Visualization
of

Categorical Data

Edited by
Jorg Blasius
Michael Greenacre




Visualization
of Categorical Data




This Page Intentionally Left Blank



Visualization
of Categorical Data

Edited by

JORG BLASIUS

Zentralarchiv fiir Empirische Sozialforschung
University of Cologne

Cologne, Germany

MICHAEL GREENACRE
Departament d’Economia i Empresa
Pompeu Fabra University
Barcelona, Spain

ACADEMIC PRESS

San Diego London Boston
New York Sydney Tokyo Toronto



Find Us on the Web! http://www.apnet.com
This book is printed on acid-free paper.
Copyright © 1998 by Academic Press.

All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

The cover design is an inverted part of a time series of weekly amounts of rye
sold in Cologne, 1542-1648, showing a long-term trend line. The time series is
reminiscent of the Cologne cathedral.

Academic Press
525 B St. Suite 1900, San Diego, CA 92101-4495, USA
1300 Boylston Street, Chestnut Hill, MA 02167, USA

Academic Press Limited
24-28 Oval Road, London NW1 7DX, UK
http:/ /www.hbuk.co.uk/ap/

Library of Congress Cataloging-in-Publication Data

Visualization of categorical data / [edited by] Jorg Blasius, Michael
Greenacre.
p- om
Includes bibliographical references and index.
ISBN 0-12-299045-5 (alk. paper)
1. Multivariate analysis—-Graphic methods. 1. Blasius, Jorg,
1957- . 1L Greenacre, Michael L.
QA278.V57 1997
001.4'226--dc21
97-35782
CIP

Printed in the United States of America
97 98 99 00 EB 987654321



For Clifford C. Clogg
In Memoriam



This Page Intentionally Left Blank



Contents

Preface

1

Here’s Looking at Multivariables
Jan de Leeuw

Part1 Graphics for Visualization

2

Conceptual Models for Visualizing Contingency Table Data
Michael Friendly

Bertin’s Graphics and Multidimensional Data Analysis
Jean-Hugues Chauchat and Alban Risson

The Use of Visualization in the Examination of Categorical
Event Histories
Brian Francis, Mark Fuller, and John Pritchard

Generalized Impurity Measures and Data Diagnostics in Decision Trees
Tomas Aluja-Banet and Eduard Nafria

Obstetricians’ Attitudes on Perinatal Risk: The Role of Quantitative and
Conceptual Scaling Procedures
Ulrich Frick, Jiirgen Rehm, Karl Erich Wolff, and Michael Laschat

Comparison of Visualizations in Formal Concept Analysis and
Correspondence Analysis
Karl Erich Wolff and Siegfried Gabler

The Z-Plot: A Graphical Procedure for Contingency Tables with an
Ordered Response Variable
Vartan Choulakian and Jacques Allard

vil

X1

13

17

37

47

59

71

85

99



viii Contents

Part2 Correspondence Analysis 107

9  Using Visualization Techniques to Explore Bulgarian Politics 113
Ivailo Partchev

10 Visualization of Agenda Building Processes by Correspondence
Analysis 123
Bernd Martens and Jorg Kastl

11  Visualizations of Textual Data 133
Ludovic Lebart

12 Visualization of Open Questions: French Study of Pupils’Attitudes
to Mathematics 149
Monica Bécue Bertaut

13 The Cloud of Candidates. Exploring the Political Field 159
Fernand Fehlen

14 Normative Integration of the Avant-garde? Traditionalism in the
Art Worlds of Vienna, Hamburg, and Paris 171
Christian Tarnai and Ulf Wuggenig

15 Graphing Is Believing: Interpretable Graphs for Dual Scaling 185
Shizuhiko Nishisato

16 Interpreting Axes in Multiple Correspondence Analysis: Method of the
Contributions of Points and Deviations 197
Brigitte Le Roux and Henry Rouanet

17 Diagnostics for Joint Displays in Correspondence Analysis 221
Michael Greenacre

18 Using Multiple Correspondence Analysis to Distinguish between
Substantive and Nonsubstantive Responses 239
Victor Thiessen and Jorg Blasius

19  The Case of the French Cantons: An Application of Three-Way
Correspondence Analysis 253
André Carlier and Pieter M. Kroonenberg

20 Visual Display of Interaction in Multiway Contingency Tables
by Use of Homogeneity Analysis: the 2 X 2 X 2 X 2 Case 271
Jacqueline J. Meulman and Willem J. Heiser

21 Graphical Displays in Nonsymmetrical Correspondence Analysis 297
Simona Balbi



Contents

22

Ternary Classification Trees: A Factorial Approach
Roberta Siciliano and Francesco Mola

Part3 Multidimensional Scaling and Biplot

23

24

25

26

27

28

Correspondence Analysis as a Multidimensional Scaling Technique for

Nonfrequency Similarity Matrices
A. Kimball Romney, Carmella C. Moore, and Timothy J. Brazill

Regional Interpretations in Multidimensional Scaling
Ingwer Borg and Patrick J.F. Groenen

Visualizing Categorical Data with Related Metric Scaling
Carles M. Cuadras and Josep Fortiana

Contrasting the Electorates of Eight Political Parties: A Visual
Presentation Using the Biplot

Magda Vuylsteke-Wauters, Jaak Billiet, Hans de Witte,

and Frans Symons

Use of Biplots to Diagnose Independence Models in Three-Way
Contingency Tables

K. Ruben Gabriel, M. Purificacion Galindo,

and José Luis Vicente-Villardén

Prediction Regions for Categorical Variables
John C. Gower and Simon A. Harding

Part4 Visualization and Modeling

29

30

31

32

Analysis of Contingency Tables Using Graphical Displays Based
on the Mixture Index of Fit
Clifford C. Clogg, Tamds Rudas, and Stephen Matthews

Visualization in Ideal Point Discriminant Analysis
Yoshio Takane

Modeling Time-Dependent Preferences: Drifts in Ideal Points
Ulf Bockenholt

Correspondence Analysis Used Complementary to Latent Class
Analysis in Comparative Social Research
Allan L. McCutcheon

ix

311

325

329

347

365

377

391

405

421

425

441

461

477



X Contents

33 Graphical Display of Latent Budget Analysis and Latent
Class Analysis, with Special Reference to Correspondence Analysis 489
L. Andries van der Ark and Peter G. M. van der Heijden

34 Using New General Ordinal Logit Displays to Visualize the Effects in

Categorical Outcome Data 509
Jay Magidson

35 Log-Bilinear Biplots in Action 527
Antoine de Falguerolles

References 541

About the Authors 575

Index 587



Preface

The story starts in Cologne with the conference on Recent Developments and Ap-
plications of Correspondence Analysis and the subsequent publication of the book
Correspondence Analysis in the Social Sciences by Academic Press, London, in
1994. This book contained 16 chapters written by a total of 24 authors and edited by
ourselves.

The idea was to bring together social science researchers and statisticians in a
collaborative project to bridge the gap between theory and practice in social science
methodology. We are happy to report that the exercise proved to be so successful
that we acquired enough energy to try it once again. This time, however, the subject
would be put into a wider context, defined by three keywords: data, categorical, and
visualization.

The keyword data stresses the central importance of application, the need for
methodology to be illustrated in a particular data context and not isolated as theory
for theory’s sake. The method is judged essentially by its applicability to data.

The data context is categorical, that s, classified, grouped, categorized, or ranked.
Wherever observations can be put into boxes and counted, this is what we are inter-
ested in. This puts us into the realm of social science observation without the need to
specify it.

The context of the categorical data is visualization. We are interested in explor-
ing categorical data through graphical displays, be they maps, trees, custom-designed
computer graphics, or geometric shapes. We are also interested in models for categor-
ical data and especially in the potential to use visual tools to aid in the interpretation
of models and the modeling process. Hence the title: Visualization of Categorical
Data.

In 1995 the Zentralarchiv fiir Empirische Sozialforschung (Central Archive for
Empirical Social Research) in Cologne again hosted an international conference, this
time on the visualization of categorical data. The response was double that of the
previous conference and 21 countries were represented—clearly the topic was of
wide interest. Selected papers as well as specially invited contributions, totaling 35
chapters by 63 authors, have been refereed, edited, and—to be sure—categorized to
bring to you a state-of-the-art collection on how to achieve visual summaries and
presentations of categorical data. In our editing we have tried to reduce the material
as much as possible to accommodate as many contributions as possible. We have

xi
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also introduced cross-referencing between the chapters, tried to unify the notation as
much as possible, and established a common reference list and index. We hope that
the book forms a coherent whole and that the collection proves worthy of the patient
and long-suffering work of all the authors who have contributed to it.

As a prologue we are pleased to have a “keynote chapter” written by Jan de
Leeuw, titled “Here’s Looking at Multivariables,” with his personal view on data
visualization. After this initial chapter, we have divided the book into four parts:
Graphics for Visualization, Correspondence Analysis, Multidimensional Scaling and
Biplot, and finally Visualization and Modeling.

The first part concentrates on a variety of graphical methods, ranging from very
simple graphical displays to sophisticated computer graphics. This part will give you
a flavor of the wide variety of visualization approaches inspired by a diversity of data
contexts, such as contingency tables, questionnaire responses, and event histories.

The second part deals with correspondence analysis, some “classic” applications
to social science data, and some interesting new developments, especially in the inter-
pretation of correspondence analysis of multivariate data. This part can be considered
the continuation of the story started in the 1994 book mentioned earlier.

The third part is devoted to multidimensional scaling and biplot methods, which
visualize data in the form of distances and scalar products, respectively. Here there
are various chapters dealing with issues of interpretation, diagnosis of structure,
applications, and new methods.

Finally, the fourth part aims to demonstrate the visualization possibilities in
categorical data modeling such as latent class analysis, ideal point discriminant
analysis, latent budget analysis, and general log-bilinear models. In many cases, the
complementary nature of the modeling and exploratory visualization approaches is
illustrated.

Many of the methods in this book are associated with what are known as “ex-
ploratory” methods as opposed to “confirmatory” methods. We believe that both these
approaches have a place in our understanding of social science phenomena and that
visualization techniques have an important role to play in every approach to data
analysis.

Exploratory methods are often criticized as having no “traditional” social science
hypothesis such as “income is dependent on sex and education.” Researchers working
with correspondence analysis or other exploratory methods often have no strong
conclusions such as “females earn significantly less money than males” or “there is a
significant relationship between education and social status.” But solutions like these
are usually not the aim of the researchers who prefer exploratory techniques; they
would very often argue that they like to describe the structure of the data only and
that they have no need for modeling the relationships between the variables.

A typical research question for these researchers would be to describe movements
in the “social space.” In the theoretical part of a work one could express assumptions
about the closeness of variables to each other in this social space. In the empirical part
of such a work, using correspondence analysis, for example, one could see whether
or not the variables that should be close to each other belong to a common cluster.
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Visualization can considerably enhance the modeling process. Before running a
bivariate regression analysis, for example, a simple scatterplot between the variables
would tell us whether the relation between both variables is linear. On the basis
of this solution, one could decide whether a linear model is appropriate or what
other relationship holds. The same concept holds for categorical data—before the
modeling process starts, visualization techniques will help to understand the structure
of the data, which categories can be combined without affecting the analysis, for
example, or what interactions are present. Visualization can also be used to give
further information after the data are modeled—for example, to search for possible
structure in the residuals from the model or to investigate which additional effects
have to be considered in the model.

A novel aspect of this book is the section with color illustrations. We felt that it
was necessary to see some figures in their original colors rather than shades of gray.
Color adds a tremendous benefit to the potential of any visualization, as is clearly
demonstrated in these examples. We feel that use of color should be encouraged as
an essential component of visualization methods.

‘We wish to thank all our authors for participating in this project and for repeatedly
revising their papers with patience, dedication, and timeliness. We would also like
to thank all the authors who helped to review their peers’ contributions. In addition,
there were many other colleagues who assisted us in the anonymous reviewing pro-
cess: many thanks to Hans-Jiirgen AndreB (University of Bielefeld, Germany), Phipps
Arabie (Rutgers University, New Jersey), Gerhard Arminger (University of Wupper-
tal, Germany), Johann Bacher (University of Linz, Austria), Hans Hermann Bock
(University of Aachen, Germany), Jiirgen Friedrichs (University of Cologne), Hel-
mut Giegler (University of Augsburg, Germany), Wermer Georg (University of Kon-
stanz, Germany), Jacques Hagenaars (Tilburg University, The Netherlands), Wolf-
gang Jagodzinski (Zentralarchiv fiir Empirische Sozialforschung, Cologne), Walter
Kristof (University of Hamburg), Ulrich Kockelkorn (University of Berlin), Stef-
fen Kiihnel (University of Gielen, Germany), Warren Kuhfeld (SAS Institute, Cary,
North Carolina), Rolf Langeheine (Institute for Pedagogics in the Natural Sciences,
Kiel, Germany), Herbert Matschinger (University of Leipzig, Germany), Ekkehard
Mochmann (Zentralarchiv fiir Empirische Sozialforschung, Cologne), Jost Reinecke
(University of Miinster, Germany), Gtz Rohwer (Max Planck Institute for Edu-
cational Research, Berlin), JoZe Rovan (University of Ljubljana, Slovenia), Cajo
ter Braak (University of Wageningen, The Netherlands), Karl van Meter (LASMAS/
IRESCO-CNRS, Paris), Wijbrandt van Schuur (University of Groningen, The Nether-
lands) and Ken Warwick (Ken Warwick Associates, New York).

This project could never have been undertaken without the continual encourage-
ment and financial support of the Zentralarchiv in Cologne, and we would like to
thank the executive manager, Ekkehard Mochmann, for his and his organization’s co-
operation in every aspect of the venture. We thank the secretaries at the Zentralarchiv,
Friederika Priemer and Angelika Ruf, as well as Hanni Busse and Bernd Reutershan
from the administrative staff, and our students Udo Dillmann, Gabriele Franzmann,
Ulla Liser, and Rainer Mauer for their assistance. We would like to make a special
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mention of Friederika Priemer’s invaluable contribution in editing the reference list
and the section “About the Authors,” as well as all her proofreading and handling an
endless stream of inquiries and problems on our behalf.

To finalize the manuscript, several trips were made between Barcelona and
Cologne. For generously supporting Michael’s travel to Cologne and Jorg’s to
Barcelona, we thank the Zentralarchiv fiir Empirische Sozialforschung as well as
the Universitat Pompeu Fabra and appreciate partial support from Spanish DGICYT
grant PB93-0403. The Christmas “break” was spent working in the German spa town
of Bad Orb, with walks in temperatures of —15°C to clear the mind for another three-
hour session working on a chapter. And we both agree that it is worth mentioning the
small 48-seater Lufthansa jet operating between Barcelona and Cologne, with visits
to the flight cabin to witness spectacular views of the Alps and excellent meals and
personal service.

Our final thanks go to Karen Wachs, Julie Champagne, and all the Academic
Press staff involved in this project.

Itis with sadness that we have learned of the recent death of one of the contributors
to this book, Frans Symons, of Leuven University in Belgium. A few lines about
Frans’ work, written by his friend and colleague Jaak Billiet, have been included in
the “About the Authors” section at the end of the book.

This book is dedicated to Cliff Clogg, who was to have been one of the keynote
speakers at our conference but who died unexpectedly ten days before the meeting
began. Cliff was one of the most prominent researchers in both statistics and soci-
ology and embodied the spirit of this project in bridging the gap between these two
disciplines. His contribution to this book, finished by his friend Tamas Rudas, is one
of the last he worked on. For this reason and as a tribute to his work in the areas of
statistics and sociology, we and all the authors join together in dedicating this book
to his memory as a colleague and friend.

Jorg Blasius and Michael Greenacre
Cologne and Barcelona
October 1997



Chapter 1

Here’s Looking
at Multivariables

Jan de Leeuw

1 Introduction

I don’t really understand what “visualization of categorical data” is about. This is a
problem, especially when one is supposed to write the opening chapter for a book on
this topic. One way to solve this problem is to look at the other chapters in the book.
This empirical, data analysis—oriented, approach is based on the idea that the union
of all published chapters defines the topic of the book.

For this book, the approach of looking at the titles of the chapters produced
somewhat disappointing results. Whatever “visualization of categorical data” is, it
consists of about 50% correspondence analysis, about 10% multidimensional scal-
ing, about 10% cluster analysis, about 20% contingency table techniques, and the
remaining 10% other ingredients. It is unclear from the titles of the chapters what
they have in common. When writing this introduction I assumed, and I have since
then verified, that every author in this book shows at least one graph or one plot. But
this is a very weak common component. Not enough to base an opening chapter on.

Thus the empirical approach fails. Alternatively, I can try to define my way out
of the problem. This is intellectually a more satisfying approach.

We start with data, more precisely categorical data, and these data are analyzed
by using a (data-analytical or statistical) technique.

Such a technique produces an image or a smooth or a representation of the data.
The title of the book indicates that we are particularly interested in visual smooths or
representations of the data.
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Thus our course is clear; we have to define data, technique, and representation
and then single out categorical data and visual representations. After that exercise,
we can go back and see if and how the contents of the conference fit in.

This paper can be seen as the next member of the sequence of de Leeuw (1984,
1988, 1990, 1994). The general approach, in an early form, can also be found in the
first chapter of Gifi (1990).

2 Data

The data D are an element of the data space D. The design of the experiment, where
both “design” and “experiment” are used in a very general sense, defines the data
space.

If you distribute a particular questionnaire to 1000 persons and your questionnaire
has 50 items with 7 alternatives each, then the data space has 10007 possible
elements, and if you allow for missing data and nonresponse, it has even more.
In general, these data spaces, which are the sets of all possible outcomes of our
experiment, tend to be very large.

The same thing is true if you make measurements in a particular physical experi-
ment, or if you plant a number of seeds in a number of pots, or if you watch a number
of infants grow up. Even with a limited number of variables, the possible number of
outcomes is very, very large.

In all these cases the data space is defined before the observations are actually
made, and the possible outcomes of the experiment are known beforehand as well. Is
it possible to be surprised? I guess it is, but that is a flaw in the design.

2.1 Coding

We do not find data on the street. Data are not sense impressions, which are simply
recorded. Data are coded, by which we mean that they are entered into a preformatted
database. This is not necessarily a computerized database; it could simply be the
codebook given to interviewers or to data-entry persons, or it could be an experimental
protocol.

The important notion is that data are already categorized and cleaned and that the
protocol tells us how to reduce data from a data space of quadri-zillions of elements
to one of trillions of elements. We know, for instance, that we can ignore the look on
the face of the person filling in the questionnaire, and the doodles on the student’s
examination forms are not counted toward the grade.

Another key point is that usually the greatest amount of data reduction goes on in
this coding stage. The really important scientific decisions, and the places where the
prior knowledge has the greatest impact, are not necessarily the choice between the
normal distribution and Student’s ¢ or between frequentist and Bayesian procedures.
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2.2 Example

This could perhaps be illustrated by an actual example. One of the clients of University
of California Los Angeles (UCLA) Statistical Consulting is the California Department
of Corrections. There is a gigantic project set up to study whether the classification of
prisoners into four security categories actually reduces within-prison violence. The
data for answering this study are the prison careers of all individuals who were in
one of the state prisons in California in the last 10 years. It will not surprise you to
hear that these are hundreds of thousands of individuals. Many of them have been
in and out of prison for 20 or more years. They have been shifted between security
levels many times, often on the basis of forms that are filled in and that have objective
cutoffs, but often also on the basis of “administrative overrides” of these objective
results.

It is generally known that propensity to violence in prison is related to age,
to previous prison career, and to gang membership. Clearly, there are potentially
thousands of variables that could be coded because they might be relevant. Wardens
and other prison personnel observe prisoners and make statements and judgments
about their behavior and their likelihood to commit violent acts while in prison.
Presumably, many of these judgments and observations change over time for a given
prisoner and maybe even for a given prison guard.

The observations and classifications of the prison personnel, however, are not data
and not variables. They become data as soon as they are organized and standardized,
as soon as variables are selected and it is decided that comparable information should
be collected on each prisoner, over time, over changing security levels, and perhaps
over changing institutions. It is decided that a study will be done, a database will be
constructed, and the integrity and completeness of the database become so important
that observations in different institutions and time periods by different observers on
the same individual are actually coded uniformly and combined. Without reducing
the chaos of impressions and judgments to a uniform standard and format, there really
are no data.

2.3 Categorical Data

Classically, data are called categorical when the data space is discrete. I think it
is useful to repeat here that all data are categorical. As soon as we have set the
precision of our measurements, the grid on which we measure, and the mesh of our
classifications, then we have defined a discrete and finite data space.

Statistics has been dominated by mathematics for such a long time that some
people have begun to act as if “continuous” data is the rule. Continuous data is a
contradiction. Continuity is always part of the mathematics, that is, of the model
for the data. The question whether continuity “really” occurs in nature is clearly
a metaphysical one, which need not concern us here. We merely emphasize that
continuity is used mostly to simplify computations, in the same way as the normal
distribution was first used to simplify binomial calculations.



4 Chapter 1. Here's Looking at Multivariables

The codebook, or the rules for entry into the database, also contains rules for
coding numerical information. It has to be categorized (or rounded), because our data
entry persons and our computers cannot deal with infinite data spaces.

Thus:

All Data Are Categorical

although perhaps some data are more categorical than others. This suggests that, in
a strict sense, it is impossible to distinguish “categorical data” from “other data.”
In actual practice, however, we continue to use the distinction and speak about
categorical data when our variables are non-numerical and/or have only a small
number of discrete values.

2.4 Multivariables

The most important type of data that science has been able to isolate is the variable or,
if youlike, multivariable. This is closely related to the “fluents” in Newtonian physics,
the random variables of statistics, and the variables in mathematical expressions. For
some useful philosophical discussion of these concepts we refer to Menger (1954,
1955, 1961) and quite a few other publications by the same illustrious author.

In the case of a multivariable, the data space is the product of a number of
functions defined on a common domain, with different images. Table 1 shows a
simple example of a bivariable, describing the nine faculty members in the new UCLA
statistics department. Two variables are used: department of origin and country of
origin.

If we look at the types of data spaces most frequently discussed at this confer-
ence, we find the multivariable in various disguises. In formal concept analysis mul-
tivariables are called many-valued contexts (mehrwertige Kontexte), the variables are
attributes (Merkmale), and the domain of the variables is the objects (Gegenstinde)—
see Wolff and Gabler (Chapter 7) and Frick et al. (Chapter 6).

In cluster analysis, multidimensional scaling, contingency table analysis, and
multivariate analysis, the multivariable is often preprocessed to form a distance

Table 1: A Multivariable

Department Born in the United States
Ferguson Mathematics Yes
Li Mathematics No
Ylvisaker Mathematics Yes
Berk Sociology Yes
DelLeeuw Statistics No
Mason Sociology Yes
Bentler Psychology No
Muthén Education No

Jennrich Mathematics Yes
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matrix, a covariance matrix, or a cross-table. This often involves data reduction,
although sometimes the map is one-to-one. This particular step in the data reduction
process can be thought of as either the last step of coding or the first step of the
statistical analysis.

Also, in some cases, we observe dissimilarities or measure distances directly.
This can be coded as a single real variable on / )/ or as three variables, the first two
being labels.

3 Representation

The process of coding maps the possible outcomes of an experiment into the data
space, which is defined by the design. Although in some experiments coding may be
relatively straightforward, in others it involves many decisions.

The mappings used in coding are not often studied in statistics, although perhaps
they should be analyzed more. Design in the narrow sense is generally seen to be a
part of statistics, but codebooks and experimental protocols are usually assumed to
be part of the actual science.

‘What definitely is a part of statistics is the next phase, the mapping of data into
representations. We take the data, an element of the data space, and we compute the
corresponding element of the representation space. This mapping is called a statistical
technique (see Figure 1).

World @

Data

t\Dr—\z

Result 1

[—LE~—L

Figure 1
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Not surprisingly, many types of representations are used in statistics. In formal
concept analysis, data are represented as lattices or graphs; in cluster analysis as
trees, hierarchies, or partitionings; in correspondence analysis (CA), multidimen-
sional scaling (MDS), and biplots as maps in low-dimensional spaces. In regression
analysis and generalized linear modeling we find many types of scatterplots, either
to picture the structural relationships (added variable plots, smooths) or to portray
the residuals and other diagnostics. There are very many variations of these mapped
plots, and new ones are continually being invented.

In contingency table analysis we now also have graphical models, familiar from
path analysis and structural equation modeling. Residuals from contingency table
analysis are modeled with Euclidean techniques. We should remember, however, that
500 pages of computer output also defines a representation space and that people look
at the tables in CROSSTABS output from SPSS as primitive visualizations as well.

4 Techniques

We have seen that techniques map data space into representation space. What are the
desirable properties of the techniques? We mention the most important ones.

e A technique has to be as into as possible; that is, it should be maximally data
reducing.

e A technique should incorporate as much prior knowledge from the science as
possible (this could, however, be prejudice or fashion).

¢ A technique should separate the stable and interesting effects from the background
or noise.

e A technique should show the most important aspects of the data.

e A technique should be stable, that is, continuous and/or smooth.

Some qualifying remarks are in order here. Data reduction cannot be the only
criterion, because otherwise we could replace any data set with the number zero,
and this would be a perfect technique. In the same way, stability cannot be the only
criterion either (same example).

We also need some notion of fit, and this is embedded in what we think is
interesting (i.e., in our prior knowledge). In homogeneity analysis (or multiple cor-
respondence analysis) we apply a singular value decomposition to a binary matrix
of indicators (also called dummy variables). In analyses using the ordinary singular
value decomposition, fit is defined as least-squares approximation to the observed
matrix by a matrix of low rank. But in homogeneity analysis we do not want to
approximate the zeros and ones, we want to make a picture of the qualitative relations
in the data. Thus we look at partitionings, coded as star plots (Hoffman and de Leeuw,
1992).

Also observe that continuity of a technique requires a topology on D and R,
and smoothness in the sense of differentiability even requires a linear structure. This
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Figure 2

already provides so much mathematical, in fact geometrical, structure that we can
almost say we are visualizing the data.
Tentatively, we could maintain the working hypothesis:

All Statistical Techniques Visualize Data

There seems to be some idea that visualization takes place by using representations
that are geometrical and that maybe even have the geometry of Euclidean space. This
is certainly suggested by the contents of this book, given the predominance of CA
and MDS.

But this point of view is certainly much too narrow, because the notions of
geometry pervade much of analysis, algebra, discrete mathematics, topology, and
so on. Even the real numbers (the real line) are geometrical, and computing a one-
dimensional statistic means mapping the data space into the real line (think of con-
fidence intervals, for instance). Again, as with the notion of categorical data, all
analysis is visualization, but some analyses are more visual than others.

As we mentioned earlier, it is difficult to draw the line between coding and
analysis. Both involve data reduction, and both involve following certain rules. But
usually there is a decision to ignore a part of the process and to consider the outcome
of this ignored part of the data, which will be fed into the technique.

Very often the technique has multiple stages. We start by reducing the data to
a contingency table, or a covariance matrix, or a set of moments, or an empirical
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distribution function. This stage is often formalized by the optimistic concept of
sufficient statistics, which gives conditions under which we do not lose information.

Only after this stage of preliminary reduction, the serious data analysis starts.
Such a serious analysis is often based on a model.

5 Additional Tools

We have discussed data and the forms they take, emphasizing multivariables. We have
also discussed the most common types of representations, including simple statistics,
tables, graphs, plots, lattices and other ordered structures, partitions, and Euclidean
representations. And finally, we have discussed the maps of the data space into the
presentation space, which associate the outcome of the statistical analysis with the
data in the study.

There are some ideas that can guide us in the construction of visualizations. If
the data themselves are spatial, we do not need such guides (and this is recognized
more and more often in the use of geographical information systems, or GISs). But
otherwise we can use models, and we can try to represent properties of the data as
well as possible in our visualizations (using some notion of fit).

5.1 Role of Models

Figure 3 illustrates the use of a model. In this particular case, the model is that gender
and size of the ego are independent. The data P are in the upper left-hand corner;

Male | Female
Large | .45 15
Small .05 .35
P\ II
\
\
\
\
\
\
\
\
P
Male | Female
Large | .30 .30
Small | .20 .20

Figure 3
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they are proportions in a 2 X 2 table. The model is the set of all 2 X 2 tables with
independence, a curved surface in three-dimensional space, represented in the figure
by the curved line II. To find out whether the model fits the data, we look at the
distance between the model and the data. The statistical technique actually projects
the data P on the model IT and comes up with the fitted (or reduced) data P.

Models are convenient tools with which to capture prior information and to
construct statistical techniques. The idea is that a model is some subset of the repre-
sentation space R and that prior information tells us that the data, suitably reduced
perhaps to a table or covariance matrix, should be close to the model.

This discussion of the role of models covers maximum likelihood methods,
the linear model, the ¢-test, and much of nonparametric statistics as well. It works,
provided we are willing to specify a model in the representation space, that is, a
subset of that space that we are particularly comfortable with (for scientific reasons,
but often only for aesthetic reasons).

5.2 Fit

Figure 3 illustrates one notion, the distance between suitably reduced data and the
model. More generally, we may want to know how good or faithful a visualization of
the data is. Sometimes representations are very faithful, in fact one-to-one.

Some of this is also illustrated in the pictures that follow, where we first make a
graph of the data (Figure 4) and then modify the graph by using multiple correspon-

‘ Mutheén k

Statistics
‘ Education | m
I)H_\'t']!tl]ng_\'
H:]:'i“l()__‘-‘___}'
Li
Mathematicy .
|

Figure 4
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dence analysis (to “make the lines shorter”), shown in Figure 5. As long as the lines
are still there, we do not lose information. If we leave them out and interpret on the
basis of proximity, we have to guess, and we’ll sometimes guess wrong.

In Figure 5 the distances between the statisticians approximate the “chi-squared
distances,” while the categories of the variables are plotted using the “centroid prin-
ciple.”

6 Visualization of Statistics

Due to the fast personal computer and the bitmapped screen, our day-to-day use of
statistics is changing. We can replace assumptions by computations and long lists of
tables by graphs and plots.

But, even more profoundly, our interpretation of statistics has been changing too.
Moving away from specific calculation-oriented formulas has led to a much more
geometrical approach to the discipline (most clearly illustrated in the differential
geometric approach, but also in the more applied graphical models approach and of
course in the use of GISs).

In a sense, this is nothing new, because modern analysis has been thoroughly
geometrized as well. And even in the area of the greatest rigor, that of proofs, a
picture is sometimes worth a thousand numbers.

To close with an example of this, an illustration is shown in Figure 6. This is a
familiar picture, and it can be used to illustrate many of the basic regression principles.
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In my regression course, I use it perhaps in 10 of the 30 lectures. It portrays projection,
orthogonality a la Pythagoras, the regression coefficients, the residuals, the predicted
values, the multiple correlation coefficient, and the residual sum of squares. Thus it
provides a picture of the basic regression statistics that are printed out by all packages,
in a form in which we can use quite a few lectures, of 1000 words each, to explain to
the students what is actually going on.



This Page Intentionally Left Blank



PART I

Graphics for Visualization

Visualization of data is a vast subject with a long tradition in the social sciences.
Pictures are easier to understand than numbers, especially when there are many
numbers to understand.

Different visualization techniques are appropriate to the measurement level of
the data, and special methods have been developed to handle univariate, bivariate, and
multivariate data. Even in the simplest case in which we have only one variable, there
is a wide range of techniques: various types of histograms, bar charts, stem-and-leaf
displays, box plots, and pie charts (for an overview, see Tukey, 1977). Most of these
techniques are available in widely used spreadsheet packages and thus have found
their way into the popular media. We often see graphics of a single set of observations
in newspapers and on television, for example, a pie chart of the number of seats for
each political party in a parliament after an election, or a plot of a sequence of values
over time of a continuously scaled variable such as the interest rate. Sometimes one
method of visualization is clearly better than another. From perception psychology
one knows, for example, that it is easier to recognize differences in the data when
using bar charts than using pie charts—in bar charts differences are visualized in one
dimension, and small differences in the data are easy to discern. Pie charts include
two dimensions, and one has the more difficult task of judging arc lengths or areas.
Another example is the use of a Q—Q (quantile-quantile) probability plot to diagnose
normality in a set of data: it is easier to see whether a set of points lies in a straight line
than to judge whether a histogram of the observations looks like a normal density.

In the bivariate case the number of possibilities for visualizing the data is even
larger as we consider the different cases: both variables continuous, one continuous
and one categorical, or both categorical. When one is categorical with only a few
categories we can juxtapose univariate displays, for example, two histograms “back
to back” for a comparison of age distributions of males and females, often used
in demographic studies, or different pie charts showing the state of the political
parties before and after the election. Scatterplots are used when both variables are

13
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continuous, for example, income and age, and allow one to diagnose the nature of the
relationship between the two variables. In the case of two categorical variables with
many categories we may wish to compare observed frequencies of co-occurrence
with the marginal frequencies of the cross-tabulation. We shall see many original
ways of exploring such cross-tablulations in the intial chapters after this introduction.

For three or more dimensions, visualization demands more sophistication and
even more originality. In the case of three continuous variables, there are several
praiseworthy attempts to see data in three-dimensional space involving real-time
computer graphics. For many variables some methods try to depict all the data
exactly in a way that allows interpretation of all variables simultaneously, for example,
Chernoff faces and star plots. The advantage of visualizing all information in the data
is often outweighed by the disadvantage of the complexity of the displays and their
interpretation. However, once we recognize that there is a certain level of redundancy
in multivariate data, it is possible to exploit this surfeit of information to simplify
the problem to one of few dimensions, where we can again resort to the existing
graphical tools. This aspect of “dimension reduction” is one of the main themes of
this book.

In the first part of the book we will start with a range of examples of what we
might call “straight” visualization of bivariate and multivariate data. In most cases
these will be innovative displays of the original data or transformed versions of
the data, specially developed for a particular context. Some methods are especially
useful for the analysis of small data sets. Formal concept analysis (Chapters 6 and
7) permits the visualization of every item of information in the data; the solution is a
display considering all connections between all variables and between all subjects as
well as between subjects and variables. In event history analysis, which has strongly
increased in the social sciences in the nineties, Lexis pencils can be used to visualize
the information for each subject (Chapter 4). In other examples of visualization, the
type of picture will be used to diagnose a model or the picture will be the model itself.

Visualization is often improved using the tools used by graphical artists, for
example, shading and colors. We have included color graphics in some cases to
illustrate the use of this important aspect of visualization. As color printing becomes
cheaper and more accessible, we expect to see more widespread and routine use of
color graphics.

Chapter 2, by Michael Friendly, gives an overview of different ways of visualizing
a contingency table. So-called sieve and mosaic displays rely on displaying observed
frequencies or expected frequencies under independence as areas of rectangles drawn
in the same row—column positions as in the original table. Differences between
observed and expected frequencies can be visualized using shading and color, and
it also helps to reorder the rows or columns if they represent unordered (nominal)
categories. Friendly shows how these ideas extend to multiway tables and uses
interesting analogies with physical concepts such as pressure and energy to make the
visualizations even more interpretable. Another type of diagram, the fourfold display,
is used for comparing sets of 2 X 2 tables and also relies on depicting cell frequencies
by areas, but in such a way that the odds ratios are displayed.
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In Chapter 3, Jean-Hugues Chauchat and Alban Risson demonstrate the applica-
tion of the ideas of Jacques Bertin, the French graphical “semiologist,” to visualizing
the rows and the columns of a contingency table. Bertin’s graphics remain true to
the original data, using only permutations of the rows and the columns of the data
matrix. The authors use different data sets from the social sciences and also show
how the same ideas can be used to visualize solutions obtained by cluster analysis
and correspondence analysis.

Chapter 4, by Brian Francis, Mark Fuller, and John Pritchard, is dedicated to the
visualization of event history data. Event history studies usually involve the collection
of large and complex amounts of information on a set of individuals over time. A
typical event history study consists of records of individual job careers over a number
of years, including other information such as income and family status. The aim of
event history analysis is to find common events in time, for example, getting married
and having the first child a specific number of months later. Using the Lexis diagram,
the authors introduce a visualization technique that allows the representation of both
duration and state transitions in all variables relevant to an analysis. In their empirical
example, the authors visualize data from the British Social Change and Economic
Life Surveys using a three-dimensional Lexis diagram with the duration variables
date of marriage, female age, and time since marriage. The Lexis diagram includes
a “pencil” for every subject indicating the time duration. Coloring the pencils shows
the individual status at every time point, for example, indicating the work status or
number of children.

In Chapter 5, Tomas Aluja-Banet and Eduard Nafria discuss generalized impurity
measures and data diagnostics in decision trees. Decision trees are a specific means
of displaying a set of multivariate categorial data in which one variable is of special
interest and is regarded as a response. The decision tree is the visualization of a
simple rule for predicting the response from the other variables, which are regarded
as predictors. Using a survey of mobility preferences of the inhabitants of Barcelona,
the authors show in descending order the different importance of the predictors for
the decision if one prefers to have “no change” or to move to “another district,” to
the “surroundings,” to the “rest of Catalonia,” or to the “rest of Spain.” It turns out
that the most important variable for this decision is the district of residence. Other
variables that define the nodes of the decision tree are socioeconomic status of the
household, age of head of the household, and years living in the neighborhood. The
authors also discuss the stability of the results according to split and stop criteria.

Chapter 6, by Ulrich Frick, Jiirgen Rehm, Karl Erich Wolff, and Michael Laschat,
describes obstetricians’ attitudes on prenatal risks by using formal concept analysis
(FCA). FCA simultaneously groups both objects and attributes and reveals depen-
dencies between attributes and between objects. In one of their empirical examples,
the objects are heads of obstetrics departments in Vienna and the attributes are fetal
risks. The data are binary according to whether or not the risks are accepted by the
departments. By applying FCA to these binary data, the authors arrive at line dia-
grams from which one can read the position of each of the departments and which
fetal risks they accept. The solution provides both an ordering of the acceptance of
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fetal risks and an ordering of the departments according to the risks they accept.
The display is exact: at every position of the line diagram one gets full information
on the departments (which risks they accept) as well as on the fetal risks (in which
departments they are accepted).

In Chapter 7, Karl Erich Wolff and Siegfried Gabler also discuss FCA, here in
comparison with correspondence analysis. Whereas FCA displays all information
in the data, correspondence analysis is a data reduction technique in which loss of
information is incurred. Applying both methods to the same data, the authors show
that the solutions are quite similar. Discussing the advantages and the disadvantages
of both methods, Wolff and Gabler suggest that FCA should be used only when there
is a relatively small number of attributes. For the visualization of a higher number
of attributes they suggest applying correspondence analysis to find some interesting
attribute clusters that might serve as a starting point for the data analysis with FCA.
In addition to the comparison of both methods, the chapter gives some background
information on FCA as well as some rules for reading a correspondence analysis
map.

Chapter 8, by Vartan Choulakian and Jacques Allard, describes the Z-plot as a
graphical procedure for contingency tables with an ordered response variable. For
such contingency tables, the proportional odds models of McCullagh and Goodman’s
R or C model are often used. The authors discuss the use of the Z-plot as a preliminary
aid to screen the data before applying formal statistical analysis. If the Z-plot does
not reflect the ordinal order of the response variable, then the preceding relatively
simple models do not describe the data well, and a more complex model such as
the RC association model should be applied (the latter model is also known as the
log-bilinear model; for a description of this model see de Falguerolles, Chapter 35).



Chapter 2

Conceptual Models for
Visualizing Contingency
Table Data

Michael Friendly

1 Introduction

For some time I have wondered why graphical methods for categorical data are so
poorly developed and little used compared with methods for quantitative data. For
quantitative data, graphical methods are commonplace adjuncts to all aspects of sta-
tistical analysis, from the basic display of data in a scatterplot, to diagnostic methods
for assessing assumptions and finding transformations, to the final presentation of
results. In contrast, graphical methods for categorical data are still in their infancy.
There are not many methods, and those that are discussed in the literature are not
available in common statistical software; consequently, they are not widely used.

What has made this contrast puzzling is the fact that the statistical methods for
categorical data are in many respects discrete analogues of corresponding methods
for quantitative data: log-linear models and logistic regression, for example, are such
close parallels of analysis of variance and regression models that they can all be seen
as special cases of generalized linear models.

Several possible explanations for this apparent puzzle may be suggested. First,
it may be that those who have worked with and developed methods for categorical
data are just more comfortable with tabular data, or that frequency tables, represent-
ing sums over all cases in a data set, are more easily apprehended in tables than
quantitative data. Second, it may be argued that graphical methods for quantitative
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data are easily generalized so, for example, the scatterplot for two variables provides
the basis for visualizing any number of variables in a scatterplot matrix; available
graphical methods for categorical data tend to be more specialized. However, a more
fundamental reason may be that quantitative data display relies on a well-known
natural visual mapping in which a magnitude is depicted by length or position along
a scale; for categorical data, we shall show that a count is more naturally displayed
by an area or by the visual density of an area.

2 Some Graphical Methods for Contingency Tables

Several schemes for representing contingency tables graphically are based on the fact
that when the row and column variables are independent, the expected frequencies,
m;j, are products of the row and column totals, divided by the grand total. Then each
cell can be represented by a rectangle whose area shows the cell frequency, »;;, or
deviation from independence.

2.1 Sieve Diagrams

Table 1 shows data on the relation between hair color and eye color among 592
subjects (students in a statistics course) collected by Snee (1974). The Pearson x?
for these data is 138.3 with nine degrees of freedom, indicating substantial departure
from independence. The question is how to understand the nature of the association
between hair and eye color.

For any two-way table, the expected frequencies m;; under independence can
be represented by rectangles whose widths are proportional to the total frequency in
each column, n.;, and whose heights are proportional to the total frequency in each
row, n;.; the area of each rectangle is then proportional to m;;. Figure 1 shows the
expected frequencies for the hair and eye color data.

Riedwyl and Schiipbach (1983, 1994) proposed a sieve diagram (later called a
parquet diagram) based on this principle. In this display the area of each rectangle

Table 1: Hair color, eye color data

Hair color
Eye
color Black Brown Red Blond Total
Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 I 127 592
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Figure 1: Expected frequencies under independence

is proportional to the expected frequency and the observed frequency is shown by
the number of squares in each rectangle. Hence, the difference between observed
and expected frequencies appears as the density of shading, using color to indicate
whether the deviation from independence is positive or negative. (In monochrome
versions, positive residuals are shown by solid lines, negative by broken lines.) The
sieve diagram for hair color and eye color is shown in Figure 2.

2.2 Mosaic Displays for n-way Tables

The mosaic display, proposed by Hartigan and Kleiner (1981) and extended by
Friendly (1994a), represents the counts in a contingency table directly by tiles whose
area is proportional to the cell frequency. This display generalizes readily to n-way
tables and can be used to display the residuals from various log-linear models.
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Figure 2: Sieve diagram for hair color, eye color data

Condensed Mosaic Displays One form of this plot, called the condensed mosaic
display, is similar to a divided bar chart. The width of each column of tiles in Figure 3
is proportional to the marginal frequency of hair colors; the height of each tile is
determined by the conditional probabilities of eye color in each column. Again, the
area of each box is proportional to the cell frequency, and complete independence is
shown when the tiles in each row all have the same height.

Enhanced Mosaics The enhanced mosaic display (Friendly, 1992b, 1994a)
achieves greater visual impact by using color and shading to reflect the size of
the residuals from independence and by reordering rows and columns to make the
pattern more coherent. The resulting display shows both the observed frequencies
and the pattern of deviations from a specified model.

Plate 1 shows the extended mosaic plot, in which the standardized (Pearson)
residual from independence, d;; = (n;; — m;j) /\/m—, is shown by the color and
shading of each rectangle: cells with positive residuals are outlined with solid lines
and filled with slanted lines; negative residuals are outlined with broken lines and
filled with gray scale. The absolute value of the residual is portrayed by shading
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Figure 3: Condensed mosaic for hair color, eye color data

density: cells with absolute values less than 2 are empty; cells with |d; jI = 2 are
filled; those with |d;;| = 4 are filled with a darker pattern. Color versions use blue
and red with varying lightness to portray both sign and magnitude of residuals.
Under the assumption of independence, these values roughly correspond to two-
tailed probabilities p < .05 and p < .0001 that a given value of |d;;| exceeds 2 or 4.
For exploratory purposes, we do not usually make adjustments for multiple tests (for
example, using the Bonferroni inequality) because the goal is to display the pattern
of residuals in the table as a whole. However, the number and values of these cutoffs
can be easily set by the user.

When the row or column variables are unordered, we are also free to rearrange
the corresponding categories in the plot to help show the nature of association. For
example, in Plate 1, the eye color categories have been permuted so that the residuals
from independence have an opposite-comer pattern, with positive values running
from the bottom left to the top right comer and negative values along the opposite
diagonal. Coupled with size and shading of the tiles, the excess in the black-brown
and blond-blue cells, together with the underrepresentation of brown-eyed blonds
and people with black hair and blue eyes, is now quite apparent. Although the table
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was reordered on the basis of the d;; values, both dimensions in Plate 1 are ordered
from dark to light, suggesting an explanation for the association. In this example the
eye color categories could be reordered by inspection. A general method (Friendly,
1994a) uses category scores on the first principal axis of a correspondence analysis.

Muitiway Tables Like the scatterplot matrix for quantitative data, the mosaic plot
generalizes readily to the display of multidimensional contingency tables. Imagine
that each cell of the two-way table for hair and eye color is further classified by
one or more additional variables: sex and level of education, for example. Then each
rectangle can be subdivided horizontally to show the proportion of males and females
in that cell, and each of those horizontal portions can be subdivided vertically to show
the proportions of people at each educational level in the hair-eye—sex group.

Fitting Models When three or more vatiables are represented in the mosaic, we
can fit several different models of independence and display the residuals from each
model. We treat these models as null or baseline models, which may not fit the
data particularly well. The deviations of observed frequencies from expected ones,
displayed by shading, will often suggest terms to be added to an explanatory model
that achieves a better fit.

e Complete independence: The model of complete independence asserts that all
joint probabilities are products of the one-way marginal probabilities:

’n'ijk = ;.. j. Tk (1)

for all i, j,k in a three-way table. This corresponds to the log-linear model
[A][B][C]. Fitting this model puts all higher terms, and hence all association
among the variables, into the residuals.

¢ Joint independence: Another possibility is to fit the model in which variable C is
jointly independent of variables A and B,

Tijk = TWij- M-k (2)

This corresponds to the log-linear model [AB] [C]. Residuals from this model
show the extent to which variable C is related to the combinations of variables A
and B, but they do not show any association between A and B.

For example, with the data from Table 1 broken down by sex, fitting the model
[HairEye][Sex] allows us to see the extent to which the joint distribution of hair
color and eye color is associated with sex. For this model, the likelihood ratio G? is
19.86 with df = 15 (p = .178), indicating an acceptable overall fit. The three-way
mosaic, shown in Plate 2, highlights two cells: among blue-eyed blonds, there are
more females (and fewer males) than would be the case if hair color and eye color
were jointly independent of sex. Except for these cells, hair color and eye color appear
unassociated with sex.
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2.3 Fourfold Display

A third graphical method based on the use of area as the visual mapping of cell
frequency is the “fourfold display” (Friendly, 1994b, 1994c) designed for the display
of 2 X 2 (or 2 X 2 X k) tables. In this display the frequency n;; in each cell of a
fourfold table is shown by a quarter-circle, whose radius is proportional to , /a;;, so
the area is proportional to the cell count.

For a single 2 X 2 table the fourfold display described here also shows the
frequencies by area, but scaled in a way that depicts the sample odds ratio, § =
(n11/m2) + (na1/ny2). An association between the variables (6 # 1) is shown by the
tendency of diagonally opposite cells in one direction to differ in size from those in
the opposite direction, and the display uses color or shading to show this direction.
Confidence rings for the observed 6 allow a visual test of the hypothesis Hy : 6 = 1.
They have the property that the rings for adjacent quadrants overlap if and only if the
observed counts are consistent with the null hypothesis.

As an example, Figure 4 shows aggregate data on applicants to graduate school
at Berkeley for the six largest departments in 1973 classified by admission and sex.

Sex: Male

Admit?: Yes
Admit?: No

Sex: Female

Figure 4: Fourfold display for Berkeley admissions
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At issue is whether the data show evidence of sex bias in admission practices (Bickel
et al., 1975). The figure shows the cell frequencies numerically in the corners of the
display. Thus there were 2691 male applicants, of whom 1198 (44.4%) were admitted,
compared with 1855 female applicants, of whom 557 (30.0%) were admitted. Hence
the sample odds ratio, Odds (Admit | Male)/(Admit | Female) is 1.84, indicating
that males were almost twice as likely to be admitted.

The frequencies displayed graphically by shaded quadrants in Figure 4 are not
the raw frequencies. Instead, the frequencies have been standardized by iterative
proportional fitting so that all table margins are equal, while preserving the odds ratio.
Each quarter-circle is then drawn to have an area proportional to this standardized
cell frequency. This makes it easier to see the association between admission and sex
without being influenced by the overall admission rate or the differential tendency of
males and females to apply. With this standardization the four quadrants will align
when the odds ratio is 1, regardless of the marginal frequencies.

The shaded quadrants in Figure 4 do not align and the 99% confidence rings
around each quadrant do not overlap, indicating that the odds ratio differs significantly
from 1. The width of the confidence rings gives a visual indication of the precision
of the data.

Multiple Strata In the case of a 2 X 2 X £ table, the last dimension typically
corresponds to “strata” or populations, and we would like to see if the association
between the first two variables is homogeneous across strata. The fourfold display
allows easy visual comparison of the pattern of assoctation between two dichotomous
variables across two or more populations.

For example, the admissions data shown in Figure 4 were obtained from a sample
of six departments; Figure 5 displays the data for each department. The departments
are labeled so that the overall acceptance rate is highest for Department A and
decreases steadily to Department F. Again, each panel is standardized to equate the
marginals for sex and admission. This standardization also equates for the differential
total applicants across departments, facilitating visual comparison.

Figure 5 shows that, for five of the six departments, the odds of admission are
approximately the same for both men and women applicants. Department A appears
to differ from the others, with women approximately 2.86 [= (313/19)/(512/89)]
times as likely to gain admission. This appearance is confirmed by the confidence
rings, which in Figure 5 are joint 99% intervals for 6., c = 1,... k.

This result, which contradicts the display for the aggregate data in Figure 4, is
a nice example of Simpson’s paradox. The resolution of this contradiction can be
found in the large differences in admission rates among departments. Men and women
apply to different departments differentially, and in these data women apply in larger
numbers to departments that have a low acceptance rate. The aggregate results are
misleading because they falsely assume men and women are equally likely to apply in
each field. (This explanation ignores the possibility of structural bias against women,
e.g., lack of resources allocated to departments that attract women applicants.)
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Figure 5: Fourfold display of Berkeley admissions by department
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3 Conceptual Models for Visual Displays

Visual representation of data depends fundamentally on an appropriate visual scheme
for mapping numbers into graphic patterns (Bertin, 1983). The widespread use of
graphical methods for quantitative data relies on the availability of a natural visval
mapping: magnitude can be represented by length, as in a bar chart, or by position
along a scale, as in dot charts and scatterplots. One reason for the relative paucity
of graphical methods for categorical data may be that a natural visual mapping for
frequency data is not so apparent. And, as [ have just shown, the mapping of frequency
to area appears to work well for categorical data.

Closely associated with the idea of a visual metaphor is a conceptual model that
helps you interpret what is shown in a graph. A good conceptual model for a graphical
display will have deeper connections with underlying statistical ideas as well. In this
section we consider conceptual models for both quantitative and frequency data that
have these properties.

3.1 Quantitative Data

The simplest conceptual model for quantitative data is the balance beam, often used
in introductory statistics texts to illustrate the sample mean as the point along an axis
where the positive and negative deviations balance.

A more powerful model (Sall, 1991a) likens observations to fixed points con-
nected to a movable junction by springs of equal spring constant, ¥k ~ 1/¢. For
example, least-squares regression can be represented as shown in Figure 6, where
the points are again fixed and attached to a movable rod by unit length, equally stiff
springs. If the springs are constrained to be kept vertical, the rod, when released,
moves to the position of balance and minimum potential energy, the least-squares
solution. The normal equations,

de=d i—a-bx)=0 €)
i=1

n
doxe=y (i-a=bx)x=0 @
i=1
are seen, respectively, as conditions that the vertical forces balance and the rotational
moments about the intercept (0, a) balance.
The appeal of the spring model lies in the intuitive explanations it provides for
many statistical phenomena and the understanding it can bring to our perception of
graphical displays—see Sall (1991a) and Farebrother (1987) for more details.

3.2 Categorical Data

For categorical data, we need a visual analogue for the sample frequency in £ mutually
exclusive and exhaustive categories. Consider first the one-way marginal frequencies
of hair color from Table 1.
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Figure 6: Spring model for least-squares regression

Urn Model The simplest physical model represents the hair color categories by urns
containing marbles representing the observations (Figure 7). This model is sometimes
used in texts to describe multinomial sampling and provides a visual representation
that equates the count n; with the area filled in each urn. In Figure 7 the umns are
of equal width, so the count is also reflected by height, as in the familiar bar chart.
However, the urn model is a static one and provides no further insights. It does not
relate to the concept of likelihood or to the constraint that the probabilities sum to 1.

Pressure and Energy A dynamic model gives each observation a force (Figure 8).
Consider the observations in a given category (red hair, say) as molecules of an
ideal gas confined to a cylinder whose volume can be varied with a movable piston
(Sall, 1991b), set up so that a probability of 1 corresponds to ambient pressure, with
no force exerted on the piston. An actual probability of red hair equal to p means
that the same number of observations are squeezed down to a chamber of height p.
By Boyle’s law, which states that pressure X volume is a constant, the pressure is
proportional to 1/p. In the figure, pressure is shown by observation density, the
number of observations per unit area. Hence, the graphical metaphor is that a count
can be represented visually by observation density when the count is fixed and area
is varied (or by area when the observation density is fixed as in Figure 7).

The work done on the gas (or potential energy imparted to it) by compressing
a small distance 8y is the force on the piston times 8y, which equals the pressure
times the change in volume. Hence, the potential energy of a gas at a height of p is
f ' (1/y)dy, which is —log(p), so the energy in this model corresponds to negative
log-likelihood.
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Figure 7: Urn model for multinomial sampling

Fitting Probabilities: Minimum Energy, Balanced Forces Maximum likelihood
estimation means literally finding the values, 7r;, of the parameters under which the
observed data would have the highest probability of occurrence. We take derivatives
of the (log-) likelihood function with respect to the parameters, set these to zero, and
solve:

dlogL
T =) - L=2==2E o ==,
om; T ™) e
Setting derivatives to zero means minimizing the potential energy; the maximum
likelihood estimates (MLEs) are obtained by setting parameter values equal to cor-
responding sample quantities, where the forces are balanced.

In the mechanical model (Figure 9) this corresponds to stacking the gas containers
with movable partitions between them, with one end of the bottom and top containers
fixed at 0 and 1. The observations exert pressure on the partitions, the likelihood
equations are precisely the conditions for the forces to balance, and the partitions
move so that each chamber is of size p; = n;/n. Each chamber has potential energy
—log p;, and the total energy, —> ; n; log p;, is minimized. The constrained top and
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Figure 8: Pressure model for categorical data

bottom force the probability estimates to sum to 1, and the number of movable
partitions is literally and statistically the degrees of freedom of the system.

Testing a Hypothesis This mechanical model also explains how we test hypotheses
about the true probabilities (Figure 10). To test the hypothesis that the four hair color
categories are equally probable, Hy : w1y = m = m3 = w4 = %, simply force
the partitions to move to the hypothesized values and measure how much energy is
required to force the constraint. Some of the chambers will then exert more pressure,
some less than when the forces are allowed to balance without these additional

restraints. The change in energy in each compartment is then —(log p; — log ;) =
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Figure 9: Fitting probabilities for a one-way table

—log(p;/m;), the change in negative log-likelihood. Sum these up and multiply by 2
to get the likelihood ratio G2.

The pressure model also provides simple explanations of other results. For ex-
ample, increased sample size increases power, because more observations mean more
pressure in each compartment, so it takes more energy to move the partitions and the
test is sensitive to smaller differences between observed and hypothesized probabili-
ties.

Multiway Tables The dynamic pressure model extends readily to multiway tables.
For a two-way table of hair color and eye color, partition the sample space according
to the marginal proportions of eye color, and then partition the observations for each
eye color according to hair color as before (Figure 11). Within each column the forces
balance as before, so that the height of each chamber is n;; /n;.. Then the area of each
cell is proportional to the MLE of the cell probabilities, (n;./n) (n;;/n;.) = n;;/n =
pij, which again is the sample cell proportion.

For a three-way table, the physical model is a cube with its third dimension
partitioned according to conditional frequencies of the third variable, given the first



3. Conceptual Models for Visual Displays 31

G2 components

1.0 o o0
oo 8o %% B0 |
qu, m0C QB] o &
2 “oo @ o
a -
Blond g o - B DD%%DE\J [= 38.9
127 00 Tm So®C Ly g
o] o @ o g u
8 a BPng '%E: oo
O g n a [n] o Q.
% . ek o
ket ¥oxx .
* * * * *
* *
Red P ¥ ox xfa | -1043
*
6 71 * YL % x *
* * ** *
* * ke * ¥ ol
* el
X X XX x4
i(»?(xx >§ xx)%( XX}S X
P xX (XK x_ Xy x;j
& »&)ég XX X % %
47 Brown  fgx 5008 MK e xee X 376.8
Koo X KKK X 8™ K
286 x X XK XX % XXX ){X
X2 RGO g B
%o B o Xy sexx X X
% x;i)x )S< XX~ x
X )§§<x X X X X%
X X % XXX X
cd o ° o0 °© °
21 b © g%o°oo 000 % 0
0 o 000 °
Black |°® % o o .9 -681
o L]
108 o 06 %0 o °% @ o g
o
S e el &
o o ° 90 °
b °o ° %0 °c g &

165.6 = G2

Figure 10: Testing a hypothesis

two. If the third dimension is represented instead by partitioning a two-dimensional
graph, the result is the mosaic display.

Testing Independence For a two-way table of size / X J, independence is formally
the same as the hypothesis that conditional probabilities (of hair color) are the same in
all strata (eye colors). To test this hypothesis, force the partitions to align and measure
the total additional energy required to effect the change (Figure 12). The degrees of
freedom for the test is again the number of movable partitions, (/ — 1)(J — 1).

Each log-linear model for three-way tables can be interpreted analogously. For
example, the log-linear model [A] [B] [C] (complete independence) corresponds to
the cube in which all chambers are forced to conform to the one-way marginals,
Wi = .. Wy Wy forall i, j,k. G? is again the total additional energy required to
move the partitions from their positions in the saturated model in which the volume
of each cell is p;z = n;j /n (so the pressures balance) to the positions where each
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Figure 11: Two-way tables

cell is a cube of size ;.. X m.;. X 7.4, Other models have a similar representation in
the pressure model.

Iterative Proportional Fitting For three-way (and higher) tables some log-linear
models have closed-form solutions for expected cell frequencies. The cases in which
direct estimates exist are analogous to the two-way case, in which the estimates under
the hypothesized model are products of the sufficient marginals. Here we see that
the partitions in the observation space can be moved directly in planar slices to their
positions under the hypothesis, so that iteration is unnecessary.

When direct estimates do not exist, the MLEs can be estimated by iterative
proportional fitting (IPF). This process simply matches the partitions corresponding
to each of the sufficient marginals of the fitted frequencies to the same marginals
of the data. For example, for the log-linear model [AB][BC][AC], the sufficient
statistics are n;;., 1.4, and n.;. The conditions that the fitted margins must equal
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Figure 12: Testing independence

these observed margins are

2o Tk o TR g 5)
mi;. mi.x m. jx
which is equivalent to balancing the forces in each fitted marginal. The steps in IPF
follow directly from equation (5). For example, the first step in cycle ¢ + 1 of IPF
matches the frequencies in the [AB] marginal table,

S+l _ A0 | M
Mg " =M | 2 (6)
;.

which makes the forces balance when equation (6) is summed over variable C:

rhfjﬂ) = n;;.. The other steps in each cycle make the forces balance in the [BC] and

[AC] margins.
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The iterative process can be shown visually (Friendly, 1995), in a way that
is graphically exact, by drawing chambers whose area is proportional to the fitted
frequencies, 7, and which are filled with a number of points equal to the observed
n; . Such a figure will then show equal densities of points in cells that are fitted well
but relatively high or low densities where n; 5 > 73 or n; < 1, respectively. The
IPF algorithm can in fact be animated, by drawing one such frame for each step in
the iterative process. When this is done, it is remarkable how quickly IPF converges,
at least for small tables.

Likewise, numerical methods for minimizing the negative log-likelihood directly
can also be interpreted in terms of the dynamic model (Farebrother, 1988; Friendly,
1995). For example, in steepest descent and Newton—Raphson iteration, the update
step changes the estimated model parameters " in proportion to the score vector
f© of derivatives of the likelihood function, f = §logL/df = X'(n — m®) to
give D = BO 4+ A O, But f© is just the vector of forces in the mechanical model
attributed to the differences between n and m® as a function of the model parameters.

4 Conclusion

This chapter started with the puzzling contrast in use and generality between graphical
methods for quantitative data and those for categorical data, despite strong formal
similarities in their underlying methods. In this chapter we have seen that categorical
data require a different graphical metaphor and hence a different visual representation
(count « area) from that which has been useful for quantitative data (magnitude —
position on a scale). The sieve diagram, mosaic, and the fourfold display all show
frequencies in this way and are valuable tools for both the analysis and presentation
of categorical data.

We then showed that physical models for both quantitative and categorical data
and their graphic representation can yield a wide range of interpretations for statistical
principles and phenomena. Although the spring and pressure models differ funda-
mentally in their mechanics, both can be understood in terms of balancing of forces
and the minimization of energy. The recognition of these conceptual models can
make a graphical display a tool for thinking, as well as a tool for data summarization
and exposure.

Finally, we can see two areas needing improvement in the future development of
graphical methods for categorical data. First, much of the power of graphical methods
for quantitative data stems from the availability of tools that generalize readily to
multivariable data and can make important contributions to model building, model
criticism, and model interpretation. The mosaic display possesses some of these
properties, and other chapters in this book attest to the widespread utility of biplots
and correspondence analysis. However, I believe there is need for further development
of such methods, particularly as tools for constructing models and communicating
their import. Second, I am reminded of the statement (Tukey, 1959, attributed to
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Churchill Eisenhart) that the practical power of any statistical tool is the product of
its statistical power and its probability of use. It follows that statistical and graphical
methods are of practical value to the extent that they are implemented in standard
software, available, and easy to use. Statistical methods for categorical data analysis
have nearly reached that point. Graphical methods still have some way to go.
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Chapter 3

Bertin’s Graphics and
Multidimensional
Data Analysis

Jean-Hugues Chauchat and Alban Risson

1 Introduction

The objective of this chapter is to show how Bertin’s graphics are a straightforward and
accurate method for communicating the results of some multidimensional statistical
methods such as principal components analysis, correspondence analysis, and cluster
analysis. These graphics remain true to the original data, using only permutations of
rows and columns of the data matrix.

The idea of permuting the rows and columns of a matrix for the purpose of
revealing hidden structure in a data matrix is an old one: the pioneering work was
done by Sir W. M. Flinders Petrie almost a century ago. He was looking for a
“sequence in prehistoric remains,” that is, a chronological “seriation.” As noticed by
Arabie et al. (1978), Caraux (1984), and Marcotorchino (1987), this idea is having
an increasing influence in applied mathematics, especially in the behavioral sciences.
Bertin (1967, 1981) laid histograms side by side, using an appropriate scale, and
permuted the elements to reveal underlying structures in the data.

We consider two types of statistical methods that can help us to discover rapidly
the best pair of permutations of the rows and columns of the table among the n! X p!
possible solutions: (1) identification of a diagonal pattern when it exists, for example,
a predominant factor in correspondence analysis or principal components analysis,
and (2) classification of rows and columns by cluster analysis.

37
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The first type of solution (diagonal pattern) is known as “seriation” or “ordi-
nation,” the second type as “block seriation” or “cliques.” In both cases, Bertin’s
graphics gives an easily understandable visual representation of the results of the
statistical data analysis; each bit of information, each entry of the table is presented
in its original form, with only the order of the rows and columns changed.

We present a new exploratory method that integrates multidimensional data
analysis and graphical methods and is implemented in the software program AMADO
(Risson et al., 1994). This methodology can be applied to any matrix consisting of
positive values: contingency tables, logical tables representing a response pattern or
a graph, symmetric tables of similarities, and so on.

2 Bertin’s Rules of Graphical Syntax

Contrary to a table, with which the aim is to make every cell available to the reader, a
graph should be read in an instant—similarities and differences should be immediately
apparent. Let the rows of a table be the horizontal dimension (say X) and the columns
of the table be the vertical dimension (say Y ). A color variation or shading in light
intensity can induce a third visible dimension (say Z); this third dimension is used to
represent the numerical values of the data table.

During the 1960s, Bertin and his team worked with groups of wooden cubes
covered with paper on which were drawn rectangles from histograms; rows (or
columns) were then moved by hand until a diagonal structure, or a “block model,”
was obtained. Later, the use of numerical multivariate descriptive statistical analysis
methods (Lebart et al., 1984) replaced this purely visual approach.

Looking for a unidimensional ordering, one may use correspondence analysis
(CA) to find the optimal ranking of the row and column variables. The first axis of
the CA solution gives the numerical scale for the rows and columns so that each
individual may be characterized in a scatterplot by the coordinates of the individual’s

Table 1: The (0/1) matrix, logic table that represents Jan De Leeuw’s UCLA statistics
program graph

Bornin Born out
Mathematics Sociology Statistics Psychology Education the U.S.A. of the U.S.A.

Ferguson 1 0 0 0 0 1 0
Li 1 0 0 0 0 0 1
Ylvisaker 1 0 0 0 0 1 0
Berk 0 1 0 0 0 1 0
De Leeuw 0 0 1 0 0 0 1
Mason 0 1 0 0 0 1 0
Bentler 0 0 0 1 0 0 1
Muthén 0 0 0 0 1 0 1
Jennrich 1 0 0 0 0 1 0
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categories i and j. There are n;; individuals at the same position, so the number #;;
can be used as the third dimension Z. The correlation coefficient between the two
scaled row and column variables is the square root of the eigenvalue associated with
this first principal axis (Nishisato, 1980, chap. 3; Tenenhaus and Young, 1985), also
called the canonical correlation (see, for example, Greenacre, 1993a, chap. 7).

Bertin’s graphics (see Figure 3) can be seen as a type of scatterplot: coordinates
from CA become ranks, and the area of each rectangle is proportional to the number
of observations/cases with those ranks. With this interpretation, the best permutation
of rows and columns would maximize the Spearman rank correlation coefficient.
Looking for a block seriation, one may use any appropriate cluster analysis method
on rows and/or columns.

3 A Simple Example of Bertin’s Graphics

In Chapter 1 of this book, de Leeuw presents a small data set on the UCLA statistics
department. The data are given in Table 1; Figure 1 shows the corresponding display
using Bertin’s graphics. From this display it is easy to see that both sociologists as
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Figure 1: Bertin’s graphic from de Leeuw’s graph.
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well as three of the four mathematicians were born in the United States, whereas the
fourth mathematician, the psychologist, the statistician, and the educator were born
outside of the United States.

4 Livestock Slaughtered in the European
Community in 1995

The data in Table 2 were obtained from the European Community Statistical Of-
fice (EUROSTAT) in Luxembourg. Here, we consider the number of livestock (in
thousands) slaughtered in 1995 in EEC countries.

4.1 Correspondence Analysis and Bertin’s Graphics

Such a contingency table can be displayed via correspondence analysis. The first
factorial plane is shown in Figure 2. This map might be hard to read: many people
will read that “Adult Bovines™ are mostly found in Italy, because these two points
appear near one another on the plot, or that there are more pigs in Finland than
in Denmark because the former is closer to “Pigs” than the latter. These erroneous
conclusions are quite common.

Table 2: Livestock slaughtered in the European Community in 1995 (1000 animals)

Austria  Belgium Denmark  Finland France Germany Greece

Heifers 69 67 57 51 577 674 31
Adult bovines 533 711 703 382 3968 4251 235
Calves 130 336 55 10 2042 501 80
Pigs 4954 11294 19873 2066 24859 39353 2268
Sheep 280 22 69 74 7696 2057 7712
Caprines 0 0 0 1 1058 12 4819
Ireland Italy NL Portugal  Spain Sweden UK
Heifers 487 558 48 53 591 52 940
Adult bovines 1514 3411 1181 325 1965 501 3266
Calves 0 1321 1198 71 25 30 26
Pigs 3002 11992 18616 4209 27539 3743 14376
Sheep 4298 7960 626 1083 20085 189 19311
Caprines 0 483 17 205 1891 0 30

Source: EUROSTAT.
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Figure 2: The European Community’s livestock correspondence analysis.

Such errors are impossible with graphics in Figures 3 and 4. Figure 3 depicts
the raw data after rows and columns have been permuted with respect to their order
on the first CA axis. The seven northern and eastern countries (Denmark, Belgium,
Netherlands, Germany, Finland, Sweden, and Austria), where pigs and beef are the
most important products, are opposed to the western and southern countries (Portugal,
France, Italy, Spain, Ireland, United Kingdom, and Greece), which produce sheep
and goats rather than pigs. In Figure 4 the row and column reordering is maintained
but the conditional distributions are shown: first of countries, given species (i.e.,
row profiles), and second of species, given countries (i.e., column profiles). Figure
4a shows that the larger part of pigs produced in the European Community comes
from Germany and then from Spain, France, The Netheriands, and so on, whereas
Figure 4b shows that the countries in which pigs are the main product are Denmark,
Belgium, The Netherlands, Germany, and so on.

These Bertin’s graphics represent the original data perfectly, but contrary to
correspondence analysis, they are limited in their ability to display more than one
factor at a time. Figure 5 is similar to Figure 4 after permutation of rows and columns
with respect to the second principal axis; beef- and sheep-producing countries are
opposed to those producing pigs or goats. These graphics show the additional infor-
mation carried by the second axis, as well as the peculiar position of “Greece” and
“goats.”

4.2 Cluster Analysis and Bertin’s Graphics

Usually, results from hierarchical clustering are depicted by a “tree”; the tree shows
how the clusters were formed but it distorts the distances between the clustered rows
or columns into “ultrametric” distances. Moreover, the tree does not give information
on why two rows, or two columns, were found to be “close” or “distant.” Bertin’s
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Figure 3: The European Community’s livestock Bertin’s graphic after reclassification
according to the ranking of values on the first axis of correspondence analysis.

graphics can be applied to the original data, where rows or columns are ranked
according to their location in the tree. Clustering of the countries is performed by
Ward’s method (Ward, 1963) using the chi-squared distance (Greenacre, 1988a;
Jambu, 1989). Figure 6 shows the hierarchical clustering tree, revealing the main
geographic and cultural ensembles of Europe: the British Isles, the Roman world
(Italy, France, Spain, Portugal), Greece on its own, and northeastern Europe around
Germany, where the three countries Belgium, Netherlands, and Denmark stand out.

Figure 6b shows the profile for each country, and it is now apparent what
links countries of the same cluster and what separates those in different clusters.
Northeastern countries produce pigs, no goats, and hardly any sheep; large bovines
and sheep are produced in the British Isles, but no goats or calves, and so on. One sees
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Figure 6: (a)Hierarchical tree for European Community countries. (b) Cluster Bertin’s
graphic.
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how the two methods complement each other: clusters are found “automatically” and
give a good classification of countries, and Bertin’s graphics assist in the interpretation
of the clusters by returning to the original data.

5 Conclusion

Bertin’s graphics provide a visual complement to the solutions of correspondence
and cluster analyses. Data matrices are represented by a matrix of histograms, all on
the same scale, where rows and columns are optimally permuted. This permutation
is defined in terms of either progressive variation or seriation, or by homogeneous
groups distinct from one another, or block modeling. These permutation criteria,
which Bertin defined empirically, are the very criteria of the multivariate statistical
methods: the diagonal seriation corresponds to the maximum correlation permutation
of rows and columns in CA, and the block criteria correpond to the homogeneity of
groups in cluster analysis, for example, Ward’s minimization of intracluster variance.
Here, we can quote Arabie et al., (1978):

“It is intuitively convincing that row-column permutations of a matrix
leave the raw data far more chaste than do data analysis techniques
requiring a priori replacement or aggregation, e.g. taking ranks, or re-
placing subsets of the data by various summary statistics (. ..). For this
reason, permutation methods are an important member of the small but
growing family of data analysis methods following the philosophy that
aggregation is to be inferred at the end of the analysis, not imposed at
the beginning.”

Software Note: AMADO

The program AMADO is an implementation of Bertin’s method. AMADO is dis-
tributed in Windows and Macintosh versions by CISIA (1 av. Herbillon, 94160
Saint-Mandé, France). A user’s guide (Risson et al., 1994) is available in French, and
Italian and English versions will become available in 1998.
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Chapter 4

The Use of Visualization
in the Examination of
Categorical Event Histories

Brian Francis, Mark Fuller, and John Pritchard

1 Introduction

Graphical displays of multivariate data provide much insight into the nature of a
data set before statistical analysis. Such displays identify unusual observations, po-
tential clusters of observations, and possible relationships between variables and
thus can suggest appropriate statistical models in later analysis. Everitt (1978), for
example, described a collection of graphical techniques for certain types of mui-
tivariate data. The primary aim in producing such displays was well summarized
by Andrews (1972), who described exploratory data analysis as “the manipulation,
summarisation, and display of data to make them more comprehensible to human
minds, thus uncovering structure in the data and detecting important departures from
that structure.”

Event history studies usually involve the collection of large and complex amounts
of information on a set of individuals. A typical work history for an individual consists
of records of that individual’s employment state containing the start and end dates of
each period of employment or unemployment, social class and industrial classifica-
tion, number of hours worked, and so on. Life history data contain further records of
other life events such as the individual’s marital history, residential history, educa-
tional history, criminal history, medical history, and other demographic information
such as the dates of birth of children and the size and composition of the individual’s
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household over time. Life histories are special cases of event histories, which could
also include shorter term studies such as the medical history of an individual since
the first onset of an illness such as Acquired Immunodeficiency Syndrome (AIDS).

Although in many short-term studies, event history data can be collected prospec-
tively, it is common when assembling life histories for information to be collected
retrospectively through questionnaire or interview, leading to problems of recall for
both dates of state changes and associated covariate information. Such data are there-
fore characterized for an individual by a set of multiple durations in each of a number
of states, with additional complex covariate information varying over time. Further-
more, censoring may be present for some durations in some states, and data may be
missing.

Our aim in developing visual techniques for event history data is therefore to
allow the representation of both durations and state transitions in all variables relevant
to an analysis. Such displays should allow both the examination of a single event
history and the comparison of multiple event histories.

Scientific data visualization (McCormick et al., 1987) has developed over the
past decade and is characterized by highly interactive computer software with a
comprehensive set of tools for viewing scientific data. Scientific visualization has
traditionally been used to display data in such areas as engineering (computational
fluid dynamics), medicine (computed tomography displays), and meteorology (pres-
sure, wind, and cloud systems). These applications typically represent the coordinates
of real physical three-dimensional (3D) objects. Further information can be added
to the 3D representation by using color and superimposed symbols, Applications in
which there is no underlying 3D physical representation are rare, although visualiza-
tion has been used, for example, in geography (Hearnshaw and Unwin, 1994), where
pollution measures supply the third dimension on a 2D map, and for the examina-
tion of stock exchange data (Koh, 1993), where the graphical representation has no
underlying physical model.

The use of the term visualization in this chapter is perhaps different from that in
other chapters in this book. “Visualization” in statistics is often taken to be simply
a static representation of a set of data. We prefer to reserve this term for the highly
interactive displays just described, using the term “graphical displays” for static
representations of data. It is clear that visualization software can aid the statistical
practitioner both in exploring complex data before analysis and in the presentation
of the results of a fitted model. The problem with event history data is that there is
no unique 3D representation of such data, and we confront this issue in the following
sections.

2 Graphical Representations of Event Data

Francis and Fuller (1996) reviewed existing methods for graphically representing
event history data. The methods fall into two categories: those summarizing a col-
lection of event histories by defining a set of ranked key events present in a large
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proportion of the histories (Blossfeld ez al., 1989) and those attempting to graph a
single, complex event history in its full detail. Methods in the first category cannot
usually represent the full complexity of a data set, and a proportion of the data needs
to be excluded from the display. Although useful as presentational displays illustrat-
ing the progress of individuals through a sequence of states, they are not considered
further here.

Methods that take the first route have commonly used a straight line to represent a
single history, with various forms of textual annotation or shading to represent events.
In his book on the principles of graph construction, Cleveland (1994) considers one
example of an event history chart showing the activities of a woman and her baby
from the African !Kung tribe over a 12-hour period, moving into and out of four
different activities: sleep, nursing, fretting, and holding. As more than one activity
can occur at the same time, the single-line model suggested by Konner and Worthman
(1980), with different forms of shading on a line to represent different variables, is
rejected. Instead, Cleveland is in favor of a simple diagram with time on the horizontal
axis and with four horizontal bands stacked one above the other representing the four
activity states. Where a particular activity is present, the band is shaded, giving a
“block diagram.” Cleveland’s graph is essentially similar to a tulip plot (Barry et al.,
1989), in which a circular rather than a linear block diagram is used, with concentric
rings representing the variables.

The foregoing ideas are suitable for examination of a single or a small number of
event histories. However, we are concerned here with displays that might be applied
to larger collections of histories and also with methods that can deal with all types
of variables, which extend from simple binary state variables to cover all types of
variables encountered in event history analysis. Variables can belong to one of five
possible types:

1. Time variables: variables directly related to time, which measure the progress of
an individual in time, such as age or calendar year.

2. Time-varying variables: variables that vary within histories as well as between
histories. Examples are the number of hours worked per week (continuous),
highest academic qualification (ordinal), and marital status (nominal).

3. Time-constant variables: as above, but constant within a history. Examples include
sex, ethnicity, and place of birth.

4. Internal events: events directly related to the individual, which will vary from
individual to individual, such as the date of death of a parent and the date a
driving licence was gained.

5. External events: these affect the whole sample under study at the same calendar
time. Examples include a change of government or the closure of a major factory
in a locality.

Naturally, many variables can belong to more than one type. For example, age
can be thought of as a time-constant variable if treated as “age at entry to study,”
and number of children can be represented as time-varying continuous, ordinal, or
nominal.
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3 Lexis Pencils for Event Histories

We now consider possible objects or glyphs that can be used as a model for the
display of event history information. The object needs to be compact, to allow
many such objects to be displayed simultaneously, and also needs to have many
faces, to allow a suitable selection of event history variables to be displayed. A
linear object seems more suitable than a circular object, as variables on the outside
of a circle carry a different visual impact compared to those on the inside—an
undesirable characteristic. A linear pencil-like object therefore seems appropriate as
a means of representing an event history. A suitable time variable such as calendar
time or age would be measured along the length of the pencil. Each time-varying
variable required would be represented by a different face of the pencil. Continuous
or ordinal time-varying variables can be represented either by continuous changes in
color or alternatively by protuberances from faces of the object, with the height of
the protuberances representing the values of the variable. Categorical time-varying
variables can be represented by changes in color or texture. Events can be marked
by solid rings around the object, with different types or colors of rings for different
event types. Time-constant variables can be represented by different colors or glyphs
at the end of each pencil or by additional faces to the object.

These pencils can be displayed side by side in case number or other order
(perhaps sorted by the length of the history or by a suitable time-constant variable),
thus providing a full, informative display for viewing the data. However, it is possible
to go further, and to do this, we turn to the demographic literature.

The Lexis diagram (Lexis, 1875) provides a graphical method of displaying
demographic data. The modified form of the diagram used today is based on work
by Pressat (1961) and is shown in Figure 1. The x-axis represents calendar time ¢,
and the y-axis represents age a. Each individual is represented by a distinct line on
the diagram. An individual born at calendar time T and dying at age A will die at
time T + A. The individual will therefore be represented in the diagram by a 45° line
joining the time and age at birth (7',0) to the time and age at death (T + A, A). The
Lexis diagram is also commonly used in survival analysis studies to represent the
progress of individuals through a study. In these diagrams, the x-axis still represents
calendar time but the y-axis represents the time in the study. An individual entering
a study at calendar time T will stay in the study for a period of length A, either
until an event of interest occurs (uncensored) or until the end of the study (censored).
Symbols placed at the end of the lines are used to indicate the presence or absence of
censoring.

Keiding (1990) described some statistical properties of the Lexis diagram. For
example, if death intensities w(t, a) are assumed to be constant within some principal
set in the Lexis diagram and varying between principal sets, with a multiplicative
age-period model for the death intensities u(z,a) = a,f3,, then this gives a piecewise
constant intensity model. A Poisson-type likelihood can be derived, which can be
fitted as a special case of a generalized linear model. The diagram thus has a good
statistical rationale. Keiding also describes a continuous form of this model.
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Age

T T+A

Calendar time

Figure 1: A Lexis diagram.

One method of analyzing event history data is through muitiple duration survival
analysis models, and the standard Lexis diagram could straightforwardly be adapted
for complex event history data, with pencil objects replacing the Lexis lines. However,
the complexity of the resulting diagrams with more than one time-varying variable
and the strong likelihood of pencils overlapping suggest that this 2D approach would
be suitable only for simple data sets. If the pencils could instead be placed in 3D
space, this approach would be more attractive. A 3D version of the Lexis diagram was
also suggested by Lexis, to represent irreversible changes of state such as termination
of marriage during the lifetime of an individual. He noted that such data from studies
usually have an extra time dimension, with individuals entering this new state at
varying ages. This led him to suggest a 3D extension to his diagram, where the x—z
base plane had two dimensions, namely year of birth and age upon entering the new
state. The vertical y-axis would then represent time spent in the new state. In effect,
this approach would generate 3D age—period—cohorts displays of the raw data, and
it provides us with a suitable spatial framework for visualization, with pencils again
replacing the Lexis lines.

How should the pencils be angled? In the original work by Lexis, the Lexis
lines arose vertically from and perpendicular to the x—z base plane. However, we
can also angle the lines at 45° to the x-axis, to the z-axis, or to both the x-axis and
z-axis. The choice of display depends on the method chosen for representing the
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time variables. For example, age can be represented either as a constant for each
individual (e.g., age of the individual when entering the study) or as a continuously
changing variable over the individual’s time in the study. Similarly, calendar time can
be represented as constant for an individual (time of entry to study; date of marriage)
or as a continuously changing variable. There are four possible ways to represent
the two age options and the two calendar time options, giving four possible displays
that can be constructed, with suitable orientations of the pencils for each display. For
example, when both age and calendar time are continuously varying, the resulting
display will consist of angled pencils, at 45° to both the age and time axes. Choosing
an appropriate orientation will be guided to some extent by the data analyst’s proposed
statistical model and the representation of time and age in that model. Alternatively,
displaying the data in more than one orientation can often be useful. If there is no
suitable secondary time axis, then a variable indexing the individuals may be used as
a substitute. This will space the histories equally along the z-axis. Variations on this
display would sort the individuals into date, age, or other order before construction
of the index variable.

Once the display has been constructed, standard visualization tools such as
rotation, panning, zooming, and slicing can be used to explore the data. Both the
location of the pencils and the interrelationship of the faces of the pencil are of
interest. Dynamic statistical graphics (see, for example, Cleveland and McGill, 1988)
provide flexible graphical tools, for example:

1. Identification. The ability to identify case number or the values of other displayed
variables on screen. Some visualization systems such as AVS (see Software Notes)
provide a method of identifying case number by defining each pencil as a separate
object labeled by the case number—the pencil can be identified by clicking with
a mouse.

2. Selection and brushing. Case selection in dynamic statistical graphical systems is
highly interactive and general, using a combination of simple mouse operations
and a graphical toolbar. Selection is also available in visualization systems but
would usually be available by specifying ranges of the data through sliders or
interactive gauges.

3. Linked displays. The linking of two or more displays, with highlighted objects in
one display also highlighted in the remaining displays, is desirable. Visualization
software can offer several different views of the same object and also linkage
between different geometrical views of the same object, but this requires extra
programming effort by the user.

4 An Example

Davies et al. (1992) used data from the Social Change and Economic Life Surveys
to reexamine the “employment shortfall” effect noted in cross-sectional studies, in
which the wives of unemployed men are less likely to be working than the wives
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of employed men. The data, collected in six UK localities, consisted of work and
life histories collected retrospectively for 1171 partnerships existing in 1987, The
partnership histories started at the month of last marriage and continued until the date
of the survey. Various hypotheses have been suggested to explain this shortfall. Dilnot
and Kell (1987) argue that it may be a financial effect related to the payment of benefit.
Alternatively, Barrere-Maurisson et al. (1985) suggest that wives may be reluctant to
work because this could damage their unemployed husband’s self-esteem. A further
hypothesis suggested by Dilnot and Kell is that women married to unemployed men
may have personal characteristics that make them less likely to find work or may live
in areas with few jobs available.

A binary logistic regression was carried out by Davies et al. (1992) on the monthly
employment state of each wife (1 = employed, 0 = unemployed) separately for each
of the six localities. Heterogeneity was allowed for by including an individual-specific
error term, which was assumed to have a normal distribution, and by the incorporation
of two end points at infinity and minus infinity, to allow for women with very low and
very high probabilities of taking paid employment. The authors fitted a main-effects
model with number of children, husband’s length of unemployment (grouped into
four duration categories), and a set of dummy variables measuring the age of the
youngest child as covariates. Also included in the model were linear and quadratic
effects of the husband’s age, wife’s age, and calendar time. The first column of Table
1 contains the parameter estimates for Kirkcaldy, one of the six localities. From
188 partnership histories and 40,960 partnership months, this model gives a value
of minus twice the log-likelihood of 30,987.2 with 40,942 degrees of freedom. Note
that the degrees of freedom are used solely to determine the change in the number of
parameters between competing models and are not used to assess goodness of fit.

Examination of the parameter estimates and their associated standard errors
shows that there is little effect of a husband’s unemployment on his wife’s employment
status for the first 12 months, then a highly significant effect thereafter. The effect
of the age of the youngest child is as expected, with strongly significant negative
effects for all age groups. The effect of a child under 1 year old is particularly strong
(—4.48), formed from the sum of the estimates for <1, <5, and <11 years old.
However, combined with this is a positive effect for the number of children. All
quadratic and linear terms representing age and calendar time were also significant.

‘We can now reexamine these data using the visualization ideas described earlier.
The Lexis pencils were chosen to have three faces, representing, in clockwise order,
the variables of husband’s and wife’s employment state and a composite variable
representing the age of the youngest child in the family. The angle between faces of
the pencil is set to be 45°. A simple color representation of state changes was chosen.
For employment state, light blue is used for employed and dark blue for unemployed
for both the male and female in the partnership. Similarly, color is again used for
the age of the youngest child, with green representing no children in the household,
yellow representing under 1 year, red under 5 years, magenta under 11 years, and
white under 16 years. We choose the x-axis to be age at marriage, the z-axis to be
calendar year, and the vertical y-axis time since marriage.
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Table 1: Parameter estimates (with standard errors in parentheses) and log-
likelihoods for the Kirkcaldy female unemployment data fitting the logistic-normal
model with end points

A. B C D

Davies et al.  Model A with Model B for Model B for
model additional pre-1962 1962-1987
pregnancy factor  marriage cohort marriage
included cohort
Intercept —0.250.02) —0.004 (0.02) -0.12 (0.05) 0.67 (0.04)
Husband’s unemployment
duration:
1-6 months —0.05 (0.06) 0.03 (0.06) —0.70 (0.17) 0.37 (0.08)
7-11 months -0.19(0.12) —0.02(0.13) 0.57 (0.71) —0.29(0.17)
1-2 years —0.81(0.10) —0.67 (0.10) 0.41 (0.28) —0.85 (0.17)
>2 years —2.71(0.03) —2.65(0.03) —=2.76 (0.11) —0.93 (0.12)
Age of youngest child:
< 1 year —1.08(0.03) —1.32(0.03) —0.51 (0.06) —1.66 (0.04)
< 5 years —2.09(0.01) —2.18(0.01) -1.95 (0.02) —2.23 (0.02)
<11 years -1.31(0.01) —1450.01) —1.02 (0.02) —1.87 (0.02)
Number of children 0.63 (0.01) 0.52 (0.01) 0.50 (0.01) 0.17 (0.01)
Age:
Husband’s age 0.01 (0.01) 0.03 (0.01) 0.09 (0.01) —0.01 (0.01)
(Husband’s age)> X 1072 —0.05(0.01)  —0.06 (0.01) —0.09 (0.01) 0.07 (0.01)
Wife’s age —0.10(0.01) —0.10(0.01) —0.29 (0.01) 0.36 (0.01)
(Wife’s age)? X 1072 0.14 (0.01) 0.10 (0.01) 0.32 (0.01) —0.73 (0.02)
Time:
Calendar year X107! 6.08 (0.06) 6.31 (0.06) 7.56 (0.12) 3.30(0.19)
(Calendar year)? X 1073 —3.60(0.04) —3.74(0.04) ~4.60 (0.08) —1.59 (0.13)
Pregnancy:
2nd trimester —1.25(0.07) —1.03(0.14) —1.66 (0.10)
3rd trimester —3.29 (0.08) —2.15(0.11) —4.29 (0.12)
Scale parameter for normal 1.03 1.05 1.29 1.41
End point probabilities:
Po (at minus infinity) 0.062 0.060 0.058 0.056
pi1 (at infinity) 0.034 0.030 0.019 0.010
—2 log-likelihood 30987.2 30127.7 138422 15819.7

Plate 3 shows the resulting rendered display of all 188 histories. At this viewpoint
distance, it is difficult to see changes in employment and family state within event
histories, but the structure of the sample becomes clear. For example, women who
married in the 1950s were over 50 at the time of the survey and contribute long
Lexis pencils to the display. In addition, women from all marriage cohorts contribute
partial histories to the 1980s. It is possible to use this plot to search for influential
histories that might have an influential effect on the regression parameter estimates
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of the calendar time and age variables. As each history is represented by a different
graphical object, it is easy to identify the case number by clicking on the pencil of
interest. In this data set, there is no obviously influential history, and we proceed to
examination of the display in greater detail.

By zooming into the histories, further features of the data become apparent.
Plate 4 illustrates some typical histories for women marrying at the age of 25 in 1967
and 1968. Following the histories through time, from the bottom to the top of each
pencil, changes of state in the middle face of the pencil from light blue (employed)
to dark blue (unemployed) on the female employment history usually occur before
changes of state from green (no children) into yellow bars (child under 1 year) on
the child history. In other words, the female partner usually stops work before, not at,
the introduction of a child under 1 year old into the household. Further examination
of the histories also shows evidence of differences between women marrying earlier
(before 1960) and those marrying later (after 1970). Plate 5 shows a close-up view
of the histories where marriage occurred before 1955. Using the transparency and
selection tools, histories with a date of marriage in 1951 or 1952 are highlighted—
all other histories are ghosted, making them visually less important. Women in this
cohort appear to have fewer state changes in female employment (the center face of
the displayed pencils), either working until the first child or not working at all after
marriage, and also appear to be less likely to reenter work than those in later marriage
cohorts.

Two features of interest have therefore been found in the event histories. We have
observed that women in work often stop work a number of months before the “arrival
of a child under one” in the partnership. Therefore, we can assume that the wives stop
work because of their pregnancies. This effect is expected but was omitted from the
original analysis. The second observation is that women in the survey who married
prior to 1960 seem to have a different pattern of female employment history, either
not working at all or stopping work when the first child arrives in the household.

We investigate these features of the display by statistically reanalyzing the Kirk-
caldy data set. Three further analyses are performed. The first introduces a new
three-level factor representing pregnancy: not pregnant or in first trimester of preg-
nancy, in second trimester, and in third trimester. There is a dramatic increase in twice
the log-likelihood of 859.5, with 2 degrees of freedom. The parameter estimates from
this model are shown in Table 1, column B. Most parameter estimates remain close
to the Davies et al. estimates, but those for the effect of husband’s unemployment
show a change, with the effect of unemployment duration between 1 and 2 years less
strong than before. The effects of pregnancy are dramatic, with the strongest effect,
as expected, in the third trimester. The estimate of —3.29 in this category is nearly
equivalent to the effect (—3.63) of the youngest child being under 5 (the sum of the
estimates for <11 and <5).

The second and third analyses repeat the first analysis, but on subsets of the
data. We divide the histories into two marriage cohorts—those marrying before 1962
(52 individuals) and those marrying in 1962 or later (136 individuals). In terms of
partnership-months, however, the data are divided approximately equally. The results
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are shown in columns C and D of Table 1. For the whole data set, there is a further
decrease in minus twice the log-likelihood of 465.8, with 18 degrees of freedom.
More important, the parameter estimates differ substantially between the two groups.
The effect of male unemployment on female unemployment in the pre-1962 marriage
cohort can be neglected for all categories except for male long-term unemployment
of over 2 years. In contrast, the later marriage cohort shows the “12 month” effect
discussed earlier. There are also substantial differences between the two cohorts in
the effect of the youngest child and number of children on female unemployment.

5 Conclusions

‘We have illustrated that graphical techniques for exploring event history data can lead
to important model improvements, changing the substantive conclusions of a data
analysis. Scientific data visualization seems to offer a suitable environment in which
to explore such data, allowing the user to examine the whole data set, as well as to
explore small subsets of histories in greater detail. The use of Lexis pencils allows
the researcher to examine both the changes of state and the relationship between
selected time-varying variables of interest, and the pencils can be positioned in 3D
space using axes appropriate to the study. There are some difficulties that need to be
addressed. One is the question of user perception, such as the best choice of colors to
represent changes of state; an initial investigation has been made by Travis (1991).
Another issue is the number of histories and variables that can usefully be visualized
in a single display. Displays with more than 250 histories appear very cluttered, and
our experience suggests that with larger numbers of histories, disjoint subsets of
histories can be examined in sequence. In addition, we would recommend that users
not attempt to display all potential variables in a Lexis pencil but choose several
smaller selections, keeping the number of faces of the pencil small.
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Software Notes

Modern visualization computer systems such as AVS (Advanced Visual Systems,
1992) and Explorer (Silicon Graphics, 1993) provide a set of highly interactive
graphical tools, such as rotation, panning, and zooming; clipping (allowing portions
of the display either above, below, or intersecting a clipping plane to be deleted);
and color redefinition, transparency, texture, and lighting. Most systems also have a
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modular graphical programming environment. Modules are assembled on the screen
in a graphical environment, with graphical links added interactively to define the data
flows from one module to another; this forms a network or map. In this way, new
applications and displays can generally be assembled without the need for extensive
programming.

Francis and Fuller (1996) considered the implementation of their ideas in Ex-
plorer. The work reported here was done with AVS, which we have found offers better
tools and functionality for the investigation of complex statistical data. In this appli-
cation, the need for the user to specify and change interactively certain features of the
display led to the development of a customized module called Lexis plot. This gives
the user control over the variables to be assigned to the axes and whether these are
time varying or not; the pencil geometry, such as the number of faces of the pencils,
the variables to be assigned to them, the pencil thickness, and the angle subtended
between adjacent faces; and the color map to be used and whether any selection and
clipping required.

AVS is available in the UK from AVS / UNIRAS Ltd. Montrose House, Chertsey
Boulevard, Hanworth Lane, Chertsey, Surrey KT16 9JX. Telephone: +44 (0)1932
566608. E-mail: sales@avsuk.com.
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Chapter 5

Generalized Impurity
Measures and Data
Diagnostics in
Decision Trees

Tomas Aluja-Banet and Eduard Nafria

1 Introduction

The objective of tree-based methods is to provide a simple rule for predicting a
response variable from a set of predictors. The response variable can be either con-
tinuous or categorical, leading to what are called “regression trees” or “classification
trees,” respectively. The well-known Classification and Regression Trees (CART)
method (Breiman et al., 1984) and associated computer program perform both types
of tree construction. In this chapter we concentrate on classification trees and essen-
tially follow the CART methodology. Classification trees have the same objective as
such multivariate methods as discriminant analysis and logistic regression or more
recent techniques such as neural networks, which are being vused increasingly in deci-
sion making in financial institutions. The main advantage of tree-based classification
is the simplicity of the results, given visually in the form of a decision tree. The
branchings of the tree follow the human process for decision making very closely.
The heart of the tree-growing process is the splitting criterion used at each node
of the tree. The general idea is to split the cases into two or more subgroups at each
node so that the heterogeneity between the subgroups is maximized each time in a
certain predefined sense. In Chapter 22 Siciliano and Mola use a criterion related to
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the predictability index T of Goodman and Kruskal to measure the heterogeneity. In
CART, binary splits are made at each node to minimize a so-called impurity index.
We present a general formulation for the impurity of a node as a function of the
proximity of the individuals in the node to its “representative.” We also show how
this impurity, or heterogeneity, measure can be decomposed into contributions that
can be used to assess the stability of the split at each node.

Although the results of trees are in general attractive and clearly meaningful,
a major problem is the stability of the results obtained. Small fluctuations in data
may cause a major change in the tree-growing process, although the predictive power
may remain the same. We distinguish internal stability from external stability, in the
same sense as described by Greenacre (1984, sec. 8.1). External stability refers to the
tree sensitivity with respect to independent random samples and can be assessed by
means of a test sample, cross-validation, or a bootstrap technique, whereas internal
stability refers to the influence of each observation of the learning sample on the tree
construction. Our use of diagnostics at each node enhances internal stability in the
tree-growing process and hence increases the predictive power.

We apply our methodology to a survey of the mobility preferences of the in-
habitants of Barcelona. From past censuses it has been detected that Barcelona’s
population is decreasing and the objective is to explain this behavior in terms of
several socioeconomic, biographic, and living status variables. We take as a response
variable the question “If you could change your residence, where would you like to
move?” The labels of the possible responses were:

No change: I want to stay in the same place or neighborhood.
Other district: I want to move to another district of the city.
Surroundings: I want to move to the surroundings of Barcelona.
Rest of Catalonia: I want to move to the rest of Catalonia.

Al

Rest of Spain: I want to move to the rest of Spain.

The list of predictors, all of which are categorical variables (we indicate the number
of categories in each case and whether the variable is nominal or ordinal), is the
following:

Nominal Ordinal
district of residence 10 age of head of household 7
region of origin 13 level of studies 10
socioeconomic status years living in the neighborhood 6
of household 13
tenancy of the house 3 m? of apartment 6
job stability 4 family income per capita 8

The classification tree procedure will identify which variables and which combina-
tions of categories of the variables are related to predicting each of the five response
categories.
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2 The CART Methodology

Originating in the pioneering work of Automatic Interaction Detection, or AID (Son-
quist and Morgan, 1964), tree-growing methodology consists of a recursive splitting
of each group of individuals into two subgroups, starting from the total sample and
continuing until the subgroups contain mostly individuals giving similar responses,
without allowing these subgroups to become too small. The core of the procedure is
the identification of the variable that optimally splits a group into two at each node
of the tree. The following steps are taken at each node:

o Defining the set of possible splits
o Selecting the best split according to a statistical criterion
o Verifying a stopping criterion, based on a statistical threshold

Most research has been concentrated on the splitting and stopping criteria. Kass
(1980) developed tree methodology for a categorical response using a chi-squared
criterion, leading to the technique called CHAID (chi-square automatic interaction
detection). Celeux and Lechevallier (1982) proposed a splitting criterion based on a
measure of distance between distribution functions. Ciampi (1991) proposed instead
using the measure of deviance for a generalized linear model. Although the results
obtained were an improvement, they still suffered from the criticism of the optimality
of the tree and its dependence on the actual data.
The main innovations of CART are:

o Unification of the case of the categorical response variable (classification tree)
and that of the quantitative response variable (regression tree) within a similar
framework

e Use of an impurity index to measure the heterogeneity of each node

¢ Pruning from a maximal tree instead of using a stop criterion

e Giving honest estimates of the misclassification error

2.1 Notation

Let ¢ represent a node of the tree. Let n, be the number of individuals associated
with this node and let n,; be the number of individuals of node ¢ with response
category j, where j = 1,...,J. For a particular node ¢, called the parent node, with
n, individuals, we distinguish its descendants ¢, and t,, left and right nodes with n,
and n,, individuals, respectively. A terminal node is a leaf of the tree, whereas the
initial node, consisting of all the individuals, is the root of the tree. A branch is
formed by a particular path from the root node to a leaf.

For a particular parent node ¢ and for each predictor there exists a set of admissible
splits, depending on the nature and coding of the predictor: a binary predictor, with
one split; a nominal predictor with k categories, having 2¢~! — 1 admissible splits;
an ordinal predictor with & categories, having k — 1 splits; and a continuous predictor
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with r distinct values, having r — 1 admissible splits. For example, for the job stability
variable with four categories, we can define up to seven possible splits by different
groupings of these categories into two sets: four splits in which one category is
split off from the other three, and three splits of two categories each. For an ordinal
variable, we can make only splits consistent with the ordering of the categories. For
example, for age of the head of the household, with age groups 18-25, 26-35, 3645,
and so on, we can just split individuals into groups younger and older than a specified
age, up to age 25 and older than 25, up to age 35 and older than 35, and so on.

2.2 The Impurity Index

CART uses an impurity index to assess the split at a node. For a categorical response
variable, the impurity index can be written as a function of the probabilities of the
response classes:

i) =FpGlty forj=1,....J 1)

where p(j | £) is the relative frequency of class j at node ¢.

A node is pure when it contains individuals of just one class, in which case
i(t) = 0. At the other extreme, when a node contains all classes with equal relative
frequency, then i(t) = MAX. An essential property of the impurity measure is that it
decreases across the splitting process, that is,

i) = ai(t,) + (1 — )i(ty), O=a=1 2)

Any measure that follows properties (1) and (2) can be considered an acceptable
impurity index. The indices available in CART are:

Gini i(r) = Z,&Z pG 1 opG 10

i#]
Misclassification i(f) =1 —max; p(j| 1)
Entropy i) = =3 p(j | Hloglp(j 1 1)

j
2
Twoing i(t) = l% <Z lpGi 1) — p(jl tr)l)
J

In practice, the most commonly used index is the Gini index, which may be written
equivalently as

i0=1-Y p(jlo?
J

2.3 Splitting Criterion

For a given node and for all predictors and admissible splits, the predictor and split
are chosen that maximize the impurity reduction between the parent node and its
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descendants:

Ai(r) = i) — i) = “Licey) 3)
ny ny
This criterion is applied recursively to the descendants, which become the parents of
successive splits, and so on, until we arrive at the final nodes, or leaves.

Applying the CART methodology with the Gini index of impurity to the sample
of 2492 Barcelona inhabitants in our study, we obtained the tree shown in Figure 1.
We can see that the variable that explains most of the geographical mobility is the
district of residence, which is, of course, correlated with social class. District of
residence splits the total sample of 2492 individuals into two groups, one of 1688
individuals and the other of 804 individuals. Below the number of individuals at
each node, the proportion of the five response classes is indicated. Thus, district of
residence defines two groups, one aiming to change their actual residence and the
other (the minority) preferring to stay in the same place. Then the former group is
split according to socioeconomic status into a group of 814 people (the upper classes),
who want to move mainly to another district of the city, the surroundings, or the rest
of Catalonia, and another group of 874 who prefer to stay in the same place or move
to the rest of Spain (the lower classes). In this way we can continue explaining all the

(1,2389.10 district of residence

1688
4828 6 414

socio-economic status of hh.

{7,6,5,4}

804
69145 48

42347 612

years living in the nelghborhood age of head of household

<=4 <=5 >5
409
50305 511

661
51236316
region of origin
{1,2,3,5,7,8.9,10,13} {11,6,4}
596 65
5324 5 31473817 9234

Figure 1: Mobility tree of citizens of Barcelona.
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splits of the tree; for instance, the latter group of 874 individuals is split according
to the age of the head of the household, those younger than 65 years old wanting
to move out of their actual residence, whereas the older ones prefer to stay in it.
Finally, there is a split according to their region of origin, and we identify a small
group with a very high percentage wanting to return to the rest of Spain. A question
that arises is when to stop the splitting process. This is intimately connected with the
error rate of the tree. Every leaf of the tree is assigned to one response class, currently
the predominant class of the leaf; then the error rate is the proportion of individuals
misclassified by the tree. In general, we can have costs of misclassification, in which
case we assign the leaves to the class with minimum risk.

24 Defining the Right-Sized Tree

The problem of when to stop the splitting process is solved, rather than by having
a threshold defined upon the splitting criterion, as in other techniques, simply by
growing a maximal tree (a tree with every terminal node pure or with, say, five
individuals or fewer) and from this maximal tree defining a sequence of optimal trees
by successively removing noninformative subtrees of the maximal tree, minimizing
an error complexity measure, and thus obtaining a sequence of nested trees with a
decreasing number of terminal nodes. This is done by measuring for each subtree
of the maximal tree, its worth, that is, the relative decrease of the error rate relative
to the size of the subtree. Then the problem is transformed into one of choosing the
right tree of the sequence. This problem is connected with giving honest estimates of
the error rate.

In fact, the error rate C(T) decreases with the size of the tree. Any split produces
a monotone reduction of the error rate, thus giving an optimistic measure of the
goodness of the tree. For that reason, CART proposes to use a test sample or a
cross-validation technique to evaluate the error rate of every tree of the sequence.

Then the honest criterion is to select the smallest tree of the sequence with min-
imum error rate in the test sample or, alternatively, in the cross-validation procedure.
Notice that the criterion we use for selecting the tree, that is, the error rate, which is
usually the percentage of misclassification, is different from that for growing it (the
impurity measure adopted).

Although this approach is neutral in the sense that it gives the right-sized tree
with an honest estimate of the error rate, the growing process is still very dependent on
data. In other words, the split criterion can be very dependent on data, which implies
that the overall tree is also unstable. This is particularly true when using the Gini
impurity index, because the Gini index attempts to favor small but very pure nodes
rather than equal-sized but less pure ones. To tackle this problem, we have studied
the relationship of the splitting criterion with the contribution of each observation to
the reduction of impurity, that is, the internal stability of a split. In order to do this,
we first present a general formulation of the impurity, from which we will compute
the contribution per individual to the reduction of impurity.
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3 General Formulation of the Impurity

For a given node ¢, with #, individuals to classify according to J classes of the
response variable, we generalize the notion of impurity, using a geometric approach
in which each response class defines a J-dimensional point, for example, (1,0,0,...)
for the first response class. Hence, a node is identified with the set of unit points of R”,
at which the individuals are located depending on their response class, for example,
n,;1 individuals at unit point (1,0,0, . ..), n,; at unit point (0, 1,0,...), and so on.

For a particular node we take its representative point (we represent it by m,),
defined as the point of the convex polygon of R’, with vertices on the stated unit
points, that minimizes the impurity measure i(¢).

Then we define the impurity as a function of the squared distance between each
individual in the node and its representative.

Sy ngd?(omy)
n

ir) = “)
where d(j,m,) is the distance of an individual of class j and m, (obviously, all
individuals of the same response class share the same distance). For example, for
three response classes, the geometrical picture would be as shown in Figure 2. In
formula (4) we can define the distances d (j, m;) in several different ways. In particular,
we could use the L, norm or the L, norm.

(0,0,1)

““ (1('- ’ f)

]

1]
L m,

n;

(1,0,0)

Figure 2: Geometrical representation of a node.
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3.1 The Impurity Measure with L, Norm

Then the proximity d(j,m) is equal to the Euclidean norm between two points. It
can be shown that the representative of the node that minimizes expression (4) is the
multinomial vector of probabilities for a given node {p(j | £),j = 1,...,J} (or the
mean of the response variable for that node, in the quantitative case).

J J
Ele nj,dz(j,m,) B Zj=1 nj (1 =2mj + 3, mlzt)

i) =
oIt 2 n;
2 = —(=njp+mpn)=0=>m; = £
amjt Ny n

Then the impurity index (4) is equal to the Gini index defined previously:

: 7 _
iy npd?Gome) 2= M ((1 P + Zl#ﬂ’?[lt))

n; n

J
=1-Y p5=>> pupi
=1

i#j

i(r) =

or the variance index for the quantitative case.

3.2 The Impurity Measure with L; Norm

If we consider the L; norm to measure the proximities, then the representative of the
node is the unit point e; with maximum probability p(j | 7) in node ¢ (or the median
for the quantitative case).

. ZJ= njley — myjl d . J
i) === = =123 mp(j 1D+ my
j=1 j=1

n

Then minimizing this expression leads to

J J J
min 1—22m,~,p(j|t)+2mj, = max ij,p(jlt)

j=1 j=1 j=1
J
E mj,=1, mj,EO, j=1,...,k
j=1

The solution is all m,; equal zero, except for the class where p(j | ¢) is maximum.
Then it can be shown that the impurity index is equal to twice the misclassification
index (or the absolute deviation for the quantitative case).
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4 Contributions to the Impurity Reduction

The contribution of each observation to the reduction of impurity depends on the
metric used to evaluate the proximities. Developing expression (3),

Ziez 8(17 mt) _ Eiet, S(i’mrl) = Zier, S(i’mrr)

n; ny n

Ai(t) =

®

Then we can express the impurity reduction as a sum over all the individuals of the
parent node.

nAi(e) =Y [(8G,m) = 8G,my)) X 1, + (8G, m,) — 8, m,)) X 1,)

et

where 1,. is the Kronecker delta to express membership in one of the successors of the
parent node. Finally, the contribution of any individual to the reduction of impurity is
simply the difference between its distance from the representative of the parent node
and the distance from the representative of its successor.

¢ = 6(i,m;) — 8(i,my) 6)

This quantity is positive or negative when the individual increases its distance from
the representative of the offspring. We can compare this measurement to the average
contribution. We find that, taking into account formula (5), this average coincides with
the impurity reduction. This gives us another interpretation of the impurity reduction.

- Zier Ci

C =
n;

= Ai(1)

Then the ratio
Ci

NG O

allows the control and diagnosis of splits with high dependence on data. This ratio
is easy to compute and hence provides a measure of the internal stability for a given
split. Then between two splits with similar reduction of stability, we can choose the
split with more homogeneous contributions to the impurity reduction. That is, we
think that the best strategy is not to follow the best split but to take into account its
stability as well.



68 Chapter 5. Generalized Impurity Measures and Data Diagnostics in Decision Trees

Table 1: Split 1 (region of origin), Ai(r) = 0.005817

Contributions
to reduction Contributions
Proportions nz, Distances &(j, m;) of impurity over Ai(t)

Parent Left Right Parent Left Right Left Right Left Right
node node node node node node node node node node

Nochange 0.51 053 038 032 031 053 002 -021 281 —-3593
Other dist. 0.23 024 0.17 088 0.88 0.96 0.00 —-008 039 -—-13.75
Surround. 006 0.05 009 124 126 112 -002 012 -342 21.18
RestCatal. 0.03 003 002 129 130 127 —-001 002 —-144 3.05
Rest Spain 0.16 0.14 034 1.02 107 062 -005 040 -—8.62  68.88

Size 661 596 65

For example, in the mobility tree for the citizens of Barcelona, we found a split
at the fourth level of 661 individuals into two groups of 596 and 65 individuals,
according to their region of origin (Table 1). The reduction of impurity of this split is
0.005817, very low. Thus, computing the contributions to the impurity reduction in
every split, we find for this one a concurrent split, dividing the 661 individuals into
groups of 305 and 356 depending on their level of studies (Figure 3, Table 2). For this
second split, the reduction of impurity is very similar, 0.00538. Thus, we compute
the contribution of individuals of both splits to its reduction of impurity.

We can see that the contribution to the reduction of impurity is clearly more
homogeneous in the second split, whereas for the first split it is highly dependent on
the 22 individuals of the right child, moving to the rest of Spain, with a contribution
to the reduction of impurity 68.88 times higher than the average. The first split is a

age of head of household age of head of household
<=5 <=5

661 661
51236316 51236316

region of origin level of studies
{1,23,57,89.10,13) (1,64 <=2 2

5% 65 305 356
5324 5 314 13817 9 234 5620 2 120 A4726 8 513

Figure 3: (a) Split 1. (b) Split 2.
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Table 2: Split 2 (level of studies), Ai(z) = 0.00538
Contributions
to reduction Contributions
Proportions m, Distances 6(j, m;) of impurity over Ai(Y)
Parent Left Right Parent Left Right Left Right Left Right
node node node node node node node node node node
No change 051 056 047 032 028 0.37 0.05 -0.05 843 —9.08
Otherdist. 023 020 026 088 099 0.80 -—0.11 0.08 —20.38 15.60
Surround. 0.06 002 008 124 135 115 -0.11 0.09 -21.05 16.18
RestCatal. 0.03 0.01 005 129 138 122 -0.09 0.07 —16.93 12.65
Rest Spain  0.16 020 0.13 1.02 099 1.06 0.03 -0.04 6.06 —7.05
Size 661 305 356

high candidate to be eliminated in the pruning phase. Thus, it is advisable for these

types of splits to consider more stable ones.

Of course, one way to prevent unstable splits is to consider other impurity
measures, different from the Gini index, in particular those based on L;, which are
more robust and tend to present more homogeneous contributions to the reduction
of impurity. Anyway, the misclassification impurity index needs a local weighting
of individuals at each node to give the same probability to every response class, that
is, to put all possible splits in a neutral context. Otherwise, if one class is clearly
predominant, it can be very unlikely for a split to change the final assignment of a
node and hence to decrease the impurity measure.
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Chapter 6

Obstetricians’ Attitudes on
Perinatal Risk: The Role of
Quantitative and Conceptual
Scaling Procedures

Ulrich Frick, Jiirgen Rehm, Karl Erich Wollff,
and Michael Laschat

1 Introduction

Perinatal health outcome of newborns is dependent primarily on the medical condition
of their mothers during pregnancy and birth and on their own physical constitution.
Especially in cases of medical complications during pregnancy or birth, the outcome
is also dependent on the level of health care facilities available at the time of birth
(LeFevre et al., 1992). Contemporary concepts of perinatal medicine try to minimize
this secondary risk by allocating mothers to different levels of perinatal care before
delivery according to prenatal diagnosis. For this purpose, screening programs for
pregnant women have been established in nearly all developed health care systems.
A pivotal position in the process of allocation of a mother—hild dyad at risk to
an appropriate health care facility belongs to physicians in obstetrics departments.
Of special interest is the risk acceptance of departments offering all usual medical
facilities for delivering mothers (e.g., obstetrical surgery) but offering few or only
intermediate possibilities for treating ill newborns (Shenai, 1993). Many authors (for
example, Modanlou et al., 1980; Obladen et al., 1994) have shown that antenatal
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referral of high-risk neonates from departments with low-level pediatrics to high-
level perinatal centers decreases mortality, length of hospitalization, and morbidity
of transferred neonates. In any case, it is of great interest to examine physicians’
perinatal referral decisions in order to obtain background information for quality
assurance measures.

Two components of prenatally recognizable risk for the fetus can be distinguished
(Renwick, 1992; D’ Alton and DeCherney, 1993). On the one hand, a pregnant mother
may suffer from one or more conditions of a series of pathological processes during
pregnancy. On the other hand, the fetus may develop irregularly due to genetic
disposition or due to external noxes. Whereas for the former quantifications of the
mortality risk associated with different levels of perinatal care have been investigated
by a series of studies (Rudolph and Borker, 1987; Miller et al., 1983), no comparable
risk evaluations taking into consideration intensity of perinatal care can be given for
fetal anomalies.

Cne aim of this chapter is to demonstrate the merits of a scaling method in a
situation in which unidimensionality of the theoretical concept, which in our case
is subjective risk perception (see Johnson and Tversky, 1984), cannot be expected.
Whereas “objective” epidemiological risk in the case of mothers’ complications con-
stitutes a homogeneous (in the sense of Wottawa, 1980) risk scale, onto which a
physician can be placed according to his or her acceptance of a list of known risks, in
the case of fetal risk acceptance one exclusively has to deal with subjective risk per-
ceptions of individuals. No method for a unidimensional representation of physicians’
decisions on an “objective” scale can be given in the latter case. Nevertheless, the
referral decisions of different obstetrics departments should be compared in a man-
ner that simultaneously analyzes possible disagreement of risk policies and ranks
perceived health risks of the abnormalities in question.

2 Data and Methods

The heads of all obstetrics departments in the city of Vienna (18 wards in eight public
and nine private hospitals) were asked to respond to a self-administered questionnaire
containing items concerning their technical equipment and the level of experience of
medical and nursing staff. The survey took place in November 1994 and was part
of a statewide health planning project of the local government. For various reasons
two wards could not complete the questionnaire, so our study is concerned with the
responses of 16 wards. The questionnaire consisted of two lists reflecting the two
categories of risk just described: maternal risks and fetal risks.

2.1 Maternal Risks

The Maternal Transport Index (MTT) of Strobino et al. (1993) was used to measure
decisions about risk with regard to medical conditions of pregnant women. This in-
strument consists of 32 detailed descriptions of hazardous situations with potentially



2. Data and Methods 73

lethal outcomes for the unborn baby. For each situation the responsible departmental
medical director was asked to decide whether or not she or he would accept the re-
spective mother for delivery in her or his own ward or would transfer her antenatally
to another hospital of higher service level.

The MTI is thus based on an existing classification of pediatric facilities into
three levels according to technical equipment and skills of medical staff. Each level
can be regarded as optimal for coping with certain maternal risk factors. Referral of
high-risk mothers to insufficient service levels increases all kinds of complications
including mortality. For example, if a level II facility accepts a mother with heavy
vaginal bleeding during the 27th week of pregnancy instead of transferring her to a
level III perinatal center, which is designed to react to all possible complications, it
causes an increase in the probability that her child will die. Instead of an estimated
crude mortality rate of 0.15 at level III, an estimated crude rate of 0.36 prevails
at level II. The MTI sums up the ratios of logged mortality rates for all 32 risky
conditions. Overall, the MTI can be interpreted as a measure of “risk proneness” of
the respective hospital. The minimum value is 32 and is reached by all tertiary level
hospitals by definition.

2.2 Fetal Risks

A second list of eight prenatally recognizable defects of the fetus (see Table 1, p. 77)
was partly selected from an overview by Shulman et al. (1993). Three questions
on skeletal deformations, chromosomal aberrations, and blood incompatibility were
added on the basis of expert advice. Departmental directors were again asked to decide
whether they rated these anomalies as manageable at their hospital or whether they
would antenatally transfer the mother of that child to a perinatal center. In contrast
to the list of maternal risks, the expected neonatal mortality rates for different levels
of care are unknown for all anomalies. Thus, no scaling based on epidemiological
reasoning similar to that for the maternal risks was possible. Instead, the dichotomous
decisions of “accepted” (y/n) served as the basis for comparing obstetricians’ risk
perceptions.

The comparison method chosen is based on the representation of conceptual
knowledge by line diagrams of concept lattices within the framework of formal
concept analysis (FCA). It has been described in detail by Ganter and Wille (1996)
and an introduction is also given by Wolff and Gabler (Chapter 7). FCA represents
the relationships between objects and attributes for a given data table. Objects in our
case are the obstetrics departments, and their attributes consist of accepted anomalies.
Relationships can be displayed either as a table of logical implications or graphically
by line diagrams of concept lattices. For this volume the latter method was chosen.

Consider the example in Figure 1. Sixteen departments (labeled with capital
letters A,B,C,...) are displayed with respect to three attributes (= decisions of
acceptance): gastroschisis, myelomeningocele, and diaphragmatic hernia. The data
are in columns 2 to 4 of Table 1. Departments E, J, L, and N did not accept cases with
either condition, department S accepted only children with diaphragmatic hemia,
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[E]|J JLHN]
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Figure 1: Reading example of a simple decision matrix analyzed by FCA.

department R only children with gastroschisis, and department K only children with
myelomeningocele. Two conditions were accepted by department H (gastroschisis
and myelomeningocele) and by department I (myelomeningocele and diaphragmatic
hernia), whereas departments A, B, C, F, O, W, and Z accepted all three risks.

Generally, a line diagram of a formal context represents its formal concepts by
nodes in the plane such that all the information of the given context is preserved.
Each object name (respectively, each attribute name) is indicated in the line diagram
a little bit below (respectively, above) its concept node. An object has an attribute if
and only if there is an ascending path from the node of the object to the node of the
attribute. The “extent” of a concept contains all objects that can be reached in the
line diagram by descending paths from the concept node, and the “intent” contains
all attributes that can be reached by ascending paths.

In Figure 1, for example, the concept of all departments accepting gastroschisis
includes the departments R, H, A, B, C, F, O, W, and Z. All departments accepting
gastroschisis and myelomeningocele (departments H, A, B, C, F, O, W, and Z) consti-
tute a subconcept to both concepts represented by the nodes labeled “gastroschisis”
and “myelomeningocele.” As can be seen, the superconcept—subconcept relation is
directed from top to bottom, building a conceptual hierarchy.

The aim of our analysis is to describe the interrelations between risk decisions
of all obstetrics departments in Vienna. FCA simultaneously groups both objects and
attributes and reveals dependences between attributes and between objects. In our
application, rank ordering of perceived risk of fetal complications is visualized by the
drawing direction of the graph. The lower the position of an attribute in a line diagram,
the greater is the reluctance of physicians to accept this risk at their department, and
the greater therefore can be regarded the perceived risk of that fetal abnormality. This
is concluded from the fact that very few hospitals accept such a risk.

The possibly multidimensional nature of perceived risk can be inspected by the
degree of branching out required in the line diagram. The greater the number of
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concepts required to represent such a data table, the smaller is the agreement on
acceptable risk policies between the hospitals questioned.

3 Results

3.1 Acceptance of Maternal Risks

Figure 2 shows a plot of MTI scores, where it should be noted that a value of 32
constitutes the minimum value on the scale. This minimum level can be reached
either by transferring all mothers at risk (true for department N) or by definition for
all perinatal level III centers, true for departments A, B, C.

The MTT allowed a quantitative representation of all departments on a single
dimension that can easily be transformed into potentially accepted additional neonatal
deaths. Such a procedure also allows graphical representation on bidimensional plots
as can be seen in Figure 2. Here, the number of deliveries observed in 1993 within
each department is plotted against the MTI score, and one can see, for example, the
high risk in admitting pregnant women for departments where many lives are at stake.
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Figure 2: Departmental MTI score (risk of child’s death) plotted against number of
deliveries in 1993.
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3.2 Acceptance of Fetal Risks

Table 1 summarizes the raw data for the analysis of fetal risks. Analyzing this matrix
of 16 hospitals and 11 variables (=fetal anomalies) resulted in a complex line diagram
(see Figure 5) that will be interpreted later. The complexity of this structure is not an
artifact of the method: if the logical structure of the concept lattice is very simple,
that is, if the decisions of all hospitals agreed to a great amount, the resulting line
diagram would show an easily interpretable form. To facilitate the inspection of the
hospitals’ risk-taking patterns in a first step, fetal anomalies were divided into two
subgroups requiring two different kinds of precautions to be taken for the delivery:
“immediate” and “delayed” action, as shown in Table 1.

Figure 3 represents the decisions of Vienna’s obstetrics departments concerning
the six fetal anomalies that would require immediate and often serious medical action
if a child with one of these anomalies is born, that is, the subgroup “immediate action.”

Three departments (E, L, J) were placed at the top of the line diagram because of
their refusal of all six immediate action anomalies for delivery. Five departments (the
three perinatal centers A, B, C; department W offering a level II neonatal care unit;
and department Z) would accept any of these anomalies and therefore were placed
at the bottom of the line diagram. Three departments (K, N, R) would accept exactly
one of these fetal risks. As each department accepted a different anomaly, the line
diagram splits up into different branches showing this disagreement on acceptable
risks. Department I accepted two risks, and departments O, H, and S rated three
of six risks as manageable at their wards. Only the two most extreme risk policies
(complete acceptance and complete refusal of immediate action risks) are shared by
more than one department. All observed intermediate positions are held by only one
single decision maker.

The second subgroup of the remaining five fetal anomalies was called the “de-
layed action” subgroup, for therapeutic actions either were not necessary immediately
after birth or could be decided on only after a postnatal diagnosis of the intensity
and quality of the anomaly. In contrast to Figure 3, the concept lattice of the delayed
action anomalies resulted in a very simple line diagram (Figure 4).

If one disregards department O, all departments and risks could be placed on
a simple “pearl necklace” without any branching out of the lines and nodes of this
figure (omitting department O would move the risk “omphalocele” to the last node
at the bottom of the line diagram). The conceptual structure of a pearl necklace
is equivalent to a so-called Guttman scale (Guttman, 1944) formed by these items.
Again, department L accepted no single fetal anomaly and therefore was placed at the
top of the line diagram. Department E accepted only “chromosomal aberrations” on
the first step of this scale. The two items “skeletal deformation” and “hydronephrosis”
defined the second rank of this risk order and were accepted by departments J and K.
“Esophageal atresia” on the third rank was also accepted by departments I, N, and
R. The “highest” risk was associated with “omphalocele.” Eight departments (A,
B, C, E H, S, W, Z) accepted omphalocele as well as the other four anomalies.
Only department O deviated from this hierarchical ranking of risks by accepting an
omphalocele but refusing hydronephrosis and esophageal atresia.
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Table 1: Acceptance of Fetal Risks by Obstetrics Departments: Data Matrix

Fetal Risk (accepted: y/n) Requiring:

Immediate action Delayed action
Department Blood Transposition Hypoplastic
care group Diaphragm  Myelo- Gastro-  of great left Chromosomal  Skeletal Hydro- Esophageal
level incompatibility hernia meningocele schisis vessels heart aberration deformation nephrosis atresia Omphalocele
A (1II) ye y y y y y y y y y y
B (IIT) y y y y y y y y y y y
cain y y y y y y y y y y y
E @) n n n n n n y n n n n
F® y y y y n n y y y y y
HD y n y y n n y y y y y
I n y y n n n y y y y n
(D n n n n n n y y y n n
K@D n n y n n n y y y n n
L@ n n n n n n n n n n n
N® y n n n n n y y y y n
oM n y y y n n y y n n y
RO n n n y n n y y y y n
S® y y n n y n y y y y y
LAUY y y y y y y y y y y y
44 y y y y y y y y y y y

2y, unborn child accepted for delivery; n, decision to transfer this child’s mother antenatally.
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Figure 3: Acceptance of “immediate action” fetal risks at obstetrics departments in
Vienna.

Figure 5 gives the joint conceptual structure of risk acceptance (11 attributes) and
departments’ service levels. Departments of service level I display a heterogeneous
variety of all empirically observable risk policies from complete refusal (department
L) to complete acceptance (department Z) of fetal risks. The four departments of
the higher service levels II and III, of which one is at level II, would all accept the
complete list of fetal risks and do not differ in their risk policies according to their
service levels. Graphically, this can be depicted from the fact that all fetal risks occur
between the node labeled “level 1” and the node “level 2” in Figure 5.

Interpreting the relationships between the attributes in Figure 5 is not easy,
because of the observed heterogeneity of referral decisions. With the exception of the
perinatal centers A, B, and C no two departments accept the same risks; that is, each
department follows its own singular “risk concept” (node). But risk concepts can be
arranged in a meaningful chain (Guttman scale) because there is a remarkably strong
dependence between the attributes—there exists a very long chain of 10 attribute
concepts in Figure 5 forming a strictly hierarchical line. This can be seen more easily
in Figure 6, which, as a reduction of Figure 5, represents exclusively the order of all
attribute concepts without the departments.

Within the central chain of Figure 6 the concepts of the delayed action risks chro-
mosomal aberration, skeletal deformation, hydronephrosis, and esophageal atresia are
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L
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Figure 4: Acceptance of “delayed action” fetal risks at obstetrics departments in
Vienna.

all superconcepts of the following immediate action risks: blood group incompatibil-
ity, transposition of great vessels, and hypoplastic left heart. The other four attributes
(omphalocele from subgroup delayed action and gastroschisis, diaphragmatic hernia,
and myelomeningocele from subgroup immediate action) are incompatible with one
another in the sense that none of these attribute concepts is a subconcept of any other
of these.

If we study the subcontext of all departments and only the attributes of the
central chain, we obtain the concept lattice drawn in Figure 7. Figure 7 can be seen
as the “interpretative core” of the whole context of all 11 fetal risks, as it shows only
the attributes for which agreement on their logical order is unanimous among the
physicians of this study.

4 Discussion

Three wards (A, B, and C) were part of perinatal centers and thus could offer the
highest possible level of care (level III) for neonates. As a consequence, their MTI
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Figure 5: Complete line diagram of immediate and delayed risks’ acceptance and
departmental service levels.

scores could by definition not exceed the minimum value of 32. All three wards in
perinatal centers would accept all mothers listed. One hospital (N) handles births
strictly on an outpatient basis. In accordance with that principle, almost no avoidable
risks were accepted: mothers having a symptom of perinatal risk would be transferred
to a perinatal center by this hospital. Thus, its MTI score is very low (33.5).

One hospital (W) offers services of a level II neonatal unit in addition to its ob-
stetrics ward. The MTI score for this hospital therefore reached a relatively moderate
level of risk acceptance (50.0), although all listed mothers’ complications would be
accepted at this hospital. Six additional hospitals (F, I, L, O, S, Z) also accepted
nearly all maternal complications. But because they offered no additional neonatal
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Figure 6: Acceptance of fetal risks: order of attributes.

services (not exceeding level I care), their MTI values were very high (> 85). The
MTT scores of these six hospitals represent in the hypothetical case of 3200 risky
mothers (100 X 32 symptoms) delivering in one of these hospitals about 700 addi-
tional neonatal deaths to be expected due only to this misallocation. The remaining
hospitals (E, J, K, R) had MTI scores of an intermediate level. They accepted only a
subset of the described maternal complications.

All in all, willingness to take risks reported by heads of obstetrics departments in
Vienna showed little awareness of the problems associated with postnatal transport.
Obstetricians too often rated their own department capable of managing medical
problems of pregnant women, disregarding the amount and quality of their facilities
for newborn infants. This tendency toward “overconfidence” based only on the condi-
tion of the mother could be shown for nearly all departments with one exception: the
outpatient hospital (N). If decisions of departmental heads were similar to decisions
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Figure 7: Reduced context of fetal risks with perfect Guttman structure.

of their subordinate physicians, a considerable amount of perinatal risk should have
resulted from the described referral preferences. Indeed, Vienna’s hospital discharge
statistics for obstetrics departments show that the recommended cumulation of risky
deliveries within perinatal centers has not been established yet: the rates of multiple
birth, cesarian sections, and preterm infants do not differ significantly between ob-
stetrics departments inside and outside perinatal centers (Frick et al., 1995). Thus,
self-reported risk acceptance is correlated with empirical indicators of risk dispersion
over hospitals.

The quantification of the subjective variable “risk acceptance” used a risk scale
in which the weight of each item was given by the “objective” epidemiological risk a
priori. Problems of “homogeneity” of our risk scale thus were not relevant. No matter
how a physician perceived and subjectively weighted maternal risk during a cognitive
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evaluation of the transferral decision, we were able to place him or her on a single,
homogeneous dimension with a substantially meaningful interpretation: “number
of additional deaths that are possibly accepted by the respective referral pattern.”
The MTI enabled governmental authorities to prioritize quality assurance measures.
Figure 2 showed a visualization of the product of risk attitude and annual number of
deliveries. Pressured by administrative authorities, departments situated at the upper
right corner of this figure were those that had to start first with quality discussions on
their referral decisions, because changing their attitudes meant a greater reduction in
absolute risk for Vienna’s newborns.

One should not withhold the fact that the chosen quantitative scaling of subjective
risk attitudes according to epidemiological risk also has an important disadvantage:
the reasons and processes underlying perinatal “overconfidence” cannot be analyzed
by studying the composite MTI score. Different patterns of risky decisions could
result in very similar or identical MTI scores (and thus are homogeneous in the
sense of “additional deaths”) but nevertheless would require different directions of
attitudinal change. Thus, the decomposition and analysis of the global MTI value into
its single decisions are necessary when planning and discussing quality assurance
measures with medical experts.

For the case of fetal anomalies, a comparable objective interpretation of the
acceptance of a single item could not be given. Therefore the scaling of fetal risks
inevitably means an analysis of subjective risk perceptions by the medical experts
who were questioned. Under these circumstances, a homogeneous, quantitative scale
would be an unrealistic expectation (Yates and Stone, 1992). On the contrary, dif-
ferent obstetricians would possibly categorize fetal anomalies into qualitatively dif-
ferent risk groups. FCA seems to be the method of choice for dealing with that
problem.

Substantively it could be shown that departments willing to accept the risk of
(nearly) all maternal complications (A, B, C,F, I, L, O, S, W, Z) reacted differently in
regard to fetal anomalies. The level III centers (A, B, C), department W (with a level
II neonatal unit integrated), and department Z (level 1) accepted a/l fetal anomalies
for treatment as well. However, department Z cannot offer any specifically pediatric
facility for treatment of these anomalies. Intensive care (required for a child with a
hypoplastic left heart, for instance) would also exceed the capabilities of the level 11
unit in department W.

Departments F, I, L, O, and S also accepted all maternal risks, but showed more
restrictive attitudes toward pediatric risks. F and S accepted major, although different
risks, and I and O were still more conservative (but again on qualitatively different
options). Department L was not willing to accept any pediatric risk but accepted all
maternal risks. No medical argument can be cited to support such a policy. Outpatient
clinic N, on the other hand, accepted no maternal complications but did accept some
fetal anomalies; mostly delayed action risks. Among the immediate action risks, N
accepted only blood incompatibility. This is a risk requiring a “standard” procedure
(blood exchange) that is the least invasive procedure of the immediate actions and
seems acceptable from the viewpoint of quality assurance management.
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FCA showed some very helpful features for interpreting the results. When sub-
jects agreed in their risk policies as measured by specific items, FCA revealed common
patterns of perception twice in a very effective way. First, delayed action risks were
perceived on a nearly perfect Guttman scale. The seriousness of subjective delayed
action risks can thus be measured at least on an ordinal level for these data. Second,
the distinction between immediate and delayed action risks was shared by Vienna’s
departmental directors with regard to four out of five delayed action risks and three
out of six immediate action risks. This seems noteworthy, especially because the
questionnaire was not designed to give any hints about this distinction.

Immediate action risks were perceived as more serious and disagreement on
acceptability of these risks was much greater. Therefore quality assurance measures
should focus on the outlier risks of Figure 6 as a first step toward clarifying the reasons
for the deviating perceptions. If we were—as a result of discussions within a quality
circle—able to extend the central chain of Figure 7 into a pearl necklace comprising
all fetal risks (this could also mean positioning more than one risk at a single node
of the current chain), a second step in quality assurance should scrutinize whether
the position of each department on this “perinatal risk ladder” can be justified by its
technical equipment and the medical expertise of its staff.

For the discussion of the disagreeing referral decisions (e.g., Figure 3), FCA
enabled us to raise meaningful questions about the reasons for this heterogeneity: Is
there a medical rationale for accepting a diaphragmatic hernia in departments I, O, S,
F A, B, C, W, and Z but not in departments E, H, J, L, N, K, and R? What are possible
common elements of staff or equipment of both groups? Does it depend on the
capacity to cope with other fetal complications requiring immediate action? It does
not, as one can see: diaphragmatic hernia is no subconcept of any other risk in Figure 3.
On the other hand, hypoplastic left heart was accepted only by departments that would
also accept all other fetal anomalies (including all delayed action risks). It can be
concluded that hypoplastic left heart is perceived as a very serious complication,
even if we do not know enough about the expected epidemiological outcome of this
anomaly. Even if different hospitals do not agree about whether they should accept
this anomaly, they would perhaps agree on the seriousness of this risk. Thus, even if
the objective risk of the referral decisions is unknown, FCA enables the discussion and
construction of adequate measures to be taken for standardization and improvement
of medical care.

Overall, the study showed serious discrepancies between risk attitudes toward
maternal and pediatric complications. Some attitudinal sets were shown to be in-
consistent with accepted standards of care in the field. As a result of this study, the
Viennese government formed a perinatal quality assurance committee to develop
guidelines for acceptance and referral of perinatal risk conditions.
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Chapter 7

Comparison of
Visualizations in Formal
Concept Analysis and
Correspondence Analysis

Karl Erich Wolff and Siegfried Gabler

1 Introduction

The development of formal concept analysis (Wille, 1982; Ganter and Wille, 1996)
led to a new possibility for the visualization of data by line diagrams of conceptual
hierarchies: in contrast to methods such as correspondence analysis, which represent
data approximately in planar displays, line diagrams visualize data without any loss
of information. For a survey of nine graphical data analysis methods the reader is
referred to Wolff (1996); for an application to medical data see Frick et al. (Chapter 6).

The purpose of the present chapter is to compare the visualizations in formal
concept analysis (FCA) and correspondence analysis in its two variants: simple
correspondence analysis (CA) and multiple correspondence analysis (MCA). In the
following chapter we compare these methods as to the same data sets, and discuss
their respective advantages and disadvantages.

85
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2 Examples

21 A Repertory Grid of an Anorexic Young Woman

The following data are from an investigation of anorexic young women by Spangen-
berg (1990). Using the Repertory Grid Technique, each patient was asked to name
her most important persons including herself and her ideal self. The patient evaluated
each of these persons according to seven bipolar constructs on a rating scale from
1 to 6; for example, one such construct is “resolute-insecure,” where 1 means very
resolute and 6 means very insecure. The seven constructs were as follows:

peaceful-conflicting (pe-co)  self-confident—weak (sc-wk)
lively—theoretical (li-th) dependent-independent  (dp-id)
being in want of warmth—unfamiliar (ww-uf) resolute—insecure (re-is)
lonely-loved (lo-1v)

One of the patients generated the repertory grid in Table 1 with the persons SELF,
IDEAL, FATHER, and MOTHER.

To visualize these data by FCA and by CA, we first analyze the data by selecting
the extreme responses with marks 1 or 2 and 5 or 6, which leads to the incidence
matrix of Table 2. For example, SELF and MOTHER are lonely (lo), the IDEAL
is loved (lv), and FATHER has none of these attributes, which implies that he has
one of the intermediate values 3 or 4 of the construct lonely—loved. It is possible to
construct tables that represent all the information of the grid, but the chosen coding is

very close to the language used in conversation between the patient and the therapist.
This table will be visualized now by FCA and CA.

Table 1: The data table of an anorexic young woman

pe-co sc-wk li-th dp-id ww-uf re-is lo-lv
SELF 1 6 2 1 1 6 1
IDEAL 5 1 2 6 3 1 5
FATHER 4 1 1 5 2 2 3
MOTHER 5 1 6 6 6 1 1
Table 2: The table of the extreme responses

pe co sc wk li th dp id ww wuwf re is lo Iv
SELF X X X X X X X
IDEAL X X X X X X
FATHER X X X X X
MOTHER X X X X X X X
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2.2 Line Diagram of the Concept Lattice

We start with the standard graphical output of FCA, namely the line diagram in
Figure 1. For each person and for each attribute there is a solid circle in the line
diagram and there are additional, unlabeled, solid circles. A person has an attribute
in the data table if and only if there is an ascending path from the circle of the person
to the circle of the attribute.

Hence SELF is peaceful, weak, dependent, insecure (and no other person has
these attributes); SELF also has the attributes being in want of warmth like the
FATHER (and nobody else), and lively like IDEAL and FATHER, and lonely like
the MOTHER (and nobody else). The FATHER is self-confident, independent, and
resolute like IDEAL and MOTHER. The IDEAL is the only person who is loved,
the IDEAL is conflicting like the MOTHER, and the MOTHER is theoretical and
unfamiliar and nobody else has these attributes. This is the complete information
from the data in Table 2.

Further valuable information can be recognized easily from the line diagram.
First, there are several meaningful partitions (called extent partitions) on the set of
persons, meaningful in the sense that each class (cluster) of a partition is described by a
subset of attributes, for example, the two-class partition consisting of the conflicting
persons {MOTHER, IDEAL} and the persons {FATHER, SELF} being in want of
warmth. There is another remarkable two-class partition, namely the partition SELF
versus the others, with SELF described by the attributes peaceful, weak, dependent,
insecure and the others by self-confident, independent, resolute. It is clear that this

resolute
independent
self-confident

conflicting being in.want of warmth

insecure

. dependent
unfamiliar weak
theoretical peaceful
MOTHER SELF

Figure 1: A line diagram representing the conceptual structure of the extreme re-
sponses of an anorexic young woman.
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partition is very important for this patient (SELF), because three different bipolar
constructs are used by the patient to describe this partition.

2.3 Correspondence Analysis Map

To apply CA to these data we construct from Table 2 the corresponding 0—1 matrix
N; that is, we replace each cross by 1 and fill each empty cell with 0. Figure 2 shows
the CA map of the table coded in this way.

In the map each attribute point lies in the barycenter of the points of the persons
having this attribute. Using this barycenter reading rule, we see from the map very
clearly that only SELF is peaceful, weak, dependent, and insecure; MOTHER is
theoretical and unfamiliar; IDEAL is loved. We further see that only SELF and
MOTHER are lonely, because the point lonely is the barycenter of the points of
SELF and MOTHER (and of no other pair of object points); SELF and FATHER are
being in want of warmth; IDEAL and MOTHER are conflicting.

The FATHER is the only person who shares each of his attributes with other
persons. The point representing lively does not lie on a line between two person
points; hence this attribute is associated with at least three persons. It cannot be

1.2
FATHER IDEAL
. * loved
0.8 | .
lively
being in want of warmth ‘\
0.4} LN \ resolute
~ . independent
’é.‘ :—\'ﬁ’: - - wself-confident
% -0.0 e —— o
-~ e ful \ ~ &« conflictin
= SELF heai ¥ \ - g
S —0.4f dependent \
S insecure \
\
n ~0.8t u \
™ lonely \
~< \
-1.2F \\
\ unfamiliar
» theoretical
16} MOTHER
_2.0 . L 1 1 1 1

-1.6 —-1.2 -0.8 -0.4 0.0 04 08 1.2
M = 0.685 (58.5%)

Figure 2: The asymmetric map in which attributes are at the barycenter of their
objects.
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associated with MOTHER, otherwise it would lie much lower on the vertical axis.
Hence lively must be at the barycenter of the points of SELF, FATHER, IDEAL. The
same argument shows that the common point of resolute, independent, self-confident
is the barycenter of MOTHER, FATHER, IDEAL. Hence we have again been able
to reconstruct the original table, but with a little more difficulty compared with the
FCA diagram. In CA there are maps with more objects and attributes; however, it
may happen that barycenters of different subsets of objects are very close together
or even coincide, which makes it difficult or impossible to reconstruct the data from
the map. Finally, we mention that the large value of 86.5% for the explained inertia
indicates relatively good quality of this map in the sense that the {(multidimensional)
points lie close to the plane shown in Figure 2.

2.4 Comparison of Both Visualizations

We compare the FCA line diagram (Figure 1) and the CA map (Figure 2) first with
respect to their intentional similarities and then with respect to their graphical differ-
ences. In Figure 2 one can see the persons and attributes in an arrangement similar
to that in the line diagram of Figure 1: the unfamiliar and theoretical MOTHER,
connected by the attribute conflicting with the loved IDEAL, both connected with the
FATHER by the attributes self-confident, independent, resolute; IDEAL, FATHER,
and SELF are the lively persons with the subgroup FATHER, SELF both being in
want of warmth; the SELF, which is by itself peaceful, weak, dependent, and inse-
cure, shares the attribute lonely with the MOTHER. This circular story starting from
MOTHER over IDEAL, FATHER, and SELF back to MOTHER can be seen in both
visualizations.

A CA map is a representation of the rows and columns of the table in a mul-
tidimensional metric vector space, obtained by a linear projection onto a suitable
plane. It should be mentioned that the whole CA process produces not only a two-
dimensional display but also extensive numerical output that can be used for analyzing
the data.

In contrast to this metric vector space approach, line diagrams represent concep-
tual hierarchies that are combinatorial ordinal structures obtained from the data table.
To represent these hierarchies in the plane one needs only the usual order of real
numbers in the y-direction of the plane and ascending lines connecting two points
to represent the relation that a formal concept is a lower neighbor of another formal
concept in the conceptual hierarchy.

2.5 Interordinal Scales and the Guttman Effect

An example that shows the difference between FCA and CA displays more dramati-
cally is the so-called interordinal scale given in Table 3.

This cross table represents a “language” about the numbers {1, 2,3, 4, 5, 6} (i.e.,
the values in Table 1) using the attributes < 1,...,< 6, = 1,...,= 6, which
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Table 3: An Interordinal scale

) =1 =2 =3 =4 =5 =6 =1 =2 =3 =4 =5 =6

1 X X X X X X X

2 X X X X X X X

3 X X X X X X X

4 X X X X X X X

5 X X X X X X X

6 X X X X X X X

are needed to describe intervals, for example, the set of all numbers x satisfying
3 = x = 5, which is just {3,4,5}, the intersection of the sets {x | x = 3} and
{x | x = 5}. The concept lattice of this interordinal scale is shown in Figure 3 and the
asymmetric CA map of the indicator matrix (Table 3) is shown in Figure 4.

The CA map (Figure 4) shows the well-known Guttman effect (or “horseshoe
effect”), namely the parabola-shaped configurations of the set of numbers 1 to 6 as
well as the “attribute” points < i (i = 1, 2, 3, 4, 5, 6) on the left side and = i on the
right side (see also Greenacre, 1984, secs. 8.3 and 8.8.2). This CA map shows how
difficult it is to reconstruct the data using only the barycenter reading rule. A parabola-
shaped configuration in a CA map occurs not only in ordinal and interordinal scales
but also in many data with a certain “trend.” The line diagram in Figure 3 allows the
data to be reconstructed exactly.

Figure 3: Line diagram of the concept lattice of the interordinal scale.
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Figure 4: CA map of the interordinal scale.

3 Data Representations in Formal
Concept Analysis

FCA was introduced by Wille (1982) “based on the philosophical understanding of
a concept as a unit of thoughts consisting of two parts: the extension and the inten-
sion (comprehension); the extension covers all objects (or entities) belonging to the
concept while the intension comprises all attributes (or properties) valid for all those
objects.” For detailed introductions the reader is referred to Ganter and Wille (1996)
and Wolff (1994). FCA is the central theory in the field of conceptual knowledge pro-
cessing with two main branches: namely, conceptual knowledge systems (see Wille,
1992) and conceptual data analysis (see Wille, 1987; Spangenberg and Wolff, 1991;
Wolff et al., 1994).

Here we give a short overview of the main ideas in conceptual data analysis. We
start with the formal representation of data tables by many-valued contexts. Data are
usually collected in tables with many rows and columns and possibly empty cells.
Hence such a table can be described formally as a partial mapping from G X M
into W, where G is called the set of objects (“Gegenstinde” in German), M the
set of many-valued attributes (“Merkmale”), and W the set of values (“Werte”).
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Attributes usually describe variables such as age, temperature, and time. Conceptual
data analysis unfolds a given many-valued context in a certain conceptual frame that
represents the conceptual meaning of the values, where “conceptual” is understood
in the sense of “formal concepts” introduced by Wille (1982).

An example of a formal context is given in Table 2. This table can be described
by three sets, namely the set G of the four persons, the set M of the 14 attributes, and
the set I of all the person—attribute pairs, which are indicated by crosses in the table.
In general, a formal context (or briefly a context) is defined as a triple (G, M,[) of
sets where [ is a subset of all possible pairs (g, m), denoted by G X M. The elements
of G are called objects and the elements of M attributes. If (g,m) € I, we say that
g has the attribute m. Each “cross-table” describes a formal context uniquely. The
central definition of formal concepts and their hierarchy is formulated with respect
to a given formal context. A formal concept of a context (G, M, /) arises in a natural
way from a “database question” consisting of a subset O of M by constructing first
the “answer” A of all objects having all attributes of ¢ and second the set B of all
attributes that are valid for all objects of A. Then the pair (A, B) is called a formal
concept of (G,M,I). The set A is called the extent and B the intent of the concept
(A,B).

In the context of the interordinal scale of Table 3 the pair (A;,B;) = ({3,4,5},
{= 5,= 6,= 1,= 2,= 3}) is a concept of this context. Another concept is
(A2,B7) = ({1,2,3,4,5},{= 5,= 6,= 1}). The first concept has a smaller extent
and a larger intent than the second, which demonstrates the well-known fact that the
more conditions there are, the fewer objects fulfill them. This leads to the definition
that for any two concepts (A1, By), (A2, By) of a given context the concept (4, By) is
called a subconcept of (A, B), briefly (A, B1) = (A3, B»), if A; C A,. The ordered
set of all concepts of a context is called the concept lattice of the context. Concept
lattices can be represented in the plane by line diagrams.

Line diagrams are specially labeled Hasse diagrams of concept lattices. One can
show that every finite ordered set can be represented without any loss of information
by a Hasse diagram in the plane (see Davey and Priestley, 1990). There are two
main steps in the construction of a Hasse diagram of a finite ordered set, denoted by
(P, =). In the first step each element p of P is represented by a planar point 4(p),
called the Hasse point of p, such that smaller elements in the ordered set (P, <) are
represented by lower points in the plane. In the second step two Hasse points A(p),
h(q) are connected by a line if and only if p is a lower neighbor of ¢, that is, p = ¢,
and there is no other element of P between p and g. It is clear that an ordered set can
be represented by many graphically quite different looking Hasse diagrams, and it is
an art to draw “nice” Hasse diagrams.

The line diagram in Figure 1 is a Hasse diagram of the ordered set for the context
represented in Table 2. In general, a line diagram is a Hasse diagram of a concept
lattice labeled in the following way. The name of each object g of the given context
is written a little bit below the Hasse point of the object concept of g and the name of
each attribute m is written a little bit above the Hasse point of the attribute concept
of m. The object concept of an object g is the smallest concept having g in its extent,
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and the attribute concept is the greatest concept containing m in its intent. Then the
following reading rule for line diagrams holds: an object g has the attribute m if and
only if there is an ascending path from the point labeled with g to the point labeled
with m. Hence a context is reconstructable from any of its line diagrams.

Using the reading rule in the line diagram of Figure 1, one can see that the
FATHER has the attributes self-confident, independent, resolute, being in want of
warmth, and lively, but he does not have the attribute lonely, for example, because
there is no ascending path from FATHER to lonely. Finally, we mention the role of
unlabeled circles in a line diagram. Each of these represents a concept that is neither
an object concept nor an attribute concept. The unlabeled circle in the middle of the
line diagram in Figure 1 represents the concept ({IDEAL, FATHER}, {self-confident,
independent, resolute, lively}). In general, a circle in a line diagram represents the
concept with the extent consisting of all objects reachable from the circle by descend-
ing paths and the intent of all attributes reachable from the circle by ascending paths.
Hence the circle at the top denotes the concept having all objects in its extent, and
the circle at the bottom denotes the concept having all attributes in its intent. Top
and bottom concepts may or may not be object or attribute concepts. To represent a
many-valued context by a line diagram, we construct a “meaningful” formal context
from the given many-valued context. This process is called conceptual scaling in
FCA (see Ganter and Wille, 1989, 1996; Wolff, 1994) and is a generalization of the
construction of the so-called indicator matrix in MCA (e.g., Greenacre, 1994) and
the process of coding in multivariate analysis (see Gifi, 1990).

4 Data Representations in
Correspondence Analysis

41 A Common Background for CA and FCA

To have a common background for both CA and FCA, we discuss briefly the meaning
of some fundamental key words in CA. Categorical data are obtained in the process
of describing some part of the “reality” by classifying “objects” with respect to certain
“aspects” into “‘categories.” Each aspect (e.g., age) has several categories (e.g., age
groups) into which the objects are classified. The categories of an aspect are often
ordered in a certain hierarchy. The two most useful, very simple, and extreme types
of orders are “chains” and “antichains.” In a chain (e.g., the chain of ages from
0 to 100 with the usual order) any two elements are comparable; in an antichain
any two elements are incomparable in the given order relation (e.g., the antichain
of the age groups [0, 17], [18,64], [65,100] regarded as sets with respect to the
order of set inclusion). In conceptual scaling the corresponding scale types are called
one-dimensional ordinal scales and nominal scales. The classification of objects into
categories of several aspects is usually described in a “data table,” in which the rows
are indicated by names of the objects, and the columns by names of the aspects; the
cell (, j) in row i and column j is filled with the name of the category into which



94 Chapter 7. Comparison of Visualizations

object i is classified with respect to aspect j, and this cell is empty if object i is not
classified into a category of j. The mapping of the objects to the categories of a given
aspect is usually called a “variable” in statistics. It is obvious that categorical data can
be represented by many-valued contexts. The hierarchy of categories is represented
in the concept lattices of the conceptual scales.

Contingency tables are constructed from a many-valued context without missing
values by selecting two attributes (“variables”) @ and b and by indicating the rows
and the columns of the contingency table with the names of the values of attributes
a and b, respectively. The entry in cell (x, y) is defined as the number of objects g in
the many-valued context such that a(g) = x and b(g) = y. Contingency tables do not
represent the hierarchies of the categories of a and b, in contrast to FCA, in which
both hierarchies and the contingency numbers are represented in nested line diagrams
(see Wolff, 1994) of the formal context obtained from the many-valued context of the
data table restricted to the categories a and b by scaling a (respectively b) with a scale
for the hierarchy of a (respectively b). The same holds true for multidimensional
contingency tables with more than two categories. They represent only the numbers
of objects of the contingency classes of the corresponding concept lattice but not its
conceptual structure.

Matrices are special many-valued contexts without missing entries. If all matrix
entries are real numbers, one can use matrix algebra, but then the question arises
of whether the algebraic operations have a meaning. To circumvent these problems
(which are discussed from a general viewpoint in measurement theory by Krantz et
al., 1971), CA does not work with the given many-valued context directly, even if
it is a real matrix. Instead, new matrices are generated in which all entries have the
same meaning as a frequency or all entries are values of binary (dummy) variables.
This leads to two main strategies in CA: simple CA, which works with contingency
tables, in which all entries have the same meaning of frequencies, and MCA, where
the given many-valued context is transformed into an indicator matrix Z of zeros
and ones. This transformation is exactly the same as the conceptual scaling of this
many-valued context with nominal scales for each many-valued attribute.

In its typical form CA generates a map in the usual Euclidean plane from a
two-dimensional contingency table. The main steps in the construction of this map
are described in the introduction to Part 2 later in this book.

MCA is the application of CA to the indicator matrix Z. As an example we
choose the data table given in Table 1 and apply the nominal scaling to these data.
This results in a table with four rows for the persons and 7 X 6 = 42 columns for the
attributes. Table 4 shows the first six columns of this indicator matrix corresponding to
the peaceful—conflicting attribute. Please note that the full table contains many empty
columns, all of which have to be removed before CA can be applied. The asymmetric
map of the nominally scaled Table 1, with attribute points at the barycenter of their
object points, is shown in Figure 5.

The most remarkable impression in Figure 5 is that the points IDEAL and
MOTHER coincide, hence seem to have exactly the same attributes, whereas they have
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Table 4: The ‘peaceful-conflicting” part of the nominally scaled Table 1

pe.l pe.2 ped co.4 co0.5 co.6
SELF 1 0 0 0 0 0
IDEAL 0 0 0 0 1 0
FATHER 0 0 0 1 0 0
MOTHER 0 0 0 0 1 0

the same values only at four of the seven constructs. Also the points of the attributes
lively 2 and lonely 1 coincide, but they are the projections of two different points in
the multidimensional space. In addition, MCA places the attributes loved 5, resolute
1, and theoretical 6 at the same projected position, even though they are different
points in the full space. This can be checked without using the multidimensional
space by looking at the line diagram in Figure 6, which represents the same indicator
matrix without loss of information.

1.8 (
peaceful 1
weak 6
SELF » dependent 1
1.2} being in want of warmth 1
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conflicting 4
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— | independen
N FATHER = eing in want of warmth 2
~ resolute 2
2 _:ively 21 lonely 3
B 0.0 onely
~
[
1l = self—confident 1
o —-0.6 . e
conflicting 5
IDE theoretical 6
MOTHER * independent 6
being in want of warmth 3
-1.2r unfamiliar 6
resolute 1
loved 5
-1.8 1 1 | L L J
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A = 0.890 (44.57)

Figure 5: The asymmetric MCA map of the nominally scaled Table 1.
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self-confident 1

conflicting 5
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independent 5

being in want of warmth 2
resolute 2
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being in wa
insecure 6

FATHER

SELF

Figure 6: Line diagram of the information-preserving nominally scaled Table 1.

5 Conclusion

In contrast to CA, the data evaluation in FCA starts with a many-valued context
given by the original data and represents an ordinal structure on the values of each
many-valued attribute by the scaling procedure. The graphical representation of the
line diagrams of the concept lattice of the derived context contains all the information
of the derived context. Hence FCA has an exact graphical data representation in
contrast to the metric approximation of the data in CA. The exact representation has
the disadvantage that even small many-valued contexts may have concept lattices
with thousands of concepts. Then the main strategy is to use first a very rough scale
and later a finer one. The main technique is the use of nested line diagrams that can
be automatically generated from the small diagrams of the scales.

From our experience with both methods, we suggest using FCA for data with
a small number of many-valued attributes. For data with more than 20 many-valued
attributes one should first apply MCA to the suitably scaled context to find some
interesting attribute clusters that may serve as the starting point for a data analysis
with FCA.
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Software Notes: The Programs TOSCANA and JOSICA

TOSCANA is a conceptual data management and retrieval system that uses the
relational data base system MS-ACCESS. It generates nested line diagrams from a
conceptual file containing the information about the scales. The conceptual file is
generated with the program ANACONDA. Both programs are available from the
EmstSchréderZentrum fiir Begriffliche Wissensverarbeitung e.V., Schlossgartenstr.
7, D-64289 Darmstadt. E-mail: esz@mathematik.th-darmstadt.de.

JOSICA is a GAUSS program written by Siegfried Gabler that enables the
user to run simple, multiple, and joint correspondence analyses. All computations
and graphics in this chapter concerning correspondence analysis are generated by
JOSICA. For more information one may contact the second author.
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Chapter 8

The Z-Plot: A Graphical
Procedure for Contingency
Tables with an Ordered
Response Variable

Vartan Choulakian and Jacques Allard

1 Introduction

Analysis of contingency tables with an ordered response variable has received much
attention during the past two decades. Two widely known and used models are
McCullagh’s (1980) proportional odds model and Goodman’s (1979, 1985) R or C
association models. To take into account the ordinal nature of the response variable,
two main approaches are used: the first one consists of modeling the empirical distri-
bution function as done in McCullagh (1980); the second one consists of assigning
scores to the categories of the ordinal response variable as done in Goodman (1979).
The graphical procedure proposed in this chapter combines both approaches. The
Z-plot was proposed by Choulakian et al. (1994) in the context of goodness-of-fit
statistics. We use it as a preliminary aid to screen the data, which is a first step before
applying a formal statistical analysis.

2 The Z-plot

LetN = {n;;}fori = 1,...,/and j = 1,...,J beatwo-way contingency table, where
the column variable is an ordinal response variable and the rows represent / different
groups, I different time periods, or a combination of some explanatory variables.
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Notice that the column variable j is a specified score as in Goodman’s R association
model. The row variable i need not be a score. Let us define n;, = Z§=1 nij, p(j | i) =
ni;/n;. the conditional relative frequency of the jth column category given the ith
row, and P(j | i) = f;l=1 p(m | i), the conditional empirical distribution function
given the ith row. Let us also define n; = 25:1 nij, n. = Z§=1 nj, p(j) = n;/n.
the marginal relative frequency function of the ordinal response variable, and P(j) =
J _, p(m), the marginal empirical distribution function of the ordinal response
variable. P(j) will be used as a reference or baseline distribution. We note that
the reference distribution could be any other empirical distribution function, such
as the uniform P(j) = j/J. Finally, define Z(j | i) = P(j | i) — P(}j). Notice that
Z(j | i) is based on the empirical distribution function as in McCullagh’s proportional
odds model. The Z-plot is based on plotting for a fixed i = 1,...,1, Z(j | i) for
j =1,...,J — 1, and interpreting the resulting curves. Two kinds of information
can be obtained from Z(j | i). First, for an i fixed, Z(j | {) shows how the ith row
behaves with respect to the reference distribution. In particular, if Z(j | i) = 0 for
j = 1,...,J — 1, it means that the reference distribution stochastically dominates
the conditional distribution of the ith row, which in turn implies that the quantiles
and the mean of the ith row are less than or equal to the corresponding quantiles
and the mean of the reference distribution. The opposite interpretation is obtained if
Z(jlH=0forj=1,...,J —1.Second, let us fix two rows i and i’ and consider
DGliih=ZG 1D —-ZG iy =Pyl —P@GliYforj=1,...,0J —1, the
difference between two Z’s. D(j | i,i’) measures the difference between two con-
ditional empirical distribution functions. If D(j | i,i’) = 0, then the empirical dis-
tribution function of the i’th row stochastically dominates the empirical distribution
function of the ith row; and the opposite happens if D(j | i,i') = 0.
Goodman'’s R association model and McCullagh’s proportional odds model im-
ply the stochastic ordering of the rows, that is, D(j | i,i") = 0 [or D(j | i,i') = 0].
Therefore, if the Z-plot does not reflect this, then these simple models do not describe
the data well and more complex models, such as Goodman’s R + RC model or Mc-
Cullagh’s “nonlinear” model, should be fitted to the data. Now, let us present some
examples.

3 Examples

3.1 Opinion of Youths on Military Service

Table 1 is a contingency table of order 7 X 4, taken from Gilula and Haberman
(1994). It represents the opinion on military service of a sample of youths aged
14-22 in the United States who participated in the National Longitudinal Survey of
Youth from 1979 to 1985. The data represent part of a panel study. One of the aims
of the study was to see how the opinion of youths developed with time. Figure 1
represents the Z-plot of the data. It is evident that the curves representing the years
1979 through 1985 are almost ordered, and during this time period, on the average,
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Table 1: Evolution of the opinion of a sample of youths on military service

Response

Definitely Probably Probably Definitely
Year good good not good not good
1979 1196 4,966 1370 578
1980 930 5,441 1193 546
1981 1048 5,693 967 402
1982 1049 5,737 942 382
1983 1208 5,898 735 269
1984 1125 5,902 772 311
1985 1143 5,996 703 268
Total 7699 39,633 6682 2756

the opinion of the sampled youths changed from “not good” to “good.” We note that
the conditional distributions of the middle years (1981 and 1982) are close to the
reference distribution, because the conditional distributions are stochastically time
ordered.

0.06 ! , .
0.04 1
0.02 - 85
83
84
~ 0.00 1 g?
N
- 80
0.02 2
-0.04 |
-0.06{
-0.08 . . .
Definitely Probably Probably
good good not good

Response category |

Figure 1: Z-plot of evolution of the opinion of a sample of youths on military service.
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Table 2: Response frequency in a taste-testing experiment for five treatments

Chapter 8. A Graphical Procedure for Contingency Tables

Response

Treatment Terrible 2 4 Total
1 9 5 13 4 40

2 7 3 20 4 44

3 14 13 7 0 40

4 11 15 5 8 4?2

5 0 2 30 2 44
Total 41 38 75 18 210

3.2 Taste-Testing Experiment

The data in Table 2 are taken from Bradley er al. (1962) and give the response
frequency of judges in a taste-testing experiment. The five possible responses are
on an ordered scale from terrible (1) to excellent (5), and the rows represent five
unordered treatments. Figure 2 presents the Z-plot. We see that the curves are not
ordered, which implies that McCullagh’s proportional odds model does not fit the
data well, as found by McCullagh (1980), who proposed a more complex “nonlinear”
model to fit the data set.

0.4 1 1
T3
0.2 14
= 004+ — —
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Figure 2: Z-plot representing the results of a taste-testing experiment for five treat-

ments.
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3.3 Severity of Persistent Wheeze According to Age, City,
and Maternal Smoking

Table 3 is a four-way contingency table of order 3 X 3 X 4 X 2, taken from Stram
et al. (1988). These data are from a panel study on the effects of indoor and outdoor
air pollution on respiratory health. Indoor air pollution is represented by the maternal
smoking (S) level, having the three categories Sl (less than 0.5 packets a day), S2 (from
0.5 to 1.5 packets a day), and S3 (more than 1.5 packets a day). Outdoor pollution is
represented by the two cities (C), where the first category is Kingston-Harriman in

Table 3: Severity of persistent wheeze according to age, city, and maternal smoking
status

Severity of wheeze

Maternal smoking
(packets a day) Age 1 2 3

Kingston-Harriman, Tennessee

Less than % 9 418 70 66
10 465 83 67
11 458 64 64
12 467 71 59
% to 1% 9 168 46 40
10 177 43 35
11 184 48 41
12 172 45 36
More than 1% 9 41 17 16
10 64 9 15
11 72 19 11
12 35 12 16
Portage, Wisconsin
Less than § 9 622 113 77
10 788 104 91
11 750 87 99
12 652 56 65
% to 1% 9 225 48 22
10 251 45 37
11 250 35 32
12 209 24 31
More than 1% 9 46 14 8
10 49 15 11
11 36 17 16

12 56 12 11
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Tennessee, a highly polluted metropolitan area, and the second category is Portage in
Wisconsin, a city with a relatively low level of pollution. The response variable is the
occurrence of a persistent wheeze in the previous year, graded in severity as 1 (none),
2 (only with colds), or 3 (apart from colds). The data are gathered at examination of
children of ages (A) from 9 to 12. In this example, for fixed categories s, ¢, and a of
maternal smoking, city, and age, Z(j | s,c,a) = P(j | s,c,a) — P(j) for j = 1,2.

Figure 3 presents six groups of parallel Z-plots, the last three pertaining to the
polluted city of Kingston-Harriman and the first three pertaining to the relatively less
polluted city of Portage. For the city of Kingston-Harriman, we see that the persistent
wheeze deteriorates as the maternal smoking level increases and the three maternal
smoking levels are clearly separated. For the city of Portage, the effects of the first
two levels of maternal smoking are less distinguishable, and the persistent wheeze
deteriorates when the maternal smoking level increases to S3 (more than 1.5 packets
a day).

To compare the cities, let us fix the smoking level. For low-level maternal
smoking, the figure shows a slight difference in wheezing level between the cities.
For the medium level of maternal smoking, the difference is greatest. Finally, for
the highest level of maternal smoking, the figure does not suggest a difference in
wheezing level.
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Figure 3: Parallel Z-plots for the severity of persistent wheeze according to age, city,
and maternal smoking status.
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We also notice that the figure does not suggest an age trend. However, we note
that, during the 4 years, the variability of the persistent wheeze relative to age is
greatest in both cities when the maternal smoking level is more than 1.5 packets a
day (S3).

4 Conclusion

The Z-plot is a simple graphical procedure for visually displaying a contingency
table having one ordered response variable. It is used as an exploratory data analytic
tool to screen two-way and multiway contingency tables, but no formal inferential
conclusion can be deduced from it. However, it may help to choose between formal
statistical approaches, such as Goodman’s R or R + RC association model, McCul-
lagh’s proportional odds model, or more complicated models for ordered categorical
data that are available to analyze such data sets.



This Page Intentionally Left Blank



PART II

Correspondence Analysis

The following 14 chapters are concentrated on the theory and practice of correspon-
dence analysis (CA). On the more practical side, we will see CA used as a method
for interpreting political data in countries as different as Bulgaria and Luxembourg;
as a method for analyzing textual data to understand American social attitudes and
attitudes of French pupils to mathematics; and as a sociological tool in mapping
themes used in political campaigns in Germany and comparing groups of visitors to
art exhibitions in Vienna, Hamburg, and Paris. On the more theoretical side, we have
a panorama of chapters that deal with aspects of interpretation, diagnostics, miss-
ing data, and three-way and nonsymmetric forms of CA. These theoretical chapters
all contain substantive applications as well, again in a variety of contexts in many
different countries: for example, the French Worker Survey, the German General
Survey Program, the Canadian National Election Study, changes in the workforce in
the Languedoc—Roussillon region of France, a survey of British premarital and ex-
tramarital relationships, and a survey of Italian parents of adopted children. Clearly,
CA has come a long way since it was called a “neglected multivariate method” in the
1970s.

The variety and richness of CA can be attributed to several factors. First, it
has been rediscovered and developed in various forms by researchers in different
countries and has a history marked by cultural richness and diversity (see Nishisato,
1994, for a comprehensive historical overview). Second, its powerful visualization
capability, based on a simple and familiar geometric paradigm, finds substantive
applications in discovering the dimensions of “social space” (see Bourdieu, 1979,
1984), the scales of psychological traits, environmental gradients in ecology, and
time ordinations in archeology. Third, the method is applicable to different forms
of categorical data: counts, preferences, ratings, and zerofone “dummy” variables,
which make it a versatile technique in many areas of research.

Although difficult to read for the uninitiated, the book by Benzécri and collab-
orators (1973) is a rich source of basic results and applications of CA. A simple
introduction to CA is given by Greenacre (1993) in the form of structured, nontech-
nical explanation aimed specifically at an audience interested primarily in practical
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aspects. Different approaches to the theory and practice of CA can be found in Lebart
et al. (1984), Greenacre (1984), Gifi (1990), and Nishisato (1996). The present book’s
antecedent, edited by Greenacre and Blasius (1994a), gives a thorough explanation
of the simple and multiple forms of CA, including a step-by-step guide to all the
computations and many different applications in a social science context. The fol-
lowing 14 chapters can be considered to be a continuation of that book and reflect
developments in the subject over the past four years.

In a nutshell, CA may be described as a special type of principal component anal-
ysis of the rows and/or columns of a table, especially applicable to cross-tabulations.
The most typical result of CA is a planar map on which each row and each col-
umn are depicted by a point. It is the values in each row or column relative to their
respective row or column totals that are analyzed and displayed, and these vectors
of relative values are called “profiles.” A standardization is introduced consistent
with the assumption that the elements of each profile have variances proportional to
their respective means. This assumption engenders what is called the “chi-squared
distance” between profiles and gives CA its particular algebraic and geometric prop-
erties, notably its symmetric treatment of rows and columns. Indeed, the results of CA
are unaltered by transposing the data matrix. This property has caused a good deal
of controversy, because there are only few occasions when the rows and columns
are considered to be completely interchangeable. In a typical sociological cross-
tabulation, for example, the rows might be family status groups used to explain the
difference between different attitudes as columns, for example, attitudes to abortion,
and this immediately implies an asymmetry in the two modes of the table. Neverthe-
less, it is true that for many cross-tabulations it makes sense to interpret both the row
percentages and column percentages of the table, that is, the row and column profiles,
in which case the symmetry inherent in CA is appropriate. A good example of this
is a square table in which the rows and columns are the same categories applied to
related groups, for example, a table of preferred leisure activities of husbands and
wives, or the cross-tabulation of two multiresponse variables.

As in the case of principal component analysis, CA can be defined algebraically
as the singular value decomposition of a centered and standardized form of the
original data matrix. This is the matrix of standardized residuals that can be obtained
by computing the difference between observed and expected frequencies, divided
by the square root of the respective expected frequency. The left and right singular
vectors provide the unscaled coordinates of the rows and the columns along respective
principal axes, and the singular values define scaling factors for the rows and/or the
columns on respective axes. The singular values are square roots of eigenvalues that
decompose the total variation of the table, called the “total inertia.” In the case of a
cross-tabulation, the total inertia is equal to the usual Pearson chi-squared statistic
divided by the total of the table.

In the so-called symmetric map, the row and column coordinates are both scaled
by the singular values. The coordinates are called principal coordinates in this case,
and both row and column points displayed in principal coordinates are projections
of the row and column profiles onto the visualization space, usually a plane formed
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by the first two principal axes. In an “asymmetric map,” either the row or the column
coordinates are scaled by the singular values, leaving the other set of coordinates,
called standard coordinates, unscaled. In a map these latter points are the projections
of unit vectors, analogous to the projections of unit vectors onto principal components
to obtain component loadings. Also similar to principal component analysis is the fact
that the asymmetric map is a biplot where the set of points in standard coordinates is
thought of as a set of directions onto which the other points (in principal coordinates)
can be projected to approximate the values in the original matrix.

Apart from issues surrounding the geometric interpretation, there has been a great
deal of interest in the extension of CA to situations in which more than two categorical
variables are cross-tabulated. Two types of generalizations have been investigated,
multiple correspondence analysis (MCA) and joint correspondence analysis (JCA)
(see, for example, Greenacre, 1994). In both cases attention is usually focused on
the positions of the category points and their joint two-way interactions. Although
it is possible to represent a point for each individual response as well, this usually
leads to so many points that it is not a practical strategy—often group mean points
of individuals according to a relevant explanatory variable are interpreted instead.
An interesting development, reflected by several of the following chapters, is in
the interpretation of patterns of responses in MCA. This turns out to be useful in
understanding the patterns of independence among the variables. Chapter 20 by
Meulman and Heiser is a pioneering contribution to this development, as they show
that appropriate forms of visualization of MCA results yield information about all
the interactions in the multiway table, not just the two-way interactions as supposed
up to now.

Let us look at the chapters in this part more closely. There are several chapters
that apply CA to political data, and the first chapter in this part, Chapter 9, written by
Ivailo Partchev, is about the Bulgarian political scene after the 1994 general elections
and leading up to the presidential elections in October 1996. This chapter is a classic
example of simple CA applied to a medium-sized cross-tabulation, just too large to
be easily interpreted by scanning the values in the table itself. Here the visualization
given by CA provides compact descriptions of the data in the form of maps of the
candidates and their relationships to voter groups supporting the different political
parties. The chapter includes the use of a clustering of the political parties in terms
of their voters’ profiles of support for the candidates, which neatly complements the
CA results.

Chapter 10, by Bernd Martens and Jorg Kastl, looks at themes in the media
leading up to and during the so-called “Superwahljahr” (super election year) in
Germany in 1994. Here there are three categorical variables of substantive importance
as well as four distinct periods of interest. CA shows how the thematic issues develop
and dissipate during the election campaigns. This chapter also illustrates how a
number of variables, four in this case, can be analyzed together by appropriate
stacking of two-way cross-tabulations.

Chapters 11 and 12 deal with the analysis of textual data, by Ludovic Lebart and
Mbénica Bécue Bertaut, respectively. Lebart gives a comprehensive overview of ways
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of preparing and coding textual data for statistical analysis. He shows how effective
CA is in visualizing similarities and differences between groups of texts in terms of
their word or “segment” content, where groups are often defined by socioeconomic
variables relevant to the study. In his example, open responses to a survey question
concerning the most important things in life are compared among nine groups defined
by combining three categories of age and three categories of education.

In Chapter 12, Bécue Bertaut applies lexicometric methods to a survey of French
pupils’ attitudes to mathematics, in which pupils have replied freely to a question
about why they do or do not like mathematics. Again, the art of textual analysis
seems to lie in the coding system adopted, and she proposes a more complex lexical
unit called a “quasi-segment” composed of several words that are not necessarily
consecutive. In this example the groups of interest are boys and girls at different
levels of mathematical proficiency. Rather than directly comparing these groups, she
performs a cluster analysis in the subspace defined by these groups and compares the
resulting clusters.

Chapter 13, by Fernand Fehlen, is another application of simple CA to political
data. Luxembourg has an unusual electoral system in which voters indicate their
preferences in two different ways: first, a preferred list of candidates belonging to a
particular party is chosen, giving each candidate on the list a single vote; second, each
voter distributes a number of votes among the candidates of choice (the “panachage”
system). CA shows visually which candidates deviate from their respective party
positions and how their personal influence among the voters compares with their
party’s influence.

In Chapter 14, Christian Tarnai and Ulf Wuggenig use a combination of latent
class analysis (LCA) and CA to analyze responses from visitors to major art exhibi-
tions in three European cities: Vienna, Hamburg, and Paris. LCA is applied to data on
basic value orientations to identify distinct classes of visitors in each city. Then the
authors follow a classic strategy in interpreting the latent classes: they cross-tabulate
the classes against a categorical variable that describes the visitors and use CA to
visualize the tables. In addition, they add supplementary points to represent special
groups in the art world, thereby enriching the interpretation of the maps.

Chapter 15, by Shizuhiko Nishisato, is the first of a set of chapters dealing with
aspects of geometric interpretation. Nishisato starts by describing dual scaling of rank
order data and stresses that to recover the ranks it is necessary to use the asymmetric
map for the solution. When it comes to dual scaling of multiple choice data, that is,
multiple correspondence analysis (MCA), he recommends coding the subject points
by their response patterns, at least by the parts of their response patterns that are
relevant to the interpretation.

Brigitte Le Roux and Henry Rouanet also look more closely at the interpretations
of MCA in Chapter 16 and give a methodical way to interpret all the contributions to
inertia by the variables themselves and by the different response categories. They give
a thorough step-by-step interpretation of an MCA of four questions from the French
Worker Survey, conducted in 1969, and interpret as far as the fourth dimension of the
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solution. They also indicate important response patterns on each dimension in order
to interpret the positions of individuals with respect to the response categories.

In Chapter 17, Michael Greenacre looks at the geometric interpretation of the
category points in MCA. He considers the biplot and unfolding models, based on the
scalar products and distances, respectively, which underlie the CA interpretation. A
measure of quality of this interpretation is proposed that measures the recovery of
the scalar products and distances in a nonmetric sense and generalizes to the multiple
case, both MCA and JCA. By using this type of nonmetric diagnostic, the differences
between MCA and JCA results as well as between the biplot and unfolding approaches
are eliminated and a more consistent measure of quality is obtained that is directly
related to the interpretation.

In Chapter 18, Victor Thiessen and Jorg Blasius examine the degree to which
responses in social surveys such as “no difference” or “unsure” can be regarded
as substantive. They use MCA to interpret the structure of such responses to a set
of questions in a survey of political parties in Canada, where the response “no
difference” indicates that the respondent does not distinguish the political parties on
a specific issue. They find a clear distinction between the nonsubstantive responses
“don’t know” and the other substantive responses, with the “no difference” responses
uncorrelated with this distinction. They also display supplementary variables such
as “political interest,” “education,” and “age” to explore their correlations with the
substantive—nonsubstantive distinction, as well as the “no difference” categories.

Chapter 19, by André Carlier and Pieter M. Kroonenberg, is a thorough de-
scription of a three-way generalization of CA, with an application to a three-way
contingency table of regions in southern France by occupational classes by time
points, that is, a regions-by-occupations table observed at four different time points.
The central idea is to decompose a measure of global dependence in the three-way
table into components for the marginal (two-way) dependences and for the three-way
dependence. A three-way matrix decomposition is fitted to account for these differ-
ent components. Finally, visualization of different sources of dependence is possible
thanks to a biplot of all three modes in a single map, where two modes (in this case,
the regions and time points) have been combined to enable the biplot interpretation
(between the region—time points and occupational class points).

In Chapter 20, Jacqueline J. Meulman and Willem J. Heiser come to grips
with the elusive question: how can homogeneity analysis (alias MCA) shed light on
interactions of order higher than two-way? As in Chapters 15 and 16, the answer
lies in displaying the individual response patterns, which they call profiles, but also
the centroids of the response patterns that represent various category combinations
as well as the categories themselves. Using an example of four variables with two
categories each, they show how structures in the odds ratios implied by different
models of independence for the multiway table turn out as ratios of distances between
the profiles and the centroids. Interactions can be studied by identifying additivity in
the inertia contributions of the profiles and their centroids. The independence models
can be diagnosed by certain patterns of parallet lines in the map.
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The last two chapters of this part both deal with a variant of CA called nonsym-
metrical correspondence analysis (NSCA). Whereas CA is invariant to the transpo-
sition of a data matrix, NSCA treats the sets of rows and columns differently, one
being the predictor and the other the response. In Chapter 21, Simona Balbi gives an
overview of NSCA and describes the geometric interpretation of NSCA maps as well
as their differences from CA maps. She shows that the row and column points have
different geometries in accordance with their nonsymmetric roles in the analysis.
NSCA is also extended by three-way tables when two variables are considered to be
predictors by combining the categories of these two variables to form a single one.

In Chapter 22, Roberta Siciliano and Francesco Mola use NSCA as a way to
develop a prediction rule when there are several categorical predictors of a categorical
response variable. Their approach is in the family of decision tree methods such as
CART (see Aluja-Banet and Nafria, Chapter 5) and CHAID, where the prediction
rule is determined by successively partitioning the observations according to the
categories of a predictor. These authors propose splitting the observations into three
groups at each stage, and NSCA is used to decide which predictor variable is chosen
and how the splitting is performed.



Chapter 9

Using Visualization
Techniques to Explore
Bulgarian Politics

Ivailo Partchev

1 Introduction

Political studies provide a particularly good playground for data visualization tech-
niques. Temptations to extract far-reaching conclusions from simple displays are
less strong here than in, say, sociology or psychology, and we can use visualization
techniques in the way they are intended: as efficient tools for the reduction of data.

Political life in a country is shaped by a small number of fairly invariant factors:
the political parties; a not so numerous elite of leading politicians; several influential
newspapers; and the electorate, classified into various social and demographic groups.
Of course, we must ask many questions before we can relate these factors to one
another. At which end of the political spectrum is a party situated? Who votes for it?
What are the political messages of the leading newspapers? Many of these questions
can be answered by running a few correspondence analyses on a survey that simply
asked people about the newspapers they read, the politicians they trust, and the party
they vote for. This may be the quickest way to become familiar with the political
scene.

This chapter shows how visualization techniques helped to analyze Bulgarian
public opinion data at different stages of the presidential race in 1996. Of the many
possible data sets, we have chosen two simple cross-tabulations. In this way the
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political part can be kept short while still sufficiently detailed. In both tables, the
intended vote for president was cross-classified against the self-reported actual vote
in the most recent general election.

2 The Data

The first table comes from a public opinion poll conducted by mail in Bulgaria in
February 1996. At that time, it was known only that the presidential election had to
take place in autumn and that the president in office, Dr. Zheliu Zhelev, intended to
run again. None of the political parties had come up with a candidate yet, and the
survey tried to identify any names that were “in the air.” To that end, an open-ended
question asked, “Can you name a person who is most worthy to become president of
Bulgaria?”

The sample and the questionnaire of the February survey were prepared by the
author. A total of 2397 questionnaires were mailed to every eighth person over 18
years of age and born on a certain date; of these, 523 were returned complete. At a
response rate of barely over 20%, the adequacy of the sample should be defended
by practical experience rather than by the theory of random sampling. In situations
in which results could be verified by a subsequent election, our practice has found
similar samples to perform at least averagely compared with face-to-face interviews.
Moreover, we are primarily interested in data structures, and there is no reason to
believe that associations between variables could be seriously biased by nonresponse.
The data have been poststratified to match self-reported voting in the latest general
election in December 1994 with the actual election outcome.

The second table is based on a survey that was done in October 1996—a week
before the real election—by the Laboratory of Political Behaviour, Sofia University.
It used face-to-face interviews and a two-stage cluster design, sampling 160 clusters
with a probability proportional to their size and then 10 persons out of each cluster.
The response rate (80%) was much higher than that of the mail poll, but the question
on intended voting had a flaw, reversing the percentages for the candidates who
ended up second and third in the election. This may be due partly to the layout of the
question but mostly to bad luck or some subtle bias in the selection of clusters. For
this chapter, the table of counts has been adjusted to the real outcome of both elections
by iterative proportional fitting (see Bishop et al., 1975, pp. 97-102, and Friendly,
Chapter 2 in this volume), a procedure that changes the marginals but preserves the
association.

3 The Politics

Visualization techniques can indeed shed light on the political identity of parties and
politicians, but some preliminary information will help in understanding results and
evaluating the new insights gained.
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3.1 Parties

The Bulgarian Socialist Party (BSP) is the direct descendant of the Bulgarian Com-
munist Party, the undisputed ruler in an effectively one-party system that lasted from
1944 to 1989. Because the destruction of civil society after 1945 was more radical
in Bulgaria than in, say, Poland or Czechoslovakia, it may be observed that the BSP
stands farther apart from other parties, has undergone less change, and faces less
political challenge than similar parties in other ex-communist countries. Apart from a
short period in 1991-1992, it has had the greatest influence in ruling the country since
1989 and returned to power by winning 43.5% of the votes in the general election of
1994.

The Union of Democratic Forces (UDF) is a coalition of anticommunist parties
that gained much popular support after 1989. It formed a short-lived government in
1991 after winning 34.4% of the votes in the general election but lost some of its
backing later (24.2% in 1994). Still, it remains the second most influential political
force in the country. The parties within the UDF are either new or belonged to the
leftist parties that coexisted with the Communist Party after 1944 (the bourgeois par-
ties having been immediately destroyed), until eliminated in their own turn. Although
BSP propaganda tends to describe the UDF as extreme right, it is in fact supported by
intellectuals, poorer people, and by those who managed—or still hope—to get back
properties confiscated in the 1940s.

The Movement for Rights and Freedoms (MRF) is predominantly a party of
ethnic Turks, although it claims to support human rights in general. The MRF became
particularly important as a political ballanceur after the general election of 1991 (with
7.6% of the votes, it was the only parliamentary party except the BSP and the UDF)
but fared less well in the election of 1994, winning only 5.4%.

The Popular Union (PU) is the union of the Democratic Party and one of the
many Bulgarian agrarian parties. Both split from the UDF in 1991, made it back into
parliament in 1994 with 6.5% of the votes, and are now attempting some political
cooperation with the UDF.

3.2 Politicians

The president in office, Dr. Zheliu Zhelev, was born in 1935, joined the Communist
Party in 1960, and was expelled in 1965 for “antileninism, antimarxism, antima-
terialism, and antisovietism.” Two years later, he wrote Fascism, a treatise on the
totalitarian state. The book was published in 1982, then banned and confiscated, but
the copies that circulated underground led many Bulgarians to reflect on the true
nature of their society. Zhelev was among the founders of the UDF and became its
first leader. He was elected president by parliament in 1990 and reelected by popular
vote in January 1992, winning 44.7% in the first round and 52.8% in the runoff.
Relations with the UDF withered in September 1992 after a press conference in
which Zhelev criticized the UDF government. The government eventually failed a
vote of confidence and resigned—a fact that the UDF somehow attributed to Zhelev’s
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criticism. Apart from this episode, Zhelev persisted in his anticommunistic, free-
market, pro-Western orientation and did not win any lasting sympathy among BSP
supporters.

Simeon II became king of Bulgaria in 1943 with the sudden death of his father, the
highly popular monarch Boris III. Exiled in the late 1940s, Simeon made his fortune
as a financial and political consultant and remained a stable if not too visible influence
in Bulgarian political life. His home in Madrid has been visited by politicians of all
colors, and his popularity among the population became evident in May 1996, when
his visit to Bulgaria made world news. Simeon did not try to run in the election and
would have been prevented by the constitution from doing so. He appears here mostly
because so many Bulgarians would name him their “most worthy candidate.”

Georges Gantcheff is a populist figure that could be described as a Ross Perot
without the money. His aggressive campaigning is not taken seriously by some but
seems to appeal to many. Gantcheff appears to have easy access to television and
uses it quite skilfully, attacking both the BSP and the UDF in some rather unrefined
language. However, his role in politics is less than perfectly neutral. His party, the
Bulgarian Business Block (BBB, 4.7% of the vote in 1994), consistently backs the
BSP in parliament, ensuring a majority and safeguarding the BSP leadership against
internal dissent. Gantcheff’s attacks against the alleged “big deal” between the BSP
and the UDF may appeal to many Bulgarians who failed to see the improvement in
life conditions they had hoped for, but it is also in tune with the voices within the
BSP who challenge the democratic change in principle. Gantcheff seriously hopes to
become president and was third in 1992 (16.8%) and 1996 (21.9%); in either case,
he carefully avoided telling his supporters how to vote in the runoff.

Against this colorful trio, the persons who actually contested the presidential
election in October may pale by comparison.

The BSP initially put forward the man identified as the BSP favorite by our Febru-
ary poll: Georgi Pirinski, the minister of foreign affairs. His name was mentioned
in about 12% of all returned questionnaires and by some 23% of BSP supporters.
However, it turned out that Pirinski did not qualify as a “natural-born citizen” in the
sense adopted by the constitution. He was replaced by Ivan Marazov, a professor of
ancient cultures and minister of culture in the BSP government. Practically unknown
to the general public until then, Marazov came in second in the October election,
winning 27% in the first round and 40.3% in the runoff.

The democratic opposition opted for a strange version of the American primaries
that took place in June and produced an even more unexpected result. The Popular
Union, the MRF, and some smaller parties not represented in parliament supported
the president in office, while the UDF put forward Petar Stoyanov, a fairly unknown
lawyer who had served as vice-minister in the UDF government of 1992. Back
in February, Zhelev’s name had been mentioned in 14% of all questionnaires, and
Stoyanov’s in less than 1% (3% among UDF supporters). Capitalizing on widespread
and mounting dissatisfaction with the worsening conditions in the country, Stoyanov
eliminated Zhelev in the primary and was elected president in October: he won 44.1%
in the first round and 59.7% in the runoff.
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Finally, Alexander Tomov is a professor of economics and a former economic
advisor in the last BCP government before 1989. He split from the BSP and ran in
the general elections of 1991 and 1994 with various formations intended to fill up the
missing political center with a social-democratic alternative, but he could never make
the 4% threshold. Tomov tried his luck in the presidential election and got 3.2%.

4 February 1996

The cross-tabulation of the questions “Can you name a person who is most worthy
to become President of Bulgaria?” and “For which party did you vote in the 1994
general election?” is shown in Table 1. About 6% of all responses on the most worthy
candidates could not be classified into any of the seven categories in Table 1, and
it was decided to drop them altogether rather than create a new group that would
be sparse in numbers and scarce in meaning. This raised the percentages for other
candidates—for instance, Zhelev now has 15% overall rather than 14%.

Table 1 shows column percentages because they are easier to compare across
parties; correspondence analysis was actually applied to the table of counts. By
choosing a display that has parties in principal coordinates and candidates in standard
coordinates, we can concentrate on the same aspect of the relationship as in Table 1:
the choices made by groups of a known previous electoral behavior (Figure 1).

The plot reveals a roughly triangular shape. One quadrant is empty, another is
taken by the BSP and the BBB, a third one is left to the opposition parties, and the last
one is clearly the province of those disaffected with politics, refusing to vote, voting
for small or obscure parties, believing that nobody is worthy to be the president, or
putting all hope in the king.

Table 1: Cross-tabulation of the questions “Can you name a person who is most
worthy to become President of Bulgaria?” and “For which party did you vote in the
1994 general election?” Frequencies are tabulated as column percentages.

Did not
Candidate BSP UDF PU MRF BBB Other vote Total
Zhelev 7 32 40 63 4 0 9 15
Simeon 3 22 28 3 4 33 13 14
UDF persons 1 17 12 3 8 3 6 6
BSP persons 56 3 4 13 21 14 20 27
Gantcheff 14 7 4 3 59 8 8 11
Nobody 8 11 4 6 0 14 17 11
Left blank 11 8 8 9 4 28 27 16
Total 100 100 100 100 100 100 100 100

n= 156 87 23 19 17 56 123 481
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Figure 1: CA of the data in Table 1: parties in principal coordinates, candidates in
standard coordinates.

The principal axes have a clear interpretation. Axis 1 is defined by the potential
BSP candidate as mainly opposed to Zhelev, Simeon, and the UDF persons. Axis 2
seems to oppose the president to the king or, to put it another way, those who still
believe in the existing political structure to those who have lost faith in it.

Keeping in mind that the Popular Union was the main political party that backed
Zhelev in the primary, it is somewhat surprising to find PU supporters actually closer
to UDF persons. In fact, MRF supporters seem to be the only group markedly in
favor of Zhelev. This is explained by his personal involvement in defending the
human rights of ethnic Turks, such as restoring their names after the unfortunate
renaming campaign of 1984-1985, and restitution of properties lost during the mass
emigration in 1989. Another explanation has to do with the prorepublican stand of
MREF supporters, which places them far from the king.

The plot shows President Zhelev in an uncomfortable position. He competes
with the still unknown candidate of the UDF for the anticommunist vote, but his
placement along axis 2 puts him in a less favorable position to attract voters among
the disaffected. This is in line with political logic and was confirmed by the primary.
Widespread dissatisfaction with the conditions of life turned against the president in
office, even if he had little influence in producing these conditions. The June primary
was won by Stoyanov under the slogan of a fresh anticommunist start.
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Zhelev, on the other hand, could enjoy the support of the MRF, which was
important in the 1992 presidential election. Other opposition candidates would have
to pay a higher political price for the same votes.

The quality of representation can be further raised to 93% of the total inertia
by taking into consideration the third principal axis. This carries 13.9% of the total
inertia and is defined primarily by one row and one column point: the Bulgarian
Business Block and its leader, Georges Gantcheff. They are also the only points not
sufficiently well represented on the two-dimensional plot. Because CA solutions are
“nested,” we may stay with the observations made so far while keeping in mind that
the BBB and Gantcheff “stick out” of the plane of projection. This may be regarded
as a statistical illustration of populism as a challenge to the established ways of doing
and discussing politics.

Greenacre (1993, pp. 111-118) describes a way to cluster the row and the column
categories in a cross-tabulation. The idea is to merge successively the two rows (or
columns) that would lead to the smallest decrease in the chi-squared statistic (hence,
preserve most of the association). The height of each merge in the dendrogram is
determined by the difference in the chi-squared statistic before and after the merge.

Figure 2 shows the clustering of the columns of Table 1 (or rather, of the counts
from which Table 1 has been calculated). The dendrogram has been enhanced by
making the branches thick in proportion to the number of people represented.

The clustering translates the triangular structure in Figure 1 into a tree with
three well-defined branches: the BSP and the BBB; the newly formed united oppo-
sition block, consisting of the UDF, the PU, and the MRF; and those undecided or
disaffected.

Most elections are decided by the last of these three categories. Rather alarmingly
for the opposition, this merges with the BSP in Figure 2. Of course, the process of
clustering columns is different from the process in which people decide how to vote.
The greater the distance from the most recent merge, the less likely are the persons
in a branch to vote in the same way. Hence, the dendrogram does not necessarily
say that the opposition parties must do badly in the presidential election: it would be
safer to predict a highly contested election in which every vote will count.

UDF
PU H
MRF —-J
Other party
Did not vote

BSP

BBB

Figure 2: A clustering of the columns in Table 1.



120 Chapter 9. Using Visualization Techniques to Explore Bulgarian Politics

5 October 1996

When the BSP regained executive power in 1994, it had won at least an extra 10% over
its “normal” electoral support. During its first year in office, the socialist government
managed to sustain modest economic growth. Evidently, this was achieved largely
by pouring money into inefficient businesses, which eventually led to a collapse in
the financial system and other mishaps too long to be discussed here. Our February
data may still reflect relative satisfaction with the early record of the government;
however, by June popular discontent was strong enough to turn the tables on Zhelev,
a long-proven anticommunist who happened to be in office and was hence seen as
belonging to the establishment.

In October, even the notoriously united BSP was shaken by strife and mutual
suspicions as one of its top men, former prime minister Andrei Lukanov, was assas-
sinated weeks before the presidential election. There seems to have been bad blood
between Lukanov and other prominent figures in the BSP over financial interests, and
the many nervous reactions to the killing exposed the magnitude of conflict within
the party.

Table 2 shows the cross-tabulation of intended voting in the presidential election
against self-reported voting in the general election of 1994. It is very similar to
Table 1, except that it comes from a fully developed electoral situation—the data
were collected a week before the election.

One row and one column have been dropped from Table 2. These correspond
to the Bulgarian Communist Party, the BCP, which won about 1% of the vote in
the 1994 general election, and its candidate, Vera Ilieva, who obtained 0.8% in the
presidential election. The combination of low masses and perfect association would
have made for a CA map with virtually two points: the BCP as an extreme outlier,
and everyone else.

Table 2: Cross-tabulation of the questions “For which candidate do you intend to
vote in the forthcoming presidential election?” and “For which party did you vote in
the 1994 general election?” Frequencies are tabluated as column percentages.

Did not
Candidate BSP UDF PU MRF BBB Other vote Total
Stoyanov 9 69 73 51 17 11 20 28
Marazov 45 2 5 2 4 2 5 17
Gantcheff 15 9 2 10 46 17 13 14
Tomov 1 1 2 1 1 8 1 2
Other 2 1 2 1 3 7 2 2
Will not vote 28 18 16 35 29 55 59 37
Total 100 100 100 100 100 100 100 100

n= 386 216 57 47 41 139 304 1190
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Figure 3: CA of the data in Table 2: parties in principal coordinates, candidates in
standard coordinates.

The CA map of Table 2—or rather, of the counts from which it has been
produced—is shown in Figure 3. The plot is broadly similar to Figure 1. The tri-
angular shape is even more pronounced; this time, it shows Marazov (and the BSP)
opposed to everyone else.

Again, axis 1 is defined by the polarity between BSP and the united opposition.
This looks almost identical to axis 1 in the February plot—even the share of explained
inertia is the same.

Axis 2 opposes the “protest vote” to those voting for the candidates of the
two largest parties. The vertex is taken by Alexander Tomov, largely because of the
relatively low mass. The important thing to note here is the general similarity between
voting for Gantcheff, voting for Tomov or some other minor candidate, and not voting
at all. These are all symptoms of dissatisfaction with the political establishment—the
“blue-red mist,” to quote from Gantcheff’s favorite political imagery.

In CA of tables matching parties with politicians, MRF invariably produces a
separate axis whenever its leader figures among the politicians. This is because of the
ethnic factor, which is distinct from all other sources of political opposition. Traces
of the same effect were evident in the CA from February, even if Zhelev is not an
MRF man but just popular among MRF supporters. Now that the MRF does not have
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Figure 4: A clustering of the columns in Table 2.

a candidate of choice, it plots in the middle, which allows a clearer interpretation of
axis 2.

Clustering of the data in Table 2 leads to Figure 4. The tree has three branches,
which correspond to the triangular shape on the CA map but are different from
the three branches observed in February. The three parties making up the united
opposition—UDF, PU, and MRF—now merge much earlier: back in February, they
formed a cluster more heterogeneous than the one produced by the merge of “Other
party” with “Did not vote.” The BBB, “Other party,” and “Did not vote” also form
a relatively homogeneous cluster with respect to their intended voting—the “vote
of protest.” Last but not least, the BSP now forms a cluster on its own, which is
indicative of its isolation in current public opinion.

The latter could be demonstrated with regression analyses of election data (not
shown here). According to these, Marazov was backed in the first round by about
two thirds of those who voted for the BSP in 1994 and by virtually nobody else.
Marazov’s votes in the runoff could be explained statistically with his votes in the
first round, about 35% of the votes cast for Gantcheff, and the votes for Vera Ilieva,
the candidate put forward by the BCP.

6 Conclusion

Data visualization techniques have proved to be useful tools in following and ana-
lyzing Bulgarian surveys in 1996. The resulting displays were easier to understand
and present to others than were the underlying cross-tabulations and provided many
valuable insights into the general structure and some finer aspects of the data.

In the context of earlier work (Partchev, 1995), the plots presented here are
quite typical and reveal some of the basic tensions in Bulgarian society. Comparing
plots from early and late stages of the campaign, it is possible to identify stable
and changing elements. Of the former, the most important one is the extreme polarity
between the BSP and the larger opposition parties. Of the latter, it is worth mentioning
the consolidation of the opposition, the crystallization of a vote of protest, and the
deepening isolation of the BSP.



Chapter 10

Visualization of Agenda
Building Processes by
Correspondence Analysis

Bernd Martens and Jorg Kastl

1 Introduction

Public “themes” have become an important topic in the social sciences and espe-
cially in political sociology in the past decades. In the context of media research on
agenda setting, important questions of research are the effects of media on political
opinions, the development of themes in the public, the strategies of political actors
when launching thematic issues, and the selection of different thematic topics by
actors, the so-called framing of situations. By such framing processes, situations,
events, and facts acquire a structure that is recognized in society. This framing also
has consequences for the set of themes for which decisions of the political system
are expected. Furthermore, certain themes become relevant or irrelevant and public
debates can be described as struggles about the importance of issues. In recent soci-
ological concepts of the public, the development and institutionalization of themes
possess an important status. According to Lang and Lang (1981), we use the term
“agenda building” for such processes of launching and stressing issues during which
a hierarchy of relevant themes in the public evolves.

Prominent examples of such launching and rejection of thematic issues are
election campaigns. The decision for and the maintenance of certain themes are
apparently crucial points during election campaigns, at least to the way political
actors see themselves. It is stressed by political managers that such themes should be
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“repeated continuously, but in an intelligent manner” (Bergsdorf, cited by Mathes and
Freisens, 1990, p. 552; Radunski, 1980). These opinions are supported by scientific
conjectures about a so-called priming effect according to which thematic priorities of
political parties and candidates primarily influence the decisions during the elections.
Budge and Farlie (1983, p. 84) even assert that the results of elections can be predicted
by the structure of themes during election campaigns.

Public themes are extremely short-lived and certain trends of such issues can
be distinguished (Luhmann, 1983). Therefore it can be supposed that the last weeks
before an election are essential in order to exploit the priming effect. For example,
Iyengar and Kinder (1987) emphasize that undecided voters can be influenced by
short-term launching of controversial topics. The last weeks before an election should
thus be the most important time period of the whole campaign. During this time
significant activities of all relevant actors should be noticeable, in order to launch
their specific themes.

In this context the year 1994 is an interesting case that can be used to prove
the conjectures about the timing of thematic activities during election campaigns,
because in 1994 an unusually high number of elections on all political levels occurred
in Germany. The whole year and the sequence of elections were referred to in
German newspapers as the “Superwahljahr” (“super election year”). It included nine
communal elections, eight state elections, and the European parliament election and
concluded with the national election in October 1994 [analyses and reports of the
super election year are given by Buerklin and Roth (1994) as well as Falter (1995)].

Owing to the large number of elections, the interesting questions are: Did the
intensity of thematic activities by political actors increase during the super election
year in Germany? And, if that happened, when did such intensified activities start?

2 Data

This contribution is part of a research project dealing with the media coverage of
the super election year. The main goal of this work was to give broad and feasible
insight into the thematic development of the election campaigns. Fortunately, we
were able to use a simple but presumably very meaningful indicator of such thematic
trends during the time frame in question. The broadcasting station “Siiddeutscher
Rundfunk” in Stuttgart (Germany) allowed us access to its database “Venus.” This
database offers exhaustive information about different thematic issues, because all
news items of important national and international news agencies are stored in it.
Items can be retrieved via key words that occur in the texts. In our case, we chose all
news items in which the words “Wahlkampfthem/a/en” (themes or issues in election
campaigns) occurred.

We started from the assumption that the launching of themes would probably
be more visible in items of news agencies than in the contents of other media (for
example, articles of newspapers). This view is partially supported by the fact that
most news items are related to concrete events that can be concisely described by
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Figure 1: Distribution of the news items referring to issues in election campaigns
stored in the database Venus, aggregated by months. The letters a—d refer to the
points in time when elections took place. The numbers of elections were (a) one
communal and one state election; (b) seven communal, one state, and one election to
the European parliament; (c) three state elections; and (d) one communal, three state,
and one national election.

key words. The texts cover the time span between June 1993 and October 1994. The
retrieval yielded almost 600 news items (Figure 1).

Approximately one third of all news items are commentaries written by journal-
ists of different newspapers. The collection of the commentaries is a special service
of the news agencies. Journalists can be seen as actors on their own part in election
campaigns, because they launch, take up, and stress issues by themselves. Thus,
we regard the commentaries as indicators for the activities of media itself. The fre-
quencies in these texts produced by journalists can be taken as a measure of the
importance of a certain thematic issue. Because the database provides an exhaustive
sample of available news agencies in Germany, it can be assumed that the collection
of commentaries and the other news items are representative and valid for the issues
in question and the specific time period. The remaining two thirds of the news items
are related to statements on events, press conferences, interviews, or declarations.

In comparison with other sociological research about thematic developments and
agenda setting processes, our empirical material is special in two respects:

¢ It is not confined to the last weeks before the national election. Instead, it includes
a time span of 17 months of different election campaigns in Germany (the whole
super election year and the months before it).
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¢ The empirical material allows a “backstage glimpse” of media coverage, because
we are dealing with the material that was used by newspaper and broadcast
journalists. This material provides an overview of the thematic issues primarily
before the selection processes of journalists take place. Therefore, we assume that
it will be possible to detect thematic strategies used to launch or to reject thematic
issues in the public debate by actors in the public and political sectors as well as
those from the media.

In order to make the material feasible for statistical analyses, we followed classi-
cal content analytic approaches (Schrott and Lanoue, 1994), categorizing the textual
data using a coding scheme. In the following, we will merely use three nominal
variables of the whole scheme (thematic topics, assessments of the topics by the actor
in question, and the type of actor) with altogether 20 categories (shown below). The
categories comprise 12 thematic issues, 3 assessments given by the actors mentioned
in the texts, and 5 types of actors. The abbreviations given here are used in Figures 2
and 3:

Thematic topics of the news items in question

pds Party of Democratic Socialism, its role in the political system of the Federal
Republic of Germany (FRG)

asyl Right of asylum and foreigners in the FRG
unem Unemployment
insu Social insurance for nursing old and disabled people
eco Economic conditions and development concerning the FRG
secu Internal national security of the FRG
abort Legalization of abortion
social Social topics (for example, social welfare and conditions)
scandals Political scandals (for example, corruption)
taxes Taxes and economic situation of the state
unific Problems of the German unification process
other Other topics (for example, presidential election, armed forces)

Assessments of topics by actors

POS The topic should become a theme during the election campaigns.
NEG The topic should not become a theme in the election campaigns.

NEU It will not matter if the topic becomes or does not become a theme during the
campaigns.

Type of actor that occurs in the news

PARTY Members of a political party
MEDIA Joumnalists
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GOVERNMENT Members of government
PARLIAMENT Members of parliament
NGO Nongovernmental agencies

All variables refer to the main or first topic of the news item. The resulting data set
has 596 cases.

With respect to agenda building processes, the dynamic developments of thematic
issues are of special interest. The topics of the news items were coded by key
words that occurred literally in the basic texts. This coding procedure seems to be
advantageous for our purposes, because most news items can be well summarized by
these concrete terms. The thematic categories that constitute the basis of the following
analyses are confined to the first or the main topics of the news items. However, second
or third themes that were not taken into consideration in the following analyses
appeared in only 15% of the cases.

3 Results

The distribution of the news items over time is very uneven, as Figure 1 reveals. Four
time periods can be distinguished:

1. In the months before the super election year (June to October 1993), 104 news
items with the relevant key words occurred.

2. A first boom in media activities took place between November 1993 and February
1994. The number of news items rose to 249.

3. A period of stagnancy was indicated by rather small frequencies of issues related
to election campaigns (March to June 1994; the number of cases is 103).

4. A second, only temporary peak of news items’ occurrences can be detected during
the summer, which was followed by a decline in launching themes that continued
until the national election in October 1994 (the number of news items in the last
four months is 141).

The main activities occurred at the end of the year 1993 and in the beginning
of 1994. In the light of the conjectures about the timing of thematic activities during
election campaigns mentioned earlier, this distribution of news items is unexpected,
because it does not show an increase in thematic activities.

In contrast to other theoretical statements about agenda building and agenda
setting in election campaigns, our empirical material indicates that political actors
often avoid launching a theme positively but try instead to prevent a topic from
becoming an issue in the campaigns. In almost 40% of all cases the assessment by the
political actors mentioned in the news item is negative. The issue in question should
not become an issue in election campaigns. Only in 32% of the cases is the reference
to the theme positive in the sense that the actor is in favor of actively supporting the
launching of a thematic issue. In 29% of the cases no explicit judgment about the
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theme as a topic in election campaigns is given. In these cases, the statement “x is an
election theme during a campaign” is given without further assessment of it.

In light of these results, the assumption that political actors are keen on launching
themes in a positive way seems to be too simple. It is obviously more realistic, at least
in the case of the German super election year, that a process of selection of relevant
themes took place during the run-ups to the elections. This impression is supported
by the analyses described in the following, in which the thematic issues and the four
periods of the super election year are simultaneously taken into consideration.

Figure 2 shows the plot of a correspondence analysis (CA) of the thematic issues
by the four time periods. The first axis is determined primarily by the contrast between
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Figure 2: Correspondence analysis of the thematic issues by the four time periods
(indicated by numbers), showing the asymmetric map.
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periods 2 and 4. This axis represents 65% of the total inertia and two thirds of the axis’
dispersion can be explained by period 4. The squared correlations of the two time
categories with the first principal axis are 0.97 and 0.74, respectively. This contrast
between earlier and later periods is associated with themes such as “asylum” (the
squared correlation is (.64), “social insurance” (0.81), “political scandals” (0.97), and
“pds” (0.95). The theme “pds” makes a large contribution to the geometric orientation
of the axis, and the last period is strongly associated with the “pds” theme.

The Party of Democratic Socialism (PDS) is the successor organization of the
former communist party in the German Democratic Republic. Because of this history,
the political assessment of the PDS is rather controversial in Germany and the support
by voters differs extremely between East and West Germany. Also, in the beginning
of the year 1994 the PDS participated in both East and West German state elections.
However, the PDS emerged as a leading theme only at the end of the year—Falter
(1995, p. 28) even suggests that this topic was decisive for the national election.

The second axis of the correspondence analysis represents 22% of the total
inertia. It is essentially related to the first period (with a contribution of 47% and a
squared correlation of 0.63) and the themes “abortion” and “internal national security”
(squared correlations of 0.78 and 0.53, respectively).

The main result is that the last period before the national election was deter-
mined chiefly by the theme “pds.” This was a rather formal issue, because it focused
on election strategies and assumed intentions of the Social Democratic Party (SPD).
It essentially dealt with the fear raised and stressed by the conservative party, CDU,
that the SPD could build coalitions or would cooperate with the Party of Democratic
Socialism. The news items did not treat the chances of the PDS to be successful in
elections (which were indeed partially very smail), but the supposed willingness of
other parties to cooperate with it was thematized. It was not a controversy about dif-
ferent solutions of political problems. Themes that are connected with such problems
could be detected in the beginning of the super election year. However, none of these
themes survived during the course of the year 1994. Most of these early themes that
are located at the right side of the first principal axis in Figure 2 are polarizing and
politically controversial. It could be assumed that these themes would be the main
topics of the following election campaigns during the course of the year—but this
assumption is shown to be false by the data.

In a more detailed dynamic analysis, the connections between the thematic
issues, the judgments given by the political actors, the actors themselves, and the
periods of time were simultaneously taken into account. Owing to small frequencies
of some categories, the data set comprises only seven thematic issues (pds, asylum,
unemployment, insurance, economy, security, abortion) and 407 cases. The thematic
issues, separated for each time period, form the rows of the input table, whereas
assessment and actors form the columns of the table to be analyzed.

For example, the following four rows of the input matrix show the distributions
of the thematic issue “unemployment” differentiated between the assessment by the
actor, the type of actor, and the four periods:
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GOVERN- PARLIA-
Label POS NEG NEU PARTY MEDIA MENT MENT NGO

unem_1 5

0 1 1 1 4 0 0
unem_2 7 21 1 20 5 1 1 0
unem_3 2 3 0 3 2 0 0 0
unem_4 5 16 0 16 4 1 0 0

In order to give an impression about the development of themes in time, rows
such as those just shown were concatenated for the seven topics. Thematic issues that
did not occur during a certain period were excluded from the analysis. The resulting
table with 26 rows and 8 columns was the input matrix of the next CA (Figure 3).
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Figure 3: Correspondence analysis of the thematic developments during the time
frame of the super election year. The numbers refer to the time periods. Abbreviations

in capital letters refer to the categories of the column variables. Again, an asymmetric
scaling is used.
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The first two principal axes represent 71% of the total inertia. The first axis
of the map is determined mainly by (1), the difference between governmental and
political party actors who were mostly members of the SPD, the largest party in
opposition to the federal government, and (2), by the difference between positive and
negative assessments given by the respective actors. The inertia of the axis explained
by the categories amounts to “GOVERNMENT” 0.21, “NEG” 0.34, “PARTY” 0.13,
“POS” 0.27. Almost all the dispersion along the axis is therefore attributable to the
dichotomy between these categories.

The vertical axis is highly correlated with the contrasting points “GOVERN-
MENT” and “MEDIA” (squared correlations 0.40 and 0.73 and contributions to the
inertia of 0.35 and 0.21, respectively). The category “neutral assessment” of the
election themes also correlates with this axis (the squared correlation is 0.47 with
an explained inertia of 18%). Other actors—especially the categories “PARLIA-
MENT” and “NGO”—are represented poorly in the map (quality of 0.14 and 0.26,
respectively).

The map in Figure 3 enables one to visualize the development of themes over
the course of time. (A few paradigmatic developments are illustrated by arrows.)

1. Governmental actors were relatively successful in rejecting issues that were con-
troversial topics in public debates (for example, the “abortion” and the “asylum”
topics), which should not become themes during the election campaigns according
to the opinion of political actors.

2. On the other hand, actors who appeared in their function as members of political
parties were rather busy in launching the theme “unemployment,” but this was not
recognized by the media. If the association between this topic and the political
parties is also taken into account, it becomes clear that the SPD tried to push
this theme, which was evidently not recognized by the media. Nearly 60% of the
unemployment topics refer to the SPD. The thematic restraint of the journalists
seems to be a serious drawback that could not be compensated by the SPD.

3. The media itself stressed the “pds” issue, which became a prominent topic of
the usual media coverage during the last weeks before the national election in
October 1994. One third of the frequencies for this theme are attributable to
the conservative party CDU, whereas two thirds are essentially associated with
journalists. For this reason, it seems that the SPD was not able to build its own
agenda but was forced to deal with topics that are not favorable to the party.

4. One general empirical pattern of the agenda building processes during the super
election year is a remarkable dethematization. The “theme cycle” of the political
debate about the “social insurance” is an example of this kind of pattern. It was an
actual political topic during the first period. In later periods of the year it seems
that it became only an issue for the media. However, in the last time period the
topic totally vanished.

5. In general, polarizing and highly controversial themes (such as the questions
of abortion, asylum for foreigners, and internal national security) have a strong
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affinity to negative assessments given by political actors. These topics, which
should obviously not become themes during election campaigns, were rather
successfully avoided by the political actors.

4 Conclusions

Correspondence analysis was used to illustrate the development of thematic issues
during election campaigns. The possibilities for visualizing the data provide good
opportunities for displaying the evolution of themes over time. The distribution of the
news items depicts a sequence of efforts to launch issues and thematic withdrawals
(dethematization) over the course of time. Dethematization does not verify common
models of agenda building and agenda setting processes during election campaigns.
These models are based on the notion of increasing activities. Our exploratory anal-
yses suggest that, at least according to the empirical example of the German super
election year, a sequence of agenda building processes and more often an elimination
of themes by political actors can be detected. Political struggles over thematic issues
took place months before the national election, in the beginning of the year 1994,
During this early period highly controversial themes appeared, but the political ac-
tors were very busy emphasizing that these issues should not become themes during
the later election campaigns. At the end of the year, whether the SPD and the PDS
would cooperate after the elections emerged as a theme. This theme is to a certain
extent self-referential, because no political problems are dealt with, but a hypothetical
outcome of the election is used in order to influence the voting.

One important finding is the active role of the media in these processes. The
analyses reveal that the agenda building efforts of the SPD were not adopted by the
media, and therefore it can be reasoned that this agenda building was not successful.
On the other hand, the “pds” topic became a theme pushed by the media themselves
in the last time period before the national election, and political actors were forced
to deal with it.

Finally, our data show only short sequences of thematic polarization. Instead,
attempts to reject certain topics were partly successful and pronounced time periods of
dethematization can be seen. A thematic polarization was not the main strategy during
the German super election year. On the contrary, the data reveal processes of rejecting
certain themes as the essential strategy of political actors. It is an open question how
these findings can be explained. One could imagine that possible explanations may be
offered by the specific historical situation in Germany after unification, by a special
German political culture, by structural developments of the political system, or by a
more adequate sociological model of the functions that themes have during election
campaigns.



Chapter 11

Visualizations of
Textual Data

Ludovic Lebart

1 Textual Data and Meta-information

Our aim here is to show how correspondence analysis (CA) can help to visualize the
profiles of a series of texts, whether they be literary texts, documents, or responses
to open questions grouped into artificial texts (groupings based on age categories,
profession, educational level, or any other relevant criterion). Which texts are most
similar with respect to vocabulary and frequency of use of words? Which words are
characteristic of each text, through either their presence or absence?

The reader may recognize these questions as the types of questions that may
be answered with the CA of a lexical table (a table that cross-tabulates words and
texts; see Bécue Bertaut, Chapter 12). In the case of responses to open questions in
surveys, the approach we present here assumes that the responses have already been
grouped according to socioeconomic variables, but we shall also briefly discuss other
approaches.

Meta-information or meta-data is particularly abundant in the case of textual
data. Briefly, meta-information is the information concerning a data matrix that does
not appear in the matrix itself. This meta-information, which is relatively easy to
formalize, is used routinely to check and clean files or to carry out consistency
tests in processing survey data [see Hand (1992) and, in the context of information
retrieval, Froeschl (1992)]. Attempts to formalize meta-information have been carried
out by Diday (1992) in the framework of symbolic (as opposed to numeric) data
analysis. The development of exploratory analyses and work done on databases have
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Figure 1: Textual data and external information.

accentuated interest in the concept of meta-information. In the case of textual data,
every word is allocated several rows or several pages in an encyclopedic dictionary.
Words belong to semantic networks that dictionaries of synonyms and partially
automated morphosyntactic analyzers attempt to take into account. The rules of
grammar obviously constitute basic meta-information (see Figure 1). The main issue
is whether these different levels of meta-information are relevant to the problem under
consideration.

On the other hand, in some information retrieval applications, for example, it
is possible to work with key words that are treated as classical presence—absence
qualitative variables and thus to construct tables that are wholly analogous to those
encountered in other statistical applications. Then the data table obtained is no longer
a text but a bundle of words, without order or syntax.

2 About Responses to Open Questions

Sociologists such as Lazarsfeld (1944) suggested the use of open questions in the
preparatory phases of a study; their principal use is in developing a battery of re-
sponse items for a closed question. There are three typical situations in which open
questions must be used: to shorten interview time, to gather spontaneous information,
and to probe and understand the response to a closed-end question (for example, the
follow-up question, why?). The importance of the latter has been advocated by many
sociologists who specialize in surveys, such as Schuman (1966), who alluded to in-
ternational surveys in which problems of comparability and wording comprehension
are acutely present. In international studies, it is important to know whether people
interviewed in different countries understand the questions in the same way. In fact,
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Figure 2: Status of frequency in the case of open-ended questions.

one could raise the same issue with respect to regional, generational, or soctocultural
differences.

Responses to open questions, or free responses, are very specific elements of
information. Observed lexical frequencies are artificial for the most part, because
the same question is asked of hundreds or thousands of people. The juxtaposition
of the responses results in a redundant text by construction where stereotypes are
not uncommon. However, open questions become an essential part of questionnaires
when the scope of research goes beyond a simple tally and when a complex and new
topic is being explored.

A thousand responses to the question “Did you use your car yesterday?” consti-
tute a text in which the words yes and no are predominant and the relative frequencies
of these words have a simple interpretation that is familiar to survey specialists.
Responses to an ancillary question “Why?” asked after a closed question have an
intermediate status. Because they constitute 1000 identical stimuli, these responses
can be stereotypical, or they can include original and unexpected contents and ex-
pressions. Even if expected word differences are taken into account, simple counts
are notoriously inadequate.

On the other hand, when responses are grouped within categories (for example,
age, gender, profession), comparisons of the mean lexical profiles of these cate-
gories can be productive. The most common approach consists of “closing” the open
question a posteriori. This practice is called postcoding, a time-consuming but often
irreplaceable technique. This technique, unfortunately, contributes to maintaining the
dangerous illusion that closed questions asked during the interview are not different
from questions that have been closed for coding purposes.

2.1 Open Questions Versus Closed Questions

Open and closed questions are not really comparable (see Schuman and Presser,
1981). An example of these two types leading to big differences is found in a survey
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on living conditions and aspirations of the French (Lebart, 1987) in which people
were asked to give their comments on, “What types of people does the government
spend the most money on?” The question was asked in open form in 1983, 1984, and
1987 and in closed form in 1985 and 1986 to a sample of size 2000 each year. The
closed question was constructed on the basis of the main items given in the preceding
years. The response item migrant workers obtained 4% in 1983 and 5% in 1984,
when the question was open; 28% in 1985 and 30% in 1986, when the question was
closed; and then 8% in 1987, when the survey reverted to an open question. The fact
that the items were specified most probably had an effect on the range of responses
considered “acceptable.” Even though there was an increase in percentages of those
choosing this item between 1983 and 1987 (4%, 5%, then 8%), the 2 years in which
the question was closed gave percentages (28% and 30% in 1985 and 1986) whose
order of magnitude is by no means comparable to those of the corresponding open
questions. The closed form is, however, more valid if a recollection is involved in
the question. It is well known that lists of items can play a positive role in such a
case, according to an experiment performed by Belson and Duncan (1962), in which
subjects identified newspapers read in the course of preceding days.

2.2 Grouping Responses

As free responses are entered into the computer in their original form, they can be
matched with interviewees’ demographic characteristics as well as their responses to
closed questions. Then they can undergo data management procedures that are both
useful and elementary, such as categorizations and groupings, without being altered.

For example, responses can be grouped by socioprofessional categories. Thus,
responses given by farmers, housewives, workers, and executives can be examined
separately. There might be categories or combinations of categories that are relevant
with respect to each open question. By grouping responses within categories, “artifi-
cial speeches” are obtained that are all the more meaningful when the categories are
carefully chosen. Reading and interpretation are made easier because repetitions and
concentrations of certain issues appear within each category.

However, this rearrangement of raw information can be carried out in many
different ways. The questions are how to group responses in a relevant manner and
then how to facilitate interpreting the groupings thus generated.

First, one can use the criteria that are thought to be the most discriminating
through prior knowledge of the theme being analyzed, with or without the use of
cross-tabulations. If, for example, the questions are related to the evolution of the
family, and if an age effect combined with a sociocultural effect is suspected, a
variable combining age and educational levels can be used.

Second, a partition can be sought that is as universal as possible, within the limi-
tations of sample size; this is the principle behind working demographics. The major
characteristics that are judged to be relevant (for example, age, gender, educational
level, region) are brought together through an automatic clustering technique into a
single partition. This amounts to replacing several thousand individuals with about
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30 or 50 groups that are as homogeneous as possible with respect to the foregoing
criteria.

Third, a direct typology of responses can be carried out (without preliminary
grouping) on the basis of their lexical profiles. Then categories that have the highest
association with this typology can be selected before proceeding to groupings (see
Lebart and Salem, 1994). To satisfy these needs, the textual material has to be
prepared and segmented in such a way as to define new elements that are likely to be
recognized and treated by computer software.

3 Choosing Units in a Text

Different counts have different degrees of relevance in each particular field of re-
search. They also have different advantages as far as practical implementation is
concerned. For instance, a researcher exploring a set of articles assembled from a
database in the field of physics might require that the noun particle and its plural
particles be grouped into the same unit, in order to be able to query all of the texts
at once on the presence or absence of one or the other word. However, in the field of
political text analysis, researchers have observed that singular and plural forms of a
noun are often related to different, sometimes opposite, concepts (for example, the
opposition in recent texts of defending freedom and defending freedoms, referring to
distinct political currents). In the latter case, it could often be preferable to code the
two types of elements separately and to include both in the analysis.

3.1 Analyses Based on Words

A particularly simple way to define textual units in a corpus of texts is to analyze
words (or types). This approach can be used for various purposes depending on the
objectives of the analysis: verification of data entry, inspection of vocabulary, or
creation of a database for subsequent statistical comparisons.

To obtain an automatic segmentation of a text into occurrences of words, a subset
of characters must be specified as separators. A series of characters whose bounds
at both ends are separators is an occurrence {or a token). Two identical series of
characters within separators constitute two occurrences (tokens) of the same word
(type). The entire set of words (types) in a text is its vocabulary.

3.2 Lemmatized Analyses

In the lexicometric approach, the words resulting from automatic segmentation may
be lemmatized. This means that identification rules must be established in order to
group together words arising from the different inflections of one lemma (usual entry
in a dictionary). The main steps in lemmatizing the vocabulary of a text written in
English are to put verb forms into the infinitive, to put nouns into the singular, and
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to remove elisions. Although these steps are relatively easy in principle, the actual
lemmatization of the vocabulary of a corpus involves some unavoidable problems
that may be difficult to resolve.

3.3 Homography, Disambiguation

A systematic determination of the lemma to which each word belongs in a text
often requires prior disambiguation, involving a morphosyntactic analysis and often
a pragmatic analysis (see Kelly and Stone, 1975; Gale et al., 1992; Charniak, 1993;
Weischedel et al., 1993). Some ambiguities might be the result of two words that
happen to be homographs being inflections of clearly different lemmas (for example,
can could be a verb and a noun). In other cases several derivations may exist from the
same etymological source (the different meanings of the word state, for example).
In some cases, ambiguities concerning the syntactic function of a word have to be
removed, requiring a grammatical analysis. Some ambiguities of a semantic nature
can be removed through simple inspection of the immediate context. Others require
examining several paragraphs or even the text in its entirety. Sometimes ambiguities
can exist between several meanings of a word.

4 Numeric Coding of Text

Computer-based processing of textual data is greatly simplified by giving a numeric
code to each word to be used during calculations. This code is associated with each
occurrence of the word. Codes are stored in a dictionary of words that is unique
for each application. We illustrate our approach using the following open question,
which was asked in a multinational survey conducted in seven countries (Japan,
United States, United Kingdom, Germany, France, Italy, and Netherlands) in the late
1980s (for more details, see Hayashi et al., 1992): “What is the single most important
thing in life for you?” It was followed by the probe “What other things are very
important to you?”

Our example is limited to the American sample of size 1563. Some aspects of
this multinational survey concerning general social attitudes are described in Sasaki
and Suzuki (1989).

Examples of answers to the first question were:

1. Family, being together as a family
2. Mother, money, peace of mind, peace in the world

4.1 Tagged Corpora

It is possible to obtain an automatic tagging of the words in such a text of responses.
Some taggers provide an indication of the lemma with which each word can be
associated as well as its grammatical category. In most cases the information furnished



4. Numeric Coding of Text 139

by categorizers must be subjected to careful checking before being used, because the
process of automatic categorization may generate some €rrors.

The main grammatical codes used in this categorization are NN, noun singular;
NNS, noun plural; NP, proper noun; DT, determiner; VB, verb, base form; VBD, verb,
past tense; VBG, verb, gerund or present part; JJ, adjective; PRP, personal pronoun;
RB, adverb; and IN, preposition or subordinating conjunction.

Examples of tagged responses, showing the grammatical category code for each
word, are as follows:

1. Family/NN being/VBG together/RB as/IN a/DT family/NN

2. Mother/NN, money/NN, peace/NN of/IN mind/NN, peace/NN in/IN the/DT
world/NN

Note that such lists of tagged responses provide the user with new categorical
variables related to the same individuals. These variables can play alternately the
roles of active and supplementary variables. They allow one to obtain a syntactic (or
grammatical) point of view over the set of texts (see Salem, 1995).

4.2 Repeated Segments

Even after setting aside words with a purely grammatical role, the meaning of words
is linked to how they appear in compound words or in phrases and expressions that
can either inflect or completely change their meanings. For example, expressions
such as social security and living standard have a meaning of their own that cannot
be construed from the meaning of the words of which they are composed. It is thus
useful to count larger units consisting of several words that could be analyzed in the
same ways as words. These units are called repeated segments (Salem, 1984, 1987).
Like the syntactic categories mentioned previously, these units can play the role of
supplementary variables in the visualizations involving words. Such projection of
segments as supplementary elements enables the reader to grasp the most frequent
contexts of certain words.

4.3 Basic Lexical Tables

We saw that responses can be coded numerically in a way that is completely “trans-
parent” to the user. The result of this numerical coding can take two different formats,
coded in two tables R and T.

Table R has as many rows as there are respondents, say #. There can be missing
responses, but it is convenient to reserve a row for each respondent to ensure easy
merging with responses to closed questions given by the same individuals. The
number of columns of R is equal to the length (number of tokens) of the longest
response (i.e., the number of occurrences in this response). For individual i, row i of
table R contains the addresses of the words that constitute his or her response, while
respecting the order and the possible repetitions of these words. These addresses refer
in the vocabulary that is inherent in the response. Table R thus makes it possible to
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reconstitute the original responses integrally. In practice, table R is not rectangular,
because each row is of variable length. The integers of which table R is composed
cannot be bigger than the size of the vocabulary, say V.

Table T has the same number of rows as table R but it has as many columns as
the number of words used by all of the individuals. The cell defined by row i and
column j of T contains the number of times word j is used by individual i in his or
her response. This table of frequencies is called a lexical table. Table T can easily be
derived from table R, but the converse is not true: information related to the order
of the words in each response is lost in table T. Specific algorithms using R instead
of the large sparse matrix T can lead to enormous computational savings (Lebart,
1982a).

44 Aggregated Lexical Tables

Isolated responses are often too sparse to be the object of direct statistical treatment,
and then it is necessary to work on grouped responses. Let us designate by Z, the
indicator matrix with n rows and J, columns that describes the responses of the
n individuals to closed question g with J, possible response categories, where the
responses are mutually exclusive. In other words, each row of Z, has only one 1 and
(J; — 1) Os. Table C,, obtained through the matrix product C, = T'Z,, is a table
with V rows and J, columns whose general term c;; is the number of times word {
is used by the set of individuals having chosen response j. Each table C, offers a
different viewpoint, namely the viewpoint of the closed question q on the distribution
of the lexical profiles of the responses to the open question being analyzed.

4.5 Frequency Threshold for Words

These comparisons of lexical profiles become meaningful from a statistical point of
view only if the words appear with a certain minimum frequency. Frequency distri-
butions of vocabularies are such that choosing a frequency threshold often drastically
reduces the size of the vocabulary without reducing the size of the remaining corpus
too much.

The counts for the first phase of the numeric coding were as follows. Out of
n = 1563 responses, there were 13,999 occurrences (tokens), with 1378 distinct
words (types). When the words appearing at least 16 times are selected, the vocabulary
is reduced to 126 words, occuring 10,752 times in total.

Table 1 shows the alphabetical list of the 126 words that appear at least 16 times
in the set of 1563 responses and their frequencies of occurrence. Note that graphical
forms such as I’m and don’t are considered words because the apostrophe is not
designated as a separator in this example.

4.6 Grouping Responses

As an initial step it is appropriate to find groupings of responses that are pertinent to
the phenomenon being analyzed. By grouping responses within categories, “artificial
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Table 1: Words appearing at least 16 times (alphabetic order) in the 1563 responses to
the open question

Word Frequency Word Frequency Word Frequency
I 111 getting 29 of 289
I'm 17 God 64 on 31
a 254 good 422 other 24
able 46 grandchildren 52 others 29
about 22 happiness 228 our 44
all 40 happy 100 out 20
and 389 have 71 own 19
are 22 having 81 parents 18
as 36 health 794 peace 112
at 17 healthy 74 people 63
be 112 helping 24 personal 22
being 159 home 102 relationship 37
better 18 house 22 relationships 18
can 30 husband 69 religion 84
car 21 important 22 respect 19
care 37 in 128 safety 19
children 230 income 17 satisfaction 31
children’s 18 is 48 secure 17
Christ 21 it 28 security 137
Christian 18 Jesus 24 self 28
church 77 job 209 SO 18
comfortable 22 just 21 stay 21
comfortably 26 keeping 24 staying 24
country 22 kids 48 that 55
day 19 know 51 the 191
do 42 life 160 things 17
doing 25 like 24 time 50
don’t 57 live 86 to 439
education 69 living 84 travel 18
enjoy 18 Lord 20 up 19
enough 59 love 53 want 28
faith 19 making 24 we 18
family 935 marriage 22 welfare 36
family’s 27 me 34 well 53
financial 47 mind 50 what 36
food 23 money 199 wife 76
for 168 more 40 with 118
free 20 mother 17 work 108
freedom 63 my 1000 working 20
friends 197 myself 29 world 35
future 22 no 23 you 29
get 27 not 44 your 19
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speeches” are obtained that are all the more meaningful when the categories are
carefully chosen. However this rearrangement of raw information can be carried out
in many different ways. In the particular case of our example, the individuals are
grouped into nine subgroups that differ with respect to age in three categories [less
than 30 years (denoted AGE1), between 30 years and 55 years (AGE2), over 55 years
(AGE3)] and education at three levels [no degree or low (denoted E1), medium (E2),
and high level (E3)].

The two combined criteria had the advantages of being common to the seven
surveyed countries and having a straightforward interpretation (it is much more
difficult, for example, to compare socioprofessional categories from one country to
another). However, it must be kept in mind that this particular partition provides a
specific (and not unique) viewpoint on the set of responses.

To read the information contained in this table effectively, the row profile and col-
umn profile tables are calculated, and the distances between words, on the one hand,
and between age—education categories, on the other, are displayed. It is precisely the
purpose of correspondence analysis to provide the user with such a dual visualization.

5 Correspondence Analysis of the Lexical Table

Figure 3 shows the plane of the first two principal axes of the correspondence analysis
of the aggregated table C with 126 rows and 9 columns. The first two eigenvalues are
0.054 and 0.028, respectively, and account for 32.6 and 16.9% of the total inertia. In
Figure 3, categories belonging to the same level of education are connected by a bold
line, and categories belonging to the same age category are connected by a dashed
line. The arrangement of the column points is remarkably regular: on the basis of
purely lexical information (elements of column profiles), the composite character of
the partitioning of the individuals into nine categories is recreated. Individuals with a
higher educational level are situated toward the upper part of the graph; whatever their
educational level, the older respondents appear along the right side of the horizontal
axis.

Thus, these vectors that describe the frequency of 126 words (chosen according
to a simple frequency criterion) for each category can reconstitute approximately
the gradations of ages (within each educational level category) and the gradations of
educational levels (within each age category). It is more difficult to obtain a clear-cut
distinction between the first two age categories. However, within each age group, the
level of education increases from the bottom to the top of the graph.

This visualization can be enhanced through further modulations of the original
display: adjectives, verbs, and pronouns could be identified. The graphical display can
also be enriched by identifying the words according to general semantic categories.
For example, it appears that all words related to general concerns (country, others,
world, religion, welfare) characterize older well-educated respondents located in
the upper left part of the display, whereas words such as Lord, church, Christian
are more frequently encountered in the responses of older less educated persons.
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Figure 3: Correspondence analysis of Table C (126 X 9).

Words describing a secure and happy family life (marriage, secure, security, happy,
happiness, comfortable, comfortably, safety, family) concentrate in the left-hand side
of the map, with the younger age groups.

The automatic indexing of words and frequency computations purposely ignore
much information of a semantic or syntactic nature that is available to any reader.
Neither synonyms nor homonyms are accounted for. Applications of this type of
analysis to large samples, such as the present study involving 1563 responses, show
that these objections can easily be waived in the case of artificial texts constructed by
Jjuxtaposition of responses, where the main purpose is to find repeated elements.

In this statistical context, analyzing words often gives more interesting results
than analyzing lemmas or groups of words established on a semantic basis. The words
happy and happiness occupy similar positions in Figure 3 (upper left), which shows
that it would have been possible to combine them beforehand for substantive reasons.

One may think that inciuding function words such as for, in, of, and as burdens the
analysis. In fact, these words appear to be significant in a CA only if their distribution
is not uniform in the texts, in other words, if they are characteristic of some grouping
of responses; if this is the case, it is interesting to place them among the other words.
For instance, the word as is located in the right part of the display, close to the
horizontal axis. It thus appears frequently in responses of older interviewed persons.
Examples of such responses are “that we have as good of health as we have” and “to
continue to work as long as I can.”
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Again, with analyses based on frequencies, finding repeated segments makes
it possible to take into account occurrences of units that are richer at the semantic
level than isolated words. The selection of modal responses (Lebart, 1982b; Lebart
and Salem, 1994), which is discussed later, also answers several of the preceding
objections by highlighting the most frequent contexts of some of these words.

An internal lemmatization procedure and elimination of the function words
applied to the subcorpus make it possible to evaluate the stability of the structures
obtained. The question is whether the observed pattern (i.e., in Figure 3, the relative
positioning of the nine category points) depends on the presence of distinct inflections
of the same lemma and of particular grammatical words. If that were the case, the
categories would be distinguished primarily through their use of certain parts of
speech and not solely through the content of their responses.

We thus eliminated the following function words: a, and, at, for, in, of, on, the,
to. In addition, we concatenated into single units the following words: be, are, is,
being into be; live, living into live; and so forth. The vocabulary is then reduced from
126 words to 101 “pseudolemmas.” In this particular example, a description of the
new reduced table through correspondence analysis produces a pattern of category
points similar to that of Figure 3. The point of view selected for this experiment is to
test the internal stability of the results. We may consider this transformation of the
data set as a perturbation allowing the user to assess the patterns obtained.

We have seen that the category points are positioned in a way that respects the
order of the age and educational level categories. This adds to the conjecture (but
does not prove) that there is a connection between the categories and the content of
the responses.

6 Characteristic Words and Modal Responses

6.1 Characteristic Words

It is useful to complement the visualizations provided by correspondence analysis
with a few parameters of a more probabilistic nature: the characteristic words. These
are words that are abnormally frequent (or abnormally rare) in the responses of a
group of individuals (see, for example, Lafon, 1981).

A test value measures the deviation between the relative frequency of a word
within a group and its global frequency calculated on the entire set of responses or
individuals. This deviation is normalized so that it can be considered as an (asymp-
totically) standardized normal variable under the hypothesis of random distribution
of the word in the groups. Under such a hypothesis, the test value lies between —1.96
and +1.96 with a probability of .95. However, since this calculation depends on a
normal approximation of the hypergeometric distribution, it is used only when the
counts are not too small.

For example, the most characteristic words of the category E1-AGE1 (lowest
level of education, age less than 30) are (with the corresponding test values in
parentheses) car (3.3), mother (2.9), house (2.6), job (2.4), money (2.3), parents
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Figure 4: Some characteristic words from the margin Figure 3.

(2.1). For the opposite category E3—AGE3 (highest level of education, age over 55),
the sequence of characteristic words is country (3.6), our (3.1), of (2.9), be (2.5), more
(2.4),t0(2.3), others (1.96). For illustrating the characteristic words we concentrate on
four peripheral categories of Figure 3 (E1-AGE1, E3-AGE2, E1-AGE3, E3-AGE3).
The words are connected to their respective categories in Figure 4.

On the one hand, there is a large compatibility between the proximities observed
on the map and the links induced by the computation of the characteristic words
(obviously, these characteristic words are not distributed at random on the display); we
note that these characteristic words are situated around their corresponding categories,
which is also consistent with the usual simultaneous representation in CA. On the
other hand, many proximities on the map have no counterpart in terms of characteristic
words; for instance, me, faith, people, religion do not specifically characterize the
group E3—AGES3. In this sense, indicating characteristic elements complements the
usual display of CA.

6.2 Modal Responses

A simple technique simultaneously addresses a number of objections that could be
raised concerning the fragmentation inherent in any analysis that is limited to isolated
words without placing them in their immediate context. This technique consists of the
automatic selection of modal responses. There are two ways in which modal responses
can be chosen: (1) on the basis of calculations that make use of characteristic elements
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and (2) on the basis of distance computations according to simple geometric criteria,
for example, the chi-squared distance.

Modal Responses Based on Characteristic Elements A modal response of a
grouping is a response that contains, as much as possible, the most characteristic
words of this grouping. For each grouping, these words are ranked by degree of
significance: the greater the test value of a word in this ranking, the more significant
it is. A simple empirical formula consists of associating with each response the mean
test value of the words it contains: if this mean test value is large, it means that the
response contains only words that are very characteristic of the grouping.

This calculation mode (criterion of characteristic words) has the property of
favoring short responses, whereas the chi-square criterion described next tends to
favor lengthy responses.

Modal Responses Based on Chi-squared Distances These distances express the
deviation between the profile of a response and the mean profile of the group to which
the response belongs. The preferred distance is the chi-squared distance, because of
its distributional properties. For each grouping, these distances can be sorted in
increasing order. Thus the most representative responses with respect to the lexical
profile, that is, those whose distances are the smallest, can be identified. Whatever
the mode of calculation, several characteristic responses are printed out for each
grouping. It is indeed highly improbable that there should exist among all of the
original responses a single response that summarizes by itself all of the properties of
a category.
Examples of modal responses for the group (E1-AGE1) are:
¢ my children, the car, the house, my family (my parents, grandparents, whole
family)
¢ live well. Having house and car, job with a future where I can hope to earn more
money
¢ my daughter, a decent home, money, decent neighbors, my husband, my mother,
my cat, my nephew
Examples of modal responses for the group (E3—-AGE23) are:
* my family, the welfare of our country, the welfare of the individual, that’s all
e inner peace, family, health, moral stability of our country
¢ health, to know more, to be more compassionate, more understanding, more
tolerant, more forgiving
We can find in these responses most of the characteristic words mentioned previously
(car, house, money, job, parents, mother for the group E1-AGE1; country, our, of,
to, more, be for the group E3—AGE3). Such listings of modal responses summarize
each of the main themes for each category.

In summary, by combining the three approaches (visualization of proximities
between words and categories through correspondence analysis, selection of char-
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acteristic words, selection of modal responses) we can obtain, without any need for
preprocessing and without precoding, the main features of the differences between
responses or texts.
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Chapter 12

Visualization of Open
Questions: French Study
of Pupils’Attitudes

to Mathematics

Moénica Bécue Bertaut

1 Introduction

Lexicometric methods, including multidimensional descriptive statistical methods
such as correspondence analysis and cluster analysis, constitute a tool for analyzing
textual corpora. Lexicometry concerns the count of lexical units and the distribution
of these units in the various parts (or texts) of the corpus (see Lebart and Salem,
1994). The usual unit for dividing the textual chain is the word, defined as a suc-
cession of characters delimited by blanks or punctuation marks. Other units, such as
a lemma or complex units (consisting of several words or lemmas), can be selected
but must be invariant and identifiable without either ambiguity or the intervention of
the researcher. In effect, the aim is to produce a formal treatment, without subjective
interpretation prior to the analysis, enabling the text produced—not the text received
by the reader—to be studied and to relegate subjectivity to the later stage of interpre-
tation. This objective makes it impossible, at the initial stage, to take into account the
“meaning” of the words, that is, the content of the texts. The procedure is systematic
and requires counts to be exhaustive. Everything must be counted, as there is no way
to know a priori which words are significant.

149
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Descriptive statistical methods such as cluster analysis and correspondence anal-
ysis allow us to synthesize these counts from a large corpus of textual data in an
exhaustive and systematic way (Benzécri et al., 1981; Lebart and Salem, 1994). They
offer visualizations of similarities or dissimilarities between texts and/or words and
also of associations between vocabulary and authors’ characteristics.

The application of the same methods to corpora of responses to open ques-
tions in surveys raises specific problems, because the texts analyzed in this way are
usually very short (a few lines at the most for each individual). To obtain larger
texts, individual responses are usually amalgamated according to characteristics of
the individuals, which are known through their responses to closed questions. It is
then possible to study the relationship between individuals’ characteristics and their
“language.” However, there is still interest in studying the full spectrum of individual
responses, and constructing typologies based on similarities and differences between
individuals constitutes a powerful tool.

Several authors have attempted to apply cluster analysis to open questions
(Haeusler, 1984; Establet and Felouzis, 1993). To reduce the dimensionality of the
table, a correspondence analysis (CA) is first performed on the table of counts of
words used by each individual. Then the individuals are clustered according to their
coordinates on the first principal axes, using a hierarchical clustering algorithm.
Ward clustering (Ward 1963; Lebart et al., 1995, pp. 191-195) is a commonly used
procedure in which cluster analysis is performed in a reduced space. The partition
thus obtained is improved by means of several iterations of the K-means algorithm,
which reassigns the individuals to their closest centroids in an attempt to increase
the variance between clusters. This strategy is not entirely satisfactory: in particular,
it often leads to clusters that are determined solely by the use of one very frequent
word. Furthermore, the role of single words in isolation is more important the greater
the number of axes preserved in the original CA solution (Haeusler, 1984). The dif-
ficulty lies in the nature of the data analyzed; in effect, comparing individual lexical
profiles—profiles of word frequencies—when the responses are short is quite dif-
ferent from comparing lexical profiles of long texts or comparing average profiles
of groups of individuals. Responses are distinguished by the presence or absence of
a word rather than differences between frequency profiles. Indeed, responses with
similar meanings may have no unit in common. Conversely, two responses may differ
only in the negation included in one of them, thus altering the meaning of the ut-
terance completely. The problem lies in the inherently sparse structure of the lexical
table (Lebart and Salem, 1994, pp. 152-154).

Our approach to this problem is new in two respects. First, because many words
can have a very different meaning depending on the context, we will define a complex
lexical unit, called a “quasi-segment,” composed of several words, not necessarily
consecutive, in order to force the words into a context. Second, we will find subspaces
that are directly related to specific individual characteristics judged to be most relevant
with regard to the objective of the study. In these subspaces, the better differentiated
the use of a lexical unit in different groups, the greater the importance of that unit in
defining distances between individuals for eventual clustering.
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2 Data

To illustrate the method, we will use a corpus of responses to an open question,
collected by Baudelot (1990) for a research project on differences in attitudes observed
in boys and girls when choosing what to study at university. Baudelot based his work
on the fact that in French secondary education selection according to performance in
mathematics leads to sexual and social selection. He was interested in ascertaining
why so few girls, whose results in mathematics are as good as those of boys in the
third-last year of secondary education, choose degrees demanding mathematics.

Among other studies, a survey was conducted by means of a questionnaire in
the city of Nantes; 974 secondary school pupils were interviewed 2 years before
the academic year in which they write the final examination for this level of educa-
tion. The questionnaire included a closed question asking them how they felt about
mathematics, followed by an open question to elucidate their choice from among
the possibilities provided as responses to the closed question. The two questions are
reproduced in Table 1.

Some of the responses are reproduced in their entirety in Table 2. The 974 open
responses—some of them empty—make up a corpus with 16,851 occurrences and
1496 different words. Some of the most frequent words are listed in Table 3.

In his research, Baudelot compared boys and girls taking into consideration their
real level in mathematics, classified as bad, medium, and good. By studying the
responses to the open question, Baudelot singled out the most characteristic lexical

Table 1: Questions regarding feelings about mathematics

Quel est, parmi les sentiments suivants, celui dont tu te sens le plus proche?

Je déteste les maths
J’aime peu les maths

J’aime bien les maths

Eali ol A

J’adore les maths

Pourquoi? Peux-tu indiquer dans les lignes qui suivent les principales raisons pour lesquelles
tu aimes ou tu n’aimes pas les maths? Essaye en particulier de préciser les aspects de cette
discipline qui te plaisent ou te déplaisent le plus.

(in English:

Among the following expressions, which is the one which you feel closest to?
I hate math

I like math a little

I like math

I adore math

bl

Why? Can you describe in the following lines the main reasons for liking or disliking mathe-
matics? Try to specify the aspects of this discipline that please you or that displease you.)
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Table 2: Some examples of responses

C’est intéressant.

J aime les maths parce que c’est méthodique, c’est amusant; il faut beaucoup creuser pour
trouver.

Jai toujours été terrorisée par mes profs de maths. L'enseignement lui-méme est assez
rébarbatif.

Lelangage employé par les professeurs de maths ne me convient pas. Je ne trouve pas les raisons
de ma motivation et de ma passion. Pour apprécier une matiére, j’ai besoin de la comprendre
et de faire des liens logiques et je n’en trouve aucun en maths. On ne peut me fournir des
explications sensées dans ce cours. Je n’y trouve aucune utilité. Elles ne m’apportent rien en
connaissances et en logique.

Les maths sont: parfois intéressants, souvent ennuyeux, ils vous font coucher tard.

Table 3: Examples of words and, in parentheses, number of repetitions in the corpus

abstrait (21) comprendre (37) intéressant (57) me (152)
adore (17) déteste (34) Jje (570) moi (28)

aim (488) difficile (22) Jeu(13) probleme (16)
algebre (99) esprit (36) logique (205) que (439)
apprendre (16) faut (73) logiques (13) réfléchir (32)
avoir (33) géométrie (146) matiere (162) vois (19)

features of boys and girls and the attitudes these features reflected, according to their
level in mathematics.

In this work we shall attempt to detect whether groupings exist beyond groups
preconstituted according to sex and mathematics level. In particular, in order to
answer a question that is implicit in the hypotheses formulated by Baudelot, we will
study the existence of a subgroup of girls who are good at mathematics and display
a language similar to that of boys at the same level.

3 Methodology and Results

3.1 Repeated Quasi-segment Definition

A quasi-segment is defined as a repeated ordered succession of words, not necessarily
consecutive, but within the same sentence and not separated by any punctuation
mark. Table 4 shows all the sequences of the corpus that contain the quasi-segment
il. .. faut.. . logique and also the frequency of each sequence.

An algorithm has been elaborated to identify and list all the repeated quasi-
segments of any length (Bécue and Peird, 1993). Each interval length between words
is limited by a maximum value; for example, il faut beaucoup de logique has an
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Table 4: Corpus sequences containing the quasi-segment
“il...faut...logique”

Sequence Frequency

il faut avoir de la logique

il faut avoir beaucoup de logique

il faut avoir Uesprit de synthése, de logique

il faut avoir un esprit logique

il faut avoir un esprit droit et logique

il faut avoir une logique

il faut constamment démontrer ce qui est logique
il faut beaucoup de logique

il faut de la logique

il faut énormément de logique

il faut étre logique

il faut procéder avec méthodes, avoir de la logique
il faut toujours avoir la méme logique

—_ o B L) LD e e e e e

interval length of two. Specifying a maximum of two limits the sequences to those
underlined in Table 4, in which the quasi-segment il. .. faut. .. logique is repeated
1+3+3+1+4 = 12 times. A second parameter, which is important for applying
statistical methods, in particular cluster analysis, is the frequency threshold, the
minimum number of times a quasi-segment is repeated. Finally, the total length,
that is, the number of words in the quasi-segment, can be fixed. The values of these
parameters are chosen depending on objectives and previous knowledge of the corpus.
The stability of the results can be investigated for different parameter values.

In the results that are presented in the following, the maximum interval length is
two words long, the frequency threshold is fixed to be seven, and, finally, the quasi-
segments are three words long. With these parameter values, a total of 717 repeated
quasi-segments are identified. Table 5 shows some of the more frequent repeated
quasi-segments.

Table 5: Some of the more frequent quasi-segments (in parentheses, number of repe-
titions)

aime bien algébre (12) il faut étre (7) Je aime pas (80) ne comprends pas (11)
aime la logique (14) il faut logique (12) Jje ne pas (99) ne m’intéresse (13)
aime les car (122) J ai toujours (9) Jje ne suis (29) ne vois pas (17)

aime les maths (247) Je ai jamais (9) les maths sont (42) peu les maths (51)
c’est une (69) Jj’aime bien (167) logique des maths (10) pour plus tard (7)
déteste les maths (11) Jj’aime les (247) m’intéresse pas (12) que je suis (7)

il faut avoir (12) Jj’aime maths (213) mais j’aime (14) suis pas bonne (7)
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To apply cluster analysis, the corpus is represented by a table with 717 columns
whose ith row contains the relative frequencies of these 717 quasi-segments in the
ith response, that is, the lexical profile of the ith response over the quasi-segments.
This Individuals X Quasi-segments table is very large and sparse. The total inertia
of the row points, when using chi-squared distance and weighting each row by the
relative frequencies of quasi-segments in the response, is equal to 49.2.

3.2 Projection onto a Reference Subspace

A subspace is now sought such that the projection of the individual responses on the
subspace assists the interpretation of the responses. One way to reduce the dimen-
sionality is to group the individuals according to some characteristics related to the
objective of the study. For example, the pupils can be placed in six groups corre-
sponding to the six combined categories of the variable Sex X Mathematics. Table 6
shows the composition of these groups, together with the number of responses given
in each group.

The centroids of each group can be represented by the average lexical profile of
the individuals belonging to it, that is, by a vector that contains the relative frequency
of the 717 quasi-segments in the corresponding amalgamated responses. The subspace
generated by the six centroid vectors—which has dimensionality five—constitutes a
reference subspace. The position of an individual response profile, as projected onto
this subspace, depends on its similarity to each group average profile.

The inertia of individual responses projected onto the reference subspace is equal
to 1.6. It is well known that the subspace with dimensionality five accounting for
the greatest part of the inertia would be generated by the first five principal axes
obtained from the CA of the Individuals X Quasi-segments table. In fact, the inertia
accounted for in the five-dimensional CA solution is equal to 3.1. As shown in Lebart
and Salem (1994, p. 91), the percentage of explained inertia contitutes a pessimistic
measure of explained variance. Many examples show that low values can still lead
to a satisfactory representation and interpretation of the information with respect to
these principal axes.

Table 6: Groups according to sex and level at mathematics

Sex X Mathematics Number of indivs. Responses given
Boys good at mathematics 52 40
Girls good at mathematics 83 62
Boys medium at mathematics 144 101
Girls medium at mathematics 221 166
Boys bad at mathematics 195 136
Girls bad at mathematics 279 222

Total 974 727




3. Methodology and Results 155

3.3 Cluster Analysis of Projected Table

The distance between individuals in the reference subspace is the chi-squared dis-
tance between projected profiles. A hierarchical clustering is performed using Ward’s
criterion. The hierarchical tree is cut, so as to obtain a relatively fine partition. Given
the great number of lexical units, it is very rare to find big homogeneous clusters.
The partitions consisting of between 13 and 16 clusters were studied and we decided
to retain the partition consisting of 15 clusters.

The intercluster inertia is equal to 65% of the projected inertia of 1.6. The
partitions can be improved by means of several K-means clustering iterations that
reassign individuals to their closest centroids. This increased the intercluster inertia
percentage to 68%. The number of individual responses per cluster varies from 33
to 73.

3.4 Characterization of the Clusters

The partition can be interpreted by cross-tabulating the individuals according to
cluster and characteristics (Table 7). For example, of the 33 individuals assigned
to cluster 14, 14 are boys good at mathematics. From other question responses
not repeated here, we find that 17 want to choose a mathematics speciality in the
secondary school final examination, and 13 estimate they have a good or very good
level at mathematics. It is possible to summarize the vocabulary of each cluster in
terms of the quasi-segments (and/or words) over—or under—used in it, using the
marginal relative frequencies of the quasi-segments as a reference value.

But the most important result is the list of the “modal responses,” complete
responses selected according to a criterion that measures their power to characterize
the cluster (Lebart and Salem, 1994; Lebart, Chapter 11). For example, the chi-
squared distance can be calculated between each response profile and the average
profile of the cluster; and the responses can be ordered by increasing magnitude of
distance. It is useful to reorder all the responses within each cluster according to this
criterion, thereby returning to the data when interpreting the clusters.

Table 7: Results for each sex X mathematics category in each of the 15 clusters

Clusters
Groups 1 2 3 ) 5 6 7 8 9 10 11 12 13 14 15
Boys, good 0 0 0 3 0 0 0 1 4 1 1 0 1 14 14
Girls, good 2 0 2 2 1 1 2 21 4 0 6 0 10 9 1
Boys, medium 0 3 1 0 2 18 4 1 15 5 9 18 4 7 3
Girls, medium 22 5 2 7 4 4 29 10 19 16 15 8 8 9 8
Boys, bad 15 22 23 3 6 3 0 7 14 8 7 10 5 10 2
Girls, bad 17 7 16 22 42 23 24 12 17 5 5 3 9 11 5
Total 56 37 44 37 55 49 59 52 73 35 43 39 47 60 33
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Table 8: Modal responses for groups of boys and girls good at mathematics

Boys good at mathematics in cluster 15

Girls good at mathematics in cluster 8

C’est un peu un jeu, et cela peut étre trés
intéressant si I’on comprend

Exercice de la logique, du raisonnement,

développement des facultés intellectuelles.

Matiere intéressante

On ne peut pas s’exprimer par soi-méme,
on est obligé de suivre des régles strictes
et ennuyeuses (...)

Les maths sont représentatives de la
logique, donc bonnes

Jaime les maths parce que c’est une
gymnastique de 1’esprit

J’adore les maths a cause de la logique
(.

Je trouve cette discipline intéressante, car
variée. Elle fait travailler la logique plus
que la mémoire (.. .)

On peut arriver a de bons résultats en ne
retenant pas grand chose

11 faut beaucoup de logique, de rigueur,
de précision

11 faut de la logique pour la géométrie et
j’aime les chiffres

Les maths nécessitent un esprit de
logique (...)

Positif: je préfere la géométrie et j’adore
trouver les exercices. Négatif (...)

Les aspects qui me plaisent le plus sont
ceux de la logique, I’analyse, I’intuition
¢..)

J adore I’algébre car il faut étre logique.
J aime aussi la géométrie (.. .)

Jaime les maths car je trouve cela
intéressant et pour 1’instant ce n’est pas
trop difficile

J’aime I’algebre car je trouve (...)

J aime car c’est logique

J’aime I’algebre car je trouve cela facile
J’aime bien cette matiére (...)

We can also group the ordered list of responses according to the categories used
to build up the reference subspace. For example, Table 8 lists the modal responses of
clusters 15 and 8, respectively, for boys and girls good at mathematics.

4 Interpretation of Results

To interpret the results, we compare modal responses between clusters or between
subgroups of clusters of interest (e.g., Table 8). We also visualize proximities between
clusters and position these clusters relative to all quasi-segments. To achieve the latter,
the contingency cross-tabulating quasi-segments with Sex X Mathematics groups
can be submitted to CA and then the centroids of the 15 clusters projected onto the
resulting principal as supplementary points (Figure 1).

In accordance with the objective of studying the differences between boys and
girls who are good at mathematics, we must study the clusters with a high proportion
of pupils who are good at mathematics. Boys and girls who are good at mathematics
are located mainly in clusters 8, 13, 14, and 15 (see Table 7). Cluster 14 is the
only one that contains a significant number of both boys (14) and girls (9) good at
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Figure 1: Principal plane resulting from the correspondence analysis of the contin-
gency table Quasi-segments (Sex X Mathematics). The centroids of the clusters are
projected as illustrative elements.

mathematics. We can, therefore, draw a preliminary conclusion: the great majority
of boys and girls who are good at mathematics do not use the same language.

Furthermore, bearing in mind their position in relation to the centroids of these
clusters (Figure 1), boys good at mathematics in cluster 15 and girls good at mathe-
matics in cluster 8 can be regarded as the most typical subgroups of these two groups.
From Table 8, which lists the most characteristic responses of these two subgroups,
we can deduce the following. Girls use “Je” (“I”) and “J’aime” (“I like”), although
less so the rather weaker “J’aime bien” (“I quite like”), they qualify their responses
with “Je trouve” (“I find”) or “Je pense” (“I think”), and they consider that “Il faut de
lalogique” (“You need logic”) or “Les maths nécessitent un esprit de logique” (“Math
needs a feel for logic”). In other words, the ego, one’s own qualities, abilities, and
tastes, have a high profile. Boys are more neutral: “C’est” (“It’s”), “Les maths sont”
(“Math is”), “Les maths sont représentatives de la logique” (“Maths is representative
of logic”), “Cette discipline est intéressante” (“This discipline is interesting”), “On
n’a pas” (“You don’t have to”). The ego is not totally absent, but it is expressed
through the form “On” (“One,” or the impersonal “you”). Any qualities mentioned
pertain to mathematics rather than to themselves.
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Among girls belonging to clusters 14 and 15 (nine in cluster 14, but only one in
cluster 15), we find a language more typical of boys (the model responses of these
subgroups are not reported here). They say “C’est stimulant, ¢’est intéressant” (“It’s
stimulating, it’s interesting”), “C’est logique” (“It’s logical”"), “J’ aime les maths parce
que c’est (...)” (“I like math because it’s (...)”), “J’aime bien les maths car c’est
intéressant” (“I quite like math because it’s interesting””), “J’ aime bien parce que c’est
logique, on n’a pas besoin de réfléchir” (“I quite like math because it’s logical, you
don’t need to think”), “On n’a pas a retenir les dates” (“You don’t have to remember
dates”), “Parce que c’est vivant” (“Because it’s alive”).

Although also not reported here, cluster 10 contains the responses with the great-
est breadth of vocabulary and expression. The use of nouns is more frequent, which
tends to indicate verbal richness. Rather than “C’est intéressant” (“It’s interesting”),
we find “C’est une matiere intéressante, logique, qui fait appel...” (“It’s an inter-
esting, logical subject that appeals™), “C’est une matieére qui apprend a avoir un
raisonnement rigoureux” (“It’s a subject that teaches you to use rigorous reasoning”),
“C’est une matiere, une discipline” (“It’s a subject, a discipline”). The responses are
longer and better thought out. It is a cluster that contains many girls with a medium
mathematics level (16 of the 35 belonging to this category), often with favorable
opinions of mathematics, but not always. This cluster contains no girls who are good
at mathematics and only one boy at that level. In Figure 1, this cluster occupies a
position close to clusters 14 and 15, reflecting certain similarities of language. Clus-
ter analysis, however, distinguishes this group of responses, which are particularly
rich in the quality of their expression and precision, and differentiates them from the
responses in clusters 14 and 15.

5 Conclusion

The clustering method presented here highlights the existence of groups of individuals
with a relatively similar language, thus facilitating the identification of significant
features of the discourse. In the example used, it can be seen that the results obtained
complete Baudelot’s study, giving it a finer edge. “Logique” (“logical”) is a word that
is used by pupils with a good level, but whereas girls find that “Il faut de la logique”
(“One needs logic”), boys say that “C’est logique” (“It’s logical”). For girls it is a
quality of the individual; for boys it is a feature of mathematics. Pupils who use richer
forms of expression involving nouns, for example, “C’est une matiere, une discipline”
(“It’s a subject, a discipline”), are often females with a medium mathematics level.

An essential aspect of our approach is the projection of the individuals onto the
subspace generated by the centroids of the groups defined by combining the variables
Sex and Level of Mathematics. Even though a relatively small part of the inertia of the
individual profiles across lexical units is contained in this subspace, the computation
of distances between individuals and the subsequent clusters will be directly related
to the differentiation of the Sex X Mathematics groups.



Chapter 13

The Cloud of Candidates.
Exploring the Political Field

Fernand Fehlen

1 Introduction

In this chapter correspondence analysis is used as a tool of exploratory data analysis
to investigate voting results, allowing identification of the mechanism ruling the
political field of Luxembourg and revealing capital specific to this field (Bourdieu,
1981). We shall analyze the results of the 1989 parliamentary elections for the city
of Luxembourg.

The structure of the voting system is a determining factor in the functioning of
the political field because it defines the rules that allow admittance to power, which
ultimately is the justification for the existence of the political field. One could think,
for instance, of the various majority systems that lead to bipolarization. Luxembourg
introduced a proportional system of universal suffrage for men and women in 1919.
This replaced a system of census suffrage (in which a minimal level of tax assessment
was required in order to vote), which had hitherto guaranteed political power to a
small group of leading citizens. Faced with a challenge to the very existence of the
Luxembourg state, the liberal party accepted universal suffrage only on the condition
that an essential characteristic of the previous system, namely the direct bond between
the voter and “his” representative, would be maintained in the new system (Fehlen,
1993). This feature was seen as a desirable weakening of the role of political parties.

As it is applied today in Luxembourg, the panachage system remains unusual.
Elsewhere it can be found only in Switzerland and in Germany at some local levels.
Every voter has as many votes to distribute as there are seats to represent his or her
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constituency. Each of the four constituencies in Luxembourg directly elects its own
representatives. The number of representatives of each constituency is related to the
number of inhabitants of the constituency. In all, there are 60 seats to be distributed in
the Luxembourg parliament. Every voter can spread his or her votes over all parties,
giving a candidate up to two votes. Therefore the same ballot can carry votes for
candidates belonging to different parties.

The data we use here are the results for Luxembourg City which belongs to
the constituency center, where each voter has 21 votes to distribute. The panachage
system allows three different types of votes:

o List votes: each party presents a list that generally includes as many candidates as
there are seats to be distributed in the constituency. By choosing a party list, the
voter gives one vote to each candidate on that list.

¢ Intraparty panachage: the voter can also distribute his or her votes unevenly over
the candidates of one list by giving one or two votes to some individual candidates.

o Interparty panachage: the voter can also distribute his or her votes over the lists of
different parties.

Of course, the voter cannot distribute more votes than of right, otherwise the
ballot is not valid. But by not using all of his or her votes, it is possible for the voter
to practice a very subtle form of gradual abstention, which is widespread, especially
because voting is compulsory in Luxembourg.

Since the introduction of the panachage system, the political life has been dom-
inated by the Christian democratic party (Chréschtlech Vollekspartei), which, with
only some minor exceptions, has participated in the government ever since. Since
1984 the socialist worker party (Létzebuerger Sozialistesch Arbechteer Partei) has
formed a coalition government with the Christian democratic party. The most im-
portant opposition party is a liberal party (Demokratesch Partei), which in the past
formed several coalitions with the Christian democratic party. The communist party,
which can look back on a great history, has lost its influence and has not been repre-
sented in the parliament since 1994. Since the 1984 election, some new parties have
made their appearance on the political scene, such as the “Aktiounskomitee 5/6 Pen-
sioun,” a rural and “poujadiste” protest party, as well as two ecologist parties, “Greng
Alternativ Partei” and “Greng Léscht Ekologesch Initiativ,” which have unified in the
meantime, and a nationalist party, (National Bewegong), which dissolved itself after
the 1994 elections.

2 Correspondence Analysis and Voting Behavior

Correspondence analysis (CA) provides a natural framework in which to analyze
voting behavior as it is associated with the sociological approach of Pierre Bourdieu.
CA features a twofold congruence with Bourdieu’s understanding of society as a
social space of relative positions and as a series of partly autonomous but homologous
fields. First, there is the relational aspect, which is reflected in Bourdieu’s own words:
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CA “is essentially a relational procedure, whose philosophy corresponds completely
to what in my opinion constitutes social reality. It is a procedure, that ‘thinks’
in relations” (Bourdieu, 1991; English translation by Wuggenig and Mnich, 1994,
p- 304). Second, there is the correspondence between the analysis of the row profiles
and the column profiles that has given CA its name: the understanding of the structure
of the space of the rows leads to the comprehension of the space of the columns and
vice versa. Or, to take the example in “La Distinction” (Bourdieu 1979), the space
of the social positions reveals the space of the lifestyles. This approach transcends
the deterministic view of society that is often incorporated in statistical models with
their limited number of variables classified as either dependent or independent. See
also The BMS (1994) and their attempt to reconcile what they call the “French data
analysis” and statistical modeling approaches. Another development of the “French
approach” is represented by Rouanet and Le Roux (1993), who try to reorganize
the whole range of the multidimensional data analysis in the light of Benzécri’s
geometrical formalism using the work of Bourdieu as epistemological background.

The results of an election, presented in contingency tables with the parties as
columns and the different districts of the constituency as rows, seem well suited to
CA. This approach will result in two spaces that will mutually explain each other.
The column points will materialize the space of the parties and the row points will
materialize the socioadministrative space. For Luxembourg, at the national level
we find four voting wards: the industrialized south, the central region surrounding
Luxembourg City, and two rural districts.

The main result for all elections we have analyzed, either for communal or for
national elections, is that the first axis always represents the left—right opposition, that
is, the socialist and communist parties on the one hand and the Christian democratic
and liberal parties on the other. This is also true for the study presented here, which
analyzes the 31 polling wards of the city of Luxembourg. As a rule, these wards have
very distinct but subtle social characteristics.

3 The List Votes

The data we analyze are the number of list votes obtained by eight parties in the 31
polling wards of Luxembourg City in the 1989 parliamentary election. The numerical
results of the CA of this 31 X 8 contingency table can be found in Table 1. Figure 1
shows the first axis, containing 47.2% of the total inertia, as a vertical axis. The 31
ward points are labeled on the left side and the eight parties on the right. Both are
positioned by their coordinates on the axis (the horizontal shift of the labels is done
only to improve readability of those that have similar coordinates). Concentrating on
the wards, along this axis we can identify the opposition of working class areas with
wealthier neighborhoods. This outcome confirms the existence of a political duality,
which today is often denied, especially for an economically booming city such as
Luxembourg, whose inhabitants at first sight seem to be all wealthy middle class. As
far as the parties are concerned, the first axis is defined by the opposition between
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Table 1: Numerical output from CA of the list votes (8 parties and 31 wards)

ROWS

Name K=1 COR CTR K=2 COR CTR K=3 COR CIR
beg 107 207 13 -193 668 145 63 70 16
bel -181 683 99 23 1 5 83 143 72
bis 296 340 24 379 557 132 6l 14 3
bon 230 965 84  -12 2 1 -7 5 2
bos 136 800 97  -49 105 43 2 0 0
cer -161 200 6 7 0 0 13 1 0
ces —111 214 16 16 5 1 108 203 54
cls 152 155 8 291 560 106 —127 109 21
con -13 227 3 125 276 14 -12 2 0
dom 142 517 12 -84 182 14 -59 90 7
eic 31 25 1 78 155 14 39 38 3
epa -126 362 12 73123 14 -119 326 38
fet -147 437 36 -9 179 50 11 249 71
gas ~50 164 5 -19 23 2 -92 553 57
ham 393 633 103 —103 44 24 70 20 1
hol —46 176 5 21 38 3 32 86 8
kay 177 239 18 19 277 70 204 318 81
Kir -173 234 15 112 98 21 248 481 108
kie 1 178 5 87 108 1 =57 47 5
lic -296 679 102  —68 36 18 —40 12 6
lih -232 902 107  -27 12 5 62 64 26
mer -142 497 30 -3 13 3 -114 318 65
muh -43 15 1 =75 47 9 —261 563 109
neu 21 87 6  —37 23 6 1 0 0
paf 56 24 2 276 571 170 115 99 30
pes -372 335 53 13 0 0 -341 282 155
rol 5 1 0 57 139 1 -119 604 51
str 106 444 30 69 187 43 3 0 0
wal 124 791 14 21 23 1 8 3 0
wei 193 765 32 16 5 1 -4 0 0
yol 59 41 2 201 474 62 -5 0 0
COLUMNS

Name K=1 COR CTR K=2 COR CIR K=3 COR CTR
co 153 159 42 231 362 326 -165 184 169
LP -69 187 41 101 400 297 88 305 231
CD -129 576 173 -23 18 18 -87 264 274
SO 268 94 502 —69 60 114 8 1 2
GL -173 314 68  —69 50 37 57 34 26
NB 293 657 150 66 33 26 20 3 2
GA -s1 35 4 115 181 78 -124 211 92

AD =75 93 19 —97 151 104 134 291 204




3. The List Votes

The polling wards:

label name of the ward votes/21°
beg  Beggen 793
bel Belair 2432
bis Salle des fétes Bisserwee 163
bon  Bonnevoie-Nord 1054
bos  Bonnevoie-Sud 3542
cer  Cercle Municipal 209
ces  Cessange 1054
cla Clausen 230
con  école rue de la Congrégation 206
dom Dommeldange 380
eic Eich 410
epa  école rue Pierre d'Aspelt 561
fet Fetschenhof 1448
gas  Gasperich 1343
ham  Hamm 475
hol  Hollerich 1635
kay  école primaire rue A. Kayser 468
kiem domaine du Kiem 318
kir ancienne école Kirchberg 381
lic Limpertsberg (bas) 1007
lih Limpertsberg (haut) 1510
mer  Merl 1060
muh  Mihlenbach 395
neu  Neudorf 966
paf  Pfaffenthal 353
pes Fondation Pescatore 221
rol Rollingergrund 652
str Gare, école rue de Strasbourg 1613
wal  école primaire rue Fort Wallis 564
wei  Weimerskirch 556
yol pavillon scolaire rue Yolande 328

* The number of total votes divided by 21 gives
the approximated number of voters, it is
smaller then the real number as it does not take
in account total and partial abstention,
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Figure 1: One-dimensional CA map of list votes for 8 parties and 31 wards. CD,
Chréschtlech Vollekspartei (Christian-democratic party); LP, Demokratesch Partei
(liberal party); GP, Greng Alternativ Partei (left-ecologist party); GL, Greng Léscht
Ekologesch (Initiative ecologist party); CO, Kommunistesch Partei Létzebuerg (com-
munist party); SO, Létzebuerger Sozialistesch Arbechteer Partei (socialist party); NB,
National Bewegong (nationalist party); AD, Aktiounskomitee 5/6 Pensioun (rural
and "poujadiste’ protest party).
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the socialist party at the top (SO: CTR = 502) and the Christian democratic party
and the ecologist party (GLEI) at the bottom (CD: CTR = 173 and GL: CTR = 68).
On the same side of the axis as the socialist party, we find south and north Bonnevoie
(bos: CTR = 97 and bon: CTR = 84), a neighborhood behind the railway station
where railroad workers used to live and which today is generally a cheap but decent
area. At the same extreme we find Hamm (ham: CTR = 103), a formerly rural area
with an industrial past rooted in the last century and a large workers’ colony built
before World War II. At the other extreme of the axis, we find the two polling wards
of the Limpertsberg (lih: CTR = 107 and lic: CTR = 102), as well as Belair (bel:
CTR = 99), some very pleasant neighborhoods with many small family houses near
the center, an agreeable but expensive area. Thus this first axis represents the rich—
poor hierarchy of the neighborhoods, which can be confirmed by the positions of the
other polling districts.

While this axis identifies the local roots of the different parties, which are also
their socioeconomic roots, it also appears to reproduce the classical left-right spec-
trum, at least for the parties that are well represented on this axis. One exception is
the “National Bewegong” (NB: COR = 657), a right-wing, nationalist party that can
be identified as getting its votes from the same working class, “leftist” neighborhoods
as the socialists. One of the extremes on the bottom of the first axis is taken by the
voting district “Fondation Pescatore” (pes). This is a very small bureau situated in an
old people’s home, where the overwhelming majority of the voters are the inhabitants
of this residence. The extreme position of this point reflects the exceptional success
of the Christian democrats in this bureau, where they won 55% of the votes.

Axes two and three (Figure 2) have almost equal contributions to the total inertia
(13.9% and 13.6%). We have plotted all parties, but only the wards that are well
represented in this display (COR2 + COR3 > 500).

Along axis one, both the communist and liberal parties were not well represented
(CO: COR = 159 and LP: COR = 187). However, both parties have a high contribu-
tion to axis two (LP: CTR = 297 and CO: CTR = 326) and are situated on the same
side, which suggests that they share some common strongholds. At first sight this
seems paradoxical. But the districts Clausen, Bisserwee, and Pfaffenthal, which are
well represented on this axis (cIs: COR = 569, bis: COR = 557, paf: COR = 571),
do indeed have a common characteristic: they are situated in the Alzette valley,
which is populated by modest families, often considered more subproletarian than
workers. Their adherence to the liberal party reflects the small jobs they hold at the
lowest levels of the municipal services and may also express their protest against the
larger established parties. But this is only one element shared by the electorate of
the communist and liberal parties. Axis three differentiates these two parties, as we
find the communist party at one side (CO: CTR = 169) and the liberal party (LP:
CTR = 230) and the rural protest party (AD: CTR = 204) at the other.

It is interesting to note that the two ecologist parties seem quite distinct in the
factorial space: although they are both on the political right on the first axis, the
GAP is closer to the center than the GLEL On axis two they have roughly the same
position, but on the third axis the GLEI is on the same side as the liberal party, while
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Figure 2: List votes for 8 parties and 31 wards. Two-dimensional display (axes 2
and 3).

the GAP is on the same side as the communist party. So we can assume that they
have somewhat different electorates.

4 The Personal Votes

So far, we have considered only party list votes. But as we said at the beginning, list
voting is only one possible way of voting in Luxembourg. In Luxembourg City, of
the 28, 412 valid ballots counted, 41% were completed using some sort of panachage.
In all, there were 212 candidates on 12 lists. However, we will limit ourselves to the
eight largest parties, who put forward 168 candidates and who received 98.5% of all
votes.

To investigate the phenomenon of panachage, we can analyze two different
168 X 31 matrices. Each cell corresponds to the votes one of the 168 candidates
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gained in one of the 31 polling districts. The first data set considers only the personal
votes, and the second also includes the list votes.

There was a total of 227, 075 personal votes. The sum of each row represents the
total number of personal votes obtained by a candidate. For instance, the candidate
who received the most personal votes is Jacques Santer, the former prime minister
of Luxembourg, with 10,497 votes. At the other end of the distribution we find an
unknown candidate of the right-wing party with 38 personal votes; the median for
the 168 candidates was 400 votes.

Turning to the list votes, there were 15,513 list votes given to the eight parties,
summing to 15,513 X 21 individual votes that can be distributed equally to all the
candidates of the relevant list. We call the sum of the personal votes and the distributed
list votes the total votes for a candidate. For example, as the Christian democratic
party, to which Jacques Santer belongs, had 4378 (X21) list votes to distribute,
Jacques Santer had 10,497 + 4378 = 14, 875 total votes.

The panachage system is especially criticized by politicians bound to the party
organization, who like to disparage panachage as an immature habit consisting of
haphazardly spreading votes on disparate candidates. If this were true, there would
be no systematic pattern to the voting results. But our CA of the personal votes
established the contrary: the first axis, with its contribution to the total inertia of
26.3%, can be identified as the same opposition between working class areas and
wealthier neighborhoods found in the analysis of the list votes. In fact, the overall
structure of the 31 wards was practically identical to the structure revealed in Figure 1.
This shows, therefore, that voting behavior according to the panachage system follows
the same logic as list votes. In fact, a direct investigation of a sample of polling
cards (CRISP, 1989) revealed that the normal behavior of the panachage voter is to
concentrate his or her votes on one or two parties. Often, one party gets the majority
of the votes, while a few remaining votes are cast elsewhere. Although we have only
aggregate data in the 168 X 31 matrix, we can confirm the results of the CRISP
research. For instance, candidates that often gained panachage votes on the same
ballot according to the study cited are close in the factorial space. As a rule, the
row points of the candidates are attracted by the column points of the districts where
their party has its strongholds. Exceptions to this rule can often be explained, as can
be shown by an almost caricatural example. Théid Stendebach of the liberal party
has an atypical position in the socioadministrative space: he is clearly situated in the
direction of working class neighborhoods and finds himself together with candidates
of the socialist party and the national movement. The results show that, unlike the
rest of his party, he obtains his personal votes in this area. In fact, he is well known
in this neighborhood, where he owns a garage and has won the esteem of the locals
as a former football player.

We shall not concentrate on this CA, as the next consists of its superposition
with the CA of the parties presented in Section 2. By the way the matrix of the total
votes is defined, the candidates of a party are represented by points that are weighted
averages of the points representing the personal and list votes gained by the party.
The data set of total votes is clearly structured, because the 21 candidates of each
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party have gained the same list votes in each case. Therefore it is not surprising that
the inertia for the first axis is 44.5%, a value near that of the CA for the list votes.
We will present the CA of the total votes by two charts: Figure 3 representing axis
one and Figure 4 representing axes two and three. The cumulated percentage of the
inertia of these three axes is 65%.

Figure 3 shows the first axis vertically with the labels in a rather unusual format.
The 31 polling wards appear on the left side of the plot and the 168 candidates on the
right. The points are symbolized by triangles pointing to their coordinates on the first
axis. The labels on the left have been shifted horizontally to improve readability, as
before. On the right-hand side the candidates of each party have been aligned under
the denomination of their party. Two sorts of supplementary row points have also
been added: the total votes gained by the 21 candidates of each party are represented
by empty squares and the sum of the list votes of each party is represented by a solid
square.

Note that the first axis reveals the same left-right opposition that we found for
the first CA, with the 31 polling wards in about the same order. The socialist party
candidates are the most stretched out on this first axis. In fact, this shows that the
candidates of this party belong either to a “worker” faction or to a circle of social-
liberal lawyers and intellectuals, partly from the leading citizens of the town. As
the latter group draws their personal votes from the bourgeois neighborhoods, these
points are attracted by the clouds of the Christian democratic and liberal candidates.

Comparing the two sorts of supplementary points (the sum of all votes won by
a party and the sum of the list votes won by that party) shows the different local
origins of the parties. The greater the distance between these two squares, the more
candidates of the given party gain their personal votes out of the party strongholds.
This is especially true for the socialist party. The general shift toward the wealthier
neighborhoods seems to indicate that panachage is more frequent in these areas.

Figure 4 presents all the row points (i.e., the 168 candidates) each symbolized by a
point. The 21 candidates of each party are surrounded by a convex hull. The acronyms
of the eight parties have been added to identify the eight separate candidate clouds. The
column points are displayed with the height of the labels proportional to the quality
of representation on the two axes shown. The advantage of this pseudoperspective
plot is illustrated by the position of Beggen (beg) on the far left: even though it is
very close to axis two, it is at some distance to the other axes that are not represented.

Axis two opposes the candidates of the communist party on the right to the
candidates of the ecologist GLEI and the poujadist ADR on the left, while the third
axis opposes some Christian democrats at the bottom to some candidates of the liberal
party at the top, relativizing the overlapping of these two clouds of points on axes one
and two. This is due to the exceptional performances of some Christian democrats at
the bottom of the graph in Rollingergrund (ro/) and Muhlenbach (mul) and to a lesser
extent in the “Fondation Pescatore” (pes).

Axes two and three confirm in some sense what we have seen for the parties in
Figure 2: once again the voting districts of the Alzette valley (cls and bis on axis two
and paf on axis three) have a high contribution to the definition of these axes and
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many candidates of the communist party and some of the liberal party are attracted in
their direction. On axis two we have an overall shift to the left of the supplementary
points, that is, toward the more “bourgeois” neighborhoods, which confirms the result
for axis one.

5 The Panachage Capital

Our mapping approach can uncover many examples in which the personal reputation
of the candidate or even the presence of his or her family in a certain neighborhood—
whether in the present or in the past—has a great influence on the voters. Apart from
regional or local affinities, there are other strategies used by candidates to obtain
panachage votes. These range from traditional political activities to attending spe-
cific, clientele-like groups or to participation in sports and the like. Sometimes, such
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activities, although they are not on a local level, are reflected in the socioadminis-
trative space: for instance, if a candidate is famous for a certain popular sport, like
Stendebach, his panachage votes will probably come from more working class wards.

Certainly, the CA map of the polling results is not a photograph of the political
field, but it represents the starting point for the construction of the political field.
Appealing to the general laws of fields (Bourdieu, 1980) and the specific aspects of
the political field (Bourdieu, 1981), we could combine our CA with other quantitative
and qualitative work to construct the political field, that is, to identify the agents, the
factors of differentiation, the distribution of the various forms of capital, and, most
important, the specific capital of this particular field.

CA emphasized the central role played by panachage in the political field in
Luxembourg. The divergence of individual candidates from the barycenter of their
party cloud required an explanation. This led us to consider the different strategies that
candidates adopt to gain personal votes and helped us to understand how the political
field is influenced by these strategies. We identified panachage capital as the specific
capital of this particular field. The capacity of a politician to attract personal votes
can even decide the composition of the government, as this traditionally consists of
the candidates who won the most personal votes. As our analyzes have demonstrated,
influential statesmen have a large proportion of interparty panachage votes. This
confirms the existence of a large, state-supporting electorate and partly explains the
success of a policy aimed at consensus politics. In fact, since World War 11, the three
major parties (the Christian democratic party, the liberal party, and the socialist party)
have alternated in two-party coalitions. The smallness of a country that counts only
400,000 inhabitants is a fundamental characteristic of Luxembourg society and the
panachage capital is a logical transposition of this smallness to the political field.

Software Notes

CA and the graphics of this contribution were produced with CORA-library, a set
of S-Plus functions written to perform computer-aided interpretation of CA. Further
information is available from the author.



Chapter 14

Normative Integration of the
Avant-garde? Traditionalism
in the Art Worlds of Vienna,
Hamburg, and Paris

Christian Tarnai and Ulf Wuggenig

1 Introduction

Contemporary fine arts is a field largely unexplored by sociology. One of the factors
that impeded research was a distrust of sociology on the part of many people in the art
world, who see the social sciences as disciplines “bent on depriving art of its sacred
status” (Moulin, 1987, p. 3).

In the nineties, however, there emerged a neoconceptualist movement that shows
a critical attitude in the manner of sociology. This movement around avant-garde
artists based in New York such as Andrea Fraser, Clegg & Guttman, Cristian Philipp
Miiller, and Renée Green emerged in leading institutions of the international art world
in 1993, for example, in the 45th Biennale of Venice and the Whitney Biennial in
New York, and was soon labeled “contextual art” (Weibel, 1994). Contextual art,
which was a kind of fad in the art world up to 1995, explores the artistic field and its
institutions. Some of these “artist-researchers” even directly borrow methods from
the social sciences, for example, interviews, questionnaires, and photo elicitation
method (see von Bismarck et al., 1996).

This artistic movement created a climate more favorable for doing sociological
field research in the world of visual art than ever before. It is the background for our
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empirical study, which explores habits, preferences, and value orientations of people
who belong to this social world.

The empirical investigations took place in three well-known cities of the West.
One is Vienna, the former center of the Habsburg monarchy, which has a long
tradition in the arts. It is famous for its turn-of-the-century art nouveau modernism
and notorious for its actionist art in the sixties, which—from a sociological point
of view—was perhaps the most deviant and radical art movement the world had
seen in this century. The second is Hamburg, the second biggest city of Germany,
which is nearly the same size as Vienna. Hamburg is widely known as a center of
trade and commerce. In the more recent past Hamburg postmodernized in a rather
quick way, extending its media, entertainment, and service sectors and also building
up an institutional structure for showing contemporary visual art, the “Kunstmeile,”
which is now one of the most important in Europe. The third is Paris, the city where
the “dealer—critic” system emerged at the end of the last century (White and White,
1993). It was the center of aesthetic modernism up to the fifties. At this time New York
“stole the idea of modern art”(Guilbaut, 1983) and Paris began to lose its position
as a center of artistic production. Paris, however, remained one of the world’s most
important places for the distribution and consumption of art (see Moulin, 1992).

The study is based on random samples of visitors at important exhibitions with
international contemporary art in these three cities in 1993 (Vienna), 1993-94 (Ham-
burg), and 1995 (Paris). These exhibitions, such as the show “The Broken Mirror”
curated by Kasper Konig and Hans Ulrich Obrist and presented in Vienna as well as
in Hamburg, attracted a public of specialized insiders (artists, critics, curators, and
dealers), as well as a general art public, which to a high proportion is an intellectual
and academic population. Comparability between exhibitions is, of course, always
a problem. We tried to solve it by concentrating on the same kind of art and on
institutions that stand in a relation of homology. Comparability was improved by the
fact that one of the exhibitions was shown in Vienna as well as in Hamburg. Thus,
about half of the sample in Hamburg and about a third of the sample in Vienna were
taken at the same exhibition. In Paris, the curator Obrist, who cocurated “The Broken
Mirror,” was also responsible for the show “1 — 1 = 2” of Fabrice Hybert in the
ARGC, the department of contemporary art of the Musée d’Art Moderne de la Ville de
Paris, where our investigation took place.

It has to be emphasized that our study is not representative of the whole field
of contemporary art. Verger (1991) demonstrated empirically that one of the field’s
main oppositions is the contrast between the national and the international market.
Our study refers to the international market only. The economists Rouget et al.
(1991) subdivide the field from a somewhat different perspective, which is more
in line with Bourdieu’s (1996, p. 141 ff.) distinction between autonomous and het-
eronomous production and consecrated and (as yet) nonconsecrated art. They suggest
four submarkets, each with its own laws. With regard to this theory of art market
segmentation, the study is aimed at the group of people who produce, broker, buy,
or sell the art of the submarket termed the “market of the mediated avant-garde” or
who at least are attracted by this kind of art to the extent that they go to exhibitions in
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galleries or public institutions. It is the market about which the bourgeois press and
the specialized art journals write the most, the part of the dealer—critic system where
artists of “high visibility” (Moulin, 1996, p. 160) are struggling for status after death,
that is, a place in international art history.

Samples of the visitors at the exhibitions in the three cities were approached
and asked to participate in the research. The questionnaires were completed at home.
Compared with past experience, the response rates for the largely standardized in-
struments were relatively high. They amounted to 42% in Vienna, 55% in Hamburg,
and 36% in Paris. The samples were restricted to Austrians, Germans, and French in
the three respective cities: # = 616 in Vienna, n = 583 in Hamburg, and n = 358 in
Paris.

We use latent class analysis (LCA) to reduce the complexity of the manifest
attitude space, to test the ordinality of the response format of the attitude items, and
to differentiate between subgroups, for whom the items have different meanings.
Correspondence analysis (CA) is also used to explore in a visual way whether some
assumptions about associations between social positions in the art field and value
orientations are valid. Both LCA and CA lead to visualizations of results, which can
be communicated to members of the social worlds we are investigating.

DiMaggio (1996) drew on the General Social Survey (GSS) of 1993 of the NORC
to test the hypothesis that visitors to art museums have the same social and political
attitudes as everyone else. Even on the basis of a highly inclusive definition of the
boundaries of the art world (historical, modern and contemporary art, avant-garde
and commercial art, self-report of art participation), it turned out that the art public
generally takes more politically liberal positions and is significantly more secular,
more tolerant of nonconformists, and more open to other cultures and lifestyles.

In our research we are interested in a similar question, restricted to the much
smaller world of contemporary art and to the internal differentiation of that field. With
regard to internal social differences, a distinction between “center” and “periphery”
is often drawn in art criticism as well as in economics and sociology of art (Frey and
Pommerehne, 1989; Anheier et al., 1995). If an avant-garde subculture still exists,
the values and preferences that are thought to be constitutive for the social system of
avant-garde art, for example, individualism, antitraditionalism, moral agnosticism,
antieconomism, should be clearly more widespread in the “center” than in the loosely
involved “periphery” of the art field. Bourdieu (1993) refers to the center of the field
and not to the general public when he underlines the ascetism, the moral agnosticism,
and the negation of bourgeois and petit bourgeois values and tastes. The same is
true of Bell’s (1976) descriptions of the radical individualism, the hedonism, and
the hostility toward bourgeois values of postmodernist art and culture. On the other
hand, if it is true that producers and mediators of avant-garde art are also socially
integrated and conformist to the extent that writers such as Gablik (1985) or Crane
(1987) assume, differences in value orientations between center and periphery should
more or less have vanished.

In this context we will concentrate on one of our scales developed to represent
value dimensions, in order to judge these controversial assumptions on an empirical
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basis. This scale, labeled “traditionalism,” consists of six items referring to tradi-
tional bourgeois and petit bourgeois social values and symbols of status. Four of
the items represent such communitarian or altruistic values as partnership, children,
religion, and nation in the sense of Durkheim (1961), and the other two items refer
to mainstream status symbols, the importance of owning an apartment or house and
of owning a car. Persons high on individualism and with antibourgeois tendencies
should identify less with these values and objects.

The specific question referring to basic value orientations posed to the art publics
of Vienna, Hamburg, and Paris was: “What makes life worth living? What do you
find especially important and what less important?” The six items of the traditional-
ism scale read as follows: “Having children,” “Having a strong religious conviction,”
“Having a motherland,” “Involvement in a partnership,” “Owning an apartment or
house,” and “Owning a car.” For each of the six items the three art world samples
were asked to rate importance on a four-point Likert-type scale with four categories:
(1) very important, (2) fairly important, (3) fairly unimportant, and (4) totally unim-
portant.

2 Latent Class Analysis

Latent class analysis is used to identify subgroups of persons, called classes, who are
homogeneous in their value structures (see, for example, McCutcheon, 1987b, and
Chapter 32). LCA for ordinal data, an extension of the pioneering work of Lazarsfeld
(1950) and an integration of latent trait and latent class models by Rost (1988a,
1988b), opens the possibility of checking to what extent the gradations of the four
response categories of the six items of the traditionalism scale are interpreted in the
same way.

The basic concept of LCA for ordinal data is the concept of thresholds. A
threshold is the point at which the probability of two adjoining response categories
is equal. The category probabilities are parameterized by the thresholds. A high
response probability corresponds to a large difference between threshold values.
Different models are distinguished by their restrictions on the thresholds. We use
the program LACORD (Rost, 1990) to estimate the threshold parameters and also to
search for the appropriate number of classes.

Ordinality of the manifest response categories is given empirically if the esti-
mated thresholds are ordered. Similarly, the latent classes can be ordered if a rank
order is observed for all items between the classes. LCA was applied to the individ-
uals with no missing values on the six items of traditionalism, leading to reduced
sample sizes of Vienna, n = 501; Hamburg, n = 524; and Paris, n = 306.

On the whole, the results show a remarkable similarity for the art worlds of
Vienna and Hamburg. For both samples the method identifies three latent clas-
ses, whereas for Paris only two classes are identified. Figure 1 gives the expected
scores in each class for the six items as well as the item means in each of the three
samples.
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Figure 1: Traditionalism in the art worlds of Vienna, Hamburg, and Paris. Profiles of

expected values. Latent class analysis (n = 1311).

Figure 1 shows that the expected item scores for all classes in each of the three
samples have the same order across all six items of the scale. This means that the
classes themselves are ordinal. Thus for the art worlds of Vienna and Hamburg it is
possible to speak of these classes as being characterized by “high” (I), “middle” (II),
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Figure 1: (continued)

and “low” (III) traditionalism. The sizes of the latent classes, which are estimates of
the proportions in the populations, are given as percentages in Figure 1. The class
sizes are rather similar in both art worlds. The largest groups are those with low
traditionalism. The Vienna art world is characterized by a larger “middle class” of
traditionalism than the art world of Hamburg (35.4% vs. 28.5%). Both latent middle
classes display a profile that is similar to the profile of the manifest item means.
The class with low traditionalism, which represents best the values ascribed to the
avant-garde by Bourdieu or Bell, is a bit larger in Hamburg than in Vienna (42.3% vs.
38.3%). The rank order of the expected mean scores for the six items is approximately
the same in the three cities, the only differences lying in the ordering of the two least-
valued items in all three art worlds, nation and religion. In Vienna and in Paris nation is
valued higher than religion; in Germany the reverse holds true. With regard to Austria
and Germany, these differences may reflect the divergent political reactions of the
two countries to the experience of National Socialism, which also had far-reaching
implications for the reconstruction of the art systems in these countries. Germany
was decentralized and national identification deemphasized, whereas in Austria the
political parties in power tried to construct a new national identity especially in
contrast to the former widespread German one. The biggest difference between the
two art worlds of Vienna and Hamburg is the degree of national identification. In
Vienna, the importance of nation in the middle class, II, is as high as in the high-
traditionalism class I of the Hamburg sample. In a similar but less pronounced manner,
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this is also true for holding a strong religious conviction and for owning an apartment
or house.

In Paris the group with low traditionalism (II) amounts to nearly two thirds of
the art world (65.4%). In comparison with the low-traditionalism groups of Vienna
and Hamburg, there is no difference with regard to partnership or car. Children and
ownership of a house or apartment, however, are clearly more important for the
low-traditionalism group in Paris. On the other hand, religion is even less important.
It nearly reaches the extreme value of 4 (“totally unimportant™). Identification with
the “motherland” is extremely unpopular in this group as well. In this respect, the
difference from Vienna is stronger than that from Hamburg. Since this group is much
larger in Paris than in Vienna and Hamburg, one of the main differences between the
French- and the two German-speaking art worlds is the greater number of persons
who do not identify at all with religion, nation, the church, and the state. Group I, with
high traditionalism, is also different from the high-traditionalism groups in the other
art worlds in being less traditional with regard to partnership, children, car, nation,
and religion. The group in Paris, characterized by a higher degree of traditionalism,
is less conservative than group I in Hamburg and group I in Vienna. LCA shows
that the Paris art world is much more homogeneous with respect to social values and
symbols of status than those of Hamburg and Vienna.

3 Results of Correspondence Analysis

Statistical models imply a certain philosophy of the social, of action, and of causality.
CA is a method that, as Bourdieu (1991, p. 277) put it, “thinks” in relations. CA is
especially attractive for our purposes, because it allows us to represent and explore
the relations between social positions and value orientations in a graphical way at a
low level of abstraction. Apart from the study of the basic relations between center
and periphery with regard to high, middle, and low traditionalism, the inclusion of
secondary factors that might differentiate between the value orientations (e.g., center
and periphery in a geographical sense) is possible. The rows of the tables analyzed by
CA are the latent classes identified by LCA and our additional group reincorporating
respondents who gave no answer to one or more of the attitude items. Thus there are
four rows in the case of Vienna and Hamburg and three rows for Paris.

The column variable in our analyses is based on the four categories combining
two dichotomous measures. One refers to the social position in the art world. We
differentiated between social center and periphery on the basis of a question that asked
how intensively one is occupied with contemporary fine arts. Those who responded
“almost every day” were classified as center, the rest as periphery. The validity of this
measure was tested with the help of many indicators, such as being an artist, having
studied fine arts, having many artists as friends, or attending many openings. All these
indicators turned out to be highly correlated with that measure. The other variable
differentiates those living in the city where the exhibition was shown from those
coming from outside. Exhibitions of international art attract not only local residents
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but also visitors from all over the country. The proportions of those coming from
outside (but from the same country) amount to about a third (34.6%) of the audience
in Vienna, to 39.5% in Hamburg, and to 38.8% in Paris.

The proportion specializing in contemporary art and thus classified as center is
lowest among the local residents of Hamburg (22%) and the highest among the local
population of Paris (46%), with the Viennese in between (30%). The proportions of
the center persons among the external visitors are 34% for Hamburg, 24% for Vienna,
and 39% for Paris. Thus, in Paris and Vienna there are more professionals among
the locals, whereas for Hamburg, which has no comparable position of structural,
strategic, and cognitive dominance in the country (see DiMaggio, 1993, p. 195 ff.),
this relation is reversed.

The CA visualization can be enriched by the inclusion of supplementary points
(e.g., Greenacre, 1993a, p. 96 ff.). Thus, in addition to the four general social positions,
we consider four special art world groups as supplementary points: artists, art critics,
curators, and collectors. Most of the members of these groups belong to the center
of the art world. Because they represent the spheres of production, distribution, and
consumption of art, or, in a different theoretical frame, the fractions of cultural capital
(artists, critics, curators) and of economic capital in the field of art, some differences
between them on the level of value orientations are to be expected. Bourdieu’s
theory of the homologies of social position, habitus, attitudes, signs, and practices
(Bourdieu, 1984, p. 128 ff.) implies that the cultural capital groups should identify less
with traditional values than the collectors. In social space most collectors represent
the art-consuming part of the class fractions with high economic capital.

The biggest of these groups is the artists. The cumulative sizes of the four art
world groups selected reveal the high degree of self-referentiality of contemporary
art in a social sense. Consumers are at the same time producers and mediators of art
to a high extent. Seen from a comparative perspective, the Paris audience with these
four groups constituting 52.2% of the total sample is clearly the most specialized
and the Hamburg audience with 28.5% the least (Vienna, 36.2%). The position of
Paris corresponds to Fleck’s (1996, p. 25) description of the Paris art field as a
“self-referential system” and a scene “nearly exclusively turning around itself.” The
percentages for the single groups are: (1) artists: Hamburg 16.9%, Vienna 20.2%,
Paris 24.6%; (2) collectors: 2.9%, 5%, 10.5%; (3) art critics: 3.8%, 6.7%, 8.7%;
(4) curators: 4.9%, 8.8%, 8.4%. Collectors we term the small self-defined part of
the buyers of art in the audience who indicate that they are buying art objects not
spontaneously or temporarily only but in a systematic way in order to build up a
“collection.”

3.1 The Art World of Vienna

Figure 2 refers to the Vienna art world. It is a symmetric display based on a simple CA.
The four social positions in the art world—Vienna and center in the art world (labeled
VIENNA CENTER), Vienna and periphery in the art world (VIENNA PERIPHERY),
other Austrian cities and center in the art world (ELSE CENTER), and other Austrian
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Figure 2: Correspondence analysis of traditionalism (three latent classes) with center
and periphery of the art world in Austria (Vienna vs. else). First and second axes,
99.3% of total inertia represented (Vienna 1993, n = 616).

cities and periphery in the art world (ELSE PERIPHERY )—are represented as black
squares. High, middle and low traditionalism are represented as white squares with
numbers corresponding to the labeling in Figure 1, and “no answer” is indicated by
an empty circle. The four art world groups projected in as supplementary column
points are represented by empty triangles.

Nearly all the total inertia is represented in the plot. The first axis is much more
important than the second, explaining about 85% of the total inertia. The first axis is
determined on the left side by high traditionalism (CTR = 0.36) and on the right side
by low traditionalism (CTR = (.54), thus showing the opposition between high and
low traditionalism in which we are mainly interested. Correspondingly, both groups
of visitors living in the Austrian provinces are situated on the left side, opposing the
Viennese visitors on the right side. That means that center and periphery matter in
a social as well as in a geographical sense; the effect of center versus province is
stronger than the effect of center versus periphery of the art world. Within the two
geographical groups, the center art world subgroups are both farther to the right in
the direction of low traditionalism, especially VIENNA CENTER.
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The projection of the four special art world groups shows that groups with high
specific cultural capital are situated on the right side of the first axis, tending toward
low traditionalism, whereas collectors are on the left side, where traditionalism is
high. In their value orientations collectors are similar to nonspecialized visitors from
the province. Curators, artists, and critics represent the low degree of traditionalism
characteristic of the center of the Viennese art world. Among them, art critics are the
least traditionally orientated group. Curators and artists in the Austrian art world are
“neighbors,” indicating a high degree of similarity with regard to traditionalism.

3.2 The Art World of Hamburg

In the Hamburg sample (Figure 3), again almost all of the inertia is represented by
the first and second axes. It also shows the contrast of high and low traditionalism.
On the left side it is strongly determined by high traditionalism (CTR = 0.73) and
on the right side by low (CTR = 0.18). An important difference from the Vienna
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Figure 3: Correspondence analysis of traditionalism (three latent classes) with center
and periphery of the art world in Germany (Hamburg vs. else). First and second axes,
97.9% of total intertia represented (Hamburg 1993-94, n = 583).
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sample concerns the amount of variation in the data. In the Austrian sample the inertia
explained by the first and the second axes amounts to 0.072, in the German sample
only to 0.016. This indicates that the associations in Hamburg are much weaker than
in Vienna.

Otherwise, the basic results are quite similar, with the center of the Hamburg
art world on the side of low traditionalism, a greater contrast being between the
geographical groups, and, as in Austria, the differences between center and periphery
in the art world more pronounced among those living in the city.

Considering the supplementary art world groups, there are signs of inhomogene-
ity of the center again, in this case explaining the low associations between center
versus periphery and value orientations. Collectors are clearly the most traditional
group. In contrast to Vienna, critics and curators do not differ much from the average
of the members of the art world. Only among artists is traditionalism low.

3.3 The Art World of Paris

For Paris, represented in Figure 4, all the inertia is explained, because the data are
two-dimensional. The first axis explains 95.8% of the inertia, but its value (0.014)
is nearly as small as in Hamburg. This axis, however, is determined not by one of
the latent classes of traditionalism but by the group “no answer” (CTR = 0.83).
The tendency not to respond to all six attitude items is highest among the specialized
individuals living in Paris. There is nearly no differentiation of value orientations with
respect to social position in the art world, apart from the tendency to express these
clearly in a questionnaire. The “no answer” proportions are higher among artists and
collectors than among curators and critics.

The second axis shows a very small difference between low and high tradition-
alism. In contrast to Vienna and to Hamburg, in Paris the collectors are not the group
that shows the highest degree of traditionalism. It comes perhaps as a surprise as
well that artists in Paris are not less conservative than the average of the members
belonging to the “community of taste” (Becker, 1986, p. 76). Fleck (1996, p. 25), a
well-informed art critic, in his report on the Parisian subfield that we investigated,
hints at processes of “self-provincialization” in the Paris art world since the end of
the eighties due to state intervention, which might partly explain these results.

4 Conclusion

The assumptions, mainly based on the American experience, regarding the assimila-
tion of the artistic and intellectual milieu of avant-garde art to the values of the “middle
class” Crane (1987) or to the “predominant values” Gablik (1985) were reformulated
and applied to three European art worlds. Whereas the assumption of a dissolution
of the boundaries between art and society is clearly refuted by DiMaggio’s (1996)
analyses of the GSS data in the American case, we found mixed evidence concerning
the internal differentiation of the European art worlds. Our findings show that Vienna
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Figure 4: Correspondence analysis of traditionalism (two latent classes) with center
and periphery of the art world in France (Paris vs. else). First and second axes, 100%
of total inertia represented (Paris 1995, n = 358).

is still characterized in its center by the individualistic and antibourgeois tendencies
described by Bell and Bourdieu, for example. On the other hand, social position does
not differentiate the Paris art world in this respect. In view of the small weight of the
vertical distances between center and periphery in the Paris sample, the hypothesis
that the center of the art world forms a subculture, in which Durkheimian egoism is
much higher and negation of communitarian bourgeois values and mainstream status
symbols is much lower than in the groups much less involved in art could not be
confirmed in any convincing way.

The Hamburg art field is neither as strongly differentiated as the Vienna field nor
as homogeneous as the field of Paris. The basic associations about differences between
center and periphery are supported by systematic distinctions in value orientations
among special art world groups. The opposition between cultural and economic
capital in the field of visual art, emphasized by Bourdieu, is still characteristic for the
Hamburg art world, at least when producers and economic appropriators of art are
considered. Art mediators (critics and curators) in that social world, however, do not
differ from the average.
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What can be learned from our findings is that specifications of the “death of
the avant-garde” proclamations according to social and cultural context are of great
importance. One reason for the differences found might be that the German and the
French art worlds show more features of postmodernism, with traditional “symbolic
boundaries” (see Lamont and Fournier, 1992) being eroded to a higher extent than
in Austria, which culturally is a rather conservative country. Another reason might
be connected to the histories and the structural frames of the art worlds themselves.
Whereas in Austria the central state intervenes heavily in the art system, in Germany—
because of the experiences with National Socialist cultural centralism—state funding
as well as control of the visual arts is still rather negligible. Because especially in
Vienna much public money goes into the arts, Austrian artists and their constituencies
are public persons much more under social and mass media control than those in
Germany. The history of Austrian avant-garde art after World War II is also a history
of artistic scandals and revolts against bourgeois society—from Viennese activism
in the sixties, to criticism of the actions of former President Kurt Waldheim and the
restrictive immigration laws of the nineties (e.g., “Art and Politics,” an exhibition in
1994 in the hall of the Austrian parliament in Vienna, partly censored by the state),
and neoactivist sexual transgressions in exhibition spaces funded by public money
(e.g., “Jetztzeit,” Kunsthalle Wien, 1994). Nothing comparable could be observed in
the past two decades in Hamburg, an autonomous town, where the art institutions
represent only the local community, not the central state. Thus confidence in our
findings in this respect is enhanced by external, historical data.

One might argue that the field of Paris is characterized by a high degree of state
intervention, too. In Paris, however, modern art and its symbolic transgressions have
a long history. It is much more absorbed and tolerated than in Austria, where nothing
like the “reeducation” of Germany, including taste (e.g., the “documenta” exhibitions
at Kassel), took place. That there are no differences between local and external visitors
in Paris seems to be more difficult to explain. Fleck (1996) emphasizes that due to
heavy cultural political interventions since the early eighties (the era of Mitterand
and Jack Lang), France had constructed “the best decentralized exhibition landscape
in Europe.” This diffusion of contemporary art and its institutions all over the country
(e.g,. the 22 FRAC—*Fonds Régionaux d’Art Contemporain”—and the network of
“Centres d’Art”), which Chirac and the conservatives have begun to stop recently,
might partly explain that the old distinction between capital and province, at least in
the field of visual art, was not as important in the last decade as before. We conclude
that pure social-structural explanations are relevant and fruitful but that cultural and
historical factors have to be considered as well.
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Chapter 15

Graphing Is Believing:
Interpretable Graphs
for Dual Scaling

Shizuhiko Nishisato

1 Introduction

Visual display of quantified rows and columns in a joint space has been an almost
routine procedure for data analysis. As mentioned several times in this book, there
are three widely accepted choices of coordinates:

1. Asymmetric mapping: standard (normed) coordinates for rows and principal (pro-
jected) coordinates for columns

2. Asymmetric mapping: principal coordinates for rows and standard coordinates
for columns

3. Symmetric mapping: principal coordinates for both rows and columns

The first two are true joint maps in that they are visualizations of projections of
row and column points in the same space and that column points in 1 (respectively,
row points in 2) are at average positions of row points (respectively, column points).
The third choice is often used for the reason that row points and column points
have the same norm for each axis. The fourth possible choice, which uses standard
coordinates for both rows and columns, must be rejected because joint display can
neither reproduce input data nor reflect the relative importance of axes.

185
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No matter which one of the three acceptable choices one may adopt, the ultimate
goal of visual display must be to facilitate an interpretation of quantified outcome.
Furthermore, the graph should be such that it enhances the meaning of the old
adage “seeing is believing.” To this end, we will consider the joint graphical display
for dual scaling of two types of categorical data, dominance data (e.g., rank order,
paired comparison, successive category data) and incidence data (e.g., multiple-
choice data, sorting data, contingency tables) (Nishisato, 1993). As typical examples
of the respective data types, we will look at rank order and multiple-choice data.

2 An Interpretable Graph for Rank Order Data

Coombs (1950) proposed a model for analyzing rank order data, called the unfolding
model, in which he postulated a unidimensional continuum, called a J scale, along
which both subjects and objects are located. The decision rule is that a subject
ranks first the stimulus that is located closest to him and ranks the rest of the objects
according to the order of their distances from him. In this model, a given set of objects
ranked by a subject, called an I scale, can be regarded as the ranking of the objects on
the continuum folded at the subject’s position, called his ideal point. Depending on
the location of an ideal point, it is easy to see that a folded continuum results in
a different ranking of the objects. Coombs extended the underlying continuum to
multidimensional space, leading to the problem of multidimensional unfolding, in
which the main task is to determine subject’s positions and positions of objects in
such a way that the rank order of distances from each subject to the objects is the
same as the ranking of the objects by that subject.

Historically, the problem of multidimensional unfolding has been investigated by
a number of researchers (e.g., Coombs, 1964; Coombs and Kao, 1960; Schénemann,
1970; Gold, 1973; Heiser, 1981). The same problem has also been handled as a
quantification problem of rank order data by such investigators as Guttman (1946),
Slater (1960), and Nishisato (1978, 1994, 1996). In particular, it was noted (Nishisato,
1994, 1996) that dual scaling of subject-by-object rank order data always recovers the
data perfectly in the full space solution provided that asymmetric mapping is used.
The unfolding framework can therefore be used as one in which the joint graph is to
be interpreted.

Following Nishisato (1978), the ranking of objects j and k by subject i is coded
as follows:

1 if subjectijudges j>k
fij = 0 if the judgmentis j =k
—1 ifthe judgmentis j <k

The basic unit of analysis is called the dominance number of object j for subject i,
e;j, which is defined as the number of times object j is ranked earlier than the other
(n — 1) objects minus the number of times it is ranked after them by subject i. For
N subjects and n objects, the N X n dominance matrix is denoted by E, with (i, j)th
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element

n
€ij = E fijk
k=1

In the case of rank order data e;; can be simplified to the following form (de Leeuw,
1973; Nishisato, 1978):

e,-j=n+1—2K,~

where K;; is the rank of object j given by subject i.

Assuming that each element ¢;; is the outcome of (n — 1) comparisons, the
optimal score vector (in standard coordinates) for subjects and the corresponding
score vector for objects on dimension k are given by

c c
x =—Ey, y=—E'x
Pr Pr

[ 1
T\ Nnln - 12

and py is the square root of the eigenvalue for dimension k.

It is known (Nishisato, 1994, 1996) that only the asymmetric mapping of
(xx, pryi) for all dimensions k provides a perfect solution to the problem of mul-
tidimensional unfolding and further that the existence of a perfect solution does not
depend on the relative sizes of the number of subjects, NV, and the number of objects, .
The last statement may be difficult to accept, considering that a number of papers
on the problem of multidimensional unfolding have discussed the conditions under
which a perfect solution might be obtained. Let us look at an example to see what a
“perfect solution” means.

Ten subjects ranked the following six plans for a Christmas party according to
the order of their preference:

where

Potluck in the group room during the day
Pub/restaurant crawl after work

Reasonably priced lunch in an area restaurant
Evening banquet at a hotel

Potluck at someone’s home after work

I i

Ritzy lunch at a good restaurant

Table 1 contains the 10 X 6 input data, the dominance matrix E, and the first two
solutions, each consisting of two columns: standard coordinates of subjects and the
corresponding positions of the six Christmas party plans in the principal coordinates.
The first two solutions account for 72% (45% and 27%, respectively) of the total
information. Figure 1 shows the plot of those subjects and the party plans using the



188 Chapter 15. Graphing Is Believing: Interpretable Graphs for Dual Scaling
Table 1: Rank order data, dominance table, scores
Subjects (rows) Objects (columns)
Data Dominance table Sol. 1 Sol. 2 Sol. 1 Sol. 2
615432 -5 5-3-1 1 3 1.06 0.84 —0.63 -0.11
263541 3-5 1-3-1 5 —0.16 —-1.74 0.38 0.57
615423 -5 5-3 3-1 1 1.17 1.16 —0.15 -0.37
352416 1-3 3-1 5-5 —1.28 0.04 0.24 0.17
342615 1-1 3-5 5-3 -1.11 —0.08 -0.48 0.20
531462 -3 1 5-1-5 3 0.89 —0.93 0.63 —0.46
124536 5 3-1-3 1-5 —-0.99 0.93
432651 -1 1 3-5-3 5 0.63 -1.11
214536 3 5-1-3 1-5 —0.67 1.29
614352 -5 5-1 1-3 3 1.40 0.53
Solution 2 (27%)
[
9
[ |
7
Pub/Rest Crawl
Pot-luck (after work) 10
4
. A anquet
5 e Solution 1 (45%)
Pot-luck (group room) o
Lunch .
h (rit
(reasonable) Lunch (ritzy)
[ ]
® Party Plans 6
8 Subjects
2
n

Figure 1: Rank-2 approximation.
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coordinates listed in Table 1. Solution (axis) 1 divides the parties into those that are
expensive (ritzy lunch, banquet, pub/restaurant crawl) and those that are inexpensive
(potluck in group room, potluck in someone’s home, reasonably priced lunch), and
may therefore be called the cost factor. Solution 2 categorizes the plans into daytime
parties (ritzy lunch, reasonably priced lunch, potluck in the group room) and evening
parties (potluck after work, banquet, pub/restaurant crawl), indicating the time factor.
Considering that 72% of the total information is accounted for by these solutions,
one may conclude that subject’s rankings largely reflect those two underlying factors,
cost and time.

Table 2 contains Euclidean distances, calculated from Figure 1, between sub-
jects and party plans and the rankings of these distances within each subject, which
is referred to as the rank-2 approximation to the input ranking. Without further in-
vestigation, the rank-2 approximation looks good, corroborating that the first two
solutions account for a substantial amount of information.

We can explore other possible approximations, starting with the rank-1 approxi-
mation, using only the first solution, all the way up to the rank-5 approximation to the
input data. Because the rank of the dominance matrix is five, the rank-5 approxima-
tion is the highest degree we can consider. To indicate goodness of approximations,
let us calculate the sum of squared discrepancies between the input data and the
approximated ranks for each subject and each approximation. Table 3 shows the
summary. It is interesting to note that goodness of the approximation shows individ-
ual differences. For example, subject 3 needs only the first two solutions to recover
the ranking, and subjects 8, 9, and 10 can fit perfectly in the three-dimensional space.
Notice also that the rank-5 approximation perfectly reproduces the input ranks. In
other words, it is a perfect solution to the problem of multidimensional unfolding.

In conclusion, when we have an N X n rank order matrix, we can always map
subjects and objects in (n — 1)-dimensional space or N-dimensional space, whichever
is the smaller, in such a way that the rankings of the distances between subjects and
objects are exactly the same as those in the input data, provided that asymmetric

Table 2: Euclidean distances and ranking

Distances Ranking of distances

1.94 0.73 1.72 1.06 1.67 1.37
1.72 1.58 1.18 1.27 1.77 0.54
220 0.98 2.02 1.36 1.91 1.71
0.67 1.75 1.21 1.53 0.81 1.98
0.49 1.63 1.01 1.38 0.69 1.79
1.70 2.38 1.37 1.95 1.96 1.51
1.10 1.42 1.55 1.45 0.89 2.14
1.61 1.70 1.07 1.33 1.71 0.65
1.40 1.28 1.74 1.45 1.11 2.18
2.13 1.02 1.79 1.21 1.91 1.25
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Table 3: Sums of squares of discrepancies in ranks between input ranks and rank-K
approximation

Subject K=1 2 3 4 5
1 8 6 6 6 0
2 42 22 6 4 0
3 8 0 0 0 0
4 6 6 6 0 0
5 12 12 8 0 0
6 14 14 4 4 0
7 12 8 6 0 0
8 18 14 0 0 0
9 20 8 0 0 0

10 2 2 0 0 0

mapping is used. In contrast, symmetric mapping does not provide a perfect solution
even when the inertia is comparatively high.

When the researcher has biographical information about subjects (e.g., gender,
age group, socioeconomic class), the mapping of subjects provides an opportunity
to identify any clusters of them in terms of such information. Although traditionally
many researchers may be interested only in the configuration of objects, there exists
a definite opportunity for finding additional clues for interpreting the outcome by
looking at joint graphs of both subjects and objects.

As for other examples of dominance data such as paired comparisons and suc-
cessive categories data, the same idea of the joint graph can be extended to them
because dual scaling of those data can be formulated by handling ranking informa-
tion or, more specifically, ordinal information contained in pairwise and between-set
rankings (Nishisato and Sheu, 1984).

3 An Interpretable Graph for Multiple-Choice Data

Within the framework of Coombs’ multidimensional unfolding analysis the asym-
metric graph for rank order data, discussed earlier, can be characterized as the only
legitimate graph. When we consider multiple-choice data, however, there seem to
be more possibilities for choosing a graph than in the case of dominance data, and
the problem of interpretation therefore becomes even more relevant to and important
than that of dominance data.

Suppose that we adopt symmetric mapping with principal coordinates, because
this is one of the most widely used methods. With this assumption, Nishisato (1988)
presented some 20 measures of badness of joint graphical display. Greenacre (Chap-
ter 17) shows that the graph can be evaluated on how many items of input data are
recovered by identifying which option in standard coordinates from each question
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lies closest to the subject point in principal coordinates. These ideas are helpful for
evaluating a given choice of mapping, that is, the symmetric mapping, but what
if some of those measures indicate that symmetric graphs are problematic most of
the time? What if asymmetric mapping, too, suffers from similar problems? What
characteristics should a graph for multiple-choice data possess?

In the current chapter, we will look at a different approach to an interpretable
graph, which meets some desiderata for graphical display of multiple-choice data, as
summarized by Nishisato and Nishisato (1994, p. 124):

1. From the graph, we should be able to see the information contained in the data
matrix—for example, plot subjects and response options of a given data set, and
ask if the graph can tell you which options a particular subject has chosen.

2. The position of each point in the graph should not be unduly influenced by the
frequency of the data point.

3. The space for the graph should be a well-defined one such as Euclidean space;
overlaying two different spaces onto one is out of the question.

What appears to be a plausible method satisfying these points is the one used in
Nishisato (1990). Since the method is not well known, let us use a numerical example
to introduce it, discuss its possible criticisms as well as justifications, and reassess its
potential as an interpretable graph for multiple-choice data.

The method considers information contained in subject’s response patterns for
graphical display. Bahadur (1961) presented a model for binary response patterns,
in which he expressed the probability of each response pattern over » binary items
as the sum of the item means, two-item interactions, three-item interactions, and all
the way up to the n-item interaction. His model shows an example in which response
patterns contain all conceivable multiway associations of the variables. To see how
informative response patterns are, try to rearrange the rows (subjects) of the input data
matrix in order of their coordinates on axis 1 and see a systematic change of response
patterns as a function of the coordinates (see Nishisato, 1994, p. 159). Noting this,
one can consider an informative graph as plotting subjects only and labeling them by
their response patterns.

This simple method was used by Nishisato (1990). Notice that subjects are
plotted in multidimensional Euclidean space using principal coordinates and that the
label of each subject tells us which options the person has chosen and which subjects
have chosen a specific option.

Example: Before evaluating this simple idea critically, let us look at an application
of the method to the data in Table 4. Because there are four items with three options
per item, one can expect 12 — 4 = 8 solutions. Of these solutions, three show a
correlation ratio greater than the expected value, that is, 1/n (Nishisato, 1980, 1994).
The correlation ratios are 0.65, 0.45, and 0.29, respectively. For illustrative purposes,
we will examine only the first two solutions, which account for 79% of the total of
the three values. Figure 2 shows the plots of subjects in principal coordinates in the
two-dimensional solution. Boundaries of clusters are determined by common sets
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Table 4: Adults’ views of children (Singapore data)

Data
Item

Questionnaire Subject 1 2 3 4
[Item 1]:

How old are you?

(1) 20-29 1 3 1 2 1
(2) 30-39 2 2 1 3 2
(3) 40 or older 3 2 1 2 2
[Item 2]: 4 1 2 2 3
Children today are not 5 3 1 2 2
as disciplined as when I 6 1 3 1 2
was a child. 7 2 1 2 2
(1) agree 8 2 1 1 2
(2) disagree 9 1 2 3 1
(3) I cannot tell 10 3 1 2 1
[Item 3]: 11 1 2 2 3
Children today are not 12 2 1 1 1
as fortunate as when I 13 2 1 3 3
was a child. 14 3 1 2 1
(1) agree 15 1 1 2 3
(2) disagree 16 3 1 2 1
(3) I cannot tell 17 3 1 1 1
[Item 4]: 18 2 3 2 2
Religions should be 19 3 1 2 1
taught at school. 20 2 1 2 2
(1) agree 21 1 3 3 3
(2) disagree 22 2 1 2 2
(3) indifferent 23 1 3 3 3

of response patterns. In other words, the subjects in a cluster share the same subset
of identical responses, a source of information used to maintain interpretability.
As illustrated in Nishisato (1994), subjects who have chosen particular options of
an item are distinctly and tightly clustered if the item is highly correlated with
the two graphed solutions. This is clearly shown in [A] and [B] in Figure 2. Age
groups 20-29 (1**%*), 30-39 (2***), and 40+ (3***) are distinctly separated in
[A], where an asterisk indicates a choice of any option of the corresponding item.
Similarly, patterns (¥**1), (***2), and (***3) clearly partition the subjects in [B],
indicating that those are subjects who agree with teaching of religions, disagree, and
are indifferent, respectively. By the same token, if the item has low correlations with
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Figure 2: Examples of clustering response patterns.

the two solutions, subjects cannot be cleanly clustered in terms of the options of the
item.

From this finding, we can go one step further and find a set of items that cluster
subjects into comparatively tight subgroups in terms of combinations of their options,
as shown in [C}:

o Age 20-29 and indifferent to teaching religions (1¥*3)

¢ Unsure if children are less disciplined but against teaching of religions (*3*2)

® 30-39 years of age and children are not disciplined (21**)

e Age 40+ and children are not disciplined (31*%)

o Age 30-39, children are not disciplined, but are against teaching religions (21*2)
o Age 40+, children are not disciplined, and religions should be taught (31*1)
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These are only several of many possible examples, which include overlapping clusters
such as (21**), (1*¥*3), and (**33), the last one overlapping with the first two clusters.

Criticisms of this method are not so much from the theoretical point of view but
more in terms of the implementation of the method in practice. The following are
some of the conceivable criticisms and possible remedies for them:

1. When the number of items is large, the use of response patterns as labels is too
cumbersome, if not impossible. This criticism is right, and it can be mitigated by
introducing a key consisting of a set of codes to replace long strings of chosen
options, such as A = (12%¥3*11%%*5) and B = (*¥*33%*111%*),

2. There are too many ways to cluster subjects in terms of their responses to a
particular set of items. This is also right. An alternative to the subjective clustering
is to use a method of cluster analysis that provides an objective way to partition
subjects into groups.

3. The method allows one to look at two or three solutions at a time, and for higher
dimensional solutions there are too many combinations for a single graph (e.g.,
solution 1 versus solution 2, or 1 versus 3). This criticism is right, too. But,
what alternatives do we have for a single graphical display of multidimensional
solutions? To mention a few, there are Andrews curves (Andrews, 1972), the
alternating monotone graph, the parallel graph, and the semicircular incremental
radial graph (see examples of these in Figure 3). These graphs indeed show
multiple solutions in the two-dimensional plane, but they are difficult to interpret
and are typically used to depict only one set of variables, rows or columns. In
other words, these are not for joint graphical display. It is nearly impossible to
infer the relation between row variables and column variables, not to mention
the communicability between the graphs and the input data. Therefore these
multidimensional graphs are currently at best only of theoretical interest, and
their interpretability aspect needs to be investigated further.

4. What if there are some missing responses? As long as the number of missing
responses is very small, say a few percent, missing responses will not affect
the respondents’ positions in any serious way. With more missing data, one
would have to employ a method of imputation for missing responses or include
special categories for missing responses (see, for example, van Buuren and van
Rijckevorsel, 1992; Nishisato and Ahn, 1994; and Chapters 16 and 18 in this
volume).

4 Discussion and Conclusion

We have looked at two kinds of interpretable graphs. The asymmetric mapping of rank
order data can be extended without difficulty to paired comparison data and successive
categories data. We often collect only ranking of objects by subjects, but it would
be particularly useful to obtain some background information about the subjects and
supplementary information about objects. For instance, consider collecting not only
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Figure 3: Multidimensional graphs: [A] the Andrews curves, [B] alternating mono-
tone graph, [C] parallel graph, [D] semicircular incremental radial graph.

ranking of political issues from subjects but also information about subjects’ political
affiliations. In the asymmetric map of the political issues and subjects, we can now
introduce a coding system that identifies the subjects’ political affiliations. Similarly,
ranked objects can also be coded to enrich the interpretations.

We have also looked at a graph that allows us to examine the relations between
subjects and chosen options without overlaying two spaces (i.e., one for subjects and
the other for options). The study shows that the graph usually provides interpretable
clusters in terms of common options that characterize them,; that is, the interpretation
comes directly from those options. One can envisage computer software that can plot
subjects who choose individual options of a given item as well as plot subjects who
share specified response patterns. Such a program would be useful when the graph is
intended for exploratory investigation of the data. Our experience suggests that the
method presented here can easily be implemented for practical use and should be
preferred to the popular method of joint mapping in principal coordinates.
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In concluding, let us pose a final question. Can we replace “seeing is believing”
with “graphing is believing”? No matter what answers we may hear, let us hope that
it should be a goal for quantification research.
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Chapter 16

Interpreting Axes in Multiple
Correspondence Analysis:
Method of the Contributions

of Points and Deviations

Brigitte Le Roux and Henry Rouanet

1 Introduction

In geometric data analysis, once a “cloud” of points has been constructed, as the out-
come of correspondence analysis (CA), for example, or principal component analysis,
the phase of interpretation follows. This phase is always a delicate one; at this point,
the need to fill the gap between theory and practice appears essential—a need well
reflected in the book edited by Greenacre and Blasius (1994a). In the French tradition
of data analysis, aids to interpretation have been devised, such as the familiar table of
contributions and supplementary elements. The method we will present in this chap-
ter, namely the method of the contributions of points and deviations, directly extends
the existing aids to interpretation. It stems from the following remark: in analysis
of variance (ANOvVA) terms, contributions of points to an axis are simply parts of
variance accounted for by points. This leads to considering other parts of variance
that are also used in ANOVA; for example, those that express contrasts among groups
of observations. That is, it leads us to study the contributions of deviations between
points. Indeed, all those who practice geometric data analysis are accustomed to think
intuitively in such terms (“axis 1 opposes rich vs. poor, axis 2 old vs. young, etc.”).
From a theoretical viewpoint, the statistical interpretation of CA in ANOVA terms is
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well known; see Fisher (1940) and Tenenhaus and Young (1985). But we feel that
the idea deserves to be fully elaborated.

This chapter will be devoted mainly to the first and basic phase of interpretation,
namely that of the principal axes, in the case of multiple correspondence analy-
sis (McA). Henceforth we assume the data structure of a questionnaire in standard
form; that is, there is a set of questions, together with, for each question, a set of
response modalities (also called response categories)—including nonresponse when-
ever relevant—and each individual chooses one (and only one) modality of each
question. Then consider the following two ideas taken from nested designs in ANOVA:

1. With each modality is associated one and only one question; in ANOVA terms, this
means that the set of all modalities is nested in the set of questions. This prompts
us to investigate—in addition to contributions of modalities—the contributions of
questions to axes and also the contributions of modalities to questions.

2. For each question, each individual chooses one and only one modality, which
means that for each question the set of individuals is nested in the set of the
observed modalities of the question. In other words, each question generates
a partition of the individuals indexed by the modalities of the question. This
suggests that we investigate the cloud of individuals and its subclouds associated
with modalities of interest.

The method of the contributions of points and deviations will be illustrated with
data taken from the French Worker Survey.

2 The French Worker Survey

2.1 The Survey

The French Worker Survey (Adam et al., 1970) was conducted in July 1969 on a
representative sample of French workers—unskilled, specialized, and technicians—
using a thorough battery of 70 questions, with the overall objective of “analyzing the
political and social behavior of the working class.”

At the time of the survey, presidential elections had just taken place, opposing the
candidates of the four main political families, along the traditional range from left to
right: Communist (Duclos), Socialist (Defferre), Center (Poher), Gaullist (Pompidou,
who won the election). One objective of the survey was to inquire about this traditional
dimension in the specific population of workers; other objectives were to identify
and interpret other important dimensions, possibly specific to this population. For
instance, the communist dominance among workers was beyond doubt (although
already on the decline), but the influences and roles of the noncommunist left and
of center were not so well delineated. Also, what needed to be clarified were the
relations and interplay between political attitudes and attitudes toward trade unions.
The leading trade unions were the CGT (with notorious links with Communist party),
then—far behind—cCFDT, FO (both loosely linked with the noncommunist left), and
“autonomous” (inclined toward right wing).
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Table 1: The four basic questions and their relative frequencies

Professional elections (¢1). In professional  Union affiliation (g2). At the present time,
elections in your firm, would you rather vote  are you affiliated to a Union, and in the affir-

for a list supported by: mative, which one:

1. cGT 3298 1. cGT 2107
2. CFDT 0877 2. CFDT .0524
3. FO 0782 3. FO .0229
4, cFTC 0248 4. cFIC .0048
5. Autonomous 1077 5. Autonomous .0210
6. Abstention 1525 6. cGe 0114
7. Nonaffiliated list .1049 7. Not affiliated .6663
8. NR 1444 8. NR .0105

Presidential election (¢3). On the last pres-  Political sympathy (g4). Which political
idential election [1969], can you tell me the  party do you feel closest to, as a rule?

candidate for whom you have voted? 1. Communist [PCF] .1935
1. Jacques Duclos (Comm) 2221 2. Socialist [SFIO+PSU+FGDS] 1697
2. Gaston Defferre (Soc.) 0467 3. “Left” (“Party of workers”,...) .0429
3. Alain Krivine .0095 4. Center [+MRP+RAD.] 1192
4. Michel Rocard 0286 5. m .0086
5. Alain Poher (Center) .1420 6. Right [+INDEP.+CNI] .0381
6. Louis Ducatel .0067 7. Gaullist [UNR] 1335
7. Georges Pompidou (Gaullist) 2336 8. NR .2946
8. NRAbst .3108

Note. Within union questions g1 and g2, there are correspondences between modalities (except
6), reflected by label numberings. Similarly for modalities 1, 2, 7, and 8 of political questions
43 and g4, the other label numbers being arbitrary. There are no such correspondences between
union and political parties, except for the well-known affinities between cGT and Communist
(modalities 1).

The analysis to be presented in this chapter is based on 1049 respondents and
concentrates mainly on two questions about trade unions and two questions about
political preferences. The four basic questions, each with eight modalities of response,
are presented in Table 1, together with the associated relative frequencies. In Table 2
the 319 observed response patterns are given, along with their frequency counts.

(Let us briefly comment on the one-way tables.) From the union questions (g1
and g2), we see that 63% of workers vote for a list sponsored by some union (g1,
modalities 1-5 and 7), more than half of them for cGT; 67% of workers, however, are
not affiliated with any union (g2, modality 7). From the two political questions (g3
and g4), we see the high percentages of nonresponses, NR (31% and 29%). Among
expressed sympathies, the communist party indeed comes first (19%) but is exceeded
by noncommunist left-wing sympathies pooled together (21%, g4, modalities 2 and
3); also, the Gaullist pooled with other right-wing parties (¢4, modalities 5 and 6)
come up to 18%. Duclos’ (22%) score is exceeded by Pompidou’s (23%), and so on.
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Table 2: 319 response patterns with frequency counts

1111 81 | 1712 4| 2234 13356 1| 4722 1| 5751 16776 47787 4
1112 9 | 1717 12242 2| 3357 1| 4732 15752 3|6777 197788 16
1113 7| 1718 7 (2251 1 (3358 14753 15754 10| 6778 5| 8111 1
1114 2 | 1721 12252 63374 14756 15756 3| 6781 18113 1
1118 7| 1722 5| 2254 8| 3377 2 |4766 15757 36782 58152 1
1122 511728 1 {2258 23378 14773 15758 76783 4| 8154 1
1126 1 | 1738 12261 13384 1|4774 2|5772 1(6784 8 |8181 2
1128 21742 22274 3| 3388 214777 75774 S5|678 48182 1
1132 11748 12276 2 |3554 14778 3 |5775 1|6787 48188 2
1142 4 (1751 3 {2282 3 (3614 14782 1|5776 2| 6788 50| 8288 1
1146 11752 52284 13662 15113 15774 14| 7111 28322 1
1148 2| 1754 3 | 2285 1 {3711 2 (5132 1)5778 4| 7112 18588 1
1151 3| 1757 12286 1}3712 1 |5142 15781 27154 18677 2
1152 3 {1758 4| 2287 13713 1|5161 1 |5782 27177 18678 1
1153 2| 1771 12288 13714 25174 15784 1| 7181 18711 3
1154 21772 32711 33722 35184 2 |5787 3([7522 18712 4
1158 31774 32728 3 |3724 1 (5187 1578 9| 7582 18713 1
1161 11775 12737 13732 15354 1/[5876 17588 18718 4
1162 11776 22738 13751 15382 16116 1|7711 O | 8741 1
1171 11777 712742 3| 3752 25512 1|6172 117712 2 (8742 1
1172 311778 5| 2744 1| 3754 45513 1|6178 17713 1| 8751 1
1177 5| 178t 8 | 2752 13755 15518 1| 6181 17716 18752 1
1178 311782 92754 33756 15522 2 (6182 11!7718 18753 1
1181 10 | 1783 3 | 2756 2| 3758 5 (5548 16188 2| 7722 28754 1
1182 7 | 1784 4 | 2772 1 3774 4 | 5574 2| 6528 1| 7742 2|8757 1
1183 511786 12774 3| 3775 2|5575 16676 1|7752 2 |8758 4
1184 1| 1787 2| 2777 7| 37716 1|5577 46711 8| 77154 6 |8765 1
1188 13 | 1788 26 | 2778 5 {3777 7 |5584 16712 1715 18774 2
1218 1| 1858 1| 2782 1}3778 45588 16714 1|7758 5 |8776 2
1272 1| 1881 2 {2784 13782 35672 1|6718 5 (7772 1|8777 12
1288 1 | 2111 112787 23783 15674 16722 317774 18778 9
1311 12132 12788 3 (3784 315677 16742 27775 18181 2
1381 12154 13122 13787 1|5711 1[6752 37776 28782 2
1418 1 (2178 1| 3182 1 |3788 65712 5|6753 3 |77177 22 |8783 5
1481 12211 23277 1|4241 15713 2(6754 67778 11 |8784 3
1552 1 (2214 1 |3311 214254 15722 1|6756 27781 2| 8788 37
1611 12218 13312 14274 15728 1]6758 47782 38822 1
1673 12222 73322 3 (4441 15732 16771 17783 28878 1
1677 12223 13342 214477 215742 16772 37784 38888 5
1711 33 | 2224 1 [3354 11(4712 1{5744 1|6774 57786 1

We might continue by commenting on two-way and higher way tables. Looking
at the four-way table amounts to considering response patterns (Table 2). The most
frequent pattern (81 individuals) is 1111, describing the cGT—communist “hard core’:
CGT vote and affiliation, Duclos vote and communist sympathy. Next comes the pattern
6788 (50 individuals), that is, abstention and nonaffiliation for union questions and
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nonresponse for the political ones. The 14 most frequent patterns together represent
about one third of the total number of respondents.

In the book by Adam et al. (1970), the reader will find one-way and two-
way tables for the most important questions, with extensive sociological comments,
organized by topics—for example, attitudes toward unions, electoral behavior—based
on careful examination of tables. The alternative approach that we will follow in this
chapter, along the line of geometric data analysis, is to construct a relevant “social
space” (as Bourdieu would call it), a “union—political space” for the French workers
in 1969, applying Mca to the responses to the four questions. The study of maps
yielded by McA amounts to a synthesis of analyses of the conventional kind.

2.2 Multiple Correspondence Analysis

From the responses of the individuals, we construct the disjunctive table (Benzécri,
1992, p. 392; Lebart er al., 1995, p. 108), also called an indicator matrix, crossing
the 1049 individuals and the 8 X 4 = 32 modalities. The principle of construction of
this table is recalled by Table 3.

Correspondence analysis of the disjunctive table, that is, multiple correspondence
analysis, yields two clouds of points, namely the cloud of 32 modalities, and the cloud
of 1049 individuals—or equivalently of 319 weighted response patterns. In numerical
terms, each cloud is defined by a table of principal coordinates, where for each axis
the weighted average of the squares of principal coordinates is equal to the eigenvalue
associated with the axis.

Here we will interpret the first four axes; the corresponding eigenvalues are given
in the first row of Table 4. For the cloud of modalities in the plane 1-2 (Figure 1):

e On the left, a compact group of four modalities emerges: vote and affiliation cGT,
Duclos, Communist.

¢ On the lower right, there are the various NR and abstention modalities, together
with the two nonaffiliated modalities, Pompidou and Gaullist. Moving up, we find
Center and Poher, Socialist and Defferre, and then cFDT vote and affiliation.

Table 3: Disjunctive table

Patterns q1 q2 q3 q4
1111 } 10000000 10000000 10000000 10000000
81 . e ce. cee
1111 10000000 10000000 10000000 10000000

Disjunctive encoding
=
8888 } 000000001 000000001 000000001 000000001
e 5 “es .o e R

8888 00000001 00000001 00000001 00000001
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Figure 1: Cloud of 32 modalities in plane 1-2. Modalities that contribute most to axes
1 and 2 are in large characters; modalities of the two union questions are represented
by circles and those of the two political questions by squares, whose areas are propor-
tional to frequencies. CGT voting is denoted VCGT, as distinct from CGT affiliation,
denoted CGT, and so on.
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3 Contributions of Points and Deviations

3.1 Basic Formulas

A cloud of weighted points being given, the variance (also called inertia) of the cloud
is the weighted mean of the squares of the distances between the points and the mean
point of the cloud (Benzécri, 1992, p. 36). The absolute contribution of a point to the
cloud is defined as the product of the weight of the point by the square of its distance
from the mean point (Benzécri, 1973a, p. 38; 1992, p. 61). In this chapter, we will be
mainly interested in contributions to an axis; accordingly, distances will be measured
along the axis under consideration.

1. Contribution of a point (Cta). Let us consider a point of weight, or mass, p and
coordinate y along the axis. The absolute contribution of the point to the axis will
be denoted Cta; it is given by the formula (Benzécri, 1992, p. 340; Greenacre,
1984, p. 67):

Cta = py* (point)

2. Contribution of the deviation between two points (Cti). Let us now consider two
points. Let p and p’ denote the weights of the points and y and y’ their coordinates
along the axis. The absolute contribution of the deviation, also called the intra
(within) contribution, will be denoted Cti and is given by the following formula
(Rouanet and Le Roux, 1993, p. 268):

/

pp

Cii =
p+p

(y — y")? (deviation)

These notions of contribution readily extend to a subset of points, or subcloud.
With a subcloud are associated its weight (sum of the weights of its points), its
weighted mean point (barycenter), and its variance, and the following three types of
contribution:

o Its (global) contribution (Cta), which is the sum of the contributions of its points

e The absolute contribution (Cta) of its mean point, which is the product of its
weight by the square of the principal coordinate of its mean point

e Its intra-contribution (Cti), which is the weighted sum of squares of distances from
the points to their mean point

By the classical Huyghens property, the Cta of a subcloud is the sum of its Cti
and the Cta of its mean point, which shows that Cta and Cti are equal if and only if
the mean point of the subcloud coincides with the mean point of the cloud (Rouanet
and Le Roux, 1993, p. 118).

3.2 Application to the Cloud of Modalities

In mca the weight of a modality is the relative frequency of the modality divided by
the number of questions. Hereafter we illustrate the calculations for axis 1.
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o Contribution of modality (Cta). Taking CGT vote (denoted VCGT) as an example: the
relative frequency is 0.3298 (Table 1), hence the weight p = 0.3298 /4 = 0.0825.
The coordinate along axis 1 is y = —1.090 (see Table 5). Hence the absolute
contribution of VcaT: py? = 0.0825 X (1.090)* = 0.0980.

e Contribution of deviation between modalities (Cti). Take VCGT (coordinate y =
—1.090, weight p = 0.0825) on the one hand and VAuto and VAbst on the
other hand; the barycenter of VAuto and VAbst has a weight equal to p’ =
0.0269 + 0.0381 = 0.0650 (weights add up), and its coordinate is y' = (0.0269 X
0.659 + 0.0381 X 0.513)/0.0650 = 0.573 (coordinates average up). One has
pp'/(p + p') = (0.0825 X 0.0650)/(0.0825 + 0.0650) = 0.0364. Hence the
absolute contribution of the deviation (—1.090 — 0.573)? X 0.0364 = 0.1014.

e Contribution of modality to axis (Ctr). Let us divide the contribution of VcGT,
namely 0.0980, by the sum of the contributions of all modalities, that is, Ay =
0.6113; we get 0.0980/0.6113 = 0.160, which means that VcGT contributes to
16% of axis 1. This ratio is often denoted by Ctr.

We further define two other ratios that will be directly useful in the interpretation
process; for clarity, we will always express them as percentages.

o Contribution of question to axis. By definition, the Cta of a question is the sum of
the Ctas of its modalities. For example, the Cta of g1 (Professional Elections) for
axis 1 is the sum of the eight Ctas: 0.0980 + - - - + 0.0041 = 0.1482 (see Table
5). If we now divide the contribution of gl by the sum of the contributions of
questions, that is, A; = 0.6113, we get 0.1482/0.6113 = 0.24; accordingly, we
state that question 1 accounts for 24% of axis 1.

e Contribution of modality (and of deviation) to question. If we divide the contri-
bution of VcGT by the contribution of the question it belongs to, namely Pro-
fessional Elections (g1), we get 0.0980/0.1482 = 0.66; therefore we state that
VcGT contributes to 66% of question g1 (for axis 1). Similarly for the contribu-
tions of deviations. The deviation VCGT versus VAuto and VAbst contributes to
0.1014/0.1482 = 68% of question ¢1 (for axis 1).

3.3 Cloud of Individuals and Cloud of Modality Mean Points

In the cloud of individuals, with each observed modality is associated the subcloud of
the individuals who have chosen that modality. The mean point of this subcloud will
be called the modality mean point. For each axis, the coordinate of the modality mean
point is the mean of the principal coordinates of the individuals who have chosen
this modality, and this can be shown to be equal to \/X y, where y is the principal
coordinate of the corresponding modality (Benzécri, 1992, p. 410).

The cloud of all modality mean points can be obtained from the ca of the Burt
table, which has as eigenvalues the squares A2. As a consequence, if one divides the
contribution of a modality mean point—or of a deviation between modality mean
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points—by A%, one again finds the relative contribution (Ctr) of modality, or of
deviation, and consequently, the relative contribution (Ctr) of a question to an axis.

Each question g induces a partition of individuals into as many subclouds as there
are observed modalities for that question. Consider the derived cloud of the modality
mean points for question g. For each axis, the inertia of this cloud, or interclass
(between-class) inertia, is equal to A times the absolute contribution (Cta) of question
g in the cloud of modalities. As a consequence, if one divides the contribution of
a modality mean point—or of a deviation between modality mean points—by the
interclass inertia, one again finds the relative contribution of the modality—or of the
deviation—to the question.

As a conclusion, it will be equivalent to interpret axes in the cloud of modalities
or in the cloud of modality mean points.

4 Interpreting Axes

Benzécri (1992, p. 405) gives the following guideline: “Interpreting an axis amounts
to finding out what is similar, on the one hand, between all the elements figuring on
the right of the origin and, on the other hand between all that is written on the left;
and expressing with conciseness and precision, the contrast (or opposition) between
the two extremes.” The method of contributions of points and deviations has been
devised as a guide along this line.

4.1 The Method of Contributions of Points and Deviations
As far as Mca is concerned, the method consists of the following four steps.

Step 1. Important questions. In the cloud of modalities, look for the questions whose
contributions to the axis are important. This leads to a first overall interpre-
tation of the axis.

Step 2. Important modalities. Select modalities—or groups of modalities of the
same question that are close on the axis—whose contributions to the axis
exceed some threshold (average contribution is a rule of thumb, but when the
cumulated amount is not sufficient, a less severe threshold may be in order).

Step 3. Contributions of modalities to questions. For each question retained at step 1,
calculate the relative contribution to the question (on the axis) accounted for
by the modalities retained in step 2. When for the question under study, those
modalities separate into several groups—often, for the first axes, into two
groups on the two sides of the origin—determine the barycenters of groups,
then their intra-contribution, and express this contribution as a percentage
of the contribution of the question. For each question, the content of groups
is a concise summary of the interpretation of the axis, whereas the relative
intra-contribution to the question is a quantitative appraisal of the precision
of that summary.
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Table 4: Contributions (Cta) of the four questions

Axis 1 Axis 2 Axis 3 Axis 4
Eigenvalue A 0.611 0.491 0.416 0.373
q1 Professional elections 0.148 0.149 0.078 0.162
q2 Union affiliation 0.137 0.141 0.049 0.162
q3 Presidential election 0.157 0.105 0.148 0.024
g4 Political sympathy 0.169 0.096 0.141 0.026

Step 4. Composite modalities or patterns. The interpretation will be usefully com-
plemented by the examination, in the cloud of individuals, of the composite
modalities or patterns brought out at step 3. When interpreting a specific
response pattern, be aware that its frequency count can be quite low.

4.2 First Overview

In the cloud of modalities, the contributions of the four questions to the first four
axes are given in Table 4. The relative contributions of g1 through g4 to axis 1 lie
between 22% and 28%; for axis 2, they lie between 19% and 31%. Therefore the
interpretation of axes 1 and 2 will be based on the four questions. For axis 3, questions
g3 and ¢4 contribute to 70% of the axis; therefore the interpretation of axis 3 will be
based predominantly on the two political questions. For axis 4, g1 and g2 contribute
to 87% of the axis; therefore the interpretation will be essentially based on the two
trade union questions.

4.3 Interpretation of Axis 1

The interpretation of axis 1, in the cloud of modalities, is based on the results shown
in Table 5, which may be used for checking the numerical values, with Figure 1
serving as an intuitive guide.

Step 1. Important questions. All four questions are important for axis 1; axis 1 is a
general axis, that is, its interpretation involves all four questions.

Step 2. Important modalities. There are four very important modalities, namely
Communist (Cta = 0.1111, i.e., 18% of axis), cGT (17%), Duclos (17%),
Vcar (16%). Those four modalities together account for 69% of axis 1. They
are all on the left side of axis 1. Three other modalities have contributions
exceeding average (0.6113/32 = 0.0191), namely Pompidou (7%), Gaullist
(5%), and NotAff (3%), all three on the right side of the axis. The previous
seven modalities together contribute to 84% of axis 1. Let us add to them the
two modalities VAuto and VAbst, which are close to each other on the axis
and together contribute 3%; with the nine modalities we come up to 87%.
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Table 5: Axis 1: weights, coordinates, and absolute contributions (Cta) of modalities

(A = 0.61132)

Professional elections

Union affiliation

q1 Weight  Coord. Cta q2 Weight Coord. Cta
1. veGr 0825 —1.090 .0980x% 1. cGT .0527 —1.425 .1069%
2. VFDT 0219 0.605 .0080 2. CFDT .0131 0.602  .0047
3. VFO 0195 0.578  .0065 3. FO .0057 0.356 .0007
4. VCFIC .0062 0.824 .0042 4. CF1C .0012 —0.040 .0000
5. VAuto 0269 0.659 .0117+ 5. Auto .0053 0.741 .0029
6. VAbst .0381 0.513 .0100+ 6. cce .0029 0.557 .0008
7. VNonAff .0262 0.463 .0056 7. NotAff .1666 0.355 .0210%
8. VNR 0286 0.377 .0041 8. NR .0026 0.186 .0001
2500 .1482 2500 1373
Presidential election Political sympathy
q3 Weight  Coord. Cta q4 Weight Coord. Cta
1. Duclos .0555 —1387 .1069x 1. Comm. .0484 —1.516 A111x
2. Defferre .0117 0.114 .0001 2. Soc. 0424 —0.069 .0002
3. Krivine .0024 0.221 .0001 3. “Left” .0107 —0.460 .0027
4. Rocard 0072 —0.108 .0001 4. Center .0298 0.687 .0140
5. Poher .0355 0461 .0075 5. RI .0022 0.950 .0019
6. Ducatel .0017  —-0.452 .0003 6. Right .0095 0.705 0047
7. Pompidou  .0584 0.826 .0398%« 7. Gaull. 0334 0.926 .0286x
8. NRAbst 0777 0.156 .0019 8. NR 0737 0.286 .0060
2500 1568 2500 .1690

Stars (x) refer to modalities whose contributions exceed the average of the axis (.61132/32 =
.0191). Plus (+) refers either to modalities close (on the axis) to a starred modality or to
clustered modalities whose grouped contribution exceeds average.

Step 3. Contributions of modalities to questions.

Professional elections (q1). The sum of the Cta of VcGT (on the left side),

VAuto, and VAbst (on the right side) is 0.0980 + 0.0117 + 0.0100 = 0.1197;
that is, those three modalities contribute to 0.1197/0.1482 = 81% of the
question on the axis. The intra-contribution (Cti) of the deviation VcGT vs.
VAuto with VAbst is found to be 0.1006; that is, it accounts for 68% of the
question on the axis.

Union affiliation (q2). cGT (left) and nonaffiliated (right) together con-

tribute 93% to the question on axis 1. The opposition between these two
modalities accounts for 92% of the question.
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Presidential election (g3 ). Duclos (left) and Pompidou (right) contribute
to 94% of the question. The opposition Duclos vs. Pompidou accounts for
89%.

Political sympathy (q4). Communist (left) and Gaullist (right) contribute
to 83% of the question. The opposition Communist vs. Gaullist accounts for
70%.

Step 4. Relevant patterns. The foregoing results suggest considering the composite
modalities that emerge for axis 1. Since all (four) questions are involved in
the interpretation of the axis, the relevant composite modalities are patterns
obtained by combining the cells of Table 6.

Hence the three relevant patterns (with frequency counts, out of a total of 1049):
1111 (81); 5777 (14); 6777 (19). Figure 2 gives the simultaneous representation of
relevant modalities and patterns for axis 1. It provides a graphical summary of the
interpretation of axis 1, and the summary in words may read as follows. Axis 1
opposes the left profile VcGr-cGT-Duclos—Communist (1111) vs. the right profile
[VAuto or VAbst]-nonaffiliated—Pompidou—Gaullist (5777, 6777).

4.4 Interpretation of Axis 2
Applying our four-step interpretation to axis 2 leads to the following results.

Step 1. Axis 2 is also a general axis (involving all four questions).

Step 2. Important modalities are CFDT, VCFDT, Socialist, and Defferre (upper side of
axis), then NR to g4, NRAbst, Poher, VNR (i.e., NR to g1), Center. Adding
VAbst and NotAff (which are nearly average) and Gaullist (near NR to g4
on axis), one arrives at 90% of axis 2.

Step 3. Forgql, g2, and g4, there are well-marked oppositions: VCFDT (upper side) vs.
VNR and VAbst (lower side) (92% of g1); cFDT (upper) vs. NotAff (lower)
(92% of g2); Socialist and Center (upper) vs. NR and Gaullist (lower) (97%
of ¢4).

Question ¢3 (presidential election) calls for a more detailed interpreta-

tion. Defferre, Poher, and NRAbst together contribute 74% of ¢3. However,
Poher lies halfway between Defferre and NRAbst, which means that those
three modalities do not lend themselves easily to a grouping into two opposed

Table 6: Relevant modalities for axis 1

Prof. vote Union aff. Pres. vote Polit. symp.
Left 1. Veer 1. coT 1. Duclos 1. Comm,
5. VAuto

Right 6. VAbst 7. NotAff 7. Pompidou 7. Gaull.
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Figure 2: Axis 1: simultaneous representation of relevant modalities and patterns.

classes. This difficulty is confirmed by the weakness of the contribution of
the opposition Defferre and Poher vs. NRAbst (only 65%). To get a more
substantial contribution to the question, one must resort to the “ternary”
comparison Defferre vs. Poher vs. NRAbst, which accounts for 74% of
question g3.

Step 4. The composite modalities that emerge from the analysis of axis 2 are obtained
by combining the cells of Table 7.

Hence there are eight patterns (with frequency counts): 2222 (7); 2224 (1); 2252
(6); 2254 (8); 6787 (4); 6788 (50); 8787 (0) (a nonobserved pattern!); 8788 (37). Figure
3 gives the simultaneous representation of relevant modalities and patterns for axis 2.
On the whole, axis 2 reflects the opposition between noncommunist left workers,
with cFDT vote and affiliation, and nonrespondent nonaffiliated workers.
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Table 7: Relevant modalities for axis 2

Prof. vote Union aff. Pres. vote

Polit. symp.

Above 2. VCFDT 2. CFDT 2. Defferre
5. Poher

2. Socialist
4. Center

6. VAbst
Below 8. VNR 7. NotAff 8. NRADbst

7. Gaull.
8. NR

CFDT «

p2222
2224

b 2252
p2254

VCFDT «

Defferre o

Socialist o

Center 1
Poher

NotAff

NRAbst
Gaullist

N
VAbst ¥, 6787
VNR &8558 8787

Figure 3: Axis 2: simultaneous representation of relevant modalities and patterns.
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4.5 Interpretation of Axis 3

‘We summarize the results.

Step 1.
Step 2.

Step 3.

Step 4.

Axis 3 is predominantly a political axis.

The important modalities are Gaullist, Pompidou (on one side of the axis),
NRAbst, and NR (on the other side), all four belonging to g3 and g4; then
come three modalities of gl: VCFrc and VAuto (on the Gaullist side) and
VNR (on NR side). Those seven modalities together account for 76% of
axis 3.

The opposition Pompidou vs. NRAbst contributes to 90% of ¢3, the opposi-
tion Gaullist vs. NR to 89% of g4.

In the cloud of individuals, the important modalities of questions ¢3 and
g4 induce a subcloud of 114 Pompidou-Gaullists (patterns xx77), and a
subcloud of 177 “political nonrespondents” (patterns xx88). Figure 4 shows
the simultaneous representation of important modalities and of those two
subclouds with their mean points. As may be seen, the separation between
the two subclouds is perfect. Notice the “union-committed” patterns 4x77
and 5x77 (among Pompidou—Gaullists), and the noncommitted patterns 8x88
(among political nonrespondents).

Axis 3 is predominantly political and opposes politically committed Pompidou—
Gaullist workers to political nonrespondents.

4.6 Interpretation of Axis 4

Step 1.
Step 2.

Step 3.

Step 4.

Axis 4 is predominantly a union axis.

The important modalities are Fo, VFo (on one side of the axis), VcFDT and
CFDT (opposite side), Socialist, and Defferre: together 87% of the axis.

The opposition VFO vs. VCFDT contributes to 86% of g1, FO vs. CFDT to 91%
of 2.

The important modalities of g1 and ¢2 induce a subcloud of 19 Fo-affiliated
voters (patterns 33xx) and a subcloud of 47 cFpr-affiliated voters (22xx). Fig-
ure 5 shows the simultaneous representation. Again, the separation between
the two subclouds is perfect.

Axis 4 is union dominated and opposes CFDT-affiliated voters to FO ones.

4.7 Synopsis

The synopsis is shown in Table 8.

4.8 Plane 12

The interpretation of axes 1 and 2 leads to allocating the relevant modalities for
those axes to three classes corresponding to three polar areas: A (communist left, cGT
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4. Interpreting Axes 213

FO
[ 3322
33xx
33xx
b 33xx33xx
& 33xx33xx
t= 33xx33x:83xx33xx33xx
33xx
VFO o
Defferre o
Socialist o
0.5
22xx
22xx22xx
P 22xx
22xx
22xx
22xx
XX22Xx
. he 29%3022x:22x 22
VDT & o a2x2xx
XX
XX
CFDT

Figure 5: Simultaneous representation on axis 4 with patterns rFo-VFo (33xx) and cFpT
and VCrDT (22xX).



214 Chapter 16. Interpreting Axes in Multiple Correspondence Analysis

Table 8: Synopsis

Axis 1: Ay = 0.611 Axis 2: A; = 0.491 Axis 3: A; = 0416 Axis4: Ay = 0.373
gl 24% of axis 30% of axis [19% of axis] 43% of axis
VCGT vs. VAuto-Vabst: VCFDT vs. VAbst-VNR: VCFDT vs. VFO:
68% of question 92% of question 86% of question
q2 22% of axis 29% of axis [12% of axis] 43% of axis
CGT vs. 7 NotAff: CFDT vs. NotAff: CFDT vs. FO:
92% of question 92% of question 91% of question
q3 26% of axis 21% of axis 36% of axis [6% of axis]
VDuclos vs. Pompidou: Defferre vs. Poher vs. NRAbst Pompidou vs. NRAbst:
89% of question 74% of question 90% of question
q4 28% of axis 20% of axis 34% of axis [7% of axis]
Commun. vs. Gaullist: Socialist-Center vs. Gaullist-NR  Gaullist vs. NR:
70% of question 97% of question 89% of question

All comparisons are oppositions (1 d.1.) except the ternary comparison (2 d.1.) for question g3
and axis 2.

affiliated), B (Gaullist together with nonaffiliated and NR), and C (noncommunist
left, cFDT affiliated).

The modalities in Table 9 lead to defining the 1 + 12 +4 = 17 following response
patterns (with their frequency counts, total 269): 1111 (81); 5777 (14); 5778 (4); 5787
(3); 5788 (9); 6777 (19); 6778 (5); 6787 (4); 6788 (50); 8777 (12); 8778 (9); 8787 (0);
8788 (37); 2222 (7); 2224 (1); 2252 (6); 2254 (8).

Figure 6 shows the simultaneous representation on plane 1-2, with the relevant
modalities and patterns used as landmarks. This figure shows all 1049 individuals in
their 319 unique positions.

Table 9: Relevant modalities for plane 1-2

Prof. vote Union aff, Presid. elect. Polit. sympathy
A VcGT CGT Duclos Communist
Auto Pompidou Gaullist
B Abst NotAff NRAbs NR
NR
C VCFDT CFDT Defferre Socialist

Poher Center
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Figure 6: Simultaneous representation in plane 1-2: cloud of 319 weighted patterns

(1049 individuals) and 16 relevant modalities.
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5 From Interpretation to Exploration

Henceforth we place ourselves in the cloud of individuals. Considering this cloud
opens new opportunities for interpretation—to begin with, the possibility of repre-
senting any patterns of interest, for instance, those that contribute most to an axis
or typical patterns chosen by the specialist as landmarks to enhance interpretation.
Further, the interpretation of axes may be prolonged by the exploration of the cloud
and enlarged to planes or higher order spaces, always making use of the structures of
the questionnaire. In this section, we will suggest—without trying to be systematic—
some lines for cloud exploration. Exploration will often be motivated by specific
interrogations (i.e., pertaining to parts or to groupings of data), which may be raised
either before gathering data or when examining results.

5.1 Composite Modalities

The cloud of individuals enables one to go farther than the cloud of modalities,
because individuals carry all the information of the data (see Chapters 15 and 20).
In particular, the concept of the subcloud associated with a modality also applies to
a composite modality (also called an “interactively coded category”). That is, with
each observed pair of modalities (k, k") (with k belonging to question g and k' to
question ¢’) is associated the subcloud of the individuals who have chosen both k and
k’. The derived cloud of mean points now corresponds to the composite modalities
of questions g and ¢'.

For example, the two political questions ¢3 and g4 induce 51 subclouds (among
82 = 64 possible subclouds). The derived cloud of 51 mean points contributes to 81%
of axis 3. Now consider the deviation between the mean points of the two composite
modalities: Pompidou—Gaullist vs. political nonrespondents (see Figure 4). It is found
that this deviation contributes 73% to the inertia of this derived cloud (Rouanet and
Le Roux, 1993, p. 295). This result reinforces and refines the interpretation of axis 3.

5.2 Correlation Ratios and Supplementary Questions

Every question of a questionnaire generates a partition of individuals, with a cloud of
modality mean points, whose variance defines the interclass (between class) variance
of the question. For each axis, dividing the interclass variance by the total variance
yields a ratio denoted by n?, which expresses the correlation between the question
and the numerical variable of principal coordinates of individuals on the axis. The 1?
ratios can be calculated for active questions, as well as for supplementary questions.

For example, for the supplementary question “personal political situation” with
five modalities after recoding—left communist (175), left noncommunist (237), cen-
ter (254), right (154), and NR (229)—the graphs of Figure 7 show, in plane 1-2, the
derived cloud of the five mean points (Figure 7a) and the five subclouds (Figures 7b
through 7f).
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Figure 7: Personal political situation (plane 1-2). (a) five mean points; (b) left com-
munist (175).

Figure 7: Personal political situation (plane 1-2). (c) left noncommunist (237); (d) cen-
ter (254).

Along axis 1, the interclass variance of this supplementary question is found to be
0.347. Dividing by A; = 0.6113 yields n* = 0.57. Then calculating the contribution
of the deviation between the mean points left communist vs. right and center yields
the value 0.332; that is, this opposition accounts for 0.332/0.347 = 96% of the
correlation ratio 1> between axis 1 and this question.
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Figure 7: Personal political situation (plane 1-2). (e) right (154); (f) NR (229).

The exploratory process may extend beyond mean points. For instance, a look
at the five subclouds reveals striking disparities among dispersions in plane 1-2. The
most concentrated subcloud is left communist, whose variance (in plane 1-2) is equal
to 0.395; the most scattered subcloud is left noncommunist, whose variance is equal
to 1.018.

5.3 Crossing Relationship and Interaction

When all pairs of modalities of two questions (whether active or supplementary) are
observed, it may be said (adopting ANOVA language) that there is a “crossing rela-
tionship” between the questions. Then the concept of interaction between questions
may be formally defined as in ANOvA with unbalanced designs (Bernard et al., 1989;
Le Roux, 1991; Le Roux and Rouanet, 1984).

For example, let F denote the question “personal political situation” and L
denote the question “trust toward unions,” with three modalities high, moderate, and
low or none or NR. For any axis, a diagram akin to the interaction diagrams familiar in
experimental data analysis can be constructed. Figure 8 shows the interaction diagram
for axis 1. Abscissas correspond to the five modalities of question F. Ordinates are
the coordinates along axis 1 of the 3 X 5 = 15 mean points corresponding to the
crossing of questions F and L. For each modality of L, the points of the five modalities
of F have been joined. The three lines appear to be nearly parallel, which means that
there is virtually no interaction between the two questions F and L with respect to
axis 1. The n? ratio associated with the crossing F X L for axis 1 is equal to 0.64;
calculation shows that the interaction accounts for only 1% of n?.

In plane 1-2, the visualization of interaction—or the weakness of interaction, for
that matter—can be performed similarly by constructing the modality mean points
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Figure 8: Interaction for axis 1.

corresponding to the crossing and joining the points corresponding to one of the
questions. In Figure 9, the points of the five modalities of question F have again
been joined. The quasi-parallelism of the three lines now means that there is virtually
no interaction between the two questions with respect to the plane. The 7? ratio
associated with the crossing for plane 1-2 is equal to 0.45, and calculation shows that
the interaction accounts for only 1% of this 7.

6 Concluding Comments

After presenting this guide for interpretation of axes in MCA, several points are worth
stressing, all directly bearing on the topic of the visualization of data.

Axis 2

left no com.

/;

__/ eft communist

left communist / /ght
left confmunist 'NT/

m high trust R
o moderate trust +
o low trust or none or NR

Center

Center

Center Axis 1

right

Figure 9: Interaction in plane 1-2.
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1. The method of the contributions of points and deviations, developed in this chapter
for Mca, readily applies, with appropriate modifications, to the interpretation of
principal axes of all kinds of structured multidimensional data (Le Roux and
Rouanet, 1984).

2. The interpretation of axes of higher order may reveal important findings.

3. Simultaneous representation in CA has been recognized as a most powerful visu-
alization tool to sustain interpretations; see Benzécri (1969, 1973a, especially pp.
330-331 and pp. 468—469). This is all the more important in the case of Mca,
where simultaneous representation brings together two radically different entities,
namely individuals and modalities—or in other terms, objects and descriptors of
objects.

4. In Mca, investigating the cloud of individuals, together with its subclouds and
derived clouds (modality mean points), leads to detailed interpretations, in the
first place by the examination of composite modalities.

5. A general claim underlying this chapter is that the use of specific comparisons,
a tool borrowed from ANOVA, should considerably enrich the usual aids to inter-
pretation in geometric data analysis. The method of the contributions of points
and deviations provides a first step in this direction. Another step would be the
investigation of the interactions between questions, a topic we have just touched
upon in this chapter.

Software Notes

The strategy of data analysis that we have presented can easily be performed by
combining any standard software for ca with the EyeLID software developed in our
research group.

For the data of this chapter, we performed MCA using ADDAD (Association pour
le Développement De 1’ Analyse des Données, 22 Rue Charcot, Paris 75013), then
all subsequent analyses, such as derived graphs and computations of contributions
and interaction effects, through EyeLiD (Bernard, Rouanet & Baldy, Université René
Descartes, 45 rue des Saints—Péres, Paris 75270 Cedex 06. E-mail: eyelid @math—
info.univ—paris5.fr).

The EyeLiD software combines the following two features: a Language for
Interrogating Data (L1D), which designates relevant data sets in terms of structuring
factors, formally analogous to factors in an experimental design, and the visualization
(“Eye”) of the derived clouds designated by a LID request. For detailed applications
of the LID language to sociological examples, see Bernard et al. (1989), and Bonnet
et al. (1996). A demonstration version of the software EyeLID applied to the data of
the present chapter is available by £tp at the address:

ftp.math-info.univ-parisb.fr

under the directory /pub/MathPsy/EyeLID.



Chapter 17

Diagnostics for
Joint Displays in
Correspondence Analysis

Michael Greenacre

1 Introduction

One of the main advantages of correspondence analysis (CA) is its simultaneous
visualization of the row and column categories of a table or, in the multiple case,
the simultaneous visualization of all the categories of a set of discrete variables. The
visualization is achieved by projecting points that represent the categories in multidi-
mensional space onto a subspace, usually a plane, resulting in an approximate map of
the categories. We cannot tell from the projections of the points in the map whether
the points are displayed accurately or not—some points might be far from the planar
map while others might be close to the plane and thus more accurately represented.
Supporting the interpretation of such maps are sets of diagnostics that measure the
overall quality of display of the points as well as the quality of individual points.
These diagnostics, usually called “contributions,” are based on the decomposition
of inertia in CA. They measure how much each point contributes to the map and
how much the map contributes to each point. We call these contributions “within-
variable” diagnostics because they involve categories of a variable by themselves,
without direct reference to categories of other variables.

221
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The intepretation of the map, however, goes beyond studying individual points.
Although usually not stated explicitly, the interpretation of a joint CA map relies
implicitly on one of two geometric concepts: either scalar products between category
points for different variables, which we refer to as an underlying biplot model, or
distances between such points, which is a type of unfolding model. In this chapter
we look at a different way to measure the quality of display that is specifically aimed
at the scalar-product or distance-based “between-variable” way we interpret the joint
display. This is a “nonmetric” measure in that it is based on the rank ordering of the
scalar products or distances, rather than their actual values. The properties of this
measure make it suitable for simple CA as well as the variants of CA for the multiple
case: CA of “stacked” tables, multiple correspondence analysis (MCA), and joint
correspondence analysis (JCA).

2 Data Set on Cultural Competences

We shall illustrate our between-variable diagnostics using a set of categorical data
from the ALLBUS ’86 survey (ALLBUS stands for “Allgemeine Bevilkerungsum-
frage der Sozialwissenschaften,” part of the German General Social Survey Program).
Our interest here centers on 25 variables measuring what we call “cultural compe-
tences’”:

a  dance waltz b  put on bandage ¢ fill in tax form

d play chess e adjustquartz watch f play musical instrument
g fixlamp h usePC i take photographs

j  hang wallpaper k swim 1 change spark plugs

m read city map n read timetable book o0 use typewriter

p  Kknit q ride bicycle r cook

s fixtire t  use calculator u use video recorder

v use tape recorder w  sew on button x  shorten trousers

y  dance to pop music

Each of 3092 respondents was classified into one of four categories for each of
these cultural competences: (1) yes, (2) somewhat, (3) no, or (4) don’t know/missing.
Thus n = 3092, Q = 25, J, = 4 for all g, and J = 100. Notice that the fourth
category of missing or “don’t know” responses was generally of quite low frequency.
Other variables in the survey available as explanatory variables were, for example,
gender, religious affiliation, age group, income group, and type of housing.

This data structure is frequently found in social surveys. First, we have a battery
of questions, each with responses on the same scale, measuring some phenomenon—
in this case cultural competence—and second, we have a number of biographical and
demographical variables that we would like to relate to the battery of questions as a
whole. To visualize these data we can form various cross-tabulations, or groups of
cross-tabulations, to be analyzed by different forms of CA.
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3 Diagnostics in Simple CA

For the theoretical explanation we shall use the following standard notation:

e Nisan/ X J contingency table with grand total n.

e P = (1/n)Nis the correspondence matrix, or discrete bivariate frequency density.

e r and c are the row and column margins of P, respectively.

¢ D, and D, are the diagonal matrices with r and ¢ on the diagonal.

e F and G are the principal coordinates of the rows and columns, respectively, with
normalization: FTD,F = G'D.G = D,, where D, is the diagonal matrix of
principal inertias Ay, Az,. ...

e X andY are the standard coordinates of the rows and columns, respectively, with
normalization: X'D,X = Y'D.Y = L

The relationship between principal and standard coordinates of the same variable is
F = XD}\/ 2, G = YD}/ 2, while the “between-variables™ relationship, or transition
formula, between principal and standard coordinates of different variables is F =
D;'PY,G = D;'P'X.

Using the cultural competences data, we can choose one of the explanatory
variables, say age with five categories, and cross-tabulate it with all 25 variables,
giving a 100 X 5 matrix consisting of 25 contingency tables, each of size 4 X 5, stacked
one on top of the other. The most basic diagnostic is the set of principal inertias
in descending order. In this case the four principal inertias and their percentages
of inertia are calculated as 0.05401 (80.3% of the total inertia), 0.01068 (15.9%),
0.00175 (2.6%), and 0.00085 (1.3%). These values summarize the overall quality of
the display of the profile points along the principal dimensions, which can be used
to form a map of the category points. For example, if we choose a two-dimensional
map, then the quality is 80.3% + 15.9% = 96.2%, which means that 96.2% of the
inertia of the profile points is explained in the map (see Figure 1).

The contributions to inertia provide a similar decomposition of inertia for in-
dividual profile points; see, for example, Greenacre, 1984, p. 91; 1993, chap. 12;
Blasius, 1994. Le Roux and Rouanet (Chapter 16) discuss how the contributions
apply to MCA. When using these diagnostics we tend to think of the row points or
the column points separately. An overall quality of 96.2% means that on average
the row profiles (equivalently, the column profiles) have a quality of representation
sometimes greater than this percentage, sometimes lower. Even if a profile has a dis-
play quality of 100%, however, this does not mean that all other points are correctly
interpreted with respect to this profile. Interpretation of a CA map, for example, the
one in Figure 1, involves seeing how the row points lie relative to the column points.
There are two customary ways of thinking of this between-variable (row-to-column)
relationship: the biplot model, based on scalar products between points, and the un-
folding model, based on interpoint distances. We shall look at each of these in turn
and develop a diagnostic of the quality of the interpretation that is applicable to both
of them.
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Figure 1: Correspondence analysis of cultural competence categories by age groups,
asymmetric map with age points (Al to A5) in standard coordinates (many overlap-
ping points indicated by o).

4 CA as a Biplot Model

A map is a biplot when the values x;; in the data matrix, usually standardized in some
way, are approximated by scalar products f] g ; between the corresponding row and
column points in the map (see Gabriel et al., Chapter 27). A scalar product between
two point vectors is equal to the product of their lengths times the cosine of the angle
subtended by the vectors. This is equivalent to projecting one of the vectors, say
f, onto the other one, g, and calculating the scalar product as the projected length,
multiplied by the length of g, with sign depending on the angle between the vectors.
To interpret a column of the data matrix, we would interpret the projections of all
the row points (points f representing the rows) onto the vector g through the column
point, called a “biplot axis.” Since each projection is multiplied by the same scaling
factor, the length of g, the scalar products are proportional to their projections on the
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biplot axis, so the axis can be calibrated in order to read off the values of the scalar
products and hence the approximations to the data values.

In CA the biplot relationship can be deduced from the so-called reconstitution
formula for recovering the elements p;; of the correspondence matrix from the row
principal coordinates F and column standard coordinates Y:

K
Pij = Ficj (1 + Zfik}’jk>

k=1

[a similar formula in terms of the g j; and x; is possible; see, for example, Blasius and
Greenacre (1994, p. 76)]. When the first K* dimensions are retained (often K* = 2),
then we replace the equality above by =, which denotes “is approximated by weighted
least squares as”:

c
Dij = Iic; (1 + Zfikyjk> ¢))

k=1

In this case the weighting factor for the (i, j)th squared term is 1/(r;c;).
Dividing (1) throughout by r; and rearranging terms, we obtain:

-
(ﬁ - Cj) [cj = Zfikyjk =1y, 2
k=1

r

where fT = [fi; - fi-Jand y] = [y;; - yjx-]. Formula (2) shows that the differ-
ence between the row profile element p;;/r; and its average c;, relative to the average
¢j, is approximated by the scalar product between the row point in principal coordi-
nates and the column point in standard coordinates. In other words, the joint display
of the f;’s and the y;’s, called the asymmetric map (Greenacre, 1993b), constitutes a
biplot for the matrix (D;'P — 1¢")D_ !. Further details of the biplot for simple CA
are given by Greenacre (1992), who also shows how the directions defined by the
¥;’s may be considered biplot axes that can be calibrated in profile units, that is, on
a zero-to-one scale. This reduces the calculation of scalar products between points f;
and y; to simply projecting the point f; onto the biplot axis and reading off the profile
value on the scale.

In the simple CA of the 25 cultural competences cross-classified with the five
age groups, shown in Figure 1, the age groups A/ to A5 are displayed in standard
coordinates and the 100 cultural competence category points in principal coordinates,
labeled al, a2, a3, a4, b1, b2,.. ., and so on (where there are many overlapping points
in the center, the positions of the points are indicated by a o, without a label). The
roughly parabolic curve traced by the five age groups is a phenomenon often observed
in a CA map, called the “horseshoe effect.” In this case it is due to the gradual change
in cultural competences as age increases. The competence category points fall roughly
into an arch as well, with categories such as “use video recorder” (ul) and “use tape
recorder” (v1) at the right-hand end, associated with the youngest age group, and
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categories such as “cannot ride bicycle” (q3) and “cannot use calculator” (t3) at the
left, associated with the oldest age group. Between these ends the cultural competence
categories form a continuum that gradually moves from the youngest to the oldest
end of the spectrum.

To interpret Figure 1 as a biplot, scalar products would be computed between
the 100 cultural competence categories and the five age points, giving estimates
(Pij/ri — c;) of the deviations of the profile values from their respective averages.
This can be performed equivalently by drawing an axis through each of the five
age groups and calibrating it in profile units, so that the estimated profile values are
obtained by projecting the cultural competence categories on the biplot axes. The
total inertia is equal to the weighted sum of squares of the exact deviations, in the chi-
squared metric (dividing each squared deviation by c;), and this can be decomposed
into two parts:

eri(pij/rij_cj)zzzz (Pz]/rt‘ +ZZ (ptj/rl plj/rl
J

i

3
The first part is the weighted sum of squares of the estimated deviations, which is equal
to the sum YK A of the first K* principal inertias, which is the inertia accounted
for in the map. The second part is the total error, the weighted sum of squared errors
(also in the chi-squared metric), equal to the sum of the remaining principal inertias.
We can study the individual errors by expressing each term in the second summation
on the right-hand side of (3) as a percentage of the total error. Such an analysis
of individual errors can help us to locate outliers in the data. For diagnostics more
directly related to the way we interpret the map, we can consider the accuracy of
recovering the ordering in the profile elements, rather than their actual values. We
shall introduce such a criterion after discussing the unfolding interpretation of the
joint map.

5 CA as an Unfolding Model

An alternative way to interpret the joint map is in terms of distances between points.
When distances between one set of points approximate the data (or some transfor-
mation thereof), the mapping technique is called “multidimensional scaling.” When
the distances in the map are between points from two different sets, this is a special
case of multidimensional scaling called “unfolding.” In an asymmetric CA map there
is some justification in looking at row-to-column distances, since we can write the
criterion in simple CA as

minimize Z Z piiEi —y) T —y) Q)
i

subject to the identification condition Y'D.Y = I on the standard coordinate vectors.
In other words, we want to minimize the weighted squared distances between row
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and column points, where the weights are the observed frequencies of co-occurrence
and where the normalization of the column points has been fixed. For given y; the
minimum of (4) with respect to f; is

Z Pij 7 ri !

which is the usual barycentric property between rows and columns or transition
Sformula. This formula can be used to substitute for f; in (4) so that the minimization
is with respect to the y; only.

To see that (4) is equivalent to the usual formulation of CA, we expand the
unfolding criterion (4) and use (5):

ZZp,,G YT —y) = ZZp,,f f; 6)
+ Z ZPUY,T-YJ' - 22 ZpijfiTyj
i i
=Y nff+ > cyiy; = 2> it
i i i
=K"= nff;
i

For example, when K* = 2, this criterion has a minimum value of 2 — A; — A,
corresponding to the maximum of ) rfTf; being A; + A,. Thus the unfolding
objective of minimizing the row-to-column squared distances in the asymmetric
map is equivalent to maximizing the row (or column) inertia displayed, and the
minimum and maximum of the respective objective functions sum to a constant, the
dimensionality of the solution.

Notice in the preceding development the use of the identity:

ZzpijfiTYJ = Z"if,-Tfi @)
i i

The left-hand side of (7) is the biplot criterion, which is required to be maximized.
From (6) and (7) we have

ZZPij(fi -y —y) =K — ZZPijfiTYj 3
i i

which illustrates the complementary objectives of the biplot and unfolding models.
In words, we can say that the biplot criterion is “display rows by f; and columns by
¥; so that their scalar products fly ; are, for high p;;, as large positive as possible and
for low p;;, as large negative as possible” and the unfolding criterion is “display rows
by f; and columns by y; so that their interpoint (squared) distances (f; —y j)T(fi -y)
are, for high p;;, as small as possible and for low p;;, as large as possible.”

fi = &)
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6 A Nonmetric Graphical Diagnostic

We first consider the full space geometry of simple CA where, in the case of the biplot
model, the geometry is well known. The biplot axes, defined by the vertex points, are
the original coordinate axes of the space, so that the projections of the profile points
onto the biplot axes give the exact profile values. In the reduced space, the profile
values are approximated by the projections onto the calibrated biplot axes.

Let us consider the unfolding interpretation in a similar way by looking at the
row—column distances in the asymmetric map in the full space. Leta = [a; : - a Nl
be any profile point, where 17a = 1,and e; = [0---0 1 0---0]" any unit point,
where the 1 is in the jth position. The squared chi-squared distance between the
profile point and vertex point is

la —e;llf = at/ci + (a; = 1Y /c; = llall} + (1 - 2a))/c; ©
i+)
where || - - - || denotes the chi-squared metric with respect to the average profile point

¢, for example, [|al|? = Zij=1 a? /c;. We now compare the distance from two different

profile points, a and b, to the same vertex point. Specifically, we want to know what
we can infer about the profile values if the profile point a lies closer than profile point
b to the vertex point. Using (9) we thus obtain the following equivalent inequalities:
2a; — 1) 2b; — 1)

——— —|lalg > ’c— — bl

j J

lla —e;llI> < IIb —ell2 <

The terms [|al|?> and ||bl|? are the squared distances of a and b from the origin 0
of the multidimensional space. Especially if the inertias are low, these distances are
practically the same, so that the following equivalence holds approximately:

(2a]- - 1) > (2b] - 1) N

2 2
lla —e;ll; <IIb—ell; < ; y

aj>bj

In words, if a is closer than b to the vertex point e;, then the jth profile element of a
is greater than that of b.

These results give some theoretical justification for the following general rule
in the full profile space, where the rows are depicted as profiles and the columns as
vertices:

Use each column vertex point one at a time and refer the set of row
profile points to the column point. As the profile points come closer to
the vertex point, the profile element with respect to that column category
is increasing.

This rule is very similar to the one that we had in the biplot case, because there is an
almost monotonic relationship between the distances from a profile point to a vertex
point and the position of the profile point projected onto the corresponding biplot axis.
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The difference is that in the biplot situation the recovery of the profile elements is
exact in the full space, whereas in the unfolding situation the recovery is approximate.
It is apparent that the only difference between the biplot and unfolding criteria is that
distance in the biplot model is measured along the biplot axis, whereas distance in the
unfolding model is absolute distance between the profile and vertex points. Therefore,
differences between the two criteria occur for points along perpendiculars to the biplot
axis (Figure 2), for which the projections onto the biplot axis are identical, whereas
the distances to the category point are different.

In practice, when confronted with a joint representation, we are seldom interested
in trying to recover the data exactly. Rather, we would be satisfied in knowing that the
rank ordering of the positions of the profile projections on a biplot axis (in the biplot
interpretation), or the distances from the profile points to the vertex points (in the
unfolding interpretation), agrees with the rank ordering of the profile elements. This
leads us to propose a simple nonmetric measure of rank correlation as a diagnostic
for the joint display.

Consider a vertex point j and / profile vectors in a joint reduced-space map
(Figure 3). Suppose that the profile elements of the / vectors with respect to the
vertex category point are aj, as, . .. ,a; (we omit a subscript j referring to the vertex
category because this is fixed throughout the ensuing discussion). In the display
we can consider either (a) the projections of the profile points onto the biplot axis,
leading to values s, 55, . . , §; on any scale that increases toward the vertex, or (b) the
distances d,ds, . .., d; between the profile points and the vertex point. In the case of
the biplot interpretation (a), a correct display would require that as the g;’s increase,
so do the s;’s. Hence the display is exact in a nonmetric sense when for all ; and i":

(biplot) (s; —si)a; —a;) =0 (10)
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Figure 2: Biplot axis through a vertex point, showing that the projections of several
points perpendicular to the axis can give the same approximate profile estimates,
whereas the distances to the vertex vary.
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e PROFILES
o VERTICES

1

Figure 3: Measuring the quality of interpretation of the joint map by comparing
distances from the profile points to a specific vertex point.

For the unfolding interpretation (b), the reverse is needed, that is, as the a;’s
increase, so the d;’s decrease. Hence the display is exact in a nonmetric sense when
for all i and i":

(unfolding) d; —di)a;, —a) =0 a1

In practice, of course, the scalar products s; and the distances d; are not in a perfect
monotonic relationship with the profile values a;, but we can measure the quality of
the display by counting the number of unique pairs (i, i") (say where i < i’) for which
either condition (10) or (11) is satisfied and expressing this count as a proportion of
the total number %I (I — 1) of pairs. In the language of nonparametric statistics, the
pairs satisfying the particular inequality condition are called concordant pairs, and
those not satisfying the condition are called discordant pairs. Let C denote the number
of concordant pairs and D the number of discordant pairs, where C + D = %I a-1,
so that what we have proposed is to calculate C/ %I (I — 1). If the projections of the
profiles onto a biplot axis or the profile-to-vertex distances were random, then we
would expect as many concordant pairs as discordant pairs in the respective cases,
thatis, C/ %I (I — 1) = 0.5. To measure success we should therefore subtract 0.5 from
c/ %I (I — 1), and then to allow the measure to have an upper bound of 1, we should
scale this difference up by a factor of 2, leading to the following final form:

% number of concordant. pairs 05) =2 C _05 (12)
total number of pairs ()

UsingC+ D = %I (I — 1), this index can be shown to be identical to Kendall’s tau
coefficient 7 = (C — D)/(C + D), a rank correlation coefficient defined by Kendall
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Table 1: T indices of quality (X1000) for each age group vertex point in Figure 3, for
scalar products (biplot interpretation) and distances (unfolding interpretation), and
the usual qualities (QLT) of display of the age group profiles as well as the age group
vertices as supplementary points

7 indices Qualities
Scalar prods Distances Profiles Vertices
Al 905 908 982 747
A2 649 662 856 186
A3 691 631 899 383
A4 758 772 954 291
AS 901 902 990 815

(1948). The tau coefficient can also be written in the following convenient form:

D
7_1—2<C+D> (13)

In other words, the 7 index of success, or quality, lying between —1 and 1, is 1 minus
twice the ratio of discordant pairs to the total number of pairs.

Considering again the asymmetric CA map in Figure 1, with the five age groups
as vertex points in standard coordinates, we refer all 100 row profile points to one
vertex point at a time and compute the 7 index to measure the quality of the biplot
and unfolding interpretations respectively for each age group point. The results are
summarized in Table 1. The extreme, most outlying, age group points A/ and A5
show tau coefficients of over 0.9. These are also the points that have the highest
quality of display in the two-dimensional map, according to the usual contributions,
which are given in the third column of the same table for purposes of comparison.
The profile qualities are all higher than the T indices.

7 Extensions to MCA and JCA

Here we consider the extension of the biplot and unfolding definitions of CA to
the multiple case. We have seen two separate but equivalent versions of the biplot
definition, namely the matrix approximation (2) on the one hand, based on the SVD,
and, on the other hand, the function (7) to be maximized. We extend the latter version
of the biplot and the unfolding criterion (4) to the multiple case.
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7.1 MCA of Burt Matrix
The Burt matrix B is:

Dyy Py
B=2"2Z=n|Pey Do

where P4 is the cross-tabulation of the gth and sth variables, and D,y = Py is the
diagonal matrix of marginal relative frequencies of the gth variable. MCA can also
be defined as the CA of the Burt matrix, and it is known that the standard coordinates
of the rows of B (or of its columns, B is symmetric) are identical to the standard
coordinates of the columns of Z. It is also well known that the principal inertias of B
are the squares of those of Z; see, for example, Greenacre, 1984, p. 140.

Extending the biplot and unfolding definitions, (7) and (4), respectively, to B, we
obtain similar criteria except that there is an extra double summation over the block
matrices that constitute the Burt matrix:

maximize é Z Z Z Z Digs)i jf(;)iy OF (14)
q s i

C .. 1
minimize = SN ST pawiiai = Yo g — Yo)  (15)
q s i

where p(4;; denotes the ijth element of P, and f,); and y(,); denote the principal
and standard coordinate vectors, respectively, of the ith category of variable g and
the jth category of variable s.

Objectives (14) and (15) are similar in aspect to those of (7) and (4) for a single
table, apart from the following three crucial differences. First, the single table has
two sets of points for the categories of the row and column variable, respectively,
and these points are vectors of “free parameters” whose estimates will capture the
association between the row and column variables. In the case of the Burt matrix we
have Q? cross-tables; in fact, each categorical variable g is cross-tabulated with each
of the other Q — 1 ones, as well as with itself. Separate CAs of these Q — 1 tables
are possible but would proliferate the number of graphical displays so much as to
defeat the object of the data reduction that the visualization hopes to achieve. Such
analyses would lead to Q — 1 different solutions for the J, categories of variable g. In
analyzing the Burt matrix, however, we restrict the solution to just one set of category
points for each variable, as can be seen in (14) and (15), where the coordinate vectors
fi» and y(,); each contain only one index per variable. This means that we have a
much simpler map with only one point per category, which can be considered as an
average display of the individual association patterns.

Second, the free parameters are not as numerous as they seem. Since B is a
symmetric matrix, the row and column solutions are identical, so that there is a very
simple relationship between the principal and standard coordinates for both rows and
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columns, for example:

fioi = DY ¥ (16)

where D, is the diagonal matrix of K* principal inertias of B for the K*-dimensional
solution.

Third, (14) and (15) include terms for each variable cross-tabulated with itself,
when g = s, for example, for the unfolding criterion (15):

1
o SN paaii®ari = Yo ) Cai = Yar)
g i
1
=~ D> il — Yo ®pi — Yars) an
PR

Here we have further simplified the summation by noting that P, is a diagonal
matrix with the marginal relative frequencies c;, j = 1,...,J,, down the diagonal.
This shows that in addition to trying to display all the associations between different
variables, the category points f;; and y; in principal and standard coordinates
corresponding to the same category are being coerced to lie as close to each other
as possible. From (16) this can be equated to coercing the principal inertias to
be as high as possible, to display the perfect association between a variable and
itself that is embodied in the diagonal tables P,,. The terms (17) clearly have a
very strong influence on the solution in MCA and explain the anomalies regularly
noticed in MCA solutions—Ilow percentages of inertia and low relative contributions
(Greenacre, 1990, 1991).

Figure 4 shows the two-dimensional CA map of the 100X 100 Burt matrix formed
of all the cross-tabulations of the 25 cultural competence variables, where all points
are in principal coordinates. On the left-hand side of the map the inabilities to “read
city map” (m3), “ride bicycle” (q3), “use calculator” (t3), and “take photographs”
(i3) separate out, and on the right-hand side we have the ability to “play chess” (d1),
“change spark plugs” (11), “use calculator” (t1), and a nonresponse to “knitting” (p4).
The dimensions of the map are somewhat difficult to interpret if there are no external
variables such as age or sex to refer them to. The utility of such an analysis would
rather be to reduce the dimensionality of the data set and to notice such aspects as the
association of many of the nonresponse categories at the top of the map, indicating
that nonresponses are confined mostly to a particular subgroup of respondents. The
usual overall quality measure of the display would be the sum of the percentages of
inertia on the two axes, namely 33.4% + 8.5% = 41.9%.

To apply the tau coefficient to measure the success of the joint display, we do
not have a variable such as age (see Figure 1) to which we refer the 25 cultural
competence variables. Rather, each of the variables serves as a reference to the other
24 variables, because the information in the data matrix is the association among
all 25 variables. Thus we successively place the four categories of each of the 25
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variables in their vertex positions and then verify scalar products and distances of the
other 96 points with respect to these four vertices. For example, the four categories
of the variable “use PC” (h) are starred and italicized in Figure 4. These should be
placed in their vertex positions (not shown here) and the same procedure followed
as before. The 7 indices for the four categories are found to be 0.660, 0.523, 0.734,
and 0.467, respectively, for the scalar product interpretation and 0.653, 0.525, 0.744,
and 0.456, respectively, for the distance interpretation. These and some other values
can be inspected in Table 2, where we have also included the 7’s for one- and three-
dimensional solutions. Notice that the qualities increase as dimensionality increases,
although small exceptions can occur. Also notice, as in the case of category f4, that a
T index can attain a negative value—recall that the range of 7 is from —1 to 1, where
0 represents a completely random relationship between the profile elements and the
scalar products (or distances).
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Figure 4: Multiple correspondence analysis of Burt matrix of cultural competences,
with all category points in prinicipal coordinates; categories of “use PC” are in italics.



7. Extensions to MCA and JCA 235

Table 2: 7 indices of success (X1000) for each category point, for MCA solutions
dimensionality one, two, and three, and the usual quality measures from MCA (MCA
analysis of the Burt matrix)

Scal. prods Distances Qualities

1d 2d 3-d 1d 2-d 3d 1d 2-d 3d
el 848 850 864 848 844 8§22 818 819 838
e2 33 107 543 216 232 551 4 12 284
e3 736 752 804 736 751 796 817 821 837
e4 284 480 527 300 476 521 16 62 114
f1 405 586 661 405 571 653 154 306 324
2 374 384 561 374 390 569 31 38 97
3 439 692 693 244 589 588 196 256 259
f4 -67 262 277 50 259 281 0 4 34
gl 798 820 821 798 820 810 828 895 918
g2 146 272 446 151 299 436 22 44 223
g3 775 800 807 715 800 809 808 888 888
g4 264 455 599 264 446 598 12 73 173
hl 678 660 696 678 653 685 474 486 501
h2 519 523 529 519 525 545 220 221 251
h3 706 734 758 695 744 722 632 648 655
h4 223 467 590 223 456 582 18 60 160

7.2 JCA of Burt Matrix

JCA avoids the complication of the diagonal terms by excluding them from the
objective criteria, biplot or unfolding. Because the tables above the diagonal of the
Burt matrix are just transposes of those below the diagonal, we can express the
objective criteria in terms of the %Q(Q — 1) tables in the upper or lower half-triangle
of the Q X Q block matrix B. Thus, the JCA criteria for the biplot and unfolding
models are, respectively,

. 2
maximize m zq: Z Z Z P(qs)ijf(-tr;)iY(s)j (18)

s>q i J
s 2
minimize 00-D Z Z Z Z Pasii®ai = Yo) Cai — Yo,) (19
q s>q i ]

One of the advantages of this definition is that JCA has as an exact special case the
simple CA problem (where Q = 2), because the summation in (18) and (19) involves
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only one term corresponding to the single cross-tabulation P; in simple CA, denoted
previously as P. This is not so for the MCA definition, where the special case for
QO = 2 does not reduce to the simple CA definition exactly.

As in Section 6.1, we can apply the tau coefficient to measure the quality of each
category’s success in the joint map. Figure 5 shows the JCA of the same 100 X 100
Burt matrix as before. Notice first how much the percentages of inertia explained
have increased compared with the previous MCA—from 33.4% and 8.5% for the two
axes in Figure 4 to 68.2% and 13.7% in Figure 5. The scale of the two displays is
the same, and the cloud of points in Figure 5 is very similar to that of Figure 4, with
a slight reduction in scale and a flattening of the cloud in the vertical direction. The
computation of T indices, shown in Table 3, is done exactly as before, and because
of the similarity of the two configurations, it is to be expected that these diagnostics
will be quite similar to those computed for MCA. Comparing Table 3 and Table 2
confirms that there is hardly any difference in the quality of the joint display when it
is measured in this way. This demonstrates that evaluating the quality of the display
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Figure 5: Joint correspondence analysis of Burt matrix of cultrual competences, with
all category points in principal coordinates; categories of “use PC” are in italics.
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Table 3: indices of success (X 1000) for each category point, for JCA solutions dimen-
sionality one, two, and three, and the usual quality measures from the JCA solution
(including estimated diagonal blocks, perfectly fitted by JCA)

Scal. prods Distances Qualities

1d 2-d 3d 1d 2-d 3-d 1d 2-d 3-d
el 844 853 858 844 859 875 969 973 983
e2 207 249 559 33 100 550 20 38 284
e3 730 749 802 730 744 802 969 976 985
ed 291 479 492 286 474 493 178 270 381
f1 397 601 670 397 620 681 487 862 893
2 369 395 584 369 388 586 298 359 680
3 251 599 629 431 676 696 538 879 883
f4 51 213 258 —69 207 239 0 6 85
gl 810 836 856 810 839 857 906 962 979
g2 148 286 440 148 264 447 115 170 666
g3 787 827 829 787 829 825 906 972 972
g4 271 454 605 271 471 614 67 196 390
hl 677 667 685 677 672 695 863 889 898
h2 518 516 547 518 518 533 768 768 251
h3 694 738 761 700 728 755 8§93 918 927
h4 217 403 594 217 407 589 77 168 373

in a nonmetric way avoids the issue surrounding the usual way of quantifying the
map quality.

8 Conclusion

The usual diagnostics in CA are based on the decomposition of the total inertia into
components. These diagnostics suit the dimensional interpretation of CA; when the
principal axes are interpreted one at a time, each point’s contribution to an axis is
evaluated as well as each axis’ contribution to the points.

Our distance interpretation of a map, however, is based on comparing relative
positions of categories, and the tau index is proposed as a summary measure of the
validity of this interpretation. If a profile point representing a specific category is well
represented, then it follows that recovery of data values relative to this category will
tend to be of higher quality than that of a category that is poorly represented. Thus,
there will be a close monotonic relationship between the tau indices and the usual
quality indices based on inertia contributions of points.
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An advantage of the tau index is that it can be used across all types of CA. Since it
is not concerned with recovery of data values, it quantifies the interpretational validity
of MCA and JCA, which is independent of different scaling factors. Nishisato (1988)
also proposes a measure for evaluating the quality of the joint display, but uses a
metric criterion rather than a nonmetric one. Using a nonmetric quality measure is
one way of showing that MCA and JCA can give similar results, even though the
explained inertia in MCA is low.

Finally, the same ideas can be applied to measuring quality of fit in an MCA
where the rows and the columns of an indicator matrix are displayed. The data values
are just zeros and ones, and the biplot and unfolding objectives would be, respectively,
to ensure the largest scalar products and smallest distances between individuals and
their response categories. The same tau index can be used to measure success of
representation with respect to each vertex point j. Notice that we are not trying to
approximate the values 0 or 1 in the map. As de Leeuw says in Section 1.4, we
are not interested in approximating these values strictly but rather in the “qualitative
relations” in the data. Total success in the map is therefore not measured in terms of
percentage of inertia displayed, which has to do with approximating the zeros and
ones, but rather by a criterion such as our tau coefficient, which does measure the
success of recovering the qualitative relationships between rows and columns.



Chapter 18

Using Multiple
Correspondence Analysis
to Distinguish between
Substantive and
Nonsubstantive Responses

Victor Thiessen and Jorg Blasius

1 Introduction

More than a quarter-century ago, Bogart, in his presidential address to the American
Association of Public Opinion Research, astutely remarked that “our opinions invari-
ably transcend our knowledge” (Bogart, 1967, p. 337). This led him to conclude that
the typical emphasis on substantive answers elicited from the public was fundamen-
tally misguided: “We measure public opinion for and against various causes with the
“undecided” as the residue. Often what we should be doing instead is measuring the
degrees of apathy, indecision, or conflict on the part of the great majority, with the
opinionated as the residual left over” (Bogart, 1967, p. 337). Our chapter aims to
distinguish substantive from nonsubstantive responses (NSRs).

Two traditions characterize research on opinion holding. The one attempts to dis-
tinguish respondents who actually have an opinion from those who do not. Research
in this tradition follows on the heels of the pioneering work of Converse (1964); it
takes advantage of patterns of consistent and inconsistent responses in panel studies,
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for example, to distinguish opinion holders from respondents who do not hold an
opinion on the issue at hand. Models such as Converse’s (1970) black and white
(BW), which divides respondents into two groups—those holding opinions and those
not having opinions—-are assessed in this tradition. With synchronic data, constraints
between items are introduced to distinguish acceptable from unacceptable response
patterns, along the lines of Guttman scales.

Closer scrutiny of respondents classified as non—opinion holders reveals that
their response patterns are far less random than implied by the theory. One reaction
was to introduce some “gray” into the BW model (Brody, 1986). A second was to
distinguish between several forms and/or sources of NSRs. Coombs and Coombs
(1976) distinguished “don’t know” (DK) responses they felt reflected item ambiguity
from those indicative of item-specific equivocation (due to response uncertainty).
Likewise, Duncan et al. (1988) documented what they call a “transitory response set”
that operated to produce consistent responses within a given wave of a panel study
but inconsistent responses between waves. In all of these models, the focus is on the
latent distribution of opinion holding in a population.

Researchers in the second tradition concern themselves more with the “problem”
of NSRs. Here the focus is usually with the predictors of NSRs. Researchers in this
tradition often regress a dependent variable (either the number or the proportion
of DK responses) against respondent attributes such as sex, age, and education. In
these approaches, only the number or the proportion, but not the structure of the DK
responses, is considered. The implicit assumption is that tendency to use NSRs is
a respondent attribute, essentially independent of substantive content of the issues
being examined. Research such as Rapoport’s (1985) finding of a correlation of 0.38
between parent—child dyads in the frequency of using a DK response supports this
assumption.

2 Correlates of “Don’t Know” Responses

The literature is quite consistent with respect to the correlates of DK responses. The
strongest predictor is political interest: the lower the interest, the greater the tendency
to give an NSR (Faulkenberry and Mason, 1978; Rapoport, 1982). Education is the
next strongest factor, having an inverse relationship with the tendency to respond
with DK (Francis and Busch, 1975; Converse, 1976/77; Faulkenberry and Mason,
1978). The third factor is sex: women more than men respond with DK (Ferber, 1966;
Francis and Busch, 1975; Ferligoj et al., 1991). Part of this relationship may be due to
the greater exclusion of women from the political process. Although the relationship
was indeed reduced when education and political interest were controlled, the gender
effect remained statistically significant (Francis and Busch, 1975). Ferber’s (1966)
study dealt with opinions about durable goods, which are likely to interest women
more than men. Hence it is unlikely that the gender effect is totally a function of
interest differences.

Finally, age also seems to be a predictor of DK response, with older respondents
more likely to utilize the DK response (Ferber, 1966; Francis and Busch, 1975;
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Rapoport, 1982). But a careful review of the empirical findings suggests that age is
only weakly related to DK at best. Ferligoj er al. (1991, p. 13), for example, find no
age trends in DK responses up to the age of 60 in any of their four Slovenian national
surveys. Likewise, Rapoport’s (1982) data show that the only difference is essentially
between those over and under 60 years of age. Also, in two of the three waves in the
Francis and Busch (1975) analyses, age does not reach statistical significance, despite
relatively large samples. Ferligoj et al. (1991, p. 16) provide evidence for a sex—age
interaction effect: older women are consistently and significantly more likely than
younger women to respond with DK. Among men, there is no comparable discernible
age effect.

In this chapter we start with the topic of distinguishing substantive responses from
NSRs. This includes an examination of whether responses such as “no difference”
(ND) or the middle category of attitude scales (such as “undecided” or “unsure”)
should be treated as substantive. In line with studies such as those of Converse
(1970), Coombs and Coombs (1976), Brody (1986), and Duncan et al. (1988), we
describe the latent structure that characterizes the response categories. This means
we will assess whether the NSRs, such as don’t know or not sure, are located close
to each other in a multidimensional space. For example, if we want to describe how
the categories of different items (including DK and ND responses) are related to
each other on any topic, we have to create a common latent space in which each
response category for each item in the analysis is located. Furthermore, this space
should provide the possibility of interpreting distances between response categories as
(dis)similarities of meaning. The difference between substantive responses and NSRs
should manifest itself in the latent space by large distances between the respective
categories. This means the substantive responses should be clustered at one point of
the latent space and the DK responses in a quite different part.

In the next stage we would like to incorporate the findings on the correlates of
DK into a common model, which includes the assumptions of both research traditions
we have mentioned. Thus we will describe how respondent attributes, such as age,
education, and sex, fit into the space determined by the attitude and opinion items
of the domain of inquiry. In this connection, we expect the probability of giving an
NSR to decrease with interest in the topic at hand. Thus, the greater the interest in
a topic, such as abortion, the lower the likelihood of responding with NSRs. In this
extended model, the reported strength of association of the correlates of NSR should
be replicated. This means that political interest should have the highest association
with NSR in the latent space, followed by education and sex. We will examine these
expectations using data from the 1984 Canadian National Election Study (CNES).

3 Data

The 1984 CNES is based on a large (N=3377) multistage weighted probability
sample; provinces with low populations are oversampled (these data are available
through the Inter-University Consortium for Political and Social Research at the Uni-
versity of Michigan, Ann Arbor). Face-to-face interviews were conducted following
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the 1984 federal election exploring a number of social and political issues. This study
contains information appropriate to exploring distinctions between substantive and
nonsubstantive responses. In this chapter we focus on questions concerning the per-
ceived (in)competence of the federal political parties to deal with a number of issues:
“Now I'm going to ask you about a number of tasks that the federal government
has to deal with. Forget for a moment the likelihood of each party getting elected to
government. I’d like you to tell me which of the three major federal parties would
probably do the best job and which would probably do the worst job on each task if
it were the government.”

The tasks (together with the alphabetic characters used to identify them in sub-
sequent graphical displays) were:

controlling inflation (I)

dealing with the USA (A)

running the government competently (C)
providing social welfare measures (S)
limiting the size of government (L)
working for world peace (P)

dealing with the provincial governments (G)
handling relations with Quebec (Q)
dealing with unemployment (U)
protecting the environment (E)

dealing with women’s issues (W)
handling the deficit (D)

No response categories were provided for the respondents. Rather, as the lead-in to
the question indicated, they were expected to name one of the three federal political
parties of Canada, which are the Progressive Conservatives, the Liberals, and the
New Democratic Party. Most respondents did indeed name exactly one party as the
best/worst for a given task. However, sizable numbers stated they did not know;
another substantial group indicated they felt there was no difference between the
three parties; and finally, a relatively small number of respondents felt that two of the
three parties would be equally best/worst for the given task. From these responses we
constructed the following categories:

Differentiated (D): one of the three parties was named as best/worst.

Semidifferentiated (SD; in the figures denoted by S only): two of the three parties
were considered equally best/worst.

No Difference (ND or N): the three parties were not considered to be distinguish-
able on this task.

Don’t know (DK or K): it was not known which party would do best/worst on
that task.
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It is clear that respondents who named a given party provided a substantive
response. Likewise, respondents who considered precisely two parties to be equally
best/worst in dealing with a specific issue are providing substantive responses. On
the other side, DK is by definition a nonsubstantive response.

The ND response is potentially problematic. On the one hand, it may well be
that knowledgeable observers of the political scene arrive at the conclusion that the
political parties are not differentiated with respect to their ability to handle an issue
such as working for world peace. That would indicate that an ND response is indeed
a substantive response. On the other hand, a respondent could have insufficient
information to discriminate between the political parties’ abilities to deal with a
given issue. In such instances, a response of ND would have a nonsubstantive meaning
similar to that of a DK; only in the latter case could the two categories be combined. In
the analysis that follows, the main question will be which of the two interpretations is
more defensible. Practically speaking, is it permissible to combine the two categories
or should they be kept separate?

In addition to this question, we will extend previous findings on the correlates of
DK responses. Variables used for this purpose are age, sex, educational level, political
interest, and political knowledge. A measure of political knowledge was constructed
by counting how many of the 10 Canadian provincial premiers a respondent could
name. The individual mean of a battery of items on political participation (read-
ing newspapers, watching programs, discussing politics, etc.) was used to measure
political interest (response alternatives ranged from “never” [1] to “often” [4]).

4 Results

Table 1 shows the levels of differentiation and opinionation on the relative (in)ability
of the Canadian federal political parties to deal with the foregoing tasks. Overall, this
table shows that the number of DK responses is higher than the number of ND re-
sponses, and both are higher than the number of semidifferentiated responses. When
differentiating which party would handle a given task best, the highest incidence of
DK response belongs to the item “protecting the environment,” followed by “limiting
the size of government,” “dealing with women’s issues,” and “handling the deficit”;
focusing on which party would be worst, the decreasing order starts with “working
for world peace,” “protecting the environment,” “dealing with women’s issues,” “pro-
viding social welfare measures,” and “limiting the size of government.” That is, the
inner order of the two versions (best and worst) is similar. This suggests that the DK
response is to some extent item specific: items on which there is a high proportion of
DK responses as to which party would do best tend to be the issues on which there
is also a high proportion of DK responses concerning which party would do worst.
Although the inner order of the four response categories is quite similar, the levels
of usage are quite different. In the extreme, for the item “working for world peace”
17.2% of the respondents chose the DK response for which party would do best,
whereas 38.5% gave this response for which party would do worst.
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Table 1: Level of differentiation and opinion among Canadian federal parties on their
ability to deal with various issues®

Best Worst

D? SD ND DK D SD ND DK
Inflation 662 49 12.1 16.3 634 28 11.3 22.1
Provincial governments 71.6 29 7.7 174 63.9 32 8.0 245
U.s. 71.1 3.0 6.7 189 612 25 68 29.1
Quebec 742 25 6.8 160 626 28 7.1 27.1
Competent 68.8 3.1 9.1 177 602 3.6 9.7 261
Unemployment 69.8 2.6 10.5 167 599 39 10.1 25.6
Social welfare 704 29 8.0 182 554 35 86 320
Environment 525 22 17.1 27.8 420 32 16.3 38.1
Limit government 60.8 1.5 10.5 26.8 55.3 2.5 103 315
Women’s issues 62.5 23 114 234 485 40 11.7 354
World peace 65.8 25 14.1 17.2 423 37 15.1 38.5
Deficit 66.4 1.9 103 210 590 28 99 279

24N=3377. However, there are either 14 or 15 cases of “no opinion” for each of the issues.
These have been excluded from the table.
bD, Differentiated; SD, Semidifferentiated; ND, no difference; DK, don’t know.

Turning to the ND responses, between 6.7% and 17.1% claimed the parties did
not differ in their ability to deal with a given issue. Overall, the ND responses are
consistently less likely to be used than the DK responses. Also, there is substantially
less variation in the use of the ND response than of the DK response.

We turn now to the correlates of DK and ND responses. For this purpose we
counted the number of DK and ND responses separately for best, worst, and their
total. The 1984 CNES data replicate almost perfectly the pattern of DK correlates
found in the literature (see Table 2). Political interest has the strongest relationship
with the number of DK responses and age has the weakest, with political knowledge,

Table 2: Pearson correlations of “don’t know” and “no difference” responses with
selected respondent attributes

Don’t know No difference
Attribute Best Worst Total Best Worst Total
Political interest -.32 -.30 -.32 -.07 -.05 —.06
Political knowledge —.24 -.25 -.25 -.01 .00 -.01
Education -.23 —.24 —-.24 -.01 .00 .00
Sex (0 = male, 1 = female) 15 .18 17 .05 .03 .04

Age .08 10 .10 .01 -.01 .00
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education, and sex in between. In contrast to these patterns, the number of ND re-
sponses shows no substantial correlation with any of the variables typically connected
with NSRs. That is, the ND responses do not share any of the patterns of bivariate
correlations typically found for DK responses.

Although correlations are useful for finding associations, they cannot detect
latent structures between a set of variables, which is the concern of our chapter. One
of our main questions is whether a response tendency exists to answer the 12 tasks in
one of the four ways: D, SD, DK, or ND? If so, a graphical display should mirror four
clusters reflecting the four categories within both the “handle best” and the “handle
worst” sections.

The more individuals fluctuate between DK and ND responses within the item
battery, the closer the clusters should be to each other. If ND and DK are inter-
changeable responses of being an NSR, there should be a common cluster of DK
and ND responses. If there is no tendency to answer the questions in any one of the
four ways (D, SD, ND, DK), there will be no cluster constituted by one of the four
categories. In addition, by simultaneously analyzing “best” and “worst” items we can
determine whether there is a common structure between all 24 items or 96 categories,
respectively. Finally, we will describe the association of political interest, education,
political knowledge, sex, and age with the structure defined by the 2 X 12 X 4 = 96
categories.

An appropriate method for visualizing the 12 (respectively 24) items is either
multiple correspondence analysis (MCA) or the “Netherlands version” of this method
called homogeneity analysis, known as HOMALS in SPSS (see Gifi, 1990; Meulman
and Heiser, Chapter 20), which provides the same solution. Input data for MCA
are either the indicator matrix containing all items or the Burt matrix, the cross-
tabulations between all pairs of items to be included in the analysis concatenated in
a square block matrix. In MCA, no distinction between independent and dependent
variables needs to be made (see Greenacre and Blasius, 1994b). In our case, for
example, all questions are on the theme of the perceived (in)competence of the three
main Canadian political parties to handle various tasks. This situation is reminiscent
of principal components analysis (PCA), which explores the structure of associations
among a set of variables by identifying underlying dimensions.

When using respondent-level data (using the indicator matrix as input data), rows
describe respondents and columns provide the response categories in the form of
dummy variables. A 1 in a given column means that the response category associated
with that column was used, and a 0 means that it was not used. For each item there are
four columns, one for each of the four possible response categories of D, SD, DK, and
ND. If there are no missing data, each issue has to have a 1 in exactly one of its four
columns, and a 0 in the remaining three. For our problem only the spatial positions
of the variable categories are of interest; the spatial positions of the individuals will
be ignored. The locations of all categories can be compared with each other, where
short distances mirror high similarities and long distances high dissimilarities.

Once the locations of the item categories have been computed, we can place axes
into the space. These axes are chosen under a least-squares criterion. As in PCA,
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the first axis is located so as to explain maximum variation in the data; the second
axis is orthogonal to the first axis and is chosen so as to explain a maximum of
the remaining variation, and so on. Again as in PCA, it is possible to interpret the
variable categories in relation to the axes, which can be treated as latent variables.
The closer the categories are to a given axis, the more they are determined by it (the
cosines between the vector endpoints of the variable categories and the axes can be
interpreted as factor loadings).

Starting with the tasks handled best, we have a total of 48 columns (12 tasks
with 4 response categories each) and 3362 rows (the number of respondents having
ascertained responses on any of the tasks). This data matrix forms the input for the
first MCA, which permits a maximum of 36 dimensions (number of categories mi-
nus number of variables). The eigenvalue for the first axis is 0.51, which explains
17.0% of the total variation; the corresponding values for the second axis are 0.40
and 13.2%. Without discussing the statistical details, it can be shown that this under-
estimates the amount of explained variances attributable to the first few axes. We will
forgo recomputing the explained variances (for adjusting the explained variances see
Greenacre, 1993) because the decreasing order of the axes including the variable cat-
egories belonging to them is retained; differences in the maps using several possible
adjustments are so small they can be neglected. Figure 1 provides a visualization of
the locations of the 48 item categories for this MCA solution.

Figure 1 shows a clear distinction between four clusters of variable categories,
which indicates four patterns of response behavior. Projecting the categories onto the
axes, on the left, or negative, side of the first axis are the DK responses. Negatively
correlated with these categories are the items of the cluster “differentiated” and, to a
lesser degree, the items of the cluster “semidifferentiated.” Projecting the centroids
or the range (not shown in Figure 1) of the four clusters onto the main axis, one gets
a line from D through SD and ND to DK. This permits an interpretation of the first
axis as the degree of differentiation, with D at the one extreme and DK at the other.
This means that the higher the value on the first latent dimension, the higher the score
along the scale ranging from NSR to substantive response.

The second axis is populated mainly by the ND responses, which are located on
the upper part of this axis. In addition to the reported differences along the first axis,
the long distances between DK and ND responses imply that individuals frequently
employing the ND responses are distinct from individuals answering relatively often
with DK. Furthermore, individuals who differentiate between the competences of the
three parties seem to be distinct from those who respond with ND. Between these
two clusters are individuals who tend to differentiate partially between the federal
parties; that is, who gave responses classified as SD.

Focusing on the clusters themselves, Figure 1 shows that the responses character-
ized as D are relatively close to each other. This indicates that there is an overlapping
latent structure between all items: the tendency to differentiate parties is not item
specific—either one does or does not distinguish between the competences of the
parties. The cluster of DK responses is also relatively homogeneous, with only the
three items protecting the environment, dealing with women’s issues, and limiting
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Figure 1: MCA of government tasks handled best.

the government size positioned somewhat outside the cluster centroid. In any event,
some respondents answered DK relatively consistently and an additional group failed
to differentiate the parties only on these three issues (see also the higher proportion

of DK responses for these three items in Table 1, column 4).

In the two-dimensional solution, the variation within the ND cluster is much
higher than that within the DK cluster. Therefore the likelihood of giving an ND re-
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sponse to one item, given that an ND response was given to any other item(s), is lower
than that for the DK responses. Furthermore, the order of the ND responses along
the second axis reflects almost perfectly the frequency with which resondents indi-
cated that there was no difference between the three parties (see Table 1, column 3).
The clustering in conjunction with the variation along the second axis indicates that
there is an increasing “difficulty” in differentiating the three parties on the issues that
are closer to the centroid. Because the axes are orthogonal, it follows that the ND
response tendency is independent of the DK response tendency. The categories be-
longing to the SD cluster spread out; referring to the first two dimensions (Figure 1),
the variation within this cluster seems to be higher than the variation within the D
and DK clusters but less than that of the ND cluster. The high variation within the
SD cluster becomes clearer when considering the third and fourth axes (not shown
here), which explain 8.2% and 3.3% of total inertia, respectively: far away from the
centroid the SD responses are clearly separated from one another.

Parallel to which party would handle various tasks best, we performed an MCA
for which tasks would be handled worst (see Figure 2). As in the previous MCA, the
first axis (explained variation: 18.3%) is determined by the opposition of DK and D
responses, the second axis (explained variation: 14.0%) can be described especially
by ND responses, and the cluster SD is located between the clusters D and ND. In
general, the solution for the response behavior of party incompetence is a near clone
of that found for party competence: the overall structures of the two MCAs reveals
only small differences.

The purpose of the final analysis is to describe the responses to party competence
(which party would handle the issues best) with those for party incompetence (which
party would handle the issues worst) simultaneously, thus searching for a common
latent structure between all 96 categories of the 24 items. In addition, we are interested
in the associations of this structure with the respondent attributes discussed earlier.
This allows us to describe which attributes, and in which forms, are related to the
response categories ND, DK, SD, and D. The additional variables included in the
model are sex (abbreviated by [F], [M]), age (subdivided into six categories, 18 to
24 [A1], 25 to 34 [A2], 35 to 44 [A3], 45 to 54 [A4], 55 to 64 [AS5], and 65 and
older [A6]), education (five categories, from grade school or less [E1] to university
graduates [ES]), political knowledge (four categories, from none or one premier [K1]
to five or more premiers [K4]), and political interest (four categories, from least
interested [I1] to most interested [I4]). The latter variables are to be included without
influencing the geometric structure of the space formed by the 24 government tasks
(12 best and 12 worst). This is accomplished in correspondence analysis with the
projection of supplementary information into the space of a prior solution. In general,
correspondence analysis permits a distinction between active variables (or variable
categories), which determine the geometric orientation of the axes, and variables (or
variable categories) used for supplementary information only. These supplementary
variables have no effect on the geometric orientation of the axes (see Greenacre,
1984, p. 73). The whole set of 24 government tasks supplemented by five respondent
attribute variables (with a total of 21 categories) produces an indicator matrix of 3356
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Figure 2: MCA of government tasks handled worst.

rows (the number of cases without any missing values) and 117 columns. This matrix
will be used as input data for the final MCA. The solution is given in Figure 3.
Although the solution of the final MCA has 72 possible dimensions (96 cate-
gories — 24 items), the first axis explains 16.2% (unadjusted) of the total variation,
the second one an additional 13.1%. Because these values are almost as high as the
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Figure 3: MCA of government task with supplementary variables.

previous ones, one can assume a high similarity in the response structure of the “handle
best” and the “handle worst” items. This conclusion is corroborated by the graphical
display—as in the previous solutions, there are four distinct clusters that include the
respective categories. In the DK, D, and SD clusters there are only small differences
between the competent (indicated by a star) and the incompetent (indicated by a circle)
items. But these differences reflect mainly the different percentages of response: the
DK responses are more pervasive for the incompetence question, whereas the SD and
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the D responses have higher proportions in the competence questions (see Table 1).
In the case of ND the order of the categories is item specific—if one felt that there
was no difference among the three parties’ abilities to handle a task best, then it is a
foregone conclusion that none should be found for their inability to handle that task.

Turning to the locations of the supplementary variables, Figure 3 shows that
all 21 categories are either strongly connected with the first axis or located close
to the centroid of the map. This means that the supplementary variables are not
correlated with the second dimension. Therefore, sex, age group, education, political
knowledge, and political interest are not recommendable predictors of ND responses;
the supplementary variables can be used fruitfully only to distinguish individuals
answering DK from those classified as either D or, to a lesser degree, SD.

The most important variable for describing the group with above-average DK
responses seems to be least political interest (I1), which has the shortest distance
to this cluster (Figure 3). Furthermore, little political knowledge (knowing none
or one premier only [K1]) and a low formal education (grade school or less [E1])
are relatively good predictors for these variable categories. Two age categories are
somewhat poorer indicators: persons 55 years and older (AS, A6) answered relatively
often that they did not know which parties would handle the selected tasks best or
worst, respectively. On the other side, especially persons with high political interest
(14) differentiated between the parties. Furthermore, high formal education (university
graduates [ES]) and high political knowledge (naming five or more premiers [K41)
are relatively good predictors for both D and SD responses.

The orders of the categories of the supplementary variables along the first axis
confirm the ordinality of education, political knowledge, and political interest with
regard to the 24 items used in the analysis—projecting them onto the first axis, all
categories belonging to these supplementary variables are in a line from high to
low. Therefore, it can be concluded that the lower the political interest, the lower
the political knowledge, or the lower the education, respectively, the higher the
probability of a DK response.

Also in line with the literature is the response behavior of males and females:
men more often differentiated or partially differentiated; women answered relatively
often with DK. The age groups are not ordered in one line along the first dimension:
the youngest and the oldest age groups (Al, A5, A6) are relatively close to the DK
cluster, and the remaining groups are close to each other on the positive part of the
first axis. This indicates that the relationship between age and response behavior is
not linear, which also explains the low correlation coefficients of age with DK in
Table 2.

5 Conclusion

Our analyses of DK and ND responses—which is only one example for distinguishing
NSR from substantive responses—have several theoretical ramifications. First, the
MCA results show a clear distinction between NSRs and substantive responses.
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Furthermore, the ND responses are primarily substantive ones; on the main axis, they
are much closer to the D and SD clusters than to the DK one. In the given analysis,
the ND and the DK categories form relatively homogeneous clusters that are located
on different orthogonal axes. This independence suggests that if respondents are
given the choice between admitting they have no opinion (by responding with a
DK) and masking their nonopinionation in a relatively easy, socially acceptable way
(by responding with a ND), few choose the masking route. Apparently, respondents
did not feel pressured into giving substantive responses. Of course, it remains a
hypothetical question whether respondents would choose the ND response if they
had not been given the DK option.

Our approach can also be used when the items tapping opinions in a given
domain have a Likert response format. With such a format, the direction of opinion
has to be removed from the intensity with which the opinion is held. That is, the
response categories of “strongly agree” would be collapsed with those of “strongly
disagree,” as well as “agree” with “disagree.” This is analogous to our ignoring which
particular political party the respondent named. If the middle categories can be treated
as substantive responses, in an MCA solution these substantive responses should be
located in a different position from the NSRs. In general, in any case in which
substantive responses with “less meaning” exist, these categories will be located in
a different position from the DK responses in a common latent space. This implies
that any substantive ND responses should be kept separate from DK responses.

Inour final analysis we included political interest, political knowledge, education,
sex, and age as supplementary variables. By doing this we could show that political
interest has the strongest association with the first latent dimension that distinguishes
NSRs from substantive responses. This was followed by political knowledge, edu-
cation, and sex, respectively. Overall, for our topic, individuals most marginal to the
political process are also least likely to express opinions in that issue domain. In gen-
eral, interest in and knowledge of the topic domain should most clearly distinguish
respondents who hold substantive responses from those who do not. Sociodemo-
graphic attributes can also be used as predictors, but their association with the main
dimension is lower.

In our analysis we found a nonlinear relationship of age with the first axis,
whereby the youngest and the oldest gave the most NSRs. This nonlinear correlation
is shown by the nonordinal positions of age groups along the first dimension. In
general, if we expect a linear relationship of age with the “degree of differentiation”
scale of a topic, then the MCA should confirm this by an ordinal order of the age
groups along the axis that distinguishes NSRs from substantive responses.
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The Case of the French
Cantons: An Application of
Three-Way Correspondence
Analysis

André Carlier and Pieter M. Kroonenberg

1 Introduction

Getting insight into the structure of large contingency tables with multicategory
variables has always been a difficult problem. Simple rejection of the hypothesis of
independence of the variables does not bring the desired insight but only indicates
that there is something to be investigated further. It is not sufficient to know that
the distributions over occupations of a workforce changed over time and that these
changes are different in different regions. The nature of the change in the regions is
what should be the focus of an investigation. Graphical displays that depict both the
general patterns and the details are desired to provide both an overview and a micro-
scopic view of the regional changes. By applying three-way correspondence analysis
(CA)to a4?2 (regions) by 9 (occupational classes) by 4 (time points) contingency table
about the workforce in the Languedoc—Roussillon area (southern France), we will
demonstrate how such an investigation may proceed and what types of conclusions
about the structure in the table can be made.

Thus the major aim of this chapter is to provide an overview of the capabilities
of CA of three-way tables to investigate the structure of large three-way contingency

253
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tables. Biplots will be used rather than the usual simultaneous displays (Benzécri,
1973a) because of their more attractive properties in revealing the relationships
between rows and columns. To evaluate the dependence in three-way contingency
tables, special biplots have to be used, because the information of all three modes has
to be displayed simultaneously.

2 Overview of Two-Way Correspondence Analysis

CA is a technique that is applied to contingency tables in order to depict the de-
pendence between the row and column categories. The matrix of deviations from
independence is decomposed into two sets of components, one for the rows and one
for the columns, in such a way that the dependence can be portrayed as well as pos-
sible in low-dimensional space. To this end, the best low-rank approximation to the
matrix with dependences is sought, and this approximation is displayed in a biplot.

2.1 Measuring Dependence

Let us consider an / X J table of relative frequencies p;;, with marginal row and
column sums p; and p , respectively. A global measure of dependence is given by
®?2 = y%/n where x? is Pearson’s chi-squared statistic and  the total number of
observations. ®? is Pearson’s mean-square contingency coefficient, called the rotal
inertia in CA:

P2 — Z (sz Ptp]) Zp’pf <p” plp]) ZPi.P.jHizj (1)
ij

i pip.j PiD.j

The measure I1;; may also be written

o . Priil i Priili
Hijzpu pPiP.j _ Pij —1= r[lll]_lz r[Jll]_

2
np; by Prii] Prijl @

where, for example, Pr[i | j1 = p;;/p. is the conditional probability of row category
i given column category j and Pr[i] = p; is the unconditional probability of i.
Equation (2) shows that 1 + IT;; is equal to both the ratio of Pr[i | j]to Pr[i] and the
ratio of Pr[; | i] to Pr[j]. Therefore, II; ; measures the attraction between categories
i and j if II;; > 0 and the repulsion between the two categories if I1;; < 0. It is the
matrix Il = (II;;) that is to be decomposed into its components and displayed in a
biplot.

2.2 Modeling Dependence

In order to inspect the dependence in a contingency table graphically, we have to find
an optimal representation in low-dimensional space. The appropriate tool for this is
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based on a generalization of the singular value decomposition (see, e.g., Greenacre,
1984, p. 39).

If we indicate the rank of the matrix Il by Sy, then the generalized singular value
decomposition (GSVD) of the matrix I is defined as

So
IL;; = Z/\saisbjs 3
s=1

where the scalars {A;} are the singular values arranged in decreasing order of mag-
nitude, and the a;; and bj; are the elements of the singular vectors, or components
a; and by, respectively. The set of components {a;} are pairwise orthonormal with
respect to the inner product weighted by (p; ), and a similar property holds for {b,}
with respect to the weights (p ;).

If we want a small number, S, of components that explain most of the dependence
and thus approximate the full solution as well as possible, we should choose them
such that we get the best low-dimensional approximation to IT. This means that we
have to use II, which is the sum of the first S terms of equation (3) (Eckart and
Young, 1936), that is,

N
0 = Aaibjs @
s=1

The result of this choice is that the total ®? can be split into a fitted part and a residual
part. This can be used to assess the overall quality of a solution via the proportion
explained @2,

2.3 Plotting Dependence: Biplots

Given that we have decomposed the dependence, we want to use this decomposition
to graph the dependence. The appropriate graph is the biplot (Tucker, 1960; Gabriel,
1971). In CA the biplot displays in § dimensions markers for the rows and columns
of the matrix I1. Using the positions of the markers of the ith row and the jth column,
it is possible to approximate the value of the element ﬁ,- ; of I and to interpret
geometrically the directions of the markers in the plot.

In the simultaneous representation of CA, the markers are often presented in a
symmetric way with (two-dimensional) coordinates (A;a;;, A2a;,) for the row markers
i and coordinates (A1 b}, A2bjy) for the column markers j. However, the biplot tech-
nique generally uses one of two asymmetric mappings of the markers. For example,
in a “row-metric preserving” two-dimensional biplot (Gabriel and Odoroff, 1990)
the row markers have so-called principal coordinates (\ya;y, A2a;3) and the column
markers have standard coordinates (b1, bj») (see Greenacre, 1993, chap. 4). The ad-
vantage of the asymmetric over the symmetric representation is that the relationships
between the row and column markers can be more precisely interpreted.
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3 Three-Way Correspondence Analysis

Important properties of three-way CA are that the dependence between the variables
in a three-way table can be measured and displayed. Previous work on extending CA
to three-way tables mostly reduced such tables to two-way tables, using so-called
“interactive coding” to define “composite variables”; see Van der Heijden (1987) and
Van der Heijden, et al. (1989) as well as Le Roux and Rouanet (Chapter 16) for
overviews of this approach. Papers in which three-way tables were analyzed without
reducing them to two-way tables are by Choulakian (1988), Kroonenberg (1989),
and Carlier and Kroonenberg (1996).

3.1 Measuring Dependence

Whereas in two-way tables there is only one type of dependence, in three-way tables
one can distinguish (1) global dependence, which is the deviation from the three-way
independence model; (2) marginal dependence, which is the dependence due to the
two—way interactions; and (3) three-way dependence, which is due to the three—way
interaction.

Measuring Global Dependence Three-way contingency tables have orders /7, J,
and K with relative frequencies p; ;. Dependence in the table is again measured by
@2, which is defined in the three-way case as

o2 = Z Z Ek: (Dijke — Pi.Pjp.i)
i

Di.DjP k
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®? is based on the deviations from the three-way independence model, and it con-
tains all two-way interactions and the three-way interaction. The measure for the
dependence of cell (i, j, k), I1; &, may be rewritten as

_Prlijlk Prlij]

= Tprlij1 PrilPrijl ©®

The quantity 1 + II;j is the product of, first, the ratio Pr[ij | k]/Pr[ij], which
measures the relative increase or decrease in the joint probability of the categories
i and j given category k, and, second, the ratio Pr[ij1/Pr[i]Pr[j], which measures
the relative increase or decrease in the deviation from the marginal independence.
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If the conditional probability for all k is equal, Pr[ij | k] = Prlij] and the first
ratio is 1. Then II; 4 = Il;;, and the three-way table could be analyzed with ordinary
two-way CA. The symmetric statement after permutation of the indices holds as well.
Therefore the I1; 3 measure the global dependence of the cell (i, j, k).

The elements of the two-way marginal totals are defined as weighted sums over
the third index. Thus for the / X J margins these elements are

_ _ Pijk — Pi.P.jP.k _ Pij — Pi.P.j
IL; = pallip = Dk = )
/ ; Y zk: Pi.P.jD k bi.pj.

The elements of the other two-way margins, II;; and II j, are similarly defined.
One-way marginal totals are summed over two indices and they are zero due to the
definition of II;;; hence the overall total is zero as well. For instance, in the case of
the one-way row margin i:

=3 pipadly =0 ®)
ik

Measuring Marginal and Three-Way Dependence The global dependence of the
cell, II; 4, can be split into separate contributions of the two-way interactions and the
three-way interaction,

Iy = Dij. — Di.D.j. L Pik PPk DPjk —DPjP.k n Pijk — Pijk
Di.D.j. Pi.D.k P.j.P.k Pi.P.jP.k

&)

where piy = pijp.x + pixP.j. + P.juPi. — 2pi.p.jp.x - The terms referring to the
two-way margins are equivalent to those defined by expression (2). The quantity
Dijk — p;"jk measures the size of the three-way interaction for cell (i, j, k). Darroch
(1974) provides a comparative discussion of this additive definition of interaction
and the multiplicative definition as used in log-linear analysis.

Due to the additive splitting of the dependence of individual cells, ®2, the
measure for global dependence of the table can be partitioned (see Lancaster, 1951)
as

2
Pij. — Pi.D. Pik —~ Pi.P.k
E E Pi.D.j. ( i - 1> + :>: § bi.p ( : )
Di.P.k
Pjkx —PjP.k Pijk — pljk
+ E PPk ( > E E E pi.D. Pk( )
Z ; PPk Y pi.DjPk
=02 + 0L + DL + DY (10)

The importance of decompostition (10) is that it provides measures of fit for each of
the interactions and thus their contribution to the global dependence.
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3.2 Modeling Dependence

Given measures for global dependence, marginal dependence, and three-way depen-
dence, a model for these measures has to be found with which it will be possible
to construct graphs depicting the dependence. For the three-way case, a three-way
analogue of the GSVD is desired. There are, however, several candidates, of which
we will consider only the so-called Tucker3 model (see Carlier and Kroonenberg,
1996, for other possibilities). This model is also referred to as the “three-mode factor
analysis model” (Tucker, 1966; see also Kroonenberg, 1983).

Modeling Global Dependence A three-way version of the GSVD will contain at
least an additional term for the third variable. In the Tucker3 model each of the modes
has its own components and the generalized singular values are different in that they
are indexed by the components of all three modes.

P 0 R
I = Zzzgpqraipquckr + e (11)

p=1g=1r=1

In this decomposition, the a;, are the elements of the components {a,}, which are
pairwise orthonormal with respect to the weight (p;.). Similarly, the b;, are the
elements of the components {b,}, which are pairwise orthonormal with respect to
(p.;.), and the ¢, are the elements of the components {c,}, which are orthonormal
with respect to (p_¢). The g, are the three-way analogues of the singular values, and
they are often referred to as elements of the core matrix. The e, represent the errors
of approximation. In three-way CA, a weighted least-squares criterion is used: the
parameters gpqr, dip, bjq, and ¢y, are those that minimize ;) i >k piD p.,keizjk.

As in two-way CA, ®2 can be split into a part fitted with the three-way SVD or
three-way model and a residual part.

Modeling Marginal Dependence One of the attractive features of the additive
partitioning of the dependence in Section 3.1 is that the single decomposition of the
global dependence can be used to model the marginal dependence as well.

The marginal dependence of the rows i and columns j is contained in a matrix
I1,; with elements H{j] = (pij.—pi.p.j)/Pi.p;) = > p.illij [see (7)] with similar
expressions for the other two matrices II;x and Il k.

By performing the weighted summation over k for 1I;j in the Tucker3 model
(11), we obtain the model for marginal dependence:

P Q0 R
H,I]J = ZZngq,aipquc, + €ij. (12)

p=1g=1r=1

where ¢, = >, p.xcir and e;;, = Y, p xe;. Inspecting this formula leads to the
conclusion that the marginal model is derived from the overall model by weighted
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averaging of the appropriate components, in this case ¢,. This will turn out to be
extremely effective in the displays we intend to make.

Modeling Partial Dependence In our application the mode £ is a time mode, and
we are interested in investigating the part of the dependence that explicitly depends
on time. Thus the dependence not associated with time, that is, the dependence due
to the / X J margin, has to be removed from the global dependence. In our particular
case, this partial dependence has the form

My — T =" gparaipbjglcir — c.) + (eije ~ €i1) (13)

pq.r

As this equation shows, the modeling of the partial dependence is achieved by
centering the components of one of the modes, here the time mode ¢,. In Carlier and
Kroonenberg (1996) we discuss what happens when one wants to remove more than,
one marginal dependence.

3.3 Plotting Dependence: Interaction Biplots

With respect to dependence and its modeling, the three ways of the contingency
table behave in an entirely symmetric fashion. This symmetry can, however, not be
maintained when graphing the dependence, because no spatial representations exist
to portray all three ways simultaneously in one graph. To display the dependence
or its approximation in three-way CA, two kinds of biplots may be considered: the
joint biplot, discussed by Carlier and Kroonenberg (1996), and the interaction biplot,
discussed here.

The interaction biplot aims to portray all three modes in a single biplot. As a
biplot has only two types of markers, two modes have to be combined into one. In
our application each pair of indices of the canton and time modes, (i,k), will be
represented by a single marker. We refer to this as interactive coding. The remaining
occupation mode supplies the other set of markers j and will be called the reference
mode. The choice of reference mode depends on the research objective. Given that
an ordered mode (in this case, time) will always be coded interactively, the choice
between the remaining two depends on which of two modes produces the clearest
patterns in their changes over time.

The construction of the biplot for the global dependence H, ij% follows directly
from the three-way SVD of the global dependence:

Q

ﬁi Z Zzgpqratpckr Ja

q=1 | p=1r=1

0
=Y dingbig (14)
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If we replace the composite index (ik) with a new index / we see that the coordinates
of the Ith row markers are the dj, and those of the jth column markers are the bj,.
Note that the g, are absorbed in the coordinates of the row markers /. Therefore, it
can be shown that the interaction biplot is a row-metric preserving one with respect
to the weights p ; . The number of two-dimensional biplots depends not on P or R but
only on Q, the number of components of the reference mode. The choice between
three or four components in the reference mode could be guided by whether it is
easier to inspect a three-dimensional plot or two independent two-dimensional plots.

The interaction biplot is especially useful when the number of elements in 7 X K
is not too large or when one of the two modes is ordered. Assuming & is an ordered
mode, for example time, trajectories can be drawn in the biplot by connecting, for
each i, the points (i, k) in their given order.

4 Changes over Time in the Languedoc Workforce

During the censuses of 1954, 1962, 1968, and 1975, the people of the cantons
in Languedoc—Roussillon (southern France) were asked to state their occupations.
The occupations could be grouped into nine major occupational classes: farmers
(AF), agricultural laborers (AL), owners of small and medium-sized businesses (SB),
professionals and senior managers (PS), middle managers (MM), employees (white-
collar workers, WC), laborers (blue-collar workers, BC), employees in the service
sector (SE), and other occupations (Q0). The present data consists of 42 rural cantons
or rural parts of cantons in the Languedoc—Roussillon region. Cities (or communities)
of more than 5000 inhabitants (in 1954) have been excluded from the cantons in which
they are located. For example, for cantons such as Montpellier, Nimes, Narbonne,
Perpignan, and several others, only the suburban communities and the more rural
communities of these cantons are included. Full details as well as the data themselves
can be found in Bernard and Lavit (1985), and another detailed analysis of these
data can be found in Carlier and Ewing (1992). It is evident that in the period in
question major changes took place in the workforce, which we aim to describe using
three-way CA. The three factors or variables of interest are cantons (42 categories),
occupations (9 categories), and time (4 categories).

4.1 Measuring Dependence

Table 1 shows the partitioning of x? according to the different interactions. Of the total
variability in the table, the largest amount is in the canton-by-occupation interaction
(57%), followed by the occupation-by-time interaction (22%). If the degrees of free-
dom (df) are taken into consideration as well, the occupation-by-time interaction has
by far the largest contribution per df, which indicates that the occupational distribu-
tions have undergone considerable changes over time. Also the canton-by-occupation
interaction has a sizable contribution per df, showing that there is considerable diver-
sity among the cantons. The smaller contribution of the cantons-by-time interaction
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Table 1: Decomposition of x*

xz components of XZ components for
42 X 9 X 4 table 5 X 4 x 2 Tucker3 model
% of % of % of iju/
Source df Xow otalx? X2, totalx? totalxZ.,, X
Main effects 0 0.0 31 0.0 0.2 —
Two-way interactions
Canton X Occupation 328 114307 574 9471 4.8 47.8 92%
Canton X Time 123 16278 8.2 1061 0.5 54 94%
Occupation X Time 24 43469 21.8 2306 1.2 11.6 95%
Three-way interaction 984 25249 12.7 6954 35 35.1 73%
Total 1459 199303 100.0 19823 9.9 100.0 90%

suggests that, even though for the cantons there are changes in the overall size of
their workforce over time, this is not the main feature of the data. This interaction
contains the differential increase and decrease of the workforce in the cantons. The
three-way interaction is not large, and it has by far the smallest contribution per df.

To describe the patterns in the data set, we have fitted a Tucker3 model (11)
with P = 5 components for the cantons, Q = 4 components for the occupations,
and R = 2 components for the time mode. The number of components to retain
was guided by the search for a large amount of explained variability coupled with
a reasonable parsimony. As the occupations were chosen to be the reference mode,
retaining four occupation components meant that two interaction biplots could be
constructed, one for the first two dimensions and one for the last two dimensions.
The numbers of components for the time mode and the cantons mode do not have an
influence on the dimensionality of the biplots but only on the amount of smoothing
of the results or equivalently the amount of structural information included in the
solution [see (14)].

The 5 X 4 X 2 model fits very well, leaving only 10% unexplained, and Table
1 shows that canton-by-occupation and occupation-by-time interactions are very
well explained (92% and 95%, respectively). The relatively unimportant three-way
interaction has the smallest fit (73%). This points to the fact that in this example
it could be sufficient to examine the two-way margins. Using a two-way approach,
two separate two-way CAs could be performed on the canton-by-occupation and
occupation-by-time margins.

4.2 Plotting Global Dependence

As already explained, before the results of a three-way CA can be plotted, a reference
mode has to be selected. As we intended to study the changes in the distribution of
the cantons over time, the occupations have to be chosen as the reference mode, so
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that the changes in workforce of the cantons over time can be plotted. Figures 1 and
2 show the results for the first two dimensions, and Figures 3 and 4 show the results
with respect to the third and fourth dimensions. In Figures 1 and 3, the four time
points of each canton are connected by a line ending in an arrowhead for 1975, called
a trajectory. Only the 16 most characteristic trajectories are displayed in the graphs.
Trajectories can be interpreted in terms of the distributions of occupations in the
cantons at each occasion. If we take Chateauneuf de Randon (M3) as an example, we
see that the trajectory begins in 1954 with a high proportion of independent farmers
(AF) but that over the years the canton moves away from the AF point and ends up in
1975 much closer to the origin or mean point. Nevertheless, M3 and M4 continue to
be the cantons that have the largest proportions of independent farmers. Furthermore,
the category agricultural laborers (AL) also has a sizable but diminishing projection
on the trajectory.

The first interaction plot showing the first two occupation axes (Figure 1), ex-
plai/{ling 71% of the inertia, is based on the first two terms of the decomposition
of IT

2 4
e = daogbjig + > dangbia (15)
g=1 q=3
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1 AL L
27 SE

0.0

-1.0 0.0 1.0

Figure 1: Global dependence of cantons, occupations, and time (axis 1 versus axis 2).
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Figure 2(a): Marginal dependences displayed in the graph of the global dependence
(axis 1 versus axis 2). Cantons X occupations.

with dgy, = Zzzl Zle 8pqripCir [see (14)]. The column markers () in the inter-
action biplot have coordinates (b1, bj2), and the row markers (i, k) have coordinates
(dr1,dr). The second interaction biplot (Figure 3) explains an additional 19%
of the inertia and is based on the third and fourth terms of the decomposition (15).
Due to the additivity, the information in the second biplot can be considered as a
correction or refinement of the major part of the information contained in the first
biplot, because the terms in the second sum of equation (15) are on the average four
times smaller than those in the first sum, The information of both plots is necessary
to reproduce the estimated dependence Il;j, as is evident from equation (15).

In principle, the figures display the global dependence, but they can aiso be used
to study the three two-way interactions, because these interactions can be derived
from the global dependence by weighted averaging and then displayed and inter-
preted in the same display (Figures 2 and 4). In the present data set the three-way
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Figure 2(b): Marginal dependences displayed in the graph of the global dependence
(axis 1 versus axis 2). Occupations X time.

interaction is rather small, and therefore the main patterns of the biplot can be inter-
preted via the three two-way interactions. In our approach we will analyze the global
dependence within the perspective of the two-way dependence, in order to visualize
what information the three-way display adds.

To inspect the patterns of dependence, we present two plots displaying the global
dependence, namely Figure 1 for the first and second axes (¢ = 1,2) and Figure 3
for the third and fourth axes (g = 3,4). To facilitate the inspection of the two-way
marginal dependences we have reproduced each of these figures three times, once for
each marginal dependence (Figure 2a,b,c and Figure 4a,b,c, respectively). To avoid
clutter on each of these plots, we have deleted the features not relevant for inspecting
the two-way dependences, and have added markers for the centroids and/or lines and
vectors to facilitate the interpretation. Please note, however, that the plots in Figures 2
and 4 display the same space as the ones in Figures 1 and 3 respectively.
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Figure 2(c): Marginal dependences displayed in the graph of the global dependence
(axis 1 versus axis 2). Cantons X time.

4.3 Plotting Marginal Dependence

Canton-by-Occupation Interaction The canton-by-occupation interaction (I X J)
in the interaction biplot is based on the weighted mean of equation (15) with respect
to k:

4 4
My = duybjy  withdeyg =D padiog
g=1 k=1

The term on the left-hand side is an approximation of the Il;; used in two-way CA of
the / X J margin. The occupations have the same markers as in the global dependence
biplot, but the cantons have as coordinates those of the centroids of the trajectories.
One of the interesting aspects of the description of the two-way interactions
within the framework of the global dependence is that the centroids of the cantons
can be displayed in the same graph as the global dependence itself. In Figure 1
this is done by marking these centroids with the abbreviations of the cantons on the
trajectories. Thus the label M3 is at the centroid of the trajectory for M3. The biplot
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Figure 3: Global dependence of cantons, occupations, and time (axis 3 versus axis 4).

with only the canton centroids and the occupations (i.e., Figure 2a and Figure 4a) can
be interpreted exactly as the comparable biplot from two-way CA. To assist in the
interpretation of the patterns of the canton-by-occupation interaction, the canton-by-
occupation margin with the occupations expressed as percentages of the workforce
in the cantons is presented in Table 2.

This table has been arranged to highlight the patterns emerging from the
interaction—high percentages are indicated in boldface. Some of the more extreme
features of the interaction as evident from Figure 2a are the following.

1. The strong rural nature of the cantons Fournels (M4) and Chateauneuf de Randon
(M3) with, respectively, on the average 81% and 78% of the people employed in
agriculture (overall 35%) with a heavy emphasis on independent farmers (AF).

2. The similarly agricultural nature of Lézignan-Corbieres (C8), Narbonne (C9),
and Capestang (H7) with, respectively, on the average 66%, 58%, and 53% of
the workforce employed in agriculture, but with a larger number of agricultural
laborers (possibly due to the viticulture in those areas) (AL).

3. The strong industrial nature of La Grand’Combe (D8), St Ambroix (E1), Ganges
(K3), Sumene (G9), and Ales (D3), which is indicated by high percentages of
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Figure 4(a): Marginal dependences displayed in the graph of the global dependence
(axis 3 versus axis 4). Cantons X occupations.

blue-collar workers (71%, 58%, 56%, 54%, and 54% respectively); the overall
percentage of blue-collar workers is 30%.

4. The strong tertiary sector in Montpellier (K8), Nimes (F1), and Les Matelles (K5)
(a suburb of Montpellier) with, respectively, 38%, 30%, and 29% employed in the
tertiary sector (i.e., services, SE; middle management, MM; white collar workers,
WC; professional and senior management, PS) compared with 21% overall.

In Figure 4a all but two cantons are located close to the origin, indicating that the
higher dimensions do not contribute to their interactions. Primarily the distributions
from Chateauneuf de Randon (M3) and Fournels (M4) need adjustment, with positive
corrections for the categories professional and senior management (PS), middle
management (MM), and white collar (WC) that correct too large negative values read
on the first biplot. Furthermore, the corrections emphasize the differences between
the two agricultural categories and indicate that in these cantons the proportion of
independent farmers (AF) is even larger and the proportion of agricultural laborers
(AL) slightly smaller than one would have deduced from Figure 2a.
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Table 2: Row percentages of cantons by occupations® averaged over time (high percentages are indicated in boldface)

Agriculture Tertiary sector

Blue Far- Agric. Total Small White Middle Ser- Profes. Total Other Cantons

collar mer labor. agric. business collar manag. vices sen. m. tertiary occup.

BC AF AL SB wC MM SE PS 00
D8 70.7 6.5 2.1 8.6 54 5.8 5.2 23 1.1 14.4 1.0 La Gr’Combe
El 58.2 6.5 1.6 8.1 12.8 7.7 6.6 2.8 1.7 18.8 1.9 St. Ambroix
K3 55.7 6.3 5.1 13.4 13.3 7.8 5.1 2.8 2.1 17.8 1.8 Ganges
G9 53.8 20.4 3.1 235 6.8 6.4 43 1.5 2.0 14.2 1.7 Sumene
D3 53.6 9.4 2.7 12.1 9.8 10.2 7.2 3.1 24 22.9 1.7 Ales
C3 47.8 13.2 3.3 16.5 14.1 7.7 6.5 31 2.6 19.9 1.7 Quillan
D7 45.8 17.7 53 23.0 10.2 6.8 7.4 34 1.5 19.1 1.9 Génolhac
H3 45.0 109 4.6 15.5 13.3 8.5 7.8 3.8 34 235 2.7 Le Vigan
M4 4.5 76.0 52 81.2 6.6 1.5 3.7 0.8 0.5 6.5 1.2 Fournels
M3 5.9 70.5 7.0 71.5 5.7 1.7 4.0 2.3 0.4 8.4 2.4 Ch.n.Randon
M9 10.7 534 11.0 644 59 53 5.6 2.8 2.1 15.8 32 Mende
Jo 14.1 51.0 17.1 68.1 6.1 3.8 4.7 1.1 1.0 10.6 1.1 Lodeve
K1 10.5 42.8 27.1 69.9 6.2 39 43 1.5 22 119 1.4 Claret
F9 23.6 40.8 12.4 53.2 8.7 4.1 5.2 2.2 1.0 12.5 2.0 Uzes
C8 12.1 31.8 344 66.2 9.9 4.2 33 2.2 1.0 10.7 1.1 Lézignan-C.
c9 15.8 27.6 30.5 58.1 10.2 5.9 4.9 24 1.5 14.7 1.1 Narbonne
H7 18.6 22.7 30.5 53.2 10.8 7.2 5.0 24 1.6 16.2 1.1 Capestang
H9 15.7 319 29.0 60.9 8.8 54 44 2.0 1.2 13.0 1.6 Montagnac
K4 27.5 21.1 27.0 48.1 7.6 6.8 4.8 2.9 1.2 15.7 1.1 Lunel
H4 25.3 174 26.5 439 14.3 6.2 4.7 3.3 1.6 15.8 0.7 Agde



69¢

Hé6
A5
A7
G4
G6

K8
N8
K5
F1

N7
J9

K2
L2
Ké
04

G7
N4
Gl
I8
F2
M6
K7

TOTAL

23.2
22.6
171
28.0
27.8

29.8
35.6
18.7
29.9
30.7
26.0
40.8
15.9
23.5
225

40.4
343
323
36.8
323
21.9
28.4

30.4

22.1
36.6
31.0
34.6
31.8

9.0
9.6
20.2
13.9
13.6
19.3
8.1
34.6
17.0
21.8

144
28.3
16.3
19.2
24.3
30.8
17.7

20.2

22.6
17.2
18.7
11.0
12.9

10.5
3.7
19.0
16.1
11.0
18.9
12.9
8.0
25.0
204

89
2.9
21.5
8.9
85
4.6
15.2

14.8

44.7
53.8
49.7
45.6
447

19.5
13.3
39.2
30.0
24.6
38.2
21.0
42.6
420
422

233
31.2
37.8
28.1
32.8
354
329

35.0

12.0
10.5
12.4
9.0

11.2

10.9
18.4
8.4
8.8
15.1
83
11.0
15.3
9.3
12.3

13.6
11.9
9.4
13.0
11.9
18.2
21.5

11.7

84
4.1
5.8
49
4.7

14.3
9.6
9.2
12.3
10.5
10.2
11.1
7.1
8.8
9.0

6.4
7.7
9.2
6.2
1.6
79
6.1

83

54
43
5.6
5.1
4.6

11.1
7.8
94

10.3
6.7
8.8
7.7
8.5
7.0
6.6

6.5
8.0
5.6
8.3
6.6
79
5.0

6.6

34
2.1
24
2.4
3.0

59
9.8
34
1.7
6.0
34
4.7
4.0
4.0
3.0

3.0
3.0
24
3.0
35
3.4
2.8

34

1.7
1.0
1.4
2.7
1.4

6.3
2.8
7.5
44
32
3.5
22
34
39
2.6

2.0
22
1.9
2.7
2.4
24
1.6

2.6

18.9
11.5
15.2
15.1
13.7

37.6
30.0
29.5
28.7
264
25.9
25.7
23.0
22.7
21.2

17.9
209
19.1
20.2
20.1
21.6
15.5

20.9

1.1
1.6
5.6
23
2.7

22
2.8
4.2
2.6
33
1.7
1.6
33
1.4
1.9

4.8
1.7
1.6
2.0
2.9
2.9
1.7

2.0

Béziers
Castelnaudary
Fanjeaux
Lassalle

St. André d.V.

Montpellier
Arles-s/Tech
Les Matelles
Nimes
Argeles s/Mer
Castries
Frontignan
Florac
Mauguio
Perpignan

St. Hyppolyte
St. Chély d’A
Vauvert

St Pons
Pont-St-Esprit
Langogne
Méze

“For a further explanation of the occupational categories, see Section 19.5. The equivalent French abbreviations in Bernard and Lavit (1985) are:
AF = EA; AL = OA; SB = AC; PS = PL;MM = CM; WC = EM; BC = OU; SE = SE; OO0 = CP.

b A religious community settled in Fanjeaux at the beginning of the period.
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Figure 4(b): Marginal dependences displayed in the graph of the global dependence
(axis 3 versus axis 4). Occupations X time.

Occupation-by-Time Interaction The occupation-by-time interaction (J X K) can
be visualized in a similar manner by displaying centroids of the row markers (i, k)
for each fixed value of , that is, weighted averaging performed on the canton points.
The four time centroids constitute the average trajectory, which is displayed as an
arrow in Figure 2b, rather than the original trajectories. A dotted line has been added
to emphasize the direction of the centroid trajectory. To interpret this interaction,
one has to project the occupations on this average trajectory. It shows the contrast
between the two agricultural classes (farmers, AF, and agricultural laborers, AL),
which are decreasing, and the tertiary occupations (especially professionals and
senior managers, PS), which are increasing. Occupations such as owning a small
business (SB) and blue-collar workers (BC) have only a small increase, as their
projections on the average trajectory are close to the origin.

As before, Figure 2b and Figure 4b contain different visual information and one
has to “add” their contributions. Figure 2b shows that both the class of independent
farmers (AF) and that of agricultural laborers (AL) are decreasing, but Figure 4b
shows that the decline is even more serious for the agricultural laborers than for the
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(c) Cantons - Time
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Figure 4(c): Marginal dependences displayed in the graph of the global dependence
(axis 3 versus axis 4). Cantons X time.

independent farmers because of its large projection on the negative side of the time
axis in Figure 4b. Furthermore, the class of blue-collar workers (BC) shows a small
increase over time in Figure 2b. Figure 4b shows a small decrease for this category,
but it does not reverse the trend observed in Figure 2b, because the average trajectory
of the second biplot is much shorter than that of the first biplot. Finally, Figure 4b
shows that the proportion of people working in the service sector is even stronger
than one would have derived from Figure 2b alone.

Canton-by-Time Interaction The canton-by-time interaction (I X K) reflects the
overall changes in the workforce of the cantons. It shows which cantons decrease
and which cantons increase in working population. As the occupations constitute the
reference mode, the centroid consists of the vector (b, b, b3, b 4) as can be seen by
averaging expression (15) over occupations j,

4
i = dinghy (16)
g=1
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In Figure 1 and Figure 2c the vector (b, b3) is indicated by an arrow with the letter
g, and in Figure 2c it is extended in two directions by a dashed line to indicate the
axis defined by this vector. In Figure 3 and Figure 4c the vector (b3, b 4) is similarly
indicated. The small size of the mean vector (b1, b ;) in Figure 2c, with respect to that
of (b3, b4) in Figure 4c, indicates that the contribution to the change, described by
the first two dimensions displayed in Figure 2c, is much smaller than that of the third
and fourth dimensions shown in Figure 4c. Therefore, for most cantons, the larger
part of the changes over time is better represented in the latter graph, and the former
one will be used as a correction. The complete canton-by-time interaction of a canton
is derived from the projection of its trajectory on the axes g [see equation (15)]. As
an example of such a projection, that of Chateauneuf de Randon (M3) is shown in
Figure 2c.

Figure 4c separates the cantons in two classes. The first is a small class of
more urban cantons with a large overall growth, for example, Montpellier (K8), Les
Matelles (K5), Nimes (F1). The second class is larger and contains both industrial
cantons such as La Grand’Combe (D8), St. Ambroix (E1), and Ganges (K3), and
Sumene (G9) and rural cantons with an overall decrease of population over time,
such as Chateauneuf de Randon (M3) and Fournels (M4).

To make more precise our conclusions about Chateauneuf de Randon, for ex-
ample, we see in Figure 2c that it has a small increase in its working population,
but in Figure 4c we see that the canton has a much larger projection on g pointing
in the other direction. Thus the sum of the projections indicates that there was an
overall decline in population in this canton. Numerically, applying expression (16)
and measuring graphically these projections, we obtain the contribution in Figure 2¢
as the product of 0.2 (Iength of g) and 0.5 (length of the projection of the trajectory
of Chateauneuf de Randon). Similarly, the contribution in Figure 4c is approximately
1 X —0.9. Thus the overall change for this canton is 0.1 — 0.9 = —0.8, estimating
an overall decline in the working population.

Three-Way Interaction As mentioned before, the three-way interaction is rela-
tively small, and it will not be analyzed on its own but in conjunction with the
interactions involving time, which are investigated in the next section.

4.4 Plotting Partial Dependence: Analysis of Change

The analysis of the complete Figure 1 leads to the study of the global dependence as
expressed in the 11; ;. By using the difference between I1; and II;; , we may remove
the part of the dependence that is not influenced by time, that is, the interaction
between the cantons and occupations (I X J). This allows the study of only the part
of the global dependence that depends on time. This difference has the form [see

equation (6)]
o _  Pdijl (Priijlk]
Hijk L. = Pr[i] Pr(j] ( Pr[ij] 1) 0
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The difference is the product of (1 + II,;) with the factor in parentheses, which can
be considered as a growth index for the canton—occupation category (i, j). If there
is no dependence on time, that is, the distribution of occupations among the cantons
remains the same over time, then the conditional probability of (i, j) given time £,
Prlij | k], is equal to Pr[ij], and the difference in equation (17) is zero for all
canton—occupation combinations i and j. In such a case each trajectory will consist
only of its centroid. Instead of removing the interaction (I X J), that is, centering
the trajectories, we analyze the variations of a trajectory around its centroid. These
variations take into account all interactions involving change. The advantage is that
on the same graph the average situation of a canton can be interpreted along with
the changes around these average positions. The importance of the change of the
workforce in a canton, as defined by equation (17), is indicated by the length of its
trajectory; the nature of the change is indicated by the direction of its trajectory. In the
graph, the interpretation of the changes of a canton—occupation category (i, j) over
time can be obtained by projecting the associated trajectory onto the axes defined by
the occupation markers j. The increase is proportional to the product of the length of
the vector of the jth marker and the component of the projected trajectory onto the
biplot axis defined by this marker. If the vector and the trajectory point in the same
direction, there is an increase over time; if they point in opposite directions, there is
a decrease over time.

The major pattern in Figure 1 is a general shift of all cantons toward the urban
categories and away from the independent farmer (AF) category. The tertiary sector
is rapidly increasing, especially in cantons such as Montpellier (K8), Les Matelles
(KS), and Nimes (F1). Many other cantons have a similar but smaller growth in the
tertiary categories (Ales, D3; Ganges, K3). The position of the tertiary categories PS,
WC, MM, and SE on a single line through the origin indicates that these categories are
more or less proportional but that the ones farther away, such as PS, are much more
important in size than the others (SE). The trajectories of the industrial cantons La
Grand’Combe (D8) and St Ambroix (E1) move toward the origin, which indicates that
their populations become more uniform over time. They lose their specific industrial
characteristic; that is, their blue-collar (BC) population is decreasing.

Figure 3 corrects the previous interpretations in two ways. Some of the cor-
rections could be called “technical.” As an example, the move of some agricultural
cantons, in Figure 1, away from the independent farmer category is also a move in the
direction of the tertiary categories. The strict interpretation of Figure 1 would imply
an increase in these categories for such cantons. In Figure 3, the move of the two
rural cantons M3 and M4 away from the tertiary categories corrects this interpreta-
tion. Another example is related to cantons such as La Grand’Combe (D8). Its move
toward the origin on Figure 1 is also a move toward the agricultural laborers (AL),
which would imply that this category becomes more numerous. This interpretation
is clearly negated in Figure 3. Other corrections, with respect to the interpretation
of the first biplot, are the greater decrease of the cantons La Grand’Combe (D8) and
St Ambroix (E1) in blue-collar workers, the greater increase of the urban cantons
(Montpellier, K8; Les Matelles, KS; and Nimes, F1) in the tertiary categories, and



274 Chapter 19. The Case of the French Cantons

the stronger decrease in the two rural canons M3 and M4 of the population of inde-
pendent farmers (but not of the agricultural laborers, as the latter vector is more or
less perpendicular to the trajectory of M3 and M4 in that figure).

5 Conclusion

In this chapter we have made a case for analyzing large three-way contingency tables
with three-way CA. Two major aspects of the technique stick out. First, as with log-
linear modeling, it is possible to assess the relative sizes of the marginal dependences
and that of the three-way interaction, and it is also possible to assess how well the
mode] fits those two-way and three-way interactions. Second, in contrast to log-linear
analysis, the dependence can be analyzed as a whole, and the marginal dependence can
be directly assessed from the global one without further models or decompositions. In
log-linear modeling there are no facilities in the model for inspecting or evaluating the
interaction parameters, which would have to be done separately for each interaction.
Third, biplots provide a visual analysis of the nature of the dependence in the data,
and both the global dependence and the marginal dependence can be portrayed and
evaluated in the same graph in a completely natural way. Finally, special problems
can be handled within this framework, such as analyzing change after partialing out
those parts of dependence not related to change.

In our analysis of the changes in the workforce of the Languedoc—Roussillon we
have shown that the large-scale patterns can be presented in an insightful way by using
various biplots. In addition, several smaller patterns can be discerned. Obviously, for
a full-fledged analysis of these data, we should look at the relationships of the patterns
found with external information about the actual events in several cantons.

Appendix: Computational Aspects and Software

Two-Way Correspondence Analysis

As explained, for instance, by Greenacre (1984, p. 40), the estimated parameters in
two-way CA can be computed via the regular SVD by pre- and postmultiplying II;;
with p!/2 and p}j/ 2, respectively. Thus the SVD is applied to

12 _1/217.. _ Pij “PiPj _

p/p i = =55 = Xij

i P P}./z p.lj/z
where X;; is the standardized residual from the model of two-way independence for
cell (i, j). If we write the regular SVD for X;; as

Xij = Z)\sﬁisi?js
N
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then the coefficients for the generalized svD are a;; = @;;//p;. and b s = b s /\/D i
with the same A;.

Three-Way Correspondence Analysis

In three-way CA the procedure is completely analogous. Regular three-way models
may be used to calculate the estimates for the parameters of the generalized three-way
SVD. In particular,
1/2.1/2 1/2 _ Dijg — Pi.DjPx _
p PPy i = =5 1n = Xig
’ e el

where X;j is the standardized residual from the model of three-way independence
for cell (i, j, k). If we use the Tucker3 model for X,

Xijk = Zzzgpqraipgjqékr
p q r

then the coefficients for this version of the generalized three-way svD are a;, =
Gip/\/pi. and by, = bjy/ /P, Ckr = &/ \/P.x with the same g,

In the two-way case, the way A; are associated with the row or column markers
determines whether biplots are row-metric preserving or column-metric preserving
graphs. The situation is more complicated in the three-way case, especially for the
Tucker3 model, because several kinds of biplots can be made.

Software Note

The methods and graphical procedures described above have been programmed by
the first author in S-Plus (see, for example, Becker et al., 1988) and can be supplied
upon request. A FORTRAN implementation is being developed and will be included in
the next release of the three-way data analysis package 3WAYPACK available from the
second author (see Kroonenberg, 1996). The technical basis for the algorithms can
be found in Kroonenberg (1983).
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Chapter 20

Visual Display of Interaction
in Multiway Contingency
Tables by Use of
Homogeneity Analysis:

the 2 x2 x 2 x 2 Case

Jacqueline J. Meulman and Willem J. Heiser

1 Introduction

Multiway contingency tables express the relationships between the categories of
several categorical variables A, B, C, ... at several levels of complexity. In the body
of the multiway table, all these relationships are confounded. By adding over all
variables except A and B, we obtain a bivariate marginal table, showing the bivariate
relationship between A and B; by adding over all variables except A, B, and C, we
obtain a trivariate marginal table, showing the trivariate relationship between A, B,
and C, and so on. Of course, it is of interest to know whether these relationships,
once separated, perhaps are still simpler than they look; in particular, to ask whether
or not the higher order ones are simple combinations of the lower order ones. From
this question, several natural forms of dependence and independence arise.

Suppose for the moment that we restrict ourselves to the case of three categorical
variables, with n4, ng, and n¢ categories. Lack of independence implies the presence
of interaction between the categories. Let 7, denote the probability that an individual
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unit of observation (in the sequel denoted by the neutral term object) falls in category i
of variable A, in category j of variable B, and in category k of variable C. We consider
Tk as a probability defined over all cells of the three-way contingency table, which
implies that the total 37,37, >", mu = 1. As will be demonstrated in the next
section, we can discuss several concepts of independence structure without referring,
for example, to log-linear modeling, which is perhaps the most common approach
to analyzing data of the present type, or to any other form of modeling. The reason
is simple: models involve assumptions to relate concepts of structure to observed
counts, but the concepts exist regardless of the additional assumptions. Modeling is a
way to smooth empirical frequencies, that is, to replace them by frequencies satisfying
certain regularities. Log-linear modeling just uses various types of independence as
a set of possible structures for the expected values p;j; of a multinomial sampling
process with ng X ng X nc categories. Then, by a famous result of Birch (1963),
the maximum likelihood fitted values {i;; are smoothed versions of the counts in
the observed multiway contingency table that match them in specified marginal
distributions but have higher order interactions that satisfy the chosen independence
patterns. For choosing between submodels with a different independence structure,
the likelihood ratio statistic G* or Pearson’s chi-squared x? are used.

Once we know the most likely (in)dependence structure among the variables,
how do we interpret the interactions? In log-linear modeling, interactions correspond
to groups of model parameters. To interpret the model parameters of a log-linear
model, we have to express them in terms of odds and odds ratios (also called cross-
product ratios; see Fienberg, 1980), which are ratios of (smoothed) frequencies or
probabilities. This reformulation is not easy; it involves taking the exponential of a
model parameter and describing the corresponding odds verbally. A verbal description
of a three-way interaction can become incomprehensible rather quickly, because it
consists of a nesting of conditional statements. The main thesis of this chapter is that
the (in)dependence structure can also be represented in a spatial model, in which
categories are mapped as points and variables as groups of points. It will be shown
that in this spatial representation odds are ratios of distances, a property that offers
the possibility of visual display of interaction.

The spatial representation will be obtained through the use of homogeneity
analysis (Gifi, 1990, chap. 3 and sect. 8.6), also called multiple correspondence
analysis (Benzécri, 1973a; Greenacre, 1984), or dual scaling (Nishisato, 1994). In
the present context, the technique will be regarded as a method that maps the rows
of a profile frequency table into points in a low-dimensional space (often, but not
necessarily, a two-dimensional space). The profile frequency table is the multiway
contingency table turned inside out: it codes the cells by listing, in some predetermined
order, which category of each variable is involved (forming the profile) and attaches
to each profile the cell frequency. Points representing the profiles are called profile
points, and category points are obtained as centers of gravity of certain subsets of
profile points.

Homogeneity analysis was developed with a focus on bivariate marginal tables. If
all variables are mutually independent, all eigenvalues (the usual summary statistics)
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will be equal to 1 /m, and an analysis result in which the first p eigenvalues deviate
substantially from 1/m implies that the first p dimensions account for all two-way
interactions. It is asserted in Gifi (1990) that homogeneity analysis relies on the
assumption that in most cases the total structure in the data can be sufficiently captured
in the joint bivariate (first-order) interactions. This assumption can be considered
equivalent to assuming a log-linear model that includes the pairwise associations
only. If, however, these are not sufficient to produce a decent fit, the conclusion
would be that homogeneity analysis should be discarded in favor of a log-linear
analysis that includes the higher order interactions. The major purpose of the present
chapter is to show that—in contrast to this widespread idea—homogeneity analysis
includes the representation of the higher order interactions as well; an important idea
is the balanced use of cross-classification variables.

To conclude the introduction, we briefly describe the data that will be used
throughout for empirical illustration. The data pertain to a sample of men and women
who had petitioned for divorce; a similar number of married people were asked the
following questions:

1. “Before you married your (former) husband/wife, had you ever made love with
anyone else?”

2. “During your (former) marriage, (did you have) have you had any affairs or brief
sexual encounters with another man/woman?”

The variables in the 2 X 2 X 2 X 2 cross-tabulation (with total sample size N =
1036) are gender (G), premarital sex (P), extramarital sex (E), and marital status (M).
The associated profile frequency matrix will be given in the following. The multiway
contingency table is analyzed in Agresti (1990, sect. 7.2.4); the original British study
was reported by Thornes and Collard (1979) and described by Gilbert (1981).

2 Independence Structures and Odds Structures

The following cases of simplification of a three-way contingency table are commonly
distinguished (e.g., see Agresti, 1990). Three variables A, B, and C are called mutually
independent if

Tijk = Ti++ T+j+ T++k ¢y)

for all categories i of A, j of B, and k of C, where, as usual, 77, + indicates that we have
summed over j and k, giving the univariate marginals for variable A. Under mutual
independence, there is no association whatsoever, and all cells of the three-way table
can be constructed by the simple product of the univariate marginals. Variable A is
cailed jointly independent of B and C when, again for all categories,

Tijk = Wi+ + T+ jk. )

This decomposition corresponds to ordinary two-way independence for A and a new
variable, called the cross-classification variable BC, which is composed of the ng X n¢



280 Chapter 20. Visual Display of Interaction in Multiway Contingency Tables

combinations of the categories of B and C. Under joint independence, the association
between two variables is distributed proportionally over the levels of the third variable
to obtain the three-way probability.

Next, consider the relationship between A and B, controlling for the contribution
of C. Here the concept of control implies that we study the conditional probability
that two categories, say i of A and j of B, are present in the same object, given the
fact that we know the object is in category k of C. The usual notation for this event
is m;j, defined as ;) = mj /¢ +r, where the division by the univariate marginal
T+ 4+ ensures that the m; ilk form a proper set of probabilities summing to one within
the subtable indexed by k. From this definition it follows that the cell probabilities
can be expressed in terms of conditional probabilities as

Tijk = T++kTijjk-

Now if, for all k, the conditional probabilities 7r;
the marginal decomposition

jlic are independent, we must have

Tijle = (7Ti+k/77++k) (7T+jk/77++k)

and therefore we obtain, combining the last two equations, conditional independence
of A and B given C when

Tije = (TivkTejp) /T4 vk (3)

Under conditional independence of A and B, each of this pair of variables is associated
with C; these associations, together with the univariate marginal, completely account
for the apparent association between A and B in the original table and in the bivariate
marginal ;.

Note that cases (3), (2), and (1) are fundamentally different only in terms of
the number of two-way cross-classification variables that are needed to account for
the cell probabilities. For conditional independence we need two cross-classification
variables, for joint independence we need one such variable, and for mutual indepen-
dence we need none. Conversely, it is also useful to think of the situation in terms
of conditionally dependent variables. The strongest case is (1), in which there are no
conditionally dependent variables. In case (2), B and C are conditionally dependent
given A, implying that the conditional probability my; = 4 j does not simplify,
while m;;, = 417y and my; = 4+ my; are independent. In case (3), only the
conditional probability ;;;, = 7,7, can be decomposed into the product of its
marginals, while 7, and 7 ; depend on 7. j; and m;+4, respectively; so both B and
C and A and C are conditionally dependent.

It is natural also to consider the case where ;% depends on three double sub-
scripted quantities,

Tk = BV €]

a case for which no closed-form expression in terms of marginal probabilities ex-
ists. Here, none of the pairs of variables is conditionally independent, yet there is
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Table 1: Odds structures in a three-way table under different forms of independence

0 = Ti11 T2 0 = Tj177252 0 = Tk 22k
), = = 1742 = Sk 7%
Ti12 721 / Tij2T251 T2 W21k
1 Mutual independence 1 1 1
L T+ 11T+22
II Joint independence —_— 1 1
T+12T+21
o . T+11T+22 Ti+1T2+2
I Conditional independence _ —_— 1
T+12T+21 T1+2T2+1
. . Yiyn 110922 o100
v No three-way interaction — g—B— —_
Yi2¥n B12B2 Q200

still a typical form of simplification: odds ratios between two variables are identical
for each (given) category of the third variable. The odds ratio is a classic way of
measuring association (Yule, 1912) that compares two ratios of probabilities (odds)
by forming a ratio again. Thus, the odds of being in category 1 of A rather than
in category 2 of A are compared for those who are in category 1 of B against
those who are in category 2 of B. In a 2 X 2 table, the odds ratio 6 is defined as
6 = (11122)/(12721). For three variables, with 1, satisfying the stated condition,
we find 6; = (1 T0)/ (M) = (ar1a2)/(apaz1), showing that 6 is inde-
pendent of the chosen category k (by symmetry, the effect is the same if the categories
of the other variables are kept fixed). After Bartlett (1935), this case is usually called
“no three-way interaction.”

In summary, all cases of independence have a typical odds structure, which is
shown in Table 1, displaying the result of inserting (1)—(4) into the definition of the
odds ratio. Under mutual independence, all odds ratios are equal to one. Under joint
independence (of A with respect to B and C), there is one set of odds ratios that
does not become equal to one: all §; become equal to the marginal odds ratio, that is,
the two-way tables conditioned on category i are equal to the marginal table. Under
conditional independence (of A and B upon C), both the 6;’s and the 8;’s become
equal to the marginal odds ratio, while 6; = 1 for all k. Under lack of three-way
interaction, all odds ratios for different categories of the same variable are equal, but
unequal to one. Finally, three-way interaction implies that all odds ratios are different,
both within and across variables. As we shall see shortly, these various odds structures
each have a distinctive spatial pattern.

3 0Odds as Distance Ratios

In this section it will be shown that odds are distance ratios between category points
and how this leads to additivity of category quantifications. Homogeneity analysis
finds the spatial representation of the profile frequency table by projection. Projection
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is a linear transformation that intuitively involves dropping points onto a line (or
plane), along a direction perpendicular to the line (or plane). We will first describe
what is projected (a high-dimensional representation of the table), then show some
of the properties that hold in this high-dimensional space, and next indicate which
properties remain (approximately) preserved under projection. For more technical
details on projection, the reader is referred to Gifi (1990) or van de Geer (1993).

In the high-dimensional representation of the profile frequency table, all objects
with the same profile coincide in one point, called the profile point z; ;. . We associate
with each profile point a mass (also called weight), equal to the cell frequency ;..
of that profile. Note that our starting point is the cells of the multiway contingency
table itself, not any of its marginal tables. We also assume that the number of variables
is much smaller than the number of objects, N > m, a condition similar to what is
required for a log-linear analysis, and that all frequencies are strictly greater than
zero (although this is not necessary for the spatial method). If n4, ns, ... ,n, are the
number of categories of the m variables, this construction generates ny Xng X« + - Xn,
profile points. In the following discussion, we limit ourselves to the 2 X 2 X 2 case.

In the binary case, the 2™ profile points are the vertices of an m-dimensional
(hyper)cube associated with some probability mass. Thus, three variables are repre-
sented as eight profile points on a cube in three dimensions. Focusing on the edges
between the two faces of the cube that correspond to the categories 1 and 2 of vari-
able A, we may locate on each edge between the vertices z, j and z, ;. the point z. j,
defined as

i 7 i
_ 1jk L+ 2jk ) (5)

which is the center of gravity (or centroid) of all objects in category j of B and k of
C, of which there are m 4 in 1 of A and mj in 2 of A. Because we know that the
points zy jx, Z«jx, and Z;  are located on a line, in that order [because (5) is a convex
combination], we may write d(z1,Zx) = d(Z1jx,Z«jx) + d(Zoj, Z3), where the
notation d(x,y) is used for the ordinary Euclidean distance between two points x
and y. So the edge between two profile points is divided by the center of gravity into
two parts. Using (5), the lengths of these two segments are

T2 jk
d(Zyjk, Zejp) = d(Zyjx, 22j1) (6)
T T T
T jk
d@yjp, Trji) = —————d(Z1jx, Zojp)- @)
Tk T Tojk

From (6) and (7) it follows that the odds of being in category 2 of A against being in
category 1, given the fact that the object is in j of B and k of C, are equal to:

Toje _ A@iji, Zujy)
T A(Zoji, 2 ji)

®)
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that is, the odds are displayed in the spatial representation of the profile frequency
table as areverse distance ratio (larger probabilities corresponding to smaller distances
between z. 3 and the profile point). From (8) we can now derive novel expressions
for the odds ratios in subtables of a three-way table; for example, for the association
between A and C given category j of B we obtain, by putting k = 1 and k£ = 2 and
dividing the odds,

M1 _ 4212, 2 j2)d (221, 2 j1)
MpTj @1, 2Z1)d (Z2 2, Zap)

0; = )
Thus, the odds ratio 6; is a multiplicative combination of four distances, defined
between four profile points and two centroids. It is well known that the odds ratio
is invariant under permutation of the rows and columns of the fourfold table. This
property implies here that 6; may also be derived from the ratio of m;;; and 1,
which leads to an alternative expression for (9) in terms of the centroids z; ., defined
analogously to . in (5). We shall have a closer look at this duplication when we
illustrate the spatial relationships with an example.

What is the spatial representation of independence? The reader is advised to
draw a square with vertices 211,212,222, and Z;;;; when Z.j and z;;. are added
to this figure, the following relationships are verified easily. If variable A is jointly
independent of B and C, we know (see Table 1) that 6; = 1, so from (9) we derive
d(Z]jz, z*jZ)d(ZZjl , z*jl) = d(lel, Z*jl)d(Z2j2, Z*jz). But we also know, by the con-
struction of the spatial representation, that the interprofile distances are equal, that is,
d(Z]jl,szl) = d(lez,Z2j2), from which we derive d(zljl,z*jl) + d(Z2j1,Z*j1) =
d(z1j2,2+j2) + d(Zy)2,2+j2). Taken together, and after some algebraic manipula-
tion, these two equalities imply that the four distances are equal in opposite pairs:
d(z11,2+j1) = d(Z1j2,Z+j0) and d (21, 2+1) = d(Zoj2, Z«j2). If we consider the in-
tersection line connecting z.;; with Z.,, it must be parallel to the edges (zy;1,2Z;2)
and (Z;1,22j2). A similar relation holds for the intersection line between z; ;. and
2y with its corresponding edges. So we conclude that independence is a necessary
condition for the intersection lines to be parallel to the edges.

It is natural to assign to each centroid z. jx a mass, 7+ j, indicating the proportion
of objects that has a profile with j of B and & of C. Similarly, the marginal proportion
7;;+ will be assigned to z;«, that is, the sum of the masses of which it is the balancing
point. The two intersection lines (Z«j1,Z«j2) and (z1«, Z2j+) themselves intersect in
a point z.j«, called the category point (the coordinates of which are called category
quantifications) of category j, which is easily shown also to be a center of gravity (of
all objects in category j, calculated in any of a number of different ways) with mass
7+ ;+. Continuing in this way, the intersection lines connecting the category points,
(Z1axs Zown)s (Zok 1%, Zaow) AN (Zii1, Zusz), INtETSECE IN Zyss, the centroid of all objects,
with mass 1.

Our high-dimensional spatial representation of the profile frequency table is now
complete. For the 2 X 2 X 2 case, it contains the eight original profile points, 3 X 4
added one-asterisk centroids, three added two-asterisks centroids, and the overall
three-asterisks centroid. The masses of these points correspond exactly to all the



284 Chapter 20. Visual Display of Interaction in Multiway Contingency Tables

cell probabilities and the complete set of marginal probabilities of the three-way
contingency table. Just as the centroids of the form z.;. are called category points
of B, centroids of the form z. are called the category points (quantifications) of
the cross-classification variable BC (similarly, we have category points for AB and
AC). So all cells of the bivariate marginal tables can be viewed as categories of some
cross-classification variable, which is quantified by centroids located on the edges of
the cube of profile points.

As we have seen, lack of interaction implies parallel intersection lines, and
this has important further implications for the relationship between the category
quantifications of the bivariate marginals with the profile points, on the one hand,
and with the univariate marginals on the other hand. We suppose that the origin of
the space is chosen as z..«. Considering vectors in the face of the cube corresponding
to category j of B, which are obtained from the original ones by translation with an
amount —Z. j«, parallelism implies additivity:

@ijp—2aju) = @ijp—Toju) + (B jiTajs) (10)

which follows from the definition of vector addition in terms of the parallelogram
formed by the points Z.«, Z« %, Z; %, and z;;. (this is in fact a rectangle, but we want
to use only the parallelism, not any properties of the angles). Thus, conditional
independence must manifest itself by the fact that one of the three possible pairs of
cross-classification variables has additive quantifications when viewed with respect
to the univariate centroid, as in (10). Under joint independence, we must have two
pairs of cross-classification variables with additive quantifications with respect to
their joint univariate centroid. Similarly, it can be shown that, when variables B and
C are independent, we have a marginal odds ratio (my117422)/(T4127421) = 1,
which implies

Zujie = Zujs + Zusk, (1

that is, the quantifications of the cross-classification variable are equal to the sum of
the quantifications of the categories of the original variables. Combining (10) and
(11), we obtain the spatial representation of mutual independence:

Zijk = Zixx + Zy jx + Zoexf - (12)

In this case, the category points of all three cross-classification variables form a
parallelogram. So there is a clear one-to-one correspondence between odds structures
in the three-way table and additivity structures in the spatial model.

All relationships described so far are exact in the original cube, and we may
wonder how well they remain intact in the projected configuration that constitutes the
usual result of a homogeneity analysis. Angles and distances are not preserved under
projection: squares and rectangles become parallelograms. Projection does preserve
parallelism, so (10), (11), and (12) remain completely valid in a low-dimensional
representation of the profile frequency table.
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4 Some Special Properties of
Discrimination Measures

We will now propose and illustrate a general procedure for studying interaction in
higher way contingency tables that allows us to distinguish the various additivity
structures in a low-dimensional representation of the profile frequency table. Our
procedure simply amounts to a homogeneity analysis of a profile frequency matrix
including all cross-classification variables that can be formed from the original vari-
ables in a completely balanced way. If there is reason to expect a three-way interaction
(for example, as indicated by a model search in a preliminary log-linear analysis), we
include all bivariate and trivariate cross-classification variables. It is essential for our
procedure to introduce the additional variables in blocks and not to make some selec-
tion among them. First, we will focus on the so-called discrimination measures (Gifi,
1990, sect. 3.8.4), which are quantities that show how well a variable is represented
as a group of category points in low-dimensional space.

Let P be the projection matrix that defines the optimal projection; the sth row of
P, which produces the projection on component (or dimension) s, is denoted by p;.
We introduce a different but consistent notation for the projected points to distinguish
them from the high-dimensional ones. The projected profile points x;; are defined
by x; % = Pz;j; the projected centroids are defined by yss = Pz, ¥ij» = PZ;jx, and
so on. The scalar value y;j«(ps) = pst,- = 18 the coordinate of the projection of the
centroid for category ij of cross-classification variable AB on the component defined
by p;. Discrimination measures then measure the dispersion of the projected category
points as

Ta®s) = Y Wi+ Gine(Ds) = Yous (P)) (13)

Map(P) = D D Wijs GijelPs) = Yous(P))? (14)

L J

for the original variables and cross-classification variables, respectively, where it will
be clear how to continue for the higher order interactions. Thus, 14 (p;) is a weighted
sum of squares of the category quantifications of variable A with respect to the overall
center of gravity along component s. Since the weights (being probabilites) sum to
one, it is the variance of the quantified categories in dimension p; of the spatial model.
The average discrimination measure across all variables on component s is denoted
by A2, the eigenvalue. We are now ready to look at the results for our example.

The profile frequency matrix including all cross-classification variables is given
in Table 2, where the observed count has been supplemented with the expected
count under the hypothesis of mutual independence. Five different homogeneity
analyses were performed, always in two dimensions. The first analysis pertains to the
original set of variables (G, P, E, M); the second uses the two-way cross-classification
variables (GP, GE, GM, PE, PM, EM) only. The third analysis includes both the main
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Table 2: Profile frequency table for marital status data with all possible cross-classification variables, observed count and expected

count under the hypothesis of independence®

G P E M GP GE GM PE PM EM GPE GPM GEM PEM GPEM Obs. Exp.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 8.76
1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 4 9.61
1 1 2 1 1 2 1 2 1 3 2 1 3 3 3 54 66.23
1 1 2 2 1 2 2 2 2 4 2 2 4 4 4 25 72.66
1 2 1 1 2 1 1 3 3 1 3 3 1 5 5 36 28.89
1 2 1 2 2 1 2 3 4 2 3 4 2 6 6 4 31.70
1 2 2 1 2 2 1 4 3 3 4 3 3 7 7 214 218.47
1 2 2 2 2 2 2 4 4 4 4 4 4 8 8 322 239.69
2 1 1 1 3 3 3 1 1 1 5 5 5 1 9 28 4.66
2 1 1 2 3 3 4 1 2 2 5 6 6 2 10 11 5.12
2 1 2 1 3 4 3 2 1 3 6 5 7 3 11 60 35.27
2 1 2 2 3 4 4 2 2 4 6 6 8 4 12 42 38.70
2 2 1 1 4 3 3 3 3 1 7 7 5 5 13 17 15.39
2 2 1 2 4 3 4 3 4 2 7 8 6 6 14 4 16.88
2 2 2 1 4 4 3 4 3 3 8 7 7 7 15 68 116.34
2 2 2 2 4 4 4 4 4 4 8 8 8 8 16 130 127.65

4G, gender (1=female, 2=male); P, premarital sex (1=yes, 2=no); E, extramarital sex (1=yes, 2=no); and M, marital status (1=divorced,
2=married). GP, two-way cross-classification gender X premarital sex (1 =female/premarital sex, 2=female/no premarital sex, 3=male/premarital
sex, 4=male/no premarital sex), etc. GPE, three-way cross-classification gender X premarital sex X extramarital sex (1=female/premarital

sex/extramarital sex, 2=female/premarital sex/no extramarital sex), etc.
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effect variables and the two-way interactions (G, P, E, M, GP, GE, GM, PE, PM,
EM), the fourth analysis adds the four three-factor cross-classification variables and
the four-factor interaction to the second analysis, and finally the whole set (G, P,
E,M, GP, GE, GM, PE, PM, EM, GPE, GPM, GEM, PEM, GPEM) was analyzed.
The resulting discrimination measures are given in Table 3, along with the associated
eigenvalues.

In the first panel of Table 3, we see that all variables contribute to the first
component, premarital sex and extramarital sex being the most important, whereas
the second component is determined predominantly by gender and marital status.
The second panel reports the analysis with the bivariate cross-classification variables
only, and the third panel reports the combined analysis.

Comparing the third with the first and second panels, we see a remarkable simi-
larity between the solutions: the first four discrimination measures of the combined
analysis are about equal to those of the analysis with the original variables only, while
the last six discrimination measures are about equal to those of the analysis with the

Table 3: Discrimination measures 77, eigenvalues A%, and average discrimination
measures for partitions from five different homogeneity analyses with increasing
number of cross-classified variables

Analysis 1 Analysis 2 Analysis 3 Analysis 4 Analysis 5

diml dim2 diml dim2 diml dim2 diml dim2 dim1l dim2

G 0259 0525 0254 0510 0252 0.501
P 0538  0.055 0553 0059 0558  0.061
E 0432 0092 0.428  0.094 0425 0.095
M 0319 0365 0314 0373 0312 0377
GP 0656 0502 0650 0512 0660 0494 0654 0.505
GE 0610 0655 0615 0664 0605 0648 0611 0657
GM 0.560 0883 0566 0.887 0558 0878 0563 0.883
PE 0808 0213 0804 0206 0810 0220 0806 0213
PM 0733 052 0729 0513 0738 0530 0733 0520
EM 0.602 0415 0606 0407 0599 0420 0603 0412
GPE 0.888 0680 0.836 0.685
GPM 0845 0916 0843 0918
GEM 0789 0945 0795 0948
PEM 0910 0593 0908 0.581
GPEM 1000 1.000  1.000 1000

A2 0387 0259 0662 0532 0552 0422 0764 0666 0.663 0557
IS 0387 0259 0387 0259 0387 0258
DY 0.662 0532 0662 0532 0662 0532 0662 0.532
IS ey 0.886 0827 0886 0.826

an 1.549 1.037 3972 3.192 5520 4220 8402 7323 9948 8.356
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bivariate cross-classification variables only. To be completely clear, we stress that we
obtain not perfectly identical results but very similar ones.

Since eigenvalues are averages of discrimination measures, the eigenvalues of
the combined analysis are about equal to 0.4 times the eigenvalues of the first panel
plus 0.6 times the eigenvalues of the second panel, or, equivalently, the sum over all
discrimination measures per dimension in the first and second analyses together is
about equal to the sum over all discrimination measures in the third analysis, and
so on. The overall similarity between the results for cross-classification variables
included or excluded is obtained only if cross-classification variables are included in
a completely balanced way. Otherwise, the similarity would be lost.

How do we recognize independence from these tables? We discuss this question
in two steps. First, for a precise judgment we need a standard of comparison, because
the expected level of a discrimination measure depends on the number of categories.
As our standard, we choose the expected value of a discrimination measure under
the hypothesis of mutual independence (alternatively, the quantities that we call
expected value could also be interpreted as the mean discrimination measure across
all components). When we consider all higher order cross-classification variables,
including the highest one corresponding to a saturated model, starting with m original
variables we will have 2™—1 analysis variables. If the total number of categories of
the original variables is denoted by ¢ = n4 + ng + n¢c + - - -, then there are ¢ — m
nontrivial components to consider. Under the hypothesis of mutual independence,
these components will have equal eigenvalues. We derive the expected discrimination
measure n%(*) for one of the original variables as (n4 — 1)/(g — m), the expected
discrimination measure 11% g(*) for one of the two-way analysis variables as (n4 +np—
2)/(q — m), the expected discrimination measure ”’I%Bc(*) for one of the three-way
analysis variables as (n4 + ng + nc — 3)/(q — m), and so on. In our example, where
the variables G, P, E, and M have two categories each, under mutual independence
N5(py) * + * Mk, (ps) will be equal t0 0.25, nZp(ps) * * * M2, (Ps) Will be equal to 0.50, and
M5pe(Ps) * * * Mgy (Ps) Will be equal to 0.75. The discrimination measure 2 pgy,(Ps)
will be equal to 1.00, representing perfect fit, which corresponds to the saturated
model in a log-linear analysis.

Second, in the previous section we have seen that independence implies additivity
of category quantifications. We will now show that under two-way independence the
discrimination measures are additive, too. For instance, the fact that gender and marital
status are independent (x3,, = 0.031) is reflected in the discrimination measures
nzGM(ps) = (0.563,0.883) being approximately equal to nzG(ps) = (0.252,0.501)
plus 7712;4(Ps) = (0.312,0.377). Geometrically, departure from independence can be
depicted as a distance between two vectors that represent the discrimination measures
in two-dimensional space, the first vector (with coordinates 0.563, 0.883) displaying
the observed discrimination measure and the second vector (0.565, 0.878) displaying
the expected discrimination measure when G and M are independent. For GM, this
distance is 0.005; for the other two-way interactions, these distances are 0.167 (GP),
0.090 (GE),0.186 (PE),0.161 (PM), and 0.146 (EM), respectively. This pattern shows
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a very close resemblance to the results from the log-linear analysis with two-way
interactions only, as can be seen from Agresti (1990, Table 7.4).

To show that additivity must hold in any component, we first note that additivity
in high-dimensional space (e.g., z;j« = Z;s T Z. jx) carries through to low-dimensional
space by virtue of the distributive character of projection: p]z;jx = P) Zix + Py Zs js.
Looking at marginal independence, then by substituting ;;+ = m+++;+ and
Yije(Ps) = Yisx(Ps) T ysju(ps) into (14), we obtain

@) = D > Tt e i [Gins(B) = Yeua(Bs)) + (e ja(Bs) = Yera (D))

J

=3 MrsGien(P) — YoV + Y T G ju(Bs) — Vs (0
! J
= 73(ps) + M5(Py), (15)

where the cross-product vanishes because

Z 7T,'++(Zi** - Z***) = Z 7T+j+(z*j* - Z***) =0
i J

by definition of z..., and therefore any projected value must be 0. In a similar way
we obtain, for the case in which variable A is jointly independent of B and C,

Manc(Ps) = Ma(Ps) + Mhc(Ps) (16)

and when A and B are conditionally independent given C

Mapc(Ps) = Mac(Ps) + Mac(Ps) — M2(ps)- (17)

Although these relationships are exact when the stipulated type of independence is
exactly fulfilled, for the “no three-way interaction” case, we must do something dif-
ferent. One possible idea would be to settle for an approximation. For instance, using
Darroch’s (1962) condition of a “perfect” table (which does not exhibit paradoxes),
no three-way interaction implies that m; = (m; + T 7y jk)/ (Tt + Tt jo T +0)s
and from this condition we may derive the approximate relationship

Masc(Ps) = Mas(Ps) + Mac(Ps) + Mac(Ps) — MA(Ps) — M(s) — n&(py).  (18)

At this point, some experimentation indicated that this is not the way to go; instead,
it seems that to test the no three-way interaction case, we should rely on a higher
order statistic as well, in contrast to the discrimination measure, which we could
argue is a two-way statistic. The suggested diagnostics would then be the category
quantifications, and in the next section these will be used to demonstrate that they
indeed display three-way interactions.
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5 Visual Display of Odds Ratios as Distance Ratios
Between Category Points

In Section 3, we have seen how odds are represented as ratios of distances, so that an
odds ratio of one corresponds to parallel lines. Two-way association leads to nonpar-
allel lines and three-way association leads to different nonparallel lines, conditional
upon one fixed variable. At this point we will display the results from the extended
homogeneity analysis in two dimensions, including the first- and second-order cross-
classification variables. The category quantifications will be labeled with their level;
for instance, g; and g, denote the female and male categories, respectively. Similarly,
the label pje; denotes respondents who reported both premarital and extramarital
sex. In the second-order interactions, g p e, denotes the category of women who
did report premarital sex but no extramarital sex, and p,e;m; denotes respondents
who did not report premarital sex, did report extramarital sex, and are divorced. This
notation will also be used in the following equations that give the distance ratios
between selected category points to study two particular higher way interactions, that
is, the three-way interaction between premarital sex, extramarital sex, and marital
status (PEM) and between gender, premarital sex, and extramarital sex (GPE). We
already know that G and M are independent, so all higher order interactions that
include GM are not very interesting.

According to Agresti (1990, p. 221), the PEM interaction seems vital to ex-
plaining relationships in the data. To describe this PEM interaction, Agresti uses the
estimated odds ratios for the log-linear model (GP, GM, GE, PEM) and concludes:
“Given gender, for those who reported pre-marital sex, the odds of a divorce are
estimated to be 1.82 times higher for those who reported extra-marital sex than for
those who did not; for those who did not report premarital sex, the odds of a divorce
are estimated to be 10.94 times higher for those who reported extramarital sex than
for those who did not.” We translate this estimated EM odds ratio for the two levels
of P in a spatial model (see Figure 1); in this figure we have used only the category
points relevant for this particular interaction. For the two different levels of P, p;
and p,, category points for levels of £ and M are connected to form two diamond
shapes. Along the edges of each diamond, the distances are given between the four
three-way points and their centroids, the two-way points. The closer a two-way point
to a three-way point, the more respondents are in that particular three-way point. So
we see in Figure 1 that p;m, (premarital sex, married) is closer to pje,m; (no extra-
marital sex) than to p;e;m, (extramarital sex) and that p,e, (no premarital sex, no
extramarital sex) is closer to p,e,my (married) than to pe;m; (divorced). From this
we would deduce that extramarital sex is not beneficial to marriage. If we compute
the distance ratio for p; with respect to the p;e; and p,e; centroids,

d(preymy, pre))d(preamy, pres) — 176 = 1.20 X 0.54
d(pre1my, pre)d(pieamy, pres) ' 0.40 X 0.92

19)
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Figure 1: Display of three-way interaction PEM: category points for extramarital sex
and marital status connected for the two levels of premarital sex.

(where = denotes equality up to rounding errors) and with respect to centroids pym,
and pymy,

d(preimy, pyma)d(pieamy, pimi) _ ~ 125 X041
d(p1eamy, pymy)d(preimy, pymy) ' 0.28 X 1.05

(20

we note that the equality between the two different ratios is preserved. So, in the
sequel we need to look at only one of each pair of ratios. We also remark that the
estimated odds ratio of 1.82 reported by Agresti (1990) is indeed close to 1.76. If we
now inspect the distance ratio for the p, category (respondents who did not report
premarital sex), we obtain

d(pye1my, pymy)d (preymy, pymy) 1.67 X 0.26

=1062= ————— 21
d(preamy, pymy)d (preymy, pomy) 0.03 X 1.40 @b

and the estimated odds ratio 10.94 reported by Agresti is again very close to this figure.
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So the main conclusion of the log-linear analysis, that the effect of extramarital sex on
divorce is much greater for respondents who did not report premarital sex, is displayed
graphically in the homogeneity analysis solution. As usual, there are two companion
pairs of odds ratios; we first look at the distance ratios for the two categories of
the variable extramarital sex. The diamonds for levels e; and e, are to be found in
Figure 2, accompanied by the associated distances.

The distance ratio for those who did report extramarital sex is obtained from

d(plelmz,elmz)d(pzelml,elml) = 045 = 0.58 X 0.81

A45= —————. 22
d(p2e1m2,elmz)d(plelml,elml) 1.09 X 0.96 ( )

Agresti gives the estimated PM odds ratio for category e; as 0.50, so among those
who reported extramarital sex, divorce is about two times more likely for respondents
with no premarital sex than for those who had premarital sex. For those who did not

2
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Figure 2: Display of three-way interaction PEM: category points for premarital sex
and marital status connected for the two levels of extramarital sex.
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report extramarital sex,

d(p1eamy, exmp)d (preamy, exmy) _ e 1.52 X 0.47 23)
d(preams, exmy)d(preamy, exmy) T 117Xx023°

The estimated PM odds ratio for category e, is reported as 3.00 by Agresti (1990, p.
222): among those who did not report extramarital sex, divorce is much more likely
for respondents who had premarital sex than for those who had no premarital sex.
Finally, with respect to the levels m; and m,, Agresti reports the PE estimates as 1.82
for divorced and 10.95 for married respondents; from the distances, we recover the
odd ratios

d(p2eymy, pomy)d(preamy, pymy) _ 210 = 1.40 X 0.41 24)
d(preamy, pymy)d(preymy, pymy) 0.26 X 1.05
d(p2e1my, pymy)d (prean, pima) 12.65 = 1.67 X 0.28 25)
d(preamy, pamy)d(preny, pymy) 0.03 X 1.25

for m; and ms,, respectively. The corresponding diamonds are given in Figure 3.

As a final illustration of this very special property of category quantifications
in terms of three-way interactions, we inspect the GPE interaction as well, which
should be identified, following Agresti, as a “no three-way interaction” case. The
GP distance ratio was obtained as 0.283 for those who reported extramarital sex and
0.286 for those who did not. So there is only two-way interaction, to the effect that
about 3.6 times more men than women had premarital sex. The GE distance ratio is
0.695 for those who reported premarital sex and 0.704 for those who did not. Again,
there is only two-way interaction: 1.4 times more men than women had extramarital
sex. Finally, the PE distance ratio is 3.56 for women and 3.61 for men: those who had
premarital sex were 3.6 times more likely to have extramarital sex than those who
had not, but gender has no effect on the relation between P and E.

6 Discussion

A major point of this chapter is that the use of homogeneity analysis does not need
to rely on the assumption that the higher order interactions among the categorical
variables are nonsignificant. We first proposed a procedure that uses homogeneity
analysis to display the higher order interactions in a 2 X 2 X 2 X 2 contingency
table directly. The multiway contingency table was first transformed into a profile
frequency table. Then higher way cross-classification variables were added in a
completely balanced way. We demonstrated from the solution of such an extended
homogeneity analysis how the higher way interactions are represented in the visual
display.

It was shown that the condition “no two-way interaction” could be expressed
exactly in terms of the discrimination measures; if two variables are independent,
their discrimination measures add up to the discrimination measure of their cross-
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Figure 3: Display of three-way interaction PEM: category points for premarital sex
and extramarital sex connected for the two levels of marital status.

classification variable. No two-way interaction is also expressed in ratios between
distances between particular category points. If there is no two-way interaction,
the latter ratio is equal to 1. These distance ratios were then shown to be the major
diagnostic for identifying three-way interaction. If the second-order interaction is sig-
nificant, the distance ratio based on each pair of two variables will differ substantially
for the different levels (categories) of the third variable.

To simplify the computation while using existing software, we would recom-
mend not using standard multiple correspondence analysis or homogeneity analysis
programs (as in the SPSS HOMALS procedure). This would amount to an analysis
of a much larger matrix than is actually required, because the number of profiles is
much smaller than the total number of individual objects.

Instead, simple correspondence analysis could be applied, for example, the SPSS
ANACOR procedure. To apply simple correspondence analysis, we would have
only to replace each column in the profile matrix by its indicator matrix, collect



6. Discussion 295

Table 4: Weighted indicator supermatrix for marital status data to be used as input
for simple correspondence analysis

17 0 17 0 17 0 17 0
4 0 4 0 4 0 0 4
54 0 54 0 0 54 54 0
25 0 25 0 0 25 0 25
36 0 0 36 36 0 36 0
4 0 0 4 4 0 0 4
214 0 0 214 0 214 214 0
322 0 0 322 0 322 0 322
0 28 28 0 28 0 28 0

0 11 11 0 11 0 0 11

0 60 60 0 0 60 60 0

0 42 42 0 0 42 0 42

0 17 0 17 17 0 17 0

0 4 0 4 4 0 0 4

0 68 0 68 0 68 68 0

0 130 0 130 0 130 0 130

the indicator matrices in an indicator supermatrix, and premultiply the latter with a
diagonal matrix, containing the corresponding profile frequency on its main diagonal.
Table 4 is such a table for the four original variables in our example.

In the empirical cases we have analyzed so far, the row scores in an analysis
with only the main effect variables were always very similar to those with all cross-
classification variables added. This suggests that in practice we would not need to
include all the cross-classification variables, but could derive the higher order category
quantifications from a simple analysis, by computing the appropriate centroids of
profile points afterward. The resulting visual displays of interaction through the use
of diamonds must be very similar as well. In fact, although the diamonds may be
slightly different (due to a somewhat different projection from high-dimensional
space), the distance ratios they display are identical.

From the row scores of a simple correspondence analysis of a table as shown in
Table 4, the higher way centroid for the category point for g p,e;, for example, is
obtained as 17 times the first row score (for profile 1111) plus 4 times the second row
score (for profile 1112) divided by 21; the category point for g;e;m; is 17 times the
first row score (for profile 1111) plus 36 times the fifth row score (for profile 1211)
divided by 17 + 36, and so on. Which combinations should be taken follows from
the associated columns in the extended profile frequency matrix in Table 2.

To compare our procedure with already existing ones, the following observations
are important. First, our spatial representation is totally different from the usual
geometric model used in the theory of log-linear analysis (Fienberg and Gilbert,
1970), which considers the distribution of mass over the cells of the table as one point
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in a regular polygon. Relationships among the two would be a subject for further
study. Second, there are at least two other approaches to the use of cross-classification
variables, which are, however, different from ours. In Gifi (1990), it is proposed to
replace two of the original (main effect) variables by one cross-classification variable,
with the aim of removing “uninteresting” association with respect to the main object
of study. Van der Heijden and de Leeuw (1985) use the idea of cross-classification
variables with the aim of studying residuals from higher order independence models.
They apply simple correspondence analysis to a matrix of order, say, ns X npc; as
they remark, it is often not obvious which two out of three variables should be cross-
classified. We have shown in this chapter that when using our method, no such choice
has to be made, and at the same time possible effects can be identified.

Bishop et al. (1975, p. 24) remark about the possibility of a linear (additive) model
in the cell probabilities instead of their logarithms: “We conclude that the difficulty
of relating the additive model to the concept of independence makes it less attractive
than the loglinear model.” The profile scores from homogeneity analysis are additive
combinations of category quantifications, and we have seen that they are related to
the concept of independence in a rather simple way. The apparent contradiction is
resolved once we realize that the scores from homogeneity analysis do not represent
the cell probabilities but the cell itself (the profile). The spatial representation aims
at predicting an answer pattern given the profile score, not a probability given the
answer pattern.

We have not elaborated on the case in which variables contain more than two
categories. Some experimentation has shown that the special properties in terms of
discrimination measures are preserved for the multicategory case. With respect to the
much more complicated distance ratios, the promising results obtained by applying
the general approach proposed in this chapter to the multicategory case are currently
being scrutinized.



Chapter 21

Graphical Displays
in Nonsymmetrical
Correspondence Analysis

Simona Balbi

1 Introduction

The aim of this chapter is to show how a nonsymmetric version of correspondence
analysis can be useful for dealing with survey data. The method was first proposed by
Lauro and D’ Ambra (1984), as an alternative to correspondence analysis, when the
dependence structure between two categorical variables has to be analyzed. Coding
two qualitative variables as indicator matrices, Lauro and D’ Ambra display the dis-
tribution of the dependent variable, given the explanatory one, in a suitable factorial
subspace. Moreover, the method has been extended to multiway tables (D’ Ambra and
Lauro, 1989) and developments have been proposed in relation to models (Lauro and
Siciliano, 1989; Balbi and Siciliano, 1994) and inferential issues (Siciliano, 1990;
Balbi, 1992, 1994).

In this chapter we give special attention to the graphical representations of
nonsymmetrical correspondence analysis (NSCA) and stress the conditions in which
NSCA is preferred to ordinary correspondence analysis (CA) in exploring data.

297
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2 OQutline of the Method

Let P be an / X J correspondence matrix, a cross-tabulation of two categorical
variables where all frequencies are divided by the total n of the table. Pearson’s
mean-squared contingency coefficient ®2, called the total inertia, is defined as

21X _ (pij — pipj)’
where n is the number of observations and p; = > iPipPy = > i Dij-

CA aims at visualizing the association structure among the row and column
categories in a suitable subspace by decomposing ®? along principal axes in the
style of principal component analysis. However, many other indices, which measure
different kinds of departure from the independence hypothesis, have been proposed.
Among them, there is the predictability index 7,:

_ i X = pip ) ) _ X, P X [pu/p) -pi)’
(1 - thtz) (1 - thtz)

introduced by Goodman and Kruskal (1954), arguing that “measures of associa-
tion ... should be carefully constructed in a manner appropriate to the problem at
hand.”

The applicability of 7, (hereinafter denoted simply by 7) is related to what
Goodman and Kruskal call “proportional prediction,” that is, the relative decrease in
the proportion of incorrect prediction of one categorical variable, given knowledge
of the other categorical variable.

Note that the denominator of 7 is the heterogeneity measure proposed by Gini
(1912). It is a normalizing factor, as it represents the value assumed by the numerator
of 7 when the knowledge of p ; completely determines p;. Lauro and D’ Ambra
(1984) show how, dealing with conditional distributions, the numerator of 7 can be
decomposed along principal axes, just as CA decomposes ®2. Thus, when the two
ways of a contingency table seem not to be in a symmetric relation (e.g., the row
variable depends on the column variable), it could be convenient to visualize the
influence of the column variable categories j on the row variable categories, that
is, on the empirical conditional distributions p;; /p. »i = 1,...,1, relative to the
hypothesis of absence of influence, given by the marginal frequencies p; .

Tb

@

2.1 The Adoption Survey

At present, in Italy there is a wide debate concerning adoption. New laws have been
proposed, and interest is focused mainly on the methods for choosing and matching
adoptive parents and children. Thus, a sample survey was carried out (Balbi et al.,
1995) by interviewing a sample of 100 adoptive parents. The survey was part of a
wider collaborative project between judges, psychologists, sociologists, and people
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working with adoptive families. One of the main goals was to understand when an
adoption can be judged successful and why. As a first approximation, the difficulties
met by parents, compared with expectations, were considered as a clue. In Italy there
is a heated controversy about parents’ ages and their importance for the child’s fitting
into social life. Thus, the first question was, “Can difficulties met by adoptive parents
be related to the mother’s age?”

A table cross-classifying difficulties (three categories: more than expected, less
than expected, equal to expected) and age of mother at the adoption (three categories:
less than 36 years old, 3640 years old, more than 40 years old) was constructed
(Table 1).

Performing a CA on such a table might appear superfluous because of its small
size. However, it can be useful in showing the reason for choosing NSCA in preference
to CA.

2.2 The Method

Let P be the relative frequency table, centered with respect to the independence
hypothesis (5;; = p;; — pi.p.j); D is the diagonal matrix of the column marginal
frequencies p ;- PD_! is the centered column profile matrix [with general element
(pij /p. i) — pil. Each row of IBDC_ ! represents the departure from the hypothesis
of conditional independence of the corresponding category of / on J. Following
Greenacre (1984), NSCA can be seen as a special case of a general analysis based
on the (generalized) singular value decomposition: PD;! = UAV2VT, with the
orthonormalizing constraints UTU = VTD,V = I A'/2 is the diagonal matrix of the
square roots of the eigenvalues A, of the matrix A=PD_ !PT, sorted in decreasing
order. The columns of U and V are respectively the left and right (generalized)
singular vectors of PD_ .

Table 1: Difficulties met by parents and mother’s age at adoption (column percentages
in parentheses)

Less than 36 36-40 More than 40 Total
More than expected 4 8 4 16
(11.1) (21.6) (14.9)
Less than expected 18 21 9 48
(50.0) (56.8) (33.3)
Equal to expected 14 8 14 36
(38.9) (21.6) (51.8)

Total 36 (100) 37 (100) 27(100) 100
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Notice that in NSCA the metrics assumed for the row and column spaces are D,
and I, respectively, whereas in CA they are D! and D! (the chi-squared distances).
Furthermore, note that:

1 M
<1—Zp§>'r=2)\a
i=1 a=1

where M is the rank of f’D:l M = min(Z,J) — 1].
The ith row conditional distribution can be decomposed as

M
Pij i
p{ =pi + > Vhaltaiveg G=1,...,J) 3
-J a=1

Replacing M with a lower value M*, a low-rank approximation is obtained. The
descriptive index based on the explained inertia Zlg "= 1ho/ Z[g = 1A, is usually
adopted in choosing a suitable M*. A more detailed presentation of the algebra of
NSCA can be found in Lauro and Balbi (1995).

2.3 Geometry of NSCA

NSCA looks for the orthonormal basis accounting for the largest part of variability
(here in the sense of predictability, measured by 7). Let us consider the /-dimensional
space, spanned by the columns of l~’Dc_ !. The origin of this space is at r, the average
column profile. The J centered columns of PD_ ! are contained in a subspace with at
most I — 1 dimensions. As in ordinary CA, we are interested in displaying distances
between column profiles, but in this case unweighted Euclidean distances, not chi-
squared distances:

. IYs 2
d§=§j@i—“> @

: P.j D.j
The projections of the column profiles on the ath principal axis give coordinates:
¢, =D 'PTu, ®)

Note that, for measuring the predictability in the table, we have to take into
account the marginal distribution of the explanatory variable, in the example mother’s
age. Here the weighting system is defined by D,.

As in principal component analysis, row points and column points have different
geometries. The distance of each row point from the origin is a measure of its
expectancy, given the column variable distribution. The distance between two row
points indicates their different ways of depending on the explanatory variable:

2
RN
Xj:p, P b P (6)
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In such a distance it is important to take into account the marginal distribution
of the explanatory variable, because its categories contribute differently to the total
variability measured by 7. Thus a weighted Euclidean metric, defined by D, is
adopted in defining the metric structure of the row space. Each row is assigned an
equal weight in its contribution to the total variability.

As an additional consequence, the distributional equivalence property in NSCA
is preserved only when two categories of the explanatory column variable, having the
same profile, are merged into one, with the same profile and weight equal to the sum
of the weights of the two merged categories. In such a case, as in CA, distances among
row points are not modified. The property does not hold in merging two categories
of the dependent variable, although, from practical evidence, Lauro and D’ Ambra
(1984) assert that there is little consequence in merging row categories with equal
profiles.

NSCA row coordinates on the «th principal axis are

o, = Pva )

2.4 Some Rules for Interpreting NSCA Factorial Planes

Coming back to the adoption data, CA has been performed together with NSCA. As
in CA, the results of NSCA are presented in maps that show the configuration of
points in projection planes formed by the major principal axes.

Table 1 does not present a strong association structure, having a chi-squared
value of x> = 7.2 (p = 0.12). The value 7 = 0.04 means that, knowing the mother’s
age, we can better predict the difficulties adoptive parents would meet in only 4% of
cases (the approximate y2-test for 7 has a p-value of 0.08). Figure 1 shows the maps
obtained by CA and NSCA, both representing 100% of the variability.

In both analyses there is strong evidence that mothers of 40 years and older have
a better awareness of adoption difficulties: the first axis (explaining 89% of the total
variability in CA and 93% in NSCA) opposes women 36—40 years old (on the left)
versus women over 40 (on the right), the latter characterized by difficulties equal to
expected. The second axis (explaining 11% of the total variability in CA and 7%
in NSCA) opposes the youngest mothers, for whom adoption has been easier than
expected, versus the middle age class, who have more difficulties than expected.

The differences between the CA and NSCA displays can be understood by
considering the following aspects of the NSCA interpretation:

The scattering of the difficulties category points around the origin displays the de-
pendence strength of difficulties on mother’s age; the position of the ith dependent
variable category with respect to the origin displays how well the explanatory vari-
able predicts the category (for example, the category MORE is less predictable,
being closer to the origin).

The scattering of mother’s age categories around the origin also displays the depen-
dence strength of difficulties on mother’s age: the position of the jth explanatory
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MORE = more than expected difficulties M<36 =less than 36 years old mother
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MORE = more than expected difficulties M<36 =less than 36 years old mother

EQUAL = equal to expected difficulties
LESS = less than expected difficulties

M36-40 = 36-40 years old mother
M>40 = more than 40 years old mother

Figure 1: Difficulties met by parents and mother’s age at the adoption. (a) C.A. first

factorial plane, (b) NSCA, first factorial

plane.
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variable category with respect to the origin displays how strongly it predicts the
behavior of the dependent variable (for example, the age group mother > 40 is a
better predictor, being farther from the origin).

If two dependent variable categories are close on an axis (e.g., MORE and LESS,
as opposed to EQUAL), their dependence structure with respect to the explanatory
variable is similar, according to the feature of that axis.

When two predictor variable categories are close on an axis, they similarly influ-
ence prediction of the response categories contrasting on that axis; for example,
all mothers 36 years or older have a similar influence on predicting the category
MORE.

Keeping these rules in mind, we can interpret the NSCA map for Table 1 (Fig-
ure 1b) and compare it with the CA map (Figure 1a). The graphical displays include
the complete information in the table, because the dimensionality of the table is equal
to 2.

2.5 Aids to the Interpretation of NSCA Maps

Coordinates are not the only elements to be taken into account when one reads
NSCA maps. As in principal component analysis, row points’ coordinates show
the contribution of each category i to the orientation of the relative axis, because
the contribution, CTR (i) = i,l/ﬁi /Aq, does not involve weights. For the column
contributions, however, the situation is as in CA, where the weighting system must
be taken into account: for the jth column, the contributionis CTR.(j) = p. j(qoﬁ j /AL).

Table 2 shows these contributions, and we can see, for example, that mothers
younger than 36 years do not contribute to the first axis. To evaluate how a category is
represented on each axis, as in CA, squared factor loadings (or squared cosines) can
be computed (Table 3): for the ith row,

2

ai

>, pilule) = pi)’

cosa(i) =

Table 2: Contributions of Table 1 categories to the first two NSCA factorial axes

Contributions (CTR) First axis (X 1000) Second axis (X 1000)
More than expected 39 628
Less than expected 345 321
Equal to expected 616 51
Less than 36 years old 6 634
36-40 years old 479 151

More than 40 years old 515 215
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Table 3: Squared factor loadings of Table 1 categories to the first two NSCA factorial
axes

Squared factor loadings First axis (X 1000) Second axis (x 1000)
(COS)

More than expected 448 552

Less than expected 933 67

Equal to expected 994 6

Less than 36 years old 117 883

3640 years old 976 24

More than 40 years old 969 31

and for the jth column,

‘Pij
i@/ — Pi.)z

Thus, we can see that difficulties equal to expected is almost perfectly represented
on the first axis, whereas mothers less than 36 is badly represented on it (as it is an
exact two-dimensional representation, squared factor loadings of each category sum
to 1 for the two axes). Furthermore, Balbi (1994) proposes evaluating the importance
in NSCA of each cell in the table by means of influence functions.

cosa(j) =

2.6 Joint Plots in NSCA

It is worth noting that an NSCA joint plot is not a true biplot of f’DC_ !, because both
rows and columns are expressed in so-called principal coordinates (Greenacre, 1984).
As a matter of fact, the centered column profiles matrix is given by

M

. - 1

D, =5 ——w.elD ®)
a=1

e

As an alternative to the joint plot, Lombardo and Kroonenberg (1993) proposed
the use of a “column isometric” biplot (Gabriel, 1971) to enhance asymmetry in
displaying points (this is also known as an asymmetric map with column points
in principal coordinates). Thus, row coordinates are given by r,, while column
coordinates are givenby (1/ \/X: D, 172 ¢, The different choice is related to different
objectives of the joint plot, either displaying the dependence structure or displaying
and graphically reconstructing the centered column profile matrix.
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3 An Extension to the Analysis of
Multiway Tables

In the adoption survey, we were interested in going deeper into the socialization
problems of adoptive children. The variable “performance at school” can be chosen
as an indicator of their fitting into social life. In our questionnaire, we asked parents
to give an opinion on school performance, subjectively using a three-point scale
(high, medium, and low). Because there are strong indications that the age at which
a child was adopted influences his or her future life, we cross-tabulate school perfor-
mance with child’s age at adoption (Table 4). The additional explanatory variable of
mother’s age at adoption is also included. To generalize NSCA to three-way or even
more complex data sets, multiple NSCA and partial NSCA have been introduced by
D’ Ambra and Lauro (1989).

Multiple NSCA consists of transforming a multiway table into a suitable two-
way table. For example, in the case of a three-way table, let us suppose that the first
variable, with / categories, is the dependent variable “performance at school,” and
the other two variables, with J and K categories, respectively, are the explanatory
variables “child’s age” and “mother’s age” at adoptions.

The proposed flattening procedure consists of combining the JK elements of the
two explanatory variables and constructing an / X JK table. The computation of /
and the implementation and interpretation of NSCA are otherwise identical, applied
to the flattened table.

In multiple NSCA we deal with a new compound explanatory variable. The
dependent variable may be highly conditioned by one of the two explanatory variables,
say the second one with K categories. In this case, it can be interesting to analyze
a single category K, referring to the conditional independence hypothesis p;u =
pix/P.x - This is called a partial NSCA.

From a geometric viewpoint (Figure 2b), partial NSCA represents in a lower-
dimensional space the K clouds of points centered with respect to the respective
conditional independence model of the first two variables, given a level k of the third.
In multiple NSCA, centering is with respect to independence of the first variable and
the combined second and third variables.

Table 4: Performance at school and child’s age at the adoption (column percentages
in parentheses)

Less than 1 1-2 34 More than 4
year old year(s) old years old years old Total
High 19 (57.5) 4 (40.0) 7(35.0) 4(12.1) 34 (35.4)
Medium 12 (36.3) 4 (40.0) 7 (35.0) 14 (42.4) 37 (38.5)
Low 2 (6.2) 2 (20.0) 6 (30.0) 15 (45.5) 25 (26.1)

Total 33 (100) 10 (100) 20 (100) 33 (100) 96 (100)
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Figure 2: (a) Multiple NSCA, the analysis with respect to the common centroid,
(b) Partial NSCA, the analysis with respect to the stratum centroid.
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LOW = low performance at school (3-4=3-4 years old child
C>4 =more than 4 years old child

Figure 3: Performance at school and child’s age at the adoption: simple NSCA, first
factorial plane.

The different roles played by the two variables, cross-classified in Table 4, suggest
the use of NSCA (7 = 0.10, with performance dependent on age, p = 0.003). The
influence of the age at the adoption on school performance was confirmed by NSCA.

The NSCA map in Figure 3 shows children with a low level of performance on
the right, predicted by “age at adoption greater than 4 years,” opposing children with
a high level on the left, predicted by “age at adoption less than 1 year old.” We now
take into account a second explanatory variable, “mother’s age at adoption.” To avoid
a large number of cells with small frequencies, we aggregate children with ages at
adoption of 14 years. Table 5 shows the three-way table of frequencies.

Table 5: Performance at school and child’s age at the adoption and mother’s age at
the adoption

Less than 3640 More than
36 years old years old 40 years old Total

Less More Less More Less More
than 1 1-4  than4  thanl 1-4  than4  thanl 1-4  than4

High 13 4 1 4 6 1 2 1 2 34
Medium 6 6 2 4 4 5 2 1 37
Low 1 2 1 1 5 3 0 1 11 25
Total 20 12 4 9 15 9 4 3 20 96
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A multiple NSCA was performed on the two-way table crossing performance
at school with the compound explanatory variable child’s age (three categories) by
mother’s age (three categories). The Tinother's age.child’s age) 1S €qual to 0.127: 83% is
accounted for by the first eigenvalue and the residual 17% by the second one.

In Figure 4, the strong relation between age and performance at school observed
along the first axis in the previous simple NSCA (Figure 3) is confirmed: performance
at school is negatively related, first, with child’s age at the adoption (T(chilg's age) =
0.096) and, second, with mother’s age at the adoption (T(mother's age.) = 0-052). These
relationships are effective in the extreme categories: high performance at school is
strongly dependent on the combined category “mother less than 35 with child less
than 1” (both these points are in the top left quadrant of Figure 4), and a similar
positioning relates “mother over 40 with child over 4” and low school performance
in the top right quadrant.

Additional information due to the introduction of mother’s age is given by
comparing configurations: although all variables have ordered categories, the typical
“horseshoe” effect is present only for the dependent variable categories and for classes
with mother’s age 36—40. The marginal distributions of the two explanatory variables
can be projected onto the map as supplementary points.

The multiple 7 is less than the sum of the two simple 7’s, which implies that inter-
actions exist between the two explanatory variables—in Italy, it is almost impossible
for parents more than 40 years old to adopt newborn babies.

2,=0.014
(17%)
034
C1-4, M36-40
> >
C<1,M<36 Clamsgg  THMO
“HIGH LOW. - ¥tz40
06 05 04 -03 02 -01 01 02 03 04 0?5 A, =0.069
C=1 M36:40 Cod (83%)
M<36 C<1, M36-40,
Cl-4, M<36 MEDIUM
h C>4, M<36
C<1, M>40
C>4, M36-40
- -0.3
HIGH = high performance at school C<I=lessthan I child || M<36 =Iless than 36 mother
MEDIUM = medium performance at school Ci-4=1-4 child M36-40 = 36-40 mother
LOW = low performance at school C>4 =more than 4 child| | M>40 = more than 40 mother

Figure 4: Performance at school and child’s age/mother’s age at the adoption: mul-
tiple NSCA, first factorial plane.
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Figure 5: Performance at school and child’s age /mother’s age at the adoption: partial
NSCA, first factorial plane.

Partial NSCA has been performed (Figure 5) by considering the distribution of
“performance at school” depending on “child’s age” given “mother’s age.” While the
first axis explaining 75% of the total variability shows again how important child’s
age at the adoption is in the child’s school performance, we also see that children
adopted at 1-4 years perform relatively well given that the mother’s age at adoption
is over 40. This second axis shows several combinations at the bottom that lead to
medium performance, mainly opposing the combination “mother 36-40 years with
child 1-4 years,” which results in poor performance relatively often.
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Chapter 22

Ternary Classification Trees:
A Factorial Approach

Roberta Siciliano and Francesco Mola

1 Introduction

Several partitioning procedures have been proposed in the literature to construct
decision trees, notably CART (Breiman et al., 1984), RECPAM (Ciampi and Thiffault,
1987), and CHAID (Kass, 1980). In classification trees the data set consists of a large
sample on which a categorical response variable and a high number of predictors
have been observed. The idea is to use such a sample to “learn” how to predict the
response variable from known observations of the predictors. This leads to defining
a rule in the form of a decision tree in order to classify new cases of unknown class
on the basis of observations of the given predictors.

In this chapter we are concerned with the case in which all predictors are cat-
egorical, like the response variable. Our main aim is to construct exploratory trees
in order to emphasize the most significant predictors at each level of the tree. For
this purpose a factorial approach is used to grow classification trees, especially the
method of nonsymmetrical correspondence analysis (NSCA). Some new insights
into the graphical displays of NSCA are presented in order to define a partitioning
criterion into three classes. Factorial coordinates and predictability measures are used
to distinguish between categories with strong and weak predictive power.

311



312 Chapter 22. Ternary Classification Trees: A Factorial Approach

2 Nonsymmetrical Correspondence Analysis

NSCA is a factorial method for the analysis of the dependence in a two-way con-
tingency table (Lauro and D’ Ambra, 1984; D’ Ambra and Lauro, 1989; Lauro and
Siciliano, 1989; Balbi, 1992; Siciliano et al., 1993). In the following we describe
the factorial model and we give some insights into the interpretation of graphical
displays. These results are used to propose a tree-structured classification via NSCA.

For a two-way contingency table let p;; be the observed proportion such that
> ijij =1@G=1,...,I;j = 1,...,J) where the column variable ¥ depends on
the row variable X (notice that in contrast to that of Balbi, Chapter 21, our dependent
variable defines the columns of the table). NSCA analyzes the centered matrix of
row profiles, with general element (pi j /pi) —p. ;- The solutions can be obtained by

generalized singular value decomposition, which can be written in scalar form as

K
Dii

# —p;= Zakrikcjk (1)
p k=1

i,

where K < min(/ — 1,J — 1), and @; = -+ - = ag > 0. The score parameters of the
row categories 7y and of the column categories cj satisfy the following centering
and orthonormality conditions:

Y opire=0, > cx=0 @
i j

> piruatin = S Y CikCikr = Stir 3
i J

where 8y is Kronecker’s delta, the rows are weighted by the row margins, and the
columns are weighted by ones. The objective is to approximate the matrix by using
a reduced-rank decomposition with a number of factors K* lower than K, usually
a two-dimensional factorial representation. For details on graphical displays and
diagnostics for evaluating the quality of reduced-rank factorial representation, see
Greenacre and Hastie (1987), Andersen (1995), Le Roux and Rouanet (Chapter 16),
and Greenacre (Chapter 17).

In NSCA the coordinates of the row categories are defined by o, r; and the
coordinates of the column categories are defined by cj. In this way, we ensure that
the graphical display in the reduced space is a biplot and can be interpreted in a
nonsymmetrical way, namely by using prediction and dependence criteria.

Justification for NSCA lies in the predictability index 7 of Goodman and Kruskal,
defined as:

_ i [(pij/pi.) - P.j]zpi.

@
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The denominator of the 7 index is the index Ay of total heterogeneity of Y due to
Gini, and the numerator of the 7 index is the part of total heterogeneity—called
explained heterogeneity—due to the predictive power of the predictor categories.
The 7 index varies between 0 (no predictive power of predictor categories) and
1 (perfect prediction). If T,y = 0, there is independence: p;;/p; = p.; for all i
and j. If 7y = 1, then for each row category i there exists only one category j
such that p;; = p;. The index 7 can also be interpreted as the relative increase in
correct predictions of the response variable when knowledge about the category of
the predictor is used.

NSCA decomposes the numerator of the T index along principal axes and also
over the row categories and over the column categories:

hytyx = D 0f =D pi Y (o) =Y > (oucp)? 5)
k i k ik

We notice that for k = 1,..., K, the component >, (agry)? is equal to the squared
distance of the row category to the origin {(where the column marginal distribution
is represented), the component ), (axc jk)z is equal to the squared distance of the
column category to the origin; for k = 1,2 we can approximate such distances in a
two-dimensional factorial space by using the first two sets of scores. Using (5), we
can define the following predictability measure of the row category R;:

S (wra)?
P
where ), pred(R;) = 1. Formula (6) allows one to distinguish which row categories
have more predictive power on the response variable (and thus contribute more to
the index 7). Similar measures can also be defined for the column categories to

understand which response categories are best predicted by the predictor.
Furthermore, the row coordinates cyry are related to the column coordinates ¢
by the following transition formula:

Dii
E (p—"j_P.;) Cik = E —A Cik — E P.jCjk = QFik @)
. 1.
J j

The left-hand side of (7) consists of two terms: the first term j(pi i /pi)c ik
gives the weighted average of the column coordinates, where the weights are given
by the conditional distribution p;; /p;. (or profile) for row i; the second term subtracts
> j P.j¢jk» & constant term that all rows have in common. Formula (7) shows that the
row coordinates are, apart from a constant term, the weighted average of the column
coordinates. In the case of perfect prediction, (7) shows that for each column point j
there exists at least one row point i with the same coordinates, that is, axrg = cj;
thus the predictor category i and the response category j are projected into the same
point. Under independence oy ry = O for all the rows, since p;; /pi =p. jforalliand
J- In practice, the predictive power of the row categories is somewhere between the
extremes of independence and perfect prediction. Row points far from the origin have

pred(R;) = p;. (6)
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high predictive power on the response variable. A row category i with coordinates
oy ri has high influence in predicting a particular column category j when the column
coordinates cj are high and their signs agree with the signs of the respective row
coordinates. In a factorial representation this means that the row point i is close to
the column point j and these points are relatively far from the origin.

3 Ternary Trees by NSCA

Consider a data matrix with a categorical response variable (¥) and M categorical
predictors (X ...Xy) observed on a sample of N cases, often called the learning
sample. A classification tree, or classifier, is constructed by recursive partitioning of
the cases into two or more subsets, which correspond to the “nodes” of the tree. The
partitioning procedure starts with N cases at the “root of the tree”and is performed
until the current node is declared to be a “terminal node” according to a stopping
rule.

In Classification and Regression Trees (CART) the partitioning procedure is
performed to grow the so-called maximal or exploratory tree with the highest number
of terminal nodes (i.e., nodes with either a low number of cases or all cases belonging
to the same class); then a pruning procedure allows a cutting back of some branches
of the tree to provide the final classifier. To each terminal node is assigned the class
with the highest proportion of cases. A test sample or a cross-validation procedure
can be used to validate the final tree.

Partitioning procedures usually construct binary trees that are simple to interpret.
In this case a splitting criterion is defined to divide cases at each node into two disjoint
subgroups that are internally as homogeneous as possible. A drawback of tree methods
is the time required to grow the tree depending on the number of splits to be tried out
at each node (see Mola and Siciliano, 1997, and Aluja-Banet and Nafria, Chapter 5).

CART considers the splitting criterion based on the concept of node impurity,
and a commonly used impurity measure is given by the Gini index of heterogeneity
for the response variable Y [i.e., the denominator Ay of (4)]. Among all possible
splits of each predictor, the best split in CART is found by maximizing the decrease
in impurity when passing from one group to two subgroups.

As an alternative approach, Mola and Siciliano (1994) provide a two-stage split-
ting criterion with which a reduced number of splits is considered at each node, thus
saving some computing time. The basic idea is that a predictor is not merely used as
generator of splits but plays a global role in the analysis. Thus some variable selection
is performed to choose one or more best predictors that generate the set of possible
splits at a given node. Two-stage splitting criteria can follow three strategies with
respect to the use of a statistical index such as the predictability 7 index (Mola and
Siciliano, 1994, 1997), the use of a statistical model such as logistic regression (Mola
et al., 1996), or the use of a factorial method such as NSCA (Mola and Siciliano,
1996). Following the last strategy, we provide a classification tree procedure to grow
ternary trees.
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‘We now describe the main steps of the proposed methodology as applied at the
root node to all N cases of the sample. Then the procedure follows recursively for
each subsample until the stopping rule declares nodes to be terminal.

3.1 Table Selection

We consider the set of M contingency tables by cross-classifying each predictor with
the response variable. Then for each table we calculate the predictability index 7 and
we select the predictor that provides the highest value.

3.2 Visualizing Dependence

We perform NSCA on the table cross-classifying the response categories with the
best predictor identified in the previous step. Using the reduced-rank decomposition
of (1) in two dimensions, we make a graphical display of the dependence structure
between the response categories and the selected predictor categories. This map is
used to explore the dependence structure in the subsample at the current node.

3.3 Partitioning Criterion

We define a classification criterion to find a partition of the N cases into three
disjoint subgroups that are internally as homogeneous as possible with respect to
their predictability of the predictor categories. The classification criterion is defined
by using the predictor (row) coordinates in the first dimension, that is, the principal
coordinates a1, = 1, ...,1. From (2), (3), and (6) these coordinates are centered
and the sum of their predictability measures pred(R;) is equal to 1. The predictor
categories having a negative coordinate will predict response categories different
from those predictor categories having a positive coordinate, which would lead us to
use their sign as a binary splitting criterion.

In practice, however, we can have coordinates close to zero but with different
signs, in which case using them to make different predictions does not make sense.
Therefore, we use these intermediate predictor categories to define an additional
split, leading to the ternary nature of our splitting criterion. To operationalize this
idea, we use the predictability measures to distinguish between strong and weak
categories. From (6) we can see that row i will make a proportionately higher or
lower contribution to pred(R;) if |r;;| = 1 or |r;| < 1, respectively. We say that
category i is a strong category when |r;;| = 1, whereas category i is a weak category
when |r;1| < 1. As a result, we distinguish three subsets of predictor categories: (1)
row categories such that r;; = 1 (strong right categories); (2) row categories such
that |r;;| < 1 (weak categories); (3) row categories such that r;; = —1 (strong left
categories).

The partitioning of the predictor categories induces a partition of the current
sample of cases into three subgroups. There can be an empty subgroup of cases in
some situations, either when no category belongs to one of the preceding groups or
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when the predictor itself is dichotomous. The weak or “middle” subgroup includes
cases in which the response variable is not strongly characterized by any category
of the best predictor. This subgroup probably needs further splitting to improve
predictability, whereas the strong subgroups include cases in which the response
variable is strongly predicted by some categories—such nodes often include a low
number of cases so that strong nodes are often declared terminal nodes.

3.4 Stopping and Assignment Rules

For stopping the recursive partitioning procedure we can use some natural rules, such
as to stop when the percentage of cases at a node is below a certain value (e.g., 10%).
This approach is recommended when the sample is not so large. We can also consider
a stopping rule based on the CATANOVA statistic for the analysis of variation of
categorical data, introduced by Light and Margolin (1971; see also Margolin and
Light, 1974). Mola and Siciliano (1994) show how to check the strength of the
dependence relation of the best predictor on the response variable.

After node splitting is completed, a response category can be assigned to each
terminal subgroup of the final partition for prediction purposes. This assignment is
usually based on the response category having the highest proportion of cases within
the subgroup.

4 An Example

We consider a data set concerning a sample of 286 graduates of the Economy
and Commerce Faculty of the University of Naples over the period 1986-1989.
The variables shown in Table 1 have been observed by means of a questionnaire. The
variable “final score” is assigned by the final committee taking into account the grad-

Table 1: Names and category descriptions of variables

Categories
Variables 1 2 3 4 5 6
Final score Low (L) Medium-~ Medium~high ~ High (H)
Low (ML) (MH)
Sex Male Female
Origin Naples County Other counties
Age =25 26-30 31-35 +36
Diploma Classical ~ Scientific Technical Magistral Profes.
Study plan Official Managerial  Economics Quantitative  Public Profes.
Time to
graduate 4 years 5-6 years +7 years

Thesis subject  Economy Law Quantitative History Management
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+31 years

Study Plan

Professional

Scigntific
Technical
Magistral

Classical

Official
Quantitative
Public

is Subject

History

3]

Managerial
Public
Professional

Economy

Figure 1: Classification tree where nodes are numbered (circles are for nonterminal
nodes and boxes are for terminal nodes). Below a nonterminal node the best predictor
(in the box) with the partition into strong left, weak, and strong right categories (arcs)
is indicated. Below a terminal node the assigned response category label is indicated.
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uates’ average examination scores and the final dissertation. The variable “origin”
refers to the place of living, which plays an important role in terms of participation in
university activities. A student applying to a university chooses a “study plan,” which
can be either the official plan suggested by the faculty or any specialized plan such
as managerial, economics, quantitative, public, or professional.

We are interested in identifying the variables that best predict the final score of
each graduate. Figure 1 shows the final ternary tree, where as a stopping rule we have
set a minimum node size of about 10% of the cases in the sample. Table 2 describes
the partitioning into three subgroups of the categories of the best predictor with the
percentage of explained inertia in terms of the index 7 retained by the first principal
axis. Table 3 describes at each node the distribution of proportions of the response
categories: in particular, the first column gives the node number as from Figure 1, the

Table 2: Category partition of the best predictor at each nonterminal node of the tree

in Figure 1
Best Explained Strong left Weak Strong right
Node predictor (%) categories categories categories
1 Age 94 —25 years 26-30 years 31-35 years
+36 years
3 Diploma 89 Classical Scientific Professional
Technical
Magistral
4 Study plan 87 Official Economics Managerial
Quantitative  Professional
Public
5 Origin 77 — Naples Other counties
County
6 Thesis subject 54 Quantitative =~ Economy History
Law
Management
11 Origin Naples County
14 Study plan 66 Official Economics Managerial
Quantitative Public
Professional
19 Origin 77 — Naples Other counties
County
21 Thesis subject 99 Law Economy
Management
23 Study plan 100 Economics Quantitative
24 Time to graduate 75 4 years 5-6 years +7 years
28 Sex 100 Male Female
30 Thesis subject 100 Economy Management




Table 3: Response variable distribution of proportions at each nonterminal node of
the tree in Figure 1

% of cases in responses

% of

Node cases L ML MH H

1 100.0 189 27.3 28.3 255

3 74.1 14.6 25.0 31.6 28.8

4 16.4 447 404 149 0.0

5 14.7 11.9 4.8 7.1 524

6 52.1 14.8 27.5 329 24.8
11 10.8 9.7 3.2 22.6 64.5
14 42.7 14.8 29.5 29.5 26.2
19 39.2 134 30.4 28.5 27.7
21 29.0 8.4 27.7 337 30.2
23 10.5 33 40.0 40.0 16.7
24 18.5 11.3 20.8 30.2 377
28 15.0 9.3 20.9 349 349
30 11.9 5.9 235 41.2 294

Table 4: Response variable distribution of proportions at each terminal node with the
assigned class label for the tree in Figure 1

% of % of cases in responses Class
Node cases L ML MH H label
2 94 7.4 222 259 445 H
7 7.3 19.1 47.6 23.8 9.5 ML
8 59 11.8 47.0 412 0.0 ML
9 8.4 58.3 41.7 0.0 0.0 L
10 21 83.3 16.7 0.0 0.0 L
12 39 18.2 9.1 54.5 18.2 MH
13 2.1 0.0 16.7 333 50.0 H
15 7.3 19.1 19.1 52.3 9.5 MH
16 8.0 0.0 0.0 26.1 73.9 H
17 2.8 50.0 12.5 12.5 25.0 L
18 0.7 0.0 50.0 0.0 50.0 ML
20 2.8 37.5 12.5 50.0 0.0 NH
22 10.1 27.6 37.9 13.8 20.7 ML
25 8.7 4.0 36.0 48.0 12.0 MH
26 1.8 0.0 60.0 0.0 40.0 ML
27 1.8 0.0 20.0 0.0 80.0 H
29 1.8 40.0 20.0 200 20.0 L
31 32 222 11.1 11.1 55.6 H
32 39 9.0 36.4 27.3 273 ML
33 8.0 44 174 478 304 MH
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second column gives the percentage of sample cases that fall in each node, and the
remaining columns row by row give the distribution of proportions for the response
variable at each node of the tree. Table 4 shows the terminal node information:
for each terminal node we give the percentage of sample cases, the distribution of
proportions of the response variable, and the assigned response category.

The first table selected according the proposed methodology cross-classifies the
response variable final score with the predictor age. In Figure 2 we present the two-
dimensional map of NSCA applied to this table. The first principal axis explains
a very high percentage of the 7 index (94%). We notice an opposition between
older and younger graduates corresponding to an opposition between low and high
scores, respectively. The age category 26-30 years is a weak category, close to the
origin, generating a “middle” subgroup of 74.1% of the cases. The strong category,
—25 years, splits off a subgroup of 9.4% of the cases, which form a terminal node
predicting a high score. The other strong categories, 31-35 and +36 years, split off
16.4% of the cases, associated with low scores, but will be split still further. Usually,
the negative correlation between age and study performance is due to the fact that

1 J—
MH
o)
0.5
3155 26-30
ke %
5 °
0.5 | H
) H |
|
|
-1 ‘ \ ’ I t ' 1
-1 0.5 0 0.5 1

Figure 2: Nonsymmetrical correspondence analysis of cross-classification of age ver-
sus final score at node 1.



4. An Example 321

MH

J O
j )
magistral
0.5
!
technical scientific
0 ® + 0 o9 }
professional @ .
1 classical |
ML
O L H
O
-0.5
. i
-1 -0.5 0 0.5 1

Figure 3: Nonsymmetrical correspondence analysis of cross-classification of diploma
versus final score at node 3.

most of the old graduates are busy with working activity and aim to take the degree
with any final score value.

The middle subgroup at node 3 is split by the predictor “diploma” with a distinc-
tion between classical, associated with high final scores, and professional, associated
with low and middle—low scores. Figure 3 shows the NSCA map at node 3.

Node 4 is split by the variable “study plan” and Figure 4 shows the correspond-
ing map. We notice in particular the opposition between official, quantitative, and
public, associated with medium-high final scores, and managerial, associated with
low scores. Notice that in node 4 there are no graduates with high final scores.

For brevity, we do not illustrate the factorial representations of the remaining
nodes and we refer to Table 2 for further interpretation of the partitioning sequence
in Figure 1.

In Table 5 we show the misclassification matrix when we use the final tree as a
classification rule: each proportion in the diagonal of the table gives the probability
of correct classification of each response category.
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Figure 4: Nonsymmetrical correspondence analysis of cross-classification of study

plan versus final score at node 4.

Table 5: Misclassification matrix for the response variable using the classification rule

of Figure 1
Predicted class
True class L ML MH H
L 46% 27% 20% 7%
ML 17% 47% 24% 12%
MH 2% 23% 55% 20%
H 4% 19% 19% 58%
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Conclusion

This chapter provides a methodology for growing ternary trees via an exploratory
multidimensional method, NSCA. The proposed approach can be particularly conve-
nient when the sample is very large and many predictors are considered. We organize
the analysis as a sequence of NSCAs that leads to the construction of a decision
tree to classify new cases with unknown responses as well as to explore the data set
by constructing maps at each node of the classification tree where splitting occurs.
When the sample is very large, we can consider splitting nodes according to the cat-
egory combinations of a pair of variables, in the style of multipie NSCA (see Balbi,
Chapter 21, and Lauro and Siciliano, 1989).
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PART III

Multidimensional Scaling
and Biplot

Although they originated as specific methods and algorithms, multidimensional scal-
ing (MDS) and the biplot are now generic terms for a wide variety of techniques
for data visualization. In general, data suitable for MDS are in the form of a square
symmetric matrix and are measures of similarity or dissimilarity between pairs of
objects, for example, a correlation matrix between variables, paired comparison data,
or the number of co-occurrences of responses in a multiple-choice test. MDS assumes
that these data are related to distances between objects in pairs: if objects A and B
are observed, or measured, to be more similar or “closer” to each other than objects
C and D, for example, then A and B should be displayed closer in the map than C
and D. The term MDS has its origin in the so-called nonmetric multidimensional
scaling of Shepard and Kruskal in the early 1960s, in which a map of a set of objects
is achieved by approximating the rank ordering of observed distances between the
objects rather than the distances themselves. MDS includes metric scaling, a much
older idea, in which a stronger condition is imposed on the map that the distances
themselves be approximated, not just their ordering. Whichever variation of MDS is
performed, the resulting map is interpreted in terms of the distances between points,
which is the most intuitive way of interpreting a display of this kind.

The term “biplot” was proposed by Gabriel in 1971 to describe methods that
treat a rectangular matrix of metric data as if it contained scalar products between the
row and column objects. The aim is to represent each row and column by a point so
that the displayed row—column scalar products approximate the data values. Usually
the data are centered and normalized before being “biplotted.” The interpretation of
the biplot in terms of scalar products might not seem straightforward at first, but
becomes clearer when one thinks of a scalar product between points R and C as the
projection of R onto the direction defined by C, multiplied by the length of C. Thus
the projections of all the rows R onto the direction vector defined by C will give the
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set of approximations for the (transformed) data of column C. When the columns
are variables and the rows cases, then the column points define directions that can be
thought of as axes, which can be calibrated in units of the variable. The row points
can be projected onto this “biplot axis” to read off the approximate values directly.

The following six chapters are a varied collection that take these ideas into
the realm of categorical data analysis. Chapter 23, by Kimball Romney, Carmella
Moore, and Timothy Brazill, first illustrates the use of CA as a metric MDS method
for general similarity data, not necessarily frequencies. Their reason for using CA
rather than MDS itself is that similarity matrices obtained from different individuals
can be stacked and analyzed jointly with CA, rather than needing to use a different
and more time-consuming methodology such as individual differences scaling or
generalized Procrustes analysis. The empirical results presented here open up a new
area of application of CA and demonstrate again that through appropriate coding CA
can bring out the structure of interest in the data.

In Chapter 24, Ingwer Borg and Patrick Groenen explain a way of interpret-
ing an MDS solution, called facet theory, devised by Louis Guttman. Rather than
the dimensional interpretation of the map, this approach concentrates on regions of
the MDS solution called “facets.” Facets are used to confront hypotheses from social
science theory about the similarities between the variables of interest with the MDS
display. The authors use an example of eight intelligence test items: according to
psychological theories, they expect a subdivision along “language” (numeric versus
geometric) as well as along “requirement” (application versus inference). This theory
implies a certain pattern of points in the MDS display, in the form of patterns of con-
centric circular bands. This is a more structured approach to the use and interpretation
of MDS in which the geometry actually reflects the underlying substantive theory.

Chapter 25, by Carles Cuadras and Josep Fortiana, deals with a particular situ-
ation in which one has two sets of distance matrices for the same set of objects, for
example, distances among a set of researchers in terms of their areas of interest as
well as information related to their coauthorship of papers. Clearly, one can perform
separate MDS analyses on these two sources of information and then compare them
qualitatively, but the authors strive to achieve a common analysis in which these
sources of information are related. The advantage of their approach is that two quite
different types of data can be related in one analysis, via the distance matrices each
one generates.

Chapter 26 contains another application to electoral data, the third in this book.
Magda Vuylsteke-Wauters, Jaak Billiet, Hans de Witte, and Frans Symons look at
the voting and political attitudes in the Flemish region of Belgium. Their data consist
of several attitude scales for each respondent as well as a discrete observation in
the form of their voting behavior in the 1991 elections. The authors show how the
attitudes and voting preferences can be related and mapped using what is called a
canonical correlation biplot, where the political parties are represented as points and
the attitude scales as vectors. The result is a compact expression of the data where it
is possible to distinguish the voter’s attitudes that separate the political parties.
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In Chapter 27, Ruben Gabriel, Purificaciéon Galindo, and José Luis Vicente-
Villardén describe the use of the biplot to diagnose various forms of independence in
contingency tables. For rectangular matrices, certain simple models result in certain
patterns of points in the biplot map; for example, rows and columns in two perpendic-
ular straight lines diagnose an additive model for the table. Applied to the logarithms
of the frequencies in a two-way contingency tables, an additive model is equivalent
to independence between the rows and columns. Moving to three-way contingency
tables implies various types of independence, again diagnosed by straight line pat-
terns. An important application is to diagnose independence in part of the three-way
table by identifying subsets of points that fall on straight lines.

Chapter 28, by John Gower and Simon Harding, treats the display of multivariate
categorical data. In multiple correspondence analysis (MCA) all the cases and all the
categories are represented in a joint display. As described in Chapter 17, in asymmetric
maps we can look at distances (or scalar products) between row and column points
to predict the categories to which each case belongs. This is not the only way to
obtain a joint display. Gower and Harding’s approach uses the extended matching
coefficient to measure distance between cases, rather than the chi-squared distance.
Instead of looking at row—column distances, they partition the full space of the points
into regions according to the categories of each variable. By construction, each region
predicts the corresponding category perfectly. When these prediction regions intersect
with our low-dimensional display of the cases, then we have areas of the map where
we can predict the categories accurately.
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Chapter 23

Correspondence Analysis as
a Multidimensional Scaling
Technique for Nonfrequency
Similarity Matrices

A. Kimball Romney, Carmella C. Moore,
and Timothy J. Brazill

1 Introduction

This chapter is an empirical investigation of the validity of two somewhat novel gen-
eralizations of correspondence analysis (CA). The chapter uses results from empirical
data sets to explore the following issues: (1), the appropriateness of using CA as a
general multidimensional scaling (MDS) technique for nonfrequency similarity data;
and (2), the appropriateness of using CA to analyze stacked similarity matrices to
obtain a common spatial representation of many individual matrices simultaneously.

The first question we address is the appropriateness of using CA in a purely
descriptive manner to obtain spatial representations of the interrelations among points
from similarity data regardless of the level of measurement. For example, nonmetric
MDS has been widely used since the 1960s to obtain Euclidean representations of
square symmetric data matrices. If it could be shown that CA could be generalized
for use in such contexts, it would make possible many applications that cannot be
easily accomplished with nonmetric MDS, for example, the analysis of asymmetric
similarity data or the comparison of multiple configurations by analyzing stacked
similarity matrices (both symmetric and asymmetric).

329
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The second question we address is the application of CA to stacked similarity
matrices, where each matrix in the stack consists of a square symmetric similarity ma-
trix obtained from a single individual. The aim would be to produce representations
of several individuals (or cases) in the same space for comparisons among individuals
and subgroupings of individuals. Current methods for comparisons among individual
configurations [that do not, like INDSCAL (e.g., Carroll and Chang, 1970), impose
a common group configuration] require a separate analysis of each case followed by
some sort of rotation into a common orientation. The current method of choice (see,
e.g., Borg, 1977; Borg and Lingoes, 1987) for such analysis of multiple representa-
tions of fundamentally similar configurations is provided by generalized Procrustes
analysis (Gower, 1975). We will demonstrate that CA of stacked similarity matrices
provides a much simplified approach to such comparisons and gives representa-
tions virtually identical to those obtained using an implementation of generalized
Procrustes analysis called PINDIS (Borg, 1977; Lingoes, 1987).

2 Historical Background of CA
and Nonmetric MDS

CA was originally derived for the analysis of contingency tables containing cross-
tabulated frequency data. For example, in one of the earliest papers on CA, Fisher
(1940) used a contingency table in which individuals were cross-classified on two
categories, eye color and hair color, to illustrate the scaling of categorical variables.
In that paper CA was treated in the context of discriminant analysis. In another
early example, Guttman (1941) derived the method from the perspective of the
indicator matrix form. The full application of many of the concepts in CA, such as
the partitioning of chi-square, is based on underlying statistical theory and valid only
when based on random sampling from multinomial populations. Detailed historical
summaries of CA may be found in Nishisato (1980), Greenacre (1984), and Gifi
(1990). An elementary introduction to CA may be found in Weller and Romney
(1990).

Nonmetric MDS techniques developed in a very different methodological envi-
ronment from CA. In the 1960s nonmetric MDS techniques began to replace metric
MDS (e.g., Torgerson, 1958) and became available on mainframe computers. These
methods were immediately put to use in a descriptive manner to represent in Eu-
clidean (or other Minkowski) space the similarity (or distance) among a wide variety
of observed “proximity” measures among a set of objects. The key to the early work
in nonmetric MDS was to compute a configuration of points in which the interpoint
distances “closely” approximated the experimentally observed ranked “proximities.”
The breakthrough consisted of optimizing a monotonic goodness-of-fit function,
called “stress,” which measured the discrepancy between input “proximities” and
displayed “distances.” The early papers by Kruskal (1964a, 1964b) and Shepard
(1962a, 1962b) describe this work in detail, and a broader prospective may be ob-
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tained from Shiffman ez al. (1981), Young and Hamer (1987), Borg and Lingoes
(1987), Shepard et al. (1972), and Romney et al. (1972).

In the nonmetric MDS literature, there are examples of a large variety of kinds of
“proximity” data. Examples include confusion data on the Morse code, airline miles
among cities, and ratings of similarities among nations. Other than the assumption
that the proximities represent some sort of similarity or distance among the points,
there were no apparent limits on what sort of data might be used. Almost no attention
was paid to the level or scale of measurement of the input data such as nominal
(categorical), ordinal, interval, or ratio as outlined by Stevens (1968). In fact, the
only input to a nonmetric MDS program was the rank order of the experimentally ob-
tained pairwise proximities; thus the output was invariant under arbitrary monotonic
transformation of the data.

In the beginning period of nonmetric MDS, there was genuine skepticism about
whether it “really worked.” There were extensive tests against known patterns, usually
Euclidean (see Borg and Lingoes 1987; p. 10, for example), and standard presenta-
tions of the so-called Shepard diagram consisting of a scatterplot between the fitted
distances and the input proximities. Simple examples of this strategy may be found
in Kruskal and Wish (1978). Other criteria were used, such as interpretability of the
dimensions or the overall configuration and replicability.

In the spirit of the earlier justification of nonmetric MDS, we present in this
chapter simple empirical demonstrations of how CA can be used to obtain descriptive
MBDS representations of similarity data. In the first example we check the validity
of the results by comparison with the known “correct” answer. We also demonstrate
that CA applied to stacked similarity matrices provides virtually the same descriptive
results as those obtained by separate analysis of each case followed by generalized
Procrustes analysis. The chapter does not provide mathematical theorems, although
we refer to sources that contain them when relevant.

3 CA as Descriptive MDS

The model for CA that we consider here is the simple case for contingency tables,
where an / X J contingency table N is approximated by weighted least-squares by a
matrix of lower dimensionality, using the low-rank approximation properties of the
singular value decomposition (e.g., see Gifi, 1990, p. 276 ff.). The results of CA are
the matrices X and Y of standard coordinates for the rows and columns, from which
maps are constructed by scaling one or both of these coordinate matrices by some
function of the singular values.

To simplify the discussion in the remainder of the chapter we define “similarity”
data to include both distance (or dissimilarities) and similarities. These empirical
measures were referred to as proximities in the nonmetric MDS literature. It is un-
derstood that similarities may be derived from distances by subtracting each distance
from some constant equal to or larger than the largest distance in the matrix (Gifi,
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1990, p. 281). Weller and Romney (1990, pp. 70-76) discuss some precautions that
apply when using CA on nonfrequency data.

It might be noted that the attempt to recover distances among cities was used early
in the development of nonmetric MDS to demonstrate that the interpoint rankings of
similarities were sufficient to recover the actual Euclidean distances in a satisfactory
way, (e.g., Kruskal and Wish, 1978; Borg and Lingoes, 1987). Gifi (1990, p. 280)
used the analysis of a matrix of similarities derived from physical distances among
23 cities in The Netherlands to illustrate that the application of CA “is not restricted
to frequency data and to show its potential as an MDS technique.” We depend heavily
upon Gifi’s arguments and refer the reader to their mathematical and statistical defense
for the use of CA for the analysis of similarity matrices.

Despite these examples, however, there has been some concern that CA does not
return actual Euclidean distances when they are input to the analysis. Researchers
would usually choose metric scaling (Gower, 1966), which does recover Euclidean
distances exactly. This shortcoming of CA has been addressed in a paper by Carroll
et al. (1997) in which it is proved that a special variant of CA recovers Euclidean
distances and in fact yields solutions equivalent up to a similarity transformation to
those of classical MDS.

We will not repeat the proof but will review the procedure of Carroll ez al. (1997).
They begin with a matrix D = {d;;}, where d;; are the distances among points in
a known Euclidean space of r dimensions. The matrix S = {s;;} is then calculated,
where

S =k—d? Lj=12,...,n 1)

ij»

and k is a number several hundred times greater than the maximum d,%. The matrix
S is then analyzed with standard CA. At the singular value decomposition step the
product, UAUT is obtained. Note that the input matrix is symmetric so that U = V
and is a diagonal matrix of eigenvalues.

Then the vector U is rescaled as follows:

X = \/KU\/j: )

which is the usual transformation of standard to principal coordinates.
A final rescaling of the principal coordinates, X, is then performed:

« /1
X' = 2kX 3)

Distances recovered in the CA solution are thus

R 1/2
dj; = {Z(x;; - x;-‘,f] @
r=1

As k approaches infinity the distances d;; tend to the true original distances d;;. R
is the number of positive, nonzero, nontrivial eigenvalues and corresponds to the
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number of dimensions of the known original Euclidean distances, again depending
on an appropriate choice of k.

We want to emphasize that when we talk about using CA as a general tool for
MDS we stress that we do not carry over any of the theoretical or inferential aspects
of the CA model based on frequency data. Whereas nonmetric MDS optimizes a
monotonic function, the procedures in CA optimize a bilinear function. The major
question is whether a bilinear function is robust with respect to a number of possible
distortions almost always encountered with empirical similarity data.

The descriptive use of traditional concepts usually used in a more formal way is
not limited to our extension of these concepts in applying CA to nonfrequency data.
For example, in discussing the generalized Procrustes program PINDIS, Borg (1977,
p. 620) comments:

The reader might be somewhat surprised that we conceived of a configu-
ration in terms of total variance and variance components, i.e., explained,
common, unexplained, etc., variance. Of course, this is a purely formal-
istic use of these terms: algebraically, the coordinate matrices (...) are
indistinguishable from data matrices associated with some random vec-
tor; furthermore, since least-squares minimization is the standard proce-
dure in estimating statistical parameters—as it is in the fitting problems
in PINDIS—we use this familiar terminology in an entirely descriptive
way.

We shouid also note that we are not the first to use CA in the context of descriptive
MDS applications. For example, both Meulman (1986) and Meyer (1992) consid-
ered similarities between CA and various multivariate data analysis techniques by
presenting these techniques within a general MDS framework. In the next section
we show how CA can be used descriptively on various forms of similarity matrices
derived from interpoint airline distances among selected U.S. cities.

4 Correspondence Analysis and
Non-Linear Transformations

One of the concerns about CA as a general method for the analysis of similarity data is
how robust the method is with respect to reasonably severe nonlinear transformations
of the raw data. In this section we compare the results of the effects of a series of
nonlinear transformations on data from Kruskal and Wish (1978, p. 8), who provide
a matrix of airline distances among 10 U.S. cities. We have arbitrarily constructed
six different 10 X 10 similarity matrices from the data by the application of distinct
transformations as described in the following. We then analyze each of these six
matrices separately with CA. After presenting the results, we stack the six matrices
into a single 60 X 10 matrix and apply CA to the stacked data. This provides us with
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a comparison, to a known standard, of each of the six separate analyses as well as
with results from the joint analyses using the stacked representation.

The values for each cell value, s;;, for the six similarity matrices were constructed
as follows: (1) A standard similarity transformation was applied by subtracting the
airline distances from the largest distance in the matrix plus one. (2) A squared
transformation was produced by subtracting the squared airline distance from 10’
and then dividing by 10*. This emulates the procedure of Carroll et al. (1997) for
obtaining Euclidean distances where k is given the value of 10”. The division by 10*
is simply to reduce the values for numerical comparison—results from descriptive
CA are invariant under multiplication of the raw data by a constant. (3) A natural log
transformation was computed by subtracting the natural log of the airline distances
from the largest value in the log matrix. (4) A square root transformation was com-
puted by subtracting the square root of the airline distances from the largest value
in the square root matrix. (5) A rank order transformation was calculated from all
off-diagonal values of the airline distances, where the highest rank was assigned to
the two cities closest (most similar) to each other and entered on the diagonal. (6) A
Lickert-type rating on a scale of one to nine was constructed, with the value of nine
being assigned to cities closest to each other and entered on the diagonal.

Note that when CA is used on square symmetric similarity matrices, where a
single object is represented by both a row and column score, we enter on the diagonal
a number at least as large as the largest similarity score in any off-diagonal cell. From
a commonsense point of view, this simply represents the fact that an object is at least
as similar to itself as to any other object.

The six transformations just outlined may be viewed as a kind of test of how
robust CA is over a wide variety of monotonic transformations. From this perspective
any differences among the results are seen as “accidental” or error variance in the
sense that we would hope that the method is robust to such perturbations. Note that
there is a wide disparity in both the absolute magnitude and the variability of the
individually derived matrices. We first present a summary of the results obtained
by separately analyzing each of the data sets produced by the various transforma-
tions.

The pertinent statistics for each individual data set and the selected results from
individual CA of each set are shown in Table 1 (information in the table on results for
stacked matrices will be discussed later). The statistics on the raw data sets were com-
puted on the values produced by the transformations described earlier and are based
on the off-diagonal lower half-matrix. The mean, standard deviation, and coefficient
of variation were computed for each set. The table also includes information on the
first two nontrivial singular values and the inertia associated with the first two non-
trivial singular values, the squared correlation between the reconstructed similarity
values from the two-dimensional CA solution with (1) the original airline distances
between every pair of cities and (2) the appropriate transformed matrix of similarities
described earlier. When using CA for descriptive MDS we suggest that this last figure
may be taken as a least-squares linear approximation of goodness-of-fit that plays the
role of “stress” in nonmetric MDS goodness-of-fit measures.
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Table 1: Basic statistics on individual analysis of each of the six transformations

Transformation
Statistic Simil. Square Log Root Rank Rating
Mean 1317.87 750.28 6.13 16.90 45.50 5.00
Standard deviation 707.16 218.30 0.59 9.76 26.27 2.61
Coefficient of variation 0.54 0.29 0.10 0.58 0.58 0.52
Ist singular value 0.51 0.26 0.10 0.55 0.53 047
2nd singular value 0.12 0.05 0.04 0.17 0.14 0.12
% cumulative inertia, 1-d 0.92 0.97 0.69 0.84 0.89 0.90
% cumulative inertia, 2-d 0.98 0.99 0.82 0.92 0.96 0.96
12 separate® 0.99 0.96 0.89 0.97 0.98 0.97
12 stacked? 0.99 0.95 0.69 0.97 0.99 0.99
1% separate’ 0.99 .00 094 0.98 0.98 0.98
12 stacked? 0.99 0.99 0.57 0.97 0.97 0.95

“Squared correlation coefficient between original airline distances and two-dimensional recon-
structed similarities from correspondence analysis for the six separate analyses.

bSquared correlation coefficient between original airline distances and two-dimensional recon-
structed similarities from correspondence analysis for the stacked analysis.

¢Squared correlation coefficient between transformed input data matrices and two-dimensional
reconstructed similarities from correspondence analysis for the six separate analyses.

4Squared correlation coefficient between transformed input data matrices and two-dimensional
reconstructed similarities from correspondence analysis for the stacked analysis.

The following conclusions and observations may be drawn from the results in
Table 1. The extent to which the reconstructed values from CA correlate with the
input data reveals that for each of the six transformations the recovery is remarkably
good. The worst squared correlation, 0.94, for the natural log data is still quite high.

One interesting observation is that the singular values vary widely. The impli-
cation of this is that they are not of much use in diagnosing a good solution from
a bad solution as they depend on “accidental” features of the input data. The cu-
mulative percentages of inertia are quite good in all cases, although they are lowest
for the natural log data. We conclude from these results that in this example CA
gives a very accurate representation of the data for the original cities across the six
transformations.

Before presenting the results for the comparison among the stacked data sets, it
will be a useful check on stacking to compare the summary column scores with those
obtained from an aggregated summary of the data. Historically, nonmetric MDS was
normally performed on aggregate data. Individual data were summed across subjects,
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resulting in a single square symmetric matrix for analysis. When analyzing a matrix
obtained by stacking several replications, or unknown transformations, of what is
assumed to be similar underlying data, we would expect to find that the column
scores from the stacked matrix are a very close approximation of the scores resulting
from a single square aggregated data matrix. Figure 1 shows the comparison; the
circles represent the results from the aggregated data and the triangles represent
the results from the column scores of the stacked data. This close similarity simply
confirms that the two ways of summarizing a single aggregate representation are
giving similar results.

We will now illustrate the use of CA on the six transformed and stacked simi-
larity matrices. When CA is applied to this 60 X 10 matrix, the first 10 row scores
represent the configuration given by the first (similarity) transformation, the second
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Figure 1: Comparison, based on the cities data, between (1) the overall results from
scaling a single aggregated matrix obtained by adding six matrices and (2) the column
scores from the stacked correspondence analysis of the same six matrices (the filled
triangles represent the stacked correspondence analysis).
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Figure 2: Plot of the unstandardized row scores for each of the cities from the stacked
correspondence analysis with each of the six transformed data sets identified by
number and with a .95 confidence ellipse of the mean of each city.

10 row scores represent the configuration given by the second (squared) transforma-
tion, and so on through the six transformations. We can then compare the resulting
representation with those from the six individual analyses.

Figure 2 shows the results from the stacked procedure where the six configura-
tions for the cities are represented by a number for each transformation as defined
earlier. In this and succeeding plots the ellipses are .95 Gaussian bivariate confidence
regions on the centroid of the points (cities in this case). According to Wilkinson
(1989, p. 214), each “ellipse is centered on the sample means of the X and Y vari-
ables. Its major axes are determined by the unbiased sample standard deviations of X
and Y, and its orientation is determined by the sample covariance between X and Y.
In Figure 2 the ellipses are elongated toward the midpoint of the picture. This is be-
cause the picture for the natural log transformation (points labeled “3™), for example,
forms a dramatically “smaller” representation than the other points. The representa-
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tion for the squared transformation (points labeled “2”) forms an intermediate-sized
representation.

This difference in size produced by different transformations has nothing to do
with the original magnitude of the values in the respective matrices. For example, the
values in the squared transformation are the next to largest of the six transformations,
and the logged values are near the smallest. The difference is related to the value of
the coefficient of variability of the matrices. The larger the coefficient of variability
of each matrix, the larger the overall configuration of the joint representation. This
is not a special feature of stacked matrices but is a general characteristic of CA. In
general, when examining the points in a cloud of row scores, for example, the points
most distant from the centroid are those with the highest coefficients of variation.
Table 1 shows that the natural log data has a coefficient of variation about one fifth,
and the squared data about one half, of the size of the remaining four data sets.

We view the differences in size among the representations of the different trans-
formations as artifacts of the transformations. These differences are without sub-
stantive interpretation beyond the difference in the coefficient of variation. In order
to compare the configurations we need to correct for these sorts of differences. We
recognize that there is no standard practice with respect to this situation. One solution
that we have used is to standardize the x; scores for each subject to zero mean and
variance equal to the singular values or the square root of the singular values. These
standardization procedures worked very well in studies by Kumbasar et. al. (1994)
and Romney et al. (1996). Note that programs such as PINDIS (Borg, 1977) do such
rescaling as a standard routine inside the program.

When applied to the cities data, such a standardization produces the configuration
shown in Figure 3. In Figure 3 the points representing the six transformations are
clustered into tight sets around the location for each city. We have plotted the 95%
confidence ellipses about the means of the clouds for the cities. The size of each
ellipse gives an idea of the “resolving power” of the method given the various sorts
of transformations that enter into the calculations. In practice, this would be the
resolving power of the measurements based on some particular sample or subsample
of subjects.

We can compare the results of the stacking procedure with the individual anal-
yses presented earlier by reference to Table 1. The squared correlations between
reconstructed distances based on the stacked results are compared with the original
distances as well as each of the six transformed similarity matrices. The figures show
that results are comparable to those of the individual analysis. The fact that in most
cases the results are somewhat attenuated compared with the individual analyses
demonstrates that the fit is not an artifact of stacking.

5 Correspondence Analysis of
Longitudinal Ranking Data

In this section we present the results of an analysis of the classic Newcomb (1956,
1961) fraternity data. The data were collected in 1955-56 for 17 previously unac-
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Figure 3: Plot of the standardized row scores for each of the cities from the stacked
correspondence analysis with a .95 confidence ellipse of the mean of each city.

quainted students. The male subjects were provided room and board in a fraternity
house in return for serving as subjects in an experiment on friendship. The data we
report here were collected once a week for 15 weeks and consist of Newcomb’s rank-
ings (originally collected as ratings on a 100-point scale) of how well each subject
liked each other subject. Each of the 15 weekly 17 X 17 matrices contains a row
of rankings supplied by each subject indicating how well he likes each of the other
subjects. Sample results of the study were published by Newcomb (1956, 1961), and
the actual data are published by Nordlie (1958). The data have been reanalyzed many
times, most recently by Nakao and Romney (1993).

Nakao and Romney’s research included a Procrustes analysis of the data for the
15 weeks. They performed a nonmetric MDS on the data from each week based on a
subject-by-subject correlation matrix. They then used a simple Procrustes procedure
to rotate each week into the same orientation as the 14th week. The 14th week
was selected as the target week because it was deemed the most representative
configuration. We note that the new analysis of the Newcomb data, using CA of the
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15 similarity matrices, presented in the following, is consistent with the nonmetric
MBDS results of Nakao and Romney (1993) in all aspects.

As with the cities data, we carry out an individual analysis of each week as well as
a single analysis of all 15 weeks treated simultaneously with the stacking procedure.
We then compare these results with those of a PINDIS analysis in which results from
individual correspondence analyses of each week are used as input. These procedures
will facilitate a controlled comparison of the stacking procedure with the generalized
Procrustes analysis.

Our first step in the analysis is to transform the original data into similarity form.
This is done by reversing the ranking and placing values equal to one plus the largest
rank on the diagonal (Weller and Romney, 1990, p. 71). This means that the “closest”
friend gets a rank of 16 (rather than 1) and 17 is entered on each diagonal. The overall
results of the stacked data are given in Figure 4.
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Figure 4: Plot of the 17 Newcomb subjects over the 15 weeks produced with row
scores from stacked correspondence analysis and with a .95 confidence ellipse around
the mean location of each of the subjects.
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Figure 4 shows the scaled data with the 15 weekly positions of each subject
summarized as a single .95 confidence ellipse of the mean position of that subject.
The ellipses for the subjects with less well-defined social positions (i.e., subjects
whose positions are more variable from week to week) are larger and represent a
genuine phenomenon of the data. They tend to be social outliers. In the Nakao and
Romney (1993) study, subjects 3, 10, 14, 15, and 16 were identified as outliers. It can
be seen that these are the subjects with the largest ellipses. In addition to outliers,
the earlier study distinguished two groups, namely numbers 1, 5, 6, 8, and 13 versus
numbers 2,4, 7,9, 11, 12, and 17 (Nakao and Romney, 1993, p. 119). It can be seen
that these subgroupings are fairly well defined in Figure 4.

In the PINDIS analysis we used coordinates from CA of each individual week
done separately for each of the 15 weeks. Figure 5 shows the picture produced by the
generalized Procrustes procedure for comparison with Figure 4 based on CA of the
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Figure 5: Plot corresponding to Figure 4 except that scores are obtained with gener-
alized Procrustes analysis (implemented with PINDIS) using 15 separate analyses of
the week-by-week data.
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stacked data. One can see that the pattern is very similar to that observed in Figure 4.
The resolution is not quite as sharp as in Figure 4, but clearly virtually identical (with
slightly different orientations) configurations are visible.

A comparison of the “centroid” (Borg, 1977) and “consensus” (Gower, 1975)
summary configuration from generalized Procrustes analysis with the column scores
summary from the stacked CA illustrates just how similar the two procedures are.
Figure 6 shows the two configurations with the results from the stacked CA shown
with solid triangles and the results from the generalized Procrustes analysis shown
with open circles. The conclusions drawn from the two figures would have to be
identical; there are no differences of any practical import.

The question arises of whether adding a large number to the diagonal of each
matrix biases the results of the stacking procedure. One would expect on an a priori
basis that large numbers on the diagonal would, by themselves, produce clustering
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Figure 6: Plot comparing the summary location of each of the 17 Newcomb subjects
obtained from the column scores of correspondence analysis (filled triangles) and the
centroid (or consensus) configuration from PINDIS (open circles).
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among the items. In order to study this effect, we performed some simulations using
similarity matrices of random data with a large constant on the diagonal. Indeed, large
numbers on the diagonal do produce a measurable clustering in otherwise random
data. The possible biasing effects deserve further study. The practical question is
whether, in the case of empirical data where there is a strong signal, such as the
Newcomb data, the stacking procedure biases the results when used to compare
various individuals or subgroups within the stacked data.

The most impressive evidence that the stacking procedure does not bias the data
comes in a week-by-week comparison of the pictures produced by the stacked data
compared with individual analysis of the week-by-week data. There is not sufficient
space to show the stacked and unstacked results for each week here. However, a
very careful examination of the week-to-week configurations shows virtually no
differences in any of the comparisons. In each case the patterns are very similar and
exhibit differences on the order of magnitude of the different transformations of the
city data. In other words, the differences are in the range of individual measurement
and sampling variability. We present a comparison figure for week 1, one of the most
variable weeks. Figure 7 compares the results from the CA of week 1 only with those
for the same week from the stacked data.

In the figure the circles are the results of an individual CA and the filled triangles
represent the positions given from the stacked data. The lines connect the same
subject in the two representations. One can see that an investigator would draw the
same conclusions from either picture. The positions of a given individual are within
reasonable sampling variability of each other. Note that this week is a comparatively
“bad” example of fit. Later weeks show much closer correspondence between the
two configurations.

6 Discussion

We have illustrated the possible utility of CA as a general MDS technique for appli-
cation to a variety of types of similarity data. Some have suggested extreme caution
in terms of the level of measurement that is appropriate for generalizing CA beyond
frequency data. In converting the airline distances into a variety of similarity matrices,
we included examples, such as ranking and Lickert rating, that were not ratio scale
measurements. Qur own feeling is that any data that are appropriate for nonmetric
MDS are legitimate for analysis with CA. The resulting representations should be
just as valid as those resulting from nonmetric MDS.

We have also demonstrated that the results from the stacking procedure can be
used as a simple and accurate way to compare a series of individual configurations.
The configuration for any single individual obtained from the stacked CA is, within
sampling variability limits, the same as the configuration obtained from the analysis
of that individual data matrix by itself. By extension, because generalized Procrustes
analysis is limited to rotation, translation, and scaling transformations, the configu-
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Figure 7: Plot of the Newcomb data for week 1 comparing the position of each subject
obtained from the stacked correspondence analysis (filled triangles) with that obtained
by the correspondence analysis of the week 1 data taken by themselves (open circles).

rations produced by the stacked CA would also be similar to results from generalized
Procrustes.

The stacked similarity matrices approach is of considerable practical utility. For
example, Romney et al. (1996) analyzed 732 stacked 15 X 15 symmetric similarity
matrices representing similarity judgments derived from triadic comparisons for
15 English kinship terms. The purpose was to compare the effects of gender and
linguistic background factors on the cognitive structure of the kinship terms. The
use of generalized Procrustes analysis would have required 732 separate scalings
to provide input coordinates for the analysis. The stacking procedure does all of
this in a single step. We feel that this practical difficulty has discouraged the use of
generalized Procrustes analysis for comparisons among individuals in large data sets.
For example, the largest example we have found in the literature is that of the 41
subjects analyzed originally by Green and Rao (1972) and reanalyzed with PINDIS
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by Borg (1977, pp. 643-647) and Borg and Lingoes (1987, pp. 337-340). It also
should be recognized that the fit statistics that are computed in PINDIS are very
useful. Similar statistics need to be developed for the stacked CA results.

There is still a great need for further research and discussion about the two main
issues that we have introduced in this chapter. With respect to the use of CA as a
general MDS tool in a purely descriptive manner, there is a need for the development
of a consensus about the appropriate goodness-of-fit measures to describe the results
of a single analysis. What is the appropriate analogue of the nonmetric MDS measure
of stress?

The very close correspondence between the centroid (or consensus) solution
from generalized Procrustes and the column scores from the stacked CA shown in
Figure 6 suggests that there may be a way to derive an analytic description of the
relationship between the two (perhaps with limits on the discrepancy).
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Chapter 24

Regional Interpretations in
Multidimensional Scaling

Ingwer Borg and Patrick J.F. Groenen

1 Dimensional and Regional
Interpretations in MDS

Interpreting solutions in multidimensional scaling (Kruskal and Wish, 1978; Borg
and Lingoes, 1987; Borg and Groenen, 1997) means linking geometric properties
of the MDS configuration to substantive (physical, psychological, semantic, logical)
properties of the represented objects. Many geometric properties could be consid-
ered, but one particular aspect of the point configuration, the points’ coordinates
on Cartesian coordinate axes, dominates the MDS literature. Indeed, the very name
multidimensional scaling suggests that such “dimensions” play more than just a tech-
nical role in MDS. This has historical reasons, because MDS was originally meant to
generalize one-dimensional scaling to several dimensions. Although this introduced
many new possibilities to relate the model representation to the physical parameters
of the stimuli, the search for meaning remained exclusively focused on dimensions
(see, e.g., Torgerson, 1952).

Guttman (1977, p. 101) was among the first to note that this perspective turned
things upside down, putting coordinate systems before the geometry that they are
supposed to coordinate: “Euclidean space can be defined without a coordinate system.
Indeed, this is how Euclid did it. Descartes came centuries later.” What Guttman
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stressed is that the focus on dimensions entails a shift of attention away from the
geometric properties of the MDS configuration (“figure”) and toward one particular
coordination of its points. Geometric properties of a figure, according to Klein (1872),
are just those properties that remain invariant under certain transformations, such as
rigid motions or similarity transforms. The point coordinates do not satisfy this
criterion.

In most applications today, MDS is not used in a context in which the given
objects can be coordinated in terms of physical or psychological dimensions. Rather,
MDS is typically used for visually exploring the structure of similarities of “vaguely”
described objects such as politicians, intelligence test items, or facial expressions.
But although this vague prior knowledge does not lead to coordinations on which a
meaningful distance function can be based, it typically allows a cross-classification
of the stimuli. Politicians, for example, belong to party X or Y; are single, married,
divorced, or widowed; have blue, brown, green, or other eye color; and so forth.
Intelligence test items may require verbal, arithmetic, visual, or other abilities; they
may require the subject to find a rule or use a known rule; they can be presented
in writing or verbally; and so on. Facial expressions can be classified, a priori, into
a whole range of impressions such as joy, disgust, friendly smiles, and anger; they
can also be rated, for example, on a dimension of no to high ego involvement. Such
cross-classifications are, in a sense, coordinations of the objects, but they do not
have metric properties in general, because the criteria used for classification purposes
(facets) are typically only qualitative or ordinal ones. The question, in any case, is how
such a prior-knowledge facet system relates to empirically observed dissimilarities
among the elements of its classes. The classes result from conceptually partitioning
a monolithic domain of interest (such as politicians, intelligence items, or facial
expressions) in different ways, and hence it seems natural to ask whether the MDS
representation of the corresponding dissimilarity scores reflects this classification
systemn in a geometric way.

A general approach to formulating this question is to ask whether the MDS
configuration can be partitioned into regions, facet by facet, so that all points in one
region are equivalent on that facet. In a plane, a region is defined as a connected set
of points such as the inside of a rectangle or a circle. More generally, a set of points
is connected if each pair of its points can be joined by a curve all of whose points are
in the set. Partitioning a set of points into regions means to split the set into classes
such that each point belongs to exactly one class. For example, do all politicians with
brown eyes lie in one region of the MDS space, all those with blue eyes in another
region, and all those with another eye color in a third region? If such a regional
correspondence holds, one may ask further questions about the particular shape of
the regions. For example, the regions may be such that they cut an MDS plane into
essentially parallel stripes. This obviously comes close to the notion of a dimension.
But, of course, there are other regional patterns, such as a system of concentric bands
around a common origin, that are not related to Cartesian dimensions. Thus, the
regional approach is more general than the dimensional approach, including the latter
as a special case.
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2 Partitioning MDS Spaces Using Facet Diagrams

Although regional interpretations are possible without prior studies on the objects of
interest, in practice regionalizations are usually “confirmatory” ones. They are based
on classification systems, mostly those using a facet-theoretical framework (Borg and
Shye, 1995; Shye and Elizur, 1994). Consider the following example by Galinat and
Borg (1987).

In experimental investigations a number of properties of a situation have been
shown, one by one, to have an effect on judgments of time duration. The following
mapping sentence shows four of these properties within a design meant to measure
symbolic duration judgments, that is, duration judgments on hypothetical situations:

A = affective tone

1 =pleasant
Person {p} believes that the 2=neutral situation with
3=unpleasant
N = number V= variability
1=many 1=monotonous
{ 2 =few } { 2 =variable } events that are
D=difficulty reaction
1=difficult very short in duration
_ to handle is felt as — to
{ 2=easy }

very long in duration

In each particular way of reading the mapping sentence, one element from the
population {p} is picked and crossed with one particular combination of the elements
of the content facets. The content facets distinguish among different situations by
considering four properties of its events: affective tone, number, variability, and diffi-
culty. Altogether, the mapping sentence defines 24 different situation types (Table 1).

Table 1: Twenty-four situation types with structuples and mean empirical duration
ratings; greater value indicates longer duration (Galinat and Borg, 1987)

Mean Mean Mean
No. Structuple duration No. Structuple duration No. Structuple duration

ANVD ANVD ANVD
1 1212 3.29 9 1121 437 17 2221 4.66
2 2112 3.54 10 1211 441 18 3112 4.70
3 1221 3.87 11 2211 4.42 19 3211 493
4 1112 3.90 12 1222 443 20 3221 4.94
5 1122 3.95 13 3111 4.46 21 3122 5.00
6 1111 4.00 14 2111 4.54 22 2222 5.08
7 2212 4.03 15 2122 4.57 23 3212 5.15
8 2121 4.05 16 3121 4.57 24 3222 5.67
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For example, a situation with the “structuple” (3222) is defined to be a generally
unpleasant one, where few but different things are happening and where one has no
problems in coping with what is happening.

How do persons judge the duration of these situation types? For each of the
3 X 2 X 2 X 2 = 24 structuples, one vignette was constructed to illustrate a situation
of that type. For example, the vignette used for the “pleasant-many-variable-easy”
situation was this: ““You are playing a simple card game with your children. It is quite
easy for you to win this game because your kids are no serious opponents. The game
requires you to exchange many different cards. The game is fun throughout the 3
minutes that it lasts.” This description is supplemented by the question: “What do
you think, how long would this card game seem to last? Would it seem longer or
shorter than 3 minutes?”

The respondents were asked to rate each such vignette with respect to its likely
subjective duration. The intercorrelations of these ratings are mapped into a four-
dimensional MDS space (stress = 0.13). Figure 1 shows the plane spanned by the
first two principal axes of the MDS configuration. The points in this plane are labeled
by the item numbers of Table 1.

We now ask whether this MDS configuration mirrors any of the design facets
in the sense that points representing different types of situations fall into different

9
11 4
1 3 7 17
5 ¢ 13
10 2
8
15 16
20
18
14 23
12
22 19
21
24

Figure 1: MDS plane of first two principal axes for duration data.
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Figure 2: Facet diagram over Figure 1 for facet “affective tone.”

regions of the space. Let us begin with the affective-tone facet and try to partition
the space into regions containing “pleasant,” “neutral,” and “unpleasant” points,
respectively. This task is greatly facilitated by an appropriate facet diagram. A facet
diagram is simply a reproduction of an MDS configuration plot where the points are
labeled by their structuples or by their codings on a particular facet. Figure 2 shows
the facet diagram for the affective-tone facet, plotted over the two-dimensional MDS
plane from Figure 1. The points in Figure 2 are labeled — if they represent situations
defined as unpleasant, + for pleasant, and o for neutral.

The diagram shows that the three types of points are not distributed randomly.
Rather, the plane can be partitioned into regions so that each region contains only
or almost only points of one particular type. Figure 3 shows such a partitioning. It
contains two minor errors: the two solid arrows indicate where these points should
lie to be in the appropriate regions. Obviously, they are not far from these regions.
There is also one major error, a “pleasant” point located in the negative region. The
dashed arrow attached to this point indicates the direction of required shifting.

Figure 4 represents an alternative partitioning that is error free. This partitioning
depends, however, very much on the position of point 12 (marked by an arrow) and,
thus, may be less reliable in further replications.
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Figure 3: Facet diagram, for facet “affective tone” over Figure 1, with axial partition-
ing.

The two partitionings, moreover, imply different things. The concentric regions
of Figure 4 predict that duration ratings on unpleasant situations correlate higher
among one other, on the average, than those for pleasant situations. The parallel re-
gions of Figure 3 do not restrict the correlations. Both partitions are similar, however,
in splitting the plane into ordered regions, where the neutral region lies in between the
pleasant and the unpleasant ones. Hence, the regions are ordered as the affective-tone
facet itself. Neither the spatial organization induced by the straight lines nor that in-
duced by concentric circular lines would therefore have problems in accommodating
an affective-tone facet that distinguishes more than just three levels.

We thus see that the affective-tone facet is reflected in the structure of the duration
ratings. The decision on which of the two partitionings is ultimately correct requires
further data.

The plane spanned by the third and fourth principal components (not shown here)
can be partitioned by the facet number—without error—and also by variability—with
two errors. The partitioning lines are almost straight and orthogonal to each other
(Borg and Shye, 1995). The facet difficulty, on the other hand, does not show up in
the MDS configuration; that is, the points representing easy and difficult situations,
respectively, seem to be so scrambled that they cannot be discriminated by any but
the most irregular partitionings.
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positive

Figure 4: Facet diagram, for facet “affective tone” over Figure 1, with modular parti-
tioning.

3 Facet Theory and Regions in MDS Spaces

Partitionings are based on substantive classifications of the represented objects. The
facets may be predicted to play a particular role in partitioning the MDS space, but in
no case is a particular dimensional system (such as a Cartesian one) chosen a priori
and then interpretationally forced onto the content. Rather, the opposite is true: the
content leads to the approximation of a particular dimension system.

To see this more clearly, consider a classic case, the cylindrex of intelligence
items. The items in paper-and-pencil intelligence test batteries require the subject to
find verbal analogies, solve arithmetic problems, or identify patterns that complete
series of figures, for example. Hence, they can be classified by the facet “language of
presentation” into numerical, verbal, and geometrical ones. At the same time, such
tests relate to different abilities, which gives rise to a second facet, “required mental
operation.” It classifies tests into those in which the testee has to infer, apply, or
learn a rule, respectively (Guttman and Levy, 1991). In combination, these two facets
distinguish nine types of intelligence.

Table 2 shows the intercorrelations of eight intelligence test items. For example,
item 1 in Table 2 is coded as numeric (re language) and as application (re requirement),
whereas item S is geometrical and inference.
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Table 2: Intercorrelations of eight intelligence test items, together with content cod-
ings on the facets “language” = {N = numerical, G = geometrical} and “requirement”

= {A = application, I = inference}

Structuple
Language Requirement 1 2 3 4 5 6 7 8
N A 1 100 .67 40 .19 12 25 26 39
N A 2 67  1.00 .50 .26 .20 28 .26 .38
N I 3 40 50 1.00 52 .39 31 .18 24
G I 4 19 26 52 1.00 .55 49 25 22
G I 5 A2 20 .39 .55 1.00 46 29 .14
G A 6 25 .28 31 49 46  1.00 42 .38
G A 7 26 26 .18 25 .29 42 1.00 40
G A 8 39 38 24 22 .14 .38 40 1.00
3=NlI
2=NA
®
° 4=Gl
[ ]
1=NA
[ ]
5=Gl
®
8=GA 6=GA
[ ]
7=GA
[ )

Figure 5: Two-dimensional MDS of correlations in Table 2.
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Figure 6: MDS space with four regions resulting from G versus N, and A versus I
distinctions.

The correlations in Table 2 can be represented with stress = 0.015 in a two-
dimensional MDS space (Figure 5). Figure 6 demonstrates that the MDS configuration
can be cut such that each partitioning line splits it into two regions containing only
points of one type: points of the N type lie above the solid line and points of the G
type below that line. The dashed line separates I-type points from A-type points.

One notes, however, that there is considerable leeway in choosing the partitioning
lines. Why, then, was a curved line chosen for separating I-type points from A-type
points? The reason is that this line yields a structure that looks like a slice from the
universe of all possible item types discriminated by the given two facets. If items of all
nine types (including “learning” and *“verbal”’) had been observed, one can predict that
the MDS configuration would form a pattern similar to a dartboard, a radex, shown
schematically in Figure 7. If, in addition, one added another facet (“communication”)
that distinguishes among oral, manual, and paper-and-pencil items, one would obtain
the three-dimensional cylindrex shown in Figure 8. In the cylindrex, “communication”
plays the role of an axis along which the radexes for items using a fixed form of
communication are stacked on top of one other.
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Figure 7: Schematic radex of intelligence items.

4 Regional Laws

The cylindrex structure has been confirmed so often for intelligence test items that
now it is considered a regional law (Guttman and Levy, 1991). What Figure 6 shows,
therefore, is a partial replication of the cylindrex law.

What does such a regional law mean? First of all, it reflects regularities of the
data. For example, restricting oneself to items formulated in a particular language
(such as paper-and-pencil tests) and, thus, to a radex as in Figure 7, one notes that
inference items generally correlate higher among each other than application items,
and learning items are least correlated. Thus, knowing that some person performs
well on a given inference item allows one to predict that he or she will most likely
also perform well on other inference items, whereas good performance on a given
learning item says little about the performance on other learning items. One can
improve the predictions, however, if one constrains them to learning tasks that use a
particular language of presentation.

One notes, moreover, that the MDS regions for inference, application, and learn-
ing are ordered. This order cannot be predicted or explained from the properties of
the qualitative facet “required mental operation.” Nevertheless, it reliably shows up
in hundreds of replications (Guttman and Levy, 1991) and, thus, asks for an expla-
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Figure 8: Cylindrex of intelligence items (after Guttman and Levy, 1991).
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nation. Snow et al. (1984) reported a factor analysis that shows that items which
relate to points in the center of the radex (i.e., inference tasks) are “complex” items
and those represented at the periphery (such as learning tasks) are “specific” items.
This repeats, to some extent, what the radex says: items whose points are closer to
the origin of the radex tend to be more highly correlated with other items. Snow
et al. (1984) add, however, that more complex tasks show “increased involvement
of one or more centrally important components.” Hence, their explanation for the
inference—application-learning order seems to be that these facet elements are, in
fact, discrete semantic simplifications of a smooth gradient of complexity.

One can ask the complexity question in a different way, and define a task ¢, as
more complex than 7, if “it requires everything #; does, and more” (Guttman, 1954,
p- 269). Formally, this implies an interlocking of content structuples, analogous to
the perfect Guttman scale. Specifying such structuples requires one to identify basic
content facets with a common range, where the concepts inference, application, and
learning then become only global labels for comparable (hence ordered) content
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structuples of these underlying facets. For a fixed element of the language facet, such
a system would allow one to predict a particular order of regions (simplex).

But, then, this leads to the question of what pulls the different simplexes—one for
each type of required mental operation, that is, one for items that require application,
learning, or inference of an objective rule, respectively—to a common origin? To
explain this empirical structure requires an additional pattern in the structuples.
Formally, for the three directions of the intelligence radex, it would suffice to have
an additional coding of the items in terms of the extent to which they require each of
the three mental operations.

In any case, with many points and/or differentiated facets, a simple correspon-
dence between regions and structuples is a remarkable finding. Arbitrary assignments
of structuples to the points do, in general, not lead to such lawfulness. Partitionings
with relatively smooth cutting lines are generally also more reliable. Moreover, they
help clarify the roles the various facets play with respect to the data. Such roles are
reflected in the particular ways in which they cut the space.

5 Alternative Facets

A given object of interest can always be facetized in more than one way. Every new
facet offers a new alternative. But does each new facet also have a new statistical
effect? Consider an example. Work value items require the respondent to assess the
importance of different outcomes of his or her work. Conceptually, two different
kinds of facets have been proposed for organizing such items: one facet distinguishes
the work outcomes in terms of the need they satisfy, and the other facet is concerned
with the allocation criterion for rewarding such outcomes. Consider Table 3, where
12 common work value items are coded in terms of seven facets. The facets and
the structuples were taken from the literature on organizational behavior (Borg and
Staufenbiel, 1993).

Figure 9 shows a two-dimensional MDS representation for the correlations of
the 13 work value items assessed in a representative German sample. The radex
partitioning is based on the facets M (solid radial lines), R (dashed radial lines), and
L (concentric lines). It is easy to verify that the other facets also induce perfect and
simple partitionings of this configuration. These partitionings are, moreover, quite
similar: the respective regions turn out to be essentially congruent, with more or with
fewer subdivisions. Differences of the various wedgelike partitionings are primarily
related to the outcome advancement, which is most ambiguous in terms of the need
that it satisfies. Hence, one can conclude that all these theories are structurally quite
similar in terms of item intercorrelations. This suggests, for example, that Herzberg’s
motivation and hygiene factors correspond empirically to Elizur’s cognitive and
affective/instrumental values, respectively.

We note, moreover, that the similar partitioning of the MDS space into wedgelike
regions, induced by different facets that are formally not equivalent, gives rise to
a partial order of the induced sectors. The interlocking of the Herzberg and the
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Table 3: Work value items with various facet codings*

No. H M A E R L B Work value
1 m a g k i g 3 Interesting work
2 m a g k i g 3 Independence in work
3 m a g k i g 3 Work that requires much responsibility
4 m a g k i n 4 Job that is meaningful and sensible
5 m r g k e i 1 Good chances for advancement
6 m r r a s i 1 Job that is recognized and respected
7 h b r a ] n 4 Job where one can help others
8 h b r a S n 4 Job useful for society
9 h b r a s n 4 Job with much contact with other people
10 h ] e i e i 2 Secure position
11 h s e i e i 1 High income
12 h p e i e n 4 Job that leaves much spare time
13 h p e i e n 4 Safe and healthy working conditions

“H(erzberg) = {h = hygiene, m = motivators}; M(aslow) = {p = physiological, s = security,
b = belongingness, r = recognition, a = self-actualization }; A(lderfer) = {e = existence, r =
relations, g = growth}; E(lizur) = {i = instrumental-material, k = cognitive, a = affective—
social}; R(osenberg) = {e = extrinsic, i = intrinsic, s = social}; L(evy-Guttman) = {i =
independent of individual performance, g = depends on group performance, n = not per-
formance dependent}; B(org-Elizur) = {1 = depends much on individual performance, 2 =
depends more on individual performance than on system, 3 = depends both on individual
performance and on system, 4 = depends on system only}.

Maslow facets implies, for example, that the hygiene region contains the subregions
physiological, security, and belongingness, while the motivators region contains the
subregions recognition and self-actualization. Hence, the subregions are forced into
a certain neighborhood relation that would not be required without the hierarchical
nesting.

Elizur et al. (1991) report further studies on work values, conducted in different
countries, which show essentially the same radex lawfulness. Note that this does not
imply similarity of MDS configurations in the Procrustean sense in which configura-
tions can be brought, by admissible transformations, to a complete match, point by
point. Rather, what is meant here is that several configurations—which do not even
have to have the same number of points—exhibit the same law of formation: they
can all be partitioned in essentially the same way (i.e., in the sense of a radex) by just
one fixed coding of the items, thus showing similar contiguity patterns.

6 Prototypical Roles of Facets

The axial partitioning shown in Figure 3 can be seen as a primitive Cartesian coor-
dinate axis. With more and more ordered categories in the affective-tone facet, there
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Figure 9: Radex partitionings of 13 work value items.

should be correspondingly more parallel regions and thereby an ever closer approxi-
mation to a Cartesian axis. Moreover, in the complete four-dimensional MDS space,
the plane orthogonal to the one shown in Figure 3 is partitioned into four quadrants
by the facets “number” and “variability.” This further strengthens the hypothesis that
these facets essentially suggest the usual (Cartesian) dimension system.

Another coordinate system is suggested if we accept the circular partitioning
shown in Figure 4. In this case, the three effective facets give rise to a cylindrical
coordinate system,

Mathematically, it is immaterial in which way a multidimensional figure is coor-
dinated. In the given example, however, the coordination was not chosen arbitrarily.
Rather, it was based on a priori distinctions of content. We stress this point here be-
cause the data determine only the distances among the points, not any “dimensions.”
Dimensions are imposed on a distance geometry for different reasons. One reason
is computational and serves the purpose of being able to replace ruler-and-compass
construction methods by computation. The other reason is interpretational and builds
on imposing content onto the geometry.

The content facets often play one of three prototypical roles in this context.
This is shown in the three panels of Figure 10. The panels exhibit schematic facet
diagrams, whose points are labeled a, b, and c. In the panel on the left-hand side,



7. Regions, Clusters, and Factors 361

¢ c
c
a a /b c
b c
a
b
c
a c
a b
b
axial modular polar

Figure 10: Three prototypical roles of facets in partitioning a facet diagram: axial
(left), modular (center), and polar (right).

the space is partitioned in an axial way. The panel in the center shows a modular
partitioning. The panel on the right-hand side shows a polar facet. An axial facet is
one that corresponds to the usual linear dimension, cutting the space into parallel
stripes (axial simplex of regions). A modular facet leads to a pattern that looks like
a set of concentric bands (radial simplex of regions). Finally, a polar facet cuts the
space, by rays emanating from a common origin, into sectors, similar to cutting a pie
into pieces (circumplex of regions).

A number of particular combinations of facets that play such roles lead to
structures that were given special names because they are encountered frequently
in practice. For example, the combination of an angular facet and a radial facet in
a plane, having a common center, constitutes a radex. Adding an axial facet in the
third dimension renders a cylindrex. Another interesting structure is a multiplex, a
conjunction of at least two axial partitionings. Special cases of the multiplex are
called duplex (two axial facets), triplex (three axial facets), and so on. The multiplex
corresponds to the Cartesian coordinate system as a special case if the facets are
(densely) ordered and the partitioning lines are straight, parallel, and orthogonal to
each other.

There are also structures that are found less frequently in practice, such as
the spherex (polar facets in three-dimensional space) and the conex (similar to the
cylindrex, but with radexes that shrink as one moves along the axial facet).

7 Regions, Clusters, and Factors

The notion of a region is quite general. Clusters are just special cases of regions.
Lingoes (1981) defined a cluster as a particular region whose points are all closer to
each other than to any point in some other region. This makes the points in a cluster
look relatively densely packed, with empty space around the cluster. For regions,
such a requirement is generally not relevant. All they require is a rule that allows one
to decide if a point lies within or outside the region. The points 5 and 6 in Figure 5 are
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in different regions, but complete linkage clustering, for example, puts them into one
cluster together with point 4, while it assigns points 7 and 8 to another cluster. For
regions, the distance of two points—on which clustering is based—does not matter.
Indeed, two points can be very close and still be in different regions. Conversely,
two points may be far apart and yet belong to the same region. Moreover, clusters
are usually identified on purely formal criteria, whereas regions are always based on
substantive codings of the represented objects. Guttman (1977) commented therefore
as follows: “theories about non-physical spaces ... generally call for continuity, with
no vacuum or no clear separation between regions.... The varied data analysis
techniques going under the name of cluster analysis generally have no rationale as
to why systematic clusters should be expected at all .... The term cluster is often
used when region is more appropriate, requiring an outside criterion for delineation
of boundaries” (p. 105).

Factors from factor analyses are not directly related to regions or to clusters.
However, it is often asked in practice what one would have found if one had analyzed
a correlation matrix by a factor analysis rather than by MDS. Factor analysis, like
cluster analysis, is a procedure that is substantively “blind” or that, if used in a
confirmatory way, forces a preconceived formal structure onto the data representation,
namely factors. The factors are (rectilinear) dimensions that are run through point
clusters, usually under the additional constraint of mutual orthogonality. For Table 2,
a factor analysis yields three factors with eigenvalues greater than 1. After Varimax
rotation, one finds that these factors correspond to three clusters in Figure 5, {1, 2, 3},
{4, 5, 6}, and {6, 7, 8}. Hence, in a way, the factors correspond to a polar partitioning
of the MDS configuration in the given case, with three factors or regions in a two-
dimensional MDS space. With positive correlation matrices, this finding is rather
typical; that is, one can expect m + 1 factor-induced regions in an m-dimensional
MDS space. The reason for this is that positive correlations are conceived of in
factor analysis as a vector bundle that lies in the positive hyperoctant of the Cartestan
representation space, whereas MDS—which does not fix the origin of the space—
looks only at the surface that contains the vector endpoints. Thus, Figure 5 roughly
shows the surface of a section of the sphere whose origin lies somewhere in the center
of the points but behind (or above) the plane. The factors, then, correspond to a tripod
fixed to the origin and rotated such that its axes lie as close as possible to the points.
Hence, one notes that the location of this dimension system depends very much on
the distribution of the points in space, while this is irrelevant for regions, although,
of course, a very uneven distribution of the points in space will influence the MDS
solution through the stress criterion.

8 Discussion

Partitionings of geometric configurations that consist of only a few points are easy
to find but they leave the exact shape of the partitioning lines quite indeterminate.
More determinacy and greater falsifiability are brought in by increasing the number
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of items. Another principle for restricting the choice of partitioning lines is to think
beyond the sample. In Figure 6, the partitioning lines were chosen, in part, by
considering the universe of all intelligence items, a cylindrex (Figure 8).

The system of partitioning lines should, in any case, not attend too much to
the particular sample. “Simple” partitionings with relatively smooth cutting lines
are typically more robust. But what is simple? Surely, a regionalization consisting
of simply connected regions as in an axial or an angular system is simple, but so
are the concentric bands of a circumplex. Hence, simple means, above all, that the
partitioning is simple to characterize in terms of the roles of the facets that induce the
regions. Naturally, if one admits greater local flexibility for the partitioning lines, then
the number of errors of classification can generally be reduced. However, irregular ad
hoc partitionings also reduce the likelihood to find similar structures in replications
and in the universe of items.

Admitting very irregular lines also makes it difficult to reject a regional hypoth-
esis. Generally, partitionings become more unlikely to result from chance the more
points they classify correctly, the more differentiated the system of facets is, the
simpler the partitioning lines are, and the greater the stability of the pattern is over
replications.

In addition, the pattern of regions should make sense. Irregular lines are difficult
to characterize and make it hard to formulate the role of the respective facet. For
the intelligence items, in contrast, the radial order of inference, application, and
learning is not only simple and replicable but also seems to point to an ordered facet
“complexity,” where inference is the most complex task (see earlier). If application
items, then, come to lie in the radex center, such further search for substantive meaning
is thwarted.

It would be desirable to have an MDS procedure that not only represents the
similarity data optimally by distances of an MDS space but also enforces certain
regionalities onto the MDS solution. For axial facets one can enforce an appropriate
regionality by linear constraints (de Leeuw and Heiser, 1980; Borg and Groenen,
1997). A general solution, however, is not known.

A correspondence between data and content categories can also be established
a posteriori. One may recognize certain groupings or clusters in the points and then
think about a rationale afterward to formulate new hypotheses. When the definitional
framework is complex, one typically does not predict a full-fledged regional system
(like a cylindrex) unless past experience leads one to expect such a system. Rather,
one uses a more modest strategy with exploratory characteristics and simply tries to
partition the space, facet by facet, with minimum error and simple partitioning lines.
Even more liberal and exploratory is the attempt to identify space partitions according
to new content facets, not conceived in advance. The stability of such partitions is
then tested in replications.

Establishing a regional correspondence is one thing, but researchers typically also
want to “understand” such regularities. Why, for example, are work values organized
in a radex? An answer to this question can be derived, in part, from reasoning
in Schwarz and Bilsky (1987). These authors studied general values. One of the



364 Chapter 24. Regional Interpretations in Multidimensional Scaling

facets they used was “motivational domain” = {achievement, self-direction, security,
enjoyment,. .. }. These distinctions were considered nominal ones, but there was an
additional notion of substantive opposition. Four such oppositions were discussed,
for example, achievement versus security: “To strive for success by using one’s skills
usually entails both causing some change in the social or physical environment and
taking some risks that may be personally or socially unsettling. This contradicts
the concern for preserving the status quo and for remaining psychologically and
physically secure that is inherent in placing high priority on security values” (p. 554).
Hence, the region of achievement values was predicted to lie opposite to the security
region. If we use this kind of reasoning post hoc on the work value radex of Figure 9,
we can explain the opposite position of the sectors “r” and “a” (in Maslow’s sense)
by a certain notion of “contrast” of striving for self-actualization and for recognition,
respectively.

To predict regional patterns requires one to clarify the expected roles of the facets
in the definitional framework. This involves, first of all, classifying the scale level
of each facet. For ordered facets, one predicts a regional structure whose regions
are also ordered in some way, so that the statement that some region R comes
“before” another region R’ has meaning. The order of the regions should correspond
to the order specified for the elements of the corresponding facet. For qualitative
facets, any kind of simple partitionability of the point configuration into regions,
each of whose points share the same facet element, is interesting. The distinction
of facets into qualitative and ordinal ones represents a “role assignment” (Velleman
and Wilkinson, 1994) that is “not governed by something inherent in the data, but
by interrelations between the data and some substantive problem” (Guttman, 1971,
p- 339), that is, by certain correspondence hypotheses linking the observations and
the definitional system. Hence, if one can see a conceptual order among the facet’s
elements and hypothesize that this order is mirrored in the observations collected on
corresponding items, then the facet “is” ordered—for testing the hypothesis. Scale
level, thus, remains context related.

Consider as an example the facet “color” = {red, yellow, green, blue, purple}.
One would be tempted to say, at first, that color “is” a nominal facet. Yet, with respect
to similarity judgments on colors, “color” has been shown to be ordered empirically
in a circular way. Furthermore, with respect to physical wavelengths of colors, “color”
is linearly ordered.
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Chapter 25

Visualizing Categorical Data
with Related Metric Scaling

Carles M. Cuadras and Josep Fortiana

1 Prelude: Metric Scaling

Measuring straight line distances on a map with a ruler is an easy task. From the
map in Figure 1, showing the locations of four European cities, we obtain the given
distances. Such arrays of distances are common in road maps. Data that can be
likened to distances are common in multivariate statistics, where they are often called
dissimilarities. A dissimilarity matrix is a square, symmetric matrix of nonnegative
data and has zeros on its diagonal.

Let us now consider the following question: given a dissimilarity matrix, such
as the one in Figure 1, how can we reconstruct from it the map on which it is based?

Metric scaling, also called principal coordinate analysis (although as a rule the
first term is used in a more general sense), is a technique that allows us to construct
a map, or Euclidean configuration, from a matrix of dissimilarities. Sometimes this
construction is not possible: a necessary condition for it is that the dissimilarities
must obey the triangle inequality, in which case they are called distances.

Because the same set of distances can be obtained from several Euclidean con-
figurations of points, one of them is selected as the usual metric scaling solution. The
criterion used for this selection is explained in the following. In our example of four
European cities, the solution is given in Figure 2.

The main advantage of metric scaling becomes apparent when we process a
dissimilarity matrix that has not been obtained from actual measurements from a
map. For instance, our “dissimilarities” could be “time spent traveling by car from
one city to another” or “number of daily flights between two cities.”

365
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Figure 1: Geographical interdistances between four European cities. We can measure

distances onamap ....

Berlin
[ ]
Barcelona -824.6  255.8 Lorglon
Berlin 720.9 373.0 Paris
London 148.5 -445.9
Paris -44.76  -182.9
°
Barcelona
Figure 2: ...or we can try to reconstruct a map from the distances between a set of

objects. Euclidean configuration for four European cities obtained by metric scaling
from the set of interdistances. In the left-hand side matrix of coordinates, the first
column corresponds approximately to the N-S direction and the second column to the
E-W direction; hence in the right hand diagram, the first and second coordinate have
been plotted along the vertical and horizontal axes, respectively.
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An exact Euclidean configuration for these general dissimilarities may require
more than two dimensions. However, since a representation on a plane is still useful,
from all exact Euclidean configurations we will choose one such that its first two
coordinates give a best approximation to the original dissimilarities. More generally
it is known that, if an exact Euclidean configuration requires p coordinates, the metric
scaling configuration is characterized by the property that for each k, 1 < k < p, its
first k coordinates give the best k-dimensional approximation to the true distances.

2 Introducing Related Metric Scaling

Data often contain information that is duplicated in some sense: for example, (1)
opinion polls before and after a political event, (2) results of elections classified by
cities and geographical distances between the same cities, or (3) preferred leisure
time activities of married couples, questioning husband and wife separately. For 1
we have different observations obtained at different times for the same objects and
variables. For 2 we have the same objects but a different kind of distance matrix.
For 3 we have the same variables observed for paired individuals.

Table 1 shows an artificial data set, consisting of the answers of six married
couples A-a, B-b, C—, D-d, E-e, F-f, to a survey on preferred leisure time
activities.

Using metric scaling, we can obtain graphical representations of men (Figure 3,
left-hand diagram) and women (Figure 3, right-hand diagram). We can observe that
C and E share the same set of preferences whereas A and D differ widely, that for
women a and b share the same preferences, and so on.

How can we represent the set of couples so that the information for husbands
and wives is in the same display? A straightforward method is to join the left and

Table 1: Leisure time activity preferences expressed by six married couples (1 = “Yes,
Ienjoy,” 0 = “I dislike/try to avoid”).?

Husbands Wives
Traveling Home Sports Traveling Home Sports
A i 1 0 a 1 1 0
B 1 0 1 b 1 1 0
C 0 1 0 c 0 0 1
D 0 1 1 d 0 1 1
E 0 1 0 e 1 0 0
F 1 1 1 f 1 0 1

“Each row represents a married couple. Labels reflect this relationship, for example, the wife
of A is labeled a.
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o R

Figure 3: Metric scaling graphical representations of Table 1. The diagram for men
appears on the left (percentage of variance 86.7%), and the diagram for women appears
on the right (percentage of variance 92.8%.)

right halves of Table 1 and to perform a metric scaling with the resulting 6 X 6 data
matrix containing all the data, yielding Figure 4a. For example, Aa now refers to the
row of six elements corresponding to the first couple.

Another possibility is to use related metric scaling, an extension of metric scaling.
Its aim is to analyze two distance matrices together, taking into consideration the

Aa

Aa

Ce

Ff Bb Ff Bb

Dd Dd

Figure 4: Metric scaling graphical representations of Table 1. The diagram for the
whole data, using ordinary scaling (percentage of variance 72.3%), appears on the
left, and the diagram obtained with related metric scaling, joining the two distance
matrices (percentage of variance 65.7%), appears on the right.
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Table 2: Average number of days per week on which pairs of wives meet

a b c d e f
a 7 6 1 2 4 3
b 6 7 1 2 4 3
c 1 1 7 2 3 4
d 2 2 2 7 2 3
e 4 4 3 2 7 2
f 3 3 4 3 2 7

possibility of redundant information. This leads to a related distance matrix, which
can be represented using ordinary metric scaling.

Figure 4b shows the result of performing related metric scaling from the two
distance matrices obtained from the two halves of Table 1. It is not surprising that
this diagram is very similar to the one on its left, because both are obtained from the
same whole data set.

To distinguish the differences, we note that the metric scaling representation
of Aa, ... ,Ff according to the whole data set is equivalent to considering the six
columns of Table 1 as if they were associated with preferences in six different
activities, which is not the case, because they are associated in pairs: activities 1 and
4 (traveling), 2 and 5 (home), 3 and 6 (sports). For instance, it seems contradictory
to admit that, for example, the F f couple simultaneously prefers to stay at home and
not to stay at home.

There are circumstances in which a related metric scaling is not only advisable
but also the only possibility. Suppose that we prefer to relate the husbands’ leisure
activities to the information about the wives in Table 2: the average number of days per
week on which each pair of women meet each other. Taking these figures as measuring
similarities, for example, the similarity of a and b is s(a, b) = 6, we can easily convert
them into dissimilarities by subtracting them from 7,d(a,b) = 7 — s(a, b), giving
Table 3. Now the data for the husbands and wives are of different types, which
prevents us from performing ordinary metric scaling.

By using related metric scaling, however, we can still obtain a representation
of Table 3, as shown in Figure 5. More generally, related metric scaling can display
any data consisting of, or convertible to, an associated pair of dissimilarity matrices.
Since these two matrices are not independent of each other, we would like to relate
them in the graphical display.

3 Description of Methodology
Metric scaling, or “classic scaling,” originated in Schoenberg (1935), Young and

Householder (1938), and Torgerson (1952, 1958) and was extended and related to
other multivariate techniques by Rao (1964) and Gower (1966). Since then, it has
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Table 3: Preferences expressed by six husbands for leisure time activities (1= “Yes,
I enjoy,” 0= "I dislike/try to avoid”) and distance matrix between their wives, as
explained in the text

Husbands Wives

Traveling Home Sports a b c d e f
A 1 1 0 a 0 1 6 5 3 4
B 1 0 1 b 1 0 6 5 3 4
C 0 1 0 c 6 6 0 5 4 3
D 0 1 1 d 5 5 5 0 5 4
E 0 1 0 e 3 3 4 5 0 5
F 1 1 1 f 4 4 3 4 5 0

been widely applied in many disciplines and is considered a useful complement
to cluster analysis. Descriptions of the method and its properties can be found in
standard textbooks on multivariate analysis (Mardia et al., 1979, p. 397; Seber, 1984,
p- 235) and monographs (Davison, 1983; Cox and Cox, 1994).

Given n objects, {1,2, ... ,n}, say, and a distance matrix between them, A =
[8i;], the aim of metric scaling is to find, for each object i, a set of coordinates in m

Ce
Bb

Dd

Ff

Figure 5: Related metric scaling graphical representation of Table 3 (percentage of
variance 70.9%).
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dimensions
— 1
X; (xil’xi2v-- . ,xim) ( )

such that §;; is equal to or closely approximated by

@

which is the Euclidean distance between X; and X;. In practice, a two-dimensional
graphical display is often used. The n X m matrix of coordinates X = [x;;] is chosen
in such a way that the first two coordinates give the best fit to the initial squared
distance

87 = dij(2)* = (xy — xj1)* + (x — x)° 3)
where d;;(2) is the Euclidean two-dimensional distance.
To derive the formulas to compute X, with rows XIT, cens XI, let us write (2) as
ds' = ”X,‘—Xj”2 =X;I-X,'+X.}-Xj—2XiTXj. (4)

The n X n matrix S = [s;;], with 5;; = x;rx j» is called the inner product matrix
associated with A = (§;;). With this notation, (4) becomes

dlzj = s; + Sjj — 2S,‘j (5)

If we impose on X the condition Z:'l=1 x; = 0, in order to obtain a centred configu-
ration, we have the equality

n n
E S,'j = E S,'j =0
i=1 j=1

which allows us to solve (5) for s5;; by taking row, column, and overall averages,
as is the usual procedure for analogous equations found in classical ANOVA and
log-linear models. The result is
1 — — —
s =3 (afj — 8% -8+ 62..)
where ﬁ,-. s 52, j»and 82.. are the row, column, and overall averages of the two-way
table [8,-2]-], respectively. Thus, s;; is computed directly from the distances §;;.

The next step in metric scaling is to find the spectral decomposition S = UAUT,
where U is the n X m matrix of orthonormal eigenvectors of the symmetric matrix
S that correspond to the first m eigenvalues, ordered as A} = Ay = -+ = A, > 0,
m = n — 1, contained in the diagonal matrix A. The metric scaling solution is the
matrix

X =UAY2 where A2 = diag(v/Al, VAzr--. ) V/Am) (6)
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Note that S=XX is the matrix of scalar products s;; = X x;, implying that the set
{x]} of rows of X satisfies (4) and, equivalently, (2).

On the other hand, each column X; of X can be understood as a “variable,”
which takes the value x;; on the set of individuals i, i = 1,...,n. The condition
imposed, that the sum of rows of X is null, is equivalent to the column means being
zero: X j = 0,j = 1,...,m. In addition, taking into account the definition (6) and
the orthonormality of the columns of U, we obtain the variances and covariances

var(X ) =X]TXj/n=)\j/n, j =1....m
cov(X;, Xp) = X[ X, /n = 0, hk=1,...,m j#k

which allow us to interpret the variables X; as principal components.

Since the first two columns (X, X;) of the metric scaling solution (6) are associ-
ated with the two largest eigenvalues (i.e., the two largest variances), they give the best
two-dimensional approximation, as required in (3). A measure of the quality of the
approximation is given by the percentage of variance: 100(A; + A2)/(A + -+ -+ A,).
For instance, in Figure 2 the percentage of variance is 99.5%, hence the picture is an
accurate representation of the set of four European cities.

Figures 2 to 4a were obtained by the methods described up to this point. The
distance used in Figure 3 is deduced from the matching coefficient between individ-
uals; that is, the squared distance equals the number of variables minus the number
of coincident values of their coordinates, computed from Table 1. For example, the
distance between A and B is 6(A,B) = /3 —1 = \/5, since there are three coor-
dinates, and A and B agree in one of them. Similarly, using the right-hand part of
Table 1, 8(a,b) = v/3 — 3 = 0, and for Figure 4a, using the six columns of Table 1,
8(Aa,Bb) = \/6 — 4 = /2.

Suppose now that we have two n X n distance matrices A4 = (84(i, j)), Ap =
(6g(i, j)), which are defined either on the same finite set or on two different sets with
the same number n of objects, paired between them. The two preceding examples
cover both possibilities. Our objective here is to construct a joint n X n distance
matrix Agp = (845(, j)), which allows us to represent the n objects in a single
graphic display, relating the displays obtained from A4 and Ag.

The problem of constructing A4 is similar to that of constructing a joint proba-
bility distribution given its marginals. These constructions must follow some compat-
ibility rules and often a dependence structure is imposed (Cuadras, 1992). Another
example of this type of construction is the iterative proportional fitting procedure for
adjusting a multivariate contingency table by maximum likelihood to a hierarchical
log-linear model, where the set of marginals is determined by the given model and
their actual values are computed from the observed table (see, e.g., Bishop et al.,
1975, sect. 3.5).

We propose the following properties for 845, with marginal distances 84 and g:

1. If 64 = Othen 45 = 08p;if 6p = 0 then 645 = 64.
Comment: if all the objects are identical under 8,4, then this distance has no
influence on the joint distance.
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2. If 84 = &g, then 648 = 64 = &p.
Comment: if the distances are the same under &4 and g, then the joint distance
must maintain these values.

3. If the principal coordinates obtained from 64 and those obtained from &g are
orthogonal, then 83, = &3 + 83.
Comment: this is Pythagoras’ theorem. If X, is obtained from 64 and Xp is
obtained from 83, the orthogonality condition is X Xp = 0.

There are many joint distances satisfying these conditions. Here we propose one.
Let S4, Sp be the inner-product matrices associated with A4 and Ag, respectively.
Then the matrices of principal coordinates X4 and Xp satisfy S, = X,X] =
UQAQUI, a = A, B. We define the joint distance 845 between two objects i and j,
whose coordinates are x; and x; with respect to 84 and y; and y; with respect to 8z,
by

835G, j) = 82(i, j) + 83(i, j) — Tag(i, j) (7
where
a8, ) = % — x;) AV 2X XA 2y — y)) 8)

encapsulates the dependence between the A and the B variables.
It can be proved that the joint distance defined by (7) satisfies properties 1, 2,
and 3, provided that A4 and Ap have the same geometric variability, that is, if

1 n n 1 n n
=D BB Bl PP 1)
i=1 j=1 i=1 j=1
(Cuadras and Fortiana, 1995a). Note that this condition can always be assumed to
hold, because multiplying one of the marginal distances by an appropriate constant
amounts to a change of measurement unit. In the illustrations of this chapter, the
geometric variability of the second distance matrix has been equaled to that of the
first distance matrix.
In addition, the inner product matrix S4p associated with the matrix A4p of joint

distances is given by

1
Saz = Sa + S5 — 5 (S8 + /8 %) ©
where 812 = U,AL2UT = X,A;'/?’X], @ = A,B. Finally, the related metric
scaling solution X4p is computed from the spectral decomposition of Sap.
4 An Empirical Application

We applied related metric scaling to a subset of data from a study about statistical
research in Spain. The data matrix in Table 4 contains the number of papers published
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Table 4: Number of papers published by 11 Spanish authors classified into 11 subjects
of statistics.®

ber cua gm gp gom mor ol par pen sal sat Total
GE 4 0 0 0 0 0 0 0 3 0 2 9
PT 9 1 0 0 0 5 0 0 0 0 0 15
PD 1 6 0 0 0 2 0 0 0 0 3 12
ID 0 0 21 11 0 0 0 33 0 13 0 78
FS 0 0 16 9 0 0 0 5 0 0 0 30
SI 3 2 0 0 11 5 2 0 2 0 0 25
BS 27 0 0 2 0 8 0 8 8 0 0 53
MA 5 6 0 0 0 0 0 0 0 1 12 24
MS 0 6 0 0 0 0 9 0 0 0 0 15
RE 2 6 0 0 5 0 1 0 8 0 0 22
TS 0 0 0 0 1 0 o 0 15 0 0 16

Total 51 27 37 22 17 20 12 46 36 14 17 299

2 Abbreviations for authors: ber = J. M. Bernardo, cua = C. M. Cuadras, gim = M. A. Gil,
gip = P. Gil, gom = W. Gonzdlez-Manteiga, mor = E. Moreno, oll = J. M. Oller, par =
L. Pardo, pen = D. Peiia, sal = M. Salicri, sat = A. Satorra. Abbreviations for subjects:
GE = Mathematical methods, sampling, applications, general, PT = Probability theory,
PD = Probability distributions, SI = Statistical inference, BS = Bayesian statistics, ID =
Statistical information and divergences, FS = Fuzzy sets, MS = Multidimensional scaling and
statistical distances, MA = Multivariate analysis, classification, RE = Regression, ANOVA,
experimental designs, TS = Time series, modeling processes.

by 11 representative authors (columns) on 11 subjects (rows). The data were collected
from the Extended Current Index of Statistics (CIS) Database (Thisted, 1994).

Figure 6a is the graphic display of the authors, obtained by ordinary metric
scaling, from Table 4. To obtain a distance matrix, we computed first the profile of
each author, that is, the proportion of papers on each of the subjects considered. For
example, from Table 4 the profiles of ber and cua are

GE PT PD ID FS SI BS MA MS RE T8
ber: = [.078 .176 .020 .000 .000 .059 .529 .098 .000 .039 .000]
cua: = [.000 .037 .222 .000 .000 .074 .000 .222 222 222 .000]

The distance between authors i and j, with profiles p; = [pi1,...,Pim] » and
p; = [pjl,...,pjm]T, where m = 11, can be computed, for example, using the
Hellinger distance:

) = || > (vox — y/7w)

k=1

For example, 8y (ber, cua) = /1.092 = 1.045.
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Figure 6: Two—dimensional Euclidean representations of authors: (a) using only the
first (Hellinger’s) distance matrix (percentage of variance 60.5%) and (b) related metric
scaling representation (percentage of variance 43.1%).

The Hellinger distance is one of the classic distances between probability distri-
butions. Rao (1995) proposed its application to represent graphically a set of rows or
columns of a frequency table. Principal coordinate analysis of the matrix of Hellinger
distances between a set of profiles is an alternative to correspondence analysis. Corre-
spondence analysis can be defined as the metric scaling of the chi-squared distances
between profiles, where each profile is weighted (Greenacre, 1984). Hellinger dis-
tance is a sensible choice when, as is the case in Table 4, the frequency table has
a product-multinomial structure, that is, each column contains measurements on a
different individual or case.

In Figure 6a, three clusters are apparent: center left, right top, and right bot-
tom. These clusters can be associated with the subjects (ID,FS), BS and (MS,MA),
respectively. However, this display is not a faithful representation, because several
authors have published joint papers, the information on them is not independent, and
we should correct for this fact. Therefore, in addition to Table 4, we consider, for
each pair of authors the number of papers published jointly.

Only six authors in the selected set have written joint papers, as shown in the
lower triangle of Table 5. The raw information contained in the lower triangle and
diagonal of Table 5 can easily be converted into dissimilarity data. For instance, we
can define

8(1,]) =1- aij/min{ai,-,ajj} (10)

where a;; is the number of joint papers by authors i and j and a; is the number of
individual papers by author i. For example, for i = 2 and j = 7 (authors cua and
oll), we have 8(2,7) = 1 ~ 5/ min{27, 12} = 1 — 0.417 = 0.583. The upper triangle
of Table 5 contains the resulting dissimilarity matrix.
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Table 5: Number of joint papers by 11 authors (lower triangle and diagonal) and
distance matrix (upper triangle) computed from (10); total number of papers by each
author on the diagonal

ber cua gim gip gom  mor oll par pen sal sat
ber 51 1 1 1 1 1 1 1 1 1 1
cua 0 7 1 1 1 0.583 1 1 0.929 1
gim 0 0 1 1 1 1 1 1 1
gip 0 0 0 1 1 1 1 1 1 1
gom 0 0 0 0 7 1 1 1 1
mor 0 0 0 0 0 i 1 1
oll 0 5 0 0 0 0 1 1 1
par 0 0 0 0 0 0 0 1 1
pen 0 0 0 0 0 0 0 0 36 1
sal 0 1 0 0 0 0 0 6 0 1

sat 0 0 0 0 0 0 0 0 0 0 17

Again, as in the artificial example in Section 2, we have two sources of informa-
tion on the given set of individuals: Table 4 and the upper triangle of Table 5. These
data are of two different types: Table 4 contains information on individuals, and
Table 5 contains information on pairs of individuals. Related metric scaling pro-
vides a way to mix these two types of information, taking into account possible
redundancies.

Figure 6b is the graphical representation of the set of authors by related metric
scaling. We can appreciate that the pairs (cua, oll) and (gim, gip) are now slightly
closer, as they have jointly authored papers, and gom now occupies a more isolated
position, consistent with the fact that this author has produced no joint papers with
the remaining authors in the analyzed set. The apparently larger displacement of sat,
who also has no joint papers with other authors, and his approximation to gom are
due to the loss of variability incurred when projecting on a plane. To see the isolation
of gom and sat, more dimensions would have to be visualized.



Chapter 26

Contrasting the Electorates
of Eight Political Parties:
A Visual Presentation
Using the Biplot

Magda Vuylsteke-Wauters, Jaak Billiet, Hans de Witte, and
Frans Symons!

1 Introduction

Belgian election studies of the Flemish voter’s perceptions and attitudes revealed
that the ecologist (green) party “Agalev” and the radical right-wing party ‘“Vlaams
Blok” were each other’s antipodes. In the 1991 general election in Flanders, these
two electorates were polarized by their attitudes toward immigrants, materialism
and postmaterialism, economic conservatism, and Flemish nationalism (Billiet and
de Witte, 1995). These findings partially support both the thesis about the emergence
of two new cleavages (universalism/particularism and postmaterialism/materialism)
and the finding of a new right-left cleavage. What happened to the “old” cleavages
that divided Belgian society so sharply in the past (Lorwin, 1971)? Do the ideolog-
ical conflicts between church and state, beween labor and capital, and between the
linguistic communities (Dutch speakers and the Francophones) no longer play a role?
Are these old cleavages no longer relevant and are the values on which they were
built completely replaced by new value orientations (see van Deth 1995)? In order
to determine the relevance and dominance of the hypothesized new and old cleav-

'Frans Symons passed away in July 1997.
377



378 Chapter 26. Contrasting the Electorates of Eight Political Parties

ages, we will analyze the distributions of the electorates with respect to 14 attitude
scales expressing value orientations that are related to the old and new cleavages.
We are using the term “cleavages” in the sense of value cleavages, because we will
confine ourselves to attitudes and value orientations, neglecting social background
variables and institutional ties (see Lipset and Rokkan, 1967; Knutsen and Scar-
brough, 1995, p. 497). How well can these 14 attitude scales cleave the voters into the
eight electorates, and how can we arrive at a clear visualization of the large amount of
information? In a previous study, Billiet and de Witte (1995) used logistic regression
in order to predict the odds ratios of voting for each party. They used the whole set of
attitude scales as predictors. With logistic regression, however, the visualization of
the results remains a real problem. In this chapter, we will offer a biplot representa-
tion based on an original view of canonical correlation analysis as a combination of
projection and rotation methods (Vuylsteke-Wauters, 1994). It is demonstrated that
this approach is capable of displaying the complexity of the data containing two sets
of variables.

2 Data and Measurements in the
Flemish Voters’ Study

In late 1991 and early 1992 a national survey was conducted of voting and political
attitudes in Belgium involving 2691 interviews in the Flemish region. The sample was
constructed with the equal probability method and was representative of all adults
18-74 years old (Carton ef al., 1993). A two-stage sample with equal probabilities
was used. In the first stage, the municipalities were selected at random. About 120 of
the 316 Flemish communities were included in the sample. In the second stage, a ran-
dom sample of respondents was selected from the national population registers. The
response rate was 64%. The interviewers were trained in an approved experimental
training program developed by the research group.

The 14 attitude scales that are used here are based on sets of items selected via
tests of measurement models with confirmatory factor analysis (see, for example,
Bollen, 1989). The confirmatory factor analysis was preceded by an exploratory
factor analysis based on another part of the sample. The complete set of items and
scales, as well as the measurement models, are documented by Billiet and de Witte
(1995).

The voters’ study contained an index of religious identification and church
attendance, which is related to a set of three attitude scales that can be identified
as indicators of the concept “sociocultural conservatism” (Middendorp, 1991). These
attitudes are the rejection of the liberalization of abortion (abbreviated henceforth as
ABORTION), the preference for clearly distinct roles between men and women in
society (SEXROLES), and an aversion to the free expression of opinions in public
(NOFREEOP). Because of their relationship with church involvement, they can be
used as attitudinal expressions of the value orientations behind the first old cleavage
(Middendorp, 1991).
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The second old cleavage refers to the conflict between labor and capital. This
dimension was operationalized by four attitude items that constitute one scale re-
garding socioeconomic conservatism (ECONCONS) in the sense of the rejection of
socioeconomic equality and the wish to limit the influence of labor unions and the
government.

The linguistic conflict, the third old cleavage, was operationalized by a scale in
which the respondents had to indicate whether they wanted Flanders (or Belgium) to
decide everything itself (FLABELG). This scale was strongly related to a set of items
that measured other aspects of Flemish nationalism but that were not presented to all
respondents.

The postmaterialist value orientation (POSTMAT) was measured by the number
of postmaterialistic objectives the respondents chose from a list of 12 materialistic
and postmaterialistic political objectives (see Inglehart, 1987, 1990). A particular
aspect of postmaterialism is readiness to make social and financial sacrifices for the
preservation of the sociophysical environment. This orientation was measured by
a set of six items (MILIEU). Together with the postmaterialist value orientation,
this ecological orientation is considered to be an operationalization of the first new
cleavage: “postmaterialism versus materialism.”

The potential second new cleavage was operationalized by four attitude scales: a
negative attitude toward immigrants in the sense of feeling threatened by the presence
of immigrants in the acquisition of scarce goods such as jobs, social security benefits,
housing, and culture (OUTGROUP); biological racism, or the idea that the white
race is superior and has to be kept pure (SUPRACE); the emphasis on traditional
values and principles, such as authority and respect for law and order (AUTHORIT);
the idea that one is insufficiently protected against petty criminality (PETTYCRI).
The authoritarianism scale is a short version of the California F-scale (Adomo et
al., 1950) designed to measure “potential fascism” (see, for example, Meloen et al.,
1994). Previous research confirmed the relationship of biological racism with all
other aspects of the extreme right-wing ideology.

The last relevant but more or less hybrid dimension refers to social and political
indifference and distrust. Three scales were selected to operationalize this dimen-
sion. One was a scale measuring political inefficacy (Campbell et al., 1954, p. 187)
and expressing feelings of powerlessness in the domain of politics (POWERLES).
The second was a scale measuring utilitarian individualism (Bellah er al., 1985):
being driven purely by self-interest and personal material success are core elements
of this kind of individualism (INDIVID). This attitude reflects a pessimistic and
even misanthropic world view. The third was a scale measuring feelings of social
isolation (SOCISO). This aspect reflects the experience of disintegration of the tra-
ditional social networks. Each of these three scales is related to Srole’s concept of
“anomia” (Srole, 1956) and may be associated with protest voting. All scales were
transformed into 11-point scales ranging from 0 to 10, with zero indicating the high-
est level of disapproval with the scale content and 10 indicating the highest level of
agreement.
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The second set of variables deals with preferences, that is, the respondents’ voting
behavior in the 1991 general elections, which is recoded in a set of dummy variables.
In the Flemish part of Belgium, there were seven major political parties in 1991: the
Christian Democrats (CVP), the Liberal Party (PVV), the Socialist Party (SP), the
traditional Flemish nationalists of the “Volksunie” (VU), the ecology party (Agalev),
the extreme right-wing party the “Vlaams Blok,” and the Libertarians (Rossem).
Those who voted blank or turned in invalid votes can be considered as a specific
electorate as well. Voting is compulsory in Belgium, but a number of voters (about
7% in 1991) cast their ballots without filling them in (i.e., blank vote) or rendered
them invalid by writing comments on them.

The Christian Democratic Party (CVP) is the heir of the Catholic Party that
originated from the ideological conflict between church and state at the beginning
of the 19th century. The degree of church involvement and membership of Christian
organizations are still important predictors of voting for this party.

The conflict between labor and capital at the turn of the 19th century forced the
liberal party at that time to split into two parties: the socialists and the liberals. The
Socialist Party (SP) converted its ideology from Marxism to a broader progressive
stand on socioeconomic issues in which the basic value of social equality is stressed.
Its voters tend to be nonbelievers or marginal Catholics who participate in socialist
organizations. The liberal Party for Freedom and Progress (PVV) takes a liberal-
conservative stand on socioeconomic issues, with a focus on socioeconomic freedom
and on the restriction of the influence of the state in this domain. This party appeals
to the higher strata and the more highly educated.

The Volksunie (VU), which promotes the interests of the Flemish, is a result of
the third cleavage: the linguistic or communitarian conflict in Belgium between the
Dutch-speaking and the French-speaking parts of the country.

The ecological or “green” party Agalev is perceived as the result of the rise
of a new value orientation in Belgian society that stresses postmaterialism (see, for
example, Inglehart 1987, 1990). The electorate of this party is rather young and
non-Catholic and originates from the higher strata and educational levels.

Also, the rise of the extreme right-wing party the Vlaams Blok has often been
attributed to a new cleavage. More than 50% of the Vlaams Blok voters mentioned
their aversion to immigrants as the main reason for their electoral choice (Swyn-
gedouw, 1992). In explaining the rise of the Vlaams Blok, some studies refer to
feelings of political inefficacy as part of a broader, more encompassing new align-
ment of attitudes and value orientations such as individualism, ethnocentrism, and
authoritarianism.

Finally, the rise of a clear protest party, such as the Libertarians, Rossem, and
the rather large number of blank or invalid votes could reflect feelings of political
indifference and distrust in politics. These attitudes and feelings, of course, are not
a new value orientation and certainly not a new political cleavage. Nevertheless, it
is important to consider them here, as they may be of relevance in determining the
voting behavior of certain electorates.
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3 Attitudinal Differences Between
the Eight Electorates

Let us start the analysis by looking at a univariate comparison of the mean scores for
each attitude for all the parties. In Table 1, the scales are classified according to the
cleavages that were distinguished in the previous section. In an overall comparison of
the mean scores for all the political parties, we generally find statistically significant
(P < 0.001) differences between parties, the only nonsignificant difference being for
“social isolation” (P = 0.015). A nonparametric Kruskal-Wallis test was performed
because none of the attitudes had normally distributed data (Siegel and Castellan,
1988, pp. 206-216). The number of tests performed was limited by comparing only
the two most extreme parties with all the others. Because we had 13 tests for each
attitude, the significance level for rejecting the null hypothesis for each test was set at
.001, which corresponds roughly to an overall probability of .05 of a type I error. In
Table 1, the parties that differed significantly from all the other parties because they
had high or low mean scores are printed in boldface type.

As was expected, the electorate of the Christian Democratic Party (CVP) scored
on average significantly higher on the scales used as indicators for the first old
cleavage; however, this is true only for two of the three scales. The second old
cleavage is clearly built on the opposition between the Liberals (PVV) and the
Socialists (SP). The indicator of the third old cleavage is capable of distinguishing
the Volksunie significantly from the Vlaams Blok and both of these parties from all
the others.

Finally, Agalev is clearly the emanation of the new cleavages in its two possible
components, but this electorate is only the antipode of the Vlaams Blok voters in
the dimension of three extreme right-wing orientations, especially ethnocentrism.
The dimension of negative feelings concerning political powerlessness and utilitarian
individualism contrasts the electorate of Agalev with those who voted blank or turned
in invalid votes.

The deficiencies of this way of looking at the data are manifold. First, we need
a method that is capable of displaying the distribution for each electorate on all the
attitudes without resulting in an overwhelming number of tables. Second, we also
require an approach in which the attitudes in the electorates are analyzed simulta-
neously. Third, the method should differentiate between the attitudes according to
their relevance and dominance in creating cleavages into the electorate. This means
that the method should be capable of stating the net contribution of each attitude and
value orientation for joining each electorate. Fourth, it would be appropriate if the
analytical method resulted in a visualization of the data, displaying which attitudes
are capable of cleaving the electorate along the lines of the political parties. An ap-
proach that satisfied these requirements is a combination of projection and rotation
methods based on the biplot and canonical correlation analysis (Vuylsteke-Wauters,
1994).



Table 1: Mean scores on the 14 attitude scales in the different electorates®

Party

Attitudes Agalev CVP PVV SP VIBlok VU Rossem Null
First “old” cleavage
No liberalization of abortion

(ABORTION) 3.28 540 393 293 3.37 4.39 2.65 4.09
Differences in sex roles

(SEXROLES) 1.59 273 248 255 2.54 2.16 271 291
No freedom of opinion

(NOFREEOP) 2.73 321 269 254 2.62 2.65 277 2.64

Second “old” cleavage

Economic conservatism

(ECONCONS) 3.39 368 479 292 348 4.03 3.94 3.21
Third “old”™ cleavage
Flanders must decide

(FLABELG) 4.19 416 400 3.86 5.35 6.86 4,98 321

First “new” cleavage

Post-materialism?

(POSTMAT) 6.64 4.25 429 488 4.50 5.09 4.92 4.40
Sacrifices for milieu?
(MILIEU) 543 3.99 379 374 374 424 3.67 353

Second “new” cleavage

Insufficient protection

(PETTYCRIM) 6.51 743 743 744 8.09 735 7.70 7.50
Negative toward migrants

(OUTGROUP) 3.76 537 570 532 7.09 5.16 5.69 5.90
Superiority of white race

(SUPRACE) 217 431 405 379 5.00 344 3.81 3.94
Authoritarianism

(AUTHORIT) 517 687 655 658 6.69 6.60 6.00 6.83

Protest voting

Political powerlessness

(POWERLES) 4.7 5.25 526 545 5.83 5.12 5.87 7.54
Utilitarian individualism

(INDIVID) 2.53 354 372 392 4.01 3.10 3.62 4.23
Social isolation®

(SOCISOL) 2.28 254 232 260 2.87 2.35 2,25 2.98
Total (N) 225 696 491 401 227 207 78 124

“The parties are the ecologists (Agalev), the Christian Democrats (CVP), the Liberal Party
(PVYV), the Socialists (SP), the right-wing party (V1. Blok), the traditional Flemish nationalists
(VU), the Libertarians (Rossem), and blank or null votes (null). A number of voters are not
included in the analysis: those who did not report their vote (133), those who did not vote for
several reasons (51), and those who voted for other parties (26).

bQOriginal scales (materialism, no sacrifices) are reversed.

“Not significant at the .001 level. The associations between political party and all the other

scales are significant on this level.
382
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4 A Biplot Presentation by Means of Canonical
Discriminant Analysis

Visualizing the group structure in the different electorates with respect to the 14 atti-
tudes can be done by various methods. A well-known graphical display of the group
structure in the multivariate data is the scatterplot of the data produced by the canon-
ical variables. A more informative plot would be obtained if we could characterize
on the same plot which attitudes are most responsable for the discrimination of the
groups. This leads us to vizualise not only the voters—in their group structure—but
also the attitudes and their contribution to the separation between the electorates. This
kind of graphical display is called a biplot (Gabriel, 1971), where both observations
(voters) and variables (attitudes) are plotted.

4.1 Canonical Correlation Analysis

Canonical correlation analysis allows the researcher to examine patterns of rela-
tionships between sets of variables. With this technique we are able to study the
differences between the eight electorates with respect to the 14 attitudes simultane-
ously. As a data reduction technique, canonical correlation analysis in many ways
subsumes factor analysis. Rather than concentrate on the relationships within a single
set of variables, the analysis tries to find pairs of unobserved latent variables under-
lying two sets of variables. In our case, the first set of variables is the categorical
variable “party choice” coded as a set of eight dummy variables with data value 0
or 1. The second set of variables consists of the 14 attitude scales, measured on a
quasi-interval scale.

Notice that our objective is not to perform statistical tests on the relationship
between the two sets of variables, for which various statistical assumptions on the
data would be necessary, but rather to arrive at a visualization of the group structure
in the different electorates with respect to the full spectrum of attitudes.

Given two sets of centered and standardized variables and a sample of n observa-
tions, called the X variables and Y variables, respectively, denote the first data matrix
with p variables by X (n X p) and the second one with g variables by Y (n X q).
The aim of canonical correlation analysis is to find two new sets of uncorrelated
variables, called the U variables and the V variables, each with m variables, that are
linear combinations of the original X and Y variables, respectively. The U variables
and V variables are such that the first pair of variables, say U; and Vi, have maxi-
mum correlation; then the second pair, U, and V;, uncorrelated with U, and V, have
maximum correlation, and so on (see, for example, Gittins, 1985).

The solution is given by the following pair of generalized eigenvalue decompo-
sitions:

R;'RiR,'Ry Ry = AR?AT  where ATRjjA =1

R,'RyR;'R;;Ry = BR’BT  where BTRy,B =1
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or equivalently by the following generalized singular value decomposition:
R;'R;;R5, = ARBT  where ATRj;A = B'Ry,B =1

where Ry; and Ry, are the correlation matrices of the X and Y variables, respectively,
R is the p X g matrix of correlations between the two sets, and Ry = Rsz. The
singular values in the diagonal matrix R are the maximized correlations, called canon-
ical correlations, arranged in decreasing order. The U and V variables themselves are
obtained by linear transformations using the eigenvectors: U = XA and V = YB.

Linear discriminant analysis, on the other hand, is a method designed to discrim-
inate between groups on the basis of sets of multivariate observations observed on
their group members [this method is often described as canonical variate analysis or
multivariate analysis of variance (MANOVA) in textbooks on multivariate analysis].
This is indeed the situation we have here, where we have eight electorates and 14
scale variables observed on the sample from each electorate.

Vuylsteke-Wauters (1994) showed that linear discriminant analysis can be seen
as a special case of canonical correlation analysis. In this special case when one of
the sets of variables, say X, consists of dummy variables, the correlation matrix Ry,
is singular, and a generalized matrix inverse has to be used. The resulting canonical
variables have the property that they are uncorrelated as well as standardized to have
variance 1; in other words, the new variables are orthonormal and the correlation
between the U variables and V variables is simply UT V. Gabriel (1981a) gives appli-
cations of the biplot in the context of MANOVA. The fact that canonical correlation
analysis admits canonical variate analysis as a special case is also described by Gower
(1989a). The biplot properties of canonical correlation analysis are discussed in detail
by ter Braak (1990).

The original X and Y variables and the new U and V variables can be related by
computing correlation coefficients analogous to factor loadings, which in geometrical
terms can be expressed as the projection of the unit vectors for the original sets of
variables onto the unit vectors defining a new basis in the respective spaces: X' U and
YTV. When X is the (centered, standardized) indicator matrix, then it is the second
set of loadings YV that gives the canonical coefficients which allow us to interpret
the canonical variables which maximally discriminate between the groups.

4.2 Correlation Biplots

We use the results of canonical correlation analysis applied to the indicator variables
and attitude scale variables as a basis for a correlation biplot display of the political
parties and the attitude variables. In a two-dimensional biplot, we use the first two
columns of V, denoted by V), as a basis for the subspace. The projections of the
attitude variables in Y are then G = Y' V(3. The rows of G are used to depict the
attitude variables in the biplot, usually drawn as lines emanating from the origin of
the display to the points (Symons et al., 1983).

Individuals are displayed by the rows of F = V(; and are thus displayed by
their standardized canonical scores. In order to depict the eight political parties, the
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corresponding subsets of individual points are averaged to find the mean points, or
centroids, of each party. This process of averaging is the same as projecting the
dummy variables in X onto the basis V).

In interpreting the canonical correlation biplot, we can draw a unit circle, as is
frequently done in the usual correlation biplot of a single set of variables. Variables
whose points extend as far as the unit circle are very well reconstructed in the
display, which means that they are important in explaining group differences. Short
vectors, however, indicate poor display in the sense that they do not contribute to the
explanation as far as the first two canonical dimensions are concerned. Otherwise,
the interpretation is very much like that of the regular biplot; we look for large scalar
products between party points and attitude scale points, which indicate that people
voting for that party have high values on those attitude scales.
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Figure 1: Global view
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5 Interpreting the Biplot Presentations

The biplot for the two first canonical axes (Figure 1) accounts for 53% of the separa-
tion between the eight electorates based on Pillai’s trace. The attitudes with the largest
distances from the origin are OUTGROUP, POSTMAT, MILIEU, and ABORTION.
Agalev is the most outlying party and has the highest (absolute) mean scores on the
canonical variable that represents POSTMAT and MILIEU. For the representation of
the OUTGROUP variable, the Vlaams Blok has the highest score. These results con-
firm the relevance and dominance of two new cleavages. One of the old cleavages,
CVP, is best discriminated from other voters by the attitude toward ABORTION.
This finding is in line with the important role of the church (Billiet and de Witte,
1995). This figure also shows that the other attitudes used as indicators for the three
cleavages that we have found are not adequately represented in the first pair of axes
and seem of minor significance for separating the electorates.

Another way of looking at the biplot is obtained by drawing a line through the
origin and a particular group mean and projecting the group means on this line in
order to obtain a ranking of the groups. This projection onto a biplot axis is illustrated
for AGALEYV in Figure 2. The projections of the parties approximate their order on
the postmaterialist/materialist scale in the reduced spacee. We can see that AGALEYV,
for example, has a much higher value of POSTMAT than all other parties.

The other two old cleavages, built around economic conservatism (ECONCONS)
and linguistic conflicts (FLABELG), seem to be of little relevance in the reconstruc-
tion displayed in Figure 1. We can find these attitudes in the display of the third and
the fourth canonical axes (see Figure 3), which account together for another 30%
of the separation between the groups. In Figure 1 CVP and VU are close together,
whereas in Figure 3 VU separates out in the direction of FLABELG.

Another attitude well displayed in Figure 3 is economic conservatism (ECON-
CONS), which was intended to measure the labor—capital (or old right-left) cleavage.
It is apparent from this figure that the voters of the PVV are somewhat separated on
that value orientation.

The plots in the third and the fourth canonical axes sustain Elchardus’ (1994)
view about the old and the new right-left cleavages, but with the restriction that the
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Figure 2: Focus on AGALEV
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Figure 3: Biplot with the 3rd and 4th canoncial axes

social-economic cleavage is not as dominant as he stated. The Agalev and the SP
voters belong to different segments of the so-called progressive value orientations.

Finally, political inefficacy or powerlessness (POWERLES) is best represented
by the fifth axis (not shown here), which accounts for 7% of the separation between
the groups. As was expected, those who voted blank or turned in invalid votes are
separated from the other voters on this dimension.
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Figure 4: Scatterplot for AGALEV

The group means on the normalized canonical variables do not provide infor-
mation about the position of the individual voters. The idea of cleavages assumes
that the group members are more or less concentrated around the means: the more
they are concentrated, the more legitimate the use of the term, at least when the other
conditions for cleavages are met. Figure 4 shows the positions of individual voters of
Agalev on the first two canonical axes.
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6 Conclusions and Discussion

Our graphic presentation of correlation biplots sustains the position that the “new”
value orientations have not completely replaced the “old” value orientations as cleav-
ing forces in the political landscape in Flanders. The image is rather one of fragmen-
tation or pluralization as the new values are added to existing orientations (van Deth,
1995, p.3). In the space shaped by the first and the second canonical axes, we could
identify two new cleavages and one old cleavage, which were represented by attitude
scales as indicators for value orientations. The Agalev voters were most clearly sep-
arated from all the others not only because they scored high on postmaterialism but
also because they scored low on ethnocentrism and on traditional value orientations.
From other studies we know that the more educated professionals with jobs in educa-
tion, welfare, and culture are strongly overrepresented among the Agalev electorate.
As postmaterialists, the Agalev voters are not located in the traditional class structure
but mainly take positions among the new middle class (Knutsen and Scarbrough,
1995, p. 496; Inglehart, 1990, p. 332).

The attitude toward immigrants was able to separate adequately the Vlaams
Blok voters (10%) from the electorates of most other parties. At least one attitude,
authoritarianism, seems ambiguous as an indicator of the value orientation that is rep-
resented by the attitude toward immigrants. Its association with the traditional value
orientation and with cultural conservatism may be responsible for this. Ethnocentrism
seems an expression of feelings of being threatened, related to distrust of politics and
feelings of being insufficiently protected by the authorities (see Figure 1).

The traditional values are still relevant for a substantial part of the electorate.
This was already displayed in the space of the first and second axes in which the
CVP electorate (27% of the vote) was separated from the others by the traditional
religious value orientation expressed by the attitude toward abortion. From our other
studies, we know that the older part of the electorate (over 50 years old) is mainly
responsible for the ongoing relevance of this old cleavage and that its dominance
has been slowly declining over the years. Nevertheless, the orientation to traditional
values, expressed here by the attitude toward abortion, is still an important factor. The
other two old cleavages were discovered in the space of the third and second axes
(Figure 3). The old right-left cleavage was expressed by a value orientation called
“economic conservatism,” and it separated most obviously the voters of the SP from
the PVV electorate. The third old cleavage, which is linked to the conflict between
the linguistic communities and the demand for more autonomy for Flanders, also
appeared in the space of the third and fourth axes (Figure 3). Both the Vlaams Blok
and the Volksunie are perceived as Flemish nationalist parties but it is the Volksunie
(9% of the vote in 1991) that grouped the largest number of Flemish nationalist
voters.

The canonical correlation biplot was used to study the differences between the
eight electorates with respect to the 14 attitudes in a simultaneous display. This
visualization provides an understanding that fits both the theoretical considerations
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and the empirical evidence from other studies using attitudes and social-background
variables.

Software Note

The biplots were programmed as a macro in SAS release 6.11, using only SAS
Base and SAS/GRAPH. Input data can be any pair of orthogonal variables, such as
principal components and canonical variables. This macro is available from the first
author.
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Chapter 27

Use of Biplots to Diagnose
Independence Models

in Three-Way
Contingency Tables

K. Ruben Gabriel, M. Purificacién Galindo,
and José Luis Vicente-Villardon

1 Introduction

An essential part of the analysis of contingency tables is testing for independence
of classifications. In two-way tables this is straightforward, because there is a single
hypothesis of independence. In three-way tables there are many possible indepen-
dence hypotheses, each of which may be tested, but consistent inferences must take
into account the implication relations between them (Roy and Mitra, 1956; Agresti,
1990). Analyses of three-way contingency tables are therefore often difficult to in-
terpret, especially because they produce too many acceptable models. That creates a
need for methods that simplify the appraisal of the data and reduce the profusion of
acceptable models (Whittaker, 1990). This chapter illustrates how this may be done
by visualizing biplots of logarithms of frequencies of contingency tables. Because
independence models for contingency tables become additive models for the loga-
rithms of the frequencies and rules for visual diagnosis of additivity on biplots are
known (Bradu and Gabriel, 1978), the corresponding rules can be applied to biplots of
logarithms of frequencies to diagnose various types of independence in contingency
tables.

391
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Biplots (Gabriel 1971, 1981a, 1981b) are visual displays of matrices by vectors
for each row and each column which are constructed so the inner product of vector
a; for row i and vector b, for column j approximates the matrix element in cell
(i, j)- In the present discussion of contingency tables, it is the matrix of logarithms of
cell frequencies that is biplotted and the approximation is by least squares weighted
by the frequencies, as is appropriate if the frequencies are Poisson variables (see
the description of software at the end of the chapter). Actually, the logarithms are
centered before they are fitted and displayed, because this focuses the display on
differences rather than on the general magnitude of the frequencies. An analogous
centering of nonfrequency data has been explained by Bradu and Gabriel (1978).

2 Diagnosis in Two-Way Tables

In a two-way contingency table with frequencies f;; ( =1,... ,;j=1,...,J),
independence is defined as
il Pi _ Pl foran ii'sj,j
Pi'j Pi'j

where 11 symbolizes independence (Dawid, 1979), i and j indicate the row and
column classifications, respectively, i,i’ and j, j’ their categories, and p;; (i =
1,...,I;j = 1,...,J) the probability of cell (i, j). Equivalently, by taking loga-
rithms, one can write this definition as

ill j : )\ii’,jj’ =0 forall l,l/, j,jl
where
Ay = log(pij) — log(py;) — log(py;) + log(pij1)

These tetrad differences have estimates
A jjr = log(fij) — log(fr;) — log(fij)) + log(fir1)

and independence may be inferred if they are small.

In our biplots of contingency tables it will be understood that we always ap-
proximate centered logarithms of frequencies, not the frequencies as such. The biplot
markers a; for the rows (i = 1,... ,I) and b; for the columns (j = 1, ..., /) have
vector inner products that satisfy ‘

log(fj) —log(H=alb; (i=1,....j=1,...,J)

where = means “is approximated by” and log(f) stands for an average of the loga-
rithms of the frequencies. (Centering serves only to focus the display on differences
and does not affect the diagnostic rules. Any convenient “average” can therefore be
used for centering.) The tetrad difference A;;: ;j is visually approximated by

a-Tbj - a}bj - ainj/ + ainj/ = (a,- - a,-r)T(bj - bj/)

(1
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and so
Airjy = (@~ a;)"(b; — bj)

Hence the biplot criterion for diagnosing independence i L1 j is whether or not the
inner products (a; — a;)"(b ; — by are close to zero for all i,i’ and j, j'. But two
vectors have a zero inner product if, and only if, they are orthogonal, so this criterion
is equivalent to (a; — a;/) being approximately orthogonal to (b; —b;/) for all i, i’ and
J» j'. Clearly, this can occur if, and only if, the a;’s and b;’s are close to perpendicular
straight lines. The visual diagnostic rule is therefore:

“Diagnose i LL j if the a;’s and b;’s are close to perpendicular straight
lines,” and this will be referred to as the perpendicularity rule.

This argumentation applies equally to any subtable of some of the rows and
columns of the contingency table. The rule for such a subtable is to diagnose inde-
pendence if the a;’s and b’s for the subtable’s rows and columns are on perpendicular
lines or planes. These diagnostics are stated in terms of planes, rather than just lines,
because more than two dimensions may be needed for closely fitting a biplot to a
complete table in which there is no overall independence.

This is illustrated in Figure 1 for a 3 X 4 table of large frequencies generated
from Poisson distributions such that the first three columns are independent of the
rows, but the fourth column is not. For these frequencies the biplot has the a;, a;, a;
markers for the rows roughly collinear and on a line that is perpendicular to another
line which is close to markers by, b,, b; for the first three columns; marker b,, on the
other hand, deviates noticeably from the latter line. By the foregoing rule, this biplot
pattern diagnoses independence only in the subtable of the first three columns, which
is the correct diagnosis.

A three-dimensional biplot provides a perfect fit, and interactive computer dis-
plays (for example, SAS, 1994) can be used to rotate this and find a planar projection
that has a;, a,, a3 and by, b,, b; very close to perpendicular straight lines (Figure 2).

Subset independence may arise for a variety of reasons related to the properties
of the classifications. It can also appear because unusually high or low counts occur
in a few cells, and these are best treated as outliers from the general pattern (see
Bradu and Gabriel, 1978, p. 48, for an analogous discussion).

3 Diagnosis in Three-Way Tables

Biplots display markers for the rows and the columns of a matrix, so that each matrix
element (logarithm of frequency, centered on an average) is represented by the inner
product of the corresponding row and column marker vectors. This does not readily
generalize to three-way tables because no mathematically tractable “product” of three
vectors is available. Biplot displays of a three-way table can, however, be constructed
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Poisson Parameters
10000 15000 20000 20000
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Frequencies
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Figure 1: Biplot of centered logarithms of frequencies of a table generated from Pois-
son distributions with parameters corresponding to independence except in the last
column.

by first combining two of the table’s classifications and thus reducing it to a two-way
table, as shown next.

A three-way contingency table with frequencies f; and probabilities p;; can
be displayed by a biplot with markers a; (i = 1,...,Dand b, (j = 1,...,J;k =
1, ..., K) that satisfy

log(fi) —log(H=a'by (=1,....j=1,....0;k=1,...,K)

for an average log(f). This biplot is analogous to that of Section 2, except that
it uses the combination of the j and k classifications [with categories (j, k) =
(1,1),(1,2), ...,(J,K)], where the earlier biplot simply had classification j (with
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By

Figure 2: Projection of 3D biplot of logarithms of frequencies of the table given in
Figure 1, showing collinearity of markers for first three rows and markers for first
three columns and perpendicularity of the two marker lines. (Lines joining markers
are drawn to help examine patterns used for diagnosis.)

categories j = 1, ... ,J). By analogy, it leads to the multiple perpendicularity rule:
“Diagnose i 11 (j,k) if the a;’s and bj’s are close to perpendicular
straight lines.” That is

P _ P

Pitjk Pitjit

i1 (k) foralli,i’; j, j'; k, k'

which is known as multiple independence of i and (§, k).

It was noted earlier that independence can be diagnosed for a subtable if the
markers for its rows and columns satisfy the perpendicularity criterion. Applying
this to the b ;s for a particular category k of classification k leads to the conditional
perpendicularity rule:

“Diagnose i Ll j/k if for a given k the a;’s and b i’s are close to
perpendicular straight lines,” where
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Pijk _ Dijk

iil j/k:
Pi'jk Pitj'k

forall i,i’; j, j'; and given k
which is known as conditional independence of i and j, given category
k of classification k.

More generally, if the preceding criterion applies to each k, it leads to the partial
perpendicularity rule:

“Diagnose i 1L j/k if, for each k, the a;’s and b i&'s are close to
perpendicular straight lines,” that is

Dijk _ Pijk

i1l j/k:
Pitjk Pitjk

foralli,i’; j, j'; and all k

which is known as conditional independence of i and j, given classifi-
cation k.

These diagnoses are illustrated in Figure 3 for a 3 X3 X3 table of large frequencies
generated from Poisson distributions such thati L1 j/k for k = 1 and 2 but not for
k = 3. Conditional independence i 11 j/k therefore holds only in the subtable that
excludes k = 3. On the biplot, the a;’s are roughly collinear and both the b;;’s and
the bj,’s are very close to lines perpendicular to the a line: The b;3’s, however, do not
lie near any straight line. The visual rules therefore indicatei 11 j/1andi LI j/2,
butnoti L1 j/3, and thus correctly diagnose the independence structure.

Analogous visual criteria for conditional independence of i and k, given category
Jjorclassification j, can be obtained by permuting the roles of j and k in the preceding
rules.

Returning to the example in Figure 3, one may checki L1 k/1 by means of the
markers by;, b2, and by;. These are not near a line perpendicular to the a line, so
conditional independence i 1L k/1 is not diagnosed. The same applies toi 11 k/2
and to { 1L k/3 because neither by, by, and boz nor bs;, b3y, and bsz is anywhere
near lines perpendicular to the a line.

The consistency of these criteria may be noted by recalling that multiple inde-
pendence i L1 (§,k) holds if and only if conditional independences i L1 j/k and
i 11 k/jbothhold. This is reflected by the geometric equivalence of their diagnostic
criteria. It is readily verified that occurrence of “the a;’s and b ;s are close to perpen-
dicular straight lines” is equivalent to simultaneous occurrence of both conditional
perpendicularity criteria, that is, “for each k, the a;’s and b’s are close to perpen-
dicular straight lines” and “for each j the a;’s and bj’s are close to perpendicular
straight lines.”

The foregoing perpendicularity rules for diagnosis relate to independence of the
i classification, which is represented by the biplot a; markers, from the j and/or
k classifications, which are combined for representation by the biplot b 3 markers.
Different geometric considerations are used for visual diagnosis of independence of
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Poisson parameters

k=1 k=2 k=3
i =1 j=2 j=3 j=1 j=2 =3 j=1 j= =3
1 | 10000 | 8000 | 12000 | 30000 | 40000 [ 50000 [ 25000 | 35000 | 10000
2 | 15000 | 12000 | 18000 | 15000 { 20000 { 25000 [ 20000 | 45000 { 20000
3 | 20000 | 16000 | 24000 | 15000 | 20000 | 25000 | 20000 | 55000 | 30000
Frequencies
k=1 k=2 k=3
i =t T =2 T g3 | o1 [ =2 [ =3 | ju1 | jo2 [ j=3
] 9926 [ 7775 | 11993 | 29993 | 39919 | 49524 | 24816 | 34795 | 9991
2 | 15039 | 11950 | 18140 | 15193 | 20210 | 24973 | 20299 | 45248 | 19815
3 | 19926 | 16130 | 24841 | 15090 [ 20053 | 25221 | 20143 | 55042 | 29799
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Figure 3: Biplot of centered logarithms of frequencies of a 33 X3 table generated from
Poisson distributions with parameters corresponding to conditional independence of
iand j given k = 1 and 2, but not £ = 3. (Lines joining markers are drawn to help
examine patterns used for diagnosis.)

the j and k classifications. Thus, for conditional independence of j and k, given i,
which is

JlLkfi: Bk = PR goran ik k' and all i
Pijik Pijik

the rule is
“Diagnose j LL k/iif for each j, j’;k,k’ the (bjc,bji, b, bjys) are

close to a parallelogram, that is, if by +b is close to b s + b;,.” This
will be referred to as the parallelogram rule.
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The parallelogram rule differs from the perpendicularity rules in that it tests
independence of the two classifications that are combined in the biplot display. It is
not an application of the two-way perpendicularity diagnostic but can be understood
by rewriting the hypothesis as

j 11 k/i . )\i,jj’,kk’ =0 forall i;j,jl;k,k/

where A; i = 1og(pij) —1og(piju) —log(piju) +10g(piji). The latter are estimated
by

Aijiae = log(fije) — log(fiju) — log(fijwr) + log(fijur)

and approximated in the biplot by )A\i, i = al(b i — Bj — by + bjys). This
quantity is small for all i if (b — bjx — by + bjys) is close to zero, that is if
b — bji is close to bz — by, which in turn corresponds to the figure formed by
b, b, b, b, in that order, being close to a parallelogram.

As in the case of a two-way layout, the three-way table diagnostics can also be
applied to subsets of the categories of one or more classifications. No diagnostic rule
is provided for conditional independence j 1L k/i, thatis, of j and k, given category
i of classification i, since that is not easily visualized on the biplot.

To illustrate the parallelogram rule for conditional independence j 1L k/i,
consider again the three-way table of large Poisson frequencies, but interchange the i
and k classifications, so that j 11 k/1and j 11 k/2, butnot j LL k/3, and hence
not j 11 k/i. Figure 4 shows the 2 X 3 X 3 subtable of frequencies excluding i = 3
and its biplot marker. Consider the b 3 markers for any given &: by is slightly above
and to the right of by, and bs; is well below by,. And the same pattern holds for
every k. It is readily seen that this entails that by; — by is the same for all k, by, — b3,
is the same for all &, and bs, — by, is the same for all &, so the required tetrads of
b;’s form parallelograms. The parallelogram rule correctly diagnoses j LL k/i for
this subtable. Figure 5 shows the entire 3 X 3 X 3 table of frequencies and its biplot.
Here the b markers do not display the same pattern for every k, and hence the rule
would lead to the diagnosis that j 1L k/i does not hold for this table. Again, that is
the correct diagnosis.

On a planar biplot, visualization of the diagnoses is quite straightforward, but
it requires some care when the a’s and b’s are in a three-dimensional space. Any
two-dimensional view will reveal a line in 3-D as a line or point, but a plane in three
dimensions cannot be revealed by a single two-dimensional view. It requires two
views of a 3D biplot to ascertain whether a set of points is close to a line or to a plane
or to assess a parallelogram pattern.

The preceding discussion is of biplots of three-way i X j X k tables in which
the j and k classifications are combined. Alternative biplots can be constructed for
the combination of classifications i and j, or of i and k, and all the above results
apply after suitable permutation of the indices. Each of the three possible biplots
can analyze all the types of independence except for conditional independence of
the combined classifications given a category of the other classification. The rule of
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Poisson parameters
=1 k=2 =3
i =1 =2 = j=1 j=2 j=3 j=1 = =3
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Figure 4: Biplot of centered logarithms of frequencies of a 2 X 3 X 3 table generated
from Poisson distributions with parameters corresponding toj LL k/i. (Lines joining
markers are drawn to help examine patterns used for diagnosis.)

diagnosis applied to any particular type of independence will, however, depend on
what biplot is used. Thus, i LL k/j is diagnosed by the conditional perpendicularity
criterion on the (a;, bj) biplot but by the parallelogram criterion on the (a;, by)
biplot.

4 An Applicaton—Danish Reemployment Data

In a study of the determinants of reemployment of workers in Denmark, Andersen
(1994) considered data for laid-off employees on length of employment (L in six
categories), cause of layoff (K, two categories: closure of the company or replacement
of the employee), and whether or not they had been reemployed (E, two categories)—
see Table 1. Hypotheses of independence of these three classifications were examined
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Poisson parameters
=1 k=2 =3
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1 | 10000 | 8000 | 12000 [ 15000 | 12000 | 18000 | 20000 [ 16000 | 24000
2 | 30000 | 40000 | 50000 [ 15000 | 20000 | 25000 | 15000 [ 20000 | 25000
3 | 25000 § 35000 | 10000 | 20000 [ 45000 | 20000 | 20000 | 55000 | 30000
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Figure 5: Biplot of centered logarithms of frequencies of a 3 X 3 X 3 table generated
from Poisson distributions with parameters corresponding toj 1L k/i independence
for i = 1,2, but not for i = 3. (Lines joining markers are drawn to help examine
patterns used for diagnosis.)

with the help of biplots for two of the combinations of classifications, as shown in
Figures 6 and 7.

The (ag , bg.) biplot of Figure 6 fits the data perfectly because it represents
the log frequencies of a matrix with only two rows (and 6 X 2 columns). The ag
line through the “no” and “yes” ap markers for reemployment is shown on the plot,
so the diagnoses of conditional independence can proceed by checking the relation
of the bg; markers to this line. What is evident is that for workers laid off for
closure the by ; markers are close to a line (shown in Figure 6) that is perpendicular
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Table 1: Survey of Danish workers who had been laid off

Length of Cause of Reemployment
employment layoff E

L K Code Yes No

Less than 1 month Closure C<1lm 8 10
Replacement R<lm 40 24

1 month to less than 3 Closure Clm 35 42
Replacement R1lm 85 42

3 months to less than a year Closure C3m 70 86
Replacement R3m 181 41

1-2 years Closure Clyr 62 80
Replacement Rlyr 85 16

2-5 years Closure C2yr 56 67
Replacement R2yr 118 27

More than S years Closure C>5yr 38 35
Replacement R>5yr 56 10

to the a line. That leads to the diagnosis E 11 L/C of conditional independence
of reemployment from length for workers laid off for closure (C). For employees
laid off for replacement (R), the situation is not so simple since the bk ; markers
are on two separate lines, each of which is perpendicular to the ag line (both lines
are shown in Figure 6). Hence E LL L/R cannot be diagnosed for all lengths of
employment, but one may diagnose E L1 Li<3y /R as wellas E 1l Li=3y/R: In
other words, for replaced workers the association between length and reemployment
depends on whether their employment was less than 3 months or at least 3 months
but is independent of the exact length.

In addition to this pattern, one may observe that the by ;’s for all workers laid
off for closure project onto the ag line closest to the “no” marker , and the bk ;’s for
workers replaced after more than 3 months project onto the ag line farthest toward
the “yes” marker. Thus, the chance of reemployment is least for workers laid off for
closure and greatest for workers replaced after more than 3 months.

Considering all the bx; markers for each of the two length of employment
groups, one could also say that reemployment is independent of length of employment
both within the short employment group (less than 3 months) and within the long
employment group (3 months or more), but not overall.

Inspection of this biplot did not lead to a simple diagnosis of conditional inde-
pendence of reemployment and length, given the cause of the layoff, but showed that
for replaced employees the situation was more complex. Although an independence
model did not fit the entire table, it did fit separate subtables and was useful for
exploring the data.
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Figure 6: (ar bx,) biplot of centered logarithms of frequencies of data for Danish
workers. (Lines joining markers are drawn to help examine patterns used for diagno-
sis.)

The same three-way contingency table can be biplotted for different combina-
tions of two classifications. In Figure 7 reemployment is combined with length of
employment, so the visual representation is by a (ax, bg,) biplot, the ax line that
goes through the C marker (for closure) and the R markers (for replacement) is not
perpendicular to any particular sets of bg;, markers, and therefore one cannot diag-
nose independence of cause K from either reemployment E conditional on length L
or length L conditional on reemployment E. However, the difference between the bg 1,
markers for “yes, < Im” and “no, < 1m” is pretty much the same as the difference
between the bg;, markers for “yes, 1m” and “no, Im”—both differences are marked
by lines in Figure 7—and so the tetrad (“yes, < 1m,” “yes, 1m,” “no, 1m,” “no,
< 1m”) of bg, markers is close to a parallelogram. It then follows from the paral-
lelogram rule that, for lengths of employment below 3 months, there is conditional
independence of reemployment and length given cause, that is, E 11 Lj<3my /K.

Similarly, the “yes, length” and “no, < length” differences—also indicated in
Figure 7 by lines—are pretty much the same for all lengths from 3 months up, so
the corresponding parallelograms exist and lead to the diagnosis E 11 Li=3m /K.
The “yes, length” and “no, < length” differences are not, however, the same for all
six length categories, and therefore one may not diagnose conditional independence
E 11 L/K, that is, conditional independence for all lengths.
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Figure 7: (ax bg,) biplot of centered logarithms of frequencies of data for Danish
workers. (Lines joining markers are drawn to help examine patterns used for diagno-
sis.)

The same diagnoses were obtained from the biplot of Figure 7 as from that of
Figure 6, even though different diagnostic rules were used. A third biplot, in which
length of unemployment is in six rows of the contingency table and the combination
of cause and reemployment is in four columns, cannot be fitted as closely in the plane,
or in three dimensions, and has not been found as helpful for diagnosis.

5 Some Comments

This chapter proposes rules for visual diagnosis of independence that are based on
patterns on biplots. Ideally, they allow diagnosis of one model for an entire table,
but in practice they often indicate models for subtables, as in the unemployment
application. That illustrates an important feature of visualization: it allows the eye to
pick out unexpected patterns, such as those in various subtables, and to reveal features
that would not be tested by standard methods because they were not anticipated.
Random variation may hamper the identification of patterns on biplots and the
consequent diagnosis of models. The schematic illustrative examples in Sections 2
and 3 used very large samples to sidestep this difficulty, but for contingency tables
based on empirical data it may be difficult to judge whether a pattern holds or the
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deviations from it are significant. Such inferences have to be checked by formal tests
of significance, although in some situations one may use an alternative type of biplot
that incorporates approximate visual tests of independence (Gabriel, 1995).

Identification of diagnoses from biplots is fairly straightforward in two dimen-
sions, since the rules use only straight lines, right angles, and repetitive patterns. It
becomes more difficult when a three-dimensional display is used for improved fit to
the data, because lines and angles and patterns in space may need to be visualized
by real-time rotation of the three-dimensional biplot. The usefulness of the methods
proposed here depends on how well the logarithms of the frequencies are approxi-
mated and how easily users are able to discern and interpret patterns on biplots. The
authors’ experience suggests that this is not difficult to acquire and well worth the
effort.

Software Description

The computational algorithm used is an adaptation of criss-cross regression lower
rank fitting (Gabriel and Zamir, 1979). It is applied to the matrix of the log (f;;) —
log(f) values with weights f;;. A simple way to initialize the iteration is by using
the Householder—Young (1938) rank 2 approximation to the matrix, or, if there are
zero entries, doing so after substitution of f;; + 1/2 for f;;. If singularities arise, they
may be circumvented by making small changes in the weighting, analogous to what
is done in ridge regression (Hoerl and Kennard, 1970).

Computations were carried out by means of iterative routines programmed in
MATLAB (Mathworks, 1995) and are available from the authors at Salamanca; an
adaptation to SAS is also being prepared. Animated display and rotation have been
carried out with JMP software (SAS, 1994).




Chapter 28

Prediction Regions for
Categorical Variables

John C. Gower and Simon A. Harding

1 Introduction

Quantitative information on two or more variables is often represented relative to
coordinate axes. In this chapter we show how the familiar concepts associated with
quantitative axes may be extended to categorical variables. We shall be concerned
with low-dimensional approximations to high-dimensional representations relative
to coordinate axes, and to understand the properties of the approximation we must
first recapitulate the familiar properties of Cartesian coordinate axes. Figure 1 shows
two coordinate axes referring to variables x; and x;, marked with scales.

The position of a sample with value two units of the first variable and one unit
of the second variable is at the point P of Figure 1a and is obtained as a vector sum,
as shown. Of course, many people prefer to think of this as moving two units in
an eastward direction followed by one unit north, but the vector-sum terminology
embodies the mathematical concept that extends directly to cope with any number
of coordinate axes. We term the operation of positioning a point with known sample
values interpolation. Figure 1b shows the inverse operation of associating the values
of the variables that pertain to the point P. This is done by projecting from P onto the
two axes and reading off the nearest scale value. Again, the notion of projection easily
extends to any number of variables. Although we express this operation in terms of
projection, or more precisely orthogonal projection, it is simpler to regard it as finding
the nearest scale marker to P on each axis. We term the operation of determining the
values of the variables to be associated with a given point prediction. The operations
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Figure 1: (a) Positioning of the sample (2,1) at the point P. (b) The values of the two
variables associated with the point P.

of interpolation and prediction are inverses of each other and are consistent, in the
sense that the values predicted for an interpolated point are those given initially. The
reason for this terminology, which may seem perverse for exact representations, will
become clearer when we discuss approximations.

Coordinate systems are very often at the basis of the visualization of data. With
n samples and just two variables, we get a scatter of n points whose coordinate values
are the sample values. Indeed, this is how a scatterplot is defined. Visual interpretation
consists of inspection for patterns, such as straight lines or other curves, clusters of
points, and, when there are sufficient data, inspection for varying densities of sample
points throughout the plot. Another important interpretive tool is the visualization
of differences between a pair of samples as the distance between the corresponding
plotted points. There are many mathematical ways to define distance, but throughout
this chapter we shall use ordinary Euclidean distance as measured with a ruler. Even
this is less straightforward than it might seem, for it is evident that by changing the
scales on the two axes, perhaps merely to reflect changes in the units with which the
variables are measured, we shall change distances between plotted points. A brief
discussion of how scaling manifests itself with categorical variables is given in our
concluding remarks.

Two-dimensional scatterplots are familiar and their usefulness for initial data
examination is recognized by all. With more than two variables we may examine all
pairs of variables in a series of scatterplots. With p variables this gives % plp—1)
scatterplots. Thus with 4 variables we have 6 scatterplots and with 10 variables
we have 45 scatterplots. As the number of variables grows, the greatly increased
number of scatterplots becomes hard to assimilate, but for modest values of p all the
scatterplots may be displayed as a p X p array. A useful supplement, often available
in commercial software, is painting or brushing (see, e.g., Cleveland, 1985), whereby
the points associated with specified values of a third variable, possibly categorical,
are highlighted or colored. For example, if we plot height against weight, the points
referring to male samples may be colored black and those referring to female samples
white. In the height/weight scatter the generally taller and heavier males would
show up in the appropriate region, whereas in an age/family-size scatter any such
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relationship would be unlikely. Despite such refinements, multiple scatterplots are
not ideal for visualizing relationships in multivariate data.

Multidimensional scaling (MDS) (see, e.g., Cox and Cox, 1994) offers an alter-
native generalization of the scatterplot. MDS starts by defining the distances between
all pairs of samples. These distances may be observed values, but in the forms of
MDS considered here, the distances are calculated as some simple function of the
values taken by the p variables for each pair of samples. Then a set of points, one
for each sample, is sought that generates the calculated distances. If this can be done
at all, usually many dimensions are required for an exact representation, so MDS
finds a representation in a few dimensions that approximates the given distances.
Usually, few is two and will be so taken in the following. This is not a restriction
on the methodology but reflects the difficulty of visualizing more than two dimen-
sions except, perhaps, for three-dimensional models and with the aid of interactive
graphics. In the two-way scatterplot arising from all forms of MDS, often called a
“map,” the axes are mathematical constructs that relate to the original variables in
complicated ways. In contrast, biplots (see, e.g., Gower and Hand, 1996) relate the
scatter of points representing samples directly to the values of the variables associated
with those samples. Biplots are MDS maps representing the samples supplemented
by information related to the variables.

2 Visual Representations of Quantitative
and Categorical Variables

In this section we begin by briefly describing principal components analysis (PCA),
which is the simplest form of MDS for quantitative variables. Similar methods may
be used to represent a multivariate sample with p categorical variables. We describe
a simple way to handle categorical variables based on what is known as the extended
matching coefficient and close with the better known, but related, method of multiple
correspondence analysis. Gower and Hand (1996) give all the technical details needed
to construct all these biplots. In Section 3 we demonstrate the methodology using
data from a survey of British sugar beet production.

2.1 Principal Components Analysis

In PCA, the plane of approximation is a subspace of an exact representation in
p dimensions. The two-dimensional PCA approximation is especially useful when
supplemented by nonorthogonal linear biplot axes (Gabriel, 1971) that represent the
variables. Indeed, these biplot axes are the projections of the original coordinate axes
onto the plane of approximation. When the biplot axes are endowed with scales, a
practice that seems to be gaining acceptance (see Gower and Harding, 1988; Gabriel
and Odoroff, 1990; Greenacre, 1991), then, although nonorthogonal, they may be used
like familiar coordinate axes. The scales on these axes may be used to interpolate new
samples by evaluating vector sums as in Figure 1a. This justifies the term interpolation



408 Chapter 28. Prediction Regions for Categorical Variables

because new samples may be interpolated into the map determined by the old samples;
of course, the old samples interpolate into their correct positions in the map. The same
axes, but with different scales, may be used for prediction. Thus, the position of any
point in the PCA display may be orthogonally projected onto each biplot axis in turn
and the corresponding p scale markers predict the values of the original variables that
are to be associated with the sample represented by the point. It can be shown that
this two-dimensional procedure gives the same results as projecting the point onto
each of the original p-dimensional axes representing the variables, as in Figure 1b,
where p = 2. This justifies the term prediction because the values of the variables
to be associated with any point in the map may be predicted. Reading scale markers
by projecting onto the prediction axes is equivalent to evaluating an inner product
and gives a graphical way of predicting the best two-dimensional approximation to
the observed sample values. Here “best” is used in the sense of Eckart and Young
(1936) as the set of predictions that minimize the sum of squares of the differences
between the observed and predicted values of all the variables. The inner product
interpretation figures largely in the literature on biplots, but we think it unnecessarily
obfuscates what is essentially the familiar process of referring to coordinate axes. The
directions of the horizontal, vertical, and any higher dimensional orthogonal principal
axes that are used to construct the PCA display are often interpreted. The directions
of the biplot axes offer an alternative basis for interpretation and, we believe, one that
is better. Therefore, we recommend the retention of only the planar approximation
with its linear biplot axes, discarding all other axes.

In approximations the two sets of scale markers are inversely related, as in exact
representations, but now interpolation and prediction are not consistent operations.

2.2 Reference Systems for Categorical Variables

First, let us see how the equivalent of coordinate axes may be defined for categorical
variables. Because categorical variables take only a finite number of levels, they
cannot be represented by an axis with a continuous scale. Instead, each categorical
variable is represented by a set of points, one for each category level as shown in
Figure 2.

In Figure 2a we show three points representing the levels green, red, blue of a
categorical variable “color.” These points are at the vertices of an equilateral triangle
and are known as category level points (abbreviated to CLPs). The set of CLPs
for a categorical variable corresponds to a linear axis that represents a quantitative
variable and the labels attached to the CLPs correspond to the markers that give the
numerical values of a quantitative variable. Notice that this representation of a three-
level categorical variable requires two dimensions as well as the origin. In general,
a categorical variable with L, levels is represented by L; CLPs at the vertices of a
regular simplex and therefore occupies Ly — 1 dimensions. Thus the representation
of two or more categorical variables tends to require many dimensions, which are
difficult to show in the two dimensions that suffice in Figure 1 for two quantitative
variables. The simplest case is for two variables each at two levels, which gives four
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Figure 2: (a) Category level points for a single categorical variable, “color,” with three
levels—"green,” “red,” and “blue.” (b) The prediction for the point P of the levels of
two categorical variables, “sex,” and “color,” each with two levels shown in two
dimensions.

CLPs generally requiring three dimensions (one for each variable and one for the
origin). However, to give an idea of things in two dimensions, we may show each
variable as two CLPs on each of two orthogonal lines intersecting at an origin. This
is shown in Figure 2b, where the variables are “sex” with levels “female”, “male,”
and “color” with levels “black,” “white.” Interpolation proceeds as before by vector
sums but now there are only 2 X 2 = 4 possibilities, which occur at the vertices
of a square. The vertex corresponding to (female, black) is shown at the point P.
Prediction cannot be obtained by projection because there are no axes on which to
project. However, the more fundamental concept of finding the nearest point survives
and predictions are given by finding the nearest CLPs as shown in Figure 2b. Thus,
we have the correspondences between coordinate representations of quantitative and
categorical variables that are shown in Table 1.

2.3 Placing the CLPs (the Extended Matching Coefficient)

So far we have not seriously discussed the relative positions of the CLPs for different
variables. There are several possibilities, but we shall mention only the two most
important. The simplest definition of the CLPs is to place them on orthogonal axes a
unit distance from an origin. Thus, the equilateral triangle of Figure 2a is obtained as
in Figure 3. CLPs for other variables are obtained by extending this system by unit
points on as many axes as there are category levels—L; for the kth variable. This
givesatotalof L = L; + L, + -++ + L, axes and L unit points as CLPs.

The word “axes” is used here merely for verbal convenience; in fact, only the
simplices in mutually orthogonal spaces are essential and even the origin may differ
for each set of CLPs. The vector sum method places a sample at one of LiL; ... L,
points, giving a method for positioning any sample described by categorical variables.
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Table 1: Representation of quantitative and categorical variables

Quantitative variables

Categorical variables

Each variable is represented by a linear
axis.

A scale is marked on each axis and each
mark is labeled with a numerical value.

The position of a point relative to the axes
is obtained as the vector sum of the labels
giving the values of the variables.

The values of the variables to be associated
with a given point are obtained by
orthogonal projection onto the axes and
reading off the values given by the labels.
This is the same as finding the nearest
label to the given point on each axis.

Each variable is represented by a set of
CLPs.

The CLPs are labeled with the names of
the category levels.

The position of a point relative to the set of
all CLPs is obtained as the vector sum of
the labels giving the relevant levels of the
variables.

The values of the variables to be associated
with a given point are obtained by finding
the nearest label in each set of CLPs.

Thus, coordinate axes are associated with continuous variables, and the discrete
sets of CLPs are associated with categorical variables. To refer to both kinds of
representation, Gower and Hand (1996) propose the term “reference system” and give
examples of reference systems that combine continuous and categorical variables.

Figure 3: A simple configuration of CLPs for a categorical variable color.
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The squared distance between two samples is given by the number of category levels
in which they differ; which is p — m, where m is the number of matching category
levels; m/p is known as the extended matching coefficient (EMC), which for two-
level categorical variables (i.e.,L; = L, = --- = L, = 2) becomes the well-known
simple matching coefficient. The EMC has the usual property of similarity coefficients
that it is nonnegative, has value zero when no category levels are common to the two
samples, has value one when the two samples share the same category levels, and
otherwise lies in the zero—one interval.

Configurations of points generating the EMC may be approximated in two dimen-
sions by PCA or, equivalently in this case, by classical scaling/principal coordinates
analysis. As with PCA, we may project the “axes” to give biplot axes, but now there is
only one scale point, corresponding to a category level, on each axis. Thus, projection
gives L biplot axes, each with one marker corresponding to a CLP; other points on
the axes have no direct meaning as they do for quantitative variables. These projected
CLPs may be used for interpolating new points but there are difficulties in using
them for the more important operation of prediction. This is because each variable is
represented by several axes, three in the case of color in Figure 3. One could project
onto each of these axes and predict the color corresponding to the projected CLP that
was nearest a point of projection. Unfortunately, this does not necessarily give the
one that is nearest the true CLP. In the exact representation, all points that correspond
to a color, say red, are nearest the CLP for red. Therefore we can imagine the whole
configuration as partitioned into regions containing the points nearest the CLP for
red and similarly for green and blue. Such regions are called neighbor regions. The
points in the approximation space that are in the neighbor region labeled red form a
prediction region for the color red and similarly for the other colors and for all the
other categorical variables. The geometry is illustrated in Plate 6.

The right-hand side of the figure shows the CLPs in high-dimensional space
and the left-hand side shows the low-dimensional approximation space. To reduce
confusion, the two parts are shown as well separated, although in reality they may be
more intermingled. The neighbor regions are completely determined by the CLPs but,
generally, there is no set of points in the plane of approximation that determine the
prediction regions. In particular, within the plane of approximation there is no set of
points for which the prediction regions are neighbor regions. This is unfortunate, for
if there were, we could make the great simplification of representing the prediction
regions by their generating points. To determine in which prediction region a point
lies, each CLP could be projected onto the plane of approximation, also recording the
(squared) distance of each CLP from the plane. Then, in principle, the distance of any
point in the plane of approximation from each CLP could be calculated and hence
its membership of a neighbor region/prediction region determined, but this is too
cumbersome for ordinary use. In practice, it is better to show the boundaries between
the prediction regions in ful} and with one diagram for each categorical variable. The
prediction regions associated with the kth categorical variable are analogous to the
kth linear biplot of PCA and are used in a similar way. In PCA one finds the nearest
point on the axis and this involves orthogonal projection; with categorical variables,
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one finds the nearest CLP and this involves assignment to a prediction region. The
prediction region diagrams may be superimposed, and occasionally this is a useful
thing to do, but usually the picture becomes too complicated. To produce p separate
diagrams diverges from the PCA biplot for quantitative variables, where all the linear
axes may be shown on one diagram.

Fixing attention on the kth categorical variable, the whole of space may be divided
into L; neighbor regions, each of which is an L, — 1 dimensional region extended
orthogonally to the space of CLPs into the L-dimensional space. The approximation
in few dimensions is a subspace of the full space, and where the subspace intersects
the neighbor regions gives prediction regions, each labeled with a category name. In
Plate 6 there are only three categories, so there are three prediction regions. With L,
categories there will be L, prediction regions, some of which may be closed polygons
and some may be hidden behind other regions, so the associated category level is
never predicted.

Plate 7 is an example of the end product of an analysis, showing the prediction
regions for a categorical variable with four levels, together with the positions of 10
samples, which have been numbered. The figure shows the convexity of the prediction
regions and also shows a closed region for red. Prediction is obvious: sample number 4
is predicted as being green, while number 9 is predicted as red, and similarly for the
other colors. Some predictions may be wrong, but in a good approximation most will
be correct. Predictions for points close to a boundary, as with sample number 9, are
especially likely to be uncertain. A table can be made of correct predictions versus
actual predictions and the percentage of correct predictions may be used as measure
of the quality of the approximation to give a criterion analogous to the least-squares
criterion of the Eckart—Young theorem. Multidimensional scaling (MDS) offers a
global method for positioning all the samples irrespective of the prediction regions
for particular categorical variables that may be shown, as in Plate 7. For some purposes
it may be desirable to show the samples in positions that predict better for particular
variables than for others, but this would require new forms of MDS.

24 Multiple Correspondence Analysis

A more usual multivariate display for categorical variables is given by multiple corre-
spondence analysis (MCA). There are many ways in which the methodology of MCA
may be developed but here we adopt the approach used by Gower and Hand (1996),
which emphasises the close relationship with PCA. It turns out that this is almost
identical to the preceding approach. Indeed, the only difference is in the definition of
the CLPs, which in MCA are not equidistant from the origin. If in a sample of 169
individuals, 9 are red, 16 are blue, and 144 are green, then, apart from a scaling factor,
the corresponding CLPs are distant 1/3, 1/4, and 1/12 from the origin—these are
the inverses of the square roots of the frequencies. The coordinates of the CLPs are
modified from the unit values that pertain to the EMC by replacing each unit by the
corresponding inverse square root. Thus, as in Figure 3, the CLPs for color still form
a triangle but it is not equilateral. This applies in general. The difference is analogous
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to using a quantitative scale with unequally spaced scale markers. With the MCA
settings of the CLPs, the squared distance between a pair of samples is known as
the chi-squared distance; the use of inverse square roots of frequencies gives greater
weight to rare category levels than to common category levels. Chi-squared distance
derives from the ordinary correspondence analysis of a two-way contingency table,
where it has considerable justification (see, e.g., Greenacre, 1984), but its use in MCA
has been criticized by Greenacre (1991). Certainly, the characteristic of chi-squared
distance that gives rare categories greater weight than common categories is not al-
ways what is required. In ordinary correspondence analysis two sets of chi-squared
distance, one between the rows and the other between the columns of the contingency
table, have equal status. In MCA, the relevant contingency table is binary (termed
the indicator matrix), containing only units and zeros giving, for each sample, the
presence and absence of the category levels. Then, intercolumn chi-squared distance
gives a measure of the distance between different levels of the same or two different
categorical variables. We agree with Greenacre that this has little interest. By working
in terms of prediction regions and having only the row points, which represent the
samples, our approach avoids difficulties of these kinds.

Gower and Hand (1996) show that the extended matching coefficient (EMC)
is monotonically related to many other distances (but not including chi-squared
distance) that may be derived from comparisons among the rows of an indicator
matrix. It follows that in the context of nonmetric MDS (see, e.g., Cox and Cox,
1994) all such coefficients are equivalent. In metric MDS this equivalence vanishes
but lends support to using the simplest form, the EMC itself, unless there are strong
reasons for adopting some more complicated definitions of distance. If one insists on
using a more complicated form, then prediction regions may still be constructed but
the methodology is less straightforward (Gower and Hand, 1996).

2.5 Computation of Prediction Regions

As we have seen, prediction regions are the intersection of the plane of approximation
with the neighbor regions determined by the CLPs. It follows that in two-dimensional
approximations we may proceed for the kth variable as follows. Consider the plane
of approximation as being made up of pixels, as it would be on a computer screen.
For each pixel, compute its distance from the L; CLPs and color the pixel according
to the category level of the nearest CLP. When all pixels have been colored, the plane
of approximation will be partitioned into the neighbor regions for the kth categorical
variable. Although our example in Figure 3 is couched in terms of a variable “color,”
and hence the coloring of pixels is particularly apt, the method will work for any
categorical variable. Indeed, the coloring is needed only to determine the linear
boundaries between the prediction regions. Once the boundaries have been found,
they may be shown as lines and the regions they enclose labeled as in Plate 7.

The pixel coloring algorithm is simple but it is not very efficient. Gower (1993)
has described the basis for an efficient algorithm that gives insight into the geometry
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of prediction regions. In principle, this algorithm will work for any value of L, and
for any number of dimensions, but it is yet to be implemented.

3 Prediction Regions for the Sugar Beet Data

The data for this example are drawn from the British Sugar Crop Survey (1993). This
survey is the principal means for collecting information on the UK sugar beet crop.
For each farm, the survey collects data on the factory where the crop is processed,
crop, sowing, fertilizer usage, disease, and pest control. The illustrations of prediction
regions given in this section concern a subset of 53 farms, selected from the total of
580 farms, and the following eight categorical variables:

Region North, West, East

Factory N1, N2, N3, W1, W2, El, E2. E3, E4, E5

Drill D1, D2, D3, D4, DS, D6, D7, D8, D9

Soil type Sands, Sandy-loam, Silty-loam, Clay

Variety Regina, Amethyst, Hilma, Gala, Matador, Rex, Planet,
Saxon, Celt, Giselle, Triumph, Zulu, Aztec, Cordelia

Stubble cultivation No, Yes

Straw disposal Left, Removed, Incorporated, No straw

Sugar content A quantitative variable grouped into an ordered
categorical variable with three levels (low, medium,
and high)

In this list, the factory names are given in coded form, with the initial letter indicating
the geographical region containing the factory; drill types are also coded.

We do not attempt an exhaustive analysis here. The two-dimensional approxi-
mation for the EMC accounts for only 16.7% of the total variation, which, in this
case, occupies 39 dimensions (obtained as a total of 49 levels, less 8 variables less
2 because region can be deduced from “factory”). However, the percentage of cor-
rect predictions is 64.6%. The two-dimensional fit of the MCA at 32.0% was rather
better when judged as percentage of the total variation, but the percentage of correct
predictions at 62.3% was a little worse. Both sets of solutions were visually similar
and we present diagrams only for the EMC.

Plate 8 shows the two-dimensional plot for the variable “regions.” The numbers
refer to the positions of the farms. The usual projections of the CLPs are not shown,
but when they are, they may be used for vector sum interpolation rather than for
prediction. The three prediction regions shown correspond to the three geographical
regions (North, West, East). The farms tend to cluster into three groups that are
enclosed within prediction regions, which, with the exception of farm 34, correspond
precisely with the geographical regions. Plate 9 shows similar plots on a reduced
scale for regions and for the other variables. For factories we see that the prediction
regions are very similar to those of Plate 8, reflecting that the factories occupy the
same geographical space as the farms. However, there are 10 factories but only
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three prediction regions appear. These are for the factories numbered E1, W2, and
N3, which are those with the highest frequencies. Inevitably, predictions are wrong
for the farms that process their beet at the less popular factories and the correct and
incorrect predictions are indicated in the figure by open and black circles, respectively.
Comparison with Plate 8 verifies that, despite incorrect predictions, at least every farm
is allocated to a factory in its own region. The CLPs for the factories that are not
shown are farther away from all the pixels than the CLPs for the three factories that
are shown and hence their prediction regions are hidden.

With other variables, the picture is less clear-cut. For example, in Plate 9, for
“straw disposal” there are only two prediction regions, corresponding to “straw
removed” (37 farms) and “straw incorporated” (14 farms). The bulk of the 51 farms
are not correctly classified, and in the figure the black circles denote the incorrect
classifications. The remaining two farms—number 1, which is said to have “no straw,”
reasonably falls into the “straw removed” region, and number 38, recording “straw
left,” which is certainly not “straw removed” and is akin to “straw incorporated,” as
predicted. Recall that the open and black circles merely record correct and incorrect
predictions; we could have colored every point by the color that correctly gives its
recorded category level—correct predictions would superimpose a colored dot on
the same background color and would be recognized as open circles, as in Plate 9.
More in keeping with the painting and brushing of scatterplots would be to color
the dots according to the category levels of some other variable. For example, if the
dots representing farms in the plot for geographical region were colored according
to their method of straw disposal, it would be seen that the Western region almost
universally prefers straw removal (farm number 4 is an anomaly), as does the Eastern
region, with a few exceptions; the Northern region would be seen to be divided in
its methods for straw disposal. Similar remarks apply to the other variables, but the
visualizations say everything that needs to be said.

The linear biplot axes associated with the classical analysis of numerical vari-
ables are usually displayed on a single diagram. The corresponding plot for categorical
variables would require the superimposition of all the prediction regions. Thus, with
the present example, all eight components of Plate 9 would have to be superimposed.
Clearly, the resulting display would be highly confusing, so we do not attempt it;
Gower and Hand (1996) give an example with four variables where superimposition
is feasible. Superimposition can be helpful when there are only a few variables and
when the different prediction regions tend to overlap, indicating association between
the corresponding variables. The practical exploitation of such possibilities calls for
interactive graphical facilities that permit one to modify a current set of superimpo-
sitions by adding or removing the prediction region for a nominated variable. This
example shows that prediction regions give a visual representation of categorical
variables that can focus attention on the main features of a sample.

The results for the EMC and MCA may be compared numerically by tabulating
the prediction error rates as in Table 2. For EMC there are 274 correct predictions
and 150 false predictions, slightly better than the corresponding figures for MCA of
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Table 2: Error rates for MCA and EMC

Multiple correspondence analysis Extended matching coefficient
True Predicted Predicted
REGION

N w E N w E
N 18 0 0 16 0 2
w 0 17 0 17 0
E 0 0 18 1 0 17

FACTORIES

El w2 N3 El w2 N3
El 7 0 0 7 0 0
w2 0 10 0 0 10 0
N3 0 0 12 0 0 12
W1 0 7 0 0 7 0
others 9 1 7 8 2 7

DRILLS

D3 D6 D3 D6
D3 8 3 9 2
D6 0 25 0 25
Others 8 9 14 3

SOIL TEXTURE
Sandy Loam Silts/Loams Sandy Loam Silts/Loams Clays

Sands 1 1 1 2
Sandy Loam 17 6 17 0
Silts/Loams 9 9 10 1
Clays 3 0 5 1




L1y

Multiple correspondence analysis

Extended matching coefficient

True Predicted
VARIETIES
Saxon Celt

Saxon 17 0

Celt 9 0

Regina 3 0

Others 22 2

STUBBLE CULTIVATION
No Yes
No 21 7
Yes 3 22
STRAW DISPOSAL
Removed Incorporated

Removed 35 2

Incorporated 12 2

Left 1 0

No straw 1

SUGAR CONTENT
Low Medium High

Low 6 9 3

Medium 4 16 1

High 6 4 4

Predicted
Saxon Celt Regina

12 5 0

5 4 0

1 1 1
15 8 1
No Yes
23 5

1 24

Removed Incorporated

29 8

S = -
—_

Low Medium High
6 6
4 11 6
1 3 10
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264 and 160. As with linear biplots, some variables are approximated better than
others. Table 2 shows that the variables “region,” “drills,” “stubble cultivation,” and
“straw disposal” give better than 60% correct predictions for both EMC and MCA,
so are reasonably well represented, whereas “varieties” are very poorly represented.
However, for “straw disposal” MCA gets 35 correct predictions for the “removed”
category with only 2 for “incorporated,” while the corresponding figures for EMC
are 29 and 13. Note that these numbers are computed values that, for EMC, may be
compared with Plate 8. What may seem small discrepancies arise from the occasional
coincidence of pairs of points in the figures and some ambiguity when a point lies on
a line separating prediction regions.

4 Conclusion

The methods discussed here may be set within developments of biplot theory dis-
cussed by Gower and Hand (1996), where the concept of biplot axes is extended
to most forms of MDS. In general, quantitative variables require different sets of
axes for interpolation and for prediction and, rather than linear axes, we may re-
quire nonlinear axes, called trajectories. We have seen how biplot axes marked with
scales for continuous variables correspond to prediction regions labeled with names
for categorical variables. Gower and Hand (1996) show how both types of variables
may be exhibited simultaneously. Ordered categorical variables may be treated by
using linear axes with irregularly marked scales, which give prediction regions that
are paralle]l bands of differing widths. Between the general disposition of CLPs in
L, — 1 dimensions, as described earlier, and the unidimensional CLPs for ordered
categorical variables, there is the possibility of dispositions of CLPs in intermedi-
ate numbers of dimensions; one approach that gives suitable coordinates for CLPs
can be found in the multiple solutions given by the homogeneity analysis program
HOMALS described by Gifi (1990) and available in SPSS. CLPs, once found, define
neighbor regions and the methods described earlier remain valid for deriving the
boundaries of prediction regions. The variant of MCA termed joint correspondence
analysis (Greenacre, 1988b, and Chapter 17 in this volume) provides its own set of
CLPs, to which Gower and Hand (1996) show how to add the sample points.
Finally, we return to the introduction, where we drew attention to the effect
of scaling quantitative variables on the distances in scatter plots and MDS. With
categorical variables this problem manifests itself in the choice of coordinate positions
for the CLPs. We have discussed two possibilities: (1) where with the EMC every
CLP is at a vertex of a unit simplex and (2) where MCA places the CLPs at vertices
whose positions depend on the category frequencies in the data. There is an analogy
between (1) choosing equal scales for a set of quantitative variables and (2) scaling
quantitative variables by data-derived quantities such as standard errors or ranges.
‘We have seen how error rates are associated with prediction regions. In Plate 9 it
is clear that a small change in the boundary between the East and North regions would
remove the one incorrect classification. This verifies that the plane of approximation,
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determined by least-squares fits to the samples positioned as vector sums of CLPs as
we have used earlier, does not minimize the error rate; it is an interesting research
problem to find what plane does. Further, can the positions of the CLPs be determined
to minimize error rates while maintaining acceptable definitions of inter sample
distance?
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PART IV

Visualization and Modeling

In the fourth part of the book we turn our attention to statistical models for categorical
data and how visualization can assist the modeling process and the interpretation of
results.

A traditional approach in the social sciences is to formulate a number of hy-
potheses about the relationships between the variables of interest and to test them
using a statistical model. Well-known models for categorical data include latent class
models and log-linear and log-bilinear models such as Goodman’s RC model. The
combination of modeling and visualization ideas is the aim of the chapters in this
part. Either the authors show how to visualize the residuals from a fitted model to
search for structures in these residuals for improving the model, or they discuss sim-
ilarities between modeling approaches and visualization techniques. Visualization
techniques can also be used in situations in which models contain many parameters,
where simple display methods can assist in the interpretation of the results.

Chapter 29, by Clifford C. Clogg, Tamas Rudas, and Stephen Matthews, intro-
duces a new idea in contingency table modeling, based on a mixture model. The main
idea is to split cell probabilities into two parts: one part that can be attributed to that
part of the population where the model of interest holds and another part that can be
attributed to that part of the population where the model does not hold. The model of
interest can be any suitable one, for example, the independence model or the quasi-
independence model, belonging to any kind of contingency table. Instead of applying
the model to the whole population, which is the usual statistical approach, the model
of interest is applied only to the respondents for whom this model holds, with all other
persons belonging to the alternative model. It follows that all values in the alternative
model, which can be treated as residuals, are positive. The visualization part in the
chapter refers to different ways of displaying those residuals.

In Chapter 30, Yoshio Takane gives an introduction to the visualization in ideal
point discriminant analysis (IPDA) of contingency tables. IPDA is a model of the
conditional probability of row i given column j in terms of the distances d;; between
row and column points in a low-dimensional Euclidean space. IPDA is one of the
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best examples of the integration of visualization and modeling ideas, where the data
are modeled directly as a function of the graphical elements, in this case, interpoint
distances. Takane gives three applications of IPDA to illustrate its usefulness.

Chapter 31, by Ulf Béckenholt, shows shifts in ideal points over time. According
to the unfolding model, persons evaluate choice alternatives by comparing them to
their ideal alternatives; they select their most preferred options, the ones that are
closest (or least dissimilar) to their ideal option. An important constraint of unfolding
theory is that, although persons may differ in terms of their preferences for the
choice options, they agree on the similarity relationship among them. Thus, in the
unidimensional case the choice options’ positions along a common (latent) continuum
are perceived homogeneously by all persons. The author uses an extension of this
model to explain shifts in ideal points over time. Using two empirical data sets from
marketing research Bockenholt demonstrates the possibilities of visualizing these
shifts.

In Chapter 32, Allan L. McCutcheon demonstrates how to use correspondence
analysis complementary to latent class analysis (LCA) in comparative social research.
Using data from the General Social Survey Program, the author introduces several
LCA models for answering different research questions. In the given examples, LCA
is used to account for the observed heterogeneity in a multiway cross-tabulation by
characterizing a set of unobserved, internally latent classes; for example, McCutcheon
examines a five-class model conducted from questions on religious beliefs in seven
nations. The classes mirror the latent “levels of belief.” One aim of LCA is to
determine the proportion of respondents in each country belonging to each class. The
solution is a matrix of positive numbers that can be visualized by applying CA. Thus,
CA gives a quick understanding of the solutions of the LCA models.

Chapter 33, by L. Andries van der Ark and Peter G. M. van der Heijden, discusses
the visualization of latent class analysis and latent budget analysis (LBA), with special
reference to correspondence analysis. Since the latent class model studies the joint
probabilities of each cell of the contingency table to be analyzed, this approach should
be used if the row variable and the column variable are both response variables or, in
other words, if there is no causal interpretation in the table. The response variables are
presumed independent given the latent classes. On the other hand, the latent budget
model should be used if one of the variables is an explanatory variable and the other
is a response variable. However, the authors show that LCA and LBA are equivalent
techniques and that the parameters from the one model can be obtained from the
parameters of the other. Van der Ark and van der Heijden also show how to project
latent budgets onto a CA solution, thus providing a new way of interpreting these
latent values.

In Chapter 34, Jay Magidson proposes the use of general ordinal logit displays for
the visualization of the effects in categorical outcome data. In the traditional approach
of log-linear modeling with an ordinal variable, the solution consists of long lists of
parameter estimates and related statistics, which are often difficult to interpret. Using
examples in which the categorical outcome is either dichotomous or ordinal and the
predictor variables are either nominal or ordinal, the author demonstrates the power
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of graphical displays for interpreting the data. Together with the traditional statistics,
which reflect the model fit and the significance of effects, the displays show which
effects are minor and which are major. Thus, one can conclude from the display
where there are possibilities for improving the log-linear model.

Chapter 35, by Antoine de Falguerolles, discusses the visualization of the resid-
uals in log-linear models. The general idea of this kind of model is that the model
formula for the predictor consists of a linear term and an additional bilinear term
of reduced rank that modeis the interaction between the rows and columns. The
advantage of modeling the interaction in this way is that the fitted row and column
parameters of the bilinear term can be plotted on orthogonal axes and interpreted as
a biplot. The author illustrates the methodology with two examples, first a three-way
contingency table of suicide behavior, treated as a two-way table where “causes of
death” is cross-tabulated against the combined variable of sex and age group. The
second example is a square mobility table illustrating the quasi-symmetric model with
a bilinear term, which also leads to a biplot display of the fitted model parameters.
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Chapter 29

Analysis of Contingency
Tables Using Graphical
Displays Based on the
Mixture Index of Fit

Clifford C. Clogg, Tamds Rudas, and Stephen Matthews

1 Introduction

We present here a new approach to the visualization of structure in categorical data.
This approach assumes that a simple model is considered in order to define the
structure of interest. We consider methods for the analysis of two-way contingency
tables, and as an example of data of this kind we shall analyze the occupational
mobility table given in Table 1. This contingency table is taken from the famous
study by Blau and Duncan (1967), as condensed by Knoke and Burke (1980). This
table cross-classifies American men in 1962 according to their current occupation
category and their fathers’ occupation category. The approach presented here is not
limited to mobility, or other two-way tables, or to the models considered. It could
be applied to any of the several models that have been suggested for the analysis
of social mobility and related two-way tables (see Goodman, 1984; Goodman and
Clogg, 1992; Clogg and Shihadeh, 1994; Luijkx, 1994). The method can also be
generalized to higher dimensional contingency tables.

Our approach relies on the following logic. First, a model H is proposed either as
a baseline model or as a structural model. Second, this model is embedded in a special
two-point mixture model. Third, the special residuals from this mixture representation

425
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Table 1: A 5 X 5 occupational mobility table

Son
Father 1 2 3 4 5
1 Professional and managerial 152 66 33 39 4
2 Clerical and sales 201 159 73 80 8
3 Craftsmen 138 125 184 172 7
4  Operatives and laborers 143 161 209 378 17
5 Farmers 98 146 207 371 226

Source: Blau and Duncan (1967, p. 496), as condensed by Knoke and Burke (1980, p. 67). The
cell frequencies in the Blau—Duncan table, as reported by Knoke and Burke and used here, are
actually population estimates divided by ten thousand; the given sample size (n = 3396) is
not the actual sample size used to estimate the population totals.

are examined. These residuals summarize structure or unmodeled structure in relation
to model H. The mixture-model residuals are very different from ordinary residuals in
two important ways: they are always valid and always nonnegative. The new residuals
may be described by tabular and graphical displays.

When applied to the mobility data, this approach leads to splitting the cell
frequencies or probabilities into two parts: one part that can be attributed to the part
of the population where the model of interest holds and another part that can be
attributed to the part of the population where the model does not hold. For example, it
will be shown that the model of quasi-uniform association can describe the mobility
process in about 95% of the population, and nearly half of the remaining 5% of the
population is concentrated into one cell of the mobility table.

The new approach offered here is one way to use models as a guide for the
visualization of structure in categorical data. The approach specifies what can be
compactly summarized with parameter values from some simple models and what
needs to be summarized with graphical or tabular displays. Our methods can serve as
a kind of rapprochement between modeling and graphical techniques for the analysis
of categorical data.

2 Some Models

For the two-way contingency table cross-classifying variables R and C, let (i, j)
denote a given cell and let f;; and F;; denote the observed and expected frequencies,
respectively, fori = 1,...,1,j = 1,...,J. Let p;; = f;j/n and P;; = F;;/n denote
the observed (or empirical) cell proportions and the expected (or theoretical) cell
proportions.
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Our approach starts with specifying a model H for the table. Three models
will be considered for illustrative purposes. These are the independence (1), quasi-
independence (QI), and quasi-uniform (QU) association models. These three models
form useful baselines in many cases in which two-way tables are considered. Written
as log-linear models, these are

I :1og(Fij) = A + Agipy + Ay M
O :log(Fij) = A + Argy + Acyjy + Arciy )
QU :log(Fij) = A + Ariy + Acgy + Arciny + ¢ iJ ®)

The QI model can be obtained from the / model by adding (on the logarithmic
scale) special parameters to the cells on the main diagonal, supposing these are not
structural zeros. The QU model is a special form of quasi-symmetry and is useful
when the variables have ordered categories (Goodman, 1984). This model assumes
essentially that, except for the cells on the main diagonal, all the local odds ratios
(Fi,jFi+1,j+1)/(Fi,j+1Fi+l,j) have the same value.

Now consider the sufficient statistics for the above models (see, for example,
Agresti, 1990). These are

I:An, (fie), (f+)} )

oI :A{n, (fi+), (f+ ) (fi)} &)

and

QU : {n o e i Y Y ﬁ,-ij} 6)
i j

where the ranges of the subscripts for sets of statistics have been suppressed for
convenience. Note that these sets of sufficient statistics are not minimal, but they
summarize all the relevant sample information for the respective model, assuming
the model is true for the entire population. A more precise formulation of the sets
of sufficient statistics would require the specification of the actual sampling scheme.
Depending on this, the sample size » may or may not be a statistic observed from the
data, and even if it is, its value could be easily obtained from the other statistics listed.
The sample size is included here to facilitate generalizations later in this chapter.

When any of the models I, QI, QU is analyzed by maximum likelihood proce-
dures, the values of the sufficient statistics are fitted, or carried over from the data
to the estimate. For the I model, these quantities are the sample size, row marginal
distribution, and column marginal distribution. For the QI model, the same quantities
plus the cell entries on the main diagonal are fitted, and for the QU mode] there is
one additional quantity, the observed cross product, using row scores i and column
scores j.
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When a model is not true for the entire population, the “sufficient” statistics are
not sufficient, for they do not capture all the information relevant in the data. Actually,
the values of the preceding statistics in this case may be completely irrelevant.
Traditional approaches to model fitting and testing assume that the model of interest
is either true for the entire population or not and assess the likelihood of obtaining
the given sample under the former assumption. In the next section we shall show how
the idea that a model may be true for a part of the population can be used to measure
the fit of the model. In this approach, the preceding sets of “sufficient” statistics will
be sufficient for only that part of the population where the model holds.

The I and QI models are often taken as baseline models, but the QU model might
be viewed as an approximation for the model that generated the data in several cases.
Using these models as a guide, we will present an approach that summarizes model
misfit, either via tabular displays or via graphical displays in terms of the sufficient
statistics for the models as well as in terms of other quantities.

3 The 7" Index of Structure

The material in this section follows Rudas et al. (1994) and Clogg et al. (1995), where
proofs of the assertions made here can be found.

Consider a model H for the contingency table, for example, any of the models
described earlier. Model H is embedded into the following model H,

H,T . P,'j = (1 - W)Hl(ij) + 1TH2(ij); Hl S H, H2 unspeciﬁed (7)

Model (7) can be given the following interpretation: A dichotomous latent variable,
say X, is posited with Pr(X = 1) = 1 —mand Pr(X = 2) = mr, that is, with latent class
proportions, or mixing weights 1 — 7 and 7. Within the sth latent class (¢t = 1, 2),
ILj, = Pr(cell(i, j) | X = 1); that s, the I, denote the conditional probabilities
of interest.

Model (7) is different from the ordinary two-class latent structure model in
two respects. First, the model H originally specified applies only to the first latent
class. The second latent class is not modeled, or is unrestricted, or is estimated
nonparametrically. The usual latent class model assumes independence or “local
independence” in both latent classes. Second, model H need not be independence or
some restricted version of independence. Any restricted or unsaturated model can be
used to define H and hence the mixture model H .

For a given model H, the mixture representation H, in (7) defines a class of
models as 7r varies between zero and one. Note that Hy = H; that is, for w = 0 (7)
is equivalent to H. The specific model with = = 0 says that model H is completely
congruent with the data, or that model H applies to the entire population. When
7 = 1, the data, or the true distribution that generated the data, would be said to
be completely outside the model formulated initially. Also, H; does not imply any
restriction as to the true distribution.
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The class of models in (7) has the following nesting property: for # < 7/, H,, C
H .. This means that if H = H, does not contain the true distribution, then a value of
7r with 0 < 7 = 1 can always be found so that the model in (7) fits the distribution
perfectly, since H; is not restricted and therefore contains any distribution. Or, if
H.; does not fit the distribution perfectly for a given value of , then a value of 7’
with 7 < 7’ =< 1 can always be found so that model H contains the distribution.
Because of this property, the class of models in (7), with 7 considered as a parameter,
can be used to represent the lack of fit of model H. There is always a value of 7
for which H,, fits the underlying distribution perfectly; therefore this model can be
used to quantify the lack of fit of H, that is, to summarize the structure in the true
distribution in relation to H and to pinpoint cells where this lack of fit arises. For
cases where model H serves as a definition of structure, the magnitude of the structure
can be quantified in terms of 7, and the local structure can be investigated using the
entries in the table of the conditional probabilities for the second latent class (i.e.,
o).

For a specified model H, we define our index of structure (or of lack of fit)
7* as the smallest value of 7 for which the model in (7) contains (fits) the true
distribution P. That is, the functional *(P) is defined as

7 (P) = inf{w : P = (1 — mII; + «wll,; T; € H,II, unspecified}  (8)

where the cell subscripts have been suppressed. Because of the nesting property, H,
for any 7* < 7 < 1 will also fit P. It is important to recognize that the parameter
7" is the minimum value of the mixing proportion 7 for which H, describes the
distribution. The value of #* is unique, because it is a minimum. Also, the maximum
likelihood estimator (MLE) of #* is obtained by substituting P = {p; it = {fij/n} for
P in the functional defined in (8). Iterative calculation of the MLE of 7* is described
by Rudas et al. (1994). Basically, the algorithmic problem is to find the smallest value
of 7 for which the mixture representation in (7) produces perfect fit for the observed
distribution. For other algorithms see Xi and Lindsay (1997).

For a given model H, such as independence or “perfect mobility,” suppose now
that 7" or %" is available. These quantities have the following simple interpretation:
7" is the minimum fraction of the population that is “outside” model H, and 7" is
the MLE of that fraction.

Note that whereas in the traditional hypothesis-testing approach the null and
alternative hypotheses may both be false, the representation in (7) is always possible
with an appropriate value of 7, and inference based on it is always valid.

4 The 7" Index Applied to the Mobility Data

The framework outlined will now be applied to the data in Table 1. Standard chi-
squared fit statistics as well as the MLE of #* appear in Table 2. The chi-squared
values indicate that each model is unacceptable, although the QU model provides a
relatively good fit. The #* values for the three models are 0.310, 0.147, and 0.052, re-
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Table 2: The usual fit statistics and the mixture index of structure 7* for three models
applied to the data in Table 1¢

Model x? L? daf #* L
1 875.10 830.98 16 0.310 0.282
or 269.07 255.14 11 0.147 0.123
QU 30.78 27.82 10 0.052 NA

¢ X2, 12 refer to the Pearson and the likelihood-ratio chi-squared statistics; df to the degrees
of freedom; fr; denotes an approximate 95% lower confidence bound for 7*. NA means that
the confidence interval contains zero. See text for a description of the models.

spectively. These quantities have the following interpretation. With the independence
model we estimate that 31% of the population is outside the model, and this quantity
can be taken as the amount of structure to be explained either by other models or
by graphical summary. In other words, we estimate that 69% of the population can
be described by independence and no special visualization techniques are required
for this part of the population. For the QI model, nearly 15% of the population is
estimated to be outside the model, or about 85% of the population can be described
by quasi-independence and, again, no special visualization techniques are required
for this part of the population. Alternatively, about half of the structure not described
by the independence model, in terms of the fraction of the population where it is
present, is accounted for by including special parameters for the cells on the main
diagonal. Finally, for the QU model, only about 5% of the population is estimated to
be outside the model, and this amount seems to be quite small. That is, in spite of the
fact that the QU model does not fit the data well using a strict interpretation of the
chi-squared statistic, the model fits well in the sense that it is able to describe about
95% of the population.

It is well known that values of the chi-squared statistics are proportional to the
sample size for sets of data with the same observed distribution P. Given that for the
present set of data the cell frequencies are merely population estimates in ten thou-
sands (the actual frequencies used to estimate these are not available in the source), it
is not valid to rely on the chi-squared values as strict test statistics. Depending on the
actual sample size, they may be substantially smaller or substantially greater than the
values reported in Table 2. The #* values, on the other hand, do not depend on the
sample size in the preceding sense; for a given model, these values depend on P only.
Therefore, in this case, the inference based on the mixture index of fit 7* appears to
be more valid than inference based on the chi-squared values.

The last column of Table 2 reports 95% lower confidence bounds for 7*. For
the QU model the resulting confidence interval contains the value zero. This implies
that the hypothesis that the true value of #* is equal to zero, that is, the model
describes the entire population, cannot be rejected at the 5% level. This test relies on
the assumption that the true sample size is the one reported in Table 1.
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Another interpretation of the quantity 7" can be obtained by linking its value to
the sufficient statistics. All of the models (1), (2), and (3) include the constant term A.
The MLE of A for a table of fixed size under any of the models can be computed
using the sample size n only from among the sufficient statistics listed under (4), (5),
and (6), respectively. The sample size is sufficient for the constant term under any of
the models (1), (2), or (3) (in fact, under any log-linear model assumed to hold for
the entire population). In these cases, the constant term A in the model is a scaling
factor making the estimated frequencies sum to the sample size (or, consequently, the
estimated probabilities sum to 1).

Consider now the following reparameterization of the mixture model (7) for the
H = I model in (1):

Fij = exp (k1 + Kigg) + Kic)) + exp (k2 + Korgy + Koc(jy + Koreap)  (9)

with the usuval assumption that the k; and k; parameters summed in any of their
arguments give zero. Then subject model (9) to the requirement that

Z Z exp (Kl + K1R() + ch(j)) 1s maximal (10)
i

Model (9) is the same mixture representation that appears in (7), but the independent
and nonrestricted parts are now in log-linear representation, with the (1 — ) and 7
mixing weights absorbed. Condition (10) means that the weight of the independent
part [(1 — ) in (7)] should be as large as possible.

Then n#* is sufficient for the constant term k, in model (9)—(10), and n(1 — 7*)
is sufficient for ;. That is, under (1) n (= nl) is sufficient for the constant term,
while under (9)-(10), n(1 — #") is sufficient for the constant term for the part of
the population where (1) is supposed to hold. This reflects the fact that instead of
the fraction 1 (i.e., the entire population), model (1) is supposed to be true only in a
smaller fraction of size 1 — 7.

This argument generalizes directly to any model that includes a constant term,
not just to models (2) and (3), but to any log-linear model as well.

5 Residuals Based on the Mixture
Representation of a Model

We now consider some properties of the I, matrix, which is the unrestricted part of
the mixture model (7). Suppose that H is the model of independence with (/ —1)(J —1)
degrees of freedom or, equivalently, I + J — 1 estimated parameters, or constraints on
the fitted frequencies [with IJ — (I +J — 1) = (I — 1)(J — 1)]. The table of conditional
probabilities for the unstructured latent class (I11,) will have at least I + J — 1 zeros.
Consequently, the number of nonzero entries in this matrix will be no greater than
(I — 1)(J — 1), which coincides with the number of degrees of freedom for the model /.
In general, if model H has d degrees of freedom, then the number of nonzero entries
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in I, will be less than or equal to d, and there will be at least IJ — d zeros (see Xi,
1996).

The nonzero entries in 1, define residuals in the context of the mixture represen-
tation. The pattern of nonzero entries summarizes the local misfit or local structure.
The pattern and size of nonzero entries in this matrix may suggest ways to modify the
original model. These entries can be examined using conventional tabular displays
or by using simple graphical displays. Note that H might be either a model proposed
as an “explanation” of the data, in which case #* summarizes lack of fit of this
model and the pattern of nonzero entries in II, describes cell-by-cell lack of fit of
this model, or H might be a model used primarily to define structure (X is some
standard baseline model), in which case 7* measures the amount of structure not
described by H and the pattern of nonzero entries in I, describes the local structure
not described by H. By considering the local misfit or local structure as summarized
in the unrestricted matrix of probabilities I, a new and fundamentally different kind
of residual analysis is possible.

To facilitate comparison, the entries in I1, can be multiplied by 4*; when this is
done, the decomposition corresponding to (8) or to (9) and (10) can be written as

pij = qij T 1ij (11)

where p;; = f;;/n [the observed proportion in cell (i, /)], g;; = (1 — *fr*)ﬂl(,-j) is
the component associated with the part of the population estimated to lie in H, and
rij = *fr*ﬁz(l- ) 1s the component associated with the part of the population estimated
to be outside H. We shall call the r;; quantities the mixture-model residuals, or MMRs
for short.

The MMRs are different from ordinary residuals in two very important aspects.
First, the MMRs are always valid, in the sense that the representation (7) from which
they are derived is always valid (for some value of 7r) in contrast to the usual residuals
that are based on the assumption that model H is true for the entire population, which
may or may not be correct. Moreover, when model H is not true, the meaning of the
ordinary residuals is somewhat dubious. Second, the MMRs are always nonnegative,
have the straightforward interpretation of being the distribution in the part of the
population where H does not hold true, and therefore can be analyzed by methods
similar to those that can be used to analyze the distribution of the estimates under
model H.

The decomposition in (11) leads to an analysis of local structure that is consistent
with the index of overall structure in the following sense. Summing over i and j gives

1ZZZPU=ZZQi1+ZZVij=(1—7AT*)+7AT*
T i i

The MMRs sum to the “overall residual” #*. The relative contribution of a given
MMR to the overall residual is r;; /7.

In some cases the MMRs may be used to identify the parts of the population
where H does not fit or does not fit well (Rudas and Zwick, 1997).
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6 Analyzing Lack of Fit and Local Structure Using
Tabular Displays

Tables 3, 4, and 5 give the ;; MMRSs for the I, O, and QU models, respectively. For
such a simple table (i.e., a 5 X 5 table), these tabular displays go a long way toward
summarizing the lack of fit of the models. They also describe the structure in the data
not captured by the given model. Note that the sizes of the residuals decrease as we
go from one model to the next.

For the independence model, the residuals in Table 3 admit the following simple
interpretation. Nonindependence arises from the upper left 3 X 3 subtable and the
lower right 1 X 1 subtable, that is, cell (5, 5). Contributions from cells (1, 1), (2, 1),
(2, 2), and (5, 5) are dominant. The other entries in this table are virtually zero or

Table 3: Mixture-model residuals for the independence model applied to the data in
Table 1¢

Son
Father 1 2 3 4 5
1 0.042 0.015 0.003 0 0.001
2 0.053 0.038 0.008 0 0.001
3 0.027 0.017 0.026 0 0
4 0.013 0.004 0 0 0.001
5 0 0 0.001 0 0.062

“There are 9 zeros and 25 ~ 9 = 16 nonzero entries, corresponding to the number of parameters
(or degrees of freedom) for the independence model. The values sum to the value of 7" (i.e.,
to 0.310), except for rounding error. See Table 1 for the definition of the categories.

Table 4: Mixture-model residuals for the quasi-independence model applied to the
data in Table 1¢

Son
Father 1 2 3 4 5
1 0 0.012 0 0.001 0.001
2 0.048 0 0 0 0.001
3 0.017 0.002 0 0 0
4 0.010 0 0 0 0.002
5 0 0 0.005 0.047 0

“There are 14 zeros and 25 — 14 = 11 nonzero entries, corresponding to the number of
parameters (or degrees of freedom) associated with the quasi-independence model. Apart from
rounding, the entries sum to 7r*. See Table 1 for the definition of categories.
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Table 5: Mixture-model residuals for the quasi-uniform association model applied to
the data in Table 1°

Son
Father 1 2 3 4 5
1 0 0.005 0 0.004 0.001
2 0.025 0 0 0.003 0.002
3 0.001 0 0 0.006 0
4 0 0 0.003 0 0
5 0 0.003 0 0 0

“There are 15 zeros and 25 — 15 = 10 nonzero entries, cormresponding to the number of
parameters (or degrees of freedom) associated with the quasi-uniform association model. See
Table 1 for the definition of categories.

identically zero. The upper right 4 X 2 subtable and the lower left 2 X 4 subtable
contribute very little to the lack of fit; that is, independence almost characterizes these
subtables.

Because the quasi-independence model fits the frequencies on the main diagonal,
r; = 0 for each cell on the main diagonal for this model in Table 4. The interesting
local structure is thus confined to the off-diagonal cells. The (upward) mobility in the
(2, 1) and the (upward) mobility in the (5, 4) cells are the most important contributors
to the lack of fit here. These two cells account for nearly 65% of the total lack of fit
of the QI model.

The apparent patterns seen in the first two displays disappear once the quasi-
uniform association model is considered, with one important exception. As seen in
Table 5, rz; = 0.025, so this cell denoting upward mobility from the next-to-highest
origin category to the highest destination category is not described well by the QU
model. This cell is the only one having an MMR deserving much further comment,
and it accounts for approximately half of the overall lack of fit.

7 Some Elementary Graphical Displays

A number of simple graphical displays suggest themselves as useful representations
of the preceding analyses. Figures 1, 2, 3, and 4 present four of these for the models
1, QI, and QU.

Note that the analyses based on Figures 1, 2, 3, and 4 would be the same whether
carried out in terms of probabilities or in terms of frequencies. The sample size, of
course, plays an important role in effecting the lower confidence bounds 7, for 7*
reported in Table 2. But the estimates themselves do not depend on the sample size.

Figure 1 shows the decomposition (11) for each of the models, giving for every
cell the fraction of the probability or of the frequency that is estimated to have come
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Figure 1: The I, 0I, and QU models applied to the Blau-Duncan data. Decomposition
into model part (g;; — white) and residual part (r;;—black), as in (11).

from the part of the population where model H holds (g;;) and the fraction that is
coming from the other part (r;;). The model part is white and the residual part is
black. Improved model fit, as one moves from the / model to the QI model and then
to the QU model, is reflected by the reduced heights of the black bars, that is, of the
residuals. The first panel of the figure indicates that there is a substantial amount of
observations on the main diagonal of the table (that is, immobile population), which
is not accounted for by the / model. The QI model reproduces the main diagonal
entirely, and residuals are found only in the off-diagonal cells. With the QU model,
the only substantial black (that is, residual) part is seen in cell (2, 1).

The MMRs (r;;) are presented in Figure 2; this figure contains the same informa-
tion as Tables 3, 4, and 5. In other words, this figure gives the black bars from Figure 1.
Residuals, or equivalently misfit, are concentrated to the upper left corner of the table
when the ] model is used; that is, except for the stronger than expected persistence
in the farmer category, the I model fails to describe the data mostly because of status
persistence in the upper strata of the society. The same status persistence is not seen
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Figure 2: The I, QI, and QU models applied to the Blau-Duncan data. Mixture-model
residuals (r;;).

in the lower strata of the society, except for the farmers. The third panel of the figure
indicates that the QU model gives a fairly good description of the data, except that
it fails to account for a part of the mobility of the sons of fathers in the clerical and
sales category into the professional and managerial category. Whether or not this part
is substantial, can be investigated using the next figure.

A comparison of the parts not explained by model H in the 7" approach and
of the parts explained by the model is facilitated by plotting r;;/g;; in Figure 3. The
panels of this figure show for every model how the “residual” probability compares
to the “explained” probability. This plot gives an impression about misfit, which is
very different from the impression that one can gain from Figure 2. For the QI model,
Figure 2 suggests that the two main sources (or locations) of misfit are cells (2, 1) and
(5, 4). Figure 3 suggests that from among these, only cell (2, 1) is important, if the
ratio of the residual to the explained part is considered. Similarly, for the QU model,
the only major absolute source of misfit is cell (2, 1), but relative misfit here is much
smaller than in the cells (1, 5) and (2, 5). That is, in “absolute terms,” the fit of the
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Figure 3: The /, QI, and QU models applied to the Blau~Duncan data relative. Resid-
uals (rij/q,-j).

QU model is poorest for the upward mobility of sons of fathers in the clerical and
sales category; however, the part unexplained is not too big compared with the part
explained in this category. In the upper right corner of the table the model strongly
underestimates the frequency, relative to the observed frequency. This applies to
cells with downward mobility: sons in the farmer category whose fathers are in the
professional and managerial category or in the clerical and sales category. The small
observed frequencies in these categories indicate that this type of downward mobility
is rarely found in the population; however, the QU model still strongly underestimates
its probability. The statistical reason for this is that the overall fit of a model depends
more strongly on the fit in the cells with large observed frequencies than on the fit in
the cells with small observed frequencies. Therefore, the relative fit is poorest in the
cells with small observed frequencies.

Finally, Figure 4 shows the relative contributions of the cells to the overall lack
of fit of the models by plotting r;;/#". This figure is a rescaled version of Figure 2.
For the QU model, nearly half of the total residual (that is, of 4*) arises in cell (2, 1)
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Figure 4: The I, I, and QU models applied to the Blau-Duncan data. Contribution
of the cells to Lack of Fit (r;; /#).

representing the stronger than expected upward mobility from the clerical and sales
category into the professional and managerial category.

Further analysis of the MMRs including the application of various visualization
techniques could be performed taking into consideration the special structure of the
residual matrix. In fact, the residuals in the 7" approach are always nonnegative and
can be given a probability distribution interpretation and therefore any technique,
computational or visual, can be used for the analysis of residuals that can be used to
analyze any probability distribution.
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Chapter 30

Visualization in Ideal Point
Discriminant Analysis

Yoshio Takane

1 Introduction

Ideal point discriminant analysis (IPDA) was originally proposed as a technique for
discriminant analysis with mixed measurement level predictor variables (Takane,
1986; Takane er al., 1987). However, it was soon realized that it could also be used
as a technique for analysis of contingency tables (Takane, 1987). It has also been
extended to cover a wider range of data types (Takane, 1989a, b). In this chapter we
focus on the second use of IPDA, demonstrating its advantages (and disadvantages)
in the analysis of contingency tables.

IPDA allows spatial representations of rows and columns of contingency tables.
Specifically, it represents rows and columns of contingency tables as points in a
multidimensional Euclidean space. By looking at distances between them, we imme-
diately know which rows and columns are closely related to each other. IPDA also
allows incorporating external information about the rows of contingency tables. This
information serves as predictor variables for discriminating columns of the tables.
Based on the statistical inference capabilities of IPDA, we can decide which predictor
variables are useful for the discrimination. This in turn provides information about
which attributes of the rows are important for them to have closer relationships with
certain columns.

As an example, let us look at the example data set in Table 1. This is a 16 X 2
contingency table obtained in a clinical study involving cancer patients. Column cat-
egories pertain to whether the patients lived less than 10 years or longer than 10 years

441
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Table 1: The data from Madsen (1976)

Type of Survival
Stage operation Radiation Pathology <10yr >10yr
1.Low 1. Extensive 1. Noradiation 1. Localized 1 21
2. Spread 9 20
2. Radiation 1. Localized 0 23
2. Spread 17 41
2. Not extensive 1. No radiation 1. Localized 0 4
2. Spread 1 9
2. Radiation 1. Localized 1 2
2. Spread 2 7
2. High 1. Extensive 1. No radiation 1. Localized 1 3
2. Spread 37 3
2. Radiation 1. Localized 1 4
2. Spread 63 7
2. Not extensive 1. No radiation 1. Localized 0 0
2. Spread 3 1
2. Radiation 1. Localized 0 1
2. Spread 13 4

after surgery. Rows of the table represent descriptions of the patients according to
all possible combinations of four binary variables. The patients were cross-tabulated
by the length of survival and their 16 combined categories, which we call “profiles.”
In analyzing a table like this, we are typically interested in finding out how the
patient profiles are related to the survival rate and which variables or combinations
of variables are specifically related to the survival rate. IPDA answers both of these
questions. By spatial representation it will be immediately clear which profiles are
more closely related to which survival categories. By variable selection it will become
clear which main effects and/or interaction effects among the predictor variables are
important for survival of the patients.

In this chapter we demonstrate the use of IPDA through the analysis of this and
two other data sets, emphasizing how effectively various visualization techniques can
be used with IPDA for more comprehensive accounts of contingency tables.

2 Outline of the Method

Let us briefly explain what IPDA does. In IPDA, we represent both rows and columns
of contingency tables as points in a multidimensional Euclidean space. We let x;,
and y;, denote the coordinates of row point i and column point j, respectively, on
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dimension a. The Euclidean distance between the two points is then given by

dij = [ (i — yja) (1)

Let n;; denote the observed frequency of column j given row i. We assume, for the
sake of parsimony and numerical stability, that the coordinate of the column point,
Yja» is given by a weighted average of coordinates of row points, namely

Yija = Z nijXia/n j 2
i

where n; = >, n;;. We posit that the conditional probability of row i given column
J is proportional to exp(—dizj), that is,

pi); * exp(—d}) A3)

It is important to realize that this probability is a decreasing function of the distance
between row i and column j. That is, the closer they are located, the higher is the
probability that row i arises from column j, and the further apart they are, the less
is the chance that row i arises from column j. Let p; denote the prior probability of
column j. The joint probability of row i and column j is then given by

pij = pj exp(=d})/C @)

where
C=>">" prexp(—d}) )
kool
and the conditional probability of column j given row i by
pj1i = pj exp(=d})/C; (6)

where C; = Y, px exp(—d}). This conditional probability is fitted to n;; so as to
maximize the log-likelihood function,

InL = Z Z nij In p;|; + constant @)

i J

with respect to the coordinates of row points, x;,. The coordinates of column points,
Yja, are simply calculated by (2), once x;,’s are obtained.

The model allows spatial representations of rows and columns of contingency
tables. It also allows incorporating external information in the representations. For
example, we may represent locations of row points as linear combinations of known
predictor variables. Let X denote the matrix of x;,’s and G a matrix of predictor
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variables. Then
X =GB ®)

where B is the matrix of weights. We estimate B directly, from which X is calculated
from (8).

We may compare goodness of fit of various models and specifications, including
the dimensionality of the representation space and various specifications of G, and
choose the best fitting model. Akaike’s information criterion (AIC; Akaike, 1974),
defined by

AIC, = —21In L' + 2n, )

where 7 is a specific model fitted, In L, is the log likelihood of model 7 maximized
over its parameters, and n,, is the number of parameters in model 7. The model that
yields the smallest value of AIC is considered the best fitting model. AIC penalizes
the maximum likelihood by the number of parameters used in a model to maximize
its future predictability.

The matrix of the negative expected Hessian (second-order derivatives of the
log-likelihood function with repect to the parameter vector, 9),

#InL

evaluated at the maximum likelihood estimates of 0, is called the information matrix.
The inverse of the information matrix provides variance—covariance estimates of the
parameter estimates, which may be used to draw confidence regions or bands around
the estimates to indicate the degree of their stability.

The spatial representation in IPDA facilitates a holistic understanding of the
relationship between rows and columns of a contingency table in a manner similar
to correspondence analysis. Statistical evaluation of various constraints, on the other
hand, facilitates an analytic understanding of structures in contingency tables much
the same way as in the log-linear analysis of contingency tables. Confidence regions
indicating the degree of stability of estimates of point locations can also be drawn,
as already discussed, based on the asymptotic properties of maximum likelihood
estimators. The conditional probability surface can be plotted for each criterion
group (column) as a function of coordinates (locations) in the space. In this chapter,
we demonstrate the use of these visualization techniques through the analysis of three
example data sets from studies on ovarian cancer, merit distribution, and psychiatric
symptoms.

3 Analysis of Ovarian Cancer Data

The data are a five-way contingency table (Table 1), binary each way, pertaining
to the survival of patients who had surgical operations to remove ovarian cancer
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(Madsen, 1976). Columns of the table represent criterion groups, representing two
categories of survival, survival of less than 10 years (column 1) and survival of
longer than 10 years (column 2) after the operation. The other four binary variables
are deemed to be predictor variables: stage of cancer: 1 = low, 2 = high; type of
operation: 1 = extensive, 2 = not extensive; radiation: 1 = radiation treatment, 2 = no
radiation treatment; pathology: 1 = localized, 2 = spread. By factorially combining
the four binary variables, we obtain 16 profiles of patients corresponding to the rows
of the table. In analyzing this data set we are specifically interested in finding out
which profiles have prospects of longer survival and which predictor variables or
combinations of the variables are closely related to the length of survival.

We have tried a number of possible combinations of the four predictor variables
and interactions among them to find the best representation of the row points. The
representation is necessarily unidimensional because there are only two column cat-
egories. Results of fitting various models are given in Table 2. Eleven models were
fitted, including the saturated model and the independence model. The saturated
model takes observed p ilis that is, n;; /n;, as the estimate of true p ilie The inde-
pendence model, on the other hand, assumes that there is no relationship between
rows and colums of the table. These two models serve as benchmark models. The
saturated model represents the most general model conceivable and the independence
model the opposite extreme. Other models listed in the table are labeled by numbers
representing predictor variables included in the models. For example, 1,2, 3,4 in the
first row indicates a model in which all four predictor variables (all of them are main
effects) are included, and 1,4,2 X 4 in the fifth row designates a model in which
variables 1,4 (both are main effects) and the two-way interaction between variables 2
and 4 are included. The minimum AIC indicates that the model with the main effect
of stage of cancer (variable 1), the main effect of pathology (variable 4), and the

Table 2: Selection of predictor variables for Madsen'’s data

Model Predictors AIC (# of parameters)
1 1,2,3,4 2529 5)
2 1,3,4 254.3 4)
3 1,2,4 251.0 4)
4 1,4 252.3 3)
5 1,4,2 X4 252.6 4)
6 1,2,4,2 X4 250.9 5)
7 1,4,2X 4 *249.0 4)
8 4,2X4 349.7 3)
9 1,2X4 260.8 3)
10 Saturated model 263.5 (15)
11 Independence model 416.8 1)

* Best fitting model.
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interaction between the type of operation and pathology (variables 2 and 4) is the
best fitting model (indicated by a star in the table). Note that in coding the interaction
effect between variables 2 and 4, the nonextensive operation for localized cancer and
the extensive operation for spread cancer were taken as category 1. The nonextensive
operation for spread cancer and the extensive operation for localized cancer, on the
other hand, constitute category 2. (There is one degree of freedom for this interaction,
which is defined by the difference between the two categories.) The radiation variable
(variable 3) did not have any significant effects. Compare models 1 and 3, where the
difference between the two models lies in the absence of variable 3 in model 1. Model
3 is found to be a better fitting model according to the minimum AIC, implying that
the contribution of variable 3 is significant. The main effect of the type of operation
seemed significant in the absence of the interaction effect between this variable and
pathology (compare models 3 and 6), but once the interaction effect was included, it
was no longer significant (compare models 6 and 7). These results should be taken
with some caution, however. The sample size (N = 299) in this data set is a bit
too small to rely completely on the asymptotic properties of maximum likelihood
estimators. Preferably, we would like to have three times as many observations.
Estimates of parameters and their standard errors are presented in Table 3.
Categories associated with positive weights are supposed to have favorable effects on
survival. The patient with a low stage and localized cancer has a better prospect of
longer survival. A nonextensive operation is better when the cancer is still localized,
but an extensive operation is better when the cancer has already spread. Locations
of patient profiles are also given in the table. Because the radiation variable has
no significant effects, we collapsed the original 16 profiles into eight patterns by
ignoring this variable. Thus, for example, profile 111 indicates low stage (variable 1),
extensive operation (variable 2), and localized cancer (variable 4). Figure 1 displays
the locations of the eight patient profiles and the two column categories. The patient
profiles are indicated at the top of the figure, and the column categories labeled
c¢1 and c; are indicated at the bottom. The profiles located more to the right have
better prospects of longer survival. Profile 111 has the highest prospect of longer
survival, followed by 121, while profile 212 has the lowest prospect among all.
Two curves labeled ¢; and c; indicate the conditional probabilities of column 1
(survival of less than 10 years) and column 2 (survival of more than 10 years) as
functions of coordinates of patient profiles along the horizontal axis. These curves
are similar to item characteristics in item response theory. They happen to be either
monotonically increasing or decreasing in the entire range of the coordinate values.
For example, the c; curve is monotonically increasing even in the outside range of the
column category 2, where the distance between a point and the column category point
increases as the point moves away to the right. However, this is the way it should be
according to model (6), because what determines the conditional probability is the
difference between the squared Euclidean distances from a point, say x, to the two
column categories, that is, d2, — d2, but as the point moves away from c; to the right,
the former becomes larger more quickly than the latter. Dotted curves enclosing the
conditional probability curves indicate the 95% confidence bands for these curves.
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Table 3: Estimates of parameters from Madsen’s data

Estimate of Standard
Variable category weight error
1 Stage 1. Low 58 (.02)
2. High —.65 (.05)
4 Pathology 1. Localized .66 (.18)
2. Spread -.17 (.05)
2 X 4 (Operation type 1.2 .28 (.12)
X pathology) 20 -.13 (.05)
Predictor
Pattern pattern Coordinate of Standard
number 1,2,4) row point error
1. 111 1.53 (-13)
2. 112 .28 .07
3. 121 1.11 (:20)
4, 122 .69 (.16)
5. 211 .29 (17)
6. 212 —-.95 (.06)
7. 221 -.12 (.23)
8. 222 —-.54 (.15)
Coordinate of Standard
Length of survival column point error
Less than 10 years —.61 (.03)
Longer than 10 years 61 (.03)

“Extensive operation for spread cancer or nonextensive operation for localized cancer.
bExtensive operation for localized cancer or nonextensive operation for spread cancer.

The true conditional probability curves lie within the bands with probability .95.
The confidence bands were drawn from variance—covariance estimates of conditional
probabilities as functions of point coordinates that can easily be derived from those
of parameter estimates based on the delta rule (Rao, 1973, pp. 388-389).

Although itis the difference between squared Euclidean distances that determines
the conditional probabilities of column categories, certain between-row-and-column
distances are still interpretable in probabilistic terms. The foliowing three statements
summarize the relationships between d;; and various Kinds of probabilities: p;, ; (the
conditional probability of row i given column j), p;; (the joint probability of row i
and column j), and p; ; (the conditional probability of column j given row i).

1. According to (3), p;; is inversely monotonic with d;; within column j, so that

dij > dyj < p;|; < pys) ;- Row i’ is more probable than row i in column j. For
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Figure 1: Ovarian cancer data: conditional probability curves.

example, the probability of profile 222 is greater than the probability of profile
111 for j = 1 in Madsen’s data, because the distance between profile 222 and
column category 1 (¢;) is smaller than that between profile 111 and ¢;.

2. According to (4), p;; is not necessarily inversely monotonic with d;; unless p; is
constant across j. However, this is approximately true in Madsen’s data, so that
the joint probability of profile 222 and c, is greater than that of profile 111 and ¢;.

3. According to (6), p;); is inversely monotonic with d;; within row i for different
columns (j’s) only if p; is constant across j. Thatis,d;; > d;y <= p;|; < pj;.
For example, profile 111 is more likely to belong to ¢, than to ¢; in Madsen’s
data. (The conditional probability of c; is greater than that of ¢, given profile 111.)
However, p;|; is not inversely monotonic with d;; within column j for different
rows. For example, di; > d3,, but p;;; > p,3 in Madsen’s data. Although the
distance between ¢, and profile 111 is greater than that between c; and profile
121, the conditional probability of ¢, given profile 111 is greater than that of c;
given profile 121.

Interpretations of between-row-and-column distances are thus rather intricate,
and care should be exercised when they are interpreted in probabilistic terms.
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4 Analysis of Merit Distribution Data

Table 4 shows the merit distribution data at McGill University in 1987. There are four
merit categories in the amount of salary increase in that year: $2400, $1650, $750,
and $0, which constitute columns of the table. The numbers of faculty members who
received particular merit increases are tabulated within each of 14 faculties. In the
faculty of science, for example, 64 professors received the $2400 merit increase, 74
professors the $1650 increase, 43 professors the $750 increase, and 21 professors no
merit increase. McGill University introduced the merit salary system for the first time
in 1987, and high-rank university officials were interested in finding out whether the
merit allocations were fair across different faculties.

There are four criterion groups in this data set, so that up to three-dimensional so-
lutions can be obtained. The data were analyzed by IPDA with dimensionality varied
from one to three. Since there were no obvious predictor variables that “structure” the
rows of the table, each faculty was treated as distinct without any particular relation-
ships assumed among them. The unidimensional solution was found to be the best
fitting solution according to the minimum AIC (Takane, 1989a). This solution yielded
the AIC value of 3196.4 with 16 parameters estimated, while the two-dimensional
counterpart yielded 3204.3 with 28 parameters. Two benchmark models resulted in
AIC values of 3248.3 (the independence model) and 3225.6 (the saturated model)
with 3 and 32 parameters, respectively. This indicates that there are indeed significant
differences in the distribution of merit allocations across different faculties.

Table 4: Merit distribution data across faculties of McGill University in 1987

(1) 2 3 @

Faculty $2400 $1650 $750 $0

1. Agriculture 13 27 19 15
2. Arts 56 81 68 13
3. Dentistry 7 9 3 1
4. Education 30 32 27 11
5. Engineering 36 42 32 15
6.  Graduate Studies 13 11 11 5
7. Law 13 10 6 2
8. Management 20 13 13 8
9. Medicine 24 46 44 52
10.  Music 9 9 11 9
11.  Religious Studies 7 4 3 3
12.  Science 64 74 43 21
13.  Libraries 18 27 19 4
14.  Others 9 13 13 15
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Estimates of parameters in the best fitting solution are provided in numerical
form in Table 5 along with their standard errors. They are also presented graphically
in Figure 2. In this figure, column categories are indicated at the bottom by numbers
from 1 to 4. Despite the fact that no order constraints were explicitly imposed, they
turned out to be in the order of the monetary value of the merit categories. The
right-hand side of the figure points to more favorable evaluation. The row points
representing the 14 faculties are indicated by numbers from 1 to 14 at the top of
the figure. Dentistry (3) was found to be the faculty most lenient to its members,
and the Medical School (9) was the most stringent. In fact, Dentistry was on the
verge of being closed a few years ago due to lack of research productivity, while
the Medical School at McGill is considered one of the top medical schools in the
world. The vertical axis represents the conditional probabilities of particular merit
categories. These conditional probabilities are functions of how lenient or stringent
faculties were in their allocations of merit. The four conditional probability curves
depict how they change as functions of the point coordinate along the horizontal
axis. They are analogous to the category characteristic curves in mutiple-choice

Table 5: Estimates of parameters for the merit distribution data

Coordinate of Standard

Faculty row point error
1. Agriculture —-.63 .27)
2. Arts 54 (.19)
3.  Dentistry 1.42 97
4.  Education .18 (.30)
5. Engineering .10 (.26)
6. Graduate Studies .08 (.46)
7. Law 1.21 (.72)
8. Management .01 (.39)
9. Medicine -1.23 (.13)
10. Music -.79 37
11. Religious Studies —-.06 (.69)
12.  Science .64 41)
13. Libraries —-1.13 (.30)
14.  Others .38 (.20)
Coordinate of  Standard
Merit category column point error
1. $2400 15 .02)
2. $1650 .07 oy
3. $750 -.01 N
4. $0 —-42 (.02)
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Figure 2: Merit distribution data: conditional probability curves.

item response models. They are either monotonically increasing or decreasing for
two extreme categories but are unimodal for intermediate categories. (Two column
categories in the two-column case, as in the previous example, correspond to the two
extreme categories in the multicolumn case.) As before, dotted curves enclosing the
conditional probability curves indicate the 95% confidence bands.

5 Analysis of Psychiatric Symptoms Data

Both examples discussed so far involved only unidimensional spaces. The next ex-
ample involves a two-dimensional space. Table 6 presents Maxwell’s (1961) data, in
which there are three criterion groups, SC (schizophrenia), MD (manic-depressive),
and AX (anxiety state), constituting columns of the table, and four binary predictor
variables, each indicating the presence (2) or absence (1) of a certain symptom: A,
whether the patient is anxious; S, whether the patient is suspicious; T, whether the
patient has the schizophrenic type of thought disorder; G, whether the patient has
delusions of guilt. By factorially combining the four binary variables, we obtain 16
symptom patterns, representing the rows of the table.

IPDA was applied to the table with a number of possible structures for the
rows and with varying dimensionalities. It turned out that the model with the main
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Table 6: The data from Maxwell (1961)

Predictor Observed frequency

Pattern pattern in groups
nmmber A S T G SC MD AX
1 1 1 1 1 38 69 6
2 1 1 1 2 4 36 0
3 1 1 2 1 29 0 0
4 1 1 2 2 9 0 0
5 1 2 1 1 22 8 1
6 1 2 1 2 5 9 0
7 1 2 2 1 35 0 0
8 1 2 2 2 8 2 0
9 2 1 1 1 14 80 92
10 2 1 1 2 3 45 3
11 2 1 2 1 11 1 0
12 2 1 2 2 2 2 0
13 2 2 1 1 9 10 14
14 2 2 1 2 6 16 1
15 2 2 2 1 19 0 0
16 2 2 2 2 10 1 0
Total 224 279 117

effects of the four predictor variables yielded the best representation of the data in
a two-dimensional space (see Takane, 1987, for more detailed comparisons among
various model specifications). This solution is displayed in Figure 3. In this figure,
the points corresponding to the three criterion groups are marked SC, MD, and AX,
and those corresponding to the 16 symptom patterns are numbered from 1 to 16. The
ellipses surrounding the points indicate the 95% asymptotic confidence regions. They
were drawn under the assumption of asymptotic normality of maximum likelihood
estimators whose variance—covariance estimates are obtained by the Moore—Penrose
inverse of the information matrix (10), which happened to be singular due to the
translational and rotational indeterminacies in the Euclidean space. These confidence
regions indicate that the point locations are estimated fairly accurately in the solution.
However, when the rows of the table are treated as completely distinct without any
relationships assumed among them, they are estimated very poorly, as can be seen
in Figure 4. Large confidence ellipses in Figure 4 indicate that point locations in
this solution can vary rather drastically without impairing the overall goodness of
fit of the model, showing the importance of proper constraints in deriving a reliable
configuration, particularly when the data are weak in the sense that the sample size
is small.

Estimates of weights applied to the four predictor variables and coordinates of
the 16 symptom profiles and the three criterion groups are given in Table 7 along
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Figure 3: Two-dimensional configuration derived from Maxwell’s data with 95%
asymptotic confidence regions when the main effects of the four symptom variables
are used as row constraints.

with their standard errors. Figure 5 shows conditional probability surfaces for the
three criterion groups. They are pgc|,, Pupix» and pay, as functions of coordinate
vector x. The functions are evaluated at equally spaced grid points of x. These surfaces
are two-dimensional analogues of category characteristic curves in unidimensional
multiple-choice item response models. The surface for py,p;, is high up in the front
but goes down toward the back, although this may be a bit difficult to see in the figure.

Figure 6a, b, and c display the same conditional probability surfaces in the form of
three-dimensional isoprobability contour plots. As before, the vertical axis represents
the conditional probability. The 16 symptom profiles are indicated by numbers from
1 to 16. From these figures we can deduce the propensities of the three criterion
groups given the symptom paiterns. Regions (the set of X) in which p ;, = max(p,)
are indicated by + in the figures. We can immediately see which symptom patterns
are likely to belong to which criterion groups. Patterns 3, 4, 5, 7, 8, 11, 12, 15, and
16 are most likely to belong to SC. All these patterns except one (pattern 5) have
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Figure 4: Two-dimensional configuration derived from Maxwell’s data with 95%
confidence regions: unconstrained case.

thought disorder (T)—see Table 6. It seems that T is a rather decisive indicator of
SC. Suspiciousness, on the other hand, is a weak indicator of SC. It is an indicator
of SC (pattern 5) when no other symptoms suggest other categories. There are three
other patterns (6, 13, and 14) that are characterized by suspicion but do not belong
to SC. Patterns 6 and 14 are more strongly affected by delusions of guilt (G) and are
classified into MD, while pattern 13 is affected by anxiety (A) and classified into AX.
Patterns 1, 2, 6, 10, and 14 are likely to belong to MD. All these patterns except one
(pattern 1) have delusions of guilt (G), indicating that this variable is a fairly good
indicator of MD. However, thought disorder (T) is a stronger variable. Whenever T is
also present, symptom patterns 4, 8, 12, and 16 tend to be classified into SC. Pattern
1 does not have any of the four symptoms. It seems that this pattern is classified into
MD simply because this category has the largest prior probability. Finally, only two
patterns, 9 and 13, are likely to belong to AX. Anxiety (A) seems to indicate AX only
when no other symptoms indicate otherwise.
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Table 7: Estimates of parameters for Maxwell’s data

Estimates of weights

Standard Standard
Variable Category Dim.1 error Dim., 2 error
A 1 47 (.04) —.48 (.06)
2 —.39 (.03) 40 (.05)
S 1 -.16 (.03) —-.10 (.05)
2 40 .07 25 (.12)
T 1 -.29 (.02) —-.10 (.04)
2 1.11 (.08) 37 17)
G 1 .00 (.03) 40 (.04)
2 -.01 (.08) —-1.13 (.11)

Coordinates of row points

Standard Standard
Predictor Pattern Dim. 1 error Dim. 2 error
1 1111 .02 .07) -.28 (.12)
2 1112 .01 (.08) —1.81 (.10)
3 1121 1.42 (.10) .18 (.16)
4 1122 1.40 (.11) —1.34 (.23)
5 1211 58 (.10) .07 (.18)
6 1212 .56 (.11) —1.45 (.16)
7 1221 1.98 (.09) 54 1D
8 1222 1.96 (.19) —.99 .04)
9 2111 —.83 (.05) .60 (.10)
10 2112 —.85 (.12) -92 (.11)
11 2121 57 20 1.07 (.14)
12 2122 .55 (.29) —.46 (.09)
13 2211 —-.27 .09) 95 (.16)
14 2212 —.29 (.12) -.57 (.19)
15 2221 1.13 (.10) 1.42 (.18)
16 2222 1.11 (.13) -.10 (.27)
Coordinates of column point

Standard Standard
Psychiatric category  Dim. 1 error Dim. 2 error
SC .79 (.03) 13 (.05)
MD —-.34 (.02) -.33 (.03)
AX -.71 (.03) .55 (.04)

455
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Figure 5: Conditional probability surfaces for the three criterion groups.

6 Concluding Remarks

We have seen three examples of IPDA analysis in which visualization plays a sig-
nificant role. Interpretations of between-row-and-column distances in terms of vari-
ous probabilities (conditional and joint), however, require special care, as has been
discussed in Section 3. The between-row-and-column distances are inversely mono-
tonically related to p;; within column j and to pj; only within row i only if p; is
constant across ail j’s. Although consistent with the general Bayesian framework,
this may be considered as a weakness of the model in IPDA. In order to make all
the between-row-and-column distances unconditionally inversely monotonic with the
corresponding probabilities it may be necessary to fit the following model:

pij = exp(=d})/ Y Y exp(~d}) (1)
k !

This is similar to (4), but (11) does not have p,’s.

There are two other kinds of distances, within-row distances and within-column
distances, that one may be tempted to interpret. These distances are not directly fitted
and consequently do not allow any probabilistic interpretations. Still, the distances
are comparable within each set. We may say, for example, that in Maxwell’s data
symptom patterns 1 and 14 are more similar to each other than symptom patterns 7
and 14 in relation to the three criterion groups and that AX and MD are more similar
to each other than SC and AX (see Figure 4). The similarity between criterion groups
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Figure 6(a): Isoprobability contours for SC.

is reflected in the probabilities of misclassification between them, although no formal
relationship can be established between the two.

The distances (including the between-row-and-column distances) are not com-
parable across different sets. This is due to the restriction (2), which makes the
variance among the coordinates of column points generally smaller than that of the
row point coordinates. This is due to the regression effect. One may venture lifting
this restriction to make all three kinds of distances strictly comparable, but that may
incur a cost of less numerical stability in estimates of point locations in IPDA.

Software Notes

A Fortran program for IPDA and the program write-up can be obtained from the
author. Figures in this chapter were drawn using MATLAB (Math Works, Inc.,
Natick, MA).
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Figure 6(c): Isoprobability contours for AX.
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Chapter 31

Modeling Time-Dependent
Preferences: Drifts
in Ideal Points

Ulf Bockenholt

1 Introduction

An important objective in the analysis of preferential or attitudinal data is to obtain a
graphical representation of the similarity structure that underlies the choice options
while taking into account individual differences. Coombs’ (1964) unfolding theory
provides a conceptually simple yet powerful approach for accomplishing this goal.
According to unfolding theory, persons evaluate choice alternatives by comparing
them with their ideal alternatives. When asked to pick, for example, the most preferred
option, individuals select the one that is closest or least dissimilar to their ideal option.
A crucial constraint of Coombs’ unfolding approach is that, although persons may
differ in terms of their preferences for the choice options, they agree on the similarity
relationships among them. Thus, in the unidimensional case the choice options’
positions along a common (latent) continuum are perceived homogeneously by all
persons; however, the positions of the individual ideal options may vary from person
to person.

Because it is frequently the case that individuals differ in their preferences but not
in their perception of choice options, there are numerous applications of unfolding
approaches that yield parsimonious and easily interpretable graphical representations
of choice or attitudinal data (for example, see Bossuyt, 1990; Carroll and Pruzan-
sky, 1980; Heiser, 1981; van Schuur, 1984). However, despite its usefulness in these
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and other studies, the potential and generality of the unfolding approach have not
been fully explored. In particular, the great majority of unfolding studies focused
exclusively on the analysis of cross-sectional data. This is unfortunate because the
unfolding model provides a promising framework for forecasting and modeling sta-
bility and change in preferences over time by distinguishing between time-dependent
changes in the similarity relationships of items and in ideal point positions. An ap-
pealing feature of this framework for applied settings is its potential in predicting
choice behavior when new options are introduced or existing ones are modified. For
example, in marketing studies unfolding analysis can be an important methodological
tool for the development of new products that are close to most of the consumers’
ideal points (Horstman and Slivinski, 1985; Hubert and Busk, 1976).

To some extent, the paucity of unfolding applications that focus on the analysis
of longitudinal choice data may be attributed to lack of a comprehensive methodolog-
ical approach. This chapter addresses this problem by demonstrating that straight-
forward extensions of latent-class unfolding models proposed for the analysis of
cross-sectional data by Bockenholt and Bockenholt (1990a, 1991) may also prove
useful for the analysis of time-dependent data. A critical feature of the proposed
approach is its ability to take into account that individuals may differ both in their
preferences and in the way their preferences change over time. Two applications with
different data types are presented to illustrate the usefulness of unfolding models
for the analysis of time-dependent data. One application investigates effects of an
information campaign on perceived environmental threats of car usage, and another
one assesses the impact of a new product on preferences for established brands. In
both applications it is shown that preferential or attitudinal changes over time can be
explained solely by shifts in ideal-point positions.

2 Individual-Level Unfolding Models for Pick
any/m and Paired Comparison Data

This section discusses unfolding models for two well-known data collection tech-
niques, the pick any/m and paired comparison methods. The former method seems
closest to actual choice behavior by asking respondents to select preferred items
from a set of m items. In applications of the second technique, respondents are pre-
sented with two items at a time and are asked to pick the preferred one. The paired
comparison technique may be the method of choice in laboratory settings when an
experimenter wants to impose minimal constraints on the response behavior of a
respondent.

When Coombs (1964) introduced the pick any/m procedure, he posited that
persons select the items that are closest to the position of their ideal points. More
formally, let the positions of item i and of the ath person’s ideal point be §; and S,
respectively. A response of person a to item i is denoted by the binary variable X,;.
Item i is selected when its distance to the ideal point is smaller than some threshold 1,

X; =1 when |6, - B =7 (1)
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and is not selected otherwise,
X, =0 when |8 —B.,>7

In the case of paired comparison data, the response of person a is denoted by the
binary variable Y,;;, which takes on the value 1 when item i is closer to the person’s
ideal point and 0 otherwise,

Yuj =1 when |8 — B, =18; — Bdl )

Because choice behavior is frequently inconsistent, it is necessary to formulate prob-
abilistic versions of (1) and (2). Hoijtink (1990) proposed the following response
function under the premise that a probabilistic unfolding model should reduce to its
deterministic counterpart as a boundary case

i

PrXs = 1) = pai = 1—+|—3———B|—;
(] a

3
where y (v = 1) moderates the strength of the proximity relation on the choice
probability whenever the distance between the ideal point and the item position
differs from O or 1. This model predicts that an item is chosen with certainty when
its position coincides with the one of the ideal point.

An analogous model for paired comparison data is derived by Bockenholt and
Boéckenholt (1990a). According to their approach, the probability that item i is pre-
ferred to item j by person a is given by

IBa - Sjly
1Ba — &Y + 1Ba — 8517

This representation makes the strong prediction that item i is preferred to item j with
certainty regardless of the position of item j if the position of item i coincides with
that of the ideal point. Note that the unfolding paired comparison model has the same
structure as the well-known Bradley-Terry—Luce (BTL) model (Luce, 1959),

Pr(Y,; = 1) = puj = 4)

Wig
PI'(Ya,'j = 1) - m

where wj, represents the utility of item i for person a, Zi w,;=1and 0 < w;, < 1.
Setting wi; = |B; — 8|77, we obtain the paired comparison model in (4). This
decomposition of an item’s (dis)utility into an ideal point and an item parameter
is nontrivial in the sense that the unfolding paired comparison model assumes that
individual differences in the evaluation of the items can be explained solely by
differences in the ideal point positions. Thus, whereas the BTL model allows for m!
possible rank orders of the items in the population, the item scale estimated from the
unidimensional unfolding model is consistent with only [m(m — 1)/2 + 1] of those.
This shows that the unfolding model may be considerably more restrictive than the
BTL model in an analysis of group-level paired comparison data because it requires
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individuals to be homogeneous in their perception of the items. It is useful to fit
both the BTL and unfolding models because the former model provides an important
benchmark for the latter one.

3 Modeling Stability and Change in Choice Data

3.1 A Latent Class Representation

This section presents a group-level representation of choice data by formulating
latent-class versions of models (3) and (4). Instead of estimating a different ideal point
position for each individual, we assign individuals to classes such that members of a
latent class are indistinguishable in their predicted response behavior. The approach
is less restrictive than it may seem initially. The number of different responses, which
typically is much smaller than the sample size, limits possible distinctions that can
be made among the individuals (see Lindsay ef al., 1991, for a related situation).

The unobserved classes are determined by invoking the principle of local inde-
pendence, which states that the latent-class membership variable accounts completely
for any relationship among the observed responses (Lazarsfeld and Henry, 1968).
Consequently, the probability of observing pick any/m responses given that person a
is a member of latent class s is

m
Pr(x,la € 5) =[] Pyl — pa)' ™

i=1

andx, = (X1, Xa2,. . . , Xam). Each item { has a certain probability p; of being selected
by members of latent class s. The marginal probability of observing the responses of
arandomly picked person in a pick any/m task is

N m
Pr(xo) = Y m [ Pl — pa)' ™™ (5)
s=1 i=1

where 7 represents the relative size or proportion of class s and }_ 7, = 1.

Equation (5) corresponds to the unconstrained latent class models. Although this
representation does not provide any information about the underlying scale of the
items and the positions of the ideal points, this information can be extracted from
the data by constraining the class-specific probabilities, py;, to be a function of an
unfolding model,

1

Psi = Pr(Xe = 1]a € ) T35, B

and every member of latent class s is characterized by the class’ ideal point posi-
tion, ;.
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Similar results can be derived for the paired comparison data. In this case, we
need to replace py; by psi; and x4 by y,; in (5),

m—1 m
Yaij 1=vyu;
psiaj/(l _pxij) Yoij
i=1 j=it+l

N
Pr(y,) = Y _
s=1

where y, = (¥a12, Ya13»- - - » Yagm—1ym). The constrained version of pg;; for the BTL
model is

;i
psij = Pr(Ygj = 1la €s) = Z)%w—
is js
and for the unfolding model
= |Bs - 8j|y
P B =l + 1B — 5,1

Incorporating the response mechanism for the pick any/m and paired comparison
tasks in latent class models has several advantages. First, by displaying individual
differences and similarities among the items along a joint continuum, the interpreta-
tion of the results is greatly simplified. Second, by estimating ideal points on the class
level, a parsimonious description (and uncluttered display) of individual differences
is obtained even when the number of respondents is large. Third, for a given number
of latent classes we can compare the fit of the unconstrained and the constrained
latent class models to determine whether the postulated response mechanism is con-
sistent with the data. If the differences between both models are nonsignificant, the
constrained model provides a more informative and parsimonious representation of
the data. For example, instead of estimating mS class-specific probabilities in the case
of pick any/m data and m(m — 1)S/2 class-specific probabilities in the case of paired
comparison data, we need only estimate S ideal points, m — 1 item parameters, and
one power parameter, y. The number of item parameters is m — 1 as opposed to m
because the origin of the item scale is arbitrary. Note that for the paired comparison
data, one can also compare the fit of the unfolding model with the fit of the BTL
model. This comparison is likely to be more powerful because the latent class BTL
model is more parsimonious than the unconstrained latent class model. Fourth, a
decision regarding the number of latent classes, which is usually unknown, is not
dependent on the specification of the response mechanism. Instead, the decision may
be based on the results of the unrestricted latent class analysis.

3.2 Shifts in Ideal Points

For the investigation of stability and change in preferential or attitudinal data, consider
the situation of N individuals measured at T time points. If preferences or attitudes
are stable, both item and ideal point parameters are time homogeneous. In contrast,
systematic response differences at different time point positions may indicate changes
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in the perception of (some of) the items and/or in the ideal points. Both hypotheses
about the locus of change in choice data are of interest. However, because in the
reported applications the time-dependent response variability can be accounted for
by shifts in ideal point positions, the following discussion is restricted to this case.

Asinthe previous section, we distinguish between unconstrained and constrained
latent class models. According to unconstrained latent class models, individuals may
switch among latent classes over time; however, the class-specific item probabili-
ties are time homogeneous (Hagenaars, 1990; Langeheine and van der Pol, 1990;
Poulsen, 1990). The same holds for constrained latent class models with the ad-
ditional restriction that the class-specific probabilities are a function of the ideal
point models. As a result, shifts in class memberships correspond to changes in
ideal point positions. An important implication of this constraint is that a change in
ideal point positions affects relative preferences for all items. Thus, in contrast to the
BTL model, preference change is global in the sense that the utilities of all items are
affected by an ideal point shift.

Depending on the duration of a longitudinal study, it seems likely that some but
not all members of a latent class change their ideal point positions. For example, when
observing consumers over time, it is frequently useful to distinguish between loyal
consumers and switchers (Bockenholt and Langeheine, 1996). The former group
does not change its ideal point position, but the latter group may vary its ideal point
position in systematic or unsystematic ways. In general, shifts in ideal point positions
may follow certain patterns that can be incorporated in the latent class model. For
example, pick any/m data observed at three equidistant time points may be modeled
as

Pr(xf,"),ng),xg3)) = Z Z Z Tgrs Pr(xgl) |a € ‘I)
q r s

X Pr(x? |a € r)Pr(x® |a € ) (6)

where the responses of person a at time point ¢ are denoted by x%), and m,,, refers
to the probability of belonging to classes ¢, r, and s at time points ?;, ¢,, and £3,
respectively. A change in ideal point positions occurs whenever 7, > 0 provided
g # r # s. A similar representation for paired comparison data is obtained when
replacing x{ by y{ in (6).

Many useful special cases of (6) can be derived by imposing constraints on 7, to
describe switches among the latent class or, more specifically, among the ideal point
positions. For example, an important special case is the first-order Markov chain
with stationary transition probabilities. This restriction was originally proposed by
Wiggins (1973)

Tgrs = Tg Trlg Tylr

where 1, refers to the probability of being a member of class r given membership in
class g during the previous time period (see also Langeheine and van de Pol, 1990).

The no-change ideal point model is obtained by setting m,, = 0 and 7, = 0 when
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r # q and s # r, respectively. Other constraints can be derived by imposing a log-
linear structure on 7, (Bishop et al. 1975; Bockenholt, 1997). An obvious special
case of (6) is the random change model with 7, = m, m, m,, which describes
changes over time as a function of the class sizes, which, in turn, are constrained to
be equal over time.

4 Applications

4,1 Attitude Toward Car Use and Environment

In this questionnaire study conducted by Doosje and Siero (1991) two independent
samples of N = 300 respondents were asked about their attitudes toward car use
and the environment before and after a proenvironment information campaign. To
illustrate applications of the unfolding model, three procar and three proenvironment
items were selected from this questionnaire:

A. Instead of environmental protection measures with respect to car use, the road
system should be extended.
B. It is better to deal with other forms of environmental pollution than car driving.

C. Considering the environmental problems, everybody should decide for themselves
how often to use the car.

o

A cleaner environment demands sacrifices such as decreasing car usage.

e

Car users should have to pay taxes per mile driven.
F. Putting a somewhat higher tax burden on car driving is a step in the direction of a
cleaner environment.

Because the items are binary, a total of 2° = 64 response patterns can be observed
for the pre- and postinformation campaign data. Table 1 contains the likelihood ratio
(LR) tests obtained from the unconstrained latent class model fitted to both samples.
The LR test is computed as

v
G2 =72 z ﬁ; ln(fv/}lv)

v=1

Table 1: Goodness-of-fit statistics of unconstrained latent class models

Precampaign Postcampaign Pre=post
Number of classes G? df G? df AG? af
1 295.5 57 271.8 57 21.5 6
2 56.2 50 82.2 50 35.0 13
3 35.7 43 61.5 43 443 20
4 28.0 36 44.2 36 57.8 27
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Table 2: Parameter estimates of unconstrained three-class model

Class A B C D E F #V #@
1 75 98 91 33 14 .16 43 25
2 22 74 a7 84 34 32 34 51
3 .06 40 37 98 91 85 23 24

where f, and 7, denote the observed and expected frequencies of the vth response
pattern, respectively. Provided standard regularity and identifiability conditions are
satisfied, the LR statistic follows asymptotically a y?-distribution with degrees of
freedom (df) equal to the difference between the number of response patterns (V)
and the number of estimated parameters and sampling constraints. In this application
the df for the latent class models are [64 — S(m + 1)].

According to Table 1, three classes are required for a satisfactory fit of the pre-
and postcampaign data. However, the fit of the latent class model seems to be better
for the pre- than for the postcampaign data. The last two columns of Table 1 contain
LR statistics and their corresponding df under the hypothesis that the latent class
parameters (class-specific probabilities and class sizes) are equal for both studies.
For all latent class solutions this hypothesis can be rejected, which indicates that the
information campaign had some effect on the respondents’ attitudes toward car use
and environment.

The effect of the information campaign can be examined by testing which subsets
of the latent class parameters, the class-specific probabilities or the class sizes, differ
significantly between samples. Although not presented in detail here, these partitions
indicate that the main reason for the differences between the pre- and postcampaign
data is related to changes in the class size estimates.

Table 2 contains the estimates of the three-class solution with class-specific
probabilities constrained to be equal for the pre- and postcampaign data but different
class sizes. With some minor exceptions, the latent class probabilities display a single-
peaked structure. As a result, a more parsimonious and informative description of the
data may be obtained by applying an unfolding model. This observation is confirmed
by Table 3, which contains the parameter estimates of the three-class unfolding model.

Table 3: Parameter estimates of three-class unfolding model

Class A B C D E F B, #V a®
1 72 95 92 29 13 12 —96 44 26
2 22 75 80 .88 40 37 00 34 52
3 .10 31 34 97 .88 85 72 22 22

”

—1.65 —.64 —.58 46 1.18 1.23
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Figure 1: Joint item and latent class ideal point scale with histograms depicting the
estimated class sizes before and after the information campaign.

Clearly, the class-specific probabilities differ little from the unconstrained latent class
solution in Table 2.

The results of the unfolding model are depicted in Figure 1 with the horizontal
axis being the joint item and latent class ideal point scale and the vertical axis
serving to depict the relative size of each latent class in the solution. The items are
ordered along a continuum ranging from the position that “car use does not pose
an environmental problem” to the position that “car use damages the environment
and should be restricted by some governmental interventions.” In both the pre- and
postcampaign data, about 22% of the respondents (located between items D and E)
favor a strong proenvironment position. Before the campaign a substantial number
of the respondents (44% located between items A and B) did not consider car use
to be an environmental problem. One effect of the campaign was to reduce the
size of this group and to increase the number of respondents who acknowledge the
negative influence of car usage on the environment (from 34% to 51%). However,
the campaign did not increase the number of respondents favoring a tax increase as
a means of reducing car usage.

4.2 Product Introduction Study

The second example is taken from a national marketing study. A sample of 211
cigarette smokers were asked to compare a leading brand (A), a competitive brand
(B), and a new brand (C) (developed by the manufacturer of the B brand) in a pretest
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market study. The goal of the study was to investigate the reactions of A and B
consumers to the new brand. It was hypothesized that the new brand C may appeal
to some of the A consumers and that, as a result, the group of A consumers would
split into two parts, one smaller group preferring the new brand over A and another
larger group disliking the new brand.

The study was conducted over three waves, which were roughly 4 weeks apart.
In wave 1 respondents were asked to compare A and B and in waves 2 and 3 the same
respondents compared the three pairs of brands (A, B), (A, C), and (B, C). Of the
211 respondents who were initially recruited, a total of 83 participated in all waves
of the study. Thus, in the analysis to follow we will refer to the 83 respondents who
participated in all waves as the complete data (C) and to the responses of the 128
respondents who participated in only the first two waves as the incomplete data (IC).

The brands were compared by instructing participants to allocate 11 chips ac-
cording to their preferences between two options. Because the number of chips is odd,
participants could not express indifference. To reduce the sparseness of the original
table, adjacent response categories were collapsed such that the direction but not the
degree of preference was preserved. The data for the first two waves that were used
in the analyses are displayed in Table 4.

When applying the ideal point model, it seems plausible to assume that the new
brand C falls somewhere on a continuum between the A and B brands. Because C
was designed to appeal to consumers of the A brand, its position may be closer to
the A than to the B brand with the result that more A than B consumers may prefer

Table 4: Paired comparison data of product introduction study

Wave 1 Wave 2
Yap Yas Yac Yec NO NUO
0 0 0 0 12 4
0 0 0 1 8 22
0 0 1 0 2 1
0 0 1 1 7 13
0 1 0 0 10 8
0 1 0 1 2 2
0 1 1 0 3 2
0 1 1 1 2 3
1 0 0 0 7 6
1 0 0 1 1 4
1 0 1 0 1 2
1 0 1 1 2 0
1 1 0 0 14 3
1 1 0 1 2 3
1 1 1 0 8 41
1 1 1 1 2 14
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the new brand. The attraction effect of the new brand C can be further formalized in
two ways. First, we can assume that at wave 1 there are two ideal point positions,
one close to the A and another one close to the B brand. As a result of the new brand
introduction, some of A and B consumers change their ideal point positions and move
it closer to the position of the new brand.

Alternatively, we can assume that initially there are at least three ideal point
positions, two close to the established brands and a third one between the two
brands corresponding to consumers who feel less strongly about their preferred
brand. Appropriately positioned, the new brand may be of more appeal to this third
group than any of the established brands. Thus, the first scenario postulates a switch
in ideal point positions and the second scenario postulates a more heterogenous
ideal point distribution. Because it is not possible to distinguish empirically between
the heterogeneity and the switching hypothesis solely on the basis of the paired
comparison data, the results of the latent class unfolding models are presented for
both scenarios. It is shown that both approaches provide complementary views of the
data.

The following analyses also investigate possible differences between the com-
plete and incomplete data. There is little reason to believe that in these types of studies
attrition occurs completely at random. Instead, respondents who drop out of a study
are likely to do so for specific reasons; for example, respondents may dislike the new
product and instead of voicing their dislike, refuse to continue to participate in the
study. Similarly, it seems reasonable to expect that respondents who are favorably
disposed to the new product are likely to participate in all waves. To test this hy-
pothesis, the data were analyzed under the constraint that the item positions are the
same in the complete and incomplete data but the relative class sizes associated with
the ideal points were left unconstrained. This parsimonious representation facilitates
testing the hypothesis that differences between the complete and incomplete data are
not related to the perception of the brands but a result of positive or negative reactions
toward the new product.

Heterogeneity Hypothesis Provided there is an attraction effect of the new brand,
we expect at least three latent classes under the heterogeneity hypothesis where each
class is characterized by an ideal point position that is close to one of the three
products. This hypothesis was tested by first fitting the BTL model with one to
three classes and then constraining the (dis)utilities of the best fitting BTL model to
be a function of the ideal point and brand positions. The resulting LR statistics of
the one-class, two-class, and three-class models are G? = 195.05 (df = 28), 78.1
(df = 24), and 19.9 (df = 20), respectively. As expected, only the three-class BTL
model provides a satisfactory fit of the data and the model’s utility estimates are
given in Table 5. Moreover, setting y = 1, we obtain G> = 20.1 (df = 21) for the
three-class unfolding model. Clearly, the decomposition of the (dis)utilities into an
absolute difference between an ideal point and an item position is consistent with the
data. The corresponding parameter estimates are given in Table 6. Note that according
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Table 5: Class-specific utility estimates of three-class BTL model

Class A C B #U0) #O
1 98 .01 .01 42 .08
17 .69 .14 25 71

3 .07 .08 .85 .33 21

Table 6: Parameter estimates of three-class unfolding model

Class A C B B. #UO) #O
1 .99 .01 .00 1.01 42 08
2 .18 67 .15 -.02 26 72
3 06 09 85 —1.43 33 20
5; 1.00 25 -1.26

to both the BTL and the unfolding model the introduction of the new brand did not
affect the relative preferences for the A and B brands.

Depicting the parameter estimates of the unfolding model, the left panel of
Figure 2 contains the brand positions and the corresponding ideal points with their
relative sizes for the complete and incomplete data. We note that an ideal point is
close to each brand and that the position of the new brand is closer to A than to B.
Moreover, the relative class sizes indicate clearly that the main difference between
the complete and incomplete data sets is related to the group with an ideal point
closest to the new brand. This group has the smallest size in the complete data and
the largest size in the incomplete data, which indicates that attrition may be strongly
related to preferences for the new brand.

Ideal Point Switching Hypothesis According to this hypothesis, there are two ideal
points at wave 1, one corresponding to each brand, and when exposed to brand C some
members of both classes move their ideal point toward the position of the new brand.
Thus, we need to estimate the class sizes at wave 1 and a transition matrix that contains
the proportion of A and B consumers who move toward brand C. Because no switching
is expected between the A and B brands, the corresponding transition probabilities
are set equal to 0. Within this framework it is straightforward to investigate whether A
consumers are more attracted to the new brand than B consumers. This question can
be tested by an LR statistic obtained from the difference between paired comparison
models with unconstrained and equal transition probabilities.

The G? statistics of the BTL and the corresponding unfolding model are 18.7
(df = 18)and 18.9 (df = 19). When constraining the transition probabilities to be
equal for both classes, we observe a nonsignificant increase in the G? statistics for
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Table 7: Class sizes and transition probabilities of unfolding model

Class Wave 1 Wave 2

~(IC) ~ (IC) A (I0) A (IC)
§ s 1.rlls "2|s ﬂ3ls
1 54 .76 .00 24
2 46 .00 76 24

~(C) ~(C) ~(C) 2.(C)
§ s "lls ﬂ2ls "3|s
1 40 29 .00 1
2 .60 .00 29 71

the BTL model G = 20.5 (df = 20), and for the unfolding model G>= 20.7 (df =
21). Because the differences between both models are very minor, we present only
the unfolding model’s estimates of the initial class sizes and transition probabilities
of the complete and incomplete data in Table 7. About 76% and 29% of the A and
B consumers are brand loyal in the incomplete and complete data sets, respectively.
However, because the initial class sizes differ for the two data sets, a larger percentage
of the A consumers is brand loyal and a larger percentage of the B consumers is
attracted to the new brand. Thus, this analysis shows that although both A and B
consumers have the same transition probabilities, more B than A consumers prefer
the new product.

This result is depicted graphically in the right panel of Figure 2. The bars
with positive slope lines correspond to the ideal points’ class sizes before the product
introduction and the bars with negative slope lines correspond to the ideal points’ class
sizes after the product introduction. We note that slightly more A than B consumers
switch to the new brand in the case of the incomplete data. However, for the complete
data, a much larger percentage of B than A consumers is attracted to the new brand.
In conclusion, these results indicate that the new brand may attract, as intended, some
consumers of the A brand but at the price of a substantial cannibalization effect.

5 Discussion

One major problem in the analysis of cross-sectional choice data is to account for
heterogeneity caused by individual taste differences. It is well known in the fields
of attitude and preference analyses that individuals may perceive and evaluate the
alternatives among which they choose in very different ways. Latent class models
seem to be well suited to account for these taste differences by allowing for different
subpopulations with distinctly different preferences (Bockenholt and Bockenholt,
1991; Croon, 1990; DeSarbo et al., 1994; Formann, 1992). Moreover, the synthesis
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of unfolding and latent class models provides a parsimonious and versatile framework
for determining spatial representations of both individual taste differences and the
similarity structure of items at a particular point in time.

However, many decision problems are faced not once but repeatedly. For instance,
the choice of a residential location, the selection of a travel mode for a trip to work, and
the purchase of consumer brands within a product class are recurrent choice situations.
Clearly, by investigating intertemporal choices we obtain valuable information about
decision making and the inherently dynamic nature of choice processes that is not
available when modeling individual choices at a point in time. A crucial feature of
the presented framework is that it takes into account not only that individuals may
differ in their preferences but also that they may differ in the way they change their
preferences. Consequently, we can test a rich set of hypotheses about the loci of
change in latent preferences as a result of an intervention. Modeling shifts in ideal
positions may prove instrumental in testing psychological theories about systematic
variations in the relationship between perception and choice over time (Loewenstein
and Elster, 1992).

By implementing Coombs’ unfolding approach we obtain graphical displays
that yield a concise summary of the data and are easy to interpret. In the reported
applications it proved sufficient to represent the items unidimensionally. However,
in other settings multidimensional spatial representations of the items may be more
appropriate. Although not discussed in this chapter, it is straightforward to develop
multidimensional counterparts of the presented unidimensional unfolding models
(Bockenholt and Bockenholt, 1991). These extensions combined with the notion of
shifting ideal points yield an important set of methodological tools for graphical
representations of the separate effects of taste heterogeneity and preference changes
over time.
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Chapter 32

Correspondence Analysis
Used Complementary to
Latent Class Analysis in
Comparative Social Research

Allan L. McCutcheon

1 Introduction

Latent class analysis and correspondence analysis share a common goal of data
reduction for cross-tabulated data. One of the principal goals of latent class analysis
(LCA) is to account for the observed heterogeneity in a multiway cross-tabulation
by characterizing a set of unobserved, internally homogeneous classes. One of the
principal goals of correspondence analysis (CA) is to represent graphically a multiway
cross-tabulation in a reduced-dimensional space. In this chapter, we examine some
of the uses of CA to display graphically the results of LCA, especially when these
results are obtained for data from several groups simultaneously. The groups may
be different nations, states, regions, cultural groups if the research focuses on cross-
cultural comparisons, or separate samples drawn from the same population at two or
more time points when the research focuses on social change (see, e.g., McCutcheon,
1987b; Hagenaars, 1990). Indeed, the groups may be any mutually exclusive set of
observations on which identical variables are measured.

In the sections that follow, we first briefly examine the simultaneous LCA in
which identical measures have been collected in cross-sectional samples from several
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populations. The increasing availability of surveys with identical indicator variables
(e.g., the International Social Survey Program, the European Values Studies, the
Eurobarometer studies), as well as the increasing availability of trend studies with
repeated indicator variables (e.g., the American, German, and Polish General Social
Surveys, the British Social Attitudes Survey), now make it possible to explore the
latent structures of many nations’ values at several points in time. As an example
of religious beliefs from the 1991 International Social Survey Program (ISSP) we
will show, however, that communicating the findings from the simultaneous LCA
for many samples may prove difficult. The graphical representation provided by CA
offers an attractive alternative for presenting the research findings from simultaneous
LCA and provides valuable insights for comparative social research.

2 Correspondence Analysis Used Complementary
to Multi-Sample Latent Class Analysis

One of the principal goals of latent class analysis is data reduction for categorical
data (McCutcheon, 1987b; Hagenaars, 1990). When several categorical variables are
available for measuring an unobserved phenomenon, the information available in the
associations among the observed indicators may be used to characterize the latent
variable. Consider, for example, the responses to five questions regarding traditional
(Christian) religious beliefs about “the afterlife” asked of respondents from several
nations in the 1991 ISSP:

A. Which best describes your beliefs about God?

I don’t believe in God now and I never have.
I don’t believe in God now, but I used to.

I believe in God now, but I didn’t use to.

I believe in God now and I always have.

Do you believe in life after death?
Do you believe in the Devil?

Do you believe in Heaven?

E. Do you believe in Hell?

©ow

¢

Questions B-E allowed four response categories (“yes, definitely,” “yes, probably,”
“no, probably not,” and “no, definitely not”). Each of these five questions is di-
chotomized into those who report (current) belief or nonbelief in God, life after
death, the Devil, Heaven, and Hell. The cross-classification of k& dichotomous items
yields 2 response patterns ranging from those who respond “yes” to all k items to
those who respond “no” to all k items. In the case of these five dichotomies, there are
(23) 32 possible response patterns.

In comparative social research, the difficulties posed by the muitiple combina-
tions of indicator responses are multiplied by the number of nations (groups) from
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which data are collected. In our first example, we examine the responses to the five
questions for seven Western nations: Britain, Germany (old Federal states only), Ire-
land, Italy, The Netherlands, Norway, the United States. Thus, the five dichotomous
indicator items give 32 response patterns in each of the seven nations.

LCA allows us to explore the question of whether the 32 categories produced
by all possible combinations of response patterns can be represented by some lesser
number of categories, without loss of information. As with other latent variable ap-
proaches, LCA employs the axiom of local independence as the key principle to
solve the data reduction problem (Goodman, 1974; McCutcheon, 1987b; Hagenaars,
1990). In LCA, the axiom of local independence imposes the condition that observed
indicators are statistically independent of one another within a set of latent (cate-
gorical) classes. When this condition holds, the latent classes represent internally
homogeneous types. The formal representation of an LCA model with five indicator
variables may be expressed as:

Tijkim = E T T i Tl T T ey
t

where the expected probability for each of the cells of the observed cross-tabulation
(1) is the product of the latent class probability () for the T latent classes of
the latent variable X and the corresponding conditional probabilities for each of the
indicator variables for the T latent classes (e.g.,m,).

In the usual LCA model, the latent classes are characterized by analyzing the
associations among the indicator variables for observations from a single population.
In comparative research, we often have identical indicator variables collected in each
of the populations. If we define this grouping (population) variable as G and let S
represent the number of populations from which independent samples are drawn, we
can express the simultaneous (or multisample) latent class model (SLCM) as

Tijklms = E Tts Tiles T jles Tkles Tiles Timlts (2)
!

where ¢, 715, Tiss> Tijes» @and 7, represent the conditional probabilities relating
each of the indicator variables to the relevant latent class (¢) in each of the S pop-
ulations and 7, represents the joint distribution of the 7' latent classes and the §
populations.

When we engage in comparative (multisample) analysis, one of our first concerns
focuses on the issue of model invariance, that is, the degree to which we can measure
the same latent variable in each of the S populations. Essentially, we ask whether
the 32 categories produced by all possible combinations of response patterns within
each population can be represented by some lesser number of categories and whether
these categories are the same (or similar) for each of the nations (groups). Using
LCA, we test for model invariance by imposing across-sample equality restrictions
on the conditional probabilities for each of the latent classes (e.g., my;; = m);; =

- = 1) Often, such equality constraints are overly restrictive, and the fit of the
model to the original data is eroded well beyond the limits of chance variability. In
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Table 1: Likelihood-ratio (G?) and Pearson (x?) chi-squares for religious belief latent
class models

Model G? x? df
Two class per country 1640.3 1839.7 140
Three class per country 287.8 439.5 94
Restricted five class per country 95.3 104.3 84
Final model 123.5 149.8 140

such instances, the researcher must decide how much invariance he or she is willing
to accept before the latent classes in the S populations are no longer considered to
represent similar latent types.

In Table 1 the likelihood ratio and Pearson goodness-of-fit chi-squared statistics
for several SLCMs are reported. We first test whether a two-class model can ade-
quately represent the 32 response patterns observed for the 6254 respondents in the
seven nations. As we see from the chi-squares, we must reject the hypothesis that
the observed response patterns can be represented by two classes (G* = 1640.3,
x> = 1839.7, df = 140). Next, we test the hypothesis that the 32 patterns can be
represented by three classes. Once again, we see that we must reject this hypothesis,
although the chi-squares are substantially reduced and an inspection of the residuals
suggests that, in each of the seven nations, the “extreme” patterns for the indica-
tors (i.e., the YYYYY and NNNNN patterns) are underfitted with the three-class
model. In the third line of Table 1, we report the chi-squares for a five-class model
in which two of the classes are deterministically restricted: one responds “yes” to all
five items, while the other responds “no” to all five items. The two deterministically
restricted classes represent respondents who take what Duncan (1979) and Duncan et
al. (1982) refer to as “ideological” responses; we refer to these classes as the “com-
mitted believers” and “committed nonbelievers,” respectively. As these data indicate,
this five-class model can be accepted. The final line of Table 1 reports the chi-squares
for a five-class model in which (140 — 84 =) 56 across-nation equality restrictions
have been imposed. As the data in line 4 of Table 1 indicate, the resulting model can
be accepted within the limits of chance variability. Interestingly, we note in passing
that the large difference between the G2 and y? is attributable to two respondents,
one from Great Britain and one from Norway, who report belief in Hell and the Devil,
but not in life after death, God, or Heaven.

The conditional probabilities of belief in each of the indicator items for each of
the five classes across the seven nations are reported in Table 2. As the conditional
probabilities for the first and fifth classes reflect, the probability of responding “yes”
has been deterministically restricted to be 1.00 for the “committed believers” and 0.00
for the “committed nonbelievers.” Consequently, classes 1 and 5 exhibit complete
invariance among the seven nations. Classes 2 through 4, on the other hand, exhibit
some between nation variance in the likelihood that respondents will respond “yes”
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Table 2: Conditional probabilities of responding positively to religious beliefs in
seven nations (Source: 1991 ISSP)

God Life after death Heaven Devil Hell
1. Committed believers
All seven nations 1.000 1.000 1.000 1.000 1.000
2. Believers :
Britain 741 .694 977 778 935
Germany 811 .694 977 718 935
Ireland 957 .694 1.000 718 1.000
Italy 957 .694 1.000 718 1.000
Netherlands 811 .694 1.000 612 763
Norway 811 987 1.000 939 1.000
United States 957 .694 977 718 1.000
3. Positive believers
Britain 1.000 902 981 .094 124
Germany 923 761 485 .094 .000
Ireland 992 .999 1.000 188 208
Italy 992 902 1.000 .094 482
Netherlands 1.000 902 872 .188 .000
Norway 923 902 1.000 188 124
United States 992 .999 954 188 .000
4. Nonbelievers
Britain 556 301 147 .056 .010
Germany 357 .140 046 .000 .010
Ireland 932 425 534 .056 .000
Italy .855 425 .046 103 .000
Netherlands 357 425 .046 .024 .000
Norway 357 534 .046 056 .010
United States 932 534 534 .056 .000
5. Committed nonbelievers
All seven nations .000 .000 .000 .000 .000

to each of the five indicator items. For example, whereas class 2 respondents have a
high probability of responding “yes” to all five of the religious belief indicator items,
class 2 respondents in Ireland, Italy, and the United States are estimated to have a
0.957 likelihood of reporting belief in God and class 2 respondents in Britain are
estimated to have a 0.741 likelihood of responding positively to this indicator item.
The issue of model invariance is well illustrated by the data in Table 2. Although
there are many within-class, between-nation equality restrictions on the conditional
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probabilities, there remains some between-nation variance in these estimates. At
this point, the comparative researcher must resolve for him- or herself how much
invariance is to be tolerated before it is no longer plausible that the classes represent
the same type of respondents in each of the nations (groups). As we have seen from
the information in Table 1, the conditional probabilities of Table 2 are as restricted
as possible; any additional between-nation equality restrictions on the conditional
probabilities result in an unacceptably large erosion of the model fit.

Consider the case in which we accept the model fit presented in Tables 1 and 2.
Except for the relatively high probability of reporting a belief in God among class 4
respondents in the United States, Ireland, and Italy, we might label the intermediate
classes as follows. Class 2 respondents all have arelatively high likelihood of reporting
belief in all five indicators; thus, we might label class 2 respondents “believers.”
Class 4 respondents all have a relatively low likelihood of reporting belief for any of
the five indicators (given the exceptions noted earlier), so we might label this class
“nonbelievers.” And finally, class 3 respondents are likely to report a belief in life
after death, God, and Heaven, but they are unlikely to report a belief in either the
Devil or Hell; this class we will refer to as “positive believers,” because they appear
to be likely to believe in only the more positive, or rewarding, aspects of the afterlife,
but not in the less rewarding aspects.

Once we have accepted a particular model as representing similar (or identical)
underlying latent classes in each of the several groups, the next step is to compare
the distribution of types among the multiple groups (McCutcheon, 1987a, 1987b).
The SLCM latent class probabilities (i.e., ;) expressed in (2) may be presented
as a latent joint distribution, such as that presented in Table 3. The “latent cross-
tabulation” presented in Table 3 represents the maximum likelihood estimates of the
relative proportion of the original seven-nation sample that is likely to be classified
in each of the five classes.

The data reported in Table 3 illustrate a potentially important use of CA to
complement the simultaneous latent class analysis of indicator items in cross-national
research. The map presented in Figure 1 illustrates the results of a CA of the data

Table 3: Latent class probabilities from the restricted five-class model

Committed Positive Committed
Nation believers Believers believers Nonbelievers nonbelievers
Britain .0280 0111 .0284 0334 .0236
Germany .0268 .0105 0387 .0640 .0048
Ireland .0451 .0209 .0402 .0249 .0039
Italy .0415 0172 .0209 0474 .0120
Netherlands .0275 0121 .0337 .0546 .0434
Norway .0244 .0071 0276 .0274 .0363

United States .0816 .0419 0101 .0231 .0061
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presented in Table 3. CA of a latent joint distribution provides a singular value
decomposition of the divergence from independence:

I, = E,, + D.SAT'D, 3)

where Il is the two-way latent contingency table, Dy is a diagonal matrix with
marginal row proportions I1; (these will also equal the actual observed proportions
ps), D, is a diagonal matrix with marginal column proportions II;, E,; is the matrix
with the independence proportions E;; = II, * [LT, S are the row scores normalized
so that STD,S = I, T are the column scores normalized so that 7'D,T = I, and A
is a diagonal matrix with the singular values.

As is clear from (3), CA focuses attention on the departures from independence
in the latent cross-tabulation presented in Table 3. Consequently, we can think of
(3) as dividing the joint distribution into two parts: the unstructured (independence)
portion and the structured portion. It is the structured portion of the distribution that
CA allows us to represent graphically in data maps such as that in Figure 1.

Inspection of the map in Figure 1 makes clear a set of relationships that is some-
what more difficult to discern from the tabled data presented in Table 3. Figure 1
indicates that the seven nations cluster differently with respect to these (latent) reli-
gious beliefs. The U.S. population appears at the right of the space, indicating that

NW
Us

NL b

GB

pb

WG Scale

Figure 1: CA map for beliefs in seven nations.
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there are relatively more believers and committed believers (b and cb, respectively)
in the American sample, whereas the Dutch (NL) and Norwegian (NW) populations
appear at the left of the space, indicating that there are relatively more committed
nonbelievers (cn) among these populations. The Irish (IR) and Italian (IT) popula-
tions are mapped into the center and, although nearer the United States, appear to
have relatively more positive believers and nonbelievers (pb and n, respectively), as
do the British (GB) and Germans (WG). Thus, Figure 1 illustrates graphically the
relative locations of the seven nations with respect to the latent dimensions of these
religious beliefs.

3 CA Used Complementary to LCA
with Panel Data

It is also possible that a researcher might have survey responses to an identical set of
indicator items in two or more waves of a panel of respondents in one or more nations
(see also van der Heijden et al., 1994). For the following examples, we examine
data from the Political Action Panel Study (Barnes and Kaase, 1979; Jennings et
al., 1991). In this panel study, independent panels of American (N = 778), German
(N = 846), and Dutch (N = 714) respondents were interviewed in 1973 and again
in 1981. In each of these years, respondents were asked what their response would
be if their government proposed passing a law that the respondent clearly opposed.
The respondents were asked (1) whether they would or would not be willing to sign
a petition opposing the proposed law, (2) if they would or would not participate in a
legal demonstration opposing the proposed law, and (3) if they would or would not
participate in a sit-in opposing the proposed law.

We examine the patterns of responses to these three items in the 1973 wave (W)
and the 1981 wave (W) as a set of latent classes. In the observed cross-tabulation,
respondents can give one of eight possible response patterns (YYY to NNN) in each
of the 2 years. Thus (82 =) 64 possible response patterns can be observed for each
panel in the three nations. Consider the case in which the petition, demonstration,
and sit-in questions (A, B, C, respectively) are asked in 1973, and the same three
questions are asked again in 1981 (D, E, F). If we allow for one latent variable (X,)
at W, and another (Y,) at W,, we can express the latent class model with two latent
variables as

Tijklmn = Z Z T T34 T e Thie Tl Trnlu Tl (4)
t u

As in the multisample case, the first concern is whether the latent variable at W,

(X) is invariant with respect to the latent variable at W, (Y). This model invariance
may be tested by imposing a set of across-time equality constraints on the conditional
probabilities relating each of the indicator variables to its respective latent variable.
Thus, when there are equal numbers of classes at each panel wave (i.e., T = U) and
a model with across-time equality constraints on the conditional probabilities (i.e.,
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e = Tl Tjls = Tmlu> Thle = Taly) Provides an acceptable fit to the observed data,
we can represent the relationship between the latent variables X and Y as a latent
turnover table.

In the Political Action Panel example, a four-class-per-year model fits the data
well (G? = 40.0, df = 45), with the conditional probabilities restricted to fit a time-
invariant, item-specific error rate model (.032, .020, and .011, respectively) with a
Guttman ordering of the indicator variables (Clogg and Sawyer, 1981; McCutcheon,
1987a). Thus, as we would expect, it appears “easiest” for respondents to say they
would sign a petition (A and D), somewhat more difficult for them to say they would
participate in a legal demonstration, and most difficult for them to say that they
would participate in a sit-in. As a consequence of the Guttman ordering, we expect
respondents with the highest latent protest potential to have a high probability of
agreeing that they would participate in all three forms of behavior, while those with
the lowest latent protest potential would have a low expected probability of saying
that they would engage in any of these forms of behavior.

The data in Table 4 represent the modeled latent class probabilities for the latent
turnover table from the Dutch Political Action Panel. As these data show, the single
largest latent class consists of respondents who were high on protest potential at both
waves; approximately one quarter (.251) of the respondents had a high probability
of reporting that they would engage in all three forms of protest in 1973 and again
in 1981. Interestingly, however, although nearly half of the wave 1 Dutch population
reported a high level of protest potential (0.251 + 0.163 + 0.045 + 0.005 = 0.464),
a substantial segment of that number appears to have “migrated” to a lower level of
protest potential by wave 2 (0.163 + 0.045 + 0.005 = 0.213).

The latent proportions in Table 4 can also be graphically displayed using CA;
the one-dimensional map for these data is presented in Figure 2. Although the four
latent classes could be displayed exactly in a three-dimensional space, a high-quality
approximation (86.9%) can be displayed in a one-dimensional subspace. Moreover,
the display in Figure 2 provides some interesting insights into the possible changes
in latent protest potential among the Dutch respondents. Although we must be cau-
tious concerning “overinterpretation” of the graphical display, it appears that Dutch

Table 4: Estimated latent turnover table for the Dutch sample

Wave 2
Tl =high T4 =low
U, =high 251 .163 .045 .005
.064 138 .080 011
Wave 1
.030 .059 .076 .012

Us=low 011 014 .031 .010
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Profes of Wave 1 Latent Classes

Vertices of Wave 2 Latent Classes

Figure 2: CA map for Dutch political protest potential.

respondents with “high” (X;, Y1) and “low” (X4, Y4) protest potential diverged some-
what over the 8 years between the two panel waves. Also, the two highest protest
potential classes of Dutch respondents at wave 1 (X; and X») appear to have become
more similar by wave 2 (Y7 and Y3).

A final example focuses on identical protest potential data collected on panels
of American and German samples in 1973 and 1981. In this example, we may ask a
set of questions similar to those posed with the Dutch panel data, although now with
a comparative perspective in mind: Does the protest potential of respondents in these
three democracies in 1973, a period of heightened activity, change by 1981 and does
it appear to change in a similar manner for respondents in each of the three nations?
We begin by modifying equation (4) as

T jklmns = E E E Tus Tilts T j|es Tkles Tllus Tm|us Tnlus %)
t u s

Table 5 reports the wave 1 by wave 2 protest potential latent class proportions
for the German and American samples (/). It is important to note that the
conditional probabilities are restricted to fit a nation- and time-invariant, item-specific
error rate model (0.032, 0.020, and 0.01 1, respectively) with a Guttman ordering of
the indicator variables. Thus, the latent classes in the three nations (as well as the
two panel waves) are invariant as represented by the relationship to the indicator
variables.

Unlike the case for latent protest potential for the Dutch sample (see Table 4), the
information in Table 5 indicates that among both German and American respondents
the highest likelihood is to be found among those who are at the second highest level
of protest potential at both panel] waves (0.280 and 0.335, respectively). Although a
variety of approaches may be used to examine these data, we concatenate the matrices
presented in Tables 4 and 5 to obtain a 4 X 12 matrix, with rows representing the
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Table 5: Estimated latent turnover table for the German and American samples

Wave 2
German American
Ty =high T4=low T;=high Ts=low
U, =high .039 064  .029 .008 144 .094 .004 001
.054 280 192 .040 109 335 .060 .006
Wave 1 011 .058  .086 .034 .020 .108 .076 .009
Ug=low .003 .036 .038 .028 .002 .010 .013 .009

patterns of protest potential at wave 1 in the three nations and columns representing
the nation-specific patterns of protest potential at wave 2.

The map in Figure 3 graphically displays the results of the CA for the 4 X
12 matrix of protest potential for the three nations. As this map indicates, a two-
dimensional representation is required for a display of reasonable quality, although

[~]

.

Scale

Figure 3: CA map for protest potential in three nations.
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the curved pattern of the points clearly forms the common “horseshoe effect” (see,
e.g., Greenacre, 1984, pp. 226-232; Greenacre, 1993a, p. 127).

Briefly, and again with caution against the overinterpretation of results, the
patterns in the first dimension of Figure 3 indicate an interesting distribution of the
latent classes at wave 1 (X; to X,) with X; (high protest potential at wave 1) to the left
of the space and the lower protest potential classes closely spaced in the right-hand
portion of the space. Thus, the first axis appears to represent a “protest axis.” The
pattern for the nation-specific latent classes is also interesting; whereas the highest
protest potential class for the wave 2 German (G;) and American (A;) samples are
located in the left portion of the space, the two highest protest potential classes for
the Dutch sample (N, and N,) appear in this portion of the map. The remaining
classes appear quite closely spaced in the right-hand portion of the space. Finally, the
second dimension of Figure 3 also suggests an interesting difference between nations
at wave 2; all of the instances of Dutch data (N, to N4) from wave 2 are located in the
bottom portion of the figure, while three instances of the German data (G; to G3) are
located in the upper portion and the American data are evenly divided between the
upper and lower portion. Thus, although we must remain cautious, we may wish to
interpret this as an “intensity axis,” because the extreme responses (e.g., X; and X4)
are lower than the intermediate responses (e.g., X, and X3).

4 Discussion

The number of survey data sets that are collected cross-nationally has grown dra-
matically in the past one to two decades. These survey data sets are often collected
with the specific intent of facilitating comparative, cross-national survey research
and typically include identical sets of indicator variables for latent variable analyses.
Athough latent class analysis provides an attractive analytic technique for analyzing
these data, the pattern of latent classes that results from such analyses may be ditficult
to represent. CA offers an attractive complement to simultaneous latent class analysis
by providing a set of graphical displays that enables the visualization of the results
of the simultaneous latent class analysis. Further, the results of latent class analysis
of identical indicator variables in panel data, whether in a single panel or in multiple
panels, can also be presented using CA. As the examples presented here indicate,
the graphical displays provided by CA can be used as an attractive complement for
presenting the results from complex latent class models.
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Chapter 33

Graphical Display of Latent
Budget Analysis and Latent
Class Analysis, with Special
Reference to Correspondence
Analysis

L. Andries van der Ark and Peter G. M. van der Heijden

1 Introduction

Latent budget analysis (LBA) and latent class analysis (LCA) are methods for the
analysis of contingency tables. They are equivalent techniques that lead to an identical
visualization of the results of the data analyses. It is not widely known that LBA
and LCA results can be visualized. Aided by two clarifying examples, we will
illustrate these visualizations, and we will also show the relation between the graphical
representation of LBA and LCA and that of correspondence analysis (CA), another
method for the analysis of contingency tables.

The first set of data was originally published and analyzed by Guttman (1971). It
is a two-way contingency table about the principal worries of Israeli adults (Table 1).
The row variable is a combination of residence and father’s residence, denoted by
“residence,” with I = 5 categories indexed by i. The column variable is the principal
worry of the respondents, denoted by “worry,” with J = 8 categories indexed by j.

489



490 Chapter 33. Graphical Display of Latent Budget Analysis

The frequency of the cell corresponding to the ith row category and the jth column
category is denoted by #n;;. The marginal row and column frequencies are denoted
by n;. = > ;m;j and n.; = 37, n;; respectively. The total number of respondents is
denoted by n = 3, >, nij (= 1554).

2 The Latent Budget Model

From the data matrix of Table 1 we can construct the matrix of proportions P,
with elements p;;, by dividing each element of the data by n: p;; = ny; /n. The
marginal proportions of the rows and columns are denoted by r; = p;. = Y ;pijand
cj = p;j = >, Pij» respectively. Since “residence” is an explanatory variable and
“worry” is a response variable, we investigate the conditional proportions of “worry,”
given “residence,” denoted by p i = Dij /pi. =n; j /n;., rather than the unconditional
proportions p;;. This allows us to compare the categories of the variable “worry”
between residence groups. If we collect the p;. as entries of the I X I diagonal matrix
D, then the conditional proportions pj; are found in the matrix D P, which is
presented in Table 2.

The rows of D 'P are vectors that contain only nonnegative elements and add
up to one. We call such vectors budgets, in general, and the rows of D, P observed
budgets (in correspondence analysis these rows are referred to as row profiles).
Normally, D; 'P is of full rank, that is, rank(D; 'P) = min(/, J), equal to 5 in this
example. In the latent budget model D 'P is approximated by D, 'II, a matrix of
conditional probabilities 7r;, of rank K [K = min(l, J)], such that 7, is a mixture of
K conditional probabilities ), (k = 1,...,K). The mixing parameters are denoted

Table 1: Principal worries of Israeli adults (Guttman, 1971)*

Principal worries®

Residence/
father’sresidence ENL SAB MIL POL ECO OTH MTO PER Total

Asia/Africa 61 70 97 32 4 81 20 104 469
Europe/America 104 117 218 118 11 128 42 48 786
Israel; father

Asia/Africa 8 9 12 6 1 14 2 14 66
Israel; father

Europe/America 22 24 28 28 2 52 6 16 178
Israel; father Israel 5 7 14 7 1 12 0 9 55
Total 200 227 369 191 19 287 70 191 1554

“ENL, enlisted relative; SAB, sabotage; MIL, military situation; POL, political situation; ECO,
economic situation; OTH, other; MTO, more than one worry; PER, personal economics.
*Reprinted by permission of the Psychometric Society.
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Table 2: Observed budgets

Principal worries®

Residence/
father’sresidence ENL SAB MIL POL ECO OTH MTO PER Total

Asia/Africa 130 149 207 068 .009 173 043 222 1.000
Europe/America 132 .149 277 150 014 163 .053 .061 1.000
Israel; father

Asia/Africa 121 136 182 .091 015 212 .030 212 1.000
Israel; father

Europe/America 124 135 157 157 011 292 034 090  1.000
Israel; father Israel .091 127 255 127 018 218 000 164 1.000

2ENL, enlisted relative; SAB, sabotage; MIL, military situation; POL, political situation; ECO,
economic situation; OTH, other; MTO, more than one worry; PER, personal economics.

by my;. The latent budget model can be written as

K
i = Z TRl Tk €))
k=1
The parameters in (1) are subject to the equality constraints
J K J
Z T = Ty = Z T = 1 )
j=1 k=1 j=1
and inequality constraints
Osﬂﬂisl’Osﬂ-k'isl’osﬂ-jlksl (3)

The idea for the latent budget model was introduced by Goodman (1974) and
elaborated by Clogg (1981), de Leeuw et al. (1990), van der Heijden et al. (1992), and
Siciliano and van der Heijden (1994). There are two ways to interpret the parameters
of the latent budget model, which we will call the mixture model interpretation and the
MIMIC-model interpretation (Multiple Indicator Multiple Cause model; Goodman,
1974). The mixture model interpretation is as follows. If we collect 7; inan 1 X J
matrix, then the rows of this matrix, denoted by 7] = [7y)...7 ... 7y;], are vectors
with nonnegative elements that add up to one. These vectors are called expected
budgets. The latent budget model writes these expected budgets as a mixture of the
vectors 7] = (i) Tjje--7pp) (k = 1,..., K), which are typical or latent budgets.
We can write (1) as

T_

T =T =T
1 W i/ T S M R S C)
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Hence, each expected budget is built up out of the K latent budgets, and the mixing
parameters determine to what extent. If we interpret the latent budget model as a
MIMIC model, then ,; denote what proportion of row category i belongs to some
latent class k, and 7, denote how the subjects in each latent class k respond to the
column categories j.

A schematic representation of a mixture model and a MIMIC model is given in
Figure 1. For the mixture model the squares represent the expected budgets 7r; and
the circles the latent budgets 7r;. The arrows represent 7,; and determine how each
expected budget is built up in terms of the latent budgets. For the MIMIC model the
squares on the left and right represent the row and column categories, repectively.
The arrows on the left-hand side represent m,; and the arrows on the right-hand side
represent 7 ;. Hence the MIMIC model shows what proportion of each row category
falls into each latent category and what proportion of each latent category responds
to each column category.

In general, the latent budget model is not identifiable if K > 1 and no constraints
other than (2) and (3) are imposed on the model. Therefore different sets of parameter
estimates may be obtained for different starting values, but they provide the same
estimates of the expected budgets. For a discussion of identifiability in the latent
budget model we refer to de Leeuw et al. (1990) and van der Ark and van der Heijden
(1996).

Mixture-model MIMIC-model

- :
T i=1 v j=1
\ 4 “ b 4
. 1 " k=1 [

T2 :2 ]:2
v 1 1

! i
i
| ~ : N
I n i k=2 <
! ] « NS
I i
! i
»
T & i=I

Figure 1: Graphical display of a mixture model and MIMIC model.
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Table 3: K = 1, K = 2, and K = 3 latent budget solutions for the data of Table 1

K =1 latent K = 2 latent K = 3 latent
budget solution  budget solution budget solution
k=1 k=1 k=2 k=1 k=2 k=3
Mixing parameters
Asia/Africa 1.000 .383 617 .000 477 523
Europe/America 1.000 .832 .168 235 .633 133
Israel; father Asia/Africa 1.000 424 .576 116 402 482
Israel; father Europe/America 1.000 721 279 436 .353 210
Israel; father Israel 1.000 576 424 205 447 348
Latent budgets
Enlisted relative (ENL) 129 132 123 .100 .149 109
Sabotage (SAB) 146 147 .145 105 170 128
Military situation (MIL) 238 .286 145 021 429 0t
Political situation (POL) 123 187 .000 250 145 .000
Economic situation (ECO) .012 .106 .006 .016 015 .004
Other (OTH) 185 .180 .194 .508 .000 329
More than one worry (MTO) .045 .054 .028 .000 .084 .000
Personal economics (PER) 123 .000 359 .000 .009 420
Likelihood ratio x* 121.5 29.23 6.490
Degrees of freedom 28 18 10
Probability .000 .050 .846

The matrix D, !P in Table 2 was analyzed using the maximum likelihood esti-
mation procedure of de Leeuw et al. (1990). The results of the latent budget anal-
ysis with K = 1, K = 2, and K = 3 latent budgets are presented in Table 3.
We can see that the model with K = 1 latent budgets does not fit the data. In
the model with K = 2 latent budgets, the goodness of fit has improved and now
100(121.5 — 29.2)/121.5 = 75.9% of the dependence is modeled, but the fit is
still not satisfactory. The model with K = 3 latent budgets fits the data very well,
with 94.7% of the dependence modeled. We have transformed the parameter esti-
mates such that 7r;_g—; = 7rj—4p=2 = 0 in the K = 2 latent budget model and
Ti=tk=1 = Tj=gh=1 = Tj=l=2 = Fj=1hk=3 = Tj=ap=3 = M=1;=1 = 0 in the
K = 3 latent budget model. These transformations were chosen so that as many
parameter estimates as possible equal zero without altering the goodness of fit (see
van der Ark and van der Heijden 1996). This facilitates the interpretation of the
parameter estimates.

We will now interpret the parameter estimates for the model with K = 3 latent
budgets to get insight into the data. One can characterize the latent budgets by
the values of their categories presented in Table 3, but it is more appropriate to
characterize these relative to the average. Therefore we interpret the latent budgets
by comparing the estimates 4r;; (k = 1,2, 3) with the column marginals, p ;, which
are also the elements of the latent budget in the K = 1 latent budget model, and
attach a label to them. For example, the marginal proportion of MIL is 0.238. In the
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K = 3 latent budget solution we can see that the estimated proportions of MIL are
0.021,0.429, and 0.011, respectively, for the first, second, and third latent budgets.
Hence the second latent budget is characterized more than the other two budgets and
more than average by people who feel the military situation is their principal worry.
When we attach a label to the second latent budget, this feature should be considered.
Besides MIL, the second latent budget is characterized by ENL and SAB, also larger
than their respective marginals, which also deal with the endangerment of daily life
by war and the undetermined category MTO (“more than one worry”). Hence this
latent budget can be labeled “concerns for safety.” In a similar way, we find that the
first latent budget is characterized by POL and OTH, while personal and military
concerns (PER, ENL, SAB, MIL) have very low existence or are absent. Hence we
can label this latent budget “political and other worries.” The third latent budget
is dominated by PER, worries about personal economics, with OTH also present.
Categories that denote nonegocentric concerns (MIL, POL, ECO) are almost absent
in the third latent budget, hence this latent budget can be labeled “personal worries.”

After the latent budgets are interpreted by the column categories we examine
how the categories of the explanatory (row) variable are composed out of these latent
budgets. For example, in the K = 3 latent budget solution, the category “residents
from Europe and America” (EA) contributes 63.3% to the second latent budget.
Hence EA can be described as a group whose principal worries are determined for
the larger part by “concerns for safety.”

3 Latent Class Model

The latent budget model is equivalent to the latent class model for two variables (see
Clogg, 1981; van der Heijden et al., 1992). The latent class model can be written as

K
mj = E sy &)
k=1
For (5) we can write
K mm K m I K mym
_ i Tik _ jk T Tk
M= D e e T M e = o ©
k=1 k Nk k=1 k i k=1 i k

where the last expression is the equation of the latent budget model [see (1)]. Note
that the latent budget model and the latent class model for two variables have the
parameters 7, in common. Equation (6) implies that, in the case of two variables,
for each latent budget solution there is one corresponding latent class solution and
vice versa. Therefore the estimation procedures and the unidentifiability of the model,
mentioned in the previous section on LBA, apply to LCA as well (see van der Ark
and van der Heijden, 1996). However, if we have an identified latent budget solution,
such as presented in Table 3, we can get the corresponding latent class parameters
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;. and 7, by using Bayes’ theorem and the law of total probability

T )i
K .
Zk=1771 Tl

The latent class parameter estimates for Table 1, corresponding to the mixing
parameter estimates from Table 3 and reparameterized through (7), are presented in
Table 4.

The reason for using either the latent class model or the latent budget model
depends on the types of manifest variables. Since the latent class model studies
the joint probabilities ;;, the model is more appropriate if the row variable and
the column variable are both response variables. The response variables are then
independent given the latent class. The latent budget model is more appropriate if
one of the variables is an explanatory variable and the other a response variable. Only
if we regard “residence” as a response variable, then it is appropriate to interpret
the latent class solution of Table 4. This might be considered if one accepts that a
person can choose the country in which he or she lives. In this case we have a latent
variable with three classes that determines the “principal worries” and “residence” of
the respondents. We did not find, however, an appropriate way to label the classes in
this way.

Since the latent class model comprises only response variables, the model can
be extended easily to more than two variables. The latent class model with four
variables, for example, is then

Tk =

I
and m = Z Ty @)
i=1

K
Tehij = E Tk T olk Thk Tilk T jlk (8)
k=1

From (8) we can see that the general latent class model is equivalent to the law of total
probability where the response variables are independent conditional on the latent
classes.

Table4: K = 1, K = 2, and K = 3 latent class solutions for the data of Table 1

K =1 latent K = 2 latent K = 3 latent
class solution class solution class solution
k=1 k=1 k=2 k=1 k=2 k=3
Residence
Asia/Africa 302 176 544 .000 268 .560
Europe/America 506 640 248 656 596 .238
Israel; father Asia/Africa 042 027 071 .027 032 073
Israel; father Europe/America 115 126 094 276 075 .086
Israel; father Israel .035 031 .043 .040 029 .044
Worry See latent budgets Table 3

Latent class probabilities 1.000 658 324 181 537 282




496 Chapter 33. Graphical Display of Latent Budget Analysis

Table 5: Cross-classification of four manifest variables (McCutcheon, 1987)*

Cooperation
Impatient

Purpose Accuracy Understanding Interested Cooperative hostile
Good Mostly true Good 419 35 2
Poor/fair 71 25 5
Not true Good 270 25 4
Poor/fair 42 16 5
Depends Mostly true Good 23 4 1
Poor/fair 6 2 0
Not true Good 43 9 2
Poor/fair 9 3 2
Waste Mostly true Good 26 3 0
Poor/fair 1 2 0
Not true Good 85 23 6
Poor/fair 13 12 8

*Reprinted by permission of Sage Publications, Inc.

Table 5 contains the cross-classification of four response variables collected in
the 1982 General Social Survey (see McCutcheon, 1987b, p. 31). The data comprise
the evaluation of 1202 respondents in terms of the respondent’s attitude toward the
purpose of surveys and the accuracy of surveys in general and the respondent’s
cooperation and understanding of the survey. In Table 6 a latent class solution with
three latent classes published by McCutcheon (1987b, p. 43) is presented. After
performing latent class analysis, McCutcheon characterized the three latent classes
by the type of respondent who belongs to each of them. Some of the parameters
have been restricted post hoc to facilitate interpretation (see Table 6). The three
respondent types (classes) are “Ideal,” those who have a positive attitude toward
surveys and understand the questions well; “Believers,” those who have a positive
attitude toward surveys but do not really grasp their content; and “Skeptics,” those
who mistrust surveys although they understand the questions rather well. For further
discussion of LCA see McCutcheon (Chapter 32).

4 Visualization of the Latent Budget Model

Latent budgets are K vectors in the J-dimensional space of the response variable.
For example, the K = 3 latent budgets of the latent budget model in Table 3 can be
viewed as three vectors in an eight-dimensional space. The heads of these K vectors
span a (K — 1) dimensional subspace; that is, if X = 1 then the head of the latent
budget is a point, if K = 2 the heads of the latent budgets can be connected by
a one-dimensional line segment, and if K = 3 the heads of the latent budgets are



4. Visualization of the Latent Budget Model 497

Table 6: K = 3 latent class solution of the data of Table 5 (McCutcheon, 1987)*

Respondent types

Manifest Variables k = 1 (ideal) k = 2 (believers) k = 3 (skeptics)
Purpose

Good .887¢ 887 110

Depends .060¢ .060° 228

Waste 053 .053 .661
Accuracy

Mostly true 617° 617° .000?

Not true .383 383 1.000
Cooperation

Interested 943 .683 .649

Cooperative .057 .260 .248

Impatient/hostile .000° 058 103
Understanding

Good 1.000? .338 765

Poor/fair .000 .662 235
Latent class probabilities () .619 223 158

¢ Equality constraints imposed.
b Exact indicator restriction imposed.
* Reprinted by permission of Sage Publications, Inc.

the vertices of a triangle (Figure 2). Because the expected budgets, 7r;, are mixtures
of the latent budgets, 7, [see (4)], the expected budgets can be viewed as vectors
whose heads lie in the space (point, line segment, triangle, ... ) spanned by the latent
budgets. The precise position of the expected budgets in this space is the weighted
average of the latent budgets, where the weights are the mixing parameters, ;. The
mixing parameters serve as coordinates in a so-called barycentric coordinate system,
which in the K = 3 case is also known as the “triangular coordinate system” (see
e.g., Greenacre, 1993, p. 15). The models with K = 2 and K = 3 latent budgets can
be visualized by depicting the space spanned by the latent budgets and plotting the
expected budgets onto this space by means of their mixing parameters.

In Figure 3 we show the graphical display of the K = 2 latent budget model
(for the parameter estimates, see Table 3). Here the line segment spanned by the two
latent budgets is presented, with the head of the first latent budget on the right-hand
side and the head of the second latent budget on the left-hand side. Now the first
expected budget (AA), with mixing parameter estimates 0.383 and 0.617, is made up
38.3% by the first latent budget and 61.7% by the second latent budget. If we scale
the line segment from 0 (the second latent budget) to 1 (the first latent budget), then
the position of (AA) is .383, hence closer to the second latent budget than to the first
latent budget. If the mixing parameter estimates were (1.000, .000), then the expected
budget would be equal to the first latent budget and be positioned on the right end of
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Figure 2: Visualization of K = 1, K = 2, and X = 3 latent budget model.

T2 AA I/AA n VEA EA ml
s e e o ° ® a
0.0 01 02 03 04 05

0.6 0.7 0.8 0.9 1.0

Figure 3: Graphical display of the K = 2 latent budget model.
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the line segment. By depicting the K = 2 latent budget model in this way, we can see
immediately that the expected budgets are composed of the latent budgets as their
weighted average, where 7ry|; and 1r,; (i = 1,...,5) denote the weights.

In Figure 4 a graphical representation is given of the K = 3 latent budget model
(for the parameter estimates, see Table 3). By convention, the vertices are at equal
distance and the upper vertex of the triangle represents the head of the first latent
budget, the right-hand vertex represents the head of the second latent budget, and the
left-hand vertex represents the head of the third latent budget. The side opposite a
vertex is the area where the corresponding mixing parameters are zero; for example,
the first expected budget (A A) with mixing parameter estimates (0.000, 0.477, 0.523)
lies on the bottom side of the triangle, because the first parameter estimate is zero.
The scales of this triangular coordinate system are drawn as dotted lines parallel to
the three sides of the triangle. The second mixing parameter estimate 7r,; = 0.477 of
AA positions the point between the fourth and the fifth dotted line that paraliels the
left side of the triangle. The third mixing parameter estimate 7r;; = 0.523 positions
AA between the fifth and the sixth dotted line parallel to the right side of the triangle.

Figures 3 and 4 can be interpreted as a mixture model as well as a MIMIC model.
The mixture model interpretation is a tool for understanding the composition of the
expected budgets in terms of the latent budgets. The closer the expected budgets lie to
the latent budgets, the greater the probability that a residence group will resemble the
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Figure 4: Graphical display of the K = 3 latent budget model.
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latent budget, and the distance between two expected budgets determines the relative
similarity among them. The vector of marginal column proportions with elements
m; =Y, m;(j =1,...,J)has also been plotted in Figure 4 as a solid square. This
vector is the latent budget in the independence model and therefore represents the
average budget. The vector of marginal proportions can serve as a reference vector for
the expected budgets. Hence, if an expected budget is closer to a latent budget than
the vector of marginal column proportions, then the expected budget resembles the
particular latent budget more closely than average. The coordinates of the vector of
marginal proportions are m, = Y, m;m;, that is, 0.181,0.537,0.282. For example,
from Table 3 we can see that I/ has mixing parameter estimates (0.205, 0.447, 0.348)
and is closer to the vector of marginal proportions than any other row category. Hence
the Israeli residents whose fathers also live in Israel display the most average pattern
of worries.

The MIMIC model interpretation is a guide to an additional characterization
of the latent budgets. We can consider Figure 4 such that the triangle displays the
probability to enter the latent budgets; that is, the vertices denote the probability 1 that
the subjects of a row category i belong to the corresponding latent budget (y; = 1)
and a probability O that they belong to the other latent budgets. In this interpretation
the picture shows how the marginal row probabilities are distributed over the latent
budgets, and we can label the budgets by this distribution. The point that denoted the
vector of marginal column proportions now represents the average distribution of all
subjects in the contingency table. If a row category is closer to a latent budget than the
point representing the overall average, then the latent budget is characterized more
than average by that row category. If the distance between two points in the figure
is large, then the distribution of those two categories over the latent budgets is not
similar; if the distance is small, then the two categories are distributed over the latent
budgets in more or less the same way. We can see that the first latent budget (1,0, 0) is
represented more than average by I/EA, EA, and I/1, the second latent budget (0, 1, 0)
can be interpreted as a budget typical for those who live in Europe or America, and
the third latent budget (0, 0, 1) is represented more than average by AA, I/AA, and I/1.

The categories of the column variable can also be represented graphically. This
can be done if we rescale the elements of the latent budgets from m into my; by

!
7"'jlkZi=1 T Tyi
Ty

®

T =
[see (7)]. In Figure 5 a graphical representation of m; in the K = 3 latent budget
solution is given for the data of Table 1 and the rescaled latent budget parameters
[see (9)] are given in Table 7.

Figure 5 cannot be interpreted in terms of the mixture model for the rows,
but must be interpreted according to the MIMIC model; that is, the vertices denote
mi = 1 (k = 1,2,3) and the squares in Figure 5 are the column categories. Their
position in the triangle determined by m; denotes how the marginal probability of
a particular observed category j is distributed over the three latent budgets. If one
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Figure 5: Graphical representation of the rescaled latent budgets in the K = 3 latent

budget solution.

of the categories were positioned on a vertex, this category would be present only in
the particular latent budget. Hence, MTO is present only in the second latent budget.
If a category were positioned in the center of the figure [i.e., coordinates are (%, %,
%)], then the responses to that category would be equally distributed over the latent

Table 7: Rescaled latent budget elements of Table 3

Worries k=1 k=2 =3
Enlisted relative (ENL) 141 .620 238
Sabotage (SAB) 129 625 247
Military situation (MIL) .017 .969 .014
Political situation (POL) 368 .632 .000
Economic situation (ECO) 239 .669 .092
Other (OTH) 498 .000 .502
More than one worry (MTO) .000 1.000 .000
Personal economics (PER) .000 .038 962
Latent class probabilities () 181 537 282
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budgets. If two points were plotted close together, for example ENL and SAB, then
these categories have a similar distribution over the latent budgets. In this way we
visualize the characterization of the latent budgets that has been given in Section 2.
In Figure 5 the point that denoted the average distribution of all subjects over the
latent budgets, with coordinates m, (k = 1,2, 3), is also plotted and now serves as a
reference point for the column categories.

Notice that if we examine ) ; instead of 7y, the marginal column effects have
disappeared. This means that if a marginal column proportion is very small, for exam-
ple, the marginal proportion of ECO (.012), and we examine the actual proportions
of the latent budgets with elements 7, then ECO hardly plays a role in the interpre-
tation of the latent budgets, because of its low marginal frequency. Categories with
large marginal column proportions, on the other hand, tend to dominate, for example,
MIL, which has a marginal proportion of 0.238. These differences disappear if we
examine 1 ;, where we see how each category is distributed over the latent budgets.

Figures 4 and 5 can be overlaid. In this case the figure has to be interpreted
according to the MIMIC model. Thus, the plot indicates to what extent the categories
of the row and the column variables appear in a certain latent budget. This may help
to interpret the latent budgets not only by means of the column categories but also by
means of the row categories.

5 Visualization of the Latent Class Model

The idea of rescaling the parameters 7}, into 1 ; can also be used to visualize the
latent class parameters. If we have two response variables, we can depict m; (i =
L,...,D) and my; (j = 1,...,J) simultaneously. If we assume that the variables
“residence” and “worry” from Table 1 are both response variables, visualization of
the latent class model with three latent classes would be equivalent to Figures 4 and 5.
The plot must be interpreted as a MIMIC model, however; that is, the picture reveals
how the categories of the variables are distributed over the latent classes. In this way
we can easily characterize the latent classes by the closeness of the category points to
the comers of the triangle. If we overlay Figures 4 and 5, then we have a simultaneous
representation of the row variable and the column variable.

As mentioned in Section 3, the latent class model can easily be extended
to more than two variables. If we have more than two variables, say four, with
corresponding latent parameters my (¢ = 1...G), my (B = 1...H),my (i =
l...I), and 7y, (j = 1...J), [see (8)], they can be transformed into my, (g =
L...G)yymy (h=1...H),my ( =1...1), and my; (j = 1...J) by

T Tglk _ T = T Tk _ Tk

7Tk|g = g s 7Tk|h = - s Tlp = py 5 7Tk|j = (10)
g i

J

A graphical display of Table 6 is given in Figure 6. The manifest variables are
depicted simultaneously. The rescaled parameter estimates obtained with (10) are
given in Table 8.
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Figure 6: Display of McCutcheon solution.

Table 8: Reparameterized latent class solution of Table 6
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Respondent types

Manifest Variables k = 1 (ideal) k = 2 (believers) k = 3 (skeptics)
Purpose

Good 718 259 023

Depends 429 155 416

Waste 220 079 700
Accuracy

Mostly true 135 265 .000

Not true 493 178 329
Cooperation

Interested .696 182 122

Cooperative 266 438 .296

Impatient/hostile .000 443 557
Understanding

Good 7159 .093 .148

Poor/fair .000 799 .201
Latent class probabilities (1) .619 223 .158
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In Figure 6 the solid circles denote the variable “purpose,” the open circles
denote “accuracy,” the solid squares denote “cooperation,” and the solid triangles
denote “understanding.” Figure 6 displays the characterization of the latent classes
according to the results in Table 4. The first class (ideal respondents) is characterized
more than average by all most positive categories of the variables. The second class
(believers) is mostly characterized by a fair to poor understanding of surveys, but
they are more cooperative than average. The third class (skeptics) is characterized by
negative categories of all variables.

6 Relation of LBA and LCA to
Correspondence Analysis

A problem with the display of LCA and LBA is that only the relative distances are
visualized; Figures 4, 5, and 6 are equilateral triangles, while there are always two
latent classes (budgets) that are more similar to each other than to the third one.
We are able to solve this problem by using correspondence analysis (CA), and the
solution follows from the relation of LBA and LCA to CA. Because LBA and LCA
are equivalent, we will refer only to LCA in this section.

The relation between LCA and CA is rather close and has been studied before
by, among others, Gilula (1979, 1983, 1984), Goodman (1987), de Leeuw and van
der Heijden (1991), and van der Ark and van der Heijden (1996). Visualization of
both models will give more insight into this relation. We recapitulate here first the
analytic results of de Leeuw and van der Heijden (1991) and then illustrate the results
by visualizing them.

Consider a two-way matrix with observed proportion p;; of rank M. We define
CA as

M
Dij = pi-P.j (1 + Zamrimcjm> (1

m=1

where the scores r;, and cj, are centered: ), pirim = 3 jpcim = 0, and
standardized: Y, pirZ, = Y.;p.jc5, = 1. The parameters ay, are the singu-
lar values obtained from a singular value decomposition of the matrix with ele-
ments (p;; — pi-p-j)/+/(pi-p.;). When the matrix of proportions has full rank, then
M = min({ — 1,J — 1). Decomposition (11) is also known as the canonical analysis
of a contingency table (Gilula, 1984; Gilula and Haberman, 1986). In this context
«,, is the mth canonical correlation between the quantified row and column variable,
where the scores 7, are used as quantifications for the rows, and the scores ¢, are
used as quantifications for the columns. These scores are often called the “standard
coordinates” of a CA solution.
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Suppose that we use only M* (1 = M* < M) dimensions of decomposition (11)
to derive elements

o
Pl = pi-p-j (1 +> amr,-mc,-m) (12)

m=1

and we collect these approximations p;; in a matrix P*. The matrix P* is a reduced
rank matrix of rank M* + 1, and it provides an optimal approximation of the observed
matrix in a least-squares sense (see, for example, Greenacre, 1984). Notice that P*
need not be a probability matrix, that is, a matrix with nonnegative elements adding
up to one. Although it can be shown that ), j p;“j = 1, some elements may be
negative.

Both CA and LCA are reduced rank models. If a matrix can be decomposed
by a K-class LCA, then it can also be decomposed by a (K — 1)-dimensional CA.
However, contrary to what was stated by van der Heijden er al. (1989), the reverse
does not hold in general. This can be seen from the fact that the factorization provided
by LCA consists of nonnegative parameters only, whereas the parameters of CA may
be negative. There is one special case, though. De Leeuw and van der Heijden (1991)
prove that LCA and CA are equivalent in the two-class, one-dimensional case and
then provide a counterexample to illustrate that this is not true in general for higher
dimensions.

Let us now discuss the implications of these results for data analysis. Observed
contingency tables that are of reduced rank seldom occur. If a matrix does not have
a reduced rank, then we can still calculate the decomposition provided by (12). If
we then consider only M* < min(/ — 1,J — 1) dimensions, then P* need not be
a probability matrix (see earlier). Therefore for CA estimated by least squares the
above has limited practical relevance. It is relevant, however, for CA estimated by
maximum likelihood, as proposed by Goodman (1985) and Gilula and Haberman
(1986) (see also Siciliano et al., 1993). Their model is

o
), = aib; <1 +3° f,,,u,-,,,v,-,,,) (13)

m=1

where the parameters have identification restrictions identical to those in (11) and
(12): 32, Githim = 3 ;bjvjm = Oand 3, au’, = > by, = 1. A choice of M*
determines the rank of the matrix with elements w;“j and because (13) is estimated by
maximum likelihood, this yields a probability matrix of reduced rank when M* <
min(/ — 1, J — 1). This shows that for K = 2 the estimates of expected probabilities
of both models will be equal, and therefore the fit of both models will be equal as
well. For K = 3 it turns out that often, but not always, LCA and CA have identical
estimates of expected probabilities (see van der Ark and van der Hetjden, 1996, for
more details). This is relevant for the visualization of LBA and LCA.
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7 Simultaneous Visualization of the
Correspondence Model and the
Latent Budget Model

CA is usually employed to make graphical representations. The categories of the
variables are plotted onto an M*-dimensional space with M* orthogonal axes.

An important concept in the visualization of CA is the chi-squared distance. The
chi-squared distance 82, between rows i and i’ of II* is defined as

1,

2
& = XJ: ((mj/m) ;( wﬂj/wﬂ)) (14)

j=1 J

From equation (14) we can see that the chi-squared distance is the squared difference
between two expected row budgets #}; /7] weighted by the marginal proportion of
the column 'rr}'-‘. Now we can plot each category of the row variable using r;, o,
(m = 1...M")as coordinates. Then the Euclidean distances between the rows in the
plot are equal to chi-squared distances between the rows of I*. We can also plot each
category of the column variable using ¢ o, (m = 1 ... M") as coordinates. Here the
Euclidean distances between the columns in the plot are equal to chi-squared distances
between the columns of IT*. These two graphical displays that are often produced for
CA estimated by maximum likelihood could be enriched by supplementing them with
points for latent budgets, when CA and L.CA yield identical estimates of expected
probabilities, and this would lead to an interpretation of the CA solution from a
different perspective.

An example for the data in Table 1 is given in Figure 7. Let us denote the
maximum likelihood estimates of the model by IT*. Now in Figure 7 the row profiles
of IT* are plotted onto the first two principal axes of the correspondence model, using
FimQy (i = 1...5; m = 1,2) as coordinates. The columns of I1* have been plotted
in the picture as well using standard coordinates ¢;, (j = 1...8; m = 1,2). We can
project the latent budgets onto Figure 7 to illustrate the relation between LBA and CA.
We find the coordinates of the latent budgets by projecting them as supplementary
points in the CA space, that is, Z T jm k =1...3, m = 1,2). The coordinates
are given in Table 9. The horizontal axis differentiates basically on the origins of
the respondents with (AA) and (I/AA) on the left-hand side, (EA) and (I/EA) on
the right-hand side, and (I/T) in between, while the vertical axis differentiates on the
actual residence of the respondents, residents of Israel on the upper side and citizens
living abroad on the lower side. Notice that the triangle in Figure 7 is not the same
as the triangle in Figure 4, because in Figure 4 by convention the distances between
the latent budgets are unity, whereas in Figure 7 they are measured in the chi-squared
metric. Also by convention, in Figure 4 the first latent budget is placed on top, whereas
in Figure 7 the position of the latent budgets depends on the axes. Thus Figure 7 can
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Table 9: Coordinates of the expected budgets and latent budgets in Figure 7

Dim. 1 Dim. 2
Row profiles (black dots)
Asia/Africa —.330 —.051
Europe/America 212 —.058
Israel; father Asia/Africa —.285 .089
Israel; father Europe/America .069 326
Israel; father Israel —.101 .100
Column profiles (black triangles)
Enlisted relative (ENL) .057 —.238
Sabotage (SAB) 101 —.288
Military situation (MIL) 512 —1.069
Political situation (POL) 1.227 669
Economic situation (ECO) .687 .081
Other (OTH) —.069 1.779
More than one worry (MTO) 520 —1.160
Personal economics (PER) —2.443 -.268
Latent budgets (black squares)
First latent budget 300 997
Second latent budget 440 —.545
Third latent budget —1.032 .399
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be viewed as a plot of the latent budget solution scaled in chi-squared distances,
which allows a visual comparison of the similarities of the three latent budgets.

8 Discussion

We have shown how to visualize the results of LBA and LL.CA and how these visual-
izations are related to the visualizations of CA. A K-budget LBA, that is, a K-class
LCA, is equivalent to a (K — 1)-dimensional CA when they yield the same estimated
expected frequencies. In such a case, the visualization of the results of LBA and LCA
can be plotted onto the CA map and vice versa.

LBA is a technique that can be used best when we have one explanatory and
one response variable, and the question of interest is how the expected budgets can
be composed of a smaller amount of typical or latent budgets. LCA can be used best
when we want to study the relation between two or more discrete response variables.
The question of interest is whether we can split up the sample into K latent classes
such that the relation among the variables is satisfactorily explained by the classes.

On the other hand, CA visualizes how row profiles can be explained by contin-
uous axes, which can be interpreted as latent traits. If the row profiles are equivalent
to expected budgets, then the difference between LCA/LBA and CA could be sum-
marized as the choice between a trait or state explanation of the latent budgets.

When the models have the same expected frequencies, plotting the latent budget
solution or the latent class solution onto the CA map gives us the benefits of both
models. On the one hand, we can see at a glance how the expected budgets are built up
of prototypes, and on the other hand, we can assign latent trait scores to the expected
budgets. An extra advantage is that the map allows a valid distance interpretation.



Chapter 34

Using New General Ordinal
Logit Displays to Visualize
the Effects in Categorical
Outcome Data

Jay Magidson

1 Introduction

This chapter presents a way to visualize the effects (odds ratios) in the analysis of
categorical outcome data through powerful graphical displays. Previously, results
from such analyses consisted only of traditional listings of parameter estimates and
related statistics that are difficult for the less technical user to interpret. No concise
and informative display of the effects was available.

The choice of statistical model for analyzing a categorical response variable
depends on whether the response consists of only two categories (dichotomous) or
more than two categories (polytomous). In the former case, the model most used
has been the multiplicative odds model, commonly expressed in additive form and
referred to as the logit or log-odds model. In the latter case, the model choice depends
further on whether or not the response categories are assumed to be ordered. Our focus
here will be on situations in which the categorical outcome is either dichotomous
or ordinal. Unless otherwise stated, we also assume that all predictor variables are
categorical—either nominal or ordinal.

Ordinal outcomes occur naturally in many applications. Examples in survey
analysis are a three-point rating scale (favorable, neutral, unfavorable), a five-point
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scale (strongly disagree, disagree, neutral, agree, strongly agree), and other ordered
scales. In addition, any dichotomous (Yes, No) outcome may be expanded through
the addition of a third response such as “Don’t know/uncertain,” which in some cases
may represent a “middle response.”

Despite the preponderance of ordinal outcomes, no single statistical model has
emerged as the analysis standard. The two leading candidates are based on competing
generalizations of simple odds—the cumulative logit model (McCullagh, 1980) and
the adjacent category logit model (Goodman, 1979). Models based on these alternative
generalizations can provide different interpretations of data, and the user must choose
between them.

One advantage of the adjacent category model is that when scores are assigned to
the outcome categories, the model is log-linear and hence current log-linear modeling
software can be used to estimate the model parameters (Koch and Edwards, 1988).
A second advantage of this model is that the maximum likelihood equations have a
simple form, which permits various generalizations. Specifically, when scores are not
known and hence cannot be assigned to all of the categories of the ordinal response, the
model is log-bilinear and the maximum likelihood algorithm for log-linear modeling
generalizes easily to enable estimation of the unknown scores simultaneously with
the other parameters (Goodman, 1979). For further discussion and comparisons of
these models, see Magidson (1996a), Agresti (1996), and Clogg and Shihadeh (1994).

The graphs presented here are suitable for displaying results from either the
simple logit model or the adjacent category model. These graphical displays present
acomplete “picture” and therefore can reduce the possibility of error in interpretation.
The ability to choose a simple graph as a way of specifying a model and viewing the
resulting effect estimates in an intuitive graphical form is a powerful asset. Use of
the displays represents a marked improvement over the traditional approach, which
consists of inspection of parameter estimates and significance tests that are often
difficult to integrate to produce a global insight.

Once the model is specified and the parameters estimated, the resulting graph
can be examined visually along with traditional statistics that reflect the model fit
and significance of the effects. If the user judges the model to be unsatisfactory, the
current parameter settings may be altered through direct user manipulation of the
graph and a new model can then be estimated that reflects the new settings. Thus,
researchers can more readily and quickly implement the natural, interactive process
that is prevalent in social science research.

2 Illustration of the Logit Display

To illustrate the benefits of visualizations of the effects in categorical data, we will
first consider the data in Table 1 in which responses to the question “How much do you
like your work?” are classified by two dichotomous personality characteristics. The
EI variable categorizes respondents as either extroverts (E) or introverts (I) according
to whether they indicate a preference for expressing ideas to others or for thinking
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Table 1: Classification of job satisfaction by two personality characteristics

How much do you like your work?

EI JP Not much It’s OK A lot No response
Extrovert (E) Judging (J) 255 2,698 10,215 1,265
Extrovert (E) Perceiving (P) 268 2,031 4,693 839
Introvert (1) Judging (J) 410 4,061 9,033 1,534
Introvert (I) Perceiving (P) 366 2,281 3,684 795

From Martin and Macdaid (1995). Reprinted by permission of the author.

things out first before expressing ideas to others. The second characterization JP
classifies persons as judging (J) or perceiving (P) depending on whether they indicate
a preference for living a planned, decided, orderly way of life or one that is flexible
and spontaneous. For more information on the EI and JP classifications see Myers
and McCaulley (1985).

Figure 1 contains a graphical display of the results of applying the adjacent
category logit model with unknown response scores. Figure 1 displays the “joint
effects plot” in which separate effects lines are displayed for each joint (EI, JP)

Fit = 17.6 df=4 p=0.0015

I JP log(Odds-Rati
Elal Sig = 923 df=5 p=2.5e-197 og( )
0.6466
ipeo
0.3612
epo
ijoa 0.0759
|
I
/ |
I -0.2085
|
I
cp 0'
C/ ip & i I: i@
|
ejo | I ¥4 s
not much ok no response alot
How much do you like your work? Y-view

Figure 1: Y-view of ordinal logit model for personality characteristics data.
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category. The slope of each of these lines represents the magnitude of the relationship
between each of the four joint categories and job satisfaction. The extroverted judging
(E,J) type is seen to be most likely and (I,P) least likely to be satisfied with their
jobs by noting that the largest slope is associated with the “e,j”” and smallest (most
negative) slope with the “i,p” effects lines. The slope for the e,j effects line includes
the main effects associated with extroversion and judging, as well as the extroversion
X judging interaction effect.
The following information is embedded in the graphical display in Figure 1:

The EI effect: & = 0.11
The JP effect: 8'F = 0.10
The EI*JP interaction effect: BE™P =0 .02

The induced ordering for the response categories, which positions the no response
category in proper proportion to the other categories

Arrows on the horizontal axis depicting the predicted response for each (EI, JP)
personality type group
A comparison of the estimated expected odds ratios with the observed odds ratios
to assess the model fit

The relative sample sizes associated with each cell of the table

The interpretation of each joint effect as a baseline odds ratio, to be described in
the following

Moderate effects for both extroversion—introversion (EI) and judgment—percep-
tion (JP) variables can be ascertained from Figure 1 by noting the difference in slopes
between two of the four effects lines in Figure 1. For example, the magnitude of the
EI effect corresponds to the average of the distance between the “e,j” and “i,j” effects
lines and the distance between the “e,p” and “i,p” effects lines. Formally, distance
is defined as the difference between the slopes of the corresponding lines. The fact
that the “e,j” and “i,j” lines are somewhat more distant than the “e,p” and “i,p” lines
indicates the presence of a small EI*JP interaction effect.

The triangular markers along the bottom of the graph designate estimates for
the response category scores including the “no response” category. Based on the
estimated “no response” score, a missing response seems to reflect positive job
satisfaction, somewhere between the responses of “OK” and “Like a lot.”

Generalized odds ratios corresponding to the joint effects are calculated for each
cell of the table. The 16 observed odds ratios for this example are represented by
the circular, triangular, diamond, and square markers in Figure 1. The overall fit of
the model is indicated by the relative closeness of these markers to the associated
effects line, which represents the estimated effects expected under the model. The
overall chi-squared lack-of-fit statistic assesses the extent to which the observed
markers are distant from the corresponding lines. In this case, we have X*> = 17.6
with 4 degrees of freedom, which reflects a statistically significant difference at the
0.01 level (p = 0.0015). However, through visual inspection we see that the observed
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markers are fairly close to the corresponding lines, which suggests that the significant
difference is not substantively meaningful. Hence, we accept the fit of this model.

Upon further inspection, it can be seen that the markers farthest from the respec-
tive lines are those associated with the “not much” response category. These markers
are the smallest in diameter, which is indicative of relatively small sample sizes.
Because greater variability exists in those observed and estimated effects that are
based on cells with smaller frequency counts, the distance between the “not much”
category and the associated line could be interpreted as normal sampling variation
rather than lack of model fit. The ability to ascertain a “look and feel” of a good fit for
this example is an especially valuable feature when the overall sample size is large as
in this example (N = 44,428). A large sample size contributes to a large chi-square
statistic, which may often be used to judge a small effect estimate that is insignificant
from a substantive perspective to be statistically significant.

3 Description of Methodology

For simplicity, we first describe the model associated with a two-way [ X J table
where a single predictor variable forms the / rows and an ordinal response forms the
J columns. In this case, the adjacent category logit model can be presented in the
following asymmetric form of generalized baseline logits (see Magidson, 1996a):

\I’j,,-=aj+B,-(yj—y0) i=1,2,...,1;j=1,2,...,.] (1)

where W ; represents the expected generalized logit associated with response cat-
egory j given category i of the predictor variable, y; denotes the score for the jth
response category, and yo is the score assigned to a designated baseline response
category designated by 0. Formally, ¥;; = In(P;;/P,), where P;; is the probability
of response j and predictor level i and thus (P;; / Py) is the odds in favor of response j
relative to the baseline response category given predictor level i. More generally, the
baseline response may be a weighted average of the response categories, in which
case yp is the weighted average of the y-scores. For example, when the observed
proportions p; are used as the weights, yo is the mean of the y-scores. Figure 1,
described further in Section 6, utilizes the observed proportions as weights in the
definition of the baseline odds and odds ratios.

The intercept for the jth response category, a;, is the baseline logit, representing
the generalized logit associated with the designated baseline predictor category;
formally, a; = In(Py;/Pyo). Since knowledge of the baseline categories is necessary
to interpret both the odds of response and the associated effects, the baseline response
and predictor categories should be selected on substantive grounds.

The B parameters are log-odds ratios; f3; represents the logarithm of the change
in the odds of response associated with a change from the baseline predictor category
to predictor category i. By “odds of response” is meant the odds of a unit change
in the response variable—say from the baseline category assigned the score y, to a
category assigned a score yp + 1. When we generalize the model later to the case of
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two or more predictors, each 3 parameter will correspond to a joint effect that can be
decomposed into main effects and interaction effects.

Note that model (1) is invariant with respect to any linear transformation on y;.
That is, any scores y; = a + by;, where b # 0, can be used in place of y; without
altering the statistical properties of the model. Although such a replacement will
result in changes in « and S, the generalized logits and all statistical tests (including
Hp : Bi = 0) will be unchanged. Thus, it is the relative distance between the response
categories as displayed in the graph rather than their actual quantitative values that is
the essential part in these models.

4 Example 1: Clinical Trial Data

Our first detailed example uses a 2 X 5 cross-tabulation based on a clinical trial
(DeJonge, 1983) involving two treatments (test drug, placebo) and five possible
outcomes (marked improvement, moderate improvement, slight improvement, sta-
tionary, and worse). The “stationary” category is selected in this example as the
baseline so that the odds of a positive change (i.e., improvement) will take on a value
greater than 1 and the odds of a negative change will take on a value less than 1.

The outcome categories are assumed to be equally spaced through use of the
equidistant y-scores —1, 0, 1, 2, and 3. Such a model is referred to as the equal
adjacent odds ratio model by Koch and Edwards (1988).

It is instructive to show how the 3; effect estimates can be computed from the
estimated expected frequency counts under this model. Table 2 displays the data and
y-scores. Table 3 provides the estimated expected counts under the model.

Table 2: Observed counts for clinical trial data*

(X)Treatment Worse Stationary Slight Moderate Marked
Test drug 1 13 16 15 7
Placebo 5 21 14 9 3
y-scores -1 0 1 2 3

*Copyright John Wiley & Sons Limited. Reproduced with permission from Statistics in
Medicine, H. Delonge, 1983.

Table 3: Expected counts for clinical trial data

Worse Stationary Slight Moderate Marked Avg. scores

Test drug 1.58 12.78 15.10 15.12 7.41 1.3
Placebo 442 21.22 14.90 8.88 2.59 0.7
y-scores -1 0 1 2 3
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There are four steps in performing the calculations:

1. Estimate the expected cell frequency counts under the baseline logit model; a
computer program is required for this estimation, using maximum likelihood
estimation.

2. Select the reference point to serve as the baseline for the odds ratio. For this
example the “stationary” category of IMPROVEMENT and the “placebo” cate-
gory for the TREATMENT are selected as the reference points that will be used
to define the origin of the associated graph.

3. Calculate the expected odds by dividing each estimated expected count by the cor-
responding base count associated with the dependent variable reference category
“stationary.” Table 4 provides the results of calculating the odds.

4. Calculate the odds ratios by dividing each expected odds by the corresponding
base odds associated with the predictor reference category “placebo.” Table 5
provides the corresponding odds ratios.

Tables 4 and 5 illustrate how the odds and odds ratios are calculated from the
expected counts. For example, for the “test drug” category of TREATMENT, the
expected odds in favor of “marked” (vs. “stationary,” the baseline reference category)
IMPROVEMENT is 7.41/12.78 = 0.58 (see Table 4). Note that by definition the
expected odds in favor of “stationary” improvement equals 1. Then, the expected odds
ratio associated with the “test drug” and “marked” improvement cell, for example,
is computed by dividing the expected odds in favor of “marked” (vs. “stationary”)
improvement given the “test drug” by the expected odds in favor of a “marked”
improvement given the “placebo”—that is, 0.58 /0.12 = 4.75 (Table 5).

Table 4: Expected (baseline) odds for clinical trial data; reference point: (improvement
= stationary)

Worse Stationary Slight Moderate Marked
Test drug 0.12 1.00 1.18 1.18 0.58
Placebo 0.21 1.00 0.70 042 0.12

Table 5: Expected odds ratios for clinical trial data; reference points: (improvement
= stationary, treatment = placebo)

Worse Stationary Slight Moderate Marked

Test drug 0.59 1.00 1.68 2.83 4.75
Placebo 1.00 1.00 1.00 1.00 1.00
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Table 6: Expected log-odds ratios for clinical trial data; reference points: (improve-
ment = stationary, treatment = placebo)

Worse Stationary Slight Moderate Marked
Test drug -0.52 0.00 0.52 1.04 1.56
Placebo 0.00 0.00 0.00 0.00 0.00

The equal adjacent category odds ratio model is one for which the differences
between the log odds ratios in adjacent categories are identical. The logarithms
of the odds ratios in Table 5 are listed in Table 6. From these log odds ratios it
can be verified that the difference associated with adjacent categories is 0.52. For
example, the difference in log odds ratios associated with “slight” and “stationary”
is 0.52 — 0 = 0.52; for “moderate” and “slight” it is 1.04 — 0.52 = 0.52, and
for “marked” and “moderate” it is 1.56 — 1.04 = 0.52. The estimate of 8, to four
significant figures is 0.5197. Since there are / — 1 = 1 nonredundant effects for
this example, by definition 8; = 0. The odds of improvement, whether calculated
from the adjacent categories “worse” to “stationary,” “stationary” to “slight,” “slight”
to “moderate,” or “moderate” to “marked,” equals the odds ratio exp(0.5197) =
1.682. As the odds ratio is the odds associated with the test drug divided by the
corresponding odds associated with the placebo, the effect estimate states that the
odds of improvement are 1.682 times as high (or 68.2% higher) for patients who
received the test drug than patients who received the placebo.

A simple graphical display can be used to represent each of the different baseline
logit models, clearly showing the relative distances between the response categories
indicated by the response scores. The origin of the graph represents the selected
baseline reference categories so that the interpretation of the odds ratios is straight-
forward. Hence, the slope of each line represents the change in the baseline odds
associated with a change from the baseline predictor category.

The key to reexpressing model (1) in a form that permits such a meaningful
graphical representation is to subtract the intercept from both sides of model (1) to
yield

®;; = Bi(y; — yo) )

where ®;; = V¥;; — a; is the expected baseline log-odds ratio.

Figure 2 displays the effects as slopes of lines and marks the placement of the
estimated expected outcome associated with each predictor level (i.e., E[Y | X = x;])
as an arrow pointing onto the outcome score dimension. The baseline reference
categories, “placebo” and “stationary,” appear in the graph as the reference point
(origin) for interpreting results. More generally, any contrast of the predictor and
response categories may be used to define the baseline reference. For example, odds
may be calculated relative to the weighted average of the y-scores.
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Figure 2: Y-view of the equal adjacent category odds ratio model for clinical trial
data.

Separate “effects” lines are present for each of the two levels of the predictor
variable. The slope of each of these “effects” lines represents the odds ratios in
logarithmic units (i.e., the graph is a semilog chart). The slope of the test drug effects
line is 3; = 0.5197. The slope of the placebo effects line is 3; = 0 because the placebo
was selected as a reference category. Since odds ratios are more easily interpretable
than log-odds ratios, in contrast to Figure 1, the units displayed along the y-axis in
Figure 2 are odds ratios.

In summary, the plot of the expected log-odds ratio for the test drug (i=1) as a
function of the IMPROVEMENT y-scores falls on a straight line having slope i,
the “test drug effects line.” Similarly, the plot of each expected log-odds ratio for
the placebo (i = 2) falls on a straight line, the “placebo effects line.” Because the
placebo is selected as the baseline reference, the placebo effects line has a slope of
Zero.

Each plot contains the following components:

1. Vertical axis. The vertical axis represents a baseline response category or
contrast used as the base in defining the generalized odds. In Figure 2, the vertical
axis is aligned with the “stationary” marker, because this category is the selected
reference category or base of the response variable.

2. Horizontal axis. The horizontal axis represents a baseline category or contrast
used in defining the odds ratio. In Figure 2 it corresponds to the placebo effects line
because the “placebo” category was selected as the prediction reference category.
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3. Outcome scores. The scores assigned to or estimated for the response cate-
gories, referred to as y-scores, are signified by triangular markers at the bottom of the
plot. For example, Figure 2 displays triangle markers associated with each level of
IMPROVEMENT. The relative distances between these markers are a consequence
of the y-scores assigned by the statistical model. In Figure 2, the distances between
adjacent markers are equal, corresponding to the equal adjacent category odds-ratio
model. More generally, if these distances are unknown they are estimated under the
general log-bilinear model (see de Falguerolles, Chapter 35).

4. Effects lines. For each predictor category, the expected odds ratios are plotted
on alogarithmic scale as a linear function of the y-scores. The resulting line is referred
to as the effects line associated with that predictor level.

5. Origin. The origin, the point of intersection between the vertical and horizontal
axes, denotes the reference point (or base cell) for interpreting the odds ratios. In
Figure 2, the origin is associated with the (placebo, stationary) cell. A logarithmic
scale in odds-ratio units is given for the vertical axis on the left-hand side of the
display. For example, it can be seen from the test drug effects line in Figure 2 that the
odds of having a “slight” improvement (vs. “stationary”) is about 1.7 times as high
for patients who received the test drug than for patients who received the placebo.
The odds ratios are given more accurately in Table 5.

6. Observed generalized odds ratios. Observed odds ratios are calculated on the
basis of the observed counts in Table 2 and appear in the plot as symbols, squares
for the test drug and diamonds for the placebo. Larger symbols reflect cells that are
based on larger sample sizes. The lack of fit of the model to the data is ascertained
by examining how distant these symbols are from the corresponding effects lines. By
construction, the baseline “stationary” category and the “placebo” points are on the
effects lines.

7. Model fit and significance chi-squared statistics. The chi-squared statistic
reported at the top of the graph along with the p value represents how well the
model fits the data; the smaller the chi-squared value, the better the fit. In Figure 2
the fit is 0.524 with three degrees of freedom (p = 0.91), which indicates that the
model provides a good fit to these data. The good fit is supported in the graph by the
closeness of the observed log-odds ratio markers to the corresponding effect lines.

The significance chi-squared reported beneath the fit assesses the extent to which
the effects are significantly different from the null effect (odds ratio of 1). In Figure 2,
we see that the treatment effect is highly significant (p = 0.0059).

The sum of the fit and significance chi-square statistics always equals the in-
dependence chi-squared statistic. The sum of the corresponding degrees of freedom
from these tests always equals the degrees of freedom associated with the test for
independence. Hence, the significance test used by the ordinal logit models in gen-
eral will have fewer degrees of freedom and therefore will be more powerful than the
chi-squared test for independence in assessing the significance of an effect.

8. The predicted score associated with each predictor category is denoted by
a vertical arrow pointing downward onto the horizontal axis at the particular point
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(the “expected y-score”) that corresponds to the maximum likelihood estimate for
the expected value of the y-score conditional on that predictor level (E[Y | X = x;]).
Note that the predicted outcome score for “placebo” falls between “stationary” and
“slight” improvement, while for “test drug” it falls between “slight” and “moderate”
improvement. The distance between the arrows associated with the test drug and
placebo represents the difference in the estimated expected y-scores and is signifi-
cantly different from zero according to the test of significance displayed at the top of
Figure 2, discussed earlier.

The estimated odds ratios provide relative measures of effect analogous to the
correlation or regression coefficient. In addition, the predicted scores and the distance
between them provide a visual measure of the absolute effect, an improvement
from less than slight (the predicted score expected under the “placebo” condition)
to somewhat more than slight (the predicted score expected under the “test drug”
condition). Thus, the graphical display contains both relative and absolute measures
of effect.

Our clinical trial example was selected to illustrate the simplest type of logit
display, associated with / = 2 predictor categories. In this case, when one of these
categories is chosen to be the baseline reference for calculation of the effect (odds
ratio), there is only one nonredundant odds ratio, that associated with the other
category. Hence, there is only one nontrivial effects line and the reference category
in this case is represented by the horizontal axis, which serves as a baseline or null
effects line.

5 Example 2: Nutrition Data

In this section, we will provide more general displays associated with data where
I > 2 predictor categories are present, as well as a further elaboration for the situation
of multiple predictor variables. We conclude by providing two alternative views of
these displays, which we refer to as the X-view and the XY -view. For the X-view,
scores associated with each predictor category are displayed on the horizontal axis.
In this case, each outcome category corresponds to an effects line.

The XY -view differs from the view presented thus far (the Y -view) where scores
associated with each outcome category are displayed on the horizontal axis and each
predictor category corresponds to an effects line. The XY -view is analogous to the
usual regression scatterplot, where scores are available for both X and Y. In this case,
the regression curve E(Y | X) is plotted as a function of the predictor scores.

Table 7 shows data from a national telephone survey of 1382 women conducted
in the fall of 1980 and reported by Feick (1984). We consider the analysis of NUTRI-
TION (“How much do you feel you know about nutrition?—almost nothing, not too
much, some, quite a bit, a lot”) as a function of READLABELS (“How often would
you say you read nutrition and ingredient labels?—frequently, sometimes, never”).

Unlike Example 1, where we restricted the outcome scores to be equidistant, this
model involves no restrictions of any kind on the NUTRITION response scores. In
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Table 7: Cross-classification of self-assessment of nutrition knowledge (NUTRITION)
by reported frequency of reading labels and nutrition information (READLABELS)

NUTRITION
Almost Quite
READLABELS nothing Not too much Some a bit Aot
Frequently 6 57 302 243 70
Sometimes 23 115 251 106 17
Never 26 69 70 25 2

Reprinted with permission from Journal of Marketing Research, published by the American
Marketing Association, Lawrence Feick, 1984.

this case, the scores are estimated simultaneously with the other model parameters.
The results are displayed in Figure 3. Note that we now have separate effects lines
for each of the three levels of the predictor variable. Each effects line is based on
plotting the estimated expected odds ratios (see Table 10), which are calculated
from the estimated expected counts (Table 8) using the “almost nothing” category of
NUTRITION and the “never” category for READLABELS as the baseline references
(Tables 9 and 10).

The utility of the odds-ratio effects lines as a measure of effect is straight-
forward—the higher the slope of the line, the greater the nutrition knowledge. For
example, the “frequently” effect line in Figure 3 shows that those who frequently read
labels are 154 times as likely to have “a lot” of nutrition knowledge than those who
“never” read labels. In other words, the odds of having “a lot” of nutrition knowledge
(vs. “almost nothing”) is 154 times as high for people who “frequently” read labels

Table 8: Expected counts for NUTRITION X READLABELS

NUTRITION
Almeost Not too Quite Average
READLABELS nothing much Some a bit Alot Scores
Frequently 5.50 56.79 304.69 240.95 70.07 2.90
Sometimes 24.19 115.51 244.63 110.84 16.83 2.36
Never 25.31 68.71 73.68 22.21 2.10 1.83

Estimated Scores 0.00 1.16 2.55 3.39 4.37
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Table 9: Expected odds for NUTRITION X READLABELS

NUTRITION
Almost Not too Quite
READLABELS nothing much Some a bit Alot
Frequently 1.00 10.33 55.43 43.83 12.75
Sometimes 1.00 477 10.11 4.58 0.70
Never 1.00 2,71 291 0.88 0.08

than for those who “never” read labels. Similarly, it can be seen in Figure 3 that those
who “frequently” read labels are 50 times as likely to have “quite a bit” of nutrition
knowledge than those who “never” read nutrition labels.

The triangular markers on the horizontal axis in Figure 3 depict the relative
spacing between the NUTRITION outcome categories that is obtained using the
estimated scores shown at the bottom of Table 8. First, we note that this relative
spacing results in an ordering of the outcome categories that correctly reproduces
the original ordering. That is, the score estimated for the category “a lot” is higher
than that for “quite a bit,” and so forth. Second, note that the spacing is not quite
equidistant. For example, the “some” category is somewhat more distant from the
“not too much” category (i.e., 2.55 — 1.16 = 1.39) than from the “quite a bit” category
(3.39 — 2.55 = 0.84).

The arrows on the horizontal axis in Figure 3 compare the predicted NUTRI-
TION outcome for each of the three READLABELS levels. Note that the average
READLABELS score for “never” and “sometimes” falls between “not too much”

Table 10: Expected odds ratios for NUTRITION X READLABELS

NUTRITION
Almost Not too Quite
READLABELS nothing much Some a bit Alot
Frequently 1.00 3.81 19.04 49.97 153.93
Sometimes 1.00 1.76 347 5.22 8.40

Never 1.00 1.00 1.00 1.00 1.00
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Figure 3: Y-view of ordinal logit model for nutrition data.

and “some” nutrition knowledge, while “frequently” falls between “some” and “quite
a bit” of nutrition knowledge. The large difference between the lower average score
for the base type “never” and the highest average score associated with “frequently”
is displayed by the large distance between the two corresponding arrows in Figure 3.
The predicted scores that are plotted are given in Table 8.

The lack-of-fit statistic is 1.08 with 3 degrees of freedom, indicating that this
model, which makes no restrictions on the spacing between the response categories,
provides an excellent fit to these data. A more parsimonious model that assumes
equidistant spacing between the outcome categories also provides a good fit to the
data—X? = 5.46 with 6 degrees of freedom (p = 0.49). The difference between
these model fit chi-squares (5.46 — 1.08 = 4.38) with 3 degrees of freedom provides
a test of the validity of the equidistant spacing restriction imposed by the more
parsimonious model. As the difference between the chi-squares is not statistically
significant, the hypothesis of equidistant spacing cannot be rejected.

Under either the unrestricted or equidistant spacing model, the effect of READ-
LABELS on NUTRITION may be assessed by the chi-square significance statistic.
For the equidistant spacing model in which scores are assumed to be equidistant, the
significance X?> = 205 with 2 degrees of freedom (p < 0.0001). Under the unre-
stricted model, the resulting significance level is similar, as shown above the graph
in Figure 3.
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Now once again consider the data in Table 1, where we have two predictor
variables. Let i subscript the EI categories, j the JP categories, and k the response
levels:i=1,2;j=1,2;k=1,2,3,4.

The model in this case becomes

®pij = BP' Ok — yo) + B Ok — yo) + BE (i — yo)
= (BF' + B + BE)0%k — yo)

where B8F' and B! are the main effects for EI and JP, respectively, and BE™? is the
EI*JP interaction effect. The identifying conditions for this model, which yield the
graphs in Figures 1 and 5, are

1. yg is the mean of the y scores so that Zpy(yy — yo) = 0
2. The B parameters are defined such that 2;p;8; = %;p;B; = 2;%;p;;Bij = 0

Hence, the log-odds ratios plotted in Figures 1 and 5 are defined with respect
to the origin, which is identified by the “average” row condition and the “average”
response score, the baseline references. In addition to these joint effects plots, partial
effects plots are available to display each of the three effects separately (see, for
example, Magidson, 1996b). For more general models of this type see Goodman
(1983).

6 Alternative Views of the Model

In symmetric form, model (2) can be expressed as
D;i[=D;; = @i ;] = (i — x0)(¥; — Yo) (3)

For the asymmetric form of the model given earlier in (1) we set B; = & (x; — xp).
The graphical displays based on this form of the model are called Y-views. An
alternative form, known as the X-view, plots the odds ratios as a function of the x-
scores: ¢;; = v;(x; — xp) where y; = ¢(y; — yo). Figure 4 shows the X-view for the
clinical trial data, and Figure 5 provides the X-view for the personality characteristics
data of Table 1. One advantage of the X-view is that the predictor variable is plotted
along the horizontal or x-axis as is usually done in regression analysis. A disadvantage
is that arrows representing the predicted values associated with each predictor level
are not available in this view.

Another useful display is similar to the traditional regression view where the
predicted value E(Y | X)is plotted as a function of X. Plotted together with a scatterplot
of quantitative (x, y) observations, we refer to this view as the XY -view. Since the
curve E(Y | X) has many favorable properties, it is called the “universal” regression
by Magidson (1996b). For example, the change in the predicted value of ¥ associated
with a unit increase in X equals the product of two quantities—the association
parameter ¢, which ranges from —oo to o, and the conditional variance of ¥ given X.
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Figure 4: X-view of the equal adjacent category odds ratio model for clinical trial
data.
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Figure 5: X-view of ordinal logit model for personality characteristics data.
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Hence, regardless of the value of X, the change in the expected value for Y is either
always positive or always negative depending on whether ¢ is positive or negative, a
result that justifies calling the model a “monotonic regression” model:

JE(Y | X)
x dV(Y | X)
Since any given sample contains only a finite number of observations, even two
continuous variables can be viewed as categorical, because at most they take on only
a finite number of values. Figure 6 contrasts the universal/monotonic regression curve
with the traditional linear regression line estimated by ordinary least squares for real
continuous data so that both x-scores and y-scores are known. Is the true relationship
linear or not?

The model used in Figure 6 is the form appropriate for continuous (and discrete
quantitative) variables where scores are available for both X and Y. In this case, the
scores are set equal to the observed quantitative values. Magidson (1996b) generalized
odds ratios further to apply to continuous variables and showed that model (3) holds
true under the bivariate normal distribution itself.

(=]
[
—i
(=]

-1.142

Figure 6: Comparison of universal regression model and OLS linear regression model
for two continuous variables.
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7 Conclusion

Recently, much attention in the literature has been paid to adjacent category logit
models of both the log-linear and the log-bilinear variety for analyzing dichotomous
or ordinal response variables—for example, see Ishii-Kuntz (1994) and Clogg and
Shihadeh (1994). In this chapter, we have presented some new graphical represen-
tations for this important class of models and illustrated these graphs using several
different data sets.

Traditional tabular results from estimation of these models are often complex
and the parameter estimates may be very difficult to interpret. Proper interpretation
requires both knowledge of the choice of coding for the variables plus knowledge of
the scores associated with the categories of the variables. By providing an integrated
picture of the model results, the graphs provide valuable information to the researcher,
which saves time and reduces the likelihood of errors in interpretation.

The graphs can also be used as the basis of a graphical user interface to provide
great simplification in the specification as well as the interpretation of results from
such models. If the user judges the model to be unsatisfactory, the current parameter
settings may be altered through direct user manipulation of the graph and a new
model can then be estimated that reflects the new settings. Thus, researchers can
more readily and quickly implement the natural, interactive process that is prevalent
in social science research, in an active, participatory manner. Moreover, overlaying fit
and significant statistics can supplement the powerful graph with important summary
statistics.
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Software Notes

The software and related computer technology for producing the X-view and Y -view
of the graphical displays are the subject of issued and pending patents, but the graph
itself is not patented. Persons interested in computer programs that produce this graph
should write to GOLDminer, P.O. Box 1, Belmont, MA 02178 USA.



Chapter 35

Log-Bilinear Biplots
in Action

Antoine de Falguerolles

1 Introduction

Generalized bilinear models aim at analyzing data arrays where one of the interac-
tions can be described by a bilinear term. This leads to the ability to display the
corresponding interaction visually by means of biplots (Gabriel, 1971; Gower and
Hand, 1996).

Bilinear (also called “biadditive”) models have long been known in the area of
analysis of variance (Tukey, 1949; Mandel, 1971; Dorkenoo and Mathieu, 1993; Denis
and Gower, 1996). Factor analysis is referred to as a bilinear model by Kruskal (1978).
Obviously, bilinear structures also encompass methods such as principal component
analysis, correspondence analysis, and nonsymmetrical correspondence analysis (see
Balbi, Chapter 21). All these methods can be formulated as statistical models defined
by the reconstitution formula, where a row X column effect is modeled through a
bilinear term or equivalently through an inner product in a low-dimensional subspace.
The fixed effect model, discussed by Caussinus (1986) in the context of principal
component analysis and of some extensions of the analysis of count data in two-way
tables, provides further examples of bilinear models.

It can be shown that all these statistical analyses implicitly assume a Gaussian
distribution for the response variable. However, the association and correlation models
considered by Goodman (1986) are interesting and useful examples of this modeling
approach where Poisson or multinomial or product multinomial distributions are
assumed for the counts of two-way contingency tables. The general bilinear model

527
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can be readily extended into other areas of application involving the more elaborate
statistical settings discussed by Nelder and Wedderburn (1972) and McCullagh and
Nelder (1989). Examples of such extensions can be found in Choulakian (1996),
de Falguerolles and Francis (1992, 1994, 1995), and van Eeuwijk (1995).

2 Generalized Bilinear Models

2.1 Data Structure

It is assumed that the data of interest may be cross-classified by two factors, which,
for simplicity, will be called the row and the column factors, denoted by R and C. The
row and column factors have levels i (i = 1,...,) and j (j = 1,...,J). The row
(respectively, column) factor level for the sth observation is given by i(s) [respectively,
by j(s)]. Obvious examples of such data structures are the counts y, = y;; of a simple
two-way contingency table, or the counts of a more elaborate two-way table where
the cross-classifying factors are themselves obtained by interactive coding of several
polytomous variables.

In accordance with generalized linear modeling, the response variable values, y,
(s = 1,...,n), are assumed to be the observed values of independent random variables
Y, with known distribution, expected values denoted by p,, and prior weights w,. In
practice, a variance function of the mean, possibly involving a scale factor, suffices to
take into account the distributional assumptions. The expected values p, are related
to predictors 7, by a link function g(us) = ;.

2.2 Bilinear Model

The model formula for the predictor consists of a linear model (possibly null) and
an additional bilinear term of reduced rank K that models the interaction between R
and C:
K
&(us) = my = linear model; + Z O Qi) 1k Bjs)

k=1
The « form the row score vectors of order k and the B; the column score vectors of
order k, which are the analogues of the left and right singular vectors in a singular
value decomposition. The oy, are the generalized singular values, which can be taken
strictly positive and arranged in decreasing order. Once the model is fitted, estimates
for the parameters and for the expected values (the so-called fitted values), as well as
the usual goodness-of-fit statistics (G and x?), are obtained.

2.3 Identification

Identification constraints are introduced in order to identify the scores; these may
be centered and orthonormalized with respect to given metrics (usually defined by a
diagonal matrix of weights). Centering can be specified for either the row or column
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scores, for both the row and column scores, or not at all. Note that, for identification
purposes, if a row effect (respectively, a column effect) is included in the linear part
of the model, the column score vectors (respectively, the row score vectors) are to be
centered.

If diagonal weights (w/ for the rows and w/ for the columns) are assumed,
centering provides the following constraints:

J

1
Z wiae =0, Y wiBx=0, k=1... K
i=1

Jj=1
whereas orthonormalization provides the additional constraints:

1 J
(0, k#k ” (0o, k#k
; Wiet Ot = {1, k=k Z wiBjiBjx = {1, k=k'

j=1

It must be emphasized that the choice of identification constraints affects the
parameter values in the model and therefore may possibly distort the patterns in the
associated graphical displays. However, this choice does not affect the fitted values
for the data.

In some instances, the score vectors are further restricted to belong to some linear
subspaces generated by exogenous variables, the latter being sometimes referred to
as “instrumental variables.” Examples can be found in ter Braak (1988), Gilula and
Haberman (1988), Bockenholt and Béckenholt (1990b), and Béckenholt and Takane
(1994).

2.4 Biplots

The bilinear structure of the predictor allows several biplots to be constructed: the
rank K restricted interaction between level i of the row factor and level j of the column
factor is equal to the inner product of the K-dimensional vectors [0'17 O 1snees O'IZ o k]
and [o-ll_yﬁj,l,.. - UIL_YBj,K] where vy is any fixed value in the open interval (0, 1).
These vectors provide the coordinates for plotting the row level i and the column level
J, respectively, in the associated K-dimensional biplot. Note that a value y = 0.5
reflects the equal treatment of the row and column factor in defining the interaction.
It is the only one considered in the sequel.

3 A Three-Way Table

To illustrate the flexibility of generalized bilinear models, a three-way contingency
table of suicide rates in West Germany is considered. It is shown how generalized
bilinear models can be inserted in the hierarchy of possible linear models while
allowing the visualization of the interesting interaction terms in the form of biplots.



0es

Table 1: Suicide behavior: age by sex by cause of death

Men
Cause of death®
Age cl c2 3 c4 [ c6 c7 c8 c9
10-14 4 0 0 247 1 17 1 6 9
15-19 348 7 67 578 22 179 11 74 175
20-24 808 32 229 699 44 316 35 109 289
25-29 789 26 243 648 52 268 38 109 226
30-34 916 17 257 825 74 291 52 123 281
35-39 1118 27 313 1278 87 293 49 134 268
4044 926 13 250 1273 89 299 53 78 198
45-49 855 9 203 1381 71 347 68 103 190
50-54 684 14 136 1282 87 229 62 63 146
55-59 502 6 77 972 49 151 46 66 77
60-64 516 S 74 1249 83 162 52 92 122
65-69 513 8 31 1360 75 164 56 115 95
70-74 425 S 21 1268 90 121 44 119 82
75-79 266 4 9 866 63 78 30 79 34
80-84 159 2 2 479 39 18 18 46 19
85-89 70 1 0 259 16 10 9 18 10
90+ 18 0 1 76 4 2 4 6 2




1€9

Women

Cause of death
Age cl c2 c3 c4 c5 c6 c7 c8 c9
10-14 28 0 3 20 0 1 0 10 6
15-19 353 2 11 81 6 15 2 43 47
20-24 540 4 20 111 24 9 9 78 67
25-29 454 6 27 125 33 26 7 86 75
30-34 530 2 29 178 42 14 20 92 78
35-39 688 5 44 272 64 24 14 98 110
4044 566 4 24 343 76 18 22 103 86
4549 716 6 24 447 94 13 21 95 88
50-54 942 7 26 691 184 21 37 129 131
55-69 723 3 14 527 163 14 30 92 92
60-64 820 8 8 702 245 11 35 140 114
65-69 740 8 4 785 271 4 38 156 90
70-74 624 6 4 610 244 1 27 129 46
75-79 495 8 1 420 161 1 29 129 35
80-84 292 3 2 223 78 0 10 84 23
85-89 113 4 0 83 14 0 6 34 2
90+ 24 1 0 19 4 0 2 7 0

ecl, suicide by solid or liquid matter; c2, suicide by toxification of gas at home; c3, suicide by toxification of other gas; c4, suicide by hanging,
strangling, suffocating; ¢5, suicide by drowning; c6, suicide with guns and explosives; ¢7, suicide with knives . . .; ¢8, suicide by jumping; ¢9, suicide
by other methods.
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3.1 The Suicide Data

The data, shown in Table 1, are frequencies of suicide classified by sex, method of
suicide, and age group. Originally from Heuer (1979, Table 1), these data have been
quite extensively used in statistical work (see van der Heijden and de Leeuw, 1985;
van der Heijden and Worsley, 1988; Friendly, 1994a). The corresponding data are
reproduced in Table 1. S, M, and A, respectively, represent the factor sex (2 levels),
method of suicide (9 levels), and age group (17 levels).

3.2 Correspondence Analysis Used Complementary
to Log-Linear Analyses

The entries in the three-way table can be assumed to be independent, Poisson dis-
tributed with saturated model [AMST]:
log(ug,,l‘,?) =v+ vf +u + o+ A+ U"A;ISS + v;%s

This model involves as many independent parameters as cell counts. Hence, unsat-
urated models obtained by removing interactions terms in a hierarchical manner are
of special interest.

The all-two-way-interaction model is

log(uAMSy =y + v + v +of + Y + 5 + Vil

where the three-way interaction term v2MS has been removed. Note that, in the absence
of missing data, the maximum likelihood fitted values for this model reproduce all the
two-way margins of the observed table. As a consequence, all the one-way margins
are also reproduced. It then follows that the fitted values from an all-two-way-
interaction model have the same Burt table as the observed data. Therefore multiple
correspondence analysis of the Burt matrix cannot reveal more structure in the data
than this model. Accordingly, the all-two-way-interaction model and the value of its
associated deviance can be used as benchmarks in modeling.

A further restricted model is [AS][M]:

log(uAMSy = v + v + M + of + S

where the maximum likelihood fitted values reproduce the two-way margin [AS] and
all one-way margins [A], [M], and [S].

Noting that none of the restricted log-linear models has an acceptable fit (see
Table 2), the strategy of analyzing the residuals from a log-linear model by the
correspondence analysis (CA) of an ad hoc two-way table can be considered (for
further details see van der Heijden et al., 1989). Along that line, van der Heijden and
de Leeuw (1985) perform the CA of a two-way table R X C in which the column factor
C is the method of suicide (M) and the factor R is obtained by interactively coding
the factors age (A) and sex (S), thus creating an R factor with 17 X 2 = 34 levels. As
a result, van der Heijden and de Leeuw (1985) get reduced rank approximations of
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Table 2: Log-linear models, associated degrees of freedom (df), and chi-squared
goodness-of-fit statistics (G* and x?) for the suicide data (although not necessary
in our framework, we have added the value 0.1 to each level, following van der
Heijden and de Leeuw, 1995)

Model daf G? X
[Al[M][S] 280 12337.14 12304.05
[A][MS] 272 6857.76 6522.38
[AM][S] 152 7779.68 7198.33
[AS][M] 264 10313.80 9995.32
[AM][AS] 136 5756.34 5369.09
[AM][MS] 144 2300.30 2255.64
[AS][MS] 256 4834.42 4518.90
[AM][AS][MS] 128 429.19 435.63

the residuals from model [AS][M]. They retain a rank K = 2 approximation, and the
associated biplot is reproduced in Figure 1.

3.3 A Log-Bilinear Analysis

In the spirit of the two-stage analysis just outlined, the following log-bilinear models
are considered:

K
log(uf¥5) = v+ v + o + 05 + oS + 3 S B,
k=1
All these models include model ([AS][M]) as a baseline model, and Table 3 gives the
chi-squared statistics corresponding to inclusion of a restricted bilinear interaction
[ASM] of rank K = 1,2, 3. It appears that K = 3 is needed to obtain a better fit than
that of the all two-way interaction model (see Table 3 and Table 2).

To compare the scores in the bilinear term with those of CA, marginal proportions
are used as weights in the identification constraints (see Section 2.3). The correspond-
ing estimated generalized singular values are given in Table 4. The variation of the
generalized singular values reflects the dramatic changes in the chi-squared statistics
when successive bilinear terms are introduced (see Table 3 and Table 4).

3.4 Biplot Interpretation

It appears that the biplot (see Figure 1) provided by the first two scores in a log-
bilinear model is somewhat similar to that obtained in the first two dimensions when
using CA to analyze the residuals from the baseline log-linear model [AS][M] (see
Figure 2). Roughly, both biplots stress the differences in methods of suicide between
men and women and the different use of methods as age varies. In this example, the
approach based on CA compares favorably with the log-bilinear modeling approach.
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Figure 1: Biplot in the first two dimensions obtained by log-bilinear mé)deling with
K = 3. Males are labelled m1 to m17 and females f1 to f17, where the number refers

to the age group.

Table 3: Adding restricted [ASM] interactions to the baseline model [AS][M] where
log(ppm®) = v+ v + uff + ¥ + v

Model df G? x?
v+ v M S S 264 10313.80 9995.33
vH o S+ S, oS B, 224 4534.92 4313.62
v vt oS S+ Y S B, 186 622.20 624.58
v S S+ 3 S B, 150 321.12 319.66
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Table 4: Generalized singular values for K = 3

Generalized Squared generalized

singular values singular values
10.40 108.23

6.66 44.35

2.96 8.78

4 A Square Table

The data (Clogg and Shihadeh, 1994, Table 4.1) derive from the National Survey
of Black Families and consist of a 7 X 7 cross-classification of religion at age 16
and actual religion (Sherkat, 1992) (Table 5). The data define a square contingency
table where there is a one-to-one correspondence between the levels of the row factor
and the levels of the column factors. Clogg and Shihadeh (1994) note that the cells
on the main diagonal account for most of the structure of the table. Concerning the
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Figure 2: Biplot in the first two dimensions obtained by correspondence analysis.
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Table 5: Cross-classification of religion by religion at age 16

Religion at age 16

Religion Li Me Ba Co Ot Ca No

Liberal 41 8 14 1 0 1 1
Methodist 0 212 23 5 3 2 2
Baptist 4 58 980 15 9 7 10
Conservative 2 20 103 120 6 5 6
Other 2 5 42 4 19 8 5
Catholic 5 7 20 0 1 97 2
None 9 28 95 17 8 14 61

off-diagonal cells, they show that there is some evidence for a symmetric row and
column interaction. It follows that quasi-symmetric models (Becker, 1990) also allow
the biplot visualization of the symmetrical interactions.

Note that, like generalized linear models, generalized bilinear models can cope
with missing entries and structural values: an observation can be excluded from a fit
either by setting its prior weight to zero or by introducing a specific parameter in the
linear term. This possibility is illustrated on the diagonal cells of the square table,
which, from now on, are excluded in all fits.

4.1 Log-Linear Modeling of Symmetry

A quasi-symmetry model with Poisson distribution and log link can be fitted:
log(pij) = v + vf +vf + vR¢

where vi¢ = V¢ (Caussinus, 1965). The model, which exactly fits the diagonal
cells (or equivalently excludes them from the analysis), provides a reasonable fit to
the data: the corresponding chi-squared statistics are G> = 25.97 and x?> = 25.82
with 15 degrees of freedom. This implies that the symmetry in this data set is worth
looking at further.

4.2 Goodman RC-Association Model

A bilinear approach that does not imply symmetrical interactions for the off-diagonal
cells can be considered. The Goodman RC-association model (Goodman, 1986, 1991)
assumes a Poisson distribution for the cell counts with the following structure for
their means:

K
log(uy) = v+ of +vf + Z Ok Bjk
k=1
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Table 6: Log-bilinear models, degrees of freedom, and chi-squared statistics for K =
0,1, 2,3, for the off-diagonal cells

Model df G? x?
v+ of +of 29 57.01 59.47
v+ of o€+ 30 ovaiBia 18 26.60 23.03
v+ of o6+ 3 g 9 8.05 6.41
v+ of 08+ 30 v 2 88 80

The chi-squared statistics corresponding to increasing values of K are given in Table 6.
It appears that the model with K = 2 provides a very good fit to the data.

4.3 Quasi-Symmetric Bilinear Models

Quasi-symmetry and symmetry models are obviously connected to the class of quasi-
symmetric models considered by Becker (1990), and it turns out that this class of
models is itself related to the class of bilinear models. For a log link, a quasi-symmetric
model assumes that

K

log(p;;) = linear model;; + Z TR0k
k=1

where the «; 4 are the common row and column scores of order &, usually centered
and orthonormalized. In this formula, the o, cannot always be taken to be strictly
positive. This is known as the problem of “inverse factors” (Benzécri, 1973a). In this
case, the biplot interpretation is preserved by constraining the corresponding row and
column score vectors to have opposite signs:

K K o
&

Z Or0 Qi = Z loel aig (m aj,k)

k=1 k=1 k

Typical linear model formulas in a quasi-symmetric setting are v + vf + ij, v+
vf + vl + uy, and v + of + vj‘-: + w;8;; (where &; = 1if i = j, otherwise 0),
depending on the assumptions pertaining to the diagonal cells: no effect, constant
effect, or specific effect, respectively. Note that the last formula is equivalent to the
first with diagonal cells excluded from the fit. It is thus retained in following analyses.

By using an adaptation of the three-dimensional representation of quasi-
symmetry (Bishop et al., 1975), quasi-symmetric models for the off-diagonal cells
can be fitted as a regular Goodman RC-association model. The data are replicated
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Table 7: Quasi-symmetric models, degrees of freedom, and chi-squared statistics in
the modeling of off-diagonal cells

Model dat G? x?
v+ of + o€ 29 57.01 59.47
vt of +of + 3T okl (2 ) 23 36.66 33.54
v R+ o+ T o] e (2 a0 18 28.59 28.54
v+ of +0f +ufC ¢ =50 15 25.97 25.82

twice with exchanged row and column indices in the restricted interaction term:

K
log(p;j1) = log(u;;) = linear model;; + Z or ;i Bik
k=1

K

log(wij2) = log(u:;) = linear model;; + Z ook Bik
k=1

Indeed, the fit coerces the row score vectors ( ;) and the corresponding column score
vectors (B¢) to be equal (possibly up to a sign) and thus preserves the positivity of
the associated generalized singular values (7).

4.4 Biplot Interpretation

Table 7 reports the statistics of fit obtained for K = 1, 2. The quasi-symmetric model
of order two provides an acceptable fit. However, there is an inversion in the second
dimension. The biplot of the corresponding symmetrical interactions is reproduced
in Figure 3. It stresses the lack of mobility between conservative (4) and liberal (1),
or conservative (4) and catholic (6), and the mobility between methodist (2) and
baptist (3), or liberal (1) and catholic (6). It should be emphasized that this biplot
visualizes the religious mobility as captured by the off-diagonal cells. Therefore the
proximity between the row and column markers corresponding to a same category
has no meaning in this context.

5 Discussion

The flexibility of bilinear models makes it easy to unify two methodological streams:
the stream of exploratory data analysis methods (e.g., principal component analysis,
correspondence analysis, multiple correspondence analysis, biplot decomposition of
matrices) and the stream of data modeling in which probabilistic models are formu-
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Figure 3: Biplot in the first two dimensions provided by the quasi-symmetric model
of rank K = 2.

lated, fitted, and tested. The class of bilinear models allows multivariate descriptive
techniques to be reformulated as models (see Gower, 1989b) and modeling can be
performed in a descriptive way. A serious danger of this flexibility is that of overfitting
the data. This can be partly alleviated by implementing model-selection methods and
cross-validation procedures in this context. But this is another story.

Computational Note

Using an extension of the non-linear iterative partial least-squares (NIPALS) proce-
dure introduced by Wold (1966), generalized bilinear models can be fitted in most
software programs which can fit general linear models (de Falguerolles and Francis,
1992). The overall measure of fit is the (quasi-)deviance, and standard procedures
for assessing the adequacy of these models are currently available in this context
(McCullagh and Nelder, 1989). The risk of reaching local optima in those fits is dealt
with by considering several random initializations for the scores.
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active variable
compared to supplementary variable,
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AIC. See Akaike information criterion
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Andrews curves, 194, 195
association model, 99, 100
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190-191
attribute
in formal concept analysis, 92
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barycentric interpretation
in correspondence analysis, 88—89,
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Bertin’s graphics, 37-35
and cluster analysis, 4145
and correspondence analysis, 40-41
biadditive model. See bilinear model
bilinear model, 527-529
generalized singular value, 528
identification of, 528-529
row and column score vectors, 528
biplot, 325-326, 391-399
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414418
axis, 224-225, 407408
in bilinear model, 529
canonical correlation, 384-385
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393, 395, 398
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interaction. See interaction biplot
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model
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of a contingency table, 504
canonical correlation analysis, 383384
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chi-squared distance, 108, 146, 226,
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decomposition of, 260-261
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multidimensional scaling, metric
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application, 317-320
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314, 315-316
stopping criterion, 316
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CLP. See category level point
cluster analysis
applications, 119, 122
of contingency table, 119, 122
of textual data, 155~158
coding, 2-3
component loading, 109
concept lattice
in formal concept analysis, 87, 92
conditional probability
in correspondence analysis, 254
in ideal point discriminant analysis,
443
in latent budget analysis, 490
in latent class analysis, 479
in multiway table, 280
conditional probability curve, 446448,
451
conditional probability surface, 453,
456-458
content analysis, 126
correspondence analysis, 88-89, 91,
107-109, 254-255, 298, 330
applications, 117-119, 120-122,
127-132, 142-145, 160-170,
177-181, 223-224
applied to latent class probabilities,
482-484, 487488

Index

applied to similarity matrices,
336-340, 343-345

as a biplot, 224-226, 255

asymmetric map, 109, 185, 187,
190-191, 225, 227

barycentric interpretation, 88—89, 227

Burt matrix, 232

chi-squared distance, 108, 226, 228,
506

chi-squared statistic, 254, 298

combined with Bertin’s graphics,
40-41

compared to formal concept analysis,
93-96

compared to log-linear modeling, 274

compared to nonsymmetrical
correspondence analysis, 301-303

contributions, 221, 223

correspondence matrix, 223, 298
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adults’ views of children, 192

attitudes to surveys, 496

Bulgarian elections, 117, 120
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leisure activities of husbands and
wives, 367, 369, 370

livestock slaughtered in European
Union in 1995, 40

marital status, 286, 295

mean attitude scores for Flemish
voters, 382

measuring change in clinical trial, 514

merit distribution at McGill
University, 449

nutrition information and knowledge,
520

occupational mobility table, 426

occupations in French cantons,
268-269

opinions on military service, 101

paired comparison data, 470

papers published by Spanish authors,
374, 376

principal worries of Israeli adults, 490
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psychiatric symptoms, 452
repertory grid, 86
square table of religion, 536
suicide behavior, 530-531
survival of cancer patients, 442
taste-testing experiment, 102
word frequencies in open responses,
141
dependence
global, 256-258, 261-265
marginal, 256-259, 265-272
partial, 259, 272-274
three-way, 256258
discriminant analysis, 384
disjunctive table, 201. See also indicator
matrix
dissimilarity, 365-367
dual scaling, 185-196, 278. See also
homogeneity analysis, (multiple)
correspondence analysis

eigenvalue, 108
eigenvalue decomposition, 371
generalized, 383
EMC. See extended matching
coefficient
energy model. See pressure model
entropy index, 62
equal adjacent category odds ratio
model, 514, 516
computation of, 514-516
Euclidean distance, 189, 282, 300, 371,
406, 443
weighted, 301
event history data, 4749
extended matching coefficient (EMC),
409413

facet theory, 349-364
clusters in, 362
conex, 361
cylindrex, 355-357, 361
facet diagram, 351
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facet theory (continued)
factors in, 362
multiplex (duplex, triplex), 361
partition (axial, modular, polar), 361
radex, 355-356, 358-359
spherex, 361
FCA. See formal concept analysis
formal concept analysis (FCA), 4,
73-84, 87-93
attribute, 92
compared to correspondence analysis,
93-96
concept lattice, 87, 92
conceptual scaling, 93-94
extent partition, 87
formal concept, 92
formal context, 92
Hasse diagram, 92. See also line
diagram
Hasse point, 92
line diagram, 87, 89, 90, 92
many-valued contexts, 91
object, 92
fourfold display, 23-25

generalized linear modeling, 528

geometric data analysis, 197, 201

geometric variability, 373

Gini index, 62, 298, 313

Goodman and Kruskal tau coefficient,
298, 312

Goodman RC-association model,
536-537. See also log-bilinear
model

Guttman effect, 89-91

Guttman scale, 76, 82, 357

Hasse diagram, 92
Hellinger distance, 375
homogeneity analysis, 278-279. See
also multiple correspondence
analysis, dual scaling
category point, 283
category quantification, 283
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discrimination measure, 285-290
eigenvalue as average discrimination
measure, 285, 287, 288
horseshoe effect, 225. See also Guttman
effect
Huyghens theorem, 203

ideal point, 462-463, 465467
ideal point discriminant analysis
(IPDA), 442444
applications, 444-456
confidence regions in, 452-454
rules of interpretation, 447—448
impurity index, 62
with L; norm, 66
with L., norm, 66
independence
complete, 22
conditional, 280, 281, 284, 305
diagnosis in three-way table, 393-399
diagnosis in two-way table, 392-393
diagnosis of, 288-289
joint, 22, 279, 281, 284
local, 479
mutual, 281, 284
spatial representation of, 283
independence model, 427
indicator matrix, 201, 294-295
interaction, 270-272
in multiway table, 257
three-way, 281
interaction biplot, 259-260
interordinal scale, 89-91
interpolation, 405406
IPDA. See ideal point discriminant
analysis
IPF. See iterative proportional fitting
iterative proportional fitting (IPF),
32-34

JCA. See joint correspondence analysis
joint correspondence analysis (JCA),
235-236
application, 236-237
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Kendall’s tau, 230-231, 235, 237

latent budget analysis (LBA),
490-492
application, 493—494
budget, 490. See also profile, in
correspondence analysis
constraints in, 491
equivalence to latent class analysis,
494-495
expected budget, 491
latent budget, 491-492
MIMIC model interpretation,
491492, 500-502
mixture model interpretation,
491492, 499-500
observed budget, 490
relation to correspondence analysis,
504-505
visualization of, 496-502
latent class analysis (LCA), 464,
479480, 494
application, 174-177, 480482,
495-496, 497
applied to panel data, 484487
equivalence to latent budget analysis,
494495
relation to correspondence analysis,
504-505
and unfolding, 464-465
used complementary to
correspondence analysis,
478488
visualization of, 502-504
LBA. See latent budget analysis
LCA. See latent class analysis
lexical table, 133, 142
lexicometric methods. See textual data
analysis
Lexis diagram. See Lexis pencils
Lexis pencils, 50-52, 53-56
likelihood ratio chi-squared test,
467468
Likert scale, 252
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line diagram
in formal concept analysis, 87, 89, 90,
92
log-bilinear model, 533
biplot interpretation, 533-535,
538-539
for quasi-symmetry, 537-538
log-linear model, 278, 427428
compared to correspondence analysis,
274
for quasi-symmetry, 536
saturated model, 532
two-way interaction model, 532
used complementary to
correspondence analysis, 532-533
logit
generalized baseline, 513
logit model
adjacent category, 510-514
joint effects plot, 511-512, 517-519,
524

map
asymmetric. See asymmetric map
rules of interpretation, 190-194
symmetric. See symmetric map
mass, 282
MCA. See multiple correspondence
analysis
MDS. See multidimensional scaling,
metric scaling. See multidimensional
scaling, metric
MIMIC model. See multiple indicator
multiple cause model
misclassification index, 62
mixture model for contingency table,
428-429, 431
application, 429-431, 433-438
index of structure, 428429, 432
mixture model residual (MMR),
431-432
mosaic display, 19-22
condensed, 20
enhanced, 20-22
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multidimensional scaling (MDS), 325,
407
constraining of, 363
facet theory in, 349-364. See also
facet theory
INDSCAL, 330
interpretation of, 347-348
metric, 325, 365-367
nonmetric, 325, 330-331
PINDIS, 330, 333, 340-343, 345
multidimensional unfolding. See
unfolding model
multiple-choice data, 190-194
multiple correspondence analysis
(MCA), 94, 278, 412-413. See also
homogeneity analysis, dual scaling
application, 201-202, 206215,
233-235, 246-252
of Burt matrix, 232-233
chi-squared distance, 413
compared to principal component
analysis, 245-246
composite modality, 216
contributions, 203-204
correlation ratio, 216217
inertia, 203
interaction between questions,
218-219
interclass inertia, 205
of respondent-level data, 245
rules of interpretation, 205-206
supplementary variable, 216-217, 248
multiple indicator multiple cause model
(MIMIC), 491
multivariable, 4-5
multivariate analysis of variance
(MANOVA). See canonical variate
analysis
multiway table, 22, 277-278

node
of classification and regression tree,
61-62
in formal concept analysis, 74

Index

nonsymmetrical correspondence
analysis (NSCA), 297-309,
312-314
biplot, 312
compared to correspondence analysis,
301-303
contribution, 303-304
factor loading, 303-304
joint plot, 304
multiple, 305-308
partial, 305-309
rules of interpretation, 301-304
transition formula, 313
used as splitting criterion in
classification tree, 316-322
NSCA. See nonsymmetrical
correspondence analysis

object
in formal concept analysis, 92
object name
in formal concept analysis, 74
odds ratio, 23-24, 281, 511-513
as distance ratio, 281-284,
290-293
open question, 134-137
compared to closed question, 135
free responses, 135
postcoding, 135

paired comparison method, 462-463
panachage system, 159-160

list votes, 161-165

personal votes, 165-169
parallel graph, 194, 195
parquet diagram. See sieve diagram
passive variable. See supplementary

variable

PCA. See principal component analysis
pick any/m method, 462-463, 465
prediction, 405406
pressure model, 27-30

dynamic, 30-31

testing independence, 31-32
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principal component analysis (PCA),
245-246, 407-408
principal coordinate, 108, 255
principal coordinate analysis, 365. See
also multidimensional scaling,
metric
Procrustes analysis
generalized. See multidimensional
scaling, PINDIS
profile, 490. See also latent budget
analysis, budget
in correspondence analysis, 108, 282
proportional odds model, 99, 100, 102

quasi-independence model, 427428
quasi-uniform model, 427-428

rank order data, 186-190

regression, 11, 26

related metric scaling, 367-373
application, 373-376

repertory grid, 86

response
nonsubstantive, 243
substantive, 243

response category, 198

response modality. See response

category

response pattern, 191194, 199-200

clustering of, 193

semicircular incremental radial graph,
194, 195
sieve diagram, 18-19
similarity, obtained from distance, 334
simultaneous (or multisample) latent
class model, 479480
equality constraints in, 479480,
484-485
model invariance in, 479, 481-482,
484
singular value decomposition (SVD),
274-275, 299, 483, 504
generalized, 255, 312, 384
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singular value, 108, 255

singular vector, 255
social space (according to Bourdieu),

160, 161, 201

cultural capital, 178

economic capital, 177

panachage capital, 169-170

periphery, 177

social center, 177

social position, 177
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SAS/IMP, 404
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spring model, 26
stability

of classification and regression trees,

60, 67

standard coordinate, 109, 255
standardized residual, 108
supplementary variable, 216-217, 248
SVD. See singular value decomposition
symmetric map, 108, 185, 190-191

textual data, 126, 133-137, 151-152
textual data analysis, 149-150
homograph, 138
lemma, 137
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textual data analysis (continued)
lexical table, 139-140
modal response, 145-147, 156
numerical coding, 138-142
occurrence, 137
quasi-segment, 137, 152, 156
repeated segment, 139
separator, 137
tagged corpora, 138-139
test value, 144
token, 137
type, 137
using cluster analysis, 155-158
using correspondence analysis,
156-158
vocabulary, 137
three-mode factor analysis, 258. See
also Tucker3 model

Index

total inertia, 108, 226, 254, 298
trajectory, 262
transitory response set, 240
twoing index, 62
Tucker3 model, 258, 261
applications, 467-474
in latent class model, 464465
interpretation of correspondence
analysis, 226227, 230
unfolding model, 186-187,
461-467
urn model, 27

weight. See mass

Z-plot, 99-105
parallel, 104
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Plate 1: Condensed mosaic, reordered and shaded.
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Plate 2: Three-way mosaic, joint independence.
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Plate 3: A general view of the 188 life histories of married couples in Kirkcaldy.

Plate 4: A close-up view of the Lexis pencil representation of couples marrying in
1967 and 1968. The bottom face of each pencil represents the age of the youngest
child (green, no child; yellow, child under 1; red, child under 5), the middle face the
employment history of the women (light blue, working; dark blue, not working), and
the top face the employment history of the man. The woman stops work before the
birth of a child; this pregnancy effect can clearly be seen.



Plate 5: A close-up view of the Lexis pencil representation of couples marrying before
1955. Couples marrying in 1951 and 1952 are represented by solid pencils; other
histories are represented by ghosted pencils. Women in this cohort tend not to work
at all or tend not to return to work after the birth of a child.



Plane of Approximation, showing
coloured prediction regions

Plate 6: The geometry of neighbor regions and prediction regions for a categorical
variable (“color”) with three categories (“blue,” “green,” “red”). The CLPs are de-
noted by the three small circle-enclosed dots on three rectangular axes as in Figure 3
and these define the dotted triangle. The perpendicular bisectors of the sides of the
dashed triangle meet at the circumcenter C and are the boundaries of the neighbor
regions in the plane of the triangle; CN is normal to the plane of the triangle. The
full neighbour regions are obtained by sliding the triangular neighbor regions along
CN, giving the separators between neighbor regions that are shown. The plane of
approximation represents a sheet of paper or a computer screen showing the best
approximation of the samples. This plane intersects the neighbor regions, giving the
prediction regions shown. The prediction region for “red” is largely hidden behind
the planes separating the blue/red and red/green regions and hence only two ends
are shown, the remainder being indicated by the dashed line.
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Plate 7: The prediction regions for a categorical variable “color” with four levels:
“blue,” “green,” “red,” “yellow.” Also shown are the positions of 10 numbered sample
points.

Plate 8: Analysis of the EMC showing prediction regions for the variable “region.”
The numbers refer to the 53 farms.
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Plate 9: EMC prediction regions for each variable. The farm numbers are omitted but
may be found in Plate 8. Farms falling into the correct regions are indicated by open
circles and those in incorrect regions are indicated either by circles colored according
to the key or, for category-levels absent from the key, by black circles.
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