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Preface 

During their undergraduate education, students take various courses on fluid flow, 
heat transfer, mass transfer, chemical reaction engineering and thermodynamics. 
Most of the students, however, are unable to understand the links between the 
concepts covered in these courses and have difficulty in formulating equations, 
even of the simplest nature. This is a typical example of not seeing the forest for 
the trees. 

The pathway from the real problem to the mathematical problem has two 
stages: perception and formulation. The difliculties encountered in both of these 
stages can be easily resolved if students recognize the forest first. Examination of 
trees one by one comes at a later stage. 

In science and engineering, the forest is represented by the basic concepts, 
i.e., conservation of chemical species, conservation of mass, conservation of momen- 
tum, and conservation of energy. For each one of these conserved quantities, the 
following inventory rate equation can be written to describe the transformation of 
the particular conserved quantity cp : 

Rate of Rate of Rate of cp Rate of cp ( cp in ) - ( cp out ) + ( generation ) = ( accumulation 

in which the term cp may stand for chemical species, mass, momentum or energy. 
My main purpose in writing this textbook is to show students how to translate 

the inventory rate equation into mathematical terms at both the macroscopic and 
microscopic levels. It is not my intention to exploit various numerical techniques 
to solve the governing equations in momentum, energy and mass transport. The 
emphasis is on obtaining the equation representing a physical phenomenon and its 
interpretation. 

I have been using the draft chapters of this text in my third year Mathematical 
Modelling in Chemical Engineering course for the last two years. It is intended as an 
undergraduate textbook to be used in an (Introduction to) Transport Phenomena 
course in the junior year. This book can also be used in unit operations courses in 
conjunction with standard textbooks. Although it is written for students majoring 
in chemical engineering, it can also be used as a reference or supplementary text 
in environmental, mechanical, petroleum and civil engineering courses. 

The overview of the manuscript is shown schematically in the figure below. 
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PREFACE ix 

Chapter 1 covers the basic concepts and their characteristics. The terms ap- 
pearing in the inventory rate equation are discussed qualitatively. Mathematical 
formulations of “rate of input” and “rate of output” terms are explained in Chap- 
ters 2, 3 and 4. Chapter 2 indicates that the total flux of any quantity is the sum 
of its molecular and convective fluxes. Chapter 3 deals with the formulation of the 
inlet and outlet terms when the transfer of matter takes place through the bound- 
aries of the system by making use of the transfer coefficients, i.e., friction factor, 
heat transfer coefficient and mass transfer coefficient. The correlations available in 
the literature to evaluate these transfer coefficients are given in Chapter 4. Chapter 
5 briefly talks about the rate of generation in transport of mass, momentum and 
energy. 

Traditionally, the development of the microscopic balances precedes the macro- 
scopic balances. However, it is my experience that students grasp the ideas better 
if the reverse pattern is followed. Chapters 6 and 7 deal with the application of 
the inventory rate equations at the macroscopic level. 

The last four chapters cover the inventory rate equations at the microscopic 
level. Once the velocity, temperature or concentration distributions are determined, 
the resulting equations are integrated over the volume of the system to get the 
macroscopic equations covered in Chapters 6 and 7. 

I had the privilege of having Professor Max S. Willis of the University of 
Akron as my Ph.D supervisor who introduced me to the real nature of transport 
phenomena. All that I profess to know about transport phenomena is based on the 
discussions with him as a student, a colleague, a friend and a mentor. His influence 
can be easily noticed throughout this book. Two of my colleagues, Guniz Gtiriiz 
and Zeynep Hiqgqmaz Katnq, kindly read the entire manuscript and made many 
helpful suggestions. My thanks are also extended to the members of the Chem- 
ical Engineering Department for their many discussions with me and especially 
to Timur Do& Tiirker Gurkan, Gurkan Karakq, &der ozbelge, Canan ozgen, 
Deniz h e r ,  Levent Yilmaz and Hayrettin Yucel. I appreciate the help provided by 
my students, Glilden Camqi, Yqim Guqbilmez and Ozge Oguzer, for proofreading 
and checking the numerical calculations. 

Finally, without the continuous understanding, encouragement and tolerance of 
my wife Ayqe and our children, Cigdem and Burcu, this book could not have been 
completed and I am grateful indeed. 

Suggestions and criticisms from instructors and students using this book will 
be appreciated. 

ISMAIL TOSUN (itosun@metu.edu.tr) 
Ankara, Turkey 
March 2002 
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Chapter 1 

Introduction 

1.1 BASIC CONCEPTS 
A concept is a unit of thought. Any part of experience that we can organize into 
an idea is a concept. For example, man's concept of cancer is changing all the time 
as new medical information is gained as a result of experiments. 

Concepts or ideas that axe the basis of science and engineering are chemical 
species, mass,  momentum,  and energy. A 
conserved quantity is one which can be transformed. However, transformation does 
not alter the total amount of the quantity. For example, money can be transferred 
from a checking account to a savings account but the transfer does not affect the 
total assets. 

For any quantity that is conserved, an inventory rate equation can be written to 
describe the transformation of the conserved quantity. Inventory of the conserved 
quantity is based on a specified unit of time, which is reflected in the term, rate. 
In words, this rate equation for any conserved quantity cp takes the form 

These axe all conserved quantities. 

Rate of ) - ( Rate of ) + ( Rate of 
input of cp output of cp generation of cp 

) (1.1-1) 
= ( accumulation of cp 

Rate of 

Basic concepts, upon which the technique for solving engineering problems is 
based, are the rate equations for the 

Conservation of chemical species, 

Conservation of mass, 

Conservation of momentum, 

Conservation of energy. 

1 
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The entropy inequality is also a basic concept but it only indicates the feasibility 
of a process and, as such, is not expressed as an inventory rate equation. 

A rate equation based on the conservation of the value of money can also be 
considered as a basic concept, i.e., economics. Economics, however, is outside the 
scope of this text. 

1.1.1 Characteristics of the Basic Concepts 
The basic concepts have certain characteristics that are always taken for granted 
but seldom stated explicitly. The basic concepts are 

Independent of the level of application, 

Independent of the coordinate system to which they are applied, 

Independent of the substance to which they are applied. 

The basic concepts are applied both at the microscopic and the macroscopic 
levels as shown in Table 1.1. 

Table 1.1 Levels of application of the basic concepts. 

Level Theory Experiment 
Microscopic Equations of Change Constitutive Equations 
Macroscopic Design Equations Process Correlations 

At the microscopic level, the basic concepts appear as partial differential equa 
tions in three independent space variables and time. Basic concepts at the mitre 
scopic level are called the equations of change, i.e., conservation of chemical species, 
mass, momentum and energy. 

Any mathematical description of the response of a material to spatial gradients 
is called a constitutive equation. Just as the reaction of different people to the same 
joke may vary, the response of materials to the variable condition in a process 
differs. Constitutive equations are postulated and cannot be derived from the 
fundamental principles1. The coefficients appearing in the constitutive equations 
are obtained from experiments. 

Integration of the equations of change over an arbitrary engineering volume 
which exchanges mass and energy with the surroundings gives the basic concepts 
at the macroscopic level. The resulting equations appear as ordinary differential 
equations with time as the only independent variable. The basic concepts at this 
level are called the design equations or macroscopic balances. For example, when 
the microscopic level mechanical energy balance is integrated over an arbitrary 

'The mathematical form of a constitutive equation is constrained by the second law of ther- 
modynamics so as to yield a positive entropy generation. 
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engineering volume, the result is the macroscopic level engineering Bernoulli equa- 
tion. 

Constitutive equations, when combined with the equations of change, may or 
may not comprise a determinate mathematical system. For a determinate math- 
ematical system, Le., number of unknowns = number of independent equations, 
the solutions of the equations of change together with the constitutive equations 
result in the velocity, temperature, pressure, and concentration profiles within the 
system of interest. These profiles are called theoretical (or, analytical) solutions. A 
theoretical solution enables one to design and operate a process without resorting 
to experiments or scaleup. Unfortunately, the number of such theoretical solutions 
is small relative to the number of engineering problems which must be solved. 

If the required number of constitutive equations is not available, i.e., number of 
unknowns > number of independent equations, then the mathematical description 
at the microscopic level is indeterminate. In this case, the design procedure appeals 
to an experimental information called process correlation to replace the theoretical 
solution. All process correlations are limited to a specific geometry, equipment 
configuration, boundary conditions, and substance. 

1.2 DEFINITIONS 
The functional notation 

cp = cp ( t ,  2, Y ,  (1.2-1) 

indicates that there are three independent space variables, x, y, z, and one inde- 
pendent time variable, t. The cp on the right side of Eq. (1.2-1) represents the 
functional form, and the cp on the left side represents the value of the dependent 
variable, cp. 

1.2.1 S teady-S tat e 

The term steady-state means that at a particular location in space, the dependent 
variable does not change as a function of time. If the dependent variable is cp, then 

(1.2-2) 

The partial derivative notation indicates that the dependent variable is a func- 
tion of more than one independent variable. In this particular case, the independent 
variables are (z, y, z)  and t .  The specified location in space is indicated by the 
subscripts (2, y ,  z )  and Eq. (1.2-2) implies that cp is not a function of time, t. 
When an ordinary derivative is used, Le., dpldt  = 0, then this implies that cp is a 
constant. It is important to distinguish between partial and ordinary derivatives 
because the conclusions are very different. 
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Example 1.1 A Newtonian fluid with constant viscosity, p, and density, p, is 
initially at rest in a very long horizontal pipe of length L and radius R. At t = 0, 
a pressure gradient [APIIL is imposed on the system and the volumetric flow rate, 
Q, is expressed as 

where r is the dimensionless time defined by  

and A1 = 2.405, A2 = 5.520, AB = 8.654, etc. Determine the volumetric flow rate 
under steady conditions. 

Solution 

Steady-state solutions are independent of time. To eliminate the time from the 
unsteady-state solution, we have to let t --+ 00. In  that case, the exponential term 
approaches zero and the resulting steady-state solution is 

which is known as the Hagen-Poiseuille law. 

Comment: 
negative sign to assure that the solution does not blow as t ---f 00. 

If  time appears in the exponential term, then the term must have a 

Example 1.2 A cylindrical tank is initially half f u l l  with water. The water is fed 
into the tank from the top and it leaves the tank from the bottom. The volumetric 
flow rates are different from each other. The differential equation describing the 
time rate of change of the height of water in the tank is given by  

dh 
d t  - = 6 - 8 &  

where h is the height of water in meters. Calculate the height of water in the tank 
under steady conditions. 

Solution 

Under steady conditions dhldt must be zero. Then 

0 = 6 - S &  

or, 
h = 0.56m 
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1.2.2 Uniform 
The term uniform means that at a particular instant in time, the dependent vari- 
able is not a function of position. This requires that all three of the partial deriva- 
tives with respect to position be zero, i.e., 

(1.2-3) 

The variation of a physical quantity with respect to position is called gradient. 
Therefore, the gradient of a quantity must be zero for a uniform condition to exist 
with respect to that quantity. 

1.2.3 Equilibrium 
A system is in equilibrium if both steady-state and uniform conditions are met si- 
multaneously. An equilibrium system does not exhibit any variations with respect 
to position or time. The state of an equilibrium system is specified completely by 
the non-Euclidean coordinates2 (P, V, T ) .  The response of a material under equi- 
librium conditions is called property correlation. The ideal gas law is an example 
of a thermodynamic property correlation that is called an equation of state. 

1.2.4 Flux 
The flux of a certain quantity is defined by 

Flow of a qusntity/Time - Flow rate Flux = - 
Area Area 

(1.2-4) 

where area is normal to the direction of flow. The units of momentum, energy, 
mass and molar fluxes are Pa ( N/ m2, or kg/ m. s2), W/ m2 ( J/ m2. s), kg/m2. s, 
and kmol/ m2. s, respectively. 

1.3 MATHEMATICAL FORMULATION OF 
THE BASIC CONCEPTS 

In order to obtain the mathematical description of a process, the general inventory 
rate equation given by Eq. (1.1-1) should be translated into mathematical terms. 

1.3.1 Inlet and Outlet Terms 
A quantity may enter or leave the system by two means: (i) by inlet and/or outlet 
streams, (ii) by exchange of a particular quantity between the system and its 

2A Euclidean coordinate system is one in which length can be defined. The coordinate system 
(P, V, T) is non-Euclidean. 
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surroundings through the boundaries of the system. In either case, the rate of 
input and/or output of a quantity is expressed by using the flux of that particular 
quantity. The flux of a quantity may be either constant or dependent on position. 
Thus, the rate of a quantity can be determined as 

[ (Flux)(Area) if flux is constant 

(1.3-1) 
Flux d A  if flux is position dependent 

Inlet/Outlet rate = 

where A is the area perpendicular to the direction of the flux. The differential 
areas in cylindrical and spherical coordinate systems are given in Section A.l in 
Appendix A. 

Example 1.3 Note that the velocity can be interpreted as the volumetric flux 
( m3/m2. s) .  Therefore, volumetric flow rate can be calculated by the integration 
of velocity distribution over the cross-sectional area that is perpendicular to the 
flow direction. Consider the flow of a very viscous fluid in the space between two 
concentric spheres as shown in Figure 1.1. The velocity distribution is given by 
Bird et al. (1960) as 

U e  = 
2 pCLE(c) sin 0 

where 
1 +cos€ 
1-cose E ( € )  = ln ( ) 

Use the velocity profile to find the volumetric flow rate, &. 

Solution 

Since the velocity is in the 0-direction, the differential area that is perpendicular 
to the flow direction is given by Eq. (A.l-9) in Appendix A as 

d A  = r sin 0 drdq5 (1) 

Therefore, the volumetric flow rate is 
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Figure 

FORMULATION OF THE BASIC CONCEPTS 7 

1.1 Flow between concentric spheres. 

Substitution of the velocity distribution into Eq. (2) and integration gives 

1.3.2 Rate of Generation Term 
The generation rate per unit volume is denoted by % and it may be either constant 
or dependent on position. Thus, the generation rate is expressed as 

(%)(Volume) if % is constant 

Generation rate = (1.3-2) /I/ %dV 
if % is position dependent 

V 

where V is the volume of the system in question. It is also possible to have the 
depletion of a quantity. In that case, the plus sign in front of the generation term 
must be replaced by the minus sign, i.e., 

Depletion rate = - Generation rate (1.3-3) 
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Example 1.4 Energy generation rate per unit volume as a result of an electric 
c u m n t  passing through a rectangular plate of cross-sectional area A and thickness 
L is given by 

8 = %osin (7) 
where !R is in W/m3. Calculate the total energy generation rate within the plate. 

Solution 

Since Y? is dependent on position, energy generation rate is calculated by integration 
of Y? over the volume of the plate, ie., 

XX 

Energy generation rate = A %lo 1' sin (F) dx 

1.3.3 Rate of Accumulation Term 
The rate of accumulation of any quantity cp is the time rate of change of that 
particular quantity within the volume of the system. Let p be the mass density 
and 8 be the quantity per unit mass. Thus, 

Total quantity of cp = /// p @ d V  
V 

and the rate of accumulation is given by 

Accumulation rate = d dt  (/I/ p @ dV) 

(1.3-4) 

(1.3-5) 

If 8 is independent of position, then Eq. (1.3-5) simplifies to 

(1.3-6) 
d 
d t  

Accumulation rate = - (m +) 

where m is the total mass within the system. 
The accumulation rate may be either positive or negative depending on whether 

the quantity is increasing or decreasing with time within the volume of the system. 

1.4 SIMPLIFICATION OF THE RATE 
EQUATION 

In this section, the general rate equation given by Eq. (1.1-1) will be simpliied for 
two special cases: (i) steady-state transport without generation, (ii) steady-state 
transport with generation. 
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1.4.1 Steady-State 'lkansport Without Generation 
For this case Eq. (1.1-1) reduces to 

Rate of input of cp = Rate of output of cp (1.41) 

Equation (1.41) can also be expressed in terms of flux as 

/L,. (Inlet flux of cp) dA = /Lo., (Outlet flux of cp) dA (1.42) 

For constant inlet and outlet fluxes Eq. (1.42) reduces to 

( Inlet flux ) ( Inlet ) = ( Outlet flux ) ( Outlet ) 
of cp area of cp area (1.43) 

If the inlet and outlet areas are equal, then Eq. (1.43) becomes 

Inlet flux of cp = Outlet flux of cp (1.44) 

It is important to note that Eq. (1.44) is valid as long as the areas perpendicular 
to the direction of flow at the inlet and outlet of the system are equal to each other. 
The variation of the area in between does not affect this conclusion. Equation 
(1.44) obviously is not valid for the transfer processes taking place in the radial 
direction in cylindrical and spherical coordinate systems. In this case either Eq. 
(1.42) or Eq. (1.43) should be used. 

Example 1.5 Consider a solid cone of circular cross-section whose lateral surface 
is well insulated as shown in Figure 1.2. The diameters at x = 0 and x = L are 
25cm and 5cm, respectively. If the heat flw at x = 0 is 45W/m2 under steady 
conditions, determine the heat transfer rate and the value of the heat flux at x = L. 

Figure 1.2 Heat transfer through a solid circular cone. 
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Solution 

For steady-state conditions without generation, the heat transfer rate is constant 
and can be determined from Eq. (1.3-1) as 

Heat transfer rate = (Heat flux),=, (Area),=, 

Since the cross-sectional area of the cone is rD2/4,  then 

Heat transfer rate = (45) [r ( o y ] =  2.21 

The value of the heat transfer rate is also 2.21 W at x = L. However, the heat flux 
does depend on position and its value at x = L is 

2.21 

[T (0.05)2 /4] 
(Heat  flu^)^=^ = = 1126 W/ m2 

Comment: Heat flux values are different from each other even though the heat 
flow rate is constant. Therefore, it is important to specify the area upon which a 
given heat flux is based when the area changes as a function of position. 

1.4.2 Steady-State Transport With Generation 
For this case Eq. (1.1-1) reduces to 

) = ( 02E& ) (1.45) 
Rate of ( input Rateof of cp ) + (  generation of cp 

Equation (1.45) can also be written in the form 

(Outlet flux of cp) dA (1.46) 

where R is the generation rate per unit volume. If the inlet and outlet fluxes 
together with the generation rate are constant, then Q. (1.46) reduces to 

JJLs, RdV = JLoue JJ,,. (Inlet flux of Cp) d~ + 

( InIet flux ) ( rri: ) + 

( System ) = ( Outlet flux ) ( Outlet ) 
of cp volume of cp area 

(1.47) 

Example 1.6 An exothermic chemical reaction takes place in a 20 cm thick slab 
and the energy generation rate per unit volume is 1 x lo6 W/ m3. The steady-state 
heat transfer rate into the slab at the left-hand side, i.e., at x = 0 ,  is 280W. 
Calculate the heat transfer rate to the surroundings from the right-hand side of the 
slab, Le., at x = L. The surface area of each face is 40cm2. 



1.4. SIMPLIFICATION OF THE RATE EQUATION 11 

Solution 

At steady-state, there is no accumulation of energy and the use of Eq. (1.4-5) gives 

(Heat transfer rate),=L = (Heat transfer rate),,, + $2 ( Volume) 
= 280 + (1 x lo6) (40 x 10-4)(20 x = 1080 W 

The values of the heat fluxes at x = 0 and x = L are 
280 

= 70 x lo3 W/ m2 
40 x 10-4 (Heat flux),=, = 

(Heat flux),=L = 40 lo8O 10-4 = 270 x lo3 W/ m2 

Comment: Even though the steady-state conditions prevail, both the heat transfer 
rate and the heat flux are not constant. This is due to the generation of energy 
within the slab. 
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PROBLEMS 

CHAPTER 1. INTRODUCTION 

1.1 One of your friends writes down the inventory rate equation for money as 

Change in amount Service Dollars 
of dollars ) = (Interest) - ( charge ) ( deposited ) 

Checks 
- ( written ) 

Identify the terms in the above equation. 

1.2 
following cases: 

a) The height of water in a dam during a heavy rain, 
b) The weight of an athlete during a marathon, 
c )  The temperature of an ice cube as it melts. 

Determine whether steady- or unsteady-state conditions prevail for the 

1.3 What is the form of the function p(x, y) if a2p/ax&j = O? 
(Answer: p(x, y) = f(z) + h(y) + C, where C is a constant) 

1.4 Steam at a temperature of 200 "C flows through a pipe of 5 cm inside diameter 
and 6cm outside diameter. The length of the pipe is 30m. If the steady rate of 
heat loss per unit length of the pipe is 2W/m, calculate the heat fluxes at the 
inner and outer surfaces of the pipe. 
(Answer: 12.7 W/ m2 and 10.6 W/ m2) 

1.5 Dust evolves at a rate of 0.3 kg/ h in a foundry which has the dimensions of 
20 m x 8 m x 4 m. According to ILO (International Labor Organization) standards, 
the dust concentration should not exceed 20 mg/ m3 to protect workers' health. 
Determine the volumetric flow rate of ventilating air to meet the standards of ILO. 
(Answer: 15,000 m3/ h) 

1.6 An incompressible Newtonian fluid flows in the z-direction in space between 
two parallel plates that are separated by a distance 2B as shown in Figure 1.3 (a). 
The length and the width of each plate are L and W, respectively. The velocity 
distribution under steady conditions is given by 
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T 

Figure 1.3 Flow between parallel plates. 

a) For the coordinate system shown in Figure 1.3 (b), show that the velocity 
distribution takes the form 

b) Calculate the volumetric flow rate by using the velocity distributions given 
above. What is your conclusion? 

Answer: b) For both cases & = 

1.7 An incompressible Newtonian fluid flows in the z-direction through a straight 
duct of triangular cross-sectional area, bounded by the plane surfaces y = H, 
y = f i x  and y = - fix. The velocity distribution under steady conditions is 
given by 

(9 - H )  (3x2 - y2) 
PPI 21, = - 

4 pLH 
Calculate the volumetric flow rate. 

180 pL 
Answer: & =  
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1.8 For radial flow of an incompressible Newtonian fluid between two parallel 
circular disks of radius R2 as shown in Figure 1.4, the steady-state velocity distri- 
bution is (Bird et al., 1960) 

where R1 is the radius of the entrance hole. Determine the volumetric flow rate. 

Flow in 

Figure 1.4 Flow between circular disks. 

Answer: Q = - 



Chapter 2 

Molecular 
Transport 

and Convective 

The total flux of any quantity is the sum of the molecular and convective fluxes. The 
fluxes arising from potential gradients or driving forces are called molecular fZuxes. 
Molecular fluxes are expressed in the form of constitutive (or, phenomenological) 
equations for momentum, energy, and mass transport. Momentum, energy, and 
mass can also be transported by bulk fluid motion or bulk flow and the resulting 
flux is called convective fZm. This chapter deals with the formulation of molecular 
and convective fluxes in momentum, energy and mass transport. 

2.1 MOLECULAR TRANSPORT 
Substances may behave differently when subjected to the same gradients. Consti- 
tutive equations identify the characteristics of a particular substance. For example, 
if the gradient is momentum, then the viscosity is defined by the constitutive equa- 
tion called Newton’s law of viscosity. If the gradient is energy, then the thermal 
conductivity is defined by Fourier’s law of heat conduction. If the gradient is con- 
centration, then the diffusion coefficient is defined by Fick’s first law of diffusion. 
Viscosity, thermal conductivity and diffusion coefficient are called transport prop- 
erties. 

2.1.1 Newton’s Law of Viscosity 
Consider a fluid contained between two large parallel plates of area A, separated 
by a very small distance Y. The system is initially at rest but at time t = 0, 
the lower plate is set in motion in the x-direction at a constant velocity V by 
applying a force F in the x-direction while the upper plate is kept stationary. 
The resulting velocity profiles are shown in Figure 2.1 for various times. At t = 0, 

15 
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the velocity is zero everywhere except at the lower plate which has a velocity V. 
Then the velocity distribution starts to develop as a function of time. Finally, at 
steady-state, a linear velocity distribution is obtained. 

Direction of 
Momentum Flux 

Figure 2.1 Velocity profile development in flow between parallel plates. 

Experimental results show that the force required to maintain the motion of 
the lower plate per unit area (or, momentum flux) is proportional to the velocity 
gradient, i.e., 

(2.1-1) V F 
A v y  - Transport - - P - - -  

Momentum property Velocity 
flux gradient 

and the proportionality constant, p, is the viscosity. Equation (2.1-1) is a macro- 
scopic equation. Microscopic form of this equation is given by 

(2.1-2) 

which is known as Newton's law of viscosity and any fluid obeying Eq. (2.1-2) 
is called a Newtonian fluid. The term i., is called rate of strain' or rate of 
deformation or shear rate. The term ryz is called shear stress. It contains two 
subscripts, z which represents the direction of force, and y which represents the 
direction of the normal to the surface on which the force is acting. Therefore, it is 
possible to interpret ryx as the flux of z-momentum in the y-direction. 

Since the velocity gradient is negative, i.e., v, decreases with increasing y, a 
negative sign is introduced on the righbhand side of Eq. (2.1-2) so that the stress 
in tension is positive. 

Lo is stretched to a length L, then the strain is (L - Lo)/& 
'Strain is defined as deformation per unit length. For example, if a spring of original length 
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In SI units, shear stress is expressed in N/ m2( Pa) and velocity gradient in 
( m/ s)/ m. Thus, the examination of Eq. (2.1-1) indicates that the units of viscosity 
in SI units are 

N.s (kg.m/s2).s kg = pa.~= - = =- 
(m/s) /m m2 m2 m. s 
N/ m2 

P =  

Most viscosity data in the cgs system are usually reported in g/( cm. s), known as 
a poise (P), or in centipoise (1 CP = 0.01 P) where 

1Pa.s = 10 P = io3 CP 

Viscosity varies with temperature. While liquid viscosity decreases with in- 
creasing temperature, gas viscosity increases with increasing temperature. Con- 
centration also affects viscosity for solutions or suspensions. Viscosity values of 
various substances are given in Table D.l in Appendix D. 

Example 2.1 A Newtonian fluid with a viscosity of 10 cP is placed between two 
large parallel plates. The distance between the plates is 4mm. The lower plate is 
pulled in the positive x-dimtion with a force of 0.5N, while the upper plate is 
pulled in the negative x-direction with a force of 2N. Each plate hm an area of 
2.5m2. If the velocity of the lower plate is 0.1 m/s, calculate: 

a) The steady-state momentum flux, 
b) The velocity of the upper plate, 
c )  Parts (a)  and (b) for a Newtonian fluid with p = 1 cP. 

Solution 

F = - 2 N -  

Y=4mm 

__* F = 0.5 N 
v, = 0.1 m/s 

't, 
a) The momenturn flux (or, force per unit area) is 

F ryz = - A 
0.5 + 2 =-- - 1Pa 2.5 
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b) h m  Eq. (2.1-2) 

Substitution of the values into Eq. (1) gives 

= - 0.3m/s 
(i)(4 x 10-3) 

i o  x 10-3 
v2 = 0.1 - 

The minus sign indicates that the upper plate moves in the negative x-direction. 
Note that the velocity gradient is dvxldy = - 100s-l. 

c) Since the momentum flux is the same irrespective of the fluid, ryx = 1 Pa. 

= - 3.9m/s 
(~(4 x 10-3) 

1 x 10-3 
= 0.1 - (3) 

The velocity gradient in this m e  is dv,ldy = - 1000 s-l. 

Comment: 
tum. Therefore, the decrease in viscosity causes a steeper velocity gradient. 

Viscosity is a measure of the ability of the fluid to transfer momen- 

2.1.2 
Consider a slab of solid material of area A between two large parallel plates of a 
distance Y apart. Initially the solid material is at a temperature To throughout. 
Then the lower plate is suddenly brought to a slightly higher temperature TI and 
maintained at that temperature. The second law of thermodynamics states that 
heat flows spontaneously from the higher temperature 2'1 to the lower temperature 
To. As time proceeds, the temperature profile in the slab changes, and ultimately 
a linear steady-state temperature is attained as shown in Figure 2.3. 

Fourier's Law of Heat Conduction 

Increasing time 

c 

To Temperature T, 
Direction of 
Energy Flux 

Figure 2.3 Temperature profile development in a solid slab between two plates. 
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Experimental measurements made at steady-state indicate that the rate of heat 
flow per unit area is proportional to the temperature gradient, i.e., 

6 TI - To - =  k 
A v Y 

Transport - 
Energy DroDertv Temperature . .  I 

flux gradient 

The proportionality constant, k, between the energy 

(2.1-3) 

flux and the temperature 
gradient is called thermal conductivity. In SI units, Q is in W( J/s), A in m2, 
dT/dx  in K/ m, and k in W/( m. K). The thermal conductivity of a material is, 
in general, a function of temperature. However, in many engineering applications 
the variation is sufficiently small to be neglected. Thermal conductivity values for 
various substances are given in Table D.2 in Appendix D. 

The microscopic form of a. (2.1-3) is known as Fourier's law of heat conduction 
and is given by 

(2.1-4) 

in which the subscript y indicates the direction of the energy flux. The negative sign 
in Eq. (2.1-4) indicates that heat flows in the direction of decreasing temperature. 

Example 2.2 One side of a wpper slab receives a net heat input at a rate of 
5000W due to radiation. The other face is held at a temperature of 35°C. If 
steady-state conditions prevail, calculate the surface temperature of the side receiv- 
ing radiant energy. The surface area of each face is 0.05m2, and the slab thickness 
is 4cm. 

Solution 

Physical properties 

For copper: k = 398 W/ m. K 
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Analysis 

System: Copper slab 

Under steady conditions with no internal generation, conservation statement for 
energy d u c e s  to 

Rate of energy in = Rate of energy out = 5000W 

Since the slab area across which heat transfer takes place is constant, the heat flux 
through the slab is also constant and is given by 

4 --- 5000 - IOO,OOO w/ m2 ' - 0.05 

Therefore, the use of Fourier's law of heat conduction, Eq. (2.1-4), gives 
r0.04 r35 

or, 
To = 45.1 "C 

2.1.3 
Consider two large parallel plates of area A. The lower one is coated with a material 
A which has a very low solubility in the stagnant fluid B filling the space between 
the plates. Suppose that the saturation concentration of A is pAo and A undergoes 
a rapid chemical reaction at the surface of the upper plate and its concentration 
is zero at that surface. At t = 0 the lower plate is exposed to the fluid B and as 
time proceeds, the concentration profile develops as shown in Figure 2.4. Since 
the solubility of A is low, an almost a linear distribution is reached under steady 
conditions. 

Fick's First Law of Diffusion 

Increasing time 

U 

s 
X 

PA0 
Concentration 

'L 
Direction of 
Mass Flux 

Figure 2.4 Concentration profile development between parallel plates. 
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Experimental measurements indicate that the mass flux of A is proportional to 
the concentration gradient, i.e., 

- -  h A  - PA, 
Y - DAB 

A w 
Transport 

flux of A gradient 
Mass property Concentration 

(2.1-5) 

where the proportionality constant, DAB, is called the binary molecular mass dif- 
fusivity (or, difusion coeficient) of species A through B. The microscopic form of 
Eq. (2.1-5) is known as Fick’s first law of diffusion and is given by 

~ A ~ = - D A B P - -  
dY I (2.1-6) 

where j A s  and W A  represent the molecular mass flux of species A in the y-direction 
and mass fraction of species A, respectively. If the total density, p, is constant, 
then the term p (dwA/dy) can be replaced by dpA/dy and Eq. (2.1-6) becomes 

p = constant (2.1-7) 

To measure VAB experimentally, it is necessary to design an experiment (like the 
one given above) in which the convective mass flux is almost zero. 

In mass transfer calculations, it is sometimes more convenient to express con- 
centrations in molar units rather than mass units. In terms of molar concentration, 
Fick’s first law of diffusion is written as 

(2.1-8) 

where J:s and ZA represent the molecular molar flux of species A in the y-direction 
and mole fraction of species A, respectively. If the total molar concentration, c, 
is constant, then the term c ( d z ~ / d y )  can be replaced by dcA/dy and Eq. (2.1-8) 
becomes -1 c =  constant (2.1-9) 

Diffusion coefficient has the dimensions of m2/s in SI units. Typical values 
of DAB are given in Appendix D. Examination of these values indicates that the 
diffusion coefficient of gases has an order of magnitude of m2/ s under a t m e  
spheric conditions. Assuming ideal gas behavior, the pressure and temperature 
dependence of the diffusion coefficient of gases may be estimated from the relation 

(2.1-10) 
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Diffusion coefficients for liquids are usually in the order of lo-' m2/ s. On the other 
hand, DAB values for solids vary from lo-'' to m2/ s. 

Example 2.3 Air at atmospheric pressuw and 95 "C flows at 20 m/ s over a flat 
plate of naphthalene 80cm long in the direction of flow and 60cm wide. Experi- 
mental measurements report the molar concentration of naphthalene in the air, CA,  
as a function of distance x from the plate as follows: 

X CA 
( cm) ( mol/ m3) 

0 0.117 
10 0.093 
20 0.076 
30 0.063 
40 0.051 
50 0.043 

Determine the molar flux of naphthalene from the plate surface under steady con- 
ditions. 

Solution 

Physical properties 

Diflusion weficient of naphthalene (d) in air (a) at 95°C (368K) : 

= 0.84 x m2/ s 

Assumptions 

1. The total molar concentration, c, is constant. 

2. Naphthalene plate is also at a temperature of 95OC. 

Analysis 

The molar flux of naphthalene transferred from the plate surface to the Bowing 
stream is determined from 

I t  is possible to calculate the concentration gradient on the surface of the plate by 
using one of the several methods explained in Section A.5 in Appendix A. 
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Graphical method 

The plot of CA versus x is given in Figure 2.5. The slope of the tangent t o  the 
curve ut x = 0 is - 0.0023 ( mol/m3)/cm. 

0.12 

0 10 20 30 40 50 

x (cm) 

Figure 2.5 Concentration of species d as a function of position. 

Curve fitting method 

Semi-log plot of CA uemus x is shown in Figure 2.6. 

0.08 - 

m̂  0.06- 
E 

- 0.04- L 
8 
3 

0.02 - 

0.01 I I I I 

0 IO 20 30 40 

x (cm) 

Figure 2.6 Concentration of species d as a function of position. 
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It appears from Figure 2.6 that a straight line represents the data fairly well. The 
equation of this line can be determined by  the method of least squares in the form 

y = m ~ + b  (2) 

where 
y 1OgcA (3) 

To determine the values of m and b from Eqs. (A.6-10) and (A.6-11) in Appendix 
A,  the required values are calculated as follows: 

Yi Xi XiYi 23 

- 0.932 0 0 0 
- 1.032 10 - 10.32 100 
- 1.119 20 - 22.38 400 
- 1.201 30 - 36.03 900 
- 1.292 40 - 51.68 1600 
- 1.367 50 - 68.35 2500 

vi = - 6.943 = 150 ~iyi = - 188.76 X? = 5500 

The values of m and b are 

(6)(- 188.76) - (150)(-6.943) 
(6)(5500) - (150)' m =  = - 0.0087 

(-6.943)(5500) - (150)(- 188.76) 
(6)(5500) - (150)' b =  = -0.94 

Therefore, Eq. (2) takes the form 

Diferentiation of Eq. (5) gives the concentration gradient on the surface of the 
plate as 

= - (0.115)(0.02) = - 0.0023 ( mol/ m3)/ cm = - 0.23 mol/ m4 (6) Wz=, 
Substitution of the numerical values into Eq. (1) gives the molarflax of naphthalene 
from the surface as 

Jiz = (0.84 x 10-5)(0.23) = 19.32 x 10- mol/ m2. s 
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2.2 DIMENSIONLESS NUMBERS 
Newton’s “law” of viscosity, Fourier’s “law” of heat conduction, and Fick’s first 
“law” of diffusion, in reality, are not laws but defining equations for viscosity, p, 
thermal conductivity, k ,  and diffusion coefficient, DAB. The fluxes ( T ~ ~ ,  qy, j ~ , )  
and the gradients (dw,/dy, d T / d y ,  dpA/dy )  must be known or measurable for the 
experimental determination of p, k, and DAB. 

Newton’s law of viscosity, &. (2.1-2), Fourier’s law of heat conduction, Eq. 
(2.1-4), and Fick’s first law of diffusion, Eqs. (2.1-7) and (2.1-9), can be generalized 
as 

Molecular Transport Gradient of 
driving force (2.2-1) 

Although the constitutive equations are similar, they are not completely analogous 
because the transport properties (p,  k ,  VAB)  have different units. These equations 
can also be expressed in the following forms: 

p = constant ,owz = momentum/volume P d  
P dY 

ryx = - - - ( P V 2 )  

(2.2-2) 

( p C p ~ )  p e p  = constant p C p ~  = energy/volume 
k d  

%I=--- p c p  dY 
(2.2-3) 

p = constant p A  = mass of A/volume dpA j~~ = -DAB-  
dY 

The term p / p  in Eq. (2.2-2) is called momentum diflwiwity or kinematic vis- 
cosity, and the term k/p(?p in &. (2.2-3) is called t h e m a l  diffwivity. Momentum 
and thermal diffusivities are designated by u and a,  respectively. Note that the 
terms u, a, and DAB all have the same units, m2/s, and Eqs. (2.2-2)-(2.2-4) can 
be expressed in the general form as 

(2.2-4) 

(2.2-5) Molecular Gradient of ( flu ) = (Diffusivity) ( Quantity/Volume 

The quantities that appear in Eqs. (2.2-1) and (2.2-5) are summarized in Table 
2.1. Since the terms u, a,  and VAB all have the same units, the ratio of any two 
of these diffusivities results in a dimensionless number. For example, the ratio of 
momentum diffusivity to thermal diffusivity gives the Prandtl number, Pr: 

CPP Prandtl number = Pr = - = - a k  (2.2-6) 

The Prandtl number is a function of temperature and pressure. However, its d s  
pendence on temperature, at least for liquids, is much stronger. The order of 
magnitude of the Prandtl number for gases and liquids can be estimated as 
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Table 2.1 
mass (or, mole) transfer in one-dimension. 

Analogous terms in constitutive equations for momentum, energy, and 

Momentum Energy Mass Mole 

Molecular flux T Y X  QY j A .  J;. 

Transport property CL IC DAB DAB 

Gradient of driving force 

Diffusivity v CY DAB DAB 
Quantity/Volume P V X  p c P T  P A  cA 

= 1 for gases (103)(10-5) 
10-2 

Pr = 

= 10 for liquids (103)(10-3) Pr = 
10-1 

The Schmidt  number is defined as the ratio of the momentum to mass difhsivities: 

Schmidt number = Sc = - = - 
DAB P D A B  

The order of magnitude of the Schmidt number for gases and liquids can be esti- 
mated as 

(2.2-7) Y c1 

for gases 
10-5 

sc = (1)(10-5) = 

= lo3 for liquids sc = ( lo3)( 

Finally, the ratio of Q to 'DAB gives the Leu16 number, Le: 

SC - -- Q k Lewis number = Le = - = 
DAB ~ C P D A B  Pr 

2.3 CONVECTIVE TRANSPORT 
Convective flux or bulk flux of a quantity is expressed as 

Characteristic 
= (Quantity/Volume) velocity 

( Coygtive 

(2.2-8) 

(2.3-1) 
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When air is pumped through a pipe, it is considered to be a single phase and 
a single component system. In this case, there is no ambiguity in defining the 
characteristic velocity. However, if the oxygen in the air were reacting, then the 
fact that air is composed predominantly of two species, 0 2  and Na, had to be taken 
into account. Hence, air should be considered a single phase, binary component 
system. For a single phase system composed of n components, the general definition 
of a characteristic velocity is given by 

n 

(2.3-2) 
a 

where p i  is the weighting factor and vi is the velocity of a constituent. The three 
most common characteristic velocities are listed in Table 2.2. The term vi in the 
definition of the volume average velocity represents the partial molar volume of a 
constituent. The molar average velocity is equal to the volume average velocity 
when the total molar concentration, c, is constant. On the other hand, the mass 
average velocity is equal to the voIume average velocity when the total mass density, 
p, is constant. 

Table 2.2 Common characteristic velocities. 

Characteristic Velocity Weighting Factor Formulation 

Mass average Mass fraction ( w i )  21 = xi w;v; 

Molar average Mole fraction ( x i )  v* = xi xivi 

Volume average Volume fraction (ciVi) v' = xi ciVivi 

The choice of a characteristic velocity is arbitrary. For a given problem, it is 
more convenient to select a characteristic velocity which will make the convective 
flux zero and thus yield a simpler problem. In the literature, it is common practice 
to use the molar average velocity for dilute gases, i.e., c = constant, and the mass 
average velocity for liquids, i.e., p = constant. 

It should be noted that the molecular mass flux expression given by Eq. (2.1- 
6 )  represents the molecular mass flux with respect to the mass average velocity. 
Therefore, in the equation representing the total mass flux, the characteristic v e  
locity in the convective mass flux term is taken as the mass average velocity. On 
the other hand, Q. (2.1-8) is the molecular molar flux with respect to the mw 
lar average velocity. Therefore, the molar average velocity is considered to be the 
characteristic velocity in the convective molar flux term. 

2.4 TOTAL FLUX 
Since the total flux of any quantity is the sum of its molecular and convective 
fluxes, then 
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Transport ) ( Gradient of ) 
property driving force 

L 4 -c 
Molecular flux 

Quantity Characteristic +[ Volume ) ( velocity 
d * 

Convective flux 

( 2:' ) = (Diffusivity) ( Q::z$::me 
L 

Molecular flux 

Quantity Characteristic 
+ ( Volume ) ( velocity 

Convective flux 

The quantities that appear in Eqs. (2.4-1) and (2.4-2) are given in Table 2.3. 

Table 2.3 
onedimension. 

Analogous terms in flux expressions for various types of transport in 

Convective Type of Total Molecular Constraint Transport Flux Flux Flux 

dvx None 

d ( P 4  p = const. 

-P- 
Momentum rYZ dY (P  vx) VY 

-u- 
dY 

Energy eY 

None &A 
- P ~ A B  - 

d!l 

dpA p = const. -DAB - 
dY 

PA% Mass WA, 
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The general flux expressions for momentum, energy and mass transport in dif- 

From Eq. (2.42), the ratio of the convective flux to the molecular flux is given 
ferent coordinate systems are given in Appendix C. 

bY 
Convective flux (Quantity/Volume) (Characteristic velocity) 
Molecular flux (Diffusivity) (Gradient of Quantity/Volume) - - (2.43) 

Since the gradient of a quantity represents the variation of that particular quantity 
over a characteristic length, the “Gradient of Quantity/Volume” can be expressed 
as 

Difference in Quantity/Volume 
Characteristic length Gradient of Quantity/Volume = (2.4-4) 

The use of Eq. (2.44) in Eq. (2.43) gives 

Convective flux (Characteristic velocity)(Characteristic length) 
Molecular flux Diffusivity - - (2.45) 

The ratio of the convective flux to the molecular flux is known as the Peclet number, 
Pe. Therefore, Peclet numbers for heat and mass transfers are 

VchLch PeM = - 
DAB 

(2.46) 

(2.47) 

Hence, the total flux of any quantity is given by 

Molecular flux Pe << 1 
Molecular flux + Convective flux Pe N 1 (2.48) 
Convective flux Pe >> 1 

2.4.1 
The mass flow rate of species i entering and/or leaving the system, mi, is expressed 

Rate of Mass Entering and/or Leaving the System 

as 

Gradient of 
Mass of i/Volume - L Molecular mass flux of species i 

1 
Mass of i Characteristic ) I ( Flow ) (2,49) 

+ ,( Volume ) ( velocity area 
/ 

7 -  

Convectivemass flux of specie= J 
In general, the mass of species i may enter and/or leave the system by two means: 
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0 Entering and/or leaving conduits, 

0 Exchange of mass between the system and its surroundings through the 
boundaries of the system, Le., interphase transport. 

When a mass of species i enters and/or leaves the system by a conduit(s), the 
characteristic velocity is taken as the average velocity of the flowing stream and it 
is usually large enough to neglect the molecular flux compared to the convective 
flux, Le., PQ >> 1. Therefore, &. (2.4-9) simplifies to 

Mass of i Average 
mi = ( volume ) ( velocity ) ( !Z ) (2.4-10) 

(2.411) 

Summation of Eq. (2.411) over all species leads to the total mass flow rate, k, 
entering and/or leaving the system by a conduit in the form 

-1 
In terms of molar basis, Eqs. (2.4-11) and (2.412) take the form 

I hi = ci ( v )A  = ci Q I 

(2.412) 

(2 .4  13) 

17i = c ( v ) A  = CQ I (2.414) 

On the other hand, when a mass of species i enters and/or leaves the system as 
a result of interphase transport, the flux expression to be used is dictated by the 
value of the Peclet number as shown in &. (2.48). 

Example 2.4 Liquid t3 is flowing over a vertical plate as shown in Figure 2.7. 
The surface of the plate is coated with a material A which has a very low solubility 
in liquid B. The concentration distribution of species A in the liquid is given by 
Bird et al. (1960) as 

where CA, is the solubility of A in B, q is the dimensionless parameter defined by 

and r(4/3) is the gamma function defined by 
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L Surface coated with species A 

Figure 2.7 Solid dissolution into a falling film. 

Calculate the rate of transfer of species A into the flowing liquid. 

Solution 

Assumptions 

1. The total molar concentration in the liquid phase is constant. 

2. In the x-direction, the convective flux is small compared to the molecular 
flux. 

Analysis 

The molar rate of transfer of species A can be calculated from the expression 

n A  = iw 1" NA, lZ=o 
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where the total molarflvsc of species A at the interface, NA,~~=o, is given by  

B y  the application of the chain rule, Eq. (2) takes the form 

On the other hand, the term dcAldq can be calculated by the application of the 
Leibnitz formula, ie., Eq. (A.4-3) in Appendix A, as 

Substitution of Eqs. (4) and (5) into Eq. (3) yields 

Finally, the w e  of Eq. (6) in Eq. (1) gives the molar rate of transfer of species A 

2.4.2 Rate of Energy Entering and/or Leaving the System 
The rate of energy entering and/or leaving the system, E, is expressed as 

Gradient of 
Energy/Volume 

L Molecular energy flux 

+ (Energy) ( Characteristic )] ( Fhg ) (2.415) 
Volume velocity 

\ / .. 
Convective energy flux 

As in the case of mass, energy may enter or leave the system by two means: 
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0 By inlet and/or outlet streams, 

0 By exchange of energy between the system and its surroundings through the 

When energy enters and/or leaves the system by a conduit(s), the characteristic 
velocity is taken as the average velocity of the flowing stream and it is usually large 
enough to neglect the molecular flux compared to the convective flux, i.e., PeH >> 1. 
Therefore, J3q. (2.415) simplifies to 

boundaries of the system in the form of heat and work. 

= (Energy) ( Average ) ( Flow ) 
Volume velocity area (2.416) 

Energy per unit volume, on the other hand, is expressed as the product of energy 
per unit mass, e, and mass per unit volume, i.e., density, such that Eq. (2.416) 
becomes 

(2.417) 
Y 

Mass flow rate 

NOTATION 

A 
C P  
C 

ci 
DAB 
E 
e 
F 
J' 
j 
k 
m 
mi 
N 
n 
ni 
P 

Q 
4 
T 

Q 

area, m2 
heat capacity at constant pressure, kJ/ kg. K 
total concentration, kmol/ m3 
concentration of species i, kmoI/ m3 
diffusion coefficient for system A B ,  m2/ s 
rate of energy, W 
total energy flux, W/ m2 
force, N 
molecular molar flux, kmol/ m2. s 
molecular mass flux, kg/ m2. s 
thermal conductivity, W/ m. K 
total mass flow rate, kg/ s 
mass flow rate of species i, kg/ s 
total molar flux, kmol/ m2. s 
total molar flow rate, kmol/ s 
molar flow rate of species i, kmol/ s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/ s 
heat flux, W/m2 
temperature, "Cor K 
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time, s 
volume, m3 
partial molar volume of species i, m3/ kmol 
velocity, m/ s 
molar average velocity, m/ s 
volume average velocity, m/ s 
total mass flux, kg/ m2. s 
rectangular coordinate, m 
mole fraction of species i 
rectangular coordinate, m 

thermal diffusivity, m2/ s 
rate of strain, l/s 
viscosity, kg/ m. s 
kinematic viscosity (or, momentum dfisivity), m2/ s 
total momentum flux, N/ m2 
total density, kg/ m3 
density of species i, kg/ m3 
flux of 11: - momentum in the y - direction, N/ m2 
mass fraction of species i 

Overlines 
I per unit mass 
- partial molar 

Bracket 

(a) average value of a 

Superscript 

sat saturation 

Subscripts 

A, B species in binary systems 
ch characteristic 
i species in multicomponent systems 

Dimensionless Numbers 
Le Lewis number 
P ~ H  
P ~ M  
Pr Prandtl number 
sc Schmidt number 

Peclet number for heat transfer 
Peclet number for mass transfer 
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PROBLEMS 

2.1 Three parallel flat plates are separated by two fluids as shown in the figure 
below. What should be the value of Y2 so as to keep the plate in the middle 
stationary? 

-T v, = 1 d s  - 
Fluid B ( p ~  = 0.8 cP) y2 

I 

Y1=5cm 
FluidA (pA = 1 cP) 1 

- V , = 2 d s  

(Answer: 2 cm) 
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2.2 The steady rate of heat loss through a plane slab, which has a surface area 
of 3 m2 and is 7cm thick, is 72 W. Determine the thermal conductivity of the slab 
if the temperature distribution in the slab is given as 

T = 5 s + l O  

where T is temperature in "C and 2 is the distance measured from one side of the 
slab in cm. 

(Answer: 0.048 W/ m. K) 

2.3 The inner and outer surface temperatures of a 20cm thick brick wall are 
30 "C and - 5 "C, respectively. The surface area of the wall is 25 m2. Determine the 
steady rate of heat loss through the wall if the thermal conductivity is 0.72 W/ m. K. 

(Answer: 3150 W) 

2.4 Energy is generated uniformly in a 6cm thick wall. The steady-state tem- 
perature distribution is 

T = 145 + 3000 z - 1500 z2 

where T is temperature in "C and z is the distance measured from one side of 
the wall in meters. Determine the rate of heat generation per unit volume if the 
thermal conductivity of the wall is 15 W/ m. K. 

(Answer: 45 kW/ m3) 

2.5 The temperature distribution in a one-dimensional wall of thermal conduc- 
tivity 20 W/ m. K and thickness 60 cm is 

T = 80 + 10 sin(.lrE) 

where T is temperature in "C, t is time in hours, 6 = s / L  is the dimensionless 
distance with z being a coordinate measured from one side of the wall and L is the 
wall thickness in meters. Calculate the total amount of heat transferred in half an 
hour if the surface area of the wall is 15m2. 

(Answer: 15,360 J) 

2.6 The steady-state temperature distribution within a plane wall of l m  thick 
with a thermal conductivity of 8 W/ m. K is measured as a function of position as 
follows: 
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z T 

0 30 
0.1 46 
0.2 59 
0.3 70 
0.4 79 
0.5 85 
0.6 89 
0.7 90 
0.8 89 
0.9 86 
1 .o 80 

( m> ( "C> 

where z is the distance measured from one side of the wall. Determine the uniform 
rate of energy generation per unit volume within the wall. 
(Answer: 1920 W/ m3) 

2.7 The geothermal gradient is the rate of increase of temperature with depth in 
the earth's crust. 

a) If the average geothermal gradient of the earth is about 25 "C/ km, estimate the 
steady rate of heat loss from the surface of the earth. 
b) One of your friends claims that the amount of heat escaping from 1 m2 in 4 days 
is enough to heat a cup of coffee. Do you agree? Justify your answer. 

Take the diameter and the thermal conductivity of the earth as 1.27 x lo4 km and 
3 W/ m. K, respectively. 
(Answer: a) 38 x 109kW) 

2.8 Estimate the earth's age by making use of the following assumptions: 

(i) Neglecting the curvature, the earth may be assumed to be semi-infinite plane 
that began to cool from an initial molten state of To = 1200°C. Taking the 
interface temperature at z = 0 to be equal to zero, the corresponding temperature 
distribution takes the form 

T=Toerf(') 2@ 

where erf (x) is the error function defined by 



38 CHAPTER 2. MOLECULAR AND CONVECTIVE TRANSPORT 

(ii) The temperature gradient at a = 0 is equal to the geothermal gradient of the 
earth, i.e., 25 "C/ km. 

(iii) The thermal conductivity, the density and the heat capacity of the earth are 
3 W/ m. K, 5500 kg/ m3 and 2000 J/ kg. K, respectively. 

Estimation of the age of the earth, based on the above model, is first used by 
Lord Kelvin (1864). However, he knew nothing about radioactivity and heating 
of the earth's crust by radioactive decay at that time. As a result, his estimates, 
ranging from 20 to 200 million years, were completely wrong. Today, the geologists 
generally accept the age of the earth as 4.55 billion years. 
(Answer: 85.3 x lo6 year) 

2.9 A slab is initially at a uniform temperature To and occupies the space from 
z = 0 to z = 03. At time t = 0, the temperature of the surface at z = 0 is suddenly 
changed to TI (TI > To) and maintained at that temperature for t > 0. Under 
these conditions the temperature distribution is given by 

Ti -T - = erf (i> 
Tl -To 2 6  

If the surface area of the slab is A, determine the amount of heat transferred into 
the slab as a function of time. 

Answer: Q =  

2.10 Air at 20 "C and 1 atm pressure flows over a porous plate that is soaked in 
ethanol. The molar concentration of ethanol in the air, CA, is given by 

CA = 4 e- 1.5' 

where CA is in kmol/m3 and z is the distance measured from the surface of the 
plate in meters. Calculate the molar flux of ethanol from the plate. 
(Answer: 0.283 kmol/ m2. h) 

2.11 The formal definition of the partial molar volume is given by 

- .=(E) 
TJ',nj#i 

Substitute 
n V = -  
C 

into Eq. (1) and show that the volume fraction is equal to the mole fraction for 
constant total molar concentration, c, i.e., 
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This further implies that the molar average velocity is equal to the volume average 
velocity when the total molar concentration is constant. 

2.12 For a gas at constant pressure, why does the Schmidt number usually remain 
fairly constant over a large temperature range, whereas the diffusion coefficient 
changes markedly? 

2.13 Gas A dissolves in liquid B and diffuses into the liquid phase. As it diffuses, 
species A undergoes an irreversible chemical reaction as shown in the figure b e  
low. Under steady conditions, the resulting concentration distribution in the liquid 
phase is given by 

CA cosh(A[l- ( z / L ) ] }  -- - 
CA, cash A 

in which 

where CA, is the surface concentration, k is the reaction rate constant and VAB is 
the diffusion coefficient. 

a) Determine the rate of moles of A entering into the liquid phase if the cross- 
sectional area of the tank is A. 
b) Determine the molar flux at z = L. What is the physical significance of this 
result? 

AVABCA, A tanh A 
L 

Answer: a) j l ~  = 





Chapter 3 

Interphase Transport and 
Transfer Coefficients 

In engineering calculations, we are interested in the determination of the rate of 
momentum, heat and mass transfer from one phase to another across the phase in- 
terface. This can be achieved by integrating the flux expression over the interfacial 
area. Equation (2.42) gives the value of the flux at the interface as 

Gradient of 
Quantity/Volume 

( Interphase ) = [ 
flux 

interface 

Quantity Characteristic 
+ ( volume ) ( velocity 

Note that the determination of the interphase flux requires the values of the quan- 
tity/volume and its gradient to be known at the interface. Therefore, equations 
of change must be solved to obtain the distribution of quantity/volume as a func- 
tion of position. These analytical solutions, however, are not possible most of the 
time. In that case we resort to experimental data and correlate the results by the 
transfer coefficients, namely, the friction factor, the heat transfer coefficient, and 
the mass transfer coefficient. The resulting correlations are then used in designing 
equipment. 

This chapter deals with the physical significance of these three transfer coef- 
ficients. In addition, the relationships between these transfer coefficients will be 
explained by using dimensionless numbers and analogies. 

3.1 FRICTION FACTOR 
Let us consider a flat plate of length L and width W suspended in a uniform stream 
having an approach velocity v, as shown in Figure 3.1. 

41 
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- L ,  

Figure 3.1 Flow on a flat plate. 

As an engineer we are interested in the determination of the total drag force, i.e., 
the component of the force in the direction of flow, exerted by the flowing stream 
on the plate. This force can be calculated by integrating the total momentum flux 
at the wall over the surface area. The total momentum flux at the wall, 7ryZly=o, is 

(3.1-1) 

where 7yzly,o is the value of the shear stress at the wall. Since the plate is 
stationary, the fluid which is in contact with the plate is also stagnant' and both 
v, and vy are zero at y = 0. Therefore, Eq. (3.1-1) reduces to 

(3.1-2) 

and the drag force, FD, on one side of the plate can be calculated from 

FD = Jd" Jd" Tw d x d z  (3.1-3) 

Evaluation of the integral in Eq. (3.1-3) requires the value of the velocity 
gradient at the wall, which can be obtained from the solution of the equations 
of change. Since this is almost an impossible task in most cases, it is customary 
in engineering practice to replace rw by a dimensionless term called the fnction 
factor, f ,  such that 

I 1 I 
(3.1-4) 

Substitution of Eq. (3.1-4) into Eq. (3.1-3) gives 
L 

FD = 1 pv& Jd" Jd f d x d z  = (WL) (3.1-5) 2 

where (f)  is the friction factor averaged over the area of the plate2, i.e., 
rW r L  

f d x d z  & Jd" 1" f dxdz  (3.1-6) 

'This is known as the no-slip boundary condition. 
2See Section A.2 in Appendix A. 
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Equation (3.1-5) can be generalized in the form 

(3.1-7) 

in which the terms Ach, characteristic area, and Kch, characteristic kinetic energy, 
are defined by 

(3.1-8) Wetted surface area for flow in conduits 
for flow around submerged objects 

(3.1-9) 
1 

Kch = 5 pvzh 

where Vch is the characteristic velocity. 
Power, *, is defined as the rate at which work is done. Therefore, 

Work (Force)(Distance) 
Time Time 

Power = - - - = (Force)(Velocity) (3.1-10) 

(3.1-11) 

Example 3.1 Advertisements for cars in the magazines give the complete list of 
their features, one of which is the fraction factor (or, drag coeficient) based on the 
,frontal area. Sports cars, such as Toyota Celica, usually have a frzction factor of 
around 0.24. I f  the car has a width of 2m and a height of 1.5m, 
a) Determine the power consumed by the car when it is going at 100 km/ h. 
b) Repeat part (a) i f  the wind blows at a velocity of 30km/h opposite to the 
direction of the car. 
c) Repeat part (a) i f  the wind blows at a velocity of 30km/h in the direction of 
the car. 

Solution 

Physical properties 

For air at 20°C (293K) : p = 1.2kg/m3 

Assumption 

1. Air is at 2OOC. 

Analysis 

a) The characteristic velocity is 

vch = (100) - = 27.78 m/s (::::) 
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The drag force can be calculated from Eq. (3.1-7) as 

(1.2)(27.78)2 (0.24) = 333.4N 1 
The use of Eq. (3.1-11) gives the power consumed as 

w = FDV& 
= (333.4)(27.78) = 9262 W 

b) In this c a e  the characteristic velocity is 

vCh = (100 + 30) - = 36.11 m/s (i:::) 
Therefore, the drag force and the power consumed are 

FD = (2 x 1.5) 5 (1.2)(36.11)2 (0.24) = 563.3N 

rir = (563.3)(36.11) = 20,341 W 

[‘ I 
c) In this case the characteristic velocity is 

v,h = (100 - 30) - = 19.44m/s (El) 
Therefore, the drag force and the power consumed are 

FD = (2 x 1.5) - (1.2)(19.44)2 (0.24) = 163.3N 

rir = (163.3)(19.44) = 3175W 

[ f 1 
3.1.1 
According to Newton’s law of viscosity, Eq. (2.1-2), the shear stress at the wall is 
expressed as 

Physical Interpretation of Friction Factor 

(3.1-12) 

The minus sign is omitted in Eq. (3.1-12) because the value of v, increases as the 
distance y increases. Substitution of Eq. (3.1-12) into h. (3.1-4) gives 

(3.1-13) 
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The friction factor can be determined from Eq. (3.1-13) if the physical properties of 
the fluid (viscosity and density), the approach velocity of the fluid, and the velocity 
gradient at the wall are known. Since the calculation of the velocity gradient 
requires determination of the velocity distribution in the fluid phase, the actual case 
is idealized as shown in Figure 3.2. The entire resistance to momentum transport 
is assumed to be due to a laminar film of thickness S next to the wall. 

'L, 
Laminar film 

a) Actual case b) Idealized case 

Figure 3.2 The film model for momentum transfer. 

The velocity gradient in the film is constant and is equal to 

v, (3.1-14) 

Substitution of Eq. (3.1-14) into Eq. (3.1-13) and multiplication of the resulting 
equation by the characteristic length, Lch, yields 

where the dimensionless term Re is the Reynolds number defined by 

&=- Lchvcvp 

c1 

(3.1-15) 

(3.1-16) 

Equation (3.1-15) indicates that the product of the friction factor with the Reynolds 
number is directly proportional to the characteristic length and inversely propor- 
tional to the thickness of the momentum boundary layer. 

3.2 HEAT TRANSFER COEFFICIENT 
3.2.1 Convection Heat Transfer Coefficient 
Let us consider a flat plate suspended in a uniform stream of velocity v, and 
temperature T, as shown in Figure 3.3. The temperature at the surface of the 
plate is kept constant at T,. 
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Figure 3.3 Flow over a flat plate. 

As an engineer we are interested in the total rate of heat transfer from the plate 
to the flowing stream. This can be calculated by integrating the total energy flux 
at the wall over the surface area. The total energy flux at the wall, e,l,,o, is 

(3.2-1) 

where qvlY=o is the molecular (or, conductive) energy flux at the wall. As a result 
of the no-slip boundary condition at the wall, the fluid in contact with the plate 
is stagnant and heat is transferred by pure conduction through the fluid layer 
immediately adjacent to the plate. Therefore, Eq. (3.2-1) reduces to 

eYly=0 = QYIar=O = 4u (3.2-2) 

and the rate of heat transfer, Q, from one side of the plate to the flowing stream is 

Q = Jd" Jd" qw dxdz (3.2-3) 

Evaluation of the integral in Eq. (3.2-3) requires the determination of the temper- 
ature gradient at the wall. However, the fluid motion makes the analytical solution 
of the temperature distribution impossible to obtain in most cases. Hence, we usu- 
ally resort to experimentally determined values of the energy flux at a solid-fluid 
boundary in terms of the convection heat transfer weficient, h, as 

(3.2-4) 

which is known as Newton's law of woling. The convection heat transfer coef- 
ficient, h, has the units of W/m2.K. It depends on the fluid flow mechanism, 
fluid properties (density, viscosity, thermal conductivity, heat capacity) and flow 
geometry. 

Substitution of Eq. (3.2-4) into Eq. (3.2-3) gives the rate of heat transfer as 

Q = (T, - Tm) Jd" 1" hdxdz = ( W L ) ( h ) ( T ,  - T,) (3.2-5) 
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where ( h )  is the heat transfer coefficient averaged over the area of the plate and is 
defined by 

(3.2-6) 1 w L  
Jd" Jd" h dxdn 

Jd" Jd" dxdz 
( h )  = = wL Jd Jd hdxdz  

Equation (3.2-5) can be generalized in the form 

(3.2-7) 

where AH is the heat transfer area and (AT),, is the characteristic temperature 
difference. 

3.2.1.1 Physical interpretation of heat transfer coefficient 

According to Fourier's law of heat conduction, Eq. (2.1-4)) the molecular energy 
flux at the wall is expressed as 

Combination of Eqs. (3.2-4) and (3.2-8) gives 

h = -  

(3.2-8) 

(3.2-9) 

The convection heat transfer coefficient can be determined from Eq. (3.2-9) if the 
thermal conductivity of the fluid, the overall temperature difference, and the tem- 
perature gradient at the wall are known. Since the calculation of the temperature 
gradient at the wall requires the determination of the temperature distribution in 
the fluid phase, the actual case is idealized as shown in Figure 3.4. 

a) Actual case b) Idealized case 

Figure 3.4 The film model for energy transfer. 
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The entire resistance to heat transfer is assumed to be due to a stagnant film 
in the fluid next to the wall. The thickness of the film, &, is such that it provides 
the same resistance to heat transfer as the resistance that exists for the actual 
convection process. 
to 

Substitution of Eq. 

The temperature gradient in the film is constant and is equal 

(3.2-10) into Eq. (3.2-9) gives 

( h = $ (  

(3.2- 10) 

(3.2- 1 1) 

Equation (3.211) indicates that the thickness of the film, at,  determines the value 
of h. For this reason the term h is frequently referred to as the film heat transfer 
coefficient. 

Example 3.2 Energy generation rate per unit volume as a result of fission within 
a spherical reactor of radius R is given as a finction of position as 

?I? = R0 [1- (:,"I 
where r is the radial distance measured from the center of the sphere. Cooling fluid 
at a temperature of Tw Bows ouer the reactor. If the average heat transfer coefi- 
cient (h)  at the surface of the reactor is known, determine the surface tempemture 
of the reactor ut steady-state. 

Solution 

System: Reactor 

Analysis 

The inventory rate equation for energy becomes 

Rate of energy out = Rate of energy generation 

Rate of energy out = (47rR2)(h) (T, - T,) 

(1) 
The rate at which energy leaves the sphere by  convection is given by Newton's law 
of cooling as 

where T,,, is the surface temperature of the sphere. 

ume of the sphere. The result is 

(2) 

The rate of energy generation can be determined by integrating W over the vol- 

Rate of energy generation = Jd2T Jdr Jd" Ro [1- (G) '1 r2 sin 8 drd8d4 

8lr 
= (3) 
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Substitution of Eqs. (2) and (3) into Eq. (1) gives the surface temperaturn as 

3.2.2 Radiation Heat nansfer Coefficient 
The heat flux due to radiation, qR, from a small object to the surroundings wall is 
given as 

qR = E u (Tt - Ti) (3.2-12) 

where E is the emissivity of the small object, c is the Stefan-Boltzmann constant 
(5.67051 x W/ m2. K4), TI and T2 are the temperatures of the small object 
and the wall in degrees Kelvin, respectively. 

In engineering practice, Q. (3.2-12) is written in an analogous fashion to Q. 

qR = hR (Ti - T2) (3.2-13) 

where hR is the radiation heat transfer weficient. Comparison of Eqs. (3.2-12) 

(3.2-4) as 

and (3.2-13) gives 
E O  (Tf - T i )  
Tl - T2 hR = 21 4~ u ( T ) ~  (3.2-14) 

provided that (T)  >> (TI - T2)/2, where (T) = (TI + T2)/2. 

3.3 MASS TRANSFER COEFFICIENT 
Let us consider a flat plate suspended in a uniform stream of fluid (species S) 
having a velocity 21, and species A concentration CA, as shown in Figure 3.5. The 
surface of the plate is also coated with species A with concentration CA, . 

Figure 3.5 Flow over a flat plate. 

As an engineer we are interested in the total number of moles of species A 
transferred from the plate to the flowing stream. This can be calculated by inte- 
grating the total molar flux at the wall over the surface area. The total molar flux 
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at the wall, NA, l y = o l  is 

(3.3-1) 

where Jiul 
transfer rates Eq. (3.3-1) can be simplified to3 

is the molecular (or, diffusive) molar flux at the wall. For low mass 
y=O 

(3.3-2) 

and the rate of moles of species A transferred, ? i ~ ,  from one side of the plate to 
the flowing stream is 

? i ~  = 1" 1" NA,dxdz (3.3-3) 

Evaluation of NA, requires the determination of the concentration gradient at the 
wall. Since this is almost impossible to obtain, in an analogous manner to the 
definition of the heat transfer coefficient, the convection mass tmnsfer weflcient, 
kc, is defined by4 

1 NA, = kc (CAW - CA,) 1 (3.3-4) 

The mass transfer coefficient has the units of m/s. It depends on the fluid flow 
mechanism, fluid properties (density, viscosity, diffusion coefficient) and flow ge- 
ometry. 

Substitution of Eq. (3.3-4) into Eq. (3.3-3) gives the rate of moles of species A 
transferred as 

where ( k c )  is the mass transfer coefficient averaged over the area of the plate and 
is defined by 

(3.3-6) 
1 w L  

1" 1" kc dxdz 

1" 1" dxdz 
(kc) = = ~1 1 k d d z  

3Note that VI; is the molar average velocity defined by 

- C A V A ,  +CBVBu v -  
C 

At the wall, Le., y = 0, V B ,  = 0 due to no-slip boundary condition. However, VA,  # 0 as a result 
of the transfer of species A from the surface to the flowing stream. Therefore, vI;lV=o # 0 . 

4Equation (3.3-4) may be called Newton's law of mass transfer as suggested by Slattery (1999). 
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Equation (3.3-5) can be generalized in the form 

(3.3-7) 

where AM is the mass transfer area and (AcA),, is the characteristic concentration 
difference. 

3.3.1 
The use of Fick’s first law of diffusion, Eq. (2.1-9), in Eq. (3.3-2) gives 

Physical Interpretation of Mass Transfer Coefficient 

(3.3-8) 

Combination of Eqs. (3.3-4) and (3.3-8) gives 

The convection mass transfer coefficient can be determined from Eq. (3.3-9) if the 
diffusion coefficient, the overall concentration difference, and the concentration 
gradient at the wall are known. Since the calculation of the concentration gradient 
requires the determination of the concentration distribution, the actual case is 
idealized as shown in Figure 3.6. 

a) Actual case b) Idealized case 

Figure 3.6 The film model for mass transfer. 

The entire resistance to mass transfer is due to a stagnant film in the fluid 
next to the wall. The thickness of the film, 6,, is such that it provides the same 
resistance to mass transfer by molecular diffusion as the resistance that exists for 
the actual convection process. The concentration gradient in the film is constant 
and equal to 

CA, - CAW 

6,  
(3.3-10) 
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Substitution of Eq. (3.3-10) into Eq. (3.3-9) gives 

(3.3-1 1) 

Equation (3.3-11) indicates that the mass transfer coefficient is directly propor- 
tional to the diffusion coefficient and inversely proportional to the thickness of the 
concentration boundary layer. 

3.3.2 
Consider the transfer of species A from the solid phase to the fluid phase through 
a flat interface as shown in Figure 3.7. The molar flux of species A is expressed by 
Eq. (3.3-4). In the application of this equation to practical problems of interest, 
there is no difficulty in defining the concentration in the bulk fluid phase, CA,, 
since this can be measured experimentally. However, to estimate the value of CA, , 
one has to make an assumption about the conditions at the interface. It is generally 
assumed that the two phases are in equilibrium with each other at the solid-fluid 
interface. If T, represents the interface temperature, the value of CA,  is given by 

Concentration at the Phase Interface 

A /RT (Assuming ideal gas behavior) fluid = gas 
(3.3-12) 

Solubility of solid in liquid at Tw fluid = liquid 
CAW = 

The Antoine equation is widely used to estimate vapor pressures and it is given in 
Appendix D. 

Fluid I Solid 

Figure 3.7 Transfer of species A from the solid to the fluid phase. 

Example 3.3 0.5 L of ethanol is poured into a cylindrical tank of 2 L capacity 
and the top is quickly sealed The total height of the cylinder is 1 m. Calculate the 
mass transfer coeficient if the ethanol concentration in the air reaches 2% of its 
saturation value in 5 minutes. The cylinder temperature is kept constant at 2OOC. 
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Solution 

Physical properties 

p = 789 kg/ m3 

P y t  = 43.6mmHg 
For ethanol (A) at 20 "C (293 K) : 

Assumption 

1. Ideal gas behavior. 

Analysis 

The muss transfer coefficient can be calculated from Eq. (3.3-4), i.e., 

NA, = IC, (CA,  - CA,) 

The concentration difference in Eq. (1) is given a.9 the concentration of ethanol va- 
por at the surface of the liquid, CA,, minus that in the bulk solution, CA, . The con- 
centration at the liquid surface is the saturation concentration while the concentra- 
tion in the bulk is essentially zero at relatively short times so that CA, - CA, N CA, . 
Therefore Eq. (1) simplifies to 

The saturation concentration of ethanol is 
p s a t  

CAW R T  
A =-  

- - 43.6'760 = 2.39 x kmol/ m3 
(0.08205)(20 + 273) (3) 

Since the ethanol concentration within the cylinder reaches 2% of its saturation 
value in 5 minutes, the moles of ethanol evaporated during this period is 

n~ = (0.02)(2.39 x 10-3)(1.5 x = 7.17 x kmol (4) 

where 1.5 x 
$ux at 5 minutes can be calculated as 

m3 is the volume of the air space in the tank. Therefore, the molar 

n A  
(Area) (Time) NA, = 

= 1.2 x kmol/ m2. s 
7.17 x - - 

(2 x 10-3/1) (5 x 60) ( 5 )  

Substitution of Eqs. (3) and (5) into Eq. (2) gives the mass transfer coeficient as 

1.2 x 10-7 
- 2-39 x 10-3 k -  = 5 x 1 0 - ~ m / s  
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3.4 DIMENSIONLESS NUMBERS 
Rearrangement of Eqs. (3.1-4), (3.2-4) and (3.3-4) gives 

Note that E@. (3.41)-(3.43) has the general form 

Interphase ) = ( Transfer ) ( Difference in 
coefficient Quantity/Volume 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

and the terms f 4 2 ,  h / p e p ,  and IC, all have the same units, m/s. Thus, the 
ratio of these quantities must yield dimensionless numbers: 

(3.45) h 
Heat transfer Stanton number = StH = - 

p C P V c h  

(3.46) k C  Mass transfer Stanton number = S t M  = - 
V c h  

Since the term f / 2  is dimensionless itself, it is omitted in Eqs. (3.45) and (3.46). 
Dimensionless numbers can also be obtained by taking the ratio of 

For example, when the concentration gradient is expressed in the form 

Difference in Quantity/Volume 
Characteristic length 

Gradient of Quantity/Volume = 

the expression for the molecular flux, l3q. (2.2-5), becomes 

(Diffusivity) (Difference in Quantity/Volume) 
Characteristic length 

Molecular flux = 

the fluxes. 

(3.47) 

(3.48) 

Therefore, the ratio of the total interphase flux, Eq. (3.44), to the molecular flux, 
Eq. (3.48), is 

(3.49) Interphase flux - (Transfer coefficient) (Characteristic length) 
Molecular flux Diffusivity 

- 

The quantities in Eq. (3.49) for various transport processes are given in Table 3.1. 
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Table 3.1 
momentum, energy and mass. 

Transfer coefficient, diffusivity and flux ratio for the transport of 

Interphase Flux 
Molecular Flux 

Process Transfer Coefficient Diffusivity 

Momentum 

Energy 

Mass 

1 5 f vch 

h - 
P 6 P  

P 
P 

k 

- 

- 
P C P  

DAB kcLch 
DAB 

The dimensionless terms representing the ratio of the interphase flux to the 
molecular flux in Table 3.1 are defined in terms of the dimensionless numbers as 

-- - Nu h Lch 
k 

-- - NUM = Sh kcLch 
DAB 

(3.410) 

(3.4-11) 

(3.412) 

where Nu is the heat transfer Nwselt number and NUM is the mass transfer Nusselt 
number. The mass transfer Nusselt number is generally called the Sherwood num- 
ber, Sh. Equations (3.410)-(3.412) indicate that the product (f Re/2) is more 
closely analogous to the Nusselt and Sherwood numbers than f itself. A summary 
of the analogous dimensionless numbers for energy and mass transfer covered so 
far is given in Table 3.2. 

Table 3.2 Analogous dimensionless numbers in energy and mass transfer. 

Energy Mass 

hLch N U =  - k 
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3.5 TRANSPORT ANALOGIES 
Existing analogies in various transport processes depend on the relationship be- 
tween the dimensionless numbers defined by Eqs. (3.410)-(3.412). In Section 3.1.1 
we showed that 

(3.51) 

On the other hand, substitution of Eqs. (3.2-11) and (3.3-11) into Eqs. (3.411) 
and (3.412), respectively, gives 

s f R e = T  1 Lch 

(3.52) Lch NU= - 
6t 

and 
Lch Sh= - 
6, 

Examination of Eqs. (3.51)-(3.5-3) indicates that 

(3.53) 

(3.54) 
Interphase flux - Characteristic length 
Molecular flux Effective film thickness 

- 

Comparison of Eqs. (3.49) and (3.54) implies that 

Diffusivity 
Transfer coefficient 

Effective film thickness = (3.55) 

Note that the effective film thickness is the thickness of a fictitious film which would 
be required to account for the entire resistance if only molecular transport were 
involved. 

Using Eqs. (3.51)- (3.53), it is possible to express the characteristic length as 

Substitution of Nu = StH RePr and Sh = S t M  Re Sc into Eq. (3.56) gives 

1 
2 - f6 = S t H  Pr6t = S t M  sc6c (3.57) 

3.5.1 The Reynolds Analogy 
Similarities between the transport of momentum, energy and mass were first noted 
by Reynolds in 1874. He proposed that the effective film thicknesses for the transfer 
of momentum, energy and mass are equal, i.e., 

6 = St = 6, 

Therefore, 3. (3.57) becomes 

f - = StH Pr = StM sc 
2 

(3.58) 

(3.59) 
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Reynolds further assumed that Pr = Sc = 1. Under these circumstances Eq. (3.5-9) 
reduces to 

(3.510) 

which is known as the Reynolds analogy. Physical properties in Eq. (3.510) must 
be evaluated at T = (T, + T,)/2. 

The Reynolds analogy is reasonably valid for gas systems but should not be 
considered for liquid systems. 

3.5.2 The Chilton-Colburn Analogy 
In the Chilton-Colburn analogy the relationships between the effective film thick- 
nesses are expressed as 

6 6 - = pr'l3 
6t 6, 

- = sc1/3 

Substitution of Eq. (3.5-11) into Eq. (3.57) yields 

(3.51 1) 

(3.512) 

and 

- = StM SC213 j, I (3.513) 

where jH and jM are the Colburn j-factors for heat and mass transfer, respec- 
tively. 

Physical properties in Eqs. (3.512) and (3.513) must be evaluated at T = 
(T, + T,)/2. The Chilton-Colburn analogy is valid when 0.6 5 Pr 5 60 and 
0.6 5 Sc 5 3000. Note that Eqs. (3.512) and (3.5-13) reduce to Reynolds analogy, 
Eq. (3.5-lo), for fluids with Pr = 1 and Sc = 1. 

As stated in Section 3.1, the drag force is the component of the force in the 
direction of mean flow. In general, both viscous and pressure forces contribute to 
this force5. In Eq. (3.1-3), only viscous force is considered in the evaluation of 
the drag force. The reason for this is that the pressure always acts normal to the 
surface of the flat plate and the component of this force in the direction of mean 
flow is zero. In the case of curved surfaces, however, the component of normal 
force to the surface in the direction of mean flow is not necessarily zero as shown 
in Figure 3.8. Therefore, the friction factor for flow over flat plates and for flow 
inside circular ducts includes only friction drag, whereas the friction factor for flow 
around cylinders, spheres, and other bluff objects includes both friction and form 
drags. As a result, f /2  term for flow around cylinders and spheres is greater than 

5The drag force arising from viscous and pressure forces are called friction (or, skin) drag and 
form drag, respectively. 
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the j-factors. The validity of the Chilton-Colburn analogy for flow in different 
geometries is given in Table 3.3. 

Pressure force 
A I  

Direction of mean flow Pressure force 
I 

L plat surface 

Figure 3.8 Pressure force acting on curved and flat surfaces. 

Table 3.3 Validity of the Chilton-Colburn analogy for various geometries. 

Flow Geometry Chilton-Colburn Analogy 

f .  - = JH = j M  
2 

Flow over a flat plate 

Flow over a cylinder jH = j M  

Flow over a sphere 

f - = j~ = j M  2 
if Re > 10,000 (Smooth pipe) Flow in a pipe 

Example 3.4 Water evaporates from a wetted surface of rectangular shape when 
air at 1 atm and 35 "C is blown over the surface at a velocity of 15 m/ s. Heat 
transfer measurements indicate that for air at 1 atm and 35 "C the average heat 
transfer weficient is given by the following empirical relation 

(h) = 21 vk6 
where (h) is in W/ m2. K and v,, air velocity, is in m/ s. Estimate the mass 
transfer weficient and the rate of evaporation of water from the surface i f  the area 
is 1.5m2. 
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Solution 

Physical properties 

For water at 35 "C (308 K) : Pat = 0.0562 bar 

f p = 1.1460 kg/ m3 
v = 16.47 x io-6 m2/s 
C p  = 1.005 kJ/ kg. K For air at 35 "C (308 K) : 

, -  

( Pr = 0.711 

Digusion coeficient of water (A) in air (23) at 35°C (308K) : 

3/2 
= (2.88 x 10-5) (g) = 2.81 x lo-' m2/s 

The Schmidt number .is 
v 

sc = - 
DAB 
16.47 x 

= 0.586 - - 
2.81 x 10-5 

Assumption 

1. Ideal gas behavior. 

Analysis 

The use of the Chilton-Colburn analogy, j ,  = j M ,  gives 

Substitution of the values into Eq. (I) gives the avemge mass transfer coefficient 
as 

(21)(15)0.6 ( 0.711)213 = 0.105 m/ s 
(1.1460)(1005) 0.586 ( k c )  = 

Saturation concentration of water is 

psat 
' A  -- c& - RT 

= 2.19 x kmol/ m3 0.0562 
(8.314 x 10-2)(35 + 273) 

- - 
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Therefore, the evaporation rate of water from the surface is 

h A  = A ( k c )  ( C A W  - CA,) 

= (1.5)(0.105)(2.19 x - 0)  = 3.45 x kmol/s 

NOTATION 

A 
A H  
A M  
C P  

DAB 
FD 
f 
h 
j H  
j M  
K 
k 
kc 
L 
M 
N 
ni 

P 

4 

R 
iR 
T 
t 

G 

Q 

QR 

V 

w 
5 

Y 
a 

area, m2 
heat transfer area, m2 
mass transfer area, m2 
heat capacity at constant pressure, kJ/ kg. K 
concentration of species i, kmol/ m3 
diffusion coefficient for system d-B, m2/ s 
drag force, N 
friction factor 
heat transfer coefficient, W/ m2. K 
Chilton-Colburn j - factor for heat transfer 
Chilton-Colburn j - factor for mass transfer 
kinetic energy per unit volume, J/ m3 
thermal conductivity, W/ m. K 
mass transfer coefficient, m/s 
length, m 
molecular weight, kg/ kmol 
total molar flux, kmol/ m2. s 
molar flow rate of species i, kmol/ s 
pressure, Pa 
heat transfer rate, W 
heat flux, W/m2 
heat flux due to radiation, W/m2 
gas constant, J/ mol. K 
energy generation rate per unit volume, W/ m3 
temperature, "Cor K 
time, s 
velocity, m/s 
rate of work, W 
rectangular coordinate, m 
rectangular coordinate, m 
rectangular coordinate, m 
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thermal dsusivity, m2/ s 
difference 
fictitious film thickness for momentum transfer, m 
fictitious film thickness for mass transfer, m 
fictitious film thickness for heat transfer, m 
emissivity 
viscosity, kg/ m. s 
kinematic viscosity (or, momentum diffusivity), m2/ s 
total momentum flux, N/ m2 
density, kg/ m3 
Stefan-Boltzmann constant, W/ m2. K4 
flux of 2 - momentum in the y - direction, N/ m2 

average value of a 

Superscript 

sat saturation 

Subscripts 

A,  B 
ch characteristic 
i species in multicomponent systems 
W surface or wall 
oc) free-stream 

Dimensionless Numbers 

species in binary systems 

Nu 
NUM 
Pr Prandtl number 
Re Reynolds number 
sc  Schmidt number 
Sh Sherwood number 
StH 
StM 

Nusselt number for heat transfer 
Nusselt number for mass transfer 

Stanton number for heat transfer 
Stanton number for mass transfer 
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PROBLEMS 

3.1 
of cars. Do you agree? 

Your friend claims that humid air causes an increase in the gas consumption 

3.2 Air at 20 "C flows over a flat plate of dimensions 50 cm x 25 cm. If the average 
heat transfer coefficient is 250 W/ m2. K, determine the steady rate of heat transfer 
from one side of the plate to air when the plate is maintained at 40°C. 
(Answer: 625 W) 

3.3 Air at 15°C flows over a spherical LPG tank of radius 4m. The outside 
surface temperature of the tank is 4 "C. If the steady rate of heat transfer from the 
air to the storage tank is 62,000 W, determine the average heat transfer coefficient. 
(Answer: 28 W/ m2. K) 

3.4 The volumetric heat generation in a hollow aluminum sphere of inner and 
outer radii of 20cm and 50cm, respectively, is given by 

R = 4.5 x io4 (I + 0.6 r2)  

in which 9 is in W/m3 and r is the radial coordinate measured in meters. The 
inner surface of the sphere is subjected to a uniform heat flux of 15,000 W/ m2, 
while heat is dissipated by convection to an ambient air at 25 "C through the outer 
surface with an average heat transfer coefficient of 150W/m2.K. Determine the 
temperature of the outer surface under steady conditions. 
(Answer: 92.3 "C) 
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3.5 In the system shown below, the rate of heat generation is 800 W/ m3 in Region 
A which is perfectly insulated on the left-hand side. Given the conditions indicated 
in the figure, calculate the heat flux and temperature at the right-hand side, i.e., 
at x = 100 cm, under steady-state conditions. 

Rate of heat generation = 800 W / m3 

(Answer: 320 W, 41.3"C) 

3.6 Uniform energy generation rate per unit volume at R = 2.4 x lo6 W/ m3 is 
occurring within a spherical nuclear fuel element of 20 cm diameter. Under steady 
conditions the temperature distribution is given by 

T = 900 - 10,000 r2 

where T is in degrees Celsius and T is in meters. 

a) Determine the thermal conductivity of the nuclear fuel element. 
b) What is the average heat transfer coefficient at the surface of the sphere if the 
ambient temperature is 35 "C? 
(Answer: a) 40 W/ m. K b) 104.6 W/ m2. K) 

3.7 A plane wall, with a surface area of 30 m2 and a thickness of 20 cm, separates 
a hot fluid at a temperature of 170 "C from a cold fluid at 15 "C. Under steady-state 
conditions, the temperature distribution across a wall is given by 

T = 150 - 6002 - 502' 

where x is the distance measured from the hot wall in meters and T is the temper- 
ature in degrees Celsius. If the thermal conductivity of the wall is 10 W/ m. K : 

a) Calculate the average heat transfer coefficients at the hot and cold surfaces. 
b) Determine the rate of energy generation within the wall. 
(Answer: a) @)hot = 300 W/ m2. K, = 477 W/ m2. K b) 6000 W) 

3.8 Derive Eq. (3.214). 
(Hint:Ekpress 2'' and TZ in terms of (T).) 
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3.9 It is also possible to interpret the Nusselt and Sherwood numbers as di- 
mensionless temperature and concentration gradients, respectively. Show that the 
Nusselt and Sherwood numbers can be expressed as 

and 



Chapter 4 

Evaluation of Transfer 
Coefficients: 
Engineering Correlations 

Since most engineering problems do not have theoretical solutions, a large portion 
of engineering analysis is concerned with the experimental information which is 
usually expressed in terms of engineering correlations. These correlations, however, 
are limited to a specific geometry, equipment configuration, boundary conditions, 
and substance. As a result, the values obtained from correlations are not exact and 
it is possible to obtain two different answers from two different correlations for the 
same problem. Therefore, one should keep in mind that the use of a correlation 
introduces an error in the order of f 25%. 

Engineering correlations are given in terms of dimensionless numbers. For ex- 
ample, the correlations used to determine friction factor, heat transfer coefficient 
and mass transfer coefficient are generally expressed in the form 

f = f (Re) 
Nu = Nu(Re,Pr) 
Sh = Sh(Re,Sc) 

In this chapter, some of the available correlations for momentum, energy, and 
mass transport in different geometries will be presented. Emphasis will be placed 
on the calculations of force (or, rate of work), heat transfer rate and mass transfer 
rate under steady conditions. 

65 
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4.1 REFEmNCE TEMPERATURE AND 
CONCENTRATION 

The evaluation of the dimensionless numbers that appear in the correlation re- 
quires the physical properties of the fluid to be known or estimated. The physical 
properties, such as density and viscosity, depend on temperature and/or concen- 
tration. Temperature and concentration, on the other hand, vary as a function of 
position. Two commonly used reference temperatures and concentrations are the 
bulk temperature or concentration and the film temperature or concentration. 

4.1.1 Bulk Temperature and Concentration 
For flow inside pipes, the bulk temperature or concentration at a particular location 
in the pipe is the average temperature or concentration if the fluid were thoroughly 
mixed, sometimes called the mixing-cup temperature or concentration. The bulk 
temperature and the bulk concentration are denoted by Tb and Cb,  respectively, 
and are defined by 

and 

(4.1-1) 

(4.1-2) 

where v, is the component of velocity in the direction of mean %ow. 
For the case of flow past bodies immersed in an infinite fluid, the bulk temper- 

ature and bulk concentration become the free stream temperature and free stream 
concentration, respectively, i.e., 

For flow over submerged objects Ta = T, 
cb = cm (4.1-3) 

4.1.2 Film Temperature and Concentration 
The film temperature, Tf, and the film concentration, cf, are defined as the arith- 
metic average of the bulk and surface values, i.e., 

(4.1-4) 
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and 
(4.1-5) 

where subscript w represents the conditions at the surface or the wall. 

4.2 FLOW PAST A FLAT PLATE 
Let us consider a flat plate suspended in a uniform stream of velocity v, and 
temperature T, as shown in Figure 3.3. The length of the plate in the direction 
of flow is L and its width is W.  The local values of the friction factor, the Nusselt 
number and the Sherwood number are given in Table 4.1 for both laminar and 
turbulent flow conditions. The term Re, is the Reynolds number based on the 
distance x and defined by 

(4.2-1) 

Table 4.1 
Sherwood number for flow over a flat plate. 

The local values of the friction factor, the Nusselt number and the 

Laminar Turbulent 

f, 0.664 Re,''' (A) 0.0592 Re,1/5 (D) 

Nu, 0.332 Re:/2 Pr1j3 (B) 0.0296 Re:/5 Pr1l3 (E) 

Sh, 0.332 Re:/z Sc1j3 (C) 0.0296 Sc1l3 (F) 

Re, 5 500,000 5 x lo5 < Re, < lo7 

0.6 5 Pr 5 60 0.6 5 Sc 5 3000 

The expression for the friction factor under laminar flow conditions, Eq. (A) 
in Table 4.1, can be obtained analytically from the solution of the equations of 
change. Blausius (1908) was the first to obtain this solution using a mathematical 
technique called the similarity solution or the method of combination of variables. 
Note that Eqs. (B) and (C) in Table 4.1 can be obtained from Eq. (A) by using the 
Chilton-Colburn analogy. Since analytical solutions are impossible for turbulent 
flow, Eq. (D) in Table 4.1 is obtained experimentally. The use of this equation in 
the Chilton-Colburn analogy yields Eqs. (E) and (F). 

The average values of the friction factor, the Nusselt number and the Sherwood 
number can be obtained from the local values by the application of the mean value 
theorem. In many cases, however, the transition from laminar to turbulent flow 
will occur on the plate. In this case, both the laminar and turbulent flow regions 
must be taken into account in calculating the average values. For example, if the 
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transition takes place at x,, where 0 < x, < L, then the average friction factor is 
given by 

(4.2-2) 1 L 

(f) = $ [~zc(fz)tamd~ -k 1 zc (fz)turbdx 

Change of variable from x to Re, reduces Eq. (4.2-2) to 

where Re,, the Reynolds number at the point of transition, and ReL, the Reynolds 
number based on the length of the plate, are defined by 

(4.2-4) 2, vC.2 Re, = - 
U 

(4.2-5) L vC.2 
h L = -  

U 

Substitution of Eqs. (A) and (D) in Table 4.1 into Eq. (4.2-3) gives 

0.074 1.328 - 0.074b2/5 
ReL (f) = 1/5 + 

Re, 

Taking Re, = 500,000 resdts in 

0.074 1743 
ReL 

(f) = - - - 
L 

(4.2-6) 

(4.2-7) 

The average values of the friction factor, the Nusselt number and the Sherwood 
number can be calculated in a similar way for a variety of flow conditions. The 
results are given in Table 4.2. In these correlations all physical properties must be 
evaluated at the film temperature. 

Note that once the average values of the Nusselt and Sherwood numbers are 
determined, the average values of the heat and mass transfer coefficients are cal- 
culated from 

(4.2-8) 

(4.2-9) 

On the other hand, the rate of momentum transfer, i.e., the drag force, the rate 
of heat transfer and the rate of mass transfer of species A from one side of the 
plate are calculated as 

(4.2-10) 



Table 4.2 Correlations for flow past a flat plate. 

Laminar Laminar and Turbulent Turbulent 
(f)  1.328Re,'12 (A) O.074Re,'I5 -1743Rei' (D) O.074ReLli5 (G) 

(Nu) 0.664Re:I2 Pr'13 (B) (0.037Re4L/5 -871) Pr'13 (E) 0.037Re4L/5 Pr'I3 (H) 

(Sh) 0.664Re2/2 Sc113 (C) (0.037Ret'5 -871) Sc'13 (F) 0.037Re4,/5 Sc113 (I) 
ReL 5 500,000 5 x lo5 < ReL < lo8 ReL > lo8 

0.6 5 Pr 5 60 0.6 5 Sc 5 3000 
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(4.2-1 1) 

I n A  ( W L ) ( k )  ICA, - CAW I I (4.212) 

Engineering problems associated with the flow of a fluid over a flat plate are clas- 
sified as follows: 

Calculate the transfer rate; given the physical properties, the velocity of the 
fluid, and the dimensions of the plate. 

properties, the velocity of the fluid, and the transfer rate. 
Calculate the length of the plate in the direction of flow; given the physical 

Calculate the fluid velocity; given the dimensions of the plate, the transfer 
rate, and the physical properties of the fluid. 

Example 4.1 Water at 20 "C flows over a 2m long flat plate with a velocity of 
3 m/ s. The width of the plate is 1 m. Calculate the drag force on one side of the 
plate. 

Solution 

Physical properties 

p = 999 kg/ m3 For water at 20°C (293K) : 
~ = lool 1 0 - 6 k ~ / ~ .  

Assumption 

1. Steady-state conditions prevail. 

Analysis 

To determine which correlation to .we for calculating the average friction factor 
(f) , we must first determine the Reynolds number: 

Therefore, both the laminar and the turbulent flow regions exist on the plate. The 
use of Eq. (0) in Table 4.2 gives the fnction factor as 

0.074 1743 (f)  = - - - 
Rei/5 h L  

--- - 3 x  10-3 0.074 
(6 x 106)1/5 

- - 
6 x lo6 
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The drag force can then be calculated from Eq. (4.2-10) as 

= (1 x 2) -(999)(3)2 (3 x = 2 7 ~  [:: 1 
Example 4.2 Air at a temperature of 25°C flows over a 30cm vide electric 
resistance flat plate heater with a velocity of 13 m/ s. The heater dissipates energy 
into the air at a constant rate of 2730W/m2. How long must the heater be in the 
direction of flow for  the surface temperature not to exceed 155"C? 

Solution 

Physical properties 

The film temperature is (25 + 155)/2 = 90 "C. 

For air at 90 "C (363 K) and 1 atm : 
v = 21.95 x 
lc = 30.58 x { Pr = 0.704 

m2/ s 
W/ m. K 

Assumptions 

1. Steady-state conditions prevail. 

2. Both the laminar and the turbulent flow regions exist over the plate. 

Analysis 

The average convection heat transfer coeficient can be calculated from Newton's 
law of cooling as 

- - 2730 = 21 W/ m2. K 155 - 25 

To determine which correlation to use, it is necessary to calculate the Reynolds 
number. However, the Reynolds number cannot be determined a priori since the 
length of the heater is unknown. Therefore, a trial-and-emr procedure must be 
used. Since we assumed that both the laminar and the turbulent flow regions exist 
over the heater, the use of Eq. (E) in Table 4.2 gives 

(NU) - (h)L = (0.037Re4,/5 -871) Pr k 
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Simplification of Eq. (2) yields 

F(L) = L - 1.99 L4I5 + 1.13 = 0 (3) 

The length of the heater can be determined from Eq. (3) by wing one of the 
numerical methods for root finding given in Section A.Y.2 in Appendix A .  The 
iteration scheme for the Newton-Raphson method, Eq. (A. 7-18), becomes 

in which the derivative of the function F(L) is 

dF - = 1 - 1.592 L-lI5 dL (5) 

Assuming L4I5 L, a starting value can be estimated as L1 = 1.14141. Therefore, 
0.05930 
0.55044 L2 = 1.14141 + - = 1.24914 

0.00152 
0.52272 L3 = 1.24914 + - = 1.25205 

0 
0.52201 

L4 = 1.25205 + - = 1.25205 

Since L3 = Lq, the length of the plate is approximately 1.25 m. Now, it is necessarg 
to check the validity of the second assumption: 

Re - (1'25)(13) = 7.4 x lo5 + Checks! 
- 21.95 x 

Example 4.3 A water storage tank open to the atmosphere is 12m in length and 
6 m  in width. The water and the surrounding air are at a temperature of 25OC, 
and the relative humidity of the air is  60%. If the wind blows at a velocity of 
2 m/ s along the long side of the tank, what is the steady rate of water loss due to 
evaporation from the surface? 

Solution 

Physical properties 

For air at 25 "C (298 K) : v = 15.54 x 

Diflwion coeficient of water (A) in air (B) at 25OC (298K) : 
m2/ s 

3/2 
= (2.88 x (ii:) - = 2.79 x 1 0 - 5 ~ 2 / ~  
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The Schmidt number is 
v 

s c  = - 
DAB 
15.54 x 

= 0.56 - - 
2.79 x 10-5 

For water at 25 "C (298 K) : PSat = 0.03165 bar 
Assumptions 

1. Steady-state conditions prevail. 

2. Ideal gas behavior. 

Analysis 

To determine which correlation to w e ,  we mwt first calculate the Reynolds number: 
L VOO ReL = - 
U 

Since both laminar and turbulent conditions exist, the use of Eq. (F) in Table 4.2 
gives 

(Sh) = (0.037Re4,/5 -871) S C ~ ' ~  

= b.037 (1.54 x 106)4/5 - 8711 (0.56)1/3 = 2000 

Therefore, the average mass transfer coeficient is 

The number of moles of HzO (A) evaporated in unit time is 

h~ = A (kc) [ C T t  - cA(air)] 
= A ( I C , )  (cyt - 0.6 c y t )  = 0.4A ( I C , )  cyt 

Saturation concentration of water, cyt, is 
psat  

C g a t  = - 
A RT 

A 

= 1.28 x kmol/ m3 0.03165 
(8.314 x 10-2)(25 + 273) 

- - 

Hence, the rate of water loss is 

r i t ~  = ~ A M A  = 0 . 4 A ( k C ) c y t M ~  
= (0.4)(12 x 6)(4.65 x 10-3)(1.28 x 10-3)(18)(3600) = l l . lkg /h  
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4.3 FLOW PAST A SINGLE SPHERE 
Consider a single sphere immersed in an infinite fluid. We may consider two cases 
which are exactly equivalent: (i) the sphere is stagnant, the fluid flows over the 
sphere, (ii) the fluid is stagnant, the sphere moves through the fluid. 

According to Newton’s second law of motion, the balance of forces acting on a 
single spherical particle of diameter Dp, falling in a stagnant fluid with a constant 
terminal velocity ut, is expressed in the form 

Gravitational force = Buoyancy + Drag force (4.3-1) 

(4.3-2) 

where pp and p represent the densities of the particle and fluid, respectively. In 
the literature, the friction factor f is also called the drag coeficient and denoted 
by C,. Simplification of Q. (4.3-2) gives 

Equation (4.3-3) can be rearranged in dimensionless form as 

(4.3-3) 

(4.3-4) 

where the Reynolds number, Rep, and the Archimedes number, Ar, are defined by 

(4.3-5) 

(4.3-6) 

Engineering problems associated with the motion of spherical particles in fluids are 
classified as follows: 

0 Calculate the terminal velocity, vt; given the viscosity of fluid, p, and the 
particle diameter, Dp. 

the terminal velocity, vt. 

terminal velocity, ut. 

0 Calculate the particle diameter, Dp; given the viscosity of the fluid, p, and 

0 Calculate the fluid viscosity, p; given the particle diameter, Dp, and the 

The difficulty in these problems arises from the fact that the friction factor f in Eq. 
(4.3-4) is a complex function of the Reynolds number and the Reynolds number 
cannot be determined a priori. 
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4.3.1 Friction Factor Correlations 
For flow of a sphere through a stagnant fluid, Lapple and Shepherd (1940) pre- 
sented their experimental data in the form of f versus Rep. Their data can be 
approximated as 

f=- '8' 2 5 Rep < 500 
Re'$6 

(4.3-7) 

(4.3-8) 

f = 0.44 500 5 Rep < 2 x lo5 (4.3-9) 

Equations (4.3-7) and (4.3-9) are generally referred to as Stokes' law and Newton's 
law, respectively. 

In recent years, efforts have been directed to obtain a single comprehensive 
equation for the friction factor that covers the entire range of Rep. Turton and 
Levenspiel (1986) proposed the following fivcconstant equation which correlates 
the experimental data for Rep 5 2 x lo5: 

0.413 
1 + 16,300 Re;'.'' 

f=- 24 (1 + 0.173Re$657) + 
Rep 

(4.3-10) 

4.3.1.1 Solutions to the engineering problems 

Solutions to the engineering problems described above can now be summarized as 
follows: 

W Calculate ut; given p and D p  

Substitution of Eq. (4.3-10) into Q. (4.3-4) gives 

0.31 Re$ 
1 + 16,300 Re,'.'' 

Ar = 18 (Rep +0.173Reg657) + (4.3-1 1) 

Since Eq. (4.3-11) expresses the Archimedes number as a function of the Reynolds 
number, calculation of the terminal velocity for a given particle diameter and fluid 
viscosity requires an iterative solution. To circumvent this problem, it is necessary 
to express the Reynolds number as a function of the Archimedes number. The fol- 
lowing explicit expression relating the Archimedes number to the Reynolds number 
is proposed by Turton and Clark (1987): 

(4.3-12) 

The procedure to calculate the terminal velocity is as follows: 
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a) Calculate the Archimedes number from Eq. (4.3-6), 
b) Substitute the Archimedes number into Eq. (4.3-12) and determine the Reynolds 
number, 
c) Once the Reynolds number is determined, the terminal velocity can be calculated 
from the equation 

(4.3-13) 

Example 4.4 Calculate the velocities at which a drop of water, 5 mm in diameter, 
would fall in air at 20°C and the same size air bubble would rise throagh water at 
20 "C. 

Solution 

Physical properties 

p = 999 kg/ m3 

p = 1.2047 kg/ m3 

For water at 20 "C (293 K) : 

For air at 2ooc (293 K, ' 
= lool 10-6 kg/ m. 

= 18.17 x 10-6 kg/ m. 

Analysis 

Water droplet falling in air 
To determine the terminal velocity of water, it is necessary to calculate the Archimedes 
nzlmber wing Eq. (4.3-6): 

D%P ( P P  - PI 

P2 
Ar= 

- (5 x 10-3)3(9.8)(1.2047)(999 - 1.2047) = 4,46 
106 - 

(18.17 x 10-6)2 

The Reynolds number is calculated from Eq. (4.3-12): 

Rep = (1 + 0.0579 18 
4.46 x 106 

18 
- - [1+ 0.0579 (4.46 x 106)0*412]-1'214 = 3581 

Hence, the terminal velocity is 

P Rep 
P D P  

ut = - 

= 10.8m/ s (18.17 x 10-6)(3581) - - 
(1.2047)(5 x 
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Air bubble rising in water 

In  this case, the Archimedes number is 

4 9 P  (PP - PI 

P2 
Ar = 

- (5 x 10-3)3(9.8)(999)(1.2047 - 999) = - 1.219 
106 - 

(1001 x 10-6)2 

The minus sign indicates that the motion of a bubble is  in the direction opposite to 
gravity, i e . ,  it is rising. The Reynolds number and the terminal velocity are 

18 

ut = 

- - 

Ar 
18 

Rep = - (1 + 0.0579Ar0.412)-1'214 

- - le219 lo6 [1+ 0.0579 (1.219 x 106)0.412]-1'214 = 1825 

P Rep 
PDP 

= 0.37m/ s 
(1001 x 10-6)(1825) 

(999)(5 x 10-3) 

Calculate Dpj given p and vt 
In this case Eq. (4.3-4) must be rearranged such that the particle diameter is 
eliminated. If both sides of Eq. (4.3-4) are divided by Re;, the result is 

- = y  f 
Rep 

(4.3-14) 

where Y, which is independent of Dp, is a dimensionless number defined by 

Substitution of Eq. (4.3-10) into Eq. (4.3-14) yields 

0.413 
Rep + 16,300 ReS0.O9 

Y=- 24 (1 + 0.173Re$657) + 
Re$ 

(4.3- 15) 

(4.3-16) 

Since Eq. (4.3-16) expresses Y as a function of the Reynolds number, calculation 
of the particle diameter for a given terminal velocity and fluid viscosity requires 
an iterative solution. To circumvent this problem, the following explicit expression 
relating Y to the Reynolds number is proposed by Tosun and Aksahin (1992) as 

(4.3- 17) 
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where Q(Y) is given by 

0.052 0.007 0.00019 Q(Y) = exp 3.15 + - + - - - ( y1/4 y3/4 
(4.3-18) 

The procedure to calculate the particle diameter is as follows: 

a) Calculate Y from Eq. (4.3-15), 
b) Substitute Y into Eqs. (4.3-17) and (4.3-18) and determine Rep, 
c) Once the Reynolds number is determined, the particle diameter can be calculated 
from the equation 

(4.3-19) 

Example 4.5 A gravity settling chamber is one of the diverse range of equipment 
used to remove particulate solids from g a s  streams. In  a settling chamber, the 
entering gas stream encounters an abrupt and large increase in cross-sectional area 
as shown in the figure below. As  a result of the sharp decrease in the gas velocity, 
the solid particles settle down by gravity. I n  practice, the gas velocity through the 
chamber should be kept below 3m/s to prevent the re-entrainment of the settled 
particles. 

Gas inlet Gas outlet 

Spherical dust particles having a density of 2200 kg/m3 are to be separated from 
an air stream at a temperaturn of 25°C. Determine the diameter of the smallest 
particle that can be wmoved in a settling chamber 7 m long, 2 m wide, and 1 m 
high. 

Solution 

Physical properties 
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Analysis 

For the minimum particle size that can be removed with 100% eficiency, the time 
required for this particle to fall a distance H must be equal to the time required to 
moue this particle horizontally a distance L ,  i.e., 

where ( v )  represents the average gas velocity in the settling chamber. Taking 
( v )  = 3 m/ s, the settling velocity of the particles can be calculated as 

= (3) (:) = 0.43m/s 

The value of Y is calculated from Eq. (4.3-15) as 

= 4.74 - - 4 (9.8)(2200 - 1.1845)(18.41 x 
3 ( 1.1845)2(0.43)3 

- 

Substitution of the value of Y into Eq. (4.3-18) gives 

0.052 + 0.007 0.00019 3.15+ ~ 1 / 4  - - -) y1/2 y3/4 

= 24.3 
0.0°7 0.00019 1 0.052 

= exp 3.15 + [ (4.74)1/4 + (4.74)’P - (4.74)3/4 

Therefore, the Reynolds number and the particle diameter are 

V) 
) l7l2O 

Rep = 
(6 y13/20 - YS/ll 

24.3 - - 17/20 = 2*55 [6 (4.74)l3lzo - (4.74) ] 

P b P  Dp  = - 
P vt 

- (18.41 x 10-6)(2.55) - 
(1.1845) (0.43) 

= 92 x 10-6m 
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H Calculate p; given Dp and vt 

In this case Eq. (4.3-4) must be rearranged so that the fluid viscosity can be 
eliminated. If both sides of Eq. (4.3-4) are divided by Re:, the result is 

f = X  (4.3-20) 

where X, which is independent of p ,  is a dimensionless number defined by 

(4.3-21) 

Substitution of Ekl. (4.3-10) into Eq. (4.3-20) gives 

(4.3-22) 
0.413 X=- 24 (1 + 0.173 Re$657) + 

Rep 1 + 16,300 

Since Eq. (4.3-22) expresses X as a function of the Reynolds number, calculation 
of the fluid viscosity for a given terminal velocity and particle diameter requires 
an iterative solution. To circumvent this problem, the following explicit expression 
relating X to the Reynolds number is proposed by Tosun and Akgahin (1992) as 

(4.3-23) 

The procedure to calculate the fluid viscosity is as follows: 

a) Calculate X from Eq. (4.3-21), 
b) Substitute X into Eq. (4.3-23) and determine the Reynolds number, 
c) Once the Reynolds number is determined, the fluid viscosity can be calculated 
from the equation 

(4.3-24) 

Example 4.6 One way of measuring fluid viscosity is to  use a falling ball viscome- 
ter in which a spherical ball of known density is dropped into a fluid-filled graduated 
cylinder and the time of fall f o r  the ball f o r  a specified distance is recorded. 

A spherical ball, 5mm in diameter, has a density of 1000kg/m3. It falls 
through a liquid of density 910kg/m3 at 25°C and travels a distance of lOcm 
in 1.8min. Determine the viscosity of the liquid. 

Solution 

The terminal velocity of the sphere is 

Distance 
Time 

ut = 
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The value of X is calculated from Eq. (4.3-21) as 

x = -  4 g D P ( P P  - P )  
3 Put2 

= 7536 
- - 4 (9.8)(5 x 10-~)(1000 - 910) - 

3 (910)(9.26 x 10-4)2 

Substitution of the value of X into Eq. (4.3-23) gives the Reynolds number as 

X 

- - 24 [1+ 120 (7536)-20/11] 4/11 = 3.2 x lov3 
7536 

Hence, the viscosity of the fluid is 

D P V t P  

Rep 
p = -  

= 1.32 kg/ m. s 
- (5 x 10-3)(9.26 x 10-4)(910) - 

3.2 x 10-3 

4.3.1.2 Deviations from ideal behavior 

It should be noted that Eqs. (4.3-4) and (4.3-10) are only valid for a single spherical 
particle falling in an unbounded fluid. The presence of container walls and other 
particles as well as any deviations from spherical shape affect the terminal velocity 
of particles. For example, as a result of the upflow of displaced fluid in a suspension 
of uniform particles, the settling velocity of particles in suspension is slower than the 
terminal velocity of a single particle of the same size. The most general empirical 
equation relating the settling velocity to the volume fraction of particles, w, is given 
bv 

ut (suspension) 
vt(sing1e sphere) 

= (1 - W ) n  (4.3-25) 

where the exponent n depends on the Reynolds number based on the terminal 
velocity of a particle in an unbounded fluid. In the literature, values of n are 
reported as 

(4.3-26) n = {  

The particle shape is another factor affecting terminal velocity. The terminal 
velocity of a non-spherical particle is less than that of a spherical one by a factor 

4.65 - 5.00 Rep < 2 
2.30 - 2.65 500 5 Rep 5 2 x lo5 

of sphericity, 4, i.e., 
ut( non-spherical) 

ut (spherical) = 4 < 1  (4.3-27) 

Sphericity is defined as the ratio of the surface area of a sphere having the same 
volume as the non-spherical particle to the actual surface area of the particle. 
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4.3.2 Heat Transfer Correlations 
When a sphere is immersed in an infinite stagnant fluid, the analytical solution for 
the steady-state conduction is possible* and the result is expressed in the form 

N u = 2  (4.3-28) 

In the case of fluid motion, contribution of the convective mechanism must be 
included in Q. (4.3-28). Correlations for including convective heat transfer are as 
follows: 

Ranz-Marshall correlation 

Ranz and Marshall (1952) proposed the following correlation for constant surface 
temperature: I Nu = 2 + 0.6 Re? Pr1l3 1 (4.3-29) 

All properties in Eq. (4.3-29) must be evaluated at the film temperature. 

Whitaker correlation 

Whitaker (1972) considered heat transfer from the sphere to be a result of two 
parallel processes occurring simultaneously. He assumed that the laminar and 
turbulent contributions are additive and proposed the following equation: 

1 Nu = 2 + (0.4 by2  + 0.06 by) (pm/pW)'/4 I (4.3-30) 

All properties except pw should be evaluated at Tm. Equation (4.3-30) is valid for 

3.5 5 bP 5 7.6 x 104 

0.71 5 Pr 5 380 

4.3.2.1 Calculation of the heat transfer rate 

Once the average heat transfer coefficient is estimated by using correlations, the 
rate of heat transferred is calculated as 

(4.3-31) 

Example 4.7 An instrument is enclosed in a protective spherical shell, 5cm in 
diameter, and submerged in a river to  measure the concentrations of pollutants. The 
temperature and the velocity of the river are 10 "C and 1.2 m/ s, respectively. To 
prevent any damage to  the instrument as a result of the cold river temperature, the 
surface temperature is kept constant at 32°C by installing electrical heaters in the 
protective shell. Calculate the electrical power dissipated under steady conditions. 

'See Example 8.9 in Chapter 8. 
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Solution 

Physical properties 

f p = 1000 kg/ m3 
p = 1304 x kg/ m. s For water at 10 "C (283 K) : 

= 587 lo-3 w, m. 
Pr = 9.32 

For water at 32 "C (305 K) : p = 769 x kg/ m. s 

Analysis 

System: Protective shell 

Under steady conditions, the electrical power dissipated is equal to the rate of heat 
loss from the shell surface to river. The rate of heat loss is given by 

Q = (TD;) (h) (Tu - T,) (1) 

To determine (h)7 it is necessary to calculate the Reynolds number 

DPV,P Rep = - 
CL 

= 4.6 x io4 
- (5 x 10-2)(1.2)(1000) - 

1304 x 

The Whitaker correlation, Eq. (4.3-3U)7 gives 

NU = 2 + ( 0.4 R e y  + 0.06 Re?) ( ~ , / C L ~ ) ~ ' ~  

Nu = 2 + 0.4 (4.6 x 104)1/2 + 0.06 (4.6 x 104)2/3] (9.32)0.4 [ 

The average heat transfer coeficient is 

= (456) ( 5 ~ x x 1 ~ % " )  = 5353 W/ m2. K 

Therefore, the rate of heat loss is calculated from Eq. (1) as 

Q = [ ~ ( 5  x 10-2)2] (5353)(32 - 10) = 925 W 
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4.3.3 Mass Transfer Correlations 
When a sphere is immersed in an infinite stagnant fluid, the analytical solution for 
the steady-state diffusion is possible2 and the result is expressed in the form 

Sh = 2 (4.3-32) 

In the case of fluid motion, contribution of convection must be taken into con- 
sideration. Correlations for convective mass transfer are as follows: 

hz-Marshall correlation 

For constant surface composition and low mass transfer rates, Eq. (4.3-29) may be 
applied to mass transfer problems simply by replacing Nu and Pr with Sh and Sc, 
respectively, i.e., I Sh = 2 + 0.6 Re;’’ Sc1I3 I (4.3-33) 

Equation (4.3-33) is valid for 

2 2 Rep 5 200 

0.6 5 Sc 5 2.7 

Frossling correlation 

Frossling (1938) proposed the following correlation: 

I Sh = 2 + 0.552 Re? Sc1I3 I 
Equation (4.3-34) is valid for 

0.6 5 Sc 5 2.7 

Steinberger and Treybal (1960) modified Frossling correlation as 

I Sh = 2 + 0.552 Re%53 Sc113 I 
which is valid for 

1500 5 Rep L 12,000 

0.6 5 Sc 5 1.85 

(4.3-34) 

(4.3-35) 

2See Example 8.13 in Chapter 8. 
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Steinberger-Treybal correlation 

The correlation originally proposed by Steinberger and Treybal (1960) includes a 
correction term for natural convection. The lack of experimental data, however, 
makes this term very difficult to calculate in most cases. The effect of natural 
convection becomes negligible when the Reynolds number is high and Steinberger- 
Treybal correlation reduces to 

I Sh = 0.347 Re$62 Sc1I3 I 
Equation (4.3-36) is recommended for liquids when 

2000 5 Rep 5 16,900 

4.3.3.1 Calculation of the  mass transfer rate 

(4.3-36) 

Once the average mass transfer coefficient is estimated by using correlations, the 
rate of mass of species d transferred is calculated as 

(4.3-37) 

Example 4.8 A solid sphere of benzoic acid ( p  = 1267 kg/ m3) with a diameter of 
12 mm is dropped in a long cylindrical tank filled with pure water at 25 "C. If the 
height of the tank is 3 m, determine the amount of benzoic acid dissolved from the 
sphere when it reaches the bottom of the tank. The saturation solubility of benzoic 
acid in water is 3.412 kg/ m3. 

Solution 

Physical properties 

p = 1000 kg/ m3 
For water (a) at 25°C (298K) : ,LL = 892 x 

D A B  = 1.21 x 1 0 - ~  m2/ s 
kg/m. s 

The Schmidt number is 

P sc = - 
PDAB 

= 737 892 x - - 
(1000)(1.21 x 10-9) 

Assumptions 

1. Initial acceleration period is negligible and the sphere reaches its terminal 
velocity instantaneously. 
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2. The diameter of the sphere does not change appreciably. Thus, the Reynolds 
number and the terminal velocity remain constant. 

3. Steady-state conditions prevail. 

4. Physical properties of water do not change as a result of mass transfer. 

Analysis 

To determine the terminal velocity of the benzoic acid sphere, it is necessary to 
calculate the Archimedes number using Eq. (4.3-6): 

Ar = D&IP(PP - P )  
P2 

- (12 x 10-3)3(9.8)(1000)(1267 - 1000) = 5,68 
106 - 

(892 x 10-6)2 

The Reynolds number is calculated from Eq. (4.3-1.2): 

- - 5*68 lo6 [1+ 0.0579 (5.68 x 106)0.412] -la214 = 4056 
18 

Hence, the terminal velocity is 

= 0.3 m/ s 
- (892 x 10-6)(4056) - 

(1000)(12 x 10-3) 

Since the benzoic acid sphere falls the distance of 3 m with a velocity of 0.3 m/s, 
then the falling time is 

Distance 
Time 

t =  

3 =- -  
0.3 - ‘Os 

The Shemood number is calculated from the Steinberger- Beybal correlation, Eq. 
(4.3-36), OB 

Sh = 0.347Re$62 Sc1l3 
= 0.347 (4056)0.62(737)1/3 = 541 

The average mass transfer coefficient is 

1.21 x 10-9 
= (541) ( 12 ) = 5.46 x m/ s 
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The rate of transfer of benzoic acid (species A) to water is calculated by wing Eq. 
(4.3-37): 

m A  = (XD;) (k) - C A W )  M A  = (TD;) ( I c , )  (PA, - PA,) 

= [~(12 x (5.46 x 10-5)(3.412 - 0) = 8.43 x lO-’kg/s 

The amount of benzoic acid dissolved in 10s is 

M A  ‘ h A t  

= (8.43 x 10-8)(10) = 8.43 x lO-’kg 

Verification of assumption # 2 

The initial mass of the benzoic acid sphere, M,, is 

Mo = [ T(12 xi0-3)3] (1267) = 1.146 x kg 

The percent decrease in the mass of the sphere is given by 

( 1 8 ; 4 q 3 6 ~ ~ ~ 3 )  x 100 = 0.074% 

Therefore, the assumed constancy of Dp and ut is justified. 

4.4 FLOW NORMAL TO A SINGLE 
CYLINDER 

4.4.1 Friction Factor Correlations 
For cross flow over an infinitely long circular cylinder, Lapple and Shepherd (1940) 
presented their experimental data in the form off  versus Reo, the Reynolds num- 
ber based on the diameter of the cylinder. Their data can be approximated as 

(4.4-1) 

f = 1.2 lo4 5 Reo 5 1.5 x lo5 (4.4-2) 

The friction factor f in Eqs. (4.4-1) and (4.42) is based on the projected area of 
a cylinder, i.e., diameter times length, and Reo is defined by 

(4.43) 
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Tosun and Akqahin (1992) proposed the following single equation for the friction 
factor that covers the entire range of the Reynolds number in the form 

Once the friction factor is determined, the drag force is calculated from 

(4.45) 

Example 4.9 A distillation column has an outside diameter of 8Ocm and a 
height of 10m. Calculate the drag force exerted by air on the column if the wind 
speed is 2.5 m/ s. 

Solution 

Physical properties 

Assumption 

1. Air temperature is 25°C. 

Analysis 

From Eq. (4.4-3) the Reynolds number is 

DVWP h D = -  
P 

The w e  of Eq. (4.4-4) gives the friction factor as 

f=-( l8 1 + 0.36 Re?) 8 / 5  
h8/9 

D 

[1+ 0.36 (1.29 x 1 0 ~ ) ~ / ~ ] ~ / ~  = 1.2 6.18 
(1.29 x 105)8/9 

- - 

Therefore, the drag force is calculatedfrom Eq. (4.4-5) as 

(l.l845)(2.5)' (1.2) = 35.5N 1 
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4.4.2 Heat Xkansfer Correlations 
As stated in Section 4.3.2, the analytical solution for steady-state conduction from 
a sphere to a stagnant medium gives Nu = 2. Therefore, the correlations for 
heat transfer in spherical geometry require that Nu + 2 as Re -+ 0. In the case 
of a single cylinder, however, no solution for the case of steady-state conduction 
exists. Hence, it is required that Nu + 0 as Re -+ 0. The following heat transfer 
correlations are available in this case: 

Whitaker correlation 

Whitaker (1972) proposed a correlation in the form 

I NU = (0.4 R e 2  + 0.06 R e y  ) (p,/pw)1’4 1 (4.46) 

in which all properties except p,,, are evaluated at T,. Equation (4.46) is valid 
for 

1.0 5 Reo _< 1.0 X lo5 
0.67 5 Pr 5 300 

0.25 5 p,/p, 5 5.2 

Zhukauskas correlation 

The correlation proposed by Zhukauskas (1972) is given by 

I NU = C Reg Pr” (Pr, / Pr,)lI4 I 
where 

0.37 if Pr 5 10 
0.36 if Pr > 0 n= { 

(4.47) 

and the values oA C and m axe given in Table 4.3. All properties except Pr, shou 
be evaluated at T, in Eq. (4.47). 

Table 4.3 Constants of Eq. (4.47) for the circular cylinder in cross flow. 

ReD C m 
1 - 40 0.75 0.4 

40 - 1000 0.51 0.5 

1 

1 x 103 - 2 x 105 0.26 0.6 
2 x lo5 - 1 x lo6 0.076 0.7 
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Churchill-Bernstein correlation 

Churchill and Bernstein (1977) proposed a single comprehensive equation that 
covers the entire range of Reo for which data are available, as well as for a wide 
range of Pr, which is in the form 

(4.48) 

where all properties are evaluated at the film temperature. Equation (4.4-8) is 
recommended when 

Reo Pr > 0.2 

4.4.2.1 Calculation of the heat transfer rate 

Once the average heat transfer coefficient is estimated by using correlations, the 
rate of heat transferred is calculated as 

(4.49) 

Example 4.10 Assume that a person can be approximated as a cylinder of 0.3 m 
diameter and 1.8m height with a surface temperature of 30°C. Calculate the rate 
of heat loss f m m  the body while this person is subjected to a 4 m/ s wind with a 
temperature of - 10 "C. 

Solution 

Physical properties 

The film temperature is (30 - 10)/2 = 10 "C 

p = 16.7 x 
u = 12.44 x m2/s 

= 23.28 

kg/ m. s 

For air at -10°C (263K) : 

Pr = 0.72 

u = 14.18 x 
k = 24.86 x 
Pr = 0.714 

m2/ s 
For air at 10 "C (280 K) : W/ m. K 

p = 18.64 x kg/ m. s For air at 30°C (303K) : 

Assumption 

1. Steady-state conditions prevail. 
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Analysis 

The rate oaf heat loss from the body can be calculated from Eq. (4.4-9): 

Determination of (h)  an Eq. (1) requires the Reynolds number to be known. The 
Reynolds numbers at T, and Tf are 

Whitaker correlation 

The use of Eq. (4.4-6) gives the Nusselt number as 

Nu = (0.4ReT +0.06Red3) (p,/p,)1/4 

= b.4 (9.65 x l O 4 ) l i 2  + 0.06 (9.65 x 104)2/3] (0.72)0.4 ( ;;;;xy;6)1/4 
= 214 

Hence, the average heat transfer weficient is 

(h) = Nu (a) 
- - (214) (23.28 x low3) = 16.6 W/ m2. K 

0.3 

Substitution of this result into Eq. (1) gives the rate of heat loss as 

Q = (Z x 0.3 x 1.8) (16.6) [30 - (- lo)] = 1126W 

Zhukauskas correlation 

Since ReD = 9.65 x lo4 and Pr < 10, f rom Table 4.3 the constants are: c = 0.26, 
m = 0.6 and n = 0.37. Hence, the use of Eq. (4.4-7) gives 

Nu = 0.26R,eg6 Pr0.37(Pr, / Pr,)1/4 
0.72 'I4 

= 0.26 (9.65 x 104)0.6(0.72)0.37 = 226 
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Therefore, the average heat transfer coeficient and the rate of heat loss from the 
body are 

- - (226) (23.28 x 
0.3 

= 17.5 W/ m2. K 

Q = (T x 0.3 x 1.8) (17.5) [30 - (- lo)] = 1188 W 

ChurchilEBernstein correlation 

The use of Eq. (4.4-8) gives 

0.62 hr Pr'l3 [1+ ( ReD )"'"] 4/5 

28,200 NU = 0.3 + 
[ I +  (04 pr)2/31 'j4 

= 0.3 + 0.62 (8.46 x 104)1/2(0.714)1/3 [1+ (8.46 28,200 x  IO^,"'^] 4'5 = 340 
[1+ (0.4/0.714)2/3] 'I4 

The average heat tmnsfer coefficient and the rate of heat loss from the body are 

(h) = Nu (a) 
- - (340) (24.86 x lo-.> = 28.2 W/ m2. K 

0.3 

Q = (T x 0.3 x 1.8) (28.2) [30 - (- lo)] = 1914W 

Comment: The heat tmnsfer coeficient predicted by the Churchill-Bemtein cor- 
relation is 70% greater than the one calculated wing the Whitaker correlation. It 
is important to note that no two correlations will exactly give the same result. 

4.4.3 Mass Transfer Correlations 
Bedingfield and Drew (1950) proposed the following correlation for cross- and 
parallel-flow of gases to the cylinder in which mass transfer to or from the ends of 
the cylinder is not considered: 

I Sh = 0.281 Re2 Sco*" I 
Equation (4.410) is valid for 

(4.410) 

400 5 ReD 5 25,000 

0.6 I Sc 5 2.6 
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For liquids the correlation obtained by Linton and Sherwood (1950) may be used: 

I Sh = 0.281 Reg6 SC' '~  1 (4.411) 

Equation (4.411) is valid for 

400 5 Reo 5 25,000 

s c  5 3,000 

4.4.3.1 Calculation of the mass transfer rate 

Once the average mass transfer coefficient is estimated by using correlations, the 
rate of mass of species A transferred is calculated as 

where M A  is the molecular weight of species A. 

Example 4.11 A cylindrical pipe of 5 cm outside diameter is covered with a thin 
layer of ethanol. Air at 30 "C flows normal to the pipe with a velocity of 3 m/ s. 
Determine the average mass transfer coeficient. 

Solution 

Physical properties 

Diflusion coeficient of ethanol (A) in air (23) at 30 "C (303 K) : 

= (1.45 x - = 1.38 x m2/ s ( 
For air at 30 "C (303 K) : v = 16 x 

The Schmidt number is 

m2/ s 

v s c  = - 
DAB 

= 1.16 16 x - - 
1.38 x 10-5 

Assumptions 

1. Steady-state conditions prevail. 

2. Isothermal system. 
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Analysis 

The Reynolds number as 

The w e  of the correlation proposed by  Bedingfield and Drew, Eq. (4.4-10), gives 

Sh = 0.281 R e 2  
= 0.281 (9375)1'2(1.16)0*44 = 29 

Therefore, the average mass transfer weflcient is 

4.5 FLOW IN CIRCULAR PIPES 
The rate of work done, W ,  to pump a fluid can be determined from the expression 

W = m W = m (/ d P )  (4.5-1) 

where m and 9 are the mass flow rate and the specific volume of the fluid, r e  
spectively. Note that the term in parenthesis on the right-hand side of Eq. (4.5-1) 
is known as the shaft work in thermodynamics3. For an incompressible fluid, i.e., 
? = l/p =constant, Eq. (4.51) simplifies to 

I&'= Q lAPl (4.5-2) 

where Q is the volumetric flow rate of the fluid. Combination of &. (4.52) with 
Eq. (3.1-11) gives 

FD (v) = Q JAPI (4.5-3) 
or. 

(4.5-4) 

Expressing the average velocity in terms of the volumetric flow rate 

Q 
7rD2/4 

(v) = - (4.5-5) 

3Work done on the system is considered positive. 
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reduces Eq. (4.54) to 

(4.56) 

Engineering problems associated with pipe flow are classified as follows: 

0 Determine the pressure drop, IAPI, or the pump size, I@; given the volumetric 
flow rate, Q, the pipe diameter, D, and the physical properties of the fluid, 
p and p. 

0 Determine the volumetric flow rate, Q; given the pressure drop, IAPI, the 
pipe diameter, D, and the physical properties of the fluid, p and p. 

0 Determine the pipe diameter, D; given the volumetric flow rate, &, the pres- 
sure drop, lAP(, and the physical properties of the fluid, p and p. 

4.5.1 Friction Factor Correlations 
4.5.1.1 Laminar flow correlation 

For laminar flow in a circular pipe, i.e., Re = D ( v ) p / p  < 2100, the solution of the 
equations of change gives4 

(4.5-7) 

The friction factor f appearing in Eqs. (4.56) and (4.57) is also called the 
Fanning f ic t ion  factor. However, this is not the only definition for f available 
in the literature. Another commonly used definition for f is the Darcy fraction 
factor, f o ,  which is four times larger than the Fanning friction factor, i.e., f o  = 4 f. 
Therefore, for laminar flow 

(4.5-8) 64 
f D  = Re 

4.5.1.2 Turbulent flow correlation 

Since no theoretical solution exists for turbulent flow, the friction factor is usually 
determined from the Moody chart (1944) in which it is expressed as a function 
of the Reynolds number, Re, and the relative pipe wall roughness, &ID. Moody 
prepared this chart by using the equation proposed by Colebrook (1938) 

1 -- 
d7 (4.59) 

where E is the surface roughness of the pipe wall in meters. 

4See Section 9.1.3.1 in Chapter 9. 
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4.5.1.3 Solutions to the engineering problems 

I. Laminar flow 

For flow in a pipe, the Reynolds number is defined by 

Re = 4 P Q  
TPD 

=- 

Substitution of Eq. (4.510) into Eq. (4.57) yields 

4 npD f=- 
P Q  

Calculate lAPl or @; given Q and D 

Substitution of Eq. (4.511) into Eq. (4.56) gives 

The pump size can be calculated from Eq. (4.52) as 

H Calculate Q; given lAPl and D 

Rearrangement of Eq. (4.5-12) gives 

(4.510) 

(4.5-11) 

(4.512) 

(4.5-13) 

l Q =  128pL lap' I (4.514) 

Calculate D; given Q and lAPl 

Rearrangement of Eq. (4.512) gives 

(4.515) 
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11. Turbulent flow 

W Calculate lAPl or &; given Q and D 
For the given values of Q and D, the Reynolds number can be determined using Eq. 
(4.510). However, when the values of Re and E / D  are known, determination of f 
fkom Eq. (4.59) requires an iterative procedure since f appears on both sides of 
the equation. To avoid the iterative solutions, efforts have been directed to express 
the friction factor, f ,  as an explicit function of the Reynolds number, Re, and the 
relative pipe wall roughness, &ID. 

Gregory and Fogarasi (1985) compared the predictions of the twelve explicit 
relations with J3q. (4.5-9) and recommended the use of the correlation proposed 
by Chen (1979): 

(4.5 16) 

where 
1.1098 1.1490 0.8981 

A = ( % )  +(Re) (4.51 7) 

Thus, in order to calculate the pressure drop using Eq. (4.516), the following 
procedure should be followed through which an iterative solution is avoided: 

a) Calculate the Reynolds number from Eq. (4.510), 
b) Substitute Re into Eq. (4.516) and determine f, 
c) Use Eq. (4.56) to find the pressure drop. 
determined by using Eq. (4.5-2). 

Finally, the pump size can be 

Example 4.12 What is the required pressure drop per unit length in order to 
pump water at a volumetric flow rate of 0.03 m3/ s at 20 "C through a commercial 
steel pipe (E  = 4.6 x 

Solution 

Physical properties 

m) 20cm in diameter? 

p = 999 kg/ m3 For water at 20 "C (293 K) : cL = lool 10-6 kg/ m. 

Analysis 

The Reynolds number is determined from Eq. (4.5-10) as 
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Substitution of this value into Eqs. (4.5-17) and (4.5-16) gives 
1.1098 0.8981 

A = ( * )  2.5497 +(%) 
(4.6 x 10-5/0.2)] 1.1098 + ( 7.1490 )0.8g81 = 1.38 

= [ 2.5497 191 x 103 

Hence, the friction factor is 

Thus, Eq. (4.56) gives the pressure drop per unit pipe length as 

f = 4.36 x 10-~ 

PPI 32PfQ2 -- - 
L n2D5 

= 40 Pa/ m - (32) (999)(4.36 x 0.03)2 - 
n2(0.2)5 

H Calculate &; given IAPI and D 
In this case rearrangement of Eq. (4.56) gives 

2 

f = (a) 
where Y is defined by 

n2D5 lAPl 
32 pL 

Substitution of Eqs. (4.510) and (4.518) into Eq. (4.59) yields 

(4.518) 

(4.5-19) 

1 Q = -4Y log (& + S) I (4.520) 

Thus, the procedure to calculate the volumetric flow rate becomes: 

a) Calculate Y from Eq. (4.519), 
b) Substitute Y into Eq. (4.520) and determine the volumetric flow rate. 

Example 4.13 
that can be delivered through a commercial steel pipe ( E  = 4.6 x 
diameter when the pressure drop per unit length of the pipe is 40 Pa/ m? 

What is the volumetric flow rate of water in m3/s at 2O0c 
m) 20 cm in 
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Solution 

Physical properties 

p = 999 kg/ m3 
I-1 = lool 10-6 kg/ m. 

For water ut 20 "C (293 K) : 

Analysis 

Substitution of the given values into Eq. (4.5-19) yields 

n2D5 lAPl 
32 pL 

= 1.99 x 10-~  
7r2 (0.2)5 (40) 

= \i (32)(999) 

Hence, Eq. (4.5-20) gives the volumetric flow mte as 

Q=-lYlog(*+@) 3.7065 pY 

(4.6 x 10-5/0.2) [ 3.7065 + (999)(1.99 x 10-3) 
(1001 x io- 

= - (4)(1.99 x log 

= 0.03 m3/ s 

H Calculate D; given Q and lAPl 
Swamee and Jain (1976) and Cheng and Turton (1990) presented explicit equa- 
tions to solve problems of this type. These equations, however, are unnecessarily 
complex. A simpler equation can be obtained by using the procedure suggested by 
Tosun and Akgahin (1993) as follows. Equation (4.56) can be rearranged in the 
form 

f = (DN)5 (4.521) 
where N is defined by 

(4.522) 

For turbulent flow, the value of f changes between 0.00025 and 0.01925. Using an 
average value of 0.01 for f gives a relationship between D and N as 

0.4 D = -  
N (4.5-23) 

Substitution of Eq. (4.521) to the left-hand side of Eq. (4.59), and substitution 
of Eqs. (4.5-10) and (4.5-23) to the right-hand side of Eq. (4.5-9) gives 

-115 

(4.524) D = - 0.575 ({ [log(sN) + 5.806 (')I - 0.l'i'lY) 
N PQN 
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The procedure to calculate the pipe diameter becomes: 

a) Calculate N from Eq. (4.522)) 
b) Substitute N into Eq: (4.5-24) and determine the pipe diameter. 

Example 4.14 
( E  = 4.6 x 
of the pipe if the allowable pressure drop per unit length of pipe is 40 Pa/ m. 

Solution 

Water at 20°C is to be pumped through a commercial steel pipe 
m) at a volumetric flow rate of 0.03 m3/ s. Determine the diameter 

Physical properties 

p = 999 kg/ m3 For water at 20 "c (293 K) : 
ct = lool 10-6 kg/ m. 

Analysis 

Equation (4.5-22) gives 

n2]AP(  ' I5  
= (32pLQ2) 

= 1.69 
n2 (40) 

= [ (32) (999) ( 0.03)2 

Hence, Eq. (4.524) gives the pipe diameter as 

-115 
D = - 0.575 ({ [log(EN) + 5.806 (L)] - 0.1'71}') 

N PQN 

- 0.171 ,'> -1'5 = 0.2 m 

4.5.2 Heat Transfer Correlations 
For heat transfer in circular pipes, various correlations have been suggested 
depending on the flow conditions, i.e., laminar or turbulent. 

4.5.2.1 Laminar flow correlation 

For laminar flow heat transfer in a circular tube with constant wall temperature, 
Sieder and Tate (1936) proposed the following correlation: 

1 Nu = 1.86 [RePr (D/L)]'I3 (p/pW)O.l4 1 (4.525) 
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in which all properties except p, are evaluated at the mean bulk temperature. 
Equation (4.5-25) is valid for 

13 5 Re 5 2030 

0.48 5 Pr 5 16,700 

0.0044 5 p/pw 5 9.75 
The analytical solution5 to this problem is only possible for very long tubes, i.e., 
LID + 00. In this case the Nusselt number remains constant at the value of 3.66. 

4.5.2.2 Turbulent flow correlations 

The following correlations approximate the physical situation quite well for the 
cases of constant wall temperature and constant wall heat flux: 

Dittus-Boelter correlation 

Dittus and Boelter (1930) proposed the following correlation in which all physical 
properties are evaluated at the mean bulk temperature: 

I Nu = 0.023 Prn 1 (4.5-26) 

where 
0.4 for heating 

n = {  0.3 for cooling 
The Dittus-Boelter correlation is valid when 

0.7 5 Pr 5 160 

Re 2 10,000 

LID 2 10 

Sieder-'Pate correlation 

Sieder and Tate (1936) correlation is 

I Nu = 0.027Re4d5  PI-'/^ (p,~ 'p, )~. '~  I (4.5-27) 

in which all properties except pw are evaluated at the mean bulk temperature. 
Equation (4.5-27) is valid for 

0.7 5 Pr 5 16,700 

Re 2 10,000 
LID 2 10 

5See Section 9.3.1.2 in Chapter 9. 
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Whitaker correlation 

The equation proposed by Whitaker (1972) is 

I Nu = 0.015 Ret83 (P/Pw)0*14 1 (4.528) 

in which the Prandtl number dependence is based on the work of Fkiend and 
Metzner (1958), and the functional dependence of p/pw is from the work of Sieder 
and Tate (1936). All physical properties except pw are evaluated at the mean bulk 
temperature. The Whitaker correlation is valid for 

2,300 5 Re 5 1 x lo5 

0.48 5 Pr 5 592 

0.44 5 p/p, 5 2.5 

4.5.2.3 Calculation of the heat transfer rate 

Once the average heat transfer coefficient is calculated from correlations by using 
Eqs. (4.5-25)-(4.528)) then the rate of energy transferred is calculated as 

where AT,,, logarithmic mean temperature difference, is defined by 

(4.530) 

The derivation of Eq. (4.5-29) is given in Section 9.3 in Chapter 9. 

Example 4.15 Steam condensing on the outer surface of a thin-walled circular 
tube of 65 mm diameter maintains Q uniform surface temperature of 100 "C. Oil 
flows through the tube at an average velocity of 1 m/ s. Determine the length of the 
tube in order to increase oil temperature from 40 "C to 60 "C. Physical properties 
of the oil are as follows: 

p = 12.4 x kg/ m. s 
At  50 "C : v = 4.28 x m2/ s { Pr = 143 

At 100 "C : /.I = 9.3 x kg/ rn. s 
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Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Physical properties remain constant. 

3. Changes in kinetic and potential energies are negligible. 

Analysis 

System: Oil an the pipe 

The inventory rate equation for mass becomes 

Rate of mass in = Rate of mass out = m = p(v)(sD2/4) 

Rate of energy in = Rate of energy out 

Rate of energy in = m &(Tbi, - Tref) + sDL(h)ATLM 
Rate of energy out = m&p(Tbo,, - Tref) 

(1) 

On the other hand, the inventory rate equation for energy reduces to 

(2) 

The terms in Eq. (2) are expressed by 

(3) 
( 4 )  

Since the wall temperature is constant, the expression for ATLM, Eq. (4.5-30), 
becomes 

Substitution of Eqs. (l), (3), (4) and (5) into Eq. (2) gives 

-=-- L 1 ( ~ > P & P  In ( Tw -Thin ) 
(6) D 4 (h) Tw - Tbout 

Noting that StH = (h) / ( (v)p&p) = Nu/(RePr), Eq. (6) becomes 

(7) -= - - In (  L 1 1  
D 4 StH Tw -TbeUt 4 Nu Tw - Tbo,,t 

Tw - Tbi, ) = 1 R e p r l n (  Tw - Tbd, ) 
To determine Nu (or, (h)), first the Reynolds number mmt be calculated. The 
mean bulk temperature is (40 + 60)/2 = 50 "C and the Reynolds number is 

D ( 4  Re = - 
v 

(65 10-3)(1) = 1519 + Laminar flow - - 
4.28 x 10-5 
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Since the flow is laminar, Eq. (4.5-25) must be wed, i.e., 

Nu = 1.86 [RePr ( D / , c ) ] ~ / ~  ( ~ / p , ) " ~ ~  

Substitution of Eq. (8) into Eq. (7) yields 

(12.4 x 10-3/9.3 x 10-3)-0-14 In (100 - 40)] 3/2 

(4) (1.86) 100 - 60 = (1519)(143) [ 
= 2602 

The tube length is then 

L = (2602)(65 x = 169m 

Example 4.16 Air at 20°C enters a circular pipe of 1.5cm internal diameter 
with a velocity of 50 m/ s. Steam condenses on the outside of the pipe so as to keep 
the surface temperature of the pipe at 150OC. 
a) Calculate the length of the pipe required to increase air temperature to 90°C. 
b) Discuss the eflect of surface roughness on the length of the pipe. 

Solution 

Physical properties 

The mean bulk temperature is (20 + 90)/2 = 55OC 
For air at 20 "C (293 K) : p = 1.2047kg/ m3 

p = 19.8 x 
For air at 55OC (328K) : v = 18.39 x 10-6m2/s { Pr = 0.707 
For air at 150 "C (423 K) : p = 23.86 x 

kg/ m. s 

kg/ m. s 

Analysis 

a) System: Air in the pipe 
The inventory rate equation for mass d u c e s  to 

Rate of mass of air in = Rate of mass of air out = m (1) 
Note that for  compressible fluids like air, both density and average velocity depend 
on temperature and pressure. Therefore, wing the inlet conditions 
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In problems dealing with the flow of compressible fluids, it is customary to define 
mass velocity, G, as 

(2) 
m 

G = - = p (  A v )  

The advantage of wing G is the fact that it remains constant for steady flow of 
compressible fluids through ducts of uniform cross-section. In this case 

G = (1.2047)(50) = 60.24 kg/ m2. s 

The inventory rate equation for energy is written as 

Rate of energy in = Rate of energy out (3) 

Equations (3)-(5) of Example 4.15 are also applicable to this problem. Therefore, 
we get 

(4) 
-- L f E In ( T w  - Tbi, ) 
D - 4  Nu Tw - Gout 

The Nzlsselt number in Eq. (4) can be determined only i f  the Reynolds number is 
known. The Reynolds number is calculated as 

DG Re = - 
P 

- - (0*015)(60*24) = 45,636 + Turbulent flow 19.80 x 

The value of L depends on the comlations as follows: 

Dittus-Boelter correlation 

Substitution of Eq. (4.5-26) into Eq. (4) gives 

L 
D 
- =  

- - (45, 636)0.2(0.707)0.6 (150 - 20) = 58.3 
0.092 150 - 90 

Therefore, the required length is 

L = (58.3)(1.5) = 87cm 

Sieder-Tate correlation 

Substitution of Eq. (4.5-27) into Eq. (4) gives 

(45,636)0.2(0.707)2/3 19.80 x loq6 -0'14 150 - 20 = 49.9 
- - 0.108 (23.86 x ) ln(150-90)  
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Therefore, the required length is 

L = (49.9)(1.5) = 75cm 
Whitaker correlation 

Substitution of Eq. (4.5-28) into Eq. (4) gives 

( P I P w )  - 0.14 
~ ~ 0 . 1 7  ~ ~ 0 . 5 8  

L 
D -  0.06 
_ -  

- 0.14 

= 67 - (45, 636)0*17(0.707)0.58 19.80 x ( 150 - 20) 
(23.86 x 10-6 150 - 90 - 

0.06 
Therefore, the required length is 

L = (67)(1.5) = 101 cm 
b) Note that Eq. (4) is also expressed in the form 

The use of the Chilton-Colburn analogy, ie., f/2 = StH Pr2I3, reduces Eq. (5) to 

_ -  L 1 pr2’3 ( T w  - Tbi,, ) 
0 - 5 7  T w  - TbOut 

(6) 
- -  1 (0.707)2/3 (150 - 20) =- 0.3068 
- 2  f 150 - 90 f 

The fiction factor can be calculated from the Chen correlation, Eq. (4.5-16) 

where 

1 
3.7065 Re 

1.1098 

For various values of e /D ,  the calculated values of f, L I D  and L are given as 
follows: 

0 0.0053 57.9 86.9 
0.001 0.0061 50.3 75.5 
0.002 0.0067 45.8 68.7 
0.003 0.0072 42.6 63.9 
0.004 0.0077 39.8 59.7 
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Comment: The increase in surface roughness increases the friction factor and 
hence power consumption. On the other hand, the increase in surface roughness 
causes an increase in the heat tmnsfer coefficient with a concomitant decrease in 
pipe length. 

4.5.3 Mass Transfer Correlations 
Mass transfer in cylindrical tubes is encountered in a variety of operations such as 
wetted wall columns, reverse osmosis, and cross-flow ultrafiltration. A s  in the case 
of heat transfer, mass transfer correlations depend on whether the flow is laminar 
or turbulent. 

4.5.3.1 Laminar flow correlation 

For laminar flow mass transfer in a circular tube with a constant wall concentration, 
an analogous expression to Eq. (4.5-25) is given by 

I Sh = 1.86 [ReSc ( D / L ) p 3  I 
Equation (4.531) is valid for 

[ReSc (D/L)]1’3 2 2 

4.5.3.2 Turbulent flow correlations 

Gilliland-Sherwood correlation 

(4.5-31) 

Gilliland and Sherwood (1934) correlated the experimental results obtained from 
wetted wall columns in the form 

I Sh = 0.023 I (4.532) 

which is valid for 
2,000 I Re 5 35,000 

0.6 5 Sc 5 2.5 

Linton-Sherwood correlation 

The correlation proposed by Linton and Sherwood (1950) is given by 

I Sh = 0.023 Sc1l3 1 
Equation (4.5-33) is valid for 

(4.533) 

2,000 5 Re 5 70,000 

0.6 5 Sc 5 2,500 
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4.5.3.3 Calculation of the mass transfer rate 

Once the average mass transfer coefficient is calculated from correlations given by 
Eqs. (4.531)-(4.533), then the rate of mass of species A transferred is calculated 
as 

[ h A  = ( n D L ) ( k )  (ACA)LM M A  1 (4.534) 

where M A  is the molecular weight of species d, and ( A c A ) ~ ~ ,  logarithmic mean 
concentration difference, is defined by 

(4.5-35) 

The derivation of Eq. (4.534) is given in Section 9.5 in Chapter 9. 

Example 4.17 A smooth tube with an internal diameter of 2.5cm is cast from 
solid naphthalene. Pure air enters the tube at an average velocity of 9 m/ s. If the 
average air pressure is 1 atm and the temperature is 40 "C, estimate the tube length 
required for  the average concentration of naphthalene vapor in the air to reach 25% 
of the saturation value. 

Solution 

Physical properties 

Diffusion weficient of naphthalene (d) in air (23) at 40°C (313K) : 

= 6.61 x m2/ s 

For air ut 40 "C (313 K) : v = 16.95 x 
The Schmidt number is 

m2/ s 

v sc = - 
DAB 

= 2.56 - 16.95 x 
6.61 x 

- 

Assumptions 

1. Steady-state conditions prevail. 

2. The system is isothermal. 
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Analysis 

System: Air in the naphthalene tube 

If naphthalene is designated as species A, then the rate equation for the conservation 
of species A becomes 

Rate of moles of A in = Rate of moles of A out (1) 

The t e r n  in Eq. (1) are expressed by  

Rate of moles of A in = T D L ( ~ , ) ( A c A ) L M  (2) 
(3) Rate of moles of A out = e ( C A b ) o u t  = (7rD2/4)(v)(C~b)out 

Since the concentration at the wall is constant, the expression for  (ACA)LM, Eq. 
(4.5-35), becomes 

( C A ,  )out 
(ACA)LM = 

Substitution of Eqs. (i!)-(4) into Eq. (1) gives 

(cA, )mt 
In l--  L 1 (4 

D 4 (kc) [ CAW ] 
- _ _ - -  (') In (1 - 0.25) = 0.072 

4 (kc) 

Note that Eq. (5) can also be expressed in the form 

The value of L depends on the correlations as follows: 

Chilton-Colburn analogy 

Substitution of Eq. (3.5-13) into Eq. (6) gives 

L 2 - = 0.072 - Sc2I3 
D f 

The Reynolds number is 

(4) 

- - (2-5 10-2)(9) = 13,274 =+ Turbulent flow 
16.95 x 
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The friction factor can be calculated from the Chen correlation, Eq. 
Taking €ID M 0, 

(4.5-16). 

7.1490 1.1098 

= 1.16 x 
7.1490 '~3'~' 

= (m) 
5.0452 --410g --- 1 

(:!:5 Re 
-- 
d7 

= - 41og [- 5.0452 log(1.16 x + f =0.0072 13,274 

Hence Eq. (7) becomes 

= 37.4 L (0.072)(2)(2.56)2/3 
D 0.0072 
- =  

The required length is then 

L = (37.4)(2.5) = 93.5cm 

Linton-Sherwood correlation 

Substitution of Eq. (4.5-33) into Eq. (6) gives 

L - = 3.13 Sc2i3 
D 

= 3.13 (13, 274)0*17(2.56)2/3 = 29.4 

The tube length is 
L = (29.4)(2.5) = 73.5cm 

4.5.4 Flow in Non-Circular Ducts 
The correlations given for friction factor, heat transfer coefficient, and mass transfer 
coefficient are only valid for ducts of circular cross-section. These correlations can 
be used for flow in non-circular ducts by introducing the concept of hydraulic 
equivalent diameter, D h ,  defined by 

Flow area 
Wetted perimeter 

D h  = 4  

The Reynolds number based on the hydraulic equivalent diameter is 

(4. $36) 

(4.5-37) 
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so that the friction factor, based on the hydraulic equivalent diameter, is related 
to Reh in the form .'"(E) (4.538) 

where $2 depends on the geometry of the system. Since R = 1 only for a circular 
pipe, the use of the hydraulic equivalent diameter has not been recommended for 
laminar flow (Bird et al., 1960; Fahien, 1983). The hydraulic equivalent diameter 
for various geometries is shown in Table 4.4. 

Thble 4.4 The hydraulic equivalent diameter for various geometries. 

Geometry Dh 

I 
b 26 

2ab 
a + b  

.-- Do - Di 
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Example 4.18 Water flows at an average velocity of 5 m/ s through a duct of 
equilateral triangular cross-section with one side, a ,  being equal to 2cm. Electric 
wires are wrapped around the outer surface of the duct to provide a constant wall 
heat flux of 100 W/ cm2. if the inlet water tempemture is 25 "C and the duct length 
is 1.5m, calculate: 

a) The power required to pump water through the duct, 
b) The exit water temperature, 
c )  The average heat transfer weficient. 

Solution 

Physical properties 

p = 997 kg/ m3 
p = 892 x For water at 25 "C (298 K) : kg/ m. s { e p  = 4180 J/ kg. K 

Assumptions 

1. Steady-state conditions prevail. 

2. Changes in kinetic and potential energies are negligible. 

3. Variations in p and c p  with temperature are negligible. 

Analysis 

System: Water in the duct 

a) The power required is calculated from Eq. (3.1-11) 

The friction factor in Eg. (1) can be calculated from the modified fonn of the Chen 
correlation, Eq. (4.5-16) 

where 
1.1098 

The hydraulic equivalent diameter and the Reynolds number are 

(3) 

2 = - = 1.155cm 
4 
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= 64,548 + Turbulent flow 
- (1.155 x 10A2)(5)(997) - 

892 x 

Substitution of these values into Eqs. (3) and (2) and taking E / D  x 0 gives 
0.8981 7.1490 

~ (;;4596)8)0.8g81 = 2.8 x 1 0 - ~  

- 1 = -410g ( -- 5’0452 log A )  d7 Refi 

= - 4 log [ - 5.0452 log(2.8 x f=0.0049 64,548 

Hence, the power required is calculated from Eq. (1) as 

(3)(2 x 10-2)(1.5) 

b) The inventory rate equation fo. mass is 

Rate of mass in = Rate of mass out = 7iz = p(v) - (Y) (4) 

m = (997)(5) [ fi(2 = 0.863 kg/ s 

The inventory rate equation for energy reduces to 

Rate of energy in = Rate of energy out (5) 

(6) 
(7) 

The terns in Eq. (5) are expressed by 

Rate of energy in = m e p ( T b i ,  - Tr,f) + Qw 
Rate of energy out = m&p(Tbout - Tr,f) 

where Qw is the rate of heat tmnsfer to water from the lateral surfaces of the duct. 
Substitution of Eqs. (6) and (7) into Eq. (5) gives 
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c )  The mean bulk temperature is (25 + 50)/2 = 37.5"C. At this temperature 

k = 628 x W/ m. K and Pr = 4.62 

The use of the Dittus-Boelter correlation, Eq. (4.5-26), gives 

Nu = 0.023 Re:/5 
= 0.023 (64, 548)4/5(4.62)0.4 = 299 

Therefore, the average heat transfer coefficient is 

= (299) ( 628 ) = 16,257W/m2.K 
1.155 x 

4.6 FLOW IN PACKED BEDS 

The chemical and energy industries deal predominantly with multiphase and mul- 
ticomponent systems in which considerable attention is devoted to increasing the 
interfacial contact between the phases to enhance property transfers and chemical 
reactions at these extended surface interfaces. As a result, packed beds are exten- 
sively used in the chemical process industries. Some examples are gas absorption, 
catalytic reactors, and deep bed filtration. 

4.6.1 Friction Factor Correlations 

The friction factor for packed beds, fpb, is defined by 

(4.6-1) 

where E is the porosity (or, void volume fraction), D p  is the particle diameter, and 
vo is the superficial velocity. The superficial velocity is obtained by dividing the 
volumetric flow rate to the total cross-sectional area of the bed. Note that the 
actual flow area is a fraction of the total cross-sectional area. 

Example 4.19 Water Bows through an annulw at a volumetric flow rate of 
5m3/ min. The diameters of the inner and the outer pipes are 30cm and 50cm, 
respectively. Calculate the superficial velocity. 
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Solution 

If the inside and outside pipe diameters are designated by Di and Do, respectively, 
the supeTficia1 velocity, vo, is defined by 

= 25.5 m/ min Q 5 
xDz/4 - ~ ( 0 . 5 ) ~ / 4  

uo=-- 

The actual average velocity, (v),,t, in the annulus is 

Q - - 5 = 40 m/ min 
x [(0.5)2 - (0.3)2] /4 = x (02  - DZ) /4 

Comment: 
by a factor of porosity, which is equal to [l - (Di/Do)2] in this example. 

The superficial velocity is always less than the actual average velocity 

For packed beds, the Reynolds number is defined by 

(4.6-2) 

For laminar flow, the relationship between the friction factor and the Reynolds 
number is given by 

(4.6-3) 

which is known as the Kozeny-Carman equation. 

and fpb is given by the Burke-Plummer equation in the form 
In the case of turbulent flow, Le., Rep6 > 1000, the relationship between Repb 

(4.6-4) 

The so-called Ergun equation (1952) is simply the summation of the Kozeny- 
Carman and the Burke-Plummer equations 

(4.6-5) 

Example 4.20 A column of 0.8m2 cross-section nd 30m height is p eked with 
spherical particles of diameter 6mm. A fluid with p = 1.2 kg/ m3 and p = 1.8 x 

kg/ m. s flows through the bed at a mass flow rate of 0.65 kg/ s. If the pressure 
drop is measured as 3200Pa, calculate the porosity of the bed: 

a) Analytically, 
b) By  using Newton-Raphson method. 
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Solution 

Assumption 

1. The system is isothermal. 

Analysis 

The superficial velocity through the packed bed is 

= 0.677 m/ s 0.65 
(1.2) (0.8) 21, = 

Substitution of the values into Eqs. (4.6-1) and (4.6-2) gives the friction factor 
and the Reynolds numbes. as a function of porosity in the form 

- E ~  Dp(AP( 
f@= l--E pvZL 

=- e3 [(6 x 10-3)(3200)] = 1.164 ( - c3 ) 
1 - (1.2)(0.677)2(30) 1-€ 

- - [ (6 x 10-3)(0.677)(1.2)] -- 1 - 270.8 ('> 
1.8 x 10-5 1 - €  1--E 

Substitution of Eqs. (1) and (2) into Eq. (4.6-5) gives 

e3 - 0.476 Z + 2.455 E - 1.979 = 0 (3) 
a) Equation (3) can be solved andytically by using the procedure described in Sec- 
tion A.7.1.2 in Appendix A.  In  order to calculate the discriminant, the terms M 
and N must be calculated from Eqs. (A.7-5) and (A.7-6)) respectively: 

= 0.793 (3)(2.455) - (0.476)2 
9 M =  

N =  = 0.799 - (9)(0.476)(2.455) + (27)(1.979) + (2)(0.476)3 
54 

Therefore, the discriminant is 

A = M 3 +  N2 
= (0.793)3 + (0.799)2 = 1.137 

Since A > 0, Eq. (3) has only one real root as given by  Eq. (A.7-7). The t e r n  5' 
and T in this equation are calculated as 

S = ( N  + 
= (0.799 + = 1.231 
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= (0.799 - m) 1’3 = - 0.644 

Hence the average porosity of the bed is 

0.476 
3 

E = 1.231 - 0.644 + - = 0.746 

b) Equation (3) is rearranged as 

F(E)  = e3 - 0.476 e2 + 2.455 E - 1.979 = 0 

From Eq. (A.7-18) the iteration scheme is 

(4) 

The derivative of the function F is given by 

dF - = 3 c2 - 0.952 E + 2.455 
de 

Assuming a starting value of 0.7, the calculation scheme is 

0.151 
3.259 

€2 = 0.7 + - = 0.746 

0.003 
3.414 

€3 = 0.746 - - = 0.745 

Since €2 M €3, the value of porosity is 0.746. 

4.6.2 Heat Transfer Correlation 
Whitaker (1972) proposed the following correlation for heat transfer in packed beds: 

The Nusselt number in Eq. (4.66) is defined by 

Equation (4.66) is valid when 

(4.6-6) 

(4.6-7) 
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0.34 5 E 5 0.74 
Pr M 0.7 

All properties in Eq. (4.66) are evaluated at the average fluid temperature in the 
bed. 

4.6.2.1 Calculation of the heat transfer rate 

Once the average heat transfer coefficient is determined, the rate of heat transfer 
is calculated from p=EGGl (4.68) 

where V is the total volume of the packed bed and a, is the packing surface area 
per unit volume defined by 

6 (1 - E) a, = - 
DP 

(4.69) 

4.6.3 Mass Transfer Correlation 
Dwivedi and Upadhyay (1977) proposed a single correlation for both gases and 
liquids in packed and fluidized beds in terms of the j-factor as 

(4.610) 

which is valid for 0.01 5 h ; b  _< 15,000. The terms j ~ , ,  and Re;, in Eq. (4.610) 
are defined by 

and 

(4.6-11) 

(4.612) 

4.6.3.1 Calculation of the mass transfer rate 

Once the average mass transfer coefficient is determined, the rate of mass transfer 
of species d, r j z ~ ,  is given by 

Example 4.21 Instead of wing a naphthalene pipe as in Example 4.17, it is sug- 
gested to form a packed bed of porosity 0.45 in a pipe, 2.5 cm in internal diameter, 
by wing naphthalene spheres of 5mm in diameter. Pure air at 40°C flows at a 
superficial velocity of 9m/s through the bed. Determine the length of the packed 
bed required for the average concentration of naphthalene vapor in the air to reach 
25% of the satumtion value. 
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Solution 

Physical properties 

Diif3pzion coefficient of naphthalene (A) in air (B) at 40 "C (313 K) : 

312 
= (0.62 x 10-5) (g) = 6.61 x m2/ s 

For air at 40°C (313K) : u = 16.95 x 

The Schmidt number is 

m2/s 

U 
sc = - 

DAB 
16.95 x 
6.61 x 

= 2.56 - - 

Assumptions 

1. Steady-state conditions prevail. 

2, The system is isothermal. 

3. The diameter of the naphthalene spheres does not change appreciably. 

Analysis 

System: Air in the packed bed 

Under steady conditions, the consemation statement for naphthalene, species A, 
becomes 

Rate of moles of A in = Rate of moles of A out (1) 

The terms an Eq. (1) are expressed by  

Rate of moles of A in = a,V(k,)(AcA)LM (2) 
(3) Rate of moles of A out = Q (cAb)OZlt = (7r02/4) vo(~Ab)out  

Since the concentration at the surface of the naphthalene spheres is constant, the 
expression for (ACA)LM, Eq. (4.5451, becomes 
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Substitution of Eqs. (2)-(4) into Eq. (1) and noting that V = ( rD2 /4 )L  gives 

Note that for a circular pipe, i.e., a, = 4 /D,  the above equation reduces to Eq. (5) 
in Example 4.17. 

The interfacial area per unit volume, a,, is calculated from Eq. (4.6-9) as 

6 (1 - E )  

DP 
a, = - 

To determine the average mass transfer coefficient from Eq. (4.6-10)) first it is 
necessary to  calculate the Reynolds number 

= 2655 - (0.005)(9) 
16.95 x 

- 

Substitution of this value into Eq. (4.6-10) gives 

0.765 0.365 
(Re;lb)o’82 -I- (R€&,) 0*386 

€.?M,,I, = 

0.765 0.365 
o.386 = 0.0186 - - 

(2655)0.82 + (2655) 

in which ejMpb is given by Eq. (4.6-11). Therefore, the average mass transfer 
coefficient is 

V O  (kc) = 0.0186 - 
€ SC213 

= 0.2 m/ s 
- (0.0186)(9) - 

(0.45)(2.56)2/3 

The length of the bed is calculated from Eq. (5) as 

In(1 - 0.25) = 0.02m 9 
(0.2) (660) 

L = -  

Comment: The use of a packed bed increases the mass transfer area between air 
and solid naphthalene. This in turn causes a drastic decrease in the length of the 
equipment. 
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A 
a, 

G 
D 
Dh 
DP 
DAB 
FD 
f 
G 
9 
jH 
j M  
IC 
kc  
L 
M 
m 
M 
n 
P 

e 
4 
R 
T 
t 
V 

VO  

'Ut 
W 

CP 

Q 

2) 

w 
5 

A 
€ 

E 

P 

P 
v 

area, m2 
packing surface area per unit volume, 1/ m 
heat capacity at constant pressure, kJ/ kg. K 
concentration of species i, kmol/ m3 
diameter, m 
hydraulic equivalent diameter, m 
particle diameter, m 
diffusion coefficient for system d-B, m2/ s 
drag force, N 
friction factor 
mass velocity, kg/ m2. s 
acceleration of gravity, m/ s2 
Chilton-Colburn j - factor for heat transfer 
Chilton-Colburn j - factor for mass transfer 
thermal conductivity, W/ m. K 
mass transfer coefficient, m/s 
length, m 
mass, kg 
mass flow rate, kg/ s 
molecular weight, kg/ kmol 
molar flow rate, kmol/ s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/ s 
heat flux, W/m2 
gas constant, J/ mol. K 
temperature, "C or K 
time, s 
volume, m3 
velocity, m/ s 
superficial velocity, m/ s 
terminal velocity, m/ s 
work, J; width, m 
rate of work, W 
rectangular coordinate, m 

difference 
porosity 
surface roughness of the pipe, m 
viscosity, kg/ m. s 
kinematic viscosity, m2/ s 
density, kg/ m3 
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Overlines 
N per mole 

per unit mass 

Bracket 

(4 average value of a 

Superscript 

sat saturation 

Subscripts 

A, B 
b 

ch 
f 
i 
in 
LM 
out 

C 

Pb 
W 
00 

species in binary systems 
bulk 
transition from laminar to turbulent 
characteristic 
film 
species in multicomponent systems 
inlet 
log-mean 
out 
packed bed 
wall or surface 
free-stream 

Dimensionless Numbers 
Archimedes number 
Prandtl number 
Nusselt number 
Reynolds number 
Reynolds number based on the diameter 
Reynolds number based on the hydraulic equivalent diameter 
Reynolds number based on the length 
Reynolds number based on the distance x 
Schmidt number 
Shenvood number 
Stanton number for heat transfer 
Stanton number for mass transfer 
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PROBLEMS 

4.1 Air at atmospheric pressure and 200 "C flows at 8 m/ s over a flat plate 150 cm 
long in the direction of flow and 70cm wide. 

a) Estimate the rate of cooling of the plate so as to keep the surface temperature 
at 30 "C. 
b) Calculate the drag force exerted on the plate. 
(Answer: a) 1589W b) 0.058N) 

4.2 Water at 15 "C flows at 0.15 m/ s over a flat plate 1 m long in the direction of 
flow and 0.3 m wide. If energy is transferred from the top and bottom surfaces of the 
plate to the flowing stream at a steady rate of 3500 W, determine the temperature 
of the plate surface. 
(Answer: 35 "C) 
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4.3 Fins are used to increase the area available for heat transfer between metal 
walls and poorly conducting fluids such as gases. A simple rectangular fin is shown 
below. 

If one assumes, 

0 T = T ( z )  only, 

No heat is lost from the end or from the edges, 

0 The average heat transfer coefficient, (h),  is constant and uniform over the 
entire surface of the fin, 

0 The thermal conductivity of the fin, I C ,  is constant, 

The temperature of the medium surrounding the fin, T,, is uniform, 

0 The wall temperature, T,, is constant, 

the resulting steady-state temperature distribution is given by 

where 
A = /% 

If the rate of heat loss from the fin is 478 W, determine the average heat transfer co- 
efficient for the following conditions: Tm = 175 "C; T, = 260 "C; k = 105 W/ m. K; 
L = 4cm; W = 30cm; B = 5mm. 
(Answer: 400 W/ m2. K) 
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4.4 One of the problems 
of practical interest is the determination of the optimum values of B and L to 
maximize the heat transfer rate from the fin for a fixed volume, V, and W .  Show 
that the optimum dimensions are given as 

Consider the rectangular fin given in Problem 4.3. 

4.5 Consider the rectangular fin given in Problem 4.3. If a laminar flow region 
exists over the plate, show that the optimum value of W for the maximum heat 
transfer rate from the fin for a fixed volume, V, and thickness, B, is given by 

where kf is the thermal conductivity of the fluid. 

4.6 A thin aluminum fin ( I C  = 205 W/ m. K) of length L = 20cm has two ends 
attached to two parallel walls which have temperatures To = 100 "C and TL = 90 "C 
as shown in the figure below. The fin loses heat by convection to the ambient air 
at T, = 30°C with an average heat transfer coefficient of (h) = 120W/m2.K 
through the top and bottom surfaces (heat loss from the edges may be considered 
negligible). 

One of your friends assumes that there is no internal generation of energy within 
the fin and determines the steady-state temperature distribution within the fin as 

T-T, 
T* - Tm 

= e N x  - 2 0  sinh N z  
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in which N and R are defined as 

N =  

To - T' 
2 sinh N L  

R =  

a) Show that there is indeed no internal generation of energy within the fin. 
b) Determine the location and the value of the minimum temperature within the 
fin. 
(Answer: z = 0.1 cm, T = 30.14"C) 

4.7 Rework Example 4.8 by using the RamiMarshall correlation, Eq. (4.3-33), 
the Frossling correlation, &. (4.3-34), and the modified F'rossling correlation, Eq. 
(4.3-35). Why are the resulting Sherwood numbers differ significantly from the 
value of 541? 

4.8 In an experiment carried out at 20°C, a glass sphere of density 2620 kg/m3 
falls through carbon tetrachloride ( p  = 1590 kg/ m3 and p = 9.58 x lod4 kg/ m. s) 
with a terminal velocity of 65 cm/ s. Determine the diameter of the sphere. 
(Answer: 21 mm) 

4.9 A CO2 bubble is rising in a glass of beer 20cm tall. Estimate the time 
required for a bubble of 5 mm in diameter to reach the top if the properties of C02 
and beer can be taken as equal to that of air and water, respectively. 
(Answer: 0.54 s) 

4.10 Show that the use of the Dittus-Boelter correlation, Eq. (4.5-26), together 
with the Chilton-Colburn analogy, Eq. (3.512), yields 

f N 0.046 

which is a good power-law approximation for the friction factor in smooth circular 
pipes. Calculate f for Re = lo5, lo6 and lo7 using this approximate equation 
and compare the values with the ones obtained by using the Chen correlation, Eq. 
(4.516). 

4.11 For laminar flow of an incompressible Newtonian fluid in a circular pipe, 
Eq. (4.512) indicates that the pressure drop is proportional to the volumetric flow 
rate. For fully turbulent flow show that the pressure drop in a pipe is proportional 
to the square of the volumetric flow rate. 

4.12 The purpose of the blood pressure in a human body is to push blood to 
the tissues of the organism so that they can perform their function. Each time 
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the heart beats, it pumps out blood into the arteries. The blood pressure reaches 
its maximum value, Le., systolic pressure, when the heart contracts to pump the 
blood. In between beats, the heart is at rest and the blood pressure falls down to 
a minimum value, diastolic pressure. An average healthy person has systolic and 
diastolic pressures of 120 and 80mmHg, respectively. Human body has about 5.6 
L of blood. If it takes 20s for blood to circulate throughout the body, estimate the 
power output of the heart. 
(Answer: 3.73 W) 

4.13 Water is in isothermal turbulent flow at 20°C through a horizontal pipe 
of circular cross-section with 10 cm inside diameter. The following experimental 
values of velocity are measured as a function of radial distance r: 

0.5 0.394 
1.5 0.380 
2.5 0.362 
3.5 0.337 
4.5 0.288 

The velocity distribution is proposed in the form 
n 

u, = v,, (1 - i) 
where u,,, is the maximum velocity and R is the radius of the pipe. Calculate 
the pressure drop per unit length of the pipe. 
(Answer: 12.3 Pa/ m) 

4.14 In Example 4.15, the length to diameter ratio is expressed as 

Use the Chilton-Colburn analogy, i.e., 

StH pr2I3 
2 

and evaluate the value of LID. Is it a realistic value? Why? 

4.15 Water at 10°C enters a circular pipe of internal diameter 2.5cm with a 
velocity of 1.2 m/ s. Steam condenses on the outside of the pipe so as to keep the 
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surface temperature of the pipe at 82 "C. If the length of the pipe is 5 m, determine 
the outlet temperature of water. 
(Answer: 51 "C) 

4.16 Dry air at 1 atm pressure and 50 "C enters a circular pipe of 12 cm internal 
diameter with an average velocity of 10cm/s. The inner surface of the pipe is 
coated with a thin absorbent material which is soaked with water at 2OOC. If the 
length of the pipe is 6m, calculate the amount of water vapor carried out of the 
pipe per hour. 
(Answer: 0.067kg/ h) 

4.17 A column with an internal diameter of 50 cm and a height of 2 m is packed 
with spherical particles of 3mm in diameter so as to form a packed bed with 
E = 0.45. Estimate the power required to pump a Newtonian liquid ( p  = 70 x 
10-3kg/m.s; p = 1200kg/m3) through the packed bed at a mass flow rate of 
1.2 kg/ s. 

(Answer: 39.6 W) 

4.18 The drag force, FD, is defined as the interfacial transfer of momentum from 
the fluid to the solid. In Chapter 3, power, W ,  is given by Eq. (3.1-11) as 

w = FD vch (1) 

For flow in conduits, power is also expressed by Eq. (4.5-2) in the form 

73/ = Q 1API (2) 

a) For flow in a circular pipe, the characteristic velocity is taken as the average 
velocity. For this case, use Eqs. (1) and (2) to show that 

FD = A (AP( (3) 

where A is the cross-sectional area of the pipe. 

b) For flow through packed beds, the characteristic velocity is taken as the actual 
average velocity or, interstitial velocity, i.e., 

in which vo is the superficial velocity and E is the porosity of the bed. Show that 

where A is the cross-sectional area of the packed bed. 
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c) In fluidization, the drag force on each particle should support its effective weight, 
i.e., weight minus buoyancy. Show that the drag force is given by 

FD=AL(1-€)(Pp--)gE ( 6 )  

where L is the length of the bed, p and p p  are the densities of the fluid and solid 
particle, respectively. Note that in the calculation of the buoyancy force, the volume 
occupied by solid particles should be multiplied by the density of suspension, Le., 
EP + (1 - c ) p p ,  instead of p. 

Combine Eqs. ( 5 )  and (6) to get 

which is a well-known equation in fluidization. 

4.19 A 15 x 90 m lawn is covered by a layer of ice of 0.15 mm thick at - 4 "C. The 
wind at a temperature of 0°C with 15% relative humidity blows in the direction 
of the short side of the lawn. If the wind velocity is 10m/s, estimate the time 
required for the ice layer to disappear by sublimation under steady conditions. 
The vapor pressure and the density of ice at - 4 "C are 3.28 mmHg and 917 kg/ m3, 
respectively. 
(Answer: 33 min) 





Chapter 5 

Rate of Generation in 
Momentum, Energy and 
Mass Transfer 

In Chapter 1, the generation rate per unit volume is designated by R. Integration 
of this quantity over the volume of the system gives the generation rate in the 
conservation statement. In this chapter, explicit expressions for !J? will be developed 
for the cases of momentum, energy, and mass transport. 

5.1 RATE OF GENEMTION IN MOMENTUM 
TRANSPORT 

In general, forces acting on a particle can be classified as surface forces and body 
forces. Surface forces, such as, normal stresses (pressure) and tangential stresses, 
act by direct contact on a surface. Body forces, however, act at a distance on a 
volume. Gravitational, electrical and electromagnetic forces are examples of body 
forces. 

For solid bodies Newton’s second law of motion states that 

) (5.1-1) Time rate of change of > = (  momentum of a system 
Summation of forces 
acting on a system 

in which forces acting on a system include both surface and body forces. Equa- 
tion (5.1-1) can be extended to fluid particles by considering the rate of flow of 

133 
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momentum into and out of the volume element, i.e., 

Summation of forces 
acting on a system 

) (5.1-2) 

On the other hand, for a given system, the inventory rate equation for momentum 
can be expressed as 

Rate of Rate of ( momentum in ) - ( momentum out 
Time rate of change of 
momentum of a system 

Rate of Rate of ) + ( Rate of momentum 

= ( Rate of momentum 
( momentum in ) - ( momentum out generation 

accumulation ) (5.1-3) 

Comparison of Eqs. (5.1-2) and (5.1-3) indicates that 

Rate of momentum 
generation ) (5.1-4) 

in which the forces acting on a system are the pressure force (surface force) and 
the gravitational force (body force). 

Summation of forces 
acting on a system 

5.1.1 Momentum Generation As a Result of Gravitational 
Force 

Consider a basketball player holding a ball in his hands. When he drops the ball, 
it starts to accelerate as a result of gravitational force. According to Eq.(5.1-4), 
the rate of momentum generation is given by 

Rate of momentum generation = Mg (5.1-5) 

where M is the mass of the ball and g is the gravitational acceleration. Therefore, 
the rate of momentum generation per unit volume, R, is given by 

(5.1-6) 

5.1.2 Momentum Generation As a Result of Pressure Force 
Consider the steady flow of an incompressible fluid in a pipe as shown in Figure 5.1. 
The rate of mechanical energy required to pump the fluid is given by Eq. (4.53) 
as 

I&’ = F’(v) = & IAP( (5.1-7) 
Since the volumetric flow rate, &, is the product of average velocity, (v), with the 
cross-sectional area, A, Eq. (5.1-7) reduces to 

AlAPl-3’0 = O  (5.1-8) 



5.1. RATE OF GENERATION IN MOMENTUM TRANSPORT 135 

Figure 5.1 Flow through a pipe. 

For the system whose boundaries are indicated by a dotted line in Figure 5.1, 
the conservation of mass states that 

min = mout (5.1-9) 

or, 
(P(v)A)in = ( ~ ( u ) A ) o u t  +- (zf)in = (zf>out (5.1- 10) 

On the other hand, the conservation statement for momentum, Eq. (5.1-3), takes 
the form 

) = O  Rate of Rate of ) + ( Rate of momentum ( momentum in ) - ( momentum out generation 
(5.1-1 1) 

and can be expressed as 

(m(w>>in - [ (h (v ) )out  f FDI f %! (AL) = 0 (5.1-12) 

where ?J? is the rate of momentum generation per unit volume. Note that the rate 
of momentum transfer from the fluid to the pipe wall manifests itself as a drag 
force. The use of Eqs. (5.1-9) and (5.1-10) simplifies Eq. (5.1-12) to 

R(AL) - F’ = 0 (5.1-13) 

Comparison of Eqs. (5.1-8) and (5.1-13) indicates that the rate of momentum 
generation per unit volume is equal to the pressure gradient, i.e., 

(5.1-14) 

5.1.3 Modified Pressure 
Equations (5.1-6) and (5.1-14) indicate that the presence of pressure and/or gravity 
forces can be interpreted as a source of momentum. In fluid mechanics, it is 
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customary to combine these two forces in a single term and express the rate of 
momentum generation per unit volume as 

(5.1- 15) 

where P is the modified pressure’ defined by 

P = P + p g h  (5.1-16) 

in which h is the distance measured in the direction opposite to gravity from any 
chosen reference plane. 

5.1.3.1 Physical interpretation of the modified pressure 

Consider a stagnant liquid in a storage tank open to the atmosphere. Let z be the 
distance measured from the surface of the liquid in the direction of gravity. The 
hydrostatic pressure distribution within the fluid is given by 

P = Patm + p g z  (5.1- 17) 

For this case the modified pressure is defined as 

P = P - p g z  (5.1-18) 

Substitution of Eq. (5.1-18) into Q. (5.1-17) gives 

P = Patm = constant (5.1-19) 

The simplicity of defining the modified pressure comes from the fact that it is 
always constant under static conditions whereas the hydrostatic pressure varies as 
a function of position. Suppose that you measure a pressure difference over a length 
L of a pipe. It is difficult to estimate whether this pressure difference comes from 
a flow situation or hydrostatic distribution. However, any variation in P implies a 
flow. Another distinct advantage of defining modified pressure is that the difference 
in P is independent of the orientation of the pipe as shown in Table 5.1. 

5.2 RATE OF GENERATION IN ENERGY 
TRANSPORT 

Let us consider the following paradox: “One of the most important problems that 
the world faces today is energy shortage. According to the first law of thermodynam- 
ics, energy is converted from one fonn  to another and transfend ji-om one system 
to another but its total is conserved. If energy is conserved, then there should be 
no energy shortage.” 

The term P is also called equivalent pressure, dynamic pressure and piezometric pressure. 
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Table 5.1 Pressure difference in flow through a pipe with different orientation. 

Geometry PA - PB PA - PB 

FLOW 

The answer to this dilemma lies in the fact that although energy is conserved, 
its ability to produce useful work decreases steadily as a result of the irreversibilities 
associated with the transformation of energy from one form into another2. These 
irreversibilities give rise to energy generation within the system. Typical examples 

2Note that 1,000 J at 100°C is much more valuable than 1,000 J at 2 O O C .  
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are the degradation of mechanical energy into thermal energy during viscous flow 
and degradation of electrical energy into thermal energy during transmission of an 
electric current. 

Generation of energy can also be attributed to various other factors such as 
chemical and nuclear reactions, absorption radiation, and presence of magnetic 
fields. Energy generation as a result of chemical reaction will be explained in detail 
in Chapter 6. 

The rate of energy generation per unit volume may be considered constant in 
most cases. If it is dependent on temperature, it may be expressed in various forms 
such as 

a+bT 

8, eaT 
R =  { (5.2- 1) 

where a and b are constants. 

5.3 RATE OF GENERATION IN MASS 
TRANSPORT 

5.3.1 Stoichiometry of a Chemical Reaction 
Balancing of a chemical equation is based on the conservation of mass for a closed 
thermodynamic system. If a chemical reaction takes place in a closed container, the 
mass does not change even if there is an exchange of energy with the surroundings. 

Consider a reaction between nitrogen and hydrogen to form ammonia, i.e., 

N2 -k 3H2 = 2NH3 (5.3-1) 

If A1 = N2, A2 = H2 and A3 = NH3, Eq. (5.3-1) is expressed as 

A1+3A2=2A3 (5.3-2) 

It is convenient to write all the chemical species on one side of the equation and give 
a positive sign to the species which are regarded as the products of the reaction. 
Thus, 

2A3 - Ai - 3A2 = 0 (5.3-3) 

C a i A i  = 0 (5.3-4) 
b 1  

where ai is the stoichiometric coefficient of ith chemical species (positive if species 
is a product, negative if species is a reactant), s is the total number of species in the 
reaction, and Ai is the chemical symbol for the ith chemical species, representing 
the molecular weight of species. 
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Each chemical species, Ai, is the sum of the chemical elements, Ej ,  such that 

t 

= C P ~ ~  E~ (5.3-5) 
j = 1  

where P j i  represents the number of chemical elements Ej in the chemical species 
Ai, and t is the total number of chemical elements. Substitution of Eq. (5.3-5) 
into Eq. (5.3-4) gives 

Since all the Ej are linearly independent3, then 

Equation (5.3-7) is used to balance chemical equations. 

(5.3-6) 

Example 5.1 Consider the reaction between N2 and H2 to form N H 3  

a1 N2 + a 2  H 2  + a3 NH3 = 0 

Show how one can apply Eq. (5.3-7) to balance this equation. 

Solution 

If Ai =N2,  A2 =H2 and A3 = N H 3 ,  the above equation can be expressed as 

ai Ai + a2A2 + a3 A3 = 0 

If we let El = N ( j  = 1) and E2 = H ( j  = 2)) then Eq. (5.3-7) becomes 

alEl1  + ~ ~ 2 E 1 2 + ~ ~ 3 E 1 3  = 0 for j = 1 

a1 E21 + a 2  E22 + a3 E23 = 0 for j = 2 

(5.3-7) 

The expression 
n 

aizi = a1z1 + a222 + ... + O*Xn 
i=l 

where {ai,az, ..., an} is a set of scalars, is called a linear combination of the elements of the set 
S = ( ~ 1 ~ x 2 ,  ..., q,} . The elements of the set S is said to be linearly dependent if there exists a set 
of scalars {ai, a2, ..., an} with elements ai not all equal to zero, such that the linear combination 
n n 

i=l  i=l 
aizi = 0 holds. If aixi = 0 holds for all ai = 0, then the set S is linearty independent. 
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or, 
f a2(0) f Q3(1) = 0 

crl(0) + 4 2 )  + cr3(3) = 0 
Solutions of Eqs. (4) and (5) give 

(4) 

(5) 

If we take a 3  = 2, then a1 = - 1 and a2 = - 3. Hence, the reaction becomes 

N2 + 3H2 = 2NH3 

Comment: Stoichiometric coeficients have units. For example, in the above 
equation the stoichiometric coeficient of H2 indicates that there are 3 moles of H2 
per  mole of N2. 

5.3.2 

Stoichiometric coefficients have the units of moles of i per mole of basis species, 
where basis species is arbitrarily chosen. The law of combining proportions states 
that 

The Law of Combining Proportions 

moles of i reacted 
(moles of ilmole of basis species) = moles of basis species (5.3-8) 

(5.3-9) 

where E is called the molar extent of the reaction4. Rearrangement of Eq. (5.3-9) 
gives -1 (5.3-10) 

Note that once E has been determined, the number of moles of any chemical species 
participating in the reaction can be determined by using Eq. (5.3-10). 

The molar extent of the reaction should not be confused with the fractional 
conversion variable, X ,  which can only take values between 0 and 1. The molar 
extent of the reaction is an extensive property measured in moles and its value can 
be greater than unity. 

It is also important to note that the fractional conversion may be different for 
each of the reacting species, i.e., 

(5.3-11) 

4The term E has been given various names in the literature, such as, degree of advancement, 
reaction of coordinate, degree of reaction and progress variable. 
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On the other hand, molar extent is unique for a given reaction. Comparison of 
Eqs. (5.3-10) and (5.3-11) indicates that 

(5.3- 12) 

The total number of moles, nT, of a reacting mixture at any instant can be 

(5.3- 13) 

calculated by the summation of Eq. (5.3-10) over all species, i.e., 

nT = nTo + & E  

where nTo is the initial total number of moles and CY = Ci ai. 
Example 5.2 
the following reaction 

A system containing 1 mol A I ,  2 mol A2 and 7 mol A3 undergoes 

Al(9) + A2(9) + 3/2A3(9)  + A4(9) + 3A5(9)  

Determine the limiting reactant and fractional conversion with respect to each re- 
actant i f  the reaction goes to completion. 

Solution 

Since ni 2 0, it is possible to conclude from Eq. (5.3-10) that the limiting reactant 
has the least positive value of nio/(- ai). The values given in the following table 
indicate that the limiting reactant is AI.  

Species nio /(- ai) 

A1 1 
A2 2 
A3 4.67 

Note that the least positive value of nio/(- ai) is also the greatest possible vdue 
of E. Since the reaction goes to completion, species A1 will be completely depleted 
and E = 1. Using Eq. (5.3-12), fractional conversion values are given as follows: 

Species X 
A1 1 
A2 0.50 
A3 0.21 

Example 5.3 
lowing reaction 

Calculate the mole fractions of each species i f  E = 1.1. What is the fractional 
conversion based on the limiting reactant 7 

A system containing 3 mol A1 and 4 mol A2 undergoes the fol- 

2Ai (g )  +3A2(9)  - + A 3 ( 9 ) + 2 A 4 ( 9 )  
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Solution 

Using Eq. (5.3-lo), the number of moles of each species is expressed as 

nl = 3 - 2~ = 3 - (2)(1.1) = 0.8mol 
n2 =4-3~=4- (3 ) (1 .1 )=0 .7mol  
n3 = E = 1.1mol 
n4 = 2~ = (2)(1.1) = 2.2mol 

Therefore, the total number of moles is 4.8 moles and the mole fraction of each 
species is 

0.8 
4.8 
0.7 
4.8 
1.1 
4.8 
2.2 
4.8 

5 1  = - = 0.167 

x2=-- - 0.146 

23 = - = 0.229 

0.458 q=-= 

The fractional conversion, X ,  based on the limiting reactant A2 is 

4 - 0.7 
4 

x=-- - 0.825 

Molar concentration of the ith species, 4 ,  is defined by 

ni q = -  
V 

Therefore, division of h. (5.3-10) by the volume V gives 

(5.3-14) 

(5.3- 15) 

(5.3-16) 

where q, is the initial molar concentration of the ith species and E is the intensive 
mtent of the reaction in moles per unit volume. Note that 5 is related to conversion, 
x, by 

(5.3- 1 7) 
I I 

The total molar concentration, c, of a reacting mixture at any instant can be 
calculated by the summation of Eq. (5.3-16) over all species, i.e., 

(5.3-18) 
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where c, is the initial total molar concentration. 
When more than one reaction takes place in a reactor, Eq. (5.3-10) takes the 

(5.3-19) 

where 

nij = number of moles of i th species in the j t h  reaction 

aij = stoichiometric coefficient of ith species in the j t h  reaction 
nij, = initial number of moles of ith species in the j t h  reaction 

~j = extent of the j t h  reaction 

Summation of Eq. (5.3-19) over all reactions taking place in a reactor gives 

(5.3-21) 

Example 5.4 
tor: 

The following two reactions occur simultaneously in a batch reac- 

C2H6 = C2H4 + H2 

C2Hs + H2 = 2CH4 
A mixture of 85 mol % C2Hs and 15% anerts is fed into a reactor and the reactions 
proceed until 25% C2H4 and 5% CH4 are formed. Determine the percentage of each 
species in a reacting mixture. 

Solution 

Basis: 1 mole of a reacting mixture 

Let ~1 and ~2 be the extents of the first and second reactions, respectively. Then, 
the number of moles of each species can be expressed as 

nCzH6 = 0.85 - - €2 

n C z H 4  = E l  

nH2 = €1 - EP 

ncH, = 2E2 
ninert = 0.15 

The total number of moles, nT, is 

n T = l + E l  
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The mole fractions of CzH4 and CI& are given in the problem statement. These 
values are used to deternine the extent of the reactions as 

E1 xc2n4 = - = 0.25 j tl = 0.333 
1 +e1 

XCH4 = - 2E2 - - 0.05 
1 +E1 

+ ~2 = 0.033 

Therefore, the mole fmctaons of CzHs, H2 and the inerts are 
0.85 - ~1 - €2 - 0.85 - 0.333 - 0.033 = 0,363 - 

1 + E 1  1 + 0.333 
~1 - ~2 0.333 - 0.033 

= 0.225 -- - 
1 + E 1  1 f 0.333 

= 0.112 0.15 
1 + 0.333 

5.3.3 Rate of Reaction 
The rate of a chemical reaction, r ,  is defined by 

(5.3-22) 

where V is the volume physically occupied by the reacting fluid. Since both V and 
& / d t  are positive, the reaction rate is intrinsically positive. Note that the reaction 
rate has the units of moles reacted per unit time per unit volume of the reaction 
mixture. The reaction rate expression, T ,  has the following characteristics: 

0 It is an intensive property, 

0 It is independent of the reactor type, 

0 It is independent of a process. 

Changes in the molar extent of the reaction can be related to the changes in 
the number of moles of species i by differentiating Eq. (5.3-10). The result is 

(5.3-23) 1 
ai 

&= -dni 

Substitution of Eq. (5.3-23) into Eq. (5.3-22) gives 

1 1 dni r = - - -  

If the rate of generation of species i per unit volume, %i, is defined by 

(5.3-24) 

(5.3-25) 
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then 
(5.3-26) 

Therefore, Xi is negative if i appears as a reactant; Xi is positive if i is a product. 

Example 5.5 For the reaction 

3 A + B + C  

express the reaction rate in terms of the time rate of change of species A, B, and 
C. 

Solution 

Application of Eq. (5.3-24) gives the rate as 

If V is constant, then Eq. (1) reduces to 

Comment: 
only when the volume of the reacting mixture is constant. 

The rate of reaction is equal to the time derivative of a concentration 

In the case of several reactions, Ri is defined by 

& = “ij r j  u (5.3-27) 

where rj is the rate of j t h  reaction. 
The reaction rate is a function of temperature and concentration and is assumed 

to be the product of two functions, one is dependent only on the temperature and 
the other is dependent only on the concentration, i.e., 

r(T Ci) = W)f (ci) (5.3-28) 

The function k(T) is called the rate constant and its dependence on the temperature 
is given by 

k(T) = ATrne-€lRT (5.3-29) 
where A is a constant, E is the activation energy, R is the gas constant and T is 
the absolute temperature. The power of temperature, m, is given by 

m = { 1/2 from the kinetic theory of gases 
0 from the Arrhenius relation 

1 from statistical mechanics 
(5.3-30) 



146 CHAPTER 5. RATE OF GENERATION 

In engineering practice the Arrhenius relation, Le., 

k(T) = Ae-'iRT (5.3-31) 

is generally considered valid5 and the rate constant can be determined by running 
the same reaction at different temperatures. The data from these experiments are 
found to be linear on a semi-log plot of k versus 1/T. 

The function f(s) depends on the concentration of all the species in the chem- 
ical reaction. Since the reaction rate is usually largest at the start of the reaction 
and eventually decreases to reach a zero-rate at equilibrium, the function f ( ~ )  is 
taken to be a power function of the concentration of the reactants. 

If f ( ~ )  were a power function of the products of the reaction, the reaction 
rate would increase, rather than decrease with time. These reactions are called 
autocatalytic. 

For normal decreasing rate reactions 

f ( cc )  = 
i 

(5.3-32) 

where ci is the concentration of a reactant. Thus, the constitutive equation for the 
reaction rate is 

(5.3-33) 

The order of a reaction, n, refers to the powers to which the concentrations are 
raised, i.e., 

n=C% (5.3-34) 
i 

It should be pointed out that there is no necessary connection between the order 
and the stoichiometry of the reaction. 

NOTATION 

A area, m2 
C concentration, kmol/ m3 
E activation energy, kJ/ kmol 
FD drag force, N 
9 
h elevation, m 
k reaction rate constant 
L length, m 

acceleration of gravity, m/ s2 

'Deviations from the Arrhenius relationship are discussed by Maheswari and Akella (1988). 
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M 
m 
n 
nij 
P 
P 
Q 
r 
9? 
T 
t 
V 
V 

w 
X 
Xi 
z 

ffi 
Qi j 

A 

5 

- 
ff 

& 

P 
Pm. 

Bracket 

mass, kg 
mass flow rate, kg/ s 
number of moles, kmol 
number of moles of ith species in the j t h  reaction 
pressure, Pa 
modified pressure, Pa 
volumetric flow rate, m3/s 
rate of a chemical reaction, kmol/ m3. s 
rate of generation (momentum, energy, mass) per unit volume 
temperature, "Cor K 
time, s 
volume, m3 
velocity, m/ s 
rate of work, W 
fractional conversion 
mole fraction of species i 
rectangular coordinate, m 

stoichiometric coefficient of species i 
stoichiometric coefficient of ith species in the jth reaction 
xi ai 
difference 
molar extent of a reaction, kmol 
intensive extent of a reaction, kmol/ m3 
density, kg/ m3 
density of manometer fluid, kg/ m3 

(u) average value of u 

Subscripts 

atm atmospheric 
in inlet 
0 initial 
out out 
T total 
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Chapter 6 

Steady- St at e Macroscopic 
Balances 

The use of correlations in the determination of momentum, energy and mass trans 
fer from one phase to another under steady-state conditions was covered in Chap 
ter 4. Although some examples of Chapter 4 make use of steady-state macroscopic 
balances, systematic treatment of these balances for the conservation of chemical 
species, mass and energy was not presented. The basic steps in the development 
of steady-state macroscopic balances are as follows: 

Define your system: A system is any region which occupies a volume and has 
a boundary. 

If possible, draw a simple sketch: A simple sketch helps in the understanding 
of the physical picture. 

0 List the assumptions: Simplify the complicated problem to a mathematically 
tractable form by making reasonable assumptions. 

Write down the inventory rate equation for each of the basic concepts relevant 
to the problem at hand: Since the accumulation term vanishes for steady-state 
cases, macroscopic inventory rate equations reduce to algebraic equations. 
Note that in order to have a mathematically determinate system, the number 
of independent inventory rate equations must be equal to the number of 
dependent variables. 

Use engineering correlations to evaluate the transfer coeficients: In macro- 
scopic modeling, empirical equations that represent transfer phenomena from 
one phase to another contain transfer coefficients, such as the heat transfer 
coefficient in Newton’s law of cooling. These coefficients can be evaluated by 
using engineering correlations given in Chapter 4. 

Solve the algebraic equations. 

149 
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6.1 CONSERVATION OF CHEMICAL 
SPECIES 

The inventory rate equation given by Eq. (1.1-1) holds for every conserved quantity 
cp. Therefore, the conservation statement for the mass of the ith chemical species 
under steady conditions is given by 

= O  (6.1-1) 

The mass of i may enter or leave the system by two means: (i) by inlet or outlet 
streams, (ii) by exchange of mass between the system and its surroundings through 
the boundaries of the system, i.e., interphase mass transfer. 

) Rate of mass ) - ( Rate of mass ) + ( Rate of generation 
of i in of i out of mass i ( 

Figure 6.1 Steady-state flow system with fixed boundaries. 

For a system with a single inlet and a single outlet stream as shown in Figure 
6.1, Eq. (6.1-1) can be expressed as 

(6.1-2) 

in which the molar rate of generation of species i per unit volume, si, is expressed 
by Eq. (5.3-27). The terms and (hi),ut represent the inlet and outlet mass 
flow rates of species i, respectively, and M i  is the molecular weight of species i. 
The interphase mass transfer rate, ( h i ) i n t ,  is expressed as 

(hi)int =  AM(^) (A~i)=h Mi (6.1-3) 

where ( A c ~ ) , ~  is the characteristic concentration difference. Note that (hi)int is 
considered positive when mass is added to the system. 

As stated in Section 2.4.1, the mass flow rate of species i, mi,  is given by 

h j  = p,(v)A = pi& (6.1-4) 
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Therefore, Eq. (6.1-2) takes the form 

Sometimes it is more convenient to work on molar basis. Division of Eqs. (6.1-2) 
and (6.1-5) by the molecular weight of species i, Mi, gives 

(6.1-6) 

and 

where ni and ci are the molar flow rate and molar concentration of species i, 
respectively. 

Example 6.1 The liquid phase reaction 

A + 2 B + C + 2 D  

takes place in an isothermal, constant-volume stirred tank wactor. The rate of 
reaction is expressed by 

r = k CACB with k = 0.025 L/ mol. min 

The feed stream consists of equal concentrations of species A and B at a value 
of lmoI/L. Determine the residence time required to achieve 60% conversion of 
species B under steady conditions. 

Solution 

Assumption 

1. A s  a result of perfect mixing, concentrations of species within the reactor are 
uniform, i-e., = (ci)sys. 
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Analysis 

System: Contents of the reactor 

Since the reactor volume is constant, the inlet and outlet volumetric flow rates are 
the same and equal to &. Therefore, the inventory rate equation for conservation 
of species B, Eq. (6.1-7), becomes 

Q ( c B ) ~ ~  - QcB,,, - ( ~ ~ c A , , , c B , , , ) V ~ ~ ~  = 0 (1) 

where CA,,, and CB,,, represent the molar concentration of species A and B in the 
reactor, respectively. Dropping the subscript “Sys and defining the residence time, 
T ,  as T = V / &  reduces Eq. (1) to 

Using Eq. (5.3-17), the extent of the reaction can be calculated as 

Therefore, the concentrations of species A and B in the reactor are 

C A  = (CA)in + QA e = 1 - 0.3 = 0.7mol/L 
CB = ( C g ) i n  + QB 

Substitution of the numerical values into Eq. (3) gives 

= 1 - (2)(0.3) = 0.4mol/L 

1 - 0.4 
= 42.9 min 

= (2) (0.025)(0.7) (0.4) 

6.2 CONSERVATION OF MASS 
Summation of Eq. (6.1-2) over all species gives the total mass balance in the form 

Note that the term 
(6.2-2) 
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since mass is conserved. Equation (6.2-2) implies that the rate of production of 
mass for the entire system is zero. However, if chemical reactions take place within 
the system, an individual species may be produced. 

On the other hand, summation of Eq. (6.1-6) over all species gives the total 
mole balance as 

In this case the generation term is not zero because moles are not conserved. 

Example 6.2 A liquid phase irreversible reaction 

A + B  

takes place in a series of 4 continuous stirred tank reactors as shown in the figure 
below. 

The rate of reaction is given by 

r = kcA with k = 3  x 105exp -- ( *,,> 
in which k is in h-' and T is in degrees Kelvin. The temperature and the volume 
of each reactor are given as follows: 

Reactor Temperature Volume 
No ( "C) (L) 
1 35 800 
2 45 1000 
3 70 1200 
4 60 900 
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Determine the concentration of species d in each reactor if the feed to the first 
reactor contains 1.5mol/L of d and the volumetric flow rates of the streams are 
given as follows: 

Stream Volumetric Flow Rate 
No (L/ h) 
1 500 
7 200 
9 50 

11 100 

Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Concentrations of species within the reactor are uniform as a result of perfect 

3. Liquid density remains constant. 

mixing. 

Analysis 

Conservation of total mass, Eq. (6.2-l), reduces to 

mi, = mat (1) 

&in = Qout (2) 

Since the liquid density is constant, Eq. (1) simplifies to 

Only four out of eleven streams are given in the problem statement. Therefore, it 
is necessary to write the following mass balances to calculate the remaining seven 
streams: 

= Q6 = 500 
500 + 100 = Q2 

Q2 + e10 = Q3 

Ql3 = Q5 

200 = 50 + &lo 

Q3+50= e4 

Q~ = Q6 + 200 

Simultaneous solution of the above equations gives the volumetric flow rate of each 
stream as: 
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Stream Volumetric Flow Rate 
No (L/ h) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

500 
600 
750 
800 
700 
500 
200 
700 
50 

150 
100 

For each reactor, the reaction rate constant is 

k=3x105exp [ - (3::i73,] = 0.359 h-' for reactor # 1 

k=3x105exp [ - ,4::i73,] = 0.551 h-' for reactor # 2 

k = 3 x lo5 exp [- 4200 ] = 1.443 h-' for reactor # 3 
(70 + 273) 

k=3x105exp [ - (6::i73)] = 0.999 h-' for reactor # 4 

For each reactor, the consewation statement for  species A, Eq. (6.1-7), can be 
written in the form 

Simplijication gives 

8 . 8 7 2 ~ ~ ~  - C A ~  = 7.5 
4 C A ~  - 8.673 C A ~  + C A ~  = 0 

1 5 ~ ~ ~  - 5 0 . 6 3 2 ~ ~ ~  + C A ~  = 0 
C A ~  - 2 . 2 8 4 ~ ~ ~  = 0 
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The above equations are written in matrix notation1 as 

8.872 0 -1 0 

4 -8.673 15 0 -50.632 0 1 -2.284 1 ][g=[7i] 
Therefore, the solution is 

8.872 
4 
0 
0 

0.115 
0.054 
0.016 
0.007 

0 

15 
0 

-0.004 
-0.119 
-0.036 
-0.016 

-8.673 
-1 0 
0 

-50.632 1 
1 -2.284 

-0.002 -0.003 
-0.002 -0.0531 [ 
-0.021 -0.025 
-0.009 -0.449 

The multiplication gives the concentrations in each reactor as 

CAI 0.859 [ :::I = [ 0.402 0.1201 

CAS 0.053 

6.3 CONSERVATION OF ENERGY 
The conservation statement for total energy under steady conditions takes the form 

) = O  (6.3-1) ( Rate of ) - ( Rate of ) + ( Rate of energy 
energy in energy out generation 

The first law of thermodynamics states that total energy can neither be created 
nor destroyed. Therefore, rate of generation term in Eq. (6.3-1) equals zero. 

Energy may enter or leave the system by two means: (i) by inlet and/or out- 
let streams, ( i i )  by exchange of energy between the system and its surroundings 
through the boundaries of the system in the form of heat and work. 

For a system with a single inlet and a single outlet stream as shown in Figure 
6.2, Eq. (6.3-1) can be expressed as 

where the interphase heat transfer rate, Qint, is expressed as 

Qint =  AH(^) (AT),, 
'Matrix operations are given in Section A.9 in Appendix A. 

(6.3-3) 
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in which (AT),, is the characteristic temperature difference. Note that Qint is 
considered positive when energy is added to the system. In a similar way, W is 
also considered positive when work is done on the system. 

/ Qint / 

Figure 6.2 Steady-state flow system with fixed boundaries interchanging energy 
in the form of heat and work with the surroundings. 

As stated in Section 2.4.2, the rate of energy entering or leaving the system, E, 
is expressed as 

Therefore, Eq. (6.3-2) becomes 

& = E m  (6.3-4) 

<E *)in - (Eh)out + Qint + W = o (6.3-5) 

To determine the total energy per unit mass, E, consider an astronaut on the space 
shuttle Atlantis. When the astronaut looks at the earth, (s)he sees that the earth 
has an external kinetic energy due to its rotation and its motion around the sun. 
The earth also has an internal kinetic energy as a result of all the objects, i.e., 
people, cars, planes, etc., moving on its surface which the astronaut cannot see. 
A physical object is usually composed of smaller objects, each of which can have 
a variety of internal and external energies. The sum of the internal and external 
energies of the smaller objects is usually apparent as internal energy of the larger 
objects. 

The above discussion indicates that the total energy of any system is expressed 
as the sum of its internal and external energies. Kinetic and potential energies 
constitute the external energy, while the energy associated with the translational, 
rotational, and vibrational motion of molecules and atoms is considered as the 
internal energy. Therefore, total energy per unit mass can be expressed as 

E = 6 + E K  + E p  (6.3-6) 

where 8, EK and E p  represent internal, kinetic and potential energies per unit 
mass, respectively. Substitution of Eq. (6.3-6) into Eq. (6.3-5) gives 
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The rate of work done on the system by the surroundings is given by 

w = ws + (P?m)jn-(P?m),t (6.3-8) * P 
Shaft work Flow work 

In Figure 6.2, when the stream enters the system, work is done on the system by 
the surroundings. When the stream leaves the system, however, work is done by 
the system on the surroundings. Note that the boundaries of the system are fixed 
in the case of a steady-state flow system. Therefore, work associated with volume 
change is not included in Eq. (6.3-8). 

Substitution of Eq. (6.3-8) into Eq. (6.3-7) and the use of the definition of 
enthalpy, i.e., H = + PP, gives 

which is known as the steady-state energy equation. 
Kinetic and potential energy terms in Eq. (6.3-9) are expressed in the form 

E K = - v  .. 1 2  (6.3-10) 2 
and 

E p = g h  (6.3-11) 
where g is the acceleration of gravity and h is the elevation with respect to a 
reference plane. 

Enthalpy, on the other hand, depends on temperature and pressure. Change in 
enthalpy is expressed by 

d f i  = C p d T  + C(1- 8T)dP (6.3-12) 

where is the coeficient of volume expansion and is defined by 

(6.3-13) 

Note that 
(6.3-14) 

When the changes in the kinetic and potential energies between the inlet and 

0 for an incompressible fluid 
8 = {  1/T for an ideal gas 

outlet of the system are negligible, Eq. (6.3-9) reduces to 

In terms of molar quantities, Eqs. (6.3-9) and (6.3-15) are written as 
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6.3.1 Energy Equation Without Chemical Reaction 
In the case of no chemical reaction, Eqs. (6.3-9) and (6.3-16) are used to determine 
energy interactions. If kinetic and potential energy changes are negligible, then 
these equations reduce to Eqs. (6.3-15) and (6.3-17), respectively. The use of the 
energy equation requires the enthalpy change to be known or calculated. For some 
substances, such as steam and ammonia, enthalpy values are either tabulated or 
given in the form of a graph as a function of temperature and pressure. In that case 
enthalpy changes can be determined easily. If enthalpy values are not tabulated, 
then the determination of enthalpy depending on the values of temperature and 
pressure in a given process are given below. 

6.3.1.1 Constant pressure and no phase change 

Since dP = 0, integration of &. (6.3-12) gives 
T 

fi = lve, C P  dT (6.3-18) 

in which fi is taken as zero at TTef. Substitution of Eq. (6.3-18) into Eq. (6.3-15) 
gives 

If C p  is independent of temperature, Eq. (6.3-19) reduces to 

&neP(Tin - T'ef) &utep(Tat - TLf)  + Qint + J@s = 0 (6.3-20) 

Example 6.3 It is required to  cool a gas composed of 75 mole % Nz, 15% C02 and 
10% 0 2  from 800 "C to 350 "C. Determine the cooling duty of the heat exchanger 
i f  the heat capacity expressions are in the f o r m  

e p ( J / m o l . K ) = ~ + b T + ~ T ~ + d T ~  T [=] K 

where the coeficients a ,  b, c and d are given by 

Species a b x  lo2 c x  lo5 d x lo5 
N2 28.882 - 0.1570 0.8075 - 2.8706 
0 2  25.460 1.5192 - 0.7150 1.3108 
COz 21.489 5.9768 -3.4987 7.4643 
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Solution 

Assumptions 

1. Ideal gas behavior. 

2. Changes in kinetic and potential energies are negligible. 

3. Pressure drop in the heat exchanger aS negligible. 

Analysis 

System: Gas stream in the heat exchanger 

Since nint = 0 and there is no chemical recsction, Eq. (6.2-3) reduces to 

ni, = nmt = n 

Therefore, Eq. (6.3-19) becomes 

where Qint = Q;,t/n, Ti, = 1073K, and Tout = 623K. 
The molar heat capacity of the gas stream, 6 p ,  can be calculated by multiplying 

the mole fraction of each component by the respective heat capacity and adding 
them together, i.e., 

3 

C'p = xi (u; + biT + ciT2 + 4 T 3 )  
i=l 

= 27.431 + 0.931 x T + 0.009 x T2 - 0.902 x lo-' T3 (4) 

Substitution of Eq. (4) into Eq. (3) and integration gives 

Qint = - 15,662 J/mol 

The minus sign indicates that heat must be removed jbm the gas stream. 
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6.3.1.2 Constant pressure with phase change 

When we start heating a substance at constant pressure, a typical variation in 
temperature as a function of time is given in Figure 6.3. 

T 

=rer 

P = const 

t 

Figure 6.3 
y-phase to cr-phase. 

Temperaturetime relationship as the substance transforms from the 

Let T,,f be the temperature at which phase change from the y-phase to the 
a-phase, or vice versa, takes place. If we choose the y-phase enthalpy as zero at 
the reference temperature, then enthalpies of the cr- and 7-phases at any given 
temperature T are given as 

(6.3-21) 

where 5 = HT, - HT at the reference temperature. 

Example 6.4 One way of cooling a can of coke on a hot summer day is to w a p  
a piece of wet cloth around the can and eqose it to a gentle breeze. Calculate the 
steady-state temperature of the can i f  the air temperature is 35°C. 

Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Ideal gas behavior. 
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Analysis 

System: Wet  cloth and the coke can 

The inventory mte equation for energy becomes 

Rate of energy in = Rate of energy out (1) 

Let the steady-state temperature of the cloth and that of coke be T,. The mte  of 
energy entering the system .is given by  

Rate of energy in = A H ( ~ ) ( T ,  - T,) (2) 

in which AH and T, represent the heat transfer area and air temperature, respec- 
tively. On  the other hand, the rate of energy leaving the system is expressed in the 
form 

Rate of energy out = ? i ~  F A  + (cp)~(Tm - T,)] (3) 

where ? i ~  represents the rate of moles of water, i.e., species A, evaporated and is 
given by 

in which AM represents the mas transfer area. Substitution of Eqs. (i?), (3) and 
(4) into Eq. (1) and using 

f i ~  = AM (kc) (CA, - CA,  (4) 

AH = AM 
CA, 0 

L >> (&)A(T, - T,) 
gives 

The ratio ( k c ) / ( h )  can be estimated by the use of the Chilton-Colbum analogy, i.e., 
3 ,  = 3 M ,  03 

The use of Eq. 

where the properties p, C p ,  Pr and Sc belong to air, species B. The concentration 
of species A at the interface, CA,, is given by 

Dsat 
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I t  should be remembered that the quantities CA, and JA must be evaluated at T,, 
whereas p ~ ,  e p B ,  Pig and SCB must be evaluated at Tf = (T, + T,)/2. Since 
T, is unknown, a trial-and-emr procedure will be used in order to detennine T, 
as follows: 

Step 1: Assume T, = 15°C 
Step 2: Determine the physical properties: 

P r t  = 0.01703 bar 
i~ = 2466 x 18 = 44,388 kJ/ kmol 

For water at 15°C (288K) : 

The saturation concentration is 

- - 0.01703 = 7.11 x kmol/ m3 (8.314 x 10-2)(15 + 273) 

The fiZm temperature is Tf = (35 + 15)/2 = 25°C. 

f p = 1.1845 kg/ m3 
v = 15.54 x 
C p  = 1.005 kJ/ kg. K 

m2/ s For air at 25 "C (298K) : 

Pr = 0.712 
The diffusion coeficient of water in air is 

DAB = (2.88 x (E!) 3'2 = 2.68 x m2/ s 

The Schmidt number is 
Y 

sc = - 
DAB 
15.54 x low6 

= 0.58 - - 
2.68 x 10-5 

Step 3: Substitute the values into Eq. (7) and check whether the right and left 
sides are equal to each other: 

2/3 (7.11 x 10-4)(44,388) 0.712 2/3 

(1.1845)(1.005) (058) = 30.4 

Since the left- and right-hand sides of Eq. (7) are quite different from each other, 
another value of T, should be assumed, 
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Assume T, = 11 "C 

sat = 0.01308 bar For water at 11°C (284K) : { rA 
XA = 2475.4 x 18 = 44,557 kJ/ km01 

The saturation concentration is 
p s a t  

A =- 
CAW RT, 

= 5.54 x kmol/ m3 0.01308 
(8.314 x 10-2)(11 + 273) 

- - 

The film temperature is Tf = (35 + 11)/2 = 23°C. 

p = 1.1926 kg/ m3 
u = 15.36 x 
C p  = 1.005 kJ/ kg. K 

m2/ s 
For air at 23°C (296K) : 

Pr = 0.713 

The diffusion coeficient of water in air is 

312 
DAB = (2.88 x (E) = 2.65 x 10-5 rn2/ 

The Schmidt number is 

U sc = - 
DAB 
15.36 x low6 

= 0.58 - - 
2.65 x 10-5 

The left- and right-hand sides of Eq. (7) now become 

T, - T, = 35 - 11 24 
2/3 (5.54 x 10-4)(44,557) 

(1.1926) (1.005) 

Therefore, the steady-state temperature is 11 "C. 

0.713 2/3 (m) = 23*6 

Comment: Whenever a gas flows over a liquid, the temperature of the liquid 
decreases as a result of evaporation. This process is known as evaporative cooling. 
The multing steady-state temperature, on the other hand, k called the wet-bulb 
temperature. 
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100 kPa 

165 

* 
600 kPa 

6.3.1.3 Variable pressure and no phase change 

20°C 

._---------- 

Enthalpy of an ideal gas is dependent only on temperature and is expressed by Eq. 
(6.3-18). Therefore, in problems involving ideal gases, variation in pressure has no 
effect on the enthalpy change. In the case of incompressible fluids, Eq. (6.3-12) 
reduces to 

.-T 

50°C 

" H20 " 

................................................ 1 

(6.3-22) 

in which the enthalpy is taken zero at the reference temperature and pressure. At 
low and moderate pressures, the second term on the right-side of Eq. (6.3-22) is 
usually considered negligible. 

Example 6.5 A certain process reqzlires a steady supply of compressed air at 
6OOkPa and 50°C at the rate of 0.2kg/s. For this purpose, air at ambient con- 
ditions of 100 kPa and 20 "C is first compressed to 600 kPa in an adiabatic com- 
pressor, then it is fed to a heat exchanger where it is cooled to 50°C at constant 
pressure. As cooling medium, water is used and it enters the heat exchanger at 
15°C and leaves at 40°C. Determine the mass flow rate of water i f  the rate of 
work done on the compressor is 44 kJ/ s. 

r System boundary 

Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. Changes in kinetic and potential energies are negligible. 

3. There is no heat loss from the heat exchanger to the surroundings. 

4. Heat capacities of air and water remain essentially constant at the values of 
1 kJ/ kg. K and 4.178 kJ/ kg. K, respectively. 
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Analysis 

System: Compressor and heat exchanger 

Conservation of total mass, Eq. (6.2-1), reduces to 

Therefore, Eq. (6.3-15) becomes 

in which the enthalpy change of the air and the interphase heat transfer rate are 
given by  

(fil - a 2 ) a i r  = (eP)air(Tl- ~ 2 ) o i r  

Qint = ( ~ C P ) H ~ O ( T o u t  - Tin)HzO 

(3) 

(4) 

Substitution of Eqs. (3) and (4) into Eq. (2) and rearrangement gives 

Comment: Defining of a system plays a crucial role in the solution ofthe problem. 
Note that there is no need to find out the temperature and pressure at the exit of the 
compressor. If, however, one chooses the compressor and heat exchanger as two 
separate systems, then the pressure and temperature at the exit of the compressor 
mu t  be calculated. 

6.3.2 Energy Equation With Chemical Reaction 

6.3.2.1 Thermochemistry 

Thermochemistry deals with the changes of energy in chemical reactions. The 
difference between the enthalpy of one mole of a pure compound and the total 
enthalpy of the elements from which it is composed is called the heat of formation, 
AHf,  of the compound. The standard heat of formation, AH;, is the heat of 
formation when both the compound and its elements are at standard conditions as 
shown in Figure 6.4. The superscript implies the standard state. Since enthalpy 
is a state function, it is immaterial whether or not the reaction could take place at 
standard conditions. 
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Elements in their 11 standard states G; ~~1 standard state 
1 mole of compound in its 

V, 1 am) (T, 1 am) 

Figure 6.4 Calculation of the standard heat of formation, AI?:. 

The standard state is usually taken as the stable form of the element or com- 
pound at the temperature of interest, T, and under 1 atm (1.013 bar). Therefore, 
the word standard refers not to any particular temperature, but to unit pressure 
of latm. The elements in their standard states are taken as the reference state 
and are assigned an enthalpy of zero. The standard heat of formation of many 
compounds are usually tabulated at 25 "C and can readily be found in the Perry's 
Chemical Engineers' Handbook (1997) and thermodynamics textbooks. For exam- 
ple, the standard heat of formation of ethyl benzene, CsHlo, in the gaseous state is 
29,790 J/ mol at 298 K. Consider the formation of ethyl benzene from its elements 
by the reaction 

The standard heat of formation is given by 
8C(s) + 5H&) = CSHlOk) 

( A I ? ~ ) c ~ H , ~  = fi,2sHlo - 8 fi,2 - 5 f i g 2  = 29,790 J/ mol 

Since Hz = H& = 0, it follows that 

( A ~ ~ : ) c ~ H ~ ~  = fi&H1O = 29,790 J/ mol 

It is possible to generalize this result in the form 

(6.3-23) 

The standard heat of formation of a substance is just the standard heat of reaction 
in which one mole of it is formed from elementary species. Therefore, the standard 
heat of reaction, AH&,, is the difference between the total enthalpy of the pure 
product mixture and that of the pure reactant mixture at standard conditions as 
shown in Figure 6.5.  

Reactans in their Products in their 

Cr, 1 am) 

standard states standard states 

Figure 6.5 Calculation of the standard heat of reaction, AH&, 
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T 
AH&,(T) = AH&.,(T = 298 K) + Lg8 ACg dT 

The standard heat of reaction can be calculated as 

(6.3-29) 

Substitution of Q. (6.3-23) into Eq. (6.3-24) gives 

(6.3-24) 

(6.3-25) 

Note that the standard heat of formation of an element is zero. 

absorbed, the reaction is called endothermic. Therefore, 
If heat is evolved in the reaction, the reaction is called exothewnic. If heat is 

(6.3-26) 

If the standard heat of reaction is known at 298K, then its value at any other 
temperature can be found as follows: The variation of the standard heat of reaction 
as a function of temperature under constant pressure is given by 

> 0 for an endothermic reaction 
AHf.,( < 0 for an exothermic reaction 

The term (dAH,O,,/W), can be expressed as 

(6.3-27) 

(6.3-28) 
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4. As a result of perfect mixing, temperature and concentration of the system 
are uniform, i.e., tout = csys and Tout = Tsys. 

5. Changes in kinetic and potential energies are negligible. 

Since chemical reaction is involved in this case, it is more appropriate to work 
on molar basis. Therefore, Eq. (6.3-17) simplifies to 

(RjL)in - (I;TjL),,t + Qid = 0 (6.3-30) 

Any molar quantity of a mixture, 4, can be expressed in terms of partial molar 
quantities2, iji ,  as 

?j = c.iqi (6.3-31) 
i 

Multiplication of &. (6.3-31) by molar flow rate, n, gives 

(6.3-32) 

Therefore, Eq. (6.3-30) is expressed as 

On the other hand, macroscopic mole balance for species i, Eq. (6.1-6), is 

(h i l in  - (hilout + ~ y s  E a i j  T j  = 0 (6.3-34) 
j 

Multiplication of Eq. (6.3-34) by gi(T) and summation over all species gives 

[,nifJi(T)Iin - [ChiRi(T)] -Vsys Erj ( - A H r x n , j )  = 0 (6.3-35) 
out j 

where the heat of reaction is defined by 

A H r x n , j  = C a i j H i ( T )  (6.3-36) 
i 

Subtraction of Eq. (6.3-35) from Eq. (6.3-33) yields 

2Partial molar quantities, unlike molar quantities of pure substances, depend also on the 
composition of the mixture. 
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Dividing Ea. (6.3-37) by the volumetric flow rate, &, gives 

where r is the residence time defined by 

(6.3-39) 

Partial molar heat capacity of species i, Cpi ,  is related to the partial molar 

(6.3-40) 

enthalpy as 
aHi G i  = (w) P 

If cpi is independent of temperature, then integration of Eq. (6.3-40) gives 

Hi(Tin) - Hi(2') = Cpi(Tin - T )  (6.3-41) 

Substitution of Eqs. (6.3-40) and (6.3-41) into Eq. (6.3-38) yields 

(6.3-42) 

where 
(6.3-43) 

It should be noted that the reaction rate expression in Eq. (6.3-42) contains a 

]c = Ae-&/a* (6.3-44) 

Therefore, Eq. (6.3-42) is highly nonlinear in temperature. 
Once the feed composition, stoichiometry and order of the chemical reaction, 

heat of reaction, and reaction rate constant are known, conservation statements for 
chemical species and energy contain five variables, namely, inlet temperature, T,,, 
extent of reaction, E ,  reactor temperature, T, residence time, 7, and interphase heat 
transfer rate, Qint. Therefore, three variables must be known while the remaining 
two can be calculated from the conservation of chemical species and energy. Among 
these variables Tin is the variable associated with the feed, [ and T are the variables 
associated with the product, r and Qint are the variables of design. 

i 

reaction rate constant, k ,  expressed in the form 

Example 6.6 
2400 mol/ m3 B. A second-order irreversible reaction takes place as 

A liquid feed to a jacketed CSTR consists of 2000mol/m3 A and 

A + B - t 2 C  
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The rate of reaction is given by  

where the reaction rate constant at 298 K is k = 8.4 x m3/ mol. min, and the 
activation energy is 50,000 J/ mol. The reactor operates isothermally at 65 "C. 
The molar heat capacity at constant pressure and the standard heat of formation 
of species A, 23, and C at 298K are given as follows: 

ep AH; 
( J/ mol. K) ( kJ/ mol) Species 

A 175 - 60 
B 130 - 75 
C 110 - 90 

a) Calculate the residence time required to obtain 80% conversion of species A. 
b) What should be the volume of the reactor if species C are to be produced at a 
rate of 820 mol/ min? 
c) If the feed enters the reactor at a temperature of 25"C, determine the rate of 
heat that must be removed from the reactor to maintain isothermal operation. 
d) If the heat transfer coeficient is IO50 W/ m2, K and the average cooling fluid 
temperature is 15°C) estimate the required heat transfer area 

Solution 

Assumptions 

1. As a result of perfect mixing, concentrations of the species within the reactor 
are uniform, i.e., ( ~ ) , , t  = ( G ) ~ ~ ~ .  

2. Solution nonidealities are negligible, i.e., cp, = cpi; AH,.,, = AH&, 

3. There is no heat loss from the reactor. 

Analysis 

System: Contents of the reactor 

a) Since the reactor volume is constant, the inlet and outlet volumetric flow rates 
are the same and equal to &. Therefore, the inventory rate equation for comerua- 
tion of species A, Eq. (6.1-7)) becomes 

& ( C ~ ) i n  - &CA,,, - (kCAaYaCBsya)%ys = 0 (1) 
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where CA,,, and cB,, represent the molar concentrations of species d and t3 in 
the reactor, respectively. Dropping the subscript “sys” and dividing Eq. (1) by the 
volumetric flow rate, Q, gives 

(CA)in - C A  
7 =  

k C A C B  

Using Eq. (5.3-17), the extent of reaction can be 

(2) 

calculated m 

= 1600 mol/ m3 - (2000) (0.8) - 
1 (3) 

Therefore, the concentrations of species d, t3, and C in the reactor are 

CA = ( c A ) ~ ~  + QA < = 2000 - 1600 = 400 mol/ m3 
CB = ( c ~ ) i n  + (YB = 2400 - 1600 = 800 mol/ m3 
cc = (%)in + ac [ = (2)(1600) = 3200 mol/ m3 

(4) 
(5) 
(6) 

If kl and kz represent the rate constants at temperatures of TI and T2, respectively, 
then 

Therefore, the reaction rate constant at 65°C (338K) is 

k = 8.4 x 10-6exp - - - - - [ ?E (3&? 2 k ) ]  
= 9.15 x m3/ mol. min 

Substitution of numerical values into Eq. (2) gives 

2000 - 400 
= 54.6min (9.15 x (400)(800) 

7 =  

b) The reactor volume, V ,  is given by  

The volumetric pow rate can be determined from the production rate of species C ,  
a.e.. 

- 0.256 m3/ min 820 
3200 

ccQ=820 + &=--  

Hence, the reactor volume is 

V = (54.6)(0.256) = 14m3 



6.3. CONSERVATION OF ENERGY 

c) For this problem, Eq. (6.3-42) simplifies to 
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(9) 

The standard heat of reaction at 298K is 

AH,&(298) = Cai(AB;)i 
i 

= (-I)(-60)+(-I)(-75)+(2)(-90) = -45kJ/mol 

The standard heat of reaction at 338K is given by Eq. (6.3-29) 

AH&,(338) = AH&, (298 K) + 1;: A e g  dT 

where 

AC$ = CLY~@, 
i 

= (- 1)(175) + (- 1)(130) + (2)(110) = -85 J/mol. K 

Hence 

AH,0,,(338) = - 45,000 + (- 85)(338 - 298) = - 48,400 J/ mol 

On the other hand, the use of Eq. (6.3-43) gives 

(CP>in = C(~i)inepi 
i 

= (2000)(175) + (2400)(130) = 662,000 J/ m3. K 

Therefore, substitution of the numerical values into Eq. (9) yields 

Qint = - (0.256)(662,000)(25 - 65) 
- (14) [(9.15 x 10-5)(400)(800)] (48,400) = - 13 x lo6 J/min 

The minus sign indicates that the system, i.e., reactor, loses energy to the sur- 
roundings. 

d) The application of Newton's law of cooling gives 

= 4.1 m2 13 x lo6 
(1050)(65 - 15)(60) AH = 
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NOTATION 

A 
AH 
A M  
C P  
C 

D A B  
E 
EK 
EP 
E 
& 
9 
H 
h 
k 
kc 
m 
M 
n 
P 

Q 
r 
R 
T 
t 
U 
V 

Q 

V 

w 
w s  
X 
xi 

ai 

aij 

P 
A 

AHmn 
x 
CL 

AHf 

area, m2 
heat transfer area, m2 
mass transfer area, m2 
heat capacity at constant pressure, kJ/ kg. K 
concentration, kmol/ m3 
diffusion coefficient for system d-B, m2/ s 
total energy, J 
kinetic energy, J 
potential energy, J 
rate of energy, J / s  
activation energy, J/ mol 
acceleration of gravity, m/ s2 
enthalpy, J 
elevation, m 
reaction rate constant 
mass transfer coefficient, m/s 
mass flow rate, kg/s 
molecular weight, kg/ kmol 
molar flow rate, kmol/ s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/ s 
rate of a chemical reaction, kmol/ m3. s 
gas constant, J/ mol. K 
temperature, "C or K 
time, s 
internal energy, J 
volume, m3 
velocity, m/ s 
rate of work, W 
rate of shaft work, W 
fractional conversion 
mole fraction of species i 

stoichiometric coefficient of species i 
stoichiometric coefficient of ith species in the j t h  reaction 
coefficient of volume expansion, Q. (6.3-13), K-' 
difference 
heat of formation, J/ mol 
heat of reaction, J 
latent heat of vaporization, J 
viscosity, kg/ m. s 
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v kinematic viscosity, m2/ s 
5 
P density, kg/ m3 
7- residence time, s 

w per mole 
per unit mass 

- partial molar 

intensive extent of a reaction, kmol/ m3 

Overlines 

Bracket 
(4 average value of a 

Superscripts 
0 standard state 
sat saturation 

Subscripts 

A, B 

f 
ch 

i 
in 
int 

out 

SY s 

j 

ref 

species in binary systems 
characteristic 
film 
species in multicomponent systems 
inlet 
interphase 
reaction number 
out 
reference 
system 

Dimensionless Numbers 
Pr Prandtl number 
sc  Schmidt number 
StH 
St M 

Stanton number for heat transfer 
Stanton number for mass transfer 
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PROBLEMS 

6.1 2520 kg/ h of oil is to be cooled from 180 "C to 110 "C in a countercurrent heat 
exchanger as shown in the figure below. Calculate the flow rate of water passing 
through the heat exchanger for the following cases: 

a) The cooling water, which enters the heat exchanger at 15"C, is mixed with 
water at 30 "C at the exit of the heat exchanger to obtain 2415 kg/ h of process 
water at 60°C to be used in another location of the plant. 
b) The cooling water, which enters the heat exchanger at 30"C, is mixed with 
water at 30°C at the exit of the heat exchanger to obtain 2415kg/ h of process 
water at 60 "C to be used in another location of the plant. 

Oil 
H20 at 30°C 

Heat Exchanger - W 2415 kg/h H20 H20 , 
60°C 

1 
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Assume that oil and water have constant heat capacities of 2.3 and 4.2 kJ/ kg. K, 
respectively. 
(Answer: a) 1610 kg/ h) 

6.2 The following parallel reactions take place in an isothermal, constant-volume 
CSTR 

A + 2B r = klcA kl  = 1.3s-l 

3A 4 C T = k 2 C ~  k2 = 0.4s-l 

Pure A is fed to the reactor at a concentration of 350 mol/ m3. 

a) Determine the residence time required to achieve 85% conversion of species A 
under steady conditions. 
b) Determine the concentrations of species B and C. 
(Answer: a) T = 2.27s b) CB = 309.9mol/m3, cc  = 47.7mol/m3) 

6.3 
liquid phase in an isothermal, constant-volume CSTR 

Species A undergoes the following consecutive first-order reactions in the 

A ~ B S C  

where kl = 1.5s-1 and = 0.8s-'. If the feed to the reactor consists of pure A, 
determine the residence time required to maximize the concentration of species 23 
under steady conditions. 
(Answer: 0.913 s )  

6.4 An isomerization reaction 
A + B  

takes place in a constant-volume CSTR. The feed to the reactor consists of pure 
A. The rate of the reaction is given by 

For the maximum conversion of species A at a given residence time, determine the 
reactor temperature. 

6.5 Two electronic components (IC = 190 W/ m. K) are to be cooled by passing 
0.2 m3/ s of air at 25 "C between them. To enhance the rate of heat loss, it is pro- 
posed to install equally spaced rectangular aluminum plates between the electronic 
components as shown in Figure 6.6. 
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Figure 6.6 Schematic diagram for Problem 6.5. 

The rate of heat loss from the electronic component at the left, Le., z = 0, must be 
500 W and the temperature should not exceed 80 "C; while the other component 
must dissipate 2 k W  with a maximum allowable temperature of 90 "C. Determine 
the number of the plates that must be placed per cm between the electronic com- 
ponents (Use the temperature distribution given in Problem 4.6). 
(Answer: One possible solution is 10 fins per cm) 

6.6 As shown in Example 6.4, the wet-bulb temperature can be calculated from 

2/3 Too - T, = - CA, X A  (E) 
( P C P ) B  B 

by a trial-and-error procedure because both CA, and j \ ~  must be evaluated at T,, 
whereas PB, Cp,, PrB and SCB must be evaluated at the film temperature. In 
engineering applications, an approximate equation used to estimate the wet-bulb 
temperature is given by 

where 
(2) T: - T,T~ -1- 4 = o 

Develop Eq. (2) from Eq. (1) and indicate the assumptions involved in the deriv& 
tion. 

6.7 An exothermic, first-order, irreversible reaction 

A - r B  
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takes place in a constant-volume, jacketed CSTR. 
a) Show that the conservation equations for chemical species A and energy take 
the form 

where Tm is a weighted mean temperature defined by 

in which (h)  is the average heat transfer coefficient, Tc is the cooling fluid temper- 
ature, AH is the heat transfer area. 

b) Show that the elimination of C A  between Eqs. (1) and (2) leads to 

c )  In terms of the following dimensionless quantities 

,g=- 

A - A ~ - E / R T ~  na- 

[Q ( C P ) ~ ,  + A ~ ( h ) l T m  
X =  

show that Eq. (4) takes the form 

d) To determine the roots of Eq. 
convenient to rearrange Eq. (5 )  in the form 

(5) for given values of and p, it is more 

Examine the behavior of the function in Eq. (6) and conclude that 

At least one steady-state solution exists when p 2 0.25, 
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e Two steady-state solutions exist when < 0.25 and y = ymin < ymax or, 
Ymin < Y = Ymax, 

e Three steady-state solutions exist when /3 < 0.25 and Y,,,~,, < y < ymax, 

where ymin and rmax are defined by 

The existence of more than one steady-state solution is referred to as multiple 
steady-states. For more detailed information on this problem see Kauschus et al. 
(1978). 



Chapter 7 

Unsteady- St at e Macroscopic 
Balances 

In this chapter we will consider unsteady-state transfer processes between the 
phases by assuming no gradients within each phase. Since the dependent vari- 
ables, such as temperature and concentration, are considered uniform within a 
given phase, the resulting macroscopic balances are ordinary differential equations 
in time. 

The basic steps in the development of unsteady macroscopic balances are sim- 
ilar to those for steady-state balances given in Chapter 6. These can be briefly 
summarized as follows: 

0 Define your system. 

0 If possible, draw a simple sketch. 

0 List the assumptions. 

0 Write down the inventory rate equation for each of the basic concepts relevant 
to the problem at hand. 

0 Use engineering correlations to evaluate the transfer coefficients. 

0 Write down the initial conditions: The number of initial conditions must be 
equal to the sum of the order of differential equations written for the system. 

0 Solve the ordinary differential equations. 

181 
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(Diffusivity)( Characteristic time) 
(Characteristic length)2 >> 1 

7.1 APPROXIMATIONS USED IN 
MODELLING OF UNSTEADY-STATE 
PROCESSES 

(7.1-7) 

7.1.1 Pseudo-Steady-State Approximation 
As stated in Chapter 1, the general inventory rate equation can be expressed in 
the form 

) (7.1-1) 

Remember that the molecular and convective fluxes constitute the input and output 
terms. Among the terms appearing on the left side of R. (7.1-l), molecular 
transport is the slowest process. Therefore, in a given unsteady-state process, the 
term on the right side of Eq. (7.1-1) may be considered negligible if 

Rate of Rate of Rate of Rate of ( input ) - ( output ) + ( generation ) = ( accumulation 

(7.1-2) Rate of 
molecular transport ) ( accEX:ion 

or, 

Difference in quantity 
Characteristic time (7.1-3) ) (Area) >> Gradient of 

(Diffusivity) ( Quantity/Volume 

Note that the “Gradient of Quantity/Volume” is expressed in the form 

Difference in Quantity/Volume 
Characteristic length Gradient of Quantity/Volume = (7.1-4) 

On the other hand, volume and area are expressed in terms of characteristic length 
8s 

Volume = (Characteristic length)3 (7.1-5) 
Area = (Characteristic length)2 (7.1-6) 

Substitution of Eqs. (7.1-4)-(7.1-6) into Eq. (7.1-3) gives 

In engineering analysis, the neglect of the unsteady-state term is often referred 
to as the pseudo-steady-state (or, quasi-steady-state) approximation. However, it 
should be noted that the pseudo-steady-state approximation is only valid if the 
constraint given by Eq. (7.1-7) is satisfied. 
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Example 7.1 The density, 
thermal conductivity, and heat capacity of the insulating material are 255kg/m3, 
0.07 W/ m. K, and 1300 J/ kg. K, respectively. If our experiments take 10 min, is it 
possible to ussume pseudo-steady-state behavior? 

We  are testing a 2cm thick insulating material. 

Solution 

For the pseudo-steady-state approximation to be valid, Eq. (7.1-7) must be satisfied, 
%.e., 

>>1 a tch  - 
LZh 

The thermal digwivity, a, of the insulating material is 

k a = -  
P C P  

= 2.11 x 10-7m2/s 
0.07 

(255)( 1300) 
- - 

Hence, 
at& (2.11 x io-') (10)(60) 

= 0.32 < 1 -- - 
Lzh ( 2  x 10-2)2 

which indicates that we have an unsteady-state problem at hand. 

7.1.2 No Variation of Dependent Variable Within the 
Phase of Interest 

In engineering analysis it is customary to neglect spatial variations in either tem- 
perature or concentration within the solid. Although this approximation simplifies 
the mathematical problem, it is only possible under certain circumstances as will 
be shown in the following development. 

Let us consider the transport of a quantity cp from the solid phase to the fluid 
phase through a solid-fluid interface. Under steady conditions without generation, 
the inventory rate equation, Eq. (1.1-l), for the interface takes the form 

Rate of transport of cp from (7.1-8) 

Since the molecular flux of cp is dominant within the solid phase, Eq. (7.1-8) reduces 
to 

( the solid to the interface > = (  the interface to the fluid ) Rate of transport of cp from 

) (7.1-9) Molecular flux of cp from 
the solid to the interface ) = ( the interface to the fluid 

Flux of cp from 
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Transport Gradient of 

)] (7.1-10) Transfer Difference in 
= [ ( coefficient ) ( Quantity/Volume f luid 

The gradient of driving force is expressed in the form 
Difference in driving force 

Characteristic length Gradient of driving force = 

On the other hand, “Difference in Quantity/Volume” can be expressed as 

(7.1-11) 

Difference in ) = (’Thnsport property 
driving force ) (7.1-12) Quant ity/Volume Diffusivity 

Substitution of Eqs. (7.1-11) and (7.1-12) to the left- and right-hand sides of Eq. 
(7.1-10), respectively, gives 

Diffusivity 

in which Bi designates the Biot number defined by 
(Difference in driving force)sotid 
(Difference in driving 

Bi = 

Therefore, the Biot numbers for heat and mass transfer are defined as 

(7.1-13) 

(7.1-14) 

(7.1-15) 

(7.1-16) 

It is important to distinguish the difference between the Biot and the Nusselt 
(or, the Sherwood) numbers. The transport properties in the Biot numbers, Eqs. 
(7.1-15) and (7.1-16), are referred to the solid, whereas the transport properties in 
the Nusselt and the Sherwood numbers, Eqs. (3.411) and (3.412), are referred to 
the fluid. 

When the Biot number is small, one can conclude from €2q. (7.1-14) that 

(7.1-17) Difference in Difference in ( driving force )sol id  ( 
Therefore, dependent variables may be considered uniform within the solid phase 
only if Bi << 1. 
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7.2 CONSERVATION OF CHEMICAL 
SPECIES 

The conservation statement for the mass of the ith chemical species is given by 

Rate of mass ) - ( Rate of mass ) + ( Rate of generation 
of i in of i out of mass i 

) (7.2-1) = ( Rate of accumulation 
of mass i 

For a system with a single inlet and a single outlet stream as shown in Figure 7.1, 
Eq. (7.2-1) can be expressed as 

Figure 7.1 Unsteady-state flow system exchanging mass with the surroundings. 

The interphase mass transfer rate, (hi)int, is considered positive when mass is 
added to the system and is expressed by 

Substitution of Eq. (7.2-3) into Eq. (7.2-2) gives 

In terms of molar basis, Eqs. (7.2-2) and (7.2-4) take the form 

(7.2- 5) z sys 4n.l 
(&)in - (&)out * (ki)int + vsys cyij T j  = - d t  

j 



186 CHAPTER 7. UNSTEADY-STATE MACROSCOPIC BALANCES 

and 

7.3 CONSERVATION OF TOTAL MASS 
Summation of Eq. (7.2-2) over all species gives the total mass balance in the form 

(7.3-1) 

Note that the term xi cvijMi is zero since mass is conserved. On the other hand, 
summation of Eq. (7.2-5) over all species gives the total mole balance as 

(7.3-2) 

where 
Ej = Ccqj 

i 
(7.3-3) 

The generation term in Q. (7.3-2) is not zero because moles are not conserved. 
This term vanishes only when ?Tj = 0 for all values of j .  

Example 7.2 An open cylindrical tank of height H and diameter D is initially 
half full of a liquid. At time t = 0, the liquid is fed into the tank at a constant 
volumetricflow rate of Qin, and at the same time it is  allowed to  drain out through 
an orifice of diameter Do at the bottom of the tank. Express the variation of the 
liquid height as a function of time. 

Solution 

Assumptions 

1. Rate of evaporation from the liquid surface is negligible. 

2. Liquid is incompressible. 

3. Pressure distribution in the t a d  is hydrostatic. 
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Analysis 

System: Fluid in the tank 

The inventory rate equation for total mass, Eq. (7.3-1), reduces to 

where (v,) is the average velocity through the orifice, i.e., the volumetric flow rate 
divided by  the cross-sectional area; A, and A are the cross-sectional areas of orifice 
and the tank, respectively. Since p and A are constant, Eq. (1) becomes 

I n  order to proceed further, (v,) must be related to h. 

an orifice is given by  
For flow in a pipe of uniform cross-sectional area A, the pressure drop across 

(3) 

where /3 is the ratio of the orifice diameter to the pipe diameter, IAPI is the pres- 
sure drop across the orifice, and C, i s  the orifice coeficient. The value of C, 
is generally determined from experiments and given as a function of p and the 
Reynolds number, Re,, defined by 

For /3 < 0.25, the term d-is almost unity. On the other hand, when Re, > 
20,000, experimental measurements show that C, N 0.61. Hence, Eq. (3) reduces 
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to 

(v,) = 0.61 /q 15) 

Since the pressure in the tank is hydrostatic, lAPl N p g h  and Eq. (5) becomes 

(v0> = 0 . 6 1 m  = 2 . 7 h  (6)  

Substitution of Eq. (6) into Eq. (2) gives the governing differential equation for 
the liquid height in the tank as 

2.7 (2) (R-  f i) = d h  
(7)  

where 
(8) 

&in a=- 

Note that the system reaches steady-state when dhld t  = 0 at which point the liquid 
height, h,, is given by 

Now, it is worthwhile to investigate two cases: 
Case ( i )  Liquid level in the tank increases 
At t = 0,  the liquid level in the tank is H/2.  Therefore, the liquid level increases, 
ie. ,  dhJd t  > 0 in Eq. (r), if 

Rearrangement of Eq. (7) gives 

2.7A0 

h, = R2 (9) 

R2 > H / 2  (10) 

Integration of Eq. (1 1) yields 

t=O.74($) [ g - & + R h (  R - J H 7 2  )] 
R - f i  

Equations (9) and (IO) indicate that h, > H/2.  When h, > H ,  steady-state 
condition can never be achieved in the tank. The time required to fill the tank, t j ,  
is 

If H / 2  < h, < H ,  then the time, t,, required for the level of the tank to reach 
99% of the steudy-state value is 
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Case ( i i )  Liquid level in the tank decreases 

The liquid level in the tank decreases, i.e., dhldt < 0 in Eq. (7), i f  

f-2' < H / 2  (15) 

Equation (12) is also valid for  this case. Equations (9) and (15) imply that h, < 
H / 2 .  Since h, cannot be negative, this further implies that it is impossible to empty 
the tank under these circumstances. The time required for  the level of the tank to 
reach 99% of the steady-state value is also given by Eq. (14). 

The ratio h / H  is plotted versus t / [ O . 7 4 ( A / A 0 ) a ]  with f-2/&as a parameter 
in the figure below. 

1 

t 
0.74 (ALAJ 

Example 7.3 A liquid phase irreversible reaction 

A + B  

takes place in a CSTR of volume V,. The reactor is initially empty. At  t = 0, 
a solution of species A at concentration CA, jlows into the reactor at a constant 
volumetric flow rate of Qj,. No liquid leaves the reactor until the liquid volume 
reaches a value of VT. The rate of reaction is given by 

r = k C A  

If the reaction takes place under isothermal conditions, express the concentration 
of species A within the reactor as a function of time. 
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Solution 

Assumptions 

1. Well mixed system, i.e., the temperature and the Concentration of the contents 
of the reactor are uniform. 

2. The density of the reaction mixture is constant. 

Analysis 

System: Contents of the reactor 

The problem should be considered in three parts: the filling period, the unsteady 
state period, and the steady-state period. 

i )  The filling period 

During this period, there is no outlet stream from the reactor. Hence, the conser- 
vation of total mass, Eq. (7.3-1), is given by 

Since an and p are constant, integration of Eq. (1) and the use of the initial 
condition, msys = 0 at t = 0, gives 

msys = Q i n p t  (2) 

Since msys = pVsys, Eq. (2) can also be expressed as 

Kys = Qin t (3) 

F’rom Eq. (3), the time required to f i l l  the reactor, t*, is calculated as t* = V T / Q ~ ,  
where VT is the volume of the reactor. 

(7.2-6), 
d u c e s  to 

The inventory rate equation based on the moles of species A, Eq. 

(4) 
d n A  

&in CA, - ~cAV,,, = - d t  
where 
concentration can be expressed an terms of the number of moles as 

the volume of the reaction mixture, is dependent on time. The molar 

such that Eq. (4) can be rearranged in the form 
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Integration gives 

n A  = - [l - exp(- k t )]  (7) k t  
Substitution of Eq. (7) into Eq. (5) and the use of Eq. (3) gives the concentration 
as a function of time as 

The concentration c> at the instant the tank is full, i.e., at t = t* = VT/Qin, is 

i i )  The unsteady-state period 

Since the total volume of the reactor VT is constant, then the inlet and outlet 
volumetric flow rates are the same, i.e., 

&in = Qout = Q (10) 

The inventory rate equation on the moles of species A, Eq. (7.2-6), is 

(11) 
~(cAVT)  

dt Q C A ,  - Q C A  - kCAVT = 

Equation (11) can be rearranged in the form 

where 7- is the residence time defined by 

VT 7 = -  e 
Equation (12) is a separable equation and can be written in the form 

Integration of Eq. (14) gives the concentration distribution as 

(13) 
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iii) The steady-state period 

The concentration in the tank reaches its steady-state value, CA,, as t + 00. In 
this case, the exponential term in Eq. (15) vanishes and the result is 

Note that Eq. (16) can also be obtained from Eq. (12) by letting dcA/dt = 0. The 
time required for the concentration to  reach 99% of its steady-state value, t,, is 

t ,  = t* + - 7- In { 100 [1- (.> 1 + k r  [l - exp(--kr)]]} (17) 1 + k r  

When k r  << 1, Le., a slow first-order reaction, Eq. (17) simplifies to 

t ,  - t* = 4.67 (18) 

Example 7.4 A sphere of naphthalene, 2cm in diameter, is suspended in air at 
90°C. Estimate the time required for the diameter of the sphere to be reduced to 
one-half its initial value i t  

a) The air is stagnant, 
b) The air is flowing past the naphthalene sphere with a velocity of 5 m/ s. 

Solution 

Physical properties 

p2 = 1145 kg/ m3 
M A  = 128 
p s a t  A - - 11.7mmHg 

For naphthalene (species A) at 90°C (363K) : 

Diffusion coeficient of species A in air (species B): 
{ 

  DAB)^ = (0.62 x (E3”” - = 8.25 x m2/s 

For air at 90 “C (363 K) : v = 21.95 x 

The Schmidt number is 

m2/ s 

v 
sc = - 

DAB 
21.95 x 
8.25 x 10-6 

= 2.66 - - 

Assumptions 

1. Pseudo-steady-state behavior. 
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2. Ideal gas behavior. 

Analysis 

System: Naphthalene sphere 

The terms appearing in the conservation of species A, Eq. (7.2-2), are 

Therefore, Eq. (7.2-2) reduces to 

Taking CA, = 0 and rearrangement gives 

where Do is the initial diameter of the naphthalene sphere. 
The average mass transfer coeficient, ( I C C ) ,  can be related to the diameter of the 

sphere, D p ,  by using one of the mass transfer correlations given in Section 4.3.3. 
The use of the Ranz-Marshall correlation, Eq. (4.3-33), gives 

Sh = 2 + 0.6 Reg2 S C ” ~  (3) 

a) When air is stagnant, i.e., Rep = 0, Eq. (3) reduces to 

Substitution of Eq. (4) into Eq. (2) and integration gives 

The saturation concentration of naphthalene, CA, , is 
p s o t  

RT 
A 

CAW = - 

= 5.17 x lo-* kmol/ m3 - 11.7/760 - 
(0.08205)(90 + 273) 
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Substitution of the values into Eq. (5) gives the required time as 

= 2.59 x lo5 s N 3 days 3 (1145)(0.02)2 
32 (128)(5.17 x 10-4)(8.25 x 

t = -  

b) When air Bows with a certain velocity, the Ranz-Marshall correlation can be 
expressed as 

&)DP 
DAB 
- = 2 + 0 . 6  

or. 

(7) 

where the coeficients a and p are defined by  

= 2DAB = 2 (8.25 x = 1.65 x (8) 

1 /2 ) (2.66)lI3 = 3.27 x (9) = (0.6)(8.25 x (21.95 x 

Substitution of Eqs. (7)-(9) into Eq. (2) gives 

DP 
1.65 x + 3.27 x 10-3.\/Da 

t =  

Analytical evaluation of the above integral is possible and the result is 

t = 3097 s e 52 min 

Verification of the pseudo-steady-state approximation 

= 6 4 > 1  
DAB t (8.25 x 10-6)(3097) -- - 
D; (2 x 10-2)2 

7.4 CONSERVATION OF MOMENTUM 
According to Newton’s second law of motion, the conservation statement for linear 
momentum is expressed as 

) (7.4-1) 

In Section 4.3, we considered the balance of forces acting on a single spherical 
particle of diameter D p ,  falling in a stagnant fluid with a constant terminal velocity 

Time rate of change of Forces acting ( linear momentum of a body ) = ( onabody 
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ut. In the case of an accelerating sphere an additional force, called fluid inertia 
force, acts besides the gravitational, the buoyancy, and the drag forces. This force 
arises from the fact that the fluid around the sphere is also accelerated from the 
rest, resulting in a change in the momentum of the fluid. The rate of change of 
fluid momentum shows up as an additional force acting on the sphere, pointing 
in the direction opposite to the motion of the sphere. This additional force has a 
magnitude equal to one-half the rate of change of momentum of a sphere of liquid 
moving at the same velocity as the solid sphere. Therefore, Eq. (7.41) is written 
in the form 

Time rate of change of Gravitational 
force 

- ( force ) - ( force ) - ( 
linear momentum of a sphere ) = ( 

Buoyancy Drag Fluid inertia 
force 

and can be expressed as 

where pp and Dp represent the density and diameter of the solid sphere, respec- 
tively, and p is the fluid density. Simplification of Eq. (7.43) gives 

(7.44) 

The friction factor f is usually given as a function of the Reynolds number, Rep, 
defined by 

Rep = - 

Therefore, it is much more convenient to express the velocity, v, in terms of Rep. 
Thus, Eq. (7.44) takes the form 

(7.4-5) D P V  P 
P 

D; dRep 3 
(PP + 0.5 PI - h - z  - fa?$ (7.4-6) 

where Ar is the Archimedes number defined by Eq. (4.3-6). Note that when the 
particle reaches its terminal velocity, i.e., d Rep / d t  = 0, Eq. (7.46) reduces to Eq. 
(4.3-4). Integration of &. (7.46) gives 

(7.4-7) 

A friction factor - Reynolds number relationship is required to carry out the 
integration. Substitution of the Turton-Levenspiel correlation, Eq. (4.%10), into 
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Eq. (7.47) gives 

-1 ) dRep (7.4-8) 
0.31 Re; 

1 + 16,300 Rei1*'' 
x I"' (Ar - 1 8 % ~  - 3 . ~ 4 R e ; ~ ' ~  - 

Equation (7.4-8) should be evaluated numerically. 

Example 7.5 
diameter, to reach 60% of its terminal velocity in air at 50 "C. 

Solution 

Calculate the time required for  a spherical lead particle, 1.5mm in 

Physical properties 

For lead at 50 "C : p = 11,307 kg/ m3 

Analysis 

When the particle reaches its terminal velocity, the value of the Reynolds number 
can be calculated from Eq. (4.3-12). The Archimedes number is 

- (1.5 x 10-3)3(9~8)(1~0928)(11~307) ~ 1.067 
106 - 

(19.57 x 10-6)2 

Substitution of this value into Eq. (4.3-1.2) gives the Reynolds number under steady 
conditions as 

Ar -1.214 RepI,=,, = - (1 + 0.0579Ar0.412) 

18 

18 
-1.214 - - 1.067 x lo6 [1+ 0.0579 (1.067 x 106)0'412] = 1701 

In this problem it is required to  calculate the time fo r  the particle to  reach a Reynolds 
number of 

Rep = (0.6)(1701) = 1021 
Therefore, the required time can be calculated from Eq. (7.4-8) as 

(11,307)(1.5 x 10-3)2 I t =  
19.57 x 
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where 

) d Rep 0.31 Re; 
1 + 16,300 Re;’.’’ I = LRe” (1.067 x lo6 - 18 Rep -3.114Reg657 - 

The value of I can be determined by using one of the numerical techniques given in 
Section A.8-4 in Appendix A.  The use of the Gauss-Legendre quadrature is shown 
below. According to Eq. (A.8-13) 

1021 
Rep = - (u + 1) 2 

and the five-point quadrature is given by 

where the function F(u )  is given by 

1 

1.067 x lo6 - 9189 (U + 1) - 95602 (U + l)1.657 - + 18.22 (u + 1)-l.09 
80,789 (u + 1)2 F(u) = 

The values of wi and F(ui )  are given up to three decimals in the following table: 

i U i  wi q u i )  x 106 W i F ( U i )  x 106 
0 0.000 0.569 1.044 0.594 
1 +0.538 0.479 1.187 0.569 
2 -0.538 0.479 0.966 0.463 
3 +0.906 0.237 1.348 0.319 
4 -0.906 0.237 0.940 0.223 

Therefore, the value of I can be calculated from Eq. (2) as 

I = -  lo2’ (2.17 x 10-6) = 1.11 x 10-3 
2 

Substitution of this value into Eq. (1) gives 

= 1.44s (11,307)(1.5 x 10-3)2 (1.11 x 
19.57 x 

t =  
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7.5 CONSERVATION OF ENERGY 
The conservation statement for total energy under unsteady-state conditions is 
given by 

) (7.5-1) 

For a system shown in Figure 7.2, following the discussion explained in Section 6.3, 
Eq. (7.5-1) is written as 

Rate of energy 
accumulation 

Figure 7.2 Unsteady-state flow system exchanging energy in the form of heat 
and work with the surroundings. 

Note that, contrary to the steady-state flow system, the boundaries of this sys  
tem are not k e d  in space. Therefore, besides shaft and flow works, work associated 
with the expansion or compression of the system boundaries must be included in 
Vk so that it takes the form 

w = - Psvs- (7.53) 
out 

d K y s  + ws + (PPm)in - (pcm) 
d t  v , 

C - B  A 

where terms A, B, and C represent, respectively, work associated with the expan- 
sion or compression of the system boundaries, shaft work, and flow work. 

Substitution of Eq. (7.5-3) into Eq. (7.5-2) and the use of the definition of 
enthalpy, i.e., a = U + PP, gives 
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which is known as the general energy equation. Note that under steady conditions, 
Eq. (7.54) reduces to Eq. (6.3-9). In terms of molar quantities, Eq. (7.5-4) is 
written as 

[(it + E K  + E P ) ? i ] .  - [(it + l3K + EP)?i ]  + Qint - P S Y S  - dKYS +ws 
sn out dt 

When the changes in the kinetic and potential energies between the inlet and 
outlet of the system as well as within the system are negligible, Eq. (7.5-4) reduces 
to 

(7.5-6) dvsys . d 
( f i k ) i n  - ( f i k ) o u t  + Qint - Psys 7 + ws = z(om)sys 

The accumulation term in Eq. (7.56) can be expressed in terms of enthalpy as 

d *  dvsy, vsys  - dPsy, (7.5-7) 
dt = -(Hm)sys - Psys - - d t  dt 

Substitution of Eq. (7.57) into Eq. (7.5-6) gives 

On molar basis, Eq, (7.58) can be expressed as 

Example 7.6 Air at atmospheric pressure and 25OC is flowing at a velocity 
of 5 m/ s over a copper sphere, 1.5 cm in diameter. The sphere is initially at a 
temperature of 50°C. How long will it take to cool the sphere to 30°C? How much 
heat is transferred from the sphere to the air? 

Solution 

Physical properties 

p = 18.41 x 10-6kg/m.s 
v = 15.54 x 
= 25-96 

m2/ s 
air at 25 OC (298 K, ' 10-3 W/ m. K 

Pr = 0.712 
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For air at 40 "C (313 K) : p = 19.11 x 

For copper at 40 "C (313 K) : 

kg/ m. s 

p = 8924 kg/ m3 
&p = 387 J/ kg. K { k=397W/m.K 

Assumptions 

1. No temperature gradients m 's t  within the sphere, i.e., Bi << 1. 

2. The average heat transfer coeficient on the surface of the sphere is constant. 

3. The physical properties of copper are independent of temperature. 

4. Pseudo-steady-state behavior. 

Analysis 

System: Copper sphere 

For the problem at hand, the terms in Eq. (7.5-8) are 

min = m,,t = 0 
ws = 0 

Qint = - ( r D g ) ( h ) ( T  - Tm) 

m s y s  = (&/6) Pcu 

fisys = (&P)c~(T - Twf) 

where T is the copper sphere temperature at any instant and T, is the air temper- 
ature. 

Therefore, Eq. (7.5-8) becomes 

Integration of Eq. (1) with the initial condition that T = Ti at t = 0 gives 

To determine the average heat transfer coeflcient, (h) ,  first it is necessary to cal- 
culate the Reynolds number: 

DPV, Rep = - 
Y 
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The w e  of the Whitaker correlation, Eq. (4.3-30), gives 

(pm/p,,,)'14 Nu = 2 + 0.4ReT +0.06R~$!~) ( 
= 2 i- b.4  (4826)'/2 + 0.06(4826)2/3] (0.712)0.4 ( 19.11 18.41 x 10-6)1'4 

= 40.9 

The average heat transfer coeficient is 

= (40.9) ( 25*96 = 71 W/ m2. K 
0.015 

Therefore, the time required for cooling is 

t =  (0.015)(8924)(387) In 
(6)(71) 

The amount of energy transferred from the sphere to the air can be calculated from 
t t 

Qint = 1 &t dt = ~ @ ( h )  (T - T,) d t  (3) 
0 

Substitution of Eq. (2) into Eq. (3) and integration yields 

Note that from Eq. (2) 

Substitution of Eq. (5) into Eq. (4) gives 

Qint = (T) (&'p)cu (Ti - T) 

[(8924)(387)] (50 - 30) = 122 J 

Verification of assumptions 

Assumption # 1 
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Assumption # 4 

(lg6) 100 >> 1 
"= [  397 ] 
D; (8924)(387) 02 = 

Comment: Note that Eq. (6) can simply be obtained from the first-law of thenno- 
dynamics written for a closed system. Considering the copper sphere as a system, 

AU = Qint -I- W =$ Qint = AU = m&AT 21 mCpAT 

Example 7.7 
mersed in a well-stirred fluid of temperature To in an insulated tank (TI > To). 

a) Determine the temperatures of the sphere and the fluid as a function of time. 
b) Determine the steady-state temperatures of the sphere and the fluid. 

A solid sphere at a uniform temperature of TI is  suddenly im- 

Solution 

Assumptions 

1. The physical properties of the sphere and the fluid are independent of t ern  
perature. 

2. The average heat transfer coefficient on the surface of the sphere is  constant. 

3. The sphere and the fluid have uniform but unequal temperatures at any in- 
stant, i.e., Bi << 1 and mixing is perfect. 

Analysis 

a) Since the fluid and the sphere are at different temperatures at a given instant, it 
is necessary to write two differential equations: one for the fluid, and one for the 
sphere. 

System: Solid sphere 

The terms in Eq. (7.5-8) are 

m i n  = mo,t = 0 

Qint = - (rD;)(h)(Ts - Tj) 
ws = 0 
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where D p  is the diameter of the sphere, subscripts s and f stand for the sphere 
and the fluid, respectively. Therefore, Eq. (7.5-8) becomes 

where 

System: Fluid in the tank 

The terms in Eq. (7.5-8) are 

Hence, Eq. (7.5-8) reduces to 

where 

From Eq. (1), the fluid temperature, Tf  , is given in terms of the sphere temperature, 

Substitution of Eq. (5) into Eq. (3) gives 

&T, dT, - + d = = O  dt2 

where 
d = d f  +d, (7) 

Two initial conditions are necessary to solve this second-order ordinary diflerential 
equation. One of the initial conditions is 

at t = 0 T, =TI (8)  



204 CHAPTER 7. UNSTEADY-STATE MACROSCOPIC BALANCES 

The other initial condition can be obtained from Eq. (5) as 

(9) dT, at t = O  - =d,(To-T1) d t  

The solution of Eq. (6) subject to the initial conditions defined by Eqs. (8) and (9) 
is 

(10) T, = TI - -(TI 43 - To) 11 - exp (- $t)] 4 

TI -To 
d 

The use of Eq. (10) in Eq. (5) gives the fluid temperature in the form 

(11) Tf = Tl - - [d, + df exp (- d t ) ]  

b) Under steady conditions, i.e., t + 00, Eqs. (10) and (11) reduce to 

Comment: Note that the final steady-state temperature, T,, can simply be ob- 
tained by the application of the first law of thermodynamics. Taking the sphere and 
the fluid together as a system, we get 

BD; 
AU = -p,Cps(TW 6 - Ti) + mfCpf(T, - To) = 0 (13) 

Noting that 

Equation (13) reduces to 

Solution of Eq. (15) results in Eq. (12). 

Example 7.8 A spherical steel tank of volume 0.5m3 initially contains air at 
?bar and 5OOC. A relief valve is opened and air is allowed to escape at a constant 
flow rate of 12 mol/ min. 
a) If the tank is well insulated, estimate the temperature and pressure of air within 
the tank after 5 minutes. 
b) If heating coils are placed in the tank to maintain the air temperature constant 
at 5OoC, estimate the pressure of air and the amount of heat transferred after 5 
minutes. 
Air may be assumed an ideal gas with a constant c p  of 29 J/ mol. K.  
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Solution 

a) System: Contents of the tank 

Assumptions 

1. Properties of the tank contents are uniform, ie . ,  Hout = Hsys.  

2. Heat transfer between the system and its surroundings is almost zero. Note 
that the insulation around the tank does not necessarily imply that Qint = 0. 
Since the tank wall is in the surroundings, there will be heat transfer between 
the tank wall and air remaining in the tank during the evacuation process. 
Heat transfer may be considered negligible when ( i)  the mass of the wall is 
small, (ii) process takes place rapidly (remember that heat transfer is a slow 
process). 

Analysis 

Since nin = nint = 0 and there is no chemical reaction, Eq. (7.3-2) reduces to 

Integration of Eq. (1) yields 

where no is the number of moles of air initially present in the tank, i.e., 

nsYs = no - 12t (2) 

no=-- POV - (7)(0*5) = 130.3mol 
(8.314 x 10-5)(50 + 273) RT, 

On  the other hand, the inventory rate equation for energy, Eq. (7.5-5), takes the 
form 

Substitution of Eqs. (1) and (2) into Eq. (3) gives 

I - f a y s  
- 12 (flout - Us,,) = (no - 12 t )  - dt (4) 

Since H = U + P v  = O+RT, the use of the first assumption enables us to express 
the left-hand side of Eq. (4) as 
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On the other hand, the right-hand side of Eq. (4) is expressed in terms of temper- 
ature as 

-- dfisys - a y s  - cv 7 dt 
Hence, substitution of Eqs. (5) and (6) into Eq. (4) gives 

- dTsys 
- 12RTsys  = (no - 12t)  CV - dt (7) 

For an ideal gas 

- 7 - 1  (8) 
& -- 
R &=Cv+R * 

where 

= 1.4 C P  29 y = y =  cv 29-8.314 (9)  

Note that Eq. (7) is a separable equation. Substitution of Eq. (8) into Eq. (7) and 
rearrangement yielcls 

Integration gives 
no - 12t '--I 

T s y s  =To ( no ) 
The variation of pressure as a jimction of time can be estimated by using the ideal 
gas law, i.e., 

(12) 
n s  y s R  Ts y s  

V p s y s  = 

Substitution of Eqs. (2) and (11)  into Eq. (12) gives 

Since RToIV = Po/no, Eq. (13) d u c e s  to 

no - 12t  ' 
p s y s  =Po ( no ) (14) 

Substitution of the numerical values into Eqs. (11) and (14) gives Tsys and Psys, 
respectively, after 5 minutes as 

= 252.4K [ 130.3 - (12)(5)]  1'4-1 Tsars = (50 + 273) 
130.3 
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[ 130.3 - (12)(5)]  1'4 = 2.95 bar 130.3 psys  = 7 

Comment: Note that Eq. (11) can be rearranged in the form 

-- - Ts y s  

TO 
The use of the ideal gas law to express 

7-1 7-1 

To 

(%$' 
the number of moles gives 

which is a well-known equation for a closed system undergoing a wersible adiabatic 
(or, isentropic) process. Therefore, the gas remaining in the tank undergoes a 
reversible adiabatic expansion throughout the process. 

b) System: Contents of the tank 

Assumption 

1. Properties of the tank contents are uniform, i.e., Hout = Hsys. 

Analysis 

Equation (7.3-2) becomes 

dnsys -12=- dnsys -noUt = - 
dt d t  

Integration of Eq. (1 7) yields 

nsys = no - 12t (18) 

where no is the number of moles of air initially present in the tank, i.e., 

= 130.3mol no=-- POV - (7)(0.5) 
RT, (8.314 x 10-5)(50 + 273) 

In  this case the process is isothermal and, a a result, the pressure of the system 
can be directly calculated from the ideal gas law, i.e., 

The use of Eq. (18) in Eq. (19) results an 
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Substitution of the numerical values gives 

= 3.78 bar (12)(8.314 x 10-5)(50 + 273)(5) 
0.5 P = 7 -  

The amount of heat supplied by the heating coils is determined from the inventory 
rate equation for energy, Eq. (7.5-5). Simplification of this equation is 

Since the process is isothermal, UsYs wmains constant. Substituting Eq. (17) into 
Eq. (21) and using the fact that Hout = Hsys yields 

Qint = 12 ( k y s  - Usys) = 12'RTsys 
= (12)(8.314)(50 + 273) = 32,225 J/min 

Therefore, the amount of heat transfew-ed is 

Qint = Qint t = (32,225)(5) = 161) 125 J 

7.5.1 Unsteady-State Energy Balance Around a 
Continuous Stirred Tank Reactor 

An unsteady-state energy balance in a continuous stirred tank reactor (CSTR) 
follows the same line as the steady-state case given in Section 6.3.2.2. Using the 
same assumptions, the resulting energy balance becomes 

On the other hand, the macroscopic mole balance for species i, Eq. 

(7.5-10) 
SYS 

(7.2-5), is 

(7.511) 

Multiplication of Eq. (7.5-11) by &(T) and summation over all species gives 

= [?&(T)%] (7.512) 
SYS  
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Subtraction of Eq. (7.512) from Eq. (7.5-10) yields 

Dividing Eq. (7.513) by the volumetric flow rate, &, gives 

where T is the residence time. Expressing the partial molar enthalpy of species i 
in terms of the partial molar heat capacity by Eq. (6.841) gives 

where 

Note that Eq. (7.5-15) reduces to Eq. (6.3-42) under steady conditions. On the 
other hand, for a batch reactor, i.e., no inlet and outlet streams, Eq. (7.515) takes 
the form 

It is important to note that Eqs. (7.5-15) and (7.518) are valid for systems in 
which pressure remains constant. 

Example 7.9 The reaction described in Example 6.6 is to be carried out in a 
batch reactor which operates adiabatically. The reactor is initially charged with 
2000 moles of species A and 2400 moles of specaes B at a temperature of 25°C. 
Determine the time required for 80% conversion of A i f  the reactor volume is 1 m3. 
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Solution 

System: Contents of the reactor 
The consemation statement for species A, Eq. (7.2-5), is 

The number of moles of species A and B in terms of the molar extent of the 
reaction, E ,  is given by 

n A  = nA, + QA & = 2000 - & 

n g  = ngo -I- a g  E = 2400 - E 

The molar extent of the reaction can be calculated from 

E = -  nAo X A  
(- CYA) 

= 1600mol - (2000) (0.8) - 
1 

(3) 
(4) 

Eq- (5.3-12) as 

( 5 )  

Substitution of Eqs. (3) and (4) into Eq. (2) and rearrangement gives 

d& 
k (2000 - ~)(2400 - E )  

1600 
= 

Note that Eq. (6) cannot be integrated directly since the reaction rate constant, k ,  
is dependent on E via temperature. 

The energy equation must be used to determine the variation of temperature 
as a function of the molar extent of the reaction. For an adiabatic reactor, i.e., 
Qint = 0, Eq. (7.5-18) redurn to 

Substitution of Eqs. (5.3-22) and (7.5-17) into Eq. (7) yields 

In this problem 

(9) 

(10) 

(11) 

A@ = - 85 J/ mol. K 

nio Cpi = (2000) (175) + (2400) (130) = 662,000 
i 

AH&, - 45,000 - 85 (T - 298) 
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Substitution of Eqs. (9)-(11) into Eq. (8) and rearrangement gives 

Ck dT 

Integration gives 
45,000 E T = 298 + 

662,000 - 85 E (13) 

Now it is possible to evaluate Eq. (6) numerically. The use of Simpson's rule with 
n = 8, i.e., Ae = 200, gives 

[k(2000 - e)(2400 - E)]- '  x lo4 E: 

(mol/m3) ( K )  
0 

200 
400 
600 
800 

1000 
1200 
1400 
1600 

298 
312 
326.7 
342.2 
358.6 
376 
394.4 
414 
434.9 

248 
121.9 
63.3 
34.9 
20.5 
12.9 
8.9 
6.9 
6.5 

The application of Eq. (A.8-12) in Appendix A d u c e s  Eq. (6) to 

200 
3 

t = - [248 + 4 (121.9 + 34.9 + 12.9 + 6.9) 

+ 2 (63.3 + 20.5 + 8.9) + 6.51 x = 7.64min (14) 

7.6 DESIGN OF A SPRAY T O W R  FOR THE 
GRANULATION OF MELT 

The purpose of this section is to apply the concepts covered in this chapter to a 
practical design problem. A typical tower for melt granulation is shown in Figure 
7.3. The dimensions of the tower must be determined such that the largest melt 
particles solidify before striking the walls or the floor of the tower. Mathematical 
modelling of this tower can be accomplished by considering the unsteady-state 
macroscopic energy balances for the melt particles in conjunction with their settling 
velocities. This enables one to determine the cooling time and thus, the dimensions 
of the tower. 
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Cooling 
air 

t 
+ 

(-1 L) c 

Solid product 

Figure 7.3 Schematic diagram of a spray cooling tower. 

It should be remembered that mathematical modeling is a highly interactive 
process. It is customary to build the initial model as simple as possible by making 
assumptions. Experience gained in working through this simplified model gives a 
feeling and confidence for the problem. The process is repeated several times, each 
time relaxing one of the assumptions and thus making the model more realistic. In 
the design procedure presented below, the following assumptions are made: 

1. The particle falls at a constant terminal velocity. 

2. Energy losses from the tower are negligible. 

3. Particles do not shrink or expand during solidification, i.e., solid and melt 
densities are almost the same. 

4. The temperature of the melt particle is uniform at any instant, i.e., Bi << 1. 

5. The physical properties are independent of temperature. 

6. Solid particles at the bottom of the tower are at a temperature T,, the solid- 
ification temperature. 

7.6.1 Determination of Tower Diameter 
The mass flow rate of air can be calculated from the energy balance around the 
tower: 

(7.61) ) Rate of energy Rate of energy lost ( gained by air ) = ( by the melt particles 
or, 

ha(ep,,) [ ( ~ a ) , , t  - (T)J = hrn { ePrn [(Trn)i,, - GI + A} (7.6-2) 

where the subscripts a and m stand for the air and the melt particle, respectively, 
and is the latent heat of fusion per unit mass. 
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Once the air mass flow rate, *a, is calculated from Eq. (7.6-2), the diameter 
of the tower is calculated as 

(7.6-3) 

7.6.2 Determination of Tower Height 

Tower height, H ,  is determined from 

H = v t t  (7.6-4) 

The terminal velocity of the falling particle, ut, is determined by using the formulas 
given in Section 4.3. The required cooling time, t ,  is determined from the unsteady- 
state energy balance around the melt particle. 

7.6.2.1 Terminal velocity 

The Turton-Clark correlation is an explicit relationship between the Archimedes 
and the Reynolds numbers as given by Eq. (4.3-12), i.e., 

Ar 
18 

Rep = - [1+ 0.0579 Ar0*412] -1.214 (7.6-5) 

The Archimedes number, Ar, can be calculated directly when the particle diam- 
eter and the physical properties of the fluid are known. The use of Eq. (7.6-5) 
then determines the Reynolds number. In this case, however, the definition of 
the Reynolds number involves the relative velocity, v,, rather than the terminal 
velocity of the melt particle, i.e., 

(7.6-6) 

Since the air and the melt particle flow in countercurrent direction to each other, 
the relative velocity, wT, is 

21, = V t  + Va (7.6-7) 

7.6.2.2 Cooling t ime  

The total cooling time consists of two parts: the cooling period during which 
the melt temperature decreases from the temperature at the inlet to T, and, the 
solidification period during which the temperature of the melt remains at T,. 

i) Cooling period: Considering the melt particle as a system, the terms appearing 
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in Eq. (7.58) become 

min = mout = 0 
w, = 0 

Qint = - (ro2p)(h)(Tm - ( ~ a ) )  

-- dPw - 0 
dt 

msys =   AD$/^) pm 

Hsys  = CP.,, (Tm - Tmr) 

where (Ta) is the average air temperature, i.e., [(Ta)i, + (T,),,t] /2.  Hence, Eq. 
(7.5-8) takes the form 

-6(h)(Tm - (Ta)) = D P P ~ ~ P ~ ~  dTm (7.6-8) 

Equation (7.6-8) is a separable equation and rearrangement yields 

Integration of Eq. (7.69) gives the cooling time, tl, as 

(7.6-9) 

(7.6-10) 

The average heat transfer coefficient, (h) in Eq. (7.610) can be calculated from 
the Whitaker correlation, Eq. (4.3-30), Le., 

Nu = 2 4- (0.4Rey +0.06Re2’3 p ) (PL,/Pw)”4 (7.6-11) 

ii) Solidification period: During the solidification process, solid and liquid 
phases coexist and temperature remains constant at T,. Considering the parti- 
cle as a system, the terms appearing in Eq. (7.5-8) become 

mi, = m,t = 0 
w, = 0 

Qint = - ( 4 ) ( h ) ( T s  - (T,)) 
dP,W = 0 

dt 
mays = mz + m, 



7.6. DESIGN OF A SPRAY TOWER 215 

where ml and m, represent the liquid and solidified portions of the particle, 
respectively. Therefore, Eq. (7.58) reduces to 

- dm, 
rD;(h)(T,  - (T,)) = X - 

dt 

Integration of Eq. (7.612) gives the time required for solidification, t 2 ,  as 

(7.6- 12) 

(7.6-13) 

Therefore, the total time, t ,  in Eq. (7.64) is 

t = tl + t 2  (7.6-14) 

Example 7.10 
following conditions: 

Determine the dimensions of the spray cooling tower for the 

Production rate = 3000 kg/ h 
D p  = 2mm 
pm = 1700 kg/ m3 
v, = 2m/s  

(Ta)an = 10°C 
(Ta)out = 20°C 
(Tm)in = 110°C 

T, = 70°C 
= 186 kJ/ kg 

Cpm = 1.46 kJ/ kg. K 

Solution 

Physical properties 

The average air temperature i s  (10 + 20)/2 = 15°C. 

p = 1.2 kg/ m3 
p = 17.93 x kg/ m. s 

For air at 15 "C (288 K) : k = 25.22 x low3 W/ m. K 
C p  = 1.004 
Pr = 0.714 
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Analysis 

The mass flow rate of air, ma, is calculated from Eq. (7.6-2) as 

m r n  { ~p,,, [(Trn)i, - T ~ I  + i} 

The use of Eq. (7.63) gives the tower diameter as 

= 3.3m (4)(73,028) 
r( 1.2) (2) (3600) 

The use of Eq. (4.3-6) gives the Archimedes number as 

D;gPa(Prn - Pa)  

P2 
A r =  

- (2 x 10-3)3(9.8)(1.2)(1700 - 1.2) = 4.97 
105 - 

(17.93 x 10-6)2 

Hence, the Reynolds number and the relative velocity are 

Rep = - [1+ 0.0579 Ar0.412] -le214 
Ar 
18 

- - 4'97 lo5 [1+ 0.0579 (4.97 x 105)0.412]-'214 = 1134 
18 

= 8.5m/s 
- (17.93 x 10-6)(1134) - 

(1.2)(2 x 10-3) 

Therefore, the terminal velocity of the particle is 

vt = v, - va = 8.5 - 2 = 6.5m/s 

The w e  of the Whitaker correlation, Eq. (7.6-11), with pao/pw M 1, gives 

Nu = 2 + (0.4Rei12 +0.06 ReZ3) (p,/pw)'14 

= 2 + [0.4 (1134)'12 + 0.06 (1134)~ /~ ]  (0.714)0.4 = 19.5 
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Hence, the average heat transfer coejjicient is 

= (19.5) (":: Tz-3) = 246 W/ m2. K 

The time required for  cooling and solidification can be calculated from Eqs. (7.6-1 0) 
and (7.6-13), respectively: 

~ P P ~ ~ P ~  In [ ( T m ) i n  - ("'1 
6 (h) T, - (Ta) 

(2 x 10-3)(1700)(1460) In 110 - 15 

tl = 

( 70 - 15 ) = 1*8s 
- - 

(6) (246) 

PmDP t 2  = 
6 (h) (Ts - P a )  1 

= 7.8s - (186,000)(1700)(2 x - 
(6)(246)(70 - 15) 

Therefore, the tower height is 

H = (6.5)(1.8 + 7.8) = 62.4m 

NOTATION 

A 
A M  

G 
e P  
C 

DAB 
EK 
EP 
E 
& 
f 
9 
H 
h 
k 
kc 

area, m2 
mass transfer area, m2 
heat capacity at constant volume, kJ/ kg. K 
heat capacity at constant pressure, kJ/ kg. K 
concentration, kmol/ m3 
diffusion coefficient for system d-B, m2/ s 
kinetic energy, J 
potential energy, J 
rate of energy, J / s  
activation energy, J/ mol 
friction factor 
acceleration of gravity, m/ s2 
enthalpy, J 
elevation, m; heat transfer coefficient, W/ m2, K 
thermal conductivity, W/ m. K 
mass transfer coefficient, m/s 
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length, m 
mass flow rate, kg/s 
molecular weight, kg/ kmol 
molar flow rate, kmol/s 
pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/ s 
rate of a chemical reaction, kmol/ m3. s 
gas constant, J/mol. K 
temperature, "Cor K 
time, s 
internal energy, J 
volume, m3 
velocity, m/ s 
rate of work, W 
rate of shaft work, W 
fractional conversion 
mole fraction of species i 

thermal diffusivity, m2/ s 
stoichiometric coefficient of ith species in the jth reaction 

difference 
heat of reaction, J 
molar extent of a reaction, kmol 
latent heat, J 
kinematic viscosity (or, momentum diffusivity), m2/ s 
density, kg/ m3 
residence time, s 

C P / G  

per mole 
per unit mass 
partial molar 

average value of a 

Superscripts 

0 standard state 
S solid 
sat saturation 
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Subscripts 

A, B 
a 
ch 
i 
an 
ant 

m 
out 
P 
SYS 

j 

W 

03 

species in binary systems 
air 
characteristic 
species in multicomponent systems 
inlet 
interphase 
reaction number 
melt 
out 
particle 
system 
surface or wall 
freestream 

Dimensionless Numbers 
Ar Archimedes number 
BiH 
BiM 
Pr Prandtl number 
Re Reynolds number 
sc  Schmidt number 
Sh Sherwood number 

Biot number for heat transfer 
Biot number for m a s  transfer 
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PROBLEMS 

7.1 Two perfectly stirred tanks with capacities of 1.5 and 0.75m3 are connected 
in such a way that the effluent from the first passes to the second. Both tanks are 
initially filled with salt solution of 0.5 kg/L in concentration. If pure water is fed 
to the first tank at a rate of 75 L/min, determine the salt concentration in the 
second tank after 10 minutes? 
(Answer: 0.423 kg/L) 

7.2 Two vertical tanks placed on a platform are connected by a horizontal pipe 
5 cm in diameter as shown in Figure 7.4. Each tank is 2 m deep and 1 m in diameter. 
At first, the valve on the pipe is closed and one tank is full while the other one is 
empty. When the valve is opened, the average velocity through the pipe is given 
bY 

(u) = 2 6  

where (v) is the average velocity in m/ s and h is the difference between the levels 
in the two tanks in meter. Calculate the time for the levels in the two tanks to 
become equal. 
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t 
h J 

Figure 7.4 Schematic diagram for Problem 7.2 

(Answer: 4.7 min) 

7.3 a) A stream containing 10% species A by weight starts to flow at a rate of 
2 kg/ min into a tank, originally holding 300 kg of pure B. Simultaneously, a valve 
at the bottom of the tank is opened and the tank contents are also withdrawn at a 
rate of 2 kg/ min. Considering perfect mixing within the tank, determine the time 
required for the exit stream to contain 5% species A by weight. 
b) Consider the problem in part (a). As a result of the malfunctioning of the exit 
valve, tank contents are withdrawn at a rate of 2.5 kg/ min instead of 2 kg/ min. 
How long does it take for the exit stream to contain 5% species A in this case? 
(Answer: a) 104 min b) 95.5 min) 

7.4 The following levels were measured for the flow system shown in Figure 7.5. 
The cross-sectional area of each tank is 1.5 m2. 

0 50 30 
1 58 35 
2 67 40 
3 74 46 
4 82 51 
5 89 58 
6 96 64 

a) Determine the value of &in. 

b) If the flow rate of the stream leaving the first tank, &, is given as 

e = P A  
determine the value of p. 
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Figure 7.5 Schematic diagram for Problem 7.4 

(Answer: a) 0.2m3/min b) 0.17m5I2/min) 

7.5 Time required to empty a vessel is given for four common tank geometries 
by Foster (1981) as shown in Table 7.1. In each case, the liquid leaves the tank 
through an orifice of cross-sectional area A,,. The orifice coefficient is C,. Assume 
that the pressure in each tank is atmospheric. Verify the formulas in Table 7.1. 

7.6 For steady flow of an incompressible fluid through a control volume whose 
boundaries are stationary in space, show that Eq. (6.3-9) reduces to 

- + + + + A h + ( A U - Q i n , )  AP A ( v ) ~  = W s  
P 2 

where A represents a difference between the outlet and inlet values. 

a) Using the thermodynamic relations 

and 

+ dsgen 
dQint &= - 

T 
show that 

dEv = T dS'gen = d o  - dQirst 

(3) 

(4) 

where fiv, the friction loss per unit mass, represents the irreversible degradation 
of mechanical energy into thermal energy, and S'gen is the entropy generation per 
unit mass. 
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‘pable 7.1 Time required to empty tanks of different geometries. 

Geometry Time 

TB 2 

6 - 9 4  

L [D3i2 - ( D  - h)3/2] 

3 COAO 

b) Substitute Eq. (4) into Eq. (1) to obtain the engineering Bernoulli equation 
(or, macroscopic mechanical energy equation) for an incompressible fluid as 

- -  A‘ + + 9 Ah + & - Ws = 0 
P 2 ( 5 )  

c) To estimate the friction loss for flow in a pipe, consider steady flow of an in- 
compressible fluid in a horizontal pipe of circular cross-section. Simplify Eq. ( 5 )  
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for this case to get 

Compare Eq. (6) with Eq. (4.5-6) and show that the friction loss per unit mass, 
E,,, for pipe flow is given by 

(7) jj -- 2f L(V)* 
D v -  

7.7 A cylindrical tank, 5m in diameter, discharges through a mild steel pipe 
system (E  = 4.6 x m) connected to the tank base as shown in the figure below. 
The drain pipe system has an equivalent length of 100 m and a diameter of 23 cm. 
The tank is initially filled with water to an elevation of H with respect to the 
reference plane. 

Reference 
Plane 

a) Apply the Bernoulli equation, Q. (5) in Problem 7.6, to the region between 
planes “1” and “2” and show that 

where Le, is the equivalent length of the drain pipe. 

b) Consider the tank as a system and show that the application of the unsteady- 
state macroscopic mass balance gives 

d t = - ( z ) “ / $ ( l + d ) $  4 f Le, 

Analytical integration of Eq. (2) is possible only if the friction factor f is constant. 

e) At any instant, note that the pressure drop in the drain pipe system is equal 
to pg(h - H*).  Use Eqs. (4.518)-(4.520) to determine f as a function of liquid 
height in the tank. Take H* = 1 m, H = 4 m and the final value of h as 1.5 m. 
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d) If f remains almost constant, then show that the integration of Eq. (2) yields 

Calculate the time required for h to drop from 4 m to 1.5 m. 

e )  Plot the variations of (4 and h as a function of time on the same plot. Show 
that dh ld t  is negligible at all times in comparison with the liquid velocity through 
the drain pipe system. 
(Answer: c )  0.0039 d) 7.7min) 

7.8 Consider draining of a spherical tank of diameter D with associated drain 
piping as shown in the figure below. The tank is initially filled with water to an 
elevation of H with respect to the reference plane. 

a) Repeat the procedure given in Problem 7.7 and show that 

where 

x, = H* 3-R 
X 2 = X ; - R 2  

b) A spherical tank, 4m in diameter, discharges through a mild steel pipe system 
( E  = 4.6 x m) with an equivalent length of 100 m and a diameter of 23 cm. 
Determine the time to drain the tank if H* = 1 m and H = 4.5 m. 
(Answer: b) 4.9 min) 
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7.9 Suspended particles in agitated vessels are frequently encountered in the 
chemical process industries. Some examples are mixer-settler extractors, catalytic 
slurry reactors and crystallizators. The design of such equipment requires the mass 
transfer coefficient to be known. For this purpose, solid particles (species A) with 
a known external surface area, A,, and total mass, M,, are added to an agitated 
liquid of volume V and the concentration of species A is recorded as a function of 
time. 

a) Consider the liquid as a system and show that the unsteady-state macroscopic 
mass balance for species A is 

where M is the total mass of solid particles at any instant and cyt  is the equilibrium 
solubility. Rearrange Eq. (1) in the form 

and show how one can obtain the average mass transfer coefficient from the exper- 
imental data. 

b) Another way of calculating the mass transfer coefficient is to choose experimental 
conditions so that only a small fraction of the initial solids is dissolved during a 
run. Under these circumstances, show that the average mass transfer coefficient 
can be calculated from the following expression: 

p a t  V (a,) = - (A)t  In (e'- C A )  (3) 

where (A) is the average surface area of the particles. Indicate the assumptions 
involved in the derivation of Eq. (3). 

7.10 Consider Problem 7.9 in which the average mass transfer coefficient of sus- 
pended particles is known. Estimate the time required for the dissolution of solid 
particles as follows: 

a) Write down the total mass balance for species A and relate the mass of the 
particles, M ,  to concentration of species A, CA, as 

b) Substitute Eq. (1) into Eq. (1) in Problem 7.9 to get 

dt = (I! 
de 

[I - (1 + p 3 )  o ] ~ / ~  (1 - 0) 
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(3) 

c) Show that the integration of Eq. (2) leads to 

} (4) 
i p 2  tan-' ( 2 p  - 1 + u [ (2 /P)  - 11 

&(u - 1) +- 

u3 = 1 - (1 + p 3 p  
where 

( 5 )  

7.11 Rework Example 7.3 if the rate of reaction is given by 

a) For the filling period show that the governing differential equation is given by 

Using the substitution 
1 du 

ku dt 
CA = -- 

show that Eq. (1) reduces to 

Solve Eq. (4) and obtain the solution as 

(3) 

Note that Eq. (2) indicates that C A  = CA, at t = 0. Obtain the same result from 
Eq- (5). 

b) Show that the governing differential equation for the unsteady-state period is 
given in the form 

dCA CA CA, - +kC2, -I-- = - 
dt 7 7- 
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where r is the residence time. Using 

show that Eq. (6) reduces to 
dz 
d t  
- - - p . ~ = k  

Note that CA,  in Eq. (7) represents the steady-state concentration satisfying the 
equation 

CA, CA, kc;. -I- 7 = - 
7 

Solve Eq. (8) and obtain 

(11) 
1 

[(.I - cA,)-' + ( k / p ) ]  exP [p(t  -t*>] - (k/p) 
CA = CAS + 

where c i  and t* represent the concentration and time at the end of the filling 
period, respectively. 

7.12 For creeping flow, i.e., Re << 1, a relationship between the friction factor 
and the Reynolds number is given by Stokes' law, Eq. (4.3-7). 

a) Substitute Eq. (4.3-7) into Eq. (7.47) and show that 

b) Show that the time required for the sphere to reach 99% of its terminal velocity, 
t,, is given by 

t ,  = - D' ( p p  + 0 . 5 ~ )  
3.9 /A 

and investigate the cases under which initial acceleration period is negligible. 

c )  Show that the distance travelled by the particle during unsteady-state fall is 
given by 

where ut is the terminal velocity of the falling particle and is defined by 
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7.13 When Newton’s law is applicable, the friction factor is constant and is given 
by Eq. (4.3-9). 

a) Substitute Eq. (4.3-9) into Eq. (7.4-7) and show that 

v l-exp(-yt) 
wt 1 + exp( - y t )  

where the terminal velocity, vt, and y are given by 

- =  

b) Show that the distance travelled is 

7.14 Consider twedimensional motion of a spherical particle in a fluid. When 
the horizontal component of velocity is very large compared to the vertical camp+ 
nent, the process can be modelled as a one-dimensional motion in the absence of a 
gravitational field. Using unsteady-state momentum balance show that 

4ppD;  dRep 
3~ Lep fRe$ 

t=- 

where Rep, is the value of the Reynolds number at t = 0. 

a) When Stokes’ law is applicable, show that the distance travelled by the particle 
is given by 

s=- W O ~ P D ;  [ 1 - exp (- X)] (2) 
18 P PPD; 

where v, is the value of velocity at t = 0. 

b) When Newton’s law is applicable, show that the distance travelled by the particle 
is given by 

(3) 3.03 p p  D p  In ( I  + 3.03ppDp 
P 

S =  

7.15 Coming home with a friend to have a cold beer after work, you find out that 
you had left the beer on the kitchen counter. As a result of the sunlight coming 
from the kitchen window, it was too warm to drink. 
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One way of cooling the beer is obviously putting it into a freezer. However, your 
friend insists that placing a can of beer in a pot in the kitchen sink, and letting 
cold water run over it into the pot and then into the sink shortens the cooling time. 
He claims that the overall heat transfer coefficient for this process is much greater 
than that for a can of beer sitting idly in the freezer in still air. He supports this 
idea by presenting the following data of Horwitz (1981): 

freezer Tap Water 

Cooling medium temperature ( "C) - 21 13 
Initial temperature of beer ("C) 29 29 
Final temperature of beer ("C) 15 15 
Time elapsed (min) 21.1 8.6 

Surface area of can 
Quantity of beer in can = 0.355 kg 
Heat capacity of beer 

= 0.03m2 

= 4.2 kJ/ kg. K 

a) Do you think that your friend is right? Show your work by calculating the heat 
transfer coefficient in each case. Ignore the cost and availability of water. 

b) Calculate the time required to cool the beer from 29°C to 4°C in the freezer. 

c )  Suppose that you first cool the beer to 15°C by the running water and then 
place the beer in the freezer. Calculate the time required to cool the beer from 
29 "C to 4°C in this case. 
(Answer: a) (h) (freezer) = 12.9W/m2.K, (h) (tap water) = 200W/m2.K 
b) 44.5min c) 32min) 

7.16 M kg of a liquid is to be heated from TI to T2 in a well stirred, jacketed 
tank by steam condensing at T, in the jacket. The heat transfer area, A, the 
heat capacity of tank contents per unit mass, 6'p, and the overall heat transfer 
coefficient, U, axe known. Show that the required heating time is given by 

Indicate the assumptions involved in the derivation of Eq. (1). 

7.17 In Problem 7.16, assume that hot water, with a constant mass flow rate m 
and inlet temperature Tin, is used as a heating medium instead of steam. 

a) Show that the outlet temperature of hot water, Tout, is given by 
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where 
0 = exp (g ) 

in which T is the temperature of the tank contents at any instant and C is the 
heat capacity of hot water. 

b) Write down the unsteady-state energy balance and show that the time required 
to increase the temperature of the tank contents from TI to T2 is given by 

c) Bondy and Lippa (1983) argued that when the difference between the outlet 
and inlet jacket temperatures is less than 10% of the ATLM between the average 
temperature of the jacket and the temperature of the tank contents, Eq. (1) in 
Problem 7.16 can be used instead of Eq. (3) by replacing T, by the average jacket 
temperature. Do you agree? For more information on this problem see Tosun and 
Akgahin (1993). 

7.18 600kg of a liquid is to be heated from 15°C to 150°C in a well stirred, 
jacketed tank by steam condensing at 170 "C in the jacket. The heat transfer surface 
area of the jacket is 4.5 m2 and the heat capacity of the liquid is 1850 J/ kg. K. The 
overall heat transfer coefficient, U, varies with temperature as follows: 

T U 
("(3 ( W/ mz. K) 

15 390 
30 465 
60 568 
90 625 

120 664 
150 680 

a) Calculate the required heating time. 

b) Correlate the data in terms of the expression 

where T is in degrees Kelvin, and calculate the required heating time. 
(Answer: a) 11.7min; b) 13.7min) 

7.19 500kg of a liquid is to be heated from 15°C to 150°C in a well stirred, 
jacketed tank by steam condensing at 170 "C in the jacket. The heat transfer surface 
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area of the jacket is 4.5 m2 and the heat capacity of the liquid is 1850 J/ kg. K. 
Calculate the average overall heat transfer coefficient if the variation of liquid 
temperature as a function of time is recorded as follows: 

t T 
(min) ("C) 

0 15 
2 59 
4 90 
6 112 
8 129 

10 140 
12 150 

(Answer: 564 W/ m2. K) 

7.20 An insulated rigid tank of volume 0.1m3 is connected to a large pipeline 
carrying air at 10 bar and 120°C. The valve between the pipeline and the tank is 
opened and air is admitted to the tank at a constant mass flow rate. The pressure 
in the tank is recorded as a function of time as follows: 

t P 
(min) (bar) 

5 1.6 
10 2.1 
15 2.7 
20 3.3 
25 3.9 
30 4.4 

If the tank initially contains air at 1 bar and 20 "C, determine the mass flow 
rate of air entering the tank. Air may be assumed an ideal gas with a constant 6'p 
of 29 J/ mol. K. 
(Answer: 7.25 g/ min) 

7.21 An insulated rigid tank of volume 0.2m3 is connected to a large pipeline 
carrying nitrogen at lobar and 70°C. The valve between the pipeline and the 
tank is opened and nitrogen is admitted to the tank at a constant mass flow rate 
of 4g/s. Simultaneously, nitrogen is withdrawn from the tank, also at a constant 
mass flow rate of 4g/s. Calculate the temperature and pressure within the tank 
after 1 minute if the tank initially contains nitrogen at 2bar and 35°C. Nitrogen 
may be assumed an ideal gas with a constant C p  of 30 J/ mol. K. 
(Answer: 326.8 K, 2.12 bar) 
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m 

r V =  0.2 rn3 

M 

V =  0.8 m3 
M 

0 

7.22 A rigid tank of volume 0.2m3 initially contains air at 2bar and 35°C. On 
one side it is connected to an air supply line at 10 bar and 70 "C, on the other side 
it is connected to an empty rigid tank of 0.8 m3 as shown in the figure below. Both 
tanks are insulated and initially both valves are closed. The valve between the 
pipeline and the tank is opened and air starts to flow into the tank at a constant 
flow rate of 10 mol/ min. Simultaneously, the valve between the tanks is also opened 
so as to provide a constant flow rate of 6 mol/ min to the larger tank. Determine 
the temperature and pressure of air in the larger tank after 2 minutes. Air may be 
assumed an ideal gas with a constant 6'p of 29 J/ mol. K. 

Air supply 
Line 

(Answer: 482.3 K, 0.6 bar) 

7.23 Metering pumps provide a constant liquid mass flow rate for a wide variety 
of scientific, industrial and medical applications. A typical pump consists of a 
cylinder fitted with a piston as shown in Figure 7.19. The piston is generally 
located on the end of a long screw which itself is driven at a constant velocity by 
a synchronous electric motor. 

I Pumpcylinder 

Drive Flow 

a) Assume that the manufacturer has calibrated the pump at some reference tem- 
perature, Tref.  Write down the unsteady-state mass balance and show that the 
reference mass flow rate, mref,  delivered by the pump is given by 

where pref  and V,,f are the density and the volume of the liquid in the pump 
cylinder at the reference temperature, respectively. Integrate l3q. (1) and show 



234 CHAPTER 7. UNSTEADY-STATE MACROSCOPIC BALANCES 

that the variation in the liquid volume as a function of time is given by 

where Vgf is the volume of the cylinder at t = 0. 

b) If the pump operates at a temperature different from the reference temperature, 
show that the mass flow rate provided by the pump is given by 

where p and V are the density and the volume of the pump liquid at temperature 
T ,  respectively. Expand p and V in a Taylor series in T about the reference 
temperature Tref and show that 

where p, the coefficient of volume expansion, is defined by 

in which the subscripts L and C represent the liquid and the cylinder, respectively. 
Indicate the assumptions involved in the derivation of Eq. (4). 
c) Show that the substitution of Eq. (4) into Eq. (3) and making use of Eqs. (1) 
and (2) gives the fractional error in mass flow rate as 

where 

Note that the first and the second terms on the right-side of Eq. (6) represent, 
respectively, the steady-state and the unsteady-state contributions to the error 
term. 

d) Assume that at any instant the temperature of the pump liquid is uniform and 
equal to that of the surrounding fluid, i.e., the cylinder wall is diathermal, and 
determine the fractional error in mass flow rate for the following cases: 

0 The temperature of the fluid surrounding the pump, T f ,  is constant. Take 

The temperature of the surrounding fluid changes at a constant rate of 1 K/ h. 

,Bc = 4 x 

Take V z f  = 500 cm3 and Ro = 25 cm3/ h. 

K-l, pL = 1.1 x lod3 K-' , and Tf - TTef = 5 K .  
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0 The surrounding fluid temperature varies periodically with time, i.e., 

Take A = 1°C and w = 87rh-l. 

e) Now assume that the liquid temperature within the pump is uniform but dif- 
ferent from the surrounding fluid temperature as a result of a finite rate of heat 
transfer. If the temperature of the surrounding fluid changes as 

where T, is the asymptotic temperature and I- is the time constant, show that the 
fractional error in mass flow rate is given by 

The terms f and (b are defined as 

U A  (b=- 
PVCP 

where A is the surface area of the liquid being pumped, U is the overall heat 
transfer coefficient, and C p  is the heat capacity of the pump liquid. 

f )  Show that the time, t*,  at which the fractional error function f achieves its 
maximum absolute value is given by 

ln(#/r> 
4 - 7  

t* = - 

This problem is studied in detail by Eubank et al. (1985). 

7.24 A spherical salt, 5 cm in diameter, is suspended in a large, well-mixed tank 
containing a pure solvent at 25 "C. If the percent decrease in the mass of the sphere 
is found to be 5% in 12 minutes, calculate the average mass transfer coefficient. 
The solubility of salt in the solvent is 180kg/m3 and the density of the salt is 
2500 kg/ m3. 
(Answer: 8.2 x m/ s)  

7.25 The phosphorous content of lakes not only depends on the external loading 
rate but also on the interactions between the sediments and the overlying waters. 
The model shown in Figure 7.6 is proposed by Chapra and Canale (1991) in which 
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the sediment layer gains phosphorous by settling and loses phosphorous by recycle 
and burial. 

Settling Recycle 

SEDIMENT LAYER 

Figure 7.6 Schematic diagram for Problem 7.25 

Show that the governing equations for the phosphorous concentrations in the 
lake, PI, and in the sediment layer, P2, are given as 

where 
min = loading rate = 2000 kg/year 
e,, = outflow volumetric flow rate 
us = settling velocity of phosphorous = 40 m/year 
A2 = surface area of the sediment layer = 4.8 x lo6 m2 
(kc),.  = recycle mass transfer coefficient 
( k c ) b  = burial mass transfer coefficient = 1 x m/year 

& 

= 80 x 106m3/year 

= 2.5 x loF2 m/year 

VI = volume of the lake = 53 x 106 rn3 
= volume of the sediment layer = 4.8 x lo5 m3 

and determine the variation of PI in mg/m3 as a function of time if the initial 
concentrations are given as PI = 60 mg/ m3 and P2 = 500,000 mg/ m3. 

(Answer: PI = 22.9 - 165.4e-5.311t + 202.5e-0.081t) 



Chapter 8 

Steady-State Microscopic 
Balances Without 
Generation 

So far we have considered macroscopic balances in which quantities such as temper- 
ature and concentration varied only with respect to time. As a result, the inventory 
rate equations are written by considering the total volume as a system and the re- 
sulting governing equations turn out to be the ordinary differential equations in 
time. If the dependent variables such as velocity, temperature and concentration 
change as a function of both position and time, then the inventory rate equations 
for the basic concepts are written over a differential volume element taken within 
the volume of the system. The resulting equations at the microscopic level are 
called the equations of change. 

In this chapter we will consider steady-state microscopic balances without in- 
ternal generation. Therefore, the governing equations will be either ordinary or 
partial differential equations in position. It should be noted that the treatment 
for heat and mass transport is different from the one for momentum transport. 
The main reasons for this are: (i) momentum is a vector quantity while heat and 
mass are scalar, (ii) in heat and mass transport the velocity appears only in the 
convective flux term, while it appears both in the molecular and convective flux 
terms for the case of momentum transfer. 

237 
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8.1 MOMENTUM TRANSPORT 

Momentum per unit mass, by definition, is the fluid velocity and changes in velocity 
can result in momentum transport. For fully developed flow' through conduits, 
velocity variations take place in the direction perpendicular to the flow since nG 
slip boundary conditions must be satisfied at the boundaries of the conduit. This 
results in the transfer of momentum in the direction perpendicular to the flow 
direction. 

The inventory rate equation for momentum at the microscopic level is called 
the equation of motion. It is a vector equation with three components. For steady 
transfer of momentum without generation, the conservation statement for momen- 
tum reduces to 

(Rate of momentum in) - (Rate of momentum out) = 0 (8.1-1) 

When there is no generation of momentum, this implies that both pressure and 
gravity terms are zero. Hence, flow can only be generated by the movement of 
surfaces enclosing the fluid and the resulting flow is called Couette flow. We will 
restrict our analysis to cases in which the following assumptions hold: 

1. Incompressible Newtonian fluid, 

2. One-dimensional2 , fully developed laminar flow, 

3. Constant physical properties. 

The last assumption comes from the fact that temperature rise as a result of viscous 
dissipation during fluid motion, i.e., irreversible degradation of mechanical energy 
into thermal energy, is very small and cannot be detected by ordinary measuring 
devices in most of the cases. Hence, for all practical purposes the flow is assumed 
isothermal. 

8.1.1 Plane Couette Flow 

Consider a Newtonian fluid between two parallel plates that are separated by a 
distance B as shown in Figure 8.1. The lower plate is moved in the positive 
z-direction with a constant velocity of V while the upper plate is held stationary. 

Fully developed flow means there is no variation of velocity in the axial direction, In this way, 

One-damensional flow indicates that there is only one non-zero velocity component. 
the flow development regions near the entrance and exit are not taken into consideration. 
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One-dimensional flow 
v x = v y = o  

239 

vz = VZ (x, y, z, f )  

xL* + v  

Fully developed flow 
avz/az = 0 

Figure 8.1 Couette flow between two parallel plates. 

vz = vz (4 

The first step in the translation of Eq. (8.1-1) into mathematical terms is to 
postulate the functional forms of the non-zero velocity components. This can be 
done by making reasonable assumptions and examining the boundary conditions. 
For the problem at hand, the simplification of the velocity components is shown in 
Figure 8.2. 

Large aspect ratio 
W/B >>I 

I 

Figure 8.2 Simplification of the velocity components for Couette flow between 
two parallel plates. 

Since v, = v,(z) and vz = vy = 0, Table C.l in Appendix C indicates that the 
only non-zero shear-stress component is T ~ , .  Therefore, the components of the 
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total momentum flux are expressed as 

(8.1-2) dv, 
r x z  = 7,, + (pv,)vx =7,, = - p -  dx 
r y z  = 7yz  + ( P V Z )  q/ = 0 (8.1.3) 
X z z  = T z z  + ( P V z )  vz = PV, 2 (8.1-4) 

For a rectangular differential volume element of thickness Ax, length Ax and width 
W ,  as shown in Figure 8.1, Eq. (8.1-1) is expressed as 

( ~ z z . 1 ~  W A X  + r x z I x  WAZ) - ( rzzIz+Az WAX + r x z I s + A x  wax) = 0 (8.1-5) 

Following the notation introduced by Bird et d. (1960), “in” and ‘‘out’’ directions 
for the fluxes are taken in the direction of positive x-  and z-axes. Dividing Eq. 
(8.1-5) by W A X  Az and taking the limit as Ax + 0 and AZ + 0 gives 

(8.1-7) 

Substitution of Eqs. 
yields 

The solution of Eq. 

(8.1-2) and (8.1-4) into Eq. (8.1-7) and noting that dv,/dz = 0 

d dv, z (z) = O  

(8.1-8) is 

(8.1-8) 

vz = Cl 2 + cz (8.1-9) 

where C1 and C2 are constants of integration. The use of the boundary conditions 

at x = O  v z = V  (8.1-10) 

at x = B  v z = O  

gives the velocity distribution as 

(8.1-11) 

(8.1-12) 

The use of the velocity distribution, Eq. (8.1-12), in Eq. (8.1-2) indicates that 
the shear stress distribution is uniform across the cross-section of the plate, i.e., 

(8.1-13) 
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L * 

The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area, Le., 

Q = Jd" Jd" vz dXdY (8.1-14) 

Substitution of EQ. (8.1-12) into Eq. (8.1-14) gives the volumetric flow rate in the 
form 

(8.1-15) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

(8.1-16) 

8.1.2 Annular Couette Flow 
Consider a Newtonian fluid in a concentric annulus as shown in Figure 8.3. The 
inner circular rod moves in the positive z-direction with a constant velocity of V. 

Fluid at Po 

- v  
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Fully developed flow 
h z / a z  = 0 

For the problem at hand, the simplification of the velocity components is shown 
in Figure 8.4. Since v, = vz(r) and V r  = ve = 0, Table C.2 in Appendix C indicates 
that the only non-zero shear-stress component is T p Z .  Therefore, the components 
of the total momentum flux axe given by 

(8.1-17) dvz 
dr T r z  = T r z  + (P'Vz)  V r  = T r z  = - - 

nex = T e z + ( p v z ) v e = O  (8.1-18) 
7Czz = T z z  + (pv,)  v, = pv: (8.1-19) 

vz = VZ (r)  

One-dimensional flow 
v,.=ve=O vz = vz e, z, t )  

I 

Figure 8.4 Simplification of the velocity components for Couette flow in a 
concentric annulus. 

For a cylindrical differential volume element of thickness Ar and length Az, as 
shown in Figure 8.3, &. (8.1-1) is expressed as 

( n,, 1, 2mAr + n r z  I,2nrAr) - [ n,, I + + A z  2nrAr 
4- TrZlr+Ar 2n(r + Ar)Az] = 0 (8.1-20) 

Dividing Eq. (8.1-20) by 2nArAa and taking the limit as Ar -+ 0 and Az --t 0 
gives 

(8.1-22) 
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Substitution of Eqs. (8.1-17) and (8.1-19) into Eq. (8.1-22) and noting that 
b v Z / ~ z  = 0 gives the governing equation for velocity as 

dr  [ T ( % ) ]  = o  

The solution of Eq. (8.1-23) is 

v, = CI lnr + c2 

(8.1-23) 

(8.1-24) 

where (71 and Cz are integration constants. The use of the boundary conditions 

at T = R  v,=O 

at r=r;R v z = V  
gives the velocity distribution as 

(8.1-25) 

(8.1-26) 

(8.1-27) 

The use of the velocity distribution, Eq. (8.1-27), in Q. (8.1-17) gives the 
shear stress distribution as 

(8.1-28) 

The volumetric flow rate is obtained by integrating the velocity distribution 
over the annular cross-sectional area, i.e., 

Q = 1'" lI V, T drd6 

Substitution of Eq. (8.1-27) into Eq. (8.1-29) and integration gives 

(8.1-29) 

(8.1-30) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

(8.1-31) 

The drag force acting on the rod is 

The use of Eq. (8.1-28) in Eq. (8.1-32) gives 

(8.1-33) 
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8.1.2.1 Investigation of the limiting case 

Once the solution to a given problem is obtained, it is always advisable to in- 
vestigate the limiting cases if possible, and compare the results with the known 
solutions. If the results match, this does not necessarily mean that the solution is 
correct, however, the chances of it being correct are fairly high. 

In this case, when the ratio of the radius of the inner pipe to that of the outer 
pipe is close to unity, i.e., ~d --+ 1, a concentric annulus may be considered to be a 
thin-plane slit and its curvature can be neglected. Approximation of a concentric 
annulus as a parallel plate requires the width, W ,  and the length, L, of the plate 
to be defined as 

w = a R ( l +  K )  (8.1-34) 

B = R (1 - K )  

Therefore, the product W B  is equal to 

W B  W B  = rR2(1 - K ~ )  + aR2 = - 
1 - 6 2  

so that Eq. (8.1-30) becomes 

WBV 1 &=- 

Substitution of $ = 1 - K into Eq. (8.1-37) gives 

(8.1-35) 

(8.1-36) 

(8.1-37) 

(8.1-38) 

The Taylor series expansion of the term ln(1- $) is 

(8.1-39) 

Using Eq. (8.1-39) in Eq. (8.1-38) and carrying out the divisions yields 

+... - 2 ( & - z - - -  3 3+ ...)] (8.1-40) 

WBV &=- (8.1-41) 

Note that Eq. (8.1-41) is equivalent to Eq. (8.1-15). 



8.2. ENERGY TRANSPORT WITHOUT CONVECTION 245 

8.2 ENERGY TRANSPORT WITHOUT 
CONVECTION 

The inventory rate equation for energy at the microscopic level is called the equation 
of energy. For a steady transfer of energy without generation, the conservation 
statement for energy reduces to 

(Rate of energy in) = (Rate of energy out) (8.2-1) 

The rate of energy entering and leaving the system is determined from the energy 
flux. As stated in Chapter 2, the total energy flux is the sum of the molecular 
and convective fluxes. In this case we will restrict our analysis to cases in which 
convective energy flux is either zero or negligible compared with the molecular flux. 
This implies transfer of energy by conduction in solids and stationary liquids. 

8.2.1 Conduction in Rectangular Coordinates 
Consider the transfer of energy by conduction through a slightly tapered slab as 
shown in Figure 8.5. If the taper angle is small and the lateral surface is insu- 
lated, energy transport can be considered one-dimensional in the z-direction3, i.e., 
T = T(z) .  

Figure 8.5 Conduction through a slightly tapered slab. 

Table C.4 in Appendix C indicates that the only non-zero energy flux component 
is e, and it is given by 

(8.2-2) 
dT e, = q, = - k - 
d z  

The negative sign in Eq. (8.2-2) implies that positive z-direction is in the direction 
of decreasing temperature. If the answer turns out to be negative, this implies that 
the flux is in the negative z-direction 

For a differential volume element of thickness Az, as shown in Figure 8.5, 
Q. (8.2-1) is expressed as 

(8.2-3) (AqJ,  - (Aqx)Ir+Ae = 0 
3The z-direction in the rectangular and cylindrical coordinate systems are equivalent to each 

other. 
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Dividing each term by AZ and taking the limit as AZ -+ 0 gives 

(8.2-4) 

-- - 0  (8.2-5) d(A9% 1 
dz 

Since flux times area gives the heat transfer rate, Q, it is possible to conclude from 
Eq. (8.2-5) that 

Aq, = constant = Q (8.2-6) 

in which the area A is perpendicular to the direction of energy flux. Substitution 
of Eq. (8.2-2) into Eq. (8.2-6) and integration gives 

(8.2-7) 

where C is an integration constant. The determination of Q and C requires two 
boundary conditions. 

If the surface temperatures are specified, i.e., 

at z = O  T = T o  

at z = L  T = T L  
(8.2-8) 

the heat transfer rate as well as the temperature distribution as a function of 
position are given in Table 8.1. 

On the other hand, if one surface is exposed to a constant heat flux while the 
other one is maintained at a constant temperature, i.e., 

dT 
dz -” 

at z = O  -k-- 

at z = L  T = T L  
(8.2-9) 

the resulting heat transfer rate and the temperature distribution as a function of 
position are given in Table 8.2. It should be noted that the boundary conditions 
given by Eqs. (8.28) and (8.2-9) are not the only boundary conditions available for 
energy transport. For different boundary conditions, Eq. (8.2-7) should be used to 
determine the constants. 
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Table 8.1 
conduction in a plane wall for the boundary conditions given by Eq. (8.2-8). 

Heat transfer rate and temperature distribution for onedimensional 

Heat Transfer 
Rate Temperature Distribution Constants 

Table 8.2 
conduction in a plane wall for the boundary conditions given by Eq. (8.2-9). 

Heat transfer rate and temperature distribution for one-dimensional 

Heat Transfer 
Rate Temperature Distribution Constants 

A 

k 
A T - T L = - .  (IoL k (l-;) (H) 
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Example 8.1 Consider a solid w n e  of circular cross-section as shown in Figure 
8.6. The diameter at z = 0 is 8cm and the diameter at z = L is 10cm. Calculate 
the steady rate of heat transfer if the lateral surface is well insulated and the thermal 
conductivity of the solid material as a function of temperature is given by  

k ( T )  = 400 - 0.07T 

where k is an W1m.K and T is in degrees Celsius. 

L = 40 c m d  

Figure 8.6 Conduction through a solid cone. 

Solution 

The diameter increases linearly in the z-direction, i.e., 

D ( z )  = 0.05 z + 0.08 

Therefore, the cross-sectional area perpendicular to the direction of heat flu is 
given as a function of position in the form 

aD2 T 

4 4  A(z)  = - = - (0.05 z + 0.08)2 

The use of Eq. (A) in Table 8.1 with To = 80"C, TL = 35 "C and L = 0.4m gives 
the heat transfer rate as 

/80 (400 - 0.07 T )  dT 
= 280W Q =  J35 

r0.4 dz 
I,, 4 0 . 0 5  z + 0.08)2/4 

Example 8.2 
perature distribution within the slab. 

Consider the problem given in Example 2.2. Determine the tem- 
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Solution 

With TL = 35 "C, qo = 100,000 W/ m2, k = 398 W/ m. K and L = 0.04m, Eq. (H)  
in Table 8.2 gives the temperature distribution as 

(100,000)(0.04) 
398 T-35= 

or, 
T = 45.1 - 251.32. 

Example 8.3 In rivers ice begins to f o r m  when water is cooled to 0°C and con- 
tinues to lose heat to the atmosphere. The presence of ice on rivers not only causes 
transportation problems but also floods on its melting. Once the ice cover is formed, 
its thickening depends on the rate of heat t r a n s f e d  from the water, through the 
ice cover, to the cold atmosphere. As an engineer you are asked to estimate the 
increase in the thickness of the ice block as a function of time. 

Solution 

Assumptions 

1. Pseudo-steady-state behavior. 

2. River temperature is close to 0 "C and the heat t r a n s f e d  from water to ice 
is negligible. This assumption implies that the major cause of ice thickening 
is the conduction of heat through the ice. 

Analysis 

System: Ice block 
Since the density of ice is less than that of water, it floats on the river as shown in 
Figure 8.7. The temperatures T, and Ts represent the melting temperature (0  " C )  
and the top surface temperature, respectively. 

Air, T, 
=s 

f 
ICe Y 

Tln J - Water 

Figure 8.7 Ice block on a river. 
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The temperature dist7dbution in the ice block under steady conditions can be deter- 
mined from Eq. (H) in Table 8.1 as 

Tm-T z 
T, -Ts L 
-- - -  

Therefore, the steady heat flm through the ice block is given by  

For the ice block, the macroscopic inventory rate equation for energy is 

-Rate of energy out = Rate of energy accumulation (3) 

If the enthalpy of liquid water at Tm is taken as zero, then the enthalpy of solid ice 
is 

(4) - 
Negligible 

Therefore, Eq. (3) is expressed as 

For the unsteady-state problem at hand, pseudo-steady-state assumption implies 
that Eq. (2) holds at any given instant, i.e., 

Substitution of Eq. (6) into Eq. (5) and rearrangement gives 

l L L d L =  - f ( T ,  - T s ) d t  
p i  0 

Integration yields the thickness of the ice block in the fonn 

8.2.1.1 Electrical circuit analogy 

Using the analogy with Ohm’s law, i.e., current = voltage/resistance, it is custom- 
ary in the literature to express the rate equations in the form 

Driving force 
Resistance 

Rate = (8.2 10) 
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Note that Eq. (D) in Table 8.1 is expressed as 

(8.2-11) 
- 
kA 

Comparison of Eq. (8.2-11) with Eq. (8.2-10) indicates that 

Driving force = To - TL (8.2- 12) 

Thickness 
(8.2-13) 

L 
kA (Transport property)(Area) 

Resistance = - = 

Hence, the electric circuit analog of the plane wall can be represented as shown 
in Figure 8.8. Note that the electrical circuit analogy holds only if the thermal 
conductivity is constant. In the case of a composite plane wall, the resulting 
electrical circuit analogs are shown in Figure 8.9. 

Figure 8.8 Electrical circuit analog of the plane wall. 

Figure 8.9 Electrical circuit analogs of composite plane walls in series and 
parallel arrangement. 
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Example 8.4 For the composite wall shown in Figure 8.10, related thermal wn- 
ductivities are given as kA = 35W/ m. K, kg = 12 W/ m. K, kc = 23 W/ m. K, 
and ko = 5 W/ m. K. 
a) Determine the steady-state heat transfer rate. 
b) Determine the effective thermal conductivity for the composite walls. This makes 
it possible to consider the composite wall as a single material of thermal conductivity 
k,-f, rather than four different materials with four different thermal conductivities. 

Figure 8.10 Heat conduction through a composite wall. 

Solution 

a) A n  analogous electrical circuit for this cwe is shown below: 

The equivalent resistance, R,, of the two resistances in parallel is 
-1 

Ro=($+&) 

Thus, the electrical analog for  the heat transfer process through the composite wall 
can be represented as shown below: 
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Using Eq. (8.2-13) the resistances are calculated as follows: 

= 0.032 K/ W 
LA 0.1 RA=-= 
kAA (35)(0.09 X 1) 

= 0.278 K/ W 
LE 0.2 RB=-- 

kBA - (12)(0.06 x 1) 

= 0.290 K/ W LC 0.2 Rc=--  
kcA - (23)(0.03 x 1) 

RD=-- LD - Omo8 = 0.178 K/ W 
koA (5)(0.09 x 1) 

R,= ('.') = 1 (-+-) 1 -* =0.142K/W 
-1 

0278 0.290 RB Re 

The total resistance of the entire circuit is 

R = RA -I- R, + RD = 0.032 + 0.142 + 0.178 = 0.352 K/ W 

Hence, the heat transfer rate is 

* TI -T2 300- 22 = 790w &=-- - 
C R  0.352 

b) Note that 

Therefore, the effective thermal conductivity is 

0.1 + 0.2 + 0.08 = 12 w/ m. 
keff = (0.09 x 1)(0.352) 

8.2.1.2 Transfer rate in terms of bulk fluid properties 

Consider the transfer of thermal energy from fluid A, at a temperature TA with 
an average heat transfer coefficient ( h ~ ) ,  through a solid plane wall with thermal 
conductivity k ,  to Auid B,  at a temperature TB with an average heat transfer 
coefficient (hB),  as shown in Figure 8.11. 
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Figure 8.11 Heat transfer through a plane wall, 

When the thermal conductivity and the area are constant, the heat transfer 
rate is calculated from Eq. (8.2-11). The use of this equation, however, requires 
the values of To and TL be known or measured. In common practice, it is much 
easier to measure the bulk fluid temperatures, TA and TB. It is then necessary to 
relate To and TL to TA and TB. 

The heat transfer rates at the surfaces z = 0 and z = L are given by Newton's 
law of cooling with appropriate heat transfer coefficients and expressed as 

Q = A ( ~ A ) ( T A  -To) = A ( ~ B ) ( T L  - TB) (8.2-14) 

Equations (8.2-11) and (8.2-14) can be rearranged in the form 

Addition of Eqs. (8.2-15)-(8.2-17) gives 

(8.2-15) 

(8.2-16) 

(8.2- 17) 

(8.2-18) 

I J Q =  1 L 1 
TA - TB (8.2-19) 

in which the terms in the denominator indicate that the resistances are in series. 
The electrical circuit analogy for this case is given in Figure 8.12. 



8.2. ENERGY TRANSPORT W T H O U T  CONVECTION 255 

L 1 - 1 
A <hA> k A  A <hB> 

-Q 

Figure 8.12 Electrical circuit analogy. 

Example 8.5 A plane wall separates hot air (A) at a temperature of 5OoC from 
cold air (B) at - 10°C as shown in Figure 8.13. Calculate the steady rate of heat 
transfer through the wall if the thermal conductivity of the wall is 

a) k = 0.7 W/ m. K 
b) IC = 20W/m.K 

Air 

/// 
TA = 50°C 
urn = 10 m/s 

3m 

Air 

/// 
Tg = - 10°C 
vq, = 15 4 s  

~ = 2 0 c m  

Figure 8.13 Conduction through a plane wall. 

Solution 

Physical properties 

Y = 17.91 x 10-6m2/s 
k = 27.80 x 
Pr = 0.708 

v = 12.44 x m2/s 
k = 23.28 x 
Pr = 0.72 

W/ m. K For air at 50 "C (323 K) 

For air at - 10°C (263K) W/m. K 
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u = 16.33 x m2/s 
k = 26.59 x 
Pr = 0.711 

v = 13.30 x m2/s 
k = 24.07 x 
Pr = 0.717 

For air at 33.5"C (306.5K) : W/ m. K 

W/ m. K 

{ 
For air at 0 "C (273 K) 

Analysis 

The rate of heat loss can be calculated from Eq. (8.2-19), i.e., 

W H ( T A  - TB) 
1 L 1  

Q =  

(hA)+Ic+- (hB) 

The average heat transfer weficients, ( h A )  and (hB), can be calculated from the 
correlations given in Table 4.2. However, the use of these equations require physical 
properties to be evaluated at the film temperature. Since the surface temperatures 
of the wall cannot be determined a priori, as a first approximation, the physical 
properties will be evaluated at the fluid temperatures. 

Left-side of the wall 

Note that the characteristic length in the calculation of the Reynolds number is 
10m. The Reynolds number is 

Lchvco 
v Re = - 

Since this value is between 5 x lo5 and lo8, both laminar and turbulent conditions 
exist on the wall. The use of Eq. (E) an Table 4.2 gives the Nusselt number as 

(Nu) = (0.037 - 871) Pr'13 

= [0.037(5.6 x 106)*15 - 8711 (0.708)'13 = 7480 (3) 

Therefore, the average heat transfer coeficient is 

= (7480) ( 27*80t = 20.8 W/ m2. K (4) 
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Right-side of the wall 

The Reynolds number is 

LchVoo 

U 
Re = - 

The use of Eq. (E) in Table 4.2 gives 

(Nu) = (0.037Re;/' - 871) Pr1/3 

= [0.037(12.1 x 106)4/5 - 8711 (0.72)1/3 = 14,596 (6) 

Therefore, the average heat transfer coefficient is 

= (14,596) ( 23'28i = 34W/ m2. K (7) 

a) Substitution of the numerical values into Eq. (1) gives 

Now we have to calculate the surface temperatures and check whether it is appropri- 
ate to evaluate physical properties at the fluid temperatures. The electrical circuit 
analogy for this problem is shown below: 

1 L I 
A<hA> Ak A<hg> 

-Q 

The surface temperatures TI and T2 can be calculated as 

Q 

4956 - 42 o c  

TI = TA - - 
A (hA)  

(30) (20.8) - = 50 - (9) 
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Therefore, the film temperatures at the left- and right-sides of the wall are (42 + 
50)/2 = 46 "C and (- 10 - 5)/2 = - 7.5 "C, respectively. Since these temperatures 
are not very much digerent from the fluid temperatures, the heat transfer rate can 
be considered equal to 4956 W. 

b) For k = 20 W/ m. K, the use of Eq. (1) gives 

- +-+- 20.8 20 34 
The surface temperatures TI and TZ can be calculated as 

Q 

20,574 
= -lo+- 10°C 

(30x34) - 

T2 = TB + - 
A ( h B )  

I n  this case, the film temperatures at the left- and right-sides are (17 + 50)/2 = 
33.5 "C and (- 10 + 10)/2 = O"C, respectively. Since these values are diflerent 
from the fluid temperatums, it is necessary to recalculate the average heat transfer 
coeficients. 

Left-side of the wall 

Using the physical properties evaluated at 33.5 "C, the Reynolds number becomes 

Lchvoo 
U 

Re = - 

The Nusselt number is 

(Nu) = (0.037Re4,/5 - 871) Pr1l3 

= b.037 (6.1 x 106)4/5 - 8711 (0.711)1/3 = 8076 (15) 

Therefore, the average heat transfer coeficient is 

= (8076) ( 26.59G lo-.> = 21.5 W/ m2. K 
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Right-side of the wall 

Using the physical properties evaluated at 0 "C, the Reynolds number becomes 

The use of Eq. (E) in Table 4.2 gives 

(Nu) = (0.037Re;" - 871) Pr1/3 

= k.037(11.3 x 106)4/5 - 8711 

Therefore, the average heat transfer coeficient is 

= (13,758) ( 24.071xg 

(0.717)1/3 = 13,758 (18) 

= 33.1 W/ m2. K (19) 

Substitution of the new values of the average heat transfer coeficients, Eqs. (16) 
and (19), into Eq. (1 )  gives the heat transfer rate as 

+-+- 21.5 20 33.1 
- 

The surface temperatures are 

0 Ti = TA - ~ 

A (hA) 

(30) (21.5) 
20,756 18OC = 50- 

Q 

20,756 lloc 

T2 = TB + - 
A ( h B )  

(30) (33.1) 
= - l o +  

Since these values are almost equal to the previous values, then the rate of heat loss 
is 20,756W. 

Comment: The Biot numbers, i.e., (h)L,h/k, for this problem are calculated as 
follows: 
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Left Side Right Side 

Part (a) 5.9 9.7 
Part (b) 0.2 0.3 

Note that the physical significance of the Biot number was given by Eq. (7.1.141, 
2.e., 

(Difference in driving force),,lid 
(Difference in driving 

Bi = 

Therefore, when Bi is large, the temperature drop between the surface of the wall 
and the bulk temperature is small and the physical properties can be calculated at the 
bulk fluid temperature rather than the film temperature in engineering calculations. 
On the other hand, when Bi is small, the temperature drop between the surface of 
the wall and the bulk fluid temperature is large and the physical properties must be 
evaluated at the film temperature. Evaluation of the physical properties at the bulk 
fluid temperature for small values of Bi may lead to erroneous results especially if 
the physical properties of the fluid are strongly dependent on temperature. 

8.2.2 Conduction in Cylindrical Coordinates 
Consider a onedimensional transfer of energy in the r-direction in a hollow cylin- 
drical pipe with inner and outer radii of R1 and Rz, respectively, as shown in Figure 
8.14. Since T = T(r) ,  Table C.5 in Appendix C indicates that the only non-zero 
energy flux component is e, and it is given by 

dT e,. = q,. = - k - 
d r  

(8.2-20) 

For a cylindrical differential volume element of thickness AT, as shown in Figure 
8.14, Eq. (8.2-1) is expressed in the form 

Dividing Eq. (8.2-21) by AT and taking the limit as AT -+ 0 gives 

= O  (Aqr)lT - (Aqr)lr+ar 
Ar lim Ar+a 

or, 

(8.2-21) 

(8.2-22) 

(8.2-23) 

Since flux times area gives the heat transfer rate, Q, it is possible to conclude that 

A qr = constant = Q (8.2-24) 
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Figure 8.14 Conduction in a hollow cylindrical pipe. 

The axea A in Eq. (8.2-24) is perpendicular to the direction of energy flux in the 
r-direction and is given by 

A = 2 ~ r L  (8.2-25) 
Substitution of Eqs. (8.2-20) and (8.2-25) into Eq. (8.2-24) and integration gives 

(8.2-26) 

where C is an integration constant. 
If the surface temperatures are specified, i.e., 

at r=R1  T=T1  

at r =  R2 T=T2  
(8.2-27) 

the heat transfer rate as well as the temperature distribution as a function of 
position are given in Table 8.3. 

On the other hand, if one surface is exposed to a constant heat flux while the 
other one is maintained at a constant temperature, i.e., 

dT 
dr 41 at r = R 1  - k - =  

(8.2-28) 
at r = R z  T = T z  
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the resulting heat transfer rate and the temperature distribution as a function of 
position are given in Table 8.4. 

Table 8.3 Heat transfer rate and temperature distribution for onedimensional 
conduction in a hollow cylinder for the boundary conditions given by Eq. (8.2-27). 

Constants Heat Transfer 
Rate Temperature Distribution 

/ \  

21rL /" k ( T )  dT /" k(: 

k Tz - T 
T2 - Tl 

Table 8.4 Heat transfer rate and temperature distribution for onedimensional 
conduction in a hollow cylinder for the boundary conditions given by Eq. (8.2-28). 

Heat Transfer 
Rate Constants Temperature Distribution 

None 27rRlLql (A) kT2 k (T) dT = q1 R1 In 

8.2.2.1 Electrical circuit analogy 

Equation (B) in Table 8.3 can be expressed as 

- TI - Tz ' = ln(Rz/R1) 
21rLk 

(8.2-29) 

Comparison of Eq. (8.2-29) with Eq. (8.2-10) indicates that the resistance is given 
bY 

(8.2-30) W W R i  ) 
27rLk 

Resistance = 
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At first, it looks as if the resistance expression for the rectangular and the cylindrical 
coordinate systems are different from each other. However, the similarities between 
these two expressions can be shown by the following analysis. 

Note that the logarithmic-mean area, ALM, can be defined as 

Substitution of Eq. (8.2-31) 

Note that Eqs. (8.2-13) and 

into Eq. (8.230) gives 

I l  Resistance = 

(8.2-32) have the same general form of 

(8.2-31) 

(8.2-32) 

Thickness 
(Transport property) (Area) Resistance = (8.2-33) 

The electrical circuit analog of the cylindrical wall can be represented as shown in 
Figure 8.15. 

R2 - Rl 
k Am 

e 0 

TB -Q TA 

Figure 8.15 Electrical circuit analog of the cylindrical wall. 

Example 8.6 Heat flows through an annular wall of inside radius R1 = lOcm 
and outside radius Rz = 15cm. The inside and outside surface temperatures are 
60°C and 30"C, respectively. The thermal conductivity of the wall is dependent 
on temperature as follows: 

T = 30°C 
T = 60°C 

k = 42W/m.K 
IC = 49W/m.K 

Calculate the steady rate of heat transfer i f  the wall has a length of 2m. 

Solution 

Assumption 

1. The thermal conductiwity varies linearly with temperature. 
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Analysis 

The variation of the thermal conductivity with temperature can be estimated as 

k = 42 + (-) 49 - 42 (T - 30) 
60 - 30 

= 35 $- 0.233T 

The heat transfer rate is estimated from Eq. (A) in Table 8.3 with R1 = 10cm, 
R2 = 15cm, TI = 60°C and T2 = 30°C : 

r Ti 

60 
- - (35 + 0.233 T )  dT = 42,291 W 

8.2.2.2 Transfer rate in terms of bulk fluid properties 

The use of Eq. (8.2-29) in the calculation of the heat transfer rate requires surface 
values TI and T2 be known or measured. In common practice, the bulk tempera- 
tures of the adjoining fluids to the surfaces at R = R1 and R = R2, i.e., TA and 
TB, are known. It is then necessary to relate TI and T2 to TA and TB. 

The heat transfer rates at the surfaces R = R1 and R = R2 are expressed in 
terms of the heat transfer coefficients by Newton's law of cooling as 

Q = A ~ ( ~ A ) ( T A  - Ti) = A2(h~)(T2 - TB) (8.2-34) 

The surface areas A1 and A2 are expressed in the form 

A1 = 27rR1L and A2 = 2nR2L (8.2-35) 

Equations (8.2-29) and (8.2-34) can be rearranged in the form 

Addition of Eqs. (8.2-36)-(8.2-38) gives 

(8.2-36) 

(8.2-37) 

(8.2-38) 

(8.2-39) 
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or, 

(8 2-40} 
+- 

Al(hA) ALMk A2(hB) 

in which the terms in the denominator indicate that the resistances are in series. 
The electrical circuit analogy for this case is given in Figure 8.16. 

1 
TA ------e TB 

Figure 8.16 Electrical circuit analogy for Eq. (8.2-40). 

In the literature, Eq. (8.2-40) is usually expressed in the form 

= AIUA(TA - TB) = &UB(TA - TB) (8.2-41) 

where the terms UA and UB are called the overall heat transfer coefficients. Com- 
parison of Eq. (8.2-41) with Eq. (8.2-40) gives UA and UB as 

and 

(8.2-42) 

(8.2-43) 

Example 8.7 Consider a cylindrical pipe of length L with inner and outer radii 
of R1 and R2, .respectively, and investigate how the rate of heat loss changes (1s a 
function of insulation thickness. 

Solution 

The immediate reaction of most students after reading the problem statement is 
“What’s the point of discussing the rate of heat loss as a function of insulation 
thickness? Adding insulation thickness obviously decreases the rate of heat loss.” 
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This conclusion is true only for  planar surfaces. In  the case of curved surfaces, 
however, close examination of Eq. (8.2-32) indicates that while addition of insu- 
lation increases the thickness, i.e., R2 - R1, it also increases the heat transfer 
area, i.e., ALM. Hence, both numerator and denominator of Eq. (8.2-32) increase 
when the insulation thickness increases. If the increase in the heat transfer area is 
greater than the increase in thickness, then resistance decreases with a concomitant 
increase in the rate of heat loss. 

For the geometry shown in Figure 8.17, the rate of heat loss is given by  

X 

where k ,  and ki are the thermal conductivities of the wall and the insulating 
material, respectively. 

Figure 8.17 Conduction through an insulated cylindrical pipe. 

Note that the term X in the denominator of Eq. (1) is dependent on the insulation 
thickness. Differentiation of X with respect to R3 gives 

To determine whether this point corresponds to a minimum or a maximum value, 
it is necessary to calculate the second derivative, i.e., 
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Therefore, at R3 = k i / (hB) ,  X has the minimum value. This implies that the 
rate of heat loss will reach the maximum value at R3 = R,, = k i / (hB) ,  where 
R,, is called the critical thickness of insulation. For R2 < R3 5 R,,, addition 
of insulation causes an increme in the rate of heat loss rather than a decrease. A 
representative graph showing the variation of the heat transfer rate with insulation 
thickness is given in Figure 8.18. 

R2 Rm R* R3 

Figure 8.18 Rate of heat loss as a function of insulation thickness. 

Another point of interest is to determine the value of R*, the point at which 
the rate of heat loss is equal to that of the bare pipe. The rate of heat loss through 
the bare pipe, Qo, is 

On the other hand, the rate of heat loss, Q*, when R3 = R* is 

Equating Eqs. (4) and (5) gives 

R* can be determined from Eq. (6) for  the given values of R2, (hs ) ,  and ki- 

Comment: For insulating materials, the largest value of the thermal conductivity 
is in the order of O.1Wlm.K. On the other hand, the smallest value of (hB) is 
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around 3 W/ m2. K. Therefore, the maximum value of the critical radius is approx- 
imately 3.3cm, and in most practical applications, this will not pose a problem. 
Therefore, critical radius of insulation is of importance only for small diameter 
wires or tubes. 

Example 8.8 Steam (fluid A )  flows in a pipe of R1 = 30cm and R2 = 45cm. 
The pipe is surrounded by fluid B. Calculate the overall heat transfer coefficients 
and sketch the representative temperature profiles for the following cases: 

a) ( h A )  =10W/m2.K; (hB)=5000W/m2.K k=2000W/m2.K 
b) ( h A )  = 5000 W/ m2. K; ( h B )  = 8000 W/m2. K; k = 0.02 W/ m2. K 
c) (hA) = 5000W/m2.K; ( h B )  = 10W/m2.K; k = 2000W/m2.K 

Solution 

a) Note that the dominant resistance to heat transfer .is that of fluid A.  Therefore, 
one expects the largest temperature drop in this region. Hence Eqs. (8.2-42) and 
(8.2-43) give the overall heat transfer coeficients (1s 

-1 
= ( h ~ )  = 10W/m2.K 

uA = (h) 
-1 

UB = (-) R2 = (hA) (2) = o(3o) =6.67W/m2.K 
( h A  )R1 45 

The expected temperature profile for this m e  is shown below. 

b) In this case the dominant resistance to heat transfer is that of the pipe wall. 
The overall heat transfer coeficients are 

= 0.16 W/ m2. K 0.02 

0.02 

- k 

k 
R1 ln(R2IR1) - (0.3) 1n(45/30) 

- 
R2 ln(RzlR1) - (0.45) ln(45/30) 

VA = 

= 0.11 W/ m2. K UB = 

The expected temperature profile for  this case is shown below: 
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c) The dominant resistance to heat transfer is the resistance of fluid B. Hence, the 
overall heat transfer coefficients are 

The expected temperature profile for this case is shown below: 

Comment: 
perature drop. 

The region with the largest thermal resistance has the largest tem- 

8.2.3 Conduction in Spherical Coordinates 
Consider one-dimensional transfer of energy in the r-direction through a hollow 
sphere of inner and outer radii of R1 and R2, respectively, as shown in Figure 8.19. 
Since T = T(r) ,  Table C.6 in Appendix C indicates that the only non-zero energy 
f lu i  component is e,  and it is given by 

dT 
e,  = q, = - k - 

dr (8.2-44) 

For a spherical differential volume element of thickness Ar BS shown in Fig. 8.19, 
Eq. (8.2-1) is expressed in the form 
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Figure 8.19 Conduction through a hollow sphere. 

Dividing Eq. (8.245) by Ar and taking the limit as Ar -+ 0 gives 

(8.2-47) 

Since flux times area gives the heat transfer rate, Q, it is possible to conclude that 

Aq, = constant = Q (8.248) 

The area A in Eq. (8.2-48) is perpendicular to the direction of energy flux in the 
?--direction and it is given by 

A = 4XT2 (8.2-49) 

Substitution of Eqs. (8.2-44) and (8.2-49) into Eq. (8.248) and integration gives 

(8.2-50) 

where C is an integration constant. 
If the surface temperatures are specified, Le., 

at r =  R1 T=Tl 

at T =  RZ T = T 2  
(8.2-51) 

the heat transfer rate as well as the temperature distribution as a function of 
position are given in Table 8.5. On the other hand, if one surface is exposed to 
a constant heat flux while the other one is maintained at a constant temperature, 
i.e., 

dT at T = R ~  - I C - = = ]  
dr 

at T = R ~  T = T z  
(8.2-52) 
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the resulting heat transfer rate and the temperature distribution as a function of 
position are given in Table 8.6. 

Table 8.5 
conduction in a hollow sphere for the boundary conditions given by Eq. (8.2-51). 

Heat transfer rate and temperature distribution for onedimensional 

Heat Transfer 
Rate Constants Temperature Distribution 

1 1  

Table 8.6 Heat transfer rate and temperature distribution for onedimensional 
conduction in a hollow sphere for the boundary conditions given by Eq. (8.2-52). 

Heat Transfer 
Rate Constants Temperature Distribution 

None 47rR:ql (A) k(T) dT = qlRy (: - k )  (C) 

Example 8.9 A spherical metal ball of radius R is placed in an infinitely large 
volume of motionless fluid. The ball is maintained at a temperature of TR whale 
the temperature of the fluid far  from the ball is T,. 
a) Determine the rate of heat transferred to the fluid. 
b) Determine the temperature distribution within the fluid. 
c) Determine the Nusselt number. 

Solution 

Assumptions 

1. Steady-state conditions prevail. 
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2. The heat transfer from the ball to the fluid takes place only by conduction. 

3. The thermal conductivity of the fluid is constant. 

Analysis 

a) The use of Eq. (B) in Table 8.5 with TI = TR, T2 = T,, R1 = R and R2 = 00 

gives the rate of heat transferred from the ball to the fluid as 

4 ~ k  (TR - T,) 
Q =  = ~ T R  k (TR - T,) 

1/R 
b) The tempemture distribution can be obtainedfrom Eq. (0) of Table 8.5 in the 
form 

T - T ,  R 
T R - T ,  T 

- _  - 

c) The amount of heat t r a n s f e d  can also be calculated from Newton’s law of 
cooling, Eq. (3.2-7), as 

Equating Eqs. (1) and (3) leads to 
Q = 4wR2(h)(T~ - Tm) (3) 

Thewfore, the Nusselt number is 

- 2  (5) 
N U = - -  (h)D 

k 

8.2.3.1 Electrical circuit analogy 

Equation (B) in Table 8.5 can be rearranged in the form 

(8.2-53) 

4 ~ k  R1 R2 
Comparison of Eq. (8.2-53) with Eq. (8.2-10) indicates that the resistance is given 
bv 

(8.2-54) 

In order to express the resistance in the form given by Eq. (8.2-13), let us define a 
geometric mean area, ACM, as 

AGM = dZG 
= J(4xR:) ( 4 ~ R 3  = 47rRlRz (8.2-55) 



8.2. ENERGY TRANSPORT WTHOUT CONVECTION 273 

so that Eq. (8.254) takes the form 

1 (8.2-56) 
Rz-R1 - Thickness Resistance = - 

k&M ('Transport property) (Area) 

The electrical circuit analog of the spherical wall can be represented as shown 
in Figure 8.20. 

R2-Rl  
~ A G M  

0 0 

T2 -Q TI 

Figure 8.20 Electrical circuit analog of the spherical wall. 

8.2.3.2 Transfer rate in terms of bulk fluid properties 

The use of Eq. (8.2-53) in the calculation of the transfer rate requires surface values 
TI and T2 to be known or measured. In common practice, the bulk temperatures 
of the adjoining fluids to the surfaces at r = R1 and r = Rz, i.e., TA and TB, are 
known. It is then necessary to relate TI and T2 to TA and TB. 

The procedure for the spherical case is similar to that for the cylindrical case 
and left as an exercise to the students. If the procedure given in Section 8.2.2.2 is 
followed, the result is 

(8.2-57) 

Example 8.10 Consider a spherical tank with inner and outer radii of R1 and 
R2, respectively, and investigate how the rate of heat loss varies as a function of 
insulation thickness. 

Solution 

The solution procedure for this problem is similar to  Example 8.7. For the geometry 
shown in Figure 8.21, the d e  of heat loss is given by 

(1) 
~ T ( T A  - TB) 

1 +- 
R i R z k  RzR3ki @i(h~)  

1 R z - R i  +R3-RZ 
Q =  

+ 
R? @ A )  

-, 
X 

where k, and ki are the thermal conductivities of the wall and the insulating 
material, respectively. 
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\ 

Figure 8.21 Conduction through an insulated hollow sphere. 

Differentiation of X with respect to R3 gives 

To determine whether this point corresponds to a minimum or a maximum value, 
at is necessary to calculate the second derivative, i.e., 

Therefore, the critical thickness of insulation for the spherical geometry is given by  

2 kj R -- 
cr - ( h B )  

(4) 

A representative graph showing the variation of heat transfer rate with insulation 
thickness is given in Figure 8.22. 

Another point of interest is to determine the value of R",  the point at which 
the rate of heat loss is equal to that of the bare pipe. Following the procedure given 
an Example 8.7, the result is 

R" can be determined from Eq. (5) for the given values of Rz, ( h B ) ,  and kj. 
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Figure 8.22 Rate of heat loss as a function of insulation thickness. 

Example 8.11 Consider a hollow steel sphere of inside radius R1 = lOcm and 
outside radius RZ = 20 cm. The inside surface is maintained at a constant temper- 
ature of 18OOC and the outside surface dissipates heat to ambient temperature at 
20 OC by convection with an average heat transfer coeficient of 11 W/ m2. K. To 
reduce the rate of heat loss, it is proposed to cover the outer surface of the sphere 
by two types of insulating materials X and Y in series. Each insulating material 
has a thickness of 3cm. The thermal conductivities of the insulating materials X 
and Y are 0.04 and 0.12W/ m. K, respectively. One of your f i ends  c la im  that 
the order in which the two insdating materials are put around the sphere does not 
make a difference in the rate of heat loss. As an engineer, do you agree? 

Solution 

Physical properties 

For steel: k = 45 W/ m. K 

Analysis 

The rate of heat loss can be determined from Eq. (8.2-57). If the surface is first 
c o v e d  by X and then Y ,  the rate of heat loss is 

4~ (180 - 20) 
Q = 0.1 0.03 0.03 1 

(45)(0.1)(0.2) + (0.04)(0.2)(0.23) (0.12)(0.23)(0.26) (0.26)2(11) 
= 91.6 W 

On the other hand, covering the surface first by Y and then X gives the rate of 
heat loss as 

4~ (180 - 20) 
0.03 0.03 1 Q =  0.1 

(45) (0.1) (0.2) 
= 103.5W 

(0.12) (0.2) (0.23) -I- (0.04) (0.23) (0.26) ( 0.26)2 ( 1 1) 

Therefore, the order of the layers with different thermal conductivities does make 
a difference. 
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8.2.4 Conduction in a Fin 
In the previous sections we have considered oncdimensional conduction examples. 
The extension of the procedure for these problems to conduction in tw+ or three 
dimensional cases is straightforward. The di%culty with multi-dimensional con- 
duction problems lies in the solution of the resulting partial differential equations. 
An excellent book by Carslaw and Jaeger (1959) gives the solutions of conduction 
problems with various boundary conditions. 

In this section first the governing equation for temperature distribution will be 
developed for three-dimensional conduction in a rectangular geometry. Then the 
use of area averaging4 will be introduced to simplify the problem. 

Fins are extensively used in heat transfer applications to enhance the heat 
transfer rate by increasing heat transfer area. Let us consider a simple rectangular 
fin as shown in Figure 8.23. As an engineer we are interested in the rate of heat 
loss from the surfaces of the fin. This can be calculated if the temperature distri- 
bution within the fin is known. The problem will be analyzed with the following 
assumptions: 

1. Steady state conditions prevail. 

2. The thermal conductivity of the fin is constant. 

3. The average heat transfer coefficient is constant. 

4. There is no heat loss from the edges and the tip of the fin. 

M - A . 2 4  

Figure 8.23 Conduction in a rectangular fin. 

4The first systematic use of the area averaging technique in a textbook can be attributed to 
Slattery (1972). 
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For a rectangular volume element of thickness Ax, width Ay and length Az, as 
shown in Figure 8.23, Q. (8.2-1) is expressed as 

(8.2-60) 

From Table C.4 in Appendix C, the components of the conductive flux are given 
bY m 

q z = - k -  
6 X  

aT 
q, = - I C -  

a2 

(8.2-61) 

(8.2-62) 

(8.263) 

Substitution of Eqs. (8.261)-(8.2-63) into Eq. (8.260) gives the governing equation 
for temperature as 1 E d2T I d2T - o ]  

6x2 + zp 622 

The boundary conditions associated with Eq. (8.2-64) are 

(8.264) 

(8.2-65) 

(8.2-67) 

- 0  (8.2-68) at y = W  -- m 
6 Y  

at z = O  T = T ,  (8.2-69) 

(8.2-70) 

where T, is the temperature of the fluid surrounding the fin. 
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k-= 8(T) z ( h )  ((7') - T,) dz2 B 

If the measuring instrument, i.e., the temperature probe, is not sensitive enough 
to detect temperature variations in the x-direction, then it is necessary to change 
the scale of the problem to match that of the measuring device. In other words, it 
is necessary to average the governing equation up to the scale of the temperature 
measuring probe. 

The area-averaged temperature is defined by 

(8.2-71) = - 1 1" lyll T dxdy 
W B  Jd  

Note that although the local temperature, T, is dependent on x, y and z, the 
area-averaged temperature, (T), depends only on z. 

Area averaging is performed by integrating Eq. (8.264) over the cross-sectional 
area of the fin. The result is 

or, 

(8.2-77) 

+ -!!? da2 (Iw -B/2 Tdxdy) = 0 (8.2-73) 

The use of the boundary conditions defined by Eqs. (8.2-65)-(8.2-68) together with 
the definition of the average temperature, R. (8.2-71) in Eq. (8.2-73) gives 

Since TIx=B/2 = TIz=-B/2 as a result of symmetry, &. (8.2-74) takes the form 

(8.2-75) 
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Integration of Eqs. (8.2-69) and (8.270) over the cross-sectional area of the fin 
gives the boundary conditions associated with Eq. (8.2-77) as 

at z=O (T)=Tw (8.2-78) 

= O  at r = L  - d ( T )  
dz 

(8.2-79) 

It is important to note that Eqs. (8.2-64) and (8.2-77) are at two different scales. 
Equation (8.2-77) is obtained by averaging Eq. (8.2-64) over the cross-sectional 
area perpendicular to the direction of energy flux. In this way the boundary condi- 
tion, i.e., the heat transfer coefficient, is incorporated into the governing equation. 
Accuracy of the measurements dictates the equation to work with since the scale 
of the measurements should be compatible with the scale of the equation. 

The term 2 / B  in Q. (8.2-77) represents the heat transfer area per unit volume 
of the fin, i.e., 

(8.2-80) 
2 2 LW Heat transfer area 
B - B L W =  Fin volume 

The physical significance and the order of magnitude5 of the terms in Eq. (8.2-77) 
are given in Table 8.7. 

_ -  

Table 8.7 The physical significance and the order of magnitude of the terms in 
Eq. (8.2-77). 

Term Physical Significance Order of Magnitude 

Rate of conduction 

2(h) Rate of heat transfer from 2 ( ~ ) ( T w  - Tco) 
the fin to the surroundings - B ( (T)  - Tco) B 

Therefore, the ratio of the rate of heat transfer from the fin surface to the rate of 
conduction is given by 

(8.2-81) Rate of heat transfer 2(h)(Tw - T,)/B - 2(h)L2 -- - - 
Rate of conduction k(Tw - T,) /L2 k B  

5The order of magnitude or scale analysis is a powerful tool for those interested in mathe- 
matical modelling. As stated by Astarita (1997), “Very often more than nine-tenths of what one 
can ever hope to know about a problem can be obtained from this tool, without actually solving 
the problem; the remaining one-tenth requires painstaking algebra and/or lots of computer time, 
it adds very little to our understanding of the problem, and if we have not done the first part 
right, all that the algebra and the computer will produce will be a lot of nonsense. Of course, 
when nonsense comes out of a computer people have a lot of respect for it, and that is exactly 
the problem.” For more details on the order of magnitude analysis, see Bejan (1984), Whitaker 
(1976). 
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Before solving Eq. (8.2-77), it is convenient to express the governing equation 
and the boundary conditions in dimensionless form. The reason for doing this is 
the fact that the inventory equations in dimensionless form represent the solution 
to the entire class of geometrically similar problems when they are applied to a 
particular geometry. 

Introduction of the dimensionless variables 

E < = -  
L 

reduces Eqs. (8.2-77)-(8.2-79) to 

-- &e A20 
dc2 - 

(8.2-82) 

(8.2-83) 

(8.2-84) 

(8.2-85) 

at < = 0  8 = 1  (8.2-86) 

(8.2-87) 

The solution of Q. (8.2-85) is 

6 = CI sinh(A<) f C2 cosh(A<) (8.2-88) 

where CI and C2 are constants. Application of the boundary conditions, Eqs. 
(8.286) and (8.2-87), gives the solution as 

coshA cosh(A<) - sinhA sinh(A<) 
cosh A O =  (8.2-89) 

The use of the identity 

cosh(z - y) = cosh z cosh y - sinh z sinh y (8.2-90) 

reduces the solution to the form 

cash [A( 1 - <)I 
cosh A (8.2-91) 
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8.2.4.1 Macroscopic equation 

Integration of the governing differential equation, Eq. (8.2-77), over the volume of 
the system gives the macroscopic energy balance, i.e., 

- B / 2  dz2 dxdydz= 1 L W B / 2  2 iL lw l B j 2  k d2(T> -(h) ((3”) - T,) dxdydz 1B/2 B 
(8.2-92) 

Evaluation of the integrations yields 

= 2 W(h) 1” ( (T)  - Tho) d s  (8.2-93) 
, / . 

Rate of energy entering into the 
fin through the surface at x=O 

Rate of energy loss from the top and bottom 
surfaces of the fin to the surroundings 

Note that Eq. (8.2-93) is simply the macroscopic inventory rate equation for ther- 
mal energy by considering the fin as a system. The use of 
(8.2-93) gives the rate of heat loss from the fin as 

BWk(Tw - T,)A tmh  A 1 Qaoss = L 

Eq. (8.2-91) in Eq. 

(8.2-94) 

8.2.4.2 Fin efficiency 

The fin eficiency, q, is defined as the ratio of the apparent rate of heat dissipation 
of a fin to the ideal rate of heat dissipation if the entire fin surface were at T,, i.e., 

2 W(h) l L ( ( T )  - T,) d.2 l L ( ( T )  - Tm) d r  
- - (8.2-95) 

2 W(h)(Tw - T,)L (Tw - T’)L r l =  

In terms of the dimensionless quantities, Eq. (8.2-95) becomes 

q = p C  (8.2-96) 

Substitution of Eq. (8.2-91) into Eq. (8.2-96) gives the fin efficiency as 

(8.2-97) 

The variation of the fin efficiency as a function of A is shown in Figure 8.24. When 
A 4 0, this means that the rate of conduction is much larger than the rate of heat 
dissipation. The Taylor series expansion of q in terms of A gives 

1 2 17 
rl = 1 - - A2 + - A4 - - A6 + ... 3 15 315 

(8.2-98) 
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Therefore, q approaches unity as A --t 0, indicating that the entire fin surface is at 
the wall temperature. 

1 1  

e A = 0.5 

0 

1 

e 

a L 
1 5 1 

On the other hand, large values of A corresponds to cases in which the heat 
transfer rate by conduction is very slow and the rate of heat transfer from the fin 
surface is very rapid. Under these conditions the fin efficiency becomes 

1 q = -  
A 

Equation (8.2-99) indicates that q approaches zero as A --t 00. 

(8.2-99) 
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Since the fin efficiency is inversely proportional to A, it can be improved either 
by increasing IC and B,  or by decreasing (h) and L. If the average heat transfer 
coefficient, (h), is increased due to an increase in the air velocity past the fin, the 
fin efficiency decreases. This means that the length of the fin, L, can be smaller 
for the larger (h)  if the fin efficiency remains constant. In other words, fins are not 
necessary at high speeds of fluid velocity. 

8.2.4.3 Comment 

In general, the governing differential equations represent the variation of the de- 
pendent variables, such as temperature and concentration, as a function of position 
and time. On the other hand, the transfer coefficients, which represent the inter- 
action of the system with the surroundings, appear in the boundary conditions. If 
the transfer coefficients appear in the governing equations rather than the bound- 
ary conditions, this implies that these equations are obtained as a result of the 
averaging process. 

8.3 ENERGY TRANSPORT WITH 
CONVECTION 

Heat transfer by convection involves both the equation of motion and the equation 
of energy. Since we restrict the analysis to cases in which neither momentum nor 
energy is generated, this obviously limits the problems we might encounter. 

Consider Couette flow of a Newtonian fluid between two large parallel plates 
under steady conditions as shown in Figure 8.25. Note that this geometry not only 
considers flow between parallel plates but also tangential flow between concentric 
cylinders. The surfaces at x = 0 and x = B are maintained at To and TI, re- 
spectively, with To > TI. It is required to determine the temperature distribution 
within the fluid. 

E 

-V 

Figure 8.25 Couette flow between parallel plates. 
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The velocity distribution for this problem is given by Eq. (8.1-12) as 
v.2 X -- - 1 - B  

On the other hand, the boundary conditions for the temperature, i.e., 

at x = O  T = T ,  
at x = B  T = T l  

(8.3-1) 

(8.3-2) 
(8.3-3) 

suggest that T = T(x) .  Therefore, Table C.4 in Appendix C indicates that the 
only non-zero energy flux component is e, and it is given by 

(8.3-4) d T  
d x  e, = q, = -k- 

For a rectangular volume element of thickness A x ,  as shown in Figure 8.25, Eq. 
(8.2-1) is expressed as 

Dividing each term by W L A x  and taking the limit as A x  + 0 gives 
wL - %),+A, wL = (8.3-5) 

or. 
- = o  dq2 
dx 

(8.3-6) 

(8.3-7) 

d2T 
dx2 - O  
-- 

Substitution of Eq. (8.3-4) into Eq. (8.3-7) gives the governing equation for tem- 
perature in the form 

(8.3-8) 

The solution of Eq. (8.3-8) is 

T = Ci -i- C2 x (8.3-9) 

The use of boundary conditions defined by Eqs. (8.3-2) and (8.3-3) gives the linear 
temperature distribution as 

(8.3-10) 

8.4 MASS TRANSPORT WITHOUT 
CONVECTION 

The inventory rate equation for transfer of species A at the microscopic level is 
called the equation of continuity for species A. Under steady conditions without 
generation, the conservation statement for the mass of species A is given by 

(Rate of mass of A in) - (Rate of mass of A out) = 0 (8.41) 
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The rate of mass of A entering and leaving the system is determined from the 
mass (or, molar) flux. As stated in Chapter 2, the total flux is the sum of the 
molecular and convective fluxes. For a one-dimensional transfer of species A in the 
z-direction in rectangular coordinates, the total molar flux is expressed as 

(8.42) - Convective 
flux Molecular flux 

where vz is the molar average velocity defined by Eq. (2.3-2). For a binary system 
composed of species A and B, the molar average velocity is given by 

(8.43) 

As we did for heat transfer, we will first consider the case of mass transfer without 
convection. For the transport of heat without convection, we focused our attention 
on conduction in solids and stationary liquids simply because energy is transferred 
by collisions of adjacent molecules and the migration of free electrons. In the case 
of mass transport, however, since species have individual velocities6, the neglect 
of the convection term is not straightforward. It is customary in the literature 
to neglect the convective flux in comparison with the molecular flux when mass 
transfer takes place in solids and stationary liquids. The reason for this can be 
explained as follows. Substitution of Eq. (8.43) into Eq. (8.42) gives 

(8.44) 

Since ZA is usually very small in solids and liquids, the convective term is considered 
negligible. It should be kept in mind, however, that if X A  is small, this does not 
imply that its gradient, Le., d x A / d z ,  is also small. 

Another point of interest is the equimolar counterdiffusion in gases. The term 
“equimolar counterdiffusion” implies that for every mole of species A diffusing 
in the positive z-direction, one mole of species I3 diffuses back in the negative 
z-direction, i.e., 

NA, = - NB, + CAVA, = - CBVB, (8.45) 

Under these circumstances the molar average velocity, Eq. (8.43), becomes 

(8.46) 

and the convective flux automatically drops out in Eq. (8.42). 

‘Transport of mass by diffusion as a result of random molecular motion is called a Brownian 
motion. 
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8.4.1 Diffusion in Rectangular Coordinates 
Consider the transfer of species A by diffusion through a slightly tapered slab as 
shown in Figure 8.26. 

Figure 8.26 Diffusion through a slightly tapered conical duct. 

If the taper angle is small, mass transport can be considered one-dimensional in 
the z-direction. Since X A  = XA(Z), Table C.7 in Appendix C indicates that the 
only non-zero molar flux component is NA, and it is given by 

NA, = J;, = - C D A B  - dXA 
dz (8.47) 

Note that the negative sign in Eq. (8.47) implies that positive z-direction is in 
the direction of decreasing concentration. If the answer turns out to be negative, 
this implies that the flux is in the negative x-direction. 

Over a differential volume element of thickness Az, as shown in Figure 8.26, 
Eq. (8.41) is written as 

(ANA.)I, - (ANA,)I.+A, = O  (8.48) 

Dividing Eq. (8.48) by Az and taking the limit as Az + 0 gives 

(8.49) 

(8.410) 

Since flux times area gives the molar transfer rate of species A, ~ Z A ,  it is possible 
to conclude that 

ANA, = constant = ?LA (8.411) 

in which the area A is perpendicular to the direction of mass flux. 
Substitution of Eq. (8.47) into Eq. (8.411) and integration gives 

(8.412) 
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where K is an integration constant. The determination of  LA and K requires two 
boundary conditions. Depending on the type of the boundary conditions used, the 
molar transfer rate of species A as well as the concentration distribution of species 
A as a function of position are determined from Eq. (8.412). 

If the surface concentrations are specified, i.e., 

at z=O X A = X A ,  

at z = L  X A = X A ,  
(8.413) 

the molar transfer rate and the concentration distribution of species A are given 
in Table 8.8. 

Table 8.8 Rate of transfer and concentration distribution for one-dimensional 
diffusion in rectangular coordinates for the boundary conditions given by 
Eq. (8.413). 

Constants Molar Transfer 
Rate Concentration Distribution 

None 

DAB 

A 

DAB 
A 

J X A ,  

JXA,  J o  1 

f" dz - 

10 A0 

JXA,  

Example 8.12 Two large tanks are connected by a truncated conical duct as 
shown in Figure 8.27. The diameter at z = 0 is 6mm and the diameter at 
z = 0.2m is 10mm. Gas compositions in the tanks are given in terms of mole 
percentages. The pressure and temperature throughout the system are la tm and 
25 "C, respectively, and DAB = 3 x m2/ s. 
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a) Determine the initial molar flow rate of species A between the vessels. 
b) What would be the initial molar flow rate of species A i f  the conical duct were 
replaced with a circular tube of 8mm diameter? 

______ 

-20 cm 
TANK 1 TANK2 

90% A 25% A 
10% B 75% B 

- 2  

Figure 8.27 Diffusion through a conical duct. 

Solution 

Since the total pressure remains constant, the total number of moles in the conical 
duct does not change. This implies that equimolar counterdiffwion takes place 
within the conical duct and the molar average velocity is zero. Equation (B) in 
Table 8.8 gives the molar flow rate of species A as 

c DAB (SA, - 2~~ ) 
h A  = I”’ i$j 

The variation of the diameter as a function of position is represented by 

D(z )  = 0.006 + 0.02 z 

so that the area is 
A(z)  = E (0.006 + 0.02 z ) ~  4 

Substitution of Eq. (3) into Eq. (1) and integmtion gives 

The total molar concentmtion is 

= 0.041 kmol/ m3 - 101.325 x lo3 - 
(8.314 x 103)(25 + 273) (5) 
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Therefore, the initial molar flow rate of species A is 

= 1.88 x mol/s 
(41)(3 x 10-5)(0.9 - 0.25) 

4244.1 
h A  = 

b) Fbm Eq. (0) an Table 8.8 

. C ~ A B ( X A ,  - ~ A L ) A  
L nA = 

= 2.01 x 1 0 - ~  mol/ s 
- (41)(3 x 10-5)(0.9 - 0.25) [~(0.008)~/4] - 

0.2 

8.4.1.1 Electrical circuit analogy 

The molar transfer rate of species A is given by &. (D) in Table 8.8 as 

'DABA 

Comparison of Q. (8.414) with Eq. (8.2-10) indicates that 

Driving force = CA, - C A ~  

L Thickness 
Resistance = - - 

V A B A  - ('lkansport property)(Area) 

(8.414) 

(8.415) 

(8.416) 

8.4.1.2 Transfer rate in terms of bulk fluid properties 

Since it is much easier to measure the bulk concentrations of the adjacent solu- 
tions to the surfaces at z = 0 and z = L, it is necessary to relate the surface 
concentrations, X A ,  and X A ~ ,  to the bulk concentrations. 

For energy transfer, the assumption of thermal equilibrium at a solid-fluid 
boundary leads to the equality of temperatures and this condition is generally 
stated as, "temperature is continuous at a solid-fluid boundary." In the case of 
mass transfer, the condition of phase equilibrium for a nonreacting multicomp+ 
nent system at a solid-fluid boundary implies the equality of chemical potentials 
or partial molar Gibbs free energies. Therefore, concentrations at a solid-fluid 
boundary are not necessarily equal to each other with a resulting discontinuity in 
the concentration distribution. For example, consider a homogeneous membrane 
which is chemically different from the solution it is separating. In that case, the 
solute may be more (or, less) soluble in the membrane than in the bulk solution. 
A typical distribution of concentration is shown in Figure 8.28. Under these condi- 
tions, a thermodynamic property H ,  called the partition coeficient, is introduced 
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which relates the concentration of species in the membrane at equilibrium to the 
concentration in bulk solution. For the problem depicted in Figure 8.28, the par- 
tition coefficients can be defined as 

(8.417) 

(8.418) 

t-z 
Figure 8.28 Concentration distribution across a membrane. 

The molar rate of transfer of species across the membrane under steady condi- 
tions can be expressed as 

 LA = Ak:(cib - cAi) = AIc,+(cii - cAa) + 
On the other hand, the use of Eqs. (8.417) and (8.418) in Eq. (8.414) leads to 

(8.419) 

ADAB(H-cA, - H + c i i )  
L 

n A  = 

Equations (8.419)-(8.4-20) can be rearranged in the form 

(8.420) 

(8.421) 

(8.422) 

(8.423) 
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Multiplication of Eqs. (8.421) and (8.423) by H -  and H+, respectively, and the 
addition of these equations with l3q. (8.422) gives 

8.4.2 Diffusion in Cylindrical Coordinates 
Consider one-dimensional diffusion of species A in the radial direction through a 
hollow circular pipe with inner and outer radii of R1 and R2, respectively, as shown 
in Figure 8.29. 

1 
1 

- 
-NArl* 

E 
Figure 8.29 Diffusion through a hollow cylinder. 

Since X A  = x A ( r ) ,  Table C.8 in Appendix C indicates that the only non-zero molar 
flux component is NA, and it is given by 

(8.425) dXA NA, = J i ,  = - CDAB - dr 
For a cylindrical differential volume element of thickness AT, as shown in Figure 
8.29, Equation (8.41) is expressed in the form 

(AN&)Ir - (ANAv)Ir+& = 0 (8.426) 
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Dividing Eq. (8.426) 

STEADY MICROSCOPIC BALANCES WITHOUT GEN. 

by AT and taking the limit as Ar 4 0  gives 

= O  (ANA, I+ - (ANA, Ir+Ar 

AT lim 
Ar-0 

(8.427) 

(8 .428)  

Since flux times area gives the molar transfer rate of species A, +LA, it is possible 
to conclude that 

ANA, = constant = l i ~  (8.429) 

Note that the area A in Eq. (8.429) is perpendicular to the direction of mass flux, 
and is given by 

A = 2 x r L  (8.430) 

Substitution of Eqs. (8.425) and (8 .430)  into Eq. (8 .429)  and integration gives 

/ A .  \ I 
(8 .431)  

where K is an integration constant. 
If the surface concentrations are specified, Le., 

at T = R ~  X A = X A ,  

at r = R 2  X A = X A ~  
(8.432) 

the molar transfer rate and the concentration distribution of species A are given 
in Table 8.9. 

Table 8.9 Rate of transfer and concentration distribution for onedimensional 
diffusion in a hollow cylinder for the boundary conditions given by Eq. (8.432).  

Constant Molar Transfer 
Rate Concentration Distribution 

None 

DAB 
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8.4.3 Diffusion in Spherical Coordinates 
Consider onedimensional diffusion of species A in the radial direction through a 
hollow sphere with inner and outer radii of R1 and Rz, respectively, as shown in 
Figure 8.30. 

Figure 8.30 Diffusion through a hollow sphere. 

Since X A  = X A ( T ) ,  Table C.9 in Appendix C indicates that the only non-zero molar 
flux component is N A ~  and it is given by 

(8.433) d X A  NA- = - CVAB - 
dr 

For a spherical differential volume element of thickness AT, as shown in Figure 
8.30, Eq. (8.41) is expressed in the form 

( A N A ~ ) I ~  - (ANAr)lr+Ar = O (8.434) 

Dividing Eq. (8.434) by Ar and taking the limit as AT + 0 gives 

(8.435) 

(8.436) 

Since flux times area gives the molar transfer rate of species A, i z ~ ,  it is possible 
to conclude that 

Note that the area A in Eq. (8.437) is perpendicular to the direction of mass flux, 
and is given by 

A = 4xr2 (8.438) 

Substitution of Eqs. (8,433) and (8.438) into Eq. (8.437) and integration gives 

 ANA^ = constant = i z ~  (8.437) 

(8.439) 
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where K is an integration constant. 
If the surface concentrations axe specified, Le., 

at r=R1 X A = ~ A ~  

at r = R 2  X A = X A ~  
(8.440) 

the molar transfer rate and the concentration distribution of species A are given 
in Table 8.10. 

Table 8.10 
diffusion in a hollow sphere for the boundary conditions given by Eq. (8.440). 

Rate of transfer and concentration distribution for one-dimensional 

Constant Molar Transfer 
Rate Concentration Distribution 

1 1  

Example 8.13 
bubble of radius R to a stationary fluid. 

a) Determine the molar rate of species A transferred to the fluid. 
b) Determine the concentration distribution of species A within the fluid. 
c) Determine the Sherwood number. 

Consider the transfer of species A from a spherical drop or a 

Solution 

Assumptions 

1. Steady-state conditions prevail. 

2. The concentration at the surface of the sphere is constant at CA, . 
3. The concentration of species A far from the sphere is CA,. 
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Analysis 

a) The use of Eq. (B) in Table 8.10 with C A ~  = CA,, C A ~  = CA,, R1 = R and 
Rz = 00 gives the molar rate of tmnsfer of species A to the fluid as 

- 
R 

b) The concentration distribution is obtained j b m  Eq. (0) of Table 8.10 in the 
form 

C A  - C A ,  R 
CAW - C A ,  r 

= -  

c) The molar transfer rate can also be calculated from Eq. (3.3-7) as 

‘??,A = 4TR2(kc>(CA,,, - C A m )  

Equating Eqs. (1) and (3) leads to 

Therefore, the Sherwood number is 

8.4.4 

At first, it may seem strange to a student to have an example on a reaction in 
a catalyst pore in a chapter which deals with ‘‘steady-state microscopic balances 
without generation.” In general, reactions can be classified as heterogeneous 
and homogeneous reactions. A heterogeneow reaction occurs on the surface and is 
usually a catalytic reaction. A homogeneous reaction, on the other hand, occurs 
throughout a given phase. In Chapter 5,  the rate of generation of species i per 
unit volume as a result of a chemical reaction, Ri, was given by Eq. (5.3-26) in the 
form 

%i=air  (8.4-41) 

in which the term r represents a homogeneous reaction rate. Therefore, a ho- 
mogeneous reaction rate appears in the inventory of chemical species, whereas a 
heterogeneous reaction rate appears in the boundary conditions. 

Consider an idealized single cylindrical pore of radius R and length L in a 
catalyst particle as shown in Figure 8.31. The bulk gas stream has a species A 
concentration of C A ~ .  Species A diffuses through the gas film and its concentration 

Diffusion and Reaction in a Catalyst Pore 
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at the pore mouth, i.e., z = 0, is CA,.  As the species A diffuses into the catalyst 
pore, it undergoes a first-order irreversible reaction 

A - + B  

on the interior surface of the catalyst. 

I TI 
Gas A 

Figure 8.31 Diffusion and reaction in a cylindrical pore. 

The problem will be analyzed with the following assumptions: 

1. Steady-state conditions prevail. 

2. The system is isothermal. 

3. The diffusion coefficient is constant. 

For a cylindrical differential volume element of thickness AT and length Az, as 
shown in Figure 8.31, Eq. (8.41) is expressed as 

( NA, l r  27rrAz + NA, 1 %  ~ ~ F T A T )  

- [ NA, 2n(r + AT)Az + NA, [%+Ax ~TTAT] = 0 (8.442) 

Dividing Eq. (8.442) by 2nArAz and taking the limit as AT + 0 and Az -+ 0 
gives 

(‘NArIIr - (TNAr)Ir+Ar + lim NAz 1 %  - NA, [%+A= = O  (8.443) 
1 - lim 
T Ar+O AT Az-4 A2 

I d  dNAZ - - (TNA,) + - = 0 
T ar dz 

(8.444) 
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Since the temperature is constant and there is no volume change due to reaction, 
the pressure and hence the total molar concentration, c, remains constant. Under 
these conditions, from Table C.8 in Appendix C, the components of the molar flux 
become’ 

(8.4-45) a C A  NA, = -VAB - 
dr 

(8.4-46) 

Substitution of Eqs. (8.445) and (8.4-46) into Eq. (8.444) gives the governing 
equation for the concentration of species A as 

(8.4-47) 

The boundary conditions associated with Eq. (8.447) are 

(8.4-48) 

(8.4-49) 

at z = O  CA = CA, (8.4-50) 

(8.4-51) 

The term ICs in EQ. (8.449) is the first-order surface reaction rate constant. In 
writing Q. (8.4-51) it is implicitly assumed that no reaction takes place on the 
surface at z = L. Since there is no mass transfer through this surface, = 0. 

As we did in Section 8.2.4, this complicated problem will be solved by making 
use of the area averaging technique. The area-averaged concentration for species 
A is defined by 

JdlrJdRcArdrd6 1 2~ R 
( C A )  = - - ZJd Jd CArdrdO (8.452) 12“ I” r drd6 

Although the local concentration, CA, is dependent on T and z, the area-averaged 
concentration, ( cA) ,  depends only on z. 

Area averaging is performed by integrating Eq. (8.447) over the crosssectional 
area of the pore. The result is 

‘From the stoichiometry of the reaction, the molar average velocity is zero. 
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Since the limits of the integration are constant, the order of differentiation and 
integration in the second term of E!q. (8.453) can be interchanged to get 

Substitution of Eq. (8.454) into Eq. (8.453) yields 

The use of the boundary condition given by Eq. (8.449) leads to 

(8.455) 

(8.456) 

Note that Eq. (8.456) contains two dependent variables, ( C A )  and CA~,.=R,  which 
are at two different scales. It is generally assumed, although not expressed explic- 
itly, that 

CAlr=R E (CA)  (8.457) 
This approximation is valid for BiM << 1. Substitution of Eq. (8.457) into Eq. 
(8.4-56) gives 

(8.458) 

Integration of Eqs. (8.450) and (8.451) over the cross-sectional area of the 
pore gives the boundary conditions associated with Eq. (8.458) as 

at z = 0 ( C A )  = CA, (8.459) 

(8.460) 

Equations (8.447) and (8.458) are at two different scales. Equation (8.458) is ob- 
tained by averaging Eq. (8.447) over the cross-sectional area perpendicular to the 
direction of mass flux. As a result, the boundary condition, i.e., the heterogeneous 
reaction rate expression, appears in the conservation statement. 

Note that the term 2/R in Eq. (8.458) is the catalyst surface area per unit 
volume, i.e., 

2 - 2nRL (8.461) R nR2L Pore volume 
Since heterogeneous reaction rate expression has the units of moles/(area) (time), 
multiplication of this term by a, converts the units to moles/(volume)(time). 

The physical significance and the order of magnitude of the terms in Q. (8.4 
58) are given in Table 8.11. 

Catalyst surface area 
- --=a,= 
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'Pable 8.11 
in a. (8.458). The physical significance and the order of magnitude of the terms 

Term Physical Significance Order of Magnitude 

Rate of diffusion 

Rate of reaction 2k"(cA) 
R 

2 kSCAo 
R 

Therefore, the ratio of the rate of reaction to the rate of diffusion is given by 

(8.462) Rate of reaction 2 kScAo/R  2 ks L2 
Rate of diffusion D A B C A , / L ~  RVAB 

In the literature, this ratio is often referred to as the Thiele modulus or the Damkoh- 
ler numbe@ and expressed as 

=- - - 

(8.463) 

Before solving Eq. (8.458), it is convenient to express the governing equation 
and the boundary conditions in dimensionless form. Introduction of the dimen- 
sionless quantities 

e=-.-  (CA ) (8.4-64) 
cAo 
z t = -  
L 

reduces Eqs. (8.458)-(8.460) to 

-- ;: - h2e 

(8.465) 

(8.466) 

at [ = O  B = 1  (8.467) 

(8.4-68) 

Note that these equations are exactly equal to the equations developed for the fin 
problem in Section 8.2.4. Therefore, the solution is given by EQ. (8.2-91), i.e., 

(8.469) 

While the Thiele modulus is preferred in the analysis of mass transport in a porous medium, 
the Damkohler number is used for packed bed analysis. 
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8.4.4.1 Macroscopic equation 

Integration of the microscopic level equations over the volume of the system gives 
the equations at the macroscopic level. Integration of Eq. (8.458) over the volume 
of the system gives 

L L L 2 = J d R w w  r drdedz = J d L  1"" Jd" $ ks(cA) r drdedz (8.470) 

Carrying out the integrations yields 

Rate of moles of species A entering Rate of conversion of species A 
to species B at the catalyst surface into the pore through the surface at x=O 

Note that EQ. (8.471) is simply the macroscopic inventory rate equation for the 
conservation of species A by considering the catalyst pore as a system. The use of 
EQ. (8.469) in Eq. (8.471) gives the molar rate of conversion of species A, f a j l ~ ,  as 

(8.472) 

8.4.4.2 Effectiveness fact or 

The effectiveness factor, q, is defined as the ratio of the apparent rate of conversion 
to the rate if the entire internal surface were exposed to the concentration CA,, i.e., 

L 
~ T R  ICs 1 (CA) d z  i L ( C A )  dZ 

- - (8.473) 
'= 2 n R k s c ~ , L  CAJ 

In terms of the dimensionless quantities, l3q. (8.473) becomes 

(8.474) 

Substitution of EQ. (8.469) into Eq. (8.474) gives the effectiveness factor as 

(8.475) 

Note that the effectiveness factor for a first-order irreversible reaction is exactly 
identical with the fin efficiency. Therefore, Figure 8.24, which shows the variation 
of q as a function of A, is also valid for this case. 
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When A ---t 0, this means that the rate of diffusion is much larger than the rate 
of reaction. The Taylor series expansion of q in terms of A gives 

1 2 17 
3 15 315 

17 = 1 - - A2 + - A4 - - A6 + ... (8.4-76) 

Therefore, q approaches unity as A + 0, indicating that the entire surface is 
exposed to a reactant. On the other hand, large values of A corresponds to cases 
in which diffusion rate is very slow and the surface reaction is very rapid. Under 
these conditions the effectiveness factor becomes 

1 
A q = -  (8.4- 77) 

As A + O O , ~  approaches zero. This implies that a good part of the catalyst surface 
is starved for a reactant and hence not effective. 

8.5 MASS TFUNSPORT WITH 
CONVECTION 

In the case of mass transfer, each species involved in the transfer has its own 
individual velocity. For a single phase system composed of the binary species A 
and 23, the characteristic velocity for the mixture can be defined by several ways 
as stated in Section 2.3. If the m a s  transfer takes place in the z-direction, the 
three characteristic velocities are given in Table 8.12. 

Table 8.12 Characteristic velocities in the z-direction for a binary system. 

Velocity Definition 

PAVA= + PBVB. - - WA, + WB, 
P A  + PB P 

Mass average v, = 

Hence, the total mass or molar flux of species A can be expressed as 

+ PAv% 
&A WA. = - P ~ A B  

v 
flux 

- Convective Molecular flux 

-k CAv: 
dXA NA, = - CDAB - 
dz v 

Molecular flux 
- Convective 

flux 

(8.5-1) 

(8.5-2) 
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(8.5-3) 

The tricky part of the mass transfer problems is that there is no need to have 
a bulk motion of the mixture as a result of external means, such as pressure drop, 
to have a non-zero convective flux term in Eqs. (8.51)-(8.5-3). Even in the case of 
the diffusion of species d through a stagnant film of B, non-zero convective term 
arises as can be seen from the following examples. 

It should also be noted that if one of the characteristic velocities is zero, this 
does not necessarily imply that the other characteristic velocities are also zero. For 
example, in Section 8.4, it was shown that the molar average velocity is zero for 
an equimolar counterdiffusion since NA, = - NB,. The mass average velocity for 
this case is given by 

WA, + WB, v, = 
P 

(8.5-4) 

The mass and molar fluxes are related by 

(8.5-5) 

where Mi is the molecular weight of species i. The use of Eq. ( 8 . 5 5 )  in Eq. (8.5-4) 
gives 

MANA, + MBNB, NA,(MA - M B )  
v, = - - (8.5-6) 

P P 
which is non-zero unless M A  = M B .  

8.5.1 Diffusion Through a Stagnant Gas 

8.5.1.1 Evaporation from a tapered tank 

Consider a pure liquid d in an open cylindrical tank with a slightly tapered top 
as shown in Figure 8.32. The apparatus is arranged in such a manner that the 
liquid-gas interface remains fixed in space as the evaporation takes place. As an 
engineer, we are interested in the rate of evaporation of A from the liquid surface 
into a mixture of A and 0. For this purpose, it is necessary to determine the 
concentration distribution of A in the gas phase. The problem will be analyzed 
with the following assumptions: 

1. S teady-state conditions prevail. 

2. Species d and B form an ideal gas mixture. 

3. Species B has a negligible solubility in liquid A. 



8.5. MASS TRANSPORT WITB CONVECTION 303 

Figure 8.32 Evaporation from a tapered tank. 

4. The entire system is maintained at a constant temperature and pressure, i.e., 
the total molar concentration in the gas phase, c = P/RT, is constant. 

5. There is no chemical reaction between species A and B. 

If the taper angle is small, mass transport can be considered onedimensional in 
the r-direction and the conservation statement for species A, Eq. (8.41), can be 
written over a differential volume element of thickness AZ as 

or, 

dE(ANAz 1 = O  dz 
Equation (8.59) indicates that 

(8.57) 

(8.5-8) 

(8.5-9) 

ANA,  = j l ~  = constant (8.5-10) 

In a similar way, the rate equation for the conservation of species B leads to 

A NB, = constant (8.5-11) 

Since species B is insoluble in liquid d, i.e., NB, lz=o = 0, this implies that 

NB. = O  for O S z S L  (8.5-12) 

From Table 8.12, the total molar flux of species d is given by 

(8.5-13) 
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in which the molar average velocity is given by 

(8.5-14) 

which indicates non-zero convective flux. The use of Eq. (8.514) in Eq. (8.5-13) 
results in 

Substitution of (8.515) into Eq. (8.510) and rearrangement gives 

(8.5-15) 

(8.5-16) 

(8.5-17) 

Since j t ~  is constant, Eq. (8.517) holds for 0 5 z 5 L. 
Note that XA,, i.e., the value of XA at z = 0, is the mole fraction of species 

A in the gas mixture that is in equilibrium with the pure liquid A at the existing 
temperature and pressure. The use of Dalton’s and Raoult’s laws at the gas-liquid 
interface indicates that 

P;;”t 
XA, = - (8.5- 18) P 

where P is the total pressure. 

Example 8.14 One way of measuring the d i f i i o n  weficients of vapors is to 
place a small amount of liquid in a vertical capillary, generally known as the Stefan 
diffusion tube, and to blow a gas stream of known composition across the top as 
shown in Figure 8.33. Show how one can estimate the digusion coefficient by 
observing the decrease in the liquiid-gas interface as a fisnction of time. 

Liquid A u T 7 1 
Figure 8.33 The Stefan diffusion tube. 
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Solution 

Assumptions 

1. Pseudo-steady-state behavior. 

2. The system is isothermal. 

3. The total pressun? remains constant. 

4. The mole fraction of species A at the top of the tube is zero. 

5. No turbulence is observed at the top of the tube. 

Analysis 

System: Liquid in the tube 

The inventory rate equation for mass of A gives 

- Rate of moles of A out = Rate of accumulation of moles of A (1) 

where p i  is the density of species A in the liquid phase and A is the cross-sectional 
area of the tube. 

The rate of evaporation from the liquid surface, h ~ ,  can be determined from Eq. 
(8.5-17). For A = constant and X A ~  = 0, Eq. (8.5-17) d u c e s  to 

141 - X A , )  (3) A CDAB 
L 

n A = - -  

It should be kept in mind that Eq. (8.5-17) was developed for a steady-state case. 
For the unsteady problem at hand, the pseudo-steady-state assumption implies that 
Eq. (3) holds at any given instant, i.e., 

Substitution of Eq. (4) into Eq. (2) gives 

” I ’ L d L  
t 

- c D A B I ~ ( ~ - z A , )  d t = -  1 M A  Lo 

] t + L ?  
2 M A  CDAB ln(1- ZA,) 

P 5  
L2 = - 
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Therefore, the diffusion coeficient is determined from the slope of the L2 versus t 
plot. Alternatively, rearrangement of Eq. (6) yields 

I n  this m e ,  the digusion weficient is determined from the slope of the t / (L  -Lo)  
versus ( L  - Lo) plot. What is the advantage of using Eq. (7) over Eq. (6)P 

Example 8.15 To decrease the evaporation loss from open storage tanks, it is 
recommended to use a tapered top as shown in Figure 8.34. Calculate the rate of 
ethanol loss from the storage tank under steady conditions at 25 "C. 

I- 1 . 5 m d  

Ethanol (A) 

+ - m  + 
Figure 8.34 Evaporation from a tapered tank. 

Solution 

Physical properties 

Digusion coeficient of ethanol (A) in air ( B )  at 25 "C (298 K) : 

PTt = 58.6mmHg 

Analysis 

In order to determine the molar flow rate of species d j h m  Eq. (8.5-1 7), it is first 
necessary to express the variation of the cross-sectional area in the direction of I .  
The variation of the diameter as a function of z is 
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where Do and DL  are the tank diameters at z=O and z= L, respectively. There- 
fore, the variation of the cross-sectional area is 

7r D2(Z) A(z)  = - 
4 

2 ='bo-( Do - DL ) z ]  
4 

Substitution of Eq. (2) into Eq. (8.5-17) and integration gives the molar rate of 
evaporation as 

(3) 
~ ~ C V D A B ( D ~  - DL)  ln(1- XA,)  

n A  = - 

The numerical values are 

Do = 2m 

DL = 1.5m 

L = 0.5m 

= 0.077 pTt 58.6 
P 760 

X A ,  = - - - - 

= 41 x kmol/ m3 = 41 mol/ m3 P 1 c = - -  
RT - (0.08205)(25 + 273) 

Substitution of these values into Eq. (3) gives 

n A  = - mol,s 
n(41)(1.35 x lo-')@ - 1.5) ln(1 - 0.077) 21 2.1 

Comment: When DL 3 Do, application of L'Hopital's d e  gives 

and Eq. (3) reduces to 

(nD:/4)cvAB 
L In( 1 - X A , )  n A  = - 

which is Eq. (4) of Example 8.14. 
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8.5.1.2 Evaporation of a spherical drop 

A liquid (A) droplet of radius R is suspended in a stagnant gas it3 as shown in Figure 
8.35. We want to determine the rate of evaporation under steady conditions. 

Figure 8.35 Mass transfer from a spherical drop. 

Over a differential volume element of thickness Ar, as shown in Figure 8.35, 

(ANA~)l~ - (ANAv)lr+AT = (8.5-19) 

the conservation statement for species A, Eq. (8.41), is written as 

Dividing Eq. (8.5-19) by Ar and taking the limit as Ar --+ 0 gives 

(8.5-20) 

(8.5-21) 

Since flux times area gives the molar transfer rate of species A,  it^, it is possible 
to conclude that 

(8.5-22) ANA, = constant = I ~ A  

Note that the area A in J3q. (8.5-22) is perpendicular to the direction of mass flux 
and is given by 

A = 4m2 (8.5-23) 
Since the temperature and the total pressure remain constant, the total molar 
concentration, c, in the gas phase is constant. From Table C.9 in Appendix C, the 
total molar flux of species d in the r-direction is given by 

Since species B is stagnant, the molar average velocity is expressed as 

(8.5-24) 

(8.5-25) 
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which indicates non-zero convective flux. Using Eq. (8.5-25) in Eq. (8.5-24) results 
in 

Substitution of Eq. (8.5-26) into Eq. (8.522) and rearrangement gives 

(8.526) 

(8.5-27) 

where c> is the saturation concentration of species A in €3 at r = R in the gas 
phase. Carrying out the integrations in Q. (8.5-27) yields 

(8.5-28) 

Example 8.16 A benzene droplet with a diameter of 8 m m  is swpended by a wire 
in a laboratory. The temperature and pressure are maintained constant at 25°C 
and latm, respectively. Estimate the digmion weflcient of benzene in air if the 
variation of the droplet diameter as a function of time is recorded as follows: 

t D 
(min) (mm) 

5 7.3 
10 6.5 
15 5.5 
20 4.4 
25 2.9 

Solution 

Physical properties 

PA = 879 kg/ m3 

Piat = 94.5mmHg 
For benzene (d) : 

Assumptions 

1. Pseudo-steadpstate behavior. 

2. Air is insoluble in the droplet. 
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Analysis 

System: Benzene droplet 

The inventory rate equation for mass of A gives 

- Rate of moles of A out = Rate of accumulation of moles of A (1) 

where p: is the density of species A in the liquid phase. 
The rate of evaporation from the droplet surface, +LA, can be determined from 

Eq. (8.5-28). However, remember that Eq. (8.5-28) was developed for a steady- 
state case. For the unsteady problem at hand, the pseudo-steady-state assumption 
implies that Eq. (8.5-28) holds at any given instant, i.e., 

Substitution of Eq. (3) into Eq. (2) and rearrangement gives 

where R, is the initial radius of the liquid droplet. Carrying out the integrations 
in Eq. (4) yields 

Since 

Eq. (5) tamss the Jvrm 

PPt 
UT A -  RT and c* - - P c=-  

The plot of R2 versus t is shown below. 
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0 300 600 900 1200 1500 

The slope of the stmight line is - 9.387 x m2/ s. Hence, 

The total molar concentration is 

= 0.041 kmol/ m3 
P 1 c =  - - 
RT - (0.08205)(25 + 273) (9) 

Substitution of the values into Eq. (8) gives the diffusion coefficient as 

r 1 
879 

12 (0.041)(78) In ( 760 ) VAB = 9.387 x lo-’ 

760 - 94.5 
= 9.72 x m2/ s 

8.5.2 Diffusion Through a Stagnant Liquid 

Consider a one-dimensional diffusion of liquid A through a stagnant film of liquid 
B with a thickness L as shown in Figure 8.36. The mole fractions of A at z = 0 
and z = L are known. As an engineer, we are interested in the number of moles of 
species J1 transferring through the film of t3 under steady conditions. 
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+ - L +  

Figure 8.36 Diffusion of liquid d through a stagnant liquid film 8. 

Over a differential volume of thickness Az, the conservation statement for 
species d, Eq. (8.41), is written as 

NAz 1% A - NA. I.z+A,z A = 0 (8.529) 

Dividing Eq. (8.529) by A AZ and letting AZ -+ 0 gives 

(8.530) 

or, 
(8.531) 

To proceed further, it is necessary to express the total molar flux of species d, Le., 
NA,, either by Eq. (8.52) or by &. (8.53). 

-- dNAz - 0 I;$ NA, = constant 
dz 

8.5.2.1 Analysis based on the molar average velocity 

From Eq. (8.52), the total molar flux of species A is given as 

(8.532) 

It is important to note in this problem that the total molar concentration, c, is not 
constant but dependent on the mole fractions of species A and B. Since species B 
is stagnant, the expression for the molar average velocity becomes 

(8.5-33) 
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Substitution of Eq. (8.533) into Eq. (8.532) gives the molar flux of species A as 

(8.534) 

Since the total molar concentration, c, is not constant, it is necessary to express 
c in terms of mole fractions. Assuming ideal solution behavior, i.e., the partial 
molar volume is equal to the molar volume of the pure substance, the total molar 
concentration is expressed in the form 

(8.535) 

Substitution of X B  = 1 - X A  yields 

1 
c =  I (8.536) 

VB + (VA - V B ) z A  

Combining Eqs. (8.534) and (8.536) and rearrangement gives 

~ Jo 

Integration of Eq. (8.5-37) results in 

8.5.2.2 Analysis based on the volume average velocity 

The use of Eq. (8.53) gives the total molar flux of species A as 

From Eq. (C) in Table 8.12, the volume average velocity is expressed as . -  v, = ~ A N A ,  + ~ B N B ,  
= VANA,  = VANA, 
- 

Using Eq. (8.5-40) in Eq. (8.5-39) yields 

(8.537) 

(8.538) 

(8.539) 

(8.540) 

(8.541) 
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Rearrangement of Eq. (8.541) results in 

Integration of Ekl. (8.542) leads to 

The use of the identity from Eq. (8.535), Le., 
- I 

1 - VACA = VBCB 

simplifies Eq. (8.543) to 

(8.542) 

(8.543) 

(8.544) 

(8.545) 

which is identical with Eq. (8.538). 

Example 8.17 Cyclohexane (A) is di&sing through a 1.5mm thick stagnant 
benzene (B) film at 25OC. If X A ,  = 0.15 and XA,, = 0.05, determine the molar 
flux of cyclohexane under steady conditions. 

Solution 

Physical properties 

pA = 0.779 g/ cm3 
M ~ = 8 4  

pB = 0.879 g/ cm3 
M g = 7 8  

For cyclohexane (d) : 

For benzene (a) 

Analysis 

The molar volumes of species A and t3 are 

- 107.8 cm3/ mol 84 
0.779 

- --- 

- 88.7 cm3/ mol 78 
0.879 

- --- 
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The values of the total molar concentration at z = 0 and z = L are calculated from 
Eq. (8.5-36) as 

1 c, = - 
VB + ( P A  - VB) X A ,  

= 10.9 x mol/ cm3 1 
88.7 + (107.8 - 88.7)(0.15) 

- - 

1 
- - = 11.2 x mol/cm3 

88.7 + (107.8 - 88.7)(0.05) 

Therefore, the use of Eq. 
benzene layer as 

(8.5-38) gives the molar flux of cyclohexane through 

2.09 x 10-5 (11.2 x 10-~)(1- 0.05) = 1.8 
10-7mol~cm2~s 1 - - 

(0.15)(107.8) In [ (10.9 x 10-3)(1 - 0.15) 

8.5.3 

An ideal gas A diffuses at steady-state in the positive z-direction through a flat 
gas film of thickness 6 as shown in Figure 8.37. At z = 6 there is a solid catalytic 
surface at which A undergoes a first-order heterogeneous dimerization reaction 

Diffusion With Heterogeneous Chemical Reaction 

As an engineer, we are interested in the determination of the molar flux of species 
A in the gas film under steady conditions. The gas composition at z = 0, Le., X A ~ ,  

is known. 
The conservation statement for species A, &. (8.41), can be written over a 

differential volume element of thickness Az as 

Dividing Eq. (8.546) by A AI and letting Az -+ 0 gives 

(8.5-46) 

(8.5-47) 

or, 
2- - 0 j NA, = constant (8.5-48) dNA 

dz 
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Figure 8.37 Heterogeneous reaction on a catalyst surface. 

The total molar flux can be calculated from Eq. (8.52) as 

in which the molar average velocity is given by 

* N A ,  + N E ,  v, = 
C 

(8.549) 

(8.550) 

The stoichiometry of the chemical reaction implies that for every 2 moles of A 
diffusing in the positive z-direction, 1 mole of B diffuses back in the negative 
z-direction. Therefore, the relationship between the fluxes can be expressed as 

1 - NA, = - N E ,  (8.551) 2 

The use of Eq. (8.551) in Eq. (8.550) gives 

0.5 NA, 
v; = - (8.552) 

C 

Substitution of Eq. (8.552) into Eq. (8.549) gives 

(8.553) C ~ A B  ~ X A  NA, = - 1 - 0 . 5 ~ ~  dz 
Since NA, is constant, Eq. (8.553) can be rearranged as 

(8.554) 

(8.555) 
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Note that although X A ,  is a known quantity, the mole fraction of species A in 
the gas phase at the catalytic surface, X A ~ ,  is unknown and must be determined 
from the boundary condition. For heterogeneous reactions, the rate of reaction is 
empirically specified as 

at Z = 6 NA,  = kSCA = kSCXA (8.556)  

where IC" is the surface reaction rate constant. Therefore, X A ~  is expressed from 
Eq. (8 .556)  as 

Substitution of Eq. (8.5-57) into Eq. (8 .555)  results in 

(8 5-57) 

(8 .558)  

which is a transcendental equation in NA,. It is interesting to investigate two 
limiting cases of Eq. (8.5-58). 

Case (i) IC" is large 

Since In( 1 - x )  N - x for small values of x, then 

h [ 1 - 0 . 5 ( N ~ , / C k ' ) ]  11 - 0 . 5 ( N ~ , / C k ~ )  (8.559)  

so that Eq. (8.5-58) reduces to 

2 CDAB A2 1 
N A z  = - 6 (m) In ( 1  - 0 . 5 ~ ~ ~ )  

(8.560)  

in which A represents the ratio of the rate of heterogeneous reaction to the rate of 
diffusion and it is given by 

Case (ii) ks = 03 

(8 .561)  

This condition implies instantaneous reaction and Eq. (8 .558)  takes the form 

NA. = - 2 c D A B l n (  1 ) 
6 1 - 0.5 X A ,  

(8.5-62) 

When k" = 00, once species A reaches the catalytic surface, it is immediately 
converted to species B so that X A ~  = 0. Note that Eq. (8 .562)  can also be obtained 
from Eq. (8.5-55) by letting X A ~  = 0. 
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8.5.3.1 Comment 

The molar average velocity is given by Eq. (8.552) and since both NA, and c are 
constants, vz remain constant for 0 5 z 5 6. On the other hand, from Q. (8.5-6) 
the m a s  average velocity is 

v, = 

Expressing NB, in terms of NA, 

v, = 

(8.563) M A N A ,  -t M B N B ,  
P 

by using Eq. (8.551) reduces Eq. (8.563) to 

(8.564) NA, (MA - 0 . 5 M ~ )  
P 

As a result of the dimerization reaction M A  = 0 . 5 M ~  and we get 

v, = 0 (8.565) 

In this specific example, therefore, the mass average velocity can be determined 
on the basis of a solution to a diffusion problem rather than a conservation of 
momentum. 

NOTATION 

A 
a, 
& 
C 

ci 
D 
DAB 
e 
FD 
H 
h 
J* 
k 
IC" 
L 
m 
M 
N 
n 
ni 

area, m2 
catalyst surface area per unit volume, 1/ m 
heat capacity at constant pressure, kJ/ kg. K 
total concentration, kmol/ m3 
concentration of species i, kmol/ m3 
diameter, m 
diffusion coefficient for system A-L3, m2/ s 
total energy flux, W/ m2 
drag force, N 
enthalpy, J; partition coefficient 
heat transfer coefficient, W/ m2. K 
molecular molar flux, kmol/ m2. s 
thermal conductivity, W/ m. K 
surface reaction rate constant 
length, m 
mass flow rate, kg/s 
molecular weight, kg/ kmol 
total molar flux, kmol/ m2. s 
total molar flow rate, kmol/ s 
molar flow rate of species i ,  kmol/ s 
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P 

c2 
4 
R 
R 
T 
t 
U 
V 

21' 

21. 

W 
W 
xi 
A 
rl 
x 
CL 

0 

21 

U 

K 

P 
T i j  
w 

pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/ s 
heat flux, W/m2 
radius, m; resistance, K/ W 
gas constant, J/ mol. K 
temperature, "Cor K 
time, s 
overall heat transfer coefficient, W/ m2. K 
velocity of the plate in Couette flow, m/s; volume, m3 
mass average velocity, m/ s 
molar average velocity, m/ s 
volume average velocity, m/ s 
width, m 
total mass flux, kg/ m2. s 
mole fraction of species i 
difference 
fin efficiency; effectiveness factor 
latent heat of vaporization, J 
viscosity, kg/ m. s 
kinematic viscosity, m2/ s 
total momentum flux, N/ m2 
density, kg/ m3 
shear stress (flux of j - momentum in the i - 
mass fraction 

Overlines 
N per mole 

per unit mass 
- partial molar 

Bracket 

(4 average value of a 

Superscript 

sat saturation 

Subscripts 

A, B 
ch characteristic 
GM geometric mean 
i species in multicomponent systems 
in inlet 
LM log-mean 
mix mixture 

species in binary systems 

direction), N/ m2 



320 CHAPTER 8. STEADY MICROSCOPIC BALANCES WITHOUT GEN. 

Out out 
W wall or surface 
00 free stream 

Dimensionless Numbers 
BiH 
B 1 M  
Nu Nusselt number 
Pr Prandtl number 
Re Reynolds number 
s c  Schmidt number 
Sh Sherwood number 

Biot number for heat transfer 
Biot number for mass transfer 
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PROBLEMS 

8.1 When the ratio of the radius of the inner pipe to that of the outer pipe is 
close to unity, a concentric annulus may be considered to be a thin plate slit and its 
curvature can be neglected. Use this approximation and show that Eqs. (8.1-12) 
and (8.1-15) can be modified as 

mR2V(1 - K ~ )  

2 & =  

to determine the velocity distribution and volumetric flow rate for Couette flow in 
a concentric annulus with inner and outer radii of KR and R, respectively. 

8.2 The composite wall shown below consists of materials A and B with thermal 
conductivities k~ = 10 W/ m. K and kg = 0.8 W/ m. K. If the surface area of the 
wall is 5 m2, determine the interface temperature between A and B. 

I-z 
(Answer: 39 "C) 
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8.3 A spherical tank containing liquid nitrogen at la tm pressure is insulated 
with a material having a thermal conductivity of 1.73 x W/ m. K. The inside 
diameter of the tank is 60 cm, and the insulation thickness is 2.5 cm. Estimate the 
kilograms of nitrogen vaporized per day if the outside surface of the insulation is 
at 21 "C. The normal boiling point of nitrogen is -196 "C and its latent heat of 
vaporization is 200 kJ/ kg. 
(Answer: 7.95 kg/day) 

8.4 For a rectangular fin of Section 8.2.4 the parameters are given as: T, = 
175OC, T, = 260"C, k = 105W/m. K, L = 4cm, W = 30cm, B = 5mm. 

a) Calculate the average heat transfer coefficient and the rate of heat loss through 
the fin surface for A = 0.3,0.6,0.8,1.0,3.0,6.0, and 8.0. 
b) One of your friends claims that as the fin efficiency increases, the process 
becomes more reversible. Do you agree? 

8.5 Show that the mass average velocity for the Stefan diffusion tube experiment, 
Example 8.16, is given by 

v, = M A  M L  DAB In (&) 
where M is the molecular weight of the mixture. Note that this result leads to the 
following interesting conclusions: 

i) The mass average velocity is determined on the basis of a solution to a diffusion 
problem rather than a conservation of momentum. 
ii) No-slip boundary condition at the wall of the tube is violated. 

For a more thorough analysis of the Stefan diffusion tube problem, see Whitaker 
(1991). 

8.6 Repeat the analysis given in Section 8.4.4 for a zero-order reaction in the 
following way: 

a) Show that the concentration distribution is given by 

where 
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b) Plot 0 versus E for A = 1, a, and 4. Show why the solution given by Ea. (1) 
is valid only for A I: a. 
c )  For A > a, only a fraction 4 (0 < 4 < 1) of the surface is available for 
the chemical reaction. Under these circumstances show that the concentration 
distribution is given by 

8.7 Consider a spherical catalyst particle of radius R over which a first-order 
heterogeneous reaction 

A + B  

takes place. The concentration of species A at a distance far away from the catalyst 
particle is CA, . 
a) Show that the concentration distribution is 

CA 

‘Am 
-- 

where A is defined by 

b) Show that the molar rate of consumption of species A, +LA, is given by 

8.8 Consider a spherical carbon particle of initial radius R, surrounded by an 
atmosphere of oxygen. A very rapid heterogeneous reaction 

2c + 0 2  --+ 2 c o  

takes place on the surface of the carbon particle. Show that the time it takes for 
the carbon particle to disappear completely is 

where pc  is the density of carbon. 





Chapter 9 

Steady-State Microscopic 
Balances With Generation 

This chapter is the continuation of Chapter 8 with the addition of the genera- 
tion term in the inventory rate equation. The breakdown of the chapter is the 
same as Chapter 8. Once the governing equations for the velocity, temperature 
or concentration are developed, the physical significance of the terms appearing in 
these equations are explained and the solutions are given in detail. Obtaining the 
macroscopic level design equations by integrating the microscopic level equations 
over the volume of the system is also presented. 

9.1 MOMENTUM TRANSPORT 
For steady transfer of momentum, the inventory rate equation takes the form 

Rate of Rate of ( momentum in ) - ( momentum out 

= 0 (9.1-1) ) + ( momentum generation 
Rate of 

In Section 5.1 it was shown that momentum is generated as a result of forces acting 
on a system, i.e., gravitational and pressure forces. Therefore, EQ. (9.1-1) may also 
be expressed as 

= 0 (9.1-2) Forces acting 
on a system 

Rate of Rate of ( momentum in ) - ( momentum out 

As in Chapter 8, our analysis will again be restricted to cases in which the following 
assumptions hold: 

325 
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1. Incompressible Newtonian fluid. 

2. Onedimensional, fully developed laminar flow, 

3. Constant physical properties. 

9.1.1 Flow Between Parallel Plates 
Consider the flow of a Newtonian fluid between two parallel plates under steady con- 
ditions as shown in Figure 9.1. The pressure gradient is imposed in the z-direction 
while both plates are held stationary. 

I------&+ 

Figure 9.1 Flow between two parallel plates. 

Velocity components are simplified according to Figure 8.2. Since v, = v,(x) 
and v, = vy = 0, Table C.l in Appendix C indicates that the only non-zero shear- 
stress component is T , ~ .  Hence, the components of the total momentum flux are 
given by 

(9.1-3) 

(9.1-4) 
(9.1-5) 

dvz 
TZZ = T,z + ( P V , ) V ,  = T Z Z  = -/l- 

Tyz = Tyz + (PV, )  vy = 0 
Trs = 71% + (PV,) v, = PV,2 

dx 

The pressure, on the other hand, may depend on both x and z. Therefore, it is 
necessary to write the x- and z-components of the equation of motion. 

x-component of the equation of motion 

For a rectangular differential volume element of thickness Ax, length Az and width 
W ,  as shown in Figure 9.1, Eq. (9.1-2) is expressed as 

(PI, - P~,+A,) W AZ + pg W AX AZ = 0 (9.1-6) 
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Dividing Eq. (9.1-6) by W Ax Az and taking the limit as Ax -+ 0 gives 

or, 

+ p g = O  PIx - p [ z + A x  lim 
Ax-0 Ax 

dP 
‘PS 

(9.1-7) 

(9.1-8) 

Note that Eq. (9.1-8) indicates the hydrostatic pressure distribution in the 
x-direction. 

z-component of the equation of motion 

Over the differential volume element of thickness Ax, length Az and width W, Eq. 
(9.1-2) takes the form 

(Tzz~, W A z +  Tz,I,WAZ) - ( ~ ~ z ~ I x + ~ ,  WAX+ T ~ ~ I ~ + A ~  WAz) 

+ (PI, - Pl,+A,)W AX = 0 (9.1-9) 

Dividing Eq. (9.1-9) by Ax Az W and taking the limit as Ax --f 0 and Az -+ 0 
gives 

%rlz - ~zzIz+*x  + lim %zlz - %+I,+*, lim 
AZ+O AZ Ax-& Ax 

or, 
an,, dr, ,  dP - +-+-=o  
dz dx 

(9.1- 11) 

Substitution of Eqs. (9.1-3) and (9.1-5) into Eq. (9.1-11) and noting that dv,/dz = O  
yields 

(9.1-12) 

Since the dependence of P on x is not known, integration of Eq. (9.1-12) with 
respect to x is not possible at the moment. To circumvent this problem, the effects 
of the static pressure and the gravitational force are combined in a single term 
called the modified pressurn, P. According to Eq. (5.1-16), the modified pressure 
for this problem is defined as 

P = P - p g x  (9.1-13) 

so that ap ap 
- PS _ -  -- 

ax a x  
(9.1-14) 
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and 

Combination of Eqs. (9.1-8) and (9.1-14) yields 

(9.1-15) 

(9.1-16) 

which implies that P = P(z)  only. Therefore, the use of Eq. (9.1-15) in Eq. 
(9.1-12) gives 

(9.1-17) &v, d P  p - = -  
dx2 d z  - v  
f(x) f ( x )  

Note that while the rightrside of Eq. (9.1-17) is a function of z only, the left-side 
is dependent only on 5. This is possible if and only if both sides of Eq. (9.1-17) 
are equal to a constant, say A. Hence, 

d P  P* - PL - = A  j A = -  
d z  L (9.1-18) 

where Po and PL are the values of P at z = 0 and z = L, respectively. Substitution 
of Eq. (9.1-18) into Eq. (9.1-17) gives the governing equation for velocity in the 
form 

(9.1-19) 

Integration of Eq. (9.1-19) twice results in 

v, = - - pL x2 + c12 + c, 
2 P L  

(9.1-20) 

where C1 and C2 are integration constants. 
The use of the boundary conditions 

at x = O  v,=O (9.1-21) 

at x = B  v,=O (9.1-22) 
gives the velocity distribution as 

(9.1-23) 

The use of the velocity distribution, Eq. (9.1-23), in Eq. (9.1-3) gives the shear 
stress distribution as 

(9.1-24) 
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The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area, i.e., 

Q = Jd" Jd" vz dzdy (9.1-25) 

Substitution of EQ. (9.1-23) into EQ. (9.1-25) gives the volumetric flow rate in the 
form 

(9.1-26) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

(9.1-27) 

9.1.1.1 Macroscopic balance 

Integration of the governing differential equation, Eq. (9.1-19), over the volume of 
the system gives the macroscopic momentum balance as 

dxdydz (9.1-28) - Jd" Jd" Jd" /I 2 dxdydz = L 
or 

( ~ Z Z  lz=B - ~ Z Z  1z=O) L W = (Po - PL) W B  (9.1-29) 
Y - 

Drag force Pressure and gravitational 
forces 

Note that EQ. (9.1-29) is nothing more than Newton's second law of motion. 
The interaction of the system, i.e., the fluid between the parallel plates, with the 
surroundings is the drag force, FD, on the plates and is given by 

(9.1-30) 

On the other hand, the friction factor is the dimensionless interaction of the 
system with the surroundings and is defined by Eq. (3.1-7), Le., 

FD = A c h K c h ( f )  (9.1-31) 

or, 
(9.1-32) 

Simplification of Eq. (9.1-32) gives 

(9.1-33) 



330 CHAPTER 9. STEADY MICROSCOPIC BALANCES WITH GEN. 

Elimination of (Po - PL) between Eqs. (9.1-27) and (9.1-33) leads to 

(9.1-34) 

For flow in non-circular ducts, the Reynolds number based on the hydraulic equiv- 
alent diameter was defined in Chapter 4 by Eq. (4.537). Since Dh = 2B, the 
Reynolds number is 

Reh = - 2B(VZ)P 
c1 

Therefore, Eq. (9.1-34) takes the final form as 

(9.1-35) 

(9.1-36) 

9.1.2 
Consider a film of liquid falling down a vertical plate under the action of gravity 
as shown in Figure 9.2. Since the liquid is in contact with air, it is necessary to 
consider both phases. Let superscripts L and A represent the liquid and the air, 
respectively. 

Falling Film on a Vertical Plate 

Figure 9.2 Falling film on a vertical plate. 
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For the liquid phase the velocity components are simplified according to Figure 
8.2. Since v, = v , (x )  and vx = vy = 0, Table C.1 in Appendix C indicates that the 
only non-zero shear-stress component is T ~ ~ .  Hence, the components of the total 
momentum flux are given by 

L dv,L (9.1-37) L L L L  L -  L -  
T s e = T x % + ( P  V%)% - T x z - - - P  

T L  yz = 7y% L + (PLVXL) .Y” = 0 

Tz, = T:, + ( p L v f )  v,” = p L  ($) 
(9.1-38) 

(9.1-39) 
L 2 

The pressure, on the other hand, depends only on z. Therefore, only the 
z-component of the equation of motion should be considered. 

For a rectangular differential volume element of thickness Ax, length Az and 
width W ,  as shown in Figure 9.2, Eq. (9.1-2) is expressed as 

( T 2 Z  1, Ax + Tk 1, - ( Tt% I , + &  Ax  + n& [ ,+Ax 

+ (P”1, - PLIZ+,,) W A X  + pLgWAxAz = 0 (9.1-40) 

Dividing each term by W Ax Az and taking the limit as Ax + 0 and Az 4 0 gives 

(9.1-42) 

Substitution of Eqs. (9.1-37) and (9.1-39) into Eq. (9.1-42) and noting that 
bv:/dz = 0 yields 

L W  dPL + p L g  
- P  d22=-- dz 

(9.1-43) 

Now, it is necessary to write down the z-component of the equation of motion 
for the stagnant air. Over a differential volume element of thickness Ax, length 
Az and width W ,  Eq. (9.1-2) is written as 

( pAlz - P ~ ( + + ~ = )  W A X  + pAg w aXaz = o (9.1-44) 

Dividing each term by W Ax Az and taking the limit as AZ + 0 gives 

pAlz  - PAIz+At +PAg = 0 lim 
Ax-0 AZ 

(9.1-45) 

dPA A 
- = p  9 dz 

(9.1-46) 



332 CHAPTER 9. STEADY MICROSCOPIC BALANCES WITH GEN. 

At the liquid-air interface, the jump momentum balance’ indicates that the 
normal and tangential components of the total stress tensor are equal to each 
other, i.e., 

at x = o P’ = p A  for all z (9.1-47) 
at x = o T,”, = 7tz for all z (9.1-48) 

Since both P L  and P A  depend only on z, then 

d P L  d P A  
dz d z  
-- -- 

From Eqs. (9.1-46) and (9.1-49) one can conclude that 

d P L  
dz = PAS - 

Substitution of Eq. (9.1-50) into Eq. (9.1-43) gives 

- ( P L  - P A )  9 L @v,t 
- p  s- 

Since pL >> pA, then p L  - pA M p L  and l3q. (9.1-51) takes the form 

(9.1-49) 

(9.1-50) 

(9.1-51) 

(9.1-52) 

This analysis shows the reason why the pressure term does not appear in the 
equation of motion when a fluid flows under the action of gravity. This point 
is usually overlooked in the literature by simply stating that “free surface + no 
pressure gradient.” 

For simplicity, superscripts in Eq. (9.1-52) will be dropped for the rest of the 
analysis with the understanding that properties are those of the liquid. Therefore, 
the governing equation takes the form 

(9.1-53) 

Integration of Eq. (9.1-53) twice leads to 

The boundary conditions are 

dvz 
dx 

at x = O  - = O  

at x = 6  v z = O  

‘For a thorough discussion on jump balances, see Slattery (1999). 

(9.1-54) 

(9.1-55) 

(9.1-56) 
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Note that Eq. (9.1-55) is a consequence of the jump condition given by Eq. (9.1- 
48). Application of the boundary conditions results in 

(9.1-57) 

The maximum velocity takes place at the liquid-air interface, i.e., at x = 0, as 

(9.1-58) 

The use of the velocity distribution, Eq. (9.1-57), in Eq. (9.1-37) gives the 
shear stress distribution as 

(9.1-59) 

Integration of the velocity profile across the flow area gives the volumetric flow 
rate, i.e., 

Q = 1" i6 v, dxdy  

Substitution of Eq. (9.1-57) into Eq. (9.1-60) yields 

(9.1-60) 

(9.1-61) 

Dividing the volumetric flow rate by the flow area gives the average velocity as 

(9.1-62) 

9.1.2.1 Macroscopic balance 

Integration of the governing equation, Eq. (9.1-53), over the volume of the system 
gives the macroscopic equation as 

- JdL Jd" I" p 2 dxdydz  = I" Jd" l6 PS h d y d z  (9.1-63) 

(9.1-64) 
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9.1.3 Flow in a Circular Tube 
Consider the flow of a Newtonian fluid in a vertical circular pipe under steady con- 
ditions as shown in Figure 9.3. The pressure gradient is imposed in the z-direction. 

E 

Figure 9.3 Flow in a circular pipe. 

Simplification of the velocity components according to Figure 8.4 shows that 
v, = v,(r) and v, = ve = 0. Therefore, from Table C.2 in Appendix C, the only 
non-zero shear stress component is r,, and the components of the total momentum 
flux are given by 

dV, 
T r z  = r r z  + (pv,)  v, = r,, = - p - 

dr 

A,% = 7 2 ,  + (pv,)  v, 

(9.1-65) 

(9.1-66) 
(9.1-67) 

re% = re+ + (pv,)  vg 

The pressure in the pipe depends on z. Therefore, it is necessary to consider only 
the z-component of the equation of motion. 

For a cylindrical differential volume element of thickness AT and length Az, as 
shown in Figure 9.3, Eq. (9.1-2) is expressed as 
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Dividing Eq. (9.1-68) by 21rArAz and taking the limit as AT + 0 and Az -, 0 
gives 

+ Az-0 lim r ( -L'z+Az) + r p g  = 0 (9.1-69) 

(9.1-70) 

Substitution of Eqs. (9.1-65) and (9.1-67) into Eq. (9.1-70) and noting that 

(9.1-71) 

The modified pressure is defined by 

P = P - pgz (9.1-72) 

so that 
dP dP 
dz dz - - PS -- - 

Substitution of Eq. (9.1-73) into Eq. (9.1-71) yields 

(9.1-73) 

(9.1-74) 

Note that while the rightiside of Eq. (9.1-74) is a function of z only, the left-side 
is dependent only on P. This is possible if and only if both sides of Eq. (9.1-74) 
are equal to a constant, say A. Hence, 

dP Po - PL _ -  - A  * A = -  - (9.1-75) 
da L 

where Po and PL axe the values of P at z = 0 and z = L, respectively. Substitution 
of Eq. (9.1-75) into h. (9.1-74) gives the governing equation for velocity as 

I - ~ ~ [ r ( ! 2 ) ] = p o ; p q  

Integration of Eq. (9.1-76) twice leads to 

(9.1-76) 

(9.1-77) 
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where C1 and C2 axe integration constants. 
The center of the tube, i.e., r = 0, is included in the flow domain. However, 

the presence of the term Inr makes v, -+ - 00 as r --f 0. Therefore, a physically 
possible solution exists only if Cl = 0. This condition is usually expressed as “v, is 
finite at r = 0.” Alternatively, the use of the symmetry condition, i.e., dv,/dr = 0 
at r = 0, also leads to C1 = 0. The constant Cz can be evaluated by using the 
no-slip boundary condition on the surface of the tube, Le., 

at r = R  v,=O (9.1-78) 

so that the velocity distribution becomes 

The maximum velocity takes place at the center of the tube, i.e., 

(9.1-79) 

(9.1-80) 

The use of Eq. (9.1-79) in Eq. (9.1-65) gives the shear stress distribution as 

(9.1-81) 

The volumetric flow rate can be determined by integrating the velocity distribution 
over the cross-sectional area, i.e., 

Substitution of Eq. (9.1-79) 

Q = r l R v , r d r & 3  (9.1-82) 

into Eq. (9.1-82) and integration gives 

(9.1-83) 

which is known as the Hagen-Poiseuille law. Dividing the volumetric flow rate by 
the flow area gives the average velocity as 

(9.1-84) 
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9.1.3.1 Macroscopic balance 

Integration of the governing differential equation, Eq. (9.1-76), over the volume of 
the system gives 

- pL)  r drdedz (9.1-85) =J0”1’“6” L 
or, 

T,,I,=R 2nRL = TR2 ( P o  - PL)  (9.1-86) - - 
Drag force Pressure and gravitational 

forces 

The interaction of the system, i.e., the fluid in the tube, with the surroundings 
manifests itself as the drag force, FD, on the wall and is given by 

(9.1-87) 

On the other hand, the dimensionless interaction of the system with the surround- 
ings, i.e., the friction factor, is given by &. (3.1-7), Le., 

or, 
nR2 (Po - 7%) = (27Frn) (9.1-89) 

Expressing the average velocity in terms of the volumetric flow rate by using Eq. 
(9.1-84) reduces Q. (9.1-89) to 

n2D5 (Po - PL) 
(’) = 32 pLQ2 

which is nothing more than Eq. (4.576). 
Elimination of (Po - PL) between Eqs. (9.1-84) and (9.1-89) leads to 

(9.1-90) 

9.1.4 Axial Flow in an Annulus 

(9.1-91) 

Consider the flow of a Newtonian fluid in a vertical concentric annulus under steady 
conditions as shown in Figure 9.4. A constant pressure gradient is imposed in the 
positive z-direction while the inner rod is stationary. 
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*- 

Figure 9.4 Flow in a concentric annulus. 

The development of the velocity distribution follows the same lines for flow in 
a circular tube with the result 

(9.1-92) 

Integration of Eq. (9.1-92) leads to 

In this case, however, r = 0 is not within the flow field. The use of the boundary 
conditions 

at T = R  v,=O 
at T = K R  v z = O  

gives the velocity distribution as 

(9.1-94) 
(9.1-95) 

1 - K2 
(9.1-96) (Po - PL) R2 

4 PL 
VI = 

The use of Eq. (9.1-96) in Eq. (9.1-65) gives the shear stress distribution as 
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The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the annular cross-sectional area, i.e., 

Q = 1'" ll v, T drd6 

Substitution of Q. (9.1-96) into Eq. (9.1-98) and integration gives 

(9.1-98) 

(9.1-99) 1 (1 - .">" 
In IC 

& =  

Dividing the volumetric flow rate by the flow area gives the average velocity as 

(9.1-100) 

9.1.4.1 Macroscopic balance 

Integration of the governing differential equation, Eq. (9.1-92), over the volume of 
the system gives 

T,,~,=R 2nRL - T,z1r=n~27riCRL = 7rR2(1 - fC2) (PO - PL) (9.1-102) 
\ & \  * Y 

Drag force Pressure and gravitational 
forces 

Note that Eq. (9.1-102) is nothing more than Newton's second law of motion. 
The interaction of the system, i.e., the fluid in the concentric annulus, with the 
surroundings is the drag force, FD, on the walls and is given by 

I FD = xR2(1 - K ~ )  (Po - PL) I (9.1-103) 

On the other hand, the friction factor is defined by Eq. (3.1-7) as 

or. 

7rR2(1 - i ~ ~ )  (Po - PL) = [27rR(1+ n)L] (f P(V.)~)  (f) (9.1-105) 
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Elimination of (Po - PL) between Eqs. (9.1-100) and (9.1-105) gives 

(9.1- 106) 

Since Dh = 2R(1 - K ) ,  the Reynolds number based on the hydraulic equivalent 
diameter is 

(9.1-107) 

so that Eq. (9.1-106) becomes 

9.1.4.2 Investigation of the limiting cases 

R Case (i) K t 1 

When the ratio of the radius of the inner pipe to that of the outer pipe is close to 
unity, Le., n --f 1, a concentric annulus may be considered to be a thin-plane slit 
and its curvature can be neglected. Approximation of a concentric annulus as a 
parallel plate requires the width, W, and the length, L, of the plate to be defined 
as 

W=.IrR(l+/C) 
B = R ( 1 -  K )  

(9.1-109) 
(9.1-110) 

Therefore, the product WB3 is equal to 

(9.1-1 11) 
WB3 WB3 = ~ R 4 ( 1 -  ~ ~ ) ( 1 -  K ) ~  + xR4 = 

(1 - K 2 )  (1 - K)2  

so that Eq. (9.1-99) becomes 

Substitution of + = 1 - K into Eq. (9.1-112) gives 

8 P L  +-to $2 + +W-+) 2 - +  1 (Po - PL) WB3 +2 - 2+ + 2 lim [ & =  

(9.1.112) 

(9.1-113) 
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The Taylor series expansion of the term ln(1- $) is 

(9.1-1 14) 
1 1 
2 

In(l-$) = -$-  -$2 - 3+3 - ... 

Using Eq. (9.1-114) in Eq. (9.1-113) and carrying out the divisions yields 

(Po - PL) WB3 
8 P L  

& =  
(9.1-115) 

or 7 

(Po - PL) WB3 lim (- 2 $  - - + ...> 
8 P L  @-O 3 2 & =  

- (Po - PL) WB3 - 
12 p L  (9.1-116) 

Note that Eq. (9.1-116) is equivalent to Eq. (9.1-26). 

W Case ( i i )  K -+ 0 

When the ratio of the radius of the inner pipe to that of the outer pipe is close to 
zero, i.e., K + 0, a concentric annulus may be considered to be a circular pipe of 
radius R. In this case Eq. (9.1-99) becomes 

Since In0 = -00, Eq. (9.1-117) reduces to 

(9.1-117) 

(9.1-118) 

which is identical with Eq. (9.1-83). 

9.1.5 Physical Significance of the Reynolds Number 
The physical significance attributed to the Reynolds number for both laminar and 
turbulent flows is that it is the ratio of the inertial forces to the viscous forces. 
However, examination of the governing equations for fully developed laminar flow: 
( i )  between parallel plates, Eq. (9.1-19), ( i i )  in a circular pipe, Q. (9.1-76), 
and (i i i)  in a concentric annulus, Eq. (9.1-92), indicates that the only forces 
present are the pressure and the viscous forces. Inertial forces do not exist in 
these problems. Since both pressure and viscous forces are kept in the governing 
equation for velocity, they must, more or less, have the same order of magnitude. 
Therefore, the ratio of pressure to viscous forces, which is a dimensionless number, 
has an order of magnitude of unity. 
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On the other hand, the use of ~ ( P ( V ~ ) ~ )  term instead of pressure is not apprG 
priate since this term comes from the Bernoulli equation, which is developed for 
no-friction (or, reversible) flows. 

Therefore, in the case of a fully developed laminar flow, attributing a physical 
significance to the Reynolds number is not correct. For a more thorough discussion 
on the subject, see Bejan (1984). 

9.2 ENERGY TRANSPORT WITHOUT 
CONVECTION 

For steady transport of energy, the inventory rate equation takes the form 

) = o  (9.21) ( Rate of ) - ( Rate of ) + ( Rate of 
energy in energy out energy generation 

As stated in Section 5.2, generation of energy may occur as a result of chemical and 
nuclear reactions, absorption radiation, presence of magnetic fields, and viscous 
dissipation. It is of industrial importance to know the temperature distribution 
resulting from the internal generation of energy because exceeding of the maximum 
allowable temperature may lead to deterioration of the material of construction. 

9.2.1 Conduction in Rectangular Coordinates 
Consider one-dimensional transfer of energy in the z-direction through a plane 
wall of thickness L and surface area A as shown in Figure 9.5. Let ZR be the rate 
of energy generation per unit volume within the wall. In general, R may depend 
on z. 

Fluid B 

t t t  
TB . <hg> 

Figure 9.5 Conduction through a plane wall with generation. 
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l ' k ( T )  dT = - 1' [I' X(u) d ]  dz + CI z + C2 

Since T = T ( z ) ,  Table C.4 in Appendix C indicates that the only non-zero 
energy flux component is e, and it is given by 

(9.2-8) 

(9.2-2) 

For a rectangular volume element of thickness AZ as shown in Figure 9.5, Eq. 
(9.2-1) is expressed as 

q Z l ,  A - qzIr+Ar A + AZ = 0 (9.2-3) 

Dividing each term by AAz and taking the limit as AZ ---f 0 gives 

or 
-- dqz - g 
dz 

(9.2-4) 

(9.2-5) 

Substitution of Eq. (9.2-2) into &. (9.2-5) gives the governing equation for tem- 
perature 8s 

(9.2-6) 

Integration of Eq. (9.2-6) gives 

(9.2-7) 

where u is a dummy variable of integration and C1 is an integration constant. 
Integration of Eq. (9.2-7) once more leads to 

Evaluation of the constants Cl and C2 requires the boundary conditions to be 
specified. The solution of h. (9.28) will be presented for two types of boundary 
conditions, namely, Type I and Type 11. In the case of Type I boundary condi- 
tion, the temperatures at both surfaces are specified. On the other hand, Type I1 
boundary condition implies that while the temperature is specified at one of the 
surfaces, the other surface is subjected to a constant wall heat flux. 

Type I boundary condition 

The solution of Eq. (9.2-8) subject to the boundary conditions 

at z = O  T=T,  

at z = L  T = T L  
(9.2-9) 
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is given by 

k(T) dT = - 1' [I' W(u) d ]  dz STT 
k(T) dT + 6" [I' W(u) du] d z }  (9.2-10) +(r 

Note that when % = 0, Eq. (9.2-10) reduces to Eq. (G) in Table 8.1. Equation 
(9.2-10) may be further simplified depending on whether the thermal conductivity 
and/or energy generation per unit volume are constant. 

Case (i) k =  constant 

In this case Eq. (9.2-10) reduces to 

k (T - To) = - 1" [1' %(u) du] dz 

When W = 0, Eq. (9.2-11) reduces to Q. (H) in Table 8.1. 

Case (ii) k = constant; W = constant 

In this case Eq. (9.2-10) simplifies to 

T = T 0 + x  %L2 [z- z (;)2] - ( T o - T L ) z  z 
(9.2-12) 

The location of the maximum temperature can be obtained from dT/dz = 0 as 

(9.2-13) 

Substitution of Eq. (9.2-13) into Eq. (9.2-12) gives the value of the maximum 
temperature as 

T o  + TL ?R L2 k (To - TL)~ 
+ 2RL2 

Tma=-+- 
2 8k 

(9.2-14) 

The representative temperature profiles depending on the values of To and TL are 
shown in Figure 9.6. 
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Figure 9.6 Representative temperature distributions in a rectangular wall with 
constant generation. 

Type I1 boundary condition 

The solution of Eq. (9.2-8) subject to the boundary conditions 

dT 
at z = O  - k - = q o  

dz (9.2-15) 
at x = L  T = T L  

is given by 

(9.2-16) 

Note that when R = 0, Eq. (9.2-16) reduces to Eq. (G) in Table 8.2. Further 
simplification of Eq. (9.2-16) depending on whether k and/or 8 are constant are 
given below. 

R Case (i) k = constant 

In this case Eq. (9.2-16) reduces to 

k (T - TL) = [lz!R(u)  du] d z  + qoL (1 - i) (9.2-17) 

When !R = 0, Eq. (9.2-17) reduces to Eq. (H) in Table 8.2. 

W Case (ii) k = constant; !R = constant 

In this case Eq. (9,216) reduces to 

?I2 L2 
T=TL+- 2 k  [1- (323 + y (1 - ;) (9.2-18) 
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9.2.1.1 Macroscopic equation 

The integration of the governing equation, Eq. (9.2-6) over the volume of the 
system gives 

- s," I" Jd" 2 (k g) dxdydz = Jd" Jd" 1" Rdxdydz (9.2-19) 

Integration of Eq. (9.2-19) yields 

Net rate of energy out Rate of energy 
generation 

Equation (9.2-20) is simply the macroscopic energy balance under steady conditions 
by considering the plane wall as a system. Note that energy must leave the system 
from at least one of the surfaces to maintain steady conditions. The "net rate of 
energy out" in Eq. (9.2-20) implies the rate of energy leaving the system in excess 
of the rate of energy entering into it. 

It is also possible to make use of Newton's law of cooling to express the rate of 
heat loss from the system. If the heat is lost from both surfaces to the surroundings, 
Eq. (9.2-20) can be written as 

(9.2-21) 

where To and TL are the surface temperatures at z = 0 and z = L, respectively. 

Example 9.1 Energy generation rate as a result of an exothermic reaction is 
1 x 104W/m3 in a 50cm thick wall of thermal conductivity 20Wlm.K. The 
left-face of the wall is insulated while the right-side is held at 45°C by  a coolant. 
Calculate the maximum temperature in the wall under steady conditions. 

Solution 

Let z be the distance measured from the left-face. 
qo = 0 gives the temperature distribution as 

92 L2 T = TL + - [1- (:)'I 
2 k  

1- 
(1 x 104)(0.5)2 [ 

2 (20) 
= 45+ 

Simplification of Eq. (1) leads to 

T = 107.5 - 250z2 

The use of Eq. (9.2-18) with 

Note that d T l d z  = 0 at z = 0. Therefore, the mm'mum temperature occurs at the 
insulated surface and its value is 107.5OC. 
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9.2.2 Conduction in Cylindrical Coordinates 
9.2.2.1 Hollow cylinder 

Consider onedimensional transfer of energy in the r -direction through a hollow 
cylinder of inner and outer radii of R1 and Rz, respectively, as shown in Figure 
9.7. Let W be the rate of energy generation per unit volume within the cylinder. 

T . 
E 

Figure 9.7 Onedimensional conduction through a hollow cylinder with internal 
generation. 

Since T = T(r) ,  Table C.5 in Appendix C indicates that the only non-zero 
energy flux component is e, and it is given by 

(9.2-22) 

For a cylindrical differential volume element of thickness AT as shown in Figure 
9.7, the inventory rate equation for energy, Eq. (9.2-l), is expressed as 

2TL (TQr)I, - 2TL (TQT)lr+A, ~TTATL W = O (9.223) 

Dividing each term by 27rL AT and taking the limit as AT --+ 0 gives 

(9.2-24) 

I d  
r dr - - (rqr) = W (9.2-25) 
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Substitution of Eq. (9.2-22) into Eq. (9.2-25) gives the governing equation for 
temperature as -1 r dr (9.2-26) 

Integration of Eq. (9.2-26) gives 

I C -  dT = - i l r R ( u ) u d u + -  Cl 
dr r (9.2-27) 

where 
Integration of &. (9.2-27) once more leads to 

is a dummy variable of integration and C1 is an integration constant. 

Evaluation of the constants CI and CZ requires the boundary conditions to be 
specified. 

Type I boundary condition 

The solution of Eq. (9.2-28) subject to the boundary conditions 

at r=R1 T=T1 

at r =  R2 T =Tz 
(9.2-29) 

is given by 

+I"' : [lr R(+du] dr (9.2-30) 

Note that when R = 0, Eq. (9.2-30) reduces to Eq. (C) in Table 8.3. Equation 
(9.2-30) may be further simplified depending on whether the thermal conductivity 
and/or energy generation per unit volume are constant. 

Case (i) k = constant 

In this case Eq. (9.2-30) reduces to 

+ 1" [Jd' R(u) udu] dr (9.2-31) 

When ?R = 0, Eq. (9.2-31) simplifies to Eq. (D) in Table 8.3. 
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W Case (ii) k = constant; R = constant 

In this case Eq. (9.2-30) reduces to 

T = T z + S  4k b-(&)2] 
[1- ( $!-)2]} ln(R1IR2) 1n(r'R2) (9.232) 

The location of maximum temperature can be obtained from dT/dr = 0 as 

Type I1 boundary condition 

The solution of Eq. (9.2-28) subject to the boundary conditions 

dT 
dz 

at r = R 2  T = T 2  
(9.2-34) at r = R 1  -k-= 41 

is given by 

k(T)dT = I"' [iF?J?(u)udu] dr STT 
+ [Jo"; W(u) udu - q ~ R l ]  In (e) (9.2-35) 

Note that when R = 0, Eq. (9.2-35) reduces to Eq. (C) in Table 8.4. 

W Case (i) k = constant 

In this case Eq. (9.2-35) reduces to 

k (T - T2) = 1"' f [1'R(u)udu] dr + [iR' W U ) ~  du - qiRi] (&) 
(9.2-36) 

When $2 = 0, Eq. (9.236) simplifies to Eq. (D) in Table 8.4. 
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W Case (ii) k = constant; 8 = constant 

In this case Eq. (9.2-35) simplifies to 

Macroscopic equation 

The integration of the governing equation, Eq. (9.2-26) over the volume of the 
system gives the macroscopic energy balance as 

- 1" 1'" L, R2 ; 1 d (rk $) r drdedz = 1" 1"' L: 8 r  drdedz (9.2-38) 

Integration of Eq. (9.2-38) yields 

(- k g) 2nR2L + ( k  g) R r d r  (9.2-39) 
r=R2 r=R1 

\ + 4 -  

Net rate of energy out Rate of energy 
generation 

Equation (9.2-39) is simply the macroscopic energy balance under steady condition 
by considering the hollow cylinder as a system. 

It is also possible to make use of Newton's law of cooling to express the rate of 
heat loss from the system. If the heat is lost from both surfaces to the surroundings, 
Eq. (9.2-39) can be written as 

(9.2-40) 

where TI and T2 are the surface temperatures at T = RI and r = R2, respectively. 

Example 9.2 A catalytic reaction is being carried out in a packed bed in the 
annular space between two concentric cylinders with inner radius R1 = 1.5 cm and 
outer mdius R2 = 1.8cm. The entire surface of the inner cylinder is insulated. 
The rate of generation of energy per unit volume as a result of a chemical reaction 
is 5 x lo6 W/ m3 and it is uniform throughout the annular reactor. The effective 
thermal conductivity of the bed is 0.5 W/ m. K. If the inner surface temperature is 
measured as 280°C, calculate the temperature of the outer surface. 

Solution 

The temperature distribution is given by Eq. (9.2-37). Since q1 = 0, it reduces to 

T = T 2 + - 1 - ( k ) 2 ] + x  8% 4 k  8G In ($-) 
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The temperature, TI, at T = R1 is given by  

351 

Substitution of the numerical values into Eq. (2) gives 

(5 x 106)(1.8 x 10-2)2 
4 (0.5) 

280 = T2 + 
(5 x 106)(1.5 x 10-2)2 

2 (0.5) + 

9.2.2.2 Solid cylinder 

Consider a solid cylinder of radius R with a constant surface temperature of TR. 
The solution obtained for a hollow cylinder, Eq. (9.2-28) is also valid for this case. 
However, since the temperature must have a finite value at the center, i.e., T = 0, 
then Cl must be zero and the temperature distribution becomes 

k(T)dT= -1'; [I'%(u)udu] dr+Cz (9.2-41) I' 
The use of the boundary condition 

at r = R  T=TR (9.2-42) 

gives the solution in the form 

k(T) dT = 1" f [Jd' %(u) udu] dr 6 
N Case (i) k = constant 

Simplification of E&. (9.2-43) gives 

Case (ii) k = constant; % = constant 

In this case Eq. (9.2-43) simplifies to 

(9.243) 

(9.2-44) 

(9.2-45) 

which implies that the variation of temperature with respect to the radial position 
is parabolic with the maximum temperature at the center of the pipe. 
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Macroscopic equation 

The integration of the governing equation, Eq. (9.2-26) over the volume of the 
system gives the macroscopic energy balance as 

1" 12= 1" Rr drdedz (9.2-46) -LL1'"1 R 1  --z d (rk$)rdrdOdz= 

Integration of Eq. (9.2-46) yields 

(9.2-47) 

Rate of energy out Rate of energy generation 

Equation (9.2-47) is the macroscopic energy balance under steady conditions by 
considering the solid cylinder as a system. It is also possible to make use of New- 
ton's law of cooling to express the rate of heat loss from the system to the sur- 
roundings at T, with an average heat transfer coefficient (h). In this case &. 
(9.2-47) reduces to 

(9.2-48) 
R 

R(h) (TR -T-) = 1 Srdr 

Example 9.3 Rate of heat generation per unit volume, ?Re, during the transmis- 
sion of an electric current through wires is given by 

where I is the current, ke is the electrical conductivity, and R is the mdius of the 
Wire. 

a) Obtain an expression for the digerence between the maximum and the surface 
temperatures of the wire. 
b) Develop a correlation that will pennit the selection of the electric current and the 
wire diameter if the dierence between the maximum and the surface temperatures 
is specified. If the wire mwt carry a larger current, should the wire have a larger 
or smaller diameter? 

Solution 

Assumption 

1. The thennal conductivity and the electrical conductivity of the wire are 
constant. 
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Analysis 

a) The temperature distribution is given by Eq. (9.2-45) as 

where TR is the surface temperature. The maximum temperature occurs at r = 0, 
z.e., 

b) Expressing Re in terms of I and ke gives 

T,,-TR= (-) 1 I" 
4nkke R2 (4)  

Therefore, i f  I increases, R must be increased in order to keep T,, - TR constant. 

Example 9.4 Energy is generated in a cylindrical nuclear fuel element of radius 
RF at a rate of 

R = RO(l + pr2> 

It  is  clad in a material of radius Rc and the outside surface temperature is kept 
constant at To by a coolant. Determine the steady temperature distribution in the 
fuel element. 

Solution 

The temperature distribution within the fuel element can be determined from Eq. 
(9.2-44), i.e., 

kF(TF - Ti) = So 1"' [1'(1+ pu2) u d u ]  dr 

in which the interface temperature Ti at r = RF is not known. To express Ti 
in terms of known quantities, consider the temperature distribution in a cladding. 
Since there is no internal generation within the cladding, the use of Eq. (0) in 
Table 8.3 gives 

(3) 
To - TC - l n ( r / R c )  - 
T o  - Ti l n ( R F / R c )  
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The energy flux at r = RF is continuous, i.e., 

dTF dTc 
dr  dr  

Substitution of Eqs. (2) and (3) into Eq. (4) gives 

- kF - = - k c  - (4) 

Therefore, the temperature distribution given b y  Eq. (2) becomes 

9.2.3 Conduction in Spherical Coordinates 
9.2.3.1 Hollow sphere 

Consider one-dimensional transfer of energy in the r-direction through a hollow 
sphere of inner and outer radii of R1 and R2, respectively, as shown in Figure 9.8. 
Let ?R be the rate of generation per unit volume within the sphere. 

Figure 9.8 
generation. 

Onedimensional conduction through a hollow sphere with internal 

Since T = (r), Table C.6 in Appendix C indicates that the only non-zero energy 
flux component is e, and it is given by 

dT e, = qr = - k - 
d r  

(9.2-49) 
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For a spherical differential volume of thickness Ar as shown in Figure 9.8, the 
inventory rate equation for energy, Eq. (9.2-1)) is expressed as 

47r (r  2 q,.)lr - 47r (r2q,)lr+A, + 47rr2Ar R = 0 (9.2-50) 

Dividing each term by 47rAr and taking the limit as Ar + 0 gives 

or, 

(9.2-51) 

(9.2-52) 

Substitution of h. (9.2-49) into Eq. (9.2-52) gives the governing equation for 
temperature as 

(9.2-53) 

Integration of Eq. (9.2-53) gives 

(9.2-54) 

where u is the dummy variable of integration. Integration of Eq. (9.2-54) once 
more leads to 

(9.2-55) k(T) dT = - Jdr $ [lr R(u) u2 du] dr  - CI + C2 

Evaluation of the constants C1 and C2 requires the boundary conditions to be 
specified. 

Type I boundary condition 

The solution of Eq. (9.2-55) subject to the boundary conditions 

at r =  R1 T=T1 

at r =  R2 T=T2 

is given by 

(9.2-56) 

1 1  

+ 1" -$ [hr R(u) u2 du dr  (9.2-57) 1 
Note that when W = 0, Eq. (9.2-57) reduces to Eq. (C) in Table 8.5. Further 
simplification of Eq. (9.2-57) depends on the functional forms of k and R. 
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W Case (i) k = constant 

In this case EQ. (9.257) reduces to 

1 1  

+ I”” $ [Jdr  ?R(u) u2 du dr (9.2-58) 1 
When ?R = 0, EQ. (9.258) reduces to Eq. (D) in Table 8.5. 

W Case (ii) k = constant; % = constant 

In this case Eq. (9.2-57) simplifies to 

+ - %e!? [) - ( $ ) 2 ]  (9.259) 
6 k  

Type I1 boundary condition 

The solution of EQ. (9.2-55) subject to the boundary conditions 

dT at r = R 1  
d z  

at r = R 2  T = T !  

is given by 

(9.2-60) 

Ra 1 k(T) dT = [lr R(u) u2 d ]  dr 

Note that when 92 = 0, EQ. (9.2-61) reduces to EQ. (C) in Table 8.6. Further 
simplification of Eq. (9.2-61) depends on the functional forms of k and 3. 
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H Case ( 2 )  k = constant 

In this case Eq. (9.2-61) reduces to 

Ic(T - T2) = R2 ;;z 1 [Jd' 8(u)u2 du] dr + [qlR: - 1"' 8(u)u2 du] (1 - ') 
T R2 

(9.2-62) 
Note that when 8 = 0, Eq. (9.2-62) reduces to Eq. (D) in Table 8.6 

Case (ii) k = constant; 8 = constant 

In this case Eq. (9.2-61) simplifies to 

Macroscopic equation 

The integration of the governing equation, Eq. (9.2-53) over the volume of the 
system gives the macroscopic energy balance as 

-I'"Jd"J,, Rz FZ( r2k - Z) r2 sin8drd8dq3 

Integration of Eq. (9.2-64) yields 

Net rate of energy out Rate of energy 
generation 

Equation (9.2-65) is the macroscopic energy balance under steady conditions by 
considering the hollow sphere as a system. 

It is also possible to make use of the Newton's law of cooling to express the rate 
of heat loss from the system. If heat is lost from both surfaces, Eq. (9.2-65) can 
be written as 

(9.266) 

where TI and TZ are the surface temperatures at r = R1 and T = Rz, respectively. 
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9.2.3.2 Solid sphere 

Consider a solid sphere of radius R with a constant surface temperature of TR. 
The solution obtained for a hollow sphere, Eq. (9.2-55) is also valid for this case. 
However, since the temperature must have a finite value at the center, i.e., r = 0, 
then 15'1 must be zero and the temperature distribution becomes 

Jd' k(T) dT = - Jd' $ [Jd' %(u) u2 du] dr + cz (9.2-67) 

The use of the boundary condition 

at r = R  T=TR (9.2-68) 

gives the solution in the form 

k(T)  dT = lR $ [Jd' R(u) u2 du] dr 6 
W Case ( i )  k =  constant 

Simplification of Eq. (9.2-69) gives 

Case ( i i )  k = constant; R = constant 

In this case Eq. (9.2-69) simplifies to 

T=TR+- R R2 [1-(;)'] 
6 k  

(9.2-69) 

(9.2-70) 

(9.2-71) 

which implies that the variation of temperature with respect to the radial position 
is parabolic with the maximum temperature at the center of the sphere. 

Macroscopic equation 

The integration of the governing equation, &. (9.2-53) over the volume of the 
system gives the macroscopic energy balance as 

- 1'" /" 1" $ -$ ( r2k  g) r2 sinBdrdOd4 = 1'" Jd" Jd" R r2 sin 8 drd8d4 

(9.2-72) 
Integration of Eq. (9.2-72) yields 

(-k%) 4 n R 2 = 4 x 1  R Rr'dr 

A- 
(9.2-73) 

Rate of energy out Rate of energy 
generation 
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Equation (9.2-73) is the macroscopic energy balance under steady conditions by 
considering the solid sphere as a system. It is also possible to make use of Newton's 
law of cooling to express the rate of heat loss from the system to the surroundings 
at T, with an average heat transfer coefficient (h). In this case Eq. (9.2-73) 
reduces to 

R 
R2(h) (TR - T,) = Jd !Rr2 dr (9.274) 

Example 9.5 
fission within a spherical reactor of radius R is given as 

Consider Example 3.2 in which energy generation as a result of 

% = !Ro [1- Q 2 ]  

Cooling fluid at a temperature of T, flows over a reactor vith an average heat 
transfer coeficient of (h). Determine the temperature distribution and the rate of 
heat loss from the reactor surface. 

Solution 

The temperature distribution within the reactor can be calculated from Eq. (9.2-70). 
Note that 

R(U) u2 du = So Jd' [1- (#)'I u2 du 

Substitution of Eq. (1) into Eq. (9.2-70) gives 

Evaluation of the integration gives the temperature distribution as 

7!R0R2 X0R2 1 r 2 1 r 4 

60 k 2k [?(E) -i6(d] T = T' f -- - - (3) 

This result, however, contains an unknown quantity TR. Therefore, it is necessary 
to express TR in terms of the known quantities, i.e., T, and (h ) .  

One way of calculating the surface temperature, TR, is to use the macroscopic 
energy balance given by Eq. (9.2-74), Le., 
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Equation (4) gives the surface temperature as 

2 RoR 
TR = T, + - - 

15 (h) 
(5) 

Another way of calculating the surface temperature is to equate Newton’s law of 
cooling and Fourier’s law of heat conduction at the surface of the sphere, i-e., 

(h) (TR -T,) = - k  - ‘ Ir=R 

Prom Eq. (3) 

Substituting Eq. (7) into Eq. (6) and solving for  TR results in Eq. (5). 

quantities is given by 
Therefore, the tempemture distribution within the reactor in t e r n  of the known 

2 R,R 7 %,R2 RoR2 1 r 2 1 r 4 
T = T , + - -  15 (h) 60 k 2 k  [?(d - E ( d ]  (8) 

+---- 

The rate of heat loss can be calculated from Eq. (9.2-73) as 
R 

Qloss = 47r R, 1 [I - ( i)2] r2 dr 

8n 
15 

= - R, R3 (9) 

Note that the calculation of the rate of heat loss does not require the temperature 
distribution to be known. 

9.3 HEAT TRANSFER WITH CONVECTION 
9.3.1 Laminar Flow Forced Convection in a Pipe 
Consider the laminar flow of an incompressible Newtonian fluid in a circular pipe 
under the action of a pressure gradient as shown in Figure 9.9. The velocity 
distribution is given by Eqs. (9.1-79) and (9.1-84) as 

(9.3-1) 

Suppose that the fluid, which is at a uniform temperature of To for z < 0, is 
started to be heated for z > 0 and we want to develop the governing equation for 
temperature. 
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i 
E 

Figure 9.9 Forced convection heat transfer in a pipe. 

In general, T = T(r,  z )  and from Table C.5 in Appendix C, the non-zero energy 
flux components are 

(9.3-2) aT 
e , = - k -  dr 

(9.3-3) aT 
dz 

e ,  = - k -  +(pcpT)v, 

Since there is no generation of energy, Eq. (9.21) simplifies to 

(Rate of energy in) - (Rate of energy out) = 0 (9.3-4) 

For a cylindrical differential volume element of thickness AT and length Az, as 
shown in Figure 9.9, Eq. (9.3-4) is expressed as 

( e,.[, 27rr Az + e , / ,  27rr AT) - 247- + AT) Az + e,I,+px 27rr AT] = 0 
(9.3-5) 

Dividing Eq. (9.3-5) by 27rArA.z and taking the limit as Ar --f 0 and AB ---t 0 
gives 

(9.3-6) 

(9.3-7) 
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Substitution of Eqs. (9.3-2) and (9.3-3) into Eq. (9.3-7) yields 

(9.3-8) d2T 

Convection in - Conduction in 
z-direction r-direction r-direction 

Note that in the z-direction energy is transported both by convection and conduc- 
tion. As stated by Eq. (2.4-8), conduction can be considered negligible with respect 
to convection when PeH >> 1. Under these circumstances, Eq. (9.3-8) reduces to 

(9.3-9) 

As an engineer, we axe interested in the variation of the bulk fluid temperature, 
Tb, rather than the local temperature, T.  For forced convection heat transfer in a 
circular pipe of radius R, the bulk fluid temperature defined by Eq. (4.1-2) takes 
the form I"" Jd" v,T r drd6 

1" v, r drd0 
Tb = (9.3-10) 

Note that while the fluid temperature, T, depends on both the radial and the axial 
coordinates, the bulk temperature, Tb, depends only on the axial direction. 

To determine the governing equation for the bulk temperature, it is necessary 
to integrate Eq. (9.3-9) over the cross-sectional area of the pipe, i.e., 

Since v, # v,(z), the integral on the left-side of Eq. (9.3-11) can be rearranged as 

1'"Jd" v, - E r drd6 = 1'" 1" r drd6 

= 2 d z  ( r l R v , T r d r d 6 )  (9.3-12) 

Substitution of Eq. (9.3-10) into Eq. (9.3-12) yields 

(9.3-13) 
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where ria is the mass flow rate given by 

ria = p(vZ)rR2 (9.3-14) 

On the other hand, since ET/& = 0 as a result of the symmetry condition at 
the center of the tube, the integral on the right-side of Eq. (9.3-11) takes the form 

(9.3-15) 

Substitution of Eqs. (9.3-13) and (9.3-15) into Eq. (9.3-11) gives the governing 
equation for the bulk temperature in the form 

(9.3-16) 

The solution of Eq. (9.3-16) requires the boundary conditions associated with 
the problem to be known. The two most commonly used boundary conditions are 
the constant wall temperature and constant wall heat flux, 

Constant wall temperature 

Constant wall temperature occurs in evaporators and condensers in which phase 
change takes place on one side of the surface. The heat flux at the wall can be 
represented either by Fourier’s law of heat conduction or by Newton’s law of cooling, 
1.e.. 

(9.3-17) 

It is implicitly implied in writing Eq. (9.3-17) that the temperature increases in the 
radial direction. Substitution of Eq. (9.3-17) into EQ. (9.3-16) and rearrangement 
yields 

(9.3-18) 

Since the wall temperature, T,, is constant, integration of Eq. (9.3-18) yields 

mcp In ( Tw - = rD(h) , z  
T w  - T b  

(9.3-19) 

in which (h)” is the average heat transfer coefficient from the entrance to the point 
z defined by 

(9.3-20) (h)” = J ” h d z  
0 

If Eq. (9.3-19) is solved for T b ,  the result is 

(9.3-21) 
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which indicates that the bulk fluid temperature varies exponentially with the axial 
direction as shown in Figure 9.10. 

Z 

Figure 9.10 Variation of the bulk temperature with the axial direction for a 
constant wall temperature. 

Evaluation of Eq. (9.3-19) over the total length, L, of the pipe gives 

where 
l L  (h) = 'i; hdz  

If Eq. (9.3-22) is solved for TboUt, the result is 

(9.3-22) 

(9.3-23) 

(9.3-24) 

Equation (9.3-24) can be expressed in terms of dimensionless numbers with the 
help of Eq. (3.45), i.e., 

The use of Eq. (9.3-25) in Eq. (9.3-24) gives 

(9.3-25) 

(9.3-26) 

As an engineer, we are interested in the rate of heat transferred to the fluid, 

(9.3-27) 

i.e., 

Q = * eP(Tbout - Tbi,) = m e P  [ (Tw - Tbi,) - (Tw - Tb,,,)] 
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Substitution of Eq. (9.3-22) into Eq. (9.3-27) results in 

(9.3-28) 

Note that h. (9.3-28) can be expressed in the form 

which is identical with Eqs. (3.2-7) and (4.529). 

Constant wall heat flux 

Constant wall heat flux type boundary condition is encountered when electrical 
resistance is wrapped around the pipe. Since the heat flux at the wall is constant, 
then 

Substitution of Eq. (9.3-30) into Eq. (9.3-16) gives 

--- - constant dTb TDqw -- 
d.2 mep 

(9.3-30) 

(9.3-31) 

Integration of Eq. (9.3-31) gives the variation of the bulk temperature in the axial 
direction as 

(9.3-32) 

Therefore, the bulk fluid temperature varies linearly in the axial direction as shown 
in Figure 9.11. 

Figure 9.11 
constant wall heat flux. 

Variation of the bulk temperature with the axial direction for a 
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Evaluation of Eq. (9.3-32) over the total length gives the bulk temperature at 
the exit of the pipe as 

(9.3-33) 

The rate of heat transferred to the fluid is given by 

Q = 7i-h eP(TbOut - (9.3-34) 

Q = (nDL)qw (9.3-35) 

Substitution of Eq. (9.3-33) into Eq. (9.3-34) yields 

9.3.1.1 Thermally developed flow 

As stated in Section 8.1, when the fluid velocity is no longer dependent on the axial 
direction z, the flow is said to be hydrodynamically fully developed. In the case of 
heat transfer. if the ratio 

(9.3-36) 

does not vary along the axial direction, then the temperature profile is said to be 
fully developed. 

It is important to note that although the fluid temperature, T ,  bulk fluid tem- 
perature, Tb, and wall temperature, T,, may change along the axial direction, the 
ratio given in Eq. (9.3-36) is independent of the axial coordinate2, i.e., 

Equation (9.3-37) indicates that 

(9.3-37) 

(9.3-38) 

Example 9.6 For a themally developed flow of a fluid with constant physical 
properties, show that the heat transfer coeficient is constant. 

*In the literature, the condition for the thermally developed flow is also given in the form 

Note that 
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Solution 

For a thermally developed flow, the ratio given in Eq. (9.3-36) depends only on the 
radial coordinate T ,  ie . ,  

f (r)  
T - Tb 

T w  - T b  
-= 

Differentiation of Eq. (1) with respect to T gives 

which is valid at all points within the flow field. Evaluation of Eq. (2) at the surface 
of the pipe yields 

= (Tw - T b )  ;i;; E Ir=R df  /r=R 
On the other hand, the heat flm at the wall is expressed as 

Substitution of Eq. (3) into Eq. (4) gives 

(3) 

Example 9.7 For a thermally developed flow, show that the temperature gradient 
in the axial direction, aT/8z, remains constant for a constant wall heat flux. 

Solution 

The heat flux at the wall is given by  

qrlr=R = h (T! - Tb) = constant 

Tw - Tb = constant 

(1) 

(2) 

Since h is constant for a thermally developed flow, Eq. (1) implies that 

or, 

(3) 
dTw dTb -=-. 
dz dz 

Therefore, Eq. (9.3-38) simplifies to 

(4) 
dT dTb dTw 
dz dz  dz 

Since dTbldz is  constant according to Eq. (9.3-31), d T / d z  also remains constant, 
a.e., 

-=-=- 

(5 )  -- dTb -- dTw - -- ?rDqw - constant -- - - 
az dz dz mep 
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9.3.1.2 Nusselt number for a thermally developed flow 

Substitution of J3q. (9.3-1) into Eq. (9.3-9) gives 

ZpGp(v,) [1- (31 = - ,“ - 8”, (YE) (9.3-39) 

It should always be kept in mind that the purpose of solving the above equation for 
temperature distribution is to obtain a correlation to use in the design of heat trans- 
fer equipment, such as, heat exchangers and evaporators. As shown in Chapter 4, 
heat transfer correlations are expressed in terms of the Nusselt number. Therefore, 
Eq. (9.3-39) will be solved for a thermally developed flow for two different types of 
boundary conditions, i.e., constant wall heat flux and constant wall temperature, 
to determine the Nusselt number. 

Constant wall heat flux 

In the case of a constant wall heat flux, as shown in Example 9.7, the temperature 
gradient in the axial direction is constant and expressed in the form 

(9.3-40) 

Since we are interested in the determination of the Nusselt number, it is appropriate 
to express aT/az in terms of the Nusselt number. Note that the Nusselt number 
is given by 

Therefore, Eq. (9.3-40) reduces to 

-- aT Nu(Tw -Tb)k - 
P C P R 2  (VZ) 

Substitution of Eq. (9.3-42) into Eq. (9.3-39) yields 

In terms of the dimensionless variables 

J3q. (9.3-43) takes the form 

(9.3-41) 

(9.3-42) 

(9.3-43) 

(9.3-44) 

(9.3-45) 

(9.3-46) 
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It is important to note that 8 depends only on (or, T ) .  
The boundary conditions associated with Eq. (9.3-46) are 

at < = l  8 =1 
Integration of Eq. (9.3-46) with respect to 5 gives 

t-@= de ( E2 - f ) Nu +Cl 

(9.3-47) 

(9.3-48) 

(9.3-49) 

where C1 is an integration constant. Application of Eq. (9.3-47) indicates that 
CI = 0. Integration of Eq. (9.3-49) once more with respect to < and the use of the 
boundary condition given by Eq. (9.3-48) gives 

(9.3-50) 

On the other hand, the bulk temperature in dimensionless form can be expressed 
as 

L1(l -t2)Wt 

Tw - Tb i1(l-F2)EdE 
- o =  (9.3-51) ob=-- Tb - Tb 

Substitution of Eq. (9.3-50) into Q. (9.3-51) and integration gives the Nusselt 
number as 

NU= - El 
Constant wall temperature 

When the wall temperature is constant, Eq. (9.3-38) 

aT 

(9.3-52) 

indicates that 

(9.3-53) 

The variation of Tb as a function of the axial position can be obtained from Eq. 
(9.3-21) as 

-=- dTb nD(h)z (Tw - T&,) exp [- (-) nD(h), Z] (9.3-54) 
d z  mcp m cp 

" / 

(Tw - T b )  

Since the heat transfer coefficient is constant for a thermally developed flow, Q. 
(9.3-54) becomes 

(9.3-55) dTb T D  h (T, - Tb) - 4 h (T, - Tb) - -- - 
dz m c p  D(vz ) P C P  
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The use of Eq. (9.3-55) in Eq. (9.3-53) yields 

dT 4h(Tw-T) 
a Z  D ( V Z ) P C P  

-- - 

Substitution of Eq. (9.3-56) into Eq. (9.3-39) gives 

(9.3-56) 

In terms of the dimensionless variables defined by Eqs. (9.3-44) and (9.3-45), Eq. 
(9.3-57) becomes 

The boundary conditions associated with Eq. (9.3-58) are 

at < = 1  8 = 1  

u = i - e  

Note that the use of the substitution 

reduces Eqs. (9.3-58)-(9.3-61) to 

- 2 N ~ ( l - - < ~ ) u = - -  ( IdU) 
< 4  z 
du 
d< -' at 5 = 0  -- 

at < = 1  u=O 

(9.3-58) 

(9.3-59) 

(9.3-60) 

(9.3-61) 

(9.3-62) 

(9.3-63) 

(9.3-64) 
Equation (9.3-62) can be solved for Nu by the method of Stodola and Vianello as 
explained in Section B.3.4.1 in Appendix B. 

A reasonable first guess for u which satisfies the boundary conditions is 

(9.3-65) u 1 = l - E  2 

Substitution of Eq. (9.3-65) into the left-side of Eq. (9.3-62) gives 

f 62) =-2Nu(E-2t3+t5)  

The solution of Eq. (9.3-66) is 

(11 - 18t2 +9J4 - 2E6 
36 

U = N U  

(9.3-66) 

(9.3-67) 

f 1 ( E )  
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Therefore, the first approximation to the Nusselt number is 

/ ' a1  - t2I2fl(t) e 
1' ((1 - t2)f,2(t) ds 

Nu(1) = (9.3-68) 

Substitution of f1(() from Eq. (9.3-67) into Q. (9.3-68) and evaluation of the 
integrals gives 

NU = 3.663 (9.3-69) 
On the other hand, the value of the Nusselt number, 8s calculated by Graetz (1883, 
1885) and later independently by Nusselt (1910), is 3.66. Therefore, for a thermally 
developed laminar flow in a circular pipe with constant wall temperature Nu = 3.66 
for all practical purposes. 

Example 9.8 Water flows through a circular pipe of 5 cm internal diameter with 
an average velocity of 0.01 m/s. Determine the length of the pipe to increase the 
water temperature from 20 "C to 60 "C for the following conditions: 

a) Steam condenses on the outer surface of the pipe so as to keep the surface 
temperature at 100 "C. 
b) Electrical wires are wrapped around the outer surface of the pipe to provide a 
constant wall heat flux of 1500 W/ m2. 

Solution 

Physical properties 

The mean bulk temperature is (20 + 60)/2 = 40 "C (313 K). 
p = 992 kg/ m3 
p = 654 x kg/ m. s For water at 313 K : = 632 10-3 wl m. 
Pr = 4.32 

Assumptions 

1. Steady-state conditions prevail. 

2. Flow b hydrodynamically and thermally fully developed. 

Analysis 

The Reynolds number is 

= 758 3 Laminar flow - (0.05) (0.01) (992) - 
654 x 
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a) Since the wall temperature is constant, from Eq. (9.3-26) 

L = -  DRePr In ( ~ ~ ~ ~ ~ t )  

4 Nu 
(0.05)(758)(4.32) 100 - 20 

(100 - 60) = 7*8m 
- - 

4 (3.66) 

b) For a constant heat flux at the wall, the use of Eq. (9.3-33) gives 

= 13.8111 - (60 - 20)(632 x 10-3)(758)(4.32) - 
4 (1500) 

9.3.2 
Viscous heating becomes an important problem during flow of liquids in lubrica- 
tion, viscometry and extrusion. Let us consider Couette flow of a Newtonian fluid 
between two large parallel plates as shown in Figure 9.12. The surfaces at 2 = 0 
and 2 = B are maintained at To and T I ,  respectively, with To > T I .  

Viscous Heating in a Couette Flow 

xL -V 

Figure 9.12 Couette flow with heat transfer. 

Rate of energy generation per unit volume as a result of viscous dissipation is 

(9.3-70) 

given by3 
2 

3The origin of this term comes from -(T : Vv), which represents the irreversible degradation of 
mechanical energy into thermal energy in the equation of energy. For a more detailed discussion 
on the subject, see Bird et. 41. (1960). 
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The velocity distribution for this problem is given by Eq. (8.1-12) as 

21% X 

-=h V (9.3-71) 

The use of Eq. (9.3-71) in Eq. (9.3-70) gives the rate of energy generation per unit 
volume as 

(9.3-72) 

The boundary conditions for the temperature, i.e., 

at x = O  T=To (9.3-73) 

at x = B  T=Tl  (9.3-74) 

suggest that T = T(x) .  Therefore, Table C.4 in Appendix C indicates that the 
only non-zero energy flux component is ex and it is given by 

dT  
dx 

e, = q, = - k - (9.3-75) 

For a rectangular volume element of thickness Ax, as shown in Figure 9.12, &. 
(9.2-1) is expressed as 

Dividing each term by WLAx and taking the limit as Ax ---t 0 gives 

qxlx - 4z1x+*m p v 2  
Ax + - = O  B2 lim 

Ax-0 

or. 

(9.3-76) 

(9.3-77) 

(9.3-78) 

Substitution of Eq. (9.3-75) into Eq. (9.3-78) gives the governing equation for 
temperature as -1 (9.3-79) 

Note that in the development of Eq. (9.3-79) both viscosity and thermal conduc- 
tivity are assumed independent of temperature. The physical significance and the 
order of magnitude of the terms in Eq. (9.3-79) are given in Table 9.1. Therefore, 
the ratio of the viscous dissipation to conduction, which is known as the Brinkman 
number, is given by 

- p V2/B2  Viscous dissipation Br = - - CL v2 (9.3-80) - 
Conduction IC (To - Tl)/B2 (To - Tl) 
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Table 9.1 
Eq. (9.3-79). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

(To - Tl) 
B2 

B2 

Conduction 
&T k- 
dx2  

- @ ’ v2 Viscous dissipation 
B2 

Before solving J3q. (9.3-79)) it is convenient to express the governing equation 
and the boundary conditions in dimensionless form. Introduction of the dimen- 
sionless quantities 

reduces Eqs. (9.3-79), (9.3-73) and (9.3-74) to 

Br 
dc2 - 

(9.3-81) 

(9.3-82) 

(9.3-83) 

at < = O  8 = 1  (9.3-84) 
at < = l  8 = 0  (9.3-85) 

Integration of Eq. (9.3-83) twice gives 

Br 
2 e = - - t2 + cl ( + c2 (9.3-86) 

Application of the boundary conditions, Eqs. (9.3-84) and (9.3-85)) gives the solu- 
tion as 

(9.3-87) 

Note that when Br = 0, Le., no viscous dissipation, EQ. (9.3-87) reduces to J3q. 
(8.3-10). The variation of e as a function of ( with Br as a parameter is shown in 
Figure 9.13. 

In engineering calculations, it is more appropriate to express the solution in 
terms of the Nusselt number. Calculation of the Nusselt number, on the other 
hand, requires the evaluation of the bulk temperature defined by 

€3 

l w p z T d z d y  1 vz T d x  
Tb = - - (9.3-88) 1” la v z  dXdY Jd” Vz dX 
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Figure 9.13 Variation of 8 as a function of with Br as a parameter. 

In dimensionless form, Eq. (9.3-88) becomes 

f l  

where 

Jo 

Substitution of Eqs. (9.3-71) and (9.3-87) into Eq. (9.3-89) gives 

Calculation of the Nusselt number for the bottom plate 

The heat flux at the bottom plate is expressed as 

Therefore, the Nusselt number becomes 

(9.3-89) 

(9.3-90) 

(9.3-91) 

(9.3-92) 

(9.3-93) 



376 CHAPTER 9. STEADY MICROSCOPIC BALANCES WITH GEN. 

Note that the term 2B in the definition of the Nusselt number represents the 
hydraulic equivalent diameter for parallel plates. In dimensionless form Eq. (9.3- 
93) becomes 

2 (de /w€=o Nu, = 
6 b  - 1 

(9.3-94) 

The use of Eq. (9.3-87) in Eq. (9.3-94) gives 

(9.3-95) 

Note that Nu, takes the following values depending on the value of Br : 

0 B r = 2  
< O  2 < B r < 4  
00 B r = 4  

(9.3-96) 

When Br = 2, the temperature gradient at the lower plate is zero, i.e., adiabatic 
surface. When 2 < Br < 4, as can be seen from Figure 9.13, temperature reaches a 
maximum within the flow field. For example, for Br = 3, 0 reaches the maximum 
value of 1.042 at [ = 0.167 and heat transfer takes place from the fluid to the lower 
plate. When Br = 4, = 1 from Eq. (9.3-91) and, as a result of very high viscous 
dissipation, Tb becomes uniform at the value of To. Since the driving force, Le., 
To - Tb, is zero, Nu, is undefined under these circumstances. 

Calculation of the Nusselt number for the upper plate 

The heat flux at the upper plate is 

Therefore, the Nusselt number becomes 

- _  2 (de/dt),=l - 
o b  

Substitution of Eq. (9.3-87) into Eq. (9.3-98) gives 

(9.3-97) 

(9.3-98) 

(9.3-99) 
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9.4 MASS TRANSFER WITHOUT 
CONVECTION 

Under steady conditions) the conservation statement for species A is expressed by 

= 0 (9.41) 

In this section we restrict our analysis to c m  in which convection is negligible 
and mass transfer takes place mainly by diffusion. 

) Rate of Rate of ( species A in ) - ( s p e E 7 i L u t  ) + ( species A generation 

9.4.1 Diffusion in a Liquid With Homogeneous Reaction 
Gas A dissolves in liquid 8 and diffuses into the liquid phase as shown in Figure 
9.14. As it diffuses) species A undergoes an irreversible chemical reaction with 
species B to form AB, i.e., 

The rate of reaction is expressed by 

A + B + A B  

r = k c A  

We are interested in the determination of concentration distribution within the 
liquid phase and the rate of depletion of species A. 

Figure 9.14 Diffusion and reaction in a liquid. 

The problem will be analyzed with the following assumptions: 

1. Steady-state conditions prevail. 

2. The convective flux is negligible with respect to the molecular flux, i.e., 
v; 2( 0. 

3. The total concentration is constant, i.e., 
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4. The concentration of dZ3 does not interfere with the diffusion of A through 
f?, i.e., A molecules, for the most part, hit molecules l? and hardly ever hit 
molecules AB. This is known as the pseudo-binary behavior. 

Since CA = C A ( Z ) ,  Table C.8 in Appendix C indicates that the only non-zero 
molar flux component is NA. and it is given by 

(9.42) 

For a differential volume element of thickness A2, as shown in Figure 9.14, Q. 
(9.41) is expressed as 

NA, 1 %  A - NA, lz+Az A + %A A Az = 0 (9.43) 

Dividing Eq. (9.43) by A A z  and taking the limit as Az + 0 gives 

(9.44) 

(9.45) 

The use of Eq. (5.3-26) gives the rate of depletion of species A per unit volume as 

%A=-kCA (9.46) 

Substitution of Eqs. (9.42) and (9.4-6) into Eq. (9.45) yields 

The boundary conditions associated with the problem 

at z = 0 CA =CA,  

at z = L  -- dCA - 0  
dz 

(9.47) 

are 

(9.48) 

(9.49) 

Henry’s law. The boundary The value of CA, in Eq. (9.48) can be determined from 
condition given by Eq. (9.49) indicates that since species A cannot diffuse through 
the bottom of the container, i.e., impermeable wall, then, the molar flux and the 
concentration gradient of species A are zero. 

The physical significance and the order of magnitude of the terms in Eq. (9.47) 
are given in Table 9.2. Therefore, the ratio of the rate of reaction to the rate of 
diffusion is given by 

IccAo - k L2 Rate of reaction 
Rate of diffusion DABCAo/L2 DAB 

- -- - (9.410) 
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Table 9.2 The physical significance and the order of magnitude of the terms in 
Eq. (9.47). 

Term Physical Significance Order of Magnitude 

CAO 
-&T & Rate of diffusion DAB ~2 
CA Rate of reaction k CA, 

and the Thiele modulus, A, is defined by 

A = J""' 
DAB 

Introduction of the dimensionless quantities 

CA e = -  
CAO 

z 
E = ,  

reduces Eqs. (9.47)-(9.49) to the form 

-- &e A20 
e2 - 

(9.411) 

(9.412) 

(9.413) 

(9.414) 

at E = O  0 = 1  (9 A-15) 

(9.416) 

Note that Eqs. (9.414)-(9.416) are exactly equivalent to Eqs. (8.285)-(8.287). 
Therefore, the solution is 

(9.417) 

It is interesting to observe how the Thiele modulus affects the concentration distri- 
bution. Figure 9.15 shows variation of 8 as a function of E with A being a parameter. 
Since the Thiele modulus indicates the rate of reaction with respect to the rate of 
diffusion, A = 0 implies no chemical reaction and hence, 9 = 1 (CA = CA,) for all 
5. Therefore, for very small values of A, 0 is almost unity throughout the liquid. 
On the other hand, for large values of A, i.e., rate of reaction >> rate of diffusion, 
as soon as species A enters the liquid phase, it undergoes a homogeneous reaction 
with species B. As a result, species A is depleted before it reaches the bottom of 
the container. Note that the slope of the tangent to the curve drawn at 5 = 1 has 
a zero slope, i.e., parallel to the 5-axis. 
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Figure 9.15 Variation of 9 as a function of < with A being a parameter. 

9.4.1.1 Macroscopic equation 

Integration of the microscopic level equations over the volume of the system gives 
the equations at the macroscopic level. Integration of Eq. (9.47) over the volume 
of the system gives 

Carrying out the integrations yields 

L 
dCA = n R 2 k l  CAdZ (9.419) 

( - D A B  TIz=.>, 
1 - 

Rate of moles of species A 
entering into the liquid 

Rate of depletion of species A 
by homogeneous ehem. rxn. 

Note that Eq. (9.419) is the macroscopic inventory rate equation for species A by 
considering the liquid in the tank as a system. Substitution of Eq. (9.417) into 
Eq. (9.419) gives the molar rate of depletion of species A, 7 i ~ ,  as 

(9.420) 
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9.4.2 Diffusion in a Spherical Particle With Homogeneous 
Reaction 

Consider a homogeneous spherical aggregate of bacteria of radius R as shown in 
Figure 9.16. Species A diffuses into a bacteria and undergoes an irreversible first- 
order reaction. The concentration of species A at the surface of the bacteria, C A ~  is 
known. We want to determine the rate of consumption of species A. The problem 
will be analyzed with the following assumptions: 

1. Steady-state conditions prevail. 

2. Convective flux is negligible with respect to the molecular flux, i.e., v,* II 0. 

3. The total concentration is constant. 

Figure 9.16 Diffusion and homogeneous reaction inside a spherical particle. 

Since CA = CA(?‘), Table C.9 in Appendix C indicates that the only non-zero 
molar flux component is NA, and it is given by 

(9.421) dCA NA, = Jir = --DAB - dr 

For a spherical differential volume element of thickness AT, as shown in Figure 
9.16, Eq. (9.41) is expressed in the form 

NA, 1,. 47w2 - NA,I,.+A, 4747- +  AT)^ + 47rr2Ar %A = 0 (9.422) 

Dividing Eq. (9.422) by 47rAr and taking the limit as Ar + 0 gives 

or, 
(9.424) - d(r2NAr)  + ,.2 %A = 

dr 
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The use of Eq. (5.3-26) gives the rate of depletion of species A per unit volume as 

?J?A=-kCA (9.425) 

Substitution of Eqs. (9.421) and (9.425) into Eq. (9.424) gives 

(9.426) 

in which the diffusion coefficient is considered constant. The boundary conditions 
associated with Eq. (9.426) are 

dCA 

dr 
at r=O - = O  (9.427) 

at r =  R C A = C A ~  (9.428) 

The physical significance and the order of magnitude of the terms in Eq. (9.426) 
are given in Table 9.3. 

Table 9.3 The physical significance and the order of magnitude of the terms in 
Eq. (9.426). 

Term Physical Significance Order of Magnitude 

C A R  Rate of diffusion DAB -j-g DAB d -- 
T~ dr  (T2 9) 

k CA Rate of reaction k CAR 

Therefore, the ratio of the rate of reaction to the rate of diffusion is given by 

(9.429) k R2 Rate of reaction 
Rate of diffusion DAB C A ~ / R ~  VAB 

=- - k CAR - 

and the Thiele modulus, A, is defined by 

Introduction of the dimensionless quantities 

CA 

C A R  
e=- 

(9.430) 

(9.431) 

(9.432) 
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reduces Eqs. (9.426)-(9.428) to 

- - ( F " - ) - A 2 8 = 0  1 d d8 
E 2 4  4 (9.433) 

(9.434) 

at ( = 1  8 = 1  (9.435) 
Problems in spherical coordinates are converted to rectangular coordinates by 

the use of the following transformation 

From Eq. (9.436), note that 

Substitution of Eqs. (9.436) and (9.439) into Eq. (9.433) yields 

(9.436) 

(9.437) 

(9.438) 

(9.439) 

(9.440) 

On the other hand, the boundary conditions, Eqs. (9.434) and (9.435), become 

at (=0 u=O (9.441) 

at ( = 1  u = l  

The solution of Eq. (9.440) is 
(9.442) 

8 = KI sinh(A() + K2 cosh(A() (9.443) 

where Kl and Kz are constants. Application of the boundary conditions, Eqs. 
(9.441) and (9.442), gives the solution as 

sinh(A5) 
sinh A 21= 

or, 

(9.444) 

(9.445) 
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9.4.2.1 Macroscopic equation 

Integration of the governing differential equation, Eq. (9.426), over the spherical 
aggregate of bacteria gives 

1'" 1" T2 DAB dr d (r2 2) r2 sin6drded4 

= [ 6" 1" k  CAT^ sin 6 drd6d4 (9.446) 

Carrying out the integrations yields 

(9.447) 

Rate of moles of species A 
entering into the bacteria 

Rate of consumption of species A 
by homogeneous chem. rxn. 

Substitution of Eq. (9.445) into Eq. (9.447) gives the molar rate of consumption 
of species A, jl~, as 

[ h ~  = - ~ ? ~ R D A B  C A ~  (1 -htanhh)  1 (9.448) 

The minus sign in Eq. (9.448) indicates that the flux is in the negative r-direction, 
i.e., towards the center of the sphere. 

9.5 MASS TRANSFER WITH CONVECTION 

9.5.1 
Consider the laminar flow of an incompressible Newtonian liquid (23) in a circular 
pipe under the action of a pressure gradient as shown in Figure 9.17. The velocity 
distribution is given by Eqs. (9.1-79) and (9.1-84) as 

Laminar Forced Convection in a Pipe 

(9.51) 

Suppose that the liquid has a uniform species d concentration of CA, for z < 0. For 
z > 0, species A concentration starts to change as a function of r and a as a result 
of mass transfer from the walls of the pipe. We want to develop the governing 
equation for species d concentration. Liquid viscosity is assumed to be unaffected 
by mass transfer. 
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From Table (3.8 in Appendix C, the non-zero mass flux components for species 
A axe 

(9.52) dWA 
WA, = - PDAB - a?. 

az 
WA. = - p D A B  - d W A  +PA"% (9.53) 

For a dilute liquid solution, the total density is almost constant and Eqs. (9.52) 
and (9.53) become 

+A 
WA. = - DAB - + P A V ~  dz 

(9.54) 

(9.55) 

Dividing Eqs. (9.54) and (9.55) by the molecular weight of species A, M A ,  gives 

(9.56) 

(9.57) dCA 

a2 NA. = -DAB - + CAV, 

Since there is no generation of species A, Eq. (9.41) simplifies to 

) = o  ( species A in ) - ( species A out 
Rate of Rate of (9.58) 
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For a cylindrical differential volume element of thickness AT and length Az, as 
shown in Figure 9.17, Eq. (9.58) is expressed as 

( NA, I ,. 27rr AZ + NA, I 27rr AT) 
- [ NA, 2 4 ~  + AT) AZ + NA, lz+Az 27r~ AT] = 0 (9.59) 

Dividing Eq. (9.59) by 27rArAz and taking the limit as AT 4 0 and Az 4 0 
gives 

(9.511) 

Substitution of Eqs. (9.56) and (9.57) into Eq. (9.511) yields 

(9.512) DAB a 

Note that in the z-direction mass of species A is transported both by convection 
and diffusion. As stated by Eq. (2.48), diffusion can be considered negligible with 
respect to convection when P a  >> 1. Under these circumstances, EQ. (9.512) 
reduces to 

(9.513) 

A s  an engineer, we are interested in the variation of the bulk concentration 
of species d, C A ~ ,  rather than the local concentration, CA. For forced convection 
mass transfer in a circular pipe of radius R, the bulk concentration defined by Eq. 
(4.1-3) takes the form LzZ 1" V,CA T drd6 

I'" 1" vz r drd9 
CAb = (9.514) 

In general, the concentration of species d, CA, may depend on both the radial and 
axial coordinates. However, the bulk concentration of species d, C A ~ ,  depends only 
on the axial direction. 

To determine the governing equation for the bulk concentration of species A, it 
is necessary to integrate Eq. (9.513) over the cross-sectional area of the tube, i.e., 
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Since v, # v,(z), the integral on the left-side of Eq. (9.515) can be rearranged as 

Substitution of Eq. (9.514) into Eq. (9.516) yields 

where Q is the volumetric flow rate. 
On the other hand, since ~ C A / ~ T  = 

(9.517) 

0 as a result of the symmetry condition at 
the center of the tube, the integral on the right-side of Eq. (9.515) takes the form 

(9.518) 

Substitution of Eqs. (9.5-17) and (9.518) into Eq. (9.515) gives the governing 
equation for the bulk concentration in the form 

(9.519) 

The solution of Eq. (9.519) requires the boundary conditions associated with the 
problem to be known. 

Constant wall concentration 

If the inner surface of the pipe is coated with species A, the molar flux of species 
A on the surface can be represented by 

(9.520) 

It is implicitly implied in writing Eq. (9.520) that the concentration increases in 
the radial direction. Substitution of E'q. (9.520) into Eq. (9.519) and rearrange- 
ment yields 

(9.521) dCAb = TD I' kc dz 
CAW - CAb 



388 CHAPTER 9. STEADY MICROSCOPIC BALANCES WITH GEN. 

Since the wall concentration, CA, , is constant, integration of Eq. (9.5-21) yields 

(9.522) 

in which (kc)z is the average mass transfer coefficient from the entrance to the 
point z defined by 

(kc) ,  = 1’ kc dz (9.5-23) 
0 

If Eq. (9.522) is solved for C A ~ ,  the result is 

(9.524) 

which indicates that the bulk concentration of species A varies exponentially with 
the axial direction as shown in Figure 9.18. 

Z 

Figure 9.18 Variation of the bulk concentration of species A with the axial 
direction for a constant wall concentration. 

Evaluation of Eq. (9.5-22) over the total length, L, of the pipe gives 

where 

If Eq. (9.525) is solved for C A ~ ~ ~ ~ ,  the result is 

(9.525) 

(9.526) 
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Equation (9.5-27) can be expressed in terms of dimensionless numbers with the 
help of Eq. (3.4-6). The result is 

Sh ( k c )  StM = - -- - 
ReSc (vz) 

The use of Eq. (9.528) in Eq. (9.527) gives 

(9.528) 

(9.529) 

As an engineer, we are interested in the rate of moles of species A transferred 
to the fluid, i.e., 

Substitution of Eq. (9.5-25) into Eq. (9.530) results in 

r 1 

Note that Eq. (9.531) can be expressed in the form 

n A  = A M ( ( I C , ) ( A C A ) c h  = ( r D L ) ( k c )  ( A C A ) L M  

which is identical with Eqs. (3.3-7) and (4.5-34). 

(9.531) 

(9.532) 

Constant wall mass flux 

Consider a circular pipe with a porous wall. If species A were forced through the 
porous wall at a specified rate per unit area, then the molar flux of species A on 
the pipe surface remains constant, i.e., 

N A ~ ( ~ = ~  = DAB = NA, = constant 

Substitution of Eq. (9.533) into Eq. (9.519) gives 

(9.533) 

(9.534) 
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T ~ A  = (TDL)NA, 

Integration of Eq. (9.5-34) gives the variation of the bulk concentration of species 
A in the axial direction as 

(9.538) 

(9.535) 

Therefore, the bulk concentration of species A varies linearly in the axial direction 
as shown in Figure 9.19. 

Z 

Figure 9.19 Variation of the bulk concentration of species A with the axial 
direction for a constant wall heat flux. 

Evaluation of Q. (9.535) over the total length gives the bulk concentration of 
species A at the exit of the pipe as 

- 4 NAwL 
- + 'DAB Re Sc 

The rate of moles of species A transferred is given by 

n A  = (CAbo,t - CAbi, 1 
Substitution of &. (9.536) into Eq. (9.537) yields 

(9.536) 

(9.537) 

9.5.1.1 Fully developed concentration profile 

If the ratio 
(9.539) 

does not vary along the axial direction, then the concentration profile is said to be 
fully developed. 
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It is important to note that although the local concentration, CA, the bulk 
concentration, C A ~ ,  and the wall concentration, CA,, may change along the axial 
direction, the ratio given in Eq. (9.539) is independent of the axial coordinate4, 
i.e., 

(9.540) 

Equation (9.540) indicates that 

Example 9.10 Consider the flow of a fluid with constant physical properties. 
Show that the mass transfer coeficient is constant when the concentration profile 
is fully developed. 

Solution 

For a fu l ly  developed concentration profile, the ratio given in Eq. (9.5-39) depends 
only on the radial coordinate r ,  i.e., 

C A  - cAb 
= f ( r )  - cAb 

Differentiation of Eq. (1) with respect to T gives 

which is valid at all points within the flow field. Evaluation of Eq. (2) at the surface 

On the other hand, the molar flux of species A at the pipe surface i s  expressed as 

41n the literature, the condition for the f i l l y  developed concentration profile is also given in 
the form 

Note that 
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Substitution of Eq. (3) into Eq. (4) gives 

Example 9.11 When the concentration profile is fully developed, show that the 
concentration gradient in the uxial direction, &A/&, remains constant for a con- 
stant wall mass flux. 

Solution 

The molar flux of species A at the surface of the pipe is given by  

NA, I r = ~  = kc (CAW - C A I )  = Constant 

CAW - C A I  = constant 

(1) 

(2)  

Since kc is constant for a fully developed concentration profile, Eq. (I) implies that 

Therefore, Eq. (9.5-41) simplifies to 

Since dcAbldz is constant according to Eq. (9.5-34), 
z-e., 

also remains constant, 

9.5.1.2 Sherwood number for a fully developed concentration profile 

Substitution of Eq. (9.51) into Eq. (9.513) gives 

2(v,) [1- (32] 2 = - v;B - ; (+) (9.5-42) 

It should always be kept in mind that the purpose of solving the above equation 
for concentration distribution is to obtain a correlation to calculate the number of 
moles of species A transferred between the phases. As shown in Chapter 4, mass 
transfer correlations are expressed in terms of the Sherwood number. Therefore, 
Eq. (9.5-42) will be solved €or a fully developed concentration profile for two 
different types of boundary conditions, i.e., constant wall mass flux and constant 
wall concentration, to determine the Sherwood number. 
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Constant wall mass flux 

As shown in Example 9.11, in the case of a constant wall mass flux, the concentra- 
tion gradient in the axial direction is constant and expressed in the form 

(9.543) 

Since we are interested in the determination of the Sherwood number, it is a p  
propriate to express &A/& in terms of the Sherwood number. Note that the 
Sherwood number is given by 

Therefore, Eq. (9.543) reduces to 

bcA Sh (CAW - ‘Ab) D A B  -- - 
8% R2(VZ) 

Substitution of Eq. (9.545) into Eq. (9.542) yields 

In terms of the dimensionless variables 

(9.544) 

(9.545) 

(9.5-46) 

(9.547) 

(9.548) 
7- [ = -  
R 

l3q. (9.5-46) takes the form 

It is important to note that 8 depends only on [ (or, r ) .  
The boundary conditions associated with Eq. (9.549) are 

(9.549) 

(9.550) 

at < = 1  8 = 1  (9.551) 
Note that EQs.(9.549)-(9.551) are identical with Eqs. (9.3-46)-(9.3-48) with only 
exception that Nu is replaced by Sh . Therefore, the solution is 

(9.552) Sh 
8 8 = 1 - - (3 -4t2+S4) 
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On the other hand, the bulk concentration in dimensionless form can be expressed 
as 

= o =  (9.553) CAb - CAb eb = 

CAW - CAb l ( l - C % d t  

Substitution of Eq. (9.552) into Eq. (9.553) gives the Sherwood number as 

Constant wall concentration 

When the wall concentration is constant, Eq. ( 9 . 5 4 1 )  indicates that 

& = ( CAW - CA ) - dCAb 

a2 CAW - cAb d z  

(9.554) 

(9.555) 

The variation of C A ~  as a function of the axial position can be obtained from Eq. 
(9.524) as 

-,At, 

Since the mass transfer coefficient is constant for a fully developed concentration 
profile, Eq. (9.556) becomes 

dCAb ~ D ~ ( c A ~  - cAb)  - 4 h ( c A w  - cAb) - -- - 
dz Q D ( V Z >  

The use of Eq. (9.557) in Eq. (9.555) yields 

&A ~ ~ C ( C A ~  - C A )  -- - 
az D(V%> 

Substitution of Eq. (9.5-58) into Eq. (9.542) gives 

(9.557) 

(9.558) 

(9.559) 

In terms of the dimensionless variables defined by Eqs. (9.547) and (9.548), Eq. 
(9.559) becomes 

(9.560) 
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The boundary conditions associated with Eq. (9.560) are 

at < = l  0 = 1  

u = 1 - 8  
The use of the substitution 

reduces Eqs. (9.5-60)-(9.562) to 

(9.561) 

(9.5-62) 

(9.563) 

(9.5-64) 

(9.5-65) 

at [ = l  u=O (9.5-66) 
Equation (9.3-61) can be solved for Sh by the method of Stodola and Vianello w 
explained in Section B.3.4.1 in Appendix B. 

A reasonable fist guess for u which satisfies the boundary conditions is 

UI = 1 - (2 (9.567) 

Substitution of Eq. (9.5-67) into the left-side of Eq. (9.5-64) gives 

-$ ((g) =-2Sh((-2s3+s5)  

The solution of Eq. (9.5-68) is 

(11 - 18J2 + 9c4 - 2E6 
36 u = Sh 

(9.568) 

(9.5-69) 

f l i 0  

Therefore, the first approximation to the Sherwood number is 

I’ s (1 - e2)2.fi(E) de 
I’ s (1 - s 2 ) m  4 

Sh(l) = (9.5-70) 

Substitution of fi(<) from Eq. (9.5-69) into Eq. (9.570) and evaluation of the 
integrals gives 

Sh = 3.663 (9.5-71) 
On the other hand, the value of the Sherwood number, as calculated by Graetz 
(1883, 1885) and Nusselt (1910), is 3.66. Therefore, for a fully developed concen- 
tration profile in a circular pipe with a constant wall concentration Sh = 3.66 for 
all practical purposes. 
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9.5.1.3 Sherwood number for a fully developed velocity profile 

For water flowing in a circular pipe of diameter D at a Reynolds number of 100 
and at a temperature of 20°C, Skelland (1974) calculated the length of the tube, 
L, required for the velocity, temperature and concentration distributions to reach 
a fully developed profile as 

fully developed velocity profile 
L =  3 5 0  fully developed temperature profile (9.572) ("" 6000 D fully developed concentration profile 

Therefore, a fully developed concentration profile is generally not attained for fluids 
with high Schmidt number and the use of Eqs. (9.554) and (9.571) may lead to 
erroneous results. 

When the velocity profile is fully developed, it is recommended to use the fol- 
lowing semi-empirical correlations suggested by Hausen (1943): 

CAW = constant (9.573) 
0.668 [(DIL) ReSc] 

1 + 0.04 [(D/L) R ~ S C ] ~ ' ~  
Sh = 3.66 + 

NA, = constant (9.574) 
0.023 [ (D/L)  Re Sc] 

1 f 0.0012 [(DIL) Re Sc] 
Sh = 4.36 + 

In the calculation of the mass transfer rates by the use of Eqs. (9.5-73) and (9.5-74), 
the appropriate driving force is the log-mean concentration difference. 

Example 9.12 Pure water at 25°C flows through a smooth metal pipe of 6cm 
internal diameter with an average velocity of 1.5 x m/ s. Once the f i l ly  de- 
veloped velocity profile is established, the metal pipe is replaced by  a pipe, cast from 
benzoic acid, of the same inside diameter. If the length of the pipe made of a ben- 
zoic acid is 2m, calculate the concentration of benzoic acid in water at the exit of 
the pipe. 

Solution 

Physical properties 

From Example 4.8: 

For water (B) at 25 "C (298 K) : 

sc  = 737 

Saturntion solubility of benzoic acid (A) in water = 3.412 kg/ m3 

p = 1000 kg/ m3 
p = 892 x kg/ m. s { D A B  = 1.21 x m2/s 
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Analysis 

The Reynolds number is 

Re=- D(V%)P 
CL 

= 101 + Laminar flaw (1) 
- (6 x 10-2)(1.5 x 10-3)(1000) - 

892 x 
Note that the t e r n  ( D / L )  Re Sc becomes 

(+&=( ) (101)(737) = 2233 

Since the concentration at the surface of the pipe is  constant, the we of Eq. (9.5-73) 
gives 

0.668 [(DIL) Re%] 
1 + 0.04 [ (D/L)  ReScI2I3 

Sh = 3.66 + 

= 22.7 0.0668 (2233) 
1 + 0.04 (2233)2/3 = 3.66 + (3) 

Considering the water in the pipe as a system, a macroscopic mass balance on 
benzoic acid gives 

- (CAb)OUt]  - [ c A ~  - (CAb)iTZ] 

\ 3 
(.D2/4)(v%) [(CAb)out - ( C A b ) i n ]  = (@(kc) - ln c A ~  - (CAb)Wt 

- ~ ( CAb )in 
Q AM 

/ 

(ACA)LM 
(4) 

Since ( c A ~ ) ~ ~  = 0, Eq. (4) simplifies to 

Substitution of numerical values into Eq. (5) gives 

I> 4 (2)(22.7) 
( c A ~ ) ~ ~  = 3.412 1 - exp - { [ (6 x 10-2)(101)(737) 

= 0.136kg/m3 (6) 
Comment: 
%.e., 

One could also use Eq. (4.5-31) to calculate the Sherwood number, 

Sh = 1.86 @ ~ S C ( D / L ) ] ~ / ~  
= 1.86 (2233)'13 = 24.3 

which is not very much digerent jhm 22.7. 
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9.5.2 

Consider gas absorption in a wetted-wall column as shown in Figure 9.20. An 
incompressible Newtonian liquid (a) flows in laminar flow over a flat plate of width 
W and length L as a thin film of thickness 6 under the action of gravity. Gas A 
flows in a countercurrent direction to the liquid and we want to determine the 
amount of A absorbed by the liquid. 

Diffusion Into a Falling Liquid Film 

Figure 9.20 Diffusion into a falling liquid film. 

The fully developed velocity distribution is given by Eqs. (9.1-57) and (9.1-58) as 

where 
3 P d 2  v,, = 5 (VI) = - 

2 P  

(9.575) 

(9.576) 

Liquid viscosity is assumed to be unaffected by mass transfer. 
In general, the concentration of species A in the liquid phase changes as a 

function of 2 and x .  Therefore, from Table C.7 in Appendix C, the non-zero mass 
flux components are 

(9.577) 

(9.578) 
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For a dilute liquid solution, the total density is almost constant and Eqs. (9.577) 
and (9.5-78) become 

WA, = - D A B -  apA (9.579) dX 

WA, = -DAB apA +PAW% (9.580) 

Dividing Eqs. (9.579) and (9.580) by the molecular weight of species A, MA, 
gives 

(9.581) 

(9.582) dCA 

dz NA, = -DAB - + CAW, 

Since there is no generation of species A, Eq. (9.4-1) simplifies to 

(9.583) ( species A in ) - ( species A out 

For a rectangular differential volume element of thickness Ax, length Az and width 
W, as shown in Figure 9.20, Eq. (9.583) is expressed as 

Rate of 

( NA, Is w Az+NAz 1% Ax>-( NA, Iz+& W Az+ NA. Iz+Aa W A X )  = 0 (9.584) 

Dividing Eq. (9.584) by W A X A Z  and taking the limit as Ax + 0 and Az -+ 0 
gives 

Substitution of Eqs. (9.581) and (9.5-82) into Eq. (9.586) yields 

(9.586) 

(9.587) 

Convection in Diffusion in Diffusion in 
s-direction s-direction %-direction 

In the z-direction, the mass of species A is transported by both convection and 
diffusion. As stated by Eq. (2.48), diffusion can be considered negligible with 
respect to convection when P ~ M  >> 1. Under these circumstances, Eq. (9.587) 
reduces to 

(9.588) 
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The boundary conditions associated with J3q. (9.588) are 

at z = O  CA = CA, (9.589) 

at x = O  C A  = C: (9.590) 

at x = S  -- acA - 0  
ax 

(9.591) 

It is assumed that the liquid has a uniform concentration of CA, for z < 0. At 
the liquid-gas interface, the value of cTq is determined from the solubility data, i.e., 
Henry’s law. Equation (9.591) indicates that species A cannot diffuse through the 
wall. 

The problem will be analyzed for two cases, namely, for long and short contact 
times. 

9.5.2.1 Long contact times 

The solution of Eq. (9.588) subject to the boundary conditions given by Eqs. 
(9.589)-(9.5-91) is first obtained by Johnstone and Pigford (1942). Their series 
solution expresses the bulk concentration of species A at z = L as 

‘> - 
= 0.7857e-5.’213~+0.1001 e-39*318’1+0.03599 e- l o 5 a M 9 + . . .  (9.592) 

c> - CA, 

where 
(9.593) 

As an engineer we are interested in expressing the results in the form of a mass 
transfer correlation. For this purpose it is first necessary to obtain an expression 
for the mass transfer coefficient. 

For a rectangular differential volume element of thickness Ax, length Az and 
width W, as shown in Figure 9.20, the conservation statement given by Eq. (9.583) 
is also expressed as 

[QCAbI~+fC(c>-cAb)WAz] - & c A b l , z + A l = O  (9.594) 

Dividing Eq. (9.594) by Az and taking the limit as At --t 0 gives 

or, 
dCAb Q - = kc ( c T ~  - C A ~ )  W 
dz 

Equation (9.596) is a separable equation and rearrangement gives 

(9.595) 

(9.596) 

(9.597) 
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Carrying out the integrations yields 

where the average mass transfer coefficient, (k , ) ,  is defined by 

l L  
(kc) = / 0 kc dz 

(9.598) 

(9.599) 

The rate of moles of species A transferred to the liquid is 

n A  = [ ( c A b > ~ ,  - CA,] = e {(c> - CA,) - [c: - ( C A b ) ~ ] )  (9.5100) 

Elimination of between Eqs. (9.598) and (9.5100) leads to 

(9.5101) (c> - c A ~  ) - IC; - (cAb ) L 1 
n A  = ( w L ) ( k c )  

, qc?-;:$L] + 

(ACA)LM 

When 7 > 0.1, all the terms in Eq. (9.5-92), excluding the first, become almost 
zero, i.e., 

(9.5-102) 

The use of Eq. (9.5102) in Q. (9.598) gives 

(9 5-1 03) e 
W L  (kc) = - (5.12137 + 0.241) 

Since we restrict our analysis to long contact times, i.e., 7 is large, then Eq. (9 .5  
103) simplifies to 

(9.5104) e 
Substitution of Eq. (9.593) into Eq. (9.5104) and the use of Q = ( v , ) W b  gives 

(kc)  = (5.12137) 

(9.5-105) DAB 
6 

(k,)  = 3.41 - 
Therefore, the average value of the Sherwood number becomes 

(9.5106) 

It is also possible to arrive at this result using a different approach (see Problem 
9.17). Equation (9.5106) is usually recommended when 

(9.5-107) 
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Note that the term 46 in the definition of the Reynolds number represents the 
hydraulic equivalent diameter. 

9.5.2.2 Short contact times 

If the solubility of species A in the liquid I3 is low, for short contact times, species 
A penetrates only a short distance into the falling liquid film. Under these circum- 
stances, species d, for the most part, has the impression that the film is moving 
throughout with a velocity equal to V m m .  Furthermore, species A does not feel 
the presence of the solid wall at z = 6. Hence, if the film were of infinite thickness 
moving with the velocity v,,, species A would not know the difference. 

In the light of the above discussion, Eqs. (9.588)-(9.5-91) take the following 
form 

8 C A  a2CA 
vmaX - = DAB - 

dz 6x2 (9.5108) 

at z = O  CA =CA, (9.5-109) 

at x = O  C A  =cfi  (9.5110) 

at X =  00 C A  = C A ,  (9.5111) 

Introduction of the dimensionless concentration r$ as 

reduces Eqs. (9.5108)-(9.5111) to 

(9.5-112) 

(9.5113) 

at a = O  ( P = O  (9.5114) 

at z=O + = l  (9.5-1 15) 

at x = w  4 = 0  (9.5-116) 

Since Eqs. (9.5-114) and (9.5116) are the same and there is no length scale, this 
parabolic partial differential equation can be solved by the similarity solution as 
explained in Section B.3.6.2 in Appendix B. The solution is sought in the form 

4 = f (Q) (9.5-117) 

where 
(9.5-118) 
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The chain rule of differentiation gives 

- urn, 61f 
~ D A B ~  d9' 

--- 

Substitution of Eqs. (9.5119) and (9.5120) into Eq. (9.5113) yields 

The boundary conditions associated with Eq. (9.5121) are 

at Q = O  q5=1 

at Q=oo  c # = O  

(9.5-119) 

(9.5120) 

(9.5121) 

(9.5-122) 

(9.5-123) 
The integrating factor for Eq. (9.5-121) is exp(Q2). Multiplication of Eq. (9.5-121) 
by the integrating factor gives 

"(e \y2 df ...J=o 
dQ 

which implies that 

Integration of Eq. (9.5-125) leads to 

(9.5124) 

(9.5-125) 

(9.5-126) 

where u is a dummy variable of integration. Application of the boundary condition 
defined by Eq. (9.5-122) gives K2 = 1. On the other hand, the use of the boundary 
condition defined by Eq. (9.5-123) gives 

2 - --- 1 

1- e- ua du 
K1= - 

f i  

Therefore, the solution becomes 

du e- "2 

(9.5-127) 

(9.5128) 
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where erf(x) is the error function defined by 
2 "  erf(x) = - 1 e-U2du 
J;; 

(9.5-130) 

Macroscopic equation 

Integration of the governing equation, Eq. (9.5-108), over the volume of the system 
gives the macroscopic equation as 

Evaluation of the integrations yields 

Net molar rate of species A 
entering into the liquid 

Molar rate of species A entering 
into the liquid through interface 

Note that Eq. (9.5-132) is the macroscopic inventory rate equation for the mass of 
species A by considering the falling liquid film as a system. The use of Eq. (9.5- 
129) in Eq. (9.5-132) gives the rate of moles of species A absorbed in the liquid 

The rate of moles of species A absorbed by the liquid can be expressed in terms of 
the average mass transfer coefficient as 

Since ln(1 + x) N x for small values of x, the term in the denominator of Eq. 
(9.5134) can be approximated as 

(9.5-135) 
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The use of Eq. (9.5135) in Eq. (9.5-134) gives 

The average mass transfer coefficient can be calculated from Eqs. (9.5133) and 
(9.5136) as 

I 

(9.5137) 

Therefore, the Sherwood number is 

Equation (9.5138) is recommended when 

46(w,)p 4riz 
1200 > RR = - = - 

P PW ' loo 

It should be kept in mind that the calculated mass of species A absorbed by the 
liquid based on Eq. (9.5133) usually underestimates the actual amount. This is 
due to the increase in the mass transfer area as a result of ripple formation even 
at a very small values of Re, i.e., Re > 20. 

In the literature, Eq. (9.5137) is also expressed in the form 

(9.5- 139) 

where the exposure time, or, gas-liquid contact time, is defined by 

(9.5140) 

Equation (9.5139) is also applicable to gas absorption to laminar liquid jets and 
mass transfer from ascending bubbles, if the penetration distance of the solute is 
small. 

Example 9.13 A laminar liquid jet issuing at a volumetric flow rate of Q is 
used for absorption of gas A. If the jet has a diameter D and a length L, derive 
an expression for the rate of absorption of species A. 

Solution 

L 
vmax 

t,, = - 

The time of exposure can be defined b y  
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Therefore, Eq. (9.5-139) becomes 

The rate of moles of species A absorbed by the jet is 

where CA,  is the initial concentration of species A in the jet and c> is the equi- 
librium solubility of species A in the liquid. Substitution of Eq. (2) into Eq. (3) 
gives 

n A  = 4 (c> - CA,)  d m  (4) 

9.5.3 
A plug flow reactor consists of a cylindrical pipe in which concentration, tempem 
ture, and reaction rate are assumed to vary only along the axial direction. Analysis 
of these reactors are usually done with the following assumptions: 

Analysis of a Plug Flow Reactor 

0 Steady-state conditions prevail. 

0 Reactor is isothermal. 

0 There is no mixing in the axial direction. 

The conservation statement for species i over a differential volume element of 
thickness Az, as shown in Figure 9.21, is expressed as 

(Q C i ) l x  - (Q G)lx+Ax + ai Y A  Az = 0 (9.5141) 

where ai is the stoichiometric coefficient of species i and r is the chemical reaction 
rate expression. Dividing Q. (9.5141) by Az and taking the limit as Az + 0 
gives 

(9 .5142) 
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(9.5-143) 

It is customary to write Eq. (9.5143) in terms of dV = Adz  rather than dz,  so 
that Eq. (9.5143) becomes 

d ( e  ca) - = a i r  
dV (9.5-144) 

Equation (9.5-144) can also be expressed in the form 

(9.5-145) 

where ni is the molar flow rate of species i. 
The variation of the number of moles of species i as a function of the molar 

extent of the reaction is given by Eq. (5.3-10). It is also possible to express this 
equation as 

it( = ni, + ai 6 (9.5 146) 

Let us assume that the rate of reaction has the form 

Substitution of Eq. (9.5-147) into Eq. (145) gives 

(9.5147) 

(9.5148) 

Integration of Eq. (9.5-148) depends on whether the volumetric flow rate is constant 
or not. 

9.5.3.1 Constant volumetric flow rate 

When steady-state conditions prevail, the mass flow rate is constant. The volu- 
metric flow rate is the mass flow rate divided by the total mass density, i.e., 

m Q = -  
P 

(9.5-149) 

For most liquid phase reactions the total mass density, p, and hence the volumetric 
flow rate are constant. 

For gas phase reactions, on the other hand, the total mass density is given by 
the ideal gas equation of state as 

PM p = -  
RT (9.5-150) 
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where M is the molecular weight of the reacting mixture. Substitution of Q. 
(9.5150) into Eq. (9.5149) gives 

TiRT 
Q=- 

P (9.5-151) 

Therefore, Q remains constant when n and P do not change along the reactor. 
The conditions for the constancy of Q are summarized in Table 9.4. 

'Pable 9.4 Requirements for the constant volumetric flow rate for a plug flow 
reactor operating under steady and isothermal conditions. 

Liquid Phase Reactions Gas Phase Reactions 

W No change in the total number of moles Constant total mass density during reaction (5 = o) 
H Negligible pressure drop across the reactor 

When Q is constant, Eq. (9.5148) can be rearranged as 

Depending on the values of n the results are 

n=O 

n=l 

Q 1  

(9.5152) 

(9.5-153) 

9.5.3.2 Variable volumetric flow rate 

When the volumetric flow rate is not constant, integration of Q. (9.5148) is 
possible only after expressing both ni and Q in terms of 2. The following example 
explains the procedure in detail. 

Example 9.14 The irreversible gas phase reaction 

A + B + C  
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is carried out in a constant pressure batch reactor at 400°C and 5atm pressure. 
The reaction is first-order and the time required to achieve 60% conversion was 
found to be 50min. 

Suppose that this reaction is to be carried out in a plug flow reactor which 
operates isothermally at 400 "C and at a pressure of 10 atm. The volumetric flow 
rate of the feed entering the reactor is 0.05 m3/ h and at consists of pure A. Calculate 
the volume of the reactor required to achieve 80% conversion. 

Solution 

First, it is necessary to determine the rate constant by using the data given for the 
batch reactor. The conservation statement for the number of moles of species A, 

(1) 

(2) 

or, 
dnA 
d t  - k CAV = - 

Substitution of the identity n A  = CAV into Eq. (2) and rearrangement gives 

Integration gives the rate wnstant, k, as 

k=- ; - ln ($ )  1 

The fractional conversion, X ,  is 

Therefore, Eq. (4) can be eqressed in t e r n  of the fractional conversion as 

In( 1 - X )  
t 

k = -  

Substitution of the numerical values into Eq. (6) gives 

For a plug flow reactor, Eq. (9.5148) takes the form 

(4) 
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Since the volumetric flow rate is not constant, Le., E = 1, it is necessary to express 
in terms of d. The use of Q. (9.5146) gives 

Therefore, the total molar flow rate, n, is 

h = h A o + i  (12) 

Substitution of Eq. (12) into Eq. (9.5-151) gives the volumetric flow rate QS 

P 

where e, is the volumetric flow rate at the inlet of the reactor. 
Substitution of Eqs. (9) and (13) into Eq. (8) gives 

d i  khAo [I - ( i / h A , ) ]  

dV eo (l+k/fi~,) 
-=- 

The fractional conversion expression for a plug flow reactor is similar to Eq. (5), 
so 

Substitution of Eq. (9) into Eq. (15) yields 

b X=-- 

The use of Eq. (16) in Eq. (14) and rearrangement gives 

= 2.42 (F) 
Substitution of the n u m e ~ c a l  values into Eq. (1 7) gives 

= 0.11 rn3 
(2.42) (0.05) 

1.1 
V =  
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A 
A H  
A M  
C P  
C 

ci 
D 
DAB 
e 
FD 
f 
9 
h 
J* 
K 
k 
kc 
L 
m 
M 
N 
7i 
P 
P 

Q 
9 
r 
!R 
R 
T 
t 
V 

W 
W 
X 

Q 

2) 

X 
z 

ai 
A 

area, m2 
heat transfer area, m2 
mass transfer area, m2 
heat capacity at constant pressure, kJ/ kg. K 
total concentration, kmol/ m3 
concentration of species i, kmol/ m3 
pipe diameter, m 
diffusion coefficient for system A-23, m2/ s 
total energy flux, W/ m2 
drag force, N 
friction factor 
acceleration of gravity, m/ s2 
heat transfer coefficient, W/ m2. K 
molecular molar flux, kmol/ m2. s 
kinetic energy per unit volume, J/ m3 
reaction rate constant; thermal conductivity, W/ m. K 
mass transfer coefficient, m/s  
length, m 
mass flow rate, kg/ s 
molecular weight, kg/ kmol 
total molar flux, kmol/ m2. s 
molar flow rate, kmol/ s 
pressure, Pa 
modified pressure, Pa 
heat transfer rate, W 
volumetric flow rate, m3/ s 
heat flux, W/m2 
rate of a chemical reaction, kmol/ m3. s 
Rate of generation per unit volume 
gas constant, J/ mol. K 
temperature, "Cor K 
time, s 
velocity of the plate in Couette flow, m/s; volume, m3 
velocity, m/ s 
width, m 
total mass flux, kg/ m2. s 
fractional conversion 
rectangular coordinate, m 
rectangular coordinate, m 

stoichiometric coefficient of species i 
difference 
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heat of reaction, J 
time rate of change of molar extent, kmol/ s 
latent heat of vaporization, J 
kinematic viscosity, m2/ s 
viscosity, kg/ m. s 
total momentum flux, N/ m2 
density, kg/ m3 
shear stress (flux of j - momentum in the i - direction, N/ m2 
mass fraction 

Overlines 
N per mole 

per unit mass 
- partial molar 

L 

Bracket 

(4 average value of a 

Superscripts 

A air 
L liquid 
0 standard state 
sat saturation 

Subscripts 

A, B 
b bulk 
ch characteristic 
exp exposure 
i species in multicomponent systems 
in inlet 
int interphase 
LM log-mean 
max maximum 
out out 
ref  reference 
SYS system 
W wall or surface 
00 freestream 

Dimensionless Numbers 
Br Brinkman number 
Nu Nusselt number 
Pr Prandtl number 
RR Reynolds number 

species in binary systems 
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Reh 
sc  Schmidt number 
Sh Sherwood number 
StH 
S t M  

Reynolds number based on the hydraulic equivalent diameter 

Stanton number for heat transfer 
Stanton number for mass transfer 
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PROBLEMS 

9.1 
equation 

The hydrostatic pressure distribution in Auids can be calculated from the 

dP 
- ' P S %  dr 

where 

g if positive z is in the direction of gravity 
S% = { - g  if positive z is in the direction opposite to gravity 
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a) If the systolic pressure at the aorta is 120mmHg, what is the pressure in the 
neck 25cm higher and at a position in the legs 90cm lower? The density of blood 
is 1.05g/cm3. 
b) The lowest point on the earth's surface is located in the western Pacific Ocean, 
in the Marianas Trench. It is about 11 km below sea level. Estimate the pressure 
at the bottom of the ocean. Take the density of seawater as 1025kg/m3. 
c)  The highest point on the earth's surface is the top of Mount Everest, located 
in the Himalayas on the border of Nepal and China. It is approximately 8900m 
above sea level. If the average rate of decrease in air temperature with altitude is 
6.5 "C/ km, estimate the air pressure at the top of Mount Everest. Assume that the 
temperature at sea level is 15 "C. Why is it difficult to breathe at high altitudes? 
(Answer: a) Pneck = 100.7mmHg, q e g  = 189.5mmHg b) 1090 atm c) 0.31 atm) 

9.2 Oil spills on water can be removed by lowering a moving belt of width W 
into the water. The belt moves upward and skims the oil into a reservoir aboard 
the ship as shown in the figure below. 

a) Show that the velocity profile and the volumetric flow rate are given by 

Wpg63 cos p 
3 P  

- WV6 &= 

b) Determine the belt speed that will give a zero volumetric flow rate and specify 
the design criteria for positive and negative flow rates. 

9.3 When the ratio of the radius of the inner pipe to that of the outer pipe 
is close to unity, a concentric annulus may be considered to be a thin plate slit 
and its curvature can be neglected. Use this approximation and show that the 
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modifications of Eqs. (9.1-23) and (9.1-26) for the axial flow in aconcentric annulus 
with inner and outer radii of nR and R, respectively, lead to 

9.4 For laminar flow of a Newtonian fluid in a circular pipe the velocity profile is 
parabolic and Eqs. (9.1-80) and (9.1-84) indicate that 

-- (") - 0.5 
Vmax 

In the case of a turbulent flow, experimentally determined velocity profiles can be 
represented in the form 

where n depends on the value of the Reynolds number. Show that the ratio 
(vz)/vmax is given as (Whitaker, 1968) 

RR n (vz)/vmax 

4 x 103 6 0.79 
1 x 105 7 0.82 
3 x 106 10 0.87 

This is the reason why the velocity profile for a turbulent flow is generally consid- 
ered "flat" in engineering analysis. 

9.5 The steady temperature distribution in a hollow cylinder of inner and outer 
radii of 50cm and 80cm, respectively, is given by 

T = 5000 (4.073 - 6 r2 + lnr) 

where T is in degrees Celsius and r is in meters. If the thermal conductivity is 
5 W/ m. K, find the rate of energy generation per unit volume. 
(Answer: 6 x lo5 W/ m3) 

9.6 Energy generation within a hollow cylinder of inside and outside radii of 60 cm 
and 80 cm, respectively, is lo6 W/ m3. If both surfaces are maintained at 55 "C and 
the thermal conductivity is 15 W/ m. K, calculate the maximum temperature under 
steady conditions. 
(Answer: 389.6 "C) 
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9.7 The rate of generation per unit volume is sometimes expressed as a function of 
temperature rather than position. Consider the transmission of an electric current 
through a wire of radius R. If the surface temperature is constant at TR and the 
rate of generation per unit volume is given as 

a) Show that the governing equation for temperature is given by 

dr ( r g )  +?( l+aT)r=O 

b) Use the transformation 

and reduce Eq. (2) to the form 

u = l + a T  

where 

f ( r g )  +dru=O 

c) Solve Eq. (4) to get 
T +  (ll4 - Jo ( f i r )  
TR + ( l / a )  - Jo (@ R) 

d) What happens to Eq. (6) when & R = 2.4048? 

(3) 

(4) 

9.8 For laminar flow forced convection in a circular pipe with a constant wall 
temperature) the governing equation for temperature, Eq. (9.3-9)) is integrated 
over the cross-sectional area of the tube in Section 9.3.1 to obtain Eq. (9.3-18)) 
i.e., 

(1) 
dTb mCp - = aDh(T, -Ta) 
dz 

a) Now let us assume that the flow is turbulent. Over a differential volume ele- 
ment of thickness Az, as shown in the figure below, write down the inventory rate 
equation for energy and show that the result is identical with Eq. (1). 
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Integrate Eq. (1) to get 

m e p h  ( Tw -Thin ) = nD(h)L 
Tw - TbOut 

b) Water enters the inner pipe ( D  = 23mm) of a double-pipe heat exchanger at 
15 "C with a mass flow rate of 0.3 kg/s. Steam condenses in the annular region so 
as to keep the wall temperature almost constant at 112 "C. Determine the length 
of the heat exchanger if the outlet water temperature is 35 "C. 
(Answer: b) 1.13m) 

9.9 Consider the heating of fluid A by fluid B in a countercurrent doublepipe 
heat exchanger as shown in the figure below. 

a) Show from the macroscopic energy balance that the rate of heat transferred is 
given by 

S = ( ~ & ) A ( T A ~  - T A ~ )  = ( ~ ~ P ) B ( T B ~  - T B ~ )  (1) 
where TA and TB are the bulk temperatures of the fluids A and B, respectively. 
Indicate your assumptions. 

b) Over the differential volume element of thickness Az, write down the inventory 
rate equation for energy for the fluids A and B separately and show that 

.L dTA 
( m C p ) ~ -  dz = -TITI)~UA(TB - TA) (2) 
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where UA is the overall heat transfer coefficient based on the inside radius of the 
inner pipe given by Eq. (8.2-42), i.e., 

-1 Riln(R2IRi) I Ri ] 
k W  (hB>R2 

in which 16, represents the thermal conductivity of the inner pipe. 
c) Subtract Eq. (2) from Eq. (3) to obtain 

d) Combine Eqs. (1) and (5) to get 

e )  Integrate Eq. (6) and show that the rate of heat transferred is given as 

Q = (?TD~L)UAATLM 

where the logarithmic mean temperature difference is given by 

f )  Consider the double-pipe heat exchanger given in Problem 9.8 in which oil is used 
as the heating medium instead of steam. Oil flows in a countercurrent direction 
to water and its temperature decreases from 130°C to 80°C. If the average heat 
transfer coefficient for the oil in the annular region is 1100 W/ m2. K, calculate the 
length of the heat exchanger. 
(Answer: f )  5.2m) 

9.10 You are a design engineer in a petroleum refinery. Oil is cooled from 60 "C 
to 40°C in the inner pipe of a doublepipe heat exchanger. Cooling water flows 
countercurrently to the oil, entering at 15°C and leaving at 35°C. The oil tube 
has an inside diameter of 22 mm and an outside diameter of 25 mm with the inside 
and outside heat transfer coefficients of 600 and 1400 W/ m2. K, respectively. It is 
required to increase the oil flow rate by 40%. Estimate the exit temperatures of 
both oil and water at the increased flow rate. 
(Answer: Toil = 43 "C, Twater = 39 "C) 

9.11 Repeat the analysis given in Section 9.3.2 for laminar flow of a Newtonian 
fluid between two fixed parallel plates under the action of a pressure gradient. The 
temperatures of the surfaces at z = 0 and z = B are kept constant at To. 
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a) Obtain the temperature distribution as 

b) Show that the Nusselt number for the upper and lower plates are the same and 
equal to 

2B(h) 35 Nu=-=- 
k 2 

in which the term 2B represents the hydraulic equivalent diameter. 

9.12 Consider Couette flow of a Newtonian liquid between two large parallel 
plates as shown in the figure below. As a result of the viscous dissipation, liquid 
temperature varies in the x-direction. Although the thermal conductivity and 
density of the liquid are assumed to be independent of temperature, the variation 
of the liquid viscosity with temperature is given as 

1 
B 

a) Show that the equations of motion and energy reduce to 

d 

2 k - + p ( % )  dLT = O  
dx2 

b) Integrate Eq. (1) and obtain the velocity distribution in the form 

1' e 

v=E 
vz 0 P - 

c) Substitute J3q. (4) into J3q. (3) to get 

(4) 

#e 
e2 - + A e e = O  ( 5 )  
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where the dimensionless quantities are defined by 

2 E = -  
B 

P0V2 Br = - 
TO 

d) Multiply Eq. (5) by 2(dO/d<) and integrate the resulting equation to get 

E = * m d m  
4 

where C is an integration constant. 
e )  Note that 6 reaches a maximum value at lnC. Therefore, the plus sign must be 
used in Eq. (10) when 0 5 8 5 1nC. On the other hand, the negative sign must 
be used when 1nC 5 0 5 1. Show that the integration of Eq. (10) leads to 

Solve Eq. (11) to obtain 

8 = In { C sech2 
- I)]} 

where C is the solution of 

C = cosh2 (E) 
f) Substitute Eq. (12) into Eq. (4) and show that the velocity distribution is given 
bv 

For more detailed information on this problem, see Gavis and Laurence (1968). 
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9.13 Two large porous plates are separated by a distance B as shown in the 
figure below. The temperatures of the lower and the upper plates are To and TI, 
respectively, with TI > To. Air at a temperature of To is blown in the x-direction 
with a velocity of V .  

" t  r TO 

B 

I 
1 . 2  , . . . . * .  * 

1 i l  I 1 1 1  I "  
Air 

a) Show that the inventory rate equation for energy becomes 

dT d2T 
dx dx2 p CpV - = k - 

b) Show that the introduction of the dimensionless variables 

T - To e = -  
Tl - T o  

pepVB 
k A =  

reduces Eq. (1) to 
&e de 
ax2 d4 
-- A - = O  

c)  Solve Eq. (5) and show that the velocity distribution is given as 

1 - e'€ 
1 - e X  

e = -  
d) Show that the heat flux at the lower plate is given by 

(3) 

(4) 

(5) 

9.14 Rework the problem given in Section 9.4.1 for a zeroth-order chemical reac- 
tion, i.e., r = k,, and show that the concentration profile is given by 
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9.15 For laminar flow forced convection in a circular pipe with a constant wall 
concentration, the governing equation for concentration of species A, Eq. (9.5-13), 
is integrated over the cross-sectional area of the tube in Section 9.5.1 to obtain Eq. 
(9.5-21), i.e., 

(1) 
dCAb Q - = TD kc(CA, - CAb) dz 

a) Now assume that the flow is turbulent. Over a differential volume element of 
thickness Az, as shown in the figure below, write down the inventory rate equation 
for the mass of species A and show that the result is identical with Eq. (1). 

b) Instead of coating the inner surface of a circular pipe with species A, let us 
assume that the circular pipe is packed with species A particles. Over a differential 
volume element of thickness Az, mite down the inventory rate equation for mass 
of species A and show that the result is 

where A is the cross-sectional mea of the pipe and a,, is the packing surface area 
per unit volume. Note that for a circular pipe a, = 4/0 and A = rD2/4  so that 
Eq. (2) reduces to Eq. (1). 

9.16 A liquid is being transported in a circular plastic tube of inner and outer 
radii of R1 and R2, respectively. The dissolved 02 (species d) concentration in the 
liquid is CA,. Develop an expression relating the increase in 0 2  concentration as a 
function the tubing length as follows: 
a) Over a differential volume element of thickness Az, write down the inventory 
rate equation for the mass of species A and show that the governing equation is 

where DAB is the diffusion coefficient of 02 in a plastic tube and CA, is the 
concentration of 0 2  in air surrounding the tube. In the development of Eq. (l) ,  
note that the molar rate of 0 2  transfer through the tubing can be represented by 
Eq. (B) in Table 8.9. 
b) Show that the integration of Eq. (1) leads to 
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9.17 Using the solution given by Johnstone and Pigford (1942), the Sherwood 
number is calculated as 3.41 for long contact times in Section 9.5.4.2. Obtain the 
same result by using an alternative approach as follows: 

a) In terms of the following dimensionless quantities 

DABZ 
vmaxs2 

q = -  

show that Eqs. (9.588)-(9.5-91) reduce to 

b) Use the method of separation of variables by proposing a solution in the form 

and show that the solution is given by 
a0 

n=l 

where 

and Gn(5)  are the eigenfunctions of the equation 

d2G, + (1 - t2) G, = 0 e2 
c )  Show that the Sherwood number is given by 

k d  - (aWt),=o Sh=-- 
DAB ' b  
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in which da is the dimensionless bulk temperature defined by 

d) Substitute Eq. (9) into Eq. (12) to get 

OD 

An e- 'f 9 (dG7a /cy) €=O 
2 
3O0 

Sh= - n=l 

x ( A n / A i )  e- At' (dGn/dt),+o 
n=l 

For large values of r) show that h. (14) reduces to 
n z 

Sh= -A: 
3 

e) Use the method of Stodola and Vianello and show that the first approximation 
gives 

Hint: Use GI = [(C - 2) as a trial function. 
A: = 5.122 (16) 

9.18 Use Eq. (9.5-129) and show that CA CA, when 

2 

J4 DABZ/vrnax 
= 2  

Therefore, conclude that the penetration distance for concentration, S,, is given by 

9.19 H2S is being absorbed by pure water flowing down a vertical wall with a 
volumetric flow rate of 6.5 x m3/s at 20°C. The height and the width of the 
plate are 2m and 0.8m, respectively. If the diffusion coefficient of H2S in water is 
1.3 x lo-' m2/s and its solubility is 0.1 kmol/m3, calculate the rate of absorption 
of H2S into water. 
(Answer: 6.5 x kmol/ s) 

9.20 Water at 25 "C flows down a wetted wall column of 5 cm diameter and 1.5 m 
height at a volumetric flow rate of 8.5 x m3/ s. Pure COa at a pressure of 1 atm 
flows in the countercurrent direction. If the solubility of COz is 0.0336 kmol/ m3, 
determine the rate of absorption of COP into water. 
(Answer: 1.87 x kmol/ s) 
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9.21 Consider an industrial absorber in which gas bubbles (A) rise through a 
liquid (B) column. Bubble diameters usually range from 0.2 to 0.6 cm while bubble 
velocities range from 15 to 35cm/s (Astarita, 1967). Making use of Eq. (9.5139) 
show that the range for the average mass transfer coefficient is 

0.018 < (k,) < 0.047cm/ s 

Hint: A reasonable estimate for DAB is cm2/ s. 

9.22 Consider a gas film of thickness 6, composed of species A and B adjacent to a 
flat catalyst particle in which gas A diffuses at steady-state through the film to the 
catalyst surface (positive z-direction) where the isothermal first-order heteroge- 
neous reaction A --f B occurs. As B leaves the surface it decomposes by isothermal 
first-order heterogeneous reaction, B + A. The gas composition at z = 0, i.e., X A ,  
and XB,, is known. 
a) Show that the equations representing the conservation of mass for species A 
and B are given bv 

b) Using the heterogeneous reaction rate expression at the surface of the catalyst, 
conclude that 

N A , = - N B ,  O < Z < S  (4) 
c )  Since XA + X B  = 1 everywhere in 0 < z 5 6, solution of the one of the consew 
tion equations is sufficient to determine the concentration distribution within the 
film. Show that the governing equation for the mole fraction of species B is 

subject to the boundary conditions 

at z = S  x B = I + -  NBZ 
ck" 

where kS is the surface reaction rate constant. 
d) Show that the solution of Eq. (5) is given by 

(7) 

X B  = X B ,  cosh(A<) + 4sinh(A<) 
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where 
XB, - WshA 

(A/A) sinh A + cosh A 1 - XB, CoshA + 
sinh A 4 =  

A = F  DAB 

427 

(9) 

(11) 
kS 6 A=- 

DAB 
e )  For an instantaneous heterogeneous reaction, show that Eq. (8) reduces to 

f )  If there is no homogeneous reaction, show that l2q. (8) takes the form 





Chapter 10 

Unsteady-State Microscopic 
Balances Without 
Generation 

The presence of the accumulation term in the inventory rate equation complicates 
the mathematical problem since the resulting equation is a partial differential equa- 
tion even if the transport takes place in onedirection. The solution of partial dif- 
ferential equations not only depends on the structure of the equation itself, but 
also on the boundary conditions. Systematic treatment of momentum, energy, and 
mass transport based on the types of the partial differential equation as well as 
the boundary conditions is a formidable task and beyond the scope of this text. 
Therefore, only some representative examples on momentum, energy, and mass 
transport will be covered in this chapter. 

10.1 MOMENTUM TRANSPORT 

Consider an incompressible Newtonian Auid contained between two large parallel 
plates of area A, separated by a distance B as shown in Figure 10.1. The system is 
initially at rest but at time t = 0, the lower plate is set in motion in the z-direction 
at a constant velocity V while the upper plate is kept stationary. It is required to 
determine the development of velocity profile as a function of position and time. 

429 
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'L, + v  

Figure 10.1 Unsteady Couette flow between parallel plates. 

Postulating v, = v,(t, x) and v, = vy = 0, Table C.l  in Appendix C indicates that 
the only non-zero shear-stress component is T,,. Therefore, the components of the 
total momentum flux are expressed as 

T,, = T,, + (pv , )v ,  = T,, = - p -  av, (10.1-1) ax 
T U %  = 79% + (pv,)  vy = 0 
T%% = T,, + (pv,) v, = pv; 

( 10.1.2) 
(10.1-3) 

The conservation statement for momentum is expressed as 

) (10.1-4) 
Rate of Rate of ) = ( Rate of momentum ( momentum in ) - ( momentum out accumulation 

For a rectangular differential volume element of thickness Ax, length AZ and width 
W ,  as shown in Figure 10.1, &. (10.1-4) is expressed as 

Dividing Eq. (10.1-5) by WAX Az and taking the limit as Ax + 0 and AZ -+ 0 
gives 

+ lim %%I% - T%%l%+A% 8% - lim T z S  Ix  - Tz& ],+Ax (10.1-6) - Ax+O Ax A%-0 AZ 

av, ax,, ar,, 
p - = - - - -  at dx aZ (10.1-7) 
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Substitution of Eqs. (10.1-1) and (10.1-3) into Eq. (10.1-7) and noting that 
dv,/az = 0 yields 

av, 6221% 
P z = P -  8x2 (10.1-8) 

The initial and the boundary conditions associated with Eq. (10.1-8) are 

at t = O  v,=O (10.1-9) 

at x = O  v,=V (10.1-10) 

at x = B  v,=O ( 10.1- 11) 

The physical significance and the order of magnitude of the terms in Eq. (10.1-8) 
are given in Table 10.1. 

a b l e  10.1 
Eq. (10.1-8). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

Viscous force a2v, 
Pds2 

av, Rate of momentum - PV 
Pdt accumulation t 

Therefore, the ratio of the viscous force to the rate of momentum accumulation is 
given by 

(10.1-12) pV/B2 ut  
Rate of momentum accumulation p V / t  B2 

=-=- Viscous force 

Introduction of the dimensionless quantities 

(10.1-13) V% 

V 

B 

e = -  

X 
(=-  (10.1-14) 

ut 
B2 

r = -  

reduces Eqs. (10.1-8)-(10.1-11) to 

(10.1- 15) 

(10.1-16) 

( 10.1- 17) 
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at E = O  0 = 1  (10.1-18) 

at < = l  8 = 0  (10.1-19) 

Since the boundary condition at [ = 0 is not homogeneous, the method of sepaxa- 
tion of variables cannot be directly applied to obtain the solution. To circumvent 
this problem, propose a solution in the form 

0(r,E) = QOo(5) - @t(r, E )  (10.1-20) 

in which OM(() is the steady-state solution, i.e., 

with the following boundary conditions 

at t = O  B m = l  
at [ = l  0,=0 

The steady-state solution is 
8,=1-E 

(10.1-21) 

(10.1-22) 
(10.1-23) 

(10.1-24) 

which is identical with Eq. (8.1-12). On the other hand, the transient contribution 
Bt(r, E )  satisfies Eq. (10.1-16), Le., 

(10.1-25) 

Erom Eqs. (10.1-20) and (10.1-24), et = 1 - 5 - 8. Therefore, the initial and the 
boundary conditions associated with Eq. (10.1-25) become 

at T = O  Ot=1-< 
at [ = O  O t = 0  
at 5 = 1  0 ,=0  

(10.1-26) 
(10.1-27) 
(10.1-28) 

Note that the boundary conditions at = 0 and [ = 1 are now homogeneous 
and this parabolic partial differential equation can be solved by the method of 
separation of variables as described in Section B.6.1 in Appendix B. 

The separation of variables method assumes that the solution can be represented 
as a product of two functions of the form 

et (7,5) = F ( 4  G(6) (10.1-29) 

Substitution of Eq. (10.1-29) into Eq. (10.1-25) and rearrangement gives 

(10.1-30) 
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While the left-side of h. (10.1-30) is a function of 7 only, the right-side is depen- 
dent only on E.  This is possible only if both sides of Eq. (10.1-30) are equal to a 
constant, say - A', i.e., 

1 dF 1 d2G- 
F d7 G 4' 
--- _ - - - _  (10.1-31) 

The choice of a negative constant is due to the fact that the solution will decay to 
zero as time increases. The choice of a positive constant would give a solution that 
becomes infinite as time increases. 

Equation (10.1-31) results in two ordinary differential equations. The equation 
for F is given by 

(10.1-32) 
dF 
d r  -+A'F=O 

The solution of l3q. (10.1-32) is 

~ ( 7 )  = e- (10.1-33) 

On the other hand, the equation for G is 

d2G 
-+X2G=0 
4' 

(10.1-34) 

and it is subject to the boundary conditions 

at [=O G=O (10.1-35) 

at [ = l  G = O  (10.1-36) 

Note that Eq. (10.1-34) is a Sturm-Liouville equation with a weight function of 
unity. The solution of Eq. (10.1-34) is 

G(<) = Asin(XE) + Bcos(X5) (10.1-37) 

where A and B are constants. Application of E ~ J .  (10.1-35) gives B = 0. The use 
of the boundary condition defined by Eq. (10.1-36) results in 

AsinX = 0 (10.1-38) 

For a nontrivial solution, the eigenvalues are given by 

sinX= 0 =+ A, = nr n = 1,2,3, ... (10.1-39) 

Therefore, the transient solution is 

00 

et = cn e-nZr2r sin (nr [ )  (10.1-40) 
n=I 
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The unknown coefficients Cn can be determined by using the initial condition in 
Eq. (10.1-26). The result is 

00 

1 - < = C, sin(nn<) (10.1-41) 

Since the eigenfunctions are simply orthogonal, multiplication of Eq. (10.1-41) by 
sin(m?r<) and integration from E = 0 to < = 1 gives 

n=O 

Note that the integral on the right side of Eq. (10.1-42) is zero when n # m and 
nonzero when n = m. Therefore, when n = m the summation drops out and Eq. 
(10.1-42) reduces to the form 

Evaluation of the integrals gives 
2 

n?r 
c, = - 

The transient solution takes the form 

(10.1-43) 

(10.1-44) 

(10.1-45) 

Substitution of the steady-state and the transient solutions, Eqs. (10.1-24) and 
(10.1-45), into Eq. (10.1-20) gives the solution as 

(10.1-46) 

The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area of the plate, i.e., 

C2 = Lw I” v, dzdy 

= W B V L  @e 1 

Substitution af Eq. (10.1-46) into Eq. (10.1-47) gives 

(10.1-47) 

Note that when r + 00, 8 -, WBV/2 which is identical with Eq. (8.1-15). 
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10.1.1 Solution for Short Times 
Once the lower plate is set in motion, only the thin layer adjacent to the lower 
plate feels the motion of the plate during the initial stages. This thin layer does 
not feel the presence of the stationary plate at x = B at all. For a fluid particle 
within this layer, the upper plate is at infinity. Therefore, the governing equation 
together with the initial and boundary conditions are expressed as 

at t=O 

at x = O  

at x = c a  

In the literature, this problem is generally 

21, = 0 

v, = v 
v, = 0 

(10.1-49) 

(10.1-50) 

(10.1-51) 

(10.1-52) 

:nown as Stc.&s’first prdem’. Note 
that there is no length scale in this problem. Since the boundary condition at 
x = 00 is the same as the initial condition, the problem can be solved by the 
similarity analysis. The solution of this problem is given in Section B.3.6.2 in 
Appendix B and the solution is 

The drag force exerted on the plate is given by 

-- APV -a 

(10.1-53) 

(10.1-54) 

Finally, note that when z / m  = 2, Eq. (10.1-53) becomes 

v, - = 1 - erf(2) = 1 - 0.995 = 0.005 
V 

indicating that v, 21 0. Therefore, the penetration distance for momentum, 6, is 
given by 

The penetration distance changes with the square root of the momentum dif€mivity 
and is independent of the plate velocity. The momentum diffusivities for water and 
air at 20°C are 1 x and 15.08 x 10-6m2/s, respectively. The penetration 
distances for water and air after one minute are 3.1 cm and 12 cm, respectively. 

S = 4 G  (10.1-55) 

Some authors refer to this problem as the Rayleigh probfem. 
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10.2 ENERGY TRANSPORT 

The conservation statement for energy reduces to 

) (10.21) ( Rate of ) - ( Rate of ) = ( Rate of energy 
energy in energy out accumulation 

As  in Section 8.2, our analysis will be restricted to the application of Eq. (10.2-1) 
to conduction in solids and stationary liquids. The solutions of almost all imagin- 
able conduction problems in different coordinate systems with various initial and 
boundary conditions are given by Carslaw and Jaeger (1959). For this reason, only 
some representative problems will be presented in this section. 

The Biot number is given by Eq. (7.1-14) as 

(Difference in driving force),,lid 
Bi = (Difference in driving force)fluid 

(10.2-2) 

In the case of heat transfer, the temperature distribution is considered uniform 
within the solid phase when BiH << 1. This obviously brings up the question, 
‘What should the value of BiH be so that the condition BiH << 1 is satisfied?” In 
the literature, it is generally assumed that the internal resistance to heat transfer 
is negligible and the temperature distribution within the solid is almost uniform 
when BiH < 0.1. Under these conditions, the so-called lumped-parameter analysis 
is possible as can be seen in the solution of problems in Section 7.5. When 
0.1 < BiH < 40, the internal and external resistances to heat transfer have al- 
most the same order of magnitude. The external resistance to heat transfer is 
considered negligible when BiH > 40. 

10.2.1 

Consider a rectangular slab of thickness 2L as shown in Figure 10.2. Initially the 
slab temperature is uniform at a value of To. At t = 0, the temperatures of the 
surfaces at z = f L are increased to 7’1. To calculate the amount of heat transferred 
into the slab, it is first necessary to determine the temperature profile within the 
slab as a function of position and time. 

If 2L/H << 1 and 2L/W << 1, then it is possible to assume that the conduction 
is one-dimensional and postulate that T = T(t , z ) .  In that case, Table C.4 in 
Appendix C indicates that the only non-zero energy flux component is e, and it is 
given by 

Heating of a Rectangular Slab 

aT e, = q, = - k - 
az 

(10.2-3) 
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Figure 10.2 Unsteady-state conduction through a rectangular slab. 

For a rectangular differential volume element of thickness Az, as shown in 
Figure 10.2, Eq. (10.2-1) is expressed as 

(10.2-4) d %Ix W H  - QXlZ+AX WH = - at [WHAZ P&P(T - T 4 - j  

Following the notation introduced by Bird et ab. (1960), “in” and “out” directions 
are taken in the +z-direction. Dividing Eq. (10.2-4) by WHAz and letting 
Az -+ 0 gives 

or, 

(10.2-5) 

(10.2-6) 

Substitution of Eq. (10.23) into J3q. (10.2-6) gives the governing equation for 
temperature as 

1 p e p  = k I (10.2-7) 

All physical properties are assumed to be independent of temperature in the devel- 
opment of Eq. (10.2-7). The initial and boundary conditions associated with Eq. 
(10.2-7) are 

at t = O  T = To for all z 
at z = L  T=T1 t > O  (10.2-8) 
at z = - L  T=T1 t > O  
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Note that z = 0 represents a plane of symmetry across which there is no net flux, 
i.e., aT/dz = 0. Therefore, it is also possible to express the initial and boundary 
conditions as 

at t = 0 T = To for all z 

- 0  t > O  at z=O -- aT 
dz 

(10.2-9) 

at z = L  T = T 1  t > O  
The boundary condition at z = 0 can also be interpreted as an insulated surface. As 
a result, Eqs. (10.2-7) and (10.2-9) also represent the following problem statement: 
“A slab of thickness L is initially at a uniform temperature of To. One side of the 
slab is perfectly insulated while the other surface is kept at a constant temperature 
of TI with TI > To for t > 0.” 

The physical significance and the order of magnitude of the terms in Eq. (10.2- 
7) are given in Table 10.2. 

Table 10.2 
Eq. (10.2-7). 

The physical significance and the order of magnitude of the terms in 

Term Physical Significance Order of Magnitude 

k (TI - To) 
L2 

k Rate of conduction 
dz2 

- dT Rate of energy PGQl - To) 
accumulation t PCP dt 

Therefore, the ratio of the rate of conduction to the rate of energy accumulation is 
given by 

(10.2-10) 
k (TI - To)/L2 at =- - - Rate of conduction 

Rate of energy accumulation pep(Tl  - To)/t L2 

In the literature, the term d / L 2  is usually referred to as the Fourier number, Fo . 
Introduction of the dimensionless quantities 

(10.211) 

Z E = -  (10.2-12) L 
at  
L2 T = -  (10.213) 

reduces Eqs. (10.2-7) and (10.2-8) to 

(10.2-14) 
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at r=O e = i  
at E = 1  e = o  
at [ = - 1  8 = 0  

(10.2-15) 

Since the governing equation as well as the boundary conditions in the E-direction 
are homogeneous, this parabolic partial differential equation can be solved by the 
method of separation of variables as explained in Section B.6.1 in Appendix B. 

The solution can be represented as a product of two functions of the form 

so that Eq. (10.2-14) reduces to 

1 dF 1 d2G 

(10.2-16) 

(10.217) 

While the left-side of Eq. (10.2-17) is a function of r only, the right-side is depen- 
dent only on E. This is possible only if both sides of Eq. (10.2-17) are equal to a 
constant, say - x2, i.e., 

1 dF 1 d2G 
F d r  G g2 
- - - - = - A 2  (10.2-18) 

The choice of a negative constant is due to the fact that the solution will decay to 
zero as time increases. The choice of a positive constant would give a solution that 
becomes infinite as time increases. 

Equation (10.2-18) results in two ordinary differential equations. The equation 
for F is given by 

(10.2-19) dF 
- + A 2 F = 0  
d r  

The solution of Eq. (10.2-19) is 

~ ( 7 )  = e- X 2 r  (10.2-20) 

On the other hand, the equation for G is 

dLG 
-+X2G=0 
g2 

(10.2-21) 

and it is subject to the boundary conditions 

at [ = 1  G=O (10.2-22) 

at c = - 1  G=O (10.2-23) 

Note that Eq. (10.2-21) is a Sturm-Liouville equation with a weight function of 
unity. The solution of Eq. (10.2-21) is 

G(E) = A sin(A[) + B cos(AE) (10.224) 
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where A and B are constants. Since the problem is symmetric around the z-axis, 
then 0, and hence G, must be even functions2 of E.  Therefore, A = 0. Application 
of the boundary condition defined by Eq. (10.222) gives 

BcosX = 0 (10.225) 

For a nontrivial solution, the eigenvalues are given by 

COSX=O 3 An= T n=0,1 ,2 ,  ... (10.2-26) 

Therefore, the general solution is 

(10.227) 

The unknown coefficients C, can be determined by using the initial condition in 
Eq. (10.2-15). The result is 

00 

1 = c c, cos [ (n  + ;) 4 
n=O 

(10.2-28) 

Since the eigenfunctions are simply orthogonal, multiplication of Eq. (10.228) by 
cos [(m + i) 7r<] and integration from < = 0 to < = 1 gives 

(10.2-29) 
Note that the integral on the right side of Eq. (10.2-29) is zero when n # m and 
nonzero when n = m. Therefore, when n = m the summation drops out and Eq. 
(10.2-29) reduces to the form 

Evaluation of the integrals gives 

sin [ (n + +) 7r3 
( n + + ) a  

Since sin (n + a) ?r = (- l)", the solution becomes 

C n  = 2 (10.2-31) 

(10.232) 

2A function f(s) is said to be an odd function if f(-s) = -f(z) and an even function if 
f(-z) = fb) .  
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Example 10.1 m2/s) of lOcm thick is initially at 
a temperature of 20°C. If it is dipped in a boiling water at atmospheric pressure, 
estimate the time it takes for the center of the slab to reuch 40°C. Repeat the 
problem also for a lOcm thick stainless steel slab (a  = 3.91 x 

Solution 

A copper slab (a  = 117x 

m2/s). 

The use of Eq. (10.2-32) gives 

TI - Tc O0 (-1)n n2at -- 
Tl -To - 2  n=O E (n+a)r  

where Tc is the temperature at the center, i.e., the value of T at ( = 0. 

Copper: 

Substitution of the values into Eq. (1) gives 

The value of t can be calculated as 4.5s. 

Stainless steel: 

Substitution of the values into Eq. (1) gives 

1 ~ ~ ( 3 . 9 1  x t 00 100 - 40 
1oo-20=2  n=O 

The value of t can be calculated as 136s. 

Comment: For an unsteady-state conduction problem, the ratio of the rate of 
accumulation to the rate of conduction is equal to the Fourier number. Let sub- 
scripts c and s represent wpper and stainless steel, respectively. Then, it is possible 
to equate the Fourier numbers, i.e., 

(qC= LCh (g) 
Since Lch is the same for both cases, Eq. (4) simplifies to 

= 4.5 El:) = 135s 

(4) 

which is almost equal to the exact value. 
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10.2.1.1 Macroscopic equation 

Integration of the governing equation, Eq. (10.2-7), over the volume of the system 
gives 

J L  J" J" k dxdgdz  [:A" Jlo" p e p  dxdydz  = 
-L 0 0 az2 

Evaluation of the integrations yields 

(10.2-33) 

(10.2-34) 
L 

\ 
T 

Rate of accumulation of energy Rate of energy entering 
from surfaces at z = f L 

Note that Eq. (10.2-34) is the macroscopic energy balance by considering the 
rectangular slab as a system. The rate of energy entering into the slab, 0, can be 
calculated from Eq. (10.2-34) as 

Q = 2 W H  k -  ( El,=,> 
2 WHk (Ti - To) 89 = -  L 

Substitution of Eq. (10.2-32) into Eq. (10.2-35) gives 

The amount of heat transferred can be calculated from 

L2 t 

Q = /  0 Qdt=--Jd Q d r  

Substitution of Eq. (10.2-36) into Eq. (10.2-37) yields 

(10.235) 

(10.2-36) 

(10.2-37) 

(10.2-38) 

where QOO is the amount of heat transferred to the slab when it reaches steady- 
state, i.e., 

Q- = 2LWHp ep(T1 -To) (10.2-39) - 
Mass of the slab 
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10.2.1.2 Solution for short times 

Let s be the distance measured from the surface of the slab, i.e., 

s = L - r  (10.2-40) 

so that Eq. (10.2-7) reduces to 

(10.2-41) 

At small values of time, the heat does not penetrate very far into the slab. Under 
these circumstances, it is possible to consider the slab as a semi-infinite medium in 
the s-direction. The initial and boundary conditions associated with Eq. (10.2-41) 
become 

at t = O  T = To 
at s = O  T = T l  (10.2-42) 
at s = o o  T = T ,  

Introduction of the dimensionless temperature 

T - To &I=- 
Tl - To 

reduces Eqs. (10.2-41) and (10.2-42) to 

(10.2-43) 

(10.2-44) 

at t = O  & I = O  
at s = O  + = l  (10.2-45) 
at s=oo  + = O  

Since there is no length scale in the problem, this parabolic partial differential 
equation can be solved by the similarity solution as explained in Section B.6.2 in 
Appendix B. The solution is sought in the form 

4 = f (4 (10.2-46) 

where 
(10.2-47) 

The chain rule of differentiation gives 

(10.2-48) 
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Substitution of Eqs. (10.2-48) and (10.2-49) into Eq. (10.2-44) gives 

- @f df 
d772 + 277 - = 0 

d77 

The boundary conditions associated with Eq. (10.2-50) are 

at q = O  f = 1  
at q = m  f = O  

(10.2-49) 

(10.2-50) 

(10.2-51) 

The integrating factor for Eq. (10.2-50) is exp($). Multiplication of Eq. (10.2-50) 
by the integrating factor yields 

which implies that 

f (e+ $-) = o (10.2-52) 

(10.2-53) 

Integration of Eq. (10.2-53) gives 

f = CIA" e-U2du + C2 (10.254) 

where u is a dummy variable of integration. Application of the boundary condition 
at 11 = 0 gives CZ = 1. On the other hand, application of the boundary condition 
a tq= lg ives  

1 n 

Jo 
Therefore, the solution becomes 

2 q  f = 1 - Jd  e-"'du = 1 - erf(q) 

T - To S 

Tl -To &Kt 
-- - 1 - erf (-) 

where erf(z) is the error function defmed by 

(10.2-55) 

(10.2-56) 

(10.2-57) 
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Further simplification of Eq. (10.2-57) gives 

(10.259) 

The rate of heat transfer into the semi-infinite slab of cross-sectional area A is 

The amount of heat transferred is 
t 

& =  J Q d t  
0 

- 2Ak (Ti - To)& - 6 

(10.2-60) 

(10.2-61) 

Example 10.2 One of the surfaces of a thick wall is exposed to gases at 350°C. 
If the initial wall temperature is uniform at 20"C, determine the time r e q u i d  for  
a point 5 cm below the surface to reach 280 "C. The thermal diffwivity of the wall 
is 4 x 10-~ m2/ s. 

Solution 

Assumption 

1. The Biot number is large enough to neglect the external resistance to heat 
transfer so that the surface temperature of the wall is almost equal to the g a s  
temperature. 

2. Since the wall thickness is large, it may be considered as a semi-infinite 
medium. 

Analysis 

The left-side of Eq. (10.2-59) is 

TI - T 
TI -To 350-20 

350 - 280 
= 0.212 -- - 

Therefore, 
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The time required is 
1 2 

t = - (') 
4 a  0.19 

2 

- - (E) =43,283s- l2h 
4(4 x 10-7) 0.19 (3) 

Comment: Note that when SI& = 2, Eq. (10.2-59) becomes 

TI -T 
Tl -To 
-- - erf(2) = 0.995 

indicating that T 21 To. Therefore, the penetration distance for heat, &, is given by 

6t = 4 6  

In this particular example, the penetration distance after 12 hours is 

& = 4 d ( 4  x 10-7)(12)(3600) = 0.53m 

10.2.2 
In Section 10.2.1, the temperatures of the surfaces at z = f L are assumed constant 
at TI. This boundary condition is only applicable when the external resistance to 
heat transfer is negligible, Le., BiH > 40. In practice, however, it is not the surface 
temperature but the temperature of the medium surrounding the slab, T,, that is 
generally constant and the external resistance to heat transfer should be taken into 
consideration. The governing equation for temperature is given by Eq. (10.2-7). 
The initial and the boundary conditions are given by 

Heating of a Rectangular Slab: Revisited 

at t = O  T = T ,  

- 0  at z = O  -- aT 
az 

Introduction of the dimensionless quantities 

for all z (10.2-62) 

t > O  (10.263) 

t > O  (10.2-64) 

(10.265) 

(10.266) 

(10.267) 

(10.268) 
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reduces Eqs. (10.2-7), (10.2-62), 

at 

at 

at 

(10.2-63) and (10.2-64) to 

ae a2e 

67 at2 
_ -  -- 
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(10.2-69) 

7 = o  e = i  (10.2-70) 
ae t = o  -- at - O  (10.2-71) 

(10.2-72) ae --- 
at - BiH e 

The use of the method of separation of variables in which the solution is sought in 
the form 

e(r, E )  = F ( 7 )  G(t)  (10.2-73) 

reduces the differential equation, Eq. (10.2-69) to 

= - X2 
1 dF 1 d2G 
F dr  G d t 2  

- (10.2-74) 

Equation (10.2-74) results in two ordinary differential equations: 

dF + X2F = 0 j F ( r )  = e-A2T (10.2-75) dr  

d2G - + X2G = 0 

Therefore, the solution becomes 

(10.2-76) + G(<) = Asin(Xt) + B cos(Xt) 
d t 2  

6 = e-A2T [Asin(X<) +Bcos(X<)] (10.2-77) 

The application of Eq. (10.2-71) indicates that A = 0. Application of the boundary 
condition defined by Eq. (10.2-72) gives 

B X e- sin X = BiH B e- cos X (10.2-78) 

Solving for X yields 
A, tan A, = BiH (10.279) 

The first five roots of Eq. (10.2-79) axe given as a function of B i H  in Table 10.3. 
The general solution is the summation of all possible solutions, i.e., 

M 

(10.2-80) 
n=l 
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4 W H k  (T, - To) An sin2 A, 
Q =  exp (- A2,T) An + sin A, cos n=l 

L 

Table 10.3 The roots of Eq. (10.2-79). 

(10.2-84) 

BiH A1 A2 A3 x, A5 

0 0.000 3.142 6.283 9.425 12.566 
0.1 0.311 3.173 6.299 9.435 12.574 
0.5 0.653 3.292 6.362 9.477 12.606 
1.0 0.860 3.426 6.437 9.529 12.645 
2.0 1.077 3.644 6.578 9.630 12.722 

10.0 1.429 4.306 7.228 10.200 13.214 

The unknown coefficients C, can be determined by using the initial condition given 
by Eq. (10.2-70). The result is 

2 sin A, 
A, + sin A,, cos A, 

- - 

Therefore, the solution becomes 

(10.281) 

m sin A, 
A, + sin A, cos A, 

e- X:T  cos(^,<> e = 2 C  I n=l 

(10.2-82) 

When r 1 0.2, the series solution given by Eq. (10.2-82) can be approximated by 
the first term of the series. 

The rate of energy entering into the slab, Q, is given by 

Q = 2 W H  k- ( :IZ=,> 
2 WHk (T, - To) 80 - - -  

L %I,=, 
Substitution of Eq. (10.2-82) into Eq. (10.2-83) gives 

(10.283) 

The mount of heat transferred can be calculated from 

(10.285) 
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sin2 A, 
[I - exp (- x;T)] 

-=E- Q - 2  
X, X, + sin X, cos X, QO n=O 

449 

(10.2-86) 

Substitution of Eq. (10.2-84) into Eq. (10.285) yields 

where Qo is the amount of heat transferred to the slab when the driving force is 
constant and equal to its greatest (or? initial) value, i.e., 

Qo = 2 L W H p C p ( T m  -To) (10.287) 

Example 10.3 A cake baked at 175 "C for  half an hour is taken out of the oven 
and inverted on a rack to cool. The kitchen temperature is 2OoC ana! the average 
heat transfer coefficient is 12 W/ m2. K. If the thickness of the cake is 6 cm, esti- 
mate the time it takes for the center to reach 40°C. Take k = 0.18Wjm.K and 
a = 1.2 x 

Solution 

m2/s for the cake. 

The Biot number is 

= 2  - (12)(0.03) - 
(0.18) 

From Table 10.2 XI = 1.077. Considering only the first t e r n  of the series in Eq. 
(10.2-82), the temperature at the center, T,, is 

Substitution of the values into Eq. (2) gives 

2 sin61.7 
1.077 + sin61.7cos61.7 

- - exp [- (1 .077)~~] 20 - 40 
20 - 175 (3) 

in which 1.077rad = 61.7". Solving for T yields 

T = 1.907 (4) 

Therefore, the time is 

= 14,303s N 4h - (1.907) (0.03)2 - 
1.2 x 10-7 

Comment: 
heat loss from the edges as well as the heat transfer to the rack by conduction. 

The actual cooling time is obviously less than 4 h as a result of the 
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10.2.3 
A spherical particle of radius R is initially at a uniform temperature of To. At t = 0 
it is exposed to a fluid of temperature T, (T, 7 To). It is required to determine 
the amount of heat transferred to the spherical particle. 

Heating of a Spherical Particle 

Figure 10.3 Heating of a spherical particle. 

Since the heat transfer taka place in the r-direction, Table C.6 in Appendix 
C indicates that the only non-zero energy flux component is e,. and it is given by 

aT 
e, = 4,. = - k - 

dr 
(lO.ZS8) 

For a spherical differential volume of thickness Ar, as shown in Figure 10.3, &. 
(10.21) is expressed as 

a 
dt qr(,. 47rr2 - qr(,+*,. 4 ~ ( r  +  AT)^ = - k ~ ~ ~ A r p & p ( T  - Trej ) ]  (10.289) 

Dividing Eq. (10.2-89) by 47rAr and letting AT -+ 0 gives 

e aT 1 a(r2qr) pep-=--- at + & 

(10.2-90) 

(10.2-91) 

Substitution of Eq. (10.2-88) into Eq. (10.2-91) gives the governing differential 
equation for temperature as 

(10.2-92) 
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The initial and the boundary conditions associated with Eq. (10.2-92) are 

at t = O  T = T o  (10.2-93) 

- 0  (10.2-94) at r = O  -- a- 
dr 

dT at r = R  k-=((h) (T, -T)  
dT 

Introduction of the dimensionless quantities 

Tw -T 
Tw - To 

8 =  

at r = -  
R2 

reduces Eqs. (10.2-92)-(10.2-95) to 

at r = O  0 = 1  

10.2.2.1 Solution for 0.1 <BiH < 40 

U 
Note that the transformation 

O = T  

(10.2-95) 

(10.2-96) 

( 10.2-97) 

(10.2-98) 

(10.2-99) 

(10.2-100) 

(10.2-101) 

(10.2-102) 

(10.2-103) 

(10.2-104) 

converts the spherical geometry into the rectangular geometry. Substitution of Eq. 
(10.2-104) into Eq. (10.2-100) leads to 

au a2u 

67 at2 
_ -  - - 

which is identical with Eq. (10.2-69). Therefore, the solution is 

u = e- "7 [ A  sin(Xc) + B cos(~t)l  

(10.2-105) 

( 10.2- 106) 
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(10.2-107) 

The boundary condition defined by Eq. (10.2-102) indicates that B = 0. Applica, 
tion of Eq. (10.2-103) yields 

A e- x2T(sin A - A cos A) = BiH A e- sin X ( 10.2- 108) 

Solving for X gives 

The first five roots of Eq. (10.2109) are given as a function of BiH in Table 10.4. 

An cot A, = 1 - BiH (10.2-109) 

'pable 10.4 The roots of Eq. (10.2-109). 

0 0.000 4.493 7.725 10.904 14.066 
0.1 0.542 4.516 7.738 10.913 14.073 
0.5 1.166 4.604 7.790 10.950 14.102 
1.0 1.571 4.712 7.854 10.996 14.137 
2.0 2.029 4.913 7.979 11.086 14.207 

10.0 2.836 5.717 8.659 11.653 14.687 

The complete solution is 

(10.2-110) 
n=l 

The unknown coefficients Cn can be determined from Eq. (10.2-101). The result 
is 

sin A, - A, cos An 
An - sin An COS An 

Therefore, the solution becomes 

(10.2-111) 
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The rate of energy entering into the sphere, Q ,  is given by 

Q = 4=R2 k- %,> 
= -4rRk(T,  -To) - 

Substitution of Eq. (10.2112) into Eq. (10.2-113) results in 

The amount of heat transferred can be calculated from 
t 

& =  J Q d t = -  L2 lr QdT 
0 CY 

Substitution of Eq. (10.2114) into Eq. (10.2-115) yields 

00 6 (sin A, - A, cos A,)2 
(A, - sin A, cos A,) 

[I - exp (-A:.)] 

(10.2-113) 

(10.2-114) 

(10.2-115) 

(10.2-116) 

where Q,, is the amount of heat transferred to the sphere when the driving force is 
constant and equal to its greatest (or, initial) value, Le., 

(10.2-117) 
4 

Qo = ,rp P ~ P ( T ~  -To) 

Example 10.4 Due to an unexpected cold spell, air temperature drops down to 
-3°C accompanied by a wind blowing at a velocity of 3m/s in Florida. Farmers 
have to toke precautions in order to avoid post  in their orange orchards. If frost 
formation starts when the surface temperature of the orange reaches O"C, use your 
engineering judgement to estimate the time the farmers have to take precautions. 
Assume the oranges are spherical in shape with a diameter of lOcm and at an 
initial uniform temperature of 10°C. The thermal conductivity and the thermal 
digusivity of an orange are 0.51 W/ m. K and 1.25 x 

Solution 

Physical properties 

m2/ s, respectively. 

Initially the film temperature is (-3 + 10)/2 = 3.5 "C. 

Y = 13.61 x 10-6m2/s 
k = 24.37 x 
Pr = 0.716 

For air at 3.5 "C (276.5 K) : W/ m. K 
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Analysis 

It is first necessary to calculate the average heat tmnsfer coeficient. The Reynolds 
number is 

The use of the RantMarshall correlation, Eq. (4.3-29)) gives 

Nu = 2 + 0.6Reg2 P f i 3  
= 2 + 0.6 (22, 043)1/2(0.716)1/3 
= 81.7 

The average heat transfer coeficient is 

The Biot number is 

= 19.9 W/ m2. K 

= 1.95 - (19.9) (5 x 
0.51 

- 

(3) 

(4) 

From Eq. (10.2-log), the first root is XI = 2.012. Considering only the first t e r n  
of the series in Eq. (10.2-112) gives 

The time required for the surface of the orange, i.e., E = 1, to  reach 0°C is 

(6) 
-3- 0 sin 115.3 - 2.012~0s 115.3 e- (2,012)2T sin 115.3 

2.012 - sin 115.3 cos 115.3 

in which 2.012rad = 115.3'. Solving for r yields 

T = 0.26 

Therefore, the time is 

rR2 t = -  
a 

(7) 

= 5200s N 1 h 27min - (0.26)(5 x 10-2)2 - 
1.25 x 10-7 
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Example 10.5 A 2-kg spherical rump roast is placed into a 175°C oven. How 
long does it take for the center to reach 80°C if the initial temperature is 5OC7 
The average heat transfer coeficient in the oven is 15 W/ m2. K and the physical 
properties of meat are given as: p = 1076kg/m3, k = 0.514W/m.K, C p  = 
3.431 kJ/ kg. K. 

Solution 

The diameter of the roast is 

6M 'I3 
D =  (,) 

113 
= [-] = 0.153111 

The Biot number is 

= 2.23 - (15)(0.153/2) - 
0.514 

From Eq. (10.2-log), the first root is A1 = 2.101. Considering only the first term 
of the series in Eq. (10.2-112) gives 

(3) 
sin(A1 E )  - 

I 
e- 

sinA1 - A1 cosA1 
A1 - sinA1 cos A1 

e =  
Since 

the temperature at the center, T,, is given by 

Substitution of the values into Eq. (5) gives 

(6) 
175 - 80 
175 - 5 

sin 120.4 - 2.101 cos 120.41 
2.101 - sin 120.4~0s 120.4 = 2 (  

in which 2.101 rad = 120.4". Solving for r yields 

Therefore, the time is 

t =  

- - 

r = 0.226 

rR2 

= 9500s E 2.64h (0.226) (0. 153/2)2 
0.514/ [(1076)(3431)] 



456 CHAPTER 10. UNSTEADY MICROSCOPIC BAL. WITHOUT GEN. 

Example 10.63 
How long will it tuke to hard boil an ostrich’s egg of mass 3kg7 

Solution 

A hen’s egg of mass 50 grams requires 5 minutes to hard boil. 

For an unsteady-state conduction problem, the mtio of the mte of accumulation 
to the rate of conduction is qual  to the Fourier number. Let subscripts h and o 
represent hen and ostrich, respectively. Then, it is possible to equate the Fourier 
numbers as we did in Example 10.1: 

If both eggs are chemically similar, then a h  = ao. Since volume and hence mass, 
M y  is proportional to Lzh, Eq. (1) redues to 

Substitution of the numerical values into Eq. (2) gives the time required to hard 
boil ostrich’s egg as 

= 76.6min (3) 

10.2.2.2 Solution for BiH < 0.1 

When BiH < 0.1, internal resistance to heat transfer is negligible. Considering the 
sphere as a system, the inventory rate equation for thermal energy can be written 
as 

Rate of energy in = Rate of energy accumulation 

& 4  

&arrangement of Eq. (10.2119) gives 

(10.2-118) 

or, 

4xR2(h)(T&, - T )  = - d t  [- 3 VR3PCP(T - T 4  (10.2119) 

Evaluation of the integrations leads to 

Tm-T=(T,-To)exp 
PCPR 

(10.2-120) 

(10.2-121) 

3This problem is taken from Konak (1994). 
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The amount of heat transferred to the sphere can be calculated as 
t 

Q = 47rR2(h) 1 (2'- - 2') dt 

Substitution of Eq. (10.2-121) into Eq. (10.2-122) gives 

(10.2-122) 

( 10.2- 123) 

or, 

-=l-exp(-3BiH7) (10.2-124) 

The exact values of Q/Qo obtained from Eq. (10.2-86) are compared with the 
approximate results obtained from Eq. (10.2-124) for different values of BiH in 
Table 10.5. As expected, when BiH = 0.1, the approximate values are almost equal 
to the exact ones. For BiH > 0.1, the use of Eq. (10.2-124) overestimates the exact 
values. 

Table 10.5 Comparison of Q/Qo values obtained from Eqs. (10.2-86) and 
(10.2-124). 

Q/Qo 

Exact Approx. Exact Approx. Exact Approx. 
0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 
1 0.255 
2 0.444 
3 0.586 
4 0.691 
5 0.770 
6 0.828 
7 0.872 
8 0.905 
9 0.929 

10 0.947 

0.259 
0.451 
0.593 
0.699 
0.777 
0.835 
0.878 
0.909 
0.933 
0.950 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.229 
0.398 
0.530 
0.633 
0.713 
0.776 
0.825 
0.863 
0.893 
0.916 

0.259 
0.451 
0.593 
0.699 
0.777 
0.835 
0.878 
0.909 
0.933 
0.950 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

0.157 
0.259 
0.337 
0.402 
0.457 
0.505 
0.548 
0.586 
0.620 
0.650 

0.259 
0.451 
0.593 
0.699 
0.777 
0.835 
0.878 
0.909 
0.933 
0.950 

10.3 MASS TRANSPORT 
The conservation statement for species A is expressed as 

) (10.3-1) Rate of Rate of species A ( species A in ) - ( s p R : k t  ) = ( accumulation 
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As in Section 8.4, our analysis will be restricted to the application of Eq. (10.3-1) 
to diffusion in solids and stationary liquids. The solutions of almost all imaginabIe 
diffusion problems in different coordinate systems with various initial and boundary 
conditions are given by Crank (1956). As will be shown later, conduction and 
diffusion problems become analogous in dimensionless form. Therefore, solutions 
given by Carslaw and Jaeger (1959) can also be used for diffusion problems. 

The Biot number is given by Eq. (7.1-14) as 

(Difference in driving force),,lid 
(Difference in driving force)flusd Bi = (10.3-2) 

In the case of mass transfer, when BiM << 1 the internal resistance to mass transfer 
is negligible and the concentration distribution is considered uniform within the 
solid phase. When BiM >> 1, the external resistance to mass transfer is considered 
negligible and the concentration in the fluid at the solid surface is almost the same 
as in the bulk fluid. 

10.3.1 Mass Tkansfer Into a Rectangular Slab 
Consider a rectangular slab of thickness 2L as shown in Figure 10.4. Initially 
the concentration of species A within the slab is uniform at a value of CA,. At 
t = 0 the surfaces at z = f L are kept at a concentration of C A ~ .  To calculate the 
amount of species A transferred into the slab, it is first necessary to determine the 
concentration distribution of species A within the slab as a function of position 
and time. 

-4 Az I C  

NAZ IZ i Iz+& IN 
Figure 10.4 Mass transfer into a rectangular slab. 
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If 2L/H << 1 and 2L/W << 1, then it is possible to assume that the diffusion 
is one-dimensional and postulate that CA = C A ( ~ , Z ) .  In that case, Table C.7 in 
Appendix C indicates that the only non-zero molar flux component is NA, and it 
is given by 

dCA NA, = Jiz = -DAB - 
dz 

For a rectangular differential volume element of thickness Az, as shown in Figure 
10.4, Eq. (10.3-1) is expressed as 

(10.3-3) 

Dividing Eq. (10.3-4) by WH Az and letting Az --+ 0 gives 

(10.3-4) 

(10.3-5) 

(10.3-6) 

Substitution of Eq. (10.3-3) into Eq. (10.3-6) gives the governing equation for 
concentration of species A as 

(10.3-7) 

in which the diffusion coefficient is considered constant. The initial and the bound- 
ary conditions associated with Eq. (10.3-7) are 

at t = O  CA = CA, for all z 
at z = L  C A = C A ,  t > o  (10.3-8) 
a t z = - L  C A = C A ~  t > O  

Note that z = 0 represents a plane of symmetry across which there is no net 
flux, i.e., = 0. Therefore, it is also possible to express the initial and 
boundary conditions as 

at t = 0 CA = CA, for all z 

aCA at z = O  - = 0  t > O  
az 

(10.3-9) 

at z = L  C A = C A ~  t > O  

The boundary condition at z = 0 can also be interpreted as an impermeable sur- 
face. As a result, Eqs. (10.3-7) and (10.3-9) also represent the following problem 
statement: "Initially the concentration of species A within a slab of thickness L is 
uniform at a value of CA,. While one of the surfaces is impermeable to species d, 
the other side is kept at a constant concentration of CA, with C A ~  > CA, for t > 0." 
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00 

s [(n + ;) 7 4  
n=O 

The physical significance and the order of magnitude of the terms in &. (10.3-7) 
are given in Table 10.6. 

(10.3-16) 

Table 10.6 The physical significance and the order of magnitude of the terms in 
Eq. (10.3-7). 

00 

s [(n + ;) 7 4  
n=O 

Term Physical Significance Order of Magnitude 

(10.3-16) 

Rate of diffusion 

aCA Rate of accumulation cAl - CA, - 
at of mass A t 

is given by 

DAB ( C A ~  - C A , ) / L ~  DAB t - - - Rate of diffusion 
Rate of mass A accumulation (CAI - cAo L2 

Therefore, the ratio of the rate of diffusion to the rate of accumulation of mass A 

(10.3-10) 

which is completely analogous to the Fourier number, Fo . 
Introduction of the dimensionless quantities 

CAI - CA 

CAI - CA, 
e =  

z 
E = ,  

'DAB t 
L2 

7 - z -  

reduces Eqs. (10.3-7) and (10.3-8) to 

ae a2e 

87- at2 
at r = O  e = i  
at E = l  e = o  
at E = - 1  e = O  

=- - 

(10.3-11) 

(10.3-12) 

(10.3-13) 

(10.3-14) 

(10.3-15) 

Note the Eqs. (10.3-14) and (10.3-15) are identical waUh Eqs. (10.2-14, and (10.2- 
15). Therefore, the solution given by Eq. (10.2-32) is also valid for this case, 
i.e., 
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Example 10.7 
in a well-stirred 0.15 M solution of species A. 
coeficient of 0.65 x 
concentration distribution as a function of position and time. 

A 1 mm thick membrane in the form. of a flat sheet is immersed 
if species A has the digusion 

m2/ s and the partition coeficient of 0.4, determine the 

Solution 

Using Eq. (10.3-16), the concentration distribution is given as 

The variation of C A  as a function of the dimensionless distance, c, at various 
values of time is given in the table below. Note that E = 0 and 5 = 1 represent the 
center and the suvface of the sheet, respectively. 

.$ t = l m i n  t = 2 m i n  t = 5 m i n  t = l O m i n  
0 0.881 2.465 4.885 5.837 
0.1 0.936 2.510 4.889 5.839 
0.2 1.103 2.637 4.940 5.845 
0.3 1.381 2.848 5.007 5.855 
0.4 1.770 3.137 5.098 5.868 
0.5 2.268 3.497 5.212 5.885 
0.6 2.869 3.918 5.345 5.904 
0.7 3.561 4.391 5.494 5.926 
0.8 4.329 4.905 5.656 5.950 
0.9 5.151 5.445 5.826 5.975 
1.0 6.000 6.000 6.000 6.000 

10.3.1.1 Macroscopic equation 

Integration of the governing equation, Eq. (10.3-7), over the volume of the system 
gives 

a 2 C A  (10.3-17) J L  J" 1" %dzdydz = J" J" 1 DAB W d x d y d z  
H 

-L 0 at -L 0 

Evaluation of the integrations yields 
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Note that Eq. (10.3-18) is the macroscopic mass balance for species A by consid- 
ering the rectangular slab as a system. 

The molar rate of species d entering into the slab, 7 i ~ ,  can be calculated from 
Eq. (10.3-18) as 

- 

Substitution of Eq. (10.3-16) into Eq. (10.3-19) gives 

2 WHDAB(CA,  - CA,) 88 _ -  
L (10.3-19) 

The number of moles of species A transferred can be calculated from 

Substitution of Eq. (10.3-20) into Eq. (10.3-21) yields 

(10.3-21) 

] 1 (10.3-22) 
M A  1 

where MA is the m a s  of species transferred into the slab and MA, is the maximum 
amount of species A transferred into the slab, i.e., 

MA- = 2 LWH(CA, - ~A, )MA (10.3-23) 

10.3.1.2 Solution for short times 

Let s be the distance measured from the surface of the slab, i.e., 

s = L - 2  (10.3-24) 

so that Eq. (10.3-7) reduces to 

(10.3-25) 

At small values of time, species d does not penetrate very far into the slab. Under 
these circumstances, it is possible to consider the slab as a semi-infinite medium 
in the s-direction. The initial and the boundary conditions associated with Eq. 
(10.3-25) become 

at t = O  C A  = C A ,  

at s = O  C A  = C A ~  (10.3-26) 
at S = O O  C A  = C A ,  
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Introduction of the dimensionless concentration 

reduces Eqs. (10.3-25) and (10.3-26) to 

at t = O  + = O  
at s = O  $ = l  
at s=oo  # = 0  

(10.3-27) 

(10.3-28) 

(10.3-29) 

Note that Eqs. (10.328) and (10.3-29) are identical with Eqs. (10.2-44) and (10.2- 
45) with the exception that a is replaced by DAB. Therefore, the solution is given 
by Eq. (10.2-56), Le., 

(10.3-30) 

The molar rate of transfer of species A into the semi-infinite slab of cross-sectional 
area A is 

The number of moles of species A transferred is 

(10.3-31) 

(10.3-32) 

The maximum amount of species A transferred to the slab is 

MA, = AL(cA~ - CA,)MA (10.3-33) 

Hence, the ratio of the uptake of species A relative to the maximum is given by 

(10.3-34) 

The values of MA/MA, calculated from Eqs. (10.322) and (10.3-34) are com- 
pared in Table 10.7. Note that the values obtained from the short time solution 
are almost equal to the exact values up to d w  = 0.6. 
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'pable 10.7 
solution. 

Comparison of the exact fiactional uptake values with a short time 

Exact Approx. 
Eq. (10.3-22) J3q. (10.3-34) 

@ 
0.1 0.113 0.113 
0.2 0.226 0.226 
0.3 0.339 0.339 
0.4 0.451 0.451 
0.5 0.562 0.564 
0.6 0.667 0.677 
0.7 0.758 0.790 
0.8 0.833 0.903 
0.9 0.890 1.016 
1.0 0.931 1.128 

Example 10.8 For a semi-infinite medium, penetration distances for the mo- 
mentum and heat transfer are estimated as 

s = 4 &  

6t = 4 a  

Develop an analogous equation for the mass transfer. 

Solution 

When s / d m  = 2, Eq. (10.3-30) becomes 

- cAo = 1 - erf (2) = 0.005 
CAI - CA, 

indicating that CA N CA,. Therefore, the penetration dis-ance for mass transfer, 
6,, is given by  

s, = 4 J G  

10.3.2 
Consider a liquid droplet (23) of radius R surrounded by gas A as shown in Figure 
10.5. We are interested in the rate of absorption of species A into the liquid. The 
problem will be analyzed with the following assumptions: 

Gas Absorption Into a Spherical Droplet 

1. Convective flux is negligible with respect to the molecular flux, i.e., vl 21 0. 

2. The total concentration is constant. 



10.3. MASS TRANSPORT 465 

Figure 10.5 Gas absorption into a droplet. 

Since CA = CA(T),  Table C.9 in Appendix C indicates that the only non-zero molar 
flux component is NA, and it is given by 

(10.3-35) 

For a spherical differential volume element of thickness AT, as shown in Figure 
10.5, Eq. (10.3-1) is expressed in the form 

dCA NA, = J;, = -?)AB - 
dr 

8 
at NA, l r  47rr2 - NA, Ir+A,. 4 ~ ( r  + Ar)2 = - [4?rr2Ar (CA - CA,)] (10.3-36) 

Dividing Eq. (20.3-36) by 47rAr and taking the limit as AT + 0 gives 

(10.3-37) 

(10.3-38) 

Substitution of Eq. (10.3-35) into Eq. (10.3-38) gives the governing differential 
equation for the concentration of species A as 

(10.3-39) 

The initial and the boundary conditions associated with Eq. (10.3-39) are 

at t = O  CA =CA,  (10.3-40) 

at r = O  -- acA - 0 
& 

at r = R CA = C> 

where c> is the equilibrium solubility of species A in liquid B. 

(10.%41) 

(10.3-42) 



466 CHAPTER io. UNSTEADY mmoscoprc BAL. WITHOUT GEN. 

Introduction of the dimensionless quantities 

reduces Eqs. (10.3-39)-(10.3-42) to 

The transformation 

(10.3-43) 

(10.3-44) 
z t = -  
L 

(10.3-45) 

(1 0.3-46) 

at r = O  6 = 1  (10.3-47) 
ae 

at ( = O  -- at - O  
at ( = 1  @ = O  

U 

(10.3-48) 

(10.3-49) 

(10.3-50) 

converts the spherical geometry into the rectangular geometry. Substitution of En. 
(10.3-50) into E!q. (10.3-46) leads to 

azc 8% 
ar at2 
-- -- 

which is identical with Eq. (10.2-69). Therefore, the solution is 

(10.3-51) 

= e- A% [A sin(X) + B cos(A<)] (10.3-52) 

or, 

(10.3-53) 6 
The boundary condition defined by Eq. (10.3-48) indicates that B = 0. Application 
of Eq. (10.3-49) yields 

+B=l 6 
e = e - A a T  [.- sin( At )  

sinA=O + A,,=nr n = l , 2 , 3 ,  ... (10.3-54) 

Therefore, the general solution is 

(10.3-55) 
n=l h 
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The unknown coefficients Cn can be determined from the initial condition defined 
by Eq. (10.3-47). The result is 

Hence, the solution becomes 

The molar rate of absorption of species A is given by 

Substitution of &. (10.3-57) into E!q. (10.3-59) results in 

The moles of species A absorbed can be calculated from 

Substitution of Eq. (10.3-60) into &. (10.3-61) yields 

(10.3-56) 

(10.3-57) 

(10358) 

(10.3-59) 

(10.3-60) 

(10.3-61) 

(10.3-62) 
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The maximum amount of species A absorbed by the droplet is given by 

4 (10.3-63) MA, = ,xP(c;I - CA,)MA 

Therefore, the mass of species A absorbed by the droplet relative to the maximum 
is 

NOTATION 

A 

ci 
C P  

DP 
'DAB 
e 
FD 
h 
J* 
k C  

L 
M 
m 
M 
N 
n 

G? 
Q 
R 
T 
t 
V 

W 

Q 

V 

a 
6 
6, 

area, m2 
heat capacity at constant pressure, kJ/ kg. K 
concentration of species i, kmol/ m3 
particle diameter, m 
diffusion coefficient for system A-t?, m2/ s 
total energy flux, W/ m2 
drag force, N 
heat transfer coefficient, W/ m2. K 
molecular molar flux, kmol/ m2. s 
mass transfer coefficient, m/s 
length, m 
mass, kg 
mass flow rate, kg/ s 
molecular weight, kg/ kmol 
total molar flux, kmol/ m2. s 
molar flow rate, kmol/ s 
heat transfer rate, W 
volumetric flow rate, m3/ s 
heat flux, W/m2 
radius, m 
temperature, "C or K 
time, s 
velocity of the plate in Couette flow, m/ s; volume, m3 
velocity, m/ s 
width, m 

thermal diffusivity, m2/ s 
penetration distance for momentum, m 
penetration distance for mass, m 

(10.3-64) 
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6t 
P viscosity, kg/ m. s 
v kinematic viscosity, m2/ s 
P density, kg/ m3 
7r 

7- dimensionless time 
7- i j  

penetration distance for heat, m 

total momentum flux, N/ m2 

shear stress (flux of j - momentum in the i - direction, N/ m2 
Bracket 

(4 average value of a 

Subscripts 

A, B 
C center 
ch characteristic 
ref reference 

species in binary systems 

Dimensionless Numbers 

BiH 
BiM 
Fo Fourier number 
Nu Nusselt number 
Pr Prandtl number 
Re Reynolds number 

Biot number for heat transfer 
Biot number for mass transfer 
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PROBLEMS 

10.1 A spherical material of 15 cm in radius is initially at a uniform temperature 
of 60°C. It is placed in a room where the temperature is 23°C. Estimate the 
average heat transfer coefficient if it takes 42min for the center temperature to 
reach 3OOC. Take k = 0.12 W/ m. K and a = 2.7 x 
(Answer: 6.5 W/ m2. K) 

10.2 The fuel oil pipe that supplies the heating system of a house is laid 1 m below 
the ground. Around a temperature of 2°C the viscosity of the fuel oil increases 
to a point that pumping becomes almost impossible. When the air temperature 
drops to -15"C, how long does it take to have problems in the heating system? 
Assume that the initial ground temperature is 10°C and the physical properties 
are: IC = 0.38W/m.K and Q = 4  x 10-'m2/s 
(Answer: 351.3 h) 

10.3 Two semi-idinite solids A and B, initially at TA, and TB, with TA, > TB,, 
are suddenly brought into contact at t = 0. The contact resistance between the 
metals is negligible. 
a) Equating the heat fluxes at the interface, show that the interface temperature, 
Ti, is given by 

m2/s. 

Ti -TB, - &i k A  

TA, - TB, 
- 

& Z ~ A  + & k ~  
b) Consider two slabs made of copper and wood which are at a temperature of 
80°C. You want to check if they are hot by touching them with your finger. 
Explain why you think the copper slab feels hotter. The physical properties are 
given as follows: 

k a 
W/m.K m2/ s 

Skin 0.3 1.5 x 10-7 

Wood 0.15 1.2 x 10-7 
Copper 401 117 x 
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10.4 In Section 10.3.1-2, the number of moles of species A transferred into the 
semi-infinite medium, n A ,  is determined by integrating the molar transfer rate over 
time, i.e., l3q. (10.3-32). It is also possible to determine n A  from 

n A  = A (CA - c ~ , ) d s  I" 
Show that the substitution of Eq. (10.3-30) into the above equation leads to Eq. 
(10.3-32). 

10.5 A polymer sheet with the dimensions of 2 x 50 x 50mm is exposed to chlo- 
roform vapor at 20°C and 5mmHg. The weight of the polymer sheet is recorded 
with the help of a sensitive electrobalance and the following data are obtained: 

Time Weight of polymer sheet 
(h) ( g) 

0 6.0000 
54 6.0600 
00 6.1200 

Assuming that the mass transport of chloroform in the polymer sheet is described 
by a Fickian type diffusion process, estimate the diffusion coefficient of chloroform 
in the polymer sheet. 
(Answer: 1.01 x m2/ s )  

10.6 
the following initial and boundary conditions: 

Consider an unsteady-state diffusion of species A through a plane slab with 

at t = O  C A = O  
at z=O CA =CA,  

at a = L  C A = O  

a) In terms of the dimensionless quantities 
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show that Eqs. (1)-(4) become 
ae a2e _ -  -- 
a~ at2 

at T = O  8=1 
at < = 0  e = O  
at t=1  8 = 1  

b) Note that the boundary condition at = 1 is not homogeneous and, as a 
result, the method of separation of variables cannot be applied. To circumvent this 
problem, propose a solution in the form 

e(T, 0 = e a 4 0  - et(T, t )  (12) 

in which ea,(<) is the steady-state solution, i.e., 

with the following boundary conditions 

at < = 0  8 ,=0  
at < = 1  & = l  

Show that the steady-state solution is 

e , = [  

ae, a2e, 
On the other hand, the transient contribution et(r,<) satisfies &. (8), Le., 

-- -- 
a7 at2 

with the following initial and boundary conditions 

at r=O O t = < - l  
at < = O  & = O  
at < = 1  Ot=0 

(14) 
(15) 

(17) 

c )  Use the method of separation of variables and show that the solution of Eq. 
(17) is given as 

(21) 
2 - 1  

?r n=l 

et = - - - e-nzna7 sin(nnt) 
n 

d) Show thslt the concentration distribution is given by 



Chapter 11 

Unsteady-State Microscopic 
Balances With Generation 

This chapter briefly considers the cases in which all the terms in the inventory rate 
equation are non-zero. The resulting governing equations for velocity, temperature 
and concentration are obviously partial differential equations. Nonhomogeneity 
introduced either by the governing equation itself or by the boundary conditions 
further complicates the problem. 

11.1 UNSTEADY LAMINAR FLOW IN A TUBE 
A horizontal tube of radius R is filled with a stationary incompressible Newtonian 
fluid as shown in Figure 11.1. At time t = 0, a constant pressure gradient is 
imposed and the fluid begins to flow. It is required to determine the development 
of velocity profile as a function of position and time. 

Postulating v, = v,(t ,r)  and 'u, = ve = 0, Table C.2 in Appendix C indicates 
that the only non-zero shear stress component is T,, and the components of the 
total momentum flux are given by 

8% 
nrz = T,, + ( p ~ , )  V,  = T,, = - p d r  (1 1.1-1) 

(1 1.1-2) r e z  = 78, + (pv,) 
7rz.z = T,, + (pv,) v, (11.1-3) 

473 
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Figure 11.1 Unsteady-state flow in a circular pipe. 

The conservation statement for momentum is expressed as 

Forces acting )+ (  on a system ( momentum in ) - ( momentum out 
= ( Rate of momentum ) (11.1-4) 

The pressure in the pipe depends on z. Therefore, it is necessary to consider only 
the z-component of the equation of motion. For a cylindrical differential volume 
element of thickness AT and length Az, as shown in Figure 11.1, Eq. (11.1-4) is 
expressed as 

Rate of Rate of 

accumulation 

( r z a l ,  + Trzl, .  2srAz) - [~zz [ ,+A,  STTAT + sTZlr+Ar ~ T ( T  + AT)Az] 
a 
at + (PI, - P1z+Az)2s~Ar + 2srArAzpg = - (2srArAzpv,) (11.1-5) 

Dividing Eq. (11.1-5) by 2sArAz and taking the limit as AT -+ 0 and Az + 0 
gives 

) +pg (11.1-6) + lim ( AzzIz - sZzlz+Az 
Az-0 Az 

(11.1-7) 
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Substitution of Eqs. (11.1-1) and (11.1-3) into Eq. (11.1-7) and noting that 
dv,/dz = 0 gives 

Pdt=-- dz + ; z ( r % ) + p g  (1 1 .l-8) 
dv, dP p a 

The modified pressure is defined by 

P = P - p g z  (1 1.1-9) 

so that 
d P  d P  
dz dz - PS _ -  -- 

Substitution of Eq. (11.1-10) into Eq. (11.1-8) yields 

p = - ; z ( r % ) = - z  av, p a dP 
\ " 4 -  

f (V) f (4 

(1 1.1-10) 

(1 1.1-11) 

Note that while the right-side of Eq. (11.1-11) is a function of z only, the left-side 
is dependent on r and t. This is possible if and only if both sides of Eq. (11.1-11) 
are equal to a constant, say A. Hence, 

(11 .l-12) P o  - P L  
L - A  * A =  d P  

dz 

where Po and PL are the values of P at z = 0 and I = L, respectively. Substitution 
of Eq. (11.1-12) into Eq. (11.1-11) gives the governing equation for velocity as 

(1 1 .l-13) 

The initial and the boundary conditions associated with Eq. (11.1-13) are 

at t = 0 v, = O  for all r (11.1-14) 

at r=O -- "2 - o for t 2 o 
dr 

(1 1 .l-15) 

a t r = R  v z = O  f o r t 2 0  (11.1-16) 

11.1.1 Exact Solution 
Introduction of the following dimensionless quantities 

(1 1.1-17) 
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r I = -  R (1 1.1-18) 

reduces Eq. (11.1-13)-(11.1-16) to the form 

(1 1.1-19) 

(11.1-20) 

at T = O  8 = 0  (11.1-21) 

(1 1.1-22) 
ae 
% 

at E = O  - = 0  

at t = l  e=O (1 1.1-23) 
Since Eq. (11.1-20) is not homogeneous, the solution is proposed in the form 

@(T, E )  = eOo(0 - et(T, 0 (I 1.1-24) 

in which Boo is the steady-state solution, i.e., 

(11.1-25) 

with the following boundary conditions 

(11.1-26) at < = O  -- de, - 0  
dE 

at t = 1  e,=O 
Integration of Eq. (11.1-25) gives 

(1 1.1-27) 

(11.1-28) 

The use of Q. (11.1-26) gives CI = 0. Integration of Eq. (11.1-28) once more 
and the application of the boundary condition defined by Eq. (11.1-27) gives the 
steady-state solution as 

which is identical with Eq. (9.1-79). 
e , = i - t 2  (1 1.1-29) 

The use of Eq. (11.1-29) in Eq. (11.1-24) gives 

e(T, t )  = 1 - t2 - Ot(T, t )  (11.1-30) 

Substitution of Eq. (11.1-30) into Eqs. (11.1-20)-(11.1-23) leads to the following 
governing equation for the transient problem together with the initial and the 
boundarv conditions 

(11.1-31) 
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(1 1.1-33) 

at < = 1  & = O  (1 1 .l-34) 

which can be solved by the method of separation of variables. 
Representing the solution as a product of two functions of the form 

1 d F  1 d F d r  - G t @ ( ' Z )  

(11.1-35) 

(1 1.1-36) 

While the left side of Eq. (11.1-36) is a function of r only, the right side is dependent 
only on 5. This is possible if both sides of Eq. (11.1-36) are equal to a constant, 
say - X , i.e., 

(11.1-37) 

Equation (11.1-37) results in two ordinary differential equations. The equation for 
F is given by 

(11.1-38) 
dF - + X2F = 0 
d r  

2 

1 dF _ _ -  d7 -&f(tg)=-XZ 

The solution of Eq. (11.1-38) is 

~ ( 7 )  = e- X 2 ~  (1 1.1-39) 

On the other hand, the equation for G is 

f ( t $ ) + X 2 t G = 0  

and it is subject to the boundary conditions 

(1 1.1-40) 

(11.1-41) 

at <=l G = O  (11.1-42) 

Note that Eq. (11.1-40) is a Sturm-Liouville equation with a weight function of (. 
The solution of Eq. (11.1-40) is given in terms of the h s e l  functions as 

G ( t )  = A J O ( M  + €3 Yo(%) (11.1-43) 

where A and B are constants. Since Y,(O) = - 00, B = 0. Application of the Eq. 
( 11.1-42) gives 

&(A) = 0 =+ X = XI ,& ,  ... (1 1.1-44) 
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Therefore, the transient solution is 
m 

(1 1.1-45) 
n=l 

The unknown coefficients Cn can be determined by using the initial condition given 
by Eq. (11.1-32). The result is 

00 

1 - t2 = Cn Jo(Xnt) (11.1-46) 
n=l 

Since the eigenfunctions are orthogonal to each other with respect to the weight 
function w(<) = 5, multiplication of Eq. (11.1-46) by <Jo(Xn<) and integration 
from 5 = 0 to = 1 gives 

Note that the integral on the right-side of Eq. (11.1-47) is zero when n # m and 
nonzero when n = m. Therefore, when n = m the summation drops out and Q. 
(11.1-47) reduces to the form 

Evaluation of the integrals gives 

The transient solution takes the form 
00 

(11.1-48) 

(1 1.1-49) 

(1 1.1-50) 

Substitution of the steady-state and the transient solutions, Eqs. (11.1-29) and 
(11.1-50), into Eq. (11.1-24) gives the solution as 

The volumetric flow rate can be determined by integrating the velocity distri- 
bution over the cross-sectional area of the tube, i.e., 

(11.1-52) 
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Substitution of e. (11.1-51) into Eq. (11.1-52) gives 

(11.1-53) 

Note that when r --f 00, Q --$ ..(Po - P L ) @ / S ~ L  which is identical with 
Eq. (9.1-83). 

11.1.2 Approximate Solution by the Area Averaging 
Technique1 

It should be kept in mind that the purpose of obtaining the velocity distribution 
is to get a relationship between the volumetric flow rate and the pressure drop in 
order to estimate the power required to pump the fluid. 

The area averaging technique enables one to calculate the average velocity, 
and hence the volumetric flow rate, without determining the velocity distribution. 
Multiplication of &. (11.1-13) by T drde  and integration over the cross-sectional 
area of the pipe gives 

+ I  2= I R p a  ; 5 ( r 2 ) r d r d Q  (11.1-54) 

The term on the left side of Eq. (11.1-54) can be rearranged in the form 

p J"^ I R  % r drde = p [ $I2= Jd" w, r dr  d 0) = p R 2  - d(wz)  d t  (11.1-55) - 
nRa (v, ) 

0 0  

Therefore, IZq. (11.1-54) becomes 

(11.1-56) 

Note that the area averaging technique transforms a partial differential equation 
to an ordinary differential equation. However, one has to pay the price for this 
simplification. That is, to proceed further, it is necessary to express the velocity 
gradient at the wall, (awZ/ar),=R, in terms of the average velocity, (w,). If it is 

'This development is taken from Slattery (1972). 



480 CHAPTER 11. UNSTEADY MICROSCOPIC BfiANCES WITH GEN. 

assumed that the velocity gradient at the wall is approximately equal to that for 
the steady-state case, from Eqs. (9.1-79) and (9.1-84) 

(11.1-57) 

Substitution of Eq. (11.1-57) into J2q. (11.1-56) yields the following linear ordinary 
differential equation 

d(v,) +--(a)=-( 8 P  1 Po-PL ) 
dt pR2 P 

(1 1.1-58) 

The initial condition associated with Eq. (11.1-58) is 

at t = O  (v,) = 0 (1 1.1-59) 

The integrating factor is 

Integrating factor = exp - (i;:) 
Multiplication of Eq. (11.1-58) by the integrating factor gives 

Integration of Eq. (11.1-61) leads to 

(11.1-60) 

(11.1-61) 

(11.1-62) 

Therefore, the volumetric flow rate is 

Slattery (1972) compared Eq. (11.1-63) with the exact solution, Eq. (11.1-53), and 
concluded that the error introduced is less than 20% when p t / (pR2)  > 0.05. 

11.2 UNSTEADY CONDUCTION WITH HEAT 
GENERATION 

Consider a slab of thickness L with a uniform initial temperature of To. At t = 0 
heat starts to generate within the slab at a uniform rate of ?J2 and to avoid the 
excessive heating of the slab, the surfaces at z = 0 and z = L are maintained at TI, 
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TI < To as shown in Figure 11.2. We are interested in obtaining the temperature 
distribution within the slab. 

Figure 11.2 Unsteady-state conduction with generation. 

If LIH << 1 and L/W << 1, then it is possible to assume that the conduction 
is onedimensional and postulate that T = T( t , z ) .  In that case, Table C.4 in 
Appendix C indicates that the only non-zero energy flux component is e, and it is 
given by 

aT 
e, = qa = - k - 

az 
(11.2-1) 

The conservation statement for energy is expressed &S 

Rate of Rate of energy ) = ( Rate of energy 
energy in energy in accumulation ) - ( Rate of ) + ( generation 

For a differential volume element of thickness Az, as shown in Figure 11.2, Eq. 
(11.2-2) is expressed as 

a 

(1 1.2-2) 
( 

(1 1.2-3) q,l, A - qrlz+Alr A + A Az R = - at [AAzpCp(T - T&)] 

Dividing Eq. (11.2-3) by AAz and taking the limit Az 4 0 gives 

(11.2-4) 

or, 
(11.2-5) 
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Substitution of &. (11.2-1) into &. (11.2-5) gives the governing equation for 
temperature as 

(11.2-6) 

All physical properties are assumed to be independent of temperature in the devel- 
opment of Eq. (11.2-6). The initial and boundary conditions associated with Eq. 
(11.2-6) are 

at t = O  T = T ,  
at z = O  T=T1 
at a = L  T = T l  

Introduction of the dimensionless quantities 

(1 1.2-7) 
(11.2-8) 
(1 1.2-9) 

(11.2-10) 

.z 
< = -  (1 1.2- 11) L 

at 
L2 

7 - z -  

reduces Eqs. (11.2-6)-(11.2-9) to 

where 

at T = O  0 = 1  
at < = O  0 = 0  
at < = l  O = O  

( 1 1.2-12) 

(11.2-13) 

(1 1.2-14) 
(11.2-15) 
(11.2-16) 

( 1 1.2- 17) 

Since Eq. (11.2-13) is not homogeneous, the solution is proposed in the form 

e(T,<) = &d<) - et(T,<) (11.218) 

in which Boo is the steady-state solution, i.e., 

with the following boundary conditions 

at < = O  8,=0 

(11.2-19) 

(11.2-20) 
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at < = 1  O,=O 

The solution of Eq. (11.2-19) is 

(11.2-21) 

(11.2-22) 

The use of Eq. (11.2-22) in Eq. (11.2-18) gives 

(1 1 2-23) 

Substitution of Eq. (11.2-23) into Eqs. (11.2-13)-(11.2-16) leads to the following 
governing equation for the transient problem together with the initial and the 
boundary conditions 

(1 1.2-24) 

52 
e(r,r) = F ( t  - s2> - @t(r,<) 

ae, d2et - 
ar at2 

at [ = O  B t = 0  

at [ = l  & = O  

(11.2-25) 

(11.2-26) 

(11.2-27) 

which can be solved by the method of separation of variables. 
Representing the solution as a product of two functions of the form 

@t(T, 5) = F(7)  G(5) (11.2-28) 

reduces Eq. (11.2-24) to 

1 d F  1 d 
F d r  GE d t  (‘g) - (11.2-29) 

While the left side of Eq. (11.2-29) is a function of r only, the right side is dependent 
only on 5. This is possible if both sides of Eq. (11.2-29) are equal to a constant, 
say - x2, Le., 

(1 1.2-30) 1 d F  - 1 d2G 
F dr G e2 - - - - - = - A 2  

Equation (11.2-30) results in two ordinary differential equations. The equation for 
F is given by 

d F  - + A2F = 0 + F(r )  = e-x27 
d r  

(1 1.2-31) 

On the other hand, the equation for G is 

(1 1.2-32) 
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and it is subject to the boundary conditions 

at < = O  G=O (1 1.2-33) 

at [ = 1  G=O (1 1.2-34) 
Equation (11.2-32) is a Sturm-Liouville equation with a weight function of unity. 
The solution of Eq. (11.2-32) is 

G(<) = Asin(X<) + Bcos(XE) (11.2-35) 

where A and B are constants. From Eq. (11.2-33), B = 0. Application of the 
boundary condition defined by Eq. (11.2-34) gives 

AsinX = 0 (1 1 .%36) 

For a nontrivial solution, the eigenvalues are given by 

sinX=O =+ An = n n  n =  1,2, ... (11.237) 

Therefore, the general solution is 

(11.238) 
n=l 

The unknown coefficients Cn can be determined by using the initial condition, Eq. 
(11.2-25), with the result 

Therefore, the transient solution is given by 

(1 1.239) 

(1 1.2-40) 

(11.241) 

Substitution of the steady-state and the transient solutions, Eqs. (11.222) and 
(11.241), into Eq. (11.2-18) gives the solution as 
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11.3 GAS ABSORPTION INTO A LIQUID 
DROPLET WITH REACTION 

A liquid droplet (B) of radius R is initially A-free. At t = 0 it is surrounded by gas 
A as shown in Figure 11.3. As species A diffuses into B, it undergoes an irreversible 
chemical reaction with B to form AB, i.e., 

A + B - + A B  

The rate of reaction is expressed by 

r = kcA 

We are interested in the rate of absorption of species A into the liquid during the 
unsteady-state period. The problem will be analyzed with the following assump 
tions: 

1. Convective flux is negligible with respect to the molecular flu, Le., vz N 0. 

2. The total concentration is constant. 

3. PseudGbinary behavior. 

Figure 11.2 Unsteady-state absorption with chemical reaction. 

Since CA = c A ( t , r ) ,  Table C.9 in Appendix C indicates that the only non-zero 
molar flux component is NA, and it is given by 

NA, = J i v  = -VAB - 8CA 
dT 

(11.3-1) 

The conservation statement for species A is expressed as 

Rate of Rate of Rate of species A ( species A in ) - ( species A in ) -t ( generation 
Rate of species A 

accumulation 
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For a spherical differential volume element of thickness AT, as shown in Figure 
11.3, l3q. (11.3-2) is expressed in the form 

Dividing Eq. (11.3-3) by 4xAr and taking the limit as AT -+ 0 gives 

or. 

(11.3-5) 

Substitution of Eq. 
equation for the concentration of species d as 

(11.3-1) into Eq. (11.3-5) gives the governing differential 

(11.3-6) 

The initial and the boundary conditions associated with Eq. (11.3-6) are 

at t = O  C A = O  (1 1.3-7) 

(11.3-8) 

at T = R C A  =cfS (11.3-9) 

where cfS is the equilibrium solubility of species d in liquid 23. 
Danckwerts (1951) showed that the partial differential equation of the form 

(11.3-10) 

with the following initial and the boundary conditions 

at t = O  c = O  (1 1.3-1 1) 

(11.3-12) dC 
a?- at r = O  - = O  

at T = R C A  = c :  (11.3-13) 

has the solution 
t 

c = k 4(r), z) e-kq dr) + 4(t, x )  (1 1.3- 14) 

where +(t, z) is the solution of Eq. (11.3-10) without the chemical reaction, i.e., 

(11.3-15) 
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and is subject to the same initial and boundary conditions given by Eqs. (11.3- 
11)-(11.3-13). Note that q is a dummy variable of the integration in Eq. (11.3-14). 

The solution of Eq. (11.3-6) without the chemical reaction is given by Eq. 
(10.3-58), Le., 

- = 1 +  CA -E- O0 (- '1" exp (- n2Tpt) sin ( - nz) (11.3-16) 
T T  n c*A n= 1 

Substitution of Eq. (11.3-16) into Eq. (11.3-14) gives 

+ ~ + ~ ~ ~ e x p ( -  n2TzBt) sin (F)] e-kt (11.3-17) 

Carrying out the integration gives the solution as 

where 

The molar rate of absorption of species A is given by 

Substitution of Q. (11.3-18) into Eq. (11.3-20) results in 

The moles of species A absorbed can be calculated from 
t 

n A  = 1 nAdt 

Substitution of Eq. (11.3-21) into Eq. (11.3-22) yields 

(11.3-18) 

(1 13-19) 

(1 1.2-20) 

(1 1.3-21) 

(11 3-22) 

(11.3-23) 

Example 11.1 Show that the solution given by Eq. (11.3-14) satisfies Eq. (11.3- 
10). 
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Solution 

Diferentiation of Eq. (11.3-14) with respect to t by using Leibnitz's rule gives 

6 C  a4 e- kt  - = Ic~$(t,x) e-kt - kc$(t,x) e-kt + - at at 
e- kt - _  

- a t  
Differentiation of Eq. (11.3-14) twice with respect to x yields 

The use of Eq. (11.2-15) in Eq. (2) leads to 

Substitution of Eq. (1) into Eq. (3) yields 

or, 

which is identical with Eq. (11.3-lf?). 

NOTATION 

A 
C P  
ci 
DAB 
e 
J* 
L 
m 
M 
N 

area, m2 
heat capacity at constant pressure, kJ/ kg. K 
concentration of species i, kmol/ m3 
diffusion coefficient for system A B ,  m2/ s 
total energy flux, W/ m2 
molecular molar flux, kmol/ m2. s 
length, m 
mass flow rate, kg/ s 
molecular weight, kg/ kmol 
total molar flux, kmol/ m2. s 
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n 
n 

Q 
4 
R 
92 
T 
t 
V 

Q 

2, 

a 
/I 

P 

Tij  

U 

x 

Bracket 

(4 

number of moles, kmol 
molar flow rate, kmol/ s 
heat transfer rate, W 
volumetric flow rate, m3/ s 
heat flux, W/m2 
radius, m 
rate of generation (momentum, energy, mass) per unit volume 
temperature, "Cor K 
time, s 
volume, m3 
velocity, m/ s 

thermal difFusivity, m2/ s 
viscosity, kg/ m. s 
kinematic viscosity, m2/ s 
density, kg/ m3 
total momentum flux, N/ m2 
shear stress (flux of j - momentum in the i - direction), N/ m2 

average value of a 

Subscripts 

A, B species in binary systems 
i species in multicomponent systems 
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Appendix A 

Mat hemat ical Preliminaries 

A.l THE CYLINDRICAL AND SPHERICAL 
COORDINATE SYSTEMS 

For cylindrical coordinates, the variables (r, 8, z )  are related to the rectangular 
coordinates (x, y, z )  as follows: 

x = r c o s ~  r = J w  (A.1-1) 
y = r sin 8 0 = arctan(y/x) (A.l-2) 
z = x  z = z  (A. 1-3) 

The ranges of the variables (r, 0,  z)  are 

O l r l c u  0<0<2.rr - o o < z < o o  

For spherical coordinates the variables (r, B,4) are related to the rectangular 
coordinates (x, y, z )  as follows: 

x=rsinBcos4 r =  ,/x2+y2+z2 (A.1-4) 

y = r sin e sin 4 (A.l-5) 

z = rcose 4 = arctan(y/x) (A.l-6) 

e = arctan ( , / ~ / z )  

The ranges of the variables (r, 8,d) are 

O < r < c u  0 5 e < . r r  0 5 4 < 2 ~  
The cylindrical and the spherical coordinate systems axe shown in Figure A.l. 

The differential volunaes in these coordinate systems are given by 

(A.l-7) r drdedz cylindrical 
r2 sin 8 drddd4 spherical d V =  { 

491 
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The application of Eq. (1.3-1) to determine the rate of a quantity requires the 
integration of the flux of a quantity over a differential area. The differential areas 
in the cylindrical and spherical coordinate systems are given as follows: 

Rd0dz 
drdz 
r drd0 

flux is in the T - direction 
flux is in the 0 - direction 
flux is in the z - direction 

R2 sin 0 dedd, flux is in the r - direction 
r sin 0 drdqb flux is in the 0 - direction 
r drd0 flux is in the d, - direction 

I 

(A.l-8) 

(A.l-9) 

Figure A.l The cylindrical and spherical coordinate systems. 
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A.2 MEAN VALUE THEORJ3M 
If f(z) is continuous in the interval a 5 x 5 b, then the value of the integration of 
f(z) over an interval z = a to z = b is 

I = lb f ( x )  d x  = (f) / d z  = (f)(b - a) 

where (f) is the average value of f in the interval a 5 z 5 b. 
In Figure A.2 note that s,” f(z) dx is the area under the curve between a and 

b. On the other hand, (f)(b - a) is the area under the rectangle of height (f) and 
width (b - a). The average value of f, (f), is defined such that these two areas are 
equal to each other. 

b 
(A.2-1) 

a 

~~ 

b X a 

Figure A.2 The mean value of the function f ( x ) .  

It is possible to extend the definition of mean value to two- and three-dimensional 
cases as 

JJ f (2 ,  Y )  dXdY JJJ f ( x ,  Y ,  .4 dxdydz  

and (f) = V (A.2-2) A 

JJJ dxdydz 
/ b d Y  V 

(f) = 

A 

PROBLEMS 

A.l Two rooms have the same average temperature, (T), defined by 
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However, while one of the room is very comfortable, the other is very uncomfort- 
able. With the mean value theorem in mind, how would you explain the difference 
in comfort levels of the two rooms? What design alterations would you suggest to 
make the room that is uncomfortable comfortable? 

A.2 Wind speed is measured by anemometers placed at an altitude of 10 m from 
the ground. Buckler (1969) carried out series of experiments to determine the effect 
of height above ground level on wind speed and proposed the following equation 
for the winter months 

0.21 
v = v10 ( G )  

where a is the vertical distance measured from the ground in meter and v10 is the 
measured wind speed. 

Ektimate the average wind speed encountered by a person of height 1.7m at 
the ground level if the wind speed measured by an anemometer 10m above the 
ground is 30 km/ h. 
(Answer: 17.1 km/ h) 

A.3 SLOPES ON LOG-LOG AND SEMI-LOG 
GRAPH PAPERS 

A mathematical transformation that converts the logarithm of a number to a length 
in the x-direction is given by 

e, = L, log 5 (A.3-1) 

where e, is the distance in the x-direction and L, is the cycle length for the 
x-coordinate. Therefore, if the cycle length is taken as 10 cm, the distances in the 
x-direction for various values of x are given in Table A.l. 

Table A.l Distances in the x-direction for a logarithmic x-axis. 

2 e, 
1 0 
2 3.01 
3 4.77 
4 6.02 
5 6.99 
6 7.78 
7 8.45 
8 9.03 
9 9.54 
10 10.00 
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The slope of a straight line, m, on a log - log graph paper is 

(A.3-2) 

On the other hand, the slope of a straight line, m, on a semi-log graph paper 
(y-axis is logarithmic) is 

m= (A.3-3) 
2 2  - 51 

A.4 LEIBNITZ’S RULE FOR 
DIFFERENTIATION OF INTEGRALS 

Let f(z, t )  be continuous and have a continuous derivative af/& in a domain of the 
zt plane which includes the rectangle a 5 z 5 b, tl 5 t 5 t z .  Then for tl 5 t 5 t z  

(A.41) 

In other words, differentiation and integration can be interchanged if the limits of 
the integration are fixed. 

On the other hand, if the limits of the integral in Eq. (A.41) are dependent on 
time, then 

If f = f(z) only, then Eq. (A.42) reduces to 

(A.43) 

A.5 NUNPEMCAL DIFFEFUZNTIATION OF 
EXPEMMENTAL DATA 

The determination of a rate requires the differentiation of the original experimental 
data. As explained by De Nevers (1966), given a table of x - y data, the value of 
d y / d x  can be calculated by: 

1. Plotting the data on graph paper, drawing a smooth curve through the points 
with the help of a Fkench curve, and then drawing a tangent to this curve. 

2. Fitting the entire set of data with an empirical equation, such as a polynomial, 
and then differentiating the empirical equation. 
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3. Fitting short sections of the data by arbitrary functions. 

4. Using the difference table method, i.e., plotting the differences and smoothing 
the differences graphically. 

De Nevers also points out the fact that although the value of dyldx obtained 
by any of the above four methods is approximately equal, the value of &y/dx2 is 
extremely sensitive to the method used. 

In the case of the graphical method, there are infinite number of ways of drawing 
the curve through the data points. As a result, the slope of the tangent will be 
affected by the mechanics of drawing the curved line and the tangent. 

The availability of computer programs makes the second and the third methods 
highly attractive. However, since the choice of the functional form of the equation 
is highly arbitrary, the final result is almost as subjective and biased as the use of 
a Fkench curve. 
Two methods, namely, DouglassAvakian (1933) and Whitaker-Pigford (1960) 

methods, are worth mentioning among the third approach. Both of these methods 
require the values of the independent variable, x ,  be equally spaced by an amount 
Ax. 

A. 5.1 Douglass-Avakian Met hod 
In this method, the value of dyldx is determined by fitting a fourth-degree polyn+ 
mial to seven consecutive data points, with the point in question as the mid-point, 
by least squares. If the mid-point is designated by x,, then the value of dyldx at 
this particular location is given by 

where 
x - xc X = -  

Ax 

(A.5-1) 

(A.52) 

A.5.2 Whitaker-Pigford Met hod 
In this case, a parabola is fitted to five consecutive data points, with the point in 
question as the mid-point, by least squares. The value of d y l h  at xc is given by 

where X is defined by Eq. (AS-2). 

(A.53) 

Example A.l Given the enthalpy of steam at P = 0.01 MPa as a function of 
temperature as follows, determine the heat capacity at constant p ~ ~ . ~ s u m  at 500 "C. 
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100 2687.5 
200 2879.5 
300 3076.5 
400 3279.6 
500 3489.1 
600 3705.4 
700 3928.7 
800 4159.0 
900 4396.4 

1000 4640.0 
1100 4891.2 

Solution 

The heat capacity at constant pressure, C p ,  is defined as 

C p  = (g) 
P 

Therefore, detewnination of C p  requires numerical diflerentiation of the H versus 
T data. 

Graphical method 

The plot of H versus T is given in the figure shown below. The slope of the tangent 
to the cume at T = 500 "C gives C p  = 2.12 J/ g. K. 
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Douglass- Avakian method 

The required values to use Eq. (A.5-1) are given in the table shown below: 

x = T  X x3u 
200 
300 
400 
500 
600 
700 
800 

2879.5 
3076.5 
3279.6 
3489.1 
3705.4 
3928.7 
4159.0 

-3 
-2 
-1 

0 
1 
2 
3 

- 8638.5 
- 6153 
- 3279.6 

0 
3705.4 
7857.4 
12477 

- 77746.5 
- 24612 
- 3279.6 

0 
3705.4 
31429.6 
112293 

= 5968.7 = 41789.9 

Therefore, the heat capacity at constant pressure at 5OOOC is given by  

A 397 (E X y )  - 49 ( x3y) cp = 1512 Ax 

= 2.13 J/ g. K - (397)(5968.7) - (49)(41,789.9) - 
( 15 12) (1 00) 

Whitaker-Pigford method 

By  taking X = T and y = H ,  the parameters in Eq. (A.5-3) are given in the 
following table: 

X = T  y = H  X XY 
300 3076.5 -2 - 6153 
400 3279.6 -1 -3279.6 
500 3489.1 0 0 
600 3705.4 1 3705.4 
700 3928.7 2 7857.4 

E = 2130.2 

Therefore, the we of Eq. (A.5-3) gives the heat capacity at constant pressure as 

A E X Y  
cp = - 10 Ax 

The difference table method 

The use of the diflerence table method is explained by Churchill (197.) in detail. 
To smooth the data by using this method, the divided dzfferences AH/AT shown 
in the table below are plotted versus temperature in the figure. 
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T H AT AH AH/AT 
100 2687.5 

200 2879.5 

300 3076.5 

400 3279.6 

500 3489.1 

600 3705.4 

700 3928.7 

800 4159.0 

900 4396.4 

1000 4640.0 

1100 4891.2 

100 192 1.92 

100 197 1.97 

100 203.1 2.031 

100 209.5 2.095 

100 216.3 2.163 

100 223.3 2.233 

100 230.3 2.303 

100 237.4 2.374 

100 243.6 2.436 

100 251.2 2.512 
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Each line represents the average value of dH/dT over the specified temperature 
range. The smooth curve should be drawn so as to equalize the area under the 
group of bars. From the figure, the heat capacity at constant pressure at 500°C is 
2.15 J/ g. K. 

A.6 REGRJESSION AND CORBICLATION 
To predict the mechanism of a process, we often need to know the relationship of 
one process variable to another, i.e., how the reactor yield depends on pressure. A 
relationship between the two variables x and y, measured over a range of values, can 
be obtained by proposing linear relationships first, because they are the simplest. 
The analyses we use for this are correlation, which indicates whether there is indeed 
a linear relationship, and regression, which finds the equation of a straight line that 
best fits the observed x - y data. 

A.6.1 Simple Linear Regression 
The equation describing a straight line is 

y = a x + b  (A.6-1) 

where a denotes the slope of the line and b denotes the y-axis intercept. Most 
of the time the variables x and y do not have a linear relationship. However, 
transformation of the variables may result in a linear relationship. Some examples 
of transformation are given in Table A.2. Thus, linear regression can be applied 
even to nonlinear data. 

Table A.2 Transformation of nonlinear equations to linear forms. 

Nonlinear Form Linear Form 
x c  b X - ws x is linear 

1 1  - ws - is linear 
Y =  

ax ;=a"+; Y 
y=- 

b+cx 1 b l  c + -  y a x  a 

y = ax" logy=nlogx+loga logyvs logxislinear 

- = - -  

A.6.2 Sum of Squared Deviations 
Suppose we have a set of observations 21, x2, 33, ..., xn. The sum of the squares 
of their deviations from some mean value, x,, is 

N 

(A.6-2) 
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Now suppose we wish to minimize S with respect to the mean value x,, i.e., 

N 
-- 

i=l 

N 

axrn i=l 

dS - 0 = - 2 (xi - x,) = 2 N x ,  - x i )  (A.6-3) 

or. 

(A.6-4) 

Therefore, the mean value which minimizes the sum of the squares of the deviations 
is the arithmetic mean, f .  

A.6.3 
The parameters a and b in Eq. (A.6-1) are estimated by the method of least 
squares. These values have to be chosen such that the sum of the squares of the 
deviations 

The Method of Least Squares 

N 

S = [vi - (azi + b)12 (A.6-5) 
i=l 

is minimum. This is accomplished by differentiating the function S with respect 
to a and b, and setting these derivatives equal to zero: 

as - = 0 = - 2 
d U  

( yi - u xi - b) xi 
i 

Equations (A.6-6) and (A.6-7) can be simplified as 

(A.6-6) 

(A.6-7) 

(A.6-8) 

a x x i  + Nb = (A.6-9) 
i i 

Simultaneous solution of Eqs. (A.6-8) and (A.6-9) gives 

(A.6-10) 

(A.6- 11) 

Example A.2 
563K are given as follows: 

Experimental measurements of the density of benzene vapor ut 
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P P 
( atm) ( cm3/ mol) 
30.64 1164 
31.60 1067 
32.60 1013 
33.89 956 
35.17 900 
36.63 842 
38.39 771 
40.04 707 
41.79 646 
43.59 591 
45.48 506 
47.07 443 
48.07 386 

Assume that the data obey the wirial equation of state, i.e., 

PP B C  z = - = 1 + 7 + 7 7  
RT v v2 

and determine the virial coeficients B and C .  

Solution 

The equation of state can be rearranged QS 

( a - 1 )  P =  B + F  C 

Note that this equation has the form 

y = B + C x  

where 

y = ( g - l ) t  and x = -  1 
3 

Taking R = 82.06 cm3. atm/ mol. K, the required values are calculated as follows: 
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Yi xi x 103 XiYi x: x 106 

- 265.4 0.859 - 0.2280 0.738 
- 288.3 0.937 - 0.2702 0.878 
- 288.9 0.987 - 0.2852 0.975 
- 285.6 1.046 - 0.2987 1.094 
- 283.4 1.111 - 0.3149 1.235 
- 279.9 1.188 - 0.3324 1.41 1 
- 277 1.297 - 0.3593 1.682 
- 273.8 1.414 - 0.3873 2.001 
- 268.5 1.548 - 0.4157 2.396 
- 261.4 1.692 - 0.4424 2.863 
- 254 1.976 - 0.5019 3.906 
- 243.1 2.257 - 0.5487 5.096 
- 231 2.591 - 0.5984 6.712 

yi = - 3500.3 xi = 0.0189 ~ i y j  = - 4.9831 X: = 30.99 x 

The values of B and C are 

= - 313 cm3/ mol - (- 3500.3)(30.99 x - (0.0189)(- 4.9831) - 
(13)(30.99 x - (0.0189)2 

The method of least squares can also be applied to higher order polynomials. 

(A.6-12) 

For example, consider a second-order polynomial 

y = a x2 + b x + c 
To find the constants a, b, and c, the sum of the squared deviations 

N 
2 s = [yi - (UX? + b X i  + c)] 

i=I  
(A.6-13) 

must be minimum. Hence, 

(A.6-14) 
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Partial differentiation of EQ. (A.6-13) gives 

a C x q + b C x i + c N = C y i  
i i i 

These equations may then be solved for the constants a, b, and c. 
If the equation is of the form 

(A. 6- 17) 

y = a x n + b  (A.6-18) 

then the parameters a, b, and n can be determined as follows: 

1. Least squares values of a and b can be found for a series of chosen values of 
n. 

2. The sum of the squares of the deviations can then be calculated and plotted 
versus n to find the minimum and, hence, the best value of n. The corre- 
sponding values of a and b are readily found by plotting the calculated values 
versus n and interpolating. 

Alternatively, Eq. (A.6-18) might first be arranged as 

log(y - b) = nlogx + loga (A.6-19) 

and least squares values of n and loga are determined for a series of chosen values 
of b, etc. 

Example A.3l 
transfer to a sphere in t e r n  of the equation 

It is proposed to correlate the data for forced convection heat 

Nu=2+aRen 

The following values were obtained from McAdams (1954) for heat transfer from 
air to spheres by forced convection: 

Re Nu 
10 2.8 

100 6.3 
1000 19.0 

'This problem is taken from Churchill (1974). 
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Solution 

The equation can be rearranged as 

log( Nu - 2) = n log Re + log a 

Note that this equation has the form 

y = n x + b  

where 
y = log(Nu - 2) x = logRe b = loga 

Yi xi XiYi X? 

- 0.09691 1 - 0.09691 1 
0.63347 2 1.26694 4 
1.23045 3 3.69135 9 

= 1.76701 xi = 6 X X ~ Y ~  = 4.86138 X? = 14 

The values of n and b are 

= -0.73835 =$ a = 0.1827 (14)(1.76701) - (6)(4.86138) 
(3)(14) - (GI2  

b =  

A.6.4 Correlation Coefficient 
If two variables, x and y, are related in such a way that the points of a scatter 
plot tend to fall in a straight line, then we say that there is an association between 
the variables and that they are linearly correlated. The most common measure 
of the strength of the association between the variables is the Pearson correlation 
coeficient, r. It is defined by 

The value of r can range from - 1 to + 1. A value of - 1 means a perfect negative 
correlation. Perfect negative correlation implies that y = ax + b where a < 0. 
Perfect positive correlation (r = + 1) implies that y = ax + b where a > 0. When 
r = 0, the variables are uncorrelated. This, however, does not imply that the 
variables are unrelated. It simply indicates that if a relationship exists, then it is 
not linear. 
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A.7 THE ROOT OF AN EQUATION 
In engineering problems, we frequently encounter with equations of the form 

f (XI = 0 (A.7-1) 

and want to determine the values of z satisfying Eq. (A.7-1). These values are 
called the roots of f(z) and may be real or imaginary. Since imaginary roots appear 
as complex conjugates, the number of imaginary roots must always be even. 

The function f(z) may be a polynomial in z or, it may be a transcendental 
equation involving trigonometric and/or logarithmic terms. 

A.7.1 Roots of a Polynomial 
If f(z) is a polynomial, then Descartes’ rule of sign determines the maximum 
number of real roots: 

0 The maximum number of real positive roots is equal to the number of sign 
changes in f(z) = 0. 

0 The maximum number of real negative roots is equal to the number of sign 
changes in f(- z) = 0. 

In applying the sign rule, zero coefficients are regarded as positive. 

A.7.1.1 Quadratic equation 

The roots of a quadratic equation 

ax2 + b z + c =  0 

are given as 
- b f i / m  

2 a  z1,2 = 

If a, b, c are real and if A = b2 - 4ac is the discriminant, then 

0 A > 0; the roots are real and unequal, 

0 A = 0; the roots are real and equal, 

(A.7-2) 

(A.7-3) 

0 A < 0; the roots are complex conjugate. 
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A.7.1.2 Cubic equation 

Consider the cubic equation 

x3 + p x2 + q x + r = o 
Let us define the terms M and N as 

&f=- 3 q - - p 2  
9 

9pq - 27r - 2p3 
54 

N =  

If p, q, r are real and if A = M3 + fl is the discriminant, then 

0 A > 0; one root is real and two complex conjugate, 

0 A = 0; all roots are real and at least two are equal, 

0 A < 0; all roots are real and unequal. 

Case ( i )  Solutions for A 2 0 

In this case the roots are given by 

1 
3 

x l = S + T - - p  

2 2  = - - ( S + T ) - p + : i f i ( S - T )  1 1 
2 2 

1 1 1  
2 3 2  x3 = - - (S + T )  - - p  - - i f i  (S - T )  

where 
S =  $v+a 

T =  V N - ~  
Case (i i)  Solutions for A < 0 

The roots are given by 

x2 = f 2 G i T c o s  

2 3  = f 2 m c 0 s  

(A. 7-4) 

(A.7-5) 

(A.7-6) 

(A.7-7) 

(A.7-8) 

(A.7-9) 

(A. 7- 10) 

(A. 7- 11) 

(A. 7- 12) 

(A. 7- 13) 

(A. 7- 14) 
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where 

(0 is in degrees) (A. 7- 15) 

In Eqs. (A.7-12)-(A.7-14) the upper sign applies if N is positive, the lower sign 
applies if N is negative. 

Example A.4 Cubic equations of state are frequently used in thermodynamics to 
describe the P V T  behavior of liquids and vapors. These equations are expressed in 
the form 

a (T)  (A. 7- 16) RT p=-- 
P-b V a + p V + y  

where the terms a, p, y, and a(T) for diflerent types of equations of state are given 
by 

vander Waals 2 0 0 lZ  

Redlich-Kwong 2 b 0 a/@- 

Peng-Robinson 2 2b -b2 a(T) 

When Eq. (A.7-16) has three real roots, the largest and the smallest roots cor- 
respond to the molar volumes of the vapor and liquid phases, respectively. The 
intermediate root has no physical meaning. 

Predict the density of saturated methanol vapor at 10.84 atm and 140 "C using 
the van der Waals equation of state. The coeficients a and b are given as 

a = 9.3424 m6. atm/ kmo12 
b = 0.0658 m3/ kmol 

The experimental value of the density of saturated methanol vapor is 0.01216 g/ cm3. 

Solution 

For the van der Waals equation of state, Eq. (A.7-16) takes the form 

- a -  ab 
v2+pv- - P = o  

Substitution of the values of a, b, R, and P into Eq. (1) gives 

P3 - 3.1923 V2 + 0.8618 v - 0.0567 = 0 
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Application of the sign rule indicates that the maximum number of real positive 
roots is equal to three. The terms M and N are 

M=- 3q - P" 
9 

= -0.845 - (3)(0.8618) - (3.1923)2 - 
9 (3) 

9pq - 27r - 2p3 
54 N =  

- (9)(- 3.1923)(0.8618) - (27)(- 0.0567) + (2)(3.1923)3 - 
54 

= 0.775 (4) 

The discriminant, A, is 

A = M 3 + N 2  
= (- 0.845)3 + (0.775)2 = - 0.003 (5) 

Therefore, all the roots of Eq. (2) are real and unequal. Before calculating the roots 
by wing Eqs. (A.7-12)-(A.7-14), 6 must be determined. From Eq. (A.7-15) 

Hence, the roots are 

3.1923 
3 VI = ( 2 ) m c o s  (y )  + - = 2.902 

3.1923 
= (2)dmZcos  ( y  + 120) + -j- = 0.109 

3.1923 
= ( 2 ) a c o s  ( y  +240) + 7 = 0.181 

The molar volume of saturated vapor, Vg, corresponds to the largest root, i.e., 
2.902 m3/ kmol. Since, the molecular weight, M ,  of methanol is 32, the density of 
saturated vapor, pg, is given by 

- - (32) = 0.01103 g/ cm3 
(2.902)(1 x lo3) 
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A.7.2 Numerical Methods 
Numerical methods should be used when the equations to be solved are complex 
and do not have direct analytical solutions. Various numerical methods have been 
developed for solving Eq. (A.7-1). Some of the most convenient techniques to solve 
the chemical engineering problems are summarized by Serghides (1982), Gjumbir 
and Olujic (1984), and Tao (1988). The Newton-Ruphson method and the Secant 
method are the two most widely used techniques and will be explained below. 

One of the most important problems in the application of numerical techniques 
is convergence. It can be promoted by finding a good starting value and/or a 
suitable transformation of the variable, or the equation. 

When using numerical methods, it is always important to use the engineering 
common sense. The following advice of Tao (1989) should always be remembered 
in the application of numerical techniques: 

0 To err is digital, to catch the error is divine. 

0 An ounce of theory is worth 100 lb of computer output. 

0 Numerical methods are like political candidates; they’ll tell you anything you 
want to hear. 

A. 7.2.1 Newton-Raphson met hod 

Expansion of the function f(z) by Taylor series around an estimate Zk gives 

If we neglect the derivatives higher than the first order and let x = xk+l be the 
value of x that makes f(x) = 0, then Q. (A.7-17) becomes 

(A. 7- 18) f ( x k  x k + l  = xk - - 
LI 
dx Z k  

The convergence is achieved when Izk+l - qJ < E ,  where E is a small number 
determined by the desired accuracy. 

The Newton-Raphson method proceeds as shown in Figure A.3. Note that the 
method breaks down if (df/d~),~ = 0 at some point. 

A.7.2.2 Secant method 

Application of the Newton-Raphson method, Eq. (A.7-18), requires the evaluation 
of the first derivative of the function. Unfortunately, this is not always easily found. 
The secant method, on the other hand, requires only the evaluation of the function. 
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Figure A.3 The Newton-Raphson method. 

To evaluate the derivative in Eq. (A.7-18), linear interpolation between two 
points, z k  and zk-1, on the function is applied in the form 

- 
dx 51: Zk - Zk-1 

Substitution of Eq. (A.7-19) into Eq. (A.7-18) gives 

(A. 7- 19) 

(A.7-20) 

Note that the secant method requires two initial guesses. The secant method is 
illustrated in Figure A.4. 

Figure A.4 The Secant method. 
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PROBLEMS 

A.3 Caffeine is extracted from coffee grains by means of a crossflow extractor. 
The standard error of the exit concentration versus time curve was found as CT = 
1.31, where standard deviation, cr2, is given as 

2 2  
a 2  = - + - (1 -e-") 

Pe Pe2 

Solve this equation and determine the Peclet number, Pe, which is a measure of 
axial dispersion in the extractor. 
(Answer: 1.72) 

A.4 The roof of a building absorbs energy at a rate of 225kW due to solar 
radiation. The roof loses energy by radiation and convection. The loss of energy 
flux as a result of convection from the roof to the surrounding air at 25°C is 
expressed as 

1.25 q=2.5(T-Tm) 

where T and T' are the temperatures of roof and air in degrees Kelvin, respectively, 
and q is in W/ m2. Calculate the steady-state temperature of the roof if it has the 
dimensions of 10 m x 30 m and its emissivity is 0.9. 
(Answer: 352 K) 

A.8 METHODS OF INTEGRATION 
Analytical evaluation of a definite integral 

(A.8-1) 

is possible only for limited cases. When analytical evaluation is impossible, then 
the following techniques can be used to estimate the value of the integral. 

A.8.1 Mean Value Theorem 

As stated in Section A.2, if f (x) is continuous in the interval a 5 x 5 b, then the 
value of I is 

I = JD" f(x) cix = (f)(b - a) (A.8-2) 

where (f) is the average value of f in the interval a 5 x 5 b. 
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If f ( x )  is a monotonic function, then the value of I is bounded by Imin and 
I,, such that 

Monotonically increasing function Imin = f ( a ) ( b - a )  

(A. 8-3) 
Imin = f ( b ) ( b - a )  
I m m  = f (a)(b - a)  

Monotonically decreasing function 
f (3) = 

In some cases, only part of the integrand may be approximated to permit analytical 
integration, i.e., 

I = J,” f ( x )g (x )  dx = (A.8-4) 

Example A.5 Evaluate the integral 

Solution 

Analytical evaluation of the integral is  possible and the result is  

I = l o x z d m d x  

d m l X = l o  = 552.4 - 2 (0.15 x2 - 2.4s + 32) - 
0.105 x=o 

The same integml can be evaluated appmximately as follows: Note that the inte- 
grand is the product of two t e r n  and the integral can be w d t e n  as 

where 

The value of g(x) is 1.732 and 1.414 at x = 10 and x = 0, respectively. Since the 
value of g(x )  does not change dwtically over the interval 0 5 x 5 10, Eq. (1) 
can be expressed in the form 

f ( x )  = x2 and g (x )  = 4- (2) 
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I = 1.5731 x2dx = - 
3 

As a rough appmximation, the average wdue of the function g, (g) ,  can be taken 
as the arithmetic average, i.e., 

= 524.3 
z=o 

1.732 + 1.414 = 1.573 
(9)  = 2 

Therefore, Eq. (3) becomes 

(4) 

(5) 

with a percent error of approximately 5%. 

A.8.2 Graphical Integration 

In order to evaluate the integral given by Eq. (A.8-1) graphically, first f(x) is 
plotted as a function of 2. Then, the area under this curve in the interval [a, b] is 
determined. 

A.8.3 Numerical Integration or Quadrature 

Numerical integration or quadrature2 is an alternative to graphical and analytical 
integration. In this method, the integrand is replaced with a polynomial and this 
polynomial is integrated to give a summation: 

(A.&5) 

Numerical integration is preferred for the following cases: 

0 The function f(x) is not known but the values of f(x) is known at equally 
spaced discrete points. 

0 The function f(z) is known, but too difficult to integrate analytically. 

A.8.3.1 Numerical integration with equally spaced base points 

Consider Figure A.5 in which f(x) is known only at 5 equally spaced base points. 
The two most frequently used numerical integration methods for this case are the 
trapezoidal rule and the Simpson’s rule. 

2The word quadrature is used for approximate integration. 
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a X b 

Figure A.5 Values of the function f(z) at five equally spaced points. 

Trapezoidal rule 

In this method, the required area under the solid curve is approximated by the 
area under the dotted straight line (the shaded trapezoid) as shown in Figure A.6. 

x 

Figure A.6 The trapezoidal rule. 

The area of the trapezoid is then 

(A.8-6) 

If this procedure is repeated at 4 equally spaced intervals given in Figure A.5, the 
value of the integral is 

b [ f ( a )  + f(a + Ax)] AS + [!(a + Ax) + f(a + 2Az)I 
2 2 

2 2 

I =  1 f(z)dz = 

If(. + 2Az) + f(. + 3Az)l Az + + 3Azc) + f(b)l Ax (A.87) + 
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This result can be generalized as 

where 
b - a  

n = 1 + -  
Ax 

(A.8-9) 

(A. 8- 10) 

Simpson's rule 

The trapezoidal rule fits a straight line (first-order polynomial) between the two 
points. Simpson's rule, on the other hand, fits a second-order polynomial between 
the two points. In this case the general formula is 

where 
b - a  n = -  
Ax (A.8-12) 

Note that this formula requires the division of the interval of integration into an 
even number of subdivisions. 

Example A.6 Determine the heat required to i n c m e  the temperature of benzene 
vapor from 300 K to 1000 K at atmospheric pressure. The heat capacity of benzene 
vapor varies as a function of temperature as follows: 
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T ClJ 
( K) ( cal/ mol. K) 
300 19.65 
400 26.74 
500 32.80 
600 37.74 
700 41.75 
800 45.06 
900 47.83 
1000 50.16 

Solution 

The amount of heat necessary to increase the temperature of benzene vapor from 
300K to 1OOOK under coastant pressure is calculated from the formula 

Q = A &  11; c p  dT 

The variation of C p  as a function of temperature is shown in the figure below: 

Since the function is monotonically increasing, the bounding values are 
- 

Qmin = (19.65)(1000 - 300) = 13,755 tal/ mol 
., 

Qmax = (50.16)(1000 - 300) = 35,112cal/ mol 

Trapezoidal rule with n = 8 

From Eq. (A.8-10) 
1000 - 300 = AT = 

8 - 1  
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The value of the integral can be calculated from Eq. (A.8-9) as 

0 = 100 I19.65 + 2(26.74 + 32.80 + 37.74 + 41.75 + 45.06 + 47.83) + 50.161 
2 

= 26,683 cal/ mol 

Simpson’s rule with n = 4 

From Eq. (A.8-12) 
1000 - 300 = 175 

4 
Therefore, the values of cp at 5 equally spaced points are given in the following 
table: 

AT = 

T C P  
( K) ( cal/ mol. K) 

~ 

300 19.65 
475 31.50 
650 39.50 
825 45.75 
1000 50.16 

The value of the integral using Eq. (A.8-11) aS 

Q=-- 175 [19.65 + 4(31.50 + 45.75) + 2(39.50) + 50.161 
3 

= 26,706 cal/ mol 

A.8.4 Numerical Integration When the Integrand is a 
Continuous Function 

A.8.4.1 Gauss-Legendre quadrature 

The evaluation of an integral given by Eq. (A.&l), where a and b are arbitrary but 
finite, using the Gauss-Legendre quadrature requires the following transformation: 

x =  (?>..- a + b  
2 

Then Eq. (A.8-1) becomes 

(A.8-13) 

(A.8-14) 
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where the roots and weight factors for n = 1,2,3, and 4 axe given in Table A.3. 

Table A.3 
and Stegun, 1970). 

Roots and weight factors for Gauss-Legendre quadrature (Abramowitz 

n Roots ( ~ i )  Weight Factors (wi) 

1 f0.57735 02691 89626 

0.00000 00000 00000 
f0.77459 66692 41483 

f0.33998 10435 84856 
f0.86113 63115 94053 

0.00000 00000 00000 
4 f0.53846 93101 05683 

f0.90617 98459 38664 

1.00000 00000 00000 

0.88888 88888 88889 
0.55555 55555 55556 

0.65214 51548 62546 
0.34785 48451 37454 

0.56888 88888 88889 
0.47862 86704 99366 
0.23692 68850 56189 

~~ 

Example A.7 Evaluate 

I = J I ” & d x  

wing the five-point (n = 4) Gauss-Legendre quadrature formula and compare with 
the analytical solution. 

Solution 

Since b = 2 and a = 1, from Eq. (A.8-13) 

Then 
1 r) I ,5 F(u) = =- (y) + 2  u + 7  

_ _  I I ,5 F(u) = =- (y) + 2  u + 7  

The five-point quadrature is given by 

The values of wi and F(ui) are given in the table below: 
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i ui 

0 0.00000000 
1 + 0.53846931 
2 - 0.53846931 
3 + 0.90617985 
4 - 0.90617985 

2 
ui + 7 q u i )  = - wiF(ui) Wi 

0.56888889 0.28571429 0.16253969 
0.47862867 0.26530585 0.12698299 
0.47862867 0.30952418 0.14814715 
0.23692689 0.25296667 0.05993461 
0.23692689 0.32820135 0.07775973 

Therefore 
I = (0.5)(0.57536417) = 0.28768209 

Analytically, 

I = In (x -I- 2)1:1: = In 

A.8.4.2 Gauss-Laguerre quadrature 

The GaussLaguerre quadrature can be used to evaluate integrals of the form 

(A.8-15) 

where a is arbitrary and finite. The transformation 

x = u + a  (A.8-16) 

reduces Eq. (A.8-15) to 

n 
I = I" e-"f(x) dx  = e-a 1" e-"F(u) du = e-a wiF(u6) (A.8-17) 

i=O 

where the wi and ui are given in Table A.4. 

Example A.8 The gamma function, r ( n ) ,  is defined by 

where the variable p in the integrand is the dummy variable of integration. Estimate 
r(1.5) by using the Gauss-Laguem quadrature with n = 3. 
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“able A.4 
and Stegun, 1970). 

Roots and weight factors for Gauss-Laguerre quadrature (Abramowitz 

n Roots ( ~ i )  Weight Factors (wi) 

0.58578 64376 27 
3.41421 35623 73 

0.41577 45567 83 
2 2.29428 03602 79 

6.28994 50829 37 

0.32254 76896 19 
1.74576 11011 58 
4.53662 02969 21 
9.39507 09123 01 

0.26356 03197 18 
1.41340 30591 07 

4 3.59642 57710 41 
7.08581 00058 59 

12.64080 08442 76 

0.85355 33905 93 
0.14644 66094 07 

0.71109 30099 29 
0.27851 77335 69 
0.01038 92565 02 

0.60315 41043 42 
0.35741 86924 38 
0.03888 79085 15 
0.00053 92947 06 

0.52175 56105 83 
0.39866 68110 83 
0.07594 24496 82 
0.00361 17586 80 
0.00002 33699 72 

Solution 

Since a = 0, then 

and 

The four-point quadrature w given by 

p = U  

F(u)  = J;I 

The values of wi and F(ui) are given an the table below: 

i ai wi F(Ui) = 6 W i F ( U j )  

0 0.32254769 0,603 15410 0.56793282 0 a25510 1 
1 1.74576110 0.35741869 1.32127253 0.47224750 
2 4.53662030 0.03888791 2.12993434 0.08282869 
3 9.39507091 0.00053929 3.06513799 0.00165300 

r(i.5) = f3 w i ~ ( u i )  = 0.8992802 
i=O 

The exact value of r(1.5) b 0.8862269255. 
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A.8.4.3 Gauss-Hermite quadrature 

The Gauss-Hermite quadrature can be used to evaluate integrals of the form 

The weight factors and appropriate roots for the first few quadrature formulas are 
given in Table A.5. 

Table A.5 
and Stegun, 1970). 

Roots and weight factors for GaussHermite quadrature (Abramowitz 

n Roots (xi) Weight Factors (wi) 

1 f 0.70710 67811 

f 1.22474 48714 
0.00000 00000 

f 1.65068 01239 
k0.52464 76233 

f 2.02018 28705 
4 f0.95857 24646 

0.00000 00000 

0.88622 69255 

0.29540 89752 
1.18163 59006 

0.08131 28354 
0.80491 40900 

0.01995 32421 
0.39361 93232 
0.94530 87205 

A.9 MATMCES 
A rectangular array of elements or functions is called a mat&. If the array has m 
rows and n columns, it is called an m x n matrix and expressed in the form 

r all a12 a13 ... aln 1 

J a21 a22 a23 - - -  a2n 
. . . . . . . . . . . . . , . . . . . . . . . 
am1 am2 am3 e.- amn 

(A.9-1) 

The numbers or functions aij are called the elements of a matrix. Equation (A.9-1) 
is also expressed as 

in which the subscripts i and j represent the row and the column of the matrix, 
respectively. 

A matrix having only one row is called a row mat& (or, row vector) while 
a matrix having only one column is called a column matria: (or, column vector). 
When the number of rows and the number of columns are the same, i.e., m = n, 
the matrix is called a spare mat+ or a matrix of order n. 

A = (aij) (A.9-2) 
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A.9.1 Fundamental Algebraic Operations 
1. Two matrices A = (aij) and B = ( b i j )  of the same order are equal if and 

only if aij = bij .  

2. If A = (ai j )  and B = ( b i j )  have the same order, the sum of A and B is 
defined as 

A + B = (aij + b i j )  (A.9-3) 

If A, B, and C are the matrices of the same order, addition is commutative 
and associative, Le., 

A + B = B + A  (A.9-4) 

A + (B + C) = (A + B) + C (A.9-5) 

3. If A = (aij) and B = (b i j )  have the same order, the difference of A and B is 

(A.9-6) 
defined as 

A - B = (aij - bi j )  

Example A.9 If 

A = [ ;  2 -1 Cl] a n d B = [ i  2 -4 ; ]  

determine A + B and A - B. 

Solution 

2 + 2  - 1 - 4  
A + B  = [ 1 + 3  

0 + 0  I=[! T] 3 + 0  5 + 1  

A - B  = [ 1 - 3  0 - 0  ] =  [ :2 a ]  2 - 2  - 1 + 4  

3 - 0  5 - 1  

4. If A = (aij) and X is any number, the product of A by X is defined as 

XA = AX = (Xaij) (A.9-7) 

5. The product of two matrices A and B, AB, is defined only if the number 
of columns in A is equal to the number of rows in B. In this case, the two 
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matrices are said to be conformable in the order stated. For example, if A is 
of order 4 x 2 and B is of order 2 x 3, then the product A B  is 

all a12 

AB = [ [ bll b12 b13 ] (A.9-8) 
bzl bzz b23 

a41 a42 

allbll + alZb2l a l l b l 2  + a12b22 a l l b l 3  + a 1 2 4 3  
a 2 l b l l  + a22b2l a21bl2 + a22b22 a21b13 + a22b23 
a 3 l h l  + a32b21 a3lbl2  + a32b22 a3 lb l3  + a32b23 

= [  a 4 l b l l  + a 4 2 4 1  a4lbl2  + a 4 2 4 2  a41b13 + a42b23 1 
In general, if a matrix of order (m, r )  is multiplied by a matrix of order (T, n), 
the product is a matrix of order (m, n). Symbolically, this may be expressed 
as 

Example A.10 If 

A =  

determine AB. 

Solution 

1 -1 
2 0  

-1 5 
and . = [ : I  

A B  = [ : il][i] 
-1 5 

6. A matrix A can be multiplied by itself if and only if it is a square matrix. The 
product A A  can be expressed as A2. If the relevant products are defined, 
multiplication of matrices is associative, i.e., 

A(BC) = (AB)C (A.9-10) 

A ( B t C ) = A B + A C  (A. 9-1 1) 
(B+C)A = B A + C A  (A.9-12) 

and distributive, i.e., 

but, in general, not commutative. 
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A.9.2 Determinants 
For each square matrix A, it is possible to associate a scalar quantity called the 
determinant of A, IAl. If the matrix A in &. (A.9-1) is a square matrix, then the 
determinant of A is given by 

PI = 

all a12 a13 aln 

a21 a22 a23 a2n 
. , . . . . . . . . . . . . . , . . . . . . . 
an1 an2 an3 ann 

(A.9-13) 

If the row and column containing an element aij in a square matrix A are deleted, 
the determinant of the remaining square array is called the minor of aij and denoted 
by Mij. The cofactor of aij, denoted by A,, is then defined by the relation 

A . .  '3 - - (- l)i+iMij (A.9-14) 

Thus, if the sum of the row and column indices of an element is even, the cofactor 
and the minor of that element are identical; otherwise they differ in sign. 

The determinant of a square matrix A can be calculated by the following for- 
mula: 

n n 

(A.9- 15) 
k=l k=l 

where i and j may stand for any row and column, respectively. Therefore, the 
determinant of 2 x 2 and 3 x 3 matrices are 

all a12 

a21 a22 

all a12 a13 

a21 a22 a23 
a31 a32 a33 

= %la22 - 012021 (A.9-16) 

Example A.ll Determine IAI if 

1 0 1  

-1 1 0 
A = [  3 2 1 1  

Solution 

Expanding on the first row, i.e., i = 1, gives 
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a1 +dl bl c1 a1 bl c1 

a3+d3 b3 c3 a3 4 c3 
a2 b2 

A.9.2.1 Some properties of determinants 

dl bl c1 

d3 4 c3 
+ 4 bz c2 (A.9-19) 

1. If all elements in a row or column are zero, the determinant is zero, i.e., 

a1 bl c1 

0 0 0  
(A.418) 

2. The value of a determinant is not altered when the rows are changed to 
columns and the columns to rows, i.e., when the rows and columns are inter- 
changed. 

3. The interchange of any two columns or any two rows of a determinant changes 
the sign of the determinant. 

4. If two columns or two rows of a determinant are identical, the determinant 
is equal to zero. 

6. Adding the same multiple of each element of one row to the corresponding 
element of another row does not change the value of the determinant. The 
same holds true for the columns. 

(A.9-20) 

This result follows immediately from Properties 4 and 5. 

7. If all the elements in any column or row are multiplied by any factor, the 
determinant is multiplied by that factor, i.e., 

(A.9-21) 

(A.9-22) 
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A.9.3 Types of Matrices 
A.9.3.1 The transpose of a matrix 

The matrix which is obtained from A by interchanging rows and columns is called 
the transpose of A and denoted by AT. 

The transpose of the product A B  is the product of the transposes in the form 

(AB)T = BT AT (A.9-23) 

A.9.3.2 Unit matrix 

The unit matrix I of order n is the square n x n matrix having ones in its principal 
diagonal and zeros elsewhere, i.e., 

1 0 ... 

I = (  0. 0 .:. 0 ::: ... ;.) 
For any matrix 

A I = I A = A  

(A.9-24) 

(A.9-25) 

A.9.3.3 Symmetric and skew-symmetric matrices 

A square matrix A is said to be symmetric if 

A = AT or aij = aji (A.9-26) 

A square matrix A is said to be skewsymmetric (or, antisymmetric) if 

A =  -AT or aij = - a , .  3% (A.9-27) 

Equation (A.9-27) implies that the diagonal elements of a skew-symmetric matrix 
are all zero. 

A.9.3.4 Singular matrix 

A square matrix A for which the determinant IAl of its elements is zero, is termed 
a singular matrix. If IAI # 0, then A is nonsingular. 

A.9.3.5 The inverse matrix 

If the determinant JAl of a square matrix A does not vanish, i.e., nonsingular 
matrix, it then possesses an inverse (or, reciprocal) matrix A-l such that 

A A - ' = A - ~ A = I  (A.9-28) 
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The inverse of a matrix A is defined by 

(A.9-29) 

where AdjA is called the adjoint of A. It is obtained from a square matrix A by 
replacing each element by its cofactor and then interchanging rows and columns. 

Example A.12 

Solution 

The minor of A is given by 

Find the inverse of the matrix A given in Example A.11. 

3 1  3 2  

-1 1 5 
-1 1 1 
-2 -2 2 

0 1  

The cofactor matrix is 
-1 -1 5 

Aij = [ 1 
1 ;'I -2 2 

The transpose of the cofactor matrix gives the adjoint of A as 

-1 1 
AdjA= [ ;I 1 i2] 

-1 2 

Since IAl = 4, the use of Eq. (A.9-29) gives the inverse of A in the form 

-0.25 0.25 
-0.25 0.25 
1.25 -0.25 0.5 

Adj A A-1 = - - 
IAl 

A.9.4 
Consider the system of n nonhomogeneous algebraic equations 

Solution of Simultaneous Algebraic Equations 

a1121 + a1222 + ... + al,z, = c1 
a2121 + a2222 -t- ... + aznxn = cz 

- ........................................... - ... 
anlX1 + an222 f e.. + a n n ~ n  = C n  

(A.9-30) 
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in which the coefficients aij and the constants c+ are independent of x1,x2, ..... xn 
but are otherwise arbitrary. In matrix notation, Eq. (A.9-30) is expressed as 

C1 

= [ c2 ... 
c, 

(A.9-31) 

or, 

Multiplication of EQ. (A.9-32) by the inverse of the coefficient matrix A gives 

A X = C  (A.9-32) 

X = A - ’ C  (A.433) 

A.9.4.1 Cramer’s rule 

Cramer’s rule states that, if the determinant of A is not equal to zero, the system 
of linear algebraic equations has a solution given by 

(A.434) 

where [AI and [Ajl are the determinants of the coefficient and substituted matrices, 
respectively. The substituted matrix, Aj, is obtained by replacing the j t h  column 
of A by the column of c’s, i.e., 

(A.9-35) 

REFERENCES 

Abramowitz, M. and I.A. Stegun, 1970, Handbook of Mathematical bc t ions ,  
Dover Publications, New York. 

Buckler, S.J., 1969, The vertical wind profile of monthly mean winds over the 
prairies, Canada Department of Transport, Tech. Memo. TEC 718. 

Churchill, S.W., 1974, The Interpretation and Use of Rate Data: The Rate Con- 
cept, Scripta Publishing Co., Washington, D.C. 



530 APPENDIX A. MATHl3MATICAL PRELmARIES 

De Nevers, N., 1966, Rate data and derivatives, AIChE Journal 12, 1110. 

Gjumbir, M. and Z. Olujic, 1984, Effective ways to solve single nonlinear equations, 
Chem. Eng. 91 (July 23), 51. 

McAdams, W.H., 1954, Heat Transmission, 3'd Ed., McGraw-Hill, New York. 

Mickley, H.S., T.S. Shenvood and C.E. Reed, 1975, Applied Mathematics in Chem- 
ical Engineering, 2"d Ed., p. 25, Tata McGraw-Hill, New Delhi. 

Whitaker, S. and R.L. Pigford, 1960, An approach to numerical differentiation of 
experimental data, Ind. Eng. Chem. 52, 185. 

Serghides, T.K., 1982, Iterative solutions by direct substitution, Chem. Eng. 89 
(Sept. 6)) 107. 

Tao, B.Y., 1988, Finding your roots, Chem. Eng. 95 (Apr. 25), 85. 

Tm, B.Y., 1989, Linear programming, Chem. Eng. 96 (July), 146. 

SUGGESTED FtEFERENCES FOR FURTHER 
STUDY 

Amundson, N.R., 1966, Mathematical Methods in Chemical Engineering: Matrices 
and Their Applications, Prentice-Hall, Englewood Cliffs, New Jersey. 

Hildebrand, F.B., 1965, Methods of Applied Mathematics, 2"" Ed., Prentice-Hall, 
Englewood Cliffs. 



Appendix B 

Solutions of Differential 
Equations 

A dzfferential equation is an equation involving derivatives or differentials of one 
or more dependent variables with respect to one or more independent variables. 

The order of a differential equation is the order of the highest derivative in the 
equation. 

The degree of a differential equation is the power of the highest derivative after 
the equation has been rationalized and cleared of fractions. 

A differential equation is linear when: (i) every dependent variable and every 
derivative involved occurs to the first-degree only, ( i i )  neither products nor powers 
of dependent variables nor products of dependent variables with differentials exist. 

B.1 TYPES OF FIRST-ORDER EQUATIONS 
WITH EXACT SOLUTIONS 

There axe 5 types of differential equations for which solutions may be obtained by 
exact methods. These are: 

e Separable equations, 

e Exact equations, 

Homogeneous equations, 

e Linear equations, 

e Bernoulli equations. 

531 
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B.l . l  Separable Equations 
An equation of the form 

f l ( 4 9 1 ( Y )  d z  + f 2 ( 2 ) 9 2 ( Y )  dY = 0 (B.1-1) 

is called a separable equation. Division of Eq. (B.1-1) by g1(y) fi(z) results in 

Integration of Eq. (B.l-2) gives 

(B.l-2) 

(B.l-3) 

where C is the integration constant. 

Example B.l  Solve the following equation 

( 2 2  + xy2)dz  + (3y  + x2y)dy = 0 

Solution 

The diflerential equation can be rewritten in the form 

3c (2 +y2)dz  + y (3 + x2)  dy  = 0 (1) 

Note that Eq. (1) is a separable equation and can be -ressed as 

z dx+ - d y = O  
3+x2 2+y2 

Integration of Eq. (2) gives 

(3 + z2)(2 + y2)  = c 

B . 1 .2 
The expression M d x  + N d y  is called an exact differential' if there exists some 
4 = 4 ( x ,  y )  for which this expression is the total differential d4,  i.e., 

Exact Equations 

M dx + N dy = d 4  (B. 1-4) 

A necessary and Suacient condition for the expression M dx + N d y  to be expressed 
as a total differential is that 

8M 8 N  (B.l-5) 

'In thermodynamics, an exact differential is called a state function. 
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I f  M dx  + N dy is an exact differential, then the differential equation 

M d x  + N d y  = 0 (B. 1-6) 

is called an exact differential equation. Since an exact differential can be expressed 
in the form of a total differential d4, then 

M d x  + N d y  = d 4  = 0 (B.l-7) 

and the solution can easily be obtained as 

+ = C  

where C is a constant. 

Example B.2 Solve the following differential equation 

(42 - 3 y ) d ~  + (1 - 32)dy = 0 

Solution 

Notethat M = 4 ~ - 3 y a n d N = 1 - 3 ~ .  Since 

--- - -3  OM aN -- 
a y  ax 

(B. 1-8) 

the diffemntial equation is exact and can be expmssed in the form of a total diger- 
ential d4,  

From Eq. (2) we see that 

Partial integration of Eq. (3) with respect to x gives 

4 = 2x2 - 3~ + h(y )  

Substitution of Eq. (5) into Eq. (4) yields 

- 1  
d h  
dY 
_ -  

(5)  
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Integration of Eq. (6) gives the function h as 

h = y + C  (7) 

where C is a constant. Substitution of Eq. (7) into Eq. (5) gives the function (b 
as 

(b = 2x2 - 3xy + y + c (8) 
Hence, the solution is 

where Ca is a constant. 

2 x2 - 3xy + y = c* (9) 

If the equation M dx + N dy is not exact, multiplication of it by some function 
p, called an integrating factor, may make it an exact equation, i.e., 

(B.l-9) 

For example, all thermodynamic functions except heat and work are state functions. 
Although dQ is a path function, dQ/T is a state function. Therefore, l / T  is an 
integrating factor in this case. 

B.1.3 Homogeneous Equations 
A function f (2, y) is said to be homogeneous of degree n if 

for all A. For an equation 

if M and N are homogeneous of the same degree, the transformation 

Mdx+Ndy = 0 (B. 1-11) 

y = u x  (B.1-12) 

will make the equation separable. 
For a homogeneous function of degree n, Euler's theorem states that 

(B. 1-13) 

Note that the extensive properties in thermodynamics can be regarded as homo- 
geneous functions of order unity. Therefore, for every extensive property we can 
write 

(B.1-14) 
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On the other hand, the intensive properties are homogeneous functions of order 
zero and can be expressed as 

Example B.3 Solve the following differential equation 

x y d x - ( x 2 + y 2 ) d y = 0  

Solution 

Since both of the functions 

M = x y  
N = - (x2 + y2) 

are homogeneous of degree 2, the tmnsformation 

y = u x  and d y = u d x + x d u  

reduces the equation to the form 

dx  1+u2  -+- d u  = 0 
X u3 

Integration of Eq. (4) gives 

x u = c e x p ( & )  

(B .  1- 15) 

(3)  

(4) 

( 5 )  

1 x  
Y = Cexp [- 2 Y  (-)2] 

where C is an integration constant. Substitution of u = y / x  into Eq. (5) gives the 
solution as 

B.1.4 Linear Equations 
In order to solve an equation of the form 

(B .  1-16) dY - + P(.) Y = &(x)  dx 

the first step is to find out an integrating factor, p, which is defined by 

(B .  1- 17) 
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Multiplication of Eq. (B.1-16) by the integrating factor gives 

Integration of Q. (B.1-18) gives the solution as 

C y = -  Qpdx+-  
P 'S  P 

where C is an integration constant. 

Example B.4 Solve the following differential equation 

dY x- -2y=x3sinx 
dx 

Solution 

The differential equation can be rewritten as 

dY 2 2 -- - y  = x sinx 
dx x 

The integrating factor, p ,  is 

Multiplication of Eq. (1) by the integrating factor gives 

1 dy 2 
x2 dx 23 

- y = sinz 

Note that Eq. (3) can also be expressed in the form 

--- 

- d Y  (-) =sinx 
dx x2 

Integration of Eq. (4) gives 

y =  -x2cosx+cx2 

B.1.5 Bernoulli Equations 
Bernoulli equation has the form 

dY 
- dx + P ( X )  Y = Q(x) yn 72 # 0,1 

The transformation 

reduces Bernoulli equation to a linear equation, Eq. (B.l-16). 
z = yl-n 

(B.1-18) 

(B. 1-19) 

(B. 1-20) 

(B. 1-21) 
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B.2 SECOND-ORDER LINEAR 
DIFFE-NTIAL EQUATIONS 

A general second-order linear differential equation with constant coefficients is writ- 
ten as 

&Y dy 
dx2 d x  a, - +a1 - + a2y = R ( x )  

If R ( x )  = 0, the equation 

&Y d y  
a, 2 dx + a1 - dx + a2 y = 0 

(B.2-1) 

(B.2-2) 

is called a homogeneous equation. 

of the form 
The second-order homogeneous equation can be solved by proposing a solution 

y = emx (B.2-3) 

where m is a constant. Substitution of Eq. (B.2-3) into Eq. (B.2-2) gives 

a,m 2 + a l m + a a = O  (B.2-4) 

which is known as the charucteristic or auxiliary equation. Solution of the given 
differential equation depends on the roots of the characteristic equation. 

Distinct real roots 

When the roots of Eq. (B.2-4), ml and m2, are real and distinct, then the solution 
is 

(B.2-5) y = C1 emlx + C 2  
Repeated real roots 

When the roots of Eq. (B.2-4), ml and 77x2, are real and equal to each other, i.e., 
ml = m2 = m, then the solution is 

Y=(Ci + C 2 x ) e m z  (B.2-6) 

Conjugate complex roots 

When the roots of Eq. (B.2-4), ml and m2, are complex and conjugate, i.e., 
m1,2 = a f ib, then the solution is 

y = ear(Cl cos bx + C 2  sin bx) (B.2-7) 
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B.2.1 Special Case of a Second-Order Equation 
A second-order ordinary differential equation of the form 

(B.2-8) 

where A is a constant, is frequently encountered in heat and mass transfer problems. 
Since the roots of the characteristic equation are 

m1,2 = f A (B.2-9) 

the solution becomes 

Using the identities 

y = C1 exx + C2 e-'" (B.2-10) 

,Ax + e-Xx ,Ax - e-Xx 

2 
(B.2-11) and sinhAx= 

2 
coshAx= 

Equation (B.2-10) can be rewritten as 

y = C,* sinh Ax + Cz cosh Ax (B.2-12) 

B.2.2 Solution of a Non-Homogenous Differential 
Equation 

Consider the second-order differential equation 

(B.2-13) 

If one solution of the homogeneous solution is known, i.e., say y = yl(x), then the 
complete solution is (Murray, 1924) 

Example B.5 
differential equation if one of the solutions of the homogeneous part i s  y1 = e2x. 

Obtain the complete sobtion of the following nowhomogeneous 



B.2. SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 539 

Solution 

Comparison of the equation with Eq. (B.2-13) indicates that 

P(x) = -1 

R(x) = 3e-" + 10sinx - 4x 
Q(x) = - 2  

Therefore, Eq. (B.2-14) takes the form 

y = CI e2x + C2 e2r 1 e-3xdx + e2s / e-3s [ I s  eu(3e-u + 10 sin u - 4u) du dx 3 
The use of the integral fornaulm 

asinbx - bcosbx J eax sin bx dx = eas 

eax cos bx dx = eax 
acosbx+ bsinbx J 

gives the complete solution as 

B.2.3 Bessel's Equation 
There is large class of ordinary differential equations that cannot be solved in 
closed form in terms of elementary functions. Over certain intervals, the differential 
equation may possess solutions in power series or hbenius  series. 

An expression of the form 

00 

a, + al(x - 2,) + u2(x - x , )~  + ... + an(x - z,)~ = un(x - zo)n (B.Zl5) 
n=O 

is called a power series in powers of (z - x,) with x, being the center of expansion. 
Such a series is said to converge if it approaches a finite value as n approaches 
infinity. 

An ordinary differential equation given in the general form 

(B.2-16) 
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with either k = p - 2 or b = 0, is known as the Bessel’s equation. Solutions to 
Bessel’s equations are expressed in the form of power series. 

Example B.6 Show that the equation 

dy ( :) x - + x - -  2 @Y x 2 + -  y = o  
dx2 dx 

is reducible to Bessel’s equation. 

Solution 

A second-order diflerential equation 

can be expressed in the form of Eq. (B.2-16) m follows. Dividing each term in Eq. 
(1) by a,(x) gives 

-+--+- @Y a l ( 4  dY a2W = 0 
dx2 a , ( ~ )  dx a,(x) 

The integrating factor, p, is 

MzLltiplicntion of Eq. (2) with the integrating factor results in 

where 

d(rg)+qY=o dx (4) 

To express the given equation in the form of Eq. (B.2-16)’ the first step is t o  divide 
each term by x2 to get 

Note that the integrating factor is 

Multiplication of Eq. (6) by the integrating factor and rearrangement gives (xs) - (x+;x-l)y=o 
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Comparison of Eq. (8) with Eq. (B.2-16) gives p = 1; a = -1; b = - a; j = 1; 
and k = - 1. Since k = p - 2, then Eq- (8) is Bessel’s equation. 

B.2.3.1 Solution of Bessel’s equation 

If an ordinary differential equation is reducible to the Bessel’s equation, then the 
constants a, /3, and n are defined by 

2 - p + j  
2 a =  

1 - P  
’ = 2 - p + j  

J( 1 - p)2 - 4b 
n =  

2 - p + j  

(B.2-17) 

(B .2- 18) 

(B.2-19) 

The solution depends on whether the term a is positive or negative. 

Case (i) a > 0 

In this case the solution is given by 

y = zap [CIJn(Rz*) + C2J-n(Rza)] n # integer (B.2-20) 

y = zap [CIJn(nza) + C2Yn(0za)] n = integer (B.2-21) 

where Cl and C2 are constants, and R is defined by 

n=- JTi (B.2-22) 

The term Jn(z) is known as the Bessel function of the first kind of order n and is 
given by 

a 

(B.2-23) 

J-n(z) is obtained by simply replacing n in Eq. (B.2-23) with - n. When n is not 
an integer, the functions Jn(z) and J-,(z) are linearly independent solutions of 
Bessel’s equation as given by Eq. (B.2-20). When n is an integer, however, these 
two functions are no longer linearly independent. In this case, the solution is given 
by Eq. (B.2-21) in which Yn(x) is known as Weber’s Bessel function of the second 
kind of order n and is given by 

(c0sn7r)Jn(z) - J-&) 
sin nr Yn(4 = (B .2-24) 
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Case (ii) a < 0 

In this case the solution is given by 

y = xaB [CIIn(Qx") + C21-n(Rxa)] n # integer (B.2-25) 

y = xa@ [CIIn(Rxa) + C2Kn(Rxa)]  n = integer (B.2-26) 

where C1 and C2 are constants, and R is defined by 

Q = - a -  .A (B.2-27) 

The term In(x )  is known as the modified Bessel function of the first kind of order 
a 

n and is given bv - 
O0 (x/2)2i+n 

In(x )  = i! r(i + n + 1) i=O 

(B.2-28) 

I-n(x)  is obtained by simply replacing n in Eq. (B.2-28) with -n. When n is 
not an integer, the functions In(x )  and I-n(x)  are linearly independent solutions 
of Bessel's equation as given by Q. (B.2-25). However, when n is an integer, the 
functions In(x )  and I+(X)  are linearly dependent. In this case, the solution is 
given by Eq. (B.2-26) in which K n ( x )  is known as the modified Bessel finction of 
the second kind of order n and is given by 

(B.2-29) 

Example B.7 
Bessel functions: 

Obtain the general solution of the following equations in terns of 

a ) x - - 3 - + z y = O  8 Y  dY 
dx2 dx 

8 Y  b) dz2 - X'Y = 0 

Solution 

a) Note that the integrating factor is x - ~  and the equation can be rewritten as 
d 

dx 
Therefore, p = - 3; a = 1; j = - 3; b = 0. Since b = 0, the equation is reducible 
to Bessel's equation. The terms a, /3, and n are calculated from Eqs. (B.2-17)- 
(B.2-19) as 

2 - p + j  
2 

2 + 3 - 3  
2 

a =  

= I  - - 
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1 - P  
' = , - p + j  
- 1 + 3  - 

2 + 3 - 3 = 2  

Note that a > 0 and R is calculated from Eq. (B.2-22) as 

(3)  

Since n is an integer, the solution is given in the form of Eq. (B.2-21) 

Y = x2 [ClJ2(4 + C2Y2(2)] (6) 

b) The equation can be rearranged in the fonn 

Therefore, p = 0; a = - 1; j = 2; b = 0. Since b = 0,  the equation is reducible to 
Bessel's equation. The terms a, p, and n are calculated from Eqs. (B.2-17)-(B.2- 

2 - p + j  

19) as 

CY= 
L 

= 2  - 2 - 0 + 2  - 
2 

1 - P  
' = 2 - p + j  

1 - 0  1 
2 - 0 + 2 - 4  

- - _  - 

,/( 1 - p)2 - 4b 
n =  

2 - p + j  
d(1 - 0)2 - (4) (0)  1 

2 - 0 + 2  4 
= -  - - 

(9) 
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Note that a < 0 and R is calculated from Eq. (B.2-27) as 

Q = - i -  6 
Q 

Since n is not an integer, the solution is given in the form of Eq. (B.2-25) 

Y = 6 [ci 1i/4(z2/2) + c2 1-i/4(X2/2)] 

The properties of the Bessel functions are summarized in Table B.l. 

B.2.4 
Consider an initial value problem of the type 

Numerical Solution of Initial Value Problems 

(B.2-30) 

y(0)  = a = given (B.231) 

Among the various numerical methods available for the integration of Eq. (B.2-30)) 
fourth-order Runge-Kutta method is the most frequently used one. It is expressed 
by the following algorithm: 

(B.2-32) 1 1 
Y ~ + I  = Y n  + g ( k l +  k4) + s (k2  + k3) 

The terms k l ,  k2, k3, and k4 in Eq. (B.2-32) are defined by 

(B .2-33) 

(B.2-34) 

(B.2-35) 

(B.2-36) 

in which h is the time step used in the numerical solution of the differential equation. 

Example B.8 An irreversible chemical reaction 

A + B  

takes place in an isothermal batch reactor. The rate of reaction is given by 

r=kCA 
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Table B.l  Properties of the Bessel functions. 
~ 

BEHAVIOR NEAR THE ORIGIN 

JJO) = IO(O) = 1 

- Yn(0) = Kn(0) = 00 

Jn(0) = In(0) = 0 
for all n 

for n > 0 
Note that if the origin is a point in the calculation field, then 
Jn(z) and In(z) are the only physically permissible solutions. 

BESSEL FUNCTIONS OF NEGATIVE ORDER 

J-,(AZ) = (- l)nJ,(Az) 
L n ( X x )  = In(Az) 

Y-,(AX) = (- l )nYn(Az)  
K-,(XX) = &(AX) 

DIFFERENTIAL RELATIONS 
d n n 
dx X 2 

d n n 
dx X X 

d n n 
dx 2 2 

d n n 
dx X X 

-Jn(XX) = XJn-l(AX) - - &(AX) = - XJ,+1(Xz) + - Jn(Az) 

-Y,(XZ) = AYn-l(Az) - - Yn(Xz) = -AY*+I(Xz) + - Yn(Xs) 

--In(A2) = AI,-,(As) - - In(AX) = XIn+l (Az)  + - In(Az) 

-Kn(Az) = - AKn-l(AX) - - &(AX) = - A K n + l ( A x )  + - &(AX) 
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with a rate constant of k = 2h-'. If the initial number of moles of species A is 
1.5mo1, determine the variation in the number of moles of A during the first one 
hour of the reaction. Compare your results with the analytical solution. 

Solution 

The inventory rate equation based on the moles of species A is 

Analytical solution 

Equation (2) is a separable equation with the solution 

nA = nA,  exp( - k t )  

in which nA, aS the initial number of moles of species A. 

Numerical solution 

In terms of the notation of the Runge-Kutta method, Eq. (2) is expressed as 

dY - = - 2 y  
dt 

with an initial condition of 

Therefore, 
y(0) = 1.5 

f ( t , Y )  = -2Y 
yo = 1.5 

(3) 

(4) 

(5) 

Integration of Eq. (4) from t = 0 to t = 1 by using fourth-order Runge-Kutta 
method urith a time step of h = 0.1 is given cbs follows: 
Calculation of y at t = 0.1 hour 
First, it is necessary to determine kl, kz, k3, and k4: 

kl = hf(Y0) 
= (O.l)(- 2)(1.5) = - 0.3000 

k2 = h f  (Yo  + ik,) 
= (O.l)(- 2) 1.5 - - = - 0.2700 ( Of) 
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k3 = h f  (Yo  + i k 2 )  

k4 = h f (yo + k3) 

= ( O . l ) ( -  2)(1.5 - 0.2730) = - 0.2454 (11) 

Substitution of these values into Ea. (B.2-32) gives the value of y at t = 0.1 hour 
as 

1 1 
6 3 

~1 = 1.5 - -(0.3 + 0.2454) - -(0.2700 + 0.2730) = 1.2281 

CalcuIation of y at t = 0.2 hour 

The constants k l ,  k2, k3, and k4 are calculated as 

kl = hf (Yl) 
= (O.l)(- 2)(1.2281) = - 0.2456 

2 

2 
k4 = h f (Y1+ k3) 

= (O.l)(- 2)( 1.2281 - 0.2235) = - 0.2009 

Substitution of these values into Eq. (B.2-32) gives the value of y at t = 0.2 hour 
as 

1 1 
6 3 

~2 = 1.2281 - -(0.2456 + 0.2009) - -(0.2211+ 0.2235) = 1.0055 (17) 

Repeated application of this procedure gives the value of y at evesy 0.1 hour. The 
results of such calculations are given in Table 1. The last column of Table 1 gives the 
analytical results obtained from Eq. (3). In  this case, the numerical and analytical 
results are equal to each other. However, this is not always the case. The accuracy 
of the numerical results depends on the time step chosen for  the calculations. For 
example, for a time step of h = 0.5, the numerical results are slightly diflerent 
from the exact ones as shown in Table 2. 
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Table 1 Comparison of numerical and exact values for h = 0.1. 

t (h) kl IE2 k3 k4 Y (num.) Y (exact) 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 0.3000 
- 0.2456 
- 0.2011 
- 0.1646 
- 0.1348 
- 0.1104 
- 0.0904 
- 0.0740 
- 0.0606 
- 0.0496 

- 0.2700 
- 0.2211 
- 0.1810 
- 0.1482 
- 0.1213 
- 0.0993 
- 0.0813 
- 0.0666 
- 0.0545 
- 0.0446 

- 0.2730 
- 0.2235 
- 0.1830 
- 0.1498 
- 0.1227 
- 0.1004 
- 0.0822 
- 0.0673 
- 0.0551 
- 0.0451 

- 0.2454 
- 0.2009 
- 0.1645 
- 0.1347 
- 0.1103 
- 0.0903 
- 0.0739 
- 0.0605 
- 0.0495 
- 0.0406 

1.2281 
1.0055 
0.8232 
0.6740 
0.5518 
0.4518 
0.3699 
0.3028 
0.2479 
0.2030 

1.2281 
1.0055 
0.8232 
0.6740 
0.5518 
0.4518 
0.3699 
0.3028 
0.2479 
0.2030 

Table 2 Comparison of numerical and exact values for h = 0.5. 

t (h) kl k2 k3 IC4 y (num.) y (exact) 

0.5 - 1.5000 -0.7500 - 1.1250 -0.3750 0.5625 0.5518 
1.0 - 0.5625 -0.2813 -0.4219 -0.1406 0.2109 0.2030 

B.2.5 
The solution procedure presented for a single ordinary differential equation can be 
easily extended to solve sets of simultaneous differential equations. For example, 
for the case of two simultaneous ordinary differential equations 

Solution of Simultaneous Differential Equations 

(B.2-37) 

da - = g(t,  Y, 4 dt (B.2-38) 

the fourth-order Runge-Kutta solution algorithm is given by 

(B.239) 

and 
1 1 

Zn+l = 4 a  + $1 + t4) + - 3 (e2 + e3)  (B .2-40) 

The terms ki + k4 and el + t4 are defined by 

(B.2-41) 
(B.2-42) 
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(B.2-43) 

(B.2-45) 

(B .2-46) 

(B.2-47) 
(B .2-48) 

Example B.9 
reactor under isothermal conditions: 

The following liquid phase reactions are carried out in a batch 

A 4 B  T = klCA kl = 0.4 h-l 
B + C -+ D r = k2C~Cc b = 0.7m3/mol. h 

If the initial concentration of species A and C are 1 mol/ m3, determine the wn- 
centration of species 2) after 18min. Compare your results with the analytical 
solution. 

Solution 

The inventory rate expression for  species A and D are given by 

From the stoichiometry of the reactions, the concentrations of L3 and C are ex- 
pressed in terms of A and 2) as 

C B  = C A ,  - C A  - CD 

c c  = CC, - CD 

Substitution of Eqs. (3) and (4) into Eq. (2) yields 

(3) 
(4) 

Analytical solution 

Equation (1) is a separable equation with the solution 

C A  = CA, exp(- k l t )  (6) 
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in which CA, is the initial concentration of species A. Substitution of Eq. (6) into 
Eq. (5) gives 

-'lt - cA, - cC,) CD + IC~CA,CC,(I - e-'") dCD - = k2cg + k2 (cAoe dt (7) 

In terms of numerical values, Eq. (7) becomes 

The non- linear first-order diflerential equation 

dY 
- dx = 4.) y2 + b ( s )  y + .(.) 

is called a Riccati equation. If y l ( x )  is any known solution of the given equation, 
then the transformation 

1 
Y = Y l ( 4  + - 

U 

leads to a linear equation in u. Equation (8) is in the f o m  of a Riccati equation 
and note that CD = 1 is a solution. Therefore, the solution is 

where ,- = ,-0.4t 

When t = 0.3 h, Eq. (9) gives CD = 0.0112 mol/ m3. 

Numerical solution 

In t e r n  of the notation of the Runge-Kutta method, Eqs. (1) and (5) are expressed 
in the form 

- -  d y  - - 0 . 4 ~  
d t  
da 
dt (12) _ -  - 0.7 (1 - y - ~)(1- a )  

with initial conditions of 

y(0) = 1 and z(0) = O  

There fore, 
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with the initial conditions 
Yo = 1 
Zo = 0 

Choosing h = 0.05, the values of y1 and z1 are calculated as follows: 

kl = h f (Yo,  20) 

= (0.05)(-0.4)(1) = -0.0200 

el = hS(Y0,+4 
= (0.05)(0.7)(1- 1 - 0)(1 - 0) = 0 

= (0.05)(-0.4) 1 - - = -0.0198 ( O.,,) 

= (0.05)(0.7) 1 - 1 - - - 0 (1 - 0) = 3.5 x [ ( o*o?) 1 

= (0.05)(- 0.4) 1 - - = - 0.0198 ( 0*0:g8> 

2 

(23) 

= (0.05)(0.7) [ 1 - ( 1 - - 0.0:") - 3.5 x 2 10-41 ( 1 -  

= 3.4032 x low4 

h = hg(Yo+k3,Zo+l3) 
= (0.05)(0.7) [l - (1 - 0.0198) - 3.4032 x lov4] (1 - 3.4032 x 

= 6.8086 x (25) 
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Substitution of kl --t k4 and C1 --t 4 into Eqs. (B.2-39) and (B.S4O), respectively, 
gives the values of y1 and z1 as 

(26) 
1 1 
6 3 91 = 1 - - (0.0200 + 0.0196) - -(0.0198 + 0.0198) = 0.9802 

1 1 
6 3 z1 = 0 + - (0 + 6.8086 x + -(3.5 x + 3.4032 x 

= 3.4358 x (27) 
Repeated application of this procedure gives the values of y and z at every 0.05 h. 
The results are given in Tables 1 and 2. 

Thble 1 Values of y as a function of time. 

t (h) kl IC2 
0.05 - 0.0200 - 0.0198 
0.10 - 0.0196 - 0.0194 
0.15 - 0.0192 - 0.0190 
0.20 - 0.0188 - 0.0186 
0.25 - 0.0185 - 0.0183 
0.30 - 0.0181 - 0.0179 

k3 

- 0.0198 
- 0.0194 
- 0.0190 
- 0.0186 
- 0.0183 
- 0.0179 

k4 

- 0.0196 
- 0.0192 
- 0.0188 
- 0.0185 
- 0.0181 
- 0.0177 

Y 
0.9802 
0.9608 
0.9418 
0.9232 
0.9049 
0.8870 

nble  2 Values of z as a function of time. 

0.05 0.0000 0.0004 0.0003 0.0007 0.0003 
0.10 0.0007 0.0010 0.0010 0.0013 0.0013 
0.15 0.0013 0.0016 0.0016 0.0019 0.0029 
0.20 0.0019 0.0022 0.0022 0.0025 0.0051 
0.25 0.0025 0.0028 0.0028 0.0030 0.0079 
0.30 0.0030 0.0033 0.0033 0.0035 0.0112 

B.3 SECOND-ORDER PARTIAL 
DIFFEFtENTIAL EQUATIONS 

B.3.1 Classification of Partial Differential Equations 
As a function of two independent variables, x and y, the most general form of a 
second-order linear partial differential equation has the form 

azl 
aY + E(z,  9)  - + F ( x , Y )  u = G(z, 9 )  (B.3-1) 
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It is assumed that the coefficient functions and the given function G are real-valued 
and twice continuously differentiable on a region R of the z, y plane. 

When G = 0, the equation is homogeneous, otherwise the equation is non- 
homogeneous. 

The criteria, B2 - AC, that will indicate whether the second-order equation is 
a graph of a parabola, ellipse or hyperbola is called the discriminant, A, i.e., 

> O  Hyperbolic 
= 0 Parabolic 
< 0 Elliptic 

B.3.2 Orthogonal Functions 
Let f(z) and g ( z )  be real-valued functions defined on the interval a 2 z 5 b. The 
inner product of f(z) and g(x)  with respect to w(z) is defined by 

(B.3-2) 

in which the weight function w(z) is considered positive on the interval (a, b). 

Example B.10 
to the weight function w(x) = x1I2 on the interval 0 5 x 5 1. 

Solution 

Find the inner product of f(z) = and g(z) = 1 with respect 

Application of Eq. (B.3-2) gives the inner product as 

( f , g )  = I ' f i z d x  = 5 2 x5I2 1 2  
0 

The inner product has the following properties: 

(f, 9 )  = (9, f )  
(f, 9 + h) = (f, 9) + (f, h) 

( a f , g )  = a ( f , g )  a is a scalar 

The inner product of f with respect to itself is 
b 

(f, f )  = J 4.1 f2(4 d z  = I l f ( X ) 1 l 2  > 0 

in which n o m  of f(z) is defined as 

llf(4II = m 

(B.3-3) 

(B.3-4) 
(B.3-5) 

(B.3-6) 

(B.3-7) 
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When { f ,  g) = 0 on (a, b), then f (z) is orthogonal to g(z) with respect to the 
weight function w(x)  on (a ,b) ,  and when (f, f )  = 1, then f ( x )  is an orthonomal 
function. In the special case where w ( z )  = 1 for a 5 x 5 b, f ( x )  and g ( x )  are said 
to be simply orthogonal. 

A sequence of functions { fn}z=o is an orthogonal set of functions if 

( f n ,  f m )  = 0 n # m 
The orthogonal set is a linearly independent set. If 

0 if n # m  
( f n ,  fm) = { 1 if n = m  

(B.3-8) 

(B.3-9) 

such a set is called an orthonormal set. Note that an orthonormal set can be 
obtained from an orthogonal set by dividing each function by its norm on the 
interval under consideration. 

Example B.ll Let &(x) = sin(nm) for n = 1,2,3, ... and for 0 < z < 1. 
Show that the sequence {+,}:=,is simply orthogonal on (0,l). Find the n o m s  of 
the functions q5n. 

Solution 

The inner product is 

The w e  of the identity 
1 
2 

sinA sinB = - [cos(A - B) - cos(A + B)] 

reduces Eq. (1) to the form 

1 ,  
(&, 4,) = 5 1 {cos [(n - m)?rx] - cos [(n + m)?rx]} d x  

0 

}l = O  
= I( (n-m)?r ( n - m b  0 

1 sin [(n - m)7rx] sin [(n + m)ax] - (3) 

On the other hand, 
1 

(+,,4,) = J sin2(nm)dz 
0 

(4) 
1 
[(l - cos(2n?rz)] dx = 

2 
Therefore, the norm is 

Hence, the corresponding orthonormal set is { \/Zsin(nxx)}~==,. 
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B.3.3 Self-Adjoint Problems 
Consider a second-order ordinary differential equation of the form 

(B.3-10) 

Multiplication of Eq. (B.3-10) by p(x)/ao(x) in which p(x)  is the integrating factor 
defined by 

(B .3- 11) 

gives 
8 Y  a1(x) dY a2(x) - + -p(x) - + ----P(X)Y = 0 
dx2 ao(x) dx a,(x) 

Equation (B.3-12) can be rewritten its 

where 

Rearrangement of Eq. (B.3-13) yields 

(B.3-12) 

(B.3-13) 

(B.3-14) 

(B.3- 15) 

A second-order differential equation in this form is said to be in self-adjoint form. 

Example B. 12 Write the following differential equation in self-adjoint form: 

x 2 8 Y  - - X - + ( X - ~ ) Y = ~  dY 
dx2 dx 

Solution 

Dividing the given equation by x2 gives 

Note that 

Multiplication of Eq. (1) by p(x)  gives 

Note that Eq. (3) can be recarranged as 
- d (- 1 -) dy  + ($ - $) Y = 0 
dx x dx (4) 
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B.3.4 The Sturm-Liouville Problem 
The linear, homogeneous, second-order equation 

- 2 - 2  w(x) dx [.(.,SI +q(x)y=-Xy 
on some interval a 5 x 5 b satisfying boundary conditions of the form 

(B.3-16) 

(B.3- 17) 

(B.3-18) 

where cy1, cyz, pl, pz are given constants; p(x), q(x), w(x) are given functions which 
are differentiable and X is an unspecified parameter independent of x, is called the 
Stum-Liouwille equation. 

The values of X for which the problem given by Eqs. (B.3-16)-(B.3-18) has a 
nontrivial solution, i.e., a solution other than y = 0, are called the eigenvalues. 
The corresponding solutions are the eigenfinctions. 

Eigenfunctions corresponding to different eigenvalues are orthogonal with r c  
spect to the weight function w(x). All the eigenvalues are positive. In particular, 
X = 0 is not an eigenvalue. 

Example B.13 Solve 
p + X y = O  d% 

subject to the boundary conditions 

at x = O  y = O  

at X = ? T  y=O 

Solution 

The equation can be -written in the form 

Comparison of Eq. (1) with Eq. (B.3-16) indicates that this is a Sturm-Liouville 
problem with p(x) = 1, q(x) = 0 and w(x) = 1. 

The solution of Eq. (1) is 

y = Asin ( a x )  + BCOS (fix) 
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Application of the boundary condition at x = 0 implies that B = 0. On  the other 
hand, the use of the boundary condition at x = r gives 

Asin h r  = 0 0 
In  order to have a nontrivial solution 

sin f i r  = O  + f i r = n r  n= 1,2,3, ... 0 

(3)  

(4) 

or, 

Equation (5) represents the eigenvalues of the problem. The corresponding eigen- 
functions are 

f i = n  + ~ ~ = n ~  n = l , 2 , 3 ,  ... ( 5 )  

yn = An sin(nx) n = 1,2,3, ... (6) 
where An is an arbitrury non-zero constant. 

function w(x), it is possible to write 
Since the eigenfunctwns are orthogonal to each other with respect to the weight 

r= 
sin(nz) sin(mx) d z  = 0 n # m 

B.3.4.1 The method of Stodola and Vianello 

(7) 

The method of Stodola and Vianello (Bird et al., 1987; Hildebrand, 1976) is an 
iterative procedure which makes use of successive approximation to estimate X 
value in the following differential equation 

(B.3-19) 

with appropriate homogeneous boundary conditions at x = a and x = b. 
The procedure is as follows: 

1. Assume a trial function for yl(x) which satisfies the boundary conditions 
x = a and x = b. 

2. On the right side of l3q. (B.3-19), replace y(x) by yl(z). 

3. Solve the resulting differential equation and express the solution in the form 

Y(X) = fl(X) (B.3-20) 

4. Repeat step (2) with a second trial function yz(x) defined by 

(B.3-21) 
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5. Solve the resulting differential equation and express the solution in the form 

6. Continue the process as long as desired. The nth approximation to the small- 
est permissible value of X is given by 

(B.3-23) 

B.3.5 Fourier Series 
Let f (x) be an arbitrary function defined on a I x 5 b and let be an 
orthogonal set of functions over the same interval with weight function ~ ( x ) .  Let 
us assume that f(x) can be represented by an infinite series of the form 

(B.3-24) 

The series CCnq5,(s) is called the Fourier series of f(x), and the coefficients Cn 
axe called the Fourier coeficients of f(z) with respect to the orthogonal functions 

To determine the Fourier coefficients, multiply both sides of Eq. (B.3-24) by 
472 (XI. 

w(x)q5,(z) and integrate from z = a to x = b, 

00 

(B.3-25) 

Because of the orthogonality, all the integrals on the righbside of Eq. (B.3-25) are 
zero except when n = m. Therefore, the summation drops and Eq. (B.3-25) takes 
the form 

(B.3-27) 

Example B.14 Let f(x) = x for 0 I x 5 T. Find the Fourier series of f(x) 
with respect to the simply orthogonal set {sin(nx)}r=l. 
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Solution 

The function f (x) = x is represented in the f o m  of a Fourier series 

00 

x = C, sin(nx) 
n=l 

The Fourier coefficients can be calculated from Eq. (3.3-27) as 

lT x sin(nx) dx 

1 sin2(nx) dx  

cos(nn) 
n 

Cn= ?r = -2- 

Since 
cos(nn) = (- 

the coefficients Cn become 

(- 1)" - (- l )n+l  c n -  - -2--  
n n 

Substitution of Eq. (4) into Eq. (1) yields 

B.3.6 
Various analytical methods are available to solve partial differential equations. In 
the determination of the method to be used, the structure of the equation is not 
the only factor that should be taken into consideration as in the case for ordinary 
differential equations. The boundary conditions are almost as important as the 
equation itself. 

Solution of Partial Differential Equations 

B.3.6.1 The method of separation of variables 

The method of separation of variables requires the partial differential equation to 
be homogeneous and the boundary conditions be defined over a limited interval, 
i.e., semi-infinite and infinite domains do not permit the use of the separation of 
variables method. Besides, boundary conditions must be homogeneous in at least 
one dimension. 

Let us apply the method of separation of variables to an unsteady-state heat 
transfer problem. Consider a slab which is initially at temperature To. At time 
t = 0, both surfaces are suddenly subjected to a constant temperature TI with 
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TI > To. The governing differential equation together with the initial and boundary 
conditions are 

aT d2T 
at a t 2  
-=a- (B.3-28) 

at t = 0 T = To for all 2 (B.3-29) 

at x=O T=T1 t > O  (B.3-30) 

at x = L  T=Tl t > O  (B.3-31) 

?.&e that L e  differential equation is linear and homogeneous. On the other 
hand, the boundary conditions, although linear, are not homogeneous. The bound- 
ary conditions in the x-direction become homogeneous by introducing the dimen- 
sionless quantities 

Ti - T  e=- 
Tl - To 

(B.3-32) 

z c=z  (B.3-33) 

at 
L2 

T = -  

In dimensionless form, Eqs. (B.3-28)-(B.3-31) become 

de d2e -=- 
at2 

(B.3-34) 

(B.3-35) 

at T = O  8 = 1  (B .3-36) 

at c = O  8 = 0  (B.3-37) 

at c = 1  8 = 0  (B.3-38) 
The separation of variables method assumes that the solution can be represented 

as a product of two functions of the form 

e ( T ,  a = F(7)  G(c) (B .3-39) 

Substitution of Eq. (B.3-39) into Eq. (B.3-35) and rearrangement gives 

(B.3-40) 

While the left side of Eq. (B.3-40) is a function of 7 only, the right side is dependent 
only on e. This is possible only if both sides of Eq. (B.3-40) are equal to a constant, 
say - X , i.e., 2 

_ - - -  --- - - A 2  
1 dF 1 dLG 
F d r  G q2 (B.3-41) 
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The choice of a negative constant is due to the fact that the solution will decay to 
zero as time increases. The choice of a positive constant would give a solution that 
becomes infinite as time increases. 

Note that Eq. (B.3-41) results in two ordinary differential equations. The 
equation for F is given by 

(B.3-42) dF - + X2F = 0 
d r  

The solution of Eq. (B.3-42) is 

F ( T )  = e--x2T (B.3-43) 

On the other hand, the equation for G is 

d2G -+X2G=0 
dt2  

(B.3-44) 

subject to the boundary conditions 

at < = 0  G=O (B.3-45) 

at < = 1  G=O (B .3-46) 

Note that Eq. (B.3-44) is a Sturm-Liouville equation with a weight function of 
unity. The solution of Eq. (B.3-44) is 

G(<) = Asin(X<) + Bcos(X<) (B .3-47) 

where A and B are constants. The use of the boundary condition defined by Eq. 
(B.3-45) implies B = 0. Application of the boundary condition defined by Eq. 
(B.3-46) gives 

AsinX = 0 (B.3-48) 

For a nontrivial solution, the eigenvalues are given by 

sinX=O * & = n r  n = 1 , 2 , 3 ,  ... (B 3-49) 

The corresponding eigenfunctions are 

Gn(<) = sin(nn<) (B.3-50) 

Note that each of the product functions 

(B.3-51) e&, <) = e-n ?r sin(n.lr<) n = 1,2,3, ... 
is a solution of Eq. (B.3-35) and satisfies the initial and boundary conditions, Eqs. 

If 61 and 62 are the solutions satisfying the linear and homogeneous partial 
differential equation and the boundary conditions, then the linear combination of 

2 2  

(B.3-36)-( B.3-38). 
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the solutions, i.e., ClO, + C202, also satisfies the partial differential equation and 
the boundary conditions. Therefore, the complete solution is 

00 

e = c,, sin( nxc) (B.3-52) 

The unknown coefficients Cn can be determined by using the initial condition. The 
use of Eq. (B.3-36) results in 

n=l 

00 

1 = C, sin(nx0 (B.3-53) 

Since the eigenfunctions are simply orthogonal, multiplication of Eq. (B.3-53) by 
sinmxt and integration from = 0 to = 1 gives 

n=l 

(B.3-54) 

Note that the integral on the right side of Eq. (B.3-54) is zero when m # n and 
nonzero when m = n. Therefore, when m = n the summation drops out and Q. 
(B.3-54) reduces to the form 

Jd' sin(n?rt) d( = C n  sin2(nrJ) d( I' 
Evaluation of the integrals show that 

2 
xn 

cn = - [l - (- l)n] 

The coefficients C,, take the following values depending on the value of n: 

0 n = 2,4,6, ... 

xn 
C n = {  - 4 n = 1,3,5, ... 

Therefore, the solution becomes 

Replacing n by 2k + 1 gives 

(B.3-55) 

(B.3-56) 

(B .3- 57) 

(B.3-58) 

(B .3- 59) 
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B .3.6.2 Similarity solution 

This is also known as the method of combination of variables. Similarity solutions 
are a special class of solutions used to solve parabolic second-order partial differ- 
ential equations when there is no geometric length scale in the problem, i.e., the 
domain must be either semi-infinite or infinite. Besides, the initial condition should 
match the boundary condition at infinity. 

The basis of this method is to combine the two independent variables in a single 
variable so as to transform the second-order partial differential equation into an 
ordinary differential equation. 

Let us consider the following parabolic second-order partial differential equation 
together with the initial and boundary conditions: 

av, a2v, 
at 6 x 2  

- = u -  (B.3-60) 

at t < 0 v, = 0 for all x (B.3-61) 
a t x = O  w,=V f o r t > O  (B.3-62) 
at x = o o  w z = O  f o r t > O  (B.3-63) 

Such a problem represents the velocity profile in a fluid adjacent to a wall suddenly 
set in motion and is also known as Stokes’ first problem. 

The solution is sought in the form 

11-4. = f (rl) V 
where 

7) = /3tmxn 

(B .3-64) 

(B.3-65) 
The term 7 is called the similarity wariable. The proportionality constant p is 
included in J3q. (B.3-65) so as to make q dimensionless. 

The chain rule of differentiation gives 

(B.3-66) 

- p2 2 2m 2(,-1,!!Y + pn(n - 1) t  2 n - 2 d f  (B.3-67) 
dV2 d77 

- n t  x 

Substitution of Eqs. (B.3-66) and (B.3-67) into Eq. (B.3-60) gives 
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or. 

It should be kept in mind that the purpose of introducing the similarity variable 
is to reduce the order of the partial differential equation by one. Therefore, the 
coefficients of d2 f /dq2 and df /dq in Eq. (B.3-69) must depend only on q. This 
can be achieved if 

tx-' a tmzn (B.3-70) 

which implies that 
n = - 2 m  (B.3-71) 

If n = 1, then m = - 1/2 and the similarity variable defined by Eq. (B.3-65) 
becomes 

v=P-J (B.3-72) 

Note that x/& has the units of m/s'I2. Since the kinematic viscosity, v, has 
the units of m2/s, q becomes dimensionless if fl = I/&. It is also convenient to 
introduce a factor 2 in the denominator so that the similarity variable takes the 

2 

form 

Hence, Eq. (B.3-69) becomes 

2 p=- 
2- 

(B .3- 73) 

(B.3-74) 

The boundary conditions associated with Eq. (B.3-74) are 

at q = O  f = 1  (B.3-75) 

at q=oo f = O  (B.3-76) 
The integrating factor for Eq. (B.3-74) is exp(q2). Multiplication of Eq. (B.3-74) 
by the integrating factor yields2 

which implies that 

g ($2 5)  = 0 (B.3-77) 

(B.3-78) 

2The advantage of including the term 2 in the denominator of the similarity variable can be 
seen here. Without it, the result would have been 
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Integration of Eq. (B.3-78) gives 

f = CI 
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(B.3-79) 
J a  

where u is a dummy variable of integration. Application of the boundary condition 
defined by Eq. (B.3-75) gives C2 = 1. On the other hand, the use of the boundary 
condition defined by Q. (B.3-76) gives 

Therefore, the solution becomes 

f = 1 - -  1" e-"' du. = 1 - erf(7) 

where erf(x) is the e m r  function defined by 

Finally, the velocity distribution as a function o f t  and z is given by 

(B.3-80) 

(B.3-81) 

(B.3-82) 

(B.3-83) 
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Appendix C 

Flux Expressions for Mass, 
Momentum, and Energy 

Table C.l Components of the stress tensor for Newtonian fluids in rectangular 
coordinates. 

(A) 

(B) 

.v)] (C) 

rZy = rys = - p  (%+$) (D) 

ryt = r,, = - p  

(GI 
av, av, av, (V 0 v) = - + - + - ax ay a2 
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Table C.2 Components of the stress tensor for Newtonian fluids in cylindrical 
coordinates. 
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Thble C.3 
coordinates. 

Components of the stress tensor for Newtonian fluids in spherical 

T,, = - p  [2- dv, - -(VOV)] 2 
d r 3  

7-4, = Tr$ = - p  

(V OV) (GI 
1 dV$ 

rsinB dd (ve sin 8) + - - l a  1 8  
7 - (r2v,) + r sin 8 - r dr de 
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Table C.4 Flux expressions for energy transport in rectangular coordinates. 

Total 
Flux 

Molecular 
Flux 

Convective 
Flux Constraint 

Table C.5 Flux expressions for energy transport in cylindrical coordinates. 

Total Molecular Convective 
Flux Flux Flux Constraint 
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Table C.6 Flux expressions for energy transport in spherical coordinates. 

Total Molecular Convective 
Flux Flux Flux Constraint 

k a T  
q@=-rsinea None 

7% 
&p = constant 
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Table C.7 Flux expressions for mass transport in rectangular coordinates. 

Molecular Convective Constraint Total 
Flux Flux Flux 
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Table C.8 Flux expressions for mass transport in cylindrical coordinates. 

Total 
Flux 

Molecular 
Flux 

Constraint Convective 
Flux 

None 
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Table C.9 Flux expressions for maSs transport in spherical coordinates. 

Total 
Flux 

Molecular 
Flux 

Convective 
Flux Constraint 

j A e  = - - PDAB - ~ W A  None 
r dB 

DAB jAe = - - - ae 
WAe pAve 

p = constant 

None 



Appendix D 

Physical Properties 

This appendix contains physical properties of some frequently encountered mate- 
rials in the transport of momentum, energy and mass. The reader should refer to 
either Perry’s Chemical Engineers’ Handbook (1997) or CRC Handbook of Chem- 
istry and Physics (2001) for a more extensive list of physical properties. 

Table D.1 contains viscosities of gases and liquids, as taken from Reid et al. 
(1977). Table D.2 contains thermal conductivities of gases, liquids and solids. 
While gas and liquid thermal conductivities are compiled from Reid et al. (1977)’ 
solid thermal conductivity values are taken from Perry’s Chemical Engineers’ Hand- 
book (1997). The values of the diffusion coefficients given in Table D.3 are com- 
piled from Reid et al. (1977)’ Perry’s Chemical Engineers’ Handbook (1997) and 
Geankoplis (1972). 

Table D.4 contains the physical properties of dry air at standard atmospheric 
pressure. The values are taken from Kays and Crawford (1980) who obtained the 
data from the three volumes of Touloukian et al. (1970). The physical properties 
of saturated liquid water, given in Table D.5, are taken from Incropera and DeWitt 
(1996) who adapted the data from Liley (1984). 

A widely used vapor pressure correlation over limited temperature ranges is the 
Antoine equation expressed in the form 

where Psat is in mmHg and T is in degrees Kelvin. The Antoine constants A, B 
and C, given in Table D.6 for various substances, are taken from Reid et al. (1977). 
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a b l e  D.l Viscosities of various substances. 

Substance T p x 104 
K kg/ m. s 

Gases 

273 
373 

303 
373.5 

383 
423 

313 
373 

Ammonia 

Carbon dioxide 

Ethanol 

Sulfur dioxide 

Liquids 

Benzene 
313 
353 

303 
343 

313 
348 

Carbon tetrachloride 

Ethanol 

0.9 
1.31 

1.51 
1.81 

1.11 
1.23 

1.35 
1.63 

4.92 
3.18 

8.56 
5.34 

8.26 
4.65 
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'Pable D.2 Thermal conductivities of various substances. 

Substance 
T k 
K W/m.K 

Gases 

Ammonia 

Carbon dioxide 

Ethanol 

Sulfur dioxide 

Liquids 

Benzene 

Carbon tetrachloride 

Ethanol 

Solids 

Aluminum 

Brick 

Copper 

Glass Fiber 

Steel 

273 
373 

300 
473 

293 
375 

273 

293 
323 

293 

293 
313 

300 

300 

300 

300 

300 

0.0221 
0.0320 

0.0167 
0.0283 

0.0150 
0.0222 

0.0083 

0.148 
0.137 

0.103 

0.165 
0.152 

273 

0.72 

398 

0.036 

45 
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Table D.3 Experimental values of binary diffusion coefficients at 101.325 kPa. 

Substance T DAB 
K m2/ s 

Gases 

Air - C02 

Air - Ethanol 

Air - Naphthalene 

Air - H20 

H2 - Acetone 

N2 - SO2 

Liquids 

NH3 - HzO 

Benzoic acid - HzO 

C02 - H20 

Ethanol - H 2 0  

Solids 

Bi - Pb 

H2 - Nickel 

0 2  - Vdc. Rubber 

317.2 1.77 x 

313 1.45 x 

300 0.62 x 

313 2.88 x 

296 4 . 2 4 ~  

263 1.04 x 

288 1.77 x 

29s 1.21 x 10-9 

298 1.92 x 

283 0.84 x 10-9 

293 1.1 x 

358 1.16 x 

298 0.21 x 
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Table D.4 Properties of air at P = 101.325 kPa. 

T P p x 106 Y x 106 & k x lo3 Pr 
K kg/m3 kg/m.s m2/s kJ/kg.K W/m.K 

100 
150 
200 
250 
263 
273 
275 
280 
283 
285 
288 
290 
293 
295 
298 
300 
303 
305 
308 
310 
313 
315 
320 
323 
325 
330 
333 
343 
350 
353 
363 
373 
400 
450 
500 
550 
600 
650 
700 

3.5985 
2.3673 
1.7690 
1.4119 
1.3421 
1.2930 
1.2836 
1.2607 
1.2473 
1.2385 
1.2256 
1.2172 
1.2047 
1.1966 
1.1845 
1.1766 
1.1650 
1.1573 
1.1460 
1.1386 
1.1277 
1.1206 
1.1031 
1.0928 
1.0861 
1.0696 
1.0600 
1.0291 
1.0085 
1.0000 
0.9724 
0.9463 
0.8825 
0.7844 
0.7060 
0.6418 
0.5883 
0.5431 
0.5043 

7.060 
10.38 
13.36 
16.06 
16.70 
17.20 
17.30 
17.54 
17.69 
17.79 
17.93 
18.03 
18.17 
18.27 
18.41 
18.53 
18.64 
18.74 
18.88 
18.97 
19.11 
19.20 
19.43 
19.57 
19.66 
19.89 
20.02 
20.47 
20.81 
20.91 
21.34 
21.77 
22.94 
24.93 
26.82 
28.60 
30.30 
31.93 
33.49 

1.962 
4.385 
7.552 
11.37 
12.44 
13.30 
13.48 
13.92 
14.18 
14.36 
14.63 
14.81 
15.08 
15.27 
15.54 
15.75 
16.00 
16.19 
16.47 
16.66 
16.95 
17.14 
17.62 
17.91 
18.10 
18.59 
18.89 
19.89 
20.63 
20.91 
21.95 
23.01 
26.00 
31.78 
37.99 
44.56 
51.50 
58.80 
66.41 

1.028 
1.011 
1.006 
1.003 
1.003 
1.004 
1.004 
1.004 
1.004 
1.004 
1.004 
1.004 
1.004 
1.005 
1.005 
1.005 
1.005 
1.005 
1.005 
1.005 
1.005 
1.006 
1.006 
1.006 
1.006 
1.006 
1.007 
1.008 
1.008 
1.008 
1.009 
1.010 
1.013 
1.020 
1.029 
1.039 
1.051 
1.063 
1.075 

9.220 
13.75 
18.10 
22.26 
23.28 
24.07 
24.26 
24.63 
24.86 
25.00 
25.22 
25.37 
25.63 
25.74 
25.96 
26.14 
26.37 
26.48 
26.70 
26.85 
27.09 
27.22 
27.58 
27.80 
27.95 
28.32 
28.51 
29.21 
29.70 
29.89 
30.58 
31.26 
33.05 
36.33 
39.51 
42.60 
45.60 
48.40 
51.30 

0.787 
0.763 
0.743 
0.724 
0.720 
0.717 
0.716 
0.715 
0.714 
0.714 
0.714 
0.714 
0.712 
0.713 
0.712 
0.711 
0.710 
0.711 
0.711 
0.710 
0.709 
0.709 
0.709 
0.708 
0.708 
0.707 
0.707 
0.706 
0.706 
0.705 
0.704 
0.703 
0.703 
0.700 
0.699 
0.698 
0.699 
0.701 
0.702 



580 APPENDIX D. PHYSICAL PROPERTIES 

Table D.5 Properties of saturated liquid water. 

T Psat x lo3 eP p x  lo6 k x lo3 Pr 

273 0.00611 1.000 2502 4.217 1750 569 12.99 
275 0.00697 
280 0.00990 
285 0.01387 
288 0.01703 
290 0.01917 
293 0.02336 
295 0.02617 
298 0.03165 
300 0.03531 
303 0.04240 
305 0.04712 
308 0.05620 
310 0.06221 
313 0.07373 
315 0.08132 
320 0.1053 
325 0.1351 
330 0.1719 
335 0.2167 
340 0.2713 
345 0.3372 
350 0.4163 
355 0.5100 
360 0.6209 
365 0.7514 
370 0.9040 
373 1.0133 
375 1.0815 
380 1.2869 
385 1.5233 
390 1.794 
400 2.455 

1.000 
1.000 
1.000 
1.001 
1.001 
1.001 
1.002 
1.003 
1.003 
1.004 
1.005 
1.006 
1.007 
1.008 
1.009 
1.011 
1.013 
1.016 
1.018 
1.021 
1.024 
1.027 
1.030 
1.034 
1.038 
1.041 
1.044 
1.045 
1.049 
1.053 
1.058 
1.067 

2497 4.211 
2485 4.198 
2473 4.189 
2466 4.186 
2461 4.184 
2454 4.182 
2449 4.181 
2442 4.180 
2438 4.179 
2430 4.178 
2426 4.178 
2418 4.178 
2414 4.178 
2407 4.179 
2402 4.179 
2390 4.180 
2378 4.182 
2366 4.184 
2354 4.186 
2342 4.188 
2329 4.191 
2317 4.195 
2304 4.199 
2291 4.203 
2278 4.209 
2265 4.214 
2257 4.217 
2252 4.220 
2239 4.226 
2225 4.232 
2212 4.239 
2183 4.256 

1652 
1422 
1225 
1131 
1080 
1001 
959 
892 
855 
800 
769 
721 
695 
654 
631 
577 
528 
489 
453 
420 
389 
365 
343 
324 
306 
289 
279 
274 
260 
248 
237 
217 

574 
582 
590 
595 
598 
603 
606 
610 
613 
618 
620 
625 
628 
632 
634 
640 
645 
650 
656 
660 
664 
668 
671 
674 
677 
679 
680 
681 
683 
685 
686 
688 

12.22 
10.26 
8.70 
7.95 
7.56 
6.94 
6.62 
6.11 
5.83 
5.41 
5.20 
4.82 
4.62 
4.32 
4.16 
3.77 
3.42 
3.15 
2.88 
2.66 
2.45 
2.29 
2.14 
2.02 
1.91 
1.80 
1.76 
1.70 
1.61 
1.53 
1.47 
1.34 

T = K; Pat = bar; V = m3/ kg; 
p =  kg/m.s; I C =  W/m.K 

= kJ/ kg; bP = kJ/ kg. K; 
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Table D.6 Antoine equation constants. 

Substance Range (K) A B C 
Acetone 241 - 350 
Benzene 280 - 377 
Benzoic acid 405 - 560 
Chloroform 260 - 370 
Ethanol 270 - 369 
Methanol 257 - 364 
NaDhthalene 360 - 525 

16.6513 
15.9008 
17.1634 
15.9732 
18.9119 
18.5875 
16.1426 

2940.46 
2788.51 
4190.70 
2696.79 
3803.98 
3626.55 
3992.01 

- 35.93 
- 52.36 
- 125.2 
- 46.16 
- 41.68 
- 34.29 
- 71.29 
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Appendix E 

Constants and 
Conversion Factors 

PHYSICAL CONSTANTS 

Gas constant (R) 

= 82.05 cm3. atm/ mol. K 
= 0.08205 m3. atm/ kmol. K 
= 1.987 cal/ mol. K 
= 8.314 J/ mol. K 
= 8.314 x 10- kPa. m3/ mol. K 
= 8.314 x bar. m3/ mol. K 
= 8.314 x bar. m3/kmol. K 
= 8.314 x MPa. m3/ mol. K 

= 9.8067 m/ s2 
= 32.174Oft/s2 Acceleration of gravity (9) 

= 5.67051 x W/m2. K4 
= 0.1713 x Btu/ h. ft2..R4 Stefan-Boltzmann costant (a) 

583 
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CONVERSION FACTORS 

Density 

Diffusivity 
(Kinematic, Mass, Thermal) 

Energy, Heat, Work 

Heat capacity 

Force 

Heat flux 

Heat transfer coefficient 

Length 

Mass 

Mass flow rate 

Mass flux 

Mass transfer coefficient 

Power 

Pressure 

Temperature 

1 kg/ m3 = 10- g/ cm3 = 10- kg/L 
1 kg/ m3 = 0.06243 lb/ ft3 

1 m2/ s = io4 cm2/ s 
1 m2/ s = 10.7639 ft2/ s = 3.875 x lo4 ft2/ h 

1 J = 1 W. s = lN.m = 10-3kJ 
1 cal = 4.184 J 
1 kJ = 2.7778 x 

1 kJ/ kg. K = 0.239 tal/ g. K 
1 kJ/ kg. K = 0.239 Btu/ Ib.OR 

1 N = 1 kg. m/ s2 = lo5 g. cm/ s2 (dyne) 
1 N = 0.2248 lbf = 7.23275 lb. ft/s2 (poundals) 

1W/m2 = 1J/s.m2 
1 W/ m2 = 0.31709 Btu/ h. ft2 

1W/m2.K = 1 J/s.m2.K 
1W/m2.K = 2.39 x 10-5cal/s.cm2.K 
1 W/m2. K = 0.1761 Btu/ h. ft2."R 

1 m  = 1OOcm = 106,vm 
1 m = 39.370 in = 3.2808 ft  

1 kg = lOOOg 
1 kg = 2.2046 lb 

1 kg/ s = 2.2046 Ib/ s = 7936.6 lb/ h 

1 kg/ s. m2 = 0.2048 lb/ s. ft2 = 737.3 lb/ h. ft2 

1 m/ s = 3.2808 ft/  s 

1 W = 1 J/ s = lov3 kW 
1 kW = 3412.2 Btu/ h = 1.341 hp 

1 P a =  1N/m2 
1 kPa = lo3 Pa = 
1 atm = 101.325 kPa = 1.01325 bar = 760 mmHg 
1 atm = 14.696 lbf/ in2 

1 K = 1.8 OR 
T( OF) = 1.8T( "C) + 32 

kW. h = 0.94783Btu 

MPa 
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1 W/m. K = 1 J/s.  m. K = 2.39 x cal/s. cm. K 
Conductivity 1 W/ m. K = 0.5778 Btu/ h. fi. OF 

Velocity lm/s=3.60km/h 
1 m/ s = 3.2808 ft/ s = 2.237 mi/ h 

lkg/m.s = lPa . s  
1 P (poise) = 1 g/ cm. s 
1 kg/m.s = 10 P = lo3 CP 
1 P (poise) = 241.9 lb/ ft. h 

Viscosity 

Volume 
i m 3  = 1000 L 
1 m3 = 6.1022 x lo4 in3 = 35.313ft3 = 264.17gal 

1 m3/s = 1000 L/ s 
1 m3/ s = 35.313 ft3/ s = 1.27127 x lo5 ft3/ h Volumetric flow rate 



Index 

Analogy 
between diffusivities, 25 
between transfer coefficients, 54 
Chilton-Colburn analogy, 57 
Reynolds analogy, 56 

axial laminar flow, 337 
flow with inner cylinder moving 

Annulus 

axially, 241 
Antoine equation, 575 
Archimedes number, 74 
Area averaging 

diffusion and reaction in catalyst, 
297 

fin, 278 
forced convection heat transfer, 

362 
forced convection mass transfer, 

386 
unsteady flow in tube, 479 

Arrhenius rate constant, definition, 146 
Average concentration 

area, 297 
bulk or mixing-cup, 66 
film, 66 

Area, 278 
bulk or mixing-cup, 66 
film, 66 

Average velocity 
between parallel plates, 329 
in annular Couette flow, 243 
in annulus, 339 
in falling film, 333 
in plane Couette flow, 241 

Average temperature 

in tube flow, 336 

Biot number (heat transfer), 184 
Biot number (mass transfer), 184 
Brinkman number, 373 
Bulk concentration, 66 
Bulk temperature, 66 

Chemical reaction 
autocatalytic, 146 
Effectiveness factor for, 300 
heterogeneous, 295 
homogeneous, 295 

Chilton-Colburn analogy, 57 
Circular tube, see Tube 
Coefficient of volume expansion, 158 
Composite walls, heat conduction in, 

Conduction, see Heat conduction 
Conductivity, thermal, see Thermal 

Conservation of chemical species 

252 

conductivity 

steady-state, 150 
unsteady-state, 185 

steady-state, 156 
unsteady-state, 198 

Conservation of mass 
steady-state, 152 
unsteady-state, 186 

Conservation of momentum, 194 
Constitutive equation, 2 
Conversion factors, 584 
Couette flow 

Conservation of energy 

between parallel plates, 238 
heat transfer, 283 

586 
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in concentric annulus, 241 
unsteady-state, 429 
viscous heating, 372 

Critical insulation thickness 
cylinder, 267 
sphere, 274 

Cylindrical coordinates, 491 

DamkCIhler number, 299 
Determinants, 525 

Cramer’s rule, 529 
properties, 526 

Differential equations, ordinary 
Bernoulli equation, 536 
Bessel’s equation, 539 
exact equation, 532 
homogeneous equation, 534 
linear equation, 535 
numerical solution, 544 
second-order, 537 
separable equation, 532 

classification, 552 
solution by separation of variables, 

solution by similarity analysis, 563 

Differential equations, partial 

559 

Differentiation of experimental data, 
495 

DouglassAvakian method, 496 
Whitaker-Pigford method, 496 

equimolar counterdiffusion, 285 
in hollow cylinder, 291 
in hollow sphere, 293 
in slab, 286 
into falling film from gas phase, 

398 
through stagnant gas, 302 
through stagnant liquid, 311 
unsteady-state, 458 
with heterogeneous reaction, 295, 

with homogeneous reaction, 377, 

Diffusion 

315 

381 

Diffusion coefficient 
definition, 21 
of various substances, 578 

Double pipe heat exchanger, 418 
Drag coefficient, see Friction factor 
Drag force 

between parallel plates, 329 
definition, 42 
in annular Couette flow, 243 
in annulus, 339 
in tube flow, 337 

Effectiveness factor, see Chemical re- 

Electrical analogy 
diffusion, 289 
heat conduction, 250, 262, 272 

action 

Energy balance, see Conservation of 
energy 

Energy equation 
steady-state, 158 

Enthalpy, 158 
Equilibrium 

definition, 5 
thermal, 289 

Error function, 37 
Evaporation of droplet, 308 
Evaporative cooling, 164 
Extent of reaction 

intensive, 142 
molar, 140 

Falling film 
diffusion into from gas phase, 398 
laminar flow, 330 

Fanning friction factor, see Friction 
factor 

Fick’s first law, 20 
Film concentration, 66 
Film temperature, 66 
Fin 

efficiency, 281 
heat conduction, 276 

Flux 
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convective, 26 
definition, 5 
interphase, 54 
molecular, 25 
of energy, 570 
of mass, 572 
of momentum, 567 

Forced convection heat transfer, 360 
constant wall heat flux, 365 
constant wall temperature, 363 

Forced convection mass transfer, 384 
constant wall concentration, 387 
constant wall mass flux, 389 

Fourier number, 438 
Fourier’s law, 18 
Friction factor 

definition, 42 
for flat plate, 69 
for flow across a cylinder, 87 
for packed beds, 114 
for sphere, 75 
for tube, 95 

390 
Fully developed concentration profile, 

Gamma function, 30 
Gas absorption into droplet 

with chemical reaction, 485 
without reaction, 464 

Heat conduction 
in cooling fin, 276 
in hollow cylinder with genera- 

tion, 347 
in hollow cylinder without gen- 

eration, 260 
in hollow sphere with generation, 

354 
in hollow sphere without genera- 

tion, 269 
in slab with generation, 342 
in slab without generation, 245 
in solid cylinder with generation, 

351 

in solid sphere with generation, 

through composite walls, 252 
unsteady-state with generation, 

unsteady-state without generation, 

358 

480 

436,446, 450 
Heat transfer coefficient 

definition, 46 
for flat plate, 69 
for flow across a cylinder, 89 
for packed beds, 117 
for sphere, 82 
for tube, 100 
overall, 265 

Heat transfer correlations, see Heat 
transfer coefficient 

Heterogeneous reaction, see Chemi- 
cal reaction 

Homogeneous reaction, see Chemical 
reaction 

Hydraulic equivalent diameter, 110 

Integration, 512 
Gauss-Hermite quadrature, 522 
GaussLaguerre quadrature, 520 
Gauss-Legendre quadrature, 518 
Simpson’s rule, 516 
trapezoidal rule, 515 

j-factors, 57 

Law of combining proportions, 140 
Leibnitz formula for differentiating an 

Lewis number, 26 
Log-mean concentration difference, 108 
Log-mean temperature difference, 102 

Mass average velocity, 27, 302 
Mass balance, see Conservation of mass 
Mass transfer coefficient 

definition, 50 
for flat plate, 69 
for flow across a cylinder, 92 

integral, 495 
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for packed beds, 118 
for sphere, 84 
for tube, 107 

Mass Transfer correlations, see Mass 
transfer coefficient 

Matrices 
algebraic operations, 523 
inverse, 527 
singular, 527 
skew-symmetric, 527 
symmetric, 527 

Mean value theorem, 493 
Method of Stodola and Vianello, 557 
Modified pressure, 135 
Molar average velocity, 27, 312 
Momentum diffisivity, see Viscosity, 

kinematic 
Momentum generation, 133 

Newton’s law 
of cooling, 46 
of viscosity, 15 

Newton’s second law, 133 
Newton-Raphson method, 510 
Newtonian fluid, 16 
Nusselt number (heat transfer), 55 

thermally developed flow, 368 
Nusselt number (mass transfer), see 

Sherwood number 

Overall heat transfer coefficient, see 
Heat transfer coefficient 

Parallel plates 
Couette flow, 238 
laminar flow, 326 
relation to annulus, 244, 340 

Partition coefficient, 289 
Peclet number, 29 
Physical constants, 583 
Plug flow reactor, 406 
Prandtl number, 25 
Pseudo-steady-state, 182 

Quasi-steady-state, see Pseudo-steady- 
state 

Rate equation, 1 
Rate of reaction 

definition, 144 
Regression and correlation, 500 

correlation coefficient, 505 
method of least squares, 501 

Reynolds analogy, 56 
Reynolds number 

for flat plate, 45 
for sphere, 74 
physical significance, 341 

cubic equation, 507 
Newton-Raphson method, 510 
quadratic equation, 506 
secant method, 510 

Root finding, 506 

RungeKutta method, 544 

Schmidt number, 26 
Secant method, 510 
Sherwood number, 55 

fully developed concentration pro- 
file, 392 

161 
Simultaneous heat and mass transfer, 

Spherical coordinates, 491 
Steady-state, definition, 3 
Stefan diffusion tube, 304 
Sturm-Liouville problem, 556 
Superficial velocity, 114 

Tank reactor 
steady-state energy balance, 168 
unsteady-state energy balance, 208 

Thermal conductivity 
definition, 19 
of various substances, 577 

Thermal diffusivity, 25 
Thermally developed flow, 366 
Thiele modulus, 299 
Tube 

laminar flow, 334 
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laminar unsteady flow, 473 

Uniform, definition, 5 

Viscosity 
definition, 16 
kinematic, 25 
of various substances, 576 

Viscous heating, 372 
Volume average velocity, 27, 313 
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