e—60 |1.1386e—73

RMSE 0.0194 0.0235 0.0130 0.0206 0.0250

RSQ 0.4700 0.3720 0.6200 0.4030 0.4700

Adjust RSQ | 0.4690 0.3710 0.6190 0.4010 0.4690

Kolmogorov— | 0.1170 0.1004 0.0833 0.2071 0.1690

Smirnov (KS)

test*®

Note CAPMs* were computed from log returns, RMSE = root mean square error, RSQ = R-squared,
and KS test* offers a p-value



368 N. Thianpaen et al.

The p-values for every CAPM are highly significant at lower than 5 % significance
level in every model. This means that market excess returns have a high correlation
among stock excess returns of abt, gsk, jnj, nvs, and syk. Moreover, KS statistic
values in the table indicate the normal distribution of residuals. Hence, these results
mean that we receive all potential CAPMs.

Figure | exhibits scatter plots of the market returns (rt-Sphc) versus five stock
returns (rt-abt, rt-gsk, rt-jnj, rt-nvs, and rt-syk exclusively). All the plots appear to
signify the presence of correlations between rt-Sphc and stock returns of the five
items definitively.

In other words, these diagrams provide distinctive evidence of a significant corre-
lation between the market return and each stock return for examining the dependence
in the copula modelings. For (1a) rt-Sphc versus rt-abt, (1b) rt-Sphc versus rt-gsk,
(1c) rt-Sphc versus rt-jnj, (1d) rt-Sphc versus rt-nvs, and (1e) rt-Sphc versus rt-syk.

015

o (@) . “1(b)

Stock Return (abt)
& =
v
. .
- 3 5.
- h.-
T o
Stock Return (gsk)
=
o 2

E w7 aw 008 9 50 B B TR T T 0 T3 o
Market Return (Sphe) Market Retum (Sphe)
015 03
T (@
= T
S o Y 85
E o E 4 r* -t
® -g 3 o
o5 & o TR T
x o -
8 -t §-D?
ﬁ D15 2 ﬁ -0
Y il 2 . . R ; R : 04 L : L . L L s
025 02 015 01 005 [] 0 [} 4% 42 15 1 00 o 003 01
Market Return (Sphc) Market Retum (sphc)
02r
~ [(E)
= oif
= |
£ o~
2
]
x .uj
£
[4]
8 o
w
ik L L L L y '
4% 02 015 01 405 1} 0 01

Market Retumn (sphc)

Fig. 1 The scatter plots of the market returns versus five stock returns
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5.2 Copula Parameter Estimation Results

Table 3 describes the parameter correlation (p;;) in the stock excess returns of the
Gaussian copula parameters and the #-copula parameters, respectively.

The AIC value of the Gaussian copula model is 0.572. The AIC value of the
t-copula model is —58.50 and degree of freedom (v) is 7.31. Table 3 is the result of
bivariate copula parameters. All of these values will be later employed to find the
optimal solutions in regards to the minimized loss of expected returns.

Table 3 Copula parameter values

(a) the Gaussian copula

Pij Parameters std. err. Z stat. p-value
1,2 0.0296 0.0449 0.6590 0.5099
1.3 0.0493 0.0446 1.1050 0.2693
1.4 0.0135 0.0448 0.3000 0.7638
1,5 —0.0118 0.0448 —0.2630 0.7922
23 —0.1527 0.0433 —3.5260 0.0004***
2,4 0.0012 0.0449 0.0270 0.9783
2,5 —0.0733 0.0445 —1.6470 0.0996
3,4 0.0699 0.0444 1.5750 0.1152
35 0.0087 0.0447 0.1940 0.8461
4.5 —0.0315 0.0446 -0.7050 0.4807
(b) the t-copula

Pij Parameters std. err. Z stat. p-value
1,2 0.0181 0.0473 0.3820 0.7021
1,3 0.0418 0.0480 0.8700 0.3841
1.4 0.0065 0.0472 0.1370 0.8908
1.5 —0.0068 0.0488 —0.1400 0.8887
23 —0.1443 0.0452 —3.1930 0.0014%%*
2,4 —0.0101 0.0460 —0.2190 0.8270
2,5 —0.0678 0.0472 —1.4350 0.1513
3.4 0.0599 0.0469 1.2770 0.2015
35 0.0477 0.0489 0.9760 0.3291
4,5 —0.0025 0.0479 -0.0510 0.9592

Significant codes “***” means significant at 0.001, “**” means significant at 0.01, and “*” means

significant at 0.05
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Fig. 2 The alternative efficient frontiers of the mean-CVaR for the market portfolio returns

5.3 Efficient Frontiers from Copula Models

In Fig.2a, b the efficient frontiers of two copula models are at each level of the
expected portfolio excess returns presented for two diagrams.

These results are obtained by the minimization for the mean-CVaR of the portfolio.
It gives a thorough insight into how the mean of thes portfolio excess returns changes
when the mean-CVaR of the portfolio changes. Therefore, the optimization of the
portfolio takes the mean-CVaR model by getting the efficient frontier with regard to
the expected returns.

The copulas which have been used for building efficient frontiers are (Fig.2a)
for the Gaussian copula and (Fig. 2b) for the t-copula. Then, we obtain the efficient
frontiers resulting from the multivariate probability of the copula models. Since the
t-copula is the best fit, it is recommended to use the efficient frontier from ¢-copula
(Fig.2b) for decision making in investment.

5.4 Optimal Weights of Portfolio in the T-Copula Model

The weight for each stock of the efficient portfolio is obtained from Eq. (6) and (7)
with respect to the 7-copula model. The portfolio of assets has its own expected return
and its corresponding ES or CVaR is calculated at 95 % confidence level.

Table4 could be read as in the following: for instance, the first row of the table
means that it is recommended to allocate 17.38, 15.67, 39.56, 14.56, and 12.83 %
for stock abt, gsk, jnj, nvs, and syk, respectively, to get the expected return of 0.8121
percent per day with the expected shortfall of 0.9440 percent at the confidence interval
of 95 %. The last row of the table means that it is recommended to invest 100 % in
syk stock to obtain 1.0203 % of the daily expected return with the higher expected
shortfall of 4.0504 %.
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Table 4 Optimal portfolio weights on assets for z-copula

Portfolio | abt gsk jnj nvs syk Expected |ES or
return CVaR
D1 0.1738 0.1567 0.3956 0.1456 0.1283 0.8121 0.9440
)2 0.1961 0.1392 0.3061 0.1521 0.2065 0.8370 1.0026
D3 0.2156 0.1226 0.2212 0.1540 0.2865 0.8617 1.1661
P4 0.2293 0.1054 0.1388 0.1586 0.3679 0.8864 1.4072
Ds 0.2387 0.0894 0.0592 0.1618 0.4509 09111 1.7034
D6 0.2441 0.0633 0.0000 0.1542 0.5384 0.9351 2.0445
D7 0.2275 0.0154 0.0000 0.1154 0.6418 0.9582 2.4525
D8 0.1898 0.0000 0.0000 0.0555 0.7547 0.9795 2.9252
J2) 0.1261 0.0000 0.0000 0.0000 0.8739 1.0005 3.4583
D10 0.0000 0.0000 0.0000 0.0000 1.0000 1.0203 4.0504

6 Conclusion

This paper aims to find the optimal Global Healthcare Portfolios at different levels
of risks and returns to obtain the efficient frontier. The interest rate on a three-month
U.S. Treasury Bill is also considered to be the representative of the risk free rate in
CAPMs. CAPMs help indicative the relationship of all parameter values between
the market excess return (Sphc) and stock excess returns (abt, gsk, jnj, nvs, and syk
respectively). Although beta parameters apparently do not tell the full efficiency of
the systematical risk (a) bit low in sensitivity as regards market movements), the
Kolmogorov-Smirnov test readily provides residuals having normality distribution.
The #-copula is the best model compared to the Gaussian copula because it has the
lower AIC. Copulas are useful to compute ES or CVaR issuing novel, and are strong
risk-management applications for investors to consider the minimum loss at the given
level of expected return of the portfolios. The efficient frontiers defined by curves
of optimal risk-return portfolios resulted by practically minimizing ES or CVaR.
These efficient frontier curves illustrate the boundary which is the best opportunity
of portfolio. They provide the highest expected returns on healthcare stock prices
with respect to any defined risk levels. Investors have different utility functions to
satisfy their selections with any expected return levels or mean of portfolio levels.
Asset’s portfolio weights are allocated to ten different portfolios in the copula models
that investors have to take into account which side they want to take between the long
position and the short-sale. We thus will let them choose to maximize their profit
from investments in healthcare equities employing Table 4 optimal weights from the
copula model. Consequently, these outcomes can be useful for investors handling
risk management in healthcare stocks.
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Analyzing MSCI Global Healthcare Return
and Volatility with Structural Change Based
on Residual CUSUM GARCH Approach

Nantiworn Thianpaen and Songsak Sriboonchitta

Abstract This study aims to analyze the Morgan Stanley Capital International
(MSCI) world return and volatility of the healthcare price index using daily time
series data. Since the data of MSCI healthcare returns cannot be described by lin-
ear models, the residual CUSUM GARCH(1,1) model is applied in this paper. The
CUSUM test is used to estimate the optimal change point. The findings of this paper
are (1) the estimated point is at day 1,201 of the entire daily data set of 4,209 observa-
tions; (2) if the change point is not taken into consideration, the estimated parameters
of GARCH(1,1) become y; + ,31 ~ 1,1.e., we encounter the “IGARCH effect”, which
leads to an infinite variance for a model. The contribution of this paper is the rec-
ommendation for the analysis of the change point as the necessary condition, rather
than jumping into using the whole data set to estimate all parameters of the model
without testing nonlinearity, especially for financial time series data.

Keywords Change point + Residual CUSUM GARCH(1,1) model - Brownian
bridge

1 Introduction

The Morgan Stanley Capital International (MSCI) world price index is based on the
computed prices of healthcare stocks to represent the performance of the health-
care sector throughout 23 developed markets countries.! Furthermore, the index

1Developed markets countries are Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway,
Portugal, Singapore, Spain, Sweden, Switzerland, the UK, and the US.

N. Thianpaen (B<1)

Faculty of Management Science, Suratthani Rajabhat University,
Surat Thani 84100, Thailand

e-mail: nantiworn @outlook.com

N. Thianpaen - S. Sriboonchitta
Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand

© Springer International Publishing Switzerland 2016 373
V.-N. Huynh et al. (eds.), Causal Inference in Econometrics,
Studies in Computational Intelligence 622, DOI 10.1007/978-3-319-27284-9_24



374 N. Thianpaen and S. Sriboonchitta

relied on the MSCI Global Investable Market Indexes Methodology.> This index
demonstrated the soaring characteristic trend of financial healthcare assets. Thus,
investors might have gained benefits from healthcare capital assets for modern invest-
ment strategies. Therefore, this study aims to analyse the behavior of the returns of
this healthcare sector for the purpose of investment strategies.

Since the data of MSCI world returns of the healthcare price index using daily time
series data cannot be described by linear models, the residual CUSUM GARCH(1,1)
model is applied for the analysis in this paper. The CUSUM test is used to estimate the
optimal change point. The Quasi Maximum Likelihood (QMLE) has been employed
to estimate the data from the beginning up to the change point for the first estimation.
The QMLE is applied for the second part of the data after the optimal change point.

Many studies did not consider the nonlinearity of the data and jumped into using
the linear time series models with Maximum likelihood estimation (MLE). Those
studies include Boonyanuphong and Sriboonchitta [2, 3], Carroll and Chen [4],
Chinnakum et al. [6], Do et al. [7], Kiatmanaroch and Sriboonchitta [8, 9], Puarat-
tanaarunkorn and Sriboonchitta [13], Praprom and Sriboonchitta [15, 16], Puarat-
tanaarunkorn and Sriboonchitta [17], Sims et al. [18], Sirisrisakulchai and Sriboon-
chitta [19], Tang et al. [20], Wichian et al. [21], Wichian and Sriboonchitta [22], and
Xiongtoua and Sriboonchitta [23]. However, other contributions which employed
the QMLE in an econometric analysis are Lee et al. [10] carried out a study of the
parameter changes in time series models related to a CUSUM test by developing a
more general conceptual framework. Lee et al. [11] that intended to find out the struc-
tural change in the GARCH(1,1) model based on the residual CUSUM test when its
statistic values are limited to the sub Brownian bridge. Chevallier [5] detected insta-
bility and the presence of outliers in carbon prices based on OLS-Recursive-based
CUSUM processes, F-statistics, residual sum of squares and monitoring recursively
structural changes. Neto [14] modeled the fully modified least square (FMLS)—
based CUSUM statistic which was extended to the traditional OLS-CUSUM to test
the null hypothesis of smooth time-varying cointegration in the presence of a struc-
tural break. The FMLS residuals, under the null hypotheses, were derived using
“Chebyshev time polynomials” specifying the time-varying coefficients.

This paper follows the concepts and notations mostly used by Lee et al. [10-12]
and is organized as follows: Methodology is presented in Sect.2; data are discussed
in Sect.3; Sect.4 shows the empirical results; Sect.5 provides policy implication;
conclusion is drawn in Sect. 6.

2 Methodology

2.1 GARCH (1,1) Model

The GARCH model which emerged has made the model more flexible in the assump-
tion of the volatility, as it is able to handle the uncertain movement in financial

2Visit https://www.msci.com/index-methodology.
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security time series data with heteroscedasticity. The model is widely used to fit
with dynamic volatility in financial time series. Bollerslev et al. [1] who made use
of a GARCH(1,1) model, demonstrated that it would be sufficient for most financial
data. Then, the AR(1)-GARCH(1,1) model would be sufficient for most financial
data. The AR(1)-GARCH(1,1) may be expressed as

X = po + p1xe—1 + a, (1)

a, = ¢/hy, (2)

he = o+ yial, + Bihi_1, 3)

where x; = x1, ..., x, which is i.i.d. data, a;, ~ N (0, h;) or a white noise process,

& ~i.id.N@O,1), y1+ 81 <1, y1 >0,and 8, > 0.
Since we used AR(1)-GARCH(1,1) model, the null hypothesis and alternative
hypothesis could be as specific as

Hy : 6 = (po, p1, Yo, Y1, B1) is constant over time
H; : 6 changes to be 0’ = (p}, pi, Vs V1> B1)

We can reject Hy when the p-value is theoretically less than the «t/-quantile. The
residual CUSUM test could be expressed as in Sect.2.2.

2.2 Residual CUSUM GARCH Model

By Lee et al. [11, 12], assuming x; satisfies the following equations

X = po + ai, “4)
ar = &/ hy, )
h = yo+vial; + Bihi—1, (6)

where we provide ¢ = (3o, 1, B1), Ela,|*? < oo and E||*t? < oo for some
8 > 0. The hypotheses to be tested are as follows:

Hy : ¢ = (yo, y1, B1) is constant
H; : ¢ = (yo, Y1, B1) is not constant
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For the empirical analysis, the following statistic test is

, )

k
Z —(;);cf

n no, N2
where t2 = % Z (% > ;2) is employed to find the change point with Hjy and

H; as follows

Hj : f"n — sup B°

O<u<l

, B — 00
H, : inverse to H,

where B is the Brownian bridge.

Since T, is uncorrelated from the GARCH parameters, 7, could detect the struc-
tural change in a parameter. Unfortunately, it has no information of the GARCH
parameters in Eq. (7). Additionally, /s are unobservable so we have to change them

by using 2,2 = (x, — ﬁo)z /lez so that we obtain the parameters of py, Y, ¥1,and §;
in practice. These parameters have the crucial role for capturing the structural change
in the GARCH parameters. Additionally, the independently identical distribution of
the true residuals still exists for the stationarity. As a consequence, the CUSUM test
has more powerful stability, and it is appropriate for anticipating the future change
of residuals according to the function of the standard Brownian Bridge.

The new feature form of the residual CUSUM test, according to Lee et al. [11],
should be

o0
hi=9+n Y Blal ®)
=0
defining as,
q
=3¢+ Blar, ©)
Jj=0
where ¢ = 11/_3‘;.’ a; = x; — fo, when gg, @, ¥, and B, are estimates of po, ®, 1,

and B;. q is orderly positve integers.

3 Data Background

This research study determines to use the “MSCI World Health Care Index” which
is designed to detect the mid-cap and the large-cap portions through 23 developed-
market countries. All the index securities are separated in the health care sector
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proportional to the Global Industry Classification Standard (GICS), a standardized
classification system which is a major group in the world. The MSCI dataset is
extracted from dependable sources like the “Thomson Reuters Eikon” database.
Lastly, the set of data consists of available full and complete daily data for several
years, from January 31, 1996, to January 5, 2015, or 4,209 observations, totally.

3.1 Characteristics of Data

Figure 1 shows the MSCI healthcare price index dynamic data. The time series trend
is prone to increase from 1996 to the recent times.

Moreover, this dataset exists in a financial sector, so, first, we intend to work with
the volatility factor. Therefore, the dataset is transformed to be log returns of MSCI
world healthcare price indexes.

Figure?2 is the version of the MSCI price index returns that elicits the clustering
volatility.

This brings about the underlying OLS (Ordinary Least Squares) model which
is not workable to cope with those outcomes that keep changing over time or are
nonstationary in variance. Instead, the GARCH model will have the major role of
analyzing the stochastic problem or uncertainty.

Fig.1 The MSCI world
health care price index data

Fig. 2 The MSCI world
health care price indexes in
the form of log returns
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Table 1 Primary statistics for MSCI health care price index returns

Statistics rt-MSCI
Mean 0.0343
Standard error 0.0161
Median 0.0491
Standard deviation 1.0412
Sample variance 1.0841
Kurtosis 11.3776
Skewness 0.2408
Observations 4,208
Jarque—Bera statistic (p-value) <2.2e—16

3.2 Descriptive Statistics

Table 1 shows the fundamental statistic values that will be exploited for subsequent
applications. The Jarque—Bera test leads to rejecting the normality of the time series
data of the MSCI World healthcare price index returns.

Remarkably, the data are not independent and identically distributed (i.i.d.). Lit-
erally not normal distribution, the data contains the leptokurtic kurtosis inasmuch as
the excess kurtosis is not equal to zero. These characteristics are critical as affecting
the additional analysis in the next step because of the distribution not being a normal

type.

4 Empirical Results

Table 2, the ADF test reveals that the log return is stationary regardless whether there
was an intercept or not.

The estimated parameters of the AR(1)-GARCH(1,1) model using QMLE (Quasi
Maximum Likelihood) for the whole series of data are presented in Table 3.

Upon following Tables 3 and 4, we observe that the total sum of the coefficient
values between y; and B is less than 1. The Ljung and Box and LM Arch statistics

Table 2 Augmented Dickey Fuller (ADF) test for returns on MSCI

ADF test p-value Degree of freedom
Non-intercept <22e—16 —17.6788
Intercept < 2.2e—16 —17.7504
Intercept with time trend <2.2e—16 —17.7469
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Table 3 Parameters of AR(1)-GARCH(1,1) model

Parameter Coeff. Std. error t-value p-value

00 0.033722 0.011252 2.9970 0.00273 **
AR(1) 0.078383 0.016820 4.6600 3.16e—6 ***
Y0 0.017956 0.003766 4.7680 1.87e—6 ***
Y1 0.107788 0.011741 9.1810 <2e—16 ##*
Bi 0.872857 0.012779 68.3050 <2e—16 #H*

Note Log likelihood is —5187.785, AIC is 2.468054, and BIC is 2.475592
Significant codes “***” means significant at 0.001, “**” means significant at 0.01, and “*” means
significant at 0.05

Table 4 Standardized residuals tests

Test statistics p-values
Jarque Bera test Chi? 0.000000
Shapiro Wilk test w 0.000000
Ljung Box test R Q(10) 0.2989930
Q(15) 0.3561786
Q(20) 0.4421147
Ljung Box test R? Q(10) 0.8485606
Q(1s) 0.9051507
Q(20) 0.9549539
LM Arch test R TR? 0.8534370

reveal that there is no serial correlation problem for residuals resulting from the
p-value being more than the significance level 0.05.

However, y; + 81 &~ 1 which is undesirable. This undesirable result might be due
to the nonlinearity of the data. It means that we might have a change point of the
data. Thus, we apply the residual based cusum test (see Lee and Lee [12]) and reject
Hy : 0 = (po, p1, Y0, Y1, B1) which remains the same for the whole series versus H
ata = 0.05.

Figure 3 plots the entire picture of the definite location where the change point
orderly exists at the point of 1,201 from the full dataset of MSCI healthcare price

Fig. 3 The change point
from the residual CUSUM
test for the entire dataset
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indices by the CUSUM approach dependent on g“tz. Figure 3 moreover shows the f‘n, k
on the vertical axis versus the horizontal axis of the time series. The maximum fn,k
is at the point of 1,201 from the full data.

Therefore, we apply QMLE (Quasi Maximum Likelihood) for the first period of
the daily data from day 1 to day 1,201, and also for the second period from day 1,202
to the end of the series. When the change point is estimated, the dataset is separated
into two parts: before the change point up to the change point and after the change
point. Then, the two datasets to fit with the AR(1)-GARCH(1,1) model are MSCI1
and MSCI2.

The estimated parameters of interest are shown in Table 5 and Table 7 for the first
period and the second period respectively. It is seen that the estimated parameters are
different and y; + B; in both periods is less than 1, giving desirable results because
the GARCH(1,1) is stationary in both periods.

In short, MSCII is the representative event of before the change point, and MSCI2
is the representative event for after the change point. It is evident from the data
presented from Table 5 to Table 8 that the two AR(1)-GARCH(1,1) models for MSCI1
and MSCI2 do not have the IGARCH effect. Additionally, as far as the coefficients
of both the AR(1)-GARCH(1,1) models are concerned, y; + B; is less than 1 and less
than those from the whole dataset, which is consistent with the condition sufficient
for the model.

Table 5 Parameters of AR(1)-GARCH model for MSCI1

Parameter Coeft. Std. error t-value p-value

£0 —0.02173 0.02903 —0.7480 0.45422
AR(1) 0.13945 0.03107 4.4890 7.16e—06%**
Y0 0.09154 0.02988 3.0630 0.00219%*

Y1 0.13790 0.02466 5.5920 2.25e—08***
Bi 0.80181 0.03628 22.1030 <2e—16%***

Note Log likelihood is —1873.910, AIC is 3.134129, and BIC is 3.155352
Significant codes “***” means significant at 0.001, “**” means significant at 0.01, and “*” means
significant at 0.05

Table 6 Standardized residuals tests

Test statistics p-values

Jarque Bera Test Chi? 6.091866e—08

Shapiro Wilk Test w 1.872967e—06

Ljung Box test R Q(10) 0.08377342
Q(15) 0.0611181
Q(20) 0.1377031

Ljung Box test R? Q(10) 0.6462503
Q(15) 0.4357432
Q(20) 0.5892061

LM Arch test R T R? 0.2108268




Analyzing MSCI Global Healthcare Return ... 381

Table 7 Parameters of AR(1)-GARCH Model for MSCI2

Parameter Coeff. Std. error t-value p-value

00 0.045779 0.012176 3.7600 0.00017 ***
AR(1) 0.047727 0.019752 2.4160 0.01568 *

Y0 0.018765 0.004089 4.5890 4.46e—06 ***
Y1 0.094460 0.013516 6.9890 2.77e—12 *#*
Bi 0.874602 0.015500 56.4240 <2e—16 *#*

Note Log Likelihood is —3282.658 , AIC is 2.186670 , and BIC is 2.196661.
Significant codes: “***”means significant at 0.001, “**”means significant at 0.01, and “*”” means
significant at 0.05

Table 8 Standardized residuals tests

Test statistics p-values
Jarque Bera test Chi? 0.0000000
Shapiro Wilk test W 1.865799e—15
Ljung Box test R Q(10) 0.9846039
Q5) 0.7349946
Q(20) 0.7376519
Ljung Box test R? Q(10) 0.07666263
Q5) 0.3046282
Q(20) 0.3769716
LM Arch test R TR? 0.1898284

S Policy Implication

Since the series of data have a change point, we should use the estimated parameters of
the second period for policy strategy or some other relevant decisions. For example,
the behavior of volatility has changed. Then to forecast one period ahead of the
volatility, the estimated parameters from the second period are better recommended
in anticipation.

6 Conclusion

Morgan Stanley Capital International (MSCI) world price index of the healthcare
sector has demonstrated the soaring characteristic trend of the return. Thus, it is
interesting to study the behavior of the MSCI Global Healthcare return and volatility.
AR(1)-GARCH(1,1) is the model for this study. QMLE was applied to estimate all
parameters of the model using the full data set of 4,209 observations of daily time
series. The result reveals that the AR(1)-GARCH(1,1) becomes almost IGARCH,
which is undesirable. So, we suspect that the series cannot be described by linear
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models. This study uses the residual based cusum test to investigate the change
point of the data. The result shows that we reject Hy : all parameters of the AR(1)-
GARCH(1,1) are constant for the whole series of this data set versus H; : Hy is not
true. From the fn,k statistic, we found that the change point is at day 1,201 of the
daily time series. We then separated the data into two sets. The first set is from day 1
to day 1,201 while the second from day 1,202 to day 4,209. The QMLE was applied
to estimate all parameters of the first and second sets of the data. We found that the
estimated parameters of AR(1)-GARCH(1,1) reveal the desirable results: y; + B
less than 1. As the series have been changed, the second estimation is recommended
to explain the behavior of the series. Therefore, policy makers, investors, and other
related agents are recommended to use these estimated parameters to serve their
purposes.
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Abstract This paper introduces the indicator circuit with incremental clustering
(ICIC) and shows that the ICIC works better than the indicator circuit with reference
points (ICRP) for the evaluation of the telecommunications companies’ performance
presented in Suriya Int. J. Intell. Technol. Appl. Stat. vol 8, pp 103—-112 (2015) [4].
Moreover, it also extends the ICIC to detect high-yield stocks in the Stock Exchange
of Thailand. It classifies 134 stocks by 6 indicators; E/P ratio (the inverse of P/E
ratio), BV/P ratio (the inverse of P/BV ratio), return on equity (ROE), growth of
the E/P ratio, dividend growth, and ROE growth with the data at the end of 2013.
It justifies the performance of the model by the yield of the stock measured at the
peak price of each stock during April Ist, 2014 to March 31st, 2015. The buying
date is the first trading day on the second quarter of 2014, when most of the 2013
financial statements have already been announced. Surprisingly, the method detects
the low-yield stocks instead of the high-yield ones. Therefore, it acts like a warning
signal to investors to avoid the low-yields.
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1 Introduction

Indicator circuit (IC) mimics electronic circuit such that electricity flows from the
input gate to several nodes inside the circuit and produce the output signal at the
end. Each node in the circuit transforms the input signal into an intermediate signal
to feed other nodes in the next layer. Then, all the intermediate signals flow into the
last layer to produce the final output of the circuit.

Suriya [4] introduces the indicator circuit with reference points (ICRP) and indi-
cator circuit with self-organizing map (ICSOM) that aggregate many indicators into
a composite index. In that study, the index measures the efficiency of 1,000 top
companies in terms of total revenue in 2003 in Thailand. Then it shows the ranking
of the efficiency of 17 companies in telecommunications industry. It also compare
the performance between ICRP and ICSOM, and discovers that ICRP is better than
ICSOM in terms of the relevance to financial ratios and the distribution of scores of
the index.

A problem occurs in the ICRP. The scores of the index are extremely close to one
another. It is hard to see which company is better than another one when their scores
are quite similar. This little difference of the scores make it almost impossible to
separate the companies into the category of high and low efficiency.

In this study, the indicator circuit comes with the incremental clustering. It aims
at breaking the scores into more details. The idea is to create more clusters than that
appears in the ICRP. The incremental clustering seems to serve this purpose well.
Therefore, the study employs the incremental clustering into making an indicator cir-
cuit. At the end, it compares the performance of the indicator circuit with incremental
clustering (ICIC) and the ICRP.

Apart of the quantification of the efficiency of firms especially in the telecommu-
nications industry. This study also uses the ICIC to detect the high-yield stocks in
the Stock Exchange of Thailand. The critical idea behind the model is at the selected
indicators; P/E ratio, P/BV ratio, return on equity (ROE), growth of the E/P ratio (the
inverse of P/E ratio), dividend growth and ROE growth. These indicators arise by
the recommendation from an expert who successfully gains from the stock market,
Prof. Songsak Sriboonchitta. Therefore, the selection of these 6 indicators should
be called the “Songsak Hypothesis”. This study uses the ICIC to test the Songsak
Hypothesis. If the hypothesis is true, stocks with the highest scores produced by the
indicator circuits should give the highest yields.

2 Indicator Circuit with Incremental Clustering (ICIC)

The construction of ICIC follows these steps. From step 1 to 6, they are similar to
the construction of ICRP in the work of Suriya [4]. The difference is at step 7 when
the ICRP assign four different points but the ICIC assigns many more points due to
increment of the distance to the first point. Another differnce is at step 12—14. The
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ICRP adjusts the centroid of each cluster by the mean of the cluster. The number of
the adjustment is n times. After the complete adjustment, the ICRP reset its weights
and start over again m times. However, the ICIC does not adjust the centroid. It resets
the weights m times right after the clustering in each repeat is done.

Step 1: Selection of indicators

This study selects 6 financial indicators which are current ratio, debt-equity ratio,
return on asset, return on equity, net profit margin and return on investment.

Step 2: Unit of measurement

ICIC does not normalize the unit of measurement. It separates the units into 5
groups; times, per cent, days, rounds and dollars. The advantage of this method is at
the intertemporal comparability. While the normalized unit depends heavily on the
maximum value of each indicator of the leading company in each year (normalized
to be one), it is hard to compare the composite index over time. The unnormalized
unit still keeps the meaning of each financial indicator and does not depend on the
leading company in each year, thus the composite index can be compared over time.
However, the disadvantage of this method should be noted that the composite index
may place heavier weight to an indicator with higher value. Therefore, this trade-off
is at the choice of the modeller.

Step 3: Number of layers

There are 3 layers consisting of input layer, latent layer and output layer. Number
of outputs is two (Y and Z) whereas number of nodes in the latent layer is 5 that
accounts for five different units of measurement assigned in step 2.

Step 4: Initial weights

The initial weights range from zero to one. All the linkages between the input to
latent nodes, and between the latent to output nodes are assigned the initial weights.

Step 5: Calculation of the latent variable (L) and the outputs (¥ and Z)

The latent variable (L) and the outputs (Y and Z) can be calculated as

K
Lj:ZWjixi;j:Lz""’S (1)
i=1
5
Y = Zwéij (2)
j=1
5
7 = ZW7ij (3)
j=1

Step 6: Plot Y and Z on the Euclidean space. The space limits to the area bounded
by (Y, Z) =(0,0) until (Y, Z) = (1,1).

Step 7: Set the first point at (Y, Z;) = (1,1). Then set the increment of the distance,
d. The second point will be located at (Y,, Z,) = (1-d,1-d). The third point will be also
located at (Y3, Z3) = (Y»2-d,Y»-d). In general, each point (Yy, Zy) = (Yi—1-d,Zy—1-d).
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The number of the points are determined by k = (1/d) + 1 to ensure that the points
are bounded in the area Y = [0, 1] and Z = [0, 1].

Step 8: Measure the Euclidean distance between a coordinate (¥;, Z;) of a firm
Jj and each reference point k by this following formula.

dj = \/(Y_/ — Y+ (Z; — Z)? 4)

where d; distance between a coordinate (Y, Z;) of a firm j and each reference point
kwhen j=1,2,. ,nfirmsand k =1,2,..., k groups. Y; and Z; is the coordinate of
Y and Z for a firm j. Y} and Z; is the coordinate of ¥ and Z at a point k.

Step 9: Compare the Euclidean distance between those calculated in step 8. Choose
the point with the shortest distance to represent a group of that firm.

Step 10: Assign a score of 100 to the first cluster (Y, Z;). The second lower
cluster will get the score of 100-(10d). The third lower cluster will get the score of
100-(20d). In general, the score of the cluster k is 100-[(k-1)(10d)]. For example,
when the increment is set to be 0.01, the last cluster is k=(1/d)+1=101. Then the least
score is 90. Finally, measure the score of each firm by the cluster where it belongs.
Collect these scores.

Step 11: Adjust the weights (in step 4) with randomized numbers with a random-
ized sign of positivity or negativity. This is called Aw.

Step 12: Reset the initial weights in step 4. Repeat step 5—10. Iterate this step for
m rounds. Collect all the scores of all rounds.

Step 13: Calculate the grand mean of the scores from all the m rounds.

Step 14: Rank the grand mean from the highest to the lowest value.

3 An Application of Indicator Circuit to the Classify
the Performance of Top 1,000 Companies

The settings of ICIC model are shown in Table 1.

The production of Y and Z signals by different weights differentiate the firms into
many different locations in the Eucledean space. A point in the scatter plot in Fig. 1
represents a firm. Each firm will be assigned to be a member of cluster. It can be
imagined that these clusters are located by the diagonal line linking (0,0) and (1,1).

Table 1 The settings and results of the ICIC model
The settings of ICIC model

Round of clustering 1 Unit of measurement | Unnormalized

Rounds of reweights |3 Number of indicators | 6
Source ICIC model
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Fig. 1 Scatter plots on the Euclidean space of (¥,Z) and (Y,Z,ROE) with the bar charts showing
the distribution of Y and Z

Fig. 2 The distribution of Final Efficiency of the Firms
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The following figure (Fig.2) shows the distribution of the final efficiently score
of 1,000 firms that top Thailands chart of largest revenue in 2013. The left-hand-side
of the figure locates the firm with the largest revenue and vice versa.

It can be seen that the scores are bounded between 90 and 100. Most of the firms
stick together at the bottom line near 90. It can be imagined that if the least score is
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Table 2 The results of the ICIC model
The results from ICIC model

Mean score 90.8 Maximum score 98.40
Standard deviation 0.99 Minimum score 90.00
Source ICIC model

set to be 0 rather than 90, these companies should have their score also close to the
bottom line of 0.

A reason why the study set the least score at 90 because these 1,000 companies
are the top companies of the country. Their efficiencies should not be marked by low
scores. When the owners or share holders of the companies look at such the very
low score and ask why, the researchers just reply that it only reflects the rank of the
efficiently in the relative term, not an absolute term. This answer seems not to be
satisfying to them. They need something that shows the high efficiency of the firms
as well as reflects the rank among other firms in the country. Therefore, the most
compromised range of the score begins from 90.

By this range, the top score shown in Table 2 is 98.40 and the mean of the scores
is just 90.80 with the standard deviation of 0.99. These numbers reveal again that
most of the firms are located near the bottom line.

To compare the performance between ICIC and ICRP, the study ranks the effi-
ciency of 17 companies in the telecommunications industry. There are several reasons
why it selects only these companies. First, the telecommunications companies are at
the focus of the further analysis of their efficiencies. This study is a part of a project
funded by the regulator of the industry. Second, it may make a long list of companies
when the study compares the rank of all the 1,000 companies. If so, it cannot give a
clear picture of the ranking results in details.

The results in Table3 shows some remarkable differences between the perfor-
mance of ICIC and ICRP. First, the ranks of companies are not the same. Second,
the number of companies that share the same rank are different in favour of ICIC
(Table4).

It can be noticed that ICIC places more importance to the current ratio over the
profits. Firm G which is in the 5th rank of ICRP moves upward to the 4th place.
The ICIC differentiates between firm B and C which are indifferent in ICRP such
that now firm B dominates firm C in terms of 5 indicators apart of only the Return
on Equity, ROE. It should be noted that the smaller Debt/Equity ratio (D/E ratio) is
better than the larger one. This seems to be reasonable.

At the bottom of Table 3, the ICIC also differentiates firm Q and P which share
the same rank in ICRP, the 16th place. Now firm Q is at the 13th place while firm
P is at the last place. Both firms have 3 indicators that dominates each other. It is
hard to judge from the number of better indicators in this case. The largest different
is at the D/E ratio. Firm Q has a lower D/E ratio, 3.5579, compared to that of firm P
which is 59.5518. It can be seen that the ICIC ranks the 13—17th places mainly by
the D/E ratio and also the current ratio.
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Table 4 The number of firms that share the same rank

Types of indicator Total number of firms | Number of firms that | Ratio of the number of

circuit share the same rank firms that share the
same rank (%)

ICIC 17 7 41.2

ICRP 17 14 82.4

Source ICIC model from this study and the results of ICRP from Suriya [4]

4 An Application of Indicator Circuit to Detect High-Yield
Stocks

High-yield stock selection is one of the most important financial topics, as well as
the most challenging task for investors. Therefore, the stock selection has received
considerable attention from researchers. The stock selection techniques are usu-
ally divided in to two disciplines which are fundamental analysis (FA) and technical
analysis (TA). Fundamental analysis is considered to be the most appropriate evalua-
tion approach within the medium- to long-term investment, while technical analysis
is more appropriate to short-term investment. In both techniques, there are many
indicators available. Thus, the selection criteria are varying according to investors’
preferences, strategies etc. Several machine learning-based methodologies have been
used to distinguished high-yield stock based on fundamental indices.

Quah and Srinivansa [2] use the Artificial Neural Network (ANN) to detect healthy
firms based on financial ratios in five categories as inputs: (1) yield factors histori-
cal P/E ratio, prospective P/E ratio, and cashflow yield (2) liquidity factors market
capitalization (3) risk factors earning per share uncertainty (4) growth factor return
on equity (ROE) and (5) momentum factors average of the price appreciation over
the quarter with half of its weights on the last month and remaining weights being
distributed equally in the remaining two months. They also use the return differences
between the stock and the market return (excess returns) as the output of the calcula-
tion. In the testing period, the top 25 stocks with the highest output value are selected
to form an investment portfolio. The result shows that the ANN is able to beat the
market overtime.

Quah [3] introduces three machine learning-based methodologies, including
multi-layer perceptrons (MLP), adaptive neuro-fuzzy inference systems (ANFIS)
and general growing and pruning radial basis unction (GGAP-RBF) to separate high-
performance stock by using fundamental analysis including eleven indices based on
Benjamin Grahams common stock selection rules. The eleven indices are P/E ratio,
book value per share (BVPS), ROE, dividend payout ratio (DPR), dividend yield
(DY), price to book ratio (P/BV), total current assets, Gross debt, weigh average
number of shares, current ratio (CR), and earning per share. The results show that
the top picked equities have the average appreciation about 40—-60 %.

Huang [1] employs support vector regression (SVR) and genetic algorithms
(GAs) to detect high-yield stocks. The model used fourteen financial ratios which is
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separated in six categories: (1) share per rationality—P/E ratio, P/BV ratio, price to
sales ratio (P/S), and ROE (2) profitability—ROA, operating profit margin (OPM),
net profit margin (NPM) (3) leverage D/E ratio (4) liquidity—current ratio and quick
ratio (5) efficiency inventory turnover rate, and receivables turnover rate (6) growth
operating income growth rate and net income growth rate. After employing the SVR
method, the top-ranked stocks can be selected to form a portfolio. The empirical
results show that the cumulative return of selective portfolio can out-perform the
benchmark, which is the product of the average yearly returns of the 200 stocks.

Yu et al. [5] adopt support vector machine (SVM) and the principal components
analysis (PCA). The study uses seven categories of financial ratios: (1) earning ability
EBIT, ROA, and ROE (2) activity ratio turnover of account receivable, turnover of
inventory, and turnover of current asset (3) shareholder return earning per share
(EPS), P/BV ratio, common stock profitability, P/CF (4) cash ratio EBIT-to-cash
ratio, cash-to- asset ratio, and operation ratio (5) growth ratio growth of total asset
(6) risk level financial leverage and operation leverage (7) solvency ratio quick ratio,
debt-to-asset ratio, EBIT/Interest ratio, and EBIT/Fixed charge ratio. The results
show that the annual earning portfolio significantly outperforms those of A-share
index of Shanghai Stock Exchange.

4.1 Data

This section attempts to test the ICIC model with fundamental analysis to investigate
the high-yield stocks in the Stock Exchange of Thailand during 2013-2014. The
six indicators are selected as the inputs according to recommendation from Prof.
Songsak Sriboonchitta, who successfully gains from the stock market. The indicator
includes P/E ratio, P/BV ratio, ROE, growth of the E/P ratio (the inverse of P/E ratio),
dividend growth and ROE growth. After classification, the results will be compared
with the highest capital gain yields of each stock during examined period to evaluate
the ICIC method.

The study selected stocks listed in the SET100 during 2013-2014 periods and
screened only those which have complete financial ratios. After the primary stock
screening, the number of stocks used in the ICIC model equals 134 stocks. The
selected financial ratios used are those of 2013.

The highest capital gain yields are calculated according to the following equations:

the selling price — the buying price

capital gain yield = x 100 (5)

the buying price

where the selling price is the peak price of each stock during April 1st, 2014 to March
31st, 2015, the buying date is the first trading day on the second quarter of 2014,
when most of the 2013 financial statements have already been announced.
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4.2 The ICIC Results

The settings of ICIC model shown in Table5 are the same with the previous appli-
cation.

The distribution of the 134 stocks on the y-z Eucledean space is displayed in
Fig.3. It can be seen that there is one company that tops the table. It is located at the
upper-right corner of the graph. Most of the companies gather around the origin, the
lower-left corner of the graph. Some better companies are dispersed over the origin
but not exceed the half way to the top company.

Figure 4 shows the distribution of final scores of 134-selected stocks based on six
indicators mentioned earlier. With the incremental distance of 10 times 0.01 (equals
to 0.10) from the highest score, there is one stock that is very distinguished by the
score of 100. About fifteen are scored over 90 while the rest are clustered around 90
which is the minimum score by this scoring method.

Table 5 The settings and results of the ICIC model
The settings of ICIC model

Round of clustering 1 Unit of measurement | Unnormalized
Rounds of reweights |3 Number of indicators |6
Source ICIC model
Scores of compounded indicators Scores with ROE
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Fig. 3 The scatter plots of the y and z signals on the Eucledian spaces and the bar charts of the
distribution of both y signal and z signal
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Fig. 4 The distribution of Final Efficiency of the Firms
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Although it can be seen that some variations among the scores when the increment
is set at 0.01, it is still hard to classify these stocks into more than two groups.
Therefore, the increment is increased to 100 times 0.01 (equals to 1.00) in order to
illustrate the clearer result of the clustering.

Figure 5 shows the distribution of final scores of the stocks when the increment is
set at 1.00. Therefore, the lowest score is decreased to 60. The result still shows one
distinguished stock that scores 100, while there are some stocks scored between 60
and 70. But, most of them are still clustered at the lowest score.

When the increment is set at 200 times 0.01 (equals to 2.00), the lowest result,
accordingly, decreases to 26.67. Thus, the distribution of final scores of the stocks is
more scattered than the previous results. Still, it can be seen from Fig. 6 that there is
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Fig. 6 The distribution of Final Efficiency of the Firms
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one stock with a score of 100. The figure also shows that approximately four stocks
are scored between 40 and 50, while around nine of them are scored between 30 and
40. However, the majority of the stocks are still clustered at a bit below 30.

In order to validate the stock classification by the ICIC model, the capital gain
yields are used as the performance testers. Companies in the SET usually announce
their annual performances within the first quarter of the following year. This study
assumes that the investors will carefully examine performances of all the companies
in the market before making decision to buy stocks. Therefore, the buying prices are
the closed prices of the first trading day in the second quarter, which in this case is
April 4th, 2013. For selling prices, investors will seek to earn the highest capital gain
yield as possible. Therefore, the ideal selling prices used in the study are the highest
closed prices before the next annual performances are announced, which is during
April 1st, 2014 to March 31st, 2015.

Table 6 shows the results which divide the 134 stocks into 10 deciles, where the
10th decile is the highest score and the 1st decile is the lowest score. It can be seen
in the table that the performance testers average capital gain yield and the results of
the ICIC model conformed to each other. The average score of the 10th Decile is
44 .28 when the increment is set at 0.20 (200 times of 0.01, thus called 200x), and
equals to 69.68 and 92.31 when the increment is set at 0.10 (100 times of 0.01, thus
called 100x) and 0.01 (10 times of 0.01, thus called 10x) accordingly. Comparing
with the average yield, it can be seen that the average yield of those companies in
the 10th Decile is also the highest average yield at 61.31 %. For the 9th Decile, the
average scores are 29.53, 61.56, and 90.36, accordingly. The average yield is 57.25 %
which also the second highest yield. From the 5th Decile down to the 1st Decile, the
average scores equals to one another which are the lowest score when each increment
is set. Although the average scores are equal in those deciles, the average yields are
different. The 5th Decile has the average yield at 42.71 %. Then the average yield
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Table 6 The performance of the ICIC model for the classification of high-yield stocks

Decile Average Average Average Average Standard

score_200x score_100x score_10x capital gain deviation
yield

10th Decile 44.28 69.68 92.31 61.31 54.58

9th Decile 29.52 61.56 90.36 57.25 59.37

8th Decile 27.84 60.64 90.14 35.84 38.85

7th Decile 27.41 60.41 90.08 44.43 35.2

6th Decile 27.08 60.22 90.04 45.28 37.9

5th Decile 26.67 60 90 42.71 35.45

4th Decile 26.67 60 90 39.35 44.88

3rd Decile 26.67 60 90 37.83 57.36

2nd Decile 26.67 60 90 29.79 20.45

1st Decile 26.67 60 90 26.88 38.11

Source Computations
Note The average yield is calculated by simple average method. This is the best when some yields
are zero which cannot be calculated by geometric mean and harmonic mean.

decreases at the lower decile. The 1st decile which is given the least score from ICIC
also has the lowest score of 26.88 %.

The results in Table 7 using Wilcoxon—Mann—Whitney test indicates that the aver-
age capital gain yields between different deciles are statistically different only in the
lowest decile. These results confirms that the ICIC can detect the difference between
the low-yield stock and the rest. It means that instead of the ability to detect the
high-yield stocks, ICIC can rather detect the low-yield stocks.

4.3 The ICIC Results and the Tobit Regression

In order to justify the ICIC result, the Tobit regression is used to predicted capital
gain yield of those 134 stocks, and then compared with the ICIC results (Table 8).
The comparison shows that Tobit regression overestimates the capital gain yield
in the Ist, 2nd and 3rd deciles. These results from Tobit regressions regardless of
the inclusion of all variables or only-significant variables are statistically significant
different from those of ICIC (Table9). It confirms that ICIC separates the low-yield
stocks from the rest.
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Table 7 Results from Wilcoxon-Mann—Whitney (Wilcoxon Rank Sum) Tests

Prob. 9th 8th 7th 6th 5th 4th 3rd 2nd 1st
Decile |Decile |Decile |Decile |Decile |Decile |Decile |Decile | Decile

10th 0.6261 |0.1062 [0.4118 |0.3428 |0.3428 |0.2282 |0.0612 |0.1062 |0.0280

Decile

9th 0.2282 |0.898 |0.8576 |0.7005 |0.2486 |0.209 |0.2486 |0.0226

Decile

8th 0.3428 |0.3173 |0.4571 |0.8576 |0.8175 |0.7779 |0.3254

Decile

7th 0.9387 |0.8175 [0.4571 |0.1303 |0.2931 | 0.0468

Decile

6th 0.8175 |0.4267 [0.1303 |0.3975 |0.0383

Decile

5th 0.3428 |0.3173 |0.2702 |0.0311

Decile

4th 0.8175 |0.898 |0.2954

Decile

3rd 0.7005 |0.2498

Decile

2nd 0.233

Decile

Note Ho: Means of two groups are equal. H1: Means of two groups are unequal.

Table 8 Comparison between the results from ICIC and Tobit regression

Decile ICIC Tobit with all variables | Tobit with significant variables
Average Standard | Predicted |Standard |Predicted |Standard
capital deviation | capital deviation | capital deviation
gain yield gain yield gain yield

10th 61.31 54.58 51.08 9.33 42.31 2.82

Decile

9th Decile |57.25 59.37 53.87 46.25 56.39 44.98

8th Decile |35.84 38.85 33.47 6.81 41.16 3.01

7th Decile |44.43 352 42 12.38 45.86 11.89

6th Decile |45.28 379 36.54 7.57 40.27 1.33

5th Decile |42.71 35.45 39.73 3.53 42.71 2.99

4th Decile | 39.35 44.88 38.53 4.49 40.73 1.94

3rd Decile |37.83 57.36 36.01 5.06 41.27 2.33

2nd Decile | 29.79 20.45 39.36 3.52 42.61 2.53

1st Decile |26.88 38.11 42.17 9.41 42.07 3.46

Source Computations
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Table 9 Results from Wilcoxon sign rank test

Decile Comparison of the means of yields from ICIC and predicted yields from Tobit
ICIC and Tobit (all variables) ICIC and Tobit (only significant variables)
10th Decile 0.8613 0.4216
9th Decile 0.7532 0.7532
8th Decile 0.4216 0.2489
7th Decile 0.8613 0.7007
6th Decile 0.7532 0.7532
5th Decile 0.6496 0.4216
4th Decile 0.5067 0.4216
3rd Decile 0.0747 0.0277
2nd Decile 0.0869 0.0330
IstDecile 0.0056 0.0099

Note The numbers in the table present the prob-values gained from Wilcoxon sign rank test of
matched pairs.
Source Computations

5 Conclusions

This paper introduces the indicator circuit with incremental clustering (ICIC) with its
application on the evaluation of telecommunication companiess performance which
ICIC shows a better result than the previous version of the indicator circuit with
reference points (ICRP) presented in [4]. It also attempts to spot high-yield stocks
in the Stock Exchange of Thailand (SET) by adopting the ICIC. It uses 6 financial
ratios according to Songsak hypothesis of medium-term stock selection criteria.
These indicators are announced at the end of 2013 as indicators in the model. The
data include 134 stocks in the SET ranked in the SET100 group during 2013-2014.
The capital gain yields of each stock are used to justify the performance of the model.
The results show that the scoring generated by the ICIC indicates the low-yield stocks
instead of the high-yield ones. This method turns out to be the warning signal for
investors to avoid the low-yields. Moreover, the study confirms that the Songsak
hypothesis or the criteria for the medium-term stock selection is correct
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Nonlinear Estimations of Tourist Arrivals
to Thailand: Forecasting Tourist Arrivals
by Using SETAR Models and STAR Models

Nyo Min, Songsak Sriboonchitta and Vicente Ramos

Abstract The main objective of this study is to evaluate some alternatives to estimate
tourism arrivals under the presence of structural changes in the sample size. Several
specification of Self-exciting threshold autoregressive (SETAR) model and Smooth
transition autoregressive (STAR) model, especially Logistic STAR (LSTAR) are
estimated. Once the parameters are estimated, a one period out of sample forecasting
is performed to evaluate the forecasting efficiency of the best specifications. The
finding from the study is that the STAR model beats SETAR model slightly, and
these two groups of models have forecast proficiency at least in the tourism field.

1 Introduction

Accurate forecast of tourism demand is necessary for many agents involved in tourism
development at destinations. That is the case for example of governments respon-
sible of public tourism policies governments or for investors around the world
when designing business plans in tourism destinations. Predicting long term tourism
demand will assist the policy makers in project appraisal and will provide reason-
able options for portfolio selection, whereas short term forecast plays major roles
in tourism, especially when it has an urgent need for making decisions.

According to the UN World Tourism Organization (UNWTO), tourism is one of
the fastest growing economic industries in the world. The UNWTO stated that in
2014 international tourism grew by 4.4 % in 2014 reaching 1.135 billion arrivals
and USD 1.5 trillion in export earnings. The trend is expected to remain positive in
2015 with a growth rate between 3 and 4 % in international tourist arrivals [14]. The
positive impact of tourism in the economy explains that many countries in the world
are paying increasing attention to the development of their potential destinations. As
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aresult, there is an increase in competition among destinations which demands wise
decisions from private investors and policy makers. In addition, tourism industry is
extremely sensible to adverse external shocks that can generate dramatic changes
in the number of tourism arrivals. The above reasons justify the need to continue
the improvement of tourism forecasting and, in particular, to deal with the fact that
in many cases, the external shocks are likely to generate a structural change in the
behavior of tourism arrivals. Neglecting the presence of structural change(s) is likely
to cause incorrect modeling. In other words, taking structural change(s) into account
may improve the forecast performance in terms of capturing and exploiting changes
in macroeconomic relationship, and detecting and forecasting changes in the long
run dynamics correctly [6]. If the time series data are subject to change unexpectedly,
considering structural change will lead to correct model selection and provide gen-
uine findings. In classical research environment, many just applied linear forecasting,
as a result, the findings provided less accuracy by depending on sample selection. In
tourism literature, many researchers proposed more reliable methods to estimate and
forecast tourism arrivals. Among them, only some took into account the potential
presence of structural change in their datasets. This paper focuses on two families of
models that are able to deal with the presence of structural changes in the data, namely,
Self-Exciting Threshold Autoregressive (SETAR), and Smooth Transition Autore-
gressive (STAR). The SETAR model is an extension of the Autoregressive model
which allows a higher degree of flexibility in parameters estimation as it possesses
a regime switching behavior [13]. The switching is dependent on past values of the
time series. It can be estimated using the same or different autoregressive lags in the
regimes. STAR models are also an extension of autoregressive models which allow
for a higher degree of flexibility by proposing a smooth transition. Instead of using a
regime switching approach, the STAR models link two autoregressive parts by using
a transition function. The most popular transition functions are exponential function
and first and second-order logistic functions. Then the STAR model with exponential
function is called Exponential STAR (ESTAR) model and the STAR models with
first and second-order logistic functions are called Logistic STAR (LSTAR) models.

This paper uses the case of Thailand tourism which has been affected by several
potential structural changes during the last two decades. For instance, Thailand’s
position in the global rankings dropped from 10th to 14th due to social unrest in
2014 [8]. In particular, arrivals from East Asian countries to Thailand are considered
as they correspond this fast growing intraregional market which, led by China, has
been growing at a terrific rate. As stated above, the political instability in Thailand in
2014 which decreased tourist arrivals to Thailand by 6.65 %. The number of tourists
from some East Asian countries, including Japan, South-Korea, Hong Kong, and
most ASEAN countries significantly dropped, whereas the number of tourists from
Europe was less affected in 2014 [16]. Therefore the forecasting tourism demands,
especially tourist arrivals from East Asian countries, will play an important role in
the modern tourism in Thailand.

The paper is organized as follows: Sect.2 focuses on literature review, concept,
and models. Data is presented in Sect. 3 and empirical results with the results appear
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in Sect.4. Section5 presents an out of sample comparison of SETAR and STAR
models. The paper will end with the conclusion.

2 Literature Review, Concept, and Models

Although tourism demand can be measured in several ways, tourist arrivals and
tourist expenditures are mainly chosen to measure tourism demand for a specific
destination [11]. Knowing the tourism demand will provide better understanding of
the tourist decision making process. Therefore, many studies tried to measure tourism
demand. Generally, there are four groups of measurement criteria, doer criterion:
such as the number of tourist arrivals, the number of tourist visits and the visit rate;
pecuniary criterion: such as the level of tourist expenditure (receipts) and the share
of expenditure (receipts) in income; time-consumed criterion: such as tourist-days,
tourist-nights; and distance-travelled criterion: for instance, the distance travelled in
miles or kilometers [7]. In classical literature, several researchers just relied on linear
models to estimate and predict tourism demand, but some researchers started to use
nonlinear models for forecasting tourism demand to handle structural change(s) in
data set. Structural change can be defined as the state in which one or more variables
are changing over time [9].

The challenges of Modeling and detecting of econometric model’s parameter sta-
bility have risen since a long time ago. Structural change may be the outcome of fac-
tors such as preferences changes, institutional changes and technological progress.
Chen [5] said that current estimation and testing methods are formulated without
endogeneity and proposed a nonparametric test to check smooth structural changes
and abrupt structural breaks with possibly unknown change points in regression mod-
els by using potential endogeneity. Andrews and Fair [1] tested for structural change
in nonlinear, dynamic, and simultaneous models with limited dependent variables.
They tried to extend the classical test for structural change in linear regressions of
Chow to nonlinear models. Till now, structural changes issue has not been recognized
enough by most of researchers and only few researchers are seeking effective ways
to control the structural change(s).

2.1 Self-exciting Threshold Autoregressive (SETAR) Models

SETAR models were initiated by Howell Tong in 1977 as an extension of AR models
designed to handle changes in the model parameters by the threshold value and delay
parameter. Tong and Lim [12] stated that SETAR (1, K) is a linear AR model with
order k. Serletis and Shahmoradi [10] said that SETAR model is one of the most
popular Threshold Autoregressive (TAR) models. Then, they stated the following
model as two regimes SETAR model;
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X =0+ o1 X—1)+ ... +ApX¢—p)
+ (Bo + Bixg—ny+ ... +Bpxe—p)Xe-—ay <V} + &, (N
where p > 1 = autoregressive order, d = delay parameter and y = the

threshold parameter.
In general, the multi regime SETAR model can be described as follows;

. 1 1 .
regime 1 x; = é)—i—ﬁl( )x,,l—i—-u—ﬁ;l)x,,p—i—e, if xi_q <1y,
. 2 2 ;
regime 2 x; = (g)+/31( )xt—1+"‘_ﬂ,(,2)xt—p+8t ifri <xi—q <1,
. k k .
regime k x; = é ) + ,31( )x,_1 + = ﬂ](,k)x,_,, +e& if rie1 < xp—g <rp. (2)
where p = autoregressive order, d = delay parameter and yi, V2, ..., ¥, =

the threshold parameters.
The above mentioned model is defined as self-exciting model because the regime
r is a function of the past realizations of x, sequence itself.

2.2 Smooth Transition Autoregressive (STAR) Models

STAR models are also an extension of AR models and introduced by K.S. Chan and
H. Tong in their paper [5]. The STAR model can be seen as a two-regime SETAR
model, but it has a smooth transition between regimes, or continuum of regimes. The
two smooth transition autoregressive [STAR] model for a univariate time series x;
can be described as follows;

xr = (Ba,0) + Ba,nXa—1) + -+ Ba,pXa—p)
x (1 =G5 7,0)+(Be,o) +Benxe—1) + - +Be,pXa—p)G(s; v, ¢) + &,

3)
where t = 1, --- , T. The transition function G(s;; y, ¢) is a continuous function,
but bounded between 0 and 1. It can be written as follows;

G(si;v.0) = (I +exp{—y(s, —o)D™", y>0 “4)

and it is called the logistic STAR (LSTAR) model.
If the transition function is written as follows;

G(si;v.0) = L +expl—y(si —0)’}, y>0 ©)
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it is called exponential STAR (ESTAR) model. The notations of the equation are
¢ = threshold values between two regimes, s, = transition variable and y =
parameter that determines the smoothness of the change. If s, = x(_4), this
model is called a self-exciting TAR [SETAR] model.

The weakness of ESTAR is thatiflimits y — Qory — oo are taken, the transition
function changes to a constant (equal to 0 and 1, respectively). Then, the model cannot
be transformed into a SETAR model. If limits y — 0 is taken in LSTAR model, the
logistic function becomes equal to a constant (equal to 0.5) and then the LSTAR
model reduces to a linear model [15].

A multi-regime Logistic Smooth Transition Autoregressive (MR-STAR) allows
for ESTAR type dynamics and SETAR type dynamics. The ESTAR cannot account
for discontinuous case and it can be changed to linear process. This feature generates
a sudden shift between regimes. To solve this weakness, the answer is the MR-
STAR [2].

The MR-LSTAR or three regimes LSTAR model can be written as follows;

xr = (Ba,o) + Ba,nxe—ny + -+ Ba,pXa—p)) G
+ (Be.o) + Be,nXa—1 + -+ Be,nXe-p) G2
+ (Ba,o) + Ba,nXe—1 + -+ Ba,mXa—p)G3 + &, (6)

where G, = (1 +exp{y(s, +o)D%y >0, Go=1-G,—G3 and G3=
(1 4+exp{—y(s, —c)D~ ',y >0.

The study will not focus on the ESTAR models, but on the LSTAR models to
compare with the SETAR models.

3 Data

The dataset used for the model estimation gathers monthly tourist arrivals from East
Asia countries including China, Japan, and Koreas to Thailand between January 1997
and October 2014. There are 214 observations in the sample. Visually, the data set
projected fluctuation and structural changes. Therefore the study analysis the nature
of the dataset and the study found that the dataset has a unit root with ADF statistic
—0.318429 and probability 0.9187 according to the Augmented Dickey—Fuller test
in EViews (Fig. 1).

The study continued its analysis to detect breakpoints and applied CUSUM test
to obtain visual evidence of the structural change. The study found that there were
three breaks in the data observed and the break dates were November 1999, August
2003, and December 2010. The study confirmed these breakpoints with the Chow
break point test. When the study tested the data with CUSUM test, the following
graphic was resulted. This graphic showed that there is a structural change in the
sample (Fig.2).
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Fig. 1 Tourist arrivals from
East Asia to Thailand
between January 1997 and
October 2014

Fig.2 CUSUM test result
on OLS of tourist arrivals
from East Asia to Thailand

Fig. 3 Log return of tourist
arrivals from East Asia to
Thailand
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The study took log return on the number of tourist arrivals from East Asia to get
stationary in the data set. After having a stationary process in the dataset, its statistical
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properties such as mean, variance, autocorrelation, etc. became constant over time.
The dataset taken log return can be seen as follows (Fig. 3).

4 Empirical Results

The study found that Autoregressive (9) is the best AR(p) model for the dataset
with the lowest AIC value (—1.148) and BIC value (—0.9853). Although AR(9)
and AR(10) are competing, A R(9) slightly performed better than AR (10).

4.1 SETAR Models

The study used embedding dimensions 9 and the threshold value O to search for the
best SETAR model. The search-process used maximum autoregressive order 9 for low
regime, and maximum autoregressive order 9 for high regime. The process searched
on 141 possible threshold values within regimes with sufficient (15 %) number of
observations and used 11, 421 combinations of thresholds (141), the delay value (1),
and lag order (9) (Table 1).

The maximum lag order 5 for low regime and order 9 for high regime, with
threshold delay value O provided the lowest pooled AIC value. Therefore the selected
SETAR model for this study is SETAR (2, 5, 9) with delay 1 and threshold value
—0.1234467 (Table 2).

The SETAR (2, 5, 9) can be written as follow;

Table 1 Searching the best SETAR model among Threshold values, lag orders, and pooled AICs

The delay Lag order for low | Lag order for Threshold values | Pooled AIC
regime high regime
1 5 9 —0.1234467 —253.1171
1 9 9 —0.1234467 —253.1024
1 5 9 —0.1163712 —253.0915
1 5 9 —0.1236115 —252.7790
1 9 9 —0.1236115 —252.6571
1 5 9 —0.1296206 —252.5920
1 9 9 —0.1217031 —252.5855
1 5 9 —0.1217031 —252.4666
1 5 9 —0.1144791 —252.4561
1 9 9 0.1163712 —252.1901
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Table 2 SETAR(2,5,9) withd =1, y = —0.1234
Low regime of SETAR (2,5,9) High regime of SETAR(2,5,9)
Variable Coefficient | t-stat Prob Variable Coefficient | t-stat Prob
C —0.066399 | —1.2623 0.2083 C 0.033300 | 3.0010 0.0030
ARI —0.139510 | —0.7654 0.4449 ARI1 —0.350893 | —3.4433 0.0007
AR2 —0.479152 | —3.0087 0.0030 AR2 —0.426983 | —5.6615 5.277e—07
AR3 0.228376 1.2657 0.2071 AR3 —0.395466 | —5.3113 2.939e—07
AR4 0.08752 0.4973 0.6195 AR4 —0.266827 | —3.3759 0.0009
AR5 —0.825953 | —3.740 0.4881 AR5 —0.191766 | —2.5091 0.0129
AR6 —0.248583 | —3.0969 0.0022
AR7 —0.287709 | —3.7382 0.0002
ARS8 —0.035271 | —0.4785 0.6328
AR9 —0.297572 | —3.6503 0.0003
5
low regime x; = ,381) + Z,Bi(l)x,,,- + 8,(1) if xi—a <y,
i=1
9
high regime x, = ,352) + Zﬂi(z)xt_,’ + 8,(2) if x,_qg > v. 7
i=1
Or

low regime x;

= —0.066399 — 0.139510x,_

if x_ <—0.1234,
high regime x, = 0.0333 — 0.350893x,_; — - - — 0.297572x,_¢ + &*)
if x;—1 > —0.1234.

..... —0.825953x,_5 + &'

()

The SETAR model for the study, has estimated all stable parameters because
the necessary condition for stability is |8;| < 1, but some AR lags are not signifi-
cant. Based on the SETAR model selected, the study estimated and forecasted tourist
arrivals for one period ahead by using Bayesian estimation for the two regime thresh-
old autoregressive model. This method is called BAYSTAR or Threshold Autore-
gressive model: Bayesian approach. The BAYSTAR estimated and forecasted on
SETAR (2, 5, 9) with Markov Chain Monte Carlo for 10, 000 iterations and 2, 000
burn-in iterations. The simulation results were shown in Table 3.

The deviance information criterion (DIC); a Bayesian method for model compar-
ison is —622.56578 and the highest posterior probability of lag is at 1. Mean Forecast
Error for the selected SETAR is 9.85221e—13 and it means the SETAR (2, 5,9) is
likely to make under forecast.
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Table 3 The results of BAYSTAR for 10,000 MCMC reiterations

Coefficient Mean Median s.d. Lower Upper

Bi2 —0.3255 —0.3327 0.1279 —0.5582 —0.0471
B1.5 —0.3749 —0.3697 0.1442 —0.6749 —0.1062
Bao —0.2533 —0.2536 0.0879 —0.4208 —0.0836
B23 —0.3699 —0.3699 0.0709 —0.5117 —0.2314
B —0.2068 —0.2059 0.0832 —0.3700 —0.0453
B2 —0.2440 —0.2442 0.0763 —0.3946 —0.0942
B2 —0.2607 —0.2615 0.0823 —0.4218 —0.0976
012 0.0218 0.0213 0.0041 0.0153 0.0313
022 0.0140 0.0139 0.0018 0.0110 0.0179
y —0.0395 —0.0410 0.0187 —0.0660 —0.0017

Table 4 Potential STAR models for the study

Embedding No of regime AIC BIC
dimensions

2 3 —828.2866 —781.6510
3 2 —849.1836 —815.6177
4 2 —842.6261 —802.3471
5 2 —843.4300 —796.4378
6 2 —862.4446 —808.7395
7 2 —846.5283 —786.1001
8 3 —842.7184 —738.6642

4.2 STAR Models

In search of a STAR model for the dataset, the study used embedded dimensions 2 to
8. The search-result showed whether the model is nonlinear with significant p values.
The test is called Multiple regimes STAR test (MR-STAR). Table4 summarized the
test results.

Among the STAR models in the Table 4, the study chose the STAR (6) model with
embedding dimensions 6, because it had the lowest AIC value (—862.4446), BIC
value (—808.7395), and the lowest mean absolute percentage error value (425.6 %).
Based on the STAR model selected, the study fitted three LSTAR models. The model
selection for the LSTAR is described in Table 5.

The study went on with the LSTAR (6) model with constant as it had the lowest
AIC, BIC, and MAPE values (Table 6).

The test used Non-linearity test of full-order LSTAR model against full-order
AR model. The result showed that the LSTAR (6) model is a nonlinear model
with the F statistic (F = 3.5828) and p-value (0.002173). After obtaining the best
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Table 5 Three LSTAR models of the study
LSTAR Model AIC BIC MAPE (%)
With constant —862 —8087393 425.6
Without constant —853 —806.1383 1133
With controls —811 —797.3271 236.1

Table 6 LSTAR (6) chosen for the paper
Coefficients and constant Estimate Std. Error t value Pr(> |z])
Constant L 0.0125757 | 0.0105079 | 1.1968 |0.2313879
Bi —0.4074463 | 0.0767565 | —5.3083 | 1.107e—07
B —0.4925890 | 0.0753060 | —6.5412 |6.104e—11
B3 —0.4287615 | 0.0788714 | —5.4362 |5.443e—08
Ba —0.3309752 | 0.0861557 | 3.8416 |0.0001222
Bs —0.2665477 | 0.0883131 | —3.0182 |0.0025427
Be —0.3238979 | 0.0907500 | —3.5691 |0.0003582
Constant H —0.0682689 | 0.0337803 | —2.0210 |0.0432830
Bi 0.9889003 | 0.1959962 | 5.0455 |4.523e—07
B 0.4323626 | 0.1786095 | 2.4207 |0.0154900
B3 0.6037953 | 0.2042318 | 2.9564 |0.0031123
Ba 0.5600631 | 0.1931883 | 2.8991 |0.0037429
Bs 0.3589648 | 0.1615078 | 2.2226 |0.0262438
Be 0.4452616 | 0.1840469 | 2.4193 |0.0155511
y 100.00000 65.127254 1.5355 | 0.1246720
th 0.5332688 | 0.006843 | 77.932 <2.2e—16

LSTAR model for the dataset, 5 periods ahead were predicted sequentially and the
results were 0.03975614, —0.0231934, —0.03127030, —0.0357560, and 0.03476227

respectively.

The LSTAR (6) for the study can be written as follows;

where 8] = (0.0125757, —0.4074463, ..., —0.3238979),

B5 = (—0.0682689, 0.9889003, ..., 0.4452616), and
Yr = (Lx(t—l), ..

s X(1=6))-

X = ,Biyt + B — B v:G(s —t;7,0) + &,

Transition function for the LSTAR (6) can be calculated as follows;

G(si: v, ¢) = (14 exp{—100(x;_1, — 0.5333)}) .

)

(10)
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Table 7 Analyzing forecast accuracy between SETAR (2,5,9) and LSTAR (6)

Method MAE MFE MAPE (%) AIC

SETAR 0.095325 9.85¢—13 1289.0 Pooled AIC
(=253.1171)

LSTAR 0.092257 —4.85¢—13 425.6 AIC(—862.4446)

S Model Comparing and Discussion

In this section the study compared SETAR (2, 5, 9) and LSTAR (6) and examined
which model performed better in forecasting for one period ahead. The forecasted
results of SETAR and LSTAR were examined with the real tourist arrivals from East
Asia to Thailand in November 2014 (Table 7).

The study used Mean-Absolute-Error (MAE), Mean Forecast error (MFE), and
Mean Absolute Percentage Error (MAPE) to recommend the model for forecasting
tourist arrivals. In terms of error measurements, the study preferred STAR than
SETAR because the LSTAR not only had smaller errors, but also had a smaller
AIC value. The Mean Forecast Error (MFE) stated that the SETAR method can
underestimate its forecast value and the LSTAR can overestimate its forecasting. In
terms of forecasting, the SETAR model used BAYSTAR method to forecast one step
ahead with Markov Chain Monte Carlo (MCMC) simulations whereas the LSTAR
predicted five steps ahead. To reveal their forecasting efficiency, the study took out
one step ahead result forecasted or predicted.

There were forecasted results, 0.03975614 and 0.013681 by LSTAR and SETAR
respectively. Afterward examining these nonlinear models SETAR and LSTAR in
terms of errors, and AICs, the study went on examining the forecast efficiency of the
models with actual tourist arrivals from East Asia in November 2014. There were
1,472, 427 people coming to Thailand from East Asiain November 2014 whereas the
forecasted results of LSTAR and SETAR were 1, 443,064 and 1, 409, 068 respec-
tively. When the LSTAR model deviated from the actual tourist arrival for 2 %,
SETAR only deviated 4.3 %. Although, some AR terms and constant values were
not significant, the findings recommended the LSTAR in terms of forecast power.
The LSTAR model deviated up to 2 %, whereas the SETAR deviated 4.3 %, but all
AR terms in the model were significant. Under the rule of thumb, the SETAR model
is more effective to estimate the dataset in a trend, but its power is not sure for imme-
diate change in the dataset that the model is forecasting. Indeed, the forecast powers
of these two nonlinear models are very similar and both methods are productive.

6 Conclusion

The study applied nonlinear models, namely SETAR and STAR models and tried to
solve bias resulted from structural changes in the data observed. As the study wanted
to compare the SETAR and the STAR models, the study used the LSTAR model
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as a representative of STAR family. Both methods are applicable to forecast tourist
arrivals and the result of the study revealed that the LSTAR performs better than the
SETAR in forecasting for immediate result. Both models handled structural change
in the historical data, but they estimated and predicted the data by assuming there are
only two regimes. Indeed, the data projected three break points and multiple regimes
in some embedding dimensions m.

The short term forecast is necessary for problematic situations, but medium term
and long term forecasts are very important for tourism development. In addition, to
reveal the actual forecast power of the nonlinear models SETAR and STAR, similar
studies on different sample sizes in terms of observations and time variation are
needed and all SETAR family and the STAR family including Exponential STAR
(ESTAR) models should be studied. To conclude the study, we recommend that
both SETAR and STAR families are applicable to forecast tourist arrivals and both
families have powerful estimation and forecasting mechanisms, although the STAR
beats SETAR in this study.
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Dependence Between Volatility of Stock Price
Index Returns and Volatility of Exchange
Rate Returns Under QE Programs: Case
Studies of Thailand and Singapore

Ornanong Puarattanaarunkorn, Teera Kiatmanaroch
and Songsak Sriboonchitta

Abstract This study found the evidences of the dependence between the volatility
of stock price index returns and the volatility of exchange rate returns measured
against US Dollar and Japanese Yen, and the independence between the volatility of
stock price index returns and the volatility of exchange rate returns measured against
Euro, in both Thailand and Singapore, under the operation of QE programs. It also
found that all bivariate copula of the volatility of stock price index returns—the
volatility of Thai Baht/US Dollar exchange rate returns, and the volatility of stock
price index returns—the volatility of Thai Baht/Japanese Yen of Thailand, had a
degree of dependence greater than that of Singapore. This can be explained that the
QE programs can affect capital flows to Thailand and Singapore, and also may have
different effects on the volatility of each exchange rate returns and the volatility of
stock price index returns, of the individual country. This information can be useful
for policy makers and investors so that they can directly focus on avoiding adverse
implications from the operation of QE programs, in terms of the risks incurred from
the volatility of exchange rate returns and the volatility of stock price index returns.
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1 Introduction

The 2007-2009 financial crisis in the United States, United Kingdom, Japan, and
the Euro area, played an important role in the collapse of major businesses. The
crisis has caused the decline of economic activities, thus leading to a global reces-
sion. Consequently, the Federal Reserve of US (Fed), the Bank of Japan (BOJ), the
Bank of England (BOE), and the European Central Bank (ECB) began establishing
monetary policies, including the quantitative easing (QE) program, to stimulate an
economic growth. The QE policies can temporary increase the monetary base that is
used to provide liquidity for short periods. These programs include asset purchases
and lending programs that are varied across the Fed, BOJ, BOE, and ECB [1]. The
QE can have an effect on the macroeconomy and financial market in particular. For
example, Neely [2] showed that the Fed’s QE in 2008-2009 had significantly reduced
international long-term bond yields and the spot value' of the Dollar. Meaning and
Zhu [3] showed that the Fed’s QE announcement led to depreciations in the nominal
effective exchange rates of the US Dollar. Fawley and Neely [1] showed that the pur-
chasing short-term securities by the QE program can have an effect on the exchange
rates and stock prices. Likewise, Fratzscher et al. [4] found that the QE pushed up
the equity prices worldwide and led to a depreciation on the US Dollar.

The QE programs also had an effect on Asia. Cho and Rhee [5] found that the
first round of Fed’s QE program significantly contributed to the capital inflows to
the 10 large regional economies: China, Hong Kong, India, Indonesia, Japan, the
Republic of Korea, the Philippines, Singapore, Taiwan, and Thailand. Moreover,
the QE programs have contributed to the appreciation of local currency value and
increasing the asset prices. Chen et al. [6] showed that the Fed’s QE resulted in lower
emerging market Asian bond yields, raised equity price, and caused an appreciation
to the local currency. Similarly, the QE caused the capital inflows to Thailand; the
Thai Baht against the US Dollar had appreciated, and the stock price index had risen
[7].

As it is known, an increase of capital flows creates a demand for and supply of
currencies, leading to an interdependence between the stock prices and the exchange
rates [8]. Therefore, it is interesting that what is the interdependence between the
exchange rates and the stock price index within the ASEAN region, under the oper-
ation of QE programs? We consider two countries, namely Thailand and Singapore,
and examine the linkages between exchange rates and stock prices index for each
country in terms of the dependence between the volatility of exchange rate returns
and the volatility of stock price index returns. The reasons for choosing these two
countries are because Thailand is a developing country and it has a strategic location
as a gateway into Asia, while Singapore is a developed country where its financial
markets are fully liberalized.

I'The current exchange rate or the rate of a foreign-exchange contract for immediate delivery.
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Thus, the purpose of this study is to investigate the dependence between the
volatility of stock price index returns and the volatility of exchange rate returns
that are measured against the US Dollar; Euro; and Japanese Yen for each country;
Thailand and Singapore, under the operation of QE programs.

Understanding the dependence between the volatilities of exchange rate returns
and stock price index returns, under the operation of QE programs for each country in
the ASEAN, may help the ASEAN policy makers and the investors manage the risk,
and to avoid adverse implications from the operation of unconventional monetary
policies of advanced economies.

To answer the research question of this study, the copula based ARMA-GARCH
model was used. As Sriboonchitta et al. [9] argued that to find the dependence by the
traditional multivariate analysis imposed some strong assumptions and suggested to
use the copula approach that could provide better flexibility for the analysis. Since
financial data usually shows the evidence of non-normal distribution with skewness
and excess kurtosis that might not be the same margins for each random variable.
Thus, using traditional approach that is restricted with normal distribution and linear
correlation, is not appropriate. But the copula can cross this restriction, and offers
us the flexibility of merging a univariate distribution to get a joint distribution with
an appropriate dependence structure. Recently, many studies have used the copula
model to find the dependence of financial data; see, e.g. [10-16].

The remainder of this paper is organized as follows: Sect. 2 describes the method
which is used for analysis. Section 3 describes the data and the descriptive statistics
of the stock price index and the exchange rates. Section4 presents the empirical
results. Lastly, Sect. 5 presents the conclusions and policy implications.

2 Methodology

This study aims to find the dependence between the volatility of exchange rate returns
and the stock price index returns for each country, Thailand and Singapore in the
ASEAN region. As we have known, the financial data usually shows the evidence
of autoregression and volatility clustering. Moreover, they also exhibit evidence of
non-normal distribution with skewness and excess kurtosis that might not be the
same margins for each random variable [10]. As the traditional multivariate analysis
imposed some strong assumptions of normal distribution and linear correlation. One
approach of modeling the multivariate dependence is the copula, which provides a
better flexibility for the analysis [9].

Therefore, we employed the ARMA-GARCH model and the copula model to
analyze the dependence structure of data series. First, the ARMA-GARCH model
was used to filter the marginal distribution, F;(x;), of each data series. Then the
marginal distributions were used to obtain the copula data. After that, the copula
model was used to find the dependence between the marginal distributions.
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2.1 ARMA-GARCH

The ARMA(p,q)-GARCH(1,1) model for each log-return data series (y;) can be
written in general form as:

p q
yt=a0+zaiytfi+zbi8t7i+8t (D
i=1 i=1
& =zvVhi, 2t ~D )
hy = o +agl |+ Bhi 3)

Equation (1) presents ARMA(p,q) process where y,_; is an autoregressive term
of y, and &, is an error term. Equation (2) then defines this error term as the product
between conditional variance &, and a residual z;. A residual z; is assumed to follow
an appropriate distribution (D). Equation (3) presents GARCH(1,1) process where
w; > 0, >0, B > 0 are sufficient to ensure that the conditional variance A, > 0.
The as? | represents the ARCH term and o refers to the short run persistence of
shocks, while Bh;_; represents the GARCH term and 8 refers to the contribution of
shocks to long run persistence (o + ).

For the next analysis, the standardized residuals with an appropriate distribution
from ARMA(p,q)-GARCH(1,1) model of each data series is transformed to copula
data.

2.2 Copula

A copula is the joint distribution of random variables, in which the marginal distri-
bution of each variable is uniform [0,1]. The fundamental theorem of copula is the
theorem proposed by Sklar [17] as the Sklar’s theorem.

Let H be ajoint distribution function with marginal distributions ¥, G. Then there
exists a copula C for all x, y in real line, with the following property:

H(x,y) = C(F(x),G(y) “4)
If F, G are continuous, then C is unique. Conversely, if C is acopulaand F, G are
distribution functions, then the above function H (x, y) in Eq. (4) is ajoint distribution

function with the marginal distributions F, G.
If H is known, the copula is an Eq. (4) that one can obtain from this expression,

Cu,v)=F(F'w),G'(») (&)

where F~! and G~! are are the inverse distribution functions of the marginals.



Dependence Between Volatility of Stock Price Index Returns and Volatility ... 419

2.3 Maximum Likelihood Estimation

The method of maximum pseudo-log likelihood studied by Genest et al. [18] is
used for estimation since the marginal distribution functions F and G of random
vectors are unknown. Thus, we can construct pseudo copula observations by using
the empirical distribution functions to transform the standardized residuals series
from the ARMA(p,q)-GARCH(1,1) model to uniform [0,1].

Under the assumption the marginal distributions F and G are continuous, the
copula Cy is a bivariate distribution with density ¢y and pseudo-observations F, (X;)
and G,(Y;),i =1,2,...,n

The pseudo-log likelihood function of 6 is expressed as

L(®) = XL, log[co (Fu(Xi), Gu(Yi))]. (6)

2 ,
where ¢y = SUBEG0) F (x) = S5 X1 1(X; < x) and G, (x) = A7 Z 1

(Y; < y) are the empirical distributions.

2.4 Copula Families

There are various copula families to measure the dependence of copula. Each copula
family has different dependence structure or joint distribution. This study used five
copula families. The Gaussian (Normal) copula and the Student’s T, which are the
Elliptical copulas. The Elliptical copulas are simply the copulas of elliptically con-
toured distributions and have radical symmetry. The Frank copula, the Rotated Clay-
ton 90°, and the Rotated Gumbel 90°, all are the Archimedean copulas. The Rotated
Clayton 90° copula is an asymmetric copula by exhibiting greater dependence in the

Table 1 Copula families

Name Copula function Parameter range
Gaussian C (u1, uz; p) = @G (P~ (u), = (uz); p) = pe(=11)
¢ ) o (u2) 1 —(s2=2pst+1%)
J2 M NG x [ ) ldsdt
Student’s T CT (uy, uz; p,v) = pe(—=1,1),v>2
T, ) T, w2) 1
v v X 1 +
S s i <1
(s2—2psT+T? )] (v +2)dsdT
v(1—p?) . .
Frank Cluy, uz; 0) = — 1 log(1 + %@12”) 0 € (=00, 00)\{0}
Rotated Clayton 90° | C(uy, u2;0) = uz —[(1 —uy)~ o 4+ u2 — 1] ; 0 € (—00,0)
Rotated Gumbel 90° | C(u1, uz; ) = 0 € (—oo, —1]
1
uy — exp(—[(—In(1 — u1))? + (—In(u2))"17)

Source Trivedi and Zimmer [20], Nelson [21], and Fisher [22]
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left tail than in the right, and it can capture negative dependence. The Frank copula is
a symmetric copula, and it can capture both positive and negative dependences.
The Rotated Gumbel 90° copula is an asymmetric copula by exhibiting greater
dependence in the right tail than in the left, and it can capture negative dependence.
Selecting a family of copulas is based upon information criteria such as Akaike
Information Criterion (AIC) by Akaike [19].

The copula function and parameter range of each copula family that are used in
this paper are shown in Table 1.

3 Data

The weekly data of the exchange rates and the stock price index of each coun-
try from 28/11/2008 to 5/6/2015 (the QE program began in 2008), are used. For
Thailand, the stock price index is the Bangkok SET (SET), the exchange rates are
Thai Baht/Euro (TEU); Thai Baht/US Dollar (TUS); Thai Baht/ Japanese Yen
(TJPY). For Singapore, the stock price index is the Straits Times Index Local Cur-
rency (STI), the exchange rates are Singaporean Dollar/Euro (SEU); Singaporean
Dollar/US Dollar (SUS); Singaporean Dollar/Japanese Yen (SJPY). The data series
are obtained from the Thomson Reuters Datastream database. Each data series are
transformed to the log-return In -~

Table?2 presents the descrlptlve statlstlcs of the returns of each data series of
Thailand. All data series have a negative skewness except TIPY, and the excess
kurtosis. This means that the data series have asymmetric distributions and heavy
tail. The null hypotheses of normality of the Jarque-Bera tests are rejected in all data
series. The Augmented Dickey-Fuller (ADF) test shows that these data series are
stationary at p-value less than 0.01.

Table 2 Data descriptive statistics for returns of stock price index and exchange rates for Thailand

SET TEU TUS TIPY
Mean 0.0039 —0.0005 —0.0001 —0.0009
Median 0.0072 —0.0006 0.0003 2.51e-05
Maximum 0.0781 0.0452 0.0219 0.0600
Minimum —0.0775 —0.0504 —0.0251 —0.0407
Std. dev. 0.0246 0.0136 0.0065 0.0136
Skewness —0.3047 —0.1863 —0.0695 0.0893
Kurtosis 4.0838 3.8604 4.4737 3.7006
Jarque-Bera 21.901 12.456 31.038 7.405
(p-value) (<1.755e-05) | (<1.82e-07) | (0.0000) (<0.025)
p-value of Dickey-Fuller test 0.01 0.01 0.01 0.01
Number of observations 340 340 340 340
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Fig.1 Stock price index returns and exchange rate returns of Thailand

Figure 1 shows the returns of each data series of Thailand during 28/11/2008—
5/6/2015. Each data series has great volatility.

Table 3 presents the descriptive statistics of the returns of each data series of
Singapore. All data series have a positive skewness, meaning that the data series
have asymmetric distributions and have a long right tail. Moreover, all data series
show the excess kurtosis indicating their heavy tails. The null hypotheses of normality
of the Jarque-Bera tests are rejected in all data series, except SEU. The Augmented
Dickey-Fuller (ADF) test shows that these data series are stationary at p-value less
than 0.01.
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Table3 Datadescriptive statistics for returns of stock prices index and exchange rates for Singapore

STI SEU SuUS SIPY

Mean 0.0019 —0.0007 —0.0003 —0.0011
Median 0.0023 —0.0008 —0.0002 —-0.0014
Maximum 0.1532 0.0329 0.0436 0.0473
Minimum —0.0671 —0.0338 —0.0261 —0.0450
Std. dev. 0.0223 0.0112 0.0079 0.0143
Skewness 0.8985 0.0262 0.4669 0.3173
Kurtosis 9.7142 3.2047 6.0691 3.8917
Jarque-Bera 684.381 0.632 145.781 16.969
(p-value) (<2.2e-16) (<0.729) (<2.2e-16) (0.0002)
p-value of Dickey-Fuller test 0.01 0.01 0.01 0.01
Number of observations 340 340 340 340

Figure?2 shows the returns of each data series of Singapore during 28/11/2008—
5/6/2015. Each data series has great volatility. However, the stock price index returns
(STI) of Singapore have a volatility that is less than the stock price index returns (SET)
of Thailand.

4 Empirical Results

4.1 Result of ARMA-GARCH Model

Table 4 presents the results of an appropriate ARMA(p,q)-GARCH(1,1) model for
each data series of Thailand. The Akaike Information Criterion (AIC) by Akaike
(1973) is used to select an appropriate ARMA(p,q)-GARCH(1,1). The results show
that ARMA(1,2)-GARCH(1,1) with skewed student T residual is fitted for Thai-
lands stock price index returns (SET) series. For the Thai Baht/Euro exchange rate
returns (TEU), ARMA(1,1)-GARCH(1,1) with student T residual is appropriate. The
Thai Baht/US Dollar exchange rate returns (TUS), ARMA(0,1)-GARCH(1,1) with
skewed normal residual is fitted. The Thai Baht/Japanese Yen exchange rate returns
(TJPY), ARMA(1,0)-GARCH(1,1) with skewed normal residual is fitted. Moreover,
there exist both short run («) and long run (@ 4 B) persistence of volatilities in all
data series, except that of the TIPY because a parameter « is insignificant at level
0.05.

Table 5 presents the results of an appropriate ARMA(p,q)-GARCH(1,1) model
for each data series of Singapore. The results show that ARMA(2,2)-GARCH(1,1)
with student T residual is fitted for Singapore’s stock price index returns (STI)
series. For the Singaporean Dollar/Euro exchange rate returns (SEU), ARMA(4,4)-
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Fig. 2 Stock price index returns and exchange rate returns of Singapore

GARCH(1,1) with normal residual is appropriate. The Singaporean Dollar/US Dol-
lar exchange rate returns (SUS), ARMA(2,2)-GARCH(1,1) with student T resid-
ual is fitted. The Singaporean Dollar/Japanese Yen exchange rate returns (SJPY),
ARMA(1,1)-GARCH(1,1) with skewed normal residual is fitted. Similar to Thai-
land data series, there exist both short run («) and long run persistence (o + ) of
volatilities in all data series.

After that, the standardized residuals of each appropriated ARMA-GARCH model
are transformed into uniform [0,1], u; and u,, by using the empirical distribution
function. The Kolmogorov-Smirnov (K-S) test and the Box-Ljung test are used to
check whether the marginal distributions that we transformed are correctly specified,
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which means that u; and u, are uniform [0,1] and i.i.d, respectively. The results
in Tables4 and 5 show that the marginal distributions are uniform [0,1] and i.i.d.
Therefore, our marginal distributions are not misspecified and can be used for the
copula model.

4.2 Result of Copula Model

Copula model is used to find the dependence between the volatility of stock price
index returns and the volatility of exchange rate returns measured against the US
Dollar; Euro; and Japanese Yen for each country, Thailand and Singapore, under
the operation of QE programs. Table 6 presents the results of bivariate copula for
Thailand. The results show that the volatility of Thailand’s stock price index returns
and the volatility of Thai Baht/Euro exchange rate returns (SET-TEU) are indepen-
dent at a significance level of 0.05. While we found some evidences of dependence
between the volatility of Thailand’s stock price index returns and the volatility of
Thai Baht/US Dollar exchange rate returns (SET-TUS), and also the volatility of
Thai Baht/Japanese Yen exchange rate returns (SET-TJPY).

For bivariate copula of SET-TUS, the Student’s T copula is selected to describe
the dependence structure between SET-TUS by taking into consideration the values
of the AIC and a goodness-of-fit test of the Cramér-von Mises (CvM) statistic. The
Student’s T copula has two copula parameters and symmetric tail dependences. The
estimated parameters are, 0 = —0.478 and v = 9.235, the Kendall’s tau correlation
is —0.317, the lower tail (T'*) and the upper tail (V) dependences are 0.0003. These
results imply that there exists a relatively small negative dependence between the
volatility of Thailand’s stock price index returns and the volatility of Thai Baht/US
Dollar exchange rate returns, under the operation of QE programs. The changes
of Thailand’s stock price index are related to the changes of Thai Baht/US Dollar
exchange rates in the opposite direction.

From bivariate copula of SET-TJPY, the results also show that there exists a
relative small negative dependence, under the operation of QE programs. The Frank
copula is chosen to describe the dependence structure with copula parameter value
of —2.157 and Kendall’s tau correlation value of —0.229, and this bivariate copula
shows the evidences of independences in lower and upper tails. The changes of
Thailand’s stock price index are related to the changes of Thai Baht/Japanese Yen
exchange rates in the opposite direction.

From the comparison of Kendall’s tau correlations, we found that the volatility of
Thailand’s stock price index returns was related more to the volatility of Thai Baht/US
Dollar exchange rate returns (—0.317) than to the volatility of Thai Baht/Japanese
Yen exchange rate returns (—0.229). Therefore, it can be said that the change in
inflows—outflows of US Dollars has a greater effect on Thailand’s stock price index
than the change in inflows—outfl