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Preface

Preface to the Second Edition

The second edition is revised, expanded and enhanced. This is now a more
complete text in Stochastic Calculus, from both a theoretical and an appli-
cations point of view. Changes came about, as a result of using this book
for teaching courses in Stochastic Calculus and Financial Mathematics over a
number of years. Many topics are expanded with more worked out examples
and exercises. Solutions to selected exercises are included. A new chapter
on bonds and interest rates contains derivations of the main pricing mod-
els, including currently used market models (BGM). The change of numeraire
technique is demonstrated on interest rate, currency and exotic options. The
presentation of Applications in Finance is now more comprehensive and self-
contained. The models in Biology introduced in the new edition include the
age-dependent branching process and a stochastic model for competition of
species. These Markov processes are treated by Stochastic Calculus tech-
niques using some new representations, such as a relation between Poisson
and Birth-Death processes. The mathematical theory of filtering is based on
the methods of Stochastic Calculus. In the new edition, we derive stochastic
equations for a non-linear filter first and obtain the Kalman-Bucy filter as a
corollary. Models arising in applications are treated rigorously demonstrating
how to apply theoretical results to particular models. This approach might
not make certain places easy reading, however, by using this book, the reader
will accomplish a working knowledge of Stochastic Calculus.

Preface to the First Edition

This book aims at providing a concise presentation of Stochastic Calculus with
some of its applications in Finance, Engineering and Science.

During the past twenty years, there has been an increasing demand for tools
and methods of Stochastic Calculus in various disciplines. One of the greatest
demands has come from the growing area of Mathematical Finance, where
Stochastic Calculus is used for pricing and hedging of financial derivatives,

v
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such as options. In Engineering, Stochastic Calculus is used in filtering and
control theory. In Physics, Stochastic Calculus is used to study the effects
of random excitations on various physical phenomena. In Biology, Stochastic
Calculus is used to model the effects of stochastic variability in reproduction
and environment on populations.

From an applied perspective, Stochastic Calculus can be loosely described
as a field of Mathematics, that is concerned with infinitesimal calculus on non-
differentiable functions. The need for this calculus comes from the necessity to
include unpredictable factors into modelling. This is where probability comes
in and the result is a calculus for random functions or stochastic processes.

This is a mathematical text, that builds on theory of functions and prob-
ability and develops the martingale theory, which is highly technical. This
text is aimed at gradually taking the reader from a fairly low technical level
to a sophisticated one. This is achieved by making use of many solved exam-
ples. Every effort has been made to keep presentation as simple as possible,
while mathematically rigorous. Simple proofs are presented, but more techni-
cal proofs are left out and replaced by heuristic arguments with references to
other more complete texts. This allows the reader to arrive at advanced results
sooner. These results are required in applications. For example, the change
of measure technique is needed in options pricing; calculations of conditional
expectations with respect to a new filtration is needed in filtering. It turns out
that completely unrelated applied problems have their solutions rooted in the
same mathematical result. For example, the problem of pricing an option and
the problem of optimal filtering of a noisy signal, both rely on the martingale
representation property of Brownian motion.

This text presumes less initial knowledge than most texts on the subject
(Métivier (1982), Dellacherie and Meyer (1982), Protter (1992), Liptser and
Shiryayev (1989), Jacod and Shiryayev (1987), Karatzas and Shreve (1988),
Stroock and Varadhan (1979), Revuz and Yor (1991), Rogers and Williams
(1990)), however it still presents a fairly complete and mathematically rigorous
treatment of Stochastic Calculus for both continuous processes and processes
with jumps.

A brief description of the contents follows (for more details see the Table
of Contents). The first two chapters describe the basic results in Calculus and
Probability needed for further development. These chapters have examples but
no exercises. Some more technical results in these chapters may be skipped
and referred to later when needed.

In Chapter 3, the two main stochastic processes used in Stochastic Calculus
are given: Brownian motion (for calculus of continuous processes) and Poisson
process (for calculus of processes with jumps). Integration with respect to
Brownian motion and closely related processes (Itô processes) is introduced
in Chapter 4. It allows one to define a stochastic differential equation. Such
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equations arise in applications when random noise is introduced into ordinary
differential equations. Stochastic differential equations are treated in Chapter
5. Diffusion processes arise as solutions to stochastic differential equations,
they are presented in Chapter 6. As the name suggests, diffusions describe a
real physical phenomenon, and are met in many real life applications. Chapter
7 contains information about martingales, examples of which are provided by
Itô processes and compensated Poisson processes, introduced in earlier chap-
ters. The martingale theory provides the main tools of stochastic calculus.
These include optional stopping, localization and martingale representations.
These are abstract concepts, but they arise in applied problems, where their
use is demonstrated. Chapter 8 gives a brief account of calculus for most
general processes, called semimartingales. Basic results include Itô’s formula
and stochastic exponential. The reader has already met these concepts in
Brownian motion calculus given in Chapter 4. Chapter 9 treats Pure Jump
processes, where they are analyzed by using compensators. The change of
measure is given in Chapter 10. This topic is important in options pric-
ing, and for inference for stochastic processes. Chapters 11-14 are devoted
to applications of Stochastic Calculus. Applications in Finance are given in
Chapters 11 and 12, stocks and currency options (Chapter 11); bonds, inter-
est rates and their options (Chapter 12). Applications in Biology are given
in Chapter 13. They include diffusion models, Birth-Death processes, age-
dependent (Bellman-Harris) branching processes, and a stochastic version of
the Lotka-Volterra model for competition of species. Chapter 14 gives ap-
plications in Engineering and Physics. Equations for a non-linear filter are
derived, and applied to obtain the Kalman-Bucy filter. Random perturba-
tions to two-dimensional differential equations are given as an application in
Physics. Exercises are placed at the end of each chapter.

This text can be used for a variety of courses in Stochastic Calculus and
Financial Mathematics. The application to Finance is extensive enough to
use it for a course in Mathematical Finance and for self study. This text is
suitable for advanced undergraduate students, graduate students as well as
research workers and practioners.
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Chapter 1

Preliminaries From
Calculus

Stochastic calculus deals with functions of time t, 0 ≤ t ≤ T . In this chapter
some concepts of the infinitesimal calculus used in the sequel are given.

1.1 Functions in Calculus

Continuous and Differentiable Functions

A function g is called continuous at the point t = t0 if the increment of g over
small intervals is small,

∆g(t) = g(t) − g(t0) → 0 as ∆t = t − t0 → 0.

If g is continuous at every point of its domain of definition, it is simply
called continuous.

g is called differentiable at the point t = t0 if at that point

∆g ∼ C∆t or lim
∆t→0

∆g(t)
∆t

= C,

this constant C is denoted by g′(t0). If g is differentiable at every point of its
domain, it is called differentiable.

An important application of the derivative is a theorem on finite incre-
ments.

Theorem 1.1 (Mean Value Theorem) If f is continuous on [a, b] and has
a derivative on (a, b), then there is c, a < c < b, such that

f(b) − f(a) = f ′(c)(b − a). (1.1)

1



2 CHAPTER 1. PRELIMINARIES FROM CALCULUS

Clearly, differentiability implies continuity, but not the other way around,
as continuity states that the increment ∆g converges to zero together with
∆t, whereas differentiability states that this convergence is at the same rate
or faster.

Example 1.1: The function g(t) =
√

t is not differentiable at 0, as at this point

∆g

∆t
=

√
∆t

∆t
=

1√
∆t

→ ∞

as t → 0.

It is surprisingly difficult to construct an example of a continuous function
which is not differentiable at any point.

Example 1.2: An example of a continuous, nowhere differentiable function was
given by the Weierstrass in 1872: for 0 ≤ t ≤ 2π

f(t) =

∞∑
n=1

cos(3nt)

2n
. (1.2)

We don’t give a proof of these properties, a justification for continuity is given
by the fact that if a sequence of continuous functions converges uniformly, then the
limit is continuous; and a justification for non-differentiability can be provided in
some sense by differentiating term by term, which results in a divergent series.

To save repetition the following notations are used: a continuous function f
is said to be a C function; a differentiable function f with continuous derivative
is said to be a C1 function; a twice differentiable function f with continuous
second derivative is said to be a C2 function; etc.

Right and Left-Continuous Functions

We can rephrase the definition of a continuous function: a function g is called
continuous at the point t = t0 if

lim
t→t0

g(t) = g(t0), (1.3)

it is called right-continuous (left-continuous) at t0 if the values of the function
g(t) approach g(t0) when t approaches t0 from the right (left)

lim
t↓t0

g(t) = g(t0), (lim
t↑t0

g(t) = g(t0).) (1.4)

If g is continuous it is, clearly, both right and left-continuous.
The left-continuous version of g, denoted by g(t−), is defined by taking left

limit at each point,
g(t−) = lim

s↑t
g(s). (1.5)
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From the definitions we have: g is left-continuous if g(t) = g(t−).
The concept of g(t+) is defined similarly,

g(t+) = lim
s↓t

g(s). (1.6)

If g is a right-continuous function then g(t+) = g(t) for any t, so that g+ = g.

Definition 1.2 A point t is called a discontinuity of the first kind or a jump
point if both limits g(t+) and g(t−) exist and are not equal. The jump at t is
defined as ∆g(t) = g(t+)− g(t−). Any other discontinuity is said to be of the
second kind.

Example 1.3: The function sin(1/t) for t �= 0 and 0 for t = 0 has discontinuity of
the second kind at zero, because the limits from the right or the left don’t exist.

An important result is that a function can have at most countably many
jump discontinuities (see for example Hobson (1921), p.286).

Theorem 1.3 A function defined on an interval [a, b] can have no more than
countably many jumps.

A function, of course, can have more than countably many discontinuities, but
then they are not all jumps, i.e. would not have limits from right or left.

Another useful result is that a derivative cannot have jump discontinuities
at all.

Theorem 1.4 If f is differentiable with a finite derivative f ′(t) in an interval,
then at all points f ′(t) is either continuous or has a discontinuity of the second
kind.

Proof: If t is such that f ′(t+) = lims↓t f ′(s) exists (finite or infinite), then
by the Mean Value Theorem the same value is taken by the derivative from
the right

f ′(t) = lim
∆t↓0

f(t + ∆) − f(t)
∆

= lim
∆↓0,0<c<∆

f ′(c) = f ′(t+).

Similarly for the derivative from the left, f ′(t) = f ′(t−). Hence f ′(t) is con-
tinuous at t. The result follows.

�

This result explains why functions with continuous derivatives are sought as
solutions to ordinary differential equations.



4 CHAPTER 1. PRELIMINARIES FROM CALCULUS

Functions considered in Stochastic Calculus

Functions considered in stochastic calculus are functions without discontinu-
ities of the second kind, that is functions that have both right and left limits
at any point of the domain and have one-sided limits at the boundary. These
functions are called regular functions. It is often agreed to identify functions
if they have the same right and left limits at any point.

The class D = D[0, T ] of right-continuous functions on [0, T ] with left
limits has a special name, càdlàg functions (which is the abbreviation of “right
continuous with left limits” in French). Sometimes these processes are called
R.R.C. for regular right continuous. Notice that this class of processes includes
C, the class of continuous functions.

Let g ∈ D be a càdlàg function, then by definition, all the discontinuities
of g are jumps. By Theorem 1.3 such functions have no more than countably
many discontinuities.

Remark 1.1: In stochastic calculus ∆g(t) usually stands for the size of the
jump at t. In standard calculus ∆g(t) usually stands for the increment of g
over [t, t + ∆], ∆g(t) = g(t + ∆) − g(t). The meaning of ∆g(t) will be clear
from the context.

1.2 Variation of a Function

If g is a function of real variable, its variation over the interval [a, b] is defined
as

Vg([a, b]) = sup
n∑

i=1

|g(tni ) − g(tni−1)|, (1.7)

where the supremum is taken over partitions:

a = tn0 < tn1 < . . . < tnn = b. (1.8)

Clearly, (by the triangle inequality) the sums in (1.7) increase as new points
are added to the partitions. Therefore variation of g is

Vg([a, b]) = lim
δn→0

n∑
i=1

|g(tni ) − g(tni−1)|, (1.9)

where δn = max1≤i≤n(ti − ti−1). If Vg([a, b]) is finite then g is said to be
a function of finite variation on [a, b]. If g is a function of t ≥ 0, then the
variation function of g as a function of t is defined by

Vg(t) = Vg([0, t]).

Clearly, Vg(t) is a non-decreasing function of t.
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Definition 1.5 g is of finite variation if Vg(t) < ∞ for all t. g is of bounded
variation if supt Vg(t) < ∞, in other words, if for all t, Vg(t) < C, a constant
independent of t.

Example 1.4:

1. If g(t) is increasing then for any i, g(ti) > g(ti−1) resulting in a telescoping
sum, where all the terms excluding the first and the last cancel out, leaving

Vg(t) = g(t) − g(0).

2. If g(t) is decreasing then, similarly,

Vg(t) = g(0) − g(t).

Example 1.5: If g(t) is differentiable with continuous derivative g′(t), g(t) =∫ t

0
g′(s)ds, and

∫ t

0
|g′(s)|ds < ∞, then

Vg(t) =

∫ t

0

|g′(s)|ds.

This can be seen by using the definition and the mean value theorem.
∫ ti

ti−1
g′(s)ds =

g′(ξi)(ti − ti−1), for some ξi ∈ (ti−1, ti). Thus | ∫ ti

ti−1
g′(s)ds| = |g′(ξi)|(ti − ti−1),

and

Vg(t) = lim

n∑
i=1

|g(ti) − g(ti−1)| = lim

n∑
i=1

|
∫ ti

ti−1

g′(s)ds|

= sup

n∑
i=1

|g′(ξi)|(ti − ti−1) =

∫ t

0

|g′(s)|ds.

The last equality is due to the last sum being a Riemann sum for the final integral.
Alternatively, the result can be seen from the decomposition of the derivative

into the positive and negative parts,

g(t) =

∫ t

0

g′(s)ds =

∫ t

0

[g′(s)]+ds −
∫ t

0

[g′(s)]−ds.

Notice that [g′(s)]− is zero when [g′(s)]+ is positive, and the other way around. Using
this one can see that the total variation of g is given by the sum of the variation of
the above integrals. But these integrals are monotone functions with the value zero
at zero. Hence

Vg(t) =

∫ t

0

[g′(s)]+ds +

∫ t

0

[g′(s)]−ds

=

∫ t

0

([g′(s)]+ + [g′(s)]−)ds =

∫ t

0

|g′(s)|ds.
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Example 1.6: (Variation of a pure jump function).
If g is a regular right-continuous (càdlàg) function or regular left-continuous (càglàd),
and changes only by jumps,

g(t) =
∑

0≤s≤t

∆g(s),

then it is easy to see from the definition that

Vg(t) =
∑

0≤s≤t

|∆g(s)|.

Example 1.7: The function g(t) = t sin(1/t) for t > 0, and g(0) = 0 is continuous
on [0, 1], differentiable at all points except zero, but has infinite variation on any
interval that includes zero. Take the partition 1/(2πk + π/2), 1/(2πk − π/2), k =
1, 2, . . ..

The following theorem gives necessary and sufficient conditions for a func-
tion to have finite variation.

Theorem 1.6 (Jordan Decomposition) Any function g : [0,∞) → IR of
finite variation can be expressed as the difference of two increasing functions

g(t) = a(t) − b(t).

One such decomposition is given by

a(t) = Vg(t) b(t) = Vg(t) − g(t). (1.10)

It is easy to check that b(t) is increasing, and a(t) is obviously increasing. The
representation of a function of finite variation as difference of two increasing
functions is not unique. Another decomposition is

g(t) =
1
2
(Vg(t) + g(t)) − 1

2
(Vg(t) − g(t)).

The sum, the difference and the product of functions of finite variation are also
functions of finite variation. This is also true for the ratio of two functions
of finite variation provided the modulus of the denominator is larger than a
positive constant.

The following result follows by Theorem 1.3, and its proof is easy.

Theorem 1.7 A finite variation function can have no more than countably
many discontinuities. Moreover, all discontinuities are jumps.
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Proof: It is enough to establish the result for monotone functions, since a
function of finite variation is a difference of two monotone functions.

A monotone function has left and right limits at any point, therefore any
discontinuity is a jump. The number of jumps of size greater or equal to 1

n is
no more than (g(b) − g(a))n. The set of all jump points is a union of the sets
of jump points with the size of the jumps greater or equal to 1

n . Since each
such set is finite, the total number of jumps is at most countable.

�

A sufficient condition for a continuous function to be of finite variation is
given by the following theorem, the proof of which is outlined in Example 1.5.

Theorem 1.8 If g is continuous, g′ exists and
∫ |g′(t)|dt < ∞ then g is of

finite variation.

Theorem 1.9 (Banach) Let g(t) be a continuous function on [0, 1], and de-
note by s(a) the number of t’s with g(t) = a. Then the variation of g is∫∞
−∞ s(a)da.

Continuous and Discrete Parts of a Function

Let g(t), t ≥ 0, be a right-continuous increasing function. Then it can have
at most countably many jumps, moreover the sum of the jumps is finite over
finite time intervals. Define the discontinuous part gd of g by

gd(t) =
∑
s≤t

(
g(s) − g(s−)

)
=
∑

0<s≤t

∆g(s), (1.11)

and the continuous part gc of g by

gc(t) = g(t) − gd(t). (1.12)

Clearly, gd changes only by jumps, gc is continuous and g(t) = gc(t) + gd(t).
Since a finite variation function is the difference of two increasing functions,
the decomposition (1.12) holds for functions of finite variation. Although rep-
resentation as the difference of increasing functions is not unique, decompo-
sition (1.12) is essentially unique, in a sense that any two such decomposi-
tion differ by a constant. Indeed, if there were another such decomposition
g(t) = hc(t)+hd(t), then hc(t)−gc(t) = gd(t)−hd(t), implying that hd−gd is
continuous. Hence hd and gd have the same set of jump points, and it follows
that hd(t) − gd(t) = c for some constant c.
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Quadratic Variation

If g is a function of real variable, define its quadratic variation over the interval
[0, t] as the limit (when it exists)

[g](t) = lim
δn→0

n∑
i=1

(g(tni ) − g(tni−1))
2, (1.13)

where the limit is taken over partitions: 0 = tn
0 < tn1 < . . . < tnn = t, with

δn = max1≤i≤n(tni − tni−1).

Remark 1.2: Similarly to the concept of variation, there is a concept of Φ-
variation of a function. If Φ(u) is a positive function, increasing monotonically
with u then the Φ-variation of g on [0, t] is

VΦ[g] = sup
n∑

i=1

Φ(|g(tni ) − g(tni−1)|), (1.14)

where supremum is taken over all partitions. Functions with finite Φ-variation
on [0, t] form a class VΦ. With Φ(u) = u one obtains the class V F of functions
of finite variation, with Φ(u) = up one obtains the class of functions of p-th
finite variation, V Fp. If 1 ≤ p < q < ∞, then finite p-variation implies finite
q-variation.

The stochastic calculus definition of quadratic variation is different to the
classical one with p = 2 (unlike for the first variation p = 1, when they are
the same). In stochastic calculus the limit in (1.13) is taken over shrinking
partitions with δn = max1≤i≤n(tni − tni−1) → 0, and not over all possible
partitions. We shall use only the stochastic calculus definition.

Quadratic variation plays a major role in stochastic calculus, but is hardly
ever met in standard calculus due to the fact that smooth functions have zero
quadratic variation.

Theorem 1.10 If g is continuous and of finite variation then its quadratic
variation is zero.

Proof:

[g](t) = lim
δn→0

n−1∑
i=0

(g(tni+1) − g(tni ))2

≤ lim
δn→0

max
i

|g(tni+1) − g(tni )|
n−1∑
i=0

|g(tni+1) − g(tni )|

≤ lim
δn→0

max
i

|g(tni+1) − g(tni )|Vg(t).
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Since g is continuous, it is uniformly continuous on [0, t], hence
limδn→0 maxi |g(tni+1) − g(tni )| = 0, and the result follows.

�

Remark that there are functions with zero quadratic variation and infinite
variation (called functions of zero energy).

Define the quadratic covariation (or simply covariation) of f and g on [0, t]
by the following limit (when it exists)

[f, g] (t) = lim
δn→0

n−1∑
i=0

(
f(tni+1) − f(tni )

) (
g(tni+1) − g(tni )

)
, (1.15)

when the limit is taken over partitions {tn
i } of [0, t] with δn = maxi(tni+1 − tni ).

The same proof as for Theorem 1.10 works for the following result

Theorem 1.11 If f is continuous and g is of finite variation, then their co-
variation is zero [f, g] (t) = 0.

Let f and g be such that their quadratic variation is defined. By using
simple algebra, one can see that covariation satisfies

Theorem 1.12 (Polarization identity)

[f, g] (t) =
1
2

([f + g, f + g] (t) − [f, f ] (t) − [g, g] (t)) , (1.16)

It is obvious that covariation is symmetric, [f, g] (t) = [g, f ] (t), it follows
from(1.16) that it is linear, that is, for any constants α and β

[αf + βg, h] (t) = α [f, h] (t) + β [g, h] (t). (1.17)

Due to symmetry it is bilinear, that is, linear in both arguments. Thus the
quadratic variation of the sum can be opened similarly to multiplication of
sums (α1f + β1g)(α2h + β2k). It follows from the definition of quadratic
variation, that it is a non-decreasing function in t, and consequently it is
of finite variation. By the polarization identity, covariation is also of finite
variation. More about quadratic variation is given in the Stochastic Calculus
chapter.

1.3 Riemann Integral and Stieltjes Integral

Riemann Integral

The Riemann Integral of f over interval [a, b] is defined as the limit of Riemann
sums ∫ b

a

f(t)dt = lim
δ→0

n∑
i=1

f(ξn
i )(tni − tni−1), (1.18)
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where tni ’s represent partitions of the interval,

a = tn0 < tn1 < . . . < tnn = b, δ = max
1≤i≤n

(tni − tni−1), and tni−1 ≤ ξn
i ≤ tni .

It is possible to show that Riemann Integral is well defined for continuous
functions, and by splitting up the interval, it can be extended to functions
which are discontinuous at finitely many points.

Calculation of integrals is often done by using the antiderivative, and is
based on the the following result.

Theorem 1.13 (The fundamental theorem of calculus) If f is differen-
tiable on [a, b] and f ′ is Riemann integrable on [a, b] then

f(b) − f(a) =
∫ b

a

f ′(s)ds.

In general, this result cannot be applied to discontinuous functions, see exam-
ple below. For such functions a jump term must be added, see (1.20).

Example 1.8: Let f(t) = 2 for 1 ≤ t ≤ 2, f(t) = 1 for 0 ≤ t < 1. Then f ′(t) = 0

at all t �= 1.
∫ t

0
f ′(s)ds = 0 �= f(t). f is continuous and is differentiable at all points

but one, the derivative is integrable, but the function does not equal the integral of
its derivative.

Main tools for calculations of Riemann integrals are change of variables and
integration by parts. These are reviewed below in a more general framework
of the Stieltjes integral.

Stieltjes Integral

The Stieltjes Integral is an integral of the form
∫ b

a
f(t)dg(t), where g is a

function of finite variation. Since a function of finite variation is a difference
of two increasing functions, it is sufficient to define the integral with respect
to monotone functions.

Stieltjes Integral with respect to Monotone Functions

The Stieltjes Integral of f with respect to a monotone function g over an
interval (a, b] is defined as∫ b

a

fdg =
∫ b

a

f(t)dg(t) = lim
δ→0

n∑
i=1

f(ξn
i )
(
g(tni ) − g(tni−1)

)
, (1.19)

with the quantities appearing in the definition being the same as above for the
Riemann Integral. This integral is a generalization of the Riemann Integral,
which is recovered when we take g(t) = t. This integral is also known as the
Riemann-Stieltjes integral.
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Particular Cases

If g′(t) exists, and g(t) = g(0) +
∫ t

0
g′(s)ds, then it is possible to show that∫ b

a

f(t)dg(t) =
∫ b

a

f(t)g′(t)dt.

If g(t) =
∑[t]

k=a h(k) (a integer, and [t] stands for the integer part of t) then∫ b

a

f(t)dg(t) =
b∑
a

f(k)h(k).

This property allows us to represent sums as integrals.

Example 1.9:

1. g(t) = 2t2
∫ b

a
f(t)dg(t) = 4

∫ b

a
tf(t)dt

2. g(t) =


0 t < 0
2 0 ≤ t < 1
3 1 ≤ t < 2
5 2 ≤ t∫ ∞

−∞
f(t)dg(t) = 2f(0) + f(1) + 2f(2)

If, for example, f(t) = t then
∫∞
−∞ tdg(t) = 5. If f(t) = (t + 1)2

then
∫∞
−∞(t + 1)2dg(t) = 2 + 4 + 18 = 24.

Let g be a function of finite variation and

g(t) = a(t) − b(t)

with a(t) = Vg(t), b(t) = Vg(t) − g(t), which are non-decreasing functions. If∫ t

0

|f(s)|da(s) =
∫ t

0

|f(s)|dVg(s) :=
∫ t

0

|f(s)||dg(s)| < ∞

then f is Stieltjes-integrable with respect to g and its integral is defined by∫
(0,t]

f(s)dg(s) =
∫

(0,t]

f(s)da(s) −
∫

(0,t]

f(s)db(s).

Notation:
∫ b

a
f(s)dg(s) =

∫
(a,b]

f(s)dg(s).
Note:

∫
(0,t] dg(s) = g(t) − g(0) and

∫
(0,t) dg(s) = g(t−) − g(0).

If f is Stieltjes-integrable with respect to a function g of finite variation,
then the variation of the integral is

V (t) =
∫ t

0

|f(s)||dg(s)| =
∫ t

0

|f(s)|dVg(s).
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Impossibility of a direct definition of an integral with respect to
functions of infinite variation

In stochastic calculus we need to consider integrals with respect to functions of
infinite variation. Such functions arise, for example, as models of stock prices.
Integrals with respect to a function of infinite variation, cannot be defined as
a usual limit of approximating sums. The following result explains, see for
example, Protter (1992), p.40.

Theorem 1.14 Let δn = maxi(tni − tni−1) denote the largest interval in the
partition of [a, b]. If

lim
δn→0

n∑
i=1

f(tni−1)[g(tni ) − g(tni−1)]

exists for any continuous function f then g must be of finite variation on [a, b].

This shows that if g has infinite variation then the limit of the approximating
sums does not exist for some functions f .

Integration by Parts

Let f and g be functions of finite variation. Denote here ∆g(s) = g(s)−g(s−),
then (with integrals on (a, b])

f(b)g(b) − f(a)g(a) =
∫ b

a

f(s−)dg(s) +
∫ b

a

g(s−)df(s) +
∑

a<s≤b

∆f(s)∆g(s)

=
∫ b

a

f(s−)dg(s) +
∫ b

a

g(s)df(s). (1.20)

The last equation is obtained by putting together the sum of jumps with one
of the integrals.

Note that although the sum in (1.20) is written over uncountably many
values a < s ≤ b, it has at most countably many non-zero terms. This is
because a finite variation function can have at most a countable number of
jumps.

If g is continuous so that g(s−) = g(s) for all s then the formula simplifies
and in this case we have the familiar integration by parts formula

f(b)g(b) − f(a)g(a) =
∫ b

a

f(s)dg(s) +
∫ b

a

g(s)df(s).
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Example 1.10: Let g(s) be of finite variation, g(0) = 0, and consider g2(s). Using
the integration by parts with f = g, we have

g2(t) = 2

∫ t

0

g(s−)dg(s) +
∑
s≤t

(∆g(s))2.

In other words, ∫ t

0

g(s−)dg(s) =
g2(t)

2
− 1

2

∑
s≤t

(∆g(s))2.

Now using the formula (1.20) above we also have∫ t

0

g(s)dg(s) = g2(t) −
∫ t

0

g(s−)dg(s) =
g2(t)

2
+

1

2

∑
s≤t

(∆g(s))2.

Thus it follows that ∫ t

0

g(s−)dg(s) ≤ g2(t)

2
≤
∫ t

0

g(s)dg(s)

Change of Variables

Let f have a continuous derivative (f ∈ C1) and g be of finite variation and
continuous, then

f(g(t)) − f(g(0)) =
∫ t

0

f ′(g(s))dg(s) =
∫ g(t)

g(0)

f ′(u)du.

If g is of finite variation has jumps, and is right-continuous then

f(g(t)) − f(g(0)) =
∫ t

0

f ′(g(s−))dg(s)

+
∑

0<s≤t

(
f(g(s)) − f(g(s−)) − f ′(g(s−))∆g(s)

)
,

where ∆g(s) = g(s) − g(s−) denotes the jump of g at s. This is known in
stochastic calculus as Itô’s formula.

Example 1.11: Take f(x) = x2, then we obtain

g2(t) − g2(0) = 2

∫ t

0

g(s−)dg(s) +
∑
s≤t

(∆g(s))2.

Remark 1.3: Note that for a continuous f and finite variation g on [0, t] the
approximating sums converge as δ = maxi(tni+1 − tni ) → 0,∑

i

f(g(tni ))(g(tni+1) − g(tni )) →
∫ t

0

f(g(s−))dg(s).
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Remark 1.4: One of the shortcomings of Riemann or Stieltjes integrals is that
they don’t preserve the monotone convergence property, that is, for a sequence
of functions fn ↑ f does not necessarily follow that their integrals converge.
The Lebesgue (or Lebesgue-Stieltjes) Integral preserves this property.

1.4 Lebesgue’s Method of Integration

While Riemann sums are constructed by dividing the domain of integration
on the x-axis, the interval [a, b], into smaller subintervals, Lebesgue sums are
constructed by dividing the range of the function on the y-axis, the interval
[c, d], into smaller subintervals c = y0 < y1 < . . . < yk < . . . yn = d and
forming sums

n−1∑
k=0

yklength({t : yk ≤ f(t) < yk+1}).

The Lebesgue Integral is the limit of the above sums as the number of points
in the partition increases. It turns out that the Lebesgue Integral is more
general than the Riemann Integral, and preserves convergence. This approach
also allows integration of functions in abstract probability spaces more general
than IR or IRn; it requires additional concepts and is made more precise in
the next chapter (see Section 2.3).

Remark 1.5: In folklore the following analogy is used. Imagine that money
is spread out on a floor. In the Riemann method of integration, you collect
the money as you progress in the room. In the Lebesgue method, first you
collect $100 bills everywhere you can find them, then $50, etc.

1.5 Differentials and Integrals

The differential df(t) of a differentiable function f at t is defined as the linear
in ∆t part of the increment at t, f(t + ∆) − f(t). If the differential of the
independent variable is denoted dt = ∆t, then f(t + dt) − f(t) = df(t)+
smaller order terms, and it follows from the existence of the derivative at t,
that

df(t) = f ′(t)dt. (1.21)

If g is also a differentiable function of t, then f(g(t)) is differentiable, and

df(g(t)) = f ′(g(t))g′(t)dt = f ′(g(t))dg(t), (1.22)

which is known as the chain rule.
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Differential calculus is important in applications because many physical
problems can be formulated in terms of differential equations. The main re-
lation between the integral and the differential (or derivative) is given by the
fundamental theorem of calculus, Theorem 1.13.

For differentiable functions, differential equations of the form

df(t) = ϕ(t)dw(t)

can be written in the integral form

f(t) = f(0) +
∫ t

0

ϕ(s)dw(s).

In Stochastic Calculus stochastic differentials do not formally exist and the
random functions w(t) are not differentiable at any point. By introducing a
new (stochastic) integral, stochastic differential equations can be defined, and,
by definition, solutions to these equations are given by the solutions to the
corresponding stochastic integral equations.

1.6 Taylor’s Formula and Other Results

This section contains Taylor’s Formula and conditions on functions used in
results on differential equations. It may be treated as an appendix, and referred
to only when needed.

Taylor’s Formula for Functions of One Variable

If we consider the increment of a function f(x)−f(x0) over the interval [x0, x],
then provided f ′(x0) exists, the differential at x0 is the linear part in (x− x0)
of this increment and it provides the first approximation to the increment.
Taylor’s formula gives a better approximation by taking higher order terms
of powers of (x − x0) provided higher derivatives of f at x0 exist. If f is a
function of x with derivatives up to order n + 1, then

f(x) − f(x0) = f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2 +

1
3!

f (3)(x0)(x − x0)3

+ . . . +
1
n!

f (n)(x0)(x − x0)n + Rn(x, x0),

where Rn is the remainder, and f (n) is the derivative of f (n−1). The remainder
can be written in the form

Rn(x, x0) =
1

(n + 1)!
f (n+1)(θn)(x − x0)n+1
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for some point θn ∈ (x0, x).
In our applications we shall use this formula with two terms.

f(x) − f(x0) = f ′(x)(x − x0) +
1
2
f ′′(θ)(x − x0)2, (1.23)

for some point θ ∈ (x0, x).

Taylor’s Formula for Functions of Several Variables

Similarly to the one-dimensional case, Taylor’s formula gives successive ap-
proximations to the increment of a function. A function of n real variables
f(x1, x2, . . . , xn) is differentiable at point x = (x1, x2, . . . , xn) if the increment
at this point can be approximated by a linear part, which is the differential of
f at x.

∆f(x) =
n∑

i=1

Ci∆xi+o(ρ), when ρ =

√√√√ n∑
i=1

(∆xi)2 and lim
ρ→0

o(ρ)
ρ

= 0. (1.24)

If f is differentiable at x = (x1, x2, . . . , xn), then in particular it is differen-
tiable as a function of any one variable xi at that point, when all the other
coordinates are kept fixed. The derivative with respect to xi is the called the
partial derivative ∂f/∂xi. Unlike in the one-dimensional case, the existence
of all partial derivatives ∂f/∂xi at x, is necessary but not sufficient for differ-
entiability of f at x. But if all partial derivatives exist and are continuous at
that point, then f is differentiable at that point, moreover, Ci in (1.24) is given
by the value of ∂f/∂xi at x. If we define the differential of the independent
variable as its increment dxi = ∆xi, then we have

Theorem 1.15 For f to be differentiable at a point, it is necessary that f
has partial derivatives at that point, and it is sufficient that it has continuous
partial derivatives at that point. If f is differentiable at x, then its differential
at x is given by

df(x1, x2, . . . , xn) =
n∑

i=1

∂f

∂xi
(x1, x2, . . . , xn)dxi. (1.25)

The first approximation of the increment of a differentiable function is the
differential,

∆f(x) ≈ df(x).

If f possesses higher order partial derivatives, then further approximation is
possible and it is given by Taylor’s formula. In Stochastic Calculus the second
order approximation plays an important role.
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Let f : IRn → IR be C2, (f(x1, x2, . . . , xn) has continuous partial deriva-
tives up to order two), x = (x1, x2, . . . , xn), x + ∆x = (x1 + ∆x1, x2 +
∆x2, . . . , xn + ∆xn) then by considering the function of one variable
g(t) = f(x + t∆x) for 0 ≤ t ≤ 1, the following result is obtained.

∆f(x1, x2, . . . , xn) = f(x + ∆x) − f(x) ≈
n∑

i=1

∂f

∂xi
(x1, x2, . . . , xn)dxi

+
1
2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(x1 + θ∆x1, . . . , xn + θ∆xn)dxidxj , (1.26)

where just like in the case of one variable the second derivatives are evaluated
at some “middle” point, (x1 + θ∆x1, . . . , xn + θ∆xn) for some θ ∈ (0, 1), and
dxi = ∆xi.

Lipschitz and Hölder Conditions

Lipschitz and Hölder conditions describe subclasses of continuous functions.
They appear as conditions on the coefficients in the results on the existence
and uniqueness of solutions of ordinary and stochastic differential equations.

Definition 1.16 f satisfies a Hölder condition (Hölder continuous) of order
α, 0 < α ≤ 1, on [a, b] ( IR) if there is a constant K > 0, so that for all
x, y ∈ [a, b]( IR)

|f(x) − f(y)| ≤ K|x − y|α. (1.27)

A Lipschitz condition is a Hölder condition with α = 1,

|f(x) − f(y)| ≤ K|x − y|. (1.28)

It is easy to see that a Hölder continuous of order α function on [a, b] is also
Hölder continuous of any lesser order.

Example 1.12: The function f(x) =
√

x on [0,∞) is Hölder continuous with
α = 1/2 but is not Lipschitz, since its derivative is unbounded near zero. To see that
it is Hölder, it is enough to show that for all x, y ≥ 0 the following ratio is bounded,

|√x −√
y|√

|x − y|
≤ K. (1.29)

It is an elementary exercise to establish that the left hand side is bounded by dividing
through by

√
y (if y = 0, then the bound is obviously one), and applying l’Höpital’s

rule. Similarly |x|r, 0 < r < 1 is Hölder of order r.

A simple sufficient condition for a function to be Lipschitz is to be contin-
uous and piecewise smooth, precise definitions follow.
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Definition 1.17 f is smooth on [a, b] if it possesses a continuous derivative
f ′ on (a, b) such that the limits f ′(a+) and f ′(b−) exist.

Definition 1.18 f is piecewise continuous on [a, b] if it is continuous on [a, b]
except possibly a finite number of points at which right-hand and left-hand
limits exist.

Definition 1.19 f is piecewise smooth on [a, b] if it is piecewise continuous
on [a, b] and f ′ exists and is also piecewise continuous on [a, b].

Growth Conditions

Linear growth condition also appears in the results on existence and uniqueness
of solutions of differential equations. f(x) satisfies the linear growth condition
if

|f(x)| ≤ K(1 + |x|). (1.30)

This condition describes the growth of a function for large values of x, and
states that f is bounded for small values of x.

Example 1.13: It can be shown that if f(0, t) is a bounded function of t, |f(0, t)| ≤
C for all t, and f(x, t) satisfies the Lipschitz condition in x uniformly in t,
|f(x, t) − f(y, t)| ≤ K|x − y|, then f(x, t) satisfies the linear growth condition in x,
|f(x, t)| ≤ K1(1 + |x|).

The polynomial growth condition on f is the condition of the form

|f(x)| ≤ K(1 + |x|m), for some K, m > 0. (1.31)

Theorem 1.20 (Gronwall’s inequality) Let f(t), g(t) and h(t) be
non-negative on [0, T ], and for all 0 ≤ t ≤ T

f(t) ≤ g(t) +
∫ t

0

h(s)f(s)ds. (1.32)

Then for 0 ≤ t ≤ T

f(t) ≤ g(t) +
∫ t

0

h(s)g(s) exp
( ∫ t

s

h(u)du
)
ds. (1.33)

This form can be found for example, in Dieudonné (1960).
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Solution of First Order Linear Differential Equations

Linear differential equations, by definition, are linear in the unknown function
and its derivatives. A first order linear equation, in which the coefficient of
dx(t)

dt does not vanish, can be written in the form

dx(t)
dt

+ g(t)x(t) = k(t). (1.34)

These equations are solved by using the Integrating Factor Method. The
integrating factor is the function eG(t), where G(t) is chosen by G′(t) = g(t).
After multiplying both sides of the equation by eG(t), integrating, and solving
for x(t), we have

x(t) = e−G(t)

∫ t

0

(
eG(s)k(s)

)
ds + x(0)eG(0)−G(t). (1.35)

The integrating factor G(t) is determined up to a constant, but it is clear from
(1.35), that the solution x(t) remains the same.

Further Results on Functions and Integration

Results given here are not required to understand subsequent material. Some
of these involve the concepts of a set of zero Lebesgue measure. This is given
in the next chapter (see Section 2.2); any countable set has Lebesgue measure
zero, but there are also uncountable sets of zero Lebesgue measure. A partial
converse to Theorem 1.8 also holds (see, for example, Saks (1964), Freedman
(1983) p.209, for the following results).

Theorem 1.21 (Lebesgue) A finite variation function g on [a, b] is differ-
entiable almost everywhere on [a, b].

In what follows sufficient conditions for a function to be Lipschitz and not to
be Lipschitz are given.

1. If f is continuously differentiable on a finite interval [a, b], then it is
Lipschitz. Indeed, since f ′ is continuous on [a, b], it is bounded, |f ′| ≤ K.
Therefore

|f(x) − f(y)| = |
∫ y

x

f ′(t)dt| ≤
∫ y

x

|f ′(t)|dt ≤ K|x − y|. (1.36)

2. If f is continuous and piecewise smooth then it is Lipschitz, the proof is
similar to the above.

3. A Lipschitz function does not have to be differentiable, for example
f(x) = |x| is Lipschitz but it is not differentiable at zero.
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4. It follows from the definition of a Lipschitz function (1.28), that if it is
differentiable, then its derivative is bounded by K.

5. A Lipschitz function has finite variation on finite intervals, since for any
partition {xi} of a finite interval [a, b],∑

|f(xi+1) − f(xi)| ≤ K
∑

(xi+1 − xi) = K(b − a). (1.37)

6. As functions of finite variation have derivatives almost everywhere (with
respect to Lebesgue measure), a Lipschitz function is differentiable al-
most everywhere.

(Note that functions of finite variation have derivatives which are inte-
grable with respect to Lebesgue measure, but the function does not have
to be equal to the integral of the derivative.)

7. A Lipschitz function multiplied by a constant, and a sum of two Lipschitz
functions are Lipschitz functions. The product of two bounded Lipschitz
functions is again a Lipschitz function.

8. If f is Lipschitz on [0, N ] for any N > 0 but with the constant K depend-
ing on N , then it is called locally Lipschitz. For example, x2 is Lipschitz
on [0, N ] for any finite N , but it is not Lipschitz on [0, +∞), since its
derivative is unbounded.

9. If f is a function of two variables f(x, t) and it satisfies Lipschitz condi-
tion in x for all t, 0 ≤ t ≤ T , with same constant K independent of t, it
is said that f satisfies Lipschitz condition in x uniformly in t, 0 ≤ t ≤ T .

A necessary and sufficient condition for a function f to be Riemann integrable
was given by Lebesgue (see, for example, Saks (1964), Freedman (1983) p.208).

Theorem 1.22 (Lebesgue) A necessary and sufficient condition for a func-
tion f to be Riemann integrable on a finite closed interval [a, b] is that f is
bounded on [a, b] and almost everywhere continuous on [a, b], that is, continu-
ous at all points except possibly on a set of Lebesgue measure zero.

Remark 1.6: (This is not used anywhere in the book, and directed only to
readers with knowledge of Functional Analysis)
Continuous functions on [a, b] with the supremum norm ‖h‖ = supx∈[a,b] |h(x)|
is a Banach space, denoted C([a, b]). By a result in Functional Analysis, any
linear functional on this space can be represented as

∫
[a,b]

h(x)dg(x) for some
function g of finite variation. In this way, the Banach space of functions of
finite variation on [a, b] with the norm ‖g‖ = Vg([a, b]) can be identified with
the space of linear functionals on the space of continuous functions, in other
words, the dual space of C([a, b]).



Chapter 2

Concepts of Probability
Theory

In this chapter we give fundamental definitions of probabilistic concepts. Since
the theory is more transparent in the discrete case, it is presented first. The
most important concepts not met in elementary courses are the models for in-
formation, its flow and conditional expectation. This is only a brief description,
and a more detailed treatment can be found in many books on Probability The-
ory, for example, Breiman (1968), Loeve (1978), Durret (1991). Conditional
expectation with its properties is central for further development, but some of
the material in this chapter may be treated as an appendix.

2.1 Discrete Probability Model

A probability model consists of a filtered probability space on which variables
of interest are defined. In this section we introduce a discrete probability
model by using an example of discrete trading in stock.

Filtered Probability Space

A filtered probability space consists of: a sample space of elementary events, a
field of events, a probability defined on that field, and a filtration of increasing
subfields.

21
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Sample Space

Consider a single stock with price St at time t = 1, 2, . . . T . Denote by Ω the
set of all possible values of stock during these times.

Ω = {ω : ω = (S1, S2, . . . , ST )}.

If we assume that the stock price can go up by a factor u and down by
a factor d, then the relevant information reduces to the knowledge of the
movements at each time.

Ω = {ω : ω = (a1, a2, . . . , aT )} at = u or d.

To model uncertainty about the price in the future, we “list” all possible
future prices, and call it possible states of the world. The unknown future is
just one of many possible outcomes, called the true state of the world. As
time passes more and more information is revealed about the true state of the
world. At time t = 1 we know prices S0 and S1. Thus the true state of the
world lies in a smaller set, subset of Ω, A ⊂ Ω. After observing S1 we know
which prices did not happen at time 1. Therefore we know that the true state
of the world is in A and not in Ω \ A = Ā.

Fields of Events

Define by Ft the information available to investors at time t, which consists
of stock prices before and at time t.

For example when T = 2, at t = 0 we have no information about S1 and
S2, and F0 = {∅, Ω}, all we know is that a true state of the world is in Ω.
Consider the situation at t = 1. Suppose at t = 1 stock went up by u. Then
we know that the true state of the world is in A, and not in its complement
Ā, where

A = {(u, S2), S2 = u or d} = {(u, u), (u, d)}.
Thus our information at time t = 1 is

F1 = {∅, Ω, A, Ā}.

Note that F0 ⊂ F1, since we don’t forget the previous information.
At time t investors know which part of Ω contains the true state of the

world. Ft is called a field or algebra of sets.
F is a field if

1. ∅, Ω ∈ F
2. If A ∈ F , and B ∈ F then A ∪ B ∈ F , A ∩ B ∈ F , A \ B ∈ F .
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Example 2.1: (Examples of fields.)
It is easy to verify that any of the following is a field of sets.
1. {Ω, ∅} is called the trivial field F0.
2. {∅, Ω, A, Ā} is called the field generated by set A, and denoted by FA.
3. {A : A ⊆ Ω} the field of all the subsets of Ω. It is denoted by 2Ω.

A partition of Ω is a collection of exhaustive and mutually exclusive subsets,

{D1, . . . , Dk}, such that Di ∩ Dj = ∅, and
⋃
i

Di = Ω.

The field generated by the partition is the collection of all finite unions of Dj ’s
and their complements. These sets are like the basic building blocks for the
field. If Ω is finite then any field is generated by a partition.

If one field is included in the other, F1 ⊂ F2, then any set from F1 is also
in F2. In other words, a set from F1 is either a set or a union of sets from the
partition generating F2. This means that the partition that generates F2 has
“finer” sets than the ones that generate F1.

Filtration

A filtration IF is the collection of fields,

IF = {F0,F1, . . . ,Ft, . . . ,FT } Ft ⊂ Ft+1.

IF is used to model a flow of information. As time passes, an observer knows
more and more detailed information, that is, finer and finer partitions of Ω.
In the example of the price of stock, IF describes how the information about
prices is revealed to investors.

Example 2.2: IF = {F0,FA, 2Ω}, is an example of filtration.

Stochastic Processes

If Ω is a finite sample space, then a function X defined on Ω attaches numerical
values to each ω ∈ Ω. Since Ω is finite, X takes only finitely many values xi,
i = 1, . . . , k.

If a field of events F is specified, then any set in it is called a measurable
set. If F = 2Ω, then any subset of Ω is measurable.

A function X on Ω is called F-measurable or a random variable on (Ω,F)
if all the sets {X = xi}, i = 1, . . . , k, are members of F . This means that if we
have the information described by F , that is, we know which event in F has
occurred, then we know which value of X has occurred. Note that if F = 2Ω,
then any function on Ω is a random variable.
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Example 2.3: Consider the model for trading in stock, t = 1, 2, where at each
time the stock can go up by the factor u or down by the factor d.
Ω = {ω1 = (u, u), ω2 = (u, d), ω3 = (d, u), ω4 = (d, d)}. Take A = {ω1, ω2}, which is
the event that at t = 1 the stock goes up. F1 = {∅, Ω, A, Ā}, and F2 = 2Ω contains
all 16 subsets of Ω. Consider the following functions on Ω. X(ω1) = X(ω2) = 1.5,
X(ω3) = X(ω4) = 0.5. X is a random variable on F1. Indeed, the set {ω : X(ω) =
1.5} = {ω1, ω2} = A ∈ F1. Also {ω : X(ω) = 0.5} = Ā ∈ F1. If Y (ω1) = (1.5)2,
Y (ω2) = 0.75, Y (ω3) = 0.75, and Y (ω4) = 0.52, then Y is not a random variable
on F1, it is not F1-measurable. Indeed, {ω : Y (ω) = 0.75} = {ω2, ω3} /∈ F1. Y is
F2-measurable.

Definition 2.1 A stochastic process is a collection of random variables {X(t)}.
For any fixed t, t = 0, 1, . . . , T , X(t) is a random variable on (Ω,FT ).

A stochastic process is called adapted to filtration IF if for all t = 0, 1, . . . , T ,
X(t) is a random variable on Ft, that is, if X(t) is Ft-measurable.

Example 2.4: (Example 2.3 continued.)
X1 = X, X2 = Y is a stochastic process adapted to IF = {F1,F2}. This process
represents stock prices at time t under the assumption that the stock can appreciate
or depreciate by 50% in a unit of time.

Field Generated by a Random Variable

Let (Ω, 2Ω) be a sample space with the field of all events, and X be a random
variable with values xi, i = 1, 2, . . . k. Consider sets

Ai = {ω : X(ω) = xi} ⊆ Ω.

These sets form a partition of Ω, and the field generated by this partition is
called the field generated by X . It is the smallest field that contains all the
sets of the form Ai = {X = xi} and it is denoted by FX or σ(X). The field
generated by X represents the information we can extract about the true state
ω by observing X .

Example 2.5: (Example 2.3 continued.)
{ω : X(ω) = 1.5} = {ω1, ω2} = A, {ω : X(ω) = 0.5} = {ω3, ω4} = Ā.

FX = F1 = {∅, Ω, A, Ā}.

Filtration Generated by a Stochastic Process

Given (Ω,F) and a stochastic process {X(t)} let Ft = σ({Xs, 0 ≤ s ≤ t})
be the field generated by random variables Xs, s = 0, . . . , t. It is all the
information available from the observation of the process up to time t. Clearly,
Ft ⊆ Ft+1, so that these fields form a filtration. This filtration is called the
natural filtration of the process {X(t)}.
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If A ∈ Ft then by observing the process from 0 to t we know at time t
whether the true state of the world is in A or not. We illustrate this on our
financial example.

Example 2.6: Take T = 3, and assume that at each trading time the stock can go
up by the factor u or down by d.

Ω =

u u u d u u

B̄
u u d d u d

u d u d d u

B
u d d d d d

A Ā

Look at the sets generated by information about S1. This is a partition of Ω, {A, Ā}.
Together with the empty set and the whole set, this is the field F1. Sets generated
by information about S2 are B and B̄. Thus the sets formed by knowledge of S1 and
S2 is the partition of Ω, consisting of all intersections of the above sets. Together
with the empty set and the whole set this is the field F2. Clearly any set in F1 is
also in F2, for example A = (A∩B)∪(A∩ B̄). Similarly if we add information about
S3 we obtain all the elementary sets, ω’s and hence all subsets of Ω, F3 = 2Ω. In
particular we will know the true state of the world when T = 3.
F0 ⊂ F1 ⊂ F2 ⊂ F3 is the filtration generated by the price process {St, t = 1, 2, 3}.

Predictable Processes

Suppose that a filtration IF = (F0,F1, . . . ,Ft, . . . ,FT ) is given. A process
Ht is called predictable (with respect to this filtration) if for each t, Ht is
Ft−1-measurable, that is, the value of the process H at time t is determined
by the information up to and including time t − 1. For example, the number
of shares held at time t is determined on the basis of information up to and
including time t − 1. Thus this process is predictable with respect to the
filtration generated by the stock prices.

Stopping Times

τ is called a random time if it is a non-negative random variable, which can also
take value ∞ on (Ω,FT ). Suppose that a filtration IF = (F0,F1, . . . ,Ft, . . . ,FT )
is given. τ is called a stopping time with respect to this filtration if for each
t = 0, 1, . . . , T the event

{τ ≤ t} ∈ Ft. (2.1)
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This means that by observing the information contained in Ft we can decide
whether the event {τ ≤ t} has or has not occurred. If the filtration IF is
generated by {St}, then by observing the process up to time t, S0, S1, . . . , St,
we can decide whether the event {τ ≤ t} has or has not occurred.

Probability

If Ω is a finite sample space, then we can assign to each outcome ω a probability,
P(ω), that is, the likelihood of it occurring. This assignment can be arbitrary.
The only requirement is that P(ω) ≥ 0 and ΣP(ω) = P(Ω) = 1.

Example 2.7: Take T = 2 in our basic example 2.3. If the stock goes up or down
independently of its value and if, say, the probability to go up is 0.4 then

Ω = {(u, u); (u, d); (d, u) (d, d)}
P(ω) 0.16 0.24 0.24 0.36

Distribution of a Random Variable

Since a random variable X is a function from Ω to IR, and Ω is finite, X can
take only finitely many values, as the set X(Ω) is finite. Denote these values
by xi, i = 1, 2, . . . k. The collection of probabilities pi of sets {X = xi} = {ω :
X(ω) = xi} is called the probability distribution of X ; for i = 1, 2, . . . k

pi = P(X = xi) =
∑

ω:X(ω)=xi

P(ω).

Expectation

If X is a random variable on (Ω,F) and P is a probability, then the expectation
of X with respect to P is

EPX =
∑

X(ω)P(ω),

where the sum is taken over all elementary outcomes ω. It can be shown that
the expectation can be calculated by using the probability distribution of X ,

EPX =
k∑

i=1

xiP(X = xi).

Of course if the probability P is changed to another probability Q, then the
same random variable X may have a different probability distribution qi =
Q(X = xi), and a different expected value, EQX =

∑k
i=1 xiqi. When the

probability P is fixed, or it is clear from the context with respect to which
probability P the expectation is taken, then the reference to P is dropped
from the notation, and the expectation is denoted simply by E(X) or EX .
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Conditional Probabilities and Expectations

Let (Ω, 2Ω, P) be a finite probability space, and G be a field generated by a
partition of Ω, {D1, . . . , Dk}, such that Di ∩ Dj = ∅, and ∪i Di = Ω. Recall
that if D is an event of positive probability, P(D) > 0, then the conditional
probability of an event A given the event D is defined by

P(A|D) =
P(A ∩ D)

P(D)
.

Suppose that all the sets Di in the partition have a positive probability. The
conditional probability of the event A given the field G is the random variable
that takes values P(A|Di) on Di, i = 1, . . . k. Let ID denote the indicator of
the set D, that is, ID(ω) = 1 if ω ∈ D and ID(ω) = 1 if ω ∈ D̄. Using this
notation, the conditional probability can be written as

P(A|G)(ω) =
k∑

i=1

P(A|Di)IDi(ω). (2.2)

For example, if G = {∅, Ω} is the trivial field, then

P(A|G) = P(A|Ω) = P(A).

Let now Y be a r.v. that takes values y1, . . . , yk, then the sets Di = {ω :
Y (ω) = yi}, i = 1, . . . k, form a partition of Ω. If FY denotes the field generated
by Y , then the conditional probability given FY is denoted by

P(A|FY ) = P(A|Y ).

It was assumed so far that all the sets in the partition have a positive prob-
ability. If the partition contains a set of zero probability, call it N , then the
conditional probability is not defined on N by the above formula (2.2). It can
be defined for an ω ∈ N arbitrarily. Consequently any random variable which
is defined by (2.2) and is defined arbitrarily on N is a version of the conditional
probability. Any two versions only differ on N , which is a set of probability
zero.

Conditional Expectation

In this section let X take values x1, . . . , xp and A1 = {X = x1}, . . . , Ap =
{X = xp}. Let the field G be generated by a partition {D1, D2, . . . , Dk} of Ω.
Then the conditional expectation of X given G is defined by

E(X |G) =
p∑

i=1

xiP(Ai|G).
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Note that E(X |G) is a linear combination of random variables, so that it is
a random variable. It is clear that P(A|G) = E(IA|G), and E(X |F0) = EX ,
where F0 = {∅, Ω} is the trivial field.

By the definition of measurability, X is G-measurable if and only if for
any i, {X = xi} = Ai is a member of G, which means that it is either one
of the Dj ’s or a union of some of the Dj ’s. Since X(ω) =

∑p
i=1 xiIAi(ω), a

G-measurable X can be written as X(ω) =
∑k

j=1 xjIDj (ω), where some xj ’s
may be equal. It is easy to see now that

if X is G-measurable, then E(X |G) = X.

Note that since the conditional probabilities are defined up to a null set, so is
the conditional expectation.

If X and Y are random variables both taking a finite number of values,
then E(X |Y ) is defined as E(X |G), where G = FY is the field generated by
the random variable Y . In other words if X takes values x1, . . . , xp and Y
takes values y1, . . . , yk, and P(Y = yi) > 0 for all i = 1, . . . k, then E(X |Y ) is
a random variable, which takes values

∑p
j=1 xjP(X = xj |Y = yi) on the set

{Y = yi} i = 1, . . . k. These values are denoted by E(X |Y = yi). It is clear
from the definition that E(X |Y ) is a function of Y ,

E(X |Y )(ω) = E(X |FY )(ω) =
k∑

i=1

 p∑
j=1

xjP(X = xj |Y = yi)

 I{Y =yi}(ω).

2.2 Continuous Probability Model

In this section we define similar probabilistic concepts for a continuous sample
space. We start with general definitions.

σ-Fields

A σ-field is a field, which is closed with respect to countable unions and count-
able intersections of its members, that is a collection of subsets of Ω that
satisfies

1. ∅, Ω ∈ F .

2. A ∈ F ⇒ Ā ∈ F .

3. A1, A2, . . . , An, . . . ∈ F then
⋃∞

n=1 An ∈ F (and then also
⋂∞

n=1 An ∈ F).

Any subset B of Ω that belongs to F is called a measurable set.
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Borel σ-field

Borel σ-field is the most important example of a σ-field that is used in the
theory of functions, Lebesgue integration, and probability. Consider the σ-
field B on IR (Ω = IR) generated by the intervals. It is obtained by taking
all the intervals first and then all the sets obtained from the intervals by
forming countable unions, countable intersections and their complements are
included into collection, and countable unions and intersections of these sets
are included, etc. It can be shown that we end up with the smallest σ-field
which contains all the intervals. A rigorous definition follows. One can show
that the intersection of σ-fields is again a σ-field. Take the intersection of all σ-
fields containing the collection of intervals. It is the smallest σ-field containing
the intervals, the Borel σ-field on IR. In this model a measurable set is a set
from B, a Borel set.

Probability

A probability P on (Ω,F) is a set function on F , such that

1. P(Ω) = 1,

2. If A ∈ F , then P(Ā) = 1 − P(A),

3. Countable additivity (σ-additivity): if A1, A2, . . . , An, . . . ∈ F are mu-
tually exclusive, then P (

⋃∞
n=1 An) =

∑∞
n=1 P(An).

The σ-additivity property is equivalent to finite additivity plus the continuity
property of probability, which states: if A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . ⊇ A =
∩∞

n=1An ∈ F , then
lim

n→∞P(An) = P(A).

A similar property holds for an increasing sequence of events.
How can one define a probability on a σ-field? It is not hard to see that

it is impossible to assign probabilities to all individual ω’s since there are too
many of them and P({ω}) = 0. On the other hand it is difficult to assign
probabilities to sets in F directly, since in general we don’t even know what a
set from F looks like. The standard way is to define the probability on a field
which generates the σ-field, and then extend it to the σ-field.

Theorem 2.2 (Caratheodory Extension Theorem) If a set function P
is defined on a field F , satisfies P(Ω) = 1, P(Ā) = 1−P(A), and is countably
additive, then there is a unique extension of P to the σ-field generated by F .
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Lebesgue Measure

As an application of the above Theorem 2.2 we define the Lebesgue measure
on [0, 1]. Let Ω = [0, 1], and take for F the class of all finite unions of disjoint
intervals contained in [0, 1]. It is clearly a field. Define the probability P(A)
on F by the length of A. It is not hard to show that P is σ-additive on F .
Thus there is a unique extension of P to B, the Borel σ-field generated by F .
This extension is the Lebesgue measure on B. It is also a probability on B,
since the length of [0, 1] is one.

Any point has Lebesgue measure zero. Indeed, {x} = ∩n(x − 1/n, x +
1/n). Therefore P({x}) = limn→∞ 2/n = 0. By countable additivity it follows
that any countable set has Lebesgue measure zero. In particular the set of
rationals on [0, 1] is of zero Lebesgue measure. The set of irrationals on [0, 1]
has Lebesgue measure 1.

The term “almost everywhere” (for “almost all x”) means everywhere (for
all x) except, perhaps, a set of Lebesgue measure zero.

Random Variables

A random variable X on (Ω,F) is a measurable function from (Ω,F) to ( IR,B),
where B is the Borel σ-field on the line. This means that for any Borel set
B ∈ B the set {ω : X(ω) ∈ B} is a member of F . Instead of verifying the
definition for all Borel sets, it is enough to have that for all real x the set
{ω : X(ω) ≤ x} ∈ F . In simple words, for a random variable we can assign
probabilities to sets of the form {X ≤ x}, and {a < X ≤ b}.
Example 2.8: Take Ω = IR with the Borel σ-field B. By a measurable function on
IR is usually understood to be a B-measurable function, that is, a random variable

on ( IR,B). To define a probability on B, take f(x) = 1√
2π

e−
x2
2 and define P(A) =∫

A
f(x)dx for any interval A. It is easy to show that P so defined is a probability on

the algebra containing the intervals, and it is continuous at the ∅. Thus it extends
uniquely to B. The function X(x) = x on this probability space is called the standard
Normal random variable.

An important question is how to describe measurable functions, and how to
decide whether a given function is measurable. It is easy to see that indicators
of measurable sets are measurable. (An indicator of a set A is defined as
IA(ω) = 1 if and only if ω ∈ A.) Conversely, if an indicator of a set is
measurable then the set is measurable, A ∈ F . A simple function (simple
random variable) is a finite linear combination of indicators of measurable sets.
By definition, a simple function takes finitely many values and is measurable.

Theorem 2.3 X is a random variable on (Ω,F) if and only if it is a simple
function or a limit of simple functions.
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The sufficiency part follows from the example below. The necessity is not hard
to prove, by establishing that the supremum and infimum of random variables
is a random variable.

Example 2.9: The following sequence of simple functions approximates a random
variable X.

Xn(ω) =

n2n−1∑
k=−n2n

k

2n
I
[ k
2n ,

k+1
2n )

(X(ω)).

These variables are constructed by taking the interval [−n, n] and dividing it into
n2n+1 equal parts. Xn is zero on the set where X ≥ n or X < −n. On the set where
the values of X belong to the interval [ k

2n , k+1
2n ), X is replaced by k

2n its smallest
value on that set. Note that all the sets {ω : k

2n ≤ X(ω) < k+1
2n } are measurable,

by definition of a random variable. It is easy to see that the Xn’s are increasing,
therefore converge to a limit, and for all ω, X(ω) = limn→∞ Xn(ω).

This example is due to Lebesgue, who gave it for non-negative functions, demon-
strating that a measurable function X is a limit of a monotone sequence of simple
functions Xn, Xn+1 ≥ Xn.

The next result states that a limit of random variables and a composition of
random variables is again a random variable.

Theorem 2.4

1. If Xn are random variables on (Ω,F) and X(ω) = limn→∞ Xn(ω), then
X is also a random variable.

2. If X is a random variable on (Ω,F) and g is a B-measurable function,
then g(X) is also a random variable.

Remark 2.1: In the above theorem the requirement that the limit X(ω) =
limn→∞ Xn(ω) exists for all ω can be replaced by its existence for all ω outside
a set of probability zero, and on a subsequence. Such a limit is in probability,
it is introduced later.

σ-field Generated by a Random Variable

The σ-field generated by a random variable X is the smallest σ-field containing
sets of the form {ω : a ≤ X(ω) ≤ b}, for any a, b ∈ IR.

Distribution of a Random Variable

The probability distribution function of X is defined as

F (x) = FX(x) = P(X ≤ x).

It follows from the properties of probability that F is non-decreasing and
right-continuous. Due to monotonicity, it is of finite variation.
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Joint Distribution

If X and Y are random variables defined on the same space, then their joint
distribution function is defined as

F (x, y) = P(X ≤ x, Y ≤ y),

for any choice of real numbers x and y.
The distribution of X is recovered from the joint distribution of X and Y

by FX(x) = F (x,∞), and similarly the distribution of Y is given by F (∞, y),
they are called the marginal distributions.

The joint distribution of n random variables X1, X2, . . . , Xn is defined by

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

The collection of random variables X = (X1, X2, . . . , Xn) is referred to as
a random vector X, and the joint distribution as a multivariate probability
distribution of X. One can consider X as IRn-valued random variable, and it
is possible to prove that X is an IRn-valued random variable if and only if all
of its components are random variables.

Transformation of Densities

A random vector X has a density f(x) = f(x1, x2, . . . , xn) if for any set B (a
Borel subset of IRn),

P(X ∈ B) =
∫
x∈B

f(x)dx1dx2 . . . dxn. (2.3)

If X is transformed into Y by a transformation y = y(x), i.e.

y1 = y1(x1, x2, . . . , xn)
y2 = y2(x1, x2, . . . , xn)
. . . . . . . . .

yn = yn(x1, x2, . . . , xn),

then, provided this transformation is one-to-one, and the inverse transforma-
tion has a non-vanishing Jacobian

J = det


∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yn

. . . . . . . . .
∂xn

∂y1

∂xn

∂y2
. . . ∂xn

∂yn

 ,
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Y has a density given by

fY(y) = f(x1(y), x2(y), . . . , xn(y))|J(y)|. (2.4)

This is easily established by using the change of variables in multiple integrals
(see Example 2.15 for calculation of the bivariate density).

2.3 Expectation and Lebesgue Integral

Let X be a random variable on (Ω,F), and P be a probability on F . Recall
that in the discrete case the expectation of X is defined as

∑
ω X(ω)P(ω). The

expectation in the continuous model is defined by the means of an integral

EX =
∫

Ω

X(ω)dP(ω).

The expectation is defined for positive random variables first. The general case
is obtained by using the decomposition X = X+−X−, where X+ = max(X, 0)
and X− = max(−X, 0), and letting EX = EX+ − EX−, provided both EX+

and EX− are finite.
If X ≥ 0 is a random variable, then it can be approximated by simple

random variables (see Theorem 2.3 and Example 2.9). The expectation of a
simple random variable is defined as a sum, that is if

X =
n∑

k=1

ckIAk
, then EX =

n∑
k=1

ckP(Ak).

Note that for a simple random variable, X ≥ 0 implies EX ≥ 0. This in turn
implies that if X ≥ Y , where X and Y are simple random variables, then
EX ≥ EY .

Any positive random variable X can be approximated by an increasing
sequence Xn of simple random variables, such approximation is given in Ex-
ample 2.9. It now follows that since Xn is an increasing sequence, EXn is also
an increasing sequence, hence has a limit. The limit of EXn is taken to be
EX . It can be shown that this limit does not depend on the choice of the
approximating sequence of simple random variables, so that the expectation
is defined unambiguously.

Definition 2.5 A random variable X is called integrable if both EX+ and
EX− are finite. In this case EX = EX+ − EX−.

Note that for X to be integrable both EX+ and EX− must be finite, which is
the same as E|X | = EX+ + EX− < ∞.
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Lebesgue-Stieltjes Integral

A distribution function on IR is a non-decreasing right-continuous function
which approaches 0 at −∞ and 1 at +∞. Such a distribution function, say
F , defines uniquely a probability on the Borel σ-field B by setting P((a, b]) =
F (b) − F (a).

Take now (Ω,F) = ( IR,B) and a probability on B given by a distribution
function F (x). A random variable on this space is a measurable function f(x).
Its expected value is written as

∫
IR f(x)F (dx) and is called the Lebesgue-

Stieltjes integral of f with respect to F .
The distribution function F can be replaced by any function of finite vari-

ation, giving rise to the general Lebesgue-Stieltjes integral.
The probability distribution of a random variable X on (Ω,F) is the prob-

ability on B carried from F by X : for any B ∈ B,

PX(B) = P(X ∈ B). (2.5)

The distribution function is related to this probability by F (x) = PX((−∞, x]).
Equation (2.5) gives the relation between the expectations of indicator func-
tions, ∫

Ω

I(X(ω) ∈ B)dP(ω) =
∫ ∞

−∞
I(x ∈ B)PX(dx).

This can be extended from indicators to measurable functions, using an ap-
proximation by simple functions, and we have the following result.

Theorem 2.6 If X is a random variable with distribution function F (x), and
h is a measurable function on IR, such that h(X) is integrable, then

Eh(X) :=
∫

Ω

h(X(ω))dP(ω) =
∫ ∞

−∞
h(x)PX(dx) :=

∫ ∞

−∞
h(x)F (dx). (2.6)

Lebesgue Integral on the Line

The Lebesgue-Stieltjes integral with respect to F (x) = x is known as the
Lebesgue integral.

Example 2.10: Let Ω = [0, 1], its elements ω are real numbers x, and take for

probability the Lebesgue measure. Take X(ω) = X(x) = x2. Then EX =
∫ 1

0
x2dx =

1/3. Construct an approximating sequence of simple functions and verify the value
of the above integral.

Similarly, for any continuous function f(x) on [0, 1], X(ω) = X(x) = f(x) is a
random variable (using that a continuous function is measurable) with expectation

EX = Ef =
∫ 1

0
f(x)dx.
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Theorem 2.7 If f is Riemann integrable on [a, b], then it is Lebesgue inte-
grable on [a, b] and the integrals coincide.

On the other hand there are functions which are Lebesgue integrable but not
Riemann integrable. Recall that for a function to be Riemann integrable, it
must be continuous at all points except for a set of Lebesgue measure zero.
Some everywhere discontinuous functions are Lebesgue integrable.

Example 2.11: Ω = [0, 1], and probability is given by the Lebesgue measure.
Take X(x) = IQ(x) be the indicator function of the set Q of all rationals. Q has
Lebesgue measure zero. As the expectation of an indicator is the probability of its
set, EX =

∫ 1

0
IQ(x)dx = 0. However, IQ(x) is discontinuous at every point, so that

the set of discontinuities of IQ(x) is [0, 1] which has Lebesgue measure 1, therefore
IQ(x) is not Riemann integrable.

The next result is the fundamental theorem for the Lebesgue integral on the
line.

Theorem 2.8 If f is Lebesgue integrable on [a, b] then the derivative of the
integral exists for almost all x ∈ (a, b), and

d

dx

∫ x

a

f(t)dt = f(x). (2.7)

Properties of Expectation (Lebesgue Integral)

It is not hard to show that the expectation (Lebesgue Integral) satisfies the
following properties

1. Linearity. If X and Y are integrable and α and β are constants, then
E(αX + βY ) = αEX + βEY .

2. If random variables X and Y satisfy, |X | ≤ Y and Y is integrable, then
X is also integrable and E|X | ≤ EY .

3. If a random variable X ≥ 0 then EX = 0 if and only if P(X = 0) = 1.

Jumps and Probability Densities

The jump of F at x gives the probability P(X = x), F (x)−F (x−) = P(X = x).
Since F is right-continuous it has at most countably many jumps.

Definition 2.9 F is called discrete if it changes only by jumps.

If F (x) is continuous at x then P(X = x) = 0.

Definition 2.10 F (x) is called absolutely continuous if there is a function
f(x) ≥ 0, such that for all x, F (x) is given by the Lebesgue integral F (x) =∫ x

−∞ f(t)dt. In this case F ′(x) = f(x) for almost all x (Theorem 2.8).
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f is called the probability density function of X . It follows from the definition
that for any a < b

P(a ≤ X ≤ b) =
∫ b

a

f(x)dx.

There are plenty of examples in any introductory book on probability or
statistics of continuous random variables with densities: Normal, Exponential,
Uniform, Gamma, Cauchy, etc.

The random variables X and Y with the joint distribution F (x, y) possess
a density f(x, y) (with respect to the Lebesgue measure) if for any x, y

F (x, y) =
∫ x

−∞

∫ y

−∞
f(u, v)dudv,

and then for almost all (with respect to the Lebesgue measure on the plane)
x, y,

f(x, y) =
∂2F

∂x∂y
(x, y).

A density for an n-dimensional random vector is defined similarly.

Decomposition of Distributions and FV Functions

Any distribution function can be decomposed into a continuous part and a
jump part. Continuous distribution functions can be decomposed further
(Lebesgue decomposition).

If F is a continuous distribution function, then it can be decomposed into
sum of two continuous distribution functions, the absolutely continuous part
and the singular part, i.e. for some 0 ≤ a ≤ 1

F = aFac + (1 − a)Fsing. (2.8)

Fac is characterized by its density that exists at almost all points. For the
singular part, F ′

sing(x) exists for almost all x and is zero. An example of such
function is the Cantor function, see Example 2.13, where the distribution func-
tion is a constant between the points of the Cantor set. In most applications in
statistics continuous distributions are absolutely continuous with zero singular
part.

Example 2.12: (Cantor set.) Consider the set {x : x =
∑∞

n=1
αn/3n, αn ∈ {0, 2}}.

It is possible to show that this set does not have isolated points (a perfect set), that
is, any point of the set is a limit of other points. Indeed, for a given sequence of
αn’s that contains infinitely many 2s, consider a new sequence which is the same up
to the m − th term with all the rest being zeros. The distance between these two
numbers is given by

∑∞
n=m+1

αn/3n < 3−m, which can be made arbitrarily small as
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m increases. For a number with finitely many 2s, say k 2s, the numbers with the
first k same places, and the rest zeros except the m-th place which is 2, approximate
it. Indeed, the distance between these two numbers is 2/3m. It is also not hard to
see that this set is uncountable (by the diagonal argument) and that it has Lebesgue
measure zero. Although the Cantor set seems to be artificially constructed, Cantor
type sets arise naturally in study of Brownian motion; for example, the set of zeros
of Brownian motion is a Cantor type set.

Example 2.13: (Cantor distribution.)
The distribution function F of the random variable X =

∑∞
n=1

αn/3n, where αn

are independent identically distributed random variables taking values 0 and 2 with
probability 1/2, is continuous and its derivative is zero almost everywhere.

It takes a rather pathological example to construct a continuous singular distribution
in one dimension. In dimension two such examples can be simple.

Example 2.14: (Continuous singular distributions on the plane.)

Take F such that ∂2F
∂x∂y

= 0 almost everywhere on the plane. If F is a linear function
in x and y, or a distribution function that does not depend on one of the variables x
or y, then it is singular. For example, 0 ≤ X, Y ≤ 1 such that their joint distribution
is determined by F (x, y) = 1

2
(x + y), for x, y satisfying 0 ≤ x, y ≤ 1. In this case

only sets that have non-empty intersection with the axis have positive probability.

Functions of finite variations have a similar structure to distribution func-
tions. They can be decomposed into a continuous part and a jump part, and
the continuous part can be decomposed further into an absolutely continuous
part and a singular part.

2.4 Transforms and Convergence

If Xk is integrable, E|X |k < ∞, then the k-th moment of X is defined as
E(Xk). The moment generating function of X is defined as

m(t) = E(etX),

provided etX is integrable, for t in a neighbourhood of 0.
Using the series expansion for the exponential function

ex =
∞∑

n=0

xn

n!
,

we can formally write, by interchanging summation and the expectation,

m(t) = EetX = E
∞∑

n=0

tnXn

n!
=

∞∑
n=0

tn

n!
E(Xn). (2.9)
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Thus E(Xn) can be obtained from the power series expansion of the moment
generating function.

The characteristic function of X is defined as

φ(t) = E(eitX) = E(cos(tX)) + iE(sin(tX)),

where i =
√−1. The characteristic function determines the distribution

uniquely, so does the moment generating function when it exists on an in-
terval containing 0. The advantage of the characteristic function over the
moment generating function is that it exists for any random variable X , since
the functions cos(tx) and sin(tx) are bounded for any t on the whole line,
whereas etx is unbounded and the moment generating function need not exist.
Existence of the moment generating function around zero implies existence
of all the moments. If X does not have all the moments, then its moment
generating function does not exist.

Convergence of Random Variables

There are four main concepts of convergence of a sequence of random variables.
We give the definitions of progressively stronger concepts and some results on
their relations.

Definition 2.11 {Xn} converge in distribution to X, if their distribution
functions Fn(x) converge to the distribution function F (x) at any point of
continuity of F .

It can be shown that {Xn} converge in distribution to X if and only if their
characteristic functions (or moment generating functions) converge to that of
X . Convergence in distribution is also equivalent to the requirement that
Eg(Xn) → Eg(X) as n → ∞ for all bounded continuous functions g on IR.

Definition 2.12 {Xn} converge in probability to X if for any ε > 0
P(|Xn − X | > ε) → 0 as n → ∞.

Definition 2.13 {Xn} converge almost surely (a.s.) to X if for any ω outside
a set of zero probability Xn(ω) → X(ω) as n → ∞.

Almost sure convergence implies convergence in probability, which in turn
implies convergence in distribution. It is also not hard to see that convergence
in distribution to a constant is the same as the convergence in probability
to the same constant. Convergence in probability implies the almost sure
convergence on a subsequence, namely, if {Xn} converge in probability to X
then there is a subsequence nk that converges almost surely to the same limit.

Lr-convergence (convergence in the r-th mean), r ≥ 1, is defined as follows.
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Definition 2.14 {Xn} converge to X in Lr if for any n E(|Xn|r) < ∞, and
E(|Xn − X |r) → 0 as n → ∞.

Using the concept of uniform integrability, given later in Chapter 7, conver-
gence in Lr is equivalent to convergence in probability and uniform integrabil-
ity of |Xn|r (see for example, Loeve (1978) p.164).

The following result, which is known as Slutskii theorem, is frequently used
in applications.

Theorem 2.15 If Xn converges to X and Yn converges to Y , then Xn +
Yn converges to X + Y , for any type of stochastic convergence, except for
convergence in distribution. However, if Y = 0 or Xn and Yn are independent,
then the result is also true for convergence in distribution.

Convergence of Expectations

Theorem 2.16 (Monotone convergence) If Xn ≥ 0, and Xn are increas-
ing to a limit X, which may be infinite, then limn→∞ EXn = EX.

Theorem 2.17 (Fatou’s lemma) If Xn ≥ 0 (or Xn ≥ c > −∞), then
E(lim infn Xn) ≤ lim infn EXn.

Theorem 2.18 (Dominated Convergence) If limn→∞ Xn = X in proba-
bility and for all n |Xn| ≤ Y with EY < ∞, then limn→∞ EXn = EX.

2.5 Independence and Covariance

Independence

Two events A and B are called independent if P(A ∩ B) = P(A)P(B).
A collection of events Ai, i = 1, 2, . . . is called independent if for any finite

n and any choice of indices ik, k = 1, 2, . . . n

P

(
n⋂

k=1

Aik

)
=

n∏
k=1

P(Aik
).

Two σ-fields are called independent if for any choice of sets from each of them,
these sets are independent.

Two random variables X and Y are independent if the σ-fields they gen-
erate are independent. It follows that their joint distribution is given by the
product of their marginal distributions (since the sets {X ≤ x} and {Y ≤ y}
are in the respective σ-fields)

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y),
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and can be seen that it is an equivalent property.
One can formulate the independence property in terms of expectations by

writing above in terms of indicators

E
(
I(X ≤ x)I(Y ≤ y)

)
= E

(
I(X ≤ x)

)
E
(
I(Y ≤ y)

)
.

Since it is possible to approximate indicators by continuous bounded functions,
X and Y are independent if and only if for any bounded continuous functions
f and g,

E(f(X)g(Y )) = E(f(X))E(g(Y )).

X1, X2, . . . , Xn are called independent if for any choice of random vari-
ables Xi1 , Xi2 , . . . Xik

their joint distribution is given by the product of their
marginal distributions (alternatively, if the σ-fields they generate are indepen-
dent).

Covariance

The covariance of two integrable random variables X and Y is defined, pro-
vided XY is integrable, by

Cov(X, Y ) = E (X − EX) (Y − EY ) = E (XY ) − EXEY. (2.10)

The variance of X is the covariance of X with itself, V ar(X) = Cov(X, X).
The Cauchy-Schwarz inequality

(E|XY |)2 ≤ E(X2)E(Y 2), (2.11)

assures that covariance exists for square integrable random variables. Covari-
ance is symmetric,

Cov(X, Y ) = Cov(Y, X),

and is linear in both variables (bilinear)

Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z).

Using this property with X + Y we obtain the formula for the variance of the
sum. The following property of the covariance holds

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ). (2.12)

Random variables X and Y are called uncorrelated if Cov(X, Y ) = 0. It is
easy to see from the definitions that for independent random variables

E(XY ) = EXEY,

which implies that they are uncorrelated. The opposite implication is not true
in general. The important exception is the Gaussian case.
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Theorem 2.19 If the random variables have a joint Gaussian distribution,
then they are independent if and only if they are uncorrelated.

Definition 2.20 The covariance matrix of a random vector
X = (X1, X2, . . . , Xn) is the n × n matrix with the elements Cov(Xi, Xj).

2.6 Normal (Gaussian) Distributions

The Normal (Gaussian) probability density is given by

f(x; µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 .

It is completely specified by its mean µ and its standard deviation σ. The
Normal family N(µ, σ2) is obtained from the Standard Normal Distribution,
N(0, 1) by a linear transformation.

If X is N(µ, σ2) then Z =
X − µ

σ
is N(0, 1) and X = µ + σZ.

An important property of the Normal family is that a linear combina-
tion of independent Normal variables results in a Normal variable, that is, if
X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) are independent then αX1 + βX2 ∼

N(αµ1 + βµ2, α
2σ2

1 + β2σ2
2). The moment generating function of X with

N(µ, σ2) distribution is given by

m(t) = EetX =
∫ ∞

−∞
etxf(x; µ, σ2)dx = eµte(σt)2/2 = eµt+(σt)2/2.

A random vector X = (X1, X2, . . . , Xn) has an n-variate Normal (Gaussian)
distribution with mean vector µ and covariance matrix Σ if there exist an n×n
matrix A such that its determinant |A| �= 0, and X = µ + AZ, where Z =
(Z1, Z2, . . . , Zn) is the vector with independent standard Normal components,
and Σ = AAT . Vectors are taken as column vectors here and in the sequel.

The probability density of Z is obtained by using independence of its com-
ponents, for independent random variables the densities multiply. Then per-
forming a change of variables in the multiple integral we find the probability
density of X

fX (x) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)Σ−1

(x−µ)T

.

Example 2.15: Let a bivariate Normal have µ = 0 and Σ =

[
1 ρ
ρ 1

]
. Let

X = (X, Y ) and x = (x, y). Then X can be obtained from Z by the transformation
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X = AZ with A =

[
1 0

ρ
√

1 − ρ2

]
.

Since

{
x = z1

y = ρz1 +
√

1 − ρ2z2
, the inverse transformation{

z1 = x

z2 = (y − ρx)/
√

1 − ρ2
has the Jacobian

J = det

[
∂z1
∂x

∂z1
∂y

∂z2
∂x

∂z2
∂y

]
= det

[
1 0

1√
1−ρ2

]
=

1√
1 − ρ2

.

The density of Z is given by the product of standard Normal densities, by inde-

pendence, fZ (z1, z2) = 1
2π

e−
1
2 (z2

1+z2
2). Using the formula (2.4) we obtain the joint

density of the bivariate Normal

fX (x, y) =
1

2π
√

1 − ρ2
e
− 1

2(1−ρ2)
[x2−2ρxy+y2]

.

It follows from the definition that if X has a multivariate Normal distribution
and a is a non-random vector then aX = a(µ + AZ) = aµ + aAZ. Since
a linear combination of independent Normal random variables is a Normal
random variable, aAZ is a Normal random variable. Hence aX has Normal
distribution with mean aµ and variance (aA)(aA)T = aΣaT . Thus we have

Theorem 2.21 A linear combination of jointly Gaussian random variables is
a Gaussian random variable.

Similarly it can be shown that if X ∼ N(µ,Σ) and B is a non-random matrix,
then BX ∼ N(Bµ, BΣBT ).

The moment generating function of a vector X is defined as

E(etX ) = E(e
∑

n

i=1
tiXi),

where t = (t1, t2, . . . , tn), and tX is the scalar product of vectors t and X.
It is not hard to show that the moment generating function of a Gaussian

vector X ∼ N(µ,Σ) is given by

MX (t) = eµtT − 1
2tΣtT

.

Definition 2.22 A collection of random variables is called a Gaussian pro-
cess, if the joint distribution of any finite number of its members is Gaussian.

Theorem 2.23 Let X(t) be a process with independent Gaussian increments,
that is, for any s < t, X(t)−X(s) has a Normal distribution, and is indepen-
dent of the values X(u), u ≤ s (the σ-field Fs generated by the process up to
time s). Then X(t) is a Gaussian process.

See Section 3.1, Example 3.3 for the proof.
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2.7 Conditional Expectation

Conditional Expectation and Conditional Distribution

The conditional distribution function of X given Y = y is defined by

P(X ≤ x|Y = y) =
P(X ≤ x, Y = y)

P(Y = y)
,

provided P(Y = y) > 0. However, such an approach fails if the event we
condition on has zero probability, P(Y = y) = 0. This difficulty can be
overcome if X, Y have a joint density f(x, y). In this case it follows that both
X and Y possess densities fX(x), and fY (y); fX(x) =

∫∞
−∞ f(x, y)dy, and

fY (y) =
∫∞
−∞ f(x, y)dx. The conditional distribution of X given Y = y is

defined by the conditional density

f(x|y) =
f(x, y)
fY (y)

,

at any point where fY (y) > 0. It is easy to see that so defined f(x|y) is indeed
a probability density for any y, as it is non-negative and integrates to unity.

The expectation of this distribution, when it exists, is called the conditional
expectation of X given Y = y,

E(X |Y = y) =
∫ ∞

−∞
xf(x|y)dx. (2.13)

The conditional expectation E(X |Y = y) is a function of y. Let g denote
this function, g(y) = E(X |Y = y), then by replacing y by Y we obtain a
random variable g(Y ), which is the conditional expectation of X given Y ,
E(X |Y ) = g(Y ).

Example 2.16: Let X and Y have a standard bivariate Normal distribution with
parameter ρ. Then

f(x, y) = 1

2π
√

1−ρ2
exp
{
− 1

2(1−ρ2)
[x2 − 2ρxy + y2]

}
, and fY (y) = 1√

2π
e−y2/2, so

that

f(x|y) = f(x,y)
fY (y)

= 1√
2π(1−ρ2)

exp
{
− (x−ρy)2

2(1−ρ2)

}
, which is the N(ρy, 1 − ρ2) distribu-

tion. Its mean is ρy, therefore E(X|Y = y) = ρy, and E(X|Y ) = ρY .
Similarly, it can be seen that in the multivariate Normal case the conditional

expectation is also a linear function of Y .

The conditional distribution and the conditional expectation are defined only
at the points where fY (y) > 0. Both can be defined arbitrarily on the set
{y : fY (y) = 0}. Since there are many functions which agree on the set {y :
fY (y) > 0}, any one of them is called a version of the conditional distribution
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(the conditional expectation) of X given Y = y. The different versions of
f(x|y) and E(X |Y = y) differ only on the set {y : fY (y) = 0}, which has zero
probability under the distribution of Y ; f(x|y) and E(X |Y = y) are defined
uniquely Y -almost surely.

General Conditional Expectation

The conditional expectation in a more general form is defined as follows. Let
X be an integrable random variable. E(X |Y ) = G(Y ) a function of Y such
that for any bounded function h,

E(Xh(Y )) = E(Y h(Y )), (2.14)

or E
(
(X − G(Y ))h(Y )

)
= 0 . Existence of such a function is assured by the

Radon-Nikodym theorem from functional analysis. But uniqueness is easy to
prove. If there are two such functions, G1, G2, then E((G1(Y )−G2(Y ))h(Y )) =
0. Take h(y) = sign(G1(y) − G2(y)). Then we have E|G1(Y ) − G2(Y )| = 0.
Thus P(G1(Y ) = G2(Y )) = 1, and they coincide with (Y ) probability one.

A more general conditional expectation of X given a σ-field G, E(X |G) is
a G-measurable random variable such that for any bounded G-measurable ξ

E(ξE(X |G)) = E(ξX). (2.15)

In the literature, ξ = IB is taken as indicator function of a set B ∈ G, which
is an equivalent condition: for any set B ∈ G∫

B

XdP =
∫

B

E(X |G)dP, or E
(
XI(B)

)
= E

(
E(X |G)I(B)

)
. (2.16)

The Radon-Nikodym theorem (see Theorem 10.6) implies that such a ran-
dom variable exists and is almost surely unique, in the sense that any two
versions differ only on a set of probability zero.

The conditional expectation E(X |Y ) is given by E(X |G) with G = σ(Y ),
the σ-field generated by Y . Often the Equations (2.15) or (2.16) are not used,
because easier calculations are possible to various specific properties, but they
are used to establish the fundamental properties given below. In particular,
the conditional expectation defined in (2.13) by using densities satisfies (2.15)
or (2.16).

Properties of Conditional Expectation

Conditional expectations are random variables. Their properties are stated
as equalities of two random variables. Random variables X and Y , defined
on the same space, are equal if P(X = Y ) = 1. This is also written X = Y



2.7. CONDITIONAL EXPECTATION 45

almost surely (a.s.). If not stated otherwise, whenever the equality of random
variables is used it is understood in the almost sure sense, and often writing
“almost surely” is omitted.

1. If G is the trivial field {∅, Ω}, then

E(X |G) = EX, (2.17)

2. If X is G-measurable, then

E(XY |G) = XE(Y |G). (2.18)

This means that if G contains all the information about X , then given
G, X is known, and therefore it is treated as a constant.

3. If G1 ⊂ G2 then
E(E(X |G2)|G1) = E(X |G1). (2.19)

This is known as the smoothing property of conditional expectation. In
particular by taking G1 to be the trivial field, we obtain the law of double
expectation

E(E(X |G)) = E(X). (2.20)

4. If σ(X) and G are independent, then

E(X |G) = EX, (2.21)

that is, if the information we know provides no clues about X , then the
conditional expectation is the same as the expectation. The next result
is an important generalization.

5. If σ(X) and G are independent, and F and G are independent, and
σ(F ,G) denotes the smallest σ-field containing both of them, then

E(X |σ(F ,G)) = E(X |F). (2.22)

6. Jensen’s inequality. If g(x) is a convex function on I, that is, for all
x, y,∈ I and λ ∈ (0, 1)

g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y),

and X is a random variable with range I, then

g
(
E(X |G)

) ≤ E
(
g(X)|G). (2.23)

In particular, with g(x) = |x|∣∣E(X |G)
∣∣ ≤ E

(|X ||G). (2.24)
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7. Monotone convergence. If 0 ≤ Xn, and Xn ↑ X with E|X | < ∞, then

E
(
Xn|G

) ↑ E
(
X |G). (2.25)

8. Fatous’ lemma. If 0 ≤ Xn, then

E
(
lim inf

n
Xn|G

) ≤ lim inf
n

E
(
Xn|G

)
. (2.26)

9. Dominated convergence. If limn→∞ Xn = X almost surely and |Xn| ≤ Y
with EY < ∞, then

lim
n→∞E

(
Xn|G

)
= E

(
X |G). (2.27)

For results on conditional expectations see e.g. Breiman (1968), Chapter 4.
The conditional probability P(A|G) is defined as the conditional expectation
of the indicator function,

P(A|G) = E(IA|G),

and it is a G-measurable random variable, defined P-almost surely.
The following results are often used.

Theorem 2.24 Let X and Y be two independent random variables and φ(x, y)
be such that E|φ(X, Y )| < +∞. Then

E(φ(X, Y )|Y ) = G(Y ),

where G(y) = E(φ(X, y)).

Theorem 2.25 Let (X, Y ) be a Gaussian vector. Then the conditional dis-
tribution of X given Y is also Gaussian. Moreover, provided the matrix
Cov(Y , Y ) is non-singular (has the inverse),

E(X |Y ) = E(X) + Cov(X , Y )Cov−1(Y , Y )(Y − E(Y )).

In the case when Cov(Y , Y ) is singular, the same formula holds with the
inverse replaced by the generalized inverse, the Moore-Penrose pseudoinverse
matrix.

If one wants to predict/estimate X by using observations on Y , then a
predictor is some function of Y . For a square-integrable X , E(X2) < ∞, the
best predictor X̂, by definition, minimizes the mean-square error. It is easy to
show

Theorem 2.26 (Best Estimator/Predictor) Let X̂ be such that for any
Y -measurable random variable Z,

E(X − X̂)2 ≤ E(X − Z)2.

Then X̂ = E(X |Y ).
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2.8 Stochastic Processes in Continuous Time

The construction of a mathematical model of uncertainty and of flow of in-
formation in continuous time follows the same ideas as in the discrete time,
but it is much more complicated. Consider constructing a probability model
for a process S(t) when time changes continuously between 0 and T . Take for
the sample space the set of all possibilities of movements of the process. If
we make a simplifying assumption that the process changes continuously, we
obtain the set of all continuous functions on [0, T ], denoted by C[0, T ]. This
is a very rich space. In a more general model it is assumed that the observed
process is a right-continuous function with left limits (regular right-continuous
(RRC, càdlàg)) function.

Let the sample space Ω = D[0, T ] be the set of all RRC functions on [0, T ].
An element of this set, ω is a RRC function from [0, T ] into IR. First we
must decide what kind of sets of these functions are measurable. The simplest
sets for which we would like to calculate the probabilities are sets of the form
{a ≤ S(t1) ≤ b} for some t1. If S(t) represents the price of a stock at time t,
then the probability of such a set gives the probability that the stock price at
time t1 is between a and b. We are also interested in how the price of stock at
time t1 affects the price at another time t2. Thus we need to talk about the
joint distribution of stock prices S(t1) and S(t2). This means that we need to
define probability on the sets of the form {S(t1) ∈ B1, S(t2) ∈ B2} where B1

and B2 are intervals on the line. More generally we would like to have all finite-
dimensional distributions of the process S(t), that is, probabilities of the sets:
{S(t1) ∈ B1, . . . , S(tn) ∈ Bn}, for any choice of 0 ≤ t1 ≤ t2, . . . ≤ tn ≤ T .
The sets of the form {ω(·) ∈ D[0, T ] : ω(t1) ∈ B1, . . . , ω(tn) ∈ Bn}, where
Bi’s are intervals on the line, are called cylinder sets or finite-dimensional
rectangles. The stochastic process S(t) on this sample space is just s(t), the
value of the function s at t. Probability is defined first on the cylinder sets,
and then extended to the σ-field F generated by the cylinders, that is, the
smallest σ-field containing all cylinder sets. One needs to be careful with
consistency of probability defined on cylinder sets, so that when one cylinder
contains another no contradiction of probability assignment is obtained. The
result that shows that a consistent family of distributions defines a probability
function, continuous at ∅ on the field of cylinder sets is known as Kolmogorov’s
extension theorem. Once a probability is defined the field of cylinder sets, it
can be extended in a unique way (by Caratheodory’s theorem) to F (see for
example, Breiman (1968), Durrett (1991) or Dudley (1989) for details).

It follows immediately from this construction that: a) for any choice of
0 ≤ t1 ≤ t2, . . . ≤ tn ≤ T , S(t1), S(t2), . . . , S(tn) is a random vector, and b)
that the process is determined by its finite-dimensional distributions.
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Continuity and Regularity of Paths

As discussed in the previous section, a stochastic process is determined by its
finite-dimensional distributions. In studying stochastic processes it is often
natural to think of them as random functions in t. Let S(t) be defined for
0 ≤ t ≤ T , then for a fixed ω it is a function in t, called the sample path
or a realization of S. Finite-dimensional distributions do not determine the
continuity property of sample paths. The following example illustrates this.

Example 2.17: Let X(t) = 0 for all t, 0 ≤ t ≤ 1, and τ be a uniformly distributed
random variable on [0, 1]. Let Y (t) = 0 for t �= τ and Y (t) = 1 if t = τ . Then
for any fixed t, P(Y (t) �= 0) = P(τ = t) = 0, hence P(Y (t) = 0) = 1. So that all
one-dimensional distributions of X(t) and Y (t) are the same. Similarly all finite-
dimensional distributions of X and Y are the same. However, the sample paths of
the process X, that is, the functions X(t)0≤t≤1 are continuous in t, whereas every
sample path Y (t)0≤t≤1 has a jump at the point τ . Notice that P(X(t) = Y (t)) = 1
for all t, 0 ≤ t ≤ 1.

Definition 2.27 Two stochastic processes are called versions (modifications)
of one another if

P(X(t) = Y (t)) = 1 for all t, 0 ≤ t ≤ T.

Thus the two processes in the Example 2.17 are versions of one another, one
has continuous sample paths and the other does not. If we agree to pick any
version of the process we want, then we can pick the continuous version when
it exists. In general we choose the smoothest possible version of the process.

For two processes X and Y , denote by Nt = {X(t) �= Y (t)}, 0 ≤ t ≤ T . In
the above Example 2.17, P(Nt) = P(τ = t) = 0 for any t, 0 ≤ t ≤ 1. However,
P(
⋃

0≤t≤1 Nt) = P(τ = t for some t in [0, 1]) = 1. Although, each of Nt is a
P-null set, the union N =

⋃
0≤t≤1 Nt contains uncountably many null sets,

and in this case it is a set of probability one.
If it happens that P(N) = 0, then N is called an evanescent set, and the

processes X and Y are called indistinguishable. Note that in this case
P({ω : ∃t : X(t) �= Y (t)}) = P(

⋃
0≤t≤1{X(t) �= Y (t)}) = 0, and

P(
⋂

0≤t≤1{X(t) = Y (t)}) = P(X(t) = Y (t) for all t ∈ [0, T ]) = 1. It is clear
that if the time is discrete then any two versions of the process are indistin-
guishable. It is also not hard to see that if X(t) and Y (t) are versions of one
another and they both are right-continuous, then they are indistinguishable.

Conditions for the existence of the continuous and the regular (paths with
only jump discontinuities) versions of a stochastic process are given below.

Theorem 2.28 S(t), 0 ≤ t ≤ T is IR-valued stochastic process.

1. If there exist α > 0 and ε > 0, so that for any 0 ≤ u ≤ t ≤ T ,

E|S(t) − S(u)|α ≤ C(t − u)1+ε, (2.28)
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for some constant C, then there exists a version of S with continuous
sample paths, which are Hölder continuous of order h < ε/α.

2. If there exist C > 0, α1 > 0, α2 > 0 and ε > 0, so that for any
0 ≤ u ≤ v ≤ t ≤ T ,

E
(|S(v) − S(u)|α1 |S(t) − S(v)|α2

) ≤ C(t − u)1+ε, (2.29)

then there exists a version of S with paths that may have discontinuities
of the first kind only (which means that at any interior point both right
and left limits exist, and one-sided limits exist at the boundaries).

Note that the above result allows to decide on the existence of the continu-
ous (regular) version by means of the joint bivariate (trivariate) distributions
of the process. The same result applies when the process takes values in IRd,
except that the Eucledean distance replaces the absolute value in the above
conditions.

Functions without discontinuities of the second kind are considered to be
the same if at all points of the domain they have the same right and left limits.
In this case it is possible to identify any such function with its right-continuous
version.

The following result gives a condition for the existence of a regular right-
continuous version of a stochastic process.

Theorem 2.29 If the stochastic process S(t) is right-continuous in probability
(that is, for any t the limit in probability limu↓t S(u) = S(t)) and it does not
have discontinuities of the second kind, then it has a right-continuous version.

Other conditions for the regularity of path can be given if we know some
particular properties of the process. For example, later we give such conditions
for processes that are martingales and supermartingales.

σ-field Generated by a Stochastic Process

Ft = σ(Su, u ≤ t) is the smallest σ-field that contains sets of the form {a ≤
Su ≤ b} for 0 ≤ u ≤ t, a, b ∈ IR. It is the information available to an observer
of the process S up to time t.

Filtered Probability Space and Adapted Processes

A filtration IF is a family {Ft} of increasing σ-fields on (Ω,F), Ft ⊂ F . IF
specifies how the information is revealed in time. The property that a filtration
is increasing corresponds to the fact the information is not forgotten.
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If we have a set Ω, a σ-field of subsets of Ω, F , a probability P defined on
elements of F , and a filtration IF such that

F0 ⊂ Ft ⊂ . . . ⊂ FT = F ,

then (Ω,F , IF, P) is called a filtered probability space.
A stochastic process on this space {S(t), 0 ≤ t ≤ T } is called adapted if for

all t, S(t) is Ft-measurable, that is, if for any t, Ft contains all the information
about S(t) (and may contain extra information).

The Usual Conditions

Filtration is called right-continuous if Ft+ = Ft, where

Ft+ =
⋂
s>t

Fs.

The standard assumption (referred to as the usual condition) is that filtration
is right-continuous, for all t, Ft = Ft+. It has the following interpretation:
any information known immediately after t is also known at t.

Remark 2.2: Note that if S(t) is a process adapted to IF, then we can
always take a right-continuous filtration to which S(t) is adapted by taking
Gt = Ft+ =

⋂
s>t Fs. Then St is Gt adapted.

The assumption of right-continuous filtration has a number of important
consequences. For example, it allows to assume that martingales, submartin-
gales and supermartingales have a regular right-continuous version.

It is also assumed that any set which is a subset of a set of zero probability
is F0-measurable. Of course, such a set must have zero probability. A priori
such sets need not be measurable, and we enlarge the σ-fields to include such
sets. This procedure is called the completion by the null sets.

Martingales, Supermartingales, Submartingales

Definition 2.30 A stochastic process {X(t), t ≥ 0} adapted to a filtration IF
is a supermartingale (submartingale) if for any t it is integrable, E|X(t)| < ∞,
and for any s < t

E(X(t)|Fs) ≤ X(s),
(
E(X(t)|Fs) ≥ X(s)

)
.

If E(X(t)|Fs) = X(s), then the process X(t) is called a martingale.

An example of a martingale is given by the following
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Theorem 2.31 (Doob-Levy martingale) Let Y be an integrable random
variable, that is, E|Y | < ∞, then

M(t) = E(Y |Ft). (2.30)

is a martingale.

Proof: By the law of double expectation

E(M(t)|Fs) = E
(
E(Y |Ft)|Fs

)
= E(Y |Fs) = M(s).

�

Using the law of double expectation, it is easy to see that the mean of a
martingale is a constant in t, the mean of a supermartingale is non-increasing
in t, and the mean of a submartingale is non-decreasing in t.

If X(t) is a supermartingale, then −X(t) is a submartingale, directly from
the definition.

We have the following result for the existence of the right-continuous ver-
sion for super or submartingales, without the assumption of continuity in prob-
ability imposed on the process (see for example, Liptser and Shiryaev (1974),
Vol I, p.55).

Theorem 2.32 Let the filtration IF be right-continuous and each of the σ-
fields Ft be completed by the P-null sets from F . In order that the super-
martingale X(t) has a right-continuous version, it is necessary and sufficient
that its mean function EX(t) is right-continuous. In particular, any martin-
gale with right-continuous filtration admits a regular right-continuous version.

In view of these results, it will often be assumed that the version of the process
under consideration is regular and right-continuous (càdlàg).

Stopping Times

Definition 2.33 A non-negative random variable τ , which is allowed to take
the value ∞, is called a stopping time (with respect to filtration IF) if for each
t, the event

{τ ≤ t} ∈ Ft.

It is immediate that for all t, the complimentary event {τ > t} ∈ Ft. If τ < t,
then for some n, τ ≤ t − 1/n. Thus

{τ < t} =
∞⋃

n=1

{τ ≤ t − 1/n}.

The event {τ ≤ t−1/n} ∈ Ft−1/n. Since Ft are increasing, {τ ≤ t−1/n} ∈ Ft,
therefore {τ < t} ∈ Ft.
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Introduce
Ft− :=

∨
s<t

Fs := σ
( ⋃

s<t

Fs

)
.

The above argument shows that {τ < t} ∈ Ft−.

Theorem 2.34 If filtration is right-continuous, then τ is a stopping time if
and only if for each t, the event {τ < t} ∈ Ft.

Proof: One direction has just been established, the other one is seen as
follows.

{τ ≤ t} =
∞⋂

n=1

{τ < t + 1/n}.

Since {τ < t + 1/n} ∈ Ft+1/n, by right-continuity of IF, {τ ≤ t} ∈ Ft.
�

The assumption of right-continuity of IF is important when studying exit
times and hitting times of a set by a process. If S(t) is a random process on
IR adapted to IF, then the hitting time of set A is defined as

TA = inf{t ≥ 0 : S(t) ∈ A}. (2.31)

The first exit time from a set D is defined as

τD = inf{t ≥ 0 : S(t) /∈ D}. (2.32)

Note that τD = T IR\D

Theorem 2.35 Let S(t) be continuous and adapted to IF. If D = (a, b) is
an open interval, or any other open set on IR (a countable union of open
intervals), then τD is a stopping time. If A = [a, b] is a closed interval, or any
other closed set on IR (its complement is an open set), then TA is a stopping
time. If in addition the filtration IF is right-continuous then also for closed
sets D and open sets A, τD and TA are stopping times.

Proof: {τD > t} = {S(u) ∈ D, for all u ≤ t} = ∩0≤u≤t{S(u) ∈ D}. This
event is an uncountable intersection over all u ≤ t of events in Fu. The point
of the proof is to represent this event as a countable intersection. Due to
continuity of S(u) and D being open, for any irrational u with S(u) ∈ D there
is a rational q with S(q) ∈ D. Therefore⋂

0≤u≤t

{S(u) ∈ D} =
⋂

0≤q−rational ≤t

{S(q) ∈ D},

which is now a countable intersection of the events from Ft, and hence is itself
in Ft. This shows that τD is a stopping time. Since for any closed set A, IR\A
is open, and TA = τ IR\A, TA is also a stopping time.
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Assume now that filtration is right-continuous. If D = [a, b] is a closed
interval, then D = ∩∞

n=1(a − 1/n, b + 1/n). If Dn = (a − 1/n, b + 1/n), then
τDn is a stopping time, and the event {τDn > t} ∈ Ft. It is easy to see that
∩∞

n=1{τDn > t} = {τD ≥ t}, hence {τD ≥ t} ∈ Ft, and also {τD < t} ∈ Ft as
its complimentary, for any t. The rest of the proof follows by Theorem 2.34.

�

For general processes the following result holds.

Theorem 2.36 Let S(t) be regular right-continuous and adapted to IF, and
IF be right-continuous. If A is an open set on IR, then TA is a stopping time.
If A is a closed set, then inf{t > 0 : S(t) ∈ A, or S(t−) ∈ A} is a stopping
time.

It is possible, although much harder, to show that the hitting time of a Borel
set is a stopping time.

Next results give basic properties of stopping times.

Theorem 2.37 Let S and T be two stopping times, then min(S, T ), max(S, T ),
S + T are all stopping times.

σ-field FT

If T is a stopping time, events observed before or at time T are described by
σ-field FT , defined as the collection of sets
FT = {A ∈ F : for any t, A ∩ {T ≤ t} ∈ Ft}.
Theorem 2.38 Let S and T be two stopping times. The following properties
hold: If A ∈ FS, then A ∩ {S = T } ∈ FT , consequently {S = T } ∈ FS ∩ FT .
If A ∈ FS, then A ∩ {S ≤ T } ∈ FT , consequently {S ≤ T } ∈ FS ∩ FT .

Fubini’s Theorem

Fubini’s theorem allows us to interchange integrals (sums) and expectations.
We give a particular case of Fubini’s theorem, it is formulated in the way we
use it in applications.

Theorem 2.39 Let X(t) be a stochastic process 0 ≤ t ≤ T (for all t X(t) is
a random variable), with regular sample paths (for all ω at any point t, X(t)
has left and right limits). Then∫ T

0

E|X(t)|dt = E

(∫ T

0

|X(t)|dt

)
.

Furthermore if this quantity is finite, then

E

(∫ T

0

X(t)dt

)
=
∫ T

0

E(X(t))dt.
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Chapter 3

Basic Stochastic Processes

This chapter is mainly about Brownian motion. It is the main process in the
calculus of continuous processes. The Poisson process is the main process in
the calculus of processes with jumps. Both processes give rise to functions of
positive quadratic variation. For Stochastic Calculus only Section 3.1-3.5 are
needed, but in applications other sections are also used.

Introduction

Observations of prices of stocks, positions of a diffusing particle and many
other processes observed in time are often modelled by a stochastic process. A
stochastic process is an umbrella term for any collection of random variables
{X(t)} depending on time t. Time can be discrete, for example, t = 0, 1, 2, . . .,
or continuous, t ≥ 0. Calculus is suited more to continuous time processes.
At any time t, the observation is described by a random variable which we
denote by Xt or X(t). A stochastic process {X(t)} is frequently denoted by
X or with a slight abuse of notation also by X(t).

In practice, we typically observe only a single realization of this process,
a single path, out of a multitude of possible paths. Any single path is a
function of time t, xt = x(t), 0 ≤ t ≤ T ; and the process can also be seen
as a random function. To describe the distribution and to be able to do
probability calculations about the uncertain future, one needs to know the
so-called finite-dimensional distributions. Namely, we need to specify how
to calculate probabilities of the form P(X(t) ≤ x) for any time t, i.e. the
probability distribution of the random variable X(t); and probabilities of the
form P(X(t1) ≤ x1, X(t2) ≤ x2) for any times t1, t2, i.e. the joint bivariate
distributions of X(t1) and X(t2); and probabilities of the form

P(X(t1) ≤ x1, X(t2) ≤ x2, . . . X(tn) ≤ xn), (3.1)

55
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for any choice of time points 0 ≤ t1 < t2 . . . < tn ≤ T , and any n ≥ 1 with
x1, . . . xn ∈ IR. Often one does not write the formula for (3.1), but merely
points out how to compute it.

3.1 Brownian Motion

Botanist R. Brown described the motion of a pollen particle suspended in
fluid in 1828. It was observed that a particle moved in an irregular, random
fashion. A. Einstein, in 1905, argued that the movement is due to bombard-
ment of the particle by the molecules of the fluid, he obtained the equations
for Brownian motion. In 1900, L. Bachelier used the Brownian motion as a
model for movement of stock prices in his mathematical theory of speculation.
The mathematical foundation for Brownian motion as a stochastic process was
done by N. Wiener in 1931, and this process is also called the Wiener process.

The Brownian Motion process B(t) serves as a basic model for the cu-
mulative effect of pure noise. If B(t) denotes the position of a particle at
time t, then the displacement B(t) − B(0) is the effect of the purely random
bombardment by the molecules of the fluid, or the effect of noise over time t.

Defining Properties of Brownian Motion

Brownian motion {B(t)} is a stochastic process with the following properties.

1. (Independence of increments) B(t) − B(s), for t > s, is independent of
the past, that is, of Bu, 0 ≤ u ≤ s, or of Fs, the σ-field generated by
B(u), u ≤ s.

2. (Normal increments) B(t) − B(s) has Normal distribution with mean 0
and variance t − s. This implies (taking s = 0) that B(t) − B(0) has
N(0, t) distribution.

3. (Continuity of paths) B(t), t ≥ 0 are continuous functions of t.

The initial position of Brownian motion is not specified in the definition.
When B(0) = x, then the process is Brownian motion started at x. Properties
1 and 2 above determine all the finite-dimensional distributions (see (3.4) be-
low) and it is possible to show (see Theorem 3.3) that all of them are Gaussian.
Px denotes the probability of events when the process starts at x. The time
interval on which Brownian motion is defined is [0, T ] for some T > 0, which
is allowed to be infinite.

We don’t prove here that a Brownian motion exists, it can be found in many
books on stochastic processes, and one construction is outlined in Section 5.7.
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However we can deduce continuity of paths by using normality of increments
and appealing to Theorem 2.28. Since

E(B(t) − B(s))4 = 3(t − s)2,

a continuous version of Brownian motion exists.

Remark 3.1: A definition of Brownian motion in a more general model (that
contains extra information) is given by a pair {B(t),Ft}, t ≥ 0, where Ft is
an increasing sequence of σ-fields (a filtration), B(t) is an adapted process, i.e.
B(t) is Ft measurable, such that Properties 1-3 above hold.

An important representation used for calculations in processes with inde-
pendent increments is that for any s ≥ 0

B(t + s) = B(s) + (B(t + s) − B(s)), (3.2)

where two variables are independent. An extension of this representation is
the process version.

Let W (t) = B(t+ s)−B(s). Then for a fixed s, as a process in t, W (t) is a
Brownian motion started at 0. This is seen by verifying the defining properties.

Other examples of Brownian motion processes constructed from other pro-
cesses are given below, as well as in exercises.

Example 3.1: Although B(t) − B(s) is independent of the past, 2B(t) − B(s) or
B(t)− 2B(s) is not, as, for example, B(t)− 2B(s) = (B(t)−B(s))−B(s), is a sum
of two variables, with only one independent of the past and B(s).

The following example illustrates calculations of some probabilities for Brow-
nian motion.

Example 3.2: Let B(0) = 0.
We calculate P(B(t) ≤ 0 for t = 2) and P(B(t) ≤ 0 for t = 0, 1, 2).
Since B(2) has Normal distribution with mean zero and variance 2,
P(B(t) ≤ 0 for t = 2) = 1

2
.

Since B(0) = 0, P(B(t) ≤ 0 for t = 0, 1, 2) = P(B(1) ≤ 0, B(2) ≤ 0). Note that B(2)
and B(1) are not independent, therefore this probability cannot be calculated as a
product P(B(1) ≤ 0)P(B(2) ≤ 0) = 1/4. Using the decomposition B(2) = B(1) +(
B(2)−B(1)

)
= B(1) +W (1), where the two random variables are independent, we

have

P(B(1) ≤ 0, B(2) ≤ 0) = P(B(1) ≤ 0, B(1) + W (1) ≤ 0)

= P(B(1) ≤ 0, W (1) ≤ −B(1)).

By conditioning and by using Theorem 2.24 and (2.20)

P(B(1) ≤ 0, W (1) ≤ −B(1)) =

∫ 0

−∞
P(W (1) ≤ −x)f(x)dx =

∫ 0

−∞
Φ(−x)dΦ(x),
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where Φ(x) and f(x) denote the distribution and the density functions of the standard
Normal distribution. By changing variables the last integral, we obtain∫ ∞

0

Φ(x)f(−x)dx =

∫ ∞

0

Φ(x)dΦ(x) =

∫ 1

1/2

ydy =
3

8
.

Transition Probability Functions

If the process is started at x, B(0) = x, then B(t) has the N(x, t) distribution.
More generally, the conditional distribution of B(t + s) given that B(s) = x
is N(x, t). The transition function P (y, t, x, s) is the cumulative distribution
function of this distribution,
P (y, t, x, s) = P(B(t + s) ≤ y|B(s) = x) = Px(B(t) ≤ y).

The density function of this distribution is the transition probability den-
sity function of Brownian motion,

pt(x, y) =
1√
2πt

e−
(y−x)2

2t . (3.3)

The finite-dimensional distributions can be computed with the help of the
transition probability density function, by using independence of increments
in a way similar to that exhibited in the above example.

Px(B(t1) ≤ x1, B(t2) ≤ x2, . . . , B(tn) ≤ xn) = (3.4)∫ x1

−∞
pt1(x, y1)dy1

∫ x2

−∞
pt2−t1(y1, y2)dy2 . . .

∫ xn

−∞
ptn−tn−1(yn−1, yn)dyn.

Space Homogeneity

It is easy to see that the one-dimensional distributions of Brownian motion
satisfy P0(B(t) ∈ A) = Px(B(t) ∈ x + A), where A is an interval on the line.

If Bx(t) denotes Brownian motion started at x, then it follows from (3.4)
that all finite-dimensional distributions of Bx(t) and x + B0(t) are the same.
Thus Bx(t) − x is Brownian motion started at 0, and B0(t) + x is Brownian
motion started at x, in other words

Bx(t) = x + B0(t). (3.5)

The property (3.5) is called the space homogeneous property of Brownian mo-
tion.

Definition 3.1 A stochastic process is called space-homogeneous if its finite-
dimensional distributions do not change with a shift in space, namely if

P(X(t1) ≤ x1, X(t2) ≤ x2, . . . X(tn) ≤ xn|X(0) = 0)

= P(X(t1) ≤ x1 + x, X(t2) ≤ x2 + x, . . . X(tn) ≤ xn + x|X(0) = x).
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Four realizations of Brownian motion B = B(t) started at 0 are exhibited
in Figure 3.1. Although it is a process governed by the pure chance with zero
mean, it has regions where motion looks like it has “trends”.
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Figure 3.1: Four realizations or paths of Brownian motion B(t).

Brownian Motion as a Gaussian Process

Recall that a process is called Gaussian if all its finite-dimensional distributions
are multivariate Normal.

Example 3.3: Let random variables X and Y be independent Normal with
distributions N(µ1, σ

2
1) and N(µ2, σ

2
2). Then the distribution of (X, X + Y )

is bivariate Normal with mean vector (µ1, µ1 + µ2) and covariance matrix[
σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2

]
.

To see this let Z = (Z1, Z2) have standard Normal components, then it is
easy to see that

(X, X + Y ) = µ + AZ,

where µ = (µ1, µ1 + µ2), and matrix A =
[

σ1 0
σ1 σ2

]
. The result follows by

the definition of the general Normal distribution as a linear transformation of
standard Normals (see Section 2.6).
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Similarly to the above example, the following representation

(B(t1), B(t2), . . . , B(tn))
= (B(t1), B(t1) + (B(t2) − B(t1)), . . . , B(tn−1)) + (B(tn)) − B(tn−1))

shows that this vector is a linear transformation of the standard Normal vector,
hence it has a multivariate Normal distribution.

Let Y1 = B(t1), and for k > 1, Yk = B(tk) − B(tk−1). Then by the prop-
erty of independence of increments of Brownian motion, Yk’s are independent.
They also have Normal distribution, Y1 ∼ N(0, t1), and Yk ∼ N(0, tk − tk−1).
Thus (B(t1), B(t2), . . . , B(tn)) is a linear transformation of (Y1, Y2, . . . , Yn).
But Y1 =

√
t1Z1, and Yk =

√
tk − tk−1Zk, where Zk’s are independent stan-

dard Normal. Thus (B(t1), B(t2), . . . , B(tn)) is a linear transformation of
(Z1, . . . , Zn). Finding the matrix A of this transformation is left as an ex-
ercise (Exercise 3.7).

Definition 3.2 The covariance function of the process X(t) is defined by

γ(s, t) = Cov
(
X(t), X(s)

)
= E

(
X(t) − EX(t)

)(
X(s) − EX(s)

)
= E

(
X(t)X(s)

)− EX(t)EX(s). (3.6)

The next result characterizes Brownian motion as a particular Gaussian
process.

Theorem 3.3 A Brownian motion is a Gaussian process with zero mean func-
tion, and covariance function min(t, s). Conversely, a Gaussian process with
zero mean function, and covariance function min(t, s) is a Brownian motion.

Proof: Since the mean of the Brownian motion is zero,

γ(s, t) = Cov
(
B(t), B(s)

)
= E

(
B(t)B(s)

)
.

If t < s then B(s) = B(t) + B(s) − B(t), and

E (B(t), B(s)) = EB2(t) + E (B(t)(B(s) − B(t))) = EB2(t) = t,

where we used independence of increments property. Similarly if t > s,
E (B(t)B(s)) = s. Therefore

E (B(t)B(s)) = min(t, s).

To show the converse, let t be arbitrary and s ≥ 0. X(t) is a Gaussian
process, thus the joint distribution of X(t), X(t+s) is a bivariate Normal, and
by conditions has zero mean. Therefore the vector (X(t), X(t+s)−X(t) is also
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bivariate Normal. The variables X(t) and X(t + s) − X(t) are uncorrelated,
using that Cov(X(t), X(t + s)) = min(t, s),

Cov(X(t), X(t+s)−X(t)) = Cov(X(t), X(t+s))−Cov(X(t), X(t)) = t−t = 0.

A property of the multivariate Normal distribution implies that these variables
are independent. Thus the increment X(t + s) − X(t) is independent of X(t)
and has N(0, s) distribution. Therefore it is a Brownian motion.

�

Example 3.4: We find the distribution of B(1) + B(2) + B(3) + B(4).
Consider the random vector X = (B(1), B(2), B(3), B(4)). Since Brownian motion is
a Gaussian process, all its finite-dimensional distributions are Normal, in particular X
has a multivariate Normal distribution with mean vector zero and covariance matrix
given by σij = Cov(Xi, Xj). For example, Cov(X1, X3) = Cov((B(1), B(3)) = 1.

Σ =

 1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4


Now, let a = (1, 1, 1, 1). Then

aX = X1 + X2 + X3 + X4 = B(1) + B(2) + B(3) + B(4).

aX has a Normal distribution with mean zero and variance aΣaT , and in this case
the variance is given by the sum of the elements of the covariance matrix. Thus
B(1) + B(2) + B(3) + B(4) has a Normal distribution with mean zero and variance
30. Alternatively, we can calculate the variance of the sum by the formula

V ar(X1 + X2 + X3 + X4)

= Cov(X1 + X2 + X3 + X4, X1 + X2 + X3 + X4) =
∑
i,j

Cov(Xi, Xj) = 30.

Example 3.5: To illustrate the use of scaling, we we find the distribution of
B( 1

4
)+B( 1

2
)+B( 3

4
)+B(1). Consider the random vector Y =

(
B( 1

4
), B( 1

2
), B( 3

4
), B(1)

)
.

It is easy to see that Y and 1/2X , where X = (B(1), B(2), B(3), B(4)) have the same
law. Therefore its covariance matrix is given by 1

4
Σ, with Σ as above. Consequently,

aY has a Normal distribution with mean zero and variance 30/4

Example 3.6: We find the probability P(
∫ 1

0
B(t)dt > 2√

3
).

Comment first that since Brownian motion has continuous paths, the Riemann in-
tegral

∫ 1

0
B(t)dt is well defined for any random path as we integrate path by path.

To find the required probability we need to know the distribution of
∫ 1

0
B(t)dt. This

can be obtain as a limit of the distributions of the approximating sums,∑
B(ti)∆,
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where points ti partition [0, 1] and ∆ = ti+1 − ti. If, for example, ti = i/n, then for
n = 4 the approximating sum is 1

4

(
B( 1

4
) + B( 1

2
) + B( 3

4
) + B(1)

)
, the distribution of

which was found in the previous example to be N(0, 15
32

). Similarly, the distribution
of all of the approximating sums is Normal with zero mean. It can be shown that
the limit of Gaussian distributions is a Gaussian distribution. Thus

∫ 1

0
B(t)dt has

a Normal distribution with zero mean. Therefore it only remains to compute its
variance.

V ar

(∫ 1

0

B(t)dt

)
= Cov

(∫ 1

0

B(t)dt,

∫ 1

0

B(s)ds

)
= E

(∫ 1

0

B(t)dt

∫ 1

0

B(s)ds

)
=

∫ 1

0

∫ 1

0

E (B(t)B(s))dtds

=

∫ 1

0

∫ 1

0

Cov(B(t),B(s))dtds =

∫ 1

0

∫ 1

0

min(t, s)dtds = 1/3

Exchanging the integrals and expectation is justified by Fubini’s theorem since∫ 1

0

∫ 1

0

E
∣∣B(t)B(s)

∣∣dtds ≤
∫ 1

0

∫ 1

0

√
tsdtds < 1.

Thus
∫ 1

0
B(t)dt has N(0, 1/3) distribution, and the desired probability is approxi-

mately 0.025. Later we shall prove that the distribution of the integral
∫ a

0
B(t)dt is

Normal N(0, a3/3) by considering a transformation to Itô integral, see Example 6.4.

Brownian Motion as a Random Series

The process

ξ0
t√
π

+
2√
π

∞∑
j=1

sin(jt)
j

ξj , (3.7)

where ξj ’s j = 0, 1, . . ., are independent standard Normal random variables,
is Brownian motion on [0, π]. Convergence of the series is understood almost
surely. This representation resembles the example of a continuous but nowhere
differentiable function, Example 1.2. One can prove the assertion by showing
that the partial sums converge uniformly, and verifying that the process in
(3.7) is Gaussian, has zero mean, and covariance min(s, t) (see, for example,
Breiman (1968), p.261, Itô and McKean (1965), p.22).

Remark 3.2: A similar, more general representation of a Brownian motion is
given by using an orthonormal sequence of functions on [0, T ], hj(t). B(t) =∑∞

j=0 ξjHj(t), where Hj(t) =
∫ t

0 hj(s)ds, is a Brownian motion on [0, T ].
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3.2 Properties of Brownian Motion Paths

An occurrence of Brownian motion observed from time 0 to time T , is a random
function of t on the interval [0, T ]. It is called a realization, a path or trajectory.

Quadratic Variation of Brownian Motion

The quadratic variation of Brownian motion [B, B](t) is defined as

[B, B](t) = [B, B]([0, t]) = lim
n∑

i=1

|B(tni ) − B(tni−1)|2, (3.8)

where the limit is taken over all shrinking partitions of [0, t], with δn =
maxi(tni+1 − tni ) → 0 as n → ∞. It is remarkable that although the sums
in the definition (3.8) are random, their limit is non-random, as the following
result shows.

Theorem 3.4 Quadratic variation of a Brownian motion over [0, t] is t.

Proof: We give the proof for a sequence of partitions, for which
∑

n δn <
∞. An example of such is when the interval is divided into two, then each
subinterval is divided into two, etc. Let Tn =

∑
i |B(tni )−B(tni−1)|2. It is easy

to see that

E(Tn) = E
∑

i

|B(tni ) − B(tni−1)|2 =
n∑

i=1

(tni − tni−1) = t − 0 = t.

By using the fourth moment of N(0, σ2) distribution is 3σ4, we obtain the
variance of Tn

V ar(Tn) = V ar(
∑

i

|B(tni ) − B(tni−1)|2) =
∑

i

V ar(B(tni ) − B(tni−1))
2

=
∑

i

3(tni − tni−1)
2 ≤ 3 max(tni − tni−1)t = 3tδn.

Therefore
∑∞

n=1 V ar(Tn) < ∞. Using monotone convergence theorem, we find
E
∑∞

n=1(Tn − ETn)2 < ∞. This implies that the series inside the expectation
converges almost surely. Hence its terms converge to zero, and Tn − ETn → 0
a.s., consequently Tn → t a.s.

It is possible to show that Tn → t a.s. for any sequence of partitions which
are successive refinements and satisfy δn → 0 as n → ∞ (see for example,
Loeve (1978), Vol. 2, p.253 for the proof, or Breiman (1968)).

�
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Varying t, the quadratic variation process of Brownian motion is t. Note that
the classical quadratic variation of Brownian paths (defined as the supremum
over all partitions of sums in (3.8), see Chapter 1 is infinite (e.g. Freedman
(1971), p.48.)

Properties of Brownian paths

B(t)’s as functions of t have the following properties. Almost every sample
path B(t), 0 ≤ t ≤ T

1. is a continuous function of t;

2. is not monotone in any interval, no matter how small the interval is;

3. is not differentiable at any point;

4. has infinite variation on any interval, no matter how small it is;

5. has quadratic variation on [0, t] equal to t, for any t.

Properties 1 and 3 of Brownian motion paths state that although any realiza-
tion B(t) is a continuous function of t, it has increments ∆B(t) over an interval
of length ∆t much larger than ∆t as ∆t → 0. Since E(B(t+∆t)−B(t))2 = ∆t,
it suggests that the increment is roughly like

√
∆t. This is made precise by

the quadratic variation Property 5.
Note that by Theorem 1.10, a positive quadratic variation implies infinite

variation, so that Property 4 follows from Property 5. Since a monotone
function has finite variation, Property 2 follows from Property 4.

By Theorem 1.8 a continuous function with a bounded derivative is of
finite variation. Therefore it follows from Property 4 that B(t) can not have
a bounded derivative on any interval, no matter how small the interval is.
It is not yet the non-differentiability at any point, but it is close to it. For
the proof of the result that with probability one Brownian motion paths are
nowhere differentiable (due to Dvoretski, Erdös and Kakutani) see Breiman
(1968) p.261. Here we show a simple statement

Theorem 3.5 For any t almost all trajectories of Brownian motion are not
differentiable at t.

Proof: Consider B(t+∆)−B(t)
∆ =

√
∆Z
∆ = Z√

∆
, for some standard Normal

random variable Z. Thus the ratio converges to ∞ in distribution, since
P(| Z√

∆
| > K) → 1 for any K, as ∆ → 0, precluding existence of the

derivative at t.
�

To realize the above argument on a computer take e.g. ∆ = 10−20. Then
∆B(t) = 10−10Z, and ∆B(t)/∆ = 1010Z, which is very large in absolute
value with overwhelming probability.
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3.3 Three Martingales of Brownian Motion

In this section three main martingales associated with Brownian motion are
given. Recall the definition of a martingale.

Definition 3.6 A stochastic process {X(t), t ≥ 0} is a martingale if for any
t it is integrable, E|X(t)| < ∞, and for any s > 0

E(X(t + s)|Ft) = X(t), a.s. (3.9)

where Ft is the information about the process up to time t, and the equality
holds almost surely.

The martingale property means that if we know the values of the process up
to time t, and X(t) = x then the expected future value at any future time is
x.

Remark 3.3: Ft represents information available to an observer at time t. A
set A ∈ Ft if and only if by observing the process up to time t one can decide
whether or not A has occurred. Formally, Ft = σ(X(s), 0 ≤ s ≤ t) denotes
the σ-field (σ-algebra) generated by the values of the process up to time t.

Remark 3.4: As the conditional expectation given a σ-field is defined as a
random variable (see for example, Section 2.7), all the relations involving con-
ditional expectations, such as equalities and inequalities, must be understood
in the almost sure sense. This will always be assumed, and the almost sure
“a.s.” specification will be frequently dropped.

Examples of martingales constructed from Brownian motion are given in
the next result.

Theorem 3.7 Let B(t) be Brownian Motion. Then

1. B(t) is a martingale.

2. B(t)2 − t is a martingale.

3. For any u, euB(t)−u2
2 t is a martingale.

Proof: The key idea in establishing the martingale property is that for any
function g, the conditional expectation of g(B(t + s) − B(t)) given Ft equals
to the unconditional one,

E
(
g(B(t + s) − B(t))|Ft

)
= E

(
g(B(t + s) − B(t))

)
, (3.10)
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due to independence of B(t + s)−B(t) and Ft. The latter expectation is just
Eg(X), where X Normal N(0, s) random variable.
1. By definition, B(t) ∼ N(0, t), so that B(t) is integrable with E(B(t)) = 0.

E(B(t + s)|Ft) = E
(
B(t) + (B(t + s) − B(t))|Ft

)
= E(B(t)|Ft) + E(B(t + s) − B(t)|Ft)
= B(t) + E(B(t + s) − B(t)) = B(t).

2. By definition, E(B2(t)) = t < ∞, therefore B2(t) is integrable. Since

B2(t + s) =
(
B(t) + B(t + s) − B(t)

)2
= B2(t) + 2B(t)(B(t + s) − B(t)) + (B(t + s) − B(t))2,

E(B2(t + s)|Ft)
= B2(t) + 2E

(
B(t)(B(t + s) − B(t))|Ft

)
+ E

(
(B(t + s) − B(t))2|Ft

)
= B2(t) + s,

where we used that B(t + s)−B(t) is independent of Ft and has mean 0, and
(3.10) with g(x) = x2. Subtracting (t+s) from both sides gives the martingale
property of B2(t) − t.
3. Consider the moment generating function of B(t),

E(euB(t)) = etu2/2 < ∞,

since B(t) has the N(0, t) distribution. This implies integrablity of euB(t)−tu2/2,
moreover

E(euB(t)−tu2/2) = 1.

The martingale property is established by using (3.10) with g(x) = eux.

E
(
euB(t+s)|Ft

)
= E

(
euB(t)+u(B(t+s)−B(t))|Ft

)
= euB(t)E

(
eu(B(t+s)−B(t))|Ft

)
( since B(t) is Ft-measurable)

= euB(t)E
(
eu(B(t+s)−B(t))

)
( since increment is independent of Ft)

= e
u2
2 seuB(t).

The martingale property of euB(t)−tu2/2 is obtained by multiplying both sides
by e−

u2
2 (t+s).

�
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Remark 3.5: All three martingales have a central place in the theory. The
martingale B2(t) − t provides a characterization (Levy’s characterization) of
Brownian motion. It will be seen later that if a process X(t) is a continuous
martingale such that X2(t) − t is also a martingale, then X(t) is Brownian
motion. The martingale euB(t)−tu2/2 is known as the exponential martingale,
and as it is related to the moment generating function, it is used for establishing
distributional properties of the process.

3.4 Markov Property of Brownian Motion

The Markov Property states that if we know the present state of the process,
then the future behaviour of the process is independent of its past. The process
X(t) has the Markov property if the conditional distribution of X(t+ s) given
X(t) = x, does not depend on the past values (but it may depend on the
present value x). The process “does not remember” how it got to the present
state x. Let Ft denote the σ-field generated by the process up to time t.

Definition 3.8 X is a Markov process if for any t and s > 0, the conditional
distribution of X(t + s) given Ft is the same as the conditional distribution of
X(t + s) given X(t), that is,

P(X(t + s) ≤ y|Ft) = P(X(t + s) ≤ y|X(t)), a.s. (3.11)

Theorem 3.9 Brownian motion B(t) possesses Markov property.

Proof: It is easy to see by using the moment generating function that the
conditional distribution of B(t + s) given Ft is the same as that given B(t).
Indeed,

E(euB(t+s)|Ft) = euB(t)E
(
eu(B(t+s)−B(t))|Ft

)
= euB(t)E

(
eu(B(t+s)−B(t))

)
(since eu(B(t+s)−B(t)) is independent of Ft)

= euB(t)eu2s/2 (since B(t + s) − B(t) is N(0, s))

= euB(t)E
(
eu(B(t+s)−B(t))|B(t)

)
= E

(
euB(t+s)|B(t)

)
.

�

The transition probability function of a Markov process X is defined as

P (y, t, x, s) = P(X(t) ≤ y|X(s) = x)

the conditional distribution function of the process at time t, given that it is
at point x at time s < t. It is possible to choose them so that for any fixed
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x they are true probabilities on the line. In the case of Brownian motion it is
given by the distribution function of the Normal N(x, t − s) distribution

P (y, t, x, s) =
∫ y

−∞

1√
2π(t − s)

e
(u−x)2

2(t−s) du.

The transition probability function of Brownian motion satisfies P (y, t, x, s) =
P(y, t − s, x, 0). In other words,

P(B(t) ≤ y|B(s) = x) = P(B(t − s) ≤ y|B(0) = x). (3.12)

For fixed x and t, P (y, t, x, 0) has the density pt(x, y) is given by (3.3). The
property (3.12) states that Brownian motion is time-homogeneous, that is, its
distributions do not change with a shift in time. For example, the distribution
of B(t) given B(s) = x is the same as that of B(t − s) given B(0) = x.
It follows from (3.12) and (3.4) that all finite-dimensional distributions of
Brownian motion are time-homogeneous.

In what follows Px denotes the conditional probability given B(0) = x.
More information on transition functions is given in Section 5.5.

Stopping Times and Strong Markov Property

Definition 3.10 A random time T is called a stopping time for B(t), t ≥ 0,
if for any t it is possible to decide whether T has occurred or not by observing
B(s), 0 ≤ s ≤ t. More rigorously, for any t the sets {T ≤ t} ∈ Ft, the σ-field
generated by B(s), 0 ≤ s ≤ t.

Example 3.7: Examples of stopping times and random times.

1. Any non-random time T is a stopping time. Formally, {T ≤ t} is either the ∅
or Ω, which are members of Ft for any t.

2. Let T be the first time B(t) takes value (hits) 1. Then T is a stopping time.
Clearly, if we know B(s) for all s ≤ t then we know whether the Brownian
motion took value 1 before or at t or not. Thus we know that {T ≤ t} has
occurred or not just by observing the past of the process prior to t. Formally,
{T ≤ t} = {B(u) < 1, for all u ≤ t} ∈ Ft.

3. Similarly, the first passage time of level a, Ta = inf{t > 0 : B(t) = a} is a
stopping time.

4. Let T be the time when Brownian motion reaches its maximum on the interval
[0, 1]. Then clearly, to decide whether {T ≤ t} has occurred or not, it is not
enough to know the values of the process prior to t, one needs to know all the
values on the interval [0, 1]. So that T is not a stopping time.

5. Let T be the last zero of Brownian motion before time t = 1. Then T is not
a stopping time, since if T ≤ t, then there are no zeros in (t, 1], which is the
event that is decided by observing the process up to time 1, and this set does
not belong to Ft.
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The strong Markov property is similar to the Markov property, except that in
the definition a fixed time t is replaced by a stopping time T .

Theorem 3.11 Brownian motion B(t) has the Strong Markov property: for
any finite stopping time T the regular conditional distribution of B(T +t), t ≥ 0
given FT is PB(T ), that is,

P(B(T + t) ≤ y|FT ) = P(B(T + t) ≤ y|B(T )) a.s.

Corollary 3.12 Let T be a finite stopping time. Define the new process in
t ≥ 0 by

B̂(t) = B(T + t) − B(T ). (3.13)

Then B̂(t) is a Brownian motion is started at zero and independent of FT .

We don’t give the proof of the strong Markov property here, it can be found,
for example in Rogers and Williams (1994) p.21, and can be done by using the
exponential martingale and the Optional Stopping Theorem given in Chapter
7.

Note that the strong Markov property applies only when T is a stopping
time. If T is just a random time, then B(T + t)−B(T ) need not be Brownian
motion.

3.5 Hitting Times and Exit Times

Let Tx denote the first time B(t) hits level x, Tx = inf{t > 0 : B(t) = x}.
Denote the time to exit an interval (a, b) by τ = min(Ta, Tb).

Theorem 3.13 Let a < x < b, and τ = min(Ta, Tb). Then Px(τ < ∞) = 1
and Exτ < ∞.

Proof: {τ > 1} = {a < B(s) < b, for all 0 ≤ s ≤ 1} ⊂ {a < B(1) < b}.
Therefore we have

Px(τ > 1) ≤ Px(B(1) ∈ (a, b)) =
1√
2π

∫ b

a

e−(x−y)2/2dy.

The function Px(B(1) ∈ (a, b)) is continuous in x on [a, b], hence it reaches
its maximum θ < 1. By using the strong Markov property we can show that
Px(τ > n) ≤ θn. For any non-negative random variable X ≥ 0, EX ≤∑∞

n=0 P(X > n) (see Exercise 3.2). Therefore,

Exτ ≤
∞∑

n=0

θn =
1

1 − θ
< ∞.
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The bound on Px(τ > n) is established as follows

Px(τ > n) = Px(B(s) ∈ (a, b), 0 ≤ s ≤ n)

= Px(B(s) ∈ (a, b), 0 ≤ s ≤ n − 1, B(s) ∈ (a, b), n − 1 ≤ s ≤ n)

= Px(τ > n − 1, B(s) ∈ (a, b), n − 1 ≤ s ≤ n)

= Px(τ > n − 1, B(n − 1) + B̂(s) ∈ (a, b), 0 ≤ s ≤ 1) by (3.13)

= E(Px(τ > n − 1, B̂y(s) ∈ (a, b), 0 ≤ s ≤ 1|B(n − 1) = y))

= E((Px(τ > n − 1|B(n − 1) = y)Px(B̂y(s) ∈ (a, b), 0 ≤ s ≤ 1)|B(n − 1) = y))

= E((Px(τ > n − 1|B(n − 1) = y))Py(B̂(s) ∈ (a, b), 0 ≤ s ≤ 1))

≤ max Py(B̂(s) ∈ (a, b), 0 ≤ s ≤ 1)Px(τ > n − 1)

≤ θPx(τ > n − 1) ≤ θn, by iterations.

�

The next result gives the recurrence property of Brownian motion.

Theorem 3.14

Pa(Tb < ∞) = 1, Pa(Ta < ∞) = 1

Proof: The second statement follows from the first, since

Pa(Ta < ∞) ≥ Pa(Tb < ∞)Pb(Ta < ∞) = 1.

We show now that P0(T1 < ∞) = 1, for other points the proof is similar.
Observe firstly that by the previous result and by symmetry, for any a and b

Pa+b
2

(Ta < Tb) =
1
2

Hence P0(T−1 < T1) = 1
2 , P−1(T−3 < T1) = 1

2 , P−3(T−7 < T1) = 1
2 , etc.

Consider now P0(T−(2n−1) < T1). Since the paths of Brownian motion are
continuous, to reach −(2n − 1) the path must reach −1 first, then it must go
from −1 to −3, etc. Hence we obtain

P0(T−(2n−1) < T1)

= P0(T−1 < T1)P−1(T−3 < T1) . . .P−(2n−1−1)(T−(2n−1) < T1) =
1
2n

If An denotes the event that Brownian motion hits −(2n − 1) before it hits 1,
then we showed that P(An) = 2−n. Notice that An ⊂ An−1, as if Brownian
motion hits −(2n − 1) before 1, it also hits the points bigger than −(2n − 1).
Thus

n⋂
i=1

Ai = An
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and

P(
∞⋂

i=1

Ai) = lim
n→∞P(An) = lim

n→∞ 2−n = 0.

This implies that

P(
∞⋃

n=1

Ac
n) = 1.

In other words, with probability 1, one of the events complimentary to An

occurs, that is, there is n such that Brownian motion hits 1 before it hits
−(2n−1). This implies that P0(T1 < ∞) = 1. Another proof of this fact, that
uses properties of martingales, is given in Chapter 7.

�

3.6 Maximum and Minimum of Brownian Mo-
tion

In this section we establish the distribution of the maximum and the minimum
of Brownian motion on [0, t],

M(t) = max
0≤s≤t

B(s) and m(t) = min
0≤s≤t

B(s),

as well as the distribution of the first hitting (passage) time of x,
Tx = inf{t > 0 : B(t) = x}.

Theorem 3.15 For any x > 0,

P0(M(t) ≥ x) = 2P0(B(t) ≥ x) = 2(1 − Φ(
x√
t
)),

where Φ(x) stands for the standard Normal distribution function.

Proof: Notice that the events {M(t) ≥ x} and {Tx ≤ t} are the same.
Indeed, if the maximum at time t is greater than x, then at some time before t
Brownian motion took value x, and if Brownian motion took value x at some
time before t, then the maximum will be at least x. Since

{B(t) ≥ x} ⊂ {Tx ≤ t}

P(B(t) ≥ x) = P(B(t) ≥ x, Tx ≤ t).

As B(Tx) = x,

P(B(t) ≥ x) = P(Tx ≤ t, B(Tx + (t − Tx)) − B(Tx) ≥ 0).
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By Theorem 3.14, Tx is a finite stopping time, and by the strong Markov
property (3.13), the random variable B̂(s) = B(Tx +s)−B(Tx) is independent
of FTx and has a Normal distribution, so we have

P(B(t) ≥ x) = P(Tx ≤ t, B̂(t − Tx) ≥ 0). (3.14)

If we had s independent of Tx, then

P(Tx ≤ t, B̂(s) ≥ 0) = P(Tx ≤ t)P(B̂(s ≥ 0)

= P(Tx ≤ t)
1
2

= P(M(t) ≥ x)
1
2
, (3.15)

and we are done. But in (3.14) s = t − Tx, and is clearly dependent on Tx. It
is not easy to show that

P(B(t) ≥ x) = P(Tx ≤ t, B̂(t − Tx) ≥ 0)

= P(Tx ≤ t)
1
2

= P(M(t) ≥ x)
1
2
.

The proof can be found, for example, in Dudley (1989) p.361.
�

A simple application of the result is given in the following example, from which
it follows that Brownian motion changes sign in (0, ε), for any ε however small.

Example 3.8: We find the probability P(B(t) ≤ 0 for all t, 0 ≤ t ≤ 1). Note that
the required probability involves uncountably many random variables: all B(t)’s are
less than or equal to zero, 0 ≤ t ≤ 1, we want to know the probability that the entire
path from 0 to 1 will stay below 0. We could calculate the desired probability for
n values of the process and then take the limit as n → ∞. But it is simpler in this
case to express this probability as a function of the whole path. All B(t)’s are less
or equal zero, if and only if their maximum is less than or equal to zero.

{B(t) ≤ 0 for all t, 0 ≤ t ≤ 1} = { max
0≤t≤1

B(t) ≤ 0},

and consequently these events have same probabilities. Now,

P( max
0≤t≤1

B(t) ≤ 0) = 1 − P( max
0≤t≤1

B(t) > 0).

By the law of the maximum of Brownian motion,

P( max
0≤t≤1

B(t) > 0) = 2P(B(1) > 0) = 1.

Hence P(B(t) ≤ 0 for all t, 0 ≤ t ≤ 1) = 0.

To find the distribution of the minimum of Brownian motion
m(t) = min0≤s≤t B(s) we use the symmetry argument, and that

− min
0≤s≤t

B(s) = max
0≤s≤t

(−B(s)).
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Theorem 3.16 If B(t) is a Brownian Motion with B(0) = 0, then B̂(t) =
−B(t) is also a Brownian motion with B̂(0) = 0.

Proof: The process B̂(t) = −B(t) has independent and normally distributed
increments. It also has continuous paths, therefore it is Brownian motion.

�

Theorem 3.17 For any x < 0

P0( min
0≤s≤t

B(s) ≤ x) = 2P0(B(t) ≥ −x) = 2P0(B(t) ≤ x)

The proof is straightforward and is left as an exercise.

3.7 Distribution of Hitting Times

Tx is finite by Theorem 3.14. The result below gives the distribution of Tx and
establishes that Tx has infinite mean.

Theorem 3.18 The probability density of Tx is given by

fTx(t) =
|x|√
2π

t−
3
2 e−

x2
2t ,

which is the Inverse Gamma density with parameters 1
2 and x2

2 . E0Tx = +∞.

Proof: Take x > 0. The events {M(t) ≥ x} and {Tx ≤ t} are the same, so
that

P(Tx ≤ t) = P(M(t) ≥ x)

= 2P(B(t) ≥ x) =
∫ ∞

x

√
2
πt

e−
y2

2t dy.

The formula for the density of Tx is obtained by differentiation after the change
of variables u = y√

t
in the integral. Finally,

E0Tx =
|x|√
2π

∫ ∞

0

t−
1
2 e−

x2
2t dt = ∞, since t−

1
2 e−

x2
2t ∼ 1/

√
t, t → ∞.

For x < 0 the proof is similar.
�

Remark 3.6: The property P(Tx < ∞) = 1 is called the recurrence property
of Brownian motion. Although P(Tx < ∞) = 1, E(Tx) = ∞, even though x is
visited with probability one, the expected time for it to happen is infinite.
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The next result looks at hitting times Tx as a process in x.

Theorem 3.19 The process of hitting times {Tx}, x ≥ 0, has increments
independent of the past, that is, for any 0 < a < b, Tb − Ta is independent of
B(t), t ≤ Ta, and the distribution of the increment Tb −Ta is the same as that
of Tb−a and it is given by the density

fTb−Ta(t) =
b − a√

2π
t−

3
2 e−

(b−a)2

2t .

Proof: By the strong Markov property B̂(t) = B(Ta+t)−B(Ta) is Brownian
motion started at zero, and independent of the past B(t), t ≤ Ta. Tb − Ta =
inf{t ≥ 0 : B̂(t) = b − a}. Hence Tb − Ta is the same as first hitting time of
b − a by B̂.

�

3.8 Reflection Principle and Joint Distributions

Let B(t) be a Brownian motion started at x, and B̂(t) = −B(t). Then B̂(t) is
a Brownian motion started at −x. The proof is straightforward by checking
the defining properties. This is the simplest form of the reflection principle.
Here the Brownian motion is reflected about the horizontal axis.

In greater generality, the process that is obtained by reflection of a Brown-
ian motion about the horizontal line passing through (T, B(T )), for a stopping
time T , is also a Brownian motion.

Note that for t ≥ T the reflected path is, B̂(t) − B(T ) = −(B(t) − B(T )),
giving B̂(t) = 2B(T ) − B(t).

Theorem 3.20 (Reflection Principle) Let T be a stopping time. Define
B̂(t) = B(t) for t ≤ T , and B̂(t) = 2B(T ) − B(t) for t ≥ T . Then B̂ is also
Brownian motion.

The proof is beyond the scope of this book, but a heuristic justification is
that for t ≥ T the process −(B(t) − B(T )) is also a Brownian motion by the
strong Markov property, so that B̂, constructed from the Brownian motion
before the stopping time, and another Brownian motion after the stopping
time, is again Brownian motion. For a rigorous proof see Freedman (1971).
Using the Reflection Principle, the joint distribution of the Brownian motion
with its maximum can be obtained.

Theorem 3.21 The joint distribution of (B(t), M(t)) has the density

fB,M (x, y) =

√
2
π

(2y − x)
t3/2

e
−(2y−x)2

2t , for y ≥ 0, x ≤ y. (3.16)
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Proof: Let, for y > 0 and y > x, B̂(t) be B(t) reflected at Ty. Then

P(B(t) ≤ x, M(t) ≥ y)
= P(Ty ≤ t, B(t) ≤ x) ( since {M(t) ≥ y} = {Ty ≤ t})
= P(Ty ≤ t, B̂(t) ≥ 2y − x) ( on {Ty ≤ t}, B̂(t) = 2y − B(t))

= P(Ty ≤ t, B(t) ≥ 2y − x) ( since Ty is the same for B and B̂)
= P(B(t) ≥ 2y − x) ( since y − x > 0, and {B(t) ≥ 2y − x} ⊂ {Ty ≤ t})
= 1 − Φ(

2y − x√
t

).

The density is obtained by differentiation.
�

It is possible to show (see for example, Karatzas and Shreve 1988, p.123-24)
that |B(t)| and M(t) − B(t) have the same distribution.

Theorem 3.22 The two processes |B(t)| and M(t) − B(t) are both Markov
processes with transition probability density function pt(x, y)+pt(x,−y), where

pt(x, y) = 1√
2πt

e−
(y−x)2

2t is the transition probability function of Brownian mo-
tion. Consequently they have same finite-dimensional distributions.

The next result gives the joint distribution of B(t),M(t) and m(t), for a proof
see Freedman 1971, p.26-27.

Theorem 3.23

P(a < m(t) ≤ M(t) < b, and B(t) ∈ A) =
∫

A

k(y)dy, (3.17)

where k(y) =
∑∞

n=−∞ pt(2n(b − a), y) − pt(2a, 2n(b − a) + y) for t > 0 and
a < 0 < b.

Remark 3.7: Joint distributions given above are used in pricing of the so-
called barrier options, see Chapter 11.

3.9 Zeros of Brownian Motion. Arcsine Law

A time point τ is called a zero of Brownian motion if B(τ) = 0. As an applica-
tion of the distribution of the maximum we obtain the following information
about zeros of Brownian motion. Below {Bx(t)} denotes Brownian motion
started at x.
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Theorem 3.24 For any x �= 0, the probability that {Bx(t)} has at least one
zero in the time interval (0, t), is given by

|x|√
2π

∫ t

0

u− 3
2 e−

x2
2u du.

Proof: If x < 0, then due to continuity of Bx(t), (draw a picture of this
event)

P(Bx has at least one zero between 0 and t) = P( max
0≤s≤t

Bx(t) ≥ 0).

Since Bx(t) = B(t)+x, where B(t) is Brownian motion started at zero at time
zero,

Px(B has a zero between 0 and t) = P( max
0≤s≤t

Bx(t) ≥ 0)

= P0( max
0≤s≤t

B(t) + x ≥ 0) = P0( max
0≤s≤t

B(t) ≥ −x)

= 2P0(B(t) ≥ −x) = P0(Tx ≤ t)

=
∫ t

0

fTx(u)du =
−x√
2π

∫ t

0

u− 3
2 e−

x2
2u du.

For x > 0 the proof is similar, and is based on the distribution of the minimum
of Brownian motion.

�

Using this result we can establish

Theorem 3.25 The probability that Brownian motion B(t) has at least one
zero in the time interval (a, b) is given by

2
π

arccos
√

a

b
.

Proof: Denote by h(x) = P(B has at least one zero in (a, b)|Ba = x). By
the Markov property P(B has at least one zero in (a, b)|Ba = x) is the same
as P(Bx has at least one zero in (0, b − a)). By conditioning

P(B has at least one zero in (a, b))

=
∫ ∞

−∞
P(B has at least one zero in (a, b)|Ba = x)P(Ba ∈ dx)

=
∫ ∞

−∞
h(x)P(Ba ∈ dx) =

√
2
πa

∫ ∞

0

h(x)e−
x2
2a dx.

Putting in the expression for h(x) from the previous example and performing
the necessary calculations we obtain the result.

�

The Arcsine law now follows:
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Theorem 3.26 The probability that Brownian motion {B(t)} has no zeros in
the time interval (a, b) is given by 2

π arcsin
√

a
b .

The next result gives distributions of the last zero before t, and the first zero
after t. Let

γt = sup{s ≤ t : B(s) = 0} = last zero before t. (3.18)

βt = inf{s ≥ t : B(s) = 0} = first zero after t. (3.19)

Note that βt is a stopping time but γt is not.

Theorem 3.27

P(γt ≤ x) =
2
π

arcsin
√

x

t
. (3.20)

P(βt ≥ y) =
2
π

arcsin
√

t

y
. (3.21)

P(γt ≤ x, βt ≥ y) =
2
π

arcsin
√

x

y
. (3.22)

Proof: All of these follow from the previous result. For example,
P(γt ≤ x) = P(B has no zeros in (x, t)).
P(γt ≤ x, βt ≥ y) = P(B has no zeros in (x, y)).

�

Since Brownian motion is continuous, and it has no zeros on the interval
(γt, βt) it keeps the same sign on this interval, either positive or negative.
When Brownian motion is entirely positive or entirely negative on an interval,
it is said that it is an excursion of Brownian motion. Thus the previous
result states that excursions have the arcsine law. To picture a Brownian path
consider for every realization B = {B(t), 0 ≤ t ≤ 1}, the set of its zeros on the
interval [0, 1], that is, the random set L0 = L0(B) = {t : B(t) = 0, 0 ≤ t ≤ 1}.
Theorem 3.28 The set of zeros of Brownian motion is a random uncountable
closed set without isolated points and has Lebesgue measure zero.

Proof: According to the Example 3.8, the probability that Brownian motion
stays below zero on the interval [0, 1] is zero. Therefore it changes sign on this
interval. This implies, since Brownian motion is continuous, that it has a zero
inside [0, 1]. The same reasoning leads to the conclusion that for any positive
t, the probability that Brownian motion has the same sign on the interval [0, t]
is zero. Therefore it has a zero inside [0, t] for any t, no matter how small it
is. This implies that the set of zeros is an infinite set, moreover time t = 0 is
a limit of zeros from the right.
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Observe next, that the set of zeros is closed, that is, if B(τn) = 0 and
limn→∞ τn = τ then B(τ) = 0. This is true since B(t) is a continuous function
of t.

By using the strong Markov property, it is possible to see that any zero of
Brownian motion is a limit of other zeros. If B(τ) = 0, and τ is a stopping
time, then by (3.13) B̂(t) = B(t + τ) − B(τ) = B(t + τ) is again Brownian
motion started anew at time τ . Therefore time t = 0 for the new Brownian
motion B̂ is a limit from the right of zeros of B̂. But B̂(t) = B(t + τ), so that
τ a limit from the right of zeros of B. However, not every zero of Brownian
motion is a stopping time. For example, for a fixed t, γt, the last zero before t
is not a stopping time. Nevertheless, using a more intricate argument, one can
see that any zero is a limit of other zeros. A sketch is given below. If τ is the
first zero after t, then τ is a stopping time. Thus the set of all sample paths
such that τ is a limit point of zeros from the right has probability one. The
intersection of such sets over all rational t’s is again a set of probability one.
Therefore for almost all sample paths the first zero that follows any rational
number is a limit of zeros from the right. This implies that any point of L0

is a limit of points from L0 (it is a perfect set). A general result from the set
theory, which is not hard to prove, states that if an infinite set coincides with
the set of its limit points, then it is uncountable.

Although uncountable, L0 has Lebesgue measure zero. This is seen by
writing the Lebesgue measure of L0 as |L0| =

∫ 1

0 I(B(t) = 0)dt. It is a
non-negative random variable. Taking the expectation, and interchanging the
integrals by Fubini’s theorem

E|L0| = E
∫ 1

0

I(B(t) = 0)dt =
∫ 1

0

P(B(t) = 0)dt = 0.

This implies P(|L0| = 0) = 1.
�

Theorem 3.29 Any level set La = {t : B(t) = a, 0 ≤ t ≤ 1} has the same
properties as L0.

Proof: Let Ta be the first time with B(t) = a. Then by the strong Markov
property, B̂(t) = BTa+t − BTa = BTa+t − a is a Brownian motion. The set of
zeros of B̂ is the level a set of B.

�

3.10 Size of Increments of Brownian Motion

Increments over large time intervals satisfy the Law of Large Numbers and
the Law of the Iterated Logarithm. For proofs see, for example, Karatzas and
Shreve (1988).
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Theorem 3.30 (Law of Large Numbers)

lim
t→∞

B(t)
t

= 0 a.s.

A more precise result is provided by the Law of Iterated Logarithm.

Theorem 3.31 (Law of Iterated Logarithm)

lim sup
t→∞

B(t)√
2t ln ln t

= 1, a.s.

lim inf
t→∞

B(t)√
2t ln ln t

= −1 a.s.

To obtain the behaviour for small t near zero the process W (t) = tB(1/t) is
considered, which is also Brownian motion.

Example 3.9: Let B(t) be Brownian motion. The process W (t) defined as W (t) =
tB(1/t), for t > 0, and W (0) = 0, is also Brownian motion. Indeed, W (t) has
continuous paths. Continuity at zero follows from the Law of Large Numbers. It is,
clearly, a Gaussian process, and has zero mean. Its covariance is given by

Cov(W (t),W (s)) = E(W (t)W (s)) = tsE(B(1/t)B(1/s)) = ts(1/t) = s, for s < t.

Since W (t) is a Gaussian process with zero mean, and the covariance of Brownian
motion, it is Brownian motion.

This result allows us to transfer results on the behaviour of paths of Brownian
motion for large t to that of small t. For example, we have immediately the
Law of Iterated Logarithm near zero, from the same law near infinity.

Graphs of some Functions of Brownian Motion

Graphs of some Functions of Brownian motion are given in order to visualize
these processes. To obtain these 1000 independent Normal random variables
with mean zero and variance 0.001 were generated. Time is taken to be discrete
(as any other variable on a computer) varying from 0 to 1 with steps of 0.001.
The first two pictures in Figure 3.10 are realizations of White noise. Pictures
of 0.1B(t) + t and B(t) + 0.1t (second row of Figure 3.10) demonstrate that
when noise is small in comparison with drift, the drift dominates, and if drift
is small, then the noise dominates in the behaviour of the process. The next
two are realizations of the martingale B2(t) − t which has zero mean. By the
recurrence property of Brownian motion, B(t) will always come back to zero.
Thus B2(t) − t will always come back to −t in the long run. The last two
pictures are realization of the exponential martingale eB(t)−t/2. Although this
martingale has mean 1, limt→∞ eB(t)−t/2 = 0, which can be seen by the Law
of Large Numbers. Therefore a realization of this martingale will approach
zero in the long run.
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Figure 3.2: White noise and Functions of Brownian motion.
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3.11 Brownian Motion in Higher Dimensions

Definition 3.32 Define Brownian motion in dimension two and higher as
a random vector B(t) = (B1(t), B2(t), . . . , Bn(t)) with all coordinates Bi(t)
being independent one-dimensional Brownian motions.

Alternatively Brownian motion in IRn can be defined as a process with in-
dependent multivariate Gaussian increments. It follows from the definitions,
similarly to the one-dimensional case, that Brownian motion in IRn is a Markov
Gaussian process homogeneous both in space and time. Its transition proba-
bility density is given by

pt(x, y) =
1√
2πt

e−(|x−y|2)/2t, (3.23)

where x, y are n-dimensional vectors and |x|2 is the length of x.

Remark 3.8: In dimensions one and two Brownian motion is recurrent, that
is, it will come back to a neighbourhood, however small, of any point infinitely
often. In dimensions three and higher Brownian motion is transient, it will
leave a ball, however large, around any point never to return (Polya (1922)).

3.12 Random Walk

The analogue of Brownian motion process in discrete time t = 0, 1, 2, . . . , n, . . .
is the Random Walk process. Brownian motion can be constructed as the limit
of Random Walks, when step sizes get smaller and smaller. Random Walks
occur in many applications, including Insurance, Finance and Biology.

A model of pure chance is served by an ideal coin being tossed with equal
probabilities for the Heads and Tails to come up. Introduce a random variable
ξ taking values +1 (Heads) and −1 (Tails) with probability 1

2 . If the coin is
tossed n times then a sequence of random variables ξ1, ξ2, . . . , ξn describes this
experiment. All ξi have exactly the same distribution as ξ1, moreover they are
all independent. The process Sn is a Random walk, defined by S0 = 0 and

Sn = ξ1 + ξ2 + .... + ξn (3.24)

Sn gives the amount of money after n plays when betting $1 on the out-
comes of a coin when $1 is won if Heads come up, but lost otherwise.

Since E(ξi) = 0, and V ar(ξi) = E(ξ2) = 1, the mean and the variance of
the random walk are given by

E(Sn) = E(ξ1 + ξ2 + . . . ξn) = E(ξ1) + E(ξ2) + . . . E(ξn) = 0,
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V ar(Sn) = V ar(ξ1) + V ar(ξ2) + . . . + V ar(ξn) = nV ar(ξ1) = n,

as the variance of a sum of independent variables equals to the sum of variances.
More generally, a random walk is the process

Sn = S0 +
n∑

i=1

ξi, (3.25)

where ξi’s are independent and identically distributed random variables. In
particular, this model contains gambling on the outcomes of a biased coin
P(ξi = 1) = p, P(ξi = −1) = q = 1 − p.

Martingales in Random Walks

Some interesting questions about Random Walks, such as ruin probabilities
and the like, can be answered with the help of martingales.

Theorem 3.33 The following are martingales.

1. Sn−µn, where µ = E(ξ1). In particular, if the Random Walk is unbiased
(µ = 0), then it is itself is a martingale.

2. (Sn − µn)2 − σ2n, where σ2 = E(ξ1 − µ)2 = V ar(ξ1).

3. For any u, euSn−nh(u), where h(u) = ln E(euξ1). In particular, in the
case P(ξ1 = 1) = p, P(ξ1 = −1) = q = 1 − p, ( q

p )Sn is a martingale.

Proof:
1. Since, by the triangle inequality,

E|Sn−nµ| = E|S0+
n∑

i=1

ξi−nµ| ≤ E|S0|+
n∑

i=1

E|ξi|+n|µ| = E|S0|+n(E|ξ1|+|µ|),

Sn − nµ is integrable provided E|ξ1| < ∞, and E|S0| < ∞. To establish the
martingale property consider for any n

E(Sn+1|Sn) = Sn + E(ξn+1|Sn).

Since ξn+1 is independent of the past, and Sn is determined by the first n
variables, ξn+1 is independent of Sn. Therefore, E(ξn+1|Sn) = E(ξn+1). It
now follows that

E(Sn+1|Sn) = Sn + E(ξn+1|Sn) = Sn + µ,

and subtracting (n + 1)µ from both sides of the equation, the martingale
property is obtained,

E(Sn+1 − (n + 1)µ|Sn) = Sn − nµ.
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2. This is left as an exercise.
3. Put Mn = euSn−nh(u). Since Mn ≥ 0, E|Mn| = E(Mn), which is given by

E(Mn) = EeuSn−nh(u) = e−nh(u)EeuSn = e−nh(u)Eeu(S0+
∑

n

i=1
ξi)

= euS0e−nh(u)E
n∏

i=1

euξi = euS0e−nh(u)
n∏

i=1

E(euξi) by independence

= euS0e−nh(u)
n∏

i=1

eh(u) = euS0 < ∞.

The martingale property is shown by using the fact that

Sn+1 = Sn + ξn+1, (3.26)

with ξn+1 independent of Sn and of all previous ξi’s i ≤ n, or independent of
Fn. Using the properties of conditional expectation, we have

E(euSn+1 |Fn) = E(euSn+uξn+1 |Fn)
= euSnE(euξn+1 |Fn) = euSnE(euξn+1)
= euSn+h(u).

Multiplying both sides of the above equation by e−(n+1)h(u), the martingale
property is obtained, E(Mn+1|Fn) = Mn.

In the special case when P(ξi = 1) = p, P(ξi = −1) = q = 1 − p choosing
u = ln(q/p) in the previous martingale, we have euξ1 = (q/p)ξ1 and E(euξ1) =
1. Thus h(u) = ln E(euξ1) = 0, and euSn−nh(u) = (q/p)Sn . Alternatively in
this case, the martingale property of (q/p)Sn is easy to verify directly.

�

3.13 Stochastic Integral in Discrete Time

Let Sn be an unbiased Random Walk representing the capital of a player
when betting on a fair coin. Let Hn can be the amount of money (the number
of betting units) a gambler will bet at time n. This can be based on the
outcomes of the game at times 1, . . . , n − 1 but not on the outcome at time
n. This is an example of a predictable process. The concept of predictable
processes plays a most important role in stochastic calculus. The process {Hn}
is called predictable if Hn can be predicted with certainty from the information
available at time n − 1. Rigorously, let Fn−1 be the σ-field generated by
S0, S1, . . . , Sn−1.

Definition 3.34 {Hn} is called predictable if for all n ≥ 1, Hn is Fn−1 mea-
surable.
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If a betting strategy {Hn}t
n=0 is used in the game of coin tossing, then the

gain at time t is given by

(H · S)t =
t∑

n=1

Hn(Sn − Sn−1), (3.27)

since Sn − Sn−1 = +1 or −1 when the n-th toss results in a win or loss
respectively. More generally, Sn − Sn−1 = ξn represents the amount of money
lost or won on one betting unit on the n-th bet. If Hn units are placed, then
the amount of money lost or won on the n-th bet is Hn(Sn −Sn−1). The gain
at time t is obtained by adding up monies lost and won on all the bets.

Definition 3.35 The stochastic integral in discrete time of a predictable pro-
cess H with respect to the process S is defined by

(H · S)t := H0S0 +
t∑

n=1

Hn(Sn − Sn−1) (3.28)

The stochastic integral gives the gain in a game of chance when betting on S
and the betting strategy H is used. For a martingale the stochastic integral
(3.28) is also called a martingale transform. The next result states that a
betting system used on a martingale will result again in a martingale.

Theorem 3.36 If Mn is a martingale, Hn is predictable and the random vari-
ables (H · M)t are integrable, then (H · M)t is a martingale.

Proof:

E[(H · M)t+1|Ft] = E[(H · M)t|Ft] + E[Ht+1(Mt+1 − M(t))|Ft]

= (H · M)t + Ht+1E[(Mt+1 − M(t))|Ft] = (H · M)t.

�

As a corollary we obtain

Theorem 3.37 If Mn is a martingale, Hn is predictable and bounded, then
then (H · M)t is a martingale.

Proof: The assumption of bounded Hn implies that

E|(H · M)t| = E|
t∑

n=1

Hn(Mn − Mn−1)|

≤
t∑

n=1

E|Hn(Mn − Mn−1)| ≤ 2C

t∑
n=1

E|Mn| < ∞.

So that (H · M)t is integrable, and the condition of the previous theorem is
fulfilled.

�
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Stopped Martingales

Let (Mn,Fn) be a martingale and τ be a stopping time. Recall the definition

Definition 3.38 A random time is a stopping time if for any n,
{τ > n} ∈ Fn.

Take Hn = 1 if n ≤ τ , and Hn = 0 if n > τ , in other words, Hn = I(τ ≥ n).
Then Hn is predictable, because {τ ≥ n} = {τ > n + 1} ∈ Fn+1. The
stochastic integral gives the martingale stopped at τ ,

(H · M)n = H0M0 + H1(M1 − M0) + · · · + Hn(Mn − Mn−1)

= Mτ∧n = MτI(τ ≤ n) + MnI(τ > n).

Since Hn = I(τ ≥ n) is bounded by 1, Theorem 3.37 implies that the process
(H · M)n = Mτ∧n is a martingale. Thus we have shown

Theorem 3.39 A martingale stopped at a stopping time τ , Mτ∧n is a mar-
tingale. In particular,

EMτ∧n = EM0. (3.29)

Comment here that Theorem 3.39 holds also in continuous time, see Theorem
7.14. It is a Basic Stopping result, which is harder to prove.

Example 3.10: (Doubling bets strategy).
Consider the doubling strategy when betting on the Heads in tosses of a fair coin.
Bet H1 = 1. If Heads comes up then stop. The profit is G1 = 1. If the outcome is
Tails, then bet H2 = 2 on the second toss. If the second toss comes up heads, then
stop. The profit is G2 = 4− 3 = 1. If the game continues for n steps, (meaning that
the n− 1 tosses did not result in a win) then bet Hn = 2n−1 on the n-th toss. If the
n-th toss comes up Heads then stop. The profit is Gn = 2×2n−1−(1+2+. . . 2n−1) =
2n − (2n−1) = 1. The probability that the game will stop at a finite number of steps
is one minus the probability that Heads never come up. Probability of only Tails
on the first n tosses is, by independence, 2−n. The probability that Heads never
comes up is the limit limn→∞ 2−n = 0, thus the game will stop for sure. For any
non-random time T the gain process Gt, t ≤ T is a martingale with zero mean. The
doubling strategy does not contradict the result above, because the strategy uses an
unbounded stopping time, the first time one dollar is won.

Further information on discrete time martingales and on their stopping is given
in Chapter 7.
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3.14 Poisson Process

If Brownian motion process is a basic model for cumulative small noise present
continuously, the Poisson process is a basic model for cumulative noise that
occurs as a shock.

Let λ > 0. A random variable X has a Poisson distribution with pa-
rameter λ, denoted Pn(λ), if it takes non-negative integer values k ≥ 0 with
probabilities

P(X = k) = e−λ λk

k!
, k = 0, 1, 2, ...... (3.30)

The moment generating function of this distribution is given by

E(euX) = eλ(eu−1). (3.31)

Defining Properties of Poisson process

A Poisson process N(t) is a stochastic process with the following properties.

1. (Independence of increments) N(t) − N(s) is independent of the past,
that is, of Fs, the σ-field generated by N(u), u ≤ s.

2. (Poisson increments) N(t)−N(s), t > s, has a Poisson distribution with
parameter λ(t− s). If N(0) = 0, then N(t) has the Pn(λt) distribution.

3. (Step function paths) The paths N(t), t ≥ 0, are increasing functions of
t changing only by jumps of of size 1.

Remark 3.9: A definition of a Poisson process in a more general model (that
contains extra information) is given by a pair {N(t),Ft}, t ≥ 0, where Ft is
an increasing sequence of σ-fields (a filtration), N(t) is an adapted process,
i.e. N(t) is Ft measurable, such that Properties 1-3 above hold.

Consider a model for occurrence of independent events. Define the rate λ
as the average number of events per unit of time. Let N(t) be the number of
events that occur up to time t, i.e. in the time interval (0, t]. Then N(t)−N(s)
gives the number of events that occur in the time interval (s, t].

A Poisson process N(t) can be constructed as follows. Let τ1, τ2, .... be
independent random variables with the exponential exp(λ) distribution, that
is, P(τ1 > t) = e−λt. τ ’s represent the times between occurrence of successive
events. Let Tn =

∑n
i=1 τi, be the time of the n-th event. Then

N(t) = sup{n : Tn ≤ t}
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counts the number of events up to time t. It is not hard to verify the defining
properties of the Poisson process for this construction. N(t) has the Poisson
distribution with parameter λt. Consequently,

P(N(t) = k) = e−λt (λt)k

k!
, k = 0, 1, 2, .....,

EN(t) = λt, and V ar(N(t)) = λt.

Variation and Quadratic Variation of the Poisson Process

Let 0 = tn0 < tn1 < ... < tnn = t be a partition of [0, t]. Then it is easy to see
that variation of a Poisson path is

VN (t) = lim
n∑

i=1

|N(tni ) − N(tni−1)| = N(t) − N(0) = N(t), (3.32)

where the limit is taken when δn = maxi(tni − tni−1) → 0 and n → ∞. Recall
that variation of a pure jump function is the sum of absolute values of the
jumps, see Example 1.6. Since the Poisson process has only positive jumps of
size one (3.32) follows.

To calculate its quadratic variation, observe that N(tn
i ) − N(tni−1) takes

only two values 0 and 1 for small tn
i − tni−1, hence it is the same as its square,

N(tni ) − N(tni−1) = (N(tni ) − N(tni−1))
2. Thus the quadratic variation of N is

the same as its variation

[N, N ](t) = lim
n∑

i=1

(N(tni ) − N(tni−1))
2 = N(t) − N0 = N(t).

Thus for a Poisson process both the variation and quadratic variation are
positive and finite.

Poisson Process Martingales

The process N(t) is increasing, hence it can not be a martingale. However, the
compensated process N(t) − λt is a martingale. This martingale is analogous
to the Brownian motion.

Theorem 3.40 The following are martingales.

1. N(t) − λt.

2. (N(t) − λt)2 − λt.

3. eln(1−u)N(t)+uλt, for any 0 < u < 1.
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Proof: The martingale property follows from independence of increments,
the Poisson distribution of increments and the expressions for the mean and
the variance of Poisson distribution. We show the martingale property for the
exponential martingale.

E
(
eln(1−u)N(t+s)|Ft

)
= E

(
eln(1−u)N(t)+ln(1−u)(N(t+s)−N(t))|Ft

)
= eln(1−u)N(t)E

(
eln(1−u)(N(t+s)−N(t)))|Ft

)
(since N(t) is Ft-measurable)

= eln(1−u)N(t)E
(
eln(1−u)(N(t+s)−N(t))

)
(increment is independent of Ft)

= eln(1−u)N(t)e−uλs by (3.31), since N(t + s) − N(t) is Poisson(λs).

Multiplying both sides by euλ(t+s), the martingale property follows.
�

Using the exponential martingale, it can be shown that the Poisson process
has the strong Markov property.

3.15 Exercises

Exercise 3.1: Derive the moment generating function of the multivariate
Normal distribution N(µ,Σ).

Exercise 3.2: Show that for a non-negative random variable X , EX =∫∞
0

P(X ≥ x)dx. Hint: use EX =
∫∞
0

xdF (x) =
∫∞
0

∫ x

0
dtdF (x) and change

the order of integration.

Exercise 3.3: Show that if X ≥ 0, EX ≤∑∞
n=0 P(X > n).

Exercise 3.4: Let B(t) be a Brownian motion. Show that the following
processes are Brownian motions on [0, T ].

1. X(t) = −B(t).

2. X(t) = B(T − t) − B(T ), where T < +∞.

3. X(t) = cB(t/c2), where T ≤ +∞.

4. X(t) = tB(1/t), t > 0, and X(0) = 0.

Hint: Check the defining properties. Alternatively, show that the process is a
Gaussian process with correlation function min(s, t). Alternatively, show that
the process is a continuous martingale with quadratic variation t (this is the
Levy’s characterization, and will be proven later.)
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Exercise 3.5: Let B(t) and W (t) be two independent Brownian motions.
Show that X(t) = (B(t) + W (t))/

√
2 is also a Brownian motion. Find corre-

lation between B(t) and X(t).

Exercise 3.6: Let B(t) be an n-dimensional Brownian motion, and x is a
non-random vector in IRn with length 1, |x|2 = 1. Show that W (t) = x ·B(t)
is a (one-dimensional) Brownian motion.

Exercise 3.7: Let B(t) be a Brownian motion and 0 ≤ t1, . . . ≤ tn. Give
a matrix A, such that (B(t1), B(t2), . . . , B(tn))T = A(Z1, . . . , Zn)T , where
Zi’s are standard Normal variables. Hence give the covariance matrix of
(B(t1), B(t2), . . . , B(tn)). Here T stands for transpose and the vectors are
column vectors.

Exercise 3.8: Let B(t) be a Brownian motion and 0 ≤ s < t. Show that the
conditional distribution of B(s) given B(t) = b is Normal and give its mean
and variance.

Exercise 3.9: Show that the random variables M(t) and |B(t)| have the
same distribution.

Exercise 3.10: Show that the moments of order r of the hitting time Tx are
finite E(T r

x ) < ∞ if and only if r < 1/2.

Exercise 3.11: Derive the distribution of the maximum M(t) from the joint
distribution of (B(t), M(t)).

Exercise 3.12: By considering −B(t), derive the joint distribution of B(t)
and m(t) = mins≤t B(s).

Exercise 3.13: Show that the random variables M(t), |B(t)| and M(t)−B(t)
have the same distributions, cf. Exercise 3.9.

Exercise 3.14: The first zero of Brownian motion started at zero is 0. What
is the second zero?

Exercise 3.15: Let T be the last time before 1 a Brownian motion visits 0.
Explain why X(t) = B(t + T ) − B(T ) = B(t + T ) is not a Brownian motion.

Exercise 3.16: Formulate the Law of Large Numbers and the Law of Iterated
Logarithm for Brownian motion near zero.

Exercise 3.17: Let B(t) be Brownian motion. Show that e−αtB(e2αt) is a
Gaussian process. Find its mean and covariance functions.
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Exercise 3.18: Let X(t) be a Gaussian process with zero mean and covariance
γ(s, t) = e−α|t−s|. Show that X has a version with continuous paths.

Exercise 3.19: Show that in a Normal Random Walk, Sn = S0 +
∑n

i=1 ξi

when ξi’s are standard Normal random variables, euSn−nu2/2 is a martingale.

Exercise 3.20: Let Sn = S0 +
∑n

i=1 ξi be a Random Walk, with
P(ξ1 = 1) = p, P(ξ1 = −1) = 1 − p. Show that for any λ, eγSn−λn is a
martingale for the appropriate value of γ.

Exercise 3.21: The process Xt, is defined for discrete times t = 1, 2, . . .. It
can take only three values 1, 2 and 3. Its behaviour is defined by the rule:
from state 1 it goes to 2, from 2 it goes to 3 and from 3 it goes back to 1. X1

takes values 1, 2, 3 with equal probabilities. Show that this process is Markov.
Show also that

P(X3 = 3|X2 = 1 or 2, X1 = 3) �= P(X3 = 3|X2 = 1 or 2).

This demonstrates that to apply Markov property we must know the present
state of the process exactly, it is not enough to know that it can take one of
the two (or more) possible values.

Exercise 3.22: A discrete-time process X(t), t = 0, 1, 2, . . ., is said to be
autoregressive of order p (AR(p)) if there exists a1, . . . , ap ∈ IR, and a white
noise Z(t) (E(Z(t)) = 0, E(Z2(t)) = σ2 and, for s > 0, E(Z(t)Z(t + s)) = 0)
such that

X(t) =
p∑

s=1

asX(t − s) + Z(t).

1. Show that X(t) is Markovian if and only if p = 1.

2. Show that if X(t) is AR(2), then Y (t) = (X(t), X(t + 1)) is Markovian.

3. Suppose that Z(t) is a Gaussian process. Write the transition probability
function of an AR(1) process X(t).

Exercise 3.23: The distribution of a random variable τ has the lack of mem-
ory property if P(τ > a + b|τ > a) = P(τ > b). Verify the lack of memory
property for the exponential exp(λ) distribution. Show that if τ has the lack
of memory property and a density, then it has an exponential distribution.



Chapter 4

Brownian Motion Calculus

In this chapter stochastic integrals with respect to Brownian motion are intro-
duced and their properties are given. They are also called Itô integrals, and
the corresponding calculus Itô calculus.

4.1 Definition of Itô Integral

Our goal is to define the stochastic integral
∫ T

0
X(t)dB(t), also denoted

∫
XdB

or X · B. This integral should have the property that if X(t) = 1 then∫ T

0 dB(t) = B(T ) − B(0). Similarly, if X(t) is a constant c, then the integral
should be c(B(T ) − B(0)). In this way we can integrate constant processes
with respect to B. The integral over (0, T ] should be the sum of integrals over
two subintervals (0, a] and (a, T ]. Thus if X(t) takes two values c1 on (0, a],
and c2 on (a, T ], then the integral of X with respect to B is easily defined. In
this way the integral is defined for simple processes, that is, processes which
are constant on finitely many intervals. By the limiting procedure the integral
is then defined for more general processes.

Itô Integral of Simple Processes

Consider first integrals of a non-random simple process X(t), which is a func-
tion of t and does not depend on B(t). By definition a simple non-random
process X(t) is a process for which there exist times 0 = t0 < t1 < . . . < tn = T
and constants c0, c1, . . . , cn−1, such that

X(t) = c0I0(t) +
n−1∑
i=0

ciI(ti,ti+1](t). (4.1)

91
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The Itô integral
∫ T

0
X(t)dB(t) is defined as a sum

∫ T

0

X(t)dB(t) =
n−1∑
i=0

ci

(
B(ti+1) − B(ti)

)
. (4.2)

It is easy to see by using the independence property of Brownian increments
that the integral, which is the sum in (4.2) is a Gaussian random variable with
mean zero and variance

V ar

(∫ T

0

X(t)dB(t)

)
= V ar

(
n−1∑
i=0

ci (B(ti+1) − B(ti))

)

=
n−1∑
i=0

V ar (ci(B(ti+1) − B(ti))) =
n−1∑
i=0

c2
i (ti+1 − ti).

Example 4.1: Let X(t) = −1 for 0 ≤ t ≤ 1, X(t) = 1 for 1 < t ≤ 2, and X(t) = 2
for 2 < t ≤ 3. Then (note that ti = 0, 1, 2, 3, ci = X(ti+1), c0 = −1, c1 = 1, c2 = 2 )∫ 3

0

X(t)dB(t) = c0

(
B(1) − B(0)

)
+ c2

(
B(2) − B(1)

)
+ c3

(
B(3) − B(2)

)
= −B(1) +

(
B(2) − B(1)

)
+ 2
(
B(3) − B(2)

)
= 2B(3) − B(2) − 2B(1).

Its distribution is N(0, 6), either directly as a sum of independent N(0, 1)+N(0, 1)+
N(0, 4) or by using the result above.

By taking limits of simple non-random processes, more general but still only
non-random processes can be integrated with respect to Brownian motion.

To integrate random processes, it is important to allow for constants ci

in (4.1) to be random. If ci’s are replaced by random variables ξi’s, then in
order to have convenient properties of the integral the random variable ξi’s
are allowed to depend on the values of B(t) for t ≤ ti, but not on future
values of B(t) for t > ti. If Ft is the σ-field generated by Brownian motion
up to time t, then ξi is Fti-measurable. The approach of defining the integral
by approximation can be carried out for the class of adapted processes X(t),
0 ≤ t ≤ T .

Definition 4.1 A process X is called adapted to the filtration IF = (Ft), if
for all t, X(t) is Ft-measurable.

Remark 4.1: In order that the integral has desirable properties, in partic-
ular that the expectation and the integral can be interchanged (by Fubini’s
theorem), the requirement that X is adapted is too weak, and a stronger con-
dition, that of a progressive (progressively measurable) process is needed. X
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is progressive if it is a measurable function in the pair of variables (t, ω), i.e.
B([0, t]) × Ft measurable as a map from [0, t] × Ω into IR. It can be seen
that every adapted right-continuous with left limits or left-continuous with
right limits (regular, cadlag) process is progressive. Since it is easier to under-
stand what is meant by a regular adapted process, we use ‘regular adapted’
terminology without further reference to progressive or measurable in (t, ω)
processes.

Definition 4.2 A process X = {X(t), 0 ≤ t ≤ T } is called a simple adapted
process if there exist times 0 = t0 < t1 < . . . < tn = T and random variables
ξ0, ξ1, . . . , ξn−1, such that ξ0 is a constant, ξi is Fti-measurable (depends on the
values of B(t) for t ≤ ti, but not on values of B(t) for t > ti), and E(ξ2

i ) < ∞,
i = 0, . . . , n − 1; such that

X(t) = ξ0I0(t) +
n−1∑
i=0

ξiI(ti,ti+1](t). (4.3)

For simple adapted processes Itô integral
∫ T

0
XdB is defined as a sum∫ T

0

X(t)dB(t) =
n−1∑
i=0

ξi

(
B(ti+1) − B(ti)

)
. (4.4)

Note that when ξi’s are random, the integral need not have a Normal distri-
bution, as in the case of non-random ci’s.

Remark 4.2: Simple adapted processes are defined as left-continuous step
functions. One can take right-continuous functions. However, when the stochas-
tic integral is defined with respect to general martingales, other than the Brow-
nian motion, only left-continuous functions are taken.

Properties of the Itô Integral of Simple Adapted Processes

Here we establish main properties of the Itô integral of simple processes. These
properties carry over to the Itô integral of general processes.

1. Linearity. If X(t) and Y (t) are simple processes and α and β are some
constants then∫ T

0

(αX(t) + βY (t)) dB(t) = α

∫ T

0

X(t)dB(t) + β

∫ T

0

Y (t)dB(t).

2. For the indicator function of an interval I(a,b](t) (I(a,b](t) = 1 when
t ∈ (a, b], and zero otherwise)∫ T

0

I(a,b](t)dB(t) = B(b)−B(a),
∫ T

0

I(a,b](t)X(t)dB(t) =
∫ b

a

X(t)dB(t).
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3. Zero mean property. E
∫ T

0
X(t)dB(t) = 0

4. Isometry property.

E

(∫ T

0

X(t)dB(t)

)2

=
∫ T

0

E(X2(t))dt (4.5)

Proof: Properties 1 and 2 are verified directly from the definition. Proof
of linearity of the integral follows from the fact that a linear combination of
simple processes is again a simple process, and so is I(a,b](t)X(t).

Since ξi’s are square integrable, then by the Cauchy-Schwarz inequality

E
∣∣ξi(B(ti+1) − B(ti))

∣∣ ≤√E(ξ2
i )E(B(ti+1) − B(ti))2 < ∞,

which implies that

E
∣∣ n−1∑

i=0

ξi

(
B(ti+1) − B(ti)

)∣∣ ≤ n−1∑
i=0

E
∣∣ξi

(
B(ti+1) − B(ti)

)∣∣ < ∞, (4.6)

and the stochastic integral has expectation. By the martingale property of
Brownian motion, using that ξi’s are Fti-measurable

E
(
ξi(B(ti+1) − B(ti))|Fti

)
= ξiE

(
(B(ti+1) − B(ti))|Fti

)
= 0, (4.7)

and it follows that E
(
ξi(B(ti+1) − B(ti))

)
= 0, which implies Property 3.

To prove Property 4, write the square as the double sum

E

(
n−1∑
i=0

ξi(B(ti+1) − B(ti))

)2

=
n−1∑
i=0

E
(
ξ2
i (B(ti+1) − B(ti))

2 )
+2
∑
i<j

E
(
ξiξj (B(ti+1) − B(ti)) (B(tj+1) − B(tj))

)
. (4.8)

Using the martingale property of Brownian motion,
n−1∑
i=0

E
(
ξ2
i (B(ti+1) − B(ti))

2 ) =
n−1∑
i=0

EE
(
ξ2
i (B(ti+1) − B(ti))

2 |Fti

)
=

n−1∑
i=0

E
(
ξ2
i E
(
(B(ti+1) − B(ti))

2 |Fti

))
=

n−1∑
i=0

E(ξ2
i )(ti+1 − ti).

The last sum is exactly
∫ T

0
E(X2(t))dt, since X(t) = ξi on (ti, ti+1]. By con-

ditioning, in a similar way, we obtain for i < j,

E
(
ξiξj (B(ti+1) − B(ti)) (B(tj+1) − B(tj))

)
= 0,

so that the sum
∑

i<j in (4.8) vanishes, and Property 4 is proved.
�
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Itô Integral of Adapted Processes

Let Xn(t) be a sequence of simple processes convergent in probability to the
process X(t). Then, under some conditions, the sequence of their integrals∫ T

0
Xn(t)dB(t) also converges in probability to a limit J . The random variable

J is taken to be the integral
∫ T

0
X(t)dB(t).

Example 4.2: We find
∫ T

0
B(t)dB(t).

Let 0 = tn
0 < tn

1 < tn
2 < . . . < tn

n = T be a partition of [0, T ], and let

Xn(t) =

n−1∑
i=0

B(tn
i )I(tn

i
,tn

i+1](t).

Then for any n, Xn(t) is a simple adapted process. (Here ξn
i = B(tn

i ).) By the
continuity of B(t), limn→∞ Xn(t) = B(t) almost surely as maxi(t

n
i+1 − tn

i ) → 0. The
Itô integral of the simple function Xn(t) is given by∫ T

0

Xn(t)dB(t) =

n−1∑
i=0

B(tn
i )(B(tn

i+1) − B(tn
i )).

We show that this sequence of integrals converges in probability to J = 1
2
B2(T )− 1

2
T.

Adding and subtracting B2(tn
i+1), we obtain

B(tn
i )
(
B(tn

i+1) − B(tn
i )
)

=
1

2

(
B2(tn

i+1) − B2(tn
i ) −

(
B(tn

i+1) − B(tn
i )
)2)

,

and∫ T

0

Xn(t)dB(t) =
1

2

n−1∑
i=0

(
B2(tn

i+1) − B2(tn
i )
)
− 1

2

n−1∑
i=0

(
B(tn

i+1) − B(tn
i )
)2

=
1

2
B2(T ) − 1

2
B2(0) − 1

2

n−1∑
i=0

(
B(tn

i+1) − B(tn
i )
)2

,

since the first sum is a telescopic one. By the definition of the quadratic varia-
tion of Brownian motion the second sum converges in probability to T . Therefore∫ T

0
Xn(t)dB(t) converges in probability to the limit J∫ T

0

B(t)dB(t) = J = lim
n→∞

∫ T

0

Xn(t)dB(t) =
1

2
B2(T ) − 1

2
T. (4.9)

Remark 4.3:

• If X(t) is a differentiable function (more generally, a function of finite
variation), then the stochastic integral

∫ T

0 X(t)dB(t) can be defined by
formally using the integration by parts:∫ T

0

X(t)dB(t) = X(T )B(T )− X(0)B(0) −
∫ T

0

B(t)dX(t),
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(Paley, Wiener and Zygmund Math. Z. 37, 1933, 647-668.)

But this approach fails when X(t) depends on B(t).

• Brownian motion has no derivative, but it has a generalized derivative
as a Schwartz distribution. It is defined by the following relation. For a
smooth function g with a compact support (zero outside a finite interval)∫

g(t)B′(t)dt := −
∫

B(t)g′(t)dt.

But this approach fails when g(t) depends on B(t).

• For simple processes the Itô integral is defined for each ω, path by path,
but in general, this is not possible. For example,

∫ 1

0 B(ω, t)dB(ω, t) is

not defined, whereas
(∫ 1

0
B(t)dB(t)

)
(ω) = J(ω) is defined as a limit in

probability of integrals (sums) of simple processes.

Theorem 4.3 Let X(t) be a regular adapted process such that with probability
one

∫ T

0
X2(t)dt < ∞. Then Itô integral

∫ T

0
X(t)dB(t) is defined and has the

following properties.

1. Linearity. If Itô integrals of X(t) and Y (t) are defined and α and β are
some constants then∫ T

0

(αX(t) + βY (t)) dB(t) = α

∫ T

0

X(t)dB(t) + β

∫ T

0

Y (t)dB(t).

2. ∫ T

0

X(t)I(a,b](t)dB(t) =
∫ b

a

X(t)dB(t).

The following two properties hold when the process satisfies an additional as-
sumption ∫ T

0

E(X2(t))dt < ∞. (4.10)

3. Zero mean property. If condition (4.10) holds then

E

(∫ T

0

X(t)dB(t)

)
= 0. (4.11)

4. Isometry property. If condition (4.10) holds then

E

(∫ T

0

X(t)dB(t)

)2

=
∫ T

0

E(X2(t))dt. (4.12)
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Proof: Only an outline of the proof is given. Firstly it is shown that the
Itô integral is well defined for adapted processes that satisfy an additional
assumption (4.10). Such processes can be approximated by simple processes

Xn(t) = X(0) +
n−1∑
i=0

X(tni )I(tn
i

,tn
i+1]

(t), (4.13)

where {tni } is a partition of [0, T ] with δn = maxi(tni+1 − tni ) → 0 as n → ∞.
In this sum only one term is different from zero, corresponding to the interval
in the partition containing t. The process Xn(t) equals X(t) for all the points
in the partition, but may differ in each small interval (tn

i , tni+1). Now,∫ T

0

(Xn(t))2dt =
n−1∑
k=0

X2(tni )(tni+1 − tni ) −→
∫ T

0

X2(t)dt, (4.14)

∫ T

0

E(Xn(t))2dt =
n−1∑
k=0

EX2(tni )(tni+1 − tni ) −→
∫ T

0

EX2(t)dt, (4.15)

as n → ∞, because the sums are Riemann sums for the corresponding integrals.
Moreover, it is possible to show that,

lim
n→∞

∫ T

0

E(Xn(t) − X(t))2dt = 0. (4.16)

Denote the Itô integral of the simple process by

Jn =
∫ T

0

Xn(t)dB(t) =
n−1∑
k=0

X(tni )(B(tni+1) − B(tni )). (4.17)

The condition (4.10) for Jn holds, so that E(Jn) = 0 and by the isometry
property E(J2

n) is given by the sum in (4.15). Using the isometry property
(4.16) implies that

E(Jn − Jm)2 = E

(∫ T

0

Xm(t)dB(t) −
∫ T

0

Xn(t)dB(t)

)2

= E

(∫ T

0

(Xm(t) − Xn(t))dB(t)

)2

= E
∫ T

0

(Xm(t) − Xn(t))2dt

≤ 2E
∫ T

0

(Xm(t) − X(t))2dt + 2E
∫ T

0

(Xn(t) − X(t))2dt −→ 0, (4.18)

as n, m → ∞. The space L2 of random variables with zero mean, finite second
moments and convergence in the mean-square is complete, and (4.18) shows
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that Jn form a Cauchy sequence in this space. This implies that there is an
element J , such that Jn → J in L2. This limit J is taken to be the Itô integral∫ T

0
X(t)dB(t). If we were to use another approximating sequence then, it is

not hard to check, this limit does not change.
Now consider adapted processes with finite integral

∫ T

0
X2(t)dt but not

necessarily of finite expectation. It can be shown, using the previous result,
that such processes can be approximated by simple processes by taking limit
in probability rather than in mean square. The sequence of corresponding Itô
integrals is a Cauchy sequence in probability. It converges in probability to a
limit

∫ T

0
X(t)dB(t).

For details of proof see for example, Gihman and Skorohod (1972), Liptser
and Shiryaev (1977), Karatzas and Shreve (1988).

�

Note that Itô integrals need not have mean and variance, but when they
do, the mean is zero and the variance is given by (4.12).

Corollary 4.4 If X is a continuous adapted process then the Itô integral∫ T

0 X(t)dB(t) exists. In particular,
∫ T

0 f(B(t))dB(t), where f is a continuous
function on IR is well defined.

Proof: Since any path of X(t) is a continuous function,
∫ T

0
X2(t)dt < ∞,

and the result follows by Theorem 4.3. If f is continuous on IR, then f(B(t))
is continuous on [0, T ].

�

Remark 4.4: It follows from the proof that the sums (4.17) approximate
the Itô integral

∫ T

0
X(t)dB(t)

n−1∑
k=0

X(tni )(B(tni+1) − B(tni )).

In approximation of the Stieltjes integral by sums, the function f on the
interval [ti, ti+1] is replaced by its value at some middle point θi ∈ [ti, ti+1],
whereas in the above approximations for the Itô integral, the left most point
must be taken for θi = ti, otherwise the process may not be adapted.

It is possible to define an integral (different to Itô integral) when θi is
chosen to be an interior point of the interval, θi = λti + (1 − λ)ti+1, for some
λ ∈ (0, 1). The resulting integral may depend on the choice of λ. When
λ = 1/2, the Stratanovich stochastic integral results. Calculus with such
integrals is closely related to the Itô calculus.

Remark 4.5: Note that the Itô integral does not have the monotonicity
property: X(t) ≤ Y (t) does not imply

∫ T

0 X(t)dB(t) ≤ ∫ T

0 Y (t)dB(t). A
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simple counter-example is
∫ 1

0 1 × dB(t) = B(1). With probability half this is
smaller than 0, the Itô integral of 0.

We give examples of Itô integrals of the form
∫ 1

0 f(B(t))dB(t) with and without
the first two moments.

Example 4.3: Take f(t) = et.
∫ 1

0
eB(t)dB(t) is well defined as ex is continu-

ous on IR. Since E(
∫ 1

0
e2B(t)dt) =

∫ 1

0
E(e2B(t))dt =

∫ 1

0
e2tdt = 1

2
(e2 − 1) < ∞,

E(
∫ 1

0
eB(t)dB(t)) = 0, and E(

∫ 1

0
eB(t)dB(t))2 = 1

2
(e2 − 1).

Example 4.4: Take f(t) = t, that is, consider
∫ 1

0
B(t)dB(t). Then the condition

(4.10) is satisfied, since
∫ 1

0
E(B2(t))dt =

∫ 1

0
tdt = 1/2 < ∞. Thus

∫ 1

0
B(t)dB(t) has

mean zero and variance 1/2.

Example 4.5: Take f(t) = et2 , that is, consider
∫ 1

0
eB2(t)dB(t). Although this

integral is well defined, the condition (4.10) fails, as
∫ 1

0
E(e2B2(t))dt = ∞, due to the

fact that E(e2B2(t)) =
∫

e2x2 1√
2πt

e−
x2
2t = ∞ for t ≥ 1/4. Therefore we can not claim

that this Itô integral has finite moments. By using martingale inequalities given in
the sequel, it can be shown that the expectation of the Itô integral does not exist.

Example 4.6: Let J =
∫ 1

0
tdB(t). We calculate E(J) and V ar(J).

Since
∫ 1

0
t2dt < ∞, the Itô integral is defined. Since the integrand t is non-random,

condition (4.10) holds and the integral has the first two moments, E(J) = 0, and

E(J2) =
∫ 1

0
t2dt = 1/3.

Example 4.7: For what values of α is the integral
∫ 1

0
(1 − t)−αdB(t) defined?

For the Itô integral to be defined it must have
∫ 1

0
(1 − t)−2αdt < ∞. This gives

α < 1/2.

A consequence of the isometry property is the expectation of the product of
two Itô integrals.

Theorem 4.5 Let X(t) and Y (t) be regular adapted processes, such that
E
∫ T

0 X(t)2dt < ∞ and E
∫ T

0 Y (t)2dt < ∞. Then

E

(∫ T

0

X(t)dB(t)
∫ T

0

Y (t)dB(t)

)
=
∫ T

0

E(X(t)Y (t))dt. (4.19)

Proof: Denote the Itô integrals I1 =
∫ T

0
X(t)dB(t), I2 =

∫ T

0
Y (t)dB(t).

Write their product by using the identity I1I2 = (I1 + I2)2/2 − I2
1/2 − I2

2/2.
Then use the isometry property.

�
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4.2 Itô Integral Process

Let X be a regular adapted process, such that
∫ T

0 X2(s)ds < ∞ with proba-
bility one, so that

∫ t

0 X(s)dB(s) is defined for any t ≤ T . Since it is a random
variable for any fixed t,

∫ t

0 X(s)dB(s) as a function of the upper limit t defines
a stochastic process

Y (t) =
∫ t

0

X(s)dB(s). (4.20)

It is possible to show that there is a version of the Itô integral Y (t) with
continuous sample paths. It is always assumed that the continuous version
of the Itô integral is taken. It will be seen later in this section that the Itô
integral has a positive quadratic variation and infinite variation.

Martingale Property of the Itô Integral

It is intuitively clear from the construction of Itô integrals that they are
adapted. To see this more formally, Itô integrals of simple processes are clearly
adapted, and also continuous. Since Y (t) is a limit of integrals of simple pro-
cesses, it is itself adapted.

Suppose that in addition to the condition
∫ T

0 X2(s)ds < ∞, condition
(4.10) holds,

∫ T

0 EX2(s)ds < ∞. (The latter implies the former by Fubini’s
theorem.) Then Y (t) =

∫ t

0 X(s)dB(s), 0 ≤ t ≤ T , is defined and possesses first
two moments. It can be shown, first for simple processes and then in general,
that for s < t,

E
(∫ t

s

X(u)dB(u)|Fs

)
= 0.

Thus

E(Y (t)|Fs) = E
(∫ t

0

X(u)dB(u)|Fs

)
=

∫ s

0

X(u)dB(u) + E
(∫ t

s

X(u)dB(u)|Fs

)
=

∫ s

0

X(u)dB(u) = Y (s).

Therefore Y (t) is a martingale. The second moments of Y (t) are given by the
isometry property,

E
(∫ t

0

X(s)dB(s)
)2

=
∫ t

0

EX2(s)ds. (4.21)

This shows that supt≤T E(Y 2(t)) =
∫ T

0 EX2(s)ds < ∞.
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Definition 4.6 A martingale is called square integrable on [0, T ] if its second
moments are bounded.

Thus we have

Theorem 4.7 Let X(t) be an adapted process such that
∫ T

0 EX2(s)ds < ∞.
Then Y (t) =

∫ t

0 X(s)dB(s), 0 ≤ t ≤ T , is a continuous zero mean square
integrable martingale.

Remark 4.6: If
∫ T

0 EX2(s)ds = ∞, then the Itô integral
∫ t

0 X(s)dB(s) may
fail to be a martingale, but it is always a local martingale (see Chapter 7) for
definition and properties.

Theorem 4.7 above provides a way of constructing martingales.

Corollary 4.8 For any bounded function f on IR,
∫ t

0 f(B(s))dB(s) is a square
integrable martingale.

Proof: X(t) = f(B(t)) is adapted, and since |f(x)| < K, for some constant
K > 0,

∫ T

0 Ef2(B(s))ds ≤ KT . The result follows by Theorem 4.7.
�

Quadratic Variation and Covariation of Itô Integrals

The Itô integral Y (t) =
∫ t

0
X(s)dB(s), 0 ≤ t ≤ T , is a random function of t.

It is continuous and adapted. The quadratic variation of Y is defined by (see
(1.13))

[Y, Y ] (t) = lim
n−1∑
i=0

(Y (tni+1) − Y (tni ))2, (4.22)

where for each n, {tni }n
i=0, is a partition of [0, t], and the limit is in probability,

taken over all partitions with δn = maxi(tni+1 − tni ) → 0 as n → ∞.

Theorem 4.9 The quadratic Variation of the Itô integral
∫ t

0 X(s)dB(s) is
given by [∫ t

0

X(s)dB(s),
∫ t

0

X(s)dB(s)
]

(t) =
∫ t

0

X2(s)ds. (4.23)

It is easy to verify the result for simple processes, see the Example below. The
general case can be proved by approximations by simple processes.

Example 4.8: For simplicity, suppose that X takes only two different values on
[0, 1]: ξ0 on [0, 1/2] and ξ1 on [1/2, 1]

Xt = ξ0I[0,1/2](t) + ξ1I(1/2,1](t).
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It is easy to see that

Y (t) =

∫ t

0

X(s)ds =

{
ξ0B(t) if t ≤ 1/2

ξ0B(1/2) + ξ1

(
B(t) − B(1/2)

)
if t > 1/2.

Thus for any partition of [0, t],

Y (tn
i+1) − Y (tn

i ) =

{
ξ0

(
B(tn

i+1) − B(tn
i )
)

if tn
i < tn

i+1 ≤ 1/2

ξ1

(
B(tn

i+1) − B(tn
i )
)

if 1/2 ≤ tn
i < tn

i+1.

Including 1/2 in a partition, one can verify that: for t ≤ 1/2

[Y, Y ] (t) = lim

n−1∑
i=0

(Y (tn
i+1) − Y (tn

i ))2

= ξ2
0 lim

n−1∑
i=0

(B(tn
i+1) − B(tn

i ))2 = ξ2
0 [B, B](t) = ξ2

0t =

∫ t

0

X2(s)ds;

and for t > 1/2

[Y, Y ](t) = lim

n−1∑
i=0

(Y (ti+1) − Y (ti))
2

= ξ2
0 lim

∑
ti<1/2

(B(ti+1) − B(ti))
2 + ξ2

1 lim
∑

ti>1/2

(B(ti+1) − B(ti))
2

= ξ2
0 [B, B](1/2) + ξ2

1 [B, B]((1/2, t]) =

∫ t

0

X2(s)ds.

The limits above are limits in probability when δn = maxi{(tn
i+1 − tn

i )} → 0. In the
same way (4.23) is verified for any simple function.

Example 4.9: Using the formula (4.23), quadratic variation of the Itô integral[∫ ·

0

B(s)dB(s)

]
(t) =

∫ t

0

B2(s)ds.

Corollary 4.10 If
∫ t

0 X2(s)ds > 0, for all t ≤ T , then the Itô integral
Y (t) =

∫ t

0 X(s)dB(s) has infinite variation on [0, t] for all t ≤ T .

Proof: If Y (t) were of finite variation, its quadratic variation would be zero,
leading to a contradiction.

�

Like Brownian motion, the Itô integral Y (t) is a continuous but nowhere dif-
ferentiable function of t.
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Let now Y1(t) and Y2(t) be Itô integrals of X1(t) and X2(t) with respect
to the same Brownian motion B(t). Then, clearly, the process Y1(t) + Y2(t) is
also an Itô integral of X1(t) + X2(t) with respect to B(t).

Quadratic covariation of Y1 and Y2 on [0, t] is defined by

[Y1, Y2] (t) =
1
2

([Y1 + Y2, Y1 + Y2] (t) − [Y1, Y1] (t) − [Y2, Y2] (t)) . (4.24)

By (4.23) it follows that

[Y1, Y2] (t) =
∫ t

0

X1(s)X2(s)ds. (4.25)

It is clear that [Y1, Y2] (t) = [Y2, Y1] (t), and it can be seen that quadratic
covariation is given by the limit in probability of products of increments of the
processes Y1 and Y2 when partitions {tni } of [0, t] shrink,

[Y1, Y2] (t) = lim
n−1∑
i=0

(
Y1(tni+1) − Y1(tni )

) (
Y2(tni+1) − Y2(tni )

)
.

4.3 Itô Integral and Gaussian Processes

We have seen in Section 4.1 that the Itô integral of simple non-random pro-
cesses is a Normal random variable. It is easy to see by using moment gener-
ating functions (see Exercise 4.3) that a limit in probability of such a sequence
is also Gaussian. This implies the following result.

Theorem 4.11 If X(t) is non-random such that
∫ T

0 X2(s)ds < ∞, then its
Itô integral Y (t) =

∫ t

0 X(s)dB(s) is a Gaussian process with zero mean and
covariance function given by

Cov(Y (t), Y (t + u)) =
∫ t

0

X2(s)ds, u ≥ 0. (4.26)

Moreover, Y (t) is a square integrable martingale.

Proof: Since the integrand is non-random,
∫ t

0 EX2(s)ds =
∫ t

0 X2(s)ds < ∞.
By the zero mean property of Itô integral, Y has zero mean. To compute the
covariance function, write

∫ t+u

0
as
∫ t

0
+
∫ t+u

t
and use the martingale property

of Y (t) to obtain

E
(∫ t

0

X(s)dB(s)E
(∫ t+u

t

X(s)dB(s)
∣∣∣Ft

))
= 0.
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Hence

Cov(Y (t), Y (t + u)) = E
(∫ t

0

X(s)dB(s)
∫ t+u

0

X(s)dB(s)
)

= E
(∫ t

0

X(s)dB(s)
)2

=
∫ t

0

EX2(s)ds =
∫ t

0

X2(s)ds.

�

A proof of normality of integrals of non-random processes will be done later
by using Itô’s formula.

Example 4.10: According to Theorem 4.11 J =
∫ t

0
sdB(s) has a Normal N(0, t3/3)

distribution.

Example 4.11:

Let X(t) = 2I[0,1](t) + 3I(1,3](t) − 5I(3,4](t). Give the Itô integral
∫ 4

0
X(t)dB(t) as

a sum of random variables, give its distribution, mean and variance. Show that the
process M(t) =

∫ t

0
X(s)dB(s), 0 ≤ t ≤ 4, is a Gaussian process and a martingale.∫ 4

0

X(t)dB(t) =

∫ 1

0

X(t)dB(t) +

∫ 3

1

X(t)dB(t) +

∫ 4

3

X(t)dB(t)

=

∫ 1

0

2dB(t) +

∫ 3

1

3dB(t) +

∫ 4

3

(−5)dB(t)

= 2(B(1) − B(0)) + 3(B(3) − B(1)) − 5(B(4) − B(3)).

The Itô integral is a sum of 3 independent Normal random variables (by independence
of increments of Brownian motion), 2N(0, 1) + 3N(0, 2) − 5N(0, 1). Its distribution
is N(0, 47).

The martingale property and the Gaussian property of M(t) =
∫ t

0
X(s)dB(s),

0 ≤ t ≤ 4, follow from the independence of the increments of M(t), zero mean incre-

ments and the Normality of the increments. M(t) − M(s) =
∫ t

s
X(u)dB(u). Take

for example 0 < s < t < 1, then M(t) − M(s) =
∫ t

s
X(u)dB(u) = 2(B(t) − B(s)),

which is independent of the Brownian motion up to time s, and has N(0, 4(t − s))
distribution.
If 0 < s < 1 < t < 3, then M(t) − M(s) =

∫ t

s
X(u)dB(u) =

∫ 1

s
X(u)dB(u) +∫ t

1
X(u)dB(u) = 2(B(1) − B(s)) + 3(B(t) − B(1)), which is independent of the

Brownian motion up to time s, B(u), u ≤ s (and also M(u), u ≤ s), and has
N(0, 4(1 − s) + 9(t − 1)) distribution. Other cases are similar. By Theorem 2.23
the process M(t) is Gaussian.

Independence of increments plus zero mean of increments imply the martingale
property of M(t). For example, If 0 < s < 1 < t < 3, E(M(t)|M(u), u ≤ s) =
E(M(s)+M(t)−M(s)|M(u), u ≤ s) = M(s)+E(M(t)−M(s)|M(u), u ≤ s) = M(s).

If Y (t) =
∫ t

0 X(t, s)dB(s) where X(t, s) depends on the upper integration
limit t, then Y (t) need not be a martingale, but remains a gaussian process
for non-random X(t, s).
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Theorem 4.12 For any t ≤ T , let X(t, s) be a regular non-random func-
tion with

∫ t

0
X2(t, s)ds < ∞. Then the process Y (t) =

∫ t

0
X(t, s)dB(s) is a

Gaussian process with mean zero and covariance function t, u ≥ 0

Cov(Y (t), Y (t + u)) =
∫ t

0

X(t, s)X(t + u, s)ds. (4.27)

Proof: For a fixed t, the distribution of Y (t), as that of an Itô integral of a
non-random function, is Normal with mean 0 and variance

∫ t

0
X2(t, s)ds. We

don’t prove the process is Gaussian (it can be seen by approximating X(t, s)
by functions of the form f(t)g(s)), but calculate the covariance. For u > 0

Y (t + u) =
∫ t

0

X(t + u, s)dB(s) +
∫ t+u

t

X(t + u, s)dB(s).

Since X(t + u, s) is non-random, the Itô integral
∫ t+u

t X(t + u, s)dB(s) is
independent of Ft. Therefore

E
(∫ t

0

X(t, s)dB(s)
∫ t+u

t

X(t + u, s)dB(s)
)

= 0,

and

Cov(Y (t), Y (t + u)) = E (Y (t)Y (t + u))

= E
(∫ t

0

X(t, s)dB(s)
∫ t

0

X(t + u, s)dB(s)
)

=
∫ t

0

X(t, s)X(t + u, s)ds, (4.28)

where the last equality is obtained by the expectation of a product of Itô
integrals, Equation (4.19).

�

4.4 Itô’s Formula for Brownian Motion

Itô’s formula, also known as the change of variable and the chain rule, is one
of the main tools of stochastic calculus. It gives rise to many others, such as
Dynkin, Feynman-Kac, and integration by parts formulae.

Theorem 4.13 If B(t) is a Brownian motion on [0, T ] and f(x) is a twice
continuously differentiable function on IR, then for any t ≤ T

f(B(t)) = f(0) +
∫ t

0

f ′(B(s))dB(s) +
1
2

∫ t

0

f ′′(B(s))ds. (4.29)
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Proof: Note first that both integrals in (4.29) are well defined, the Itô
integral by Corollary 4.4. Let {tn

i } be a partition of [0, t]. Clearly,

f(B(t)) = f(0) +
n−1∑
i=0

(
f(B(tni+1)) − f(B(tni ))

)
.

Apply Taylor’s formula to f(B(tn
i+1)) − f(B(tni )) to obtain

f(B(tni+1))−f(B(tni ))= f ′(B(tni ))(B(tni+1)−B(tni ))+
1
2
f ′′(θn

i )(B(tni+1)−B(tni ))2,

where θn
i ∈ (B(tni ), B(tni+1)). Thus,

f(B(t)) = f(0) +
n−1∑
i=0

f ′(B(tni ))(B(tni+1) − B(tni ))

+
1
2

n−1∑
i=0

f ′′(θn
i )(B(tni+1) − B(tni ))2. (4.30)

Taking limits as δn → 0, the first sum in (4.30) converges to the Itô integral∫ t

0
f ′(B(s))dB(s). By the theorem below the second sum in (4.30) converges

to
∫ t

0
f ′′(B(s))ds and the result follows.

�

Theorem 4.14 If g is a bounded continuous function and {tn
i } represents

partitions of [0, t], then for any θn
i ∈ (B(tni ), B(tni+1)), the limit in probability

lim
δn→0

n−1∑
i=0

g(θn
i )
(
B(tni+1) − B(tni )

)2 =
∫ t

0

g(B(s))ds. (4.31)

Proof: Take first θn
i = B(tni ) to be the left end of the interval (B(tn

i ), B(tni+1)).
We show that the sums converge in probability

n−1∑
i=0

g(B(tni ))
(
B(tni+1) − B(tni )

)2 →
∫ t

0

g(B(s))ds. (4.32)

By continuity of g(B(t)) and definition of the integral, it follows that

n−1∑
i=0

g(B(tni ))(tni+1 − tni ) →
∫ t

0

g(B(s))ds. (4.33)

Next we show that the difference between the sums converges to zero in L2,

n−1∑
i=0

g(B(tni ))
(
B(tni+1) − B(tni )

)2 − n−1∑
i=0

g(B(ti))(ti+1 − ti) → 0. (4.34)
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With ∆Bi = B(tni+1) − B(tni ) and ∆ti = tni+1 − tni , by using conditioning it is
seen that the cross-product term in the following expression vanishes and

E

(
n−1∑
i=0

g(B(tni ))
(
(∆Bi)2 − ∆ti

))2

= E
n−1∑
i=0

g2(B(tni ))E
((

(∆Bi)2 − ∆ti
)2 |Fti

)

= 2E
n−1∑
i=0

g2(B(tni ))(∆ti)2 ≤ δ2E
n−1∑
i=0

g2(B(tni ))∆ti → 0 as δ → 0.

It follows that
n−1∑
i=0

g(B(tni ))
(
(∆Bi)2 − ∆ti

)→ 0,

in the square mean (L2), implying (4.34) and that both sums in (4.33) and
(4.32) have the same limit, and (4.32) is established. Now for any choice of
θn

i , we have as δn → 0,
n−1∑
i=0

(
g(θn

i ) − g(B(tni ))
)(

B(tni+1) − B(tni )
)2

≤ max
i

(
g(θn

i ) − g(B(tni ))
) n−1∑

i=0

(
B(tni+1) − B(tni )

)2 → 0. (4.35)

The first term converges to zero almost surely by continuity of g and B, and
the second converges in probability to the quadratic variation of Brownian
motion, t, implying convergence to zero in probability in (4.35). This implies
that both sums

∑n−1
i=0 g(θn

i )(∆Bi)2 and
∑n−1

i=0 g(B(ti))(∆Bi)2 have the same
limit in probability, and the result follows by (4.32).

�

Example 4.12: Taking f(x) = xm, m ≥ 2, we have

Bm(t) = m

∫ t

0

Bm−1(s)dB(s) +
m(m − 1)

2

∫ t

0

Bm−2(s)ds.

With m = 2,

B2(t) = 2

∫ t

0

B(s)dB(s) + t.

Rearranging, we recover the result on the stochastic integral∫ t

0

B(s)dB(s) =
1

2
B2(t) − 1

2
t.

Example 4.13: Taking f(x) = ex, we have

eB(t) = 1 +

∫ t

0

eB(s)dB(s) +
1

2

∫ t

0

eB(s)ds.
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4.5 Itô Processes and Stochastic Differentials

Definition of Itô Processes

An Itô process has the form

Y (t) = Y (0) +
∫ t

0

µ(s)ds +
∫ t

0

σ(s)dB(s), 0 ≤ t ≤ T, (4.36)

where Y (0) is F0-measurable, processes µ(t) and σ(t) are Ft-adapted, such
that

∫ T

0
|µ(t)|dt < ∞ and

∫ T

0
σ2(t)dt < ∞.

It is said that the process Y (t) has the stochastic differential on [0, T ]

dY (t) = µ(t)dt + σ(t)dB(t), 0 ≤ t ≤ T. (4.37)

We emphasize that a representation (4.37) only has meaning by the way of
(4.36), and no other.

Note that the processes µ and σ in (4.36) may (and often do) depend on
Y (t) or B(t) as well, or even on the whole past path of B(s), s ≤ t; for example
they may depend on the maximum of Brownian motion maxs≤t B(s).

Example 4.14: Example 4.12 shows that

B2(t) = t + 2

∫ t

0

B(s)dB(s). (4.38)

In other words, with Y (t) = B2(t) we can write Y (t) =
∫ t

0
ds+

∫ t

0
2B(s)dB(s). Thus

µ(s) = 1 and σ(s) = 2B(s). The stochastic differential of B2(t)

d(B2(t)) = 2B(t)dB(t) + dt.

The only meaning this has is the integral relation (4.38).

Example 4.15: Example 4.13 shows that Y (t) = eB(t) has stochastic differential

deB(t) = eB(t)dB(t) +
1

2
eB(t)dt,

or

dY (t) = Y (t)dB(t) +
1

2
Y (t)dt.

Itô’s formula (4.29) in differential notation becomes: for a C2 function f

d(f(B(t)) = f ′(B(t))dB(t) +
1
2
f ′′(B(t))dt. (4.39)



4.5. ITÔ PROCESSES AND STOCHASTIC DIFFERENTIALS 109

Example 4.16: We find d(sin(B(t))).
f(x) = sin(x), f ′(x) = cos(x), f ′′(x) = − sin(x). Thus

d(sin(B(t))) = cos(B(t))dB(t)− 1

2
sin(B(t))dt.

Similarly,

d(cos(B(t))) = − sin(B(t))dB(t)− 1

2
cos(B(t))dt.

Example 4.17: We find d(eiB(t)) with i2 = −1.
The application of Itô’s formula to a complex-valued function means its application
to the real and complex parts of the function. A formal application by treating i as
another constant gives the same result. Using the above example, we can calculate
d(eiB(t)) = d cos(B(t)) + id sin(B(t)), or directly by using Itô’s formula with
f(x) = eix, we have f ′(x) = ieix, f ′′(x) = −eix and

d
(
eiB(t)

)
= ieiB(t)dB(t) − 1

2
eiB(t)dt.

Thus X(t) = eiB(t) has stochastic differential

dX(t) = iX(t)dB(t) − 1

2
X(t)dt.

Quadratic Variation of Itô Processes

Let Y (t) be an Itô process

Y (t) = Y (0) +
∫ t

0

µ(s)ds +
∫ t

0

σ(s)dB(s), (4.40)

where it is assumed that µ and σ are such that the integrals in question are
defined. Then by the properties of the integrals, Y (t), 0 ≤ t ≤ T , is a (random)
continuous function, the integral

∫ t

0 µ(s)ds is a continuous function of t and is
of finite variation (it is differentiable almost everywhere), and the Itô integral∫ t

0 σ(s)dB(s) is continuous. Quadratic variation of Y on [0, t] is defined by
(see (1.13))

[Y ] (t) = [Y, Y ] ([0, t]) = lim
δn→0

n−1∑
i=0

(
Y (tni+1) − Y (tni )

)2
, (4.41)

where for each n, {tni }, is a partition of [0, t], and the limit is in probability
taken over partitions with δn = maxi(tni+1 − tni ) → 0 as n → ∞, and is given
by

[Y ] (t) =
[∫ ·

0

µ(s)ds +
∫ ·

0

σ(s)dB(s)
]

(t)

=
[∫ ·

0

µ(s)ds

]
(t) + 2

[∫ ·

0

µ(s)ds,

∫ ·

0

σ(s)dB(s)
]

(t) +
[∫ ·

0

σ(s)dB(s)
]

(t).
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The result on the covariation, Theorem 1.11, states that the quadratic
covariation of a continuous function with a function of finite variation is zero.
This implies that the quadratic covariation of the integral

∫ t

0
µ(s)ds with terms

above is zero, and we obtain by using the result on the quadratic variation of
Itô integrals (Theorem 4.9)

[Y ] (t) =
[∫ ·

0

σ(s)dB(s)
]

(t) =
∫ t

0

σ2(s)ds. (4.42)

If Y (t) and X(t) have stochastic differentials with respect to the same Brown-
ian motion B(t), then clearly process Y (t) + X(t) also has a stochastic differ-
ential with respect to the same Brownian motion. It follows that covariation
of X and Y on [0, t] exists and is given by

[X, Y ] (t) =
1
2

(
[X + Y, X + Y ] (t) − [X, X ] (t) − [Y, Y ] (t)

)
. (4.43)

Theorem 1.11 has an important corollary

Theorem 4.15 If X and Y are Itô processes and X is of finite variation,
then covariation [X, Y ] (t) = 0.

Example 4.18: Let X(t) = exp(t), Y (t) = B(t), then [X, Y ] (t) = [exp, B] (t) = 0.

Introduce a convention that allows a formal manipulation with stochastic dif-
ferentials.

dY (t)dX(t) = d [X, Y ] (t), (4.44)

and in particular
(dY (t))2 = d [Y, Y ] (t). (4.45)

Since X(t) = t is a continuous function of finite variation and Y (t) = B(t)
is continuous with quadratic variation t, the following rules follow

dB(t)dt = 0, (dt)2 = 0, (4.46)

but
(dB(t))2 = d [B, B] (t) = dt. (4.47)

Remark 4.7: In some texts, for example, Protter (1992), quadratic variation
is defined by adding the value Y 2(0) to (4.41). The definition given here gives
a more familiar looking formula for integration by parts, and it is used in many
texts, for example, Rogers and Williams (1987) p.59, Metivier (1982) p.175.
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Integrals with respect to Itô processes

It is necessary to extend integration with respect to processes obtained from
Brownian motion. Let the Itô integral process Y (t) =

∫ t

0 X(s)dB(s) be defined
for all t ≤ T , where X(t) is an adapted process, such that

∫ T

0 X2(s)ds < ∞
with probability one. Let an adapted process H(t) satisfy

∫ T

0 H2(s)X2(s)ds <

∞ with probability one. Then the Itô integral process Z(t) =
∫ t

0 H(s)X(s)dB(s)
is also defined for all t ≤ T . In this case one can formally write by identifying
dY (t) and X(t)dB(t),

Z(t) =
∫ t

0

H(s)dY (s) :=
∫ t

0

H(s)X(s)dB(s). (4.48)

In Chapter 8 integrals with respect to Y (t) will be introduced in a direct way,
but the result agrees with the one above.

More generally, if Y is an Itô process satisfying

dY (t) = µ(t)dt + σ(t)dB(t), (4.49)

and H is adapted and satisfies
∫ t

0
H2(s)σ2(s)ds < ∞,

∫ t

0
|H(s)µ(s)|ds < ∞,

then Z(t) =
∫ t

0
H(s)dY (s) is defined as

Z(t) =
∫ t

0

H(s)dY (s) :=
∫ t

0

H(s)µ(s)ds +
∫ t

0

H(s)σ(s)dB(s). (4.50)

Example 4.19: If a(t) denotes the number of shares held at time t, then the gain

from trading in shares during the time interval [0, T ] is given by
∫ T

0
a(t)dS(t).

4.6 Itô’s Formula for Itô processes

Theorem 4.16 (Itô’s formula for f(X(t))) Let X(t) have a stochastic dif-
ferential for 0 ≤ t ≤ T

dX(t) = µ(t)dt + σ(t)dB(t). (4.51)

If f(x) is twice continuously differentiable (C2 function), then the stochastic
differential of the process Y (t) = f(X(t)) exists and is given by

df(X(t)) = f ′(X(t))dX(t) +
1
2
f ′′(X(t))d[X, X ](t)

= f ′(X(t))dX(t) +
1
2
f ′′(X(t))σ2(t)dt (4.52)

=
(

f ′(X(t))µ(t) +
1
2
f ′′(X(t))σ2(t)

)
dt + f ′(X(t))σ(t)dB(t).
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The meaning of the above is

f(X(t)) = f(X(0)) +
∫ t

0

f ′(X(s))dX(s) +
1
2

∫ t

0

f ′′(X(s))σ2(s)ds, (4.53)

where the first integral is an Itô integral with respect to the stochastic dif-
ferential. Existence of the integrals in the formula (4.53) is assured by the
arguments following Theorem 4.13. The proof also follows the same ideas as
Theorem 4.13, and is omitted. Proofs of Itô’s formula can be found in Liptser
and Shiryaev (2001), p. 124, Revuz and Yor (2001) p. 146, Protter (1992), p.
71, Rogers and Williams (1990), p. 60.

Example 4.20: Let X(t) have stochastic differential

dX(t) = X(t)dB(t) +
1

2
X(t)dt. (4.54)

We find a process X satisfying (4.54). Let’s look for a positive process X. Using
Itô’s formula for ln X(t) ((lnx)′ = 1/x and (lnx)′′ = −1/x2),

d ln X(t) =
1

X(t)
dX(t) − 1

2X2
t

X2
t dt by using σ(t) = X(t)

= dB(t) +
1

2
dt − 1

2
dt = dB(t).

So that ln X(t) = ln X(0) + B(t), and we find

X(t) = X(0)eB(t). (4.55)

Using Itô’s formula we verify that this X(t) indeed satisfies (4.54). We don’t claim
at this stage that (4.55) is the only solution.

Integration by Parts

We give a representation of the quadratic covariation [X, Y ](t) of two Itô pro-
cesses X(t) and Y (t) in terms of Itô integrals. This representation gives rise
to the integration by parts formula.

Quadratic covariation is a limit over decreasing partitions of [0, t],

[X, Y ](t) = lim
δn→0

n−1∑
i=0

(
X(tni+1) − X(tni )

)(
Y (tni+1) − Y (tni )

)
. (4.56)

The sum on the right above can be written as

=
n−1∑
i=0

(
X(tni+1)Y (tni+1) − X(tni )Y (tni )

)
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−
n−1∑
i=0

X(tni )
(
Y (tni+1) − Y (tni )

)− n−1∑
i=0

Y (tni )
(
X(tni+1) − X(tni )

)
= X(t)Y (t) − X(0)Y (0)

−
n−1∑
i=0

X(tni )
(
Y (tni+1) − Y (tni )

)− n−1∑
i=0

Y (tni )
(
X(tni+1) − X(tni )

)
.

The last two sums converge in probability to Itô integrals
∫ t

0
X(s)dY (s) and∫ t

0
Y (s)dX(s), cf. Remark (4.4). Thus the following expression is obtained

[X, Y ](t) = X(t)Y (t) − X(0)Y (0) −
∫ t

0

X(s)dY (s) −
∫ t

0

Y (s)dX(s). (4.57)

The formula for integration by parts (stochastic product rule) is given by

X(t)Y (t) − X(0)Y (0) =
∫ t

0

X(s)dY (s) +
∫ t

0

Y (s)dX(s) + [X, Y ](t). (4.58)

In differential notations this reads

d
(
X(t)Y (t)

)
= X(t)dY (t) + Y (t)dX(t) + d[X, Y ](t). (4.59)

If
dX(t) = µX(t)dt + σX(t)dB(t), (4.60)

dY (t) = µY (t)dt + σY (t)dB(t), (4.61)

then, as seen earlier, their quadratic covariation can be obtained formally by
multiplication of dX and dY , namely

d[X, Y ](t) = dX(t)dY (t)
= σX(t)σY (t)(dB(t))2 = σX(t)σY (t)dt,

leading to the formula

d
(
X(t)Y (t)

)
= X(t)dY (t) + Y (t)dX(t) + σX(t)σY (t)dt.

Note that if one of the processes is continuous and is of finite variation, then
the covariation term is zero. Thus for such processes the stochastic product
rule is the same as usual.

The integration by parts formula (4.59) can be established rigorously by
making the argument above more precise, or by using Itô’s formula for the
function of two variables xy, or by approximations by simple processes.
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Formula (4.57) provides an alternative representation for quadratic varia-
tion

[X, X ](t) = X2(t) − X2(0) − 2
∫ t

0

X(s)dX(s). (4.62)

For Brownian motion this formula was established in Example 4.2.
It follows from the definition of quadratic variation, that it is a non-

decreasing process in t, and consequently it is of finite variation. It is also
obvious from (4.62) that it is continuous. By the polarization identity, covari-
ation is also continuous and is of finite variation.

Example 4.21: X(t) has stochastic differential

dX(t) = B(t)dt + tdB(t), X(0) = 0.

We find X(t), give its distribution, its mean and covariance. X(t) = tB(t) satisfies
the above equation, since the product rule for stochastic differentials is the same
as usual, when one of the processes is continuous and of finite variation. Thus
X(t) = tB(t) is Gaussian, with mean zero, and covariance function

γ(t, s) = Cov(X(t), X(s)) = E (X(t)X(s))

= E (B(t)B(s)) = Cov (B(t)B(s)) = min(t, s).

Example 4.22: Let Y (t) have stochastic differential

dY (t) =
1

2
Y (t)dt + Y (t)dB(t), Y (0) = 1.

Let X(t) = tB(t). We find d (X(t)Y (t)).
Y (t) is a Geometric Brownian motion eB(t) (see Example 4.17). For d (X(t)Y (t))
use the product rule. We need the expression for d[X, Y ](t).

d[X, Y ](t) = dX(t)dY (t) = (B(t)dt + tdB(t))
(

1

2
Y (t)dt + Y (t)dB(t)

)
=

1

2
B(t)Y (t)(dt)2 +

(
B(t)Y (t) +

1

2
tY (t)

)
dB(t)dt + tY (t)(dB(t))2 = tY (t)dt,

as (dB(t))2 = dt and all the other terms are zero. Thus

d (X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d[X, Y ](t)

= X(t)dY (t) + Y (t)dX(t) + tY (t)dt,

and substituting the expressions for X and Y the answer is obtained.

Example 4.23: Let f be a C2 function and B(t) Brownian motion. We find
quadratic covariation [f(B), B](t).
We find the answer by doing formal calculations. Using Itô’s formula

df(B(t)) = f ′(B(t))dB(t) +
1

2
f ′′(B(t))dt,
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and the convention
d[f(B), B](t) = df(B(t))dB(t),

we have

d[f(B), B](t) = df(B(t))dB(t) = f ′(B(t))(dB(t))2+
1

2
f ′′(B(t))dB(t)dt = f ′(B(t))dt.

Here we used (dB)2 = dt, and dBdt = 0. Thus

[f(B), B](t) =

∫ t

0

f ′(B(s))ds.

In a more intuitive way, from the definition of the covariation, taking limits over
shrinking partitions

[f(B), B](t) = lim

n−1∑
i=0

(f(B(tn
i+1)) − f(B(tn

i ))) (B(tn
i+1) − B(tn

i ))

= lim

n−1∑
i=0

f(B(tn
i+1)) − f(B(tn

i ))

B(tn
i+1) − B(tn

i )
(B(tn

i+1) − B(tn
i ))2

≈ lim

n−1∑
i=0

f ′(B(tn
i )) (B(tn

i+1) − B(tn
i ))2 =

∫ t

0

f ′(B(s))ds,

where we have used Theorem 4.14 in the last equality.

Example 4.24: Let f(t) be an increasing differentiable function, and let
X(t) = B(f(t)). We show that

[X, X](t) = [B(f), B(f)](t) = [B, B]f(t) = f(t). (4.63)

By taking limits over shrinking partitions

[X, X](t) = lim

n−1∑
i=0

(B(f(tn
i+1)) − B(f(tn

i )))2

= lim

n−1∑
i=0

(f(tn
i+1) − f(tn

i ))

(
B(f(tn

i+1)) − B(f(tn
i ))√

f(tn
i+1) − f(tn

i )

)2

= lim

n−1∑
i=0

(f(tn
i+1) − f(tn

i )) Z2
i = lim Tn,

where Zi =
B(f(tn

i+1))−B(f(tn
i
))√

f(tn
i+1)−f(tn

i
)

are Standard Normal, and independent, by the prop-

erties of Brownian motion, and Tn =
∑n−1

i=0
(f(tn

i+1) − f(tn
i ))Z2

i . Then for any n,

E(Tn) =

n−1∑
i=0

(f(tn
i+1) − f(tn

i )) = f(t).
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V ar(Tn) = V ar

(
n−1∑
i=0

(f(tn
i+1) − f(tn

i ))

)
= 3

n−1∑
i=0

(f(tn
i+1) − f(tn

i ))2 ,

by independence, and V ar(Z2) = 3. The last sum converges to zero, since f is of
finite variation and continuous, implying that

E(Tn − f(t))2 → 0.

This means that the limit in L2 of Tn is f(t), which implies that the limit in proba-
bility of Tn is f(t), and

[B(f), B(f)] = f(t).

Itô’s Formula for Functions of Two Variables

If two processes X and Y both possess a stochastic differential with respect
to B(t) and f(x, y) has continuous partial derivatives up to order two, then
f(X(t), Y (t)) also possesses a stochastic differential. To find its form consider
formally the Taylor expansion of order two,

df(x, y) =
∂f(x, y)

∂x
dx +

∂f(x, y)
∂y

dy

+
1
2

(
∂2f(x, y)

(∂x)2
(dx)2 +

∂2f(x, y)
(∂y)2

(dy)2 + 2
∂2f(x, y)

∂x∂y
dxdy

)
.

Now, (dX(t))2 = dX(t)dX(t) = d[X, X ](t) = σ2
X(X(t))dt,

(dY (t))2 = d[Y, Y ]t = σ2
Y (Y (t))dt, and dX(t)dY (t) = d[X, Y ]t

= σX(X(t))σY (Y (t))dt, where σX(t), and σY (t) are the diffusion coefficients
of X and Y respectively. So we have

Theorem 4.17 Let f(x, y) have continuous partial derivatives up to order
two (a C2 function) and X, Y be Itô processes, then

df(X(t), Y (t)) =
∂f

∂x
(X(t), Y (t))dX(t) +

∂f

∂y
(X(t), Y (t))dY (t)

+
1
2

∂2f

∂x2
(X(t), Y (t))σ2

X (X(t))dt +
1
2

∂2f

∂y2
(X(t), Y (t))σ2

Y (Y (t))dt

+
∂2f

∂x∂y
(X(t), Y (t))σX(X(t))σY (Y (t))dt. (4.64)

The proof is similar to that of Theorem 4.13, and is omitted. It is stressed that
differential formulae have meaning only through their integral representation.

Example 4.25: If f(x, y) = xy, then we obtain a differential of a product (or the
product rule)which gives the integration by parts formula.

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + σX(t)σY (t)(t)dt.
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An important case of Itô’s formula is for functions of the form f(X(t), t).

Theorem 4.18 Let f(x, t) be twice continuously differentiable in x, and con-
tinuously differentiable in t (a C2,1 function) and X be an Itô process, then

df(X(t), t) =
∂f

∂x
(X(t), t)dX(t)+

∂f

∂t
(X(t), t)dt+

1
2
σ2

X(X(t), t)
∂2f

∂x2
(X(t), t)dt.

(4.65)

This formula can be obtained from Theorem 4.17 by taking Y (t) = t and
observing that d[Y, Y ] = 0 and d[X, Y ] = 0.

Example 4.26: We find stochastic differential of X(t) = eB(t)−t/2.
Use Itô’s formula with f(x, t) = ex−t/2. X(t) = f(B(t), t) satisfies

dX(t) = df(B(t), t) =
∂f

∂x
dB(t) +

∂f

∂t
dt +

1

2

∂2f

∂2x
dt

= f(B(t), t)dB(t) − 1

2
f(B(t), t)dt +

1

2
f(B(t), t)dt

= f(B(t), t)dB(t) = X(t)dB(t).

So that
dX(t) = X(t)dB(t).

4.7 Itô Processes in Higher Dimensions

Let B(t) = (B1(t), B2(t), . . . , Bd(t)) be Brownian motion in IRd, that is, all
coordinates Bi(t) are independent one-dimensional Brownian motions. Let Ft

be the σ-field generated by B(s), s ≤ t. Let H(t) be a regular adapted process
d-dimensional vector process, i.e. each of its coordinates is such. If for each j,∫ T

0
H2

j (t)dt < ∞, then the Itô integrals
∫ T

0
Hj(t)dBj(t) are defined. A single

equivalent condition in terms of the length of the vector |H|2 =
∑d

i=1 H2
i is∫ T

0

|H(t)|2dt < ∞.

It is customary to use a scalar product notation (even suppressing ·)

H(t)·dB(t) =
d∑

j=1

Hj(t)dBj(t), and
∫ T

0

H(t)·dB(t) =
d∑

j=1

∫ T

0

Hj(t)dBj(t).

(4.66)
If b(t) is an integrable function then the process

dX(t) = b(t)dt +
d∑

j=1

Hj(t)dBj(t)
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is well defined. It is a scalar Itô process driven by a d-dimensional Brownian
motion. More generally, we can have any number n of process driven by a
d-dimensional Brownian motion, (the vector H i = (σi1, . . . σid))

dXi(t) = bi(t)dt +
d∑

j=1

σij(t)dBj(t), , i = 1, . . . , n (4.67)

where σ is n×d matrix valued function, B is d-dimensional Brownian motion,
X, b are n-dim vector-valued functions, the integrals with respect to Brownian
motion are Itô integrals. Then X is called an Itô process. In vector form (4.67)
becomes

dX(t) = b(t)dt + σ(t)dBt. (4.68)

The dependence of b(t) and σ(t) on time t can be via the whole path of
the process up time t, path of Bs, s ≤ t. The only restriction is that this
dependence results in:
for any i = 1, 2, . . . n, bi(t) is adapted and

∫ T

0
|bi(t)|dt < ∞ a.s.

for any i = 1, 2, . . . n, σij(t) is adapted and
∫ T

0 σ2
ij(t)dt < ∞ a.s., which assure

existence of the required integrals.
An important case is when this dependence is of the form b(t) = b(X(t), t),

σ(t) = σ(X(t), t). In this case the stochastic differential is written as

dX(t) = b(X(t), t)dt + σ(X(t), t)dB(t), (4.69)

and X(t) is then a diffusion process, see Chapters 5 and 6.
For Itô’s formula we need the quadratic variation of a multi-dimensional Itô

processes. It is not hard to see that quadratic covariation of two independent
Brownian motions is zero.

Theorem 4.19 Let B1(t) and B2(t) be independent Brownian motions. Then
their covariation process exists and is identically zero.

Proof: Let {tni } be a partition of [0, t] and consider

Tn =
n−1∑
i=0

(
B1(tni+1) − B1(tni )

)(
B2(ti+1n) − B2(tni )

)
.

Using independence of B1 and B2, E(Tn) = 0. Since increments of Brownian
motion are independent, the variance of the sum is sum of variances, and we
have

V ar(Tn) =
n−1∑
i=0

E
(
B1(tni+1) − B1(tni )

)2E(B2(tni+1) − B2(tni )
)2

=
n−1∑
i=0

(tni+1 − tni )2 ≤ max
i

(tni+1 − tni )t.
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Thus V ar(Tn) = E(T 2
n) → 0 as δn = maxi(tni+1 − tni ) → 0. This implies that

Tn → 0 in probability, and the result is proved.
�

Thus for k �= l, k, l = 1, 2, . . . d,

[Bk, Bl](t) = 0. (4.70)

Using (4.70), and the bi-linearity of covariation, it is easy to see from (4.67)

d[Xi, Xj](t) = dXi(t)dXj(t) = aijdt, for i, j = 1, . . . n. (4.71)

where a, called the diffusion matrix, is given by

a = σσTr , (4.72)

with σTr denoting the transposed matrix of σ.

Itô’s Formula for Functions of Several Variables

If X(t) = (X1(t), X2(t), . . . , Xn(t)) is a vector Itô process and f(x1, x2, . . . , xn)
is a C2 function of n variables, then f(X1(t), X2(t), . . . , Xn(t)) is also an Itô
process, moreover its stochastic differential is given by

df(X1(t), X2(t), . . . , Xn(t))

=
n∑

i=1

∂

∂xi
f(X1(t), X2(t), . . . , Xn(t))dXi(t)

+
1
2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
f(X1(t), X2(t), . . . , Xn(t))d[Xi, Xj ](t). (4.73)

When there is only one Brownian motion, d = 1, this formula is a generaliza-
tion of Itô’s formula for a function of two variables (Theorem 4.17).

For examples and applications see multi-dimensional diffusions in Chapters
5 and 6. We comment here on the integration by parts formula.

Remark 4.8: (Integration by Parts)
Let X(t) and Y (t) be two Itô processes that are adapted to independent Brow-
nian motions B1 and B2. Take f(x, y) = xy and note that only one of the
second derivatives is different from zero, ∂2xy

∂x∂y , but then the term it multiplies
is zero, d[B1, B2](t) = 0 by Theorem 4.19. So the covariation of X(t) and Y (t)
is zero, and one obtains from (4.73)

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t), (4.74)

which is the usual integration by parts formula.
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Remark 4.9: In some applications correlated Brownian motions are used.
These are obtained by a linear transformation of independent Brownian mo-
tions. If B1 and B2 W are independent, then the pair of processes B1 and
W = ρB1 +

√
1 − ρ2B2 are correlated Brownian motions. It is easy to see that

W is indeed a Brownian motion, and that d[B1, W ](t) = ρdt.

More results about Itô processes in higher dimensions are given in Chapter 6.

Remark 4.10: Itô’s formula can be generalized to functions less smooth than
C2, in particular for f(x) = |x|. Itô’s formula for f(x) = |x| becomes Tanaka’s
formula, and leads to the concept of local time. This development requires
additional concepts, which are given later, see Section 8.7 in the general theory
for semimartingales.

Notes. Material in this chapter can be found in Gihman and Skorohod (1972),
Liptser and Shiryaev (1977), (1989), Karatzas and Shreve (1988), Gard (1988),
Rogers and Williams (1990), (1994).

4.8 Exercises

Exercise 4.1: Give values of α for which the following process is defined
Y (t) =

∫ t

0
(t−s)−αdB(s). (This process is used in the definition of the so-called

Fractional Brownian motion.)

Exercise 4.2: Show that if X is a simple bounded adapted process, then∫ t

0 X(s)dB(s) is continuous.

Exercise 4.3: Let Xn be a Gaussian sequence convergent in distribution to
X . Show that the distribution of X is either Normal or degenerate. Deduce
that if EXn → µ and V ar(Xn) → σ2 > 0 then the limit is N(µ, σ2). Since
convergence in probability implies convergence in distribution, deduce conver-
gence of Itô integrals of simple non-random processes to a Gaussian limit.

Exercise 4.4: Show that if X(t) is non-random (does not depend on B(t))
and is a function of t and s with

∫ t

0 X2(t, s)ds < ∞ then
∫ t

0 X(t, s)dB(s) is a
Gaussian random variable Y (t). The collection Y (t), 0 ≤ t ≤ T , is a Gaussian
process with zero mean and covariance function for u ≥ 0 given by
Cov(Y (t), Y (t + u)) =

∫ t

0 X(t, s)X(t + u, s)ds.

Exercise 4.5: Show that a Gaussian martingale on a finite time interval
[0, T ] is a square integrable martingale with independent increments. Deduce
that if X is non-random and

∫ t

0
X2(s)ds < ∞ then Y (t) =

∫ t

0
X(s)dB(s) is a

Gaussian square integrable martingale with independent increments.
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Exercise 4.6: Obtain the alternative relation for the quadratic variation of
Itô processes, Equation (4.62), by applying Itô’s formula to X2(t).

Exercise 4.7: X(t) has a stochastic differential with µ(x) = bx + c and
σ2(x) = 4x. Assuming X(t) ≥ 0, find the stochastic differential for the process
Y (t) =

√
X(t).

Exercise 4.8: A process X(t) on (0, 1) has a stochastic differential with
coefficient σ(x) = x(1 − x). Assuming 0 < X(t) < 1, show that the process
defined by Y (t) = ln(X(t)/(1 − X(t))) has a constant diffusion coefficient.

Exercise 4.9: X(t) has a stochastic differential with µ(x) = cx and σ2(x) =
xa, c > 0. Let Y (t) = X(t)b. What choice of b will give a constant diffusion
coefficient for Y ?

Exercise 4.10: Let X(t) = tB(t) and Y (t) = eB(t). Find d
(

X(t)
Y (t)

)
.

Exercise 4.11: Obtain the differential of a ratio formula d
(

X(t)
Y (t)

)
by taking

f(x, y) = x/y. Assume that the process Y stays away from 0.

Exercise 4.12: Find d
(
M(t)

)2, where M(t) = eB(t)−t/2

Exercise 4.13: Let M(t) = B3(t) − 3tB(t). Show that M is a martingale,
first directly and then by using Itô integrals.

Exercise 4.14: Show that M(t) = et/2 sin(B(t)) is a martingale by using
Itô’s formula.

Exercise 4.15: For a function of n variables and n-dimensional Brownian
motion, write Itô’s formula for f(B1(t), . . . , Bn(t)) by using gradient notation
∇f = ( ∂

∂x1
, . . . , ∂

∂xn
).

Exercise 4.16: Φ(x) is the standard Normal distribution function. Show that
for a fixed T > 0 the process Φ( B(t)√

T−t
), 0 ≤ t ≤ T is a martingale.

Exercise 4.17: Let X(t) = (1 − t)
∫ t

0
dB(s)
1−s , where 0 ≤ t < 1. Find dX(t).

Exercise 4.18: Let X(t) = tB(t). Find its quadratic variation [X, X ](t).

Exercise 4.19: Let X(t) =
∫ t

0
(t − s)dB(s). Find dX(t) and its quadratic

variation [X, X ](t). Compare to the quadratic variation of Itô integrals.
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Chapter 5

Stochastic Differential
Equations

Differential equations are used to describe the evolution of a system. Stochastic
Differential Equations (SDEs) arise when a random noise is introduced into
ordinary differential equations (ODEs). In this chapter we define two concepts
of solutions of SDEs, the strong and the weak solution.

5.1 Definition of Stochastic Differential Equa-

tions

Ordinary Differential Equations

If x(t) is a differentiable function defined for t ≥ 0, µ(x, t) is a function of x,
and t, and the following relation is satisfied for all t, 0 ≤ t ≤ T

dx(t)
dt

= x′(t) = µ(x(t), t), and x(0) = x0, (5.1)

then x(t) is a solution of the ODE with the initial condition x0. Usually the
requirement that x′(t) is continuous is added. See also Theorem 1.4.

The above equation can be written in other forms.

dx(t) = µ(x(t), t)dt

and (by continuity of x′(t))

x(t) = x(0) +
∫ t

0

µ(x(s), s)ds.

123
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Before we give a rigorous definition of SDEs, we show how they arise as a
randomly perturbed ODEs and give a physical interpretation.

White Noise and SDEs

The White Noise process ξ(t) is formally defined as the derivative of the Brow-
nian motion,

ξ(t) =
dB(t)

dt
= B′(t). (5.2)

It does not exist as a function of t in the usual sense, since a Brownian motion
is nowhere differentiable.

If σ(x, t) is the intensity of the noise at point x at time t, then it is agreed
that

∫ T

0
σ(X(t), t)ξ(t)dt =

∫ T

0
σ(X(t), t)B′(t)dt =

∫ T

0
σ(X(t), t)dB(t), where

the integral is Itô integral.
Stochastic Differential Equations arise, for example, when the coefficients

of ordinary equations are perturbed by White Noise.

Example 5.1: Black-Scholes-Merton model for growth with uncertain rate of return.
x(t) is the value of $1 after time t, invested in a savings account. By the definition
of compound interest, it satisfies the ODE dx(t)/x(t) = rdt, or dx(t)/dt = rx(t), (r
is called the interest rate). If the rate is uncertain, it is taken to be perturbed by
noise, r + ξ(t), and following SDE is obtained

dX(t)

dt
= (r + σξ(t))X(t),

meaning
dX(t) = rX(t)dt + σX(t)dB(t).

Case σ = 0 corresponds to no noise, and recovers the deterministic equation. The
solution of the deterministic equation is easily obtained by separating variables as
x(t) = ert. The solution to the above SDE is given by a geometric Brownian motion,
as can be verified by Itô’s formula (see Example 5.5)

X(t) = e(r−σ2/2)t+σB(t). (5.3)

Example 5.2: Population growth. If x(t) denotes the population density, then the
population growth can be described by the ODE dx(t)/dt = ax(t)(1 − x(t)). The
growth is exponential with birth rate a, when this density is small, and slows down
when the density increases. Random perturbation of the birth rate results in the
equation dX(t)/dt = (a + σξ(t))X(t)(1− X(t)), or the SDE

dX(t) = aX(t)(1 − X(t))dt + σX(t)(1− X(t))dB(t).
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A Physical Model of Diffusion and SDEs

The physical phenomena which give rise to the mathematical model of diffusion
(and of Brownian motion) is the microscopic motion of a particle suspended
in a fluid. Molecules of the fluid move with various velocities and collide with
the particle from every possible direction producing a constant bombardment.
As a result of this bombardment the particle exhibits an ever present erratic
movement. This movement intensifies with increase in the temperature of the
fluid. Denote by X(t) the displacement of the particle in one direction from its
initial position at time t. If σ(x, t) measures the effect of temperature at point
x at time t, then the displacement due to bombardment during time [t, t + ∆]
is modelled as σ(x, t)

(
B(t + ∆)− B(t)

)
. If the velocity of the fluid at point x

at time t is µ(x, t), then the displacement of the particle due to the movement
of the fluid during is µ(x, t)∆. Thus the total displacement from its position
x at time t is given by

X(t + ∆) − x ≈ µ(x, t)∆ + σ(x, t)
(
B(t + ∆) − B(t)

)
. (5.4)

Thus we obtain from this equation, the mean displacement from x during short
time ∆ is given by

E
(
(X(t + ∆) − X(t))|X(t) = x

)
≈ µ(x, t) · ∆, (5.5)

and the second moment of the displacement from x during short time ∆ is
given by

E
(
(X(t + ∆) − X(t))2|X(t) = x

)
≈ σ2(x, t)∆. (5.6)

The above relations show that for small intervals of time both the mean and
the second moment (and variance) of the displacement of a diffusing particle at
time t at point x are proportional to the length of the interval, with coefficients
µ(x, t) and σ2(x, t) respectively.

It can be shown that, taken as asymptotic relations as ∆ → 0, that is,
replacing ≈ sign by the equality and adding terms o(∆) to the right-hand
sides, these two requirements characterize diffusion processes.

Assuming that µ(x, t) and σ(x, t) are smooth functions, heuristic Equation
(5.4) also points out that for small intervals of time ∆, diffusions are approxi-
mately Gaussian processes. Given X(t) = x, X(t+∆)−X(t) is approximately
normally distributed, N

(
µ(x, t)∆, σ2(x, t)∆

)
. Of course, for large intervals of

time diffusions are not Gaussian, unless the coefficients are non-random.
A stochastic differential equation is obtained heuristically from the relation

(5.4) by replacing ∆ by dt, and ∆B = B(t + ∆) − B(t) by dB(t), and
X(t + ∆) − X(t) by dX(t).
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Stochastic Differential Equations

Let B(t), t ≥ 0, be Brownian motion process. An equation of the form

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t), (5.7)

where functions µ(x, t) and σ(x, t) are given and X(t) is the unknown process,
is called a stochastic differential equation (SDE) driven by Brownian motion.
The functions µ(x, t) and σ(x, t) are called the coefficients.

Definition 5.1 A process X(t) is called a strong solution of the SDE (5.7) if
for all t > 0 the integrals

∫ t

0
µ(X(s), s)ds and

∫ t

0
σ(X(s), s)dB(s) exist, with

the second being an Itô integral, and

X(t) = X(0) +
∫ t

0

µ(X(s), s)ds +
∫ t

0

σ(X(s), s)dB(s). (5.8)

Remark 5.1:
1. A strong solution is some function (functional) F (t, (B(s), s ≤ t)) of the
given Brownian motion B(t).
2. When σ = 0, the SDE becomes an ordinary differential equation (ODE).
3. Another interpretation of (5.7), called the weak solution, is a solution in
distribution which will be given later.

Equations of the form (5.7) are called diffusion-type SDEs. More general
SDEs have the form

dX(t) = µ(t)dt + σ(t)dB(t), (5.9)

where µ(t) and σ(t) can depend on t and the whole past of the processes
X(t) and B(t) (X(s), B(s), s ≤ t), that is, µ(t) = µ

(
(X(s), s ≤ t), t

)
, σ(t) =

σ
(
(X(s), s ≤ t), t

)
. The only restriction on µ(t) and σ(t) is that they must be

adapted processes, with respective integrals defined. Although many results
(such as existence and uniqueness results) can be formulated for general SDEs,
we concentrate here on diffusion-type SDEs.

Example 5.3: We have seen that X(t) = exp(B(t) − t/2) is a solution of the
stochastic exponential SDE dX(t) = X(t)dB(t), X(0) = 1.

Example 5.4: Consider the process X(t) satisfying dX(t) = a(t)dB(t), where

a(t) is a non-random. Clearly, X(t) = X(0) +
∫ t

0
a(s)dB(s). We can represent

this as a function of the Brownian motion by integrating by parts, X(t) = X(0) +

a(t)B(t) −
∫ t

0
B(s)a′(s)ds, assuming a(t) is differentiable. In this case the function

F (t, (x(s), s ≤ t)) = X(0) + a(t)x(t)−
∫ t

0
x(s)a′(s)ds.

The next two examples demonstrate how to find a strong solution by using
Itô’s formula and integration by parts.
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Example 5.5: (Example 5.1 continued)
Consider the SDE

dX(t) = µX(t)dt + σX(t)dB(t), X(0) = 1. (5.10)

Take f(x) = ln x, then f ′(x) = 1/x and f ′′(x) = −1/x2.

d(ln X(t)) =
1

X(t)
dX(t) +

1

2

(
− 1

X2(t)

)
σ2X2(t)dt

=
1

X(t)

(
µX(t)dt + σX(t)dB(t)

)
− 1

2
σ2dt

= (µ − 1

2
σ2)dt + σdB(t)

So that Y (t) = ln X(t) satisfies

dY (t) = (µ − 1

2
σ2)dt + σdB(t).

Its integral representation gives

Y (t) = Y (0) + (µ − 1

2
σ2)t + σB(t),

and
X(t) = X(0)e(µ− 1

2 σ2)t+σB(t). (5.11)

Example 5.6: (Langevin equation and Ornstein-Uhlenbeck process)
Consider the SDE

dX(t) = −αX(t)dt + σdB(t), (5.12)

where α and σ are some non-negative constants.
Note that in the case σ = 0, the solution to the ODE is x0e

−αt, or in other
words x(t)eαt is a constant. To solve the SDE consider the process Y (t) = X(t)eαt.
Use the differential of the product rule, and note that the covariation of eαt with
X(t) is zero, as it is a differentiable function (d(eαt)dX(t) = αeαtdtdX(t) = 0), we
have dY (t) = eαtdX(t) + αeαtX(t)dt. Using the SDE for dX(t) we obtain dY (t) =

σeαtdB(t). This gives Y (t) = Y (0) +
∫ t

0
σeαsdB(s). Now the solution for X(t) is

X(t) = e−αt
(
X(0) +

∫ t

0

σeαsdB(s)
)
. (5.13)

The process X(t) in (5.12) is known as the Ornstein-Uhlenbeck process.
We can also find the functional dependence of the solution on the Brownian

motion path. Performing integration by parts, we find the function giving the strong
solution

X(t) = F (t, (B(s), 0 ≤ s ≤ t)) = e−αtX(0) + σB(t) − σα

∫ t

0

e−α(t−s)B(s)ds.
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A more general equation is

dX(t) = (β − αX(t))dt + σdB(t), (5.14)

with the solution

X(t) =
β

α
+ e−αt

(
X(0) − β

α
+

∫ t

0

σeαsdB(s)

)
. (5.15)

Using Itô’s formula it is easy to verify that (5.15) is indeed a solution.

Example 5.7: Consider the SDE dX(t) = B(t)dB(t).

Clearly, X(t) = X(0) +
∫ t

0
B(s)dB(s), and using integration by parts (or Itô’s for-

mula), we obtain

X(t) = X(0) +
1

2
(B2(t) − t).

Remark 5.2: If a strong solution exists, then by definition it is adapted
to the filtration of the given Brownian motion, and as such it is intuitively
clear that it is a function the path (B(s), s ≤ t). Results of Yamada and
Watanabe (1971), and Kallenberg (1996) state that provided the conditions of
the existence and uniqueness theorem are satisfied, then there exists a function
F such that the strong solution is given by X(t) = F (t, (B(s), s ≤ t)). Not
much is known about F in general. Often it is not easy to find this function
even for Itô integrals X(t) =

∫ t

0 f(B(s))dB(s), e.g. X(t) =
∫ t

0 |B(s)|1/2dB(s).
For a representation of Itô integrals as functions of Brownian motion paths,
see, for example, Rogers and Williams (1990), p.125-127.

Only some classes of SDEs admit a closed form solution. When a closed
form solution is hard to find, an existence and uniqueness result is important,
because without it, it is not clear what exactly the equation means. When
a solution exists and is unique, then numerical methods can be employed to
compute it. Similarly to ordinary differential equations, linear SDEs can be
solved explicitly.

5.2 Stochastic Exponential and Logarithm

Let X have a stochastic differential, and U satisfy

dU(t) = U(t)dX(t), and U(0) = 1, or U(t) = 1 +
∫ t

0

U(s)dX(s). (5.16)

Then U is called the stochastic exponential of X , and is denoted by E(X). If
X(t) is of finite variation then the solution to (5.16) is given by U(t) = eX(t).
For Itô processes the solution is given by
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Theorem 5.2 The only solution of (5.16) is given by

U(t) = E(X)(t) := eX(t)−X(0)− 1
2 [X,X](t). (5.17)

Proof: The proof of existence of a solution to (5.16) consists of verification,
by using Itô’s formula, of (5.17). Write U(t) = eV (t), with V (t) = X(t) −
X(0) − 1

2 [X, X ](t). Then

dE(X)(t) = dU(t) = d(eV (t)) = eV (t)dV (t) +
1
2
eV (t)d[V, V ](t).

Since [X, X ](t) is of finite variation, and X(t) is continuous, [X, [X, X ]](t) = 0,
and [V, V ](t) = [X, X ](t). Using this with the expression for V (t), we obtain

dE(X)(t) = eV (t)dX(t) − 1
2
eV (t)d[X, X ](t) +

1
2
eV (t)d[X, X ](t) = eV (t)dX(t),

and (5.16) is established. The proof of uniqueness is done by assuming that
there is another process satisfying (5.16), say U1(t), and showing by integration
by parts that d(U1(t)/U(t)) = 0. It is left as an exercise.

�

Note that unlike in the case of the usual exponential g(t) = exp(f)(t) = ef(t),
the stochastic exponential E(X) requires the knowledge of all the values of the
process up to time t, since it involves the quadratic variation term [X, X ](t).

Example 5.8: Stochastic exponential of Brownian motion B(t) is given by U(t) =

E(B)(t) = eB(t)− 1
2 t, and it satisfies for all t, dU(t) = U(t)dB(t) with U(0) = 1.

Example 5.9: Application in Finance: Stock process and its Return process.
Let S(t) denote the price of stock and assume that it is an Itô process, i.e. it has
a stochastic differential. The process of the return on stock R(t) is defined by the
relation

dR(t) =
dS(t)

S(t)
.

In other words
dS(t) = S(t)dR(t) (5.18)

and the stock price is the stochastic exponential of the return. Returns are usually
easier to model from first principles. For example, in the Black-Scholes model it
is assumed that the returns over non-overlapping time intervals are independent,
and have finite variance. This assumption leads to the model for the return process
R(t) = µt + σB(t). The stock price is then given by

S(t) = S(0)E(R)t = S0e
R(t)−R(0)− 1

2 [R,R](t)

= S(0)e(µ− 1
2 σ2)t+σB(t). (5.19)
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Stochastic Logarithm

If U = E(X), then the process X is called the stochastic logarithm of U ,
denoted L(U). This is the inverse operation to the stochastic exponential.
For example, the stochastic exponential of Brownian motion B(t) is given by
eB(t)− 1

2 t. So B(t) is the stochastic logarithm of eB(t)− 1
2 t.

Theorem 5.3 Let U have a stochastic differential and not take value 0. Then
the stochastic logarithm of U satisfies the SDE

dX(t) =
dU(t)
U(t)

, X(0) = 0, (5.20)

moreover

X(t) = L(U)(t) = ln
(

U(t)
U(0)

)
+
∫ t

0

d[U, U ](t)
2U2(t)

. (5.21)

Proof: The SDE for the stochastic logarithm L(U) is by the definition of
E(X). The solution (5.21) and uniqueness are obtained by Itô’s formula.

�

Example 5.10: Let U(t) = eB(t). We find its stochastic logarithm L(U) directly
and then verify (5.21). dU(t) = eB(t)dB(t) + 1

2
eB(t)dt. Hence

dX(t) = dL(U)(t) =
dU(t)

U(t)
= dB(t) +

1

2
dt.

Thus

X(t) = L(U)(t) = B(t) +
1

2
t.

Now, d[U, U ](t) = dU(t)dU(t) = e2B(t)dt, so that

L(U)(t) = ln U(t) +

∫ t

0

e2B(t)dt

2e2B(t)
= B(t) +

∫ t

0

1

2
dt = B(t) +

1

2
t,

which verifies (5.21).

Remark 5.3: The stochastic Logarithm is useful in financial applications (see
Kallsen and Shiryaev (2002)).

5.3 Solutions to Linear SDEs

Linear SDEs form a class of SDEs that can be solved explicitly. Consider
general linear SDE in one dimension

dX(t) = (α(t) + β(t)X(t)) dt + (γ(t) + δ(t)X(t)) dB(t), (5.22)

where functions α, β, γ, δ are given adapted processes, and are continuous func-
tions of t. Examples considered in the previous section are particular cases of
linear SDEs.
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Stochastic Exponential SDEs

Consider finding solutions in the case when α(t) = 0 and γ(t) = 0. The SDE
becomes

dU(t) = β(t)U(t)dt + δ(t)U(t)dB(t). (5.23)
This SDE is of the form

dU(t) = U(t)dY (t), (5.24)
where the Itô process Y (t) is defined by

dY (t) = β(t)dt + δ(t)dB(t).

The SDE (5.23) is the stochastic exponential of Y , see Section (5.2). The
stochastic exponential of Y is given by

U(t) = E(Y )(t)

= U(0) exp
(
Y (t) − Y (0) − 1

2
[Y, Y ](t)

)
= U(0) exp

(∫ t

0

β(s)ds +
∫ t

0

δ(s)dB(s) − 1
2

∫ t

0

δ2(s)ds
)

= U(0) exp
(∫ t

0

(
β(s) − 1

2
δ2(s)

)
ds +

∫ t

0

δ(s)dB(s)
)
, (5.25)

where [Y, Y ](t) is obtained from calculations d[Y, Y ](t) = dY (t)dY (t) = δ2(t)dt.

General Linear SDEs

To find a solution for the Equation (5.22) in the general case, look for a solution
of the form

X(t) = U(t)V (t), (5.26)
where

dU(t) = β(t)U(t)dt + δ(t)U(t)dB(t), (5.27)
and

dV (t) = a(t)dt + b(t)dB(t). (5.28)
Set U(0) = 1 and V (0) = X(0). Note that U is given by (5.25). Taking
the differential of the product it is easy to see that we can choose coefficients
a(t) and b(t) in such a way that relation X(t) = U(t)V (t) holds. The desired
coefficients a(t) and b(t) turn out to satisfy equations

b(t)U(t) = γ(t), and a(t)U(t) = α(t) − δ(t)γ(t). (5.29)

Using the expression for U(t), a(t) and b(t) are then determined. Thus V (t)
is obtained, and X(t) is found to be

X(t) = U(t)
(

X(0) +
∫ t

0

α(s) − δ(s)γ(s)
U(s)

ds +
∫ t

0

γ(s)
U(s)

dB(s)
)

. (5.30)
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Langevin type SDE

Let X(t) satisfy
dX(t) = a(t)X(t)dt + dB(t), (5.31)

where a(t) is a given adapted and continuous process. When a(t) = −α the
equation is the Langevin equation, Example 5.6.

We solve the SDE in two ways: by using the formula (5.30), and directly,
similarly to Langevin’s SDE.

Clearly, β(t) = a(t), γ(t) = 1, and α(t) = δ(t) = 0. To find U(t), we must

solve dU(t) = a(t)U(t)dt, which gives U(t) = e

∫
t

0
a(s)ds. Thus from (5.30)

X(t) = e

∫ t

0
a(s)ds(

X(0) +
∫ t

0
e
−
∫ u

0
a(s)ds

dB(u)
)
.

Consider the process e
−
∫

t

0
a(s)ds

X(t) and use integration by parts. The

process e
−
∫

t

0
a(s)ds is continuous and is of finite variation. Therefore it has

zero covariation with X(t), hence

d

(
e
−
∫ t

0
a(s)ds

X(t)
)

= e
−
∫ t

0
a(s)ds

dX(t) − a(t)e−
∫ t

0
a(s)ds

X(t)dt

= e
−
∫

t

0
a(s)ds

dB(t).

Integrating we obtain

e
−
∫ t

0
a(s)ds

X(t) = X(0) +
∫ t

0

e
−
∫ u

0
a(s)ds

dB(u),

and finally

X(t) = X(0)e
∫ t

0
a(s)ds + e

∫ t

0
a(s)ds

∫ t

0

e
−
∫ u

0
a(s)ds

dB(u). (5.32)

Brownian Bridge

Brownian Bridge, or pinned Brownian motion is a solution to the following
SDE

dX(t) =
b − X(t)

T − t
dt + dB(t), for 0 ≤ t < T, X(0) = a. (5.33)

This process is a transformed Brownian motion with fixed values at each end
of the interval [0, T ], X(0) = a and X(T ) = b. The above SDE is a linear
SDE, with

α(t) = − 1
T − t

, β(t) =
b

T − t
, γ(t) = 1, and δ(t) = 0.
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Identifying U(t) and V (t) in (5.30) we obtain

X(t) = a
(
1 − t

T

)
+ b

t

T
+ (T − t)

∫ t

0

1
T − s

dB(s), for 0 ≤ t < T. (5.34)

Since the function under the Itô integral is deterministic, and for any t < T ,∫ t

0 ds/(T − s)2 < ∞, the process
∫ t

0
1

T−sdB(s) is a martingale, moreover, it is
Gaussian, by Theorem 4.11. Thus X(t), on [0, T ) is a Gaussian process with
initial value X(0) = a. The value at T , which is X(T ) = b, is determined by
continuity, see Example 5.11 below.

Thus a Brownian Bridge is a continuous Gaussian process on [0, T ] with
mean function a(1 − t/T ) + bt/T and covariance function
Cov(X(t), X(s)) = min(s, t) − st/T .

Example 5.11: We show that limt↑T (T − t)
∫ t

0
1

T−s
dB(s) = 0 almost surely.

Using integration by parts, (which is the same as the standard formula due to zero
covariation between the deterministic term and Brownian motion), for any t < T∫ t

0

1

T − s
dB(s) = B(t)/(T − t) −

∫ t

0

B(s)

(T − s)2
ds,

and

(T − t)

∫ t

0

1

T − s
dB(s) = B(t) − (T − t)

∫ t

0

B(s)

(T − s)2
ds. (5.35)

It is an exercise in calculus (by changing variables u = 1/(t − s), or considering

integrals
∫ T−δ

0
and

∫ t

T−δ
) to see that for any continuous function g(s),

lim
t↑T

(T − t)

∫ t

0

g(s)

(T − s)2
ds = g(T ).

Applying this with g(s) = B(s) shows that the limit in (5.35) is zero.

5.4 Existence and Uniqueness of Strong Solu-

tions

Let X(t) satisfy

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t). (5.36)

Theorem 5.4 (Existence and Uniqueness) If the following conditions are
satisfied

1. Coefficients are locally Lipschitz in x uniformly in t, that is,
for every T and N , there is a constant K depending only on T and N
such that for all |x|, |y| ≤ N and all 0 ≤ t ≤ T

|µ(x, t) − µ(y, t)| + |σ(x, t) − σ(y, t)| < K|x − y|, (5.37)
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2. Coefficients satisfy the linear growth condition

|µ(x, t)| + |σ(x, t)| ≤ K(1 + |x|) (5.38)

3. X(0) is independent of (B(t), 0 ≤ t ≤ T ), and EX2(0) < ∞.

Then there exists a unique strong solution X(t) of the SDE (5.36). X(t) has
continuous paths, moreover

E
(

sup
0≤t≤T

X2(t)
)

< C
(
1 + E(X2(0))

)
, (5.39)

where constant C depends only on K and T .

The proof of existence is carried out by successive approximations, similar to
that for ordinary differential equations (Picard iterations). It can be found
in Friedman (1975), p.104-107, Gihman and Skorohod (1982), Rogers and
Williams (1990). It is not hard to see, by using Gronwall’s lemma, that the
Lipschitz condition implies uniqueness.

The Lipschitz condition (5.37) holds if, for example, partial derivatives
∂µ
∂x (t, x) and ∂σ

∂x (t, x) are bounded for |x|, |y| ≤ N and all 0 ≤ t ≤ T , which in
turn is true if the derivatives are continuous (see Chapter 1).

Less Stringent Conditions for Strong Solutions

The next result is specific for one-dimensional SDEs. It is given for the case of
time-independent coefficients. A similar result holds for time-dependent coef-
ficients, see for example, Ethier and Kurtz (1986), p.298, Rogers and Williams
(1990), p.265.

Theorem 5.5 (Yamada-Watanabe) Suppose that µ(x) satisfies the Lips-
chitz condition and σ(x) satisfies a Hölder condition condition of order α,
α ≥ 1/2, that is, there is a constant K such that

|σ(x) − σ(y)| < K|x − y|α. (5.40)

Then the strong solution exists and is unique.

Example 5.12: (Girsanov’s SDE)
dX(t) = |X(t)|rdB(t), X(0) = 0, 1/2 ≤ r < 1. Note that for such r, |x|r is Hölder,
but not Lipschitz (see section on these conditions in Chapter 1). X(t) ≡ 0 is a
strong solution. Since the conditions of the Theorem are satisfied, X(t) ≡ 0 is the
only solution.
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5.5 Markov Property of Solutions

The Markov property asserts that given the present state of the process, the
future is independent of the past. This can be stated as follows. If Ft denotes
the σ-field generated by the process up to time t, then for any 0 ≤ s < t

P(X(t) ≤ y|Fs) = P(X(t) ≤ y|X(s)) a.s. (5.41)

It is intuitively clear from the heuristic Equation (5.4) that solutions to SDEs
should have the Markov Property. For a small ∆, given X(t) = x, X(t + ∆)
depends on B(t + ∆) − B(t), which is independent of the past.

We don’t prove that strong solutions possess Markov property. However,
by the construction of the solution on the canonical space (a weak solution),
it can be seen that the Markov property holds.

Transition Function.

Markov processes are characterized by the transition probability function. De-
note by

P (y, t, x, s) = P(X(t) ≤ y|X(s) = x) (5.42)

the conditional distribution function of the random variable X(t) given that
X(s) = x, i.e. the distribution of the values at time t given that the process
was in the state x at time s.

Theorem 5.6 Let X(t) be a solution to the SDE (5.36) Then X(t) has the
Markov property.

Using the law of total probability, by conditioning on all possible values z of
the process at time u, for s < u < t, we obtain that the transition probability
function P (y, t, x, s) in (5.42) satisfies the Chapman-Kolmogorov equation

P (y, t, x, s) =
∫ ∞

−∞
P (y, t, z, u)P (dz, u, x, s), for any s < u < t. (5.43)

In fact any function that satisfies this equation and is a distribution func-
tion in y for fixed values of the other arguments, is a transition function of
some Markov process.

Example 5.13: If P (y, t, x, s) =
∫ y

−∞
1√

2π(t−s)
e

(u−x)2

2(t−s) du is the cumulative distribu-

tion function of the Normal N(x, t−s) distribution, then the corresponding diffusion
process is Brownian motion. Indeed, P(B(t) ≤ y|Fs) = P(B(t) ≤ y|B(s)), and the
conditional distribution of B(t) given B(s) = x is N(x, t − s).
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Example 5.14: Let X(t) solve SDE dX(t) = µX(t)dt + σX(t)dB(t) for some

constants µ and σ. We know (see Example 5.5) that X(t) = X(0)e(µ−σ2/2)t+σB(t).

Hence X(t) = X(s)e(µ−σ2/2)(t−s)+σ(B(t)−B(s)) and its transition probability func-

tion P(X(t) ≤ y|X(s) = x) = P(X(s)e(µ−σ2/2)(t−s)+σ(B(t)−B(s)) ≤ y|X(s) = x) =

P(xe(µ−σ2/2)(t−s)+σ(B(t)−B(s)) ≤ y|X(s) = x). Using independence of B(t) − B(s)

and X(s), the conditional probability is given by P(xe(µ−σ2/2)(t−s)+σ(B(t)−B(s)) ≤ y)

= P(e(µ−σ2/2)(t−s)+σ(B(t)−B(s)) ≤ y/x). Thus P (y, t, x, s) = Φ( ln(y/x)−(µ−σ2/2)(t−s)

σ
√

t−s
).

Remark 5.4: Introduce a useful representation, which requires us to keep
track of when and where the process starts. Denote by Xx

s (t) the value of
the process at time t when it starts at time s from the point x. It is clear
that for 0 ≤ s < t, Xx

0 (t) = X
Xx

0 (s)
s (t). The Markov property states that

conditionally on Xx0
s (t) = x, the processes Xx0

s (u), s ≤ u ≤ t, and Xx
t (u),

t ≤ u are independent.

Definition 5.7 A process has the strong Markov property if the relation (5.41)
holds when a non-random time s is replaced by a finite stopping time τ .

Solutions to SDEs have also the strong Markov property, meaning that
given the history up to a stopping time τ , the behaviour of the process at
some future time t, is independent of the past. See also Section 3.4.

If an SDE has a strong solution X(t), then X(t) has a transition probability
function P (y, t, x, s). This function can be found as a solution to the Forward
or the Backward partial differential equations, see Section 5.8.

A transition probability function P (y, t, x, s) may exist for SDEs without a
strong solution. This function in turn determines a Markov process uniquely
(all finite-dimensional distributions). This process is known as a weak solution
to an SDE. In this way one can define a solution for an SDE under less stringent
conditions on its coefficients. The concepts of the weak solution are considered
next.

5.6 Weak Solutions to SDEs

The concept of weak solutions allows us to give a meaning to an SDE when
strong solutions do not exist. Weak solutions are solutions in distribution,
they can be realized (defined) on some other probability space and exist under
less stringent conditions on the coefficients of the SDE.

Definition 5.8 If there exist a probability space with a filtration, a Brownian
motion B̂(t) and a process X̂(t) adapted to that filtration, such that: X̂(0)
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has the given distribution, for all t the integrals below are defined, and X̂(t)
satisfies

X̂(t) = X̂(0) +
∫ t

0

µ(X̂(u), u)du +
∫ t

0

σ(X̂(u), u)dB̂(u), (5.44)

then X̂(t) is called a weak solution to the SDE

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t). (5.45)

Definition 5.9 A weak solution is called unique if whenever X(t) and X ′(t)
are two solutions (perhaps on different probability spaces) such that the distri-
butions of X(0) and X ′(0) are the same, then all finite-dimensional distribu-
tions of X(t) and X ′(t) are the same.

Clearly, by definition, a strong solution is also a weak solution. Uniqueness
of the strong solution (pathwise uniqueness) implies uniqueness of the weak
solution, (a result of Yamada and Watanabe (1971)). In the next example a
strong solution does not exist, but a weak solution exists and is unique.

Example 5.15: (Tanaka’s SDE)

dX(t) = sign(X(t))dB(t), (5.46)

where

sign(x) =

{
1 if x ≥ 0
−1 if x < 0.

Since σ(x) = sign(x) is discontinuous, it is not Lipschitz, and conditions for the
strong existence fail. It can be shown that a strong solution to Tanaka’s SDE does
not exist, for example, Gihman and Skorohod (1982), Rogers and Williams (1990)
p.151. We show that the Brownian motion is the unique weak solution of Tanaka’s
SDE. Let X(t) be some Brownian motion. Consider the process

Y (t) =

∫ t

0

1

sign(X(s))
dX(s) =

∫ t

0

sign(X(s))dX(s).

sign(X(t)) is adapted,
∫ T

0
(sign(X(t)))2dt = T < ∞, and Y (t) is well defined and is

a continuous martingale.

[Y, Y ](t) =

∫ t

0

sign2(X(s))d[X, X](s) =

∫ t

0

ds = t.

By Levy’s theorem (which is proven later), Y (t) is a Brownian motion, call it B̂(t),

B̂(t) =

∫ t

0

dX(s)

sign(X(s))
.

Rewrite the last equality in the differential notation to obtain Tanaka’s SDE. Levy’s
characterization theorem implies also that any weak solution is a Brownian motion.
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Example 5.16: (Girsanov’s SDE) The equation

dX(t) = |X(t)|rdB(t), (5.47)

r > 0, t ≥ 0 has a strong solution X(t) ≡ 0. For r ≥ 1/2, this is the only strong
solution by Theorem 5.5. Therefore the are no weak solutions other than zero. For
0 < r < 1/2 the SDE has infinitely many weak solutions (Rogers and Williams
(1990) p.175). Therefore there is no strong uniqueness in this case, otherwise it
would have only one weak solution. Compare this to the non-uniqueness of solution
of the equation dx(t) = 2

√
|x(t)|dt, which has solutions x(t) = 0 and x(t) = t2.

5.7 Construction of Weak Solutions

In this section we give results on the existence and uniqueness of weak solutions
to SDEs. Construction of weak solutions requires more advanced knowledge,
and this section can be skipped.

Theorem 5.10 If for each t > 0, functions µ(x, t) and σ(x, t) are bounded
and continuous then the SDE (5.45) has at least one weak solution starting at
time s at point x, for all s, and x. If in addition their partial derivatives with
respect to x up to order two are also bounded and continuous, then the SDE
(5.45) has a unique weak solution starting at time s at point x. Moreover this
solution has the strong Markov property.

These results are proved in Stroock and Varadhan (1979), ch. 6. But better
conditions are available, Stroock and Varadhan (1979) Corollary 6.5.5, see also
Pinsky (1995) Theorem 1.10.2.

Theorem 5.11 If σ(x, t) is positive and continuous and for any T > 0 there
is KT such that for all x ∈ IR

|µ(x, t)| + |σ(x, t)| ≤ KT (1 + |x|) (5.48)

then there exists a unique weak solution to SDE (5.45) starting at any point
x ∈ IR at any time s ≥ 0, moreover it has the strong Markov property.

Canonical Space for Diffusions

Solutions to SDEs or diffusions can be realized on the probability space of
continuous functions. We indicate: how to define probability on this space by
means of a transition function, how to find the transition function from the
given SDE and how to verify that the constructed process indeed satisfies the
given SDE.
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Probability Space (Ω, F , IF)

Weak solutions can be constructed on the canonical space Ω = C
(
[0,∞)

)
of

continuous functions from [0,∞) to IR. The Borel σ-field on Ω is the one
generated by the open sets. Open sets in turn, are defined with the help
of a metric, for example, an open ball of radius ε centered at ω is the set
Dε(ω) = {ω′ : d(ω, ω′) < ε}. The distance between two continuous functions
ω1 and ω2 is taken as

d(ω1, ω2) =
∞∑

n=1

1
2n

sup0≤t≤n |ω1(t) − ω2(t)|
1 + sup0≤t≤n |ω1(t) − ω2(t)| .

Convergence of the elements of Ω in this metric is the uniform convergence
of functions on bounded closed intervals [0, T ]. Diffusions on a finite interval
[0, T ] can be realized on the space C([0, T ]) with the metric

d(ω1, ω2) = sup
0≤t≤T

|ω1(t) − ω2(t)|.

The canonical process X(t) is defined by X(t, ω) = ω(t), 0 ≤ t < ∞. It
is known (for example, Dudley (1989) p.356) that the Borel σ-field F on
C
(
[0,∞)

)
is given by σ(X(t), 0 ≤ t < ∞). The filtration is defined by the

σ-fields Ft = σ(X(s), 0 ≤ s ≤ t).

Probability Measure

We outline the construction of probability measures from a given transition
function P (y, t, x, s). In particular, this construction gives the Wiener measure
that corresponds to the Brownian motion process.

For any fixed x ∈ IR and s ≥ 0, a probability P = Px,s on (Ω,F) can be
constructed by using properties

1. P(X(u) = x, 0 ≤ u ≤ s) = 1.

2. P(X(t2) ∈ B|Ft1) = P (B, t2, X(t1), t1).

The second property asserts that for any Borel sets A, B ⊂ IR we have

Pt1,t2(A × B) := P(X(t1) ∈ A, X(t2) ∈ B)
= E (P(X(t2) ∈ B|Ft1)I(X(t1) ∈ A))
= E (P(B, t2, X(t1), t1)I((X(t1) ∈ A))

=
∫

A

∫
B

P(dy2, t2, y1, t1)Pt1(dy1),
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where Pt1(C) = P(X(t1) ∈ C). This extends to the n-dimensional cylinder
sets {ω ∈ Ω : (ω(t1), . . . , ω(tn)) ∈ Jn}, where Jn ⊂ IRn, by

Pt1,...,tn+1(Jn+1) =
∫

Jn+1

P (dyn+1, tn+1, yn, tn)Pt1,...,tn(dy1 × . . . × dyn).

These probabilities give the finite dimensional distributions
P((ω(t1), . . . , ω(tn)) ∈ Jn). Consistency of these probabilities is a consequence
of the Chapman-Kolmogorov equation for the transition function. Thus by
Kolmogorov’s extension theorem P can be extended in a unique way to F .
This probability measure P = Px,s corresponds to the Markov process started
at x at time s, denoted earlier by Xx

s (t). Thus any transition function defines
a probability so that the canonical process is a Markov process. We described
in particular a construction of the Wiener measure, or Brownian motion.

Transition Function

Under appropriate conditions on the coefficients µ(x, t) and σ(x, t), P (y, t, x, s)
is determined from a partial differential equation (PDE),

∂u

∂s
(x, s) + Lsu(x, s) = 0, (5.49)

called the backward PDE, involving a second order differential operator Ls,

Lsf(x, s) = (Lsf)(x, s) =
1
2
σ2(x, s)

∂2f

∂x2
(x, s) + µ(x, s)

∂f

∂x
(x, s). (5.50)

It follows from the key property of the transition function, that

f(X(t)) −
∫ t

s

(Luf)(X(u))du (5.51)

is a martingale under Px,s with respect to Ft for t ≥ s, for any twice continu-
ously differentiable function f vanishing outside a finite interval (with compact
support), f ∈ C2

K( IR).

SDE on the Canonical Space is Satisfied

Extra concepts (that of local martingales and their integrals) are needed to
prove the claim rigorously. The main idea is as follows. Suppose that (5.51)
holds for functions f(x) = x and f(x) = x2. (Although they don’t have a
compact support, they can be approximated by C2

K functions on any finite
interval). Applying (5.51) to the linear function, we obtain that

Y (t) = X(t) −
∫ t

s

µ(X(u), u)du (5.52)
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is a martingale. Applying (5.51) to the quadratic function, we obtain that

X2(t) −
∫ t

s

(
σ2(X(u), u) + 2µ(X(u), u)X(u)

)
du (5.53)

is a martingale. By the characterization property of quadratic variation for
continuous martingales Y 2(t)−[Y, Y ](t) is a martingale, and it follows from the
above relations that [Y, Y ](t) =

∫ t

s
σ2(X(u), u)du. One can define the Itô in-

tegral process B(t) =
∫ t

s
dY (u)/σ(X(u), u). From the properties of stochastic

integrals it follows that B(t) is a continuous local martingale with [B, B](t) = t.
Thus by Levy’s theorem B(t) is Brownian motion. Putting all of the above
together and using differential notation, the required SDE is obtained. For
details, see for example, Rogers and Williams (1990), p.160, also Stroock and
Varadhan (1979).

Weak Solutions and the Martingale Problem

Taking the relation (5.51) as primary, Stroock and Varadhan defined a weak
solution to the SDE

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t) (5.54)

as a solution to the so-called martingale problem.

Definition 5.12 The martingale problem for the coefficients, or the operator
Ls, is as follows. For each x ∈ IR, and s > 0, find a probability measure Px,s

on Ω,F such that

1. Px,s(X(u) = x, 0 ≤ u ≤ s) = 1,

2. For any twice continuously differentiable function f vanishing outside
a finite interval the following process is a martingale under Px,s with
respect to Ft

f(X(t)) −
∫ t

s

(Luf)(X(u))du. (5.55)

In the case when there is exactly one solution to the martingale problem, it is
said that the martingale problem is well-posed.

Example 5.17: Brownian motion B(t) is a solution to the martingale problem

for the Laplace operator L = 1
2

d2

dx2 , that is, for a twice continuously differentiable
function f vanishing outside a finite interval

f(B(t)) −
∫ t

0

1

2
f ′′(B(s))ds

is a martingale. Since Brownian motion exists and is determined by its distribution
uniquely, the martingale problem for L is well-posed.
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Remark 5.5: Note that if a function vanishes outside a finite interval, then
its derivatives also vanish outside that interval. Thus for a twice continuously
differentiable vanishing outside a finite interval function f (f ∈ C2

K), (Lsf)
exists is continuous and vanishes outside that interval. This assures that the
expectation of the process in (5.55) exists. If one demands only that f is twice
continuously differentiable with bounded derivatives (f ∈ C2

b ), then (Lsf)
exists but may not be bounded, and expectation in (5.55) may not exist. If
one takes (f ∈ C2

b ) then one seeks solutions to the local martingale problem,
and any such solution makes the process in (5.55) into a local martingale.
Local martingales are covered in Chapter 7.

As there are two definitions of weak solutions definition 5.8 and definition
5.12, we show that they are the same.

Theorem 5.13 Weak solutions in the sense of Definition 5.8 and in the sense
of Definition 5.12 are equivalent.

Proof: We already indicated the proof in one direction, that if the mar-
tingale problem has a solution, then the solution satisfies the SDE. The other
direction is obtained by using Itô’s formula. Let X(t) be a weak solution in
the sense of Definition 5.8. Then there is a space supporting Brownian motion
B(t) so that

X(t) = X(s)+
∫ t

s

µ(X(u), u)du+
∫ t

s

σ(X(u), u)dB(u), and X(s) = x. (5.56)

is satisfied for all t ≥ s. Let f be twice continuously differentiable with compact
support. Applying Itô’s formula to f(X(t)), we have

f(X(t)) = f(X(s)) +
∫ t

s

(Luf)(X(u))du +
∫ t

s

f ′(X(u))σ(X(u), u)dB(u).

(5.57)
Thus

f(X(t)) −
∫ t

s

(Luf)(X(u))du = f(X(s)) +
∫ t

s

f ′(X(u))σ(X(u), u)dB(u).

(5.58)
Since f and its derivatives vanish outside an interval, say [−K, K], the func-
tions f ′(x)σ(x, u) also vanish outside this interval, for any u. Assuming that
σ(x, u) are bounded in x on finite intervals with the same constant for all u, it
follows that |f ′(x)σ(x, u)| < K1. Thus the integral

∫ t

s f ′(X(u))σ(X(u), u)dB(u)
is a martingale in t, for t ≥ s; thus the martingale problem has a solution.

�
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5.8 Backward and Forward Equations

In many applications, such as Physics, Engineering and Finance, the impor-
tance of diffusions lies in their connection to PDEs, and often diffusions are
specified by a PDE called the Fokker-Plank equation (introduced below (5.62),
see for example, Soize (1994)). Although PDEs are hard to solve in closed
form, they can be easily solved numerically. In practice it is often enough to
check that conditions of the existence and uniqueness result are satisfied and
then the solution can be computed by a PDE solver to the desired degree of
accuracy.

In this section it is outlined how to obtain the transition function that
determines the weak solution to an SDE

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t), for t ≥ 0. (5.59)

The results below are the main results from the theory of PDEs which are
used for construction of diffusions (see for example Friedman (1975), Stroock
and Varadhan (1979)).

Define the differential operator Ls, 0 ≤ s ≤ T by

Lsf(x, s) = (Lsf)(x, s) =
1
2
σ2(x, s)

∂2f

∂x2
(x, s) + µ(x, s)

∂f

∂x
(x, s). (5.60)

The operator Ls acts on twice continuously differentiable in x functions f(x, s),
and the result of its action on f(x, s) is another function, denoted by (Lsf),
the values of which at point (x, s) are given by (5.60).

Definition 5.14 A fundamental solution of the PDE

∂u

∂s
(x, s) + Lsu(x, s) = 0 (5.61)

is a non-negative function p(y, t, x, s) with following properties:

1. it is jointly continuous in y, t, x, s, twice continuously differentiable in x,
and satisfies equation (5.61) with respect to s and x.

2. for any bounded continuous function g(x) on IR, and any t > 0

u(x, s) =
∫

IR
g(y)p(y, t, x, s)dy

is bounded, satisfies equation (5.61) and lims↑t u(x, s) = g(x), for x ∈ IR.

Theorem 5.15 Suppose that σ(x, t) and µ(x, t) are bounded and continuous
functions such that
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(A1) σ2(x, t) ≥ c > 0,

(A2) µ(x, t) and σ2(x, t) satisfy a Hölder condition with respect to x and t,
that is, for all x, y ∈ IR and s, t > 0
|µ(y, t) − µ(x, s)| + |σ2(y, t) − σ2(x, s)| ≤ K(|y − x|α + |t − s|α).

Then the PDE (5.61) has a fundamental solution p(y, t, x, s), which is unique,
and is strictly positive.

If in addition µ(x, t) and σ(x, t) have two partial derivatives with respect
to x, which are bounded and satisfy a Hölder condition with respect to x, then
p(y, t, x, s) as a function in y and t, satisfies the PDE

−∂p

∂t
+

1
2

∂2

∂y2

(
σ2(y, t)p

)
− ∂

∂y

(
µ(y, t)p

)
= 0. (5.62)

Theorem 5.16 Suppose coefficients of Ls in (5.60) satisfy conditions (A1)
and (A2) of Theorem 5.15. Then PDE (5.61) has a unique fundamental so-
lution p(y, t, x, s). The function P (y, t, x, s) =

∫ y

−∞ p(u, t, x, s)du uniquely de-
fines a transition probability function. Moreover, this function has the property
that for any bounded function f(x, t) twice continuously differentiable in x and
once continuously differentiable in t (f ∈ C2,1

b ( IR × [0, t]))∫
IR

f(y, t)P (dy, t, x, s) − f(x, s) =
∫ t

s

∫
IR

( ∂

∂u
+ Lu

)
f(y, u)P (dy, u, x, s)du

(5.63)
for all 0 ≤ s < t, x ∈ IR.

The transition function P (y, t, x, s) in the above theorem defines uniquely
a Markov process X(t), that is, for all x, y and 0 ≤ s ≤ t

P (y, t, x, s) = P(X(t) ≤ y|X(s) = x). (5.64)

Equation (5.61) is a PDE in the backward variables (x, s) and is therefore
called the backward equation, also known as Kolmogorov’s backward equation.
Equation (5.62) is a PDE in the forward variables (y, t) and is therefore called
the forward equation, also known as Fokker-Plank equation, diffusion equation,
or Kolmogorov’s forward equation.

The process X(t) is called a diffusion, the differential operator Ls is called
its generator. The property (5.63) implies that X(t) satisfies the SDE (5.59).

Remark 5.6: A weak solution exists and is unique, possesses a Strong Markov
property, and has density under the conditions of Theorem 5.11, much weaker
than those of Theorem 5.15.
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5.9 Stratanovich Stochastic Calculus

Stochastic integrals in applications are often taken in the sense of Stratanovich
calculus. This calculus is designed in such a way that its basic rules, such as
the chain rule and integration by parts are the same as in the standard calculus
(e.g. Rogers and Williams (1990) p.106). Although the rules of manipulations
are the same, the calculi are still very different. The processes need to be
adapted, just as in Itô calculus. Since Stratanovich stochastic integrals can be
reduced to Itô integrals, the standard SDE theory can be used for Stratanovich
stochastic differential equations. Note also that the Stratanovich Integral is
more suited for generalizations of stochastic calculus on manifolds (see Rogers
and Williams (1990)).

A direct definition of the Stratanovich Integral, denoted
∫ t

0 Y (s)∂X(s), is
done as a limit in mean-square (L2) of Stratanovich approximating sums

n−1∑
i=0

1
2
(
Y (tni+1) + Y (tni )

) (
X(tni+1) − X(tni )

)
, (5.65)

when partitions {tni } become finer and finer. In Stratanovich approximating
sums the average value of Y on the interval (tn

i , tni+1),
1
2

(
Y (tni+1) + Y (tni )

)
,

is taken, whereas in Itô integral the left most value of Y (tn
i ) is taken. An

alternative definition of the Stratanovich integral is given by using the Itô
integral.

Definition 5.17 Let X and Y be continuous adapted processes, such that
the stochastic integral

∫ t

0 Y (s)dX(s) is defined. The Stratanovich integral is
defined by ∫ t

0

Y (s)∂X(s) =
∫ t

0

Y (s)dX(s) +
1
2
[Y, X ](t). (5.66)

The Stratanovich differential is defined by

Y (t)∂X(t) = Y (t)dX(t) +
1
2
d[Y, X ](t). (5.67)

Integration by Parts: Stratanovich Product rule

Theorem 5.18 Provided all terms below are defined,

X(t)Y (t) − X(0)Y (0) =
∫ t

0

X(s)∂Y (s) +
∫ t

0

Y (s)∂X(s), (5.68)

∂(X(t)Y (t)) = X(t)∂Y (t) + Y (t)∂X(t). (5.69)
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Proof: The proof is the direct application of the stochastic product rule,

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d[X, Y ](t)

= X(t)dY (t) +
1
2
[X, Y ](t) + Y (t)dX(t) +

1
2
[X, Y ](t)

= X(t)∂Y (t) + Y (t)∂X(t).

�

Change of Variables: Stratanovich Chain rule

Theorem 5.19 Let X be continuous and f three times continuously differen-
tiable (in C3), then

f(X(t)) − f(X(0)) =
∫ t

0

f ′(X(s))∂X(s), (5.70)

∂f(X(t)) = f ′(X(t))∂X(t).

Proof: By Itô’s formula f(X(t)) is a semimartingale, and by definition of
the stochastic integral f(X(t)) − f(X(0)) =

∫ t

0 df(X(s)). By Itô’s formula

df(X(t)) = f ′(X(t))dX(t) +
1
2
f ′′(X(t))d[X, X ](t).

Let Y (t) = f ′(X(t)). Then according to (5.67) it is enough to show that
d[Y, X ](t) = f ′′(X(t))d[X, X ](t). But this follows by Itô’s formula as

dY (t) = df ′(X(t)) = f ′′(X(t))dX(t) +
1
2
f ′′′(X(t))d[X, X ](t),

and

d[Y, X ](t) = dY (t)dX(t) = f ′′(X(t))dX(t)dX(t) = f ′′(X(t))d[X, X ](t),

as needed.
�

Example 5.18: If B(t) is Brownian motion, then its Stratanovich stochastic differ-
ential is

∂B2(t) = 2B(t)∂B(t),

as compared to Itô differential

dB2(t) = 2B(t)dB(t) + dt.
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Conversion of Stratanovich SDEs into Itô SDEs

Theorem 5.20 Suppose that X(t) satisfies the following SDE in the Stratanovich
sense

dX(t) = µ(X(t))dt + σ(X(t))∂B(t), (5.71)

with σ(x) twice continuously differentiable. Then X(t) satisfies the Itô SDE

dX(t) =
(
µ(X(t)) +

1
2
σ′(X(t))σ(X(t))

)
dt + σ(X(t))dB(t). (5.72)

Thus the infinitesimal drift coefficient in Itô diffusion is µ(x) + 1
2σ′(x)σ(x)

and the diffusion coefficient is the same σ(x).

Proof: By the definition of the Stratanovich integral X(t) satisfies

dX(t) = µ(X(t))dt + σ(X(t))dB(t) +
1
2
d[σ(X), B](t). (5.73)

Since [σ(X), B](t) is a finite variation process, it follows that X(t) solves a
diffusion type SDE with the same diffusion coefficient σ(X(t)). Computing
formally the bracket, we have

d[σ(X), B](t) = dσ(X(t))dB(t).

Applying Itô’s formula

dσ(X(t)) = σ′(X(t))dX(t) +
1
2
σ′′(X(t))d[X, X ](t).

It follows from (5.73) that

d[X, B](t) = dX(t)dB(t) = σ(X(t))dt,

therefore

d[σ(X), B](t) = dσ(X(t))dB(t) = σ′(X(t))dX(t)dB(t) = σ′(X(t))σ(X(t))dt.

Equation (5.72) now follows from (5.73).
�

Notes. Proofs and other details can be found in Dynkin (1965), Friedman
(1975), Karatzas and Shreve (1988), Stroock and Varadhan (1979).

5.10 Exercises

Exercise 5.1: (Gaussian diffusions.) Show that if X(t) satisfies the SDE
dX(t) = a(t)dt + b(t)dB(t), with deterministic bounded coefficients a(t) and
b(t), such that

∫ T

0
|a(t)|dt < ∞, and

∫ T

0
b2(t)dt < ∞, then X(t) is a Gaussian

process with independent Gaussian increments.
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Exercise 5.2: Give the SDEs for X(t) = cos(B(t)) and Y (t) = sin(B(t)).

Exercise 5.3: Solve the SDE dX(t) = B(t)X(t)dt+B(t)X(t)dB(t), X(0) = 1.

Exercise 5.4: Solve the SDE dX(t) = X(t)dt + B(t)dB(t), X(0) = 1. Com-
ment whether it is a diffusion type SDE.

Exercise 5.5: Find d
(E(B)(t)

)2.
Exercise 5.6: Let X(t) satisfy dX(t) = X2(t)dt + X(t)dB(t), X(0) = 1.

Show that X(t) satisfies X(t) = e

∫ t

0
(X(s)−1/2)ds+B(t).

Exercise 5.7: By definition, the stochastic logarithm satisfies L(E(X)) = X .
Show that, provided U(t) �= 0 for any t, E(L(U)) = U .

Exercise 5.8: Find the stochastic logarithm of B2(t) + 1.

Exercise 5.9: Let B(t) be a d-dimensional Brownian motion, and H(t) a a
d-dimensional regular adapted process. Show that

E
(∫ ·

0

H(s)dB(s)
)

(t) = exp
(∫ t

0

H(s)dB(s) − 1
2

∫ t

0

|H(s)|2 ds

)
.

Exercise 5.10: Find the transition probability function P (y, t, x, s) for Brow-
nian motion with drift B(t) + t.

Exercise 5.11: Show that under the assumptions of Theorem 5.15 the tran-
sition function P (y, t, x, s) satisfies the backward equation. Give also the for-
ward equation for P (y, t, x, s) and explain why it requires extra smoothness
conditions on the coefficients µ(x, t) and σ(x, t) for it to hold.

Exercise 5.12: Let X(t) satisfy the following stochastic differential equation
for 0 ≤ t ≤ T , dX(t) =

√
X(t) + 1dB(t), and X(0) = 0. Assuming that Itô

integrals are martingales, find EX(t), and E(X2(t)). Let m(u, t) = EeuX(t) be
the moment generating function of X(t). Show that it satisfies the PDE

∂m

∂t
=

u2

2
∂m

∂u
+

u2

2
m.

Exercise 5.13: Solve the following Stratanovich stochastic differential equa-
tion ∂U = U∂B, U(0) = 1, where B(t) is Brownian motion.



Chapter 6

Diffusion Processes

In this chapter various properties of solutions of stochastic differential equa-
tions are studied. The approach taken here relies on martingales obtained
by means of Itô’s formula. Relationships between stochastic differential equa-
tions (SDEs) and partial differential equations (PDEs) are given, but no prior
knowledge of PDEs is required. Solutions to SDEs are referred to as diffusions.

6.1 Martingales and Dynkin’s Formula

Itô’s formula provides a source for construction of martingales. Let X(t) solve
the stochastic differential equation (SDE)

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t), for t ≥ 0, (6.1)

and Lt be the generator of X(t), that is, the second order differential operator
associated with SDE (6.1),

Ltf(x, t) = (Ltf)(x, t) =
1
2
σ2(x, t)

∂2f

∂x2
(x, t) + µ(x, t)

∂f

∂x
(x, t). (6.2)

Itô’s formula (4.65) takes a compact form

Theorem 6.1 For any twice continuously differentiable in x, and once in t
function f(x, t)

df(X(t), t) =
(
Ltf(X(t), t) +

∂f

∂t
(X(t), t)

)
dt +

∂f

∂x
(X(t), t)σ(X(t), t)dB(t).

(6.3)

Since, under appropriate conditions, the Itô integral is a martingale (see The-
orem 4.7), by isolating the Itô integral martingales are obtained.

149
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To illustrate this simple idea, let f have a bounded (by K) derivative, and
use Itô’s formula for f(B(t)). Then

f(B(t)) = f(0) +
∫ t

0

1
2
f ′′(B(s))ds +

∫ t

0

f ′(B(s))dB(s).

The Itô integral
∫ t

0
f ′(B(s))dB(s) is a martingale on [0, T ], because condition

(4.10) holds,
∫ T

0 (f ′(B(s)))2ds < K2T < ∞. Thus f(B(t)) − ∫ t

0
1
2f ′′(B(s))ds

is a martingale. The next result is more general.

Theorem 6.2 Let X(t) be a solution to SDE (6.1) with coefficients satisfying
conditions Theorem 5.4, that is, µ(x, t) and σ(x, t) are Lipschitz in x with
the same constant for all t, and satisfy the linear growth condition (1.30),
|µ(x, t)|+ |σ(x, t)| ≤ K(1+ |x|). If f(x, t) is a twice continuously differentiable
in x and once in t function (C2,1) with bounded first derivative in x, then the
process

Mf(t) = f(X(t), t) −
∫ t

0

(
Luf +

∂f

∂t

)
(X(u), u)du (6.4)

is a martingale.

Proof: By Itô’s formula

Mf(t) =
∫ t

0

∂f

∂x
(X(u), u)σ(X(u), u)dB(u). (6.5)

By assumption ∂f
∂x(x, u) is bounded for all x and u,

(
∂f
∂x (x, u)

)2

< K1. There-
fore∫ T

0

E
(

∂f

∂x
(X(u), u)σ(X(u), u)

)2

du ≤ K1

∫ T

0

E
(
σ2(X(u), u)

)
du. (6.6)

Using the linear growth condition,∫ T

0

E
(

∂f

∂x
(X(u), u)σ(X(u), u)

)2

du ≤ 2K1K
2T

(
1+E

(
sup
u≤T

X2(u)
))

. (6.7)

But E
(

supu≤T X2(u)
)

< ∞ by the existence and uniqueness result, Theo-
rem 5.4, therefore the expression in (6.7) is finite. Thus the Itô integral is a
martingale by Theorem 4.7.

�

The condition of bounded partial derivative of f can be replaced by the
exponential growth condition (see for example, Pinsky (1995), Theorem 1.6.3).
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Theorem 6.3 Let X(t) satisfy conditions of the previous Theorem 6.2. If
|X(0)| possesses moment generating function Eeu|X(0)| < ∞, for all real u,
then so does |X(t)|, Eeu|X(t)| < ∞ for all t ≥ 0. In this case

Mf (t) = f(X(t), t) −
∫ t

0

(
Luf +

∂f

∂t

)
(X(u), u)du (6.8)

is a martingale for all f(x, t) ∈ C2,1, satisfying the following condition: for
any t, there exist constants ct and kt such that for all x, all t > 0, and all
0 ≤ u ≤ t

max
(∣∣∣∂f(x, u)

∂t

∣∣∣, ∣∣∣∂f(x, u)
∂x

∣∣∣, ∣∣∣∂2f(x, t)
∂x2

∣∣∣) ≤ cte
kt|x|. (6.9)

Proof: The proof is given in Pinsky (1995) for bounded coefficients of
the SDE, but it can be extended for this case. We give the proof when the
diffusion X(t) = B(t) is Brownian motion. Let X(t) = B(t), then by Itô’s
formula Mf (t) is given by

Mf(t) =
∫ t

0

∂f(B(s), s)
∂x

dB(s). (6.10)

By the bound on |∂f(x,s)
∂x |, for s ≤ t

E
(

∂f(B(s), s)
∂x

)2

≤ c2
t E
(
e2kt|B(s)|)

)
.

Writing the last expectation as an integral with respect to the density of the
N(0, t) distribution, it is evident that it is finite, and its integral over [0, t] is
finite, ∫ t

0

E
(

∂f(B(s), s)
∂x

)2

ds < ∞. (6.11)

By the martingale property of Itô integrals, (6.11) implies that the Itô integral
(6.10) is a martingale. One can prove the result without use of Itô’s formula,
by doing calculations of integrals with respect to Normal densities (see for
example, Rogers and Williams (1987) p.36).

�

Corollary 6.4 Let f(x, t) solve the backward equation

Ltf(x, t) +
∂f

∂t
(x, t) = 0, (6.12)

and conditions of either of the two theorems above hold. Then f(X(t), t) is a
martingale.
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Example 6.1: Let X(t) = B(t), then (Lf)(x) = 1
2
f ′′(x). Solutions to Lf = 0 are

linear functions f(x) = ax + b. Hence f(B(t)) = aB(t) + b is a martingale, which is
also obvious from the fact that B(t) is a martingale.

Example 6.2: Let X(t) = B(t). The function f(x, t) = ex−t/2 solves the backward
equation

1

2

∂2f

∂x2
(x, t) +

∂f

∂t
(x, t) = 0. (6.13)

Therefore, by the above Corollary 6.4 we recover the exponential martingale of Brow-
nian motion eB(t)−t/2.

Corollary 6.5 (Dynkin’s Formula) Let X(t) satisfy (6.1). If the condi-
tions of either of the above theorems hold, then for any t, 0 ≤ t ≤ T ,

Ef(X(t), t) = f(X(0), 0) + E
∫ t

0

(
Luf +

∂f

∂t

)
(X(u), u)du. (6.14)

The result is also true if t is replaced by a bounded stopping time τ , 0 ≤ τ ≤ T .

Proof: The bounds on the growth of the function and its partial derivatives
are used to establish integrability of f(X(t), t) and other terms in (6.14). Since
Mf (t) is a martingale, the result follows by taking expectations. For bounded
stopping times the result follows by the Optional Stopping Theorem, given in
Chapter 7.

�

Example 6.3: We show that J =
∫ 1

0
sdB(s) has a Normal N(0, 1/3) distribution,

by finding its moment generating function m(u) = E(euJ). Consider the Itô integral

X(t) =
∫ t

0
sdB(s), t ≤ 1, and notice that J = X1. As dX(t) = tdB(t), X(t) is an Itô

process with µ(x, t) = 0 and σ(x, t) = t. Take f(x, t) = f(x) = eux. This function
satisfies conditions of Theorem 6.3. It is easy to see that Ltf(x, t) = 1

2
t2u2eux, note

that ∂f
∂t

= 0. Therefore by Dynkin’s formula

E
(
euX(t)

)
= 1 +

1

2
u2

∫ t

0

s2E
(

euX(s)
)

ds.

Denote h(t) = E
(
euX(t)

)
, then differentiation with respect to t leads to a simple

equation

h′(t) =
1

2
u2t2h(t), with h(0) = 1.

By separating variables, log h(t) = 1
2
u2
∫ t

0
s2ds = 1

2
u2 t3

3
. Thus h(t) = e

1
2 u2 t3

3 ,

which corresponds to the N(0, t3

3
) distribution. Thus X(t) =

∫ t

0
sdB(s) has N(0, t3

3
)

distribution, and the result follows.

Example 6.4: We prove that
∫ 1

0
B(t)dt has N(0, 1/3) distribution, see also Ex-

ample 3.6. Using integration by parts
∫ 1

0
B(t)dt = B(1) −

∫ 1

0
tdB(t) =

∫ 1

0
dB(t) −∫ 1

0
tdB(t) =

∫ 1

0
(1 − t)dB(t), and the result follows.
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6.2 Calculation of Expectations and PDEs

Results in this section provide a method for calculation of expectations of
a function or a functional of a diffusion process on the boundary. This ex-
pectation can be computed by using a solution to the corresponding partial
differential equation with a given boundary condition. This connection shows
that solutions to PDEs can be represented as functions (functionals) of the
corresponding diffusion.

Let X(t) be a diffusion satisfying the SDE for t > s ≥ 0,

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t), and X(s) = x. (6.15)

Backward PDE and E
(
g(X(T ))|X(t) = x

)
We give results on E

(
g(X(T ))|X(t) = x

)
. Observe first that g(X(T )) must be

integrable (E|g(X(T ))| < ∞) for this to make sense. Of course, if g is bounded,
then this is true. Observe next that by the Markov property of X(t),

E (g(X(T ))|X(t)) = E (g(X(T ))|Ft) .

The latter is a martingale, by Theorem 2.31. The last ingredient is Itô’s
formula, which connects this to the PDE. Again, care is taken for Itô’s formula
to produce a martingale term, for which assumptions on the function and its
derivatives are needed, see Theorem 6.3. Apart from these requirements, the
results are elegant and easy to derive.

Theorem 6.6 Let f(x, t) solve the backward equation, with Lt given by (6.2),

Ltf(x, t) +
∂f

∂t
(x, t) = 0, with f(x, T ) = g(x). (6.16)

If f(x, t) satisfies the conditions of Corollary 6.4, then

f(x, t) = E (g(X(T ))|X(t) = x) . (6.17)

Proof: By Corollary 6.4 f(X(t), t), s ≤ t ≤ T , is a martingale. The
martingale property gives

E (f(X(T ), T )|Ft) = f(X(t), t).

On the boundary f(x, T ) = g(x), so that f(X(T ), T ) = g(X(T )), and

f(X(t), t) = E (g(X(T ))|Ft) .

By the Markov property of X(t), f(X(t), t) = E (g(X(T ))|X(t)) , and the
result follows.

�
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It is tempting to show that the expectation E (g(X(T ))|X(t) = x) = f(x, t)
satisfies the backward PDE, thus establishing existence of its solutions. As-
sume for a moment that we can use Itô’s formula with f(X(t), t), then

f(X(t), t) = f(X(0), 0) +
∫ t

0

(
Lsf +

∂f

∂s

)
(X(s), s)ds + M(t),

where M(t) is a martingale. As noticed earlier, f(X(t), t) = E(g(X(T ))|Ft)
is a martingale. It follows that

∫ T

t (Lsf + ∂f
∂s )(X(s), s)ds is a martingale as a

difference of two martingales. Since the integral with respect to ds is a function
of finite variation, and a martingale is not, the latter can only be true if the
integral is zero, implying the backward equation (6.16).

To make this argument precise one needs to establish the validity of Itô’s
formula, i.e. smoothness of the conditional expectation. This can be seen by
writing the expectation as an integral with respect to the density function,

f(x, t) = E (g(X(T ))|X(t) = x) =
∫

g(y)p(y, T, x, t)dy, (6.18)

where p(y, T, x, t) is the transition probability density. So x is now in the
transition function and the smoothness in x follows. For Brownian motion

p(y, T, x, t) = 1√
T−t

e
− (y−x)2

2
√

T−t is differentiable in x (infinitely many times) and
the result follows by differentiating under the integral. For other Gaussian
diffusions the argument is similar. It is harder to show this in the general case
(see Theorem 5.16).

Remark 6.1: Theorem 6.6 shows that any solution of the backward equation
with the boundary condition given by g(x) is given by the integral of g with
respect to the transition probability density, equation (6.18), affirming that the
transition probability density is a fundamental solution (see Definition 5.14).

A result similar to Theorem 6.6 is obtained when zero in the rhs of the back-
ward equation is replaced by a known function −φ.

Theorem 6.7 Let f(x, t) solve

Ltf(x, t) +
∂f

∂t
(x, t) = −φ(x), with f(x, T ) = g(x). (6.19)

Then

f(x, t) = E

((
g(X(T )) +

∫ T

0

φ(X(s))ds

) ∣∣∣X(t) = x

)
. (6.20)

The proof is similar to the above Theorem 6.6 and is left as an exercise.



6.2. CALCULATION OF EXPECTATIONS AND PDES 155

Feynman-Kac formula

A result more general than Theorem 6.6 is given by the Feynman-Kac formula.

Theorem 6.8 (Feynman-Kac Formula) For given bounded functions r(x, t)
and g(x) let

C(x, t) = E
(
e
−
∫ T

t
r(X(u),u)du

g(X(T ))
∣∣∣X(t) = x

)
. (6.21)

Assume that there is a solution to

∂f

∂t
(x, t) + Ltf(x, t) = r(x, t)f(x, t), with f(x, T ) = g(x), (6.22)

Then the solution is unique and C(x, t) is that solution.

Proof: We give a sketch of the proof by using Itô’s formula coupled with
solutions of a linear SDE. Take a solution to (6.22) and apply Itô’s formula

df(X(t), t) =
(∂f

∂t
(X(t), t) + Ltf(X(t), t)

)
dt +

∂f

∂x
(X(t), t)σ(X(t), t)dB(t).

The last term is a martingale term, so write it as dM(t). Now use (6.22) to
obtain

df(X(t), t) = r(X(t), t)f(X(t), t)dt + dM(t).

This is a linear SDE of Langevin type for f(X(t), t) where B(t) is replaced
by M(t). Integrating this SDE between t and T , and using T ≥ t as a time
variable and t as the origin (see (5.32) in Section 5.22) we obtain

f(X(T ), T )=f(X(t), t)e
∫ T

t
r(X(u),u)du+e

∫ T

t
r(X(u),u)du

∫ T

t

e

∫ s

t
r(X(u),u)du

dM(s).

But f(X(T ), T ) = g(X(T )), and rearranging, we obtain

g(X(T ))e−
∫

T

t
r(X(u),u)du = f(X(t), t) +

∫ T

t

e

∫
s

t
r(X(u),u)du

dM(s).

As the last term is an integral of a bounded function with respect to martingale,
it is itself a martingale with zero mean. Taking expectation given X(t) = x,
we obtain that C(x, t) = f(x, t). For other proofs see for example, Friedman
(1975) and Pinsky (1995).

�

Remark 6.2: The expression e−r(T−t)E (g(X(T ))|X(t) = x) occurs in Fi-
nance as a discounted expected payoff, where r is a constant. The discounting
results in the term rf in the rhs of the backward PDE.
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Example 6.5: Give a probabilistic representation of the solution f(x, t) of the PDE

1

2
σ2x2 ∂2f

∂x2
+ µx

∂f

∂x
+

∂f

∂t
= rf, 0 ≤ t ≤ T, f(x, T ) = x2, (6.23)

where σ, µ and r are positive constants. Solve this PDE using the solution of the
corresponding stochastic differential equation.
The SDE corresponding to L is dX(t) = µX(t)dt + σX(t)dB(t). Its solution is

X(t) = X(0)e(µ−σ2/2)t+σB(t). By the Feynman-Kac formula

f(x, t) = E
(

e−r(T−t)X2(T )
∣∣∣X(t) = x

)
= e−r(T−t)E(X2(T )|X(t) = x).

Using X(T ) = X(t)e(µ−σ2/2)(T−t)+σ(B(T )−B(t)), we obtain

E(X2(T )|X(t) = x) = x2e(2µ+σ2)(T−t), giving f(x, t) = x2e(2µ+σ2−r)(T−t).

The following result shows that f(x, t) = E
(
g(X(T ))|X(t) = x

)
satisfies the

backward PDE, and can be found in Gihman and Skorohod (1972), Friedman
(1975). (See also Theorem 6.5.3 Friedman (1975) for C(x, t))

Theorem 6.9 (Kolmogorov’s Equation) Let X(t) be a diffusion with gen-
erator Lt. Assume that the coefficients µ(x, t) and σ(x, t) of Lt are locally
Lipschitz and satisfy the linear growth condition (see (1.30)). Assume in ad-
dition that they possess continuous partial derivatives with respect to x up to
order two, and that they have at most polynomial growth (see (1.31)). If g(x)
is twice continuously differentiable and satisfies together with its derivatives a
polynomial growth condition, then the function f(x, t) = E

(
g(X(T ))|X(t) = x

)
satisfies

∂f

∂t
(x, t) + Ltf(x, t) = 0, in the region 0 ≤ t < T, x ∈ IR, (6.24)

with boundary condition f(x, T ) = limt↑T f(x, t) = g(x).

6.3 Time Homogeneous Diffusions

The case of time-independent coefficients in SDEs corresponds to the so-called
time-homogeneous diffusions,

dX(t) = µ(X(t))dt + σ(X(t))dB(t). (6.25)

Theorem 6.10 Assume that there is a unique weak solution to (6.25). Then
the transition probability function of the solution P (y, t, x, s) = P (y, t− s, x, 0)
depends only on t − s.
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Proof: Denote by (X, B) the weak solution to 6.25. By the definition of
the transition function P (y, t, x, s) = P(X(t) ≤ y|X(s) = x) = P(Xx

s (t) ≤ y),
where the process Xx

s (t) satisfies Xx
s (s) = x and for t > 0

Xx
s (s + t) = x +

∫ s+t

s

µ(Xx
s (u))du +

∫ s+t

s

σ(Xx
s (u))dB(u). (6.26)

Let Y (t) = Xx
s (s + t), and B1(t) = B(s + t) − B(s), t ≥ 0. Then B1(t) is a

Brownian motion and from the above equation, Y (t) satisfies for t ≥ 0

Y (t) = x +
∫ t

0

µ(Y (v))dv +
∫ t

0

σ(Y (v))dB1(v), and Y (0) = x. (6.27)

Put s = 0 in (6.26) to obtain

Xx
0 (t) = x +

∫ t

0

µ(Xx
0 (v))dv +

∫ t

0

σ(Xx
0 (v))dB(v), and Xx

0 (0) = x. (6.28)

Thus Y (t) and Xx
0 (t) satisfy the same SDE. Hence Y (t) and Xx

0 (t) have the
same distribution. Therefore for t > s

P (y, t, x, s) = P(Xx
s (t) ≤ y) = P(Y (t − s) ≤ y)

= P(Xx
0 (t − s) ≤ y) = P (y, t − s, x, 0).

�

Since the transition function of a homogeneous diffusion depends on t and s
only through t − s, it is denoted as

P (t, x, y) = P (y, t + s, x, s) = P (y, t, x, 0) = P(X(t) ≤ y|X(0) = x), (6.29)

and it gives the probability for the process to go from x to (−∞, y] during
time t. Its density p(t, x, y), when it exists, is the density of the conditional
distribution of X(t) given X(0) = x.

The generator L of a time-homogeneous diffusion is given by

Lf(x) =
1
2
σ2(x)f ′′(x) + µ(x)f ′(x). (6.30)

Under appropriate conditions (conditions (A1) and (A2) of Theorem 5.15)
p(t, x, y) is the fundamental solution of the backward equation (5.61), which
becomes in this case

∂p

∂t
= Lp =

1
2
σ2(x)

∂2p

∂x2
+ µ(x)

∂p

∂x
. (6.31)
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If moreover, σ(x) and µ(x) have derivatives, σ′(x), µ′(x), and σ′′(x), which
are bounded and satisfy a Hölder condition, then p(t, x, y) satisfies the forward
equation in t and y for any fixed x, which becomes

∂p

∂t
(t, x, y) =

1
2

∂2

∂y2

(
σ2(y)p(t, x, y)

)
− ∂

∂y

(
µ(y)p(t, x, y)

)
. (6.32)

In terms of the generator, the backward and the forward equations are written
as

∂p

∂t
= Lp,

∂p

∂t
= L∗p, (6.33)

where

(L∗f)(y) =
1
2

∂2

∂y2

(
σ2(y)f(y)

)
− ∂

∂y

(
µ(y)f(y)

)
,

denotes the operator appearing in equation (6.32), and is known as the ad-
joint operator to L. (The adjoint operator is defined by the requirement that
whenever the following integrals exist,

∫
g(x)Lf(x)dx =

∫
f(x)L∗g(x)dx.)

Example 6.6: The generator of Brownian motion L = 1
2

d2

dx2 is called the Laplacian.
The backward equation for the transition probability density is

∂p

∂t
= Lp =

1

2

∂2p

∂x2
. (6.34)

Since the distribution of B(t) when B(0) = x is N(x, t), the transition probability
density is given by the density of N(x, t), and is the fundamental solution of PDE
(6.34)

p(t, x, y) =
1√
2πt

e−
(y−x)2

2t .

The adjoint operator L∗ is the same as L, so that L is self-adjoint. A stronger result
than Theorem 6.9 holds. It is possible to show, see for example, Karatzas and Shreve

(1988) p.255, that if
∫

e−ay2 |g(y)|dy < ∞ for some a > 0, then f(x, t) = Exg(B(t))
for t < 1/2a satisfies the heat equation with initial condition f(0, x) = g(x), x ∈ IR.
A result of Widder 1944, states that any non-negative solution to the heat equation
can be represented as

∫
p(t, x, y)dF (y) for some non-decreasing function F .

Example 6.7: The Black-Scholes SDE

dX(t) = µX(t)dt + σX(t)dB(t)

for constants µ and σ. The generator of this diffusion is

Lf(x) =
1

2
σ2x2f ′′(x) + µxf ′(x). (6.35)

Its density is the fundamental solution of the PDE

∂p

∂t
=

1

2
σ2x2 ∂2p

∂x2
+ µx

∂p

∂x
.

The transition probability function of X(t) was found in Example 5.14. Its density

is p(t, x, y) = ∂
∂y

Φ( ln(y/x)−(µ−σ2/2)(t−s)

σ
√

t−s
).
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Itô’s Formula and Martingales

If X(t) is a solution of (6.25) then Itô’s formula takes the form: for any twice
continuously differentiable f(x)

df(X(t)) = Lf(X(t))dt + f ′(X(t))σ(X(t))dB(t). (6.36)

Theorem 6.2 and Theorem 6.3 for time homogeneous diffusions becomes

Theorem 6.11 Let X be a solution to SDE (6.25) with coefficients satisfying
conditions of Theorem 5.4, that is, µ(x) and σ(x) are Lipschitz and satisfy the
linear growth condition |µ(x)| + |σ(x)| ≤ K(1 + |x|). If f(x) is twice contin-
uously differentiable in x with derivatives growing not faster than exponential
satisfying condition (6.9), then the following process is a martingale.

Mf (t) = f(X(t)) −
∫ t

0

Lf(X(u))du. (6.37)

Weak solutions to (6.25) are defined as solution to the martingale problem,
by requiring existence of a filtered probability space, with an adapted process
X(t), so that

f(X(t)) −
∫ t

0

Lf(X(u))du (6.38)

is a martingale for any twice continuously differentiable f vanishing outside
a finite interval, see Section 5.8). Equation (6.38) also allows us to identify
generators.

Remark 6.3: The concept of generator is a central concept in studies of
Markov processes. The generator of a time-homogeneous Markov process (not
necessarily a diffusion process) is a linear operator defined by:

Lf(x) = lim
t→0

E
(
f(X(t))|X0 = x

)
− f(x)

t
. (6.39)

If the above limit exists we say that f is in the domain of the generator.
If X(t) solves (6.25) and f is bounded and twice continuously differentiable,
then from (6.39) the generator for a diffusion is obtained. This can be seen by
interchanging the limit and the expectation (dominated convergence), using
Taylor’s formula. Generators of pure jump processes, such as birth-death
processes, are given later. For the theory of construction of Markov processes
from their generators and their studies see for example, Dynkin (1965), Ethier
and Kurtz (1986), Stroock and Varadhan (1979), Rogers and Williams (1990).

The result on existence and uniqueness of weak solutions (Theorem 5.11) be-
comes
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Theorem 6.12 If σ(x) is positive and continuous and for any T > 0 there is
KT such that for all x ∈ IR

|µ(x)| + |σ(x)| ≤ KT (1 + |x|) (6.40)

then there exists a unique weak solution to SDE (6.25) starting at any point
x ∈ IR, moreover the solution has the strong Markov property.

The following result is specific for one-dimensional homogeneous diffusions and
does not carry over to higher dimensions.

Theorem 6.13 (Engelbert-Schmidt) The SDE

dX(t) = σ(X(t))dB(t)

has a weak solution for every initial value X(0) if and only if for all x ∈ IR
the condition ∫ a

−a

dy

σ2(x + y)
= ∞ for all a > 0

implies σ(x) = 0. The weak solution is unique if the above condition is equiv-
alent to σ(x) = 0.

Corollary 6.14 If σ(x) is continuous (on IR) or bounded away from zero,
then the above SDE has a unique weak solution.

Example 6.8: By the above corollary Tanaka’s SDE, Example 5.15,

dX(t) = sign(X(t))dB(t), X(0) = 0,

has a unique weak solution.

6.4 Exit Times from an Interval

The main tool for studying various properties of diffusions is the result on
exit times from an interval. Define τ(a,b) to be the first time the diffusion
exits (a, b), τ(a,b) = inf{t > 0 : X(t) /∈ (a, b)}. Since X(t) is continuous,
X(τ(a,b)) = a or b. It was shown in Theorem 2.35 that τ is a stopping time,
moreover, since the filtration is right-continuous, {τ < t} and {τ ≥ t} are in
Ft for all t. In this section results on τ(a,b) are given. As the interval (a, b) is
fixed, denote in this section τ(a,b) = τ .

The fact that the process started in (a, b) remains in (a, b) for all t < τ
allows to construct martingales, without additional assumptions on functions
and coefficients. The following important result for analyzing diffusions, which
is also known as Dynkin’s formula, is established first. Introduce Ta and Tb as
the hitting times of a and b, Ta = inf{t > 0 : X(t) = a}, with the convention
that the infimum of an empty set is infinity. Clearly, τ = min(Ta, Tb) = Ta∧Tb.
The next result is instrumental for obtaining properties of τ .
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Theorem 6.15 Let X(t) be a diffusion with a continuous σ(x) > 0 on [a, b]
and X(0) = x, a < x < b. Then for any twice continuously differentiable
function f(x) on IR the following process is a martingale

f(X(t ∧ τ)) −
∫ t∧τ

0

Lf(X(s))ds. (6.41)

Consequently,

Ex

(
f(X(t ∧ τ)) −

∫ t∧τ

0

Lf(X(s))ds
)

= f(x). (6.42)

Proof: Using Itô’s formula and replacing t by t ∧ τ

f(X(t∧τ))−
∫ t∧τ

0

Lf(X(s))ds = f(x)+
∫ t∧τ

0

f ′(X(s))σ(X(s))dB(s). (6.43)

Write the Itô integral as
∫ t

0
I(s ≤ τ)f ′(X(s))σ(X(s))dB(s). By Theorem 2.35

{τ ≥ s} are in Fs for all s. Thus I(s ≤ τ) is adapted. Now, for any s ≤ τ ,
X(s) ∈ [a, b]. Since f ′(x)σ(x) is continuous on [a, b], it is bounded on [a, b], say
by K. Thus for any s ≤ t, |I(s ≤ τ)f ′(X(s))σ(X(s))| ≤ K, and expectation
E
∫ t

0
I(s ≤ τ)(f ′(X(s))σ(X(s)))2ds < K2t is finite. Therefore the Itô integral∫ t

0 I(s ≤ τ)f ′(X(s))σ(X(s))dB(s) is a martingale for t ≤ T , and any T . Since
it is a martingale it has a constant mean, and taking expectations in (6.43)
formula (6.42) is obtained.

�

The next result establishes in particular that τ has a finite expectation, con-
sequently it is finite with probability one.

Theorem 6.16 Let X(t) be a diffusion with generator L with continuous
σ(x) > 0 on [a, b] and X(0) = x, a < x < b. Then Ex(τ) = v(x) satisfies
the following differential equation

Lv = −1, (6.44)

with v(a) = v(b) = 0.

Proof: Take v(x) satisfying (6.44). By the previous Theorem 6.15

Ex

(
v(X(t ∧ τ)) −

∫ t∧τ

0

Lv(X(s))ds
)

= v(x). (6.45)

But Lv = −1, therefore

Ex

(
v(X(t ∧ τ))

)
+ Ex(t ∧ τ) = v(x), (6.46)
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and
Ex(t ∧ τ) = v(x) − Ex

(
v(X(t ∧ τ))

)
. (6.47)

(t ∧ τ) increases to τ as t → ∞. Since the functions v and X are continuous,
v(X(t ∧ τ)) → v(X(τ)) as t → ∞. X(t ∧ τ) ∈ (a, b) for any t and v(x) is
bounded on [a, b], say by K, therefore Ex(v(X(t ∧ τ))) ≤ K. It follows from
the above equation (6.47) that Ex(τ) < ∞, hence τ is almost surely finite,
moreover by dominated convergence Ex(v(X(t ∧ τ))) → Ex(v(X(τ))). But
X(τ) = a or b, so that v(X(τ)) = 0. Thus from (6.47) Ex(τ) = v(x).

�

The probability that the process reaches b before it reaches a, that is,
Px(Tb < Ta) is used to obtain further properties. This probability is calculated
with the help of the function S(x), which is a solution to the equation

1
2
σ2(x)S′′(x) + µ(x)S′(x) = 0, or LS = 0. (6.48)

Any solution to (6.48) is called a harmonic function for L. Only positive
harmonic functions are of interest, and ruling out constant solutions, it is easy
to see (see Example 6.9 below) that for any such function

S′(x) = C exp
(
−
∫ x

x0

2µ(s)
σ2(s)

ds

)
. (6.49)

S′(x) is either positive for all x, if C > 0, or negative for all x if C < 0.
Consequently, if S is not identically constant, S(x) is monotone. Assume that
σ(x) is continuous and positive, and µ(x) is continuous. Then any L-harmonic
function comes from the general solution to (6.48), which is given by

S(x) =
∫ x

exp
(
−
∫ u 2µ(y)

σ2(y)
dy

)
du, (6.50)

and involves two undetermined constants.

Example 6.9: We show that harmonic functions for L are given by (6.50). S must
solve

1

2
σ2(x)S′′(x) + µ(x)S′(x) = 0. (6.51)

This equation leads to (with h = S′)

h′/h = −2µ(x)/σ2(x),

and provided µ(x)/σ2(x) is integrable,

S′(x) = e
−
∫

x 2µ(y)
σ2(y)

dy
.

Integrating again we find S(x).
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Theorem 6.17 Let X(t) be a diffusion with generator L with continuous
σ(x) > 0 on [a, b]. Let X(0) = x, a < x < b. Then

Px(Tb < Ta) =
S(x) − S(a)
S(b) − S(a)

, (6.52)

where S(x) is given by (6.50).

Proof: By Theorem 6.15

Ex

(
S(X(t ∧ τ)) −

∫ t∧τ

0

LS(X(s))ds
)

= S(x). (6.53)

But LS = 0, therefore

Ex

(
S(X(t ∧ τ))

)
= S(x). (6.54)

Since τ is finite it takes values Tb with probability Px(Tb < Ta) and Ta with
the complimentary probability. It is not a bounded stopping time, but by
taking limit as t → ∞, we can assert by dominated convergence, that

ES(X(τ)) = ES(X(0)) = S(x).

Expanding the expectation on the left and rearranging gives the result.
�

Remark 6.4: Note that the ratio in (6.52) remains the same no matter what
non-constant solution S(x) to the equation (6.50) is used.

Note that although the proof is given under the assumption of continuous
drift µ(x), the result holds true for µ(x) bounded on finite intervals (see for
example, Pinsky (1995)).

The above theorem has a number of far reaching corollaries.

Corollary 6.18 Let X(t) be a diffusion with zero drift on (a, b), X(0) = x,
a < x < b. Then

Px(Tb < Ta) =
x − a

b − a
. (6.55)

Proof: If µ(x) = 0 on (a, b), then S(x) is a linear function on (a, b) and the
result follows from (6.52).

�

Diffusion S(X(t)) has zero drift by Itô’s formula and (6.48). The exit
probabilities from an interval are proportional to the distances from the end
points. This explains why the function S(x) is called the scale function. The
diffusion S(X(t)) is said to be on the natural scale.
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Example 6.10: We specify Px(Tb < Ta) for Brownian motion and Ornstein-
Uhlenbeck processes. Brownian motion is in natural scale, since µ(x) = 0. Thus
S(x) = x, and Px(Tb < Ta) = (x − a)/(b − a).
For Ornstein-Uhlenbeck process with parameters µ(x) = −αx, σ2(x) = σ2,

S(x) =

∫ x

exp
(

α

σ2
y2
)
dy.

Consequently

Px(Tb < Ta) =

∫ x

a
exp
(

α
σ2 y2

)
dy∫ b

a
exp
(

α
σ2 y2

)
dy

.

Under standard assumptions, there is a positive probability for the diffusion
process to reach any point from any starting point.

Corollary 6.19 Let X(t) be a diffusion satisfying the assumptions of Theorem
6.17. Then for any x, y ∈ (a, b)

Px(Ty < ∞) > 0. (6.56)

Indeed, for x < y, Ty < Tb, and Px(Ty < ∞) > Px(Tb < ∞) > Px(Tb < Ta) >
0, and similarly for y < x.

As an application of the properties of the scale function, a better result
for the existence and uniqueness of strong solutions is obtained. The transfor-
mation Y (t) = S(X(t)) results in a diffusion with no drift which allows us to
waive assumptions on the drift.

Theorem 6.20 (Zvonkin) Suppose that µ(x) is bounded and σ(x) is Lips-
chitz and is bounded away from zero. Then the strong solution exists and is
unique. In particular any SDE of the form

dX(t) = µ(X(t))dt + σdB(t), and X(0) = x0, (6.57)

with any bounded µ(x) and constant σ has a unique strong solution.

Proof: If Y (t) = S(X(t)), then dY (t) = σ(X(t))S ′(X(t))dB(t). Notice
that S(x) is strictly increasing, therefore X(t) = h(Y (t)), where h is the in-
verse to S. Thus SDE for Y (t) is dY (t) = σ(h(Y (t)))S ′(h(Y (t)))dB(t) =
σY (Y (t))dB(t). The rest of the proof consists in verification that σY (x) =
σ(h(x))S′(h(x)) is locally Lipschitz and, under the stated assumptions, satis-
fies conditions of the existence and uniqueness result.

�



6.5. REPRESENTATION OF SOLUTIONS OF ODES 165

6.5 Representation of Solutions of ODEs

Solutions to some PDEs have stochastic representations. Such representations
are given by Theorems 6.6 and 6.8. Here we show that if a solution to an ODE
satisfying a given boundary conditions exists, then it has a representation as
the expectation of a diffusion process stopped at the boundary.

Theorem 6.21 Let X(t) be a diffusion with generator L with time-independent
coefficients, L = 1

2σ2(x) d2

dx2 + µ(x) d
dx , continuous σ(x) > 0 on [a, b], and

X(0) = x, a < x < b. If f is twice continuously differentiable in (a, b) and
continuous on [a, b] and solves

Lf = −φ in (a, b), f(a) = g(a), f(b) = g(b) (6.58)

for some bounded functions g and φ, then f has the representation

f(x) = Ex

(
g(X(τ))

)
+ Ex

( ∫ τ

0

φ(X(s))ds
)
, (6.59)

where τ is the exit time from (a, b). In particular if φ ≡ 0, the solution of
(6.58) is given by

f(x) = Ex

(
g(X(τ))

)
. (6.60)

Proof: The proof is immediate from Theorem 6.15. Indeed, by (6.42)

Ex

(
f(X(t ∧ τ)) −

∫ t∧τ

0

Lf(X(u))du
)

= f(x).

Since τ is finite, by taking limits as t → ∞ by dominated convergence

Ex

(
f(X(τ))

)
= f(x) + Ex

(∫ τ

0

Lf(X(u))du
)
.

But Lf(X(u)) = −φ(X(u)) for any u < τ , and X(τ) is in the boundary {a, b},
where f(x) = g(x), and the result follows.

�

Example 6.11: Let X = B be Brownian motion. Consider the solution of the
problem

1

2
f ′′(x) = 0 in (a, b), f(a) = 0, f(b) = 1.

Here we solve this problem directly and verify the result of Theorem 6.21. Clearly,
the solution is a linear function, and from boundary conditions it follows that it must
be f(x) = (x − a)/(b − a). By (6.60) this solution has the representation

f(x) = Ex

(
g(B(τ ))

)
= g(a)Px(Ta < Tb) + g(b)(1 − Px(Ta < Tb)) = Px(Tb < Ta).

As we know, for Brownian motion, Px(Tb < Ta) = (x − a)/(b − a), and the result is
verified.
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6.6 Explosion

Explosion refers to the situation when the process reaches infinite values in
finite time. For example, the function 1/(1 − t), t < 1, explodes at t = 1.
Similarly, the solution x(t) to the ordinary differential equation

dx(t) = (1 + x2(t))dt, x(0) = 0

explodes. Indeed, consider x(t) = tan(t), which approaches infinity as t ap-
proaches π/2. The time of explosion is π/2. Similar situation can occur with
solutions to SDEs, except the time of explosion will be random. Solutions can
be considered until the time of explosion.

Let diffusion X(t) satisfy SDE on IR

dX(t) = µ(X(t))dt + σ(X(t))dB(t), and X(0) = x. (6.61)

Let Dn = (−n, n) for n = 1, 2, . . .. τn = τDn is the first time the process has
absolute value n. Since a diffusion process is continuous, it must reach level
n before it reaches level n + 1. Therefore τn are non-decreasing, hence they
converge to a limit τ∞ = limn→∞ τn. Explosion occurs on the set {τ∞ < ∞},
because on this set, by continuity of X(t), X(τ∞) = limn→∞ X(τn). Thus
|X(τ∞)| = limn→∞ |X(τn)| = limn→∞ n = ∞, and infinity is reached in finite
time on this set.

Definition 6.22 Diffusion started from x explodes if Px(τ∞ < ∞) > 0.

Note that under appropriate conditions on the coefficients, if diffusion
explodes when started at some x0, then it explodes when started at any
x ∈ IR. Indeed, if for any x, y, Px(Ty < ∞) > 0 (see Corollary 6.19), then
Py(τ∞ < ∞) ≥ Py(Tx < ∞)Px(τ∞ < ∞) > 0.

The result below gives necessary and sufficient conditions for explosions.
It is known as Feller’s test for explosions.

Theorem 6.23 Suppose µ(x), σ(x) are bounded on finite intervals, and σ(x) >
0 and is continuous. Then the diffusion process explodes if and only if one of
the two following conditions holds. There exists x0 such that

1.
∫ x0

−∞ exp
(
− ∫ x

x0

2µ(s)
σ2(s)ds

)(∫ x0

x

exp

(∫
y

x0

2µ(s)
σ2(s)

ds

)
σ2(y) dy

)
dx < ∞.

2.
∫∞

x0
exp

(
− ∫ x

x0

2µ(s)
σ2(s)ds

)(∫ x

x0

exp

(∫ y

x0

2µ(s)
σ2(s)

ds

)
σ2(y) dy

)
dx < ∞.
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The proof relies on the analysis of exit times τn with the aid of Theorem 6.16
and the Feynman-Kac formula (see for example, Gihman and Skorohod (1972),
p.163, Pinsky (1995) p.213-214).

If the drift coefficient µ(x) ≡ 0, then both conditions in the above theorem
fail, since

∫ x0

x σ−2(y)dy �→ 0 as x → −∞, hence the following result.

Corollary 6.24 SDEs of the form dX(t) = σ(X(t))dB(t) do not explode.

Example 6.12: Consider the SDE dX(t) = cXr(t)dt + dB(t), c > 0. Solutions of
dx(t) = cxr(t)dt explode if and only if r > 1, see Exercise 6.11. Here σ(x) = 1 and
µ(x) = cxr, c > 0, and D = (α, β) = (0,∞). It is clear that this diffusion drifts to
+∞ due to the positive drift for any r > 0. However, explosion occurs only in the
case of r > 1, that is, Px(τD < ∞) > 0 if r > 1, and Px(τD < ∞) = 0 if r ≤ 1. The
integral in part 2 of the above theorem is

∫ ∞

x0

∫ x

x0
exp
(

2c
r+1

yr+1
)
dy

exp
(

2c
r+1

xr+1

) dx.

Using l’Hôpital rule, it can be seen that the function under the integral is of order
x−r as x → ∞. Since

∫∞
x0

x−rdx < ∞ if and only if r > 1, the result is established

(see Pinsky (1995)).

Example 6.13: Consider the SDE dX(t) = X2(t)dt + Xr(t)dB(t). Using the
integral test, it can be seen that if r < 3/2, there is no explosion, and if r > 3/2
there is an explosion.

6.7 Recurrence and Transience

Let X(t) be a diffusion on IR. There are various definitions of recurrence and
transience in the literature, however, under the imposed assumptions on the
coefficients, they are all equivalent.

Definition 6.25 A point x is called recurrent for diffusion X(t) if the proba-
bility of the process coming back to x infinitely often is one, that is,

Px(X(t) = x for a sequence of t’s increasing to infinity ) = 1.

Definition 6.26 A point x is called transient for diffusion X(t) if

Px( lim
t→∞ |X(t)| = ∞) = 1.

If all points of a diffusion are recurrent, the diffusion itself is called recurrent.
If all points of a diffusion are transient, the diffusion itself is called transient.
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Theorem 6.27 Let X(t) be a diffusion on IR satisfying assumptions of the ex-
istence and uniqueness result Theorem 5.11, that is, µ(x) and σ(x) are bounded
on finite intervals, σ(x) is continuous and positive and µ(x), σ(x) satisfy the
linear growth condition. Then

1. If there is one recurrent point then all points are recurrent.

2. If there are no recurrent points, then the diffusion is transient.

To prove this result two fundamental properties of diffusions are used. The first
is the strong Markov property, and the second is the strong Feller property,
which states that for any bounded function f(x), Exf(X(t)) is a continuous
function in x for any t > 0. Both these properties hold under the stated
conditions. It also can be seen that the recurrence is equivalent to the property:
for any x, y Px(Ty < ∞) = 1, where Ty is the hitting time of y. By the above
Theorem, transience is equivalent to the property: for any x, y Px(Ty < ∞) <
1, see for example, Pinsky (1995). To decide whether Px(Ty < ∞) < 1, the
formula (6.52) for the probability of exit from one end of an interval in terms of
the scale function is used. If a diffusion does not explode, then the hitting time
of infinity is defined as T∞ = limb→∞ Tb = ∞ and T−∞ = lima→−∞ Ta = ∞.
Recall that S(x) =

∫ x

x0
exp

(− ∫ u

x0

2µ(s)
σ2(s)ds

)
du, and that by (6.52)

Px(Tb < Ta) = (S(x) − S(a))/(S(b) − S(a)). Take any y > x, then

Px(Ty < ∞) = lim
a→−∞Px(Ty < Ta) = lim

a→−∞
S(x) − S(a)
S(y) − S(a)

. (6.62)

Thus if S(−∞) = lima→−∞ S(a) = ∞, then Px(Ty < ∞) = 1.
Similarly, for y < x,

Px(Ty < ∞) = lim
b→∞

Px(Ty < Tb) = lim
b→∞

S(x) − S(b)
S(y) − S(b)

.

Thus if S(∞) = limb→∞ S(b) = ∞, then Px(Ty < ∞) = 1. Thus for any y,
Px(Ty < ∞) = 1, which is the recurrence property.

If one of the values S(−∞) or S(∞) is finite, then for some y,
Px(Ty < ∞) < 1, which is the transience property. Thus the necessary and
sufficient conditions for recurrence and transience are given by

Theorem 6.28 Let operator L = 1
2σ2(x) d2

dx2 + µ(x) d
dx have coefficients that

satisfy assumptions of the above Theorem 6.27. Denote for a fixed x0,

I1 =
∫ x0

−∞
exp

(
−
∫ u

x0

2µ(s)
σ2(s)

ds

)
du and I2 =

∫ ∞

x0

exp
(
−
∫ u

x0

2µ(s)
σ2(s)

ds

)
du.

The diffusion corresponding to L is recurrent if and only if both I1 and I2 are
infinite, and transient otherwise, that is, when one of I1 or I2 is finite.
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6.8 Diffusion on an Interval

Consider diffusion on an interval (α, β), where one of the ends is finite. The
main difference between this case and diffusion on the whole line, is that the
finite end of the interval may be attained in finite time, the situation analogous
to explosion in the former case. Take α finite, that is −∞ < α < β ≤ ∞. The
case of finite β is similar. Write the scale function in the form

S(x) =
∫ x

x1

exp(−
∫ u

x0

2µ(s)
σ2(s)

ds)du, (6.63)

where x0, x1 ∈ (α, β). By using stopping of S(X(t)), a martingale is obtained,
and by the same argument as before the probabilities of exit from an interval
(a, b) ⊂ (α, β) are given by (6.52)

Px(Ta < Tb) = (S(b) − S(x))/(S(b) − S(a)).

If S(α) = −∞, then the above probability can be made arbitrarily small by
taking a → α. This means that Px(Tα < Tb) = 0, and the boundary α is not
attained before b for any b. If S(α) > −∞, then Px(Tα < Tb) > 0. A result
similar to Theorem 6.28 holds.

Theorem 6.29 Let L1 =
∫ b

α
exp

(
− ∫ u

b
2µ(s)
σ2(s)ds

)
du. If L1 = ∞ then the dif-

fusion attains the point b before α, for any initial point x ∈ (α, b). If L1 < ∞,
then let L2 =

∫ b

α
1

σ2(y)

∫ y

α
exp

(
− ∫ x

b
2µ(s)
σ2(s)ds

)
exp

( ∫ y

b
2µ(s)
σ2(s)ds

)
dy.

1. If L2 < ∞ then for all x ∈ (α, b) the diffusion exits (α, b) in finite time,
moreover Px(Tα < ∞) > 0.

2. If L2 = ∞ then either, the exit time of (α, b) is infinite and limt→∞ X(t) =
α, or the exit time of (α, b) is finite and Px(Tb < Tα) = 1.

Example 6.14: Consider a diffusion given by the SDE

dX(t) = ndt + 2
√

X(t)dB(t), (6.64)

where n is a positive integer. It will be seen later that X(t) is the squared distance
from the origin of the Brownian motion in n dimensions, see (6.82) Section 6.10. If
T0 is the first visit of zero, we show that if n ≥ 2, then Px(T0 = ∞) = 1. This
means that X(t) never visits zero, that is P(X(t) > 0, for all t ≥ 0) = 1. But for
n = 1 Px(T0 < ∞) = 1. For n = 2 the scale function S(x) is given by S(x) = ln x,
so that for any b > 0 P1(T0 < Tb) = (S(1) − S(b))/(S(0) − S(b)) = 0, hence
P1(T0 < ∞) = 0. For n ≥ 3, the scale function S(x) = (1 − x−n/2+1)/(1 − n/2).
Therefore P1(T0 < ∞) = (S(1) − S(∞))/(S(0) − S(∞)) = 0. Thus for any n ≥ 2,
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P1(T0 = ∞) = 1. Directly, α = 0, by the above theorem L1 = ∞, and the result
follows. When n = 1 calculations show that L1 < ∞ and also L2 < ∞, thus
P1(T0 < ∞) > 0.

Remark 6.5: There is a classification of boundary points depending on
the constants L1, L2 and L3, where L3 =

∫ b

α
1

σ2(y) exp
( ∫ y

x0

2µ(s)
σ2(s)ds

)
dy. The

boundary α is called

1. natural, if L1 = ∞;

2. attracting, if L1 < ∞, L2 = ∞;

3. absorbing, if L1 < ∞, L2 < ∞, L3 = ∞;

4. regular, if L1 < ∞, L2 < ∞, L3 < ∞.

See for example, Gihman and Skorohod (1972), p.165.

6.9 Stationary Distributions

Consider the diffusion process given by the SDE

dX(t) = µ(X(t))dt + σ(X(t))dB(t),

with X(0) having a distribution ν(x) = P(X(0) ≤ x). The distribution ν(x) is
called stationary or invariant for the diffusion process X(t) if for any t the dis-
tribution of X(t) is the same as ν(x). If P (t, x, y) denotes the transition proba-
bility function of the process X(t), that is, P (t, x, y) = P(X(t) ≤ y|X(0) = x),
then then an invariant ν(x) satisfies

ν(y) =
∫

P (t, x, y)dν(x). (6.65)

To justify (6.65) use the total probability formula and the fact that the sta-
tionary distribution is the distribution of X(t) for all t,

P(X0 ≤ y) = P(Xt ≤ y) =
∫

P(Xt ≤ y|X0 = x)dν(x). (6.66)

If the stationary distribution has a density, π(x) = dν(x)/dx, then π(x) is
called a stationary or invariant density. If p(t, x, y) = ∂P (t, x, y)/∂y denotes
the density of P (t, x, y), then a stationary π satisfies

π(y) =
∫

p(t, x, y)π(x)dx. (6.67)

Under appropriate conditions on the coefficients (µ and σ are twice continu-
ously differentiable with second derivatives satisfying a Hölder condition) an
invariant density exists if and only if the following two conditions hold
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1.
∫ x0

−∞ exp
(
− ∫ x

x0

2µ(s)
σ2(s)ds

)
dx =

∫∞
x0

exp
(
− ∫ x

x0

2µ(s)
σ2(s)ds

)
dx = ∞,

2.
∫∞
−∞

1
σ2(x) exp

( ∫ x

x0

2µ(s)
σ2(s)ds

)
dx < ∞.

Furthermore, if an invariant density is twice continuously differentiable, then
it satisfies the ordinary differential equation

L∗π = 0, that is,
1
2

∂2

∂y2

(
σ2(y)π

)
− ∂

∂y

(
µ(y)π

)
= 0. (6.68)

Moreover, any solution of this equation with finite integral defines an invari-
ant probability density. For rigorous proof see for example, Pinsky (1995),
p.219 and p.181. To justify equation (6.68) heuristically, recall that under ap-
propriate conditions the density of X(t) satisfies the forward (Fokker-Plank)
equation (5.62). If the system is in a stationary regime, its distribution does
not change with time, which means that the derivative of the density with
respect to t is zero, resulting in equation (6.68).

Equation (6.68) can be solved, as it can be reduced to a first order differ-
ential equation (see (1.34)). Using the integrating factor exp

(
− ∫ x

a
2µ(y)
σ2(y)dy

)
,

we find that the solution is given by

π(x) =
C

σ2(x)
exp

( ∫ x

x0

2µ(y)
σ2(y)

dy
)
, (6.69)

where C is found from
∫

π(x)dx = 1.

Example 6.15: For Brownian motion condition 1. above is true, but condition 2.
fails. Thus no stationary distribution exists. The forward equation for the invariant
distribution is

1

2

∂2p

∂x2
= 0,

which has for its solutions linear functions of x and none of these has a finite integral.

Example 6.16: The forward equation for the Ornstein-Uhlenbeck process is

∂p

∂t
= L∗p =

1

2
σ2 ∂2p

∂x2
− α

∂

∂x
(xp),

and the equation for the invariant density is

1

2
σ2 ∂2p

∂x2
− α

∂

∂x
(xp) = 0.

The solution is given by

π(x) =
C

σ2
exp
(∫ x

0

−2α

σ2
dy
)

=
C

σ2
exp
(
− α

σ2
x2
)
. (6.70)

This shows that if α is negative, no stationary distribution exists, and if α is positive
then the stationary density is Normal N(0, σ2/(2α)). The fact that N(0, σ2/(2α)) is
a stationary distribution can be easily verified directly from representation (5.13).
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Remark 6.6: The Ornstein-Uhlenbeck process has the following properties:
it is a Gaussian process with continuous paths, it is Markov, and it is station-
ary, provided the initial distribution is the stationary distribution N(0, σ2

2α ).
Stationarity means that finite-dimensional distributions do not change with
shift in time. For Gaussian processes stationarity is equivalent to the covari-
ance function to be a function of |t− s| only, i.e. Cov(X(t), X(s)) = h(|t− s|)
(see Exercise (6.3)). The Ornstein-Uhlenbeck process is the only process that
is simultaneously Gaussian, Markov and stationary (see for example Breiman
(1968), p.350).

Invariant Measures

A measure ν is called invariant for X(t) if it satisfies the equation
ν(B) =

∫∞
−∞ P (t, x, B)dν(x) for all intervals B. In equation (6.65) intervals of

the form B = (−∞, y] were used. The general equation reduces to (6.65) if
C = ν( IR) < ∞. In this case ν can be normalized to a probability distribution.
If C = ∞ this is impossible. Densities of invariant measures, when they
exist and are smooth enough, satisfy equation (6.67). Conversely, any positive
solution to (6.67) is a density of an invariant measure.

For Brownian motion π(x) = 1 is a solution of the equation (6.67). This
is seen as follows. Since p(t, x, y) is the density of the N(x, t) distribution,
p(t, x, y) = 1√

2πt
exp((y − x)2/(2t)). Note that for a fixed y, as a function of

x, it is also the density of the N(y, t) distribution. Therefore it integrates to
unity,

∫
IR p(t, x, y)dx = 1. Thus π(x) = 1 is a positive solution of the equation

(6.67). In this case the density 1 corresponds to the Lebesgue measure, which
is an invariant measure for Brownian motion. Since

∫
IR 1dx = ∞, it can not

be normalized to a probability density. Note also that since the mean of the
N(y, t) distribution is y, we have∫ ∞

−∞
xp(t, x, y)dx = y.

So that π(x) = x is also a solution of the equation (6.67), but it is not a
positive solution, and therefore is not a density of an invariant measure.

An interpretation of the invariant measure which is not a probability mea-
sure may be given by the density of a large number (infinite number) of par-
ticles with locations corresponding to the invariant measure, all diffusing ac-
cording to the diffusion equation. Then at any time the density of the particles
at any location will be preserved.
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6.10 Multi-dimensional SDEs

We cover the concepts very briefly, relying on analogy with the one-dimensional
case, but state the differences arising due to the increase in dimension. Let
X(t) be a diffusion in n dimensions, described by the multi-dimensional SDE

dX(t) = b(X(t), t)dt + σ(X(t), t)dB(t), (6.71)

where σ is n×d matrix valued function, B is d-dimensional Brownian motion,
see section 4.7, X, b are n-dimensional vector valued functions. In coordinate
form this reads

dXi(t) = bi(X(t), t)dt +
d∑

j=1

σij(X(t), t)dBj(t), i = 1, . . . , n, (6.72)

and it means that for all t > 0 and i = 1, . . . , n

Xi(t) = Xi(0) +
∫ t

0

bi(X(u), u)du +
d∑

j=1

∫ t

0

σij(X(u), u)dBj(u). (6.73)

The coefficients of the SDE are: the vector b(x, t) and the matrix σ(x, t).
An existence and uniqueness result for strong solutions, under the assump-

tion of locally Lipschitz coefficients holds in the same form, see Theorem 5.4,
except for absolute values that should be replaced by the norms. The norm
of the vector is its length, |b| =

√∑n
i=1 b2

i . The norm of the matrix σ is
defined by |σ|2 = trace(σσTr), with σTr being the transposed of σ. The
trace(a) =

∑n
i=1 aii. The matrix a = σσTr is called the diffusion matrix.

Theorem 6.30 If the coefficients are locally Lipschitz in x with a constant
independent of t, that is, for every N , there is a constant K depending only
on T and N such that for all |x|, |y| ≤ N and all 0 ≤ t ≤ T

|b(x, t) − b(y, t)| + |σ(x, t) − σ(y, t)| < K|x − y|, (6.74)

then for any given X(0) the strong solution to SDE (6.71) is unique. If in
addition to condition (6.74) the linear growth condition holds

|b(x, t)| + |σ(x, t)| ≤ KT (1 + |x|),
X(0) is independent of B, and E|X(0)|2 < ∞, then the strong solution exists
and is unique on [0, T ], moreover

E
(

sup
0≤t≤T

|X(t)|2
)

< C
(
1 + E|X(0)|2), (6.75)

where constant C depends only on K and T .
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Note that unlike in the one-dimensional case, the Lipschitz condition on σ can
not be weakened in general to a Hölder condition, i.e. there is no Yamada-
Watanabe-type result for multi-dimensional SDEs.

The quadratic covariation is easy to work out from (6.72), by taking into
account that independent Brownian motions have zero quadratic covariation.

d[Xi, Xj ](t) = dXi(t)dXj(t) = aij(X(t), t)dt. (6.76)

It can be shown that if X(t) is a solution to (6.71) then

E
(
Xi(t + ∆) − xi|X(t) = x

)
= bi(x, t)∆ + o(∆)

E
(
(Xi(t + ∆) − xi)(Xj(t + ∆) − xj)|X(t) = x

)
= aij(x, t)∆ + o(∆),

as ∆ → 0. Thus b(x, t) is the coefficient in the infinitesimal mean of the
displacement from point x at time t, and a(x, t) is approximately the coefficient
in the infinitesimal covariance of the displacement.

Weak solutions can be defined as solutions to the martingale problem. Let
the operator Lt, acting on twice continuously differentiable functions from IRn

to IR, be

Lt =
n∑

i=1

bi(x, t)
∂

∂xi
+

1
2

n∑
i=1

n∑
j=1

aij(x, t)
∂2

∂xi∂xj
. (6.77)

Note that Lt depends on σ only through a. Then X(t) is a weak solution
started at x at time s, if

f(X(t)) −
∫ t

s

(Luf)(X(u))du (6.78)

is a martingale for any twice continuously differentiable function f vanish-
ing outside a compact set in IRn. This process is called a diffusion with
generator Lt. In the case of time-independent coefficients, the process is a
time-homogeneous diffusion with generator L.

Theorem 6.31 Assume that a(x, t) is continuous and satisfies condition (A)

(A)
n∑

i,j=1

aij(x, t)vivj > 0, for all x ∈ IRn and v �= 0

and b(x, t) is bounded on bounded sets. Then there exists a unique weak solu-
tion up to the time of explosion. If, in addition, the linear growth condition is
satisfied, that is, for any T > 0 there is KT such that for all x ∈ IR

|b(x, t)| + |a(x, t)| ≤ KT (1 + |x|), (6.79)
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then there exists a unique weak solution to the martingale problem (6.78) start-
ing at any point x ∈ IR at any time s ≥ 0, moreover this solution has the strong
Markov property.

Since the weak solution is defined in terms of the generator, which itself de-
pends on σ only through a, the weak solution to (6.71) can be constructed
using a single Brownian motion provided the matrix a remains the same. If
a single SDE is equivalent to a number of SDEs, heuristically, it means that
there is as much randomness in a d-dimensional Brownian motion as there is
in a single Brownian motion. Replacement of a system of SDEs by a single
one is shown in detail for the Bessel process.

Note that the equation σσTr = a has many solutions for σ, the matrix
square root is non-unique. However, if a(x, t) is non-negative definite for all x
and t, and has for entries twice continuously differentiable functions of x and
t, then it has a locally Lipschitz square root σ(x, t) of the same dimension as
a(x, t) (see for example Friedman (1975) Theorem 6.1.2).

Bessel Process

Let B(t) = (B1(t), B2(t), . . . , Bd(t)) be the d-dimensional Brownian motion,
d ≥ 2. Denote by R(t) its squared distance from the origin, that is,

R(t) =
d∑

i=1

B2
i (t). (6.80)

The SDE for R(t) is given by (using d(B2(t)) = 2B(t)dB(t) + dt)

dR(t) = d dt + 2
d∑

i=1

Bi(t)dBi(t). (6.81)

In this case we have one equation driven by d independent Brownian motions.
Clearly, b(x) = d, σ(x) is (1 × d) matrix 2(B1(t), B2(t), . . . , Bd(t)), so that
a(X(t)) = σ(X(t))σTr(X(t)) = 4

∑d
i=1 B2

i (t) = 4R(t) is a scalar. Thus the
generator of X(t) is given by L = d d

dx + 1
2 (4x) d2

dx2 . But the same generator
corresponds to the process X(t) satisfying the SDE below driven by a single
Brownian motion

dX(t) = d dt + 2
√

X(t)dB(t). (6.82)

Therefore the squared distance process R(t) in (6.80) satisfies SDE (6.82).
This SDE was considered in Example 6.14. The Bessel process is defined as

the distance from the origin, Z(t) =
√∑d

i=1 B2
i (t) =

√
R(t). Since R(t) has

the same distribution as X(t) given by (6.82), by Itô’s formula, Z(t) satisfies

dZ(t) =
d − 1
2Z(t)

dt + dB(t). (6.83)
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Using the one-dimensional SDE (6.82) for R(t) we can decide on the re-
currence, transience and attainability of 0 of Brownian motion in dimensions
2 and higher. It follows from Example 6.14 that in one and two dimensions
Brownian motion is recurrent, but in dimensions three and higher it is tran-
sient. It was also shown there that in dimension two and above Brownian
motion never visits zero. See also Karatzas and Shreve (1988), p.161-163.

Itô’s Formula, Dynkin’s Formula

Let X(t) = (X1(t), . . . , Xn(t)) be a diffusion in IRn with generator L, (the
general case is similar, but in what follows time-homogeneous case will be
considered). Let f : IRn → IR be a twice continuously differentiable (C2)
function. Then Itô’s formula states that

df(X(t)) =
n∑

i=1

∂f

∂xi
(X(t))dXi(t) +

1
2

n∑
i=1

n∑
j=1

aij(X(t))
∂2f

∂xi∂xj
(X(t))dt.

(6.84)
It can be regarded as a Taylor’s formula expansion where

dXidXj ≡ d[Xi, Xj ] and dXidXjdXk ≡ 0.

Itô’s formula can be written with the help of the generator as

df(X(t)) = (Lf)(X(t)) +
n∑

i=1

d∑
j=1

∂f

∂xi
(X(t))σij(X(t))dBj(t). (6.85)

The analogues of Theorems 6.3 and 6.15 hold. It is clear from the above (6.85)
that if partial derivatives of f are bounded, and σ(x) is bounded, then

f(X(t)) −
∫ t

0

Lf(X(u))du (6.86)

is a martingale. (Without the assumption of functions being bounded , it is a
local martingale).

Theorem 6.32 Suppose that the assumptions of Theorem 6.31 hold. Let D ⊂
IRn be a bounded domain (an open and simply connected set) in IRn. Let
X(0) = x and denote by τ the exit time from D, τD = inf{t > 0 : X(t) ∈ ∂D}.
Then for any twice continuously differentiable f ,

f(X(t ∧ τD)) −
∫ t∧τD

0

Lf(X(u))du (6.87)

is a martingale.
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It can be shown that under conditions of the above theorem

sup
x∈D

Ex(τD) < ∞. (6.88)

As a corollary the following is obtained

Theorem 6.33 Suppose that the assumptions of Theorem 6.31 hold. If f is
twice continuously differentiable in D, continuous on ∂D, and solves

Lf = −φ in D and f = g on ∂D. (6.89)

for some bounded functions g and φ. Then f(x), x ∈ D, has representation

f(x) = Ex
(
g(X(τD))

)
+ Ex

( ∫ τD

0

φ(X(s))ds
)
. (6.90)

In particular if φ ≡ 0, solution has representation as

f(x) = Ex
(
g(X(τD))

)
.

The proof is exactly the same as for Theorem 6.21 in one dimension.

Definition 6.34 A function f(x) is said to be L-harmonic on D if it is twice
continuously differentiable on D and Lf(x) = 0 for x ∈ D.

The following result follows from (6.86).

Corollary 6.35 For any bounded L-harmonic function on D with bounded
derivatives, f(X(t ∧ τD)) is a martingale.

Example 6.17: Denote by ∆ = 1
2

∑3

i=1
∂2

∂x2
i

the three-dimensional Laplacian. This

operator is the generator of three-dimensional Brownian motion B(t), L = ∆. Let
D = {x : |x| > r}. Then f(x) = 1/|x| is harmonic on D, that is Lf(x) = 0 for all

x ∈ D. To see this perform differentiation and verify that
∑3

i=1
∂2

∂x2
i

(
1√

x2
1+x2

2+x2
3

)
=

0 at any point x �= 0. Note that in one dimension all harmonic functions for the
Laplacian are linear functions, whereas in higher dimensions there are many more.
It is easy to see that 1/|x| and its derivatives are bounded on D, consequently if
B(0) = x �= 0, then 1/|B(t ∧ τD)| is a martingale.

The Backward (Kolmogorov’s) equation in higher dimensions is the same as in
one dimension, with the obvious replacement of the state variable x ∈ IRn. We
have seen that solutions to the backward equation can be expressed by means of
diffusion, Theorem 6.33. However, it is a formidable task to prove that if X(t)
is a diffusion, and g(x) is a smooth function on D then f(x) = Ex

(
gX(t))

)
solves the backward equation (see for example, Friedman (1975)).
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Theorem 6.36 Let g(x) be a function with two continuous derivatives satis-
fying a polynomial growth condition, that is, the function and its derivatives
in absolute value do not exceed K(1 + |x|m) for some constants K, m > 0. Let
X(t) satisfy (6.71). Assume that coefficients b(x, t), σ(x, t) are Lipschitz in
x uniformly in t, satisfy the linear growth condition, and their two derivatives
satisfy a polynomial growth condition. Let

f(x, t) = Ex
(
g(X(T ))|X(t) = x

)
(6.91)

Then f has continuous derivatives in x, which can be computed by differentiat-
ing (6.91) under the expectation sign. Moreover f has a continuous derivative
in t, and solves the backward PDE

Ltf +
∂f

∂t
= 0, in IRn × [0, T )

f(x, T ) → g(x), as t ↑ T. (6.92)

The fundamental solution of (6.92) gives the transition probability function of
the diffusion (6.71).

Remark 6.7: (Diffusions on manifolds)
The PDEs above can also be considered when the state variable x belongs to
a manifold, rather than IRn. The fundamental solution then corresponds to
the diffusion on the manifold and represents the way heat propagates on that
manifold. It turns out that various geometric properties of the manifold can be
obtained from the properties of the fundamental solution, Molchanov (1975).

Remark 6.8: The Feynman-Kac formula holds also in the multi-dimensional
case in the same way as in one dimension. If 0 in the right hand side of the
PDE (6.92) is replaced by rf , for a bounded function r, then the solution
satisfying a given boundary condition f(x, T ) = g(x) has a representation

f(x, t) = E
(

e
−
∫

T

t
r(X(u),u)du

g(X(T ))|X(t) = x

)
.

See Karatzas and Shreve (1988).

Recurrence, Transience and Stationary Distributions

Properties of recurrence and transience of multi-dimensional diffusions, solu-
tions to (6.71), are defined similarly to the one-dimensional case. However,
in higher dimensions a diffusion X(t) is recurrent if for any starting point
x ∈ IRn the process will visit a ball around any point y ∈ IR of radius ε,
Dε(y), however small, with probability one.

Px(X(t) ∈ Dε(y) for a sequence of t’s increasing to infinity ) = 1.
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A diffusion X(t) on IRn is transient if for any starting point x ∈ IRn the
process will leave any ball, however large, never to return. It follows by a
diffusion analysis of the squared lengths of the multi-dimensional Brownian
motion (see Example 6.14) that in dimensions one and two Brownian motion
is recurrent, but it is transient in dimensions three and higher.

For time-homogeneous diffusions under conditions of Theorem 6.31 on the
coefficients, recurrence is equivalent to the property that the process started
at any point x hits the closed ball D̄ε(y) around any point y in finite time.
Under these conditions, there is a dichotomy, a diffusion is either transient or
recurrent. Invariant measures are defined in exactly the same way as in one
dimension. Stationary distributions are finite invariant measures; they may
exist only if a diffusion is recurrent. A diffusion is recurrent and admits a
stationary distribution if and only if the expected hitting time of D̄ε(y) from
x is finite. When this property holds diffusion is also called ergodic or positive
recurrent.

In general there are no necessary and sufficient conditions for recurrence
and ergodicity for multi-dimensional diffusions, however there are various tests
for these properties. The method of Lyapunov functions, developed by R.Z.
Khasminskii, consists of finding a suitable function f , such that Lf ≤ 0 outside
a ball around zero. If lim|x|→∞ f(x) = ∞, then the process is transient. If
f is ultimately decreasing, then the process is recurrent. If Lf ≤ −ε for
some ε > 0 outside a ball around zero, with f(x) bounded from below in that
domain, then a diffusion is positive recurrent. Proofs consist of an application
of Itô’s formula coupled with the martingale theory (convergence property of
supermartingales). See for details Bhattacharya (1978), Hasminskii (1980),
Pinsky (1995).

Higher Order Random Differential Equations

Similarly to ODEs higher order random differential equations have interpreta-
tions as multi-dimensional SDEs. For example, a second order random differ-
ential equation of the form

ẍ + h(x, ẋ) = Ḃ, (6.93)

where ẋ(t) = dx(t)/dt, ẍ(t) = d2x(t)/dt2, and Ḃ denotes the White noise, has
interpretation as the following two-dimensional SDE by letting

x1(t) = x(t), (6.94)
x2(t) = dx1(t)/dt. (6.95)

dX1(t) = X2(t)dt, (6.96)
dX2(t) = −h(X1(t), X2(t)) + dB(t). (6.97)
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Such equations are considered in Section 14.2 of Chapter 14.
Higher n-th order random equations are interpreted in a similar way: by let-

ting X1(t) = X(t) and dXi(t) = Xi+1(t)dt, i = 1, . . . , n− 1, an n-dimensional
SDE is obtained.

Notes. Most of the material can be found in Friedman (1975), Gihman and
Skorohod (1982), Stroock and Varadhan (1979), Karatzas and Shreve (1988),
Rogers and Williams (1990), Pinsky (1995).

6.11 Exercises

Exercise 6.1: Show that for any u, f(x, t) = exp(ux − u2t/2) solves the
backward equation for Brownian motion. Take derivatives, first, second, etc.,
of exp(ux−u2t/2) with respect to u, and set u = 0, to obtain that functions x,
x2 − t, x3 − 3tx, x4 − 6tx2 + 3t2, etc. also solve the backward equation (6.13).
Deduce that B2(t)− t, B(t)3 − 3tB(t), B4(t) − 6tB2(t) + 3t2 are martingales.

Exercise 6.2: Find the generator for the Ornstein-Uhlenbeck process, write
the backward equation and give its fundamental solution. Verify that it satis-
fies the forward equation.

Exercise 6.3: Let X(t) be a stationary process. Show that the covariance
function γ(s, t) = Cov(X(s), X(t)) is a function of |t − s| only. Hint: take
k = 2. Deduce that for Gaussian processes stationarity is equivalent to the
requirements that the mean function is a constant and the covariance function
is a function of |t − s|.
Exercise 6.4: X(t) is a diffusion with coefficients µ(x) = cx and σ(x) = 1.
Give its generator and show that X2(t) − 2c

∫ t

0 X2(s)ds − t is a martingale.

Exercise 6.5: X(t) is a diffusion with µ(x) = 2x and σ2(x) = 4x. Give its
generator L. Solve Lf = 0, and give a martingale Mf . Find the SDE for the
process Y (t) =

√
X(t), and give the generator of Y (t).

Exercise 6.6: Find f(x) such that f(B(t) + t) is a martingale.

Exercise 6.7: X(t) is a diffusion with coefficients µ(x, t), σ(x, t). Find a
differential equation for f(x, t) such that Y (t) = f(X(t), t) has infinitesimal
diffusion coefficient equal to 1.

Exercise 6.8: Show that the mean exit time of a diffusion from an interval,
which (by Theorem 6.16) satisfies the ODE (6.44) is given by

v(x) = −
∫ x

a

2G(y)

∫ y

a

ds

σ2(s)G(s)
dy +

∫ b

a

2G(y)

∫ y

a

ds

σ2(s)G(s)
dy

∫ x

a
G(s)ds∫ b

a
G(s)ds

,

(6.98)
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where G(x) = exp
(
− ∫ x

a

2µ(s)

σ2(s)
ds
)
.

Exercise 6.9: Find Px(Tb < Ta) for Brownian motion with drift when
µ(x) = µ and σ2(x) = σ2.

Exercise 6.10: Give a probabilistic representation of the solution f(x, t) of
the PDE

1
2

∂2f

∂x2
+

∂f

∂t
= 0, 0 ≤ t ≤ T, f(x, T ) = x2.

Solve this PDE using the solution of the corresponding stochastic differential
equation.

Exercise 6.11: Show that the solution of the following ordinary differential
equation dx(t) = cxr(t)dt, c > 0, x(0) = x0 > 0, explodes if and only if r > 1.

Exercise 6.12: Investigate for explosions the following process

dX(t) = X2(t)dt + σXα(t)dB(t).

Exercise 6.13: Show that Brownian motion B(t) is recurrent. Show that
B(t) + t is transient.

Exercise 6.14: Show that the Ornstein-Uhlenbeck process is positively recur-
rent. Show that the limiting distribution for the Ornstein-Uhlenbeck process
(5.6) exists, and is given by its stationary distribution. Hint: the distribution
of σe−αt

∫ t

0 eαsdBs is Normal, find its mean and variance, and take limits.

Exercise 6.15: Show that the square of the Bessel process X(t) in (6.64)
comes arbitrarily close to zero when n = 2, that is, P(Ty < ∞) = 1 for any
small y > 0, but when n ≥ 3, P(Ty < ∞) < 1.

Exercise 6.16: Let diffusion X(t) have σ(x) = 1, µ(x) = −1 for x < 0,
µ(x) = 1 for x > 0 and µ(0) = 0. Show that π(x) = e−|x| is a stationary
distribution for X .

Exercise 6.17: Let diffusion on (α, β) be such that the transition probability
density p(t, x, y) is symmetric in x and y, p(t, x, y) = p(t, y, x) for all x, y and t.
Show that if (α, β) is a finite interval, then the uniform distribution is invariant
for the process X(t).

Exercise 6.18: Investigate for absorption at zero the following process (used
as a model for interst rates, the square root model of Cox, Ingersoll and Ross).
dX(t) = b(a− X(t))dt + σ

√
X(t)dB(t), where parameters b, a and σ are con-

stants.
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Chapter 7

Martingales

Martingales play a central role in the modern theory of stochastic processes
and stochastic calculus. Martingales constructed from a Brownian motion
were considered in Section 3.3 and martingales arising in diffusions in Section
6.1. Martingales have a constant expectation, which remains the same under
random stopping. Martingales converge almost surely. Stochastic integrals are
martingales. These are the most important properties of martingales, which
hold under some conditions.

7.1 Definitions

The main ingredient in the definition of a martingale is the concept of condi-
tional expectation, consult Chapter 2 for its definition and properties.

Definition 7.1 A stochastic process M(t), where time t is continuous 0 ≤ t ≤
T , or discrete t = 0, 1, . . . , T , adapted to a filtration IF = (Ft) is a martingale
if for any t, M(t) is integrable, that is, E|M(t)| < ∞ and for any t and s with
0 ≤ s < t ≤ T ,

E(M(t)|Fs) = M(s) a.s. (7.1)

M(t) is a martingale on [0,∞) if it is integrable and the martingale property
(7.1) holds for any 0 ≤ s < t < ∞.

Definition 7.2 A stochastic process X(t), t ≥ 0 adapted to a filtration IF
is a supermartingale (submartingale) if it is integrable, and for any t and s,
0 ≤ s < t ≤ T

E(X(t)|Fs) ≤ X(s),
(
E(X(t)|Fs) ≥ X(s)

)
a.s.

183
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If X(t) is a supermartingale, then −X(t) is a submartingale. The mean
of a supermartingale is non-increasing with t, the mean of a submartingale
is non-decreasing in t, and the mean of a martingale is constant in t. This
property is used in a test for a super(sub)martingale to be a true martingale.

Theorem 7.3 A supermartingale M(t), 0 ≤ t ≤ T , is a martingale if and
only if EM(T ) = EM(0).

Proof: If M is a martingale, then EM(T ) = EM(0) follows by the mar-
tingale property with s = 0 and t = T . Conversely, suppose M(t) is a su-
permartingale and EM(T ) = EM(0). If for some t and s we have a strict
inequality, E(M(t)|Fs) < M(s) on a set of positive probability, then by taking
expectations, we obtain EM(t) < EM(s). Since the expectation of a super-
martingale is non-increasing, EM(T ) ≤ EM(t) < EM(s) ≤ EM(0). But this
contradicts the condition of the theorem EM(T ) = EM(0). Thus for all t and
s the inequality E(M(t)|Fs) ≤ M(s) must be an equality almost surely.

�

We refer to Theorem 2.32 on the existence of the regular right-continuous
version for supermartingales. Regular right-continuous versions of processes
will be taken.

Square Integrable Martingales

A special role in the theory of integration is played by square integrable mar-
tingales.

Definition 7.4 A random variable X is square integrable if E(X2) < ∞. A
process X(t) on the time interval [0, T ], where T can be infinite, is square in-
tegrable if supt∈[0,T ] EX2(t) < ∞ (supt≥0 EX2(t) < ∞), i.e. second moments
are bounded.

Example 7.1:

1. Brownian motion B(t) on a finite time interval 0 ≤ t ≤ T is a square integrable
martingale, since EB2(t) = t < T < ∞. Similarly, B2(t) − t is a square
integrable martingale. They are not square integrable when T = ∞.

2. If f(x) is bounded and continuous function on IR, then Itô integrals∫ t

0
f(B(s))dB(s) and

∫ t

0
f(s)dB(s) are square integrable martingales on any

finite time interval 0 ≤ t ≤ T . Indeed, by (4.7), an Itô integral is a martingale,
and since |f(x)| ≤ K,

E

(∫ t

0

f(B(s))dB(s)

)2

= E

(∫ t

0

f2(B(s))ds

)
≤ K2t ≤ K2T < ∞.

If moreover,
∫∞
0

f2(s)ds < ∞ then
∫ t

0
f(s)dB(s) is a square integrable mar-

tingale on [0,∞).
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7.2 Uniform Integrability

To appreciate the definition of uniform integrability of a process, recall what
is meant by integrability of a random variable X . It is called integrable if
E|X | < ∞. It is easy to see that this holds if and only if

lim
n→∞ E

(|X |I(|X | > n)
)

= 0. (7.2)

Indeed, if X is integrable then (7.2) holds by the dominated convergence, since
limn→∞ |X |I(|X | > n) = 0 and |X |I(|X | > n) ≤ |X |. Conversely, let n be
large enough for the rhs in (7.2) to be finite. Then

E|X | = E
(|X |I(|X | > n)

)
+ E

(|X |I(|X | ≤ n)
)

< ∞,

since the first term is finite by (7.2) and the second is bounded by n.

Definition 7.5 A process X(t), 0 ≤ t ≤ T is called uniformly integrable if
E
(|X(t)|I(|X(t)| > n)

)
converges to zero as n → ∞ uniformly in t, that is,

lim
n→∞ sup

t
E
(|X(t)|I(|X(t)| > n)

)
= 0, (7.3)

where the supremum is over [0, T ] in the case of a finite time interval and
[0,∞) if the process is considered on 0 ≤ t < ∞.

Example 7.2: We show that if X(t), 0 ≤ t ≤ T is uniformly integrable, then it is
integrable, that is, supt E|X(t)| < ∞. Indeed,

sup
t

E|X(t)| < sup
t

E
(
|X(t)|I(|X(t)| > n)

)
+ n.

Since X(t) is uniformly integrable, the first term converges to zero as n → ∞, in
particular it is bounded, and the result follows.

Sufficient conditions for uniform integrability are given next.

Theorem 7.6 If the process X is dominated by an integrable random variable,
|X(t)| ≤ Y and E(Y ) < ∞, then it is uniformly integrable. In particular, if
E(supt |X(t)|) < ∞, then it is uniformly integrable.

Proof: E
(|X(t)|I(|X(t)| > n)

)
< E

(|Y |I(|Y | > n)
)→ 0, as n → ∞.

�

Note that there are uniformly integrable processes (martingales) which are not
dominated by an integrable random variable, so that the sufficient condition
for uniform integrability E(supt |X(t)|) < ∞ is not necessary for uniform in-
tegrability. Another sufficient condition for uniform integrability is given by
the following result, see for example Protter (1992), p.9, Liptser and Shiryaev
(2001), p. 17.
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Theorem 7.7 If for some positive, increasing, convex function G(x) on [0,∞)
such that limx→∞ G(x)/x = ∞,

sup
t≤T

E
(
G(|X(t)|)) < ∞, (7.4)

then X(t), t ≤ T is uniformly integrable.

We omit the proof. In practice the above result is used with G(x) = xr for
r > 1, and uniform integrability is checked by using moments. For second
moments r = 2, we have: square integrability implies uniform integrability.

Corollary 7.8 If X(t) is square integrable, that is, supt EX2(t) < ∞, then it
is uniformly integrable.

In view of this, examples of uniformly integrable martingales are provided
by square integrable martingales given in Example 7.1. The following result
provides a construction of uniformly integrable martingales.

Theorem 7.9 (Doob’s, Levy’s martingale) Let Y be an integrable ran-
dom variable, that is, E|Y | < ∞ and define

M(t) = E(Y |Ft). (7.5)

Then M(t) is a uniformly integrable martingale.

Proof: It is easy to see that M(t) is a martingale. Indeed, by the law
of double expectation, E(M(t)|Fs) = E

(
E(Y |Ft)|Fs

)
= E(Y |Fs) = M(s).

The proof of uniform integrability is more involved. It is enough to es-
tablish the result for Y ≥ 0 as the general case will follow by consider-
ing Y + and Y −. If Y ≥ 0 then M(t) ≥ 0 for all t. We show next that
M∗ = supt≤T M(t) < ∞. If not, there is a sequence of tn ↑ ∞ such that
M(tn) ↑ ∞. By monotone convergence, EM(tn) ↑ ∞, which is a contradic-
tion, as EM(tn) = EY < ∞. Now, by the general definition of conditional
expectation, see (2.16), E

(
M(t)I(M(t) > n)

)
= E

(
Y I(M(t) > n)

)
. Since

{M(t) > n} ⊆ {M∗ > n}, E
(
Y I(M(t) > n)

) ≤ E
(
Y I(M∗ > n)

)
. Thus

E
(
M(t)I(M(t) > n)

) ≤ E
(
Y I(M∗ > n)

)
. Since the right-hand side does

not depend on t, supt≤T E
(
M(t)I(M(t) > n)

) ≤ E
(
Y I(M∗ > n)

)
. But this

converges to zero as n → ∞, because M ∗ is finite and Y is integrable.
�

The martingale in (7.5) is said to be closed by Y . An immediate corollary is

Corollary 7.10 Any martingale M(t) on a finite time interval 0 ≤ t ≤ T <
∞ is uniformly integrable and is closed by M(T ).

It will be seen in the next section that a uniformly integrable martingale on
[0,∞) is also of the form (7.5). That is, there exists a random variable, called
M(∞) such that the martingale property holds for all 0 ≤ s < t, including
t = ∞.
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7.3 Martingale Convergence

In this section martingales on the infinite time interval [0,∞) are considered.

Theorem 7.11 (Martingale Convergence Theorem) If M(t), 0 ≤ t <
∞, is an integrable martingale (supermartingale or submartingale), that is, if
supt≥0 E|M(t)| < ∞, then there exists an almost sure limit limt→∞ M(t) = Y
and Y is an integrable random variable.

The proof of this result is due to Doob and it is too involved to be given here.
If M(t) is a martingale, then the condition supt≥0 E|M(t)| < ∞ is equivalent
to any of the following conditions:

• limt→∞ E|M(t)| < ∞. This is because |x| is a convex function, implying
that |M(t)| is a submartingale, and expectation of a submartingale is an
increasing function of t. Hence the supremum is the same as the limit.

• limt→∞ EM+(t) < ∞. This is because E|M(t)| = EM+(t) + EM−(t).
If EM(t) = c, then EM(t) = EM+(t) − EM−(t) = c and EM+(t) =
EM−(t) + c.

• limt→∞ EM−(t) < ∞.

If M(t) is a submartingale, it is enough to demand supt EM+(t) < ∞, and
if it is a supermartingale it is enough to demand supt EM−(t) < ∞, for the
existence of a finite limit.

Corollary 7.12

1. Uniformly integrable martingales converge almost surely.

2. Square integrable martingales converge almost surely.

3. Positive martingales converge almost surely.

4. Submartingales bounded from above (negative) converge almost surely.

5. Supermartingales bounded from below (positive) converge almost surely.

Proof: Since uniformly integrable martingales are integrable, they converge.
Since square integrable martingales are uniformly integrable, they converge.
If M(t) is positive then |M(t)| = M(t), and E|M(t)| = EM(t) = EM(0) < ∞.

�

Note that expectations EM(t) may or may not converge to the expectation
of the limit EY (see Example 7.3). The case when EY = limt→∞ EM(t), is
precisely when M(t) is uniformly integrable. The next result, given without
proof, shows that uniformly integrable martingales have form (7.5).
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Theorem 7.13 If M(t) is a uniformly integrable martingale then it converges
to a random variable Y almost surely and in L1. Conversely, if M(t) is a mar-
tingale that converges in L1 to a random variable Y , then M(t) is uniformly
integrable, and it converges almost surely to Y . In any case M(t) = E

(
Y |Ft

)
.

Example 7.3: (Exponential martingale of Brownian motion.)
Let M(t) = eB(t)−t/2. Then M(t), t ≥ 0 is a martingale. Since it is positive,
it converges by Corollary 7.12 almost surely to a limit Y . By the Law of Large
Numbers for Brownian motion B(t)/t converges almost surely to zero. Thus
M(t) = et(B(t)/t−1/2) → 0 as t → ∞. Thus Y = 0 almost surely. Therefore M(t) is
not uniformly integrable, as EY = 0 �= 1 = EM(t).

Example 7.4: Let f(s) be non-random, such that
∫∞
0

f2(s)ds < ∞. We show that

M(t) =
∫ t

0
f(s)dB(s) is a uniformly integrable martingale and find a representation

for the closing random variable.
Since

∫∞
0

f2(s)ds < ∞,
∫ t

0
f(s)dB(s) is defined for all t > 0 and is a martingale.

Since supt>0 E(M2(t)) = supt>0

∫ t

0
f2(s)ds =

∫∞
0

f2(s)ds < ∞, M(t) is uniformly

integrable. Thus it converges almost surely to Y . Convergence is also in L1, that
is E|M(t) − Y | → 0 as t → ∞. Denote Y = M(∞) =

∫∞
0

f(s)dB(s), then we have

shown that Y −M(t) =
∫∞

t
f(s)dB(s) converges to zero almost surely and in L1. Y

is the closing variable. Indeed,
E(Y |Ft) = E(M(∞)|Ft) = E(

∫∞
0

f(s)dB(s)|Ft) =
∫ t

0
f(s)dB(s) = M(t).

Example 7.5: A bounded positive martingale M(t) = E(I(Y > 0)|Ft) with
Y =

∫∞
0

f(s)dB(s), where f(s) is non-random and
∫∞
0

f2(s)ds < ∞, from the
previous example.

M(t) = E(I(Y > 0)|Ft) = P (Y > 0|Ft)

= P

(∫ ∞

t

f(s)dB(s) > −
∫ t

0

f(s)dB(s)

∣∣∣Ft

)

= Φ

 ∫ t

0
f(s)dB(s)√∫∞
t

f2(s)ds

 , (7.6)

where the last equality is due to normality of the Itô integral for a non-random f .
By taking f to be zero on (T,∞), a result is obtained for martingales of the form

E(I(
∫ T

0
f(s)dB(s) > 0)|Ft). In particular, by taking f(s) = 1[0,T ](s), we obtain that

Φ(B(t)/
√

T − t)

is a positive bounded martingale on [0, T ]. Its distribution for t ≤ T is left as an
exercise.
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7.4 Optional Stopping

In this section we consider results on stopping martingales at random times.
Recall that a random time τ is called a stopping time if for any t > 0 the sets
{τ ≤ t} ∈ Ft. For filtrations generated by a process X , τ is a stopping time if
it is possible to decide whether τ has occurred or not by observing the process
up to time t. A martingale stopped at a random time τ is the process M(t∧τ).
A Basic Stopping result, given here without proof, states that a martingale
stopped at a stopping time is a martingale, in particular EM(τ ∧ t) = EM(0).
This equation is used most frequently.

Theorem 7.14 If M(t) is a martingale and τ is a stopping time, then the
stopped process M(τ ∧ t) is a martingale. Moreover,

EM(τ ∧ t) = EM(0). (7.7)

This result was proved in discrete time (see Theorem 3.39). We refer to (7.7)
as the Basic Stopping equation.

Remark 7.1: We stress that in this theorem M(τ ∧ t) is a martingale with
respect to the original filtration Ft. Since it is adapted to Fτ∧t, it is also an
Fτ∧t-martingale (see Exercise 7.1).

Example 7.6: (Exit of Brownian Motion from an Interval)
Let B(t) be Brownian motion started at x and τ be the first time when B(t) exits the
interval (a, b), a < x < b, that is, τ = inf{t : B(t) = a or b}. Clearly, τ is a stopping
time. By the basic stopping result (7.7), EB(t ∧ τ ) = B(0) = x. By definition of τ ,
|B(t∧ τ )| ≤ max(|a|, |b|). Thus one can take t → ∞, and use dominated convergence
to obtain EB(τ ) = x. But B(τ ) = b with probability p and Bτ = a with probability
1 − p. From these equations we obtain that p = (x − a)/(b − a) is the probability
that Brownian motion reaches b before it reaches a.

If M is a martingale then EM(t) = EM(0). If τ is a stopping time, then
EM(τ) may be different to EM(0), as the next example shows.

Example 7.7: Let B(t) be Brownian motion started at 0 and τ is the hitting time
of 1. Then by definition B(τ ) = 1 and EB(τ ) = 1 �= 0 = EB(0).

However, under some additional assumptions on the martingale or on the
stopping time, the random stopping does not alter the expected value. The
following result gives sufficient conditions for optional stopping to hold.

Theorem 7.15 (Optional Stopping) Let M(t) be a martingale.

1. If τ ≤ K < ∞ is a bounded stopping time then EM(τ) = EM(0).

2. If M(t) is uniformly integrable, then for any stopping time τ ,
EM(τ) = EM(0).
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The first statement follows from the Basic Stopping Result by taking t > K
and applying (7.7), EM(0) = EM(t ∧ τ) = EM(τ).

Applied to gambling this shows that when betting on a martingale, on
average no loss or gain is made, even if a clever stopping rule is used, provided
it is bounded.

We don’t give a proof of the second statement, the difficult point is in
showing that M(τ) is integrable.

Theorem 7.16 Let M(t) be a martingale and τ a finite stopping time. If
E|M(τ)| < ∞, and

lim
t→∞E

(
M(t)I(τ > t)

)
= 0, (7.8)

then EM(τ) = EM(0).

Proof: Write M(τ ∧ t) as

M(τ ∧ t) = M(t)I(t < τ) + M(τ)I(t ≥ τ). (7.9)

Using Basic Stopping Result (7.7), EM(τ ∧ t) = EM(0). Taking expectations
in (7.9), we have

EM(0) = E
(
M(t)I(t < τ)

)
+ E

(
M(τ)I(t ≥ τ)

)
. (7.10)

Now take the limit in (7.10) as t → ∞. Since τ is finite, I(t ≥ τ) → I(τ <
∞) = 1. |M(τ)|I(t ≥ τ) ≤ |M(τ)|, integrable. Hence E

(
M(τ)I(t ≥ τ)

) →
EM(τ) by dominated convergence. It is assumed that E

(
M(t)I(t < τ)

) → 0
as t → ∞, and the result follows.

�

The Basic Stopping result or Optional Stopping are used to find the distribu-
tion of stopping times for Brownian motion and Random Walks.

Example 7.8: (Hitting times of Brownian Motion)
We derive the Laplace transform of hitting times, from which it also follows that they
are finite. Let B(t) be a Brownian motion starting at 0, and Tb = inf{t : B(t) = b},
b > 0. Consider the exponential martingale of Brownian motion euB(t)−u2t/2, u > 0,

stopped at Tb, euB(t∧Tb)−(t∧Tb)u2/2. Using the Basic Stopping result (7.7)

EeuB(t∧Tb)−(t∧Tb)u2/2 = 1.

The martingale is bounded from above by eub and it is positive. If we take it as
already proven that Tb is finite, P(Tb < ∞) = 1, then we obtain by taking t → ∞
that Eeub−(t∧Tb)u2/2 = 1. Replacing u by

√
2u, we obtain the Laplace transform of

Tb

ψTb(u) = E
(
e−uTb

)
= e−b

√
2u. (7.11)
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We now show the finiteness of Tb. Write the expectation of the stopped martingale

E
(
eub−Tbu2/2I(Tb ≤ t)

)
+ E

(
euB(t)−tu2/2I(Tb > t)

)
= 1. (7.12)

The term E
(

euB(t)−tu2/2I(Tb > t)
)

≤ E
(
eub−tu2/2I(Tb > t)

)
≤ eub−tu2/2 → 0, as

t → ∞. Thus taking limits in the above equation (7.12),

E
(
eub−Tbu2/2I(Tb ≤ t)

)
→ E

(
eub−Tbu2/2I(Tb < ∞)

)
= 1. Therefore

E
(
e−Tbu2/2I(Tb < ∞)

)
= e−ub. But e−Tbu2

I(Tb = ∞) = 0, therefore by adding

this term, we can write E
(

e−Tbu2/2
)

= e−ub. It follows in particular that

P(Tb < ∞) = limu↓0 ψ(u) = 1, and Tb is finite. Hence (7.11) is proved. The
distribution of Tb corresponding to the transform (7.11) is given in Theorem 3.18.

The following result is in some sense the converse to the Optional Stopping
Theorem.

Theorem 7.17 Let X(t), t ≥ 0, be such that for any bounded stopping time
τ , X(τ) is integrable and EX(τ) = EX(0). Then X(t), t ≥ 0 is a martingale.

Proof: The proof consists of checking the martingale property by using
appropriate stopping times. Since a deterministic time t is a stopping time,
X(t) is integrable. Without loss of generality take X(0) = 0. Next we show
that for t > s, E(X(t)|Fs) = X(s). In other words, we need to show that for
any s < t and any set B ∈ Fs

E
(
X(t)I(B)

)
= E

(
X(s)I(B)

)
. (7.13)

Fix a set B ∈ Fs and for any t > s, define a stopping time τ = sI(B)+ tI(Bc).
We have E(X(τ)) = E

(
X(s)I(B)

)
+ E

(
X(t)I(Bc)

)
. Since EX(τ) = 0,

E
(
X(s)I(B)

)
= EX(τ) − E

(
X(t)I(Bc)

)
= −E

(
X(t)I(Bc)

)
.

As the right hand side of the above equality does not depend on s, it follows
that (7.13) holds.

�

The following result is sometimes known as the Optional Sampling Theo-
rem (see for example, Rogers and Williams (1990)).

Theorem 7.18 (Optional Sampling) Let M(t) be a uniformly integrable
martingale, and τ1 ≤ τ2 ≤ ∞ two stopping times. Then

E
(
M(τ2)|Fτ1

)
= M(τ1), a.s. (7.14)

Optional Stopping of Discrete Time Martingales

We consider next the case of discrete time t = 0, 1, 2 . . ., and martingales
arising in a Random Walk.
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Gambler’s Ruin

Consider a game played by two people by betting on the outcomes of tosses
of a coin. You win $1 if Heads come up and lose $1 if Tails come up. The
game stops when one party has no money left. You start with x, and your
opponent with b dollars. Then Sn, the amount of money you have at time n
is a Random Walk (see Section 3.12). The Gambler’s ruin problem is to find
the probabilities of ruin of the players.

In this game the loss of one person is the gain of the other (a zero sum
game). Assuming that the game will end in a finite time τ (this fact will be
shown later), it follows that the ruin probabilities of the players add up to one.

Consider first the case of the fair coin. Then

Sn = x +
n∑

i=1

ξi, P(ξi = 1) =
1
2
, P(ξi = −1) =

1
2
,

is a martingale (see Theorem 3.33). Let τ be the time when the game stops,
the first time the amount of money you have is equal to 0 (your ruin) or x + b
(your opponent’s ruin). Then τ is a stopping time. Denote by u the probability
of your ruin. It is the probability of you losing your initial capital x before
winning b dollars. Thus

P(Sτ = 0) = u and P(Sτ = x + b) = 1 − u. (7.15)

Formally applying the Optional Stopping Theorem

E(Sτ ) = S0 = x. (7.16)

But
E(Sτ ) = (x + b) × (1 − u) + 0 × u = (x + b)u.

These equations give

u =
b

x + b
. (7.17)

So that the ruin probabilities are given by a simple calculation using martingale
stopping.

We now justify the steps. Sn is a martingale, and τ is a stopping time.
By Theorem 7.14 the stopped process Sn∧τ is a martingale. It is non-negative
and bounded by x + b, by the definition of τ . Thus Sn∧τ is a uniformly
integrable martingale. Hence it converges almost surely to a finite limit Y ,
(with EY = x), limn→∞ Sn∧τ = Y . By Theorem 3.33 S2

n − n is a martingale,
and so is S2

n∧τ − n ∧ τ . Thus for all n by taking expectation

E(S2
n∧τ ) = E(n ∧ τ) + E(S2

0). (7.18)
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By dominated convergence, the lhs has a finite limit, therefore there is a finite
limit limn→∞ E(n ∧ τ). Expanding this, E(n ∧ τ) ≥ nP(τ > n), we can see
that for a limit to exist it must be

lim
n→∞ P(τ > n) = 0, (7.19)

so that P(τ < ∞) = 1, and τ is finite. (Note that a standard proof of finiteness
of τ is done by using Markov Chain Theory, the property of recurrence of
states in a Random Walk.) Writing E(Sn∧τ ) = x and taking limits as n → ∞,
the equation (7.16) is obtained (alternatively, the conditions of the Optional
Stopping Theorem hold). This concludes a rigorous derivation of the ruin
probability in an unbiased Random Walk.

We now consider the case when the Random Walk is biased, p �= q.

Sn = x +
n∑

i=1

ξi, P(ξi = 1) = p, P(ξi = −1) = q = 1 − p.

In this case the exponential martingale of the Random Walk Mn = (q/p)Sn

is used (see Theorem 3.33). Stopping this martingale, we obtain the ruin
probability

u =
(q/p)b+x − (q/p)x

(q/p)b+x − 1
. (7.20)

Justification of the equation E(Mτ ) = M0 is similar to the previous case.

Hitting Times in Random Walks

Let Sn denote a Random Walk on the integers started at S0 = x, Sn =
S0 +

∑n
i=1 ξi, P(ξi = 1) = p, P(ξi = −1) = q = 1 − p, with arbitrary p, and

Tb the first hitting time of b, Tb = inf{n : Sn = b} (infimum of an empty set
is infinity). Without loss of generality take the starting state x = 0, otherwise
consider the process Sn−x. Consider hitting the level b > 0, for b < 0 consider
the process −Sn.

We find the Laplace transform of Tb, ψ(λ) = E(e−λTb), λ > 0, by stopping
the exponential martingale of the Random Walk Mn = euSn−nh(u), where
h(u) = ln E(euξ1), and u is arbitrary (see Section 3.12).

E(Mn∧Tb
) = E

(
euSn∧Tb

−(n∧Tb)h(u)
)

= 1. (7.21)

Take u, so that h(u) = λ > 0. Write the expectation in (7.21) as

E
(
euSn∧Tb

−(n∧Tb)h(u)
)

= E
(
euSTb

−Tbh(u)I(Tb ≤ n)
)
+E

(
euSn−nh(u)I(Tb > n)

)
.
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The first term equals to E
(
eub−Tbh(u)I(Tb ≤ n)

)
. The second term converges

to zero, because by definition of Tb,

E
(
euSn−nh(u)I(Tb > n)

)
≤ E

(
eub−nh(u)I(Tb > n)

)
≤ eub−nh(u) → 0.

Now taking limits in (7.21), using dominated convergence we obtain

E
(
e−h(u)TbI(Tb < ∞)

)
= e−ub.

Note that e−h(u)TbI(Tb = ∞) = 0, therefore by adding this term, we can write

E
(
e−h(u)Tb

)
= e−ub. (7.22)

This is practically the Laplace transform of Tb, it remains to replace h(u) by
λ, by taking u = h(−1)(λ), with h(−1) being the inverse of h. Thus the Laplace
transform of Tb is given by

ψ(λ) = E
(
e−λTb

)
= e−h(−1)(λ)b. (7.23)

To find h(−1)(λ), solve h(u) = λ, which is equivalent to E(euξ1) = eλ, or
peu+(1−p)e−u = eλ. There are two values for eu = (eλ±√e2λ − 4p(1 − p))/(2p),
but only one corresponds to a Laplace transform, (7.22). Thus we have

ψ(λ) = E
(
e−λTb

)
=

(
2p

eλ +
√

e2λ − 4p(1 − p)

)b

. (7.24)

Using a general result on Laplace transform of a random variable,

P(Tb < ∞) = lim
λ↓0

ψ(λ) =
( 2p

1 + |1 − 2p|
)b

. (7.25)

It now follows that the hitting time Tb of b is finite if and only if p ≥ 1/2.
For p < 1/2, there is a positive probability that level b is never reached,
P(Tb = ∞) = 1 − ( p

1−p )b.
When the hitting time of level b is finite, it may or may not have a finite

expectation. If p ≥ 1/2 we have

E(Tb) = −ψ′(0) =
{ l

2p−1 if p > 1/2
∞ if p = 1/2.

Thus we have shown that when p ≥ 1/2 any positive state will be reached
from 0 in a finite time, but when p = 1/2 the average time for it to happen is
infinite.

The results obtained above are known as transience (p �= 1/2) and recur-
rence (p = 1/2) of the Random Walk, and are usually obtained by Markov
Chains Theory.



7.5. LOCALIZATION AND LOCAL MARTINGALES 195

Example 7.9: (Optional stopping of discrete time martingales)
Let M(t) be a discrete time martingale and τ be a stopping time such that E|M(τ )| <
∞.

1. If Eτ < ∞ and |M(t + 1) − M(t)| ≤ K, then EM(τ ) = EM(0).

2. If Eτ < ∞ and E
(
|M(t + 1) − M(t)||Ft

)
≤ K, then EM(τ ) = EM(0).

Proof: We prove the first statement.
M(t) = M(0)+

∑t−1

i=0

(
M(i+1)−M(i)

)
. This together with the bound on increments

gives

M(t) ≤ |M(0)| +
t−1∑
i=0

|M(i + 1) − M(i)| ≤ |M(0)| + Kt.

Take for simplicity non-random M(0) Then

EM(t)I(τ > t) ≤ |M(0)|P(τ > t) + KtP(τ > t).

The last term converges to zero, tP(τ > t) ≤ E(τI(τ > t)) → 0, by dominated
convergence due to E(τ ) < ∞. Thus condition (7.8) holds, and the result follows.
The proof of the second statement is similar and is left as an exercise.

�

7.5 Localization and Local Martingales

As it was seen earlier in Chapter 4, Itô integrals
∫ t

0 X(s)dB(s) are martingales
under the additional condition

∫ t

0 X2(s)ds < ∞. In general, stochastic inte-
grals with respect to martingales are only local martingales rather than true
martingales. This is the main reason for introducing local martingales. We
have also seen that for the calculation of expectations stopping and truncations
are often used. These ideas give rise to the following

Definition 7.19 A property of a stochastic process X(t) is said to hold locally
if there exists a sequence of stopping times τn, called the localizing sequence,
such that τn ↑ ∞ as n → ∞ and for each n the stopped processes X(t ∧ τn)
has this property.

For example, the uniform integrability property holds locally for any martin-
gale. By Theorem 7.13 a martingale convergent in L1 is uniformly integrable.
Here M(t∧n) = M(n) for t > n, and therefore τn = n is a localizing sequence.

Local martingales are defined by localizing the martingale property.

Definition 7.20 An adapted process M(t) is called a local martingale if there
exists a sequence of stopping times τn, such that τn ↑ ∞ and for each n the
stopped processes M(t ∧ τn) is a uniformly integrable martingale in t.

As we have just seen, any martingale is a local martingale. Examples of local
martingales which are not martingales are given below.
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Example 7.10: M(t) = 1/|B(t)|, where B(t) is the three-dimensional Brownian
motion, B(0) = x �= 0. We have seen in Example 6.17 that if Dr is the com-
plementary set to the ball of radius r centered at the origin, Dr = {z : |z| > r},
then f(z) = 1/|z| is a harmonic function for the Laplacian on Dr. Consequently
1/|B(t ∧ τDr )| is a martingale, where τDr is the time of exit from Dr. Take now
τn be the exit time from D1/n, that is, τn = inf{t > 0 : |B(t)| = 1/n}. Then
for any fixed n, 1/|B(t ∧ τn)| is a martingale. τn increase to, say, τ and by conti-
nuity, B(τ ) = 0. As Brownian motion in three dimensions never visits the origin
(see Example 6.14), it follows by continuity that τ is infinite. Thus M(t) is a local
martingale. To see that it is not a true martingale, recall that in three dimensions
Brownian motion is transient and |B(t)| → ∞ as t → ∞. Therefore EM(t) → 0,
whereas EM(0) = 1/|x|. Since the expectation of a martingale is constant, M(t) is
not a martingale.

Example 7.11: (Itô integrals.)

Let M(t) =
∫ t

0
eB2(s)dB(s), t > 1/4, where B is Brownian motion in one dimension

with B(0) = 0. Let τn = inf{t > 0 : eB2(t) = n}. Then for t ≤ τn, the integrand is
bounded by n. By the martingale property of Itô integrals, M(t∧τn) is a martingale
in t for any n. By continuity, exp(B2(τ )) = ∞, thus τn → τ = ∞. Therefore M(t)
is a local martingale. To see that it is not a martingale notice that for t > 1/4,

E
(
eB2(t)

)
= ∞, implying that M(t) is not integrable.

Remark 7.2: Note that it is not enough for a local martingale to be inte-
grable in order to be a true martingale. For example, positive local martingales
are integrable, but in general they are not martingales, but only supermartin-
gales (see Theorem 7.23) below. Even uniformly integrable local martingales
may not be martingales. However, if a local martingale is dominated by an
integrable random variable then it is a martingale.

Theorem 7.21 Let M(t), 0 ≤ t < ∞, be a local martingale such that
|M(t)| ≤ Y , with EY < ∞. Then M is a uniformly integrable martingale.

Proof: Let τn be a localizing sequence. Then for any n and s < t

E(M(t ∧ τn)|Fs) = M(s ∧ τn). (7.26)

M is clearly integrable, since E|M(t)| ≤ EY < ∞. Since limn→∞ M(t∧ τn) =
M(t), by dominated convergence of conditional expectations limn→∞ E(M(t∧
τn)|Fs) = E(M(t)|Fs). Since limn→∞ M(s ∧ τn) = M(s), the martingale
property is established by taking limits in (7.26). If a martingale is dominated
by an integrable random variable then it is uniformly integrable (see Theorem
7.6).

�

Corollary 7.22 Let M(t), 0 ≤ t < ∞, be a local martingale such that for all
t, E(sups≤t |M(s)|) < ∞. Then it is a martingale, and as such it is uniformly
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integrable on any finite interval [0, T ]. If in addition E(supt≥0 |M(t)|) < ∞,
then M(t), t ≥ 0, is uniformly integrable on [0,∞).

In financial applications we meet positive local martingales.

Theorem 7.23 A non-negative local martingale M(t), 0 ≤ t ≤ T , is a super-
martingale, that is, EM(t) < ∞, and for any s < t, E(M(t)|Fs) ≤ M(s).

Proof: Let τn be a localizing sequence Then since M(t∧τn) ≥ 0, by Fatou’s
lemma

E
(
lim inf
n→∞ M(t ∧ τn)

) ≤ lim inf
n→∞ E

(
M(t ∧ τn)

)
. (7.27)

Since the limit exists, the lower limit is the same, that is, limn→∞ M(t∧τn) =
M(t) implies lim infn→∞ M(t∧ τn) = M(t). But EM(t∧ τn) = EM(0∧ τn) =
EM(0) by the martingale property of M(t ∧ τn). Therefore by taking limits,
EM(t) ≤ EM(0), so that M is integrable. The supermartingale property is
established similarly. Using Fatou’s lemma for conditional expectations,

E
(
lim inf
n→∞ M(t ∧ τn)|Fs

) ≤ lim inf
n→∞ E

(
M(t ∧ τn)|Fs

)
= M(s ∧ τn), (7.28)

Taking limits as n → ∞ we obtain E
(
M(t)|Fs

) ≤ M(s) almost surely.
�

From this result and Theorem 7.3 we obtain

Theorem 7.24 A non-negative local martingale M(t), 0 ≤ t ≤ T , is a mar-
tingale if and only if EM(T ) = M(0).

For a general local martingale a necessary and sufficient condition to be
a uniformly integrable martingale is described in terms of the property of
Dirichlet class (D). This class of processes also arises in other areas of calculus
and is given in the next section.

Dirichlet Class (D)

Definition 7.25 A process X is of Dirichlet class, (D), if the family
{X(τ) : τ a finite stopping time} is uniformly integrable.

Any uniformly integrable martingale M is of class (D). Indeed, by Theorem
7.13, M is closed by Y = M(∞), M(τ) = E(Y |Fτ ), and the last family is
uniformly integrable.

Using localization one can show the other direction, and we have a theorem

Theorem 7.26 A local martingale M is a uniformly integrable martingale if
and only if it is of class (D).
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Proof: Suppose that M is a local martingale of class (D).
Let τn be a localizing sequence, so that M(t ∧ τn) is a uniformly integrable
martingale in t. Then for s < t,

M(s ∧ τn) = E(M(t ∧ τn)|Fs). (7.29)

The martingale property of M is obtained by taking n → ∞ in both sides of
the equation.

Since τn → ∞, M(s∧ τn) → M(s) almost surely. s∧ τn is a finite stopping
time, and because M is in (D), the sequence of random variables {M(s∧τn)}n

is uniformly integrable. Thus M(s ∧ τn) → M(s) also in L1, that is,

E|M(s ∧ τn) − M(s)| → 0. (7.30)

Using the properties of conditional expectation,

E
∣∣E(M(t ∧ τn)|Fs) − E(M(t)|Fs)

∣∣ = E
∣∣E(M(t ∧ τn) − M(t) |Fs)

∣∣
≤ E

(
E
∣∣M(t ∧ τn) − M(t)

∣∣ |Fs

)
= E

∣∣M(t ∧ τn) − M(t)
∣∣.

The latter converges to zero by (7.30). This implies E(M(t ∧ τn)|Fs) →
E(M(t)|Fs) as n → ∞. Taking limits in (7.29) as n → ∞ establishes the
martingale property of M . Since it is in (D), by taking τ = t, it is uniformly
integrable.

�

7.6 Quadratic Variation of Martingales

Quadratic variation of a process X(t) is defined as a limit in probability

[X, X ](t) = lim
n∑

i=1

(X(tni ) − X(tni−1))
2, (7.31)

where the limit is taken over partitions:

0 = tn0 < tn1 < . . . < tnn = t,

with δn = max0≤i≤n(tni − tni−1) → 0. If M(t) is a martingale, then M 2(t) is
is a submartingale, and its mean increases (unless M(t) is a constant). By
compensating M2(t) by some increasing process, it is possible to make it into
a martingale. The process which compensates M 2(t) to a martingale turns out
to be the quadratic variation process of M . It can be shown that quadratic
variation of martingales exists and is characterized by the above property.
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Theorem 7.27

1. Let M(t) be a martingale with finite second moments, E(M 2(t)) < ∞ for
all t. Then its quadratic variation process [M, M ](t) defined in (7.31)
exists, moreover M 2(t) − [M, M ](t) is a martingale.

2. If M is a local martingale, then [M, M ](t) exists, moreover
M2(t) − [M, M ](t) is a local martingale.

Proof: We outline the proof of the first statement only. The second follows
for locally square integrable martingales by localization. For local martin-
gales the result follows from representation of quadratic variation by means
of stochastic integrals. For a full proof see for example, Liptser and Shiryaev
(1989), p.56-59.

E
(
M(t)M(s)

)
= EE

(
M(t)M(s)|Fs

)
= E

(
M(s)E(M(t)|Fs)

)
= E(M2(s)).

(7.32)
Using this it is easy to obtain

E(M(t) − M(s))2 = E(M2(t)) − E(M2(s)). (7.33)

It is easy to see that the sums in the definition of quadratic variation [M, M ](t)
have constant mean, that of EM 2(t). It is possible, but is not easy, to prove
that these sums converge in probability to the limit [M, M ](t). Now using
property (7.33), we can write

E
(
M2(t) − M2(s)|Fs

)
= E

(
(M(t) − M(s))2|Fs

)
= E

( n−1∑
i=0

(M(ti+1) − M(ti))2|Fs

)
, (7.34)

where {ti} is a partition of [s, t]. Taking the limit as the size of the partition
goes to zero, we obtain

E
(
M2(t) − M2(s)|Fs

)
= E

(
[M, M ](t) − [M, M ](s)|Fs

)
. (7.35)

Rearranging, we obtain the martingale property of M 2(t) − [M, M ](t).
�

For the next result note that if M is a martingale, then for any t

E(M(t) − M(0))2 = E(M2(t)) − E(M2(0)),

which shows that E(M 2(t)) > E(M2(0)) unless M(t) = M(0) a.s. Thus M 2

can not be a martingale on [0, t], unless M(t) = M(0). If M(t) = M(0), then
for all s < t, M(s) = E(M(t)|Fs) = M(0), and M is a constant on [0, t].
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Theorem 7.28 Let M be a martingale with M(0) = 0. If for some t, M(t)
is not identically zero, then [M, M ](t) > 0. Conversely, if [M, M ](t) = 0, then
M(s) = 0 a.s. for all s ≤ t. The result also holds for local martingales.

Proof: We prove the result for square integrable martingales; for local
martingales it can be shown by localization. Suppose that [M, M ](t) = 0
for some t > 0. Then, since [M, M ] is non-decreasing, [M, M ](s) = 0 for
all s ≤ t. By Theorem 7.27 M 2(s), s ≤ t, is a martingale. In particular,
E(M2(t)) = 0. This implies that M(t) = 0 a.s., which is a contradiction.
Therefore [M, M ](t) > 0.

Conversely, if [M, M ](t) = 0, the same argument shows that M(t) = 0 a.s.,
and by the martingale property M(s) = 0 for all s ≤ t.

�

It also follows from the proof that M and [M, M ] have same intervals of con-
stancy. This theorem implies remarkably that a continuous martingale which
is not a constant has infinite variation on any interval.

Theorem 7.29 Let M be a continuous local martingale, and fix any t. If M(t)
is not identically equal to M(0), then M has infinite variation over [0, t].

Proof: M(t)−M(0) is a martingale, null at zero, with its value at time t not
equal identically to zero. By the above theorem M has a positive quadratic
variation on [0, t], [M, M ](t) > 0. By Theorem 1.10 a continuous process of fi-
nite variation on [0, t] has zero quadratic variation over this interval. Therefore
M must have infinite variation over [0, t].

�

Corollary 7.30 If a continuous local martingale has finite variation over an
interval, then it must be a constant over that interval.

Remark 7.3: Note that there are martingales with finite variation, but by the
previous result they can not be continuous. An example of such a martingale
is the Poisson process martingale N(t) − t.

7.7 Martingale Inequalities

M(t) denotes a martingale or a local martingale on the interval [0, T ] with
possibly T = ∞.

Theorem 7.31 If M(t) is a martingale (or a positive submartingale) then for
p ≥ 1

P(sup
s≤t

|M(s)| ≥ a) ≤ a−p sup
s≤t

E
(|M(s)|p). (7.36)
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If p > 1, then
E
(
sup
s≤t

|M(s)|p) ≤ ( p

p − 1

)p

E
(|M(t)|p). (7.37)

The case of p = 2 is called Doob’s inequality for martingales.

E
(
sup
s≤T

M(s)2
) ≤ 4E

(
M2(T )

)
. (7.38)

As a consequence, if for p > 1, supt≤T E
(|M(t)|p) < ∞, then M(t) is

uniformly integrable (This is a particular case of Theorem 7.7).

Theorem 7.32 If M is locally square integrable martingale with M(0) = 0,
then

P(sup
t≤T

|M(t)| > a) ≤ a−2E ([M, M ](T )) . (7.39)

Theorem 7.33 (Davis’ Inequality) There are constants c > 0 and C < ∞
such that for any local martingale M(t), null at zero,

cE
(√

[M, M ](T )
)
≤ E

(
sup
t≤T

|M(t)|
)

≤ CE
(√

[M, M ](T )
)

. (7.40)

Theorem 7.34 (Burkholder-Gundy Inequality) There are constants cp

and Cp depending only on p, such that for any local martingale M(t), null at
zero,

cpE
(
[M, M ](T )p/2

)
≤ E

(
(sup
t≤T

|M(t)|)p

)
≤ CpE

(
[M, M ](T )p/2

)
, (7.41)

for 1 < p < ∞. If moreover, M(t) is continuous, then the result holds also for
0 < p ≤ 1.

The above inequalities hold when T is a stopping time.
Proofs of these inequalities involve concepts of stochastic calculus for gen-

eral processes and can be found, for example, in Protter (1992), Rogers and
Williams (1990), Liptser and Shiryayev (1989).

We use the above inequalities to give sufficient conditions for a local mar-
tingale to be a true martingale.

Theorem 7.35 Let M(t) be a local martingale, null at zero, such that
E
(√

[M, M ](t)
)

< ∞ for all t. Then M(t) is a uniformly integrable martin-
gale on [0, T ], for any finite T .

If moreover, E[M, M ](t) < ∞, then M(t) is a martingale with
EM2(t) = E[M, M ](t) < ∞ for all t.

If supt<∞ E[M, M ](t) < ∞, then M(t) is a square integrable martingale.
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Proof: By the Davis inequality, supt≤T |M(t)| is an integrable random vari-

able, E
(
supt≤T |M(t)|) ≤ CE

(√
[M, M ](T )

)
< ∞. Thus M(t) is dominated

by an integrable random variable on any finite time interval. Therefore it is a
uniformly martingale by Theorem 7.21, and the first claim is proved.

The condition E[M, M ](t) < ∞ implies the previous condition
E
(√

[M, M ](t)
)

< ∞, as for X ≥ 0, E(X) ≥ (E(
√

X))2, due to V ar(
√

X) ≥
0. Thus M is a martingale. Alternatively, use the Burkholder-Gundy inequal-
ity with p = 2. Next, recall that by Theorem 7.27, if M(t) is a martingale
with E

(
M2(t)

)
< ∞, then M2(t) − [M, M ](t) is a martingale. In particular,

for any finite t
E
(
M2(t)

)
= E[M, M ](t),

and the second statement is proved. To prove the third, notice that since
both sides in the above equation are non-decreasing, they have a limit. Since
by assumption limt→∞ E[M, M ](t) < ∞, supt<∞ EM2(t) < ∞, and M(t),
0 ≤ t < ∞ is a square integrable martingale.

�

Application to Itô integrals

Let X(t) =
∫ t

0 H(s)dB(s). Being an Itô integral, X is a local martingale.
Its quadratic variation is given by [X, X ](t) =

∫ t

0 H2(s)ds. The Burkholder-
Gundy inequality with p = 2 gives E

(
supt≤T X2(t)

) ≤ CE ([X, X ](T )) =

E
∫ T

0
H2(s)ds. If E

(∫ T

0
H2(s)ds

)
< ∞, then X(t) is a square integrable mar-

tingale. Thus we recover the known fact that E(X2(t)) = E
(∫ t

0 H2(s)ds
)
.

The Davis inequality gives E(supt≤T

∫ t

0
H(s)dB(s)) ≤ CE

(√∫ t

0
H2(s)ds

)
.

Thus the condition

E

√∫ t

0

H2(s)ds

 < ∞ (7.42)

is a sufficient condition for the Itô integral to be a martingale and, in particular,
to have zero mean. This condition, however, does not assure second moments.

7.8 Continuous Martingales. Change of Time

Brownian motion is the basic continuous martingale from which all continuous
martingales can be constructed, either by random change of time, given in this
section, or by stochastic integration, as will be seen in the next chapter. The
starting point is a result that characterizes a Brownian motion.
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Levy’s Characterization of Brownian Motion

Theorem 7.36 (Levy) A process M with M(0) = 0 is a Brownian motion if
and only of it is a continuous local martingale with quadratic variation process
[M, M ](t) = t.

Proof: If M is a Brownian motion, then it is a continuous martingale with
[M, M ](t) = t.

Let M(t) be a continuous local martingale with [M, M ](t) = t. Then uM(t)
is a continuous local martingale with [uM, uM ](t) = u2t. We show that

U(t) = euM(t)−u2t/2 = euM(t)−[uM,uM ](t)/2 (7.43)

is a martingale. Once this is established, the rest of the proof follows by an
application of the martingale property.

The general theory of integration with respect to martingales is required
to show the martingale property of U(t). It is an an easy corollary of a general
result on stochastic exponential martingales (Theorem 8.17, Corollary 8.18).
Writing the martingale property, we have

E
(
euM(t)−u2t/2|Fs

)
= euM(s)−u2s/2, (7.44)

from which it follows that

E
(
eu(M(t)−M(s))|Fs

)
= eu2(t−s)/2. (7.45)

Since the right hand side of (7.45) is non-random, it follows that M(t) has
independent increments. Taking expectation in (7.45), we obtain

E
(
eu(M(t)−M(s))

)
= eu2(t−s)/2, (7.46)

which shows that the increment of the martingale M(t) − M(s) has Normal
distribution with mean zero and variance (t− s). Therefore M is a continuous
process with independent Gaussian increments, hence it is Brownian motion.

�

Example 7.12: Any solution of Tanaka’s SDE in Example 5.15 is a Brownian
motion (weak uniqueness).

dX(t) = sign(X(t))dB(t), where sign(x) = 1 if x ≥ 0 and -1 if x < 0. X(0) = 0.

X(t) =
∫ t

0
sign(X(s))dB(s). Since it is an Itô integral, it is a local martingale (even

a martingale, as the condition for it to be a martingale holds). It is continuous, and

its quadratic variation is given by [X, X](t) =
∫ t

0
sign2(X(s))ds = t. Therefore it is

a Brownian motion.
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Change of Time for Martingales

The main result below states that a continuous martingale M is a Brown-
ian motion with a change of time, where time is measured by the quadratic
variation [M, M ](t), namely, there is a Brownian motion B(t), such that
M(t) = B([M, M ](t)). This B(t) is constructed from M(t). Define

τt = inf{s : [M, M ](s) > t}. (7.47)

If [M, M ](t) is strictly increasing, then τt is its inverse.

Theorem 7.37 (Dambis, Dubins-Schwarz) Let M(t) be a continuous mar-
tingale, null at zero, such that [M, M ](t) is non-decreasing to ∞, and τt defined
by (7.47). Then the process B(t) = M(τt) is a Brownian motion with respect
to the filtration Fτt. Moreover, [M, M ](t) is a stopping time with respect to this
filtration, and the martingale M can be obtained from the Brownian motion B
by the change of time M(t) = B([M, M ](t)). The result also holds when M is
a continuous local martingale.

We outline the idea of the proof, for details see, for example, Rogers and
Williams (1990), p.64, Karatzas and Shreve (1988) p.174, Protter (1992) p.81,
Revuz and Yor (1998) p. 181.
Proof: Let M(t) be a local martingale. τt defined by (7.47) are finite
stopping times, since [M, M ](t) → ∞. Thus Fτt are well defined, (see Chap-
ter 2 for the definition of Fτ ). Note that {[M, M ](s) ≤ t} = {τt ≥ s}.
This implies that [M, M ](s) are stopping times for Fτt . Since [M, M ](s) is
continuous [M, M ](τt) = t. Let X(t) = M(τt). Then it is a continuous lo-
cal martingale, since M and [M, M ] have the same intervals of constancy
(see the comment following Theorem 7.28). Using Theorem 7.27 we obtain
EX2(t) = E[X, X ](t) = E[M, M ](τt) = t. Thus X is a Brownian motion
by Levy’s characterization Theorem 7.36. The second part is proven as fol-
lows. Recall that M and [M, M ] have the same intervals of constancy. Thus
X([M, M ](t)) = M(τ[M,M ](t)) = M(t).

�

Example 7.13: Let M(t) =
∫ t

0
f(s)dB(s), with f continuous and non-random.

Then M is a Gaussian martingale. Its quadratic variation is given by [M, M ](t) =∫ t

0
f2(s)ds. For example, with f(s) = s, M(t) =

∫ t

0
sdB(s) and [M, M ](t) =∫ t

0
s2ds = t3/3. In this example [M, M ](t) is non-random and increasing. τt is

given by its inverse, τt = (3t)1/3. Let X(t) = M(τt) =
∫ 3√

3t

0
sdB(s). Then, clearly,

X is continuous, as a composition of continuous functions. It is also a martingale
with quadratic variation τ 3

t /3 = t. Hence, by the Levy’s theorem, it is a Brownian
motion, X(t) = B̂(t). By the above theorem, M(t) = B̂(t3/3).
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Example 7.14: If M(t) =
∫ t

0
H(s)dB(s) is an Itô integral, then it is a local mar-

tingale with quadratic variation [M, M ](t) =
∫ t

0
H2(s)ds. If

∫∞
0

H2(s)ds = ∞, then

M(t) = B̂
( ∫ t

0
H2(s)ds

)
, where B̂(t) is Brownian motion and can be recovered from

M(t) with the appropriate change of time.

Example 7.15: (Brownian Bridge as Time Changed Brownian motion)

The SDE for Brownian Bridge (5.34) contains as its only stochastic term
∫ t

0
1

T−s
dB(s).

Since for any t < T , it is a continuous martingale with quadratic variation [Y, Y ](t) =∫ t

0

1
(T−s)2

ds = t
T (T−t)

, it follows by the DDS Theorem

Y (t) = B̂(
t

T (T − t)
),

for some Brownian motion B̂. Therefore SDE (5.34) has the following representation

X(t) = a
(
1 − t

T

)
+ b

t

T
+ (T − t)B̂

( t

T (T − t)

)
, for 0 ≤ t ≤ T. (7.48)

In this representation t = T is allowed and understood by continuity, since the limit
of tB(1/t) as t → 0 is zero by the Law of Large Numbers for Brownian motion.

Change of Time in SDEs

We use the Change of Time (DDS) Theorem for constructing weak solutions
of some SDEs. Let

X(t) =
∫ t

0

√
f ′(t)dB(t), (7.49)

where f(t) is an adapted, positive, increasing, differentiable process, null at
zero. It is a local martingale with quadratic variation
[X, X ](t) =

∫ t

0
f ′(s)ds = f(t). Thus τt = f (−1)(t), the inverse of f , and

according to the Change of Time Theorem, the process X(f (−1)(t)) = B̂(t) is
a Brownian motion (with respect to Fτt), and

X(t) = B̂(f(t)). (7.50)

Thus from equations (7.49) and (7.50) we have

Theorem 7.38 Let f(t) be an adapted, positive, increasing, differentiable pro-
cess, and

dX(t) =
√

f ′(t)dB(t). (7.51)

Then the process B(f(t)) is a weak solution.

We can write equation (7.51) as follows: for a Brownian motion B, and a
function f , there is a Brownian motion B̂, such that

dB̂(f(t)) =
√

f ′(t)dB(t). (7.52)
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In the case of non-random change of time in Brownian motion B(f(t)), it
is easy to check directly that M(t) = B(f(t)) is a martingale (with respect
to the filtration Ff(t)). The quadratic variation of B(f(t)) is [M, M ](t) =
[B(f), B(f)](t) = f(t), was calculated directly in the Example 4.24, equation
(4.63).

Example 7.16: (Ornstein-Uhlenbeck process as Time Changed Brownian motion)
With f(t) = σ2(e2αt − 1)/(2α)), the process B(σ2(e2αt − 1)/(2α) is a weak solution
to the SDE

dX(t) = σeαtdB(t).

Consider U(t) = e−αtX(t). Integrating by parts, U(t) satisfies

dU(t) = −αU(t)dt + σdB(t). (7.53)

Recall that the solution to this SDE is given by (5.13). Thus U(t) is an Ornstein-
Uhlenbeck process (see Example 5.6). Thus an Ornstein-Uhlenbeck process has rep-
resentation

U(t) = e−αtB(σ2(e2αt − 1)/(2α)). (7.54)

To have U(0) = x, take B(t) to be a Brownian motion started at x. Note that in
equations (7.53) and (7.54), B(t) denotes different Brownian motions.

Next we construct a weak solution to the SDEs of the form

dX(t) = σ(X(t))dB(t)

with σ(x) > 0 such that

G(t) =
∫ t

0

ds

σ2(B(s))

is finite for finite t, and increases to infinity,
∫∞
0

ds
σ2(B(s)) = ∞ almost surely.

Then G(t) is adapted, continuous and strictly increasing to G(∞) = ∞. There-
fore it has inverse

τt = G(−1)(t). (7.55)

Note that for each fixed t, τt is a stopping time, as it is the first time the
process G(s) hits t, and that τt is increasing.

Theorem 7.39 The process X(t) = B(τt) is a weak solution to the SDE

dX(t) = σ(X(t))dB(t). (7.56)

Proof: X(t) = B(τt) = B(G(−1)(t)). Using equation (7.52) with f = G(−1),
we obtain

dB(G(−1)(t)) =
√

(G(−1))′(t)dB̂(t).
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(G(−1))′(t) =
1

G′(G(−1)(t))
=

1
1/σ2(B(G(−1)(t)))

= σ2(B(τt)). (7.57)

Thus we obtain
dB(τt) = σ2(B(τt))dB̂(t),

and the result is proved.
�

Another proof, by considering the martingale problem, is given next. Note
that (7.57) gives dτt = σ2(B(τt))dt.
Proof: The diffusion operator for the SDE (7.56) is given by
Lf(x) = 1

2σ2(x)f ′′(x). We show that X(t) = B(τt) is a solution to the mar-
tingale problem for L. Indeed, we know (see Example 5.17) that for any
twice continuously differentiable function f vanishing outside a compact in-
terval, the process M(t) = f(B(t)) − ∫ t

0
1
2f ′′(B(s))ds is a martingale. Since

τt are increasing stopping times it can be shown (by using Optional Stop-
ping Theorem 7.18 ) that the process M(τt) is also a martingale, that is,
f(B(τt)) −

∫ τt

0
1
2f ′′(B(s))ds is a martingale. Now perform the change of vari-

able s = τu, and observe from (7.57) that dτt = σ2(B(τt))dt, to obtain that
the process f(B(τt)) −

∫ t

0
1
2σ2(B(τu))f ′′(B(τu))du is a martingale. But since

X(t) = B(τt), this being the same as f(X(t))− ∫ t

0
1
2σ2(X(u))f ′′(X(u))du is a

martingale, and X(t) solves the martingale problem for L.
�

An application of Theorem 7.37 gives a result on uniqueness of the solution
of SDE (7.56). This result is weaker than Theorem 6.13 of Engelbert-Schmidt.

Theorem 7.40 Let σ(x) be a positive function bounded away from zero, σ(x) ≥
δ > 0. Then the stochastic differential equation (7.56) has a unique weak so-
lution.

Proof: Let X(t) be a weak solution to (7.56). Then X(t) is a local mar-
tingale and there is a Brownian motion β(t), such that X(t) = β([X, X ](t)).
Now,

[X, X ](t) =
∫ t

0

σ2(X(s))ds =
∫ t

0

σ2(β([X, X ](s)))ds.

Thus [X, X ](t) is a solution to the ordinary differential equation (ODE)
da(t) = σ2(β(a(t))dt. Since the solution to this ODE is unique, the solution
to (7.56) is unique.

�

A more general change of time is done for the stochastic differential equa-
tion

dX(t) = µ(X(t))dt + σ(X(t))dB(t). (7.58)

Let g(x) be a positive function for which G(t) =
∫ t

0
g(X(s))ds is finite for finite

t and increases to infinity almost surely. Define τt = G(−1)(t).
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Theorem 7.41 Let X(t) be a solution to (7.58) and define Y (t) = X(τt).
Then Y (t) is a weak solution to the stochastic differential equation

dY (t) =
µ(Y (t))
g(Y (t))

dt +
σ(Y (t))√
g(Y (t))

dB(t), with Y (0) = X(0). (7.59)

One can use the change of time on an interval [0, T ], for a stopping time T .

Example 7.17: (Lamperti’s Change of Time)
Let X(t) satisfy the SDE (Feller’s branching diffusion)

dX(t) = µX(t)dt + σ
√

X(t)dB(t), X(0) = x > 0, (7.60)

with positive constants µ and σ. Lamperti’s change of time is G(t) =
∫ t

0
X(s)ds.

Here g(x) = x. Then Y (t) = X(τt) satisfies the SDE

dY (t) =
µY (t)

Y (t)
dt +

σ
√

Y (t)√
Y (t)

dB(t),

= µdt + σdB(t) with Y (0) = x,

and
Y (t) = x + µt + σB(t). (7.61)

In other words, with a random change of time, the Branching diffusion is a Brownian
motion with drift. At the (random) point where G(t) stops increasing its inverse τt,
defined as the right-inverse τt = inf{s : G(s) = t}, also remains the same. This
happens at the point of time when X(t) = 0. It can be seen that once the process is
at zero, it stays at 0 forever. Let T = inf{t : X(t) = 0}. T is a stopping time, and
Y (t) is the Brownian motion stopped at that time.

The other direction is also true, a Branching diffusion can be obtained from a
Brownian motion with drift. Let Y (t) satisfy (7.61), and and let T = inf{t : Y (t) =
0}. Y (t) > 0 for t ≤ T . Define

G(t) =

∫ t∧T

0

1

Y (s)
ds,

and let τt be the inverse of G, which is well defined on [0, T ). Then X(t) = Y (τt)
satisfies the SDE (7.60) stopped when it hits zero.

Remark 7.4: Any solution to an SDE with time independent coefficients can
be obtained from Brownian motion by using change of variables and random
time change (Gihman and Skorohod (1972), p.113).

There are three main methods used for solving SDEs: change of state
space, that is, change of variable (Itô’s formula), change of time and change of
measure. We have seen examples of SDEs solved by using change of variables,
and change of time. The change of measure approach will be covered later.

Notes. Material for this chapter is based on Protter (1992), Rogers and
Williams (1990), Gihman and Skorohod (1972), Liptser and Shiryayev (1977),
(1989), Revuz and Yor (1998).
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7.9 Exercises

Exercise 7.1: Let M(t) be an Ft-martingale and denote its natural filtration
by Gt. Show that M(t) is a Gt-martingale.

Exercise 7.2: Show that an increasing integrable process is a submartingale.

Exercise 7.3: Show that if X(t) is a submartingale and g is a non-decreasing
convex function such that E|g(X(t))| < ∞, then g(X(t)) is a submartingale.

Exercise 7.4: Show that M(t) is a square integrable martingale if and only
if M(t) = E(Y |Ft), where Y is square integrable, E(Y 2) < ∞.

Exercise 7.5: (Expected exit time of Brownian motion from (a, b).)
Let B(t) be a Brownian motion started at x ∈ (a, b), and τ = inf{t : B(t) =
a or b}. By stopping the martingale M(t) = B(t)2 − t, show that Ex(τ) =
(x − a)(b − x).

Exercise 7.6: Find the probability of B(t)− t/2 reaching a before it reaches
b when started at x, a < x < b. Hint: use the exponential martingale M(t) =
eB(t)−t/2.

Exercise 7.7: Find the expected length of the game in Gambler’s ruin, when

• betting is done on a fair coin

• betting is done on a biased coin

Exercise 7.8: Give the probability of ruin when playing a game of chance
against an infinitely rich opponent (with initial capital b → ∞).

Exercise 7.9: (Ruin Probability in Insurance) A Discrete Time Risk Model
for the surplus Un of an insurance company at the end of year n, n = 1, 2, . . . is
given by Un = U0 + cn−∑n

k=1 Xk, where c is the total annual premium, Xk is
the total (aggregate) claim in year k. The time of ruin T is the first time when
the surplus becomes negative, T = min{n : Un < 0}, with T = ∞ if Un ≥ 0
for all n. Assume that {Xk, k = 1, 2, · · ·} are i.i.d. random variables, and
there exists a constant R > 0 such that E

(
e−R(c−X1)

)
= 1. Show that for all

n, Px(T ≤ n) ≤ e−Rx, where U0 = x the initial funds, and the ruin probability
Px(T < ∞) ≤ e−Rx. Hint: show that Mn = e−RUn is a martingale, and use
the Optional Stopping Theorem.

Exercise 7.10: (Ruin Probability in Insurance continued) Find the bound
on the ruin probability when the aggregate claims have N(µ, σ2) distribution.
Give the initial amount x required to keep the ruin probability below level α.
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Exercise 7.11: Let B(t) be a Brownian motion starting at zero and T be the
first exit time from (−1, 1), that is, the first time when |B| takes value 1. Use
Davis’ inequality to show that E(

√
T ) < ∞.

Exercise 7.12: Let B(t) be a Brownian motion, X(t) =
∫ t

0
sign(B(s))dB(s).

Show that X is also a Brownian motion.

Exercise 7.13: Let M(t) =
∫ t

0 esdB(s). Find g(t) such that M(g(t)) is a
Brownian motion.

Exercise 7.14: Let B(t) be a Brownian motion. Give an SDE for e−αtB(e2αt).

Exercise 7.15: Prove the change of time result in SDEs, Theorem 7.41.

Exercise 7.16: Let X(t) satisfy SDE dX(t) = µ(t)dt + σ(t)dB(t) on [0, T ].
Show that X(t) is a local martingale if and only if µ(t) = 0 a.e.

Exercise 7.17: f(x, t) is differentiable in t and twice in x. It is known that
X(t) = f(B(t), t) is of finite variation. Show that f is a function of t alone.

Exercise 7.18: Let Y (t) =
∫ t

0
B(s)dB(s) and W (t) =

∫ t

0
sign(B(s))dB(s).

Show that dY (t) =
√

t + 2Y (t)dW (t). Show uniqueness of the weak solution
of the above SDE.



Chapter 8

Calculus For
Semimartingales

In this chapter rules of calculus are given for the most general processes for
which stochastic calculus is developed, called semimartingales. A semimartin-
gale is process consisting of a sum of a local martingale and a finite variation
process. Integration with respect to semimartingales involves integration with
respect to local martingales, and these integrals generalize the Itô integral
where integration is done with respect to a Brownian motion. Important con-
cepts, such as compensators and the sharp bracket processes are introduced,
and Itô’s formula in its general form is given.

8.1 Semimartingales

In stochastic calculus only regular processes are considered. These are either
continuous processes, or right-continuous with left limits, or left-continuous
with right limits. The regularity of the process implies that it can have at
most countably many discontinuities, and all of them are jumps (Chapter 1).
The definition of a semimartingale presumes a given filtration and processes
which we consider are adapted to it. Following the classical approach, see for
example, Metivier (1982), Liptser and Shiryayev (1989) p.85, a semimartingale,
is a local martingale plus a process of finite variation. More precisely,

Definition 8.1 A regular right-continuous with left limits (càdlàg) adapted
process is a semimartingale if it can be represented as a sum of two processes:
a local martingale M(t) and a process of finite variation A(t), with M(0) =
A(0) = 0, and

S(t) = S(0) + M(t) + A(t). (8.1)

211
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Example 8.1: (Semimartingales)

1. S(t) = B2(t), where B(t) is a Brownian motion is a semimartingale. S(t) =
M(t) + t, where M(t) = B2(t) − t is a martingale and A(t) = t is a finite
variation process.

2. S(t) = N(t), where N(t) is a Poisson process with rate λ, is a semimartingale,
as it is a finite variation process.

3. One way to obtain semimartingales from known semimartingales is by ap-
plying a twice continuously differentiable (C2) transformation. If S(t) is a
semimartingale and f is a C2 function, then f(S(t)) is also a semimartingale.
The decomposition of f(S(t)) into martingale part and finite variation part is
given by Itô’s formula, given later. In this way we can assert that, for example,
the geometric Brownian motion eσB(t)+µt is a semimartingale.

4. A right-continuous with left limits (càdlàg) deterministic function f(t) is a
semimartingale if and only if it is of finite variation. Thus f(t) = t sin(1/t),
t ∈ (0, 1], f(0) = 0 is continuous, but not a semimartingale (see Example 1.7).

5. A diffusion, that is, a solution to a stochastic differential equation with respect
to Brownian motion, is a semimartingale. Indeed, the Itô integral with respect
to dB(t) is a local martingale and the integral with respect to dt is a process
of finite variation.

6. Although the class of semimartingales is rather large, there are processes which
are not semimartingales. Examples are: |B(t)|α, 0 < α < 1, where B(t) is the

one-dimensional Brownian motion;
∫ t

0
(t−s)−αdB(s), 0 < α < 1/2. It requires

analysis to show that the above processes are not semimartingales.

For a semimartingale X , the process of jumps ∆X is defined by

∆X(t) = X(t) − X(t−), (8.2)

and represents the jump at point t. If X is continuous, then of course, ∆X = 0.

8.2 Predictable Processes

In this section we describe the class of predictable processes. This class of
processes has a central role in the theory. In particular, only predictable
processes can be integrated with respect to a semimartingale. Recall that in
discrete time a process H is predictable if Hn is Fn−1 measurable, that is, H
is known with certainty at time n on the basis of information up to time n−1.
Predictability in continuous time is harder to define. We recall some general
definitions of processes starting with the class of adapted processes.

Definition 8.2 A process X is called adapted to filtration IF = (Ft), if for
all t, X(t) is Ft-measurable.
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In construction of the stochastic integral
∫ t

0
H(u)dS(u), processes H and S are

taken to be adapted to IF. For a general semimartingale S, the requirement
that H is adapted is too weak, it fails to assure measurability of some basic
constructions. H must be predictable. The exact definition of predictable
processes involves σ-fields generated on IR+ × Ω and is given later in Section
8.13. Note that left-continuous processes are predictable, in the sense that
H(t) = lims↑t H(s) = H(s−). So that if the values of the process before t are
known, then the value at t is determined by the limit. For our purposes it is
enough to describe a subclass of predictable processes which can be defined
constructively.

Definition 8.3 H is predictable if it is one of the following:

a) a left-continuous adapted process, in particular, a continuous adapted
process.

b) a limit (almost sure, in probability) of left-continuous adapted processes.

c) a regular right-continuous process such that, for any stopping time τ , Hτ

is Fτ−-measurable, the σ-field generated by the sets A ∩ {T < t}, where
A ∈ Ft.

d) a Borel-measurable function of a predictable process.

Example 8.2: Poisson process N(t) is right-continuous and is obviously adapted to
its natural filtration. It can be shown, see Example 8.31, that it is not predictable.
Its left-continuous modification N(t−) = lims↑t N(s) is predictable, because it is
adapted and left-continuous by a). Any measurable function (even right-continuous)
of N(t−) is also predictable by d).

Example 8.3: Right-continuous adapted processes may not be predictable, even
though they can be approached by left-continuous processes, for example, Xε(t) =
limε→0 X((t + ε)−).

Example 8.4: Let T be a stopping time. This means that for any t, the set
{T > t} ∈ Ft. Consider the process X(t) = I[0,T ](t). It is adapted, because its
values are determined by the set {T ≤ t} (X(t) = 1 if and only if ω ∈ {T ≤ t}),
and {T ≤ t} = {T > t}c ∈ Ft. X(t) is also left-continuous. Thus it is a predictable
process by a). We also see that T is a stopping time if and only if the process
X(t) = I[0,T ](t) is adapted.

Example 8.5: It will be seen later that when filtration is generated by Brownian
motion, then any right-continuous adapted process is predictable. This is why in the
definition of the Itô integral right-continuous functions are allowed as integrands.
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8.3 Doob-Meyer Decomposition

Recall that a process is a submartingale if for all s < t, E(X(t)|Fs) ≥ X(s)
almost surely

Theorem 8.4 If X is a submartingale or a local submartingale, then there
exists a local martingale M(t) and a unique increasing predictable process A(t),
locally integrable, such that

X(t) = X(0) + M(t) + A(t). (8.3)

If X(t) is a submartingale of Dirichlet class (D) (see Definition 7.25), then
the process A is integrable, that is, supt EA(t) < ∞, and M(t) is a uniformly
integrable martingale.

Example 8.6:

1. Let X(t) = B2(t) on a finite interval t ≤ T . X(t) is a submartingale. Decom-
position (8.3) holds with M(t) = B2(t) − t and A(t) = t. Since the interval is
finite, M is uniformly integrable and A is integrable.

2. Let X(t) = B2(t) on the infinite interval t ≥ 0. Then (8.3) holds with M(t) =
B2(t)− t and A(t) = t. Since the interval is infinite M is a martingale, and A
is locally integrable; for example take the localizing sequence τn = n.

3. Let X(t) = N(t) be a Poisson process with intensity λ. Then X is a sub-
martingale. Decomposition (8.3) holds with M(t) = N(t) − λt and A(t) = λt.

Proof of Theorem 8.4 can be found in Rogers and Williams (1990), p.372-375,
Dellacherie (1972), Meyer (1966).

Doob’s Decomposition

For processes in discrete time, decomposition (8.3) is due to Doob, and it is
simple to obtain. Indeed, if Xn is a submartingale, then clearly,
Xn+1 = X0 +

∑n
i=0(Xi+1 − Xi). By adding and subtracting E(Xi+1|Fi), we

obtain the Doob decomposition

Xn+1 = X0 +
n∑

i=0

((Xi+1 − E(Xi+1|Fi)) +
n∑

i=0

(E(Xi+1|Fi) − Xi) , (8.4)

where martingale and an increasing process are given by

Mn+1 =
n∑

i=0

(Xi+1 − E(Xi+1|Fi)) and An+1 =
n∑

i=0

(
E(Xi+1|Fi)−Xi

)
(8.5)

An is increasing due to the submartingale property, E(Xi+1|Fi) − Xi ≥ 0 for
all i. It is also predictable, because E(Xn+1|Fn) and all other terms are Fn

measurable.
It is much harder to prove decomposition (8.3) in continuous time and this

was done by Meyer.
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8.4 Integrals with respect to Semimartingales

In this section the stochastic integral
∫ T

0 H(t)dS(t) is defined, where S(t) is a
semimartingale. Due to representation S(t) = S(0)+ M(t)+ A(t) the integral
with respect to S(t) is the sum of two integrals one with respect to a local
martingale M(t) and the other with respect to a finite variation process A(t).
The integral with respect to A(t) can be done path by path as the Stieltjes
integral, since A(t), although random, is of finite variation.

The integral with respect to the martingale M(t) is new, it is the stochas-
tic integral

∫ T

0 H(t)dM(t). When M(t) is Brownian motion B(t), it is the Itô
integral, defined in Chapter 4. But now martingales are allowed to have jumps
and this makes the theory more complicated. The key property used in the
definition of the Itô integral is that on finite intervals Brownian motion is a
square integrable martingale. This property in its local form plays an impor-
tant role in the general case. Conditions for the existence of the integral with
respect to a martingale involves the martingale’s quadratic variation, which
was introduced in Section 7.6.

Stochastic Integral with respect to Martingales

For a simple predictable process H(t), given by

H(t) = H(0)I0 +
n−1∑
i=0

HiI(Ti,Ti+1](t), (8.6)

where 0 = T0 ≤ T1 ≤ . . . ≤ Tn ≤ T are stopping times and Hi’s are FTi-
measurable, the stochastic integral is defined as the sum∫ T

0

H(t)dS(t) =
n−1∑
i=0

Hi

(
M(Ti+1) − M(Ti)

)
. (8.7)

If M(t) is a locally square integrable martingale, then by the L2 theory (Hilbert
space theory) one can extend the stochastic integral from simple predictable
processes to the class of predictable processes H such that√∫ T

0

H2(t)d[M, M ](t) is locally integrable. (8.8)

If M(t) is a continuous local martingale, then the stochastic integral is defined
for a wider class of predictable processes H satisfying∫ T

0

H2(t)d[M, M ](t) < ∞ a.s. (8.9)
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Properties of Stochastic Integrals with respect to Martingales

1. Local martingale property. If M(t) is a local martingale, the integral∫ t

0
H(s)dM(s) is a local martingale.

2. Isometry property. If M(t) is a square integrable martingale, and H
satisfies

E
(∫ T

0

H2(s)d[M, M ](s)
)

< ∞, (8.10)

then
∫ t

0
H(s)dM(s) is a square integrable martingale with zero mean and

variance

E
( ∫ t

0

H(s)dM(s)
)2

= E
(∫ t

0

H2(s)d[M, M ](s)
)
. (8.11)

3. If a local martingale M(t) is of finite variation, then the stochastic inte-
gral is indistinguishable from the Stieltjes integral.

Example 8.7: Consider Itô integrals with respect to Brownian motion. Since B(t)
is a square integrable martingale on [0, T ], with [B, B](t) = t, we recover that for

a predictable H , such that E
∫ T

0
H2(s)ds < ∞,

∫ t

0
H(s)dB(s) is a square integrable

martingale with zero mean and variance
∫ t

0
EH2(s)ds.

Stochastic Integrals with respect to Semimartingales

Let S be a semimartingale with representation

S(t) = S(0) + M(t) + A(t), (8.12)

where M is a local martingale and A is a finite variation process. Let H be a
predictable process such that conditions (8.13) and (8.8) hold.∫ T

0

|H(t)|dVA(t) < ∞, (8.13)

where VA(t) is the variation process of A. Then the stochastic integral is
defined as the sum of integrals,∫ t

0

H(t)dS(t) =
∫ T

0

H(t)dM(t) +
∫ T

0

H(t)dA(t). (8.14)

Since a representation of a semimartingale (8.12) is not unique, one should
check that the the stochastic integral does not depend on the representation
used. Indeed, if S(t) = S(0) + M1(t) + A1(t) is another representation, then



8.4. INTEGRALS WITH RESPECT TO SEMIMARTINGALES 217

(M − M1)(t) = −(A − A1)(t). So that M − M1 is a local martingale of
finite variation. But for such martingales stochastic and Stieltjes integrals are
the same, and it follows that

∫
H(t)dM1(t) +

∫
H(t)dA1(t) =

∫
H(t)dM(t) +∫

H(t)dA(t) =
∫

H(t)dS(t).
Since the integral with respect to a local martingale is a local martingale,

and the integral with respect to a finite variation process is a process of finite
variation, it follows that a stochastic integral with respect to a semimartingale
is a semimartingale.

For details see Liptser and Shiryayev (1989), p.90-116.

Example 8.8: Let N(t) be a Poisson process. N(t) is of finite variation and

the integral
∫ T

0
N(t)dN(t) is well defined as a Stieltjes integral,

∫ T

0
N(t)dN(t) =∑

τi≤T
N(τi), where τi’s are the jumps of N(t). However,

∫ T

0
N(t)dN(t) is not

the stochastic integral, since N(t) is not predictable, but
∫ T

0
N(t−)dN(t) is. It

is indistinguishable from the integral in the sense of Stieltjes
∫ T

0
N(t−)dN(t) =∑

τi≤T
N(τi−1).

Properties of Stochastic Integrals with respect to Semimartingales

Let X be a semimartingale and H a predictable processes, such that the
stochastic integral exists for 0 ≤ t ≤ T , and denote

(H · X)(t) :=
∫ t

0

H(s)dX(s).

Then the stochastic integral H · X has the following properties

1. The jumps of the integral occur at the points of jumps of X , and
∆(H · X)(t) = H(t)∆X(t). In particular, a stochastic integral with
respect to a continuous semimartingale is continuous.

2. If τ is a stopping time, then the stopped integral is the integral with
respect to the stopped semimartingale,∫ t∧τ

0

H(s)dX(s) =
∫ t

0

H(s)I(s ≤ τ)dX(s) =
∫ t

0

H(s)dX(s ∧ τ).

3. If X is of finite variation, then
∫ t

0
H(s)dX(s) is indistinguishable from

the Stieltjes integral computed path by path.

4. Associativity. If Y (t) =
∫ t

0 H(s)dX(s) is a semimartingale, and if K is
a predictable process, such that (K · Y )(t) =

∫ t

0
K(s)dY (s) is defined,

then K · Y = K · (H · X) = (KH) · X , that is,∫ t

0

K(s)dY (s) =
∫ t

0

K(s)H(s)dX(s).
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8.5 Quadratic Variation and Covariation

If X, Y are semimartingales on the common space, then the quadratic co-
variation process, also known as the the square bracket process and denoted
[X, Y ](t), is defined, as usual, by

[X, Y ](t) = lim
n−1∑
i=0

(X(tni+1) − X(tni ))(Y (tni+1) − Y (tni )), (8.15)

where the limit is taken over shrinking partitions {tn
i }n

i=0 of the interval [0, t]
when δn = maxi(tni+1−tni ) → 0 and is in probability. Taking Y = X we obtain
the quadratic variation process of X .

Example 8.9: We have seen that quadratic variation of Brownian motion B(t) is
[B, B](t) = t and of Poisson process N(t) is [N, N ](t) = N(t).

Properties of Quadratic Variation

We give the fundamental properties of the quadratic variation process with
some explanations, but omit the proofs.

1. If X is a semimartingale, then [X, X ] exists and is an adapted process.

2. It is clear from the definition that quadratic variation over non-overlapping
intervals is the sum of the quadratic variation over each interval. As
such, [X, X ](t) is non-decreasing function of t. Consequently [X, X ](t)
is a function of finite variation.

3. It follows from the definition (8.15) that [X, Y ] is bilinear and symmetric,
that is, [X, Y ] = [Y, X ] and

[αX + Y, βU + V ] = αβ[X, U ] + α[X, V ] + β[Y, U ] + [Y, V ]. (8.16)

4. Polarization identity.

[X, Y ] =
1
2

(
[X + Y, X + Y ] − [X, X ] − [Y, Y ]

)
. (8.17)

This property follows directly from the previous one.

5. [X, Y ](t) is a regular right-continuous (càdlàg) function of finite varia-
tion. This follows from the polarization identity, as [X, Y ] is the differ-
ence of two increasing functions.

6. The jumps of the quadratic covariation process occur only at points
where both processes have jumps,

∆[X, Y ](t) = ∆X(t)∆Y (t). (8.18)
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7. If one of the processes X or Y is of finite variation, then

[X, Y ](t) =
∑
s≤t

∆X(s)∆Y (s). (8.19)

Notice that although the summation is taken over all s not exceeding t,
there are at most countably many terms different from zero.

The following property is frequently used, it follows directly from (8.19).

Corollary 8.5 If X(t) is a continuous semimartingale of finite variation, then
it has zero quadratic covariation with any other semimartingale Y (t).

Quadratic Variation of Stochastic Integrals

The quadratic covariation of stochastic integrals has the following property[ ∫ ·

0

H(s)dX(s),
∫ ·

0

K(s)dY (s)
]
(t) =

∫ t

0

H(s)K(s)d[X, Y ](s). (8.20)

In particular the quadratic variation of a stochastic integral is given by[ ∫ ·

0

H(s)dX(s),
∫ ·

0

H(s)dX(s)
]
(t) =

∫ t

0

H2(s)d[X, X ](s), (8.21)

and [ ∫ ·

0

H(s)dX(s), Y
]
(t) =

[ ∫ ·

0

H(s)dX(s),
∫ ·

0

1dY (s)
]
(t)

=
∫ t

0

H(s)d[X, Y ](s). (8.22)

Quadratic variation has a representation in terms of the stochastic integral.

Theorem 8.6 Let X be a semimartingale null at zero. Then

[X, X ](t) = X2(t) − 2
∫ t

0

X(s−)dX(s). (8.23)

For a partition {tni } of [0, t], consider

vn(t) =
n−1∑
i=0

(X(tni+1) − X(tni ))2.

For any fixed t the sequence vn(t) converges in probability to a limit [X, X ](t)
as maxi≤n(tni+1 − tni ) → 0. Moreover, there is a subsequence nk, such that
the processes vnk

(t), converge uniformly on any bounded time interval to the
process X2(t) − 2

∫ t

0 X(s−)dX(s).
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We justify (8.23) heuristically. By opening the brackets in the sum for vn(t),
adding and subtracting X2(ti), we obtain

vn(t) =
n−1∑
i=0

(
X2(tni+1) − X2(tni )

)
− 2

n−1∑
i=0

X(tni )
(
X(tni+1) − X(tni )

)
.

The first sum is X2(t). The second has for its limit in probability∫ t

0 X(s−)dX(s). This argument can be made into a rigorous proof, see for
example, Metivier (1982), p.175. Alternatively (8.23) can be established by
using Itô’s formula.

Using the polarization identity, it is easy to see

Corollary 8.7 For semimartingales X, Y the quadratic covariation process is
given by

[X, Y ](t) = X(t)Y (t)−X(0)Y (0)−
∫ t

0

X(s−)dY (s)−
∫ t

0

Y (s−)dX(s). (8.24)

This is also known as the integration by parts or product rule formula.

8.6 Itô’s Formula for Continuous Semimartin-

gales

If X(t) is a continuous semimartingale and f is a twice continuously differ-
entiable function, then Y (t) = f(X(t)) is a semimartingale and admits the
following representation

f(X(t)) − f(X(0)) =
∫ t

0

f ′(X(s))dX(s) +
1
2

∫ t

0

f ′′(X(s))d[X, X ](s). (8.25)

In differential form this is written as

df(X(t)) = f ′(X(t))dX(t) +
1
2
f ′′(X(t))d[X, X ](t). (8.26)

It follows, in particular, that f(X(t)) is also a semimartingale, and its
decomposition into the martingale part and the finite variation part can be
obtained from Itô’s formula by splitting the stochastic integral with respect
to X(t) into the integral with respect to a local martingale M(t) and a finite
variation process A(t).

We have given a justification of Itô’s formula and examples of its use in
Chapters 4 and 6.
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Remark 8.1:

1. The differentiability properties of f may be relaxed. If, for example, X
is of finite variation, then f needs to be only once continuously differen-
tiable. f can be defined only on an open set, rather than a whole line,
but then X must take its values almost surely in this set. For example,
if X is a positive semimartingale, then Itô’s formula can be used with
f = ln.

2. Itô’s formula holds for convex functions (Protter (1992) p.163), and more
generally, for functions which are the difference of two convex functions.
This is the Meyer-Itô (Itô-Tanaka) formula, see for example, Protter
(1992) p.167, Rogers and Williams (1990), p.105, Revuz and Yor p.208.
In particular, if f is a convex function on IR and X(t) is a semimartin-
gale, then f(X(t)) is also a semimartingale. See also Section 8.7.

3. It follows from Itô’s formula that if a semimartingale X is continuous
with nil quadratic variation [X, X ](t) = 0, then the differentiation rule
is the same as in the ordinary calculus. If X(t) is a Brownian motion,
then d[X, X ](t) = dt and we recover formulae (4.39) and (4.53). If X
has jumps, then the formula has an extra term (see Section 8.10).

The following result is a direct corollary to Itô’s formula.

Corollary 8.8 Let X(t) be a continuous semimartingale and f be twice con-
tinuously differentiable. Then

[f(X), f(X)](t) =
∫ t

0

(
f ′(X(s))

)2

d[X, X ](s). (8.27)

Proof: Since [X, X ] is of finite variation it follows from (8.25)

[f(X), f(X)](t) =
[∫ ·

0

f ′(X(s))dX(s),
∫ ·

0

f ′(X(s))dX(s)
]

(t).

�

Itô’s Formula for Functions of Several Variables

Let f : IRn → IR be C2, and let X(t) = (X1(t), . . . , Xn(t)) be a continuous
semimartingale in IRn, that is, each Xi is a continuous semimartingale. Then
f(X) is a semimartingale, and has the following representation.

f(X(t)) − f(X(0)) =
∫ t

0

n∑
i=1

∂f

∂xi
(X(s))dXi(s)

+
1
2

∫ t

0

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(X(s))d[Xi, Xj](s). (8.28)
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8.7 Local Times

Let X(t) be a continuous semimartingale. Consider |X(t) − a|, a ∈ IR. The
function |x− a| is not differentiable at a, but at any other point its derivative
is given by sign(x − a), where sign(x) = 1 for x > 0 and sign(x) = −1 for
x ≤ 0. It is possible to extend Itô’s formula for this case and prove (see Rogers
and Williams (1990), p.95-102, Protter (1992) p.165-167)

Theorem 8.9 (Tanaka’s Formula) Let X(t) be a continuous semimartin-
gale. Then for any a ∈ IR there exists a continuous non-decreasing adapted
process La(t), called the local time at a of X, such that

|X(t) − a| = |X(0) − a| +
∫ t

0

sign(X(s) − a)dX(s) + La(t). (8.29)

As a function in a, La(t) is right-continuous with left limits. For any fixed
a as a function in t La(t) increases only when X(t) = a, that is, La(t) =∫ t

0
I(X(s) = a)dLa(s). Moreover, if X(t) is a continuous local martingale,

then La(t) is jointly continuous in a and t.

Remark 8.2: Heuristically Tanaka’s formula can be justified by a formal
application of Itô’s formula to the function sign(x). The derivative of sign(x)
is zero everywhere but at zero, where it is not defined. However, it is possible
to define the derivative as a generalized function or a Schwartz distribution,
in which case it is equal to 2δ. Thus the second derivative of |x−a| is δ(x−a)
in the generalized function sense. The local time at a of X is defined as
La(t) =

∫ t

0
δ(X(s) − a)ds. Formal use of Itô’s formula gives 8.29.

Theorem 8.10 (Occupation Times Formula) Let X(t) be a continuous
semimartingale with local time La(t). Then for any bounded measurable func-
tion g(x) ∫ t

0

g(X(s))d[X, X ](s) =
∫ ∞

−∞
g(a)La(t)da. (8.30)

In particular

[X, X ](t) =
∫ ∞

−∞
La(t)da. (8.31)

Example 8.10: Let X(t) = B(t) be Brownian motion. Then its local time at zero
process, L0(t) satisfies (Tanaka’s formula)

L0(t) = |B(t)| −
∫ t

0

sign(B(s))dB(s). (8.32)
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The occupation times formula (8.30) becomes∫ t

0

g(B(s))ds =

∫ ∞

−∞
g(a)La(t)da. (8.33)

The time Brownian motion spends in a set A ⊂ IR up to time t is given by (with
g(x) = IA(x)) ∫ t

0

IA(B(s))ds =

∫ ∞

−∞
IA(a)La(t)da =

∫
A

La(t)da. (8.34)

Remark 8.3: Taking A = (a, a + da) and g(x) = I(a,a+da)(x) its indicator in
(8.33), La(t)da is the time Brownian motion spends in (a, a+da) up to time t,
which explains the name “local time”. The time Brownian motion spends in
a set A is

∫
A La(t)da, therefore the name “occupation times density” formula

(8.34). For a continuous semimartingale the formula (8.30) is the “occupation
times density” formula relative to the random “clock” d[X, X ](s).

Example 8.11: X(t) = |B(t)| is a semimartingale, since |x| is a convex function.
Its decomposition into the martingale and finite variation parts is given by Tanaka’s
formula (8.32).

√
|B(t)| is not a semimartingale, see Protter (1992), p.169-170.

Example 8.12: The function (x − a)+ is important in financial application, as it
gives the payoff of a financial stock option. The Meyer-Tanaka’s formula for (x−a)+

(X(t) − a)+ = (X(0) − a)+ +

∫ t

0

I(X(s) > a)dX(s) +
1

2
La

t . (8.35)

Theorem 8.11 Let La(t) be the local time of Brownian motion at a, and ft(a)
the density of N(0, t) at a. Then

E(La(t)) =
∫ t

0

fs(a)da hence
dE(La(t))

dt
= ft(a). (8.36)

Proof: Taking expectation in both sides of equation (8.33) and changing
the order of integration, we obtain for any positive and bounded g∫ ∞

−∞
g(a)fs(a)dsda =

∫ ∞

−∞
g(a)E(La(t))da.

The result follows, since g is arbitrary.
�

A similar result can be established for continuous semimartingales by using
equation (8.30) (e.g. Klebaner (2002)).

Remark 8.4: Local times can also be defined for discontinuous semimartin-
gales. For any fixed a, La(t) is a continuous non-decreasing function in t, and
it increases only at points of continuity of X where it is equal to a, that is,
X(t−) = X(t) = a. The formula (8.30) holds with quadratic variation [X, X ]
replaced by its continuous part [X, X ]c, see for example, Protter (1992), p.168.
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8.8 Stochastic Exponential

The stochastic exponential (also known as the semimartingale, or Doléans-
Dade exponential) is a stochastic analogue of the exponential function. Recall
that if f(t) is a smooth function then g(t) = ef(t) is the solution to the dif-
ferential equation dg(t) = g(t)df(t). The stochastic exponential is defined as
a solution to a similar stochastic equation. The stochastic exponential of Itô
processes was introduced in Section 5.2. For a semimartingale X , its stochastic
exponential E(X)(t) = U(t) is defined as the unique solution to the equation

U(t) = 1+
∫ t

0

U(s−)dX(s) or dU(t) = U(t−)dX(t); with U(0) = 1. (8.37)

As an application of Itô’s formula and the rules of stochastic calculus we prove

Theorem 8.12 Let X be a continuous semimartingale. Then its stochastic
exponential is given by

U(t) = E(X)(t) = eX(t)−X(0)− 1
2 [X,X](t). (8.38)

Proof: Write U(t) = eV (t), with V (t) = X(t) − X(0) − 1
2 [X, X ](t). Then

dU(t) = d(eV (t)) = eV (t)dV (t) +
1
2
eV (t)d[V, V ](t).

Using the fact that [X, X ](t) is a continuous process of finite variation, we
obtain [X, [X, X ]](t) = 0, and [V, V ](t) = [X, X ](t). Using this, we obtain

dU(t) = eV (t)dX(t) − 1
2
eV (t)d[X, X ](t) +

1
2
eV (t)d[X, X ](t) = eV (t)dX(t),

or dU(t) = U(t)dX(t). Thus U(t) defined by (8.38) satisfies (8.37). To show
uniqueness, let V (t) be another solution to (8.37), and consider V (t)/U(t). By
integration by parts

d(
V (t)
U(t)

) = V (t)d(
1

U(t)
) +

1
U(t)

dV (t) + d[V,
1
U

](t).

By Itô’s formula, using that U(t) is continuous and satisfies (8.37)

d(
1

U(t)
) = − 1

U(t)
dX(t) +

1
U(t)

d[X, X ](t),

which leads to

d(
V (t)
U(t)

) = −V (t)
U(t)

dX(t) +
V (t)
U(t)

dX(t) +
V (t)
U(t)

d[X, X ](t)− V (t)
U(t)

d[X, X ](t) = 0.

Thus V (t)/U(t) = const. = V (0)/U(0) = 1.
�

Properties of the stochastic exponential are given by the following result.
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Theorem 8.13 Let X and Y be semimartingales on the same space. Then

1. E(X)(t)E(Y )(t) = E(X + Y + [X, Y ])(t)

2. If X is continuous, X(0) = 0, then (E(X)(t))−1 = E(−X + [X, X ])(t).

The proof uses the integration by parts formula and is left as an exercise.

Example 8.13: (Stock process and its Return process.)
An application in finance is provided by the relation between the stock process and
its return process. The return is defined by dR(t) = dS(t)/S(t−). Hence the stock
price is the stochastic exponential of the return, dS(t) = S(t−)dR(t), and S(t) =
S(0)E(R)(t).

Stochastic Exponential of Martingales

Stochastic exponential U = E(M) of a martingale, or a local martingale, M(t)
is a stochastic integral with respect to M(t). Since stochastic integrals with
respect to martingales or local martingales are local martingales, E(M) is a
local martingale. In applications it is important to have conditions for E(M)
to be a true martingale.

Theorem 8.14 (Martingale exponential) Let M(t), 0 ≤ t ≤ T < ∞ be a
continuous local martingale null at zero. Then its stochastic exponential E(M)
is given by eM(t)− 1

2 [M,M ](t) and it is a continuous positive local martingale.
Consequently, it is a supermartingale, it is integrable and has a finite non-
increasing expectation. It is a martingale if any of the following conditions
hold.

1. E
(
eM(T )− 1

2 [M,M ](T )
)

= 1.

2. For all t ≥ 0, E
(∫ t

0 e2M(s)−[M,M ](s)d[M, M ](s)
)

< ∞.

3. For all t ≥ 0, E
(∫ t

0 e2M(s)d[M, M ](s)
)

< ∞.

Moreover, if the expectations above are bounded by K < ∞, then E(M) is a
square integrable martingale.

Proof: By Theorem 8.12, E(M)(t) = eM(t)− 1
2 [M,M ](t), therefore it is pos-

itive. Being a stochastic integral with respect to a martingale, it is a local
martingale. Thus E(M) is a supermartingale, as a positive local martingale,
see Theorem 7.23. A supermartingale has a non-increasing expectation, and is
a martingale if and only if its expectation at T is the same as at 0 (see Theorem
7.3). This gives the first condition. The second condition follows from Theo-
rem 7.35, which states that if a local martingale has finite expectation of its
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quadratic variation, then it is a martingale. So that if E[E(M), E(M)](t) < ∞,
then E(M) is a martingale. By the quadratic variation of an integral

[E(M), E(M)](t) =
∫ t

0

e2M(s)−[M,M ](s)d[M, M ](s). (8.39)

The third condition follows from the second, since [M, M ] is positive and
increasing. The last statement follows by Theorem 7.35, since the bound
implies sup0≤t E [E(M), E(M)] (t) < ∞.

�

Theorem 8.15 (Kazamaki’s condition) Let M be a continuous local mar-
tingale with M(0) = 0. If e

1
2 M(t) is a submartingale, then E(M) is a martin-

gale.

The result is proven in Revuz and Yor (1999), p. 331.

Theorem 8.16 Let M be a continuous martingale with M(0) = 0. If

E
(
e

1
2 M(T )

)
< ∞, (8.40)

then E(M) is a martingale on [0, T ].

Proof: By Jensen’s inequality (see Exercise (7.3)) if g is a convex function,
and E|g(M(t)| < ∞ for t ≤ T , then Eg(M(t)) ≤ Eg(M(T )) and g(M(t))
is a submartingale. Since ex/2 is convex, the result follows by Kazamaki’s
condition.

�

Theorem 8.17 (Novikov’s condition) Let M be a continuous local mar-
tingale with M(0) = 0. Suppose that for each t ≤ T

E
(
e

1
2 [M,M ](t)

)
< ∞. (8.41)

Then E(M) is a martingale with mean one. In particular, if for each t there is
a constant Kt such that [M, M ](t) < Kt, then E(M)(t), t ≤ T is a martingale.

Proof: The condition (8.41) implies that [M, M ](t) has moments. By the
BDG inequality (7.41), supt≤T M(t) is integrable, therefore M(t) is a mar-
tingale. Next, using the formula for E(M) and Jensen’s inequality, E

√
X ≤√

E(X),

E(e
1
2 M(T )) = E

√
E(M)(T )e

1
2 [M,M ](T ) ≤

√
EE(M)(T )E

(
e

1
2 [M,M ](T )

)
< ∞.

(8.42)
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The last expression is finite since EE(M)(T ) < ∞, as E(M) is a supermartin-
gale, and by the condition of the theorem. This shows that the condition
(8.40) holds and the result follows.

�

Another proof can be found in Karatzas and Shreve (1988), p.198.
Now we can complete the missing step in the proof of Levy’s theorem on

characterization of Brownian motion (Theorem 7.36).

Corollary 8.18 If M(t) is a continuous local martingale with [M, M ](t) = t,
then U(t) = E(uM)(t) = euM(t)−u2t/2 is a martingale.

Proof: Clearly uX(t) is a continuous local martingale with quadratic vari-
ation u2t. The result follows by Novikov’s condition.

However, it is possible to give a proof from first principles, by using the
BDG inequality, and the the fact that under the condition (8.10) stochastic
integrals with respect to martingales are martingales. Since U is a stochastic
exponential it satisfies the SDE

U(t) = 1 +
∫ t

0

U(s)d(uM(s)).

A sufficient condition for a stochastic integral to be a martingale is finiteness
of the expectation of its quadratic variation. Thus it is enough to check the
condition

E
∫ T

0

U2(t)d[uM, uM ](t) = u2E
∫ T

0

U2(t)dt < ∞.

To see this use the BDG inequality with p = 2 (for U(t)−1 to have 0 at t = 0).

E(U2(T ) − 1) ≤ E(sup
t≤T

U(t))2 − 1 ≤ CE[U, U ](T ) = C

∫ T

0

E(U2(t))dt.

Let h(t) = E(U2(t)). Then

h(T ) ≤ 1 + C

∫ T

0

h(t)dt.

Gronwall’s inequality (Theorem 1.20) implies that h(T ) ≤ eCT < ∞. Thus
E(U2(T )) < ∞, and U(t) is a martingale.

�

The next section gives more information and tools for processes with jumps.
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8.9 Compensators and Sharp Bracket Process

A process N is called increasing if all of its realizations N(t) are non-decreasing
functions of t. A process N is of finite variation if all of its realizations N(t) are
functions of finite variation, VN (t) < ∞ for all t, where VN (t) is the variation
of N on [0, t].

Definition 8.19 An increasing process N , t ≥ 0, is called integrable
if supt≥0 EN(t) < ∞.

A finite variation process N is of integrable variation if its variation process
is integrable, supt≥0 EVN (t) < ∞.

A finite variation process N is of locally integrable variation if there is a
sequence of stopping times τn such that τn ↑ ∞ so that N(t∧τn) is of integrable
variation, that is, supt≥0 EVN (t ∧ τn) < ∞.

Example 8.14: A Poisson process N(t) with parameter λ is of finite but not inte-
grable variation, since for any t, VN(t) = N(t) < ∞, but supt≥0 EVN(t) = ∞. It is
of locally integrable variation, since supt≥0 EVN(t ∧ n) = λn < ∞. Here τn = n.

Example 8.15: It can be seen that a finite variation process N(t) with bounded
jumps |∆N(t)| ≤ c is of locally integrable variation. If τn = inf{t : VN(t) ≥ n}, then
N(t ∧ τn) has variation bounded by n + c. τn are stopping times, as first times of
boundary crossing.

Definition 8.20 Let N(t) be an adapted process of integrable or locally inte-
grable variation. Its compensator A(t) is the unique predictable process such
that M(t) = N(t) − A(t) is a local martingale.

Existence of compensators is assured by the Doob-Meyer decomposition.

Theorem 8.21 Let N(t) be an adapted process of integrable or locally inte-
grable variation. Then its compensator exists. Moreover, it is locally inte-
grable.

Proof: As a finite variation process is a difference of two increasing pro-
cesses, it is enough to establish the result for increasing processes. By localiza-
tion it is possible to assume that it is integrable. But an increasing integrable
process is a submartingale, and the result follows by the Doob-Meyer decom-
position Theorem 8.4.

�

Remark 8.5: The condition M = N − A is a local martingale is equivalent
to the condition (see Liptser and Shiryayev (1989), p.33)

E
∫ ∞

0

H(s)dN(s) = E
∫ ∞

0

H(s)dA(s), (8.43)
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for any positive predictable process H . Sometimes this integral condition
(8.43) is taken as the definition of the compensator, e.g. Karr (1986).

The compensator of N is also called the dual predictable projection of N
(Rogers and Williams (1990), p.350, Liptser and Shiryayev (1989), p.33).

Note that the compensator is unique with respect to the given filtration and
probability. If the filtration or probability are changed, then the compensator
will also change.

Recall that the quadratic variation process [X, X ](t) of a semimartingale
X exists and is non-decreasing. Consider now semimartingales with integrable
(supt≥0 E[X, X ](t) < ∞) or locally integrable quadratic variation.

Definition 8.22 The sharp bracket (or angle bracket, or predictable quadratic
variation) 〈X, X〉 (t) process of a semimartingale X is the compensator of
[X, X ](t). That is, it is the unique predictable process that makes [X, X ](t) −
〈X, X〉 (t) into a local martingale.

Example 8.16: Let N be a Poisson process. It is of finite variation and changes
only by jumps (pure jump process), which are of size 1, ∆N(t) = 0 or 1, and
(∆N(t))2 = ∆N(t). Its quadratic variation is the process N(t) itself,

[N, N ](t) =
∑

0≤s≤t

(∆N(s))2 =
∑

0≤s≤t

∆N(s) = N(t).

Clearly sup0≤t≤T E[N, N ](t) = T . Thus N is of integrable variation on [0, T ]. t is
non-random, therefore predictable. Since [N, N ](t) − t = N(t) − t is a martingale,

〈N, N〉 (t) = t.

Example 8.17: Let B be a Brownian motion. Its quadratic variation is [B, B](t) =
t, and since it is non-random, it is predictable. Hence 〈B, B〉 (t) = t, and the mar-
tingale part in the Doob-Meyer decomposition of [B, B](t) is trivial, M(t) ≡ 0.

The last example generalizes to any continuous semimartingale.

Theorem 8.23 If X(t) is a continuous semimartingale with integrable
quadratic variation, then 〈X, X〉 (t) = [X, X ](t), and there is no difference
between the sharp and the square bracket processes.

Proof: The quadratic variation jumps at the points of jumps of X and
∆[X, X ](s) = (∆X(s))2. Since X has no jumps, [X, X ](t) is continuous.
[X, X ](t) is predictable as a continuous and adapted process, the martingale
part in the Doob-Meyer decomposition of [X, X ](t) is trivial, M(t) ≡ 0, and
〈X, X〉 (t) = [X, X ](t).

�

Example 8.18: Let X be a diffusion solving the SDE
dX(t) = µ(X(t))dt + σ(X(t))dB(t). Then [X, X](t) =

∫ t

0
σ2(X(s))ds = 〈X, X〉 (t).
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Sharp Bracket for Square Integrable Martingales

Let M be a square integrable martingale, that is, supt EM2(t) < ∞. Recall
that the quadratic variation of M has the property

M2(t) − [M, M ](t) is a martingale. (8.44)

M2 is a submartingale, since x2 is a convex function. Using the Doob-Meyer
decomposition for submartingales, Theorem 8.4, we can prove the following

Theorem 8.24 Let M be a square integrable martingale. Then the sharp
bracket process 〈M, M〉 (t) is the unique predictable increasing process for which

M2(t) − 〈M, M〉 (t) is a martingale. (8.45)

Proof: By the definition of the sharp bracket process, [M, M ](t)−〈M, M〉 (t)
is a martingale. As a difference of two martingales, M 2(t)−〈M, M〉 (t) is also
a martingale. Since 〈M, M〉 (t) is predictable and M 2(t) is a submartingale,
uniqueness follows by the Doob-Meyer decomposition.

�

By taking expectations in (8.45) we obtain a useful corollary.

Corollary 8.25 Let M(t) be a square integrable martingale. Then

E
(
M2(T )

)
= E[M, M ](t) = E 〈M, M〉 (t). (8.46)

This result allows us to use Doob’s martingale inequality with the sharp
bracket

E
(
(sup
s≤T

M(s))2
) ≤ 4E

(
M2(T )

)
= 4E

(〈M, M〉(T )
)
. (8.47)

By using localization in the proof of Theorem 8.24 one can show

Theorem 8.26 Let M be a locally square integrable martingale, then the pre-
dictable quadratic variation 〈M, M〉 (t) is the unique predictable process for
which M2(t) − 〈M, M〉 (t) is a local martingale.

Next result allows to decide when a local martingale is a martingale by using
the predictable quadratic variation.

Theorem 8.27 Let M(t), 0 ≤ t ≤ T < ∞, be a local martingale such that for
all t, E 〈M, M〉 (t) < ∞. Then M is a square integrable martingale, moreover
EM2(t) = E[M, M ](t) = E 〈M, M〉 (t). If T = ∞, and supt<∞ E 〈M, M〉 (t) <
∞, then M(t) is a square integrable martingale on [0,∞).
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Proof: [M, M ](t) − 〈M, M〉 (t) is a local martingale. Let τn be a lo-
calizing sequence. Then E[M, M ](t ∧ τn) = E 〈M, M〉 (t ∧ τn). Since both
sides are non-decreasing, they converge to the same limit as n → ∞. But
limn→∞ E 〈M, M〉 (t ∧ τn) = E 〈M, M〉 (t) < ∞. Therefore E[M, M ](t) =
E 〈M, M〉 (t) < ∞. Thus the conditions of Theorem 7.35 are satisfied and the
result follows.

�

Since a continuous local martingale is locally square integrable, we obtain

Corollary 8.28 The sharp bracket process (predictable quadratic variation)
for a continuous local martingale exists.

Continuous Martingale Component of a Semimartingale

A function of finite variation has a decomposition into continuous and discrete
parts. A semimartingale is a sum of a process of finite variation and a local
martingale. It turns out that one can decompose any local martingale into a
continuous local martingale and a purely discontinuous one. Such decomposi-
tion requires a different approach to the case of finite variation processes.

Definition 8.29 A local martingale is purely discontinuous if it is orthogonal
to any continuous local martingale. Local martingales M and N are orthogonal
if MN is a local martingale.

Example 8.19: A compensated Poisson process N̄(t) = N(t) − t is a purely dis-
continuous martingale. Let M(t) be any continuous local martingale. Then by the
integration by parts formula (8.24)

M(t)N̄(t) =

∫ t

0

M(s−)dN̄(s) +

∫ t

0

N̄(s−)dM(s) + [M, N̄ ](t).

Since N̄ is of finite variation, by the property (8.19) of quadratic covariation
[M, N̄ ](t) =

∑
s≤t

∆M(s)∆N̄(s). But M is continuous, ∆M(s) = 0, and

[M, N̄ ](t) = 0. Therefore, M(t)N̄(t) is a sum of two stochastic integrals with respect
to local martingales, and itself is a local martingale.

It is possible to show that any local martingale M has a unique decompo-
sition

M = M c + Md,

where M c is a continuous and Md a purely discontinuous local martingale
(see for example Liptser and Shiryayev (1989), p.39, Protter (1992), Jacod
and Shiryaev (1987)).

If X is a semimartingale with representation

X(t) = X(0) + M(t) + A(t), (8.48)
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with a local martingale M , then M c is called the continuous martingale com-
ponent of X and is denoted by Xcm. Even if the above representation of X
is not unique, the continuous martingale component of X is the same for all
representations. Indeed, if X(t) = X(0) + M1(t) + A1(t), is another represen-
tation, then (M −M1)(t) = −(A−A1)(t). Hence (M −M1) is a martingale of
finite variation. Hence its continuous component is also a martingale of finite
variation. But a continuous martingale of finite variation is a constant. This
implies that M c − M c

1 = 0. Thus Xcm = M c is the same for all representa-
tions. If X is of finite variation then the martingale part is zero and by the
uniqueness of Xcm we have

Corollary 8.30 If X is a semimartingale of finite variation, then X cm ≡ 0.

For example, the compensated Poisson process N(t) − t has zero continuous
martingale component.

It can be shown that

〈Xcm, Xcm〉 = [X, X ]c, (8.49)

where [X, X ]c is the continuous part of the finite variation process [X, X ]. Of
course, because Xcm is continuous 〈Xcm, Xcm〉 = [Xcm, Xcm].

Let ∆X(s) = X(s)−X(s−) and put X(0−) = 0 and [X, X ]c(0) = 0. Since
the jumps of quadratic variation satisfy (see (8.18))

∆[X, X ](s) = (∆X(s))2,

[X, X ](t) = [X, X ]c(t) +
∑

0<s≤t

∆[X, X ](s) = [X, X ]c(t) +
∑

0<s≤t

(∆X(s))2,

= 〈Xcm, Xcm〉 +
∑

0<s≤t

(∆X(s))2. (8.50)

Since the quadratic variation [X, X ] for a semimartingale exists, and the pre-
dictable the quadratic variation 〈Xcm, Xcm〉 exists (Corollary 8.28) we obtain

Corollary 8.31 If X is a semimartingale then for each t∑
s≤t

(∆X(s))2 < ∞. (8.51)

Conditions for Existence of a Stochastic Integral

The class of processes H for which the stochastic integral with respect to a
martingale M can be defined depends in an essential way on the properties
of the predictable quadratic variation 〈M, M〉 of M . Consider integrals with
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respect to a locally square integrable martingale M , possibly discontinuous.
The stochastic integral

∫ T

0 H(s)dM(s) can be defined for predictable processes
H such that ∫ T

0

H2(t)d 〈M, M〉 (t) < ∞, (8.52)

and in this case the integral
∫ t

0 H(s)dM(s), 0 ≤ t ≤ T , is a local martingale.
The class of processes H that can be integrated against M is wider when

〈M, M〉 (t) is continuous, and even wider when 〈M, M〉 (t) is absolutely con-
tinuous (can be represented as an integral with respect to dt). These classes
and conditions are given, for example, in Liptser and Shiryaev (2001), p. 191.

Example 8.20: Let filtration IF be generated by a Brownian motion B(t) and
a Poisson process N(t). The process N(t−) is a left-continuous modification of
N(t). By definition, N(t−) = lims↑t N(s). Being left-continuous it is predictable.

Condition (8.52) holds. The integral
∫ t

0
N(s−)dB(s) is a well defined a stochastic

integral of a predictable process with respect to a martingale B.

Properties of the Predictable Quadratic Variation

The predictable quadratic variation (the sharp bracket process) has similar
properties to the quadratic variation (the square bracket) process. We list them
without proof. All the processes below are assumed to be semimartingales with
locally integrable quadratic variation.

1. 〈X, X〉 (t) is increasing in t.

2. 〈X, Y 〉 is bilinear and symmetric,

〈αX + Y, βU + V 〉 = αβ 〈X, U〉 + α 〈X, V 〉 + β 〈Y, U〉 + 〈Y, V 〉 . (8.53)

3. Polarization identity. 〈X, Y 〉 = 1
4 (〈X + Y, X + Y 〉 − 〈X − Y, X − Y 〉).

4. 〈X, Y 〉 is a predictable process of finite variation.

5. 〈X, Y 〉 = 0 if X or Y is of finite variation and one of them is continuous.

6. The sharp bracket process of stochastic integrals 〈H · X, K · Y 〉 (t).〈∫ ·

0

H(s)dX(s),
∫ ·

0

K(s)dY (s)
〉
(t) =

∫ t

0

H(s)K(s)d 〈X, Y 〉 (s),

(8.54)
in particular

〈 ∫ ·
0
H(s)dX(s),

∫ ·
0
H(s)dX(s)

〉
(t) =

∫ t

0
H2(s)d 〈X, X〉 (s),〈 ∫ ·

0 H(s)dX(s), Y
〉
(t) =

〈∫ ·
0 H(s)dX,

∫ ·
0 dY

〉
(t) =

∫ t

0 H(s)d 〈X, Y 〉 (s).
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Recall that stochastic integrals with respect to local martingales are again
local martingales. Using the sharp bracket of the integral together with The-
orem 8.27 we obtain

Theorem 8.32 Let M(t), 0 ≤ t ≤ T be a local martingale and H(t) be a pre-
dictable process such that E

( ∫ T

0 H2(s)d 〈M, M〉 (s)
)

< ∞. Then
∫ t

0 H(s)dM(s)
is a square integrable martingale, moreover〈∫ ·

0

H(s)dM(s),
∫ ·

0

H(s)dM(s)
〉

(t) =
∫ t

0

H2(s)d 〈M, M〉 (s). (8.55)

Using this result, we obtain the isometry property for stochastic integrals in
terms of the sharp bracket process.

E
( ∫ t

0

H(s)dM(s)
)2

= E
( ∫ t

0

H2(s)d 〈M, M〉 (s)
)

(8.56)

Example 8.21: Let M(t) be the compensated Poisson process, M(t) = N(t)−t, and

H be predictable, satisfying E
∫ T

0
H2(t)dt < ∞. Then

∫ t

0
H(s)dM(s) is a martingale,

moreover

E

∫ t

0

H(s)dM(s) = 0, and E
(∫ t

0

H(s)dM(s)
)2

= E

∫ t

0

H2(s)ds.

8.10 Itô’s Formula for Semimartingales

Let X(t) be a semimartingale and f be a C2 function. Then f(X(t)) is a
semimartingale, and Itô’s formula holds

f(X(t)) − f(X(0)) =
∫ t

0

f ′(X(s−))dX(s) +
1
2

∫ t

0

f ′′(X(s−))d[X, X ](s) (8.57)

+
∑
s≤t

(
f(X(s)) − f(X(s−)) − f ′(X(s−))∆X(s) − 1

2
f ′′(X(s−))(∆X(s))2

)
.

The quadratic variation [X, X ] jumps at the points of jumps of X and its
jumps ∆[X, X ](s) = (∆X(s))2. Thus the jump part of the integral∫ t

0 f ′′(X(s−))d[X, X ](s) is given by
∑

s≤t f ′′(X(s−))(∆X(s))2, leading to an
equivalent form of the formula

f(X(t)) − f(X(0)) =
∫ t

0

f ′(X(s−))dX(s) +
1
2

∫ t

0

f ′′(X(s−))d[X, X ]c(s)

+
∑
s≤t

(
f(X(s)) − f(X(s−))− f ′(X(s−))∆X(s)

)
, (8.58)
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where [X, X ]c is the continuous component of the finite variation function
[X, X ]. Using the relationship between the square and the sharp brackets
(8.50), we can write Itô’s formula with the sharp bracket process of X , provided
the sharp bracket exists,

f(X(t)) − f(X(0)) =
∫ t

0

f ′(X(s−))dX(s) +
1
2

∫ t

0

f ′′(X(s−))d 〈Xcm, Xcm〉 (s)

+
∑
s≤t

(
f(X(s)) − f(X(s−)) − f ′(X(s−))∆X(s)

)
, (8.59)

where Xcm denotes the continuous martingale part of X .

Example 8.22: Let N(t) be a Poisson process. We calculate
∫ t

0
N(s−)dN(s). The

answer can be derived from the integration by parts formula (8.24), but now we use
(8.59). Since (N(t) − t)cm = 0 (by Corollary 8.30)

N2(t) = 2

∫ t

0

N(s−)dN(s) +
∑
s≤t

(
N2(s) − N2(s−) − 2N(s−)∆N(s)

)
.

Since N(s) = N(s−) + ∆N(s),
(N(s−) + ∆N(s))2 − N2(s−) − 2N(s−)∆N(s) = (∆N(s))2 = ∆N(s), and the sum
simplifies to

∑
s≤t

∆N(s) = N(t). Thus we obtain∫ t

0

N(s−)dN(s) =
1

2

(
N2(t) − N(t)

)
.

A formula (8.59) for a function of n variables reads: X(t) = (X1(t), . . . , Xn(t))
is a semimartingale and f is a C2 function of n variables,

f(X(t)) − f(X(0)) =
n∑

i=1

∫ t

0

∂f

∂xi
(X(s−))dX i(s)

+
1
2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(X(s−))d

〈
X i,cm, Xj,cm

〉
(s)

+
∑
s≤t

(
f(X(s)) − f(X(s−)) −

n∑
i=1

∂

∂xi
f(X(s−))∆X i(s)

)
. (8.60)

Itô’s formula can be found in many texts, Protter (1992), p. 71, Rogers and
Williams (1990), p. 394, Liptser and Shiryayev (1989), Métivier (1982), Del-
lacherie and Meyer (1982).
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8.11 Stochastic Exponential and Logarithm

As an application of Itô’s formula and the rules of stochastic calculus we outline
a proof of the following result.

Theorem 8.33 Let X be a semimartingale. Then the stochastic equation

U(t) = 1 +
∫ t

0

U(s−)dX(s). (8.61)

has a unique solution, called the stochastic exponential of X, and this solution
is given by

U(t) = E(X)(t) = eX(t)−X(0)− 1
2 〈X,X〉c(t)

∏
s≤t

(
1 + ∆X(s)

)
e−∆X(s). (8.62)

Formula (8.62) can be written by using quadratic variation as follows

E(X)(t) = eX(t)−X(0)− 1
2 [X,X](t)

∏
s≤t

(1 + ∆X(s))e(−∆X(s))+ 1
2 (∆X(s))2 . (8.63)

Proof: Let Y (t) = X(t) − X(0) − 1
2 〈X, X〉c (t) and

V (t) =
∏

s≤t

(
1+∆X(s)

)
e−∆X(s). Note that although the product is taken for

all s ≤ t, there are at most countably many points at which ∆X(s) �= 0, (by the
regularity property of the process), hence there are at most countably many
elements different from 1 in the product. We show that the product converges.
Since by (8.51)

∑
s≤t(∆X(s))2 < ∞, there are only finitely many points s at

which |∆X(s)| > 0.5, which give a finite non-zero contribution to the product.
Taking the product with over s at which |∆X(s)| ≤ 1/2, and taking logarithm,
it is enough to show that

∑
s≤t | ln(1 + ∆X(s)) − ∆X(s)| converges. But this

follows from the inequality | ln(1 + ∆X(s)) − ∆X(s)| ≤ (∆X(s))2 by (8.51).
To see that U(t) defined by (8.62) satisfies (8.61) use Itô’s formula applied to
the function f(Y (t), V (t)) with f(x1, x2) = ex1x2. For the uniqueness of the
solution of (8.61) and other details see Liptser and Shiryayev (1989), p.123.

�

Example 8.23: The stochastic exponential (8.62) of a Poisson process is easily
seen to be E(N)(t) = 2N(t).

If U = E(X) is the stochastic exponential of X , then X = L(U) is the stochas-
tic logarithm of U , satisfying equation (8.61)

dX(t) =
dU(t)
U(t−)

, or L(E(X)) = X.

For Itô processes an expression for X(t) is given in Theorem 5.3, for general
case see Exercise 8.17.
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8.12 Martingale (Predictable) Representations

In this section we give results on representation of martingales by stochastic
integrals of predictable processes, also called predictable representations. Let
M(t) be a martingale, 0 ≤ t ≤ T , adapted to the filtration IF = (Ft), and H(t)
be a predictable process satisfying

∫ T

0 H2(s)d 〈M, M〉 (s) < ∞ with probability
one. Then

∫ t

0 H(s)dM(s) is a local martingale. The predictable representation
property means that the converse is also true. Let IFM = (FM

t ) denote the
natural filtration of M .

Definition 8.34 A local martingale M has the predictable representation prop-
erty if for any IFM -local martingale X there is a predictable process H such
that

X(t) = X(0) +
∫ t

0

H(s)dM(s). (8.64)

This definition is different to the classical one for martingales with jumps, see
Remark 8.7 below, but is the same for continuous martingales.

Brownian motion has the predictable representation property (see, for ex-
ample Revuz and Yor (1999) p. 209, Liptser and Shiryayev (2001) I p. 170).

Theorem 8.35 (Brownian Martingale Representation)
Let X(t), 0 ≤ t ≤ T , be a local martingale adapted to the Brownian fil-
tration IFB = (Ft). Then there exists a predictable process H(t) such that∫ T

0
H2(s)ds < ∞ with probability one, and equation (8.65) holds

X(t) = X(0) +
∫ t

0

H(s)dB(s). (8.65)

Moreover, if Y is an integrable FT -measurable random variable, E|Y | < ∞,
then

Y = EY +
∫ T

0

H(t)dB(t). (8.66)

If in addition, Y and B have jointly a Gaussian distribution, then the process
H(t) in (8.66) is deterministic.

Proof: We don’t prove the representation of a martingale, but only the
representation for a random variable based on it.
Take X(t) = E(Y |Ft). Then X(t), 0 ≤ t ≤ T , is a martingale (see Theorem
7.9). Hence by the martingale representation there exists H , such that
X(t) = X(0) +

∫ t

0 H(s)dB(s). Taking t = T gives the result.
�
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Remark 8.6: A functional of the path of the Brownian motion B[0,T ] is a
random variable Y , FT -measurable. Theorem 8.35 states that under the above
assumptions, any functional of Brownian motion has the form (8.66).

Since Itô integrals are continuous, and any local martingale of a Brownian
filtration is an Itô integral, it follows that all local martingales of a Brownian
filtration are continuous. In fact we have the following result (the second
statement is not straightforward)

Corollary 8.36

1. All local martingales of the Brownian filtration are continuous.

2. All right-continuous adapted processes are predictable.

Corollary 8.37
Let X(t), 0 ≤ t ≤ T , be a square integrable martingale adapted to the Brownian
filtration IF. Then there exists a predictable process H(t) such that
E
∫ T

0
H2(s)ds < ∞ and representation (8.65) holds. Moreover,

〈X, B〉 (t) =
∫ t

0

H(s)ds, and H(t) =
d 〈X, B〉 (t)

dt
. (8.67)

The equation (8.67) follows from (8.65) by the rule of the sharp bracket for
integrals.

Example 8.24: (Representation of martingales)

1. X(t) = B2(t) − t. Then X(t) =
∫ t

0
2B(s)dB(s). Here H(t) = 2B(t), which can

also be found by using (8.67).
2. Let X(t) = f(B(t), t) be a martingale. By Itô’s formula dX(t) = ∂f

∂x
(B(t), t)dB(t).

Thus H(t) = ∂f
∂x

(B(t), t). This also shows that

〈f(B, t), B〉 (t)

dt
=

∂f

∂x
(B(t), t).

Example 8.25: (Representation of random variables)

1. If Y =
∫ T

0
B(s)ds, then Y =

∫ T

0
(T − s)dB(s).

2. Y = B2(1). Then M(t) = E(B2(1)|Ft) = B2(t) + (1 − t). Using Itô’s formula for

M(t) we obtain B2(1) = 1 + 2
∫ 1

0
B(t)dB(t).

Similar results hold for the Poisson process filtration.

Theorem 8.38 (Poisson Martingale Representation)
Let M(t), 0 ≤ t ≤ T , be a local martingale adapted to the Poisson filtration.
Then there exists a predictable process H(t) such that

M(t) = M(0) +
∫ t

0

H(s)dN̄(s), (8.68)

where N̄(t) = N(t) − t is the compensated Poisson process.
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When a filtration is larger than the natural filtration of a martingale, then there
is the following result (Revuz and Yor (1999) p. 209, Liptser and Shiryaev
(2001) p. 170).

Theorem 8.39 If M(t), 0 ≤ t ≤ T , is any continuous local martingale, and
X a continuous IFM -local martingale. Then X has a representation

X(t) = X(0) +
∫ t

0

H(s)dM(s) + Z(t), (8.69)

where H is predictable and 〈M, Z〉 = 0; (consequently 〈X − Z, Z〉 = 0).

Example 8.26: Let IF be generated by two independent Brownian motions B
and W , and let M(t) =

∫ t

0
W (s)dB(s). It is a martingale, as a stochastic integral

satisfying E
∫ t

0
W 2(s)ds < ∞. We show that M does not have the predictable

representation property.
〈M, M〉 (t) =

∫ t

0
W 2(s)ds. Hence W 2(t) = d〈S,S〉(t)

dt
, which shows that W 2(t) is FM

t -

measurable. Hence the martingale X(t) = W 2(t) − t is adapted to FM
t , but is not

an integral of a predictable process with respect to M . By Itô’s formula
X(t) = 2

∫ t

0
W (s)dW (s). Hence 〈X, M〉 (t) =

∫ t

0
W 2(s)d 〈W,B〉 (s) = 0. Suppose

there is H , such that X(t) =
∫ t

0
H(u)dM(u). Then by (8.67)

H(t) = d〈X,M〉(t)
dt

= 0, implying that X(t) = 0, which is a contradiction.
This example has an application in Finance, it shows non-completeness of a

stochastic volatility model.

Example 8.27: Let IF be generated by a Brownian motions B and a Poisson
process N , and let M(t) = B(t) + N(t) − t = B(t) + N̄(t), where N̄(t) = N(t) − t.
M is a martingale, as a sum of two martingales. We show that M does not have the
predictable representation property.
[M, M ](t) = [B, B](t) + [N, N ](t) = t + N(t). This shows that N(t) = [M, M ](t) − t
is FM

t -measurable. Hence B(t) = M(t) − N(t) + t is FM
t -measurable. Thus the

martingale X(t) =
∫ t

0
N(s−)dB(s) is FM

t -measurable, but it does not have a pre-

dictable representation. If it did,
∫ t

0
N(s−)dB(s) =

∫ t

0
H(s)dB(s) +

∫ t

0
H(s)dN̄(s),

and
∫ t

0
(N(s−) − H(s)) dB(s) =

∫ t

0
H(s)dN̄(s). Since the integral on the rhs is of

finite variation, H(s) = N(s−), for almost all s. Thus
∫ t

0
H(s)dN̄(s) = 0. This is

the same as
∫ t

0
N(s−)dN(s) =

∫ t

0
N(s−)ds. But this is impossible. To see the con-

tradiction, let t = T2 the time of the second jump of N . Then
∫ T2

0
N(s−)dN(s) = 1

and
∫ T2

0
N(s−)ds = T2 − T1.

This example shows non-completeness of models of stock prices with jumps. It
can be generalized to a model that supports a martingale with a jump component.

Remark 8.7: The Definition 8.34 of the predictable representation property
given here agrees with the standard definition given for continuous martingales
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but is different to the definition for predictable representation with respect
to semimartingales, given in Liptser and Shiryaev (1989) p.250, Jacod and
Shiryaev (1987) p.172, Protter (1992) p.150. The general definition allows for
different predictable functions h and H to be used in the integrals with respect
to the continuous martingale part M c and the discrete martingale part M d of
M ,

X(t) = X(0) +
∫ t

0

h(s)dM c(s) +
∫ t

0

H(s)dMd(s).

In this definition, the martingale M in Example 8.27 has the predictable rep-
resentation property.

The definition given here is more suitable for financial applications. Ac-
cording to the financial mathematics theory an option can be priced if it can
be replicated, which means that it is an integral of a predictable process H
with respect to the discounted stock price process M , which is a martingale.
The process H represents the number of shares bought/sold so it does not
make sense to have H consist of two different components.

8.13 Elements of the General Theory

The basic setup consists of the probability space (Ω,F , P), where F is a σ-field
on Ω and P is a probability on F . A stochastic process is a map from IR+ ×Ω
to IR, namely (t, ω) → X(t, ω). IR+ has the Borel σ-field of measurable sets,
and F is the σ-field of measurable sets on Ω. Only measurable processes are
considered, that is for any A ∈ B

{(t, ω) : X(t, ω) ∈ A} ∈ B( IR+) ×F .

Theorem 8.40 (Fubini) Let X(t) be a measurable stochastic process. Then

1. P-a.s. the functions X(t, ω) (trajectories) are (Borel) measurable.

2. If EX(t) exists for all t, then it is measurable as a function of t.

3. If
∫ b

a E|X(t)|dt < ∞ P-a.s. then almost all trajectories X(t) are inte-
grable and

∫ b

a
EX(t)dt = E

∫ b

a
X(t)dt.

Let IF be a filtration of increasing σ-fields on Ω. Important classes of processes
are introduced via measurability with respect to various σ-fields of subsets of
IR+ × Ω: adapted, progressively measurable processes, optional processes and
predictable processes, given in the order of inclusion.
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X is adapted if, for all t, X(t) is Ft measurable. X is progressively measur-
able if, for any t, {(s ≤ t, ω) : X(s, ω) ∈ A} ∈ B([0, t])×Ft. Any progressively
measurable process is clearly adapted. It can be shown that any right or left
continuous process is progressively measurable.

Definition 8.41

1. The σ-field generated by the adapted left-continuous processes is called
the predictable σ-field P.

2. The σ-field generated by the adapted right-continuous processes is called
the optional σ-field O.

3. A process is called predictable if it is measurable with respect to the pre-
dictable σ-field P; it is called optional if it is measurable with respect to
the optional σ-field O.

Remarks

1. The predictable σ-field P is also generated by the adapted continuous
processes.

2. Define Ft− = σ
(
∪s<tFs

)
the smallest σ-field containing Fs for all s < t,

and F0− = F0. Ft− represents the information available prior to t. Then
the predictable σ-field P is generated by the sets [s, t) × A with s < t
and A ∈ Ft−.

3. Predictable and optional σ-fields are also generated respectively by sim-
ple adapted left-continuous processes and simple adapted right-continuous
processes.

4. Since a left-continuous adapted process H(t) can be approximated by
right-continuous adapted processes, (H(t) = limε→0 H((t − ε)+)), any
predictable process is also optional. Therefore P ⊆ O.

5. The Poisson process is right-continuous and it can be shown that it
cannot be approximated by left-continuous adapted processes. Therefore
there are optional processes which are not predictable, P ⊂ O.

6. In discrete time optional is the same as adapted.

Stochastic Sets

Subset of IR+ ×Ω are called stochastic sets. If A is a stochastic set, then “its
projection on Ω” πA = {ω : ∃t such that (t, ω) ∈ A}. A is called evanescent if
P(πA) = 0.
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Two processes X(t) and Y (t) are called indistinguishable if the stochastic
set A = {(t, ω) : X(t, ω) �= Y (t, ω)} is an evanescent set. A process indistin-
guishable from zero is called P-negligible.

If τ1 and τ2 are stopping times, a closed stochastic interval is defined as
[[τ1, τ2]] = {(t, ω) : τ1(ω) ≤ t ≤ τ2(ω)}. Similarly half-closed [[τ1, τ2[[, ]]τ1, τ2]],
and open ]]τ1, τ2[[ stochastic intervals are defined. Double brackets are used to
emphasize that the intervals are subsets of IR+ × Ω and to distinguish them
from intervals on IR+.

The stochastic interval [[τ, τ ]] = {(t, ω) : τ(ω) = t} is called the graph of
the stopping time τ .

A stochastic set A is called thin if there are stopping times τn, such that
A = ∪n[[τn]].

Example 8.28: Let N(t) be a Poisson process with rate λ, and A = {∆N �= 0}.
Then A = ∪n[[τn]], where τn is the time of the n-th jump. Hence A is a thin set.

It can be shown that for any regular right-continuous process the stochastic
set of jumps {∆X �= 0} is a thin set (Liptser and Shiryayev (1989), p.4).

Classification of Stopping Times

Recall that τ is a stopping time with respect to filtration IF if for all t ≥ 0
the event {τ ≤ t} ∈ Ft. If IF is right-continuous, then also {τ < t} ∈ Ft.
Events observed before or at time τ are described by the σ-field Fτ , defined as
the collection of sets {A ∈ F : for any t A ∩ {τ ≤ t} ∈ Ft}. Events observed
before time τ are described by the σ-field Fτ−, the σ-field generated by F0

and the sets A ∩ {τ > t}, where A ∈ Ft, t > 0.
There are three types of stopping times that are used in stochastic calculus:

1. predictable stopping times,

2. accessible stopping times,

3. totally inaccessible stopping times.

τ is a predictable stopping time if there exists a sequence of stopping times
τn, τn < τ , and limn τn = τ . In this case it is said that the sequence τn

announces τ .

Example 8.29: If τ is a stopping time then for any constant a > 0, τ + a is a
predictable stopping time. Indeed, it can be approached by τn = τ + a − 1/n.

Example 8.30: Let B(t) be Brownian motion started at zero, IF its natural filtra-
tion and τ the first hitting time of 1, that is, τ = inf{t : B(t) = 1}. τ is a predictable
stopping time, since τn = inf{t : B(t) = 1 − 1/n} converge to τ .
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τ is an accessible stopping time if it is possible to announce τ , but with dif-
ferent sequences on different parts of Ω, that is, [[τ ]] ⊂ ∪n[[τn]], where τn are
predictable stopping times. All other types of stopping times are called totally
inaccessible.

Example 8.31: Let N(t) be Poisson process, IF its natural filtration and τ the
time of the first jump, τ = inf{t : N(t) = 1}. τ is a totally inaccessible stopping
time. Any predictable stopping time τn < τ is a constant, since Ft∩{t < τ} is trivial.
But τ has a continuous distribution (exponential), thus it cannot be approached by
constants.

The optional σ-field is generated by the stochastic intervals [[0, τ [[, where
τ is a stopping time. The predictable σ-field is generated by the stochastic
intervals [[0, τ ]].

A set A is called predictable if its indicator is a predictable process, IA ∈ P .
The following results allow us to decide on predictability.

Theorem 8.42 Let X(t) be a predictable process and τ be a stopping time.
Then

1. X(τ)I(τ < ∞) is Fτ− measurable,

2. the stopped process X(t ∧ τ) is predictable.

For a proof see, for example, Liptser and Shiryayev (1989) p. 13.

Theorem 8.43 An adapted regular process is predictable if and only if for
any predictable stopping time τ the random variable X(τ)I(τ < ∞) is Fτ−
measurable and for each totally inaccessible stopping time τ one of the following
two conditions hold

1. X(τ) = X(τ−) on τ < ∞
2. the set {∆X �= 0} ∩ [[τ ]] is P-evanescent.

For a proof see, for example, Liptser and Shiryayev (1989) p. 16.

Theorem 8.44 A stopping time τ is predictable if and only if for any bounded
martingale M , E

(
M(τ)I(τ < ∞)

)
= E

(
M(τ−)I(τ < ∞)

)
.

Theorem 8.45 The compensator A(t) is continuous if and only if the jump
times of the process X(t) are totally inaccessible.

See, for example, Liptser and Shiryayev (2001) for the proof.

Example 8.32: The compensator of the Poisson process is t, which is continuous.
By the above result the jump times of the Poisson process are totally inaccessible.
This was shown in Example 8.31.
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It can be shown that for Brownian motion and diffusions any stopping time
is predictable. This implies that the class of optional processes is the same as
the class of predictable processes.

Theorem 8.46 For Brownian motion filtration any martingale (local martin-
gale) is continuous and any positive stopping time is predictable. Any optional
process is also predictable, O = P.

Similar result holds for diffusions (see for example, Rogers and Williams (1990),
p.338).

Remark 8.8: It can be shown that 〈X, X〉 is the conditional quadratic vari-
ation of [X, X ] conditioned on the predictable events P .

8.14 Random Measures and Canonical Decom-

position

The canonical decomposition of semimartingales with jumps uses the concepts
of a random measure and its compensator, as well as integrals with respect
to random measures. We do not use this material elsewhere in the book.
However, the canonical decomposition is often met in research papers.

Random Measure for a Single Jump

Let ξ be a random variable. For a Borel set A ⊂ IR define

µ(ω, A) = IA(ξ(ω)) = I(ξ(ω) ∈ A). (8.70)

Then µ is a random measure, meaning that for each ω ∈ Ω, µ(ω, A) is a
measure when A varies, A ∈ B( IR). Its (random) distribution function has a
single jump of size 1 at ξ. The following random Stieltjes integrals consist of
a single term:∫

IR
xµ(ω, dx) = ξ(ω), and for a function h,

∫
IR

h(x)µ(ω, dx) = h(ξ(ω)).

(8.71)
There is a special notation for this random integral

h ∗ µ :=
∫

IR
h(x)µ(dx). (8.72)
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Random Measure of Jumps and its Compensator in Discrete Time

Let X0, . . .Xn, . . . be a sequence of random variables, adapted to Fn, and let
ξn = ∆Xn = Xn − Xn−1. Let µn = IA(ξn) be jump measures, and let

νn(A) = E(µn(A)|Fn−1) = E(IA(ξn)|Fn−1) = P(ξn ∈ A|Fn−1)

be the conditional distributions, n = 0, 1, . . .. Define

µ((0, n], A) =
n∑

i=1

µi(A), and ν((0, n], A) =
n∑

i=1

νi(A). (8.73)

Then for each A the sequence µ((0, n], A) − ν((0, n], A) is a martingale. The
measure µ((0, n], A) is called the measure of jumps of the sequence Xn, and
ν((0, n], A) its compensator (A does not include 0). Clearly, the measure
µ = {µ((0, n])}n≥1 admits representation

µ = ν + (µ − ν), (8.74)

where ν = {ν((0, n])}n≥1 is predictable, and µ− ν = {µ((0, n])− ν((0, n])}n≥1

is a martingale. This is Doob’s decomposition for random measures. With
notation (8.72)

Xn = (x ∗ µ)n. (8.75)

Regular conditional distributions exist and for a function h(x) the conditional
expectations can be written as integrals with respect to these

E(h(ξn)|Fn−1) =
∫

IR
h(x)νn(dx),

provided h(ξn) is integrable, E|h(ξn)| < ∞.
Assume now that ξn are integrable, then its Doob’s decomposition (8.4)

Xn = X0 +
n∑

i=1

E(ξi|Fi−1) +
n∑

i=1

(ξi − E(ξi|Fi−1)) = X0 + An + Mn. (8.76)

Using random measures and their integrals, we can express An and Mn as

An =
n∑

i=1

E(ξi|Fi−1) =
n∑

i=1

∫
IR

xνi(dx) = (x ∗ ν)n, (8.77)

Mn =
n∑

i=1

(ξi − E(ξi|Fi−1)) =
n∑

i=1

∫
IR

x(µi(dx) − νi(dx)) = (x ∗ (µ − ν))n.

Thus the semimartingale decomposition of X is given by using the random
measure and its compensator

Xn = X0 + (x ∗ ν)n + (x ∗ (µ − ν))n. (8.78)
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However, the jumps of X , ξn = ∆Xn, may not be integrable. Then the
term (x ∗ ν)n is not defined. In this case a truncation function is used, such
as h(x) = xI(|x| ≤ 1), and a similar decomposition is achieved, called the
canonical decomposition,

Xn = X0 +
n∑

i=1

E(h(ξi)|Fi−1) +
n∑

i=1

(h(ξi) − E(ξi|Fi−1)) +
n∑

i=1

(ξi − h(ξi))

= X0 + (h ∗ ν)n + (h ∗ (µ − ν))n + ((x − h(x)) ∗ µ)n. (8.79)

The above representation has well-defined terms and in addition it has another
advantage that carries over to the continuous time case.

Random Measure of Jumps and its Compensator

Let X be a semimartingale. For a fixed t consider the jump ∆X(t). Taking
ξ = ∆X(t), we obtain the measure of the jump at t

µ({t}, A) = IA(∆X(t)), with
∫

IR
xµ({t}, dx) = ∆X(t). (8.80)

Now consider the measure of jumps of X (in IR+ × IR0, with IR0 = IR \ 0)

µ((0, t] × A) =
∑

0<s≤t

IA(∆X(s)) (8.81)

for a Borel set A that does not include zero (there are no jumps of size 0, if
∆X(t) = 0 then t is a point of continuity of X). It is possible to define the
compensator of µ, such that µ((0, t] × A) − ν((0, t] × A) is a local martingale.

For the canonical decomposition of semimartingales, similar to (8.79), firstly
large jumps are taken out, then the small jumps are compensated as follows.
Consider

(x − h(x)) ∗ µ(t) =
∫ t

0

∫
IR\0

(x − h(x))µ(ds, dx) =
∑
s≤t

(∆Xs − h(∆Xs)),

where h(x) is a truncation function. This is a sum over “large” jumps with
|∆X(s)| > 1 (since x − h(x) = 0 for |x| ≤ 1). Since the sum of squares
of jumps is finite, (Corollary 8.31, (8.51)), the above sum has only finitely
many terms, hence it is finite. Thus the following canonical decomposition of
a semimartingale is obtained

X(t) = X(0) + A(t) + Xcm(t) + (h(x) ∗ (µ − ν))(t) + ((x − h(x)) ∗ µ)(t),

= X(0) + A(t) + Xcm(t) +
∫ t

0

∫
|x|≤1

xd(µ − ν) +
∫ t

0

∫
|x|>1

xdµ,
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where A is a predictable process of finite variation, Xcm is a continuous martin-
gale component of X , µ is the measure of jumps of X , and ν its compensator.
For a proof see Liptser and Shiryayev (1989), p.188, Shiryaev (1999), p. 663.

Let C = 〈Xcm, Xcm〉 (it always exists for continuous processes). The
following three processes appearing in the canonical decomposition (A, C, ν)
are called the triplet of predictable characteristics of the semimartingale X .

Notes. Material for this chapter is based on Protter (1992), Rogers and
Williams (1990), Metivier (1982), Liptser and Shiryayev (1989), Shiryaev
(1999).

8.15 Exercises

Exercise 8.1: Let τ1 < τ2 be stopping times. Show that I(τ1,τ2](t) is a simple
predictable process.

Exercise 8.2: Let H(t) be a regular adapted process, not necessarily left-
continuous. Show that for any δ > 0, H(t − δ) is predictable.

Exercise 8.3: Show that a continuous process is locally integrable. Show
that a continuous local martingale is locally square integrable.

Exercise 8.4: M is a local martingale and E
∫ T

0 H2(s)d[M, M ](s) < ∞. Show
that

∫ t

0 H(s)dM(s) is a square integrable martingale.

Exercise 8.5: Find the variance of
∫ 1

0
N(t−)dM(t), where M is the compen-

sated Poisson process M(t) − t.

Exercise 8.6: If S and T are stopping times, show that

1. S ∧ T and S ∨ T are stopping times.

2. The events {S = T }, {S ≤ T } and {S < T } are in FS .

3. FS ∩ {S ≤ T } ⊂ FT ∩ {S ≤ T }.
Exercise 8.7: Let U be a positive random variable on a probability space
(Ω,F , P), and G be a sub-σ-field of F .

1. Let t ≥ 0. Show that Ft := {A ∈ F : ∃B ∈ G such that A ∩ {U > t} =
B ∩ {U > t}} is a σ-field.

2. Show that Ft is a right-continuous filtration on (Ω,F , P).

3. Show that U is a stopping time for Ft.
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4. What are F0, FU− and FU equal to?

Exercise 8.8: Let U1, U2, . . . be (strictly) positive random variables on a
probability space (Ω,F , P ), and G1,G2, . . . be sub-σ-fields of F . Suppose that
for all n, U1, U2, . . . , Un are Gn-measurable and denote by Tn the random
variable

∑n
i=1 Ui. Set Ft =

⋂
n{A ∈ F : ∃Bn ∈ Gn such that A ∩ {Tn > t} =

Bn ∩ {Tn > t}}.
1. Show that Ft is a right-continuous filtration on (Ω,F , P ).

2. Show that for all n, Tn is a stopping time for Ft.

3. Suppose that limn Tn = ∞ a.s. Show that FTn = Gn+1 and FTn− = Gn.

Exercise 8.9: Let B(t) be a Brownian motion and H(t) be a predictable
process. Show that M(t) =

∫ t

0
H(s)dB(s) is a Brownian motion if and only if

Leb({t : |H(t)| �= 1}) = 0 a.s.

Exercise 8.10: Let T be a stopping time. Show that the process M(t) =
2B(t∧T )−B(t) obtained by reflecting B(t) at time T , is a Brownian motion.

Exercise 8.11: Let B(t) and N(t) be respectively a Brownian motion and a
Poisson process on the same space. Denote by N̄(t) = N(t)−t the compensated
Poisson process. Show that the following processes are martingales: B(t)N̄(t),
E(B)(t)N̄ (t) and E(N̄)(t)B(t).

Exercise 8.12: X(t) solves the SDE dX(t) = µX(t)dt + aX(t−)dN(t) +
σX(t)dB(t). Find the condition for X(t) to be a martingale.

Exercise 8.13: Find the predictable representation for Y = B5(1).

Exercise 8.14: Find the predictable representation for the martingale eB(t)−t/2.

Exercise 8.15: Let Y =
∫ 1

0 sign(B(s))dB(s). Show that Y has a Normal
distribution. Show that there is no deterministic function H(s), such that
Y =

∫ 1

0
H(s)dB(s). This shows that the assumption that Y, B are jointly

Gaussian in Theorem 8.35 is indispensable.

Exercise 8.16: Find the quadratic variation of |B(t)|.
Exercise 8.17: (Stochastic Logarithm)
Let U be a semimartingale such that U(t) and U(t−) are never zero. Show
that there exists a unique semimartingale X with X(0) = 0, (X = L(U)) such
that dX(t) = dU(t)

U(t−) , and

X(t) = ln
∣∣∣∣U(t)
U(0)

∣∣∣∣+ 1
2

∫ t

0

d < U c, U c > (s)
U2(s−)

−
∑
s≤t

(
ln
∣∣∣∣ U(s)
U(s−)

∣∣∣∣+ 1 − U(s)
U(s−)

)
,

(8.82)
see Kallsen and Shiryaev (2002).



Chapter 9

Pure Jump Processes

In this Chapter we consider pure jump processes, that is, processes that change
only by jumps. Counting processes and Markov Jump processes are defined
and their semimartingale representation is given. This representation allows us
to see the process as a solution to a stochastic equation driven by discontinuous
martingales.

9.1 Definitions

A counting process is determined by a sequence of non-negative random vari-
ables Tn, satisfying Tn < Tn+1 if Tn < ∞ and Tn = Tn+1 if Tn = ∞. Tn

can be considered as the time of the n-th occurrence of an event, and they
are often referred to as arrival times. N(t) counts the number of events that
occurred up to time t, that is,

N(t) =
∞∑

n=1

I(Tn ≤ t), N(0) = 0. (9.1)

N(t) is piece-wise constant and has jumps of size one at the points Tn. Such
processes are also known as simple point processes to distinguish them from
more general marked point processes, which are described by a sequence (Tn, Zn)
for some random variables Zn. Zn, for example, may describe the size of jump
at Tn.

The pure jump process X is defined as follows.

X(t) = X(0) +
∞∑

n=1

I(Tn ≤ t)Zn. (9.2)

249
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Note that X in (9.2) is right-continuous, piece-wise constant with the time of
the n-th jump at Tn, and Zn = X(Tn) − X(Tn−) = X(Tn) − X(Tn−1) is the
size of the jump at Tn.

9.2 Pure Jump Process Filtration

The filtration IF considered here is the natural filtration of the process. We
recall related definitions. For a process X its natural filtration is defined by
(the augmentation of) σ-fields Ft = σ(X(s), 0 ≤ s ≤ t) and represents the
information obtained by observing the process on [0, t]. The strict past is
the information obtained by observing the process on [0, t) and is denoted by
Ft− = σ(X(s), 0 ≤ s < t).

A non-negative random variable τ , which is allowed to be infinity, is a
stopping time if {τ ≤ t} ∈ Ft for every t. Thus by observing the process on
[0, t] it is possible to deduce whether τ has occurred.

Information obtained from observing the process up to a stopping time τ is
Fτ , defined by Fτ = {A ∈ F : for any t, A∩{τ ≤ t} ∈ Ft}. The strict past of
X at τ is described by the σ-field Fτ− = σ(A ∩ {t < τ} : t ≥ 0, A ∈ Ft)

∨F0.
Note that τ ∈ Fτ− (take A = {τ > t} ∈ Ft). Clearly, Fτ− ⊂ Fτ .

Clearly, the arrival times Tn are stopping times for IF. They are usually
taken as a localizing sequence. Note that FTn = σ((Ti, Zi), i ≤ n) and that
X(Tn−) = X(Tn−1), since for t satisfying Tn−1 ≤ t < Tn, X(t) = X(Tn−1)
and this value is kept until the next jump at time Tn. As Tn ∈ FTn−, FTn− =
σ((Ti, Zi), i ≤ n−1, Tn). Thus Zn, the jump size at Tn, is the only information
in FTn not available in FTn−.

It can be shown that Ft is right-continuous, that is, Ft = Ft+, as well as
the following result, which is essential in finding compensators.

Theorem 9.1 If τ is a stopping time, then for each n there is a random
variable ζn which is FTn measurable such that

τ ∧ Tn+1 = (Tn + ζn) ∧ Tn+1 on {Tn ≤ τ}. (9.3)

Proofs of the above results can be found for example, in Liptser and
Shiryayev (1974), Karr (1986).

Since compensators are predictable processes, it is important to have some
criteria to decide on predictability. By definition, any adapted left continuous
or continuous process is predictable. The following construction, which is often
met in calculations, results in a predictable process.

Theorem 9.2 Let Tn be the arrival times in a pure jump process, and for all
n = 0, 1, . . ., Yn(t) be an adapted process such that for any t ∈ (Tn, Tn+1] it
is FTn measurable. Then the process X(t) =

∑∞
n=0 Yn(t)I(Tn < t ≤ Tn+1) is

predictable.
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Proof: We outline the proof. The process In(t) = I(Tn < t ≤ Tn+1) is
predictable. Indeed, In(t) = I(Tn < t ≤ Tn+1) = I(t ≤ Tn+1) − I(t ≤ Tn).
Since for each n, Tn is a stopping time, {Tn ≥ t} ∈ Ft and therefore In(t)
is adapted. But it is left-continuous, hence it is predictable. Since Yn(t) is
“known” when Tn < t ≤ Tn+1, X(t) is predictable.

�

Assumptions

T∞ = limn→∞ Tn exists, since Tn’s are non-decreasing. The results given below
hold for t < T∞, and in order to avoid repetitions we assume throughout, that
T∞ = ∞, unless stated otherwise. In the case of T∞ < ∞ there are infinitely
many jumps on the finite time interval [0, T∞), and it is said that explosion
occurs. We assume that there are no explosions. Sufficient conditions for
Markov Jump processes are given later.

Assume that the jumps are integrable, E|Zn| < ∞ for all n. Under this
assumption X is locally integrable, since E|X(t∧Tn)| ≤∑n

i=1 E|Zi| < ∞, and
therefore it has a uniquely defined compensator A.

M(t) = X(t) − A(t) is the local martingale associated with X , also called
the innovation martingale.

9.3 Itô’s Formula for Processes of Finite Vari-

ation

If a semimartingale X is of finite variation, then its continuous martingale part
Xcm = 0, consequently 〈X, X〉c (t) = 〈Xcm, Xcm〉 (t) = 0. Therefore the term
containing the second derivative f ′′ disappears in (8.59). Moreover, since X
is of finite variation its continuous part Xc satisfies dXc(t) = dX(t)−∆X(t),
and Itô’s formula takes form: for any C1 function f

f(X(t))−f(X(0)) =
∫ t

0

f ′(X(s−))dXc(s)+
∑
s≤t

(
f(X(s))−f(X(s−))

)
. (9.4)

If the continuous part Xc is zero, then the formula is an identity, representing
a function as the sum of its jumps. A similar formula holds for a function of
n variables.

Stochastic Exponential

The stochastic exponential (8.62) of finite variation processes simplifies to

E(X)(t) = eX(t)−X(0)
∏
s≤t

(
1+∆X(s)

)
e−∆X(s) = eXc(t)

∏
s≤t

(
1+∆X(s)

)
, (9.5)
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where Xc is the continuous part of X . The last equality is due to
Xc(t) = X(t) − X(0) −∑s≤t ∆X(s).

Example 9.1: Let X(t) be a process with jumps of size one (counting process), so
that ∆X(s) = 0 or 1. Its stochastic exponential is given by

E(X)(t) =
∏
s≤t

(
1 + ∆X(s)

)
= 2X(t)−X(0). (9.6)

Integration by Parts for Processes of Finite Variation

The integration by parts formula is obtained directly from the integral repre-
sentation of the quadratic covariation (8.24) and (1.20). Recall that if X and
Y are of finite variation, then their quadratic covariation is given by

[X, Y ](t) =
∑

0<s≤t

∆X(s)∆Y (s) and [X ](t) = [X, X ](t) =
∑

0<s≤t

(∆X(s))2.

(9.7)
Using (8.24) we obtain

X(t)Y (t) − X(0)Y (0)=
∫ t

0

X(s−)dY (s) +
∫ t

0

Y (s−)dX(s) +
∑

0<s≤t

∆X(s)∆Y (s).

(9.8)

Remark 9.1: The following formula holds for finite variation processes.∑
s≤t

∆X(s)∆Y (s) =
∫ t

0

∆X(s)dY (s). (9.9)

Indeed, by letting Y c(t) = Y (t) −∑s≤t ∆Y (s) be the continuous part of Y ,
we have∫ t

0

∆X(s)dY (s) −
∑
s≤t

∆X(s)∆Y (s) =
∫ t

0

∆X(s)dY c(s) = 0, (9.10)

since Y c(s) is continuous and ∆X(s) is different from zero at mostly countably
many points.

9.4 Counting Processes

Let N be a counting process, then it is a pure jump process with jumps of size
one. Thus

[N, N ](t) =
∑
s≤t

(∆N(s))2 = N(t). (9.11)
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Theorem 9.3 The compensator A and the sharp bracket process of N are the
same, A = 〈N, N〉.
Proof: N is of locally integrable variation, since N(t ∧ Tn) ≤ n and Tn is
a localizing sequence. A is the unique predictable process such that N(t) −
A(t) is a local martingale. 〈N, N〉 is the unique predictable process such that
[N, N ](t)−〈N, N〉 (t) is a local martingale. The result follows from (9.11) and
the uniqueness of the compensator.

�

Heuristically the compensator for a counting process is given by

dA(t) = E
(
dN(t)|Ft−

)
, (9.12)

where Ft− denotes the information available prior to time t by observing the
process over [0, t), and t + dt > t. dM(t) = d(N − A)(t) = dN(t) − dA(t) is
that part of dN(t) that cannot be foreseen from the observations of N over
[0, t).

The next result shows the relation between the sharp bracket of the martin-
gale and the compensator in a counting process. Since the proof is a straight
application of stochastic calculus rules, it is given below. It is useful for calcu-
lation of the variance of M , indeed by Theorem 8.24 EM 2(t) = E 〈M, M〉 (t).

Theorem 9.4 Let M = N − A. Then 〈M, M〉 (t) =
∫ t

0 (1 − ∆A(s))dA(s). In
particular, if A is continuous, then 〈M, M〉 (t) = A(t).

Proof: By integration by parts (9.8), we have

M2(t) = 2
∫ t

0

M(s−)dM(s) +
∑
s≤t

(∆M(s))2. (9.13)

Use ∆M(s) = ∆N(s) − ∆A(s) and expand the sum to obtain∑
s≤t

(∆M(s))2 =
∑
s≤t

∆N(s) − 2
∑
s≤t

∆N(s)∆A(s) +
∑
s≤t

(∆A(s))2,

where we used that since N is a simple process (∆N(s))2 = ∆N(s). Thus we
obtain by using formula (9.9) and N = M + A,

M2(t) = 2
∫ t

0

M(s−)dM(s) + N(t) − 2
∫ t

0

∆A(s)dN(s) +
∫ t

0

∆A(s)dA(s)

=
∫ t

0

(
2M(s−) + 1 − 2∆A(s)

)
dM(s) +

∫ t

0

(1 − ∆A(s))dA(s).
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The process in the first integral is predictable, because M(s−) is adapted and
left-continuous, A(s) is predictable, so that ∆A(s) is also predictable. There-
fore the first integral is a local martingale. The second integral is predictable,
since A is predictable. Thus the above equation is the Doob-Meyer decom-
position of M2. The result now follows by the uniqueness of the Doob-Meyer
decomposition.

�

We give examples of processes and their compensators next.

Point Process of a Single Jump

Let T be a random variable and the process N have a single jump at the
random time t, that is, N(t) = I(T ≤ t). Let F be the distribution function
of T .

Theorem 9.5 The compensator A(t) of N(t) = I(T ≤ t) is given by

A(t) =
∫ t∧T

0

dF (s)
1 − F (s−)

. (9.14)

Proof: A(t) is clearly predictable. To show that N(t)−A(t) is a martingale,
by Theorem 7.17 it is enough to show that EN(S) = EA(S) for any stopping
time S. By Theorem 9.1 there exists an F0-measurable (i.e. almost surely
constant) random variable ζ such that

{S ≥ T } = {S ∧ T = T } = {ζ ∧ T = T } = {T ≤ ζ}.
Therefore

EN(S) = P (S ≥ T ) = P(T ≤ ζ)

=
∫ ζ

0

dF (t) =
∫ ζ

0

P(T ≥ t)
1 − F (t−)

dF (t)

= E

(∫ ζ

0

I(T ≥ t)
1 − F (t−)

dF (t)

)
= E

(∫ ζ∧T

0

dF (t)
1 − F (t−)

)

= E

(∫ S∧T

0

dF (t)
1 − F (t−)

)
.

Thus (9.14) is obtained.
�

If F has a density f , then A(t) =
∫ t∧T

0
h(s)ds, where

h(t) =
f(t)

1 − F (t)
, (9.15)

is called the hazard function and it gives the likelihood of the occurrence of
the jump at t given that the jump has not occurred before t.
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Compensators of Counting Processes

The next result gives an explicit form of the compensator of a general counting
process. Since the proof uses the same ideas as above, it is omitted.

Theorem 9.6 Let N be a counting process generated by the sequence Tn. De-
note by Un+1 = Tn+1 − Tn the inter-arrival times, T0 = 0. Let Fn(t) =
P(Un+1 ≤ t|T1, . . . , Tn) denote the regular conditional distributions, and
F0(t) = P(T1 ≤ t). Then the compensator A(t) is given by

A(t) =
∞∑

i=0

∫ t∧Ti+1−t∧Ti

0

dFi(s)
1 − Fi(s−)

. (9.16)

Note that if the conditional distributions Fn in the above theorem are contin-
uous with Fn(0) = 0, then by changing variables we have∫ a

0

dFn(s)
1 − Fn(s−)

=
∫ a

0

dFn(s)
1 − Fn(s)

= − log(1 − Fn(a)), (9.17)

and equation (9.16) can be simplified accordingly.

Renewal Process

A renewal process N is a point process in which all inter-arrival times are inde-
pendent and identically distributed, that is, T1, T2−T1, . . . Tn+1 −Tn are i.i.d.
with distribution function F (x). In this case all the conditional distributions
Fn in the previous theorem are given by F . As a result of Theorem 9.6 we
obtain the following corollary.

Corollary 9.7 Assume that the inter-arrival distribution is continuous and
F (0) = 0. Then the compensator of the renewal process is given by

A(t) = −
∞∑

n=1

log
(
1 − F (t ∧ Tn − t ∧ Tn−1)

)
. (9.18)

Stochastic Intensity

Definition 9.8 If A(t) =
∫ t

0
λ(s)ds, where λ(t) is a positive predictable pro-

cess, then λ(t) is called the stochastic intensity of N .

Note that if A(t) is deterministic and differentiable with derivative A′(t), and
A(t) =

∫ t

0 A′(s)ds, then λ(t) = A′(t) is predictable and is the stochastic in-
tensity. If A(t) is random and differentiable with derivative A′(t), satisfying
A(t) =

∫ t

0 A′(s)ds, then λ(t) = A′(t−). Indeed, A(t) =
∫ t

0 A′(s−)ds.
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If the stochastic intensity exists, then by definition of the compensator,
N(t) − ∫ t

0 λ(s)ds is a local martingale. For counting processes a heuristic
interpretation of the intensity is given by

λ(t)dt = dA(t) = E(dN(t)|Ft−) = P(dN(t) = 1|Ft−). (9.19)

If the stochastic intensity exists, then the compensator is continuous and by
Theorem 9.4 the sharp bracket of the martingale M = N − A is given by

〈M, M〉 (t) =
∫ t

0

λ(s)ds. (9.20)

Example 9.2:

1. A deterministic point process is its own compensator, so it does not have
stochastic intensity.

2. Stochastic intensity for the renewal process with continuous inter-arrival dis-
tribution F is given by h(V (t−)), where h is the hazard function and V (t) =
t− TN(t), called the age process. This can be seen by differentiating the com-
pensator in (9.18).

3. Stochastic intensity for the renewal process with a discrete inter-arrival distri-
bution F does not exist.

Non-homogeneous Poisson Processes

Theorem 9.9 Let N(t) be point process with a continuous deterministic com-
pensator A(t). Then it has independent Poisson distributed increments, that
is, the distribution of N(t) − N(s) is Poisson with parameter A(t) − A(s),
0 ≤ s < t.

If A(t) has a density λ(t), that is, A(t) =
∫ t

0 λ(s)ds, then N(t) is called the
non-homogeneous Poisson process with rate λ(s).
Proof: We prove the result by an application of the stochastic exponential.
M(t) = N(t) − A(t) is a martingale. For a fixed 0 < u < 1, −uM(t) is also a
martingale. Consider E(uM)(t). By (9.5)

E(−uM)(t) = euA(t)
∏
s≤t

(1 − u∆M(s))

= euA(t)
∏
s≤t

(1 − u∆N(s)) = euA(t)(1 − u)N(t)

= euA(t)+N(t) log(1−u), (9.21)

where we have used that ∆N(s) is zero or one. Stochastic exponential of
a martingale is always a local martingale, but in this case it is also a true
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martingale by Theorem 7.21. Indeed, since A(t) is deterministic and non-
decreasing,

E sup
t≤T

euA(t)+N(t) log(1−u) ≤ euA(T )E sup
t≤T

eN(t) log(1−u) ≤ euA(T ) < ∞,

and the condition of Theorem 7.21 is satisfied. Taking expectations in (9.21)
we obtain the moment generating function of N(t),

E
(
(1 − u)N(t)

)
= e−uA(t)

or with v = 1 − u,
E(vN(t)) = e(1−v)A(t). (9.22)

This shows that N(t) is a Poisson random variable with parameter A(t). If
we take conditional expectation in (9.21) and use the martingale property, we
obtain in the same way that for all s < t

E
(
vN(t)−N(s)|Fs

)
= e(1−v)(A(t)−A(s)), (9.23)

which shows that the distribution of N(t)−N(s) does not depend on the past
and is Poisson.

�

A similar result holds if the compensator is deterministic but discontinuous.
The proof is more involved and can be found for example, in Liptser and
Shiryayev (1974) p. 279, where the form of the distribution of the increments
is also given.

Theorem 9.10 Let N(t) be a point process with a deterministic compensator
A(t). Then it has independent increments.

The following result states that a point process with a continuous, but
possibly random, compensator can be transformed into Poisson process by a
random change of time. Compare this result to change of time for continuous
martingales, Dambis, Dubins-Schwarz Theorem 7.37.

Theorem 9.11 Let a counting process N(t) have a continuous compensator
A(t) and limt→∞ A(t) = ∞. Define ρ(t) = inf{s ≥ 0 : A(s) = t}. Let
K(t) = N(ρ(t)) and Gt = Fρ(t). Then the process K(t) with respect to filtration
Gt is Poisson with rate 1.

The proof can be found in Liptser and Shiryayev (1974) p 280, (2001) and
is not given here. To convince ourselves of the result, consider the case when
A(t) is strictly increasing, then ρ(t) is the usual inverse, that is A(ρ(t)) = t.
Then EK(t) = EN(ρ(t)) = EA(ρ(t)) = t, so that K has the right mean.

For more information on point processes see for example, Liptser and
Shiryayev (2001), (1989) and Karr (1986).
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Compensators of Pure Jump Processes

Let for all t ≥ 0

X(t) = X(0) +
∞∑

n=1

ZnI(Tn ≤ t), (9.24)

be a pure jump point process generated by the sequence (Tn, Zn). By using
the same arguments as in the proof of Theorem 9.6 we can show the following
result.

Theorem 9.12 Let Fn(t) = P(Tn+1 − Tn ≤ t|FTn) denote the regular con-
ditional distributions of inter-arrival times, F0(t) = P(T1 ≤ t), and mn =
E(Zn+1|FTn) = E(X(Tn+1) − X(Tn)|FTn) denote the conditional expectation
of the jump sizes. Then the compensator A(t) is given by

A(t) =
∞∑

n=0

mn

∫ t∧Tn+1−t∧Tn

0

dFn(s)
1 − Fn(s−)

. (9.25)

The following observation is frequently used in the calculus of pure jump
processes.

Theorem 9.13 If X(t) is a pure jump process, then for a function f , f(X(t))
is also a pure jump process with the same jump times Tn. The size of the jump
at Tn is given by Z ′

n = f(X(Tn))− f(X(Tn−)). Consequently if f is such that
E|Z ′

n| < ∞, then the compensator of f(X) is given by (9.25) with mn replaced
by m′

n = E(Z ′
n+1|FTn).

Theorem 9.14 Let X(t) be a pure jump point process generated by the se-
quence (Tn, Zn). Assume conditions and notations of Theorem 9.12 and that
the compensator A(t) is continuous. Suppose in addition that EZ2

n < ∞ and
vn = E(Z2

n+1|FTn). Let M(t) = X(t) − A(t), then 〈M, M〉 (t) is given by
(9.25) with mn replaced by vn.

Proof: Since A is assumed to be continuous, (and it is always of finite
variation)

[M, M ](t) = [X − A, X − A](t) = [X, X ](t) =
∑

0<s≤t

(∆X(s))2. (9.26)

Thus [M, M ] is a pure jump process with jump times Tn and jump sizes
(∆X(Tn))2 = Z2

n. Thus [M, M ](t) is a pure jump process generated by the se-
quence (Tn, Z2

n). 〈M, M〉 (t) is its compensator. The result follows by Theorem
9.12.

�

A particular case of pure jump processes is the class of processes with
exponentially distributed inter-arrival times and independent jump sizes. This
is the class of Markov Jump processes.
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9.5 Markov Jump Processes

Definitions

Let for all t ≥ 0

X(t) = X(0) +
∞∑

n=1

ZnI(Tn ≤ t), (9.27)

where Tn and Zn have the following conditional distributions. Given that
X(Tn) = x, Tn+1 −Tn is exponentially distributed with mean λ−1(x), and in-
dependent of the past; and the jump Zn+1 = X(Tn+1)−X(Tn) is independent
of the past and has a distribution that depends only on x.

Fn(t) = P(Tn+1 − Tn ≤ t|FTn) = 1 − e−λ(X(Tn))t, (9.28)

and for some family of distribution functions K(x, ·)

P(X(Tn+1) − X(Tn) ≤ t|FTn) = K(X(Tn), t),
E(X(Tn+1) − X(Tn)|FTn) = m(X(Tn)) = mn. (9.29)

It is intuitively clear that X defined in this way possesses the Markov
property, due to the lack of memory of the exponential distribution. We omit
the proof.

Heuristically, Markov Jump processes can be described as follows. If the
process is in state x then it stays there for an exponential length of time with
mean λ−1(x) (parameter λ(x)) after which it jumps from x to a new state
x + ξ(x), where P(ξ(x) ≤ t) = K(x, t) denotes the distribution of the jump
from x. The parameters of the process are: the function λ(x) (the holding
time parameter) and distributions K(x, ·) (distributions of jump sizes).

λ(x) is always non-negative. If for some x, λ(x) = 0 then once the process
gets into x it stays in x forever, in this case the state x is called absorbing. We
shall assume that there are no absorbing states. If λ(x) = ∞ then the process
leaves x instantaneously. We assume that λ(x) is finite on finite intervals, so
that there are no instantaneous states.

For construction, classification and properties of Markov Jump processes
see for example, Breiman (1968), Chung (1967), Ethier and Kurtz (1986).

The Compensator and the Martingale

We derive the compensator heuristically first and then give the precise result.
Suppose that X(t) = x. By the lack of memory property of the exponential
distribution, it does not matter how long the process has already spent in x,
the jump from x will still occur after exponentially distributed (with parameter
λ(x)) random time. Therefore the conditional probability that a jump occurs
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in (t, t+dt), given that it has not occurred before, is (with U having exponential
exp(λ(x)) distribution)

P(U ≤ dt) = 1 − exp(−λ(x)dt) ≈ λ(x)dt.

When the jump occurs its size is ξ(x), with mean m(x) = E(ξ(x)). Therefore

dA(t) = E
(
dX(t)|Ft−

)
= λ(X(t))m(X(t))dt. (9.30)

Assume that limn→∞ Tn = T∞ = ∞ (such processes are called regular, and
sufficient conditions for this are given in a later section). If T∞ < ∞ then the
compensator is given for times t < T∞.

Theorem 9.15 Let X be a Markov jump process such that for all x, the hold-
ing time parameter is positive, λ(x) > 0, and the size of the jump from x is
integrable with mean m(x).

1. The compensator of X is given by

A(t) =
∫ t

0

λ(X(s))m(X(s))ds. (9.31)

2. Suppose the second moments of the jumps are finite, v(x) = Eξ2(x) < ∞.
Then the sharp bracket of the local martingale M(t) = X(t) − A(t) is
given by

〈M, M〉 (t) =
∫ t

0

λ(X(s))v(X(s))ds. (9.32)

Proof: The formula (9.31) follows from (9.25). Indeed, using the exponential
form of Fn (9.28), we have

A(t) =
∞∑

i=0

m(X(Ti))λ(X(Ti))(t ∧ Ti+1 − t ∧ Ti). (9.33)

Note that since the process X has a constant value X(Ti) on the time interval
[Ti, Ti+1), we have for a function f∫ t

0

f(X(s))ds =
∞∑

i=0

f(X(Ti))(t ∧ Ti+1 − t ∧ Ti), (9.34)

and taking f(x) = λ(x)m(x) gives the result. The formula (9.32) follows from
Theorem 9.14.

�
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9.6 Stochastic Equation for Jump Processes

It is clear from Theorem 9.15 that a Markov Jump process X has a semi-
martingale representation

X(t) = X(0) + A(t) + M(t) = X(0) +
∫ t

0

λ(X(s))m(X(s))ds + M(t). (9.35)

This is the integral form of the stochastic differential equation for X

dX(t) = λ(X(t))m(X(t))dt + dM(t), (9.36)

and is driven by the purely discontinuous, finite variation martingale M . By
analogy with diffusions the infinitesimal mean is λ(x)m(x) and the infinitesimal
variance is λ(x)v(x).

It is useful to have conditions assuring that the local martingale M in the
representation (9.35) is a martingale. Such conditions are given in the next
result.

Theorem 9.16 Suppose that for all x

λ(x)E(|ξ(x)|) ≤ C(1 + |x|), (9.37)

then representation (9.35) holds with a zero mean martingale M . If in addition

λ(x)v(x) ≤ C(1 + x2), (9.38)

then M is square integrable with

〈M, M〉 (t) =
∫ t

0

λ(X(s))v(X(s))ds. (9.39)

In particular, we have the following corollary.

Corollary 9.17 Suppose that the conditions of the above Theorem 9.16 hold.
Then

EX(t) = EX(0) + E
∫ t

0

λ(X(s))m(X(s))ds, (9.40)

V ar(M(t) − M(0)) = E
∫ t

0

λ(X(s))v(X(s))ds. (9.41)

The proof of the result can be found in Hamza and Klebaner (1995).
An application of the stochastic equation approach to the model of Birth-

Death processes is given in Chapter 13.



262 CHAPTER 9. PURE JUMP PROCESSES

Remark 9.2: Markov Jump processes with countably or finitely many states
are called Markov Chains. The jump variables have discrete distributions
in a Markov Chain, whereas they can have a continuous distribution in a
Markov process. Markov Jump processes are also known as Markov Chains
with general state space.

Remark 9.3: A model for a randomly evolving population can be served by a
Markov Chain on non-negative integers. In this case the states of the process
are the possible values for the population size. The traditional way of defining
a Markov Chain is by the infinitesimal probabilities: for integer i and j and
small δ

P(X(t + δ) = j|X(t) = i) = λijδ + o(δ),

where limδ→0 o(δ)/δ = 0. In this section we presented an almost sure, path
by path representation of a Markov Jump process. Another representation
related to the Poisson process can be found in Ethier and Kurtz (1986).

Generators and Dynkin’s Formula

Let X be the Markov Jump process described by (9.27). Suppose that λ(x) is
bounded, that is supx λ(x) < ∞. Define the following linear operator L acting
on bounded functions by

Lf(x) = λ(x)E
(
f(x + ξ(x)) − f(x)

)
= λ(x)mf (x). (9.42)

Theorem 9.18 (Dynkin’s Formula) Let L be as above, and define M f(t)
by

Mf (t) = f(X(t)) − f(X(0)) −
∫ t

0

Lf(X(s))ds. (9.43)

Then Mf is a martingale, and consequently

Ef(X(t)) = f(X(0)) + E
∫ t

0

Lf(X(s))ds. (9.44)

Proof: The proof of these formulae follows from Theorem 9.13 and Theo-
rem 9.15. The process f(X(t)) is a pure jump process with the same arrival
times Tn, and jumps of size Z ′

n = f(X(Tn)) − f(X(Tn−)) (in this case it is
also Markov). The jumps are bounded, since f is bounded. The mean of
the jump from x is given by E(Z ′

n+1|FTn , X(Tn) = x) = E
(
f(x + ξ(x)) −

f(x)
)

= mf (x). Therefore the compensator of f(X(t)) is, from Theorem 9.15,∫ t

0
λ(X(s))mf (X(s))ds. This implies that M f is a local martingale. If λ(x) is

bounded, then M(t) is bounded by a constant Ct on any finite time interval
[0, t]. Since a bounded local martingale is a martingale, M f is a martingale.
Moreover it is square integrable on any finite time interval.

�
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The linear operator L in (9.42) is called the generator of X . It can be
shown that with its help one can define probabilities on the space of of right-
continuous functions, so that the coordinate process is the Markov process, cf.
solution to the martingale problem for diffusions.

Theorem 9.16 above can be seen as a generalization of Dynkin’s formula for
the identity function f(x) = x and the quadratic function f(x) = x2. These
are particular cases of a more general theorem

Theorem 9.19 Assume that there are no explosions, that is, Tn ↑ ∞. Sup-
pose that for an unbounded function f there is a constant C such that for all
x

λ(x)E|f(x + ξ(x)) − f(x)| ≤ C(1 + |f(x)|). (9.45)

Suppose also that E|f(X(0))| < ∞. Then for all t, 0 ≤ t < ∞, E|f(X(t))| <
∞, moreover M f in (9.43) is a martingale and (9.44) holds.

For the proof see Hamza and Klebaner (1995).

9.7 Explosions in Markov Jump Processes

Let X(t) be a jump Markov process taking values in IR. If the process is
in states x then it stays there for an exponential length of time with mean
λ−1(x) after which it jumps from x. If λ(x) → ∞ for a set of values x, then
the expected duration of stay in state x, λ−1(x) → 0, and the time spent in x
becomes shorter and shorter. It can happen that the process jumps infinitely
many times in a finite time interval, that is, limn→∞ Tn = T∞ < ∞. This
phenomenon is called explosion. The terminology comes from the case when
the process takes only integer values and λ(x) can tend to infinity only when
x → ∞. In this case there are infinitely many jumps only if the process reaches
infinity in finite time.

When the process does not explode it is called regular. In other words, the
regularity assumption is

T∞ = lim
n→∞ Tn = ∞. a.s. (9.46)

If P(T∞ < ∞) > 0, then it said that the process explodes on the set {T∞ < ∞}.
A necessary and sufficient condition for non-explosion is given by

Theorem 9.20 ∞∑
0

1
λ(X(Tn)

= ∞. a.s. (9.47)
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Proof: We sketch the proof, see Breiman (1968) for details. Let νn be
a sequence of independent exponentially distributed random variables with
parameter λn. Then it is easy to see (by taking a Laplace transform) that∑n

0 νi < ∞ converges in distribution if and only if
∑∞

0
1

λn
< ∞. Using the

result that a series of independent random variables converges almost surely if
and only if it converges in distribution, we have

∑∞
0 νn < ∞ almost surely if

and only if
∑∞

0
1

λn
< ∞. Condition (9.47) now follows, since the conditional

distribution of Tn+1 − Tn, given the information up to the n-th jump, FTn , is
exponential with parameter λ(X(Tn)).

�

Condition (9.47) is hard to check in general, since it involves the vari-
ables X(Tn). A simple condition, which is essentially in terms of the function
λ(x)m(x) (the drift), is given below.

Theorem 9.21 Assume that X ≥ 0, and there exists a monotone function
f(x) such that λ(x)m(x) ≤ f(x) and

∫∞
0

dx
f(x) = ∞. Then the process X does

not explode, that is, P(X(t) < ∞ for all t, 0 ≤ t < ∞) = 1.

According to this, the first condition of the result on integrability, Theorem
9.16, guarantees that the process does not explode. Proof of Theorem 9.21
and other sharp sufficient conditions for regularity in terms of the parameters
of the process are given in Kersting and Klebaner (1995), (1996).

Notes. Material for this chapter is based on Liptser and Shiryayev (1974),
(1989), Karr (1986), and the research papers quoted in the text.
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9.8 Exercises

Exercise 9.1: Let U ≥ 0 and denote h(x) =
∫ x

0
dF (s)

1−F (s−) , where F (x) is the
distribution function of U . Show that for a > 0 Eh(U ∧ a) =

∫ a

0 dF (x).

Exercise 9.2: Show that when the distribution of inter-arrival times is expo-
nential the formula (9.18) gives the compensator λt, hence N(t) is a Poisson
process.

Exercise 9.3: Show that when the distribution of inter-arrival times is Geo-
metric then N(t) has a Binomial distribution.

Exercise 9.4: Prove (9.25).

Exercise 9.5: Let X(t) be a pure jump process with first k moments. Let
mk(x) = Eξk(x) and assume for all i = 1, . . . , k, λ(x)E|ξ(x)|k ≤ C|x|i. Show
that

EXk(t) = EXk(0) +
k−1∑
i=0

(
k

i

)∫ t

0

E
(
λ(X(s))X i(s)mk−i(X(s))

)
ds
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Chapter 10

Change of Probability
Measure

In this chapter we describe what happens to random variables and processes
when the original probability measure is changed to an equivalent one. Change
of measure for processes is done by using Girsanov’s theorem.

10.1 Change of Measure for Random Variables

Change of Measure on a Discrete Probability Space

We start with a simple example. Let Ω = {ω1, ω2} with probability measure
P given by p(ω1) = p, p(ω2) = 1 − p.

Definition 10.1 Q is equivalent to P (Q ∼ P) if they have same null sets, i
e. Q(A) = 0 if and only if P(A) = 0.

Let Q be a new probability measure equivalent to P. In this example, this
means that Q(ω1) > 0 and Q(ω2) > 0 (or 0 < Q(ω1) < 1). Put Q(ω1) = q,
0 < q < 1.

Let now Λ(ω) = Q(ω)

P(ω)
, that is, Λ(ω1) = Q(ω1)

P(ω1)
= q

p , and Λ(ω2) = 1−q
1−p .

By definition of Λ, for all ω

Q(ω) = Λ(ω)P (ω). (10.1)

Let now X be a random variable. The expectation of X under the probability
P is given by

EP (X) = X(ω1)P(ω1) + X(ω2)P(ω2) = pX(ω1) + (1 − p)X(ω2)

267
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and under the probability Q

EQ(X) = X(ω1)Q(ω1) + X(ω2)Q(ω2).

From (10.1)

EQ(X) = X(ω1)Λ(ω1)P(ω1) + X(ω2)Λ(ω2)P(ω2) = EP (ΛX). (10.2)

Take X = 1, then
EQ(X) = 1 = EP (Λ). (10.3)

On the other hand, take any random variable Λ > 0, such that EP (Λ) = 1,
and define Q by (10.1).

Then Q is a probability, because Q(ωi) = Λ(ωi)P(ωi) > 0, i = 1, 2, and

Q(Ω) = Q(ω1) + Q(ω2) = Λ(ω1)P(ω1) + Λ(ω2)P(ω2)
= EP (Λ) = 1.

Q is equivalent to P, since Λ is strictly positive.
Thus we have shown that for any equivalent change of measure Q ∼ P there

is a positive random variable Λ, such that EP (Λ) = 1, and Q(ω) = Λ(ω)P(ω).
This is the simplest version of the general result, the Radon-Nikodym Theorem.
The expectation under Q of a random variable X is given by,

EQ(X) = EP (ΛX). (10.4)

By taking indicators I(X ∈ A) we obtain the distribution of X under Q

Q(X ∈ A) = EP (ΛI(X ∈ A)).

These formulae, obtained here for a simple example, hold also in general.

Change of Measure for Normal Random Variables

Consider first a change of a Normal probability measure on IR. Let µ be any
real number, fµ(x) denote the probability density of N(µ, 1) distribution, and
Pµ the N(µ, 1) probability measure on IR (B( IR)). Then, it is easy to see that

fµ(x) =
1√
2π

e−
1
2 (x−µ)2 = f0(x)eµx−µ2/2. (10.5)

Put
Λ(x) = eµx−µ2/2. (10.6)

Then the above equation reads

fµ(x) = f0(x)Λ(x). (10.7)
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By the definition of a density function, the probability of a set A on the
line, is the integral of the density over this set,

P(A) =
∫

A

f(x)dx =
∫

A

dP. (10.8)

In infinitesimal notations this relation is written as

dP = P(dx) = f(x)dx. (10.9)

Hence the relation between the densities (10.7) can be written as a relation
between the corresponding probability measures

fµ(x)dx = f0(x)Λ(x)dx, and Pµ(dx) = Λ(x)P0(dx). (10.10)

By a property of the expectation (integral) (2.3), if a random variable X ≥ 0
then EX = 0 if and only if P(X = 0) = 1,

Pµ(A) =
∫

A

Λ(x)P0(dx) = EP0
(IAΛ) = 0

implies
P0(IAΛ = 0) = 1.

Since Λ(x) > 0 for all x, this implies P0(A) = 0. Using that Λ < ∞, the other
direction follows: if P0(A) = 0 then Pµ(A) = EP0

(IAΛ) = 0, which proves
that these measures have same null sets and are equivalent.

Another notation for Λ is

Λ =
dPµ

dP0
,

dPµ

dP0
(x) = eµx−µ2/2. (10.11)

This shows that any N(µ, 1) probability is obtained by an equivalent change
of probability measure from the N(0, 1) distribution.

We now give the same result in terms of changing the distribution of a
random variable.

Theorem 10.2 Let X have N(0, 1) under P, and Λ(X) = eµX−µ2/2. Define
measure Q by

Q(A) =
∫

A

Λ(X)dP = EP (IAΛ(X)) or
dQ
dP

(X) = Λ(X). (10.12)

Then Q is an equivalent probability measure, and X has N(µ, 1) distribution
under Q.
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Proof: We show first that Q defined by (10.12) is indeed a probabil-
ity. Q(Ω) = EQ(1) = EP (1Λ(X)) = EP (eµX−µ2/2) = e−µ2/2EP (eµX) = 1.
The last equality is because EP (eµX) = eµ2/2 for the N(0, 1) random vari-
able. Other properties of probability Q follow from the corresponding prop-
erties of the integral. Consider the moment generating function of X under
Q. EQ(euX) = EP (euXΛ(X)) = EP (e(u+µ)X−µ2/2) = e−µ2/2EP (e(u+µ)X) =
euµ+u2/2, which corresponds to the N(µ, 1) distribution.

�

Remark 10.1: If P is a probability such that X is N(0, 1), then X + µ has
N(µ, 1) distribution under the same P. This is an operation on the outcomes x.
When we change the probability measure P to Q = Pµ, we leave the outcomes
as they are, but assign different probabilities to them (more precisely to sets
of outcomes). Under the new measure the same X has N(µ, 1) distribution.

Example 10.1: (Simulations of rare events)
Change of probability measure is useful in simulation and estimation of probabil-
ities of rare events. Consider estimation of Pr(N(6, 1) < 0) by simulations. This
probability is about 10−10. Direct simulation is done by the expression

Pr(N(6, 1) < 0) ≈ 1

n

n∑
i=1

I(xi < 0), (10.13)

where xi’s are the observed values from the N(6, 1) distribution. Note that in a
million runs, n = 106, we should expect no values below zero, and the estimate is 0.

Let Q be the N(6, 1) distribution on IR. Consider Q as changed from N(0, 1) = P,
as follows

dQ

dP
(x) =

dN(6, 1)

dN(0, 1)
(x) = Λ(x) = eµx−µ2/2 = e6x−18.

So we have

Q(A) = N(6, 1)(A) = EP

(
Λ(x)I(A)

)
= EN(0,1)

(
e6x−18I(A)

)
.

In our case A = (−∞, 0), and Pr(N(6, 1) < 0) = Q(A).
Thus we are led to the following estimate

Pr(N(6, 1) < 0) = Q(A) ≈ 1

n

n∑
i=1

e6xi−18I(xi < 0) = e−12 1

n

n∑
i=1

e6(xi−1)I(xi < 0),

(10.14)
with xi generated from N(0, 1) distribution. Of course, about half of the observations
xi’s will be negative, resulting in a more precise estimate, even for a small number
of runs n.

Next we give the result for random variables, set up in a way similar to Gir-
sanov’s theorem for processes, changing measure to remove the mean.
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Theorem 10.3 (Removal of the mean) Let X have N(0, 1) distribution
under P, and Y = X + µ. Then there is an equivalent probability Q ∼ P,
such that Y has N(0, 1) under Q. (dQ/dP)(X) = Λ(X) = e−µX−µ2/2.

Proof: Similarly to the previous proof, Q is a probability measure, with
the same null sets as P.

EQ(euY ) = EP (eu(X+µ)Λ(X)) = EP (e(u−µ)X+uµ− 1
2 µ2

) = euµ− 1
2 µ2

EP (e(u−µ)X).

Using the moment generating function of N(0, 1), EP (e(u−µ)X) = e(u−µ)2/2,
which gives EQ(euY ) = eu2/2, establishing Y ∼ N(0, 1) under Q.

�

Finally, we give the change of one Normal probability to another.

Theorem 10.4 Let X have N(µ1, σ
2
1) distribution, call it P. Define Q by

(dQ/dP)(X) = Λ(X) =
σ1

σ2
e

(X−µ1)2

2σ2
1

− (X−µ2)2

2σ2
2 . (10.15)

Then X has N(µ2, σ
2
2) distribution under Q.

Proof: The form of Λ is easily verified as the ratio of Normal densities.
This proves the statement for P and Q on IR. On a general space, the proof
is similar to the above, by working out the moment generating function of X
under Q.

�

10.2 Change of Measure on a General Space

Let two probability measures P and Q be defined on the same space.

Definition 10.5 Q is called absolutely continuous with respect to P, written
as Q � P, if Q(A) = 0 whenever P(A) = 0. P and Q are called equivalent if
Q � P and P � Q.

Theorem 10.6 (Radon-Nikodym) If Q � P , then there exists a random
variable Λ, such that Λ ≥ 0, EP Λ = 1, and

Q(A) = EP (ΛI(A)) =
∫

A

ΛdP (10.16)

for any measurable set A. Λ is P-almost surely unique. Conversely, if there ex-
ists a random variable Λ with the above properties and Q is defined by (10.16),
then it is a probability measure and Q � P .
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The random variable Λ in the above theorem is called the Radon-Nikodym
derivative or the density of Q with respect to P, and is denoted by dQ/dP.
It follows from (10.16) that if Q � P, then expectations under P and Q are
related by

EQX = EP (ΛX) , (10.17)

for any random variable X integrable with respect to Q.
Calculations of expectations are sometimes made easier by using a change

of measure.

Example 10.2: (A Lognormal calculation for a financial option) E
(
eXI(X > a)

)
,

where X has N(µ, 1) distribution (P). Take Λ(X) = eX/EeX = eX−µ− 1
2 , and

dQ = Λ(X)dP. Then EΛ(X) = 1, 0 < Λ(X) < ∞, so Q ∼ P.

EP

(
eXI(X > a)

)
= eµ+ 1

2 EP

(
Λ(X)I(X > a)

)
= EQ

(
I(X > a)

)
= Q(X > a).

EQ(euX) = EP (euXΛ(X)) = EP (e(u+1)X−µ− 1
2 ) = euµ+u+u2/2,

which is the transform of N(µ + 1, 1) distribution. Thus the Q distribution of X is
N(µ+1, 1), and E(eXI(X > a)) = Q(X > a) = Pr(N(µ+1, 1) > a) = 1−Φ(a−µ−1).

We give the definition of the “opposite” concept to the absolute continuity
of two measures.

Definition 10.7 Two probability measures P and Q defined on the same space
are called singular if there exist a set A such that P(A) = 0 and Q(A) = 1.

Singularity means that by observing an outcome we can decide with certainty
on the probability model.

Example 10.3: 1. Let Ω = IR+, P is the exponential distribution with parameter
1, and Q is the Poisson distribution with parameter 1. Then P and Q are singular.
Indeed the set of non-negative integers has Q probability 1, and P probability 0.

2. We shall see later that the probability measures induced by processes σB(t),
where B is a Brownian motion, are singular for different values of σ.

Expectations for an absolutely continuous change of probability measure are
related by the formula (10.17). Conditional expectations are related by an
equation, similar to Bayes formula.

Theorem 10.8 (General Bayes formula) Let G be a sub-σ-field of F on
which two probability measures Q and P are defined. If Q � P with dQ = ΛdP
and X is Q-integrable, then ΛX is P-integrable and Q-a.s.

EQ(X |G) =
EP (XΛ|G)
EP (Λ|G)

. (10.18)
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Proof: We check the definition of conditional expectation given G, (2.15)
for any bounded G-measurable random variable ξ

EQ(ξX) = EQ(ξEQ(X |G)).

Clearly the rhs of (10.18) is G-measurable.

EQ

(
EP (XΛ|G)
EP (Λ|G)

ξ

)
= EP

(
Λ

EP (XΛ|G)
EP (Λ|G)

ξ

)
= EP

(
EP (Λ|G)

EP (XΛ|G)
EP (Λ|G)

ξ

)
= EP (EP (XΛ|G)ξ)
= EP (XΛξ) = EQ(Xξ).

�

In the rest of this section we address the general case of two measures, not
necessarily equivalent. Let P and Q be two measures on the same probability
space. Consider the measure ν = P+Q

2 . Then, clearly, P � ν and Q � ν.
Therefore, by the Radon-Nikodym Theorem, there exist Λ1 and Λ2, such that
dP/dν = Λ1 and dQ/dν = Λ2. Introduce the notation x(+) = 1/x, if x �= 0,
and 0 otherwise, so that x(+)x = I(x �= 0). We have

Q(A) =
∫

A

Λ2dν =
∫

A

Λ2

(
Λ(+)

1 Λ1 + 1 − Λ(+)
1 Λ1

)
dν

=
∫

A

Λ2Λ
(+)
1 Λ1dν +

∫
A

(1 − Λ(+)
1 Λ1)Λ2dν

=
∫

A

Λ2Λ
(+)
1 dP +

∫
A

(1 − Λ(+)
1 Λ1)dQ

:= Qc(A) + Qs(A),

where Qc(A) =
∫

A
Λ2Λ

(+)
1 dP is absolutely continuous with respect to P, and

Qs(A) =
∫

A
(1 − Λ(+)

1 Λ1)dQ. The set A = {Λ1 > 0} has P probability one,

P(A) =
∫

A

Λ1dν =
∫

Ω

Λ1dν = P(Ω) = 1,

but has measure zero under Qs, because on this set Λ(+)
1 Λ1 = 1 and Qs(A) = 0.

This shows that Qs is singular with respect to P. Thus we have

Theorem 10.9 (Lebesgue Decomposition) Let P and Q be two measures
on the same probability space. Then Q(A) = Qc(A) + Qs(A), where Qc � P
and Qs⊥P.
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10.3 Change of Measure for Processes

Since realizations of a Brownian motion are continuous functions, the probabil-
ity space is taken to be the set of continuous functions on [0, T ], Ω = C([0, T ]).
Because we have to describe the collection of sets to which the probability is
assigned, the concepts of an open (closed) set is needed. These are defined in
the usual way with the help of the the distance between two functions taken as
supt≤T |w1(t)−w2(t)|. The σ-field is the one generated by open sets. Probabil-
ity measures are defined on the measurable subsets of Ω. If ω = w[0,T ] denotes
a continuous function, then there is a probability measure P on this space such
that the “coordinate” process B(t, ω) = B(t, w[0,T ]) = w(t) is a Brownian mo-
tion, P is the Wiener measure, see Section 5.7. Note that although a Brownian
motion can be defined on [0,∞), the equivalent change of measure is defined
only on finite intervals [0, T ]. A random variable on this space is a function
X : Ω → IR, and X(ω) = X(w[0,T ]), also known as a functional of Brown-
ian motion. Since probabilities can be obtained as expectation of indicators,
P(A) = EIA, it is important to know how to calculate expectations. E(X) is
given as an integral with respect to the Wiener measure

E(X) =
∫

Ω

X(w[0,T ])dP. (10.19)

In particular, if X(w[0,T ]) = h(w(T )), for some function of real argument h,
then

E(X) =
∫

Ω

h(w(T ))dP = E(h(B(T )), (10.20)

which can be evaluated by using the N(0, T ) distribution of B(T ). Similarly,
if X a function of finitely many values of w, X(w[0,T ]) = h(w(t1), . . . , w(tn)),
then the expectation can be calculated by using the multivariate Normal dis-
tribution of B(t1), . . . , B(tn). However, for a functional which depends on the
whole path w[0,T ], such as integrals of w(t) or maxt≤T w(t), the distribution of
the functional is required (10.21). It can be calculated by using the distribution
of X , FX , as for any random variable

E(X) =
∫

Ω

X(w[0,T ])dP =
∫

IR
xdFX (x). (10.21)

If P and Q are equivalent, that is, they have same null sets, then there exists
a random variable Λ (the Radon-Nikodym derivative Λ = dQ/dP), such that
the probabilities under Q are given by Q(A) =

∫
A ΛdP. Girsanov’s theorem

gives the form of Λ.
First we state a general result, that follows directly from Theorem 10.8,

for the calculation of expectations and conditional expectations under an ab-
solutely continuous change of measure. It is also known as the general Bayes
formula.
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Theorem 10.10 Let Λ(t) be a positive P-martingale such that EP (Λ(T )) = 1.
Define the new probability measure Q by the relation Q(A) =

∫
A Λ(T )dP, (so

that dQ/dP = Λ(T )). Then Q is absolutely continuous with respect to P and
for a Q-integrable random variable X

EQ(X) = EP

(
Λ(T )X

)
. (10.22)

EQ(X |Ft) = EP

(
Λ(T )
Λ(t)

X |Ft

)
, (10.23)

and if X is Ft measurable, then for s ≤ t

EQ(X |Fs) = EP

(
Λ(t)
Λ(s)

X |Fs

)
. (10.24)

Proof: It remains to show (10.24). EQ(X |Fs) = EP

(
Λ(T )
Λ(s) X |Fs

)
=

EP

(
EP (Λ(T )

Λ(s) X |Ft)|Fs

)
= EP

(
X 1

Λ(s)EP (Λ(T )|Ft)|Fs

)
= EP

(
Λ(t)
Λ(s)X |Fs

)
.
�

The following result follows immediately from (10.24).

Corollary 10.11 A process M(t) is a Q-martingale if and only if Λ(t)M(t)
is a P-martingale.

By taking M(t) = 1 we obtain a result is used in financial applications.

Theorem 10.12 Let Λ(t) be a positive P-martingale such that EP (Λ(T )) = 1,
and dQ/dP = Λ(T ). Then 1/Λ(t) is a Q-martingale.

We show next that convergence in probability is preserved under an absolutely
continuous change of measure.

Theorem 10.13 Let Xn → X in probability P and Q � P. Then Xn → X
in probability Q.

Proof: Denote An = {|Xn − X | > ε}. Then convergence in probability of
Xn to X means P(An) → 0. But Q(An) = EP (ΛIAn). Since Λ is P-integrable,
the result follows by dominated convergence.

�

Corollary 10.14 The quadratic variation of a process does not change under
an absolutely continuous change of the probability measure.

Proof: The sums
∑n

i=0(X(ti+1) − X(ti))2 approximating the quadratic
variation converge in P probability to [X, X ](t). By the above result they
converge to the same limit under an equivalent to P probability Q.

�
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Theorem 10.15 (Girsanov’s theorem for Brownian motion) Let B(t),
0 ≤ t ≤ T , be a Brownian motion under probability measure P. Consider the
process W (t) = B(t) + µt. Define the measure Q by

Λ =
dQ
dP

(B[0,T ]) = e−µB(T )− 1
2 µ2T , (10.25)

where B[0,T ] denotes a path of Brownian motion on [0, T ]. Then Q is equivalent
to P, and W (t) is a Q-Brownian motion.

dP
dQ

(W[0,T ]) =
1
Λ

= eµW (T )− 1
2 µ2T . (10.26)

Proof: The proof uses Levy’s characterization of Brownian motion, as a
continuous martingale with quadratic variation process t. Quadratic variation
is the same under P and Q by Theorem 10.13. Therefore (with a slight abuse
of notation) using the fact that µt is smooth and does not contribute to the
quadratic variation,

[W, W ](t) = [B(t) + µt, B(t) + µt] = [B, B](t) = t.

It remains to establish that W (t) is a Q-martingale. Let Λ(t) = EP (Λ|Ft).
By the Corollary (10.11) to Theorem 10.10 it is enough to show that Λ(t)W (t)
is a P-martingale. This is done by direct calculations.

EP (W (t)Λ(t)|Fs) = EP

(
(B(t) + µt)e−µB(t)− 1

2 µ2t|Fs

)
= W (s)Λ(s).

�

It turns out that a drift of the form
∫ t

0
H(s)ds with

∫ T

0
H2(s)ds < ∞ can

be removed similarly by a change of measure.

Theorem 10.16 (Girsanov’s theorem for removal of drift) Let B(t) be
a P -Brownian motion, and H(t) is such that X(t) = − ∫ t

0
H(s)dB(s) is de-

fined, moreover E(X) is a martingale. Define an equivalent measure Q by

Λ =
dQ
dP

(B) = e
−
∫

T

0
H(s)dB(s)− 1

2

∫
T

0
H2(s)ds = E(X)(T ). (10.27)

Then the process

W (t) = B(t) +
∫ t

0

H(s)ds is a Q-Brownian motion. (10.28)

Proof: The proof is similar to the previous one and we only sketch it.
We show that W (t) = B(t) +

∫ t

0
H(s)ds is a continuous Q-martingale with

quadratic variation t. The result then follows by Levy’s characterization. The
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quadratic variation of W (t) = B(t) +
∫ t

0
H(s)ds is t, since the integral is

continuous and is of finite variation. W (t) is clearly continuous. To establish
that W (t) is a Q-martingale, by Corollary 10.11, it is enough to show that
Λ(t)W (t) is a P-martingale, with Λ(t) = EP (Λ|Ft). To this end consider

Λ(t)E(W )(t) = E(X)tE(W )t = E(X + W + [X, W ])t = E(X + B)t,

where we have used the rule for the product of semimartingale exponentials
(Theorem 8.13), [X, W ](t) = − ∫ t

0
H(s)ds and W (t) = B(t)+ [X, W ](t). Since

X and B are both P -martingales, so is X +B. Consequently E(X +B) is also
a P -martingale. Hence Λ(t)E(W )t is a P -martingale, and consequently E(W )t

is a Q-martingale. This implies that W (t) is also a Q-martingale.
�

Girsanov’s theorem holds in n dimensions.

Theorem 10.17 Let B be a P n-dimensional Brownian motion and
W = (W 1(t), . . . , Wn(t)), where

W i(t) = Bi(t) +
∫ t

0

Hi(s)ds,

with H(t) = (H1(t), H2(t), . . . , Hn(t)) a regular adapted process satisfying∫ T

0
|H(s)|2ds < ∞. Let

X(t) = −H · B := −
n∑

i=1

∫ t

0

Hi(s)dBi(s),

and assume that E(X)T is a martingale. Then there is an equivalent probability
measure Q, such that W is a Q-Brownian motion. Q is determined by

dQ
dP

(B[0,T ]) = Λ(B[0,T ]) = E(X)(T ).

Comment that a sufficient condition for E(X) to be a martingale is The-

orem 8.17, E(e
1
2

∫
T

0
H2(s)ds) < ∞, and for E(H · B) to be a martingale is

E
(
e

1
2

∫ T

0
|H(s)|2ds)

< ∞.
The proof for n dimensions is similar to one dimension, using calculations

from Exercise 10.5.
We give a version of Girsanov’s theorem for martingales. The proof is

similar to the one above, and is not given.

Theorem 10.18 Let M1(t), 0 ≤ t ≤ T be a continuous P-martingale. Let
X(t) be a continuous P-martingale such that E(X) is a martingale. Define a
new probability measure Q by

dQ
dP

= Λ = E(X)(T ) = eX(T )− 1
2 [X,X](T ). (10.29)
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Then
M2(t) = M1(t) − [M, X ](t) (10.30)

is a continuous martingale under Q.

A sufficient condition for E(X) to be a martingale is Novikov’s condition
E
(
e

1
2 [X,X]T

)
< ∞, or Kazamaki’s condition (8.40).

Change of Drift in Diffusions

Let X(t) be a diffusion, so that with a P-Brownian motion B(t), X(t) satisfies
the following stochastic differential equation with σ(x, t) > 0,

dX(t) = µ1(X(t), t)dt + σ(X(t), t)dB(t). (10.31)

Let

H(t) =
µ1(X(t), t) − µ2(X(t), t)

σ(X(t), t)
, (10.32)

and define Q by dQ = ΛdP with

Λ =
dQ
dP

= E
(
−
∫ ·

0

H(t)dB(t)
)

(T ) = e
−
∫ T

0
H(t)dB(t)− 1

2

∫ T

0
H2(t)dt

. (10.33)

By Girsanov’s theorem, provided the process E(H · B) is a martingale, the
process W (t) = B(t) +

∫ t

0
H(s)ds is a Q-Brownian motion. But

dW (t) = dB(t) + H(t)dt = dB(t) +
µ1(X(t), t) − µ2(X(t), t)

σ(X(t), t)
dt. (10.34)

Rearranging, we obtain the equation for X(t)

dX(t) = µ2(X(t), t)dt + σ(X(t), t)dW (t), (10.35)

with a Q-Brownian motion W (t). Thus the change of measure for a Brow-
nian motion given above results in the change of the drift in the stochastic
differential equation.

Example 10.4: (Maximum of arithmetic Brownian motion)
Let W (t) = µt+B(t), where B(t) is P -Brownian motion, and W ∗(t) = maxs≤t W (s).
When µ = 0 the distribution of the maximum as well as the joint distribution are
known, Theorem 3.21. We find these distributions when µ �= 0.

Let B(t) be a Q-Brownian motion, then W (t) is a P-Brownian motion with
Λ = dP/dQ is given by (10.26). Let A = {W (T ) ∈ I1, W

∗(T ) ∈ I2}, where I1, I2 are
intervals on the line. Then we obtain from (10.26)

P((W (T ),W ∗(T )) ∈ A) =

∫
A

eµW (T )− 1
2 µ2T dQ = EQ(eµW (T )− 1

2 µ2T I(A)). (10.36)
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Denote by qW,W∗ (x, y) and pW,W∗ (x, y) the joint density of (W (T ),W ∗(T )) under
Q and P respectively. Then it follows from (10.36)∫

{x∈I1,y∈I2}
pW,W∗ (x, y)dxdy =

∫
{x∈I1,y∈I2}

qW,W∗ (x, y)eµx− 1
2 µ2T dxdy. (10.37)

Thus
pW,W∗ (x, y) = eµx− 1

2 µ2T qW,W∗ (x, y). (10.38)

The density qW,W∗ is given by (3.16). The joint density pW,W∗ (x, y) can be computed
(see Exercise 10.6), and the distribution of the maximum is found by

∫
pW,W∗(x, y)dx.

10.4 Change of Wiener Measure

Girsanov’s Theorem 10.16 states that if the Wiener measure P is changed
to Q by dQ/dP = Λ = E(

∫ t

0 H(s)dB(s)) where B(t) is a P-Brownian mo-
tion, and H(t) is some predictable process, then Q is equivalent to P, and
B(t) = W (t)+

∫ t

0
H(s)ds for a Q-Brownian motion W . In this section we prove

the converse that the Radon-Nikodym derivative of any measure Q, equiva-
lent to the Wiener measure P, is a stochastic exponential of

∫ t

0 q(s)dB(s) for
some predictable process q. Using the predictable representation property of
Brownian martingales we prove the following result first.

Theorem 10.19 Let IF be Brownian motion filtration and Y be a positive
random variable. If EY < ∞ then there exists a predictable process q(t) such

that Y = (EY )e
∫

T

0
q(t)dB(t)− 1

2

∫
T

0
q2(t)dt.

Proof: Let M(t) = E(Y |Ft). Then M(t), 0 ≤ t ≤ T is a positive uniformly
integrable martingale. By Theorem 8.35 M(t) = EY +

∫ t

0
H(s)dB(s). Define

q(t) = H(t)/M(t). Then we have

dM(t) = H(t)dB(t) = M(t)q(t)dB(t) = M(t)dX(t), (10.39)

with X(t) =
∫ t

0
q(s)dB(s). Thus M is a semimartingale exponential of X ,

M(t) = M(0)eX(t)− 1
2 [X,X](t) and the result follows.

�

It remains to show that q is properly defined. We know that for each t,
M(t) > 0 with probability one. But there may be an exceptional set Nt, of
probability zero, on which M(t) = 0. As there are uncountably many t’s the
union of Nt’s may have a positive probability (even probability one), precluding
q being finite with a positive probability. The next result shows that this is
impossible.

Theorem 10.20 Let M(t), 0 ≤ t ≤ T , be a martingale, such that for any t,
P(M(t) > 0) = 1. Then M(t) never hits zero on [0, T ].
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Proof: Let τ = inf{t : M(t) = 0}. Using the Basic Stopping equation
EM(τ ∧ T ) = EM(T ). So we have

EM(T ) = EM(τ∧T ) = EM(T )I(τ > T )+EM(τ)I(τ ≤ T ) = EM(T )I(τ > T ).

It follows that EM(T )(1 − I(τ > T )) = 0. Since the random variables under
the expectation are non-negative, this implies M(T )(1 − I(τ > T )) = 0 a.s.
Thus I(τ > T ) = 1 a.s. Thus there is a null set N such that τ > T outside
N , or P(M(t) > 0, for all t ≤ T ) = 1. Since T was arbitrary, the argument
implies that τ = ∞ and zero is never hit.

�

Remark 10.2: Note that if for some stopping time τ a non-negative martin-
gale is zero, M(τ) = 0, and optional stopping holds, for all t > τ
E(M(t)|Fτ ) = M(τ) = 0, then M(t) = 0 a.s. for all t > τ .

Corollary 10.21 Let P be the Wiener measure, B(t) be a P-Brownian motion
and Q be equivalent to P. Then there exists a predictable process q(t), such
that

Λ(B[0,T ]) =
dQ
dP

(B[0,T ]) = e

∫ T

0
q(t)dB(t)− 1

2

∫ T

0
q2(t)dt

. (10.40)

Moreover, B(t) = W (t) +
∫ t

0
q(s)ds, where W (t) is a Q-Brownian motion.

Proof: By the Radon-Nikodym theorem, (dQ/dP) = Λ with 0 < Λ < ∞.
Since P(Λ > 0) = 1 and EP Λ = 1, existence of the process q(t) follows by
Theorem 10.19. Representation for B(t) as a Brownian motion with drift
under Q follows from (10.27) in Girsanov’s theorem.

�

(Corollary 10.21) is used in Finance, where q(t) denotes the market price for
risk.

10.5 Change of Measure for Point Processes

Consider a point process N(t) with intensity λ(t) (see Chapter 9 for defini-
tions). This presumes a probability space, which can be taken as the space
of right-continuous non-decreasing functions with unit jumps, and a proba-
bility measure P so that N has intensity λ(t) under P. Girsanov’s theorem
asserts that there is a probability measure Q, equivalent to P, under which
N(t) is Poisson process with the unit rate. Thus an equivalent change of mea-
sure corresponds to a change in the intensity. If we look upon the compensator∫ t

0
λ(s)ds as the drift, then an equivalent change of measure results in a change

of the drift.
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Theorem 10.22 (Girsanov’s theorem for Poisson processes) Let N(t)
be a Poisson process with rate 1 under P, 0 ≤ t ≤ T . For a constant λ > 0
define Q by

dQ
dP

= e(1−λ)T+N(T ) ln λ. (10.41)

Then under Q, N is a Poisson process with rate λ.

Proof: Let
Λ(t) = e(1−λ)t+N(t) lnλ = e(1−λ)tλN(t). (10.42)

It is easy to see that Λ(t) is a P-martingale with respect to the natural filtration
of the process N(t). Indeed, using independence of increments of the Poisson
process, we have

EP (Λ(t)|Fs) = e(1−λ)tEP (λN(t)|Fs)
= e(1−λ)tλN(s)EP (λN(t)−N(s)|Fs)
= e(1−λ)tλN(s)E(λN(t)−N(s))
= e(1−λ)tλN(s)e(λ−1)(t−s) = e(1−λ)sλN(s) = Λ(s).

We have used that P-distribution of N(t) − N(s) is Poisson with parameter
(t− s), hence EP (λN(t)−N(s)) = e(λ−1)(t−s). We show that under Q the incre-
ments N(t)−N(s) are independent of the past and have the Poisson λ(t− s)
distribution, establishing the result. Fix u > 0. The conditional expectation
under the new measure, Theorem 10.10, and the definition of Λ(t) (10.42) yield

EQ

(
eu(N(t)−N(s))|Fs

)
= EP

(
eu(N(t)−N(s)) Λ(t)

Λ(s)
|Fs

)
= e(1−λ)(t−s)EP

(
e(u+log λ)(N(t)−N(s))|Fs

)
= e(1−λ)(t−s)EP

(
e(u+log λ)(N(t)−N(s)))

= eλ(t−s)(eu−1).

�

Theorem 10.23 Let N(t), 0 ≤ t ≤ T , be a Poisson process with rate λ under
Q. Define P by

dP
dQ

= e(λ−1)T−N(T ) ln λ. (10.43)

Then under P, N(t) is a Poisson process with rate 1.

As a corollary we obtain that the measures of Poisson processes with con-
stant rates are equivalent with Likelihood ratio given by the following theorem.
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Theorem 10.24 Let N be a Poisson process with rate λ > 0 under the proba-
bility Pλ. Then it is a Poisson process with rate µ under the equivalent measure
Pµ defined by

dPλ

dPµ
= e(µ−λ)T−N(T )(ln λ−ln µ). (10.44)

Note that the key point in changing measure was the martingale property
(under the original measure) of the Likelihood Λ(t). This property was es-
tablished directly in the proofs. Observe that the Likelihood is the stochastic
exponential of the point process martingale M(t) = N(t)−A(t). For example,
in changing the rate from 1 to λ, Λ = E((λ − 1)M

)
with M(t) = N(t) − t. It

turns out that a general point process N(t) with intensity λ(t) can be obtained
from a Poisson process with rate 1 by a change of measure. In fact, Theorem
10.24 holds for general point processes with stochastic intensities. The form of
stochastic exponential E((λ−1) ·M)

for non-constant λ is not hard to obtain,
see Exercise 10.8,

Λ = E( ∫ (λ(s) − 1)dM(s)
)
(T ) = e

∫
T

0
(1−λ(s))ds+

∫
T

0
ln λ(s)dN(s) (10.45)

The next result establishes that a point process is a Poisson process (with
a constant rate) under a suitable change of measure.

Theorem 10.25 Let N(t) be a Poisson process with rate 1 under P, and
M(t) = N(t) − t. If for a predictable process λ(s), E( ∫ (λ(s) − 1)dM(s)

)
is

a martingale for 0 ≤ t ≤ T , then under the probability measure Q defined by
(10.45) dQ/dP = Λ, N is a point process with the stochastic intensity λ(t).
Conversely, if Q is absolutely continuous with respect to P then there exists
a predictable process λ(t), such that under Q, N is a point process with the
stochastic intensity λ(t).

10.6 Likelihood Functions

When observations X are made from competing models described by the prob-
abilities P and Q, the Likelihood is the Radon-Nikodym derivative Λ = dQ/dP.

Likelihood for Discrete Observations

Suppose that we observe a discrete random variable X , and there are two
competing models for X : it can come from distribution P or Q. For the
observed number x the Likelihood is given by

Λ(x) =
Q(X = x)
P(X = x)

. (10.46)
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Small values of Λ(x) provide evidence for model P, and large values for model
Q. If X is a continuous random variable with densities f0(x) under P and
f1(x) under Q, then dP = f0(x)dx, dQ = f1(x)dx, and the Likelihood is given
by

Λ(x) =
f1(x)
f0(x)

. (10.47)

If the observed data are a finite number of observations x1, x2, . . . , xn then
similarly with x = (x1, x2, . . . , xn)

Λ(x) =
Q(X = x)
P(X = x)

, or Λ(x) =
f1(x)
f0(x)

, (10.48)

depending on whether the models are discrete or continuous. Note that if one
model is continuous and the other is discrete, then the corresponding measures
are singular and the Likelihood does not exist.

Likelihood Ratios for Diffusions

Let X be a diffusion solving the SDE with a P-Brownian motion B(t)

dX(t) = µ1(X(t), t)dt + σ(X(t), t)dB(t), (10.49)

Suppose that it satisfies another equation with a Q-Brownian motion W (t)

dX(t) = µ2(X(t), t)dt + σ(X(t), t)dW (t). (10.50)

The Likelihood, as we have seen, is given by (10.33)

Λ(X[0,T ]) =
dQ
dP

= e

∫ T

0

µ2(X(t),t)−µ1 (X(t),t)
σ(X(t),t) dB(t)− 1

2

∫ T

0

(µ2(X(t),t)−µ1(X(t),t))2

σ2(X(t),t)
dt

.

(10.51)
Since B(t) is not observed directly, the Likelihood should be expressed as
a function of the observed path X[0,T ]. Using equation (10.49) we obtain
dB(t) = dX(t)−µ1(X(t),t)dt

σ(X(t),t) , and putting this into the Likelihood, we obtain

Λ(X)T =
dQ
dP

= e

∫ T

0

µ2(X(t),t)−µ1 (X(t),t)
σ2(X(t),t)

dX(t)− 1
2

∫ T

0

µ2
2(X(t),t)−µ2

1 (X(t),t)

σ2(X(t),t)
dt

. (10.52)

Using the Likelihood a decision can be made as to what model is more appro-
priate for X .

Example 10.5: (Hypotheses testing)
Suppose that we observe a continuous function xt, 0 ≤ t ≤ T , and we want to
know whether it is just White noise, the null hypothesis corresponding to probability
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measure P or it is some signal contaminated by noise, the alternative hypothesis
corresponding to probability measure Q.

H0 : noise: dX(t) = dB(t), and, H1 : signal+noise: dX(t) = h(t)dt + dB(t)

Here we have µ1(x) = 0, µ2(x) = h(t), σ(x) = 1. The Likelihood is given by

Λ(X)T =
dQ

dP
= e

∫
T

0
h(t)dX(t)− 1

2

∫
T

0
h2(t)dt

. (10.53)

This leads to the Likelihood ratio test of the form: conclude the presence of noise if
Λ ≥ k, where k is determined from setting the probability of the type one error to
α.

P(e

∫
T

0
h(t)dB(t)− 1

2

∫
T

0
h2(t)dt ≥ k) = α. (10.54)

Example 10.6: (Estimation in Ornstein-Uhlenbeck Model)
Consider estimation of the friction parameter α in the Ornstein-Uhlenbeck model on
0 ≤ t ≤ T ,

dX(t) = −αX(t)dt + σdB(t).

Denote by Pα the measure corresponding to X(t), so that P0 corresponds to σB(t),
0 ≤ t ≤ T . The Likelihood is given by

Λ(α, X[0,T ]) =
dPα

dP0
= exp

(∫ T

0

−αX(t)

σ2
dX(t) − 1

2

∫ T

0

α2X2(t)

σ2
dt

)
.

Maximizing log Likelihood, we find

α̂ = −
∫ T

0
X(t)dX(t)∫ T

0
X2(t)dt

. (10.55)

Remark 10.3: Let X(t) and Y (t) satisfy the stochastic differential equations
for 0 ≤ t ≤ T

dX(t) = µX(X(t), t)dt + σX(X(t), t)dW (t), (10.56)

and
dY (t) = µY (Y (t), t)dt + σY (Y (t), t)dW (t). (10.57)

Consider probability measures induced by these diffusions on the space of
continuous functions on [0, T ], C[0, T ]. It turns out that if σX �= σY then
PX and PY are singular (“live” on different sets). It means that by observing
a process continuously over an interval of time we can decide precisely from
which equation it comes. This identification can be made with the help of the
quadratic variation process,

d[X, X ](t) = σ2(X(t), t)dt, and σ2(X(t), t) =
d[X, X ](t)

dt
, (10.58)
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and [X, X ] is known exactly if a path is observed continuously.
If σX = σY = σ then PX and PY are equivalent. The Radon-Nikodym

derivatives (the Likelihoods) are given by

dPY

dPX
(X[0,T ]) = e

∫ T

0

µY (X(t),t)−µX (X(t),t)
σ2(X(t),t)

dX(t)− 1
2

∫ T

0

µ2
Y

(X(t),t)−µ2
X

(X(t),t)

σ2(X(t),t)
dt

,

(10.59)
and

dPX

dPY
(Y[0,T ]) = e

−
∫ T

0

µY (Y (t),t)−µX (Y (t),t)
σ2(Y (t),t)

dY (t)+ 1
2

∫ T

0

µ2
Y

(Y (t),t)−µ2
X

(Y (t),t)

σ2(Y (t),t)
dt

.

(10.60)

Notes. Material for this chapter is based on Karatzas and Shreve (1988),
Liptser and Shirayev (1974), Lamberton and Lapeyre (1996).

10.7 Exercises

Exercise 10.1: Let P be N(µ1, 1) and Q be N(µ2, 1) on IR. Show that they
are equivalent and that the Radon-Nikodym derivative dQ/dP = Λ is given
by Λ(x) = e(µ2−µ1)x+ 1

2 (µ2
1−µ2

2). Give also dP/dQ.

Exercise 10.2: Show that if X has N(µ, 1) distribution under P, then there is
an equivalent measure Q, such that X has N(0, 1) distribution under Q. Give
the Likelihood dQ/dP and also dP/dQ. Give the Q-distribution of Y = X−µ.

Exercise 10.3: Y has a Lognormal LN(µ, σ2) distribution. Using a change
of measure calculate EY I(Y > K). Hint: change measure from N(µ, σ2) to
N(µ + σ2, σ2).

Exercise 10.4: Let X(t) = B(t) + sin t for a P-Brownian motion B(t). Let
Q be an equivalent measure to P such X(t) is a Q-Brownian motion. Give
Λ = dQ/dP.

Exercise 10.5: Let B be an n-dim Brownian motion and H an adapted
regular process. Let H ·B(T ) =

∑n
i=1

∫ T

0
Hi(s)dBi(s) be a martingale. Show

that the martingale exponential is given by exp(H · B(T )− 1
2

∫ T

0

∣∣H(s)
∣∣2ds).

Hint: show that quadratic variation of H ·B is given by
∫ T

0
|H(s)|2ds, where

|H(s)|2 denotes the length of vector H(s).

Exercise 10.6: Let Wµ(t) = µt + B(t), where B(t) is a P-Brownian motion.
Show that

P (max
t≤T

Wµ(t) ≤ y|Wµ(T ) = x) = 1 − e
−2y(y−x)

T , x ≤ y,
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and
P (min

t≤T
Wµ(t) ≥ y|Wµ(T ) = x) = 1 − e

−2y(y−x)
T , x ≥ y.

Hint: use the joint distributions (10.38) and (3.16).

Exercise 10.7: Prove Theorem 10.23.

Exercise 10.8: Let N(t) be Poisson process with rate 1 and N̄(t) = N(t)−t.
Show that for an adapted, continuous and bounded process H(t), the process
M(t) =

∫ t

0 H(s)dN̄(s) is a martingale for 0 ≤ t ≤ T . Show that

E(M)(t) = e
−
∫ t

0
H(s)ds+

∫ t

0
ln(1+H(s))dN(s)

.

Exercise 10.9: (Estimation of parameters)
Find the Likelihood corresponding to different values of µ of the process X(t)
given by dX(t) = µX(t)dt + σX(t)dB(t) on [0, T ]. Give the maximum Likeli-
hood estimator.

Exercise 10.10: Verify the martingale property of the Likelihood occurring
in the change of rate in a Poisson process.

Exercise 10.11: Let dQ = ΛdP on FT , Λ(t) = EP (Λ|Ft) is continuous. For
a P-martingale M(t) find a finite variation process A(t) such that M ′(t) =
M(t) − A(t) is a Q-local martingale.

Exercise 10.12: Let B and N be respectively a Brownian motion and a
Poisson process on the same space (Ω,F , IF, P), 0 ≤ t ≤ T . Define Λ(t) =
e(ln 2)N(t)−t and dQ = Λ(T )dP. Show that B is a Brownian motion under Q.

Exercise 10.13:

1. Let B and N be respectively a Brownian motion and a Poisson process
on the same space (Ω,F , IF, P ), 0 ≤ t ≤ T , and X(t) = B(t) + N(t).
Give an equivalent probability measure Q1 such that B(t)+t and N(t)−t
are Q1-martingales. Deduce that X(t) is a Q1-martingale.

2. Give an equivalent probability measure Q2 such that B(t)+2t and N(t)−
2t are Q2-martingales. Deduce that X(t) is a Q2-martingale.

3. Deduce that there are infinitely many equivalent probability measures Q
such that X(t) = B(t) + N(t) is a Q-martingale.



Chapter 11

Applications in Finance:
Stock and FX Options

In this chapter the fundamentals of Mathematics of Option Pricing are given.
The concept of arbitrage is introduced, and a martingale characterization of
models that don’t admit arbitrage is given, the First Fundamental Theorem
of asset pricing. The theory of pricing by no-arbitrage is presented first in
the Finite Market model, and then in a general Semimartingale Model, where
the martingale representation property is used. Change of measure and its
application as the change of numeraire are given as a corollary to Girsanov’s
theorem and general Bayes formula for expectations. They represent the main
techniques used for pricing foreign exchange options, exotic options (asian,
lookback, barrier options) and interest rates options.

11.1 Financial Derivatives and Arbitrage

A financial derivative or a contingent claim on an asset is a contract that allows
purchase or sale of this asset in the future on terms that are specified in the
contract. An option on stock is a basic example.

Definition 11.1 A call option on stock is a contract that gives its holder the
right to buy this stock in the future at the price K written in the contract,
called the exercise price or the strike.

A European call option allows the holder to exercise the contract (that is,
to buy this stock at K) at a particular date T , called the maturity or the
expiration date. An American option allows the holder to exercise the contract
at any time before or at T .

287
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A contract that gives its holder the right to sell stock is called a put option.
There are two parties to a contract, the seller (writer) and the buyer (holder).
The holder of the options has the right but no obligations in exercising the
contract. The writer of the options has the obligation to abide by the contract,
for example, they must sell the stock at price K if the call option is exercised.
Denote the price of the asset (e.g. stock) at time t by S(t). A contingent claim
on this asset has its value at maturity specified in the contract, and it is some
function of the values S(t), 0 ≤ t ≤ T . Simple contracts depend only on the
value at maturity S(T ).

Example 11.1: (Value at maturity of European call and put options)
If you hold a call option, then you can buy one share of stock at T for K. If at time
T , S(T ) < K, you will not exercise your option, as you can buy stock cheaper than
K, thus this option is worthless. If at time T , S(T ) ≥ K, then you can buy one
share of stock for K and sell it immediately for S(T ) making profit of S(T ) − K.
Thus a European call option has the value at time T

C(T ) = (S(T ) − K)+ = max(0, S(T ) − K). (11.1)

Similar considerations reveal that the value of the European put at maturity is

P (T ) = (K − S(T ))+ = max(0, K − S(T )). (11.2)

Example 11.2: (Exotic Options)
The value at maturity of Exotic Options depends prices of the asset on the whole
time interval before maturity, S(t), t ≤ T .
1. Lookback Options. Lookback call pays at T , X = (S(T )− Smin)

+ = S(T )− Smin

and lookback put X = Smax − S(T ), where Smin and Smax denote the smallest and
the largest values of S(t) on [0, T ].
2. Barrier Options. The call that gets knocked out when the price falls below a
certain level H (down and out call) pays at T

X = (S(T ) − K)+I( min
0≤t≤T

S(t) ≥ H), S(0) > H, K > H.

3. Asian Options. Payoff at T depends on the average price S̄ = 1
T

∫ T

0
S(u)du

during the life of the option. Average call pays X = (S̄ − K)+, and average put
X = (K − S̄)+. Random strike option pays X = (S(T ) − S̄)+.

Whereas the value of a financial claim at maturity can be obtained from
the terms specified in the contract, it is not so clear how to obtain its value
prior to maturity. This is done by the pricing theory, which is also used to
manage financial risk.

If the payoff of an option depends only on the price of stock at expiration,
then it is possible to graph the value of an option at expiration against the
underlying price of stock. For example, the payoff function of a call option is
(x − K)+. Some payoff functions are given in Exercise 11.1.
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Arbitrage and Fair Price

Arbitrage is defined in Finance as a strategy that allows to make a profit out
of nothing without taking any risk. Mathematical formulation of arbitrage is
given later in the context of a market model.

Example 11.3: (Futures, or Forward) Consider a contract that gives the holder 1
share of stock at time T , so its value at time T is the market price S(T ). Denote
the price of this contract at time 0 by C(0). The following argument shows that
C(0) = S(0), as any other value results in an arbitrage profit.

If C(0) > S(0), then sell the contract and receive C(0); buy the stock and pay
S(0). The difference C(0) − S(0) > 0 can be invested in a risk-free bank account
with interest rate r. At time T you have the stock to deliver , and make arbitrage
profit of (C(0) − S(0))erT . If C(0) < S(0), the reverse strategy results in arbitrage
profit: you buy the contract and pay C(0); sell the stock and receive S(0), (selling
the stock when you don’t hold it is called short selling and it is allowed). Invest
the difference S(0) − C(0) > 0 in a risk-free bank account. At time T exercise the
contract by buying back stock at S(T ). The profit is (S(0) − C(0))erT . Thus any
price C(0) different from S(0) results in arbitrage profit. The only case which does
not result in arbitrage profit is C(0) = S(0).

The fair price in a game of chance with a profit X (negative profit is loss) is
the expected profit EX . The above example also demonstrates that financial
derivatives are not priced by their expectations, and in general, their arbitrage-
free value is different to their fair price.

The following example uses a two-point distribution for the stock on expi-
ration to illustrate that prices for options can not be taken as expected payoffs,
and all the prices but one, lead to arbitrage opportunities.

Example 11.4: The current price of the stock is $10. We want to price a call option
on this stock with the exercise price K = 10 and expiration in one period. Suppose
that the stock price at the end of the period can have only two values $8 and $12
per share, and that the riskless interest rate is 10%. Suppose the call is priced at $1
per share. Consider the strategy: buy call option on 200 shares and sell 100 shares
of stock

ST = 12 ST = 8

Buy option on 200 shares -200 400 0
Sell (short) 100 shares 1000 -1200 -800

Savings account 800 880 880

Profit 0 +80 +80

We can see that in either case ST = 8 or ST = 12 an arbitrage profit of $80 is
realized. It can be seen, by reversing the above strategy, that any price above $1.36
will result in arbitrage. The price that does not lead to arbitrage is $1.36.
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Equivalence Portfolio. Pricing by No Arbitrage

The main idea in pricing by no-arbitrage arguments is to replicate the payoff
of the option at maturity by a portfolio consisting of stock and bond (cash).
To avoid arbitrage, the price of the option at any other time must equal the
value of the replicating portfolio, which is valued by the market. Consider the
one period case T = 1 first, and assume that in one period stock price moves
up by factor u or down by d, d < 1 < u, and we want to price a claim C that
has the values Cu and Cd on maturity. Schematically the following trees for
prices of the stock and the option are drawn.

uS Cu if the price goes up
S C

dS Cd if the price goes down

Note that the values of the option Cu and Cd are known, since the values of
the stock uS and dS are known by assumption. A portfolio that replicates the
options consists of a shares of stock and b of bond (cash in savings account).
After one period the value of this portfolio is

aST + br =
{

auS + br if ST = uS
adS + br if ST = dS.

Since this portfolio is equivalent to the option, by matching the payoff, we
have a system of two linear equations for a and b.

auS + br = Cu

adS + br = Cd

}
.

a =
Cu − Cd

(u − d)S
, b =

uCd − dCu

(u − d)r
. (11.3)

The price of the option must equal that of the replicating portfolio

C = aS + b, (11.4)

with a and b from (11.3). To prove that the price is given by (11.4) consider
cases when the price is above and below that value C. If an option is priced
above C, then selling the option and buying the portfolio specified by a and
b results in arbitrage. If the option is priced below C then buying the option
and selling the portfolio results in arbitrage. It will be seen later that there
are no arbitrage strategies when the option is priced at C.
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Example 11.5: (continued) K = 10, CT = (ST − K)+, r = 1.1.

12 u = 1.2 2 = Cu

10 C
8 d = 0.8 0 = Cd

a = 0.5, b = −3.64, from (11.3). Thus this option is replicated by the portfolio
consisting of 0.5 shares and borrowing 3.64 dollars. Initial value of this portfolio is
C = 0.5 · 10 − 3.64 = 1.36, which gives the no-arbitrage price for the call option.

The formula for the price of the option C (11.4) can be written as

C = aS + b =
1
r

(
pCu + (1 − p)Cd

)
, (11.5)

with
p =

r − d

u − d
. (11.6)

It can be viewed as the discounted expected payoff of the claim, with probability
p of up and (1 − p) down movements. The probability p, calculated from the
given returns of the stock by (11.6), is called the arbitrage-free or risk-neutral
probability, and has nothing to do with subjective probabilities of market going
up or down.

In the above example p = 1.1−0.8
1.2−0.8 = 0.75. So that C = 1

1.12 · 0.75 = 1.36.

Binomial Model

The one-period formula can be applied recursively to price a claim when trad-
ing is done one period after another. The tree for option’s prices in a two-period
model is given by

Cuu

Cu

Cud

C
Cdu

Cd

Cdd.

The final prices of the option are known from the assumed model for stock
prices. The prices prior to expiration are obtained recursively, by using the
one-period formula (11.5),

Cu =
1
r
(pCuu + (1 − p)Cud), Cd =

1
r
(pCdu + (1 − p)Cdu).
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Using the formula (11.5) again

C =
1
r
(pCu +(1−p)Cd) =

1
r2

(p2Cuu +p(1−p)Cud+(1−p)pCdu+(1−p)2Cdd).

In the n period model, T = n, if Cudu...du = Cu...ud...d, then continuing by
induction

C =
1
rn

E(Cn) =
1
rn

n∑
i=0

(
n

i

)
pi(1 − p)n−i Cu...u︸ ︷︷ ︸

i

d....d︸︷︷︸
n−i

(11.7)

is today’s price of a claim which is to be exercised n periods from now. C can
be seen as the expected payoff, expressed in the now dollar value, of the final
payoff Cn, when the probability of the market going up on each period is the
arbitrage-free probability p. For a call option

Cu...u︸ ︷︷ ︸
i

d....d︸︷︷︸
n−i

= (uidn−iS − K)+,

and C can be written by using the complimentary Binomial cumulative prob-
ability distribution function Bin(j; n, p) = P(Sn > j)

C = SBin(j; n, p′) − r−nKBin(j; n, p),

where j = [ ln(K/Sdn)
ln(u/d) ] + 1 and p′ = u

r p.
It is possible to obtain the option pricing formula of Black and Scholes

from the Binomial formula by taking limits as the length of the trading period
goes to zero and the number of trading periods n goes to infinity.

Pricing by No Arbitrage

Given a general model these are the question we ask.

1. If we have a model for evolution of prices, how can we tell if there are
arbitrage opportunities? Not finding any is a good start, but not a proof
that there are none.

2. If we know that there are no arbitrage opportunities in the market, how
do we price a claim, such as an option?

3. Can we price any option, or are there some that cannot be priced by
arbitrage arguments?

The answers are given by two main results, called the Fundamental Theorems
of asset pricing. In what follows we outline the mathematical theory of pricing
of claims in finite and general market models.



11.2. A FINITE MARKET MODEL 293

11.2 A Finite Market Model

Consider a model with one stock with price S(t) at time t, and a riskless
investment (bond, or cash in a savings account) with price β(t) at time t. If
the riskless rate of investment is a constant r > 1 then β(t) = rtβ(0).

A market model is called finite if S(t), t = 0, . . . , T take finitely many
values. A portfolio (a(t), b(t)) is the number of shares of stock and bond units
held during [t − 1, t). The information available after observing prices up to
time t is denoted by the σ-field Ft. The portfolio is decided on the basis
of information at time t − 1, in other words a(t), b(t) are Ft−1 measurable,
t = 1, . . . , T , or in our terminology they are predictable processes. The change
in market value of the portfolio at time t is the difference between its value
after it has been established at time t − 1 and its value after prices at t are
observed, namely

a(t)S(t) + b(t)β(t) − a(t)S(t − 1) − b(t)β(t − 1) = a(t)∆S(t) + b(t)∆β(t).

A portfolio (trading strategy) is called self-financing if all the changes in the
portfolio are due to gains realized on investment, that is, no funds are borrowed
or withdrawn from the portfolio at any time,

V (t) = V (0) +
t∑

i=1

(
a(i)∆S(i) + b(i)∆β(i)), t = 1, 2, . . . , T. (11.8)

The initial value of the portfolio (a(t), b(t)) is V (0) = a(1)S(0) + b(1)β(0) and
subsequent values V (t), t = 1, . . . , T are given by

V (t) = a(t)S(t) + b(t)β(t). (11.9)

V (t) represents the value of the portfolio just before time t transactions after
time t price was observed. Since the market value of the portfolio (a(t), b(t))
at time t after S(t) is announced is a(t)S(t) + b(t)β(t), and the value of the
newly setup portfolio is a(t + 1)S(t) + b(t + 1)β(t), a self-financing strategy
must satisfy

a(t)S(t) + b(t)β(t) = a(t + 1)S(t) + b(t + 1)β(t). (11.10)

A strategy is called admissible if it is self-financing and the corresponding value
process is non-negative.

A contingent claim is a non-negative random variable X on (Ω,FT ). It
represents an agreement which pays X at time T , for example, for a call with
strike K, X = (S(T ) − K)+.

Definition 11.2 A claim X is called attainable if there exists an admissible
strategy replicating the claim, that is, V (t) satisfies (11.8), V (t) ≥ 0 and
V (T ) = X.
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Definition 11.3 An arbitrage opportunity is an admissible trading strategy
such that V (0) = 0, but EV (T ) > 0.

Note that since V (T ) ≥ 0, EV (T ) > 0 is equivalent to P(V (T ) > 0) > 0. The
following result is central to the theory.

Theorem 11.4 Suppose there is a probability measure Q, such that the dis-
counted stock process Z(t) = S(t)/β(t) is a Q-martingale. Then for any ad-
missible trading strategy the discounted value process V (t)/β(t) is also a Q-
martingale.

Such Q is called an equivalent martingale measure (EMM) or a risk-neutral
probability measure.

Proof: Since the market is finite, the value process V (t) takes only finitely
many values, therefore EV (t) exist. The martingale property is verified as
follows.

EQ

(
V (t + 1)
β(t + 1)

∣∣Ft

)
= EQ

(
a(t + 1)Z(t + 1) + b(t + 1)|Ft

)
= a(t + 1)EQ

(
Z(t + 1)|Ft

)
+ b(t + 1) since a(t) and b(t) are predictable

= a(t + 1)Z(t) + b(t + 1) since Z(t) is a martingale
= a(t)Z(t) + b(t) since (a(t), b(t)) is self-financing (11.10)

=
V (t)
β(t)

.

�

This result is “nearly” the condition for no-arbitrage, since it states that
if we start with zero wealth, then positive wealth cannot be created if prob-
abilities are assigned by Q. Indeed, by the above result V (0) = 0 implies
EQ(V (T )) = 0, and Q(V (T ) = 0) = 1. However, in the definition of an arbi-
trage strategy the expectation is taken under the original probability measure
P. To establish the result for P equivalence of probability measures is used.
Recall the definition from Chapter 10.

Definition 11.5 Two probability measures P and Q are called equivalent if
they have same null sets, that is, for any set A with P(A) = 0, Q(A) = 0 and
vice versa.

Equivalent probability measures in a market model reflect the fact that in-
vestors agree on the space of all possible outcomes, but assign different prob-
abilities to the outcomes. The following result gives a probabilistic condition
to assure that the model does not allow for arbitrage opportunities. It states
that no arbitrage is equivalent to existence of EMM.
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Theorem 11.6 (First Fundamental Theorem) A market model does not
have arbitrage opportunities if and only if there exists a probability measure Q,
equivalent to P, such that the discounted stock process Z(t) = S(t)/β(t) is a
Q-martingale.

Proof: Proof of sufficiency. Suppose there exists a probability measure Q,
equivalent to P, such that the discounted stock process Z(t) = S(t)/β(t) is a
Q-martingale. Then there are no arbitrage opportunities. By Theorem 11.4
any admissible strategy with V (0) = 0 must have Q(V (T ) > 0) = 0. Since Q
is equivalent to P, P(V (T ) > 0) = 0. But then EP (V (T )) = 0. Thus there
are no admissible strategies with V (0) = 0 and EP (V (T )) > 0, in other words,
there is no arbitrage.

A proof of necessity requires additional concepts, see, for example, Harrison
and Pliska (1981).

�

Claims are priced by the replicating portfolios.

Theorem 11.7 (Pricing by No-Arbitrage) Suppose that the market model
does not admit arbitrage, and X is an attainable claim with maturity T . Then
C(t), the arbitrage-free price of X at time t ≤ T , is given by V (t), the value
of a portfolio of any admissible strategy replicating X. Moreover

C(t) = V (t) = EQ

(
β(t)
β(T )

X
∣∣Ft

)
, (11.11)

where Q is an equivalent martingale probability measure.

Proof: Since X is attainable, it is replicated by an admissible strategy with
the value of the replicating portfolio V (t), 0 ≤ t ≤ T , and X = V (T ). Fix one
such strategy. To avoid arbitrage, the price of X at any time t < T must be
given by the value of this portfolio V (t), otherwise arbitrage profit is possible.

Since the model does not admit arbitrage a martingale probability measure
Q exists by Theorem 11.6. The discounted value process V (t)/β(t) is a Q-
martingale by Theorem 11.4, hence by the martingale property

V (t)
β(t)

= EQ(
V (T )
β(T )

|Ft). (11.12)

But V (T ) = X , and we have

V (t)
β(t)

= EQ

(
1

β(T )
X
∣∣Ft

)
. (11.13)

�
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Note that β(t)
β(T )X represents the value of the claim X in the dollars at time t,

and the price of X at time t = 0 is given by

C(0) = EQ

(
1

β(T )
X

)
. (11.14)

Remark 11.1: The lhs. of equation (11.13) V (t)/β(t) = a(t)Z(t) + b(t) is
determined by the portfolio a(t), b(t), but its rhs. EQ

(
1

β(T )X
∣∣Ft

)
is deter-

mined by the measure Q and has nothing to do with a chosen portfolio. This
implies that for a given martingale measure Q, and any t all self-financing
portfolios replicating X have the same value, moreover this common value is
also the same for different martingale probability measures. Thus equation
(11.11) provides an unambiguous price for the claim X at time t.

However, if a claim X is not attainable its expectation may vary with the
measure Q, see Example 11.7 below.

Now we know how to price attainable claims. If all the claims in the market
are attainable, then we can price any claim.

Definition 11.8 Market models in which any claim is attainable are called
complete.

The following result characterizes complete models in terms of the martingale
measure. The proof can be found in Harrison Kreps (1979) and Harrison and
Pliska (1983).

Theorem 11.9 (Completeness) The market model is complete if and only
if the martingale probability measure Q is unique.

Example 11.6: (A complete model)
The one-step Binomial model (t = 0, 1) can be described by payoff vector of the stock
(d, u) and of the bond (r, r). A claim X is a vector (x1, x2) representing the payoff
of the claim when the market goes down, x1, and up x2. As the two vectors (r, r)
and (d, u) span IR2, any vector is a linear combination of those two, hence any claim
can be replicated by a portfolio, and the model is complete. To find a martingale
probability Q, we solve EQZ(1) = Z(0), or 1

r
(pu+(1−p)d) = 1. The unique solution

for p = r−d
u−d

. It is a probability if and only if d < r < u. Thus the existence and
uniqueness of the martingale measure is verified. In this model any claim can be
priced by no-arbitrage considerations.

Example 11.7: (An incomplete model)
The model where stock’s payoff can take 3 possible values (d, 1, u) and the bond with
payoff (1, 1, 1) is not complete. These vectors span a subspace of R3, therefore not
all possible returns can be replicated. For example, the claim that pays $1 when the
stock goes up and nothing in any other case has the payoff (0, 0, 1) and cannot be
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replicated. We now verify that there are many martingale measures. To find them
we must solve EQZ(1) = Z(0).

1
r
[puu + pn + pdd] = 1

pu + pn + pd = 1

}

Any solution of this system makes Z(t), t = 0, 1 into a martingale.

pu =
r − 1

u − 1
+

1 − d

u − 1
pd, pn =

u − r

u − 1
− u − d

u − 1
pd, 0 ≤ pu, pn, pd ≤ 1

11.3 Semimartingale Market Model

Arbitrage in Continuous Time Models

In continuous time there are different versions of the no-arbitrage concept.
The main premise is the same as in discrete time, it should be impossible to
make “something” out of nothing without taking risk. The difference between
different versions of no-arbitrage is in the kinds of allowable (admissible) self-
financing strategies that define how “something” is made.

Let a(t) and b(t) denote the number of shares and bond units respectively
held at time t. The market value of the portfolio at time t is given by

V (t) = a(t)S(t) + b(t)β(t). (11.15)

The change in the value of the portfolio due to change in the price of assets
during dt is a(t)dS(t) + b(t)dβ(t).

Definition 11.10 A portfolio (a(t), b(t)), 0 ≤ t ≤ T , is called self-financing
if the change in value comes only from the change in prices of the assets,

dV (t) = a(t)dS(t) + b(t)dβ(t), (11.16)

V (t) = V (0) +
∫ t

0

a(u)dS(u) +
∫ t

0

b(u)dβ(u). (11.17)

It is assumed that S(t) and β(t) are semimartingales. The processes a(t)
and b(t) must be predictable processes satisfying a certain condition for the
stochastic integral to be defined, see (8.8) and (8.52).

In a general situation, when both S(t) and β(t) are stochastic, the rhs. of
(11.17) can be seen as a stochastic integral with respect to the vector process
(S(t), β(t)). Such integrals extend the standard definition of scalar stochastic
integrals and can be defined for a larger class of integrands, due to possible
interaction between the components. We don’t go into details, as they are
rather complicated, and refer to Shiryaev (1999), Jacod and Shiryaev (1987).
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The following concepts describe no-arbitrage: No Arbitrage (NA), No Free
Lunch (NFL), No Free Lunch with Bounded Risk (NFLBR), No Free Lunch
with Vanishing Risk (NFLVR), No Feasible Free Lunch with Vanishing Risk
(NFFLVR), see Shiryaev (1999), Kreps (1981), Delbaen and Schachermayer
(1994), Kabanov (2001). We don’t aim to present the Arbitrage theory in
continuous time, and consider a simpler formulation, following Harrison and
Pliska (1981).

We consider a model in continuous time 0 ≤ t ≤ T consisting of two assets,
a semimartingale S(t) representing the stock price process, and the savings
account (or bond) β(t), β(0) = 1. We assume β(t) is continuous and of finite
variation. The following is a central result.

Theorem 11.11 (a(t), b(t)) is self-financing if and only if the discounted value
process V (t)

β(t) is a stochastic integral with respect to the discounted price process

V (t)
β(t)

= V (0) +
∫ t

0

a(u)dZ(u), (11.18)

where Z(t) = S(t)/β(t).

Proof: Using the assumption that the bond process is continuous and of
finite variation, we have

d

(
V (t)
β(t)

)
=

1
β(t−)

dV (t) + V (t−)d
(

1
β(t)

)
+ d[V,

1
β

](t)

=
1

β(t)
dV (t) + V (t−)d

(
1

β(t)

)
.

Using the self-financing property

d

(
V (t)
β(t)

)
=

1
β(t)

(
a(t)dS(t) + b(t)dβ(t)

)
+
(
a(t)S(t−) + b(t)β(t)

)
d

(
1

β(t)

)

=a(t)
(

dS(t)
β(t−)

+ S(t−)d(
1

β(t)
)
)

︸ ︷︷ ︸
dZ(t)=d(S(t)/β(t))

+b(t)
(

1
β(t)

dβ(t) + β(t)d(
1

β(t)
)
)

︸ ︷︷ ︸
d(β(t)· 1

β(t) )=0

= a(t)dZ(t).

The other direction. Assume (11.18). From V (t) = a(t)S(t) + b(t)β(t), we
find b(t) = V (t)/β(t) − a(t)Z(t). Using (11.18),

b(t) = V (0) +
∫ t

0

a(u)dZ(u) − a(t)Z(t). (11.19)
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Using (11.18) V (t) = V (0)β(t) + β(t)
∫ t

0
a(u)dZ(u). Hence

dV (t) = V (0)d(β(t)) +
∫ t

0

a(u)dZ(u)d(β(t)) + β(t)a(t)dZ(t)

= V (0)d(β(t)) + (b(t) − V (0) + a(t)Z(t))d(β(t)) + β(t)a(t)dZ(t)
= b(t)d(β(t)) + a(t)Z(t)d(β(t)) + β(t)a(t)dZ(t)
= b(t)d(β(t)) + a(t)d(Z(t)β(t)) = b(t)d(β(t)) + a(t)dS(t),

and self-financing property of V (t) is established.
�

The basis for mathematical formulation of arbitrage is the existence of
the EMM, the equivalent martingale probability measure. In a general model
existence of such a measure is introduced as an assumption.

EMM Assumption

There exists a martingale probability measure Q which is equivalent to the
original measure P , such that the discounted price process Z(t) = S(t)/β(t)
is a Q-martingale.

We give examples of models where the EMM assumption does not and does
hold.

Example 11.8: dS(t) = .04S(t)dt. dβ(t) = 0.03β(t)dt. S(t) = S(0)e0.04t, β(t) =
e0.03t, S(t)e−0.03t = e0.01t. Since e0.01t is a deterministic non-constant function,
there is no probability measure Q that would make it into a martingale.

Example 11.9: S(t) = S(0) +
∫ t

0
B(s)ds, where B(s) is a P-Brownian motion.

By the Corollary 10.21, an equivalent change of measure results in B(t) being
transformed into B(t) + q(t), for some process q(t). Thus under the EMM Q,

S(t) = S(0) +
∫ t

0
B(s)ds +

∫ t

0
q(s)ds. Since S(t) has finite variation, it can not

be a martingale, because a continuous martingale is either a constant or has infinite
variation (see Theorem 7.29). Hence there is no EMM in this model.

Example 11.10: (Bachelier model)

S(t) = S(0) + µt + σB(t), (11.20)

for positive constants µ, σ. β(t) = 1. The EMM exists (and is unique) by the
Girsanov’s theorem.

Example 11.11: (Black-Scholes model)

dS(t) = µS(t)dt + σS(t)dB(t), β(t) = ert. (11.21)

Solving the SDE for S(t), Z(t) = S(t)e−rt = S(0)e(µ−r− 1
2 σ2)t+σB(t). This process is a

martingale if and only if µ = r; when µ = r, it is the exponential martingale of σB(t),
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when µ �= r, it is a martingale times a non-constant deterministic function, easily
seen not a martingale. Writing dS(t) = σS(t)( µ

σ
dt+ dB(t)), and using the change of

drift in diffusions, there is (a unique) Q, such that µ
σ
dt + dB(t) = r

σ
dt + dW (t) for a

Q Brownian motion W (t). So σB(t) = rt + σW (t) − µt Thus the equation for Z(t)
in terms of W (t) is

Z(t) = S(0)e(µ−r− 1
2 σ2)t+σB(t) = S(0)e−

1
2 σ2t+σW (t),

verifying that Q is the EMM.

Admissible Strategies

The discounted value of a replicating self-financing portfolio V (t)/β(t) is a
stochastic integral with respect to the Q-martingale Z(t), Theorem 11.11. We
would like it to be a martingale, because then all its values can be determined
by its final value, which is matched to the claim X . The martingale property
implies V (t)/β(t) = EQ(V (T )/β(T )|Ft) = EQ(X/β(T )|Ft).

However, a stochastic integral with respect to a martingale is only a local
martingale. Thus the discounted value process of a self-financing portfolio in
(11.18) is a local martingale under Q. Since it is non-negative, it is a super-
martingale (Theorem 7.23). Supermartingales have non-increasing expecta-
tions. In particular, there are strategies (called suicidal) that can turn the ini-
tial investment into nothing. Adding such a strategy to any other self-financing
portfolio will change the initial value without changing the final value. Thus
there are self-financing strategies with the same final value but different initial
values. This phenomenon is precisely the difference in the situation between
the finite market model and the general model. Note that, similar to the finite
market model, a self-financing strategy cannot create something out of noth-
ing, since the expectations of such strategies are non-increasing. To eliminate
the undesirable strategies from consideration, only martingale strategies are
admissible. We follow Harrison and Pliska (1981).

Fix a reference EMM, equivalent martingale probability measure Q, so
that the discounted stock price process Z(t) is a Q-martingale; expectations
are taken with respect to this measure Q.

Definition 11.12 A predictable and self-financing strategy (a(t), b(t)) is called
admissible if√∫ t

0

a2(u)d[Z, Z](u) is finite and locally integrable 0 ≤ t ≤ T . (11.22)

Moreover V (t)/β(t) is a non-negative Q-martingale.
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Note that condition (11.22) is needed to define the stochastic integral∫ t

0
a(u)dZ(u), see condition (8.8). If (11.22) holds then

∫ t

0
a(u)dZ(u) and con-

sequently V (t)/β(t) are local martingales. If moreover V (t)/β(t) ≥ 0 then it
is a supermartingale.

Pricing of Claims

A claim is a non-negative random variable. It is attainable if it is integrable,
EX < ∞, and there exists an admissible trading strategy such that at maturity
T , V (T ) = X . To avoid arbitrage, the value of an attainable claim at time
t < T must be the same as that of the replicating portfolio at t.

Theorem 11.13 The price C(t) at time t of an attainable claim X, is given
by the value of an admissible replicating portfolio V (t), moreover

C(t) = EQ

(
β(t)
β(T )

X
∣∣Ft

)
. (11.23)

The proof follows by the martingale property of V (t)/β(t) in exactly the same
way as in the finite model case.

C(t) = V (t) = β(t)EQ

(
V (T )/β(T )

∣∣Ft

)
= β(t)EQ

(
V (T )
β(T )

∣∣Ft

)
= β(t)EQ

(
X

β(T )

∣∣Ft

)
.

Since attainable claims can be priced, the natural question is “how can
one tell whether a claim is attainable?”. The following result gives an answer
using the predictable representation property of the discounted stock price.

Theorem 11.14 Let X be an integrable claim and let M(t) = EQ

(
X

β(T ) |Ft

)
,

0 ≤ t ≤ T . Then X is attainable if and only if M(t) can be represented in the
form

M(t) = M(0) +
∫ t

0

H(u)dZ(u)

for some predictable process H. Moreover V (t)/β(t) = M(t) is the same for
any admissible portfolio that replicates X.

Proof: Suppose X is attainable, and that (a(t), b(t)) replicates it. By the
previous result V (t)/β(t) = M(t). It follows By (11.18) that the desired repre-
sentation holds with H(t) = a(t). Conversely, if M(t) = M(0)+

∫ t

0 H(u)dZ(u),
take a(t) = H(t), and b(t) = M(0) +

∫ t

0 H(u)dZ(u) − H(t)Z(t). This gives a
self-financing strategy.

�
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Completeness of a Market Model

A market model is complete if any integrable claim is attainable, in other
words, can be replicated by a self-financing portfolio. If a model is complete,
then any claim can be priced by no-arbitrage considerations.

We know by Theorem 11.14 that for a claim to be attainable the martingale
M(t) = EQ( X

β(T ) |Ft) should have a predictable representation with respect to
the Q-martingale Z(t) = S(t)/β(t). Recall, that the martingale Z(t) has the
predictable representation property if any other martingale can be represented
as a stochastic integral with respect to it, see Definition 8.34. For results on
predictable representations see Section 8.12. In particular, if the martingale
Z(t) has the predictable representation property, then all claims in the model
are attainable. It turns out that the opposite is also true, moreover there is a
surprising characterization, the equivalent martingale measure Q is unique.

Theorem 11.15 (Second Fundamental Theorem) The following are equiv-
alent:

1. The market model is complete.

2. The martingale Z(t) has the predictable representation property.

3. The EMM Q, that makes Z(t) = S(t)/β(t) into a martingale, is unique.

11.4 Diffusion and the Black-Scholes Model

In this section we apply general results to the diffusion models of stock prices.
In a diffusion model the stock price is assumed to satisfy

dS(t) = µ(S(t))dt + σ(S(t))dB(t), (11.24)

where B(t) is P-Brownian motion. Bond price is assumed to be deterministic
and continuous β(t) = exp(

∫ t

0
r(u)du). According to Theorem 11.13 pricing

of claims is done under the martingale probability measure Q that makes
Z(t) = S(t)/β(t) into a martingale.

Theorem 11.16 Let H(t) = µ(S(t))−r(t)S(t)
σ(S(t)) . Suppose that E (∫ ·

0 H(t)dB(t)
)

is a martingale. Then the EMM exists and is unique. It is defined by

Λ =
dQ
dP

= E
(∫ ·

0

H(t)dB(t)
)

(T ) = e

∫
T

0
H(t)dB(t)− 1

2

∫
T

0
H2(t)dt

. (11.25)

The SDE for S(t) under Q with a Brownian motion W , is

dS(t) = r(t)S(t)dt + σ(S(t))dW (t). (11.26)
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Proof: It is easy to see by Itô’s formula that Z(t) satisfies

dZ(t) = d
(S(t)

β(t)

)
=

µ(S(t)) − r(t)S(t)
β(t)

dt +
σ(S(t))

β(t)
dB(t).

=
σ(S(t))

β(t)

(
µ(S(t)) − r(t)S(t)

σ(S(t))
dt + dB(t)

)
.

For Z(t) to be a martingale it must have zero drift coefficient. Define Q by
(11.25). Using (10.34), µ(S(t))−r(t)S(t)

σ(S(t)) dt + dB(t) = dW (t) with a Q Brownian
motion W (t). This gives the SDE

dZ(t) = d
(S(t)

β(t)

)
=

σ(S(t))
β(t)

dW (t).

Using integration by parts we obtain the SDE (11.26) under the EMM Q for
S(t).

�

To price claims, expectations should be calculated by using equation (11.26),
and not the original one in (11.24). The effect of change of measure is the
change in the drift: µ(x) is changed into rx, where r is the riskless interest
rate.

Black-Scholes Model

The Black-Scholes model is the commonly accepted model for pricing of claims
in the Financial Industry. The main assumptions of the model are: the riskless
interest rate is a constant r, σ(S(t)) = σS(t), where the constant σ is called
“volatility”. The stock price processes S(t) satisfies SDE

dS(t) = µS(t)dt + σS(t)dB(t). (11.27)

Using Itô’s formula with f(x) = lnx (see Example 5.5) we find that the solution
is given by

S(t) = S(0)e(µ−σ2
2 )t+σB(t). (11.28)

This model corresponds to the simplest random model for the return R(t) on
stock

dR(t) =
dS(t)
S(t)

= µdt + σdB(t). (11.29)

S(t) is the stochastic exponential of R(t), dS(t) = S(t)dR(t). By Theorem
8.12 S(t) = S(0)E(R)t = S(0)eR(t)− 1

2 [R,R](t), giving (11.28).
The EMM Q makes S(t)e−rt into a martingale. By Theorem 11.16 it exists

and is unique. It is obtained by letting µ
σ dt + dB(t) = r

σdt + dW (t), for a Q-
Brownian motion W (t). In this case H(t) = µ−r

σ ,
∫ ·
0 H(t)dB(t) = µ−r

σ B(t)
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and E (∫ ·
0
H(t)dB(t)

)
(T ) = E (µ−r

σ B
)
(T ) is the exponential martingale of

Brownian motion. The SDE (11.26) under the EMM Q for S(t) is

dS(t) = rS(t)dt + σS(t)dW (t). (11.30)

It has the solution
S(t) = S(0)e(r−σ2

2 )t+σW (t). (11.31)

Thus under the equivalent martingale measure Q, S(T ) has a Lognormal dis-
tribution, LN

(
(r − σ2

2 )T + lnS(0), σ2T
)
. The price of a claim X at time T is

given by
C(t) = e−r(T−t)EQ(X |Ft). (11.32)

If X = g(S(T )), then by the Markov property of S(t), C(t) = EQ

(
g(S(T ))|Ft

)
=

EQ

(
g(S(T ))|S(t)

)
. The conditional distribution under Q given Ft is obtained

from the equation (using (11.31))

S(T ) = S(t)e(r−σ2
2 )(T−t)+σ(W (T )−W (t)),

and is Lognormal, LN
(
(r − σ2

2 )(T − t) + lnS(t), σ2(T − t)
)
.

Pricing a Call Option

A call option pays X = (S(T )−K)+ at time T . To find its price at time t = 0,
according to (11.32), we must calculate E(S(T )−K)+, where expectation E is
taken under the arbitrage-free probability Q. In the Black-Scholes model the
Q-distribution of S(T ) is a Lognormal. Denote for brevity the parameters of
this distribution by µ and σ2, with µ = (r− σ2

2 )T +ln S(0) and new σ2 = σ2T .

E(S(T )−K)+=E(S(T )−K)I(X > K) =ES(T )I(S(T ) > K)−KQ(S(T ) > K).

The second term is easy to calculate by using Normal probabilities as
K(1 − Φ((log K − µ)/σ)).

The first term can be calculated by a direct integration, or by changing
measure, see Example 10.2. S(T ) is absorbed into the Likelihood dQ1/dQ =
Λ = S(T )/ES(T ). Now, by Lognormality of S(T ) write it as eY , with Y ∼
N(µ, σ2). Then ES(T ) = EeY = eµ+σ2/2, and

E(eY I(eY > K)) = EeY E((eY /EeY )I(eY > K)) = EeY E(ΛI(eY > K))
= EeY EQ1I(eY > K) = EeY Q1(e

Y > K).

Since dQ1/dQ = eY −µ−σ2/2, it follows by Theorem 10.4 that Q1 is
N(µ + σ2, σ2) distribution. Therefore

E(eY I(eY > K)) = eµ+σ2/2(1 − Φ((ln K − µ − σ2)/σ)).
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Finally, using 1 − Φ(x) = Φ(−x), we obtain

E(X − K)+ = eµ+σ2/2Φ(
µ + σ2 − ln K

σ
) − KΦ(

µ − ln K

σ
). (11.33)

The price at time t of the European call option on stock with strike K and
maturity T is given by (Theorem 11.13)

C(t) = e−r(T−t)EQ((S(T ) − K)+|Ft).

It follows from (11.33) that C(t) is given by the Black-Scholes formula

C(t) = S(t)Φ(h(t)) − Ke−r(T−t)Φ
(
h(t) − σ

√
T − t

)
, (11.34)

where

h(t) =
ln S(t)

K + (r + 1
2σ2)(T − t)

σ
√

T − t
. (11.35)

Pricing of Claims by a PDE. Replicating Portfolio

Let X be a claim of the form X = g(S(T )). Since the stock price satisfies SDE
(11.30), by the Markov property of S(t) it follows from (11.32) that the price
of X at time t

C(t) = e−r(T−t)EQ

(
g(S(T ))|Ft

)
= e−r(T−t)EQ

(
g(S(T ))|S(t)

)
. (11.36)

By the Feynman-Kac formula (Theorem 6.8),

C(x, t) = e−r(T−t)EQ

(
g(S(T ))|S(t) = x

)
solves the following partial differential equation (PDE)

1
2
σ2x2 ∂2C(x, t)

∂x2
+ rx

∂C(x, t)
∂x

+
∂C(x, t)

∂t
− rC = 0. (11.37)

The boundary condition is given by the value of the claim at maturity

C(x, T ) = g(x), x ≥ 0,

with g(x) is the value of the claim at time T when the stock price is x. When
x = 0 equation (11.37) gives

C(0, t) = e−r(T−t)g(0), 0 ≤ t ≤ T,

(portfolio of only a bond has its value at time t as the discounted final value.)
For a call option g(x) = (x−K)+. This partial differential equation was solved
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by Black and Scholes with the Fourier transform method. The solution is the
Black-Scholes formula (11.34).

Next we give an argument to find the replicating portfolio, which is also
used to re-derive the PDE (11.37). It is clear that C(t) in (11.36) is a function
of S(t) and t. Let (a(t), b(t)) be a replicating portfolio. Since it is self-financing
its value process satisfies

dV (t) = a(t)dS(t) + b(t)dβ(t). (11.38)

If X is an attainable claim, that is, X = V (T ), then the arbitrage-free value
of X at time t < T is the value of the portfolio

V (t) = a(t)S(t) + b(t)β(t) = C(S(t), t). (11.39)

Thus we have by (11.38)

dC(S(t), t) = dV (t) = a(t)dS(t) + b(t)dβ(t). (11.40)

Assume that C(x, t) is smooth enough to apply Itô’s formula. Then from the
SDE for the stock price (11.30) (from which d[S, S](t) = σ2S2(t)dt), we have

dC(S(t), t) =
∂C(S(t), t)

∂x
dS(t) +

∂C(S(t), t)
∂t

dt +
1
2

∂2C(S(t), t)
∂x2

σ2S2(t)dt.

(11.41)
By equating the two expressions above we have(
a(t)−∂C(S(t), t)

∂x

)
dS(t)=

(∂C(S(t), t)
∂t

+
1
2

∂2C(S(t), t)
∂x2

σ2S2(t)
)
dt−b(t)dβ(t).

(11.42)
The lhs has a positive quadratic variation unless a(t)− ∂C(S(t),t)

∂x = 0, and the
rhs has zero quadratic variation. For them to be equal we must have for all t

a(t) =
∂C

∂x
(S(t), t), (11.43)

and consequently

b(t)dβ(t) =
(

∂C(S(t), t)
∂t

+
1
2

∂2C(S(t), t)
∂x2

σ2S2(t)
)

dt. (11.44)

Putting the values of a(t) and b(t)β(t) into equation (11.39), taking into ac-
count dβ(t) = rβ(t)dt, and replacing S(t) by x, we obtain the PDE (11.37).
The replicating portfolio is given by (11.43) and (11.44)

Using the Black-Scholes formula, as the solution of this PDE, the replicat-
ing portfolio is obtained from (11.43)

a(t) = S(t)Φ(h(t)), b(t) = KΦ(h(t) − σ
√

T − t), (11.45)

where h(t) is given by (11.35).
Another way to derive the Black-Scholes PDE, useful in other models, is

given in Exercise 11.8.
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Validity of the Assumptions

The simulated time series of a geometric Brownian motion (with σ = 1 and
various µs (265 points)) look similar to the time series of observed stock prices
(daily stock closing prices for period 5 Aug 91- 7 Aug 92), see Fig. 11.1. This
shows that the suggested model is capable of producing realistic looking price
processes, but, of course, does not prove that this is the correct model. The
assumption of normality can be checked by looking at histograms and using
formal statistical tests. The histogram of the BHP stock returns points to
normality. However, the assumption of constant volatility does not seem to be
true, and this issue is addressed next.

Implied Volatility

Denote by Cm the observed market price of an option with strike K and
expiration T . The implied volatility It(K, T ) is defined as the value of the
volatility parameter σ in the Black-Scholes formula (11.34) that matches the
observed price, namely

CBS(It(K, T )) = Cm
t (K, T ), (11.46)

where CBS is given by (11.34). It has been observed that the implied volatility
as a function of strike K (and of term T ) is not a constant, and has a graph
that looks like a smile. Models with stochastic volatility are able to reproduce
the observed behaviour of implied volatilities, see Fouque et al. (2000).

Stochastic Volatility Models

A class of models in which the volatility parameter is not a constant, but a
stochastic process itself is known as stochastic volatility models. These models
were introduced to explain the smile in the implied volatility. An example of
such is the Heston (1993) model, in which the stock price S(t) and the volatility
v(t) satisfy the following SDEs under the EMM,

dS(t) = rS(t)dt +
√

v(t)S(t)dB(t)

dv(t) = α(µ − v(t))dt + δ
√

v(t) dW (t), (11.47)

where the Brownian motions B and W are correlated. Stochastic volatility
models are incomplete, see Example 8.26. Therefore a replicating portfolio
involves a stock and another option. Pricing by using an EMM or replicating
by a portfolio with a stock and another option, leads to a PDE for the price of
an option, by using the Feynman-Kac formula with a two-dimensional diffusion
process, see Fouque et al. (2000), p.45. Heston (1993) derived a PDE and its
solution for the transform of the option price. The price itself is obtained by
the inversion of the transform.
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Figure 11.1: Simulated and real stock prices.
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Figure 11.3: Histogram of BHP daily returns over 30 days.
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11.5 Change of Numeraire

A numeraire is the asset in which values of other assets are measured. The
no-arbitrage arguments imply that absence of arbitrage opportunities can be
stated in terms of existence of the equivalent martingale probability measure,
EMM, (risk-neutral measure) that makes the price process measured in a cho-
sen numeraire into a martingale. If the savings account β(t) = ert is a nu-
meraire, then the price S(t) is expressed in units of the saving’s account, and
Q makes Z(t) = S(t)/ert into a martingale. But we can choose the stock price
to be the numeraire, then the pricing probability measure, EMM Q1, is the
one that makes β(t)/S(t) into a martingale. Change of numeraire is used for
currency options and interest rates options.

The price of an attainable claim paying X at T , C = EQ( X
β(T ) ) can be

calculated also as C = EQ1(
X

S(T ) ). The way to change measures and express
the prices of claims under different numeraires are given by the next results.
Note that both assets S(t) and β(t) can be stochastic, the only requirement is
that S(t)/β(t), 0 ≤ t ≤ T is a positive martingale.

Theorem 11.17 (Change of numeraire) Let S(t)/β(t), 0 ≤ t ≤ T be a
positive Q-martingale. Define Q1 by

dQ1

dQ
= Λ(T ) =

S(T )/S(0)
β(T )/β(0)

. (11.48)

Then under Q1, β(t)/S(t) is a martingale. Moreover, the price of an attainable
claim X at time t is related under the different numeraires by the formula

C(t) = EQ(
β(t)
β(T )

X |Ft) = EQ1(
S(t)
S(T )

X |Ft). (11.49)

Proof: Λ(t) = S(t)/S(0)
β(t)/β(0) is a positive Q-martingale with EQ(Λ(T )) = 1.

Therefore by Theorem 10.12

1
Λ(t)

=
β(t)/β(0)
S(t)/S(0)

is a Q1-martingale. (11.50)

By the general Bayes formula Theorem 10.10 (10.23)

EQ(
β(t)
β(T )

X |Ft) =
EQ1(

1
Λ(T )

β(t)
β(T )X |Ft)

EQ1(
1

Λ(T ) |Ft)
=

EQ1(
β(t)
S(T )X |Ft)

1
Λ(t)

= EQ1(
S(t)
S(T )

X |Ft).

�
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A General Option Pricing Formula

As a corollary we obtain the price of a call option in a general setting.
EQ

(
1

β(T )(S(T ) − K)+
)

= EQ

(S(T )
β(T ) I(S(T ) > K)

)− EQ

(
K

β(T )I(S(T ) > K)
)
.

The first term is evaluated by changing the numeraire,
EQ

(S(T )
β(T ) I(S(T ) > K)

)
= EQ1

(
1

ΛT

S(T )
β(T ) I(S(T ) > K)

)
= β(0)

S(0)Q1(S(T ) > K).
The second term is KQ(S(T ) > K)/β(T ), when β(t) is deterministic. Thus

C =
β(0)
S(0)

Q1(S(T ) > K) − K

β(T )
Q(S(T ) > K). (11.51)

This is a generalization of the Black-Scholes formula (Geman et al. (1995),
Björk (1998), Klebaner (2002)). One can verify that the Black-Scholes formula
is also obtained when the stock is used as the numeraire (Exercise 11.12).

If β(t) is stochastic, then by a using T -bond as a numeraire,

EQ

(
K

β(T )
I(S(T ) > K)

)
= P (0, T )KQT (S(T ) > K),

where P (0, T ) = EQ(1/β(T )), Λ(T ) = 1
P (0,T )β(T ) . To evaluate expectations

above, we need to find the distribution under the new measure. This can be
done by using the SDE under Q1.

SDEs under a Change of Numeraire

Let S(t) and β(t) be positive processes. Let Q and Q1 be respectively the
equivalent martingale measures when β(t) and S(t) are numeraires, so that
S(t)/β(t) is a Q-martingale, and β(t)/S(t) a Q1-martingale. Suppose that
under Q

dS(t) = µS(t)dt + σS(t)dB(t),
dβ(t) = µβ(t)dt + σβ(t)dB(t),

where B is a Q-Brownian motion, and coefficients are adapted processes. Let
X(t) have the SDEs under Q and Q1, with a Q1-Brownian motion B1

dX(t) = µ0(X(t))dt + σ(X(t))dB(t),
dX(t) = µ1(X(t))dt + σ(X(t))dB1(t),

Since these measures are equivalent, the diffusion coefficient for X is the same,
and the drift coefficients are related by

Theorem 11.18

µ1(X(t)) = µ0(X(t)) + σ(X(t))
(

σS(t)
S(t)

− σβ(t)
β(t)

)
. (11.52)
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Proof: We know from Section 10.3, that Q1 and Q are related by

Λ(T ) =
dQ1

dQ
= E

(∫ ·

0

H(t)dB(t)
)

(T ),

with H(t) = µ1(X(t))−µ0(X(t))
σ(X(t)) . On the other hand, by Theorem 11.17 dQ1

dQ =

Λ(T ) = S(T )/S(0)
β(T )/β(0) . Moreover Λ(t) = EQ(Λ(T )|Ft) = S(t)/S(0)

β(t)/β(0) by the martin-
gale property of (S/β). Using the exponential SDE,

dΛ(t) = Λ(t)H(t)dB(t) = d

(
S(t)/S(0)
β(t)/β(0)

)
,

it follows that

µ1(X(t)) − µ0(X(t))
σ(X(t))

dB(t) =
β(t)
S(t)

d

(
S(t)
β(t)

)
.

Using the SDEs for S and β, and that S/β has no dt term, the result follows.
�

Corollary 11.19 The SDE for S(t) under Q1, when it is a numeraire, is

dS(t) =
(

µS(t) +
σ2

S(t)
S(t)

)
dt + σS(t)dB1(t), (11.53)

where B1(t) is a Q1-martingale. Moreover, in the Black-Scholes model when
µS = µS, and σS = σS, the new drift coefficient is (µ + σ2)S.

For other results on change of numeraire see Geman et al. (1995).

11.6 Currency (FX) Options

Currency options involve at least two markets, one domestic and foreign mar-
kets. For simplicity we consider just one foreign market. For details on arbi-
trage theory in Foreign Market Derivatives see Musiela and Rutkowski (1998).

The foreign and domestic interest rates in riskless accounts are denoted by
rf and rd, (subscripts f and d denoting foreign and domestic respectively).
The EMM’s exist in both markets, Qf and Qd. Let U(t) denote the value
of a foreign asset in foreign currency at time t, say JPY. Assume that U(t)
evolves according the Black-Scholes model, and write its equation under the
EMM (risk-neutral) measure,

dU(t) = rfU(t)dt + σUU(t)dBf (t), (11.54)
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where Bf is a Qf -Brownian motion. A similar equation holds for assets in
the domestic market under its EMM Qd. The price process discounted by erdt

in the domestic market is a Qd-martingale, and an option on an asset in the
domestic market which pays C(T ) (in domestic currency) at T has its time t
price

C(t) = e−rd(T−t)EQd
(C(T )|Ft).

A link between the two markets is provided by the exchange rate. Take X(t)
to be the price in the domestic currency of 1 unit of foreign currency at time
t. Note that X(t) itself is not an asset, but it gives the price of a foreign asset
in domestic currency when multiplied by the price of the foreign asset. We
assume that X(t) follows the Black-Scholes SDE under the domestic EMM Qd

dX(t) = µXX(t)dt + σXX(t)dBd(t),

and show that µX must be rd − rf . Take the foreign savings account erf t, its
value in domestic currency is X(t)erf t. Thus e−rdtX(t)erf t should be a Qd-
martingale, as a discounted price process in the domestic market. But from
(11.6)

e−rdtX(t)erf t = S(0)e(rf−rd+µX− 1
2 σ2

X )t+σXBd(t),

implying µX = rd − rf . Thus the equation for X(t) under the domestic EMM
Qd is

dX(t) = (rd − rf )X(t)dt + σXX(t)dBd(t), (11.55)

with a Qd-Brownian motion Bd(t). In general, the Brownian motions Bd and
Bf are correlated, i.e. for some |ρ| < 1, Bf (t) = ρBd(t) +

√
1 − ρ2W (t), with

independent Brownian motions Bd and W . d[Bd, W ](t) = ρdt. (The model
can also be set up by using two-dimensional independent Brownian motions,
a (column) vector Qd-Brownian motion [Bd, W ], and a matrix σU , the row
vector σU = [ρ,

√
1 − ρ2]).

The value of the foreign asset in domestic currency at time t is given by
U(t)X(t) = Ũ(t). Therefore e−rdtŨ(t), as a discounted price process, is a
Qd-martingale. One can easily see from (11.54) and (11.55) that

e−rdtŨ(t) = X(0)U(0)e−
1
2 (σ2

U +σ2
X )t+σU Bf (t)+σXBd(t).

For it to be a Qd-martingale, it must hold dBf (t) + ρσXdt = dB̃d(t) is a Qd-
Brownian motion (correlated with Bd). This is accomplished by Girsanov’s
theorem, and the SDE for U(t) under the domestic EMM Qd becomes

dU(t) = (rf − ρσUσX)U(t)dt + σUU(t)dB̃d(t). (11.56)

Now it is also easy to see that the process Ũ(t) (the foreign asset in domestic
currency) under the domestic EMM Qd has the SDE

dŨ(t) = rdŨ(t)dt + (σUdB̃d(t) + σXdBd(t))Ũ(t). (11.57)
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Since
σUdB̃d(t) + σXdBd(t) = σ̄dW̃d(t),

for some Qd-Brownian motion W̃d(t), with

σ̄2 = σ2
U + σ2

X + 2ρσUσX , (11.58)

the volatility of Ũ(t) is given by the formula that combines the foreign asset
volatility and the exchange rate volatility (11.58).

Options on Foreign Currency

Consider a call option on one unit of foreign currency, say on JPY with the
strike price Kd in AUD. Its payoff at T in AUD is (X(T ) − Kd)+. Thus its
price at time t is given by

C(t) = e−rd(T−t)EQd
((X(T ) − Kd)+|Ft).

The conditional Qd-distribution of X(T ) given X(t) is Lognormal, by us-
ing (11.6), and standard calculations give the Black-Scholes currency formula
(Garman-Kohlhagen (1983))

C(t) = X(t)e−rf (T−t)Φ(h(t)) − Kde
−rd(T−t)Φ(h(t) − σX

√
T − t),

h(t) =
ln X(t)

Kd
+ (rd − rf + σ2

S/2)(T − t)

σX

√
T − t

.

Other options on currency are priced similarly, by using equation (11.6).

Options on Foreign Assets Struck in Foreign Currency

Consider options on a foreign asset denominated in the domestic currency.
A call option pays at time T the amount X(T )(U(T ) − Kf)+. Since the
amount is specified in the domestic currency the pricing should be done under
the domestic EMM Qd. The following argument achieves the result. In the
foreign market options are priced by the Black-Scholes formula. The price in
domestic currency is obtained by multiplying by X(t). A call option is priced
by

C(t) = U(t)
(
Φ(h(t)) − Kfe−rf (T−t)Φ

(
h(t) − σU

√
T − t

))
,

where

h(t) =
ln U(t)

Kf
+ (rf + 1

2σ2
U )(T − t)

σU

√
T − t

.

Calculations of the price under Qd are left as an exercise in change of nu-
meraire, Exercise 11.13.
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Options on Foreign Assets Struck in Domestic Currency

Consider a call option on the foreign asset U(t) with strike price Kd in AUD.
Its payoff at T in AUD is (X(T )U(T )−Kd)+ = (Ũ(T )−Kd)+. Thus its price
at time t is given by

C(t) = e−rd(T−t)EQd
((Ũ(T ) − Kd)+|Ft).

The conditional distribution of Ũ(T ) given Ũ(t) is Lognormal, by equation
(11.57), with volatility given by σ̄2 = σ2

U + σ2
X + 2ρσUσX from (11.58). Thus

C(t) = Ũ(t)Φ(h(t)) − Kde
−rd(T−t)Φ(h(t) − σ̄

√
T − t),

h(t) =
ln Ũ(t)

Kd
+ (rd + σ̄2

2 )(T − t)

σ̄
√

T − t
.

Guaranteed Exchanged Rate (Quanto) Options

A quanto option pays in domestic currency the foreign payoff converted at a
predetermined rate. For example a quanto call pays at time T the amount
X(0)(U(T )−Kf)+, (Kf is in foreign currency). Thus its time t value is given
by

C(t) = X(0)e−rd(T−t)EQd
((U(T ) − Kf )+|Ft).

The conditional distribution of U(T ) given U(t) is Lognormal, by equation
(11.56), with volatility σU . Standard calculations give

C(t) = X(0)e−rd(T−t)
(
U(t)eδ(T−t)Φ(h(t)) − KfΦ(h(t) − σU

√
T − t)

)
,

where δ = rf − ρσUσX and h(t) =
ln

U(t)
Kf

+(δ+
σ2

U
2 )(T−t)

σU

√
T−t

.

11.7 Asian, Lookback and Barrier Options

Asian Options

We assume that S(t) satisfies the Black-Scholes SDE, which we write under
the EMM Q

dS(t) = rS(t)dt + σS(t)dB(t).

Asian options pay at time T , the amount C(T ) given by
(

1
T

∫ T

0
S(u)du − K

)+

(fixed strike K) or
(

1
T

∫ T

0 S(t)dt − KS(T )
)+

(floating strike KS(T )). Both

kinds involve the integral average of the stock price S̄ = 1
T

∫ T

0 S(u)du. The
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average of Lognormals is not an analytically tractable distribution, therefore
direct calculations do not lead to a closed form solution for the price of the
option. Pricing by using PDEs was done by Rogers and Shi (1995), and Vecer
(2002). We present Vecer’s approach, which rests on the idea that it is possible
to replicate the integral average of the stock S̄ by a self-financing portfolio.
Let

a(t) =
1

rT
(1 − e−r(T−t)) and

dV (t) = a(t)dS(t) + r(V (t) − a(t)S(t))dt

= rV (t)dt + a(t)(dS(t) − rS(t)dt), (11.59)

with V (0) = a(0)S(0) = 1
rT (1 − e−rT )S(0). It is easy to see that V (t) is a

self-financing portfolio (Exercise 11.14). Solving the SDE (11.59) (by looking
at d(V (t)e−rt)) for V (t) and using integration by parts, we obtain

V (T ) = erT V (0) + a(T )S(T ) − erT a(0)S(0) −
∫ T

0

er(T−t)S(t)da(t)

=
1
T

∫ T

0

S(t)dt, (11.60)

because of

d(er(T−t)S(t)a(t)) = er(T−t)a(t)dS(t)−rer(T−t)S(t)dt+er(T−t)S(t)da(t), and

a(T )S(T )−erTa(0)S(0)=
∫ T

0

er(T−t)a(t)(dS(t)−rS(t)dt)+
∫ T

0

er(T−t)S(t)da(t).

The self-financing portfolio V (t) consists of a(t) shares and b(t)= e−rT

T

∫ t

0S(u)du
cash and has the value S̄ at time T .

Consider next pricing the option with the payoff (S̄ − K1S(T ) − K2)+,
which encompasses both the fixed and the floating kinds (by taking one of K’s
as 0). To replicate such an option hold at time t a(t) of the stock, start with
initial wealth V (0) = a(0)S(0)−e−rT K2 and follow the self-financing strategy
(11.59). The terminal value of this portfolio is V (T ) = S̄ − K2. The payoff of
the option is

(S̄ − K1S(T ) − K2)+ = (V (T ) − K1S(T ))+.

Thus the price of the option at time t is

C(t) = e−r(T−t)EQ(V (T ) − K1S(T ))+|Ft).

Let Z(t) = V (t)/S(t). Then proceeding,

C(t) = e−r(T−t)EQ(S(T )(Z(T ) − K1)+|Ft).
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The multiplier S(T ) inside is dealt with by the change of numeraire, and the
remaining expectation is that of a diffusion Z(t), which satisfies the backward
PDE. Using S(t) as a numeraire (Theorem 11.17, (11.49)) we have

C(t) = S(t)EQ1((ZT − K)+|Ft). (11.61)

By Ito’s formula the SDE for Z(t) under Q, when ert is a numeraire, is

dZ(t) = σ2(Z(t) − a(t))dt + σ(a(t) − Z(t))dB(t).

By Theorem 11.18 the SDE for Z(t) under the EMM Q1, when S(t) is a
numeraire, is

dZ(t) = −σ(Z(t) − q(t))dB1(t),

where B1(t) is a Q1-Brownian motion, (B1(t) = B(t)+σt). Now we can write
a PDE for the conditional expectation in (11.61).

EQ1((Z(T ) − K)+|Ft) = EQ1((Z(T ) − K1)+|Z(t)),

by the Markov property. Hence

u(x, t) = EQ1((Z(T ) − K1)+|Z(t) = x)

satisfies the PDE (see Theorem 6.6)

σ2

2
(x − a(t))2

∂2u

∂x2
+

∂u

∂t
= 0,

subject to the boundary condition u(x, T ) = (x − K1)+. Finally, the price of
the option at time zero is given by using (11.61)

V (0, S(0), K1, K2) = S(0)u(0, Z(0)),

with Z(0) = V (0)/S(0) = 1
rT (1 − e−rT ) − e−rT K2/S(0).

Lookback Options

A lookback call pays X = S(T ) − S∗ and a lookback put X = S∗ − S(T ),
where S∗ and S∗ denote the smallest and the largest values of stock on [0, T ].
The price of a lookback put is given by

C = e−rT EQ(S∗ − S(T )) = e−rT EQ(S∗) − e−rT EQ(S(T )), (11.62)

where Q is the martingale probability measure.
Since S(t)e−rt is a Q-martingale, e−rT EQ(S(T )) = S(0). To find EQ(S∗),
the Q-distribution of S∗ is needed. The equation for S(t) is given by S(t) =



318 APPLICATIONS IN FINANCE

S(0)e(r− 1
2 σ2)t+σB(t) with a Q-Brownian motion B(t), see (11.31). Clearly, S∗

satisfies
S∗ = S(0)e

(
(r− 1

2 σ2)t+σB(t)
)∗

.

The distribution of maximum of a Brownian motion with drift is found by
a change of measure, see Exercise 10.6 and Example 10.4 (10.38). By the
Girsanov’s theorem (r − 1

2σ2)t + σB(t) = σW (t), for a Q1-Brownian motion
W (t), with dQ

dQ1
(W[0,T ]) = ecW (T )− 1

2 c2T , c = (r − 1
2σ2)/σ. Clearly, S∗ =

S(0)eW∗
. The distribution of W ∗ under Q1 is the distribution of the maximum

of Brownian motion, and its distribution under Q is obtained as in Example
10.4 (see (10.38)). Therefore

e−rT EQ(S∗) = e−rT S(0)
∫ ∞

−∞
eσyfW∗(y)dy, (11.63)

where fW∗(y) is obtained from (10.38) (see also Exercise 11.15). Lookback
calls are priced similarly. The price of a Lookback call is given by S(0) times

(1+
σ2

2r
)Φ

(
ln(K/S(0)) + σ2T

2

σ
√

T

)
−(1− σ2

2r
)e−rT Φ

(
ln(K/S(0)) − σ2T

2

σ
√

T

)
− σ2

2r
.

(11.64)

Barrier Options

Examples of Barrier Options are down-and-out calls or down-and-in calls.
There are also corresponding put options. A down-and-out call gets knocked
out when the price falls below a certain level H , it has the payoff (S(T ) −
K)+I(S∗ ≥ H), S(0) > H , K > H . A down-and-in call has the payoff
(S(T ) − K)+I(S∗ ≤ H). To price these options the joint distribution of S(T )
and S∗ is needed under Q. For example, the price of down-and-in call is given
by

C = e−rT EQ((S(T ) − K)+I(S∗ ≤ H))

= e−rT

∫ ∞

ln(K/S(0))
σ

∫ ln(H/S(0))
σ

−∞

(
S(0)eσx − K

)
g(x, y)dxdy,

where g(x, y) is the probability density of (W (T ), W∗(T )) under the martingale
measure Q. It is found by changing measure as described above and in Example
10.4 (see also Exercise 11.16). Double barrier options have payoffs depending
on S(T ), S∗ and S∗. An example is a call which pays only if the price never
goes below a certain level H1 or above a certain level H2 with the payoff

X = (S(T ) − K)+I(H1 < S∗ < S∗ < H2).
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The joint distribution of Brownian motion and its minimum and maximum is
given by Theorem 3.23. By using the change of measure described above, the
joint distribution of S(T ), S∗, S∗ can be found and double barrier options can
be priced. Calculations are based on the following result.

Let Wµ(t) = µt + B(t). Then the probability of hitting barriers a and
b on the interval [0, t], given the values at the end points Wµ(0) = x0 and
Wµ(t) = x1

P (a < min
0≤t≤t

Wµ(t) ≤ max
0≤t≤t

Wµ(t) ≤ b|Wµ(0) = x, Wµ(t) = y),

does not depend on µ, and is given by (e.g. Borodin and Salminen (1996))

P (a, b, x, y, t) = exp

{
(y − x)2

2t

}
× (11.65)

∞∑
n=−∞

(
exp

{
(y − x + 2n(b − a))2

−2t

}
− exp

{
(y − x + 2n(b − a) + 2(x − a))2

−2t

})
if a ≤ x ≤ b, a ≤ y ≤ b, and zero otherwise. This formula becomes simpler

when one of the barriers is infinite, namely if a = −∞ (single high barrier) we
get

P (−∞, b, x, y, t) = 1 − exp
{
−2

(b − x)(b − y)
t

}
(11.66)

if x ≤ b, y ≤ b, and zero otherwise. If b = ∞ (single low barrier) we get

P (a,∞, x, y, t) = 1 − exp
{
−2

(a− x)(a − y)
t

}
(11.67)

if a ≤ x, a ≤ y, and zero otherwise.

11.8 Exercises

Exercise 11.1: (Payoff Functions and Diagrams)
Graph the following payoffs.

1. A straddle consists of buying a call and a put with the same exercise
price and expiration date.

2. A butterfly spread consists of buying two calls with exercises prices K1

and K3 and selling a call with exercise price K2, K1 < K2 < K3.

Exercise 11.2: (Binomial Pricing Model)

1. Give the probability space for the Binomial model.
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2. Show that the stock price can be expressed as S(t+1) = S(t)ξt+1, where
ξt+1 is the return in period t + 1, t = 0, 1, . . . , n − 1, and the variables
ξn are independent and identically distributed with values u and d.

3. Show that the Binomial model does not admit arbitrage if and only if
d < r < u.

4. Describe the arbitrage-free probability Q, and show that the discounted
stock price St/rt, t = 0, 1 . . . , n is a Q-martingale.
5. Show that this model is complete.

5. Show that if the price of an option is given by (11.7), then arbitrage
strategies do not exist.

Exercise 11.3: Verify that in the model given in Example 11.7 any attainable
claim has the same price under any of the martingale measures. Give an
example of an unattainable claim X and show that EQ(X) is different for
different martingale measures Q.

Exercise 11.4: Show that if Q is equivalent to P and X ≥ 0, then EP (X) > 0
implies EQ(X) > 0, and vice versa.

Exercise 11.5: (Pricing in incomplete markets)

1. Show that if M(t), 0 ≤ t ≤ T , is a martingale under two different prob-
ability measures Q and P , then for s < t EQ(M(t)|Fs) = EP (M(t)|Fs)
a.s. If in addition M(0) is non-random, then EP M(t) = EQM(t).

2. Show that the price of an attainable claim X , C(t) = β(t)EQ(X/β(T )|Ft)
is the same for all martingale measures.

Exercise 11.6: (Non-completeness in mixed models.)
In this exercise the price of an asset is modelled as a sum of a diffusion and a
jump process. Take for example X(t) = W (t) + N(t), with Brownian motion
W and Poisson process N . Give at least two equivalent probability measures
Q1 and Q2, such that X is a Qi-martingale, i = 1, 2 (see Exercise 10.13).

Exercise 11.7: Give the Radon-Nikodym derivative Λ in the change to the
EMM Q in the Black-Scholes model.

Exercise 11.8: A way to derive a PDE for the option price is based on
the fact that C(t)e−rt = V (t)e−rt is a Q-local martingale. Obtain the Black-
Scholes PDE for the price of the option using the Black-Scholes model for the
stock price.
Hint: expand d(C(S(t), t)e−rt) and equate the coefficient of dt to zero.
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Exercise 11.9: Derive the PDE for the price of the option in Heston’s model.

Exercise 11.10: Show that the expected return on stock under the martin-
gale probability measure Q is the same as on the riskless asset. This is the
reason why the martingale measure Q is also called “risk-neutral” probability
measure.

Exercise 11.11: Assume S(t) evolves according the Black-Scholes model.
Show that under the EMM Q1, when S(t) is a numeraire, d(ert/S(t)) =
σ(ert/S(t))dWt, where W (t) = B(t) − σt is a Q1-Brownian motion. Give
the Likelihood dQ1/dQ. Give the SDE for S(t) under Q1.

Exercise 11.12: Derive the Black-Scholes formula by using the stock price
as the numeraire.

Exercise 11.13: A call option on an asset in the foreign market pays at
time T , S(T )(U(T ) − K)+ in the domestic currency, and its time t price
C(t) = e−rd(T−t)EQd

(S(T )(U(T ) − K)+|Ft). Taking numeraire based on the
Qd-martingale S(t)e−(rd−rf )t obtain the formula for C(t).

Exercise 11.14: Let V (t) = a(t)S(t) + b(t)ert be a portfolio, 0 ≤ t ≤ T .
Show that it is self-financing if and only if dV (t) = a(t)dS(t) + r(V (t) −
a(t)S(t))dt.

Exercise 11.15: Derive the price of a Lookback call.

Exercise 11.16: Show that the price of a down-and-in call is given by

e−rT

(
H

S(0)

)2r/σ2−1
(

FΦ

(
ln(F/K) + σ2T

2

σ
√

T

)
− KΦ

(
ln(F/K) − σ2T

2

σ
√

T

))
,

where F = erT H2/S(0).

Exercise 11.17: Assume that S(T )/S is does not depend on S, where S(T )
is the price of stock at T and S = S(0). Let T be the exercise time and K the
exercise price of the call option. Show that the price of this option satisfies
the following PDE

C = S
∂C

∂S
+ K

∂C

∂K
.

You may assume all the necessary differentiability. Hence show that the delta
of the option ∂C

∂S in the Black-Scholes model is given by Φ(h(t)) with h(t) given
by (11.35).
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Chapter 12

Applications in Finance:
Bonds, Rates and Options

Money invested for different terms T yield a different return corresponding
to the rate of interest R(T ). This function is called the yield curve, or the
term structure of interest rates. Every day this curve changes, the time t
curve denoted by R(t, T ). However, the rates are not traded directly, they
are derived from prices of bonds traded on the bond market. This leads to
construction of models for bonds and no-arbitrage pricing for bonds and their
options. We present the main models used in the literature and in applications,
treating in detail the Merton, Vasicek’s, Heath-Jarrow-Morton (HJM) and
Brace-Gatarek-Musiela (BGM) models. In our treatment we concentrate on
the main mathematical techniques used in such models without going into
details of their calibration.

12.1 Bonds and the Yield Curve

A $1 bond with maturity T is a contract that guarantees the holder $1 at T .
Sometimes bonds also pay a certain amount, called a coupon, during the life of
the bond, but for the theory it suffices to consider only bonds without coupons
(zero-coupon bonds). Denote by P (t, T ) the price at time t of the bond paying
$1 at T , P (T, T ) = 1. The yield to maturity of the bond is defined as

R(t, T ) = − lnP (t, T )
T − t

, (12.1)

and as a function in T , is called the yield curve at time t. Assume also that a
savings account paying at t instantaneous rate r(t), called the spot (or short)

323
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rate, is available. $1 invested until time t will result in

β(t) = e

∫
t

0
r(s)ds

. (12.2)

To avoid arbitrage between bonds and savings account, a certain relation must
hold between bonds and the spot rate. If there were no uncertainty, then to
avoid arbitrage the following relation must hold

P (t, T ) = e
−
∫

T

t
r(s)ds

, (12.3)

since investing either of these amounts at time t results in $1 at time T . When
the rate is random, then

∫ T

t r(s)ds is also random and in the future of t,
whereas the price P (t, T ) is known at time t, and the above relation holds
only “on average”, equation (12.5) below.

We assume a probability model with a filtration IF = {Ft}, 0 ≤ t ≤ T ∗,
and adapted processes P (t, T ), t ≤ T ≤ T ∗, and β(t). For the extension
of the no-arbitrage theory see Artzner and Delbaen (1989), Lamberton and
Lapeyre (1996), Björk (1998), Musiela and Rutkowski (1998), Shiryaev (1999).
In addition to the number of no-arbitrage concepts in continuous time (see
Section 11.3) the continuum of bond maturities T makes the market model
have infinitely many assets and produces further complication. There are
different approaches, including finite portfolios, where at each time only finitely
many bonds are allowed, and infinite, measure-valued portfolios. In all of
the approaches the no-arbitrage condition is formulated with the help of the
following assumption.

EMM Assumption

There is a probability Q (called the equivalent martingale measure), equivalent
to P (the original “real-world” probability), such that simultaneously for all
T ≤ T ∗, the process in t, P (t, T )/β(t) is a martingale , 0 ≤ t ≤ T .

The martingale property implies that

EQ

(
1

β(T )
| Ft

)
= EQ

(
P (T, T )
β(T )

| Ft

)
=

P (t, T )
β(t)

, (12.4)

where Ft denotes the information available from the bond prices up to time t.
Since P (T, T ) = 1, we obtain the expression for the price of the bond

P (t, T ) = EQ

(
β(t)
β(T )

| Ft

)
= EQ

(
e
−
∫

T

t
r(s)ds | Ft

)
. (12.5)

It shows that the bond can be seen as a derivative on the short rate.
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12.2 Models Adapted to Brownian Motion

Here we derive the SDE for bond P (t, T ) under Q starting only with the
EMM assumption. The SDE under P is then derived as a consequence of the
predictable representation property. As usual, this property points out the
existence of certain processes, but does not say how to find them.

Consider a probability space with a P-Brownian motion W (t) and its fil-
tration Ft. Assume that the spot rate process r(t) generates Ft, and that the
bond processes P (t, T ), for any T < T ∗, are adapted. The EMM assumption
gives the price of the bond by the equation (12.5). The martingale

P (t, T )
β(t)

= EQ

(
e
−
∫ T

0
r(s)ds

∣∣∣ Ft

)
(12.6)

is adapted to the Brownian filtration. By Theorem 10.19 there exists an
adapted process X(t) =

∫ t

0
σ(t, T )dB(t), where B(t) is a Q-Brownian motion,

such that

d

(
P (t, T )

β(t)

)
=
(

P (t, T )
β(t)

)
dX(t) = σ(t, T )

(
P (t, T )

β(t)

)
dB(t).

Opening d(P/β), we obtain the SDE for P (t, T ) under the EMM Q

dP (t, T )
P (t, T )

= r(t)dt + σ(t, T )dB(t). (12.7)

This is the pricing equation for bonds and their options.
Note that the return on savings account satisfies dβ(t)/β(t) = r(t)dt, and the
return on bond has an extra term with a Brownian motion. This makes bonds
P (t, T ) riskier than the (also random) savings account β(t).

We find the SDE for the bond under the original probability measure P
next. Since Q is equivalent to the Wiener measure, by Corollary 10.21 there
is an adapted process q(t), such that

W (t) = B(t) +
∫ t

0

q(s)ds (12.8)

is a P-Brownian motion, with dQ/dP = e

∫ T

0
q(t)dW (t)− 1

2

∫ T

0
q2(t)dt

. Substituting
dB(t) = dW (t) − q(t)dt into SDE (12.7), we obtain the SDE under P

dP (t, T )
P (t, T )

=
(
r(t) − σ(t, T )q(t)

)
dt + σ(t, T )dW (t). (12.9)

Remark 12.1: It follows from equation (12.9) that −q(t) is the excess return
on the bond above the riskless rate, expressed in standard units; it is known
as “the market price of risk” or “risk premium”. Most common assumption is
that q(t) = q is a constant.
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12.3 Models Based on the Spot Rate

A model for term structure and pricing can be developed from a model for the
spot rate. These models are specified under the real world probability measure
P, and r(t) is assumed to satisfy

dr(t) = m(r(t))dt + σ(r(t))dW (t), (12.10)

where W (t) is a P-Brownian motion, m and σ are functions of a real variable.
The bond price P (t, T ) satisfies (12.5)

P (t, T ) = EQ

(
e
−
∫ T

t
r(s)ds

∣∣∣ Ft

)
.

The expectation is under Q, and the model (12.10) is specified under P. There-
fore the SDE for r(t) under Q is needed. Note that we could express the above
expectation in terms of EP by

EP

(
e
−
∫ t

t
r(s)ds+

∫ T

t
q(s)dW (s)− 1

2

∫ T

t
q2(s)ds

∣∣∣ Ft

)
,

but this expectation seems to be untractable even in simple models.
We move between P and the EMM Q by using (12.8) expressed as

dB(t) = dW (t) − q(t)dt. Thus under Q

dr(t) = (m(r(t)) + σ(r(t))q(t))dt + σ(r(t))dB(t). (12.11)

The process r(t) is also a diffusion under Q, therefore by Markov property

EQ

(
e
−
∫

T

t
r(s)ds

∣∣∣ Ft

)
= EQ

(
e
−
∫

T

t
r(s)ds

∣∣∣ r(t)) .

The last expression satisfies a PDE by the Feynman-Kac formula (Theorem
6.8). Fix T , and denote by

C(x, t) = EQ

(
e
−
∫

T

t
r(s)ds

∣∣∣ r(t) = x

)
,

then by (6.22) it satisfies

1
2
σ2(x)

∂2C

∂x2
(x, t) + (m(x) + σ(x)q(t))

∂C

∂x
(x, t) +

∂C

∂t
(x, t) − xC(x, t) = 0,

(12.12)
with the boundary condition C(x, T ) = 1. The price of the bond is obtained
from this function by

P (t, T ) = C(r(t), t).
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A similar PDE with suitable boundary conditions holds for options on bonds.
We list some of the well-known models for the spot rate.

The Merton model
dr(t) = µdt + σdW (t). (12.13)

The Vasicek model

dr(t) = b(a − r(t))dt + σdW (t). (12.14)

The Dothan model
dr(t) = µr(t)dt + σdW (t). (12.15)

The Cox-Ingersoll-Ross (CIR) model

dr(t) = b(a − r(t))dt + σ
√

r(t)dW (t). (12.16)

The Ho-Lee model
dr(t) = µ(t)dt + σdW (t). (12.17)

The Black-Derman-Toy model

dr(t) = µ(t)r(t)dt + σ(t)dW (t). (12.18)

The Hull-White model

dr(t) = b(t)(a(t) − r(t))dt + σ(t)dW (t). (12.19)

The Black-Karasinski model

dr(t) = r(t)(a(t) − b(t) ln r(t))dt + σ(t)r(t)dW (t). (12.20)

The functions m(r) and σ(r) involve parameters that need to be estimated.
They are chosen in such way that values of bonds and options agree as close
as possible with the values observed in the market. This process is called
calibration, and we don’t address it.

In what follows we derive prices of bonds and their options for some models
by using probability calculations rather than solving PDEs.

12.4 Merton’s Model and Vasicek’s Model

Merton’s Model

The spot rate in the Merton model satisfies SDE (12.13). Its solution is

r(t) = r0 + µt + σW (t). (12.21)
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The savings account is given by

β(t) = e

∫
t

0
r(s)ds = er0t+µt2/2e

σ
∫

t

0
Wsds

.

Assume the constant price for risk q(t) = q, then by (12.11) the SDE for r(t)
under Q is

dr(t) = (µ + σq)dt + σdB(t).

The price of the bond P (t, T ) is given by P (t, T ) = EQ(e−
∫

T

t
r(s)ds | Ft).

Since the conditional expectation given Ft is needed, use the decomposition
of r(s) into an Ft-measurable part, and Ft-independent part.

r(s) = r(t)+(µ+σq)(s−t)+σ(W (s)−W (t)) = r(t)+(µ+σq)(s−t)+σŴ (s−t),

with Ŵ (s − t) independent of Ft. Then

P (t, T ) = e−r(t)(T−t)−(µ+σq)(T−t)2/2EQ(e−σ
∫

T

t
Ŵ (s−t)ds | Ft)

= e−r(t)(T−t)−(µ+σq)(T−t)2/2+σ2(T−t)3/6, (12.22)

where we used that the distribution of the random integral
∫ T−t

0 Ŵ (u)du is
N(0, (T − t)3/3), see Example 3.6. The yield curve is given by

R(t, T ) = − lnP (t, T )
T − t

= r(t) +
1
2
(µ + σq)(T − t) − 1

6
σ2(T − t)2.

Since r(t) has a Normal distribution, so does R(t, T ), so that P (t, T ) is Log-
normal. Pricing of a call option on the bond in this model is covered in the
Exercise 12.2.

Note that the yields for different maturities differ by a deterministic quan-
tity. Therefore R(t, T1) and R(t, T2) are perfectly correlated. This is taken as
a shortcoming of the model.

Vasicek’s Model

The spot rate in Vasicek’s model satisfies SDE (12.14). Its solution is

r(t) = a − e−bt(a − r(0)) + σ

∫ t

0

e−b(t−s)dW (s). (12.23)

We derive the solution below, but note that it is easy to check that (12.23)
is indeed a solution, see also the Langevin SDE Example 5.6, equation (5.15).
Writing the SDE (12.14) in the integral form and taking expectations (it easy
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to see that the Itô integral has zero mean and interchanging the integral and
the expectation is justified by Fubini’s theorem), we have

Er(t) − Er(0) =
∫ t

0

b(a − Er(s))ds. (12.24)

Put h(t) = Er(t). Differentiating, we obtain

h′(t) = b(a − h(t)).

This equation is solved by separating variables. Integrating from 0 to t, and
performing the change of variable u = h(s) we obtain

Er(t) = a − e−bt(a − r(0)). (12.25)

Let now
X(t) = r(t) − Er(t) = r(t) − h(t). (12.26)

X(t), clearly, satisfies

dX(t) = dr(t) − dh(t) = −bX(t)dt + σdW (t), (12.27)

with the initial condition X(0) = 0. But this is the equation for the Ornstein-
Uhlenbeck process. By (5.13), X(t) = σ

∫ t

0 e−b(t−s)dW (s), and (12.23) follows
from the equations (12.26) and (12.25).

Make two observations next. First, the long-term mean is a,

lim
t→∞ Er(t) = a.

Second, the process X(t) = r(t) − Er(t) reverts to zero, hence r(t) reverts
to its mean: if r(t) is above its mean, then the drift is negative, making r(t)
decrease; and if r(t) is below its mean, then the drift is positive, making r(t)
increase. Mean reversion is a desirable property in modelling of rates.

To proceed to calculation of bond prices P (t, T ) = EQ(e−
∫ T

t
r(s)ds | Ft),

further assumptions on the market price of risk q(t) are needed. Assume
q(t) = q is a constant.

We move between P and the EMM Q by using (12.8), which states
dB(t) = dW (t) − qdt. Therefore the equation for r(t) under Q is given by
(12.14) with a replaced by

a∗ = a +
σq

b
. (12.28)

To calculate the Q-conditional distribution of
∫ T

t
r(s)ds given Ft needed for

the bond price, observe that by the Markov property of the solution, for s > t
the process starts at r(t) and runs for s − t, giving

r(s) = a∗ − e−b(s−t)(a∗ − r(t)) + σe−b(s−t)

∫ s−t

0

ebudB(u), (12.29)
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with a Q-Brownian motion B(u), independent of Ft. Thus r(s) is a Gaussian
process, since the function in the Itô integral is deterministic (see Theorem
4.11). The conditional distribution of

∫ T

t r(s)ds given Ft is the same as that
given r(t) and is a Normal distribution. Thus the calculation of the bond price

involves the expectation of a Lognormal, EQ(e−
∫

T

t
r(s)ds | r(t)). Thus

P (t, T ) = e−µ1+σ2
1/2, (12.30)

where µ1 and σ2
1 are the conditional mean and variance of

∫ T

t
r(s)ds given

r(t). Using (12.29) and calculating directly or using (12.4) h = a∗ − h′/b, we
have

µ1 = EQ

(∫ T

t

r(s)ds
∣∣∣ r(t)

)
=
∫ T

t

EQ (r(s) | r(t)) ds

= a∗(T − t) +
1
b
(a∗ − r(t))(1 − e−b(T−t)). (12.31)

To calculate σ2
1 , use the representation for r(s) conditional on r(t), equation

(12.29)

σ2
1 = Cov

(∫ T

t

r(s)ds,

∫ T

t

r(u)du

)
=
∫ T

t

∫ T

t

Cov(r(s), r(u))dsdu.

Now it is not hard to calculate, by the formula for the covariance of Itô Gaus-
sian integrals (4.26) or (4.27), that for s > u

Cov(r(s), r(u)) =
σ2

2b

(
eb(u−s) − e−b(u+s−2t)

)
.

Putting this expression (and a similar one for when s < u) in the double
integral, we obtain

σ2
1 =

σ2

b2
(T − t) − σ2

2b3
(3 − 4e−b(T−t) − e−2b(T−t)).

Thus denoting R(∞) = a∗ − σ2

2b2 ,

P (t, T ) = e
1
b (1−e−b(T−t))(R(∞)−r(t))−(T−t)R(∞)− σ2

4b3
(1−e−b(T−t))2 . (12.32)

From the formula (12.32) the yield to maturity is obtained by (12.1). Vasicek
(1977) obtained the formula (12.32) by solving the PDE (12.12).

Since the price of bonds is Lognormal with known mean and variance, a
closed form expression for the price of an option on the bond can be obtained.
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12.5 Heath-Jarrow-Morton (HJM) Model

The class of models suggested by Heath, Jarrow, and Morton (1992) is based
on modelling the forward rates. These rates are implied by bonds with different
maturities. By definition, forward rates f(t, T ), t ≤ T ≤ T ∗ are defined by the
relation

P (t, T ) = e
−
∫ T

t
f(t,u)du

. (12.33)

Thus the forward rate f(t, T ), t ≤ T , is the (continuously compounding) rate
at time T as seen from time t,

f(t, T ) = −∂ ln P (t, T )
∂T

,

The spot rate r(t) = f(t, t). Consequently the savings account β(t) grows
according to

β(t) = e

∫
t

0
f(s,s)ds

. (12.34)

The assumption of HJM model is that for a fixed T , the forward rate f(t, T )
is a diffusion in t variable, namely

df(t, T ) = α(t, T )dt + σ(t, T )dW (t). (12.35)

where W (t) is P -Brownian motion and processes α(t, T ) and σ(t, T ) are adapted
and continuous. α(t, T ), σ(t, T ) and the initial conditions f(0, T ), are the pa-
rameters of the model.

EMM assumption

There exists an equivalent martingale probability measure (EMM), Q ∼ P
such that for all T ≤ T ∗, P (t,T )

β(t) is a Q-martingale. Assuming the existence of
Q we find equations for the bonds and the rates under Q.

Bonds and Rates under Q and the No-arbitrage Condition

The EMM assumption implies that α(t, T ) is determined by σ(t, T ) when SDE
for forward rates is considered under Q.

Theorem 12.1 Assume the forward rates satisfy SDE (12.35), the EMM as-
sumption holds, P (t,T )

β(t) is a Q-martingale, and all the conditions on the coeffi-
cients of the SDE (12.35) needed for the analysis below. Let

τ(t, T ) =
∫ T

t

σ(t, u)du. (12.36)
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Then
α(t, T ) = σ(t, T )τ(t, T ). (12.37)

Moreover, under the EMM Q the forward rates satisfy the SDE with a Q-
Brownian motion B

df(t, T ) = σ(t, T )τ(t, T )dt + σ(t, T )dB(t). (12.38)

Conversely, if the forward rates satisfy the SDE (12.38) then P (t,T )
β(t) is a Q-

local martingale. If the appropriate integrability conditions hold, then it is a
Q-martingale.

Proof: The idea is simple, find d
(

P (t,T )
β(t)

)
and equate the coefficient of dt

to zero. Let

X(t) = lnP (t, T ) = −
∫ T

t

f(t, u)du. (12.39)

By Itô’s formula

d

(
P (t, T )
β(t)

)
=

P (t, T )
β(t)

(
dX(t) +

1
2
d[X, X ](t) − r(t)dt

)
. (12.40)

It is not hard to show, see Example 12.1, that

dX(t) = −d

(∫ T

t

f(t, u)du

)
= −A(t, T )dt − τ(t, T )dW (t), (12.41)

where A(t, T ) = −r(t) +
∫ T

t
α(t, u)du. Thus

d

(
P (t, T )
β(t)

)
=

P (t, T )
β(t)

((
−
∫ T

t

α(t, u)du

)
dt +

1
2
τ2(t, T )dt − τ(t, T )dW (t)

)
.

(12.42)
By Girsanov’s theorem

dW (t) +

(∫ T

t
α(t, u)du

τ(t, T )
− 1

2
τ(t, T )

)
dt = dB(t), (12.43)

for a Q-Brownian motion B(t). This gives the SDE for the discounted bond
under Q

d

(
P (t, T )
β(t)

)
= −P (t, T )

β(t)
τ(t, T )dB(t). (12.44)

Thus if the model is specified under Q, W (t) = B(t), then∫ T

t

α(t, u)du =
1
2
τ2(t, T ). (12.45)
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Differentiating in t gives the condition (12.37). The SDE (12.38) follows from
(12.37).

�

Corollary 12.2 The bonds satisfy the following equations under Q for t ≤ T

dP (t, T ) = P (t, T ) (r(t)dt − τ(t, T )dB(t)) , and (12.46)

P (t, T ) = P (0, T )e−
∫ t

0
τ(s,T )dB(s)− 1

2

∫ t

0
τ2(s,T )ds+

∫ t

0
r(s)ds

. (12.47)

Proof: Equation (12.44) shows that P (t,T )
β(t) is the stochastic exponential of

− ∫ t

0 τ(s, T )dB(s). Hence

P (t, T )
β(t)

=
P (0, T )

β(0)
E(−

∫ t

0

τ(s, T )dB(s))

=
P (0, T )

β(0)
e
−
∫ t

0
τ(s,T )dB(s)− 1

2

∫ t

0
τ2(s,T )ds

. (12.48)

Since β(t) = e

∫
t

0
r(s)ds the bond’s price is given by (12.47). The SDE (12.46)

follows, as the stochastic exponential SDE of − ∫ t

0 τ(s, T )dB(s) +
∫ t

0 r(s)ds.
�

Using (12.47) for T1 and T2, we obtain for t ≤ T1 ≤ T2 by eliminating
∫ t

0 r(s)ds

Corollary 12.3 A relation between bonds with different maturities is given by

P (t, T2) =
P (0, T2)
P (0, T1)

e
−
∫ t

0
(τ(s,T2)−τ(s,T1))dB(s)− 1

2

∫ t

0
(τ2(s,T2)−τ2(s,T1))ds

P (t, T1).

(12.49)

Remark 12.2:
1. Equation (12.37) is known as the no-arbitrage or EMM condition.
2. The effect of the change to the EMM Q is in the change of drift in the SDE
for the forward rates, from (12.35) to (12.38).
3. The volatility of the bond is τ(t, T ) =

∫ T

t σ(t, s)ds, the integrated forward
volatilities by (12.46).
4. The expression (12.47) for P (t, T ) includes the Itô integral

∫ t

0 τ(s, T )dB(s),
which is not observed directly. It can be obtained from

∫ T

t f(t, u)du using
(12.38) and interchanging integrals. Integrated processes and interchanging
integrals can be justified rigorously, see Heath et al. (1992), and in greater
generality Hamza et al. (2002).
5. The vector case of W (t) and σ(t, T ) in (12.35) gives similar formulae by
using notation σ(t, T )dW (t) =

∑d
i=1 σi(t, T )dWi(T ), the scalar product and

replace σ2 by the norm |σ|2, see Exercise 5.9.
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Example 12.1: Differentiation of an integral of the form
∫ T

t
f(t, s)ds. We show

that (12.41) holds. Introduce G(u, t) =
∫ T

u
f(t, s)ds. We are interested in dG(t, t);

it is found by

dG(t, t) =
(

∂

∂u
G(t, t) +

∂

∂t
G(t, t)

)
dt,

or

d

(∫ T

t

f(t, v)dv

)
= −f(t, t)dt +

∫ T

t

df(t, v).

Now, f(t, t) = r(t) and, using the model for df(t, v) we obtain

d

(∫ T

t

f(t, v)dv

)
= −r(t)dt +

(∫ T

t

α(t, v)dv

)
dt +

(∫ T

t

σ(t, v)dv

)
dW (t).

Exchange of the integrals is justified in Exercise 12.3.

Example 12.2: (Ho-Lee model)
Consider the SDE for forward rates (12.38) with the simplest choice of constant

volatilities σ(t, T ) = σ=const. Then τ (t, T ) =
∫ T

t
σ(t, u)du = σ(T − t). Thus

df(t, T ) = σ2(T − t)dt + σdB(t),

f(t, T ) = f(0, T ) + σ2t(T − t

2
) + σB(t), and

r(t) = f(t, t) = f(0, t) + σ2 t2

2
+ σB(t).

They contain the Brownian motion, which is not observed directly. Eliminating it,

σB(t) = r(t) − f(0, t) − σ2 t2

2
, we have

f(t, T ) = r(t) + σ2t(T − t) + f(0, T ) − f(0, t).

This equation shows that forward rates f(t, T1) − f(t, T2) = f(0, T1) − f(0, T2) +
σ2t(T1−T2) differ by a deterministic term, therefore they are also perfectly correlated.
r(t) and f(t, T ) are also perfectly correlated. This seems to contradict observations
in financial markets.

The bond in terms of the forward rates (12.33)

P (t, T ) = e
−
∫

T

t
f(t,u)du

= e
−
∫

T

t
f(0,u)du−σ2

∫
T

t
t(u− t

2 )du−σB(t)(T−t)
.

Using − ∫ T

t
f(0, u)du = ln P (0, T ) − lnP (0, t),

P (t, T ) =
P (0, T )

P (0, t)
e−σ2tT (T−t)/2−σB(t)(T−t).

Eliminating B(t), we obtain the equation for the bond in terms of the spot rate, from
which the yield curve is determined

P (t, T ) =
P (0, T )

P (0, t)
e−(T−t)r(t)−σ2t(T−t)2/2+(T−t)f(0,t).
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The graphs below illustrate possible curves produced by the Ho-Lee model.
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Figure 12.1: Forward curves and Yield curves.
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Figure 12.2: Bonds P (t, Ti) for two maturities T1 and T2 one year apart.
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12.6 Forward Measures. Bond as a Numeraire

Options on a Bond

An attainable claim is one that can be replicated by a self-financing portfolio
of bonds. The predictable representation property gives the arbitrage-free
price at time t of an attainable European claim with payoff X at maturity S,
t ≤ S ≤ T ,

C(t) = EQ

(
β(t)
β(S)

X | Ft

)
= EQ(e−

∫
S

t
r(u)du

X | Ft). (12.50)

For example, the price at time t of a European put with maturity S and strike
K on a bond with maturity T (the right to sell the bond at time S for K) is
given by

C(t) = EQ

( β(t)
β(S)

(K − P (S, T ))+ | Ft

)
. (12.51)

This option is in effect a cap on the interest rate over [S, T ] (see Section 12.7).

Forward Measures

Taking the bond, rather than the savings account, as a numeraire allows us to
simplify option pricing formulae.

Definition 12.4 The measure QT , called the T -forward measure, is obtained
when the T -bond is a numeraire, i.e. β(t)/P (t, T ), t ≤ T is a QT -martingale.

Theorem 12.5 The forward measure QT is defined by

Λ(T ) =
dQT

dQ
=

1
P (0, T )β(T )

. (12.52)

The price of an attainable claim X at time t under different numeraire is
related by the formula,

C(t) = EQ(
β(t)
β(T )

X | Ft) = P (t, T )EQT (X | Ft). (12.53)

Proof: follows directly from the change of numeraire Theorem 11.17. By the
EMM assumption P (t, T )/β(t), t ≤ T , is a positive Q-martingale. QT := Q1,

with dQ1

dQ = Λ(T ) = P (T,T )/P (0,T )
β(T )/β(0) = 1

P (0,T )β(T ) , which is (12.52). By equation

(11.49)

C(t) = EQ(
β(t)
β(T )

X | Ft) = EQT (
P (t, T )
P (T, T )

X | Ft) = P (t, T )EQT (X | Ft).

�
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Remark 12.3: EQT (X |Ft) = F (t) is called the forward price at t for the date
T of an attainable claim X . These prices are QT -martingales, see Doob-Levy
martingale, Theorem 7.9.

Forward Measure in HJM

Theorem 12.6 The process

dBT (t) = dB(t) + τ(t, T )dt (12.54)

is a QT -Brownian motion. Moreover, the the forward rates f(t, T ) and the
bond P (t, T ) satisfy the following SDEs under QT

df(t, T ) = σ(t, T )dBT (t). (12.55)

dP (t, T ) = P (t, T )
(
(r(t) + τ2(t, T ))dt − τ(t, T )dBT (t)

)
. (12.56)

Proof: The T-forward martingale measure QT is obtained by using Λ(T ) =
1

P (0,T )β(T ) . Then

Λt = E(Λ|Ft) =
P (t, T )

P (0, T )β(t)
= E(−

∫ t

0

τ(s, T )dB(s)).

Therefore by the Girsanov’s theorem dBT (t) = dB(t) + τ(t, T )dt is a QT -
Brownian motion. Under Q the forward rates satisfy the SDE (12.38)

df(t, T ) = σ(t, T )τ(t, T )dt + σ(t, T )dB(t).

The SDE under QT is obtained by replacing B(t) with BT (t),

df(t, T ) = σ(t, T ) (τ(t, T )dt + dB(t)) = σ(t, T )dBT (t).

The SDE under QT for the bond prices is obtained similarly from the SDE
(12.46) under Q.

�

The above result shows that under the forward measure f(t, T ) is a QT -local
martingale. It also shows that τ(t, T ) is the volatility of P (t, T ) under the
forward measure QT .

Distributions of the Bond in HJM with Deterministic Volatilities

The following result, needed for option pricing, gives the conditional distribu-
tion of P (T, T + δ). As a corollary distributions of P (t, T ) are obtained.
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Theorem 12.7 Suppose that the forward rates satisfy the HJM model with
a deterministic σ(t, T ). Then for any 0 ≤ t < T and any δ > 0, the Q-
conditional distribution of P (T, T + δ) given Ft is Lognormal with mean

EQ(ln P (T, T + δ)|Ft) = ln
P (t, T + δ)

P (t, T )
− 1

2

∫ T

t

(τ2(s, T + δ) − τ2(s, T ))ds,

and variance

γ2(t) = V ar(ln P (T, T + δ)|Ft) =
∫ T

t

(τ(s, T + δ) − τ(s, T ))2ds. (12.57)

Proof: By letting t = T1 = T and T2 = T + δ in equation (12.49) , the
expression for P (T, T + δ) is obtained,

P (T, T +δ) =
P (0, T + δ)

P (0, T )
e
−
∫

T

0
(τ(s,T+δ)−τ(s,T ))dB(s)− 1

2

∫
T

0
(τ2(s,T+δ)−τ2(s,T ))ds

.

(12.58)
To find its conditional distribution given Ft, separate the Ft-measurable term,

P (T, T + δ) =
P (0, T + δ)

P (0, T )
e
−
∫

t

0
(τ(s,T+δ)−τ(s,T ))dB(s)− 1

2

∫
t

0
(τ2(s,T+δ)−τ2(s,T ))ds

×e
−
∫

T

t
(τ(s,T+δ)−τ(s,T ))dB(s)− 1

2

∫
T

t
(τ2(s,T+δ)−τ2(s,T ))ds

=
P (t, T + δ)

P (t, T )
e
−
∫

T

t
(τ(s,T+δ)−τ(s,T ))dB(s)− 1

2

∫
T

t
(τ2(s,T+δ)−τ2(s,T ))ds

. (12.59)

If τ(t, T ) is non-random, then the exponential term is independent ofFt. Hence
the desired conditional distribution given Ft is Lognormal with the mean and
variance as stated.

�

Corollary 12.8 The conditional distribution of P (T, T + δ) given Ft under
the forward measure QT+δ is Lognormal with mean

EQT+δ
(ln P (T, T + δ)|Ft) = ln

P (t, T + δ)
P (t, T )

+
1
2

∫ T

t

(τ(s, T + δ) − τ(s, T ))2ds,

and variance γ2(t) (12.57).

Proof: Use equation (12.59) for the conditional representation, together
with (12.54), a QT+δ-Brownian motion dBT+δ(t) = dB(t) + τ(t, T + δ)dt, to
have

P (T, T+δ)=
P (t, T + δ)

P (t, T )
e
−
∫

T

t
(τ(s,T+δ)−τ(s,T ))dBT+δ(s)+ 1

2

∫
T

t
(τ(s,T+δ)−τ(s,T ))2ds

.

(12.60)
�

By taking t = T = 0, T + δ = T in Theorem 12.7 and its corollary we obtain
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Corollary 12.9 In the case of constant volatilities the Q-distribution and QT -
distribution of P (t, T ) are Lognormal.

The Lognormality of P (t, T ) can also be obtained directly from equations
(12.47) and (12.38).

12.7 Options, Caps and Floors

We give common options on interest rates and show how they relate to options
on bonds.

Cap and Caplets

A cap is a contract that gives its holder the right to pay the rate of interest
smaller of the two, the floating rate, and rate k, specified in the contract. A
party holding the cap will never pay rate exceeding k, the rate of payment is
capped at k. Since the payments are done at a sequence of payments dates
T1, T2, . . . , Tn, called a tenor, with Ti+1 = Ti + δ (e.g. δ = 1

4 of a year), the
rate is capped over intervals of time of length δ. Thus a cap is a collection of
caplets.

t T T T T T T0 1 2 i i+1 n

f i

Figure 12.3: Payment dates and simple rates.

Consider a caplet over [T, T + δ]. Without the caplet, the holder of a loan
must pay at time T + δ an interest payment of fδ, where f is the floating,
simple rate over the interval [T, T + δ]. If f > k, then a caplet allows the
holder to pay kδ. Thus the caplet is worth fδ − kδ at time T + δ. If f < k,
then the caplet is worthless. Therefore, the caplet’s worth to the holder is
(f − k)+δ. In other words, a caplet pays to its holder the amount (f − k)+δ
at time T + δ. Therefore a caplet is a call option on the rate f , and its price
at time t, as any other option, is given by the expected discounted payoff at
maturity under the EMM Q,

Caplet(t) = EQ

(
β(t)

β(T + δ)
(f − k)+δ

∣∣∣ Ft

)
. (12.61)

To evaluate this expectation we need to know the distribution of f under Q.
One way to find the distribution of the simple floating rate is to relate it to
the bond over the same time interval. By definition, 1

P (T,T+δ) = 1 + fδ. This
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relation is justified as the amounts obtained at time T + δ when $1 invested at
time T in the bond and in the investment account with a simple rate f . Thus

f =
1
δ

(
1

P (T, T + δ)
− 1
)

. (12.62)

This is a basic relation between the rates that appear in option contracts and
bonds. It gives the distribution of f in terms of that of P (T, T + δ).

Caplet as a Put Option on the Bond

We show next that a caplet is in effect a put option on the bond. From the
basic relation (EMM) P (T, T + δ) = E( β(T )

β(T+δ) | FT ). Proceeding from (12.61)
by the law of double expectation, with E = EQ

Caplet(t) = E(E(
β(t)β(T )

β(T )β(T + δ)
(

1
P (T, T + δ)

− 1 − kδ)+ | FT ) | Ft)

= E(
β(t)
β(T )

(
1

P (T, T + δ)
− 1 − kδ)+E(

β(T )
β(T + δ)

| FT ) | Ft)

= (1 + kδ)E(
β(t)
β(T )

(
1

(1 + kδ)
− P (T, T + δ))+ | Ft). (12.63)

Thus a caplet is a put option on P (T, T+δ) with strike 1
(1+kδ) , and exercise time

T . In practical modelling, as in the HJM model with deterministic volatilities,
the distribution of P (T, T + δ) is Lognormal, giving rise to the Black-Scholes
type formula for a caplet, Black’s (1976) formula.

The price of caplet is easier to evaluate by using a forward measure (Theo-
rem 12.5). Take P (t, T +δ) as a numeraire, which corresponds to T +δ-forward
measure QT+δ,

Caplet(t) = P (t, T + δ)EQT+δ
((f − k)+δ | Ft) (12.64)

= P (t, T + δ)EQT+δ

(
(

1
P (T, T + δ)

− 1 − kδ)+ | Ft

)
.

Caplet Pricing in HJM model

The price of a caplet, which caps the rate at k over the time interval [T, T +δ],
at time t is given by equation (12.63) under the EMM Q, and by (12.64)
under the forward EMM QT+δ. These can be evaluated in closed form when
the volatilities are non-random.

For evaluating the expectation in the caplet formula (12.64), note that if X

is Lognormal eN(µ,σ2), then 1/X = eN(−µ,σ2) is also Lognormal. This allows
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us to price the caplet by doing standard calculations for E(X − K)+ giving
Black’s caplet formula.

The price of a Cap is then found by using forward measures

Cap(t) =
n∑

i=1

Capleti(t) =
n∑

i=1

P (t, Ti)EQTi
((fi−1 − k)+δ | Ft). (12.65)

The Cap pricing formula is given in Exercise 12.6.
A floor is a contract that gives its holder the right to receive the larger of

the two rates, the rate specified in the contract k, and the floating simple rate
f . Floors are priced similarly to Caps with floorlets being (k − fi−1)+.

12.8 Brace-Gatarek-Musiela (BGM) Model

In financial markets Black-Scholes like formulae are used for everything: bonds,
rates, etc. To make the practice consistent with the theory, Brace, Gatarek
and Musiela introduced a class of models, which can be seen as a subclass of
HJM models, where instead of the forward rates f(t, T ), the LIBOR rates are
modelled (Brace et al.(1997), Musiela and Rutkowski (1998)). In BGM models
the rates are Lognormal under forward measures, the fact that implies option
pricing formulae consistent with market use.

LIBOR

The time t forward δ-LIBOR (London Inter-Bank Offer Rate) is the simple
rate of interest on [T, T + δ]

L(t, T ) =
1
δ
(

P (t, T )
P (t, T + δ)

− 1), (12.66)

note that L(T, T ) = f is the rate that gets capped, see (12.62).

Theorem 12.10 The SDE for L(t, T ) under the forward QT+δ measure, when
P (t, T + δ) is the numeraire, is

dL(t, T ) = L(t, T )
(

1 + L(t, T )δ
L(t, T )δ

)
(τ(t, T + δ) − τ(t, T ))dBT+δ(t). (12.67)

Proof: By Corollary 12.3 to equation (12.49),

P (t, T )
P (t, T + δ)

=
P (0, T )

P (0, T + δ)
e
−
∫

t

0
(τ(s,T )−τ(s,T+δ))dB(s)− 1

2

∫
t

0
(τ2(s,T )−τ2(s,T+δ))ds

.

(12.68)
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dBT+δ(t) = dB(t) + τ(t, T + δ)dt, is a QT+δ-Brownian motion (12.54), giving

P (t, T )
P (t, T + δ)

=
P (0, T )

P (0, T + δ)
e
−
∫

t

0
(τ(s,T )−τ(s,T+δ))dBT+δ(s)− 1

2

∫
t

0
(τ(s,T )−τ(s,T+δ))2ds

.

(12.69)

=
P (0, T )

P (0, T + δ)
E
(∫ t

0

(τ(s, T + δ) − τ(s, T ))dBT+δ(s)
)

.

Using the stochastic exponential equation, it follows that

d

(
P (t, T )

P (t, T + δ)

)
=
(

P (t, T )
P (t, T + δ)

)
(τ(t, T + δ) − τ(t, T ))dBT+δ(t). (12.70)

Finally, using the definition of L(t, T ), the SDE (12.67) is obtained.
�

Choose now the HJM volatility σ(t, s), such that γ(t, T ) is deterministic

γ(t, T ) =
(

1 + L(t, T )δ
L(t, T )δ

)
(τ(t, T +δ)−τ(t, T )) =

1 + L(t, T )δ
L(t, T )δ

∫ T+δ

T

σ(t, s)ds.

(12.71)

Corollary 12.11 Let γ(t, T ) be deterministic such that
∫ T

0 γ2(s, T )ds < ∞.
Then L(t, T ) for t ≤ T , solves the SDE

dL(t, T ) = L(t, T )γ(t, T )dBT+δ(t), (12.72)

with the initial condition L(0, T ) = 1
δ ( P (0,T )

P (0,T+δ) −1). Thus L(t, T ) is Lognormal
under the forward measure QT+δ, moreover it is a martingale.

L(T, T ) = L(t, T )e
∫ T

t
γ(s,T )dBT+δ(s)− 1

2

∫ T

t
γ2(s,T )ds

, (12.73)

and the conditional distribution of L(T, T ) given Ft is Lognormal with mean
ln L(t, T )− 1

2

∫ T

t
γ2(s, T )ds and variance

∫ T

t
γ2(s, T )ds.

We now prove that the choice of forward volatilities specified above is possible.

Theorem 12.12 Let γ(t, T ), t ≤ T be given and such that the Itô integral∫ T

0 γ(s, T )dB(s) is defined. Then there exist forward rates volatilities σ(t, T ),
such that the integrated volatility

∫ T+δ

T
σ(s, u)du is determined uniquely, and

(12.72) holds.

Proof: (12.72) is equivalent to

L(t, T ) = L(0, T )E
(∫ t

0

γ(s, T )dBT+δ(s)
)

, t ≤ T. (12.74)
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By the definition of L(t, T ), and (12.69) we have

L(t, T ) =
1
δ
(

P (t, T )
P (t, T + δ)

− 1)

=
1
δ

(
P (0, T )

P (0, T + δ)
E
(∫ t

0

(τ(s, T + δ) − τ(s, T ))dBT+δ(s)
)
− 1
)

.

Equating this to (12.74) we obtain the equation for stochastic exponentials

E
(∫ t

0

(τ(s, T + δ) − τ(s, T ))dBT+δ(s)
)

= (1−c)E
(∫ t

0

γ(s, T )dBT+δ(s)
)

+c,

(12.75)
with c = P (0,T+δ)

P (0,T ) . Now, using the stochastic logarithm (Theorem 5.3)∫ t

0

(∫ T+δ

T

σ(s, u)du

)
dBT+δ(s) = L

(
(1 − c)E

(∫ t

0

γ(s, T )dBT+δ(s)
)

+ c

)
,

(12.76)
from which the integrated volatility

∫ T+δ

T σ(s, u)du and a suitable process
σ(t, T ) can be found (see Exercise 12.7).

�

Caplet in BGM

Caplet is a Call on LIBOR, it pays δ(L(T, T ) − k)+ at T + δ. By (12.53) its
price at time t

C(t) = P (t, T + δ)EQT+δ
(δ(L(T, T ) − k)+|Ft). (12.77)

Using that L(T, T ) is Lognormal under the forward measure QT+δ (12.73),
the caplet is priced by Black’s caplet formula (agrees with the market) by
evaluating under the forward measure.

C(t) = P (t, T + δ) (L(t, T )N(h1) − kN(h2)) , (12.78)

h1,2 =
ln L(t,T )

k ± 1
2

∫ T

t
γ2(s, T )ds√∫ T

t
γ2(s, T )ds

.

SDEs for Forward LIBOR under Different Measures

Consider now a sequence of dates T0, T1, . . . , Tn, and denote by QTk
the forward

measure corresponding to the numeraire P (t, Tk). Corollary 12.11 states that
L(t, Tk−1) for t ≤ Tk−1 satisfies the SDE

dL(t, Tk−1) = γ(t, Tk−1)L(t, Tk−1)dBTk(t), (12.79)
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where BTk(t) is a QTk
-Brownian motion.

An SDE for all of the rates under a single measure is sometimes required
(for a swaption), it is given by

Theorem 12.13 For a given i, the SDE for the forward LIBOR L(t, Tk−1)
on [Tk−1, Tk] under the forward measure QTi

, is given by (12.79) for i = k, by
(12.80) for i > k, and (12.81) i < k.

dL(t, Tk−1) = −L(t, Tk−1)
i−1∑
j=k

δγ(t, Tk−1)γ(t, Tj)L(t, Tj)
1 + δL(t, Tj)

dt

+ γ(t, Tk−1)L(t, Tk−1)dBTi(t). (12.80)

dL(t, Tk−1) = L(t, Tk−1)
k−1∑
j=i

δγ(t, Tk−1)γ(t, Tj)L(t, Tj)
1 + δL(t, Tj)

dt

+ γ(t, Tk−1)L(t, Tk−1)dBTi (t). (12.81)

Proof: We establish the relationship between different forward measures
as well as corresponding Brownian motions. By (12.54) the Brownian motion
under the forward measure QTk

satisfies

dBTk(t) = dB(t) + τ(t, Tk)dt. (12.82)

Hence, using this with k − 1, we obtain that BTk and BTk−1 are related by

dBTk(t) = dBTk−1 (t) + (τ(t, Tk) − τ(t, Tk−1))dt.

By (12.71), from the choice of γ,

τ(t, Tk) − τ(t, Tk−1) = γ(t, Tk−1)
L(t, Tk−1)δ

1 + L(t, Tk−1)δ
,

giving the relationship for the SDEs for LIBOR

dBTk(t) = dBTk−1(t) + γ(t, Tk−1)
L(t, Tk−1)δ

1 + L(t, Tk−1)δ
dt.

Now fix i > k. Using the above relation iteratively from i to k, we obtain

dBTi(t) = dBTk(t) +
i−1∑
j=k

γ(t, Tj)
L(t, Tj)δ

1 + L(t, Tj)δ
dt. (12.83)

Replace BTk in the SDE (12.79) for L(t, Tk−1) under QTk
,

dL(t, Tk−1) = γ(t, Tk−1)L(t, Tk−1)dBTk(t), by BTi with the drift from (12.83)
to obtain (12.80). The case i < k is proved similarly.

�

Another proof can be done by using the result on the SDE under a new nu-
meraire, Theorem 11.18, with β(t) = P (t, Tk) and S(t) = P (t, Ti).
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Choice of Bond Volatilities

We comment briefly on the choice of bond volatilities. For a sequence of dates
equation (12.71) implies from the choice of γ,

τ(t, Tk) − τ(t, Tk−1) = γ(t, Tk−1)
L(t, Tk−1)δ

1 + L(t, Tk−1)δ
. (12.84)

Therefore the bond volatilities τ(t, Tk) can be obtained recursively,

τ(t, Tk) = τ(t, Tk−1) + γ(t, Tk−1)
L(t, Tk−1)δ

1 + L(t, Tk−1)δ
=

k−1∑
j=0

γ(t, Tj)
L(t, Tj)δ

1 + L(t, Tj)δ
.

(12.85)
In practice γ(t, T ) is taken to be a function of T only (Rebonato, Brace), for
example γ(t, T ) = (a + becT ).

12.9 Swaps and Swaptions

A basic instrument in the interest rate market is the payer swap, in which the
floating rate is swapped in arrears (at Ti) against a fixed rate k at n intervals
of length δ = Ti − Ti−1, i = 1, 2 . . . , n. The other party in the swap enters
a receiver swap, in which a fixed rate is swapped against the floating. By a
swap we shall mean only a payer swap. A swap value at time t, by the basic
relation (12.50) is given by

Swap(t, T0, k) = EQ

n∑
i=1

δ

(
β(t)
β(Ti)

(L(Ti−1, Ti−1) − k)
∣∣∣ Ft

)
.

This can be written by using forward measures (Theorem 12.5)

Swap(t, T0, k) = δ
n∑

i=1

P (t, Ti)EQTi

(
(L(Ti−1, Ti−1) − k)

∣∣∣ Ft

)
= δ

n∑
i=1

P (t, Ti)(L(t, Ti−1) − k), (12.86)

as under the forward measure QTi , L(t, Ti−1) is a martingale (Corollary 12.11).
A swap agreement is worthless at initiation. The forward swap rate is that

fixed rate of interest which makes a swap worthless. Namely, the swap rate at
time t for the date T0 solves, by definition, Swap(t, T0, k) = 0. Hence

k(t, T0) =
∑n

i=1 P (t, Ti)L(t, Ti−1)∑n
i=1 P (t, Ti)

. (12.87)
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Thus the t-value of the swap in terms of this rate is

Swap(t, T0, k) = δ

(
n∑

i=1

P (t, Ti)

)
(k(t, T0) − k). (12.88)

Other expressions for the Swap are given in Exercises 12.10 and 12.10.
A payer swaption maturing (with exercise) at T = T0 gives its holder the

right to enter a payer swap at time T0. A swaption, Swaption(t, T0), delivers
at time T0 a swap, Swap(T0, T0), when the value of that swap is positive. This
shows the value of the swaption at maturity is (Swap(T0, T0))+. Thus its value
at time t ≤ T0 is

Swaption(t, T0) = EQ

(
β(t)

β(T0)
(Swap(T0, T0))+

∣∣∣Ft

)
(12.89)

= δEQ

(
β(t)

β(T0)

(
n∑

i=1

P (T0, Ti)

)
(k(T0, T0) − k)+

∣∣∣Ft

)
.

Consider taking
∑n

i=1 P (t, Ti) as the numeraire instead of β(t). The process∑n
i=1 P (t, Ti)/β(t) is a Q-martingale, as a sum of martingales. By Theorem

11.17, the new measure Q̂T0 defined by Λ(T ) =
∑

n

i=1
P (T0,Ti)/

∑
n

i=1
P (0,Ti)

β(T0)
, as

its Radon-Nikodym derivative with respect to Q gives (a call on the swap rate)

Swaption(t, T0) = δ

(
n∑

i=1

P (t, Ti)

)
EQ̂T0

(
(k(T0, T0) − k)+

∣∣∣Ft

)
. (12.90)

The distribution of the swap rate under the swap-rate measure Q̂T0 is approx-
imately Lognormal. Differentiating, simplifying and approximating k(t, T0) in
(12.87) leads to the SDE for the swap rate

dk(t, T0) = σ̂(t, T0)k(t, T0)dB̂T0 ,

where B̂T0 is a Q̂T0 -Brownian motion, and

σ̂(t, T0) =
n∑

i=1

wiγ(t, Ti−1), wi =
P (0,Ti)
P (0,T0)L(0, Ti−1)∑n

i=1
P (0,Ti)
P (0,T0)

L(0, Ti−1)
.

The expression for the swaption (12.90) integrates to the Black Swaption For-
mula as used in the market.

Another way to evaluate a swaption is by simulation. For details on analytic
approximations and simulations see Brace et al. (1997), Brace (1998), Musiela
and Rutkowski (1998).
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Remark 12.4: We have presented a brief mathematical treatment of models
for rates and bonds based on diffusion processes. There is a large amount of
literature on models based on processes with jumps. For jumps in the spot
rate see Borovkov et al. (2003) and references therein. HJM with jumps
were studied by Shirakawa (1991), and more generally by Björk, Kabanov
and Runggaldier (BKR) (1996) and Björk, Di Masi, Kabanov and Rung-
galdier (BDMKR) (1997). Kennedy (1994) considered a Gaussian Markov
field model. HJM and BDMKR models can be criticized for being an infinite-
dimensional diffusion driven by a finite number of independent noise processes.
Cont (1998) suggests modelling the forward curves by an infinite-dimensional
diffusion driven by an infinite-dimensional Brownian motion. This approach
is included in Random Fields models, such as Brownian and Poisson sheet
models, also known as models with space-time noise. The most general model
that allows for existence of EMM is given in Hamza et al. (2002); it includes
Gaussian and Poisson random field models.

12.10 Exercises

Exercise 12.1: Show that a European call option on the T -bond is given by
C(t) = P (t, T )QT (P (s, T ) > K | Ft) − KP (t, s)Qs(P (s, T ) > K | Ft), where
s is the exercise time of the option and Qs, QT are s and T -forward measures.

Exercise 12.2: Show that a European call option on the bond in the Merton
model is given by

P (t, T )Φ
( ln P (t,T )

KP (t,s) + σ2(T−s)2(s−t)
2

σ(T − s)
√

s − t

)−KP (t, s)Φ
( ln P (t,T )

KP (t,s) − σ2(T−s)2(s−t)
2

σ(T − s)
√

s − t

)
.

Exercise 12.3: (Stochastic Fubini Theorem)
Let H(t, s) be continuous 0 ≤ t, s ≤ T , and for any fixed s, H(t, s) as a process
in t, 0 ≤ t ≤ T is adapted to the Brownian motion filtration Ft. Assume∫ T

0
H2(t, s)dt < ∞, so that for each s the Itô integral X(s) =

∫ T

0
H(t, s)dW (t)

is defined. Since H(t, s) is continuous, Y (t) =
∫ T

0
H(t, s)ds is defined and it is

continuous and adapted. Assume∫ T

0

E

(∫ T

0

H2(t, s)dt

)
ds < ∞.

1. Show that
∫ T

0
E|X(s)|ds ≤ ∫ T

0

(
E
∫ T

0
H2(t, s)dt

)1/2

ds < ∞, consequently∫ T

0 X(s)ds exists.
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2. If 0 = t0 < t1 < . . . < tn = T is a partition of [0, T ], show that∫ T

0

(
n−1∑
i=0

H(ti, s)
(
W (ti+1) − W (ti)

))
ds =

n−1∑
i=0

(∫ T

0

H(ti, s)ds

)(
W (ti+1)−W (ti)

)
.

3. By taking the limits as the partition shrinks, show that∫ T

0

X(s)ds =
∫ T

0

Y (t)dW (t),

in other words the order of integration can be interchanged∫ T

0

(∫ T

0

H(t, s)dW (t)

)
ds =

∫ T

0

(∫ T

0

H(t, s)ds

)
dW (t).

Exercise 12.4: (One factor HJM) Show that the correlation between the for-
ward rates f(t, T1) and f(t, T2) in the HJM model with deterministic volatili-
ties σ(t, T ) is given by

ρ(T1, T2) = Corr(f(t, T1), f(t, T2)) =

∫ t

0
σ(s, T1)σ(s, T2)ds√∫ t

0
σ2(s, T1)ds

∫ t

0
σ2(s, T2)ds

.

Give the class of volatilities for which the correlation is one.

Exercise 12.5: Find the forward rates f(t, T ) in Vasicek’s model. Give the
price of a cap.

Exercise 12.6: (Caps Pricing Market Formula)
Show that in the HJM model with a deterministic σ(t, T ) the price of a cap
with trading dates Ti = T + iδ, i = 1, . . . , n, and strike rate k is given by

n∑
i=1

(P (t, Ti−1)Φ(−hi−1(t)) − (1 + Kδ)P (t, Ti)Φ(−hi−1(t) − γi−1(t))) ,

where γ2
i−1(t) = V ar(ln P (Ti−1, Ti)) =

∫ Ti−1

t |τ(s, Ti) − τ(s, Ti−1)|2ds, with

τ(t, T ) =
∫ T

t
σ(t, s)ds and hi−1(t) = 1

γi−1(t)

(
ln (1+kδ)P (t,Ti)

P (t,Ti−1)
− 1

2γ2
i−1(t)

)
.

Exercise 12.7: Let 0 < c < 1, and γ(t) a bounded deterministic function
be given. Show that there is a process β(s), such that

c + (1 − c)E(
∫ t

0

γ(s)dB(s)) = E(
∫ t

0

β(s)dB(s)).

Hence deduce the existence of forward rates volatilities σ(t, T ) in HJM from
specification of the forward LIBOR volatilities γ(t, T ) in BGM.
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Exercise 12.8: (Two factor and higher HJM Models)
Two-factor HJM is given by the SDE

df(t, T ) = α(t, T )dt + σ1(t, T )dW1(t) + σ2(t, T )dW2(t),

where W1 and W2 are independent Brownian motions.
1. Give the stochastic differential equation for the log of the bond prices, and
show that

P (t, T )

β(t)
= P (0, T )e

−
∫

t

0
A1(u,T )du−

∫
t

0
τ1(t,T )dW1(u)−

∫
t

0
τ2(t,T )dW2(u)

,

with τi(t, T ) =
∫ T

t σi(t, s)ds,, i = 1, 2, and A1(t, T ) =
∫ T

t α(t, s)ds.
2. Using the same proof as in the one-factor model, show that the no-arbitrage
condition is given by

α(t, T ) = σ1(t, T )
∫ T

t

σ1(t, s)ds + σ2(t, T )
∫ T

t

σ2(t, s)ds.

Exercise 12.9: Show that a swap can be written as

Swap(t, T0, k) = P (t, T0) − P (t, Tn) − kδ

n∑
i=1

P (t, Ti).

Exercise 12.10: Denote by b(t) = δ
∑n

i=1 P (t, Ti). Show that for 0 < t ≤ T0

Swap(t, T0, k) = P (t, T0) − P (t, Tn) − kb(t), and that the swap rate

k(t) =
P (t, T0) − P (t, Tn)

b(t)
.

Exercise 12.11: (Jamshidian (1996) Swaptions Pricing Formula)
Assume that the swap rate k(t) > 0, and that v2(t) =

∫ T

t
1

k2(s)d[k, k](s) is
deterministic. Show that

Swaption(t) = b(t) (α+(t)k(t) − kα−(t)) ,

where

α±(t) = Φ
(

ln k(t)/k

v(t)
± v(t)

2

)
.
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Chapter 13

Applications in Biology

In this chapter applications of stochastic calculus to population models are
given. Diffusion models, Markov Jump process models, age-dependent non-
Markov models and stochastic models for competition of species are presented.
Diffusion Models are used in various areas of Biology as models for population
growth and genetic evolution. Birth and Death processes are random walks
in continuous time and are met in various applications. A novel approach
to the age-dependent branching (Bellman-Harris) process is given by treating
it as a simple measure-valued process. The stochastic model for interacting
populations that generalizes the Lotka-Volterra prey-predator model is treated
by using a semimartingale representation. It is possible to formulate these
models as stochastic differential or integral equations. We demonstrate how
results on stochastic differential equations and martingales presented in earlier
chapters are applied for their analysis.

13.1 Feller’s Branching Diffusion

A simple branching process is a model in which individuals reproduce inde-
pendently of each other and of the history of the process. The continuous
approximation to branching process is the branching diffusion. It is given by
the stochastic differential equation for the population size X(t), 0 < X(t) < ∞,

dX(t) = αX(t)dt + σ
√

X(t)dB(t). (13.1)

In this model the infinitesimal drift and variance are proportional to the pop-
ulation size. The corresponding forward (Kolmogorov or Fokker-Plank) equa-
tion for the probability density of X(t) is

∂p(t, x)
∂t

= −α
∂xp(t, x)

∂x
+

σ2

2
∂xp(t, x)

∂x2
. (13.2)

351
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Analysis of the process was done by solving the partial differential equation
(13.2) (Feller (1951)). Here we demonstrate the stochastic calculus approach
by obtaining the information directly from the stochastic equation (13.1). First
we prove that a solution of (13.1) is always non-negative, moreover once it hits
0 it stays at 0 forever.

Theorem 13.1 Let X(t) solve (13.1) and X(0) > 0. Then
P (X(t) ≥ 0 for all t ≥ 0) = 1, moreover if τ = inf{t : X(t) = 0}, then
X(t) = 0 for all t ≥ τ .

Proof: Consider first (13.1) with X(0) = 0. Clearly, X(t) ≡ 0 is a solution.
Conditions of the Yamada-Watanabe result on the existence and uniqueness
are satisfied, see Theorem 5.5. Therefore solution is unique, and X(t) ≡ 0 is
the only solution. Consider now (13.1) with X(0) > 0. The first hitting time
of zero τ is a stopping time with X(τ) = 0. By the strong Markov property
X(t) for t > τ is the solution to (13.1) with zero initial condition, hence it is
zero for all t > τ . Thus if X(0) > 0, the process is positive for all t < τ , and
zero for all t ≥ τ .

�

The next result describes the exponential growth of the population.

Theorem 13.2 Let X(t) solve (13.1) and X(0) > 0. Then EX(t) = X(0)eαt.
X(t)e−αt is a non-negative martingale which converges almost surely to a non-
degenerate limit as t → ∞.

Proof: First we show that X(t) is integrable. Since Itô integrals are local
martingales,

∫ t

0

√
X(s)dB(s) is a local martingale. Let Tn be a localizing

sequence, so that
∫ t∧Tn

0

√
X(s)dB(s) is a martingale in t for any fixed n.

Then using (13.1) we can write

X(t ∧ Tn) = X(0) + α

∫ t∧Tn

0

X(s)ds + σ

∫ t∧Tn

0

√
X(s)dB(s). (13.3)

Taking expectation, we obtain

EX(t ∧ Tn) = X(0) + αE
∫ t∧Tn

0

X(s)ds. (13.4)

Since X is non-negative,
∫ t∧Tn

0
X(s)ds is increasing to

∫ t

0
X(s)ds. Therefore

by monotone convergence,

E
∫ t∧Tn

0

X(s)ds → E
∫ t

0

X(s)ds,
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as n → ∞. Therefore limn→∞ EX(t ∧ Tn) = X(0) + E
∫ t

0
X(s)ds. Since

X(t ∧ Tn) → X(t) we obtain by Fatou’s lemma (noting that if a limit exists,
then lim inf = lim)

EX(t) = E lim
n→∞X(t ∧ Tn) = E lim inf

n→∞ X(t ∧ Tn)

≤ lim inf
n→∞ EX(t ∧ Tn) = lim

n→∞EX(t ∧ Tn) = X(0) + E
∫ t

0

X(s)ds.

Using Gronwall’s inequality (Theorem 1.20) we obtain that the expectation is
finite,

EX(t) ≤ (1 + X(0))eαt. (13.5)

Now we can show that the local martingale
∫ t

0

√
X(s)dB(s) is a true martin-

gale. Consider its quadratic variation

E
[ ∫ ·

0

√
X(s)dB(s),

∫ ·

0

√
X(s)dB(s)

]
(t) = E

∫ t

0

X(s)ds < Ceαt.

Thus by Theorem 7.35
∫ t

0

√
X(s)dB(s) is a martingale. Now we can take ex-

pectations in (13.1). Differentiating with respect to t and solving the resulting
equation, we find EX(t) = X(0)eαt.

To prove the second statement, use integration by parts for X(t)e−αt to
obtain

U(t) = X(t)e−αt = X(0) + σ

∫ t

0

e−αs
√

X(s)dB(s),

and U(t) is a local martingale.

E[U, U ](t) = E
∫ t

0

e−2αsX(s)ds =
∫ t

0

e−αsds < ∞,

and E[U, U ](∞) < ∞. Therefore U(t) is a martingale, moreover, it is square
integrable on [0,∞). Since it is uniformly integrable, it converges to a non-
degenerate limit.

�

The next result uses diffusion theory to find the probability of extinction.

Theorem 13.3 Let X(t) solve (13.1) and X(0) = x > 0. Then the probability
of ultimate extinction is e−

2α

σ2 x if α > 0, and 1 if α ≤ 0

Proof: Let T0 = τ = inf{t : X(t) = 0} be the first time of hitting zero, and
Tb the first time of hitting b > 0. By the formula (6.52) on exit probabilities

Px(T0 < Tb) =
S(b) − S(x)
S(b) − S(0)

, (13.6)
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where S(x) is the scale function, see (6.50). In this example

S(x) =
∫ x

x1

e
−
∫ u

x0

2α

σ2 dy
du, (13.7)

where x0 and x1 are some positive constants. Simplifying (13.7) we obtain
from (13.6)

Px(T0 < Tb) =
e−cx − e−cb

1 − e−cb
, (13.8)

with c = 2α/σ2. The probability of ultimate extinction is obtained by taking
limit as b → ∞ in (13.8), that is,

Px(T0 < T∞) = lim
b→∞

Px(T0 < Tb) =
{

e−
2α

σ2 x if α > 0,
1 if α ≤ 0.

(13.9)

where T∞ = limb→∞ Tb is the explosion time, which is infinite if the explosion
does not occur.

�

Branching diffusion is related to a stopped Brownian motion with drift by a
change of time. See Example 7.17.

13.2 Wright-Fisher Diffusion

In population dynamics frequencies of genes or alleles are studied. It is as-
sumed for simplicity that the population size N is fixed and individuals are of
two types: A and a. If individuals of type A mutate to type a with the rate
γ1/N and individuals of type a mutate to type A with the rate γ2/N , then
it is possible to approximate the frequency of type A individuals X(t) by the
Wright-Fisher diffusion, given by the stochastic equation

dX(t) =
(− γ1X(t) + γ2(1 − X(t))

)
dt +

√
X(t)(1 − X(t))dB(t), (13.10)

with 0 < X(0) < 1. For complete description of the process its behaviour at
the boundaries 0 and 1 should also be specified. When X(t) = 0 or 1, then all
the individuals at time t are of the same type. Consider first the case of no
mutation: γ1 = γ2 = 0. Then the equation for X(t) is

dX(t) =
√

X(t)(1 − X(t))dB(t), (13.11)

with 0 < X(0) = x < 1. The scale function is given by S(x) = x, consequently
for 0 ≤ a < x < b ≤ 1

Px(Tb < Ta) =
x − a

b − a
. (13.12)
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The process is stopped when it reaches 0 or 1, because at that time and at
all future times all the individuals are of the same type. This phenomenon
is called fixation. The probability that fixation at A occurs having started
with proportion x of type A individuals is x, and with the complementary
probability fixation at a occurs.

The expected time to fixation is found by Theorem 6.16 as the solution
to Lv = −1 with boundary conditions v(0) = v(1) = 0, and Lv = x(1−x)

2 v′′.
Solving this equation (using

∫
ln x = x ln x − x), we obtain that the expected

time to fixation having started with proportion x of type A individuals is given
by

v(x) = Exτ = −2
(
(1 − x) ln(1 − x) + x ln x

)
. (13.13)

In the model with one-way mutation when, for example γ2 = 0, γ1 = γ,
X(t) satisfies

dX(t) = −γX(t)dt +
√

X(t)(1 − X(t))dB(t), (13.14)

with 0 < X(0) < 1. The process is stopped once it reaches the boundaries 0 or
1. In this case the scale function is given by S(x) =

(
1− (1−x)1−2γ

)
/(1−2γ)

if γ �= 1/2 and S(x) = − log(1 − x) when γ = 1/2. Note that by continuity of
paths Tb ↑ T1 as b ↑ 1, and it is easy to see that if γ ≥ 1/2 then

Px(T1 < T0) = lim
b↑1

Px(Tb < T0) = 0. (13.15)

It is possible to see by Theorem 6.16 that the expected time to fixation is finite.
Thus fixation at type a occurs with probability 1. If γ < 1/2 then expected
time to fixation is finite, but there is a positive probability that fixation at
type A also occurs.

In the model with two-way mutation both γ1, γ2 > 0. Analysis of this
model is done by using the diffusion processes techniques described in Chapter
6, but it is too involved to be given here in detail. The important feature of this
model is that fixation does not occur and X(t) admits a stationary distribution.
Stationary distributions can be found by formula (6.69). We find

π(x) =
C

σ2(x)
exp

(∫ x

x0

2µ(y)
σ2(y)

dy
)

= C(1 − x)2γ1−1x2γ2−1, (13.16)

which is the density of a Beta distribution. C = Γ(2γ1)Γ(2γ2)/Γ(2γ1 + 2γ2).
Diffusion models find frequent use in population genetics, see for exam-

ple, Ewens (1979). For more information on Wright-Fisher diffusion see, for
example, Karlin and Taylor (1981), Chapter 15.

Remark 13.1: The Theory of weak convergence is used to show that a diffu-
sion approximation to alleles frequencies is valid. This theory is not presented
here but can be found in many texts, see for example Liptser and Shiryayev
(1989), Ethier and Kurtz (1986).
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13.3 Birth-Death Processes

A Birth-Death process is a model of a developing in time population of par-
ticles. Each particle lives for a random length of time at the end of which it
splits into two particles or dies. If there are x particles in the population, then
the lifespan of a particle has an exponential distribution with parameter a(x),
the split into two occurs with probability p(x) and with the complimentary
probability 1 − p(x) a particle dies producing no offspring.

Denote by X(t) the population size at time t. The change in the population
occurs only at the death of a particle, and from state x the process jumps to
x + 1 if a split occurs or to x− 1 if a particle dies without splitting. Thus the
jump variables ξ(x) take values 1 and −1 with probabilities p(x) and 1− p(x)
respectively. Using the fact that the minimum of exponentially distributed
random variables is exponentially distributed, we can see that the process
stays at x for an exponentially distributed length of time with parameter
λ(x) = xa(x).

Usually, the Birth-Death process is described in terms of birth and death
rates; in a population of size x, a particle is born at rate b(x) and dies at the
rate d(x). These refer to the infinitesimal probabilities of population increasing
and decreasing by one, namely for an integer x

P(X(t + δ) = x + 1|X(t) = x) = b(x)δ + o(δ),
P(X(t + δ) = x − 1|X(t) = x) = d(x)δ + o(δ),

and with the complimentary probability no births or deaths happen in (t, t+δ)
and the process remains unchanged

P(X(t + δ) = x|X(t) = x) = 1 − (b(x) + d(x))δ + o(δ).

Here o(δ) denotes a function that limδ→0 o(δ)/δ = 0. Once population reaches
zero it stays there forever.

P(X(t + δ) = 0|X(t) = 0) = 1.

It can be seen that these assumptions lead to the model of a Jump Markov
process with the holding time parameter at x

λ(x) = b(x) + d(x), (13.17)

and the jump from x

ξ(x) =

{
+1 with probability b(x)

b(x)+d(x)

−1 with probability d(x)
b(x)+d(x)

(13.18)
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The first two moments of the jumps are easily computed to be

m(x) =
b(x) − d(x)
b(x) + d(x)

and v(x) = 1. (13.19)

By Theorem 9.15 the compensator of X(t) is given in terms of

λ(x)m(x) = b(x) − d(x),

which is the survival rate in the population. Thus the Birth-Death process
X(t) can be written as

X(t) = X(0) +
∫ t

0

(
b(X(s)) − d(X(s))

)
ds + M(t), (13.20)

where M(t) is a local martingale with the sharp bracket

〈M, M〉 (t) =
∫ t

0

(
b(X(s)) + d(X(s))

)
ds. (13.21)

Since E|ξ(x)| = 1, it follows by Theorem 9.16 that if the linear growth condi-
tion

b(x) + d(x) ≤ C(1 + x), (13.22)

holds then the local martingale M in representation (13.20) is a square inte-
grable martingale.

Sometimes it is convenient to describe the model in terms of the individual
birth and death rates. In a population of size x, each particle is born at the rate
β(x) and dies at the rate γ(x). The individual rates relate to the population
rates by

b(x) = xβ(x), and d(x) = xγ(x). (13.23)

Introduce the individual survival rate α(x) = β(x)−γ(x). Then the stochastic
equation (13.20) becomes

X(t) = X(0) +
∫ t

0

α(X(s))X(s)ds + M(t). (13.24)

Birth-Death Processes with Linear Rates

Suppose that the individual birth and death rates β and γ are constants. This
corresponds to linear rates b(x) = βx, d(x) = γx (see (13.23)). The linear
growth condition 13.22 is satisfied, and we have from equation (13.20)

X(t) = X(0) + α

∫ t

0

X(s)ds + M(t), (13.25)
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where α = β − γ is the survival rate and M(t) is a martingale. Moreover, by
(13.21)

〈M, M〉 (t) = (β + γ)
∫ t

0

X(s)ds. (13.26)

Taking expectations in (13.25)

EX(t) = X(0) + α

∫ t

0

EX(s)ds, (13.27)

and solving this equation, we find

EX(t) = X0e
αt. (13.28)

Using integration by parts (note that eαt has zero covariation with X(t)), we
have

d
(
X(t)e−αt

)
= e−αtdX(t) − αe−αtX(t−)dt. (13.29)

Since X(t−)dt can be replaced by X(t)dt, by using the equation (13.25) in its
differential form we obtain

d
(
X(t)e−αt

)
= e−αtdX(t) − αe−αtX(t)dt = e−αtdM(t). (13.30)

Thus

X(t)e−αt = X(0) +
∫ t

0

e−αsdM(s). (13.31)

Using the rule for the sharp bracket of the integral and equation (13.26), we
find 〈∫ ·

0

e−αsdM(s),
∫ ·

0

e−αsdM(s)
〉

(t) =
∫ t

0

e−2αsd 〈M, M〉 (s)

= (β + γ)
∫ t

0

e−2αsX(s)ds.

Since EX(t) = X(0)eαt, by taking expectations it follows that

E
〈∫ ·

0

e−αsdM(s),
∫ ·

0

e−αsdM(s)
〉

(∞) < ∞.

Consequently X(t)e−αt is a square integrable martingale on [0,∞).

V ar(X(t)e−αt) = E
〈∫ t

0

e−αsdM(s)
〉

(t) = X(0)
β + γ

α

(
1 − e−αt

)
. (13.32)

Since X(t)e−αt is square integrable on [0,∞), it converges almost surely as
t → ∞ to a non-degenerate limit.
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Processes with Stabilizing Reproduction

Consider the case when the rates stabilize as population size increases, namely
β(x) → β and γ(x) → γ as x → ∞. Then, clearly, α(x) = β(x) − γ(x) →
α = β − γ. Depending on the value of α radically distinct modes of behaviour
occur. If α < 0 then the process dies out with probability one. If α > 0
then the process tends to infinity with a positive probability. If the rate of
convergence of α(x) to α is fast enough, then exponential growth persists as in
the classical case. Let ε(x) = α(x)−α. Then under some technical conditions,
the following condition is necessary and sufficient for exponential growth,∫ ∞

1

ε(x)
x

dx < ∞. (13.33)

If (13.33) holds then X(t)e−αt converges almost surely and in the mean square
to a non-degenerate limit.

The case α = 0 provides examples of slowly growing populations, such as
those with a linear rate of growth. Let α(x) > 0 and α(x) ↓ 0. Among such
processes there are some that become extinct with probability one, but there
are others that have a positive probability of growing to infinity. Consider the
case when α(x) = c/x when x > 0. It is possible to show that if c > 1/2 then
q = P (X(t) → ∞) > 0. Stochastic equation (13.24) becomes

X(t) = X(0) + c

∫ t

0

I(X(s) > 0)ds + M(t). (13.34)

By taking expectations in (13.34) one can see that limt→∞ EX(t)/t = cq,
and the mean of such processes grows linearly. By using Theorem 9.19 and
Exercise 9.5 it is possible to show that for any k, E(Xk(t))/tk converges to the
k-th moment of a gamma distribution times q. This implies that on the set
{X(t) → ∞}, X(t)/t converges in distribution to a gamma distribution. In
other words, such processes grow linearly, and not exponentially. By changing
the rate of convergence of α(x) other polynomial growth rates of the population
can be obtained.

Similar results are available for population-dependent Markov Branching
processes that generalize Birth-Death processes by allowing a random number
of offspring at the end of a particle’s life. For details of the stochastic equation
approach to Markov Jump processes see Klebaner (1994), where such processes
were studied as randomly perturbed linear differential equations; Hamza and
Klebaner (1995).
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13.4 Branching Processes

In this Section we look at a population model known as the age-dependent
Bellman-Harris Branching process, see Harris (1963), Athreya and Ney (1972).
This model generalizes the Birth and Death process model in two respects:
firstly the lifespan of individuals need not have the exponential distribution,
and secondly, more than one particle can be born. In the age-dependent model
a particle lives for a random length of time with distribution G, and at the
end of its life leaves a random number of children Y , with mean m = EY .
All particles reproduce and die independently of each other. Denote by Z(t)
the number of particles alive at time t. It can be seen that unless the lifetime
distribution is exponential, the process Z(t) is not Markovian, and its analysis
is usually done by using Renewal Theory (Harris (1963)). Here we apply
stochastic calculus to obtain a limiting result for the population size counted
in a special way (by reproductive value).

Consider a collection of individuals with ages (a1, . . . , az) = A. It is conve-
nient to look at the vector of ages A = (a1, . . . , az) as a counting measure A,
defined by A(B) =

∑z
i=1 1B(ai), for any Borel set B in IR+. For a function f

on IR the following notations are used

(f, A) =
∫

f(x)A(dx) =
z∑

i=1

f(ai).

The population size process in this notation is Z(t) = (1, At). In this approach
the process of ages At is a measure-valued process, although simpler than
studied e.g. in Dawson (1993). To convert a measure-valued process into a
scalar valued, test functions are used. Test functions used on the space of
measures are of the form F ((f, µ)), where F and f are functions on IR. Let
h(a) = G′(a)

1−G(a) be rate of dying at age a. E with and without the subscript
A denotes the expectation when the processes starts with individuals aged
(a1, . . . , az) = A. The following result is obtained by direct calculations.

Theorem 13.4 For a bounded differentiable function F on IR+ and a con-
tinuously differentiable function f on IR+, the following limit exists

lim
t→0

1
t
EA

{
F ((f, At)) − F ((f, A))

}
= GF ((f, A)), (13.35)

GF ((f, A)) = F ′((f, A))(f ′, A) (13.36)

+
z∑

i=1

h(aj){EA

(
F (Yjf(0) + (f, A) − f(aj))

)− F ((f, A))},
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The operator G in (13.36) defines a generator of a measure-valued branching
process in which the movement of the particles is deterministic, namely shift.
The following result gives the integral equation (SDE) for the age process
under the test functions.

Theorem 13.5 For a bounded C1 function F on IR and a C1 function f on
IR+

F ((f, At)) = F ((f, A0)) +
∫ t

0

GF ((f, As))ds + MF,f
t , (13.37)

where MF,f
t is a local martingale with the sharp bracket given by

〈
MF,f , MF,f

〉
t
=
∫ t

0

GF 2((f, As))ds−2
∫ t

0

F ((f, As))GF ((f, As))ds. (13.38)

Consequently,

EA(MF,f
t )2 = EA

( ∫ t

0

GF 2((f, As))ds − 2
∫ t

0

F ((f, As))GF ((f, As))ds
)
,

provided EA(MF,f
t )2 exists.

Proof: The first statement is obtained by Dynkin’s formula. Expression
(13.38) is obtained by letting Ut = F ((f, At)) and an application of the fol-
lowing result.

�

Theorem 13.6 Let Ut be a locally square-integrable semi-martingale such that
Ut = U0 + At +Mt, where At is a predictable process of locally finite variation
and Mt is a locally square-integrable local martingale, A0 = M0 = 0. Let U2

t =
U2

0 + Bt + Nt, where Bt is a predictable process and Nt is a local martingale.
Then

〈M, M〉t = Bt − 2
∫ t

0

Us−dAs −
∑
s≤t

(As − As−)2. (13.39)

Of course, if A is continuous (as in our applications) the last term in the above
formula (13.39) vanishes.

Proof: By the definition of the quadratic variation process (or integration
by parts)

U2
t = U2

0 +2
∫ t

0

Us−dUs+[U, U ]t = U2
0 +2

∫ t

0

Us−dAs+2
∫ t

0

Us−dMs+[U, U ]t.



362 CHAPTER 13. APPLICATIONS IN BIOLOGY

Using the representation for U 2
t given in the conditions of the lemma, we

obtain that [U, U ]t − Bt + 2
∫ t

0 Us−dAs is a local martingale. Since [A, A]t =∑
s≤t(As − As−)2, the result follows.

�

Let v2 = E(Y 2) be the second moment of the offspring distribution. Ap-
plying Dynkin’s formula to the function F (u) = u (and writing M f for M1,f ),
we obtain the following

Theorem 13.7 For a C1 function f on IR+

(f, At) = (f, A0) +
∫ t

0

(Lf, As)ds + M f
t , (13.40)

where the linear operator L is defined by

Lf = f ′ − hf + mhf(0), (13.41)

and Mf
t is a local square integrable martingale with the sharp bracket given by

〈
Mf , Mf

〉
t
=
∫ t

0

(
f2(0)v2h + hf2 − 2f(0)mhf, As

)
ds. (13.42)

Proof: The first statement is Dynkin’s formula for F (u) = u. This function
is unbounded and the standard formula cannot be applied directly. However
it can be applied by taking smooth bounded functions that agree with u on
bounded intervals, Fn(u) = u for u ≤ n, and the sequence of stopping times
Tn = inf{(f, At) > n} as a localizing sequence. The form of the operator L
follows from (13.36). Similarly (13.42) follows from (13.38) by taking F (u) =
u2.

�

By taking f to be a constant, f(u) = 1, Theorem 13.7 yields the following
corollary for the population size at time t, Z(t) = (1, At).

Corollary 13.8 The compensator of Z(t) is given by (m − 1)
∫ t

0 (h, As)ds.

It is useful to be able to take expectations in Dynkin’s formula. The next
result gives a sufficient condition.

Theorem 13.9 Let f ≥ 0 be a C1 function on IR+ that satisfies

|(Lf, A)| ≤ C(1 + (f, A)), (13.43)

for some constant C and any A, and assume that (f, A0) is integrable. Then
(f, At) and Mf

t in (13.37) are also integrable with EM f
t = 0.
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Proof: Let Tn be a localizing sequence, then from (13.37)

(f, At∧Tn) = (f, A0) +
∫ t∧Tn

0

(Lf, As)ds + M f
t∧Tn

, (13.44)

where Mf
t∧Tn

is a martingale. Taking expectations we have

E(f, At∧Tn) = E(f, A0) + E
∫ t∧Tn

0

(Lf, As)ds. (13.45)

By Condition (13.43),

|E
∫ t∧Tn

0

(Lf, As)ds| ≤ E
∫ t∧Tn

0

|(Lf, As)|ds

≤ Ct + CE
∫ t∧Tn

0

(f, As)ds.

Thus we have from (13.45)

E(f, At∧Tn) ≤ E(f, A0) + Ct + CE
∫ t∧Tn

0

(f, As)ds

≤ E(f, A0) + Ct + CE
∫ t

0

I(s ≤ Tn)(f, As)ds

≤ E(f, A0) + Ct + C

∫ t

0

E(f, As∧Tn)ds.

It now follows by Gronwall’s inequality (Theorem 1.20) that

E(f, At∧Tn) ≤ E(f, A0) + Ct + teCt < ∞. (13.46)

Taking n → ∞, we conclude that E(f, At) < ∞ by Fatou’s lemma. Thus
(f, At) is integrable, as it is non-negative. Now by Condition (13.43)

E|
∫ t

0

(Lf, As)ds| ≤
∫ t

0

E|(Lf, As)|ds ≤
∫ t

0

C(1 + E(f, As))ds < ∞. (13.47)

It follows from (13.47) that
∫ t

0 (Lf, As)ds and its variation process
∫ t

0 |(Lf, As)|ds
are both integrable, and from (13.37) that

Mf
t = (f, At) − (f, A0) −

∫ t

0

(Lf, As)ds (13.48)

is integrable with zero mean.
�

For simplicity we assume that G(u) < 1 for all u ∈ IR+. Equation (13.40) can
be analyzed through the eigenvalue problem for the operator L.
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Theorem 13.10 Let L be the operator in (13.41). Then the equation

Lq = rq (13.49)

has a solution qr for any r. The corresponding eigenfunction (normed so that
q(0) = 1) is given by

qr(u) =
meru

1 − G(u)

(
1 −

∫ u

0

e−rsdG(s)
)
. (13.50)

Proof: Since eigenfunctions are determined up to a multiplicative constant,
we can take q(0) = 1. Equation (13.49) is a first order linear differential
equation, and solving it we obtain the solution (13.50).

Theorem 13.11 Let qr be a postive eigenfunction of L corresponding to the
eigenvalue r. Then Qr(t) = e−rt(qr, At) is a positive martingale.

Proof: Using (13.40) and the fact that qr is an eigenfunction for L, we have

(qr, At) = (qr, A0) + r

∫ t

0

(qr, As)ds + M qr

t , (13.51)

where M qr

t is a local martingale. The functions qr clearly satisfy condition
(13.43). Therefore (qr, At) is integrable, and it follows from (13.51) by taking
expectations that

E(qr, At) = ertE(qr, A0). (13.52)

Using integration by parts for e−rt(qr, At), we obtain from (13.51) that

dQr(t) = d(e−rt(qr, At)) = e−rtdM qr

t ,

and

Qr(t) = (qr , A0) +
∫ t

0

e−rsdM qr
s (13.53)

is a local martingale as an integral with respect to the local martingale M qr .
Since a positive local martingale is a supermartingale, and Qr(t) ≥ 0, Qr(t)
is a super-martingale. But from (13.52) it follows that Qr(t) has a constant
mean. Thus the supermartingale Qr(t) is a martingale.

�

The Malthusian parameter α is defined as the value of r which satisfies

m

∫ ∞

0

e−rudG(u) = 1. (13.54)

We assume that the Malthusian parameter α exists and is positive, in this
case the process is called supercritical.
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Theorem 13.12 There is only one bounded positive eigenfunction V , the
reproductive value function, corresponding to the eigenvalue α which is the
Malthusian parameter,

V (u) =
meαu

1 − G(u)

∫ ∞

u

e−αsdG(s). (13.55)

Proof: It follows that for r > α, m
∫∞
0 e−rudG(u) < 1 and the eigenfunction

qr in (13.50) is positive and grows exponentially fast or faster. For r < α, the
eigenfunction qr takes negative values. When r = α, qα = V in (13.55). To
see that it is bounded by m, replace e−αs by its largest value e−αu.

�

This is the main result

Theorem 13.13 Wt = e−αt(V, At) is a positive square integrable martingale,
and therefore converges almost surely and in L2 to the non-degenerate limit
W ≥ 0, EW = (V, A0) > 0 and P(W > 0) > 0.

Proof: That Wt is a martingale follows by Theorem 13.11. It is positive
therefore it converges almost surely to a limit W ≥ 0 by the martingale con-
vergence Theorem 7.11. To show that the limit is not identically zero, we
show that convergence is also in L2, i.e. the second moments (and the first
moments) converge, implying that EW = limt→∞ EWt = EW0 = (V, A0).

It follows from (13.42) that

〈
MV , MV

〉
t
=
∫ t

0

(
(σ2 + (m − V )2)h, As

)
ds. (13.56)

By (13.53)

Wt = (V, A0) +
∫ t

0

e−αsdMV
s , (13.57)

and we obtain that

〈W, W 〉t =
∫ t

0

e−2αsd
〈
MV , MV

〉
s

=
∫ t

0

e−2αs
(
(σ2 + (m − V )2)h, As

)
ds.

(13.58)
Now it is easy to check that there is a constant C and r, α ≤ r < 2α, such
that (

(σ2 + (m − V )2)h, As

)
≤ C(qr , As), (13.59)

and using Theorem 13.11,

E
∫ ∞

0

e−2αs
(
(σ2 + (m − V )2)h, As

)
ds < C

∫ ∞

0

e(r−2α)s < ∞. (13.60)
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This implies from (13.58) that E 〈W, W 〉∞ < ∞. Therefore Wt is a square
integrable martingale (see Theorem 8.27) and the result follows.

�

The martingale {Wt} is given in Harris (1963). The convergence of the pop-
ulation numbers Z(t)e−αt is obtained from that of Wt by using a Tauberian
theorem. For details and extensions of the model to the population-dependent
case see Jagers and Klebaner (2000).

13.5 Stochastic Lotka-Volterra Model

Deterministic Lotka-Volterra system

The Lotka-Volterra system of ordinary differential equations, (Lotka (1925),
Volterra (1926))

ẋt = axt − bxtyt

ẏt = cxtyt − dyt, (13.61)

with positive x0, y0 and positive parameters a, b, c, d describes a behaviour
of a prey-predator system in terms of the prey and predator “intensities” xt

and yt. Here, a is the rate of increase of prey in the absence of predator, d is
a rate of decrease of predator in the absence of prey while the rate of decrease
in prey is proportional to the number of predators byt, and similarly the rate
of increase in predator is proportional to the number of prey cxt. The system
(13.61) is one of the simplest non-linear systems.

Since the population numbers are discrete, a description of the predator-
prey model in terms of continuous intensities xt, yt is based implicitly on a
natural assumption that the numbers of both populations are large, and the
intensities are obtained by a normalization of population numbers by a large
parameter K. Thus (13.61) is an approximation, an asymptotic description of
the interaction between the predator and the prey. Although this model may
capture some essential elements in that interaction, it is not suitable to answer
questions of extinction of populations, as the extinction never occurs in the
deterministic model, see Figure 13.5 for the pair xt, yt in the phase plane.

We introduce here a probabilistic model which has as its limit the deter-
ministic Lotka-Volterra model, evolves in continuous time according to the
same local interactions and allows us to evaluate asymptotically the time for
extinction of prey species.

There is a vast amount of literature on the Lotka-Volterra model and a his-
tory of research on stochastic perturbations of this system exact, approximate
and numerical.
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The system (13.61) possesses the first integral which is a closed orbit in
the first quadrant of phase plane x, y. It is given by

r(x, y) = cx − d log x + by − a log y + r0, (13.62)

where r0 is an arbitrary constant. It depends only on the initial point (x0, y0),
see Figure below.

3

4

5

6

7

8

0.1 0.2 0.3 0.4 0.5

Figure 13.1: First integral r(x, y), x0 = 0.3, y0 = 3,a = 5,b = 1, c = 5,d = 1.

Stochastic Lotka-Volterra system

Let Xt and Yt be numbers of prey and predators at time t. We start with
simple equations for prey-predator populations

Xt = X0 + π′
t − π′′

t

Yt = Y0 + π̂′
t − π̂′′

t (13.63)

where π′
t is the number of prey born up to time t, π′′

t is the number of prey
killed up to time t, π̂′

t is the number of predators born up to time t, π̂′′
t is the

number of predators that have died up to time t.
We assume that π′

t, π
′′
t , π̂′

t, π̂
′′
t are Poisson processes with the following state-

dependent random rates aXt, b
K XtYt, c

K XtYt, dYt respectively and disjoint
jumps (the latter assumption reflects the fact that in a short time interval
(t, t + δt) only one prey might be born and only one might be killed, only one
predator might be born and only one might die, with the above-mentioned
intensities. Moreover all these events are disjoint in time).

Assume X0 = Kx0 and Y0 = Kx0 for some fixed positive x0, y0 and a large
integer parameter K. Introduce the prey and predator populations normalized
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by K

xK
t =

Xt

K
, and yK

t =
Yt

K
.

It terms of xK
t and yK

t the introduced intensities for Poisson processes can be
written as aKxK

t , bKxK
t yK

t , cKxK
t yK

t , dKyK
t .

Existence

In this section, we show that the random process (Xt, Yt) is well defined by
equations (13.63). To this end, let us introduce four independent sequences of
Poisson processes

Πa
t = (Πa

t (1), Πa
t (2), . . .),

Πb/K
t = (Πb/K

t (1), Πb/K
t (2), . . .),

Πc/K
t = (Πc/K

t (1), Πc/K
t (2), . . .),

Πd
t = (Πd

t (1), Πd
t (2), . . .).

Each of them is a sequence of i.i.d. Poisson processes with rates a, b
K , c

K ,d
respectively. Define the processes (Xt, Yt) by the system of Itô equations

Xt = X0 +
∫ t

0

∑
n≥1

I(Xs− ≥ n)dΠa
s (n) −

∫ t

0

∑
n≥1

I(Xs−Ys− ≥ n)dΠb/K
s (n),

Yt = Y0 +
∫ t

0

∑
n≥1

I(Xs−Ys− ≥ n)dΠc/K
s (n) −

∫ t

0

∑
n≥1

I(Ys− ≥ n)dΠd
s (n),

(13.64)
governed by these Poisson processes, which obviously has a unique solution
until the time of explosion, on the time interval [0, T∞), where

T∞ = inf{t > 0 : Xt ∨ Yt = ∞}.

The Poisson processes with state-dependent rates in (13.63) are obtained as
follows

π′
t =

∫ t

0

∑
n≥1

I(Xs− ≥ n)dΠa
s (n), π′′

t =
∫ t

0

∑
n≥1

I(Xs−Ys− ≥ n)dΠb/K
s (n),

π̂′
t =

∫ t

0

∑
n≥1

I(Xs−Ys− ≥ n)dΠc/K
s (n), π̂′′

t =
∫ t

0

∑
n≥1

I(Ys− ≥ n)dΠd
s (n).
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It is easy to see that π′
t, π

′′
t , π̂′

t, π̂
′′
t have the required properties. Their jumps

are of size one. Since all Poisson processes are independent, their jumps are
disjoint, so that the jumps of π′

t, π
′′
t , π̂′

t, π̂
′′
t are disjoint as well. To describe their

intensities introduce a stochastic basis (Ω,F , IF = (Ft)t≥0, P), the filtration
IF is generated by all Poisson processes and satisfies the general conditions.
Then, obviously, the random process

A′
t =

∫ t

0

∑
n≥1

I(Xs ≥ n)ads

is adapted and continuous, hence predictable. Using
∫ t

0 f(s−)ds =
∫ t

0 f(s)ds,

π′
t − A′

t =
∫ t

0

∑
n≥1

I(Xs− ≥ n)dΠa
s (n) −

∫ t

0

∑
n≥1

I(Xs− ≥ n)ads

=
∫ t

0

∑
n≥1

I(Xs− ≥ n)

 d
(
Πa

s (n) − ads
)
.

Thus π′
t − A′

t is an integral with respect to a martingale, hence is a local
martingale. Therefore A′

t is the compensator of π′
t. Since Xs is an integer-

valued random variable,
∑
n≥1

I(Xs ≥ n) = Xs, giving that A′
t =

∫ t

0
aXsds and

the intensity of π′
t is aXt, as claimed. Analogously, other compensators are

A′′
t =

∫ t

0

b
K

XsYsds, Â′
t =

∫ t

0

c
K

XsYsds, Â′′
t =

∫ t

0

dYsds,

and thus all other intensities have the required form.
We now show that the process (Xt, Yt)t≥0 does not explode.

Theorem 13.14
P(T∞ = ∞) = 1.

Proof: Set T X
n = inf{t > 0 : Xt ≥ n}, n ≥ 1 and denote by T X∞ = lim

n→∞ T X
n .

Using (13.64) we obtain

EXt∧T X
n

≤ X0 +
∫ t

0

aEXs∧T X
n

ds.

By Gronwall’s inequality, EXT X
n ∧T ≤ X0e

aT for every T > 0. Hence by the
Fatou’s lemma EXT X∞∧T ≤ X0e

aT . Consequently, for all T > 0

P(T X
∞ ≤ T ) = 0.
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Set T Y
� = inf{t : Yt ≥ �}, � ≥ 1 and denote by T Y

∞ = lim
�→∞

T Y
� . Using

(13.64) we obtain

EYt∧T X
n ∧T Y

�
≤ Y0 +

∫ t

0

c
K

E
(
Xs∧T X

n ∧T Y
�

Ys∧T X
n ∧T Y

�

)
ds

≤ Y0 +
∫ t

0

c
K

nEYs∧T X
n ∧T Y

�
ds.

Hence, by Gronwall’s inequality, for every T > 0, EYT∧T x
n∧T y

m
≤ Y0e

cnT and
by the Fatou’s lemma,

EYT∧T X
n ∧T Y∞ ≤ Y0e

c
K nT , n ≥ 1.

Consequently, P(T Y∞ ≤ T X
n ∧ T ) = 0, ∀ T > 0, n ≥ 1 and, since T X

n ↗ ∞, as
n → ∞, we obtain

P(T Y
∞ ≤ T ) = 0.

Since T∞ = T X∞ ∧ T Y∞, P(T∞ ≤ T ) ≤ P (T X∞ ≤ T ) + P(T Y∞ ≤ T ), and we have
P(T∞ ≤ T ) = 0 for any T > 0.

�

Corollary 13.15 For Tn = inf{t : Xt ∨ Yt ≥ n}, and for all T > 0

lim
n→∞P(Tn ≤ T ) = 0.

The above description of the model allows us to claim that (Xt, Yt) is a
continuous-time pure jump Markov process with jumps of two possible sizes
in both coordinates: “1” and “−1” and infinitesimal transition probabilities
(as δt → 0)

P
(
Xt+δt = Xt + 1

∣∣Xt, Yt

)
= aXtδt + o(δt)

P
(
Xt+δt = Xt − 1

∣∣Xt, Yt

)
=

b
K

XtYtδt + o(δt)

P
(
Yt+δt = Yt + 1

∣∣Xt, Yt

)
=

c
K

XtYtδt + o(δt)

P
(
Yt+δt = Yt − 1

∣∣Xt, Yt

)
= dYtδt + o(δt).

Semimartingale decomposition for (xK
t , yK

t )

Let A′
t, A

′′
t , Â′

t, Â
′′
t be the compensators of π′

t, π
′′
t , π̂′

t, π̂
′′
t defined above. Intro-

duce martingales

M ′
t = π′

t − A′
t, M ′′

t = π′′
t − A′′

t , M̂ ′
t = π̂′

t − Â′
t, M̂ ′′

t = π̂′′
t − Â′′

t ,
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and also normalized martingales

mK
t =

M ′
t − M ′′

t

K
and m̂K

t =
M̂ ′

t − M̂ ′′
t

K
. (13.65)

Then, from (13.64) it follows that the process (xK
t , yK

t ) admits the semimartin-
gale decomposition

xK
t = x0 +

∫ t

0

[axK
s − bxK

s yK
s ]ds + mK

t ,

yK
t = y0 +

∫ t

0

[cxK
s yK

s − dyK
s ]ds + m̂K

t , (13.66)

which is a stochastic analogue (in integral form) of the equations (13.61).
In the sequel we need quadratic variations of the martingales in (13.66).

By Theorem 9.3 all martingales are locally square integrable and possess the
predictable quadratic variations

〈M ′, M ′〉t = A′
t, 〈M ′′, M ′′〉t = A′′

t and 〈M̂ ′, M̂ ′〉t = Â′
t, 〈M̂ ′′, M̂ ′′〉t = Â′′

t ,
(13.67)

and zero covariations 〈M ′, M ′′〉t ≡ 0, . . . , 〈M̂ ′, M̂ ′′〉t ≡ 0, since the jumps of
π′

t, π
′′
t , π̂′

t, π̂
′′
t are disjoint. Hence we obtain the sharp brackets of the martin-

gales in equations (13.66),

〈mK , m̂K〉t ≡ 0,

〈mK , mK〉t =
1
K

∫ t

0

(
axK

s + bxK
s yK

s

)
ds,

〈m̂K , m̂K〉t =
1
K

∫ t

0

(
cxK

s yK
s + dyK

s

)
ds. (13.68)

Note that the stochastic equations above do not satisfy the linear growth
condition in xK

t , yK
t . Nevertheless, the solution exists for all t.

Deterministic (Fluid) approximation

We now show that the Lotka-Volterra equations (13.61) describe a limit (also
known as fluid approximation) for the family (xK

t , yK
t ) as parameter K → ∞.

Results on the fluid approximation for discontinuous Markov processes can be
found in Kurtz (1981).

Theorem 13.16 For any T > 0 and η > 0

lim
K→∞

P
(

sup
t≤T

(|xK
t − xt| + |yK

t − yt|
)

> η
)

= 0.
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Proof: Set
T K

n = inf{t : xK
t ∨ yK

t ≥ n}. (13.69)

By Corollary 13.15, since T K
n = TnK ,

lim
n→∞ lim sup

K→∞
P
(
T K

n ≤ T
)

= 0. (13.70)

Hence, it suffices to show that for every n ≥ 1,

lim
K→∞

P
(

sup
t≤T K

n ∧T

(|xK
t − xt| + |yK

t − yt|
)

> η
)

= 0. (13.71)

Since sup
t≤T K

n ∧T

(xK
t ∨ yK

t ) ≤ n + 1, there is a constant Ln, depending on n and

T , such that for t ≤ T K
n ∧ T∣∣(axK

t − bxK
t yK

t

)− (axt − bxtyt

)∣∣ ≤ Ln

(∣∣xK
t − xt

∣∣+ ∣∣yK
t − yt

∣∣)∣∣(cxK
t yK

t − dyK
t

)− (cxtyt − dyt

)∣∣ ≤ Ln

(∣∣xK
t − xt

∣∣+ ∣∣yK
t − yt

∣∣).
These inequalities and (13.61), (13.66) imply

|xK
T K

n ∧T − xT K
n ∧T | + |yK

T K
n ∧T − yT K

n ∧T |

≤ 2Ln

∫ t

0

(|xK
s∧T K

n
− xs∧T K

n
| + |yK

s∧T K
n

− ys∧T K
n
|)ds

+ sup
t≤T K

n ∧T

|mK
t | + sup

t≤T K
n ∧T

|m̂K
t |.

Now, by Gronwall’s inequality we find

sup
t≤T K

n ∧T

(|xK
t − xt| + |yK

t − yt|
) ≤ e2LnT

(
sup

t≤T K
n ∧T

|mK
t | + sup

t≤T K
n ∧T

|m̂K
t |
)
.

Therefore (13.71) holds if both sup
t≤T K

n ∧T

|mK
t | and sup

t≤T K
n ∧T

|m̂K
t | converge in

probability to zero as K → ∞. By (13.68) and definition (13.69) of T K
n ,

E〈mK〉T K
n ∧T ≤ 1

K
(a(n + 1) + b(n + 1)2)T.

Thus by Doob’s inequality for martingales (8.47)

E

(
( sup
t≤T K

n ∧T

|mK
t |)2

)
≤ 4E

(〈mK , mK〉T K
n ∧T

)→ 0.
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as K → ∞. This implies supt≤T K
n ∧T |mK

t | → 0 as K → ∞. The second term
supt≤T K

n ∧T |m̂K
t | is treated similarly, and the proof is complete.

�

Using the stochastic Lotka-Volterra model one can evaluate asymptotically,
when K is large, the time to extinction of prey species, as well as the likely
trajectory to extinction. One such trajectory is in the Figure below. This anal-
ysis is done by using the Large Deviations Theory, see Klebaner and Liptser
(2001).
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Figure 13.2: A likely path to extinction.

13.6 Exercises

Exercise 13.1: Find the expected time to extinction ET0 in the Branching
diffusion with α < 0. Hint: use Theorem 6.16 and formula (6.98) to find
E(T0 ∧ Tb). ET0 = limb→∞ E(T0 ∧ Tb) by monotone convergence.

Exercise 13.2: Let X(t) be a branching diffusion satisfying SDE (13.1).

1. Let c = 2α/σ2. Show that e−cXt is a martingale.

2. Let T be the time to extinction, T = inf{t : Xt = 0}, where T = ∞ if
Xt > 0 for all t ≥ 0, and let qt(x) = Px(T ≤ t) be the probability that
extinction occurs by time t when the initial population size is x. Prove
that qt(x) ≤ e−cx.

Exercise 13.3: A model for population growth is given by the following SDE
dX(t) = 2X(t)dt+

√
X(t)dB(t), and X(0) = x > 0. Find the probability that

the population doubles its initial size x before it becomes extinct. Show that
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when the initial population size x is small then this probability is approxi-
mately 1/2, but when x is large this probability is nearly one.

Exercise 13.4: Check that the distribution in (13.16) in the Wright-Fisher
diffusion is stationary.

Exercise 13.5: Let a deterministic growth model be given by the differential
equation

dx(t) = g(x(t))dt, x0 > 0, t ≥ 0,

for a positive function g(x) and consider its stochastic analogue

dX(t) = g(X(t))dt + σ(X(t))dB(t), X(0) > 0.

One way to analyze the stochastic equation is by comparison with the deter-
ministic solution.

1. Find G(x) such that G(x(t)) = G(x(0))+t and consider Y (t) = G(X(t)).
Find dY (t).

2. Let g(x) = xr, 0 ≤ r < 1, and σ(x)/xr → 0 as x → ∞. Give conditions
on g(x) and σ2(x) so that the Law of Large Numbers holds for Y (t), that
is, Y (t)/t → 1, as t → ∞ on the set {Y (t) → ∞}.

A systematic analysis of this model is given in Keller et al. (1987).

Exercise 13.6: Let L1, L2, . . . , Lx be independent exponentially distributed
random variables with parameter a(x), (they represent the lifespan of particles
in the population of size x). Show that min(L1, L2, . . . , Lx) has an exponential
distribution with parameter xa(x). (In a branching model the change in the
population size occurs when a particle dies, that is, at min(L1, L2, . . . , Lx)).

Exercise 13.7: (Birth-Death processes stochastic representation)
Let Nλ

k (t) and Nµ
k (t), k ≥ 1, be two independent sequences of independent

Poisson processes with rates λ and µ. Let X(0) > 0 and for t > 0 X(t) satisfies

X(t) = X(0) +
∫ t

0

∑
k≥1

I(X(s−) ≥ k)dNλ
k (s) −

∫ t

0

∑
k≥1

I(X(s−) ≥ k)dNµ
k (s).

1. Show that X(t) is a Birth-Death process and identify the rates.

2. Give the semimartingale decomposition for X(t).



Chapter 14

Applications in
Engineering and Physics

In this chapter methods of Stochastic Calculus are applied to the Filtering
problem in Engineering and Random Oscillators in Physics. The Filtering
problem consists of finding the best estimator of a signal when observations
are contaminated by noise. For a number of classical equations of motions in
Physics we find stationary densities when the motion is subjected to random
excitations.

14.1 Filtering

The filtering problem is the problem of estimation of a signal contaminated
by noise. Let Y (t) be the observation process, and FY

t denote the information
available by observing the process up to time t, that is FY

t = σ(Y (s), s ≤ t).
The observation Y (t) at time t is the result of a deterministic transformation
of the signal process X(s), s ≤ t, typically a linear transformation, to which
a random noise is added. The filtering problem is to find the “best” estimate
πX(t) of the signal X(t) on the basis of all the observations Y (s), s ≤ t, or
FY

t . The “best” is understood in the sense of the smallest estimation error
E
(
(X(t) − Z(t))2|FY

t

)
, when Z(t) varies over all FY

t -measurable processes.
Denote for an adapted process h(t)

πt(h) = E(h(t)|FY
t ). (14.1)

Then by Theorem 2.26 (see also Exercise 14.2) the filtering problem is in
finding πt(X).

375
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Two main results of stochastic calculus are used to solve the filtering prob-
lem, Levy’s characterization of Brownian motion and the predictable repre-
sentation property of Brownian filtration.

General Non-linear Filtering Model

Let (Ω,F , P) be a complete probability space, and let (Ft), 0 ≤ t ≤ T , be a
non-decreasing family of right continuous σ-algebras of F , satisfying the usual
conditions, and supporting adapted processes X(t) and Y (t).

We aim at finding πt(h) for an adapted process h(t). In particular, we can
find E(g(X(t))|FY

t ), for a function of a real variable g. When g ranges over a
set of test functions, the conditional distribution of X(t) given FY

t is obtained.
Moreover by taking g(x) = x, we obtain the best estimator πX(t). We assume
that the process h(t), which we want to filter and the observation process Y (t)
satisfy the SDEs

dh(t) = H(t)dt + dM(t),
dY (t) = A(t)dt + B(Y (t))dW (t), (14.2)

where:

• The process M(t) is a Ft-martingale,

• The process W (t) is a Ft-Brownian motion,

• The processes H(t) and A(t) are random, satisfying with probability one∫ T

0 |H(t)|dt < ∞,
∫ t

0 |A(t)|dt < ∞,

• supt≤T E(h2(t)) < ∞,
∫ T

0
EH2(t)dt < ∞,

∫ T

0
EA2(t)dt < ∞,

• The diffusion coefficient of the observation process Y (t) is a function
B(y) of Y (t) only, and not X . B2(y) ≥ C > 0, and B2 satisfies Lipschitz
and the linear growth conditions.

Theorem 14.1 For each t, 0 ≤ t ≤ T ,

dπt(h) = πt(H)dt + (πt(D) +
πt(hA) − πt(h)πt(A)

B(Y (t))
)dW (t), (14.3)

where dW (t) = dY (t)−πt(A)
B(Y (t)) is an FY

t -Brownian motion and D(t) = d〈M,W 〉(t)
dt .

W (t) is called the innovation process.
We outline the main ideas of the proof. By (14.2)

h(t) = h(0) +
∫ t

0

H(s)ds + M(t) and (14.4)

E(h(t) | FY
t ) = E(h(0)|FY

t ) + E
(∫ t

0

H(s)ds | FY
t

)
ds + E(M(t)| FY

t ).
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The difficulty in calculation of the conditional expectations given FY
t is that

the processes, as well as the σ-fields, both depend on t.

Theorem 14.2 Let A(t) be an Ft-adapted process such that∫ T

0
E(|A(t)|)dt < ∞, and V (t) =

∫ t

0
A(s)ds. Then

πt(V ) −
∫ t

0

πs(A)ds = E
(∫ t

0

A(s)ds
∣∣∣ FY

t

)
−
∫ t

0

E(A(s) | FY
s )ds

is a FY
t -martingale.

Proof: Let τ ≤ T be an FY
t -stopping time. By Theorem 7.17 it is enough

to show that E(πτ (V )) = E(
∫ τ

0 πs(A)ds).

E(πτ (V )) = E(V (τ)) by the law of double expectation

= E(
∫ τ

0

A(s)ds) =
∫ T

0

E(I(s ≤ τ)A(s))ds

=
∫ T

0

E(I(s ≤ τ)πs(A))ds since I(s ≤ τ) is FY
s -measurable

= E(
∫ τ

0

πs(A)ds).

�

Note that by the conditional version of Fubini’s theorem,

E
(∫ t

0

A(s)ds
∣∣∣ G) =

∫ t

0

E(A(s) |G)ds. (14.5)

Verification of the next result is straightforward and is left as an Exercise 14.4.

Theorem 14.3 Let M(t) be a Ft-martingale. Then πt(M) is an FY
t -martingale.

Corollary 14.4

πt(h) = πt(0) +
∫ t

0

πs(H)ds + M1(t) + M2(t) + M3(t), (14.6)

where Mi(t) are martingales null at zero; M1(t) = E(h(X(0))|FY
t ) − h(0),

M2(t) = E
(∫ t

0 H(s)ds | FY
t

)
ds − ∫ t

0 πs(H)ds, M3(t) = E(M(t)| FY
t ).

Proof: Using (14.4), the first term E(h(X(0))|FY
t ) is a (Doob-Levy) mar-

tingale. The second term is a martingale by Theorem 14.2, the third by the
above Theorem 14.3.

�

We want to use a representation of FY
t martingales. This is done by using the

innovation process.
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Theorem 14.5 The innovation process W (t) =
∫ t

0
dY (s)−πs(A)ds

B(Y (s)) is an FY
t -

Brownian motion. Moreover,

dY (t) = πA(t)dt + B(Y (t))dW (t). (14.7)

Proof: By using (14.2)

W (t) =
∫ t

0

A(s) − E(A(s)|FY
s )

B(Y (s))
ds + W (t). (14.8)

For t > t′, write

E
(
W (t) − W (t′)|FY

t′

)
= E

(
W (t) − W (t′)|FY

t′

)
+
∫ t

t′
E
(A(s) − E(A(s)|FY

s )
B(Y (s))

∣∣∣ FY
t′

)
ds.

The rhs is zero, the first term by Theorem 14.3, and the second by the con-
ditional version of Fubini’s theorem. Thus W (t) is an FY

t -martingale. It is
clearly continuous. It follows from (14.8) that [W, W ](t) = [W, W ](t) = t. By
Levy’s characterization Theorem the claim follows.

�

Now, if
FW = FY

t , (14.9)

then conditional expectations given FY
t are the same given FW

t , and Theorem
8.35 on representation of martingales with respect to a Brownian filtration can
be used for the martingales Mi(t) in (14.6). Comment that for (14.9) to hold it
is sufficient that the SDE for Y (t) (14.7) has unique weak solution. Theorem
8.35 and its corollary (8.67) give that there are predictable processes gi(s),
such that

Mi(t) =
∫ T

0

gi(s)dW (s), with gi(t) =
d
〈
Mi, W

〉
(t)

dt
.

It is possible to show that

g1(t) + g2(t) + g3(t) = πt(D) +
πt(hA) − πt(h)πt(A)

B(Y (t))
,

and the result follows from (14.6). For details see Liptser and Shiryaev (2001)
p. 319-325.
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Filtering of Diffusions

Let (X(t), Y (t)), 0 ≤ t ≤ T , be a diffusion process with with respect to
independent Brownian motions Wi(t), i = 1, 2; Ft = σ(W1(s), W2(s), s ≤ t),
and

dX(t) = a(X(t))dt + b(X(t))dW1(t)
dY (t) = A(X(t))dt + B(Y (t))dW2(t). (14.10)

Assume that the coefficients satisfy the Lipschitz condition, for any of the
functions a, A, b, B, e.g. |a(x′) − a(x′′)| ≤ K|x′ − x′′|; and B2(y) ≥ C > 0.

Let h = h(X(t)). The function h is assumed to be twice continuously
differentiable. We apply Theorem 14.1 to h(X(t)). By Itô’s formula, Theorem
6.1, we have

h(X(t)) = h(X(0)) +
∫ t

0

Lh(X(s))ds +
∫ t

0

h′(X(s))b(X(s))dW1(s),

where
Lh(x) = h′(x)a(x) +

1
2
h′′(x)b2(x).

By Theorem 14.1

πt(h) = π0(h) +
∫ t

0

πs(Lh)ds +
∫ t

0

πs(Ah) − πs(A)πs(h)
B(Y (s))

dW (s), (14.11)

where

W (t) =
∫ t

0

dY (s) − πs(A)ds

B(Y (s))
.

The linear case can be solved and is given in the next section.

Kalman-Bucy Filter

Assume that the signal and the observation processes satisfy linear SDEs with
time time-dependent non-random coefficients

dX(t) = a(t)X(t)dt + b(t)dW1(t), (14.12)

dY (t) = A(t)X(t)dt + B(t)dW2(t), (14.13)

with two independent Brownian motions (W1, W2), and initial conditions X(0),
Y (0). Due to linearity this case admits a closed form solution for the processes
X and Y and also for the optimal estimator of X(t) given FY

t . In the linear
case it is easy to solve the above SDEs and verify that the processes X(t),
Y (t) are jointly Gaussian. It is convenient in this case to use notation X̂(t) =
πt(X) = E(X(t)|FY

t ).
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Theorem 14.6 Suppose that the signal X(t) and the observation Y (t) are
given by (14.12) and (14.13). Then the best estimator X̂(t) = E(X(t)|FY

t )
satisfies the following SDE

dX̂(t) =
(

a(t) − v(t)
A2(t)
B2(t)

)
X̂(t)dt + v(t)

A(t)
B2(t)

dY (t), (14.14)

where v(t) = E
(
X(t) − X̂(t))2 is the squared estimation error. It satisfies the

Riccati ordinary differential equation

dv(t)
dt

= 2a(t)v(t) + b2(t) − A2(t)v2(t)
B2(t)

, (14.15)

with initial conditions X(0) and v(0) = V ar(X(0)) − Cov2(X(0),Y (0))
var(Y (0)) .

Proof: Apply Theorem 14.1 with h(x) = x (see also equation (14.11)) to
have

dX̂(t) = a(t)X̂(s)dt+
A(t)
B2(t)

(
πt(h2)−(πt(h)

)2)(
dY (t)−A(t)X̂(t)dt

)
. (14.16)

Note that
πt(h2) − (πt(h)

)2 = E
(
(X(t) − X̂(t))2|FY

t

)
.

Because the processes X and Y are jointly Gaussian, X̂(t) is the orthogonal
projection, and X(t)− X̂(t) is orthogonal (uncorrelated) to Y (s), s ≤ t. But if
Gaussian random variables are uncorrelated, they are independent (see Theo-
rem 2.19). Thus X(t) − X̂(t) is independent of FY

t and we have that v(t) is
deterministic,

v(t) = E
(
(X(t) − X̂(t))2|FY

t

)
= E

(
X(t) − X̂(t))2.

The initial value v(0) is obtained by the Theorem 2.25 on Normal correlation,
as stated in the Theorem. Let δ(t) = X(t)− X̂(t). Then v(t) = E(δ2(t)). The
SDE for δ2(t) is obtained from SDEs (14.12) and (14.16) as follows

dδ(t) = a(t)δ(t)dt + b(t)dW1(t) − A2(t)v(t)
B2(t)

δ(t)dt − A(t)v(t)
B(t)

dW2(t).

Applying now Itô’s formula to δ2(t), we find

dδ2(t) =
(
2
(
a(t) − A2(t)v(t)

B2(t)
)
δ2(t) +

(
b2(t) +

A2(t)v2(t)
B2(t)

))
dt

+2δ(t)
(
b(t)dW1(t) − A(t)v(t)

B(t)
dW2(t)

)
. (14.17)



14.1. FILTERING 381

Writing (14.17) in integral form and taking expectation

v(t) = v(0) +
∫ t

0

(
2
(
a(s) − A2(s)v(s)

B2(s)

)
v(s) +

(
b2(s) +

A2(s)v2(s)
B2(s)

))
ds

= v(0) +
∫ t

0

(
2a(s) + b2(s) − A2(s)v2(s)

B2(s)

)
ds, (14.18)

which establishes (14.15).
�

The multi-dimensional case is similar, with the only difference being that
the equation (14.15) is the matrix Riccati equation for the estimation error
covariance matrix.

The Kalman-Bucy filter allows on-line implementation of the above equa-
tions, which are used recursively to compute X̂(t + ∆t) from the previous
values of X̂(t) and v(t).

Example 14.1: (Model with constant coefficients) Consider the case of constant
coefficients,

dX(t) = aX(t)dt + dW1(t),

dY (t) = cX(t)dt + dW2(t).

In this case
dX̂(t) =

(
a − v(t)c2

)
X̂(t)dt + cv(t)dY (t), (14.19)

and v(t) satisfies the Riccati equation

dv(t)

dt
= 2av(t) + 1 − c2v2(t). (14.20)

This equation has an explicit solution:

v(t) =
γαeλt + β

γeλt + 1
, (14.21)

where α and β are the roots of 1 + 2ax − c2x2, assumed to be α > 0, β < 0,
λ = c2(α− β) , and γ = (σ2 − β)/(α − σ2), with σ2 = V ar(X(0)). Using v(t) above

the optimal estimator X̂(t) is found from (14.19).

For more general results see, for example, Liptser and Shiryayev (2001),
Rogers and Williams (1990), Oksendal (1995). There is a vast amount of
literature on filtering, see, for example, Kallianpur G. (1980), Krishnan V.
(1984) and references therein.



382 CHAPTER 14. APPLICATIONS IN ENGINEERING AND PHYSICS

14.2 Random Oscillators

Second order differential equations

ẍ + h(x, ẋ) = 0.

are used to describe variety of physical phenomena, and oscillations are one of
them.

Example 14.2: (Harmonic oscillator)
The autonomous vibrating system is governed by ẍ+x = 0, x(0) = 0, ẋ(0) = 1, where
x(t) denotes the displacement from the static equilibrium position. It has the solution
x(t) = sin(t). The trajectories of this system in the phase space x1 = x, x2 = ẋ are
closed circles.

Example 14.3: (Pendulum)
The undampened pendulum is governed by ẍ + a sin x = 0, where x(t) denotes the
angular displacement from the equilibrium. Its solution cannot be obtained in terms
of elementary functions, but can be given in the phase plane, (ẋ)2 = 2a cos x + C.

Example 14.4: (Van der Pol oscillator)
In some systems the large oscillations are dampened, whereas small ones are boosted
(negative damping). Such motion is governed by the Van der Pol equation

ẍ − a(1 − x2)ẋ + x = 0, (14.22)

where a > 0. Its solution cannot be obtained in terms of elementary functions, even
in the phase plane.

Example 14.5: (Rayleigh oscillator)

ẍ − a(1 − ẋ2)ẋ + x = 0, (14.23)

where a > 0.

We consider random excitations of such systems by White noise (in applied
language) of the form

∑2
i=1 fi(x, ẋ)Ẇi(t), where Ẇi(t), i = 1, 2, are White

noises with delta-type correlation functions

E
(
Ẇi(t)Ẇj(t + τ)

)
= 2πKijδ(τ)dt.

Thus the randomly perturbed equation has the form

Ẍ + h(x, Ẋ) =
∑

i

fi(X, Ẋ)Ẇi(t).

The white noise is formally the derivative of Brownian motion. Since Brownian
motion is nowhere differentiable, the above system has only a formal meaning.
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A rigorous meaning to such equations is given by a system of first order Itô
stochastic equations (a single vector valued equation). The representation as a
system of two first order equations follows the same idea as in the deterministic
case by letting x1 = x and x2 = ẋ. Using Theorem 5.20 on conversion of
Stratanovich SDEs into Itô SDEs, we end up with the following Itô system of
stochastic differential equations

dX1 = X2dt,

dX2 =

−h(X1, X2) + π
∑
j,k

Kjkfj(X1, X2)
∂fk

∂x2
(X1, X2)

 dt +

2∑
i=0

fi(X1, X2)dWi(t).

The above system is a two-dimensional diffusion, and it has the same generator
as the system below driven by a single Brownian motion B(t),

dX1 = X2dt,

dX2 = A(X1, X2)dt + G(X1, X2)dB(t), (14.24)

where

A(x1, x2) = −h(x1, x2) + π
∑
j,k

Kjkfj(x1, x2)
∂fk(x1, x2)

∂x2
,

G(x1, x2) = (2π)1/2

∑
j,k

Kjkfj(x1, x2)fk(x1, x2)

1/2

.

The system (14.24) is a rigorous mathematical model of random oscillators,
and this form is the starting point of our analysis. Solutions to the result-
ing Fokker-Planck equations give densities of invariant measures or station-
ary distributions for such random systems. The corresponding Fokker-Planck
equation has the form

x2
∂

∂x1
ps +

∂

∂x2
(Aps) − 1

2
∂2

∂x2
2

(
G2ps

)
= 0,

where ps(x1, x2) is the density of the invariant measure. When a solution
to the Fokker-Planck equation has a finite integral, then it is a stationary
distribution of the process. However, they may not exist, especially in systems
with trajectories approaching infinity. In such cases invariant measures which
are not probability distributions may exist and provide information about the
underlying dynamics.
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To illustrate, consider a stochastic differential equations of order two with
no noise in ẋ

Ẍ + h(X, Ẋ) = σḂ.

The corresponding Itô system is given by

dX1 = X2dt,

dX2 = −h(X1, X2)dt + σdB(t).

In the notation of Section 6.10, the dimension n = 2 and there is only
one Brownian motion, d = 1, so that X(t) = (X1(t), X2(t))T , b(X(t)) =
(b1(X(t)), b2(X(t)))T = (X2(t),−h(X1(t), X2(t)))

T
σ(X(t)) = (0, σ)T . The

diffusion matrix

a = σσT =
[

0 0
0 σ2

]
,

hence the generator is given by

L =
2∑

i=1

bi
∂

∂xi
+

1
2

2∑
i=1

2∑
j=1

aij
∂2

∂xi∂xj

= x2
∂

∂x1
− h(x1, x2)

∂

∂x2
+

1
2
σ2 ∂2

∂x2
2

. (14.25)

An important example is provided by linear equations

Ẍ + aẊ + bX = σḂ, (14.26)

with constant coefficients. Solutions to these equations can be written in a
general formula.

X(t) = (exp(Ft))
(
X(0) +

∫ t

0

(exp(−Fs))(0, σ)T dB(s)
)

,

where F =
[

0 1
−b −a

]
and exp(Ft) stands for the matrix exponential (see,

for example, Gard (1988)).
Solutions to the Fokker-Plank equation corresponding to some linear sys-

tems (14.26) are given in Bezen and Klebaner (1996).

Non-linear Systems

For some systems the Fokker-Plank equation can be solved by the method of
detailed balance. We give examples of such systems, for details see Bezen and
Klebaner (1996). In what follows K0, K1 denote scaling constants.
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Duffing Equation

Consider additive stochastic perturbations of the Duffing equation:

Ẍ + aẊ + X + bX3 = Ẇ .

ps(x1, x2) = exp
(
− a

2πK0
(x2

2 +
1
2
bx4

1 + x2
1)
)

.

Typical phase portraits and densities of invariant measures are shown in Figure
14.1.

Random Oscillator

Consider the following oscillator with additive noise

Ẍ − a(1 − X2 − Ẋ2)Ẋ + X = Ẇ .

The density of the invariant measure is given by

ps = exp
(
−a(x2

1 + x2
2)

2

4πK0

)
.

It follows that when a = 0 the surface representing the invariant density is a
plane. When a > 0 a fourth order surface with respect to x1, x2 has maximum
in a curve representing the limit cycle of the deterministic equation.

Consider now the same equation with parametric noise of the form

Ẍ − a(1 − X2 − Ẋ2)Ẋ + X = Ẇ0 + (X2 + Ẋ2)Ẇ1.

The density of the invariant measure is given by

ps = (K0 + 2K1x
2
1x

2
2 + K1x

4
1 + K1x

4
2)

−
√

K0(a+2πK1)
4

exp

2a arctan
√

K1(x
2
1+x2

2)√
K0

4π
√

K0K1

 .

Typical phase portraits and densities of the invariant measures are shown in
Figure 14.2.

A System with a Cylindric Phase Plane

Consider random perturbations to a system with a cylindric phase −π ≤ x <
π, −∞ < ẋ < ∞,

Ẍ + aẊ + b + sin(X) = Ẇ .
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Figure 14.1: The Duffing equation.
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Its invariant density is given by

ps = exp
(
−a(x2

2 + 2bx1 − 2 cosx1)
2πK0

)
.

Typical phase portraits and densities of invariant measures are shown in Figure
14.3.

For applications of stochastic differential equations see, for example, Soong
(1973). The Fokker-Planck equation was studied, for example, in Soize (1994).

14.3 Exercises

Exercise 14.1: Let X be a square integrable random variable. Show that
the value of the constant c for which E(X − c)2 is the smallest is given by EX .

Exercise 14.2: Let X, Y be square integrable random variables. Show that

E(X − E(X |Y ))2 ≤ E(X − Z)2

for any FY -measurable random variable Z. Hint: show that X −E(X |Y ) and
Z are uncorrelated, and write X − Z = (X − E(X |Y )) + (E(X |Y ) − Z).

Exercise 14.3: Let M(t) be an Ft-martingale and σ-fields Gt ⊂ Ft. Show
that if M(t) is Gt-measurable, then it is a Gt-martingale.

Exercise 14.4: Let M(t) be an Ft-martingale and σ-fields Gt ⊂ Ft. Show
that M̂(t) = E(M(t)| Gt) is a Gt-martingale.

Exercise 14.5: Let W (t) be an Ft-Brownian motion, and Gt ⊂ Ft. By the
Exercise 14.4 Ŵ (t) = E(W (t)| Gt) is a Gt-martingale. Give an example of Gt,
such that Ŵ (t) is not a Brownian motion.

Exercise 14.6: (Observation of a constant)
Let the signal be a constant X(t) = c, for all t, and the observation process
satisfy dY (t) = X(t)dt + dW (t). Give the Kalman-Bucy filter and find X̂(t).

Exercise 14.7: (Observation of Brownian motion)
Let the signal be a Brownian motion X(t) = W1(t), and the observation
process satisfy dY (t) = X(t)dt + dW2(t). Give the Kalman-Bucy filter and
find X̂(t).

Exercise 14.8: (Filtering of indirectly observed stock prices)
Let the signal follows the Black-Scholes model X(t) = X(0) exp(σW1(t)+µt),
and observation process satisfy dY (t) = X(t)dt + dW2(t). Give the Kalman-
Bucy filter and find X̂(t).
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Figure 14.3: The system with a cylindric phase plane.
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Solutions to Selected
Exercises

Exercises to Chapter 3

Exercise 3.1: X = µ + AZ for the vector µ and the vector of independent
standard Normal random variables Z. For t = (t1, . . . , tn)

E(eitX) = E(eit(µ+AZ)) = eitµE(eit(AZ)) = eitµE(ei(tA)Z) = eitµϕ(tA),

where ϕ is the characteristic function of the vector Z. By independence

ϕ(u) = E(eiuZ) =
∏n

j=1 E(eiujZj ) =
∏n

j=1 e−u2
j/2 = e

− 1
2

∑
n

j=1
u2

j . Hence

ϕ(tA) = e
− 1

2

∑
n

j=1
(tA)2j = e−

1
2 (tA)(tA)T

= e−
1
2 tAAT tT

= e−
1
2 tΣtT

. Finally
E(eitX) = eitµe−

1
2 tΣtT

.

Exercise 3.2: EX =
∫∞
0

xdF (x) =
∫∞
0

∫ x

0
dtdF (x) =

∫∞
0

∫∞
t

dF (x)dt =∫∞
0

(1 − F (t))dt.

Exercise 3.3: If f(t) is non-increasing then
∫∞
0

f(t)dt =
∑∞

n=0

∫ n+1

n
f(t)dt

≤∑∞
n=0 f(n). Now apply the previous result.

Exercise 3.9: For x ≥ 0, by using the distribution of M(t) = maxs≤t B(s)
P(|B(t)| > x) = P(B(t) > x)+P(B(t) < −x) = 2P(B(t) > x) = P(M(t) > x).

Exercise 3.10: By Theorem 3.18, E(T r
x ) =

∫∞
0 trf(t)dt = |x|√

2π

∫∞
0 tr−

3
2 e−

x2
2t dt

= |x|√
2π

∫∞
0 s−r− 1

2 e−
x2
2 sds. The integral converges at infinity for any r. At zero

it converges only for r + 1
2 < 1.

Exercise 3.11: fM (y) =
∫∞
−∞ fB,M (x, y)dx =

∫ y

−∞
√

2
π

(2y−x)

t3/2 e
−(2y−x)2

2t dx

=
√

2
π

1
t1/2

∫ y

−∞ de
−(2y−x)2

2t =
√

2
πte

−y2

2t = 2fB(y), by (3.16).

391



392 SOLUTIONS TO SELECTED EXERCISES

Exercise 3.12: mins≤t B(s) = −maxs≤t −B(s). Let W (t) = −B(t), then
it is also a Brownian motion and we have P(B(t) ≥ x, mins≤t B(s) ≤ y) =
P(W (t) ≤ −x, maxs≤t W (s) ≥ −y) = 1 − Φ(−2y+x√

t
). With φ = Φ′, for

y ≤ 0, x ≥ y, fB,m(x, y) = − ∂2

∂x∂yP(B(t) ≥ x, m(t) ≤ y) = 2
t φ

′(−2y+x√
t

) =
2
t

1√
2π

e−
(−2y+x)2

2t

(
−2y+x√

t

)
=
√

2
π

(x−2y)
t3/2 e

−(2y−x)2

2t .

Exercise 3.13: Let a > 0. Let D = {(x, y) : y − x > a}. Then we have
P(M(t) − B(t) > a) =

∫ ∫
D

fB,M (x, y)dxdy =
∫∞
0

∫ y−a

−∞ fB,M (x, y)dxdy

=
∫∞
0

∫ y−a

−∞

√
2
π

(2y−x)
t3/2 e

−(2y−x)2

2t dxdy =
√

2
tπ

∫∞
0

(− ∫ y−a

−∞ ( ∂
∂xe

−(2y−x)2

2t )dx)dy =√
2
tπ

∫∞
0

e
−(y+a)2

2t dy = 2
∫∞
0

1√
2πt

e
−(y+a)2

2t dy = 2
∫∞

a
1√
2πt

e
−u2
2t du

= 2P(B(t) > a).

Exercise 3.14: T2 = inf{t > 0 : B(t) = 0}. Since any interval (0, ε) contains
a zero of Brownian motion, T2 = 0, the second zero is also zero.

Exercise 3.15: By the above argument, any zero of Brownian motion is a
limit from the right of other zeroes. By the definition of T , it is a zero of X ,
but is not a limit of other zeroes. Thus X is not a Brownian motion.

Exercise 3.16: lim supt→∞
tB(1/t)√
2t ln ln t

= 1. tB(1/t)√
2t ln ln t

= B(1/t)√
2(1/t) ln(− ln(1/t))

.

Thus with τ = 1/t, lim supτ→0
B(τ)√

2τ ln(− ln τ)
= 1. Similar for lim inf.

Exercise 3.17: (B(e2αt1), B(e2αt2), . . . , B(e2αtn)) is a Gaussian vector. The
finite-dimensional distributions of X(t) = e−αtB(e2αt) are obtained by mul-
tiplying this vector by a non-random diagonal matrix A, with the diagonal
elements (e−αt1 , e−αt2 , . . . , e−αtn). Therefore finite-dimensional distributions
of X are multivariate Normal. The mean is zero. Let s < t
Cov(X(s), X(t)) = e−αse−αtE(B(e2αs)B(e2αt)) = e−α(s+t)e2αs = e−α(t−s).
Note that this Gaussian process has correlated increments.

Exercise 3.18: The process X(t) = e−αtB(e2αt) has the given mean and
covariance functions and is continuous. Since a Gaussian process is determined
by these two functions this is the required version.

Exercise 3.19: E(euSn+1 |Sn) = E(euSneuξn+1 |Sn) = E(euξn+1)E(euSn |Sn) =
eu2/2euSn . Multiply both sides by e−(n+1)u2/2 for the martingale property.

Exercise 3.21: If X1 = 3, then X2 must be 1, implying that X3 = 2, and can-
not be 3, so that P(X3 = 3|X2 = 1 or 2, X1 = 3) = 0. Using standard calcula-
tions of conditional probabilities we can see that P(X3 = 3|X2 = 1 or 2) = 1/2.
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Exercise 3.22: 1. If p = 1 then X(t) = aX(t−1)+Z(t).P(X(t) ∈ A|Ft−1) =
P(aX(t − 1) + Z(t) ∈ A|Ft−1) = P(aX(t − 1) + Z(t) ∈ A|X(t − 1)). If p ≥ 2
then the distribution of X(t) depends on both X(t − 1) and X(t − 2).

3. The one-step transition probability function is found by
P(X(t) ≤ y|X(t − 1) = x) = P(aX(t − 1) + Z(t) ≤ y|X(t− 1) = x)
= P(ax+Z(t) ≤ y|X(t−1) = x) = P(Z(t) ≤ y−ax) = Φ( y−ax

σ ). The one-step
transition probability density function is ∂

∂y Φ(y−ax
σ ) = 1

σf(y−ax
σ ).

Exercises to Chapter 4

Exercise 4.1: The necessary condition is
∫ t

0 (t− s)−2αds < ∞. This holds if
and only if α < 1/2.

Exercise 4.2: By (4.3), X(t) =
∑n

i=0 ξiI(ti,ti+1](t) for t > 0. Hence∫ t

0 X(s)dB(s) =
∫ T

0 X(s)I(0,t](s)dB(s) =
∑n

i=0 ξi(B(ti+1 ∧ t) − B(ti ∧ t)),
where ti ∧ t = min(ti, t). The Itô integral is continuous as a sum of continuous
functions.

Exercise 4.3: The first statement follows by using moment generating func-
tions eµnt+σ2

nt2/2 converges implies that µn → µ and σ2
n → σ2 ≥ 0. If σ2 = 0,

then the limit is a constant µ, otherwise, the limit is N(µ, σ2).
An Itô integral of a nonrandom function is a limit of approximating Itô in-

tegrals of simple nonrandom functions Xn(t). Since Xn(t) takes finitely many
nonrandom values,

∫ T

0
Xn(t)dB(t) has a Normal distribution with mean zero

and variance
∫ T

0
X2

n(t)dt. By the first statement
∫ T

0
X(t)dB(t) has Normal

distribution with mean zero and variance
∫ T

0
X2(t)dt. An alternative deriva-

tion of this fact is done by using the martingale exponential of the martingale
u
∫ t

0
X(s)dB(s).

Exercise 4.5: M(T ) has a Normal distribution, EM 2(T ) < ∞. By Jensen’s
inequality for conditional expectation (p. 45) with g(x) = x2,
E(M2(T )|Ft) ≥ (E(M(T )|Ft))2 = M2(t). Therefore E(M 2(t)) ≤ E(M2(T ))
and M(t) is a square-integrable martingale. The covariance between M(s) and
M(t) − M(s) for s < t is zero, because by the martingale property E(M(t) −
M(s)|Fs) = 0 and E(M(s)(M(t) − M(s)) = EE

(
M(s)(M(t) − M(s))|Fs

)
= E

(
M(s)E(M(t) − M(s)|Fs)

)
= 0. Now, if jointly Gaussian variables are

uncorrelated, they are independent. Thus the increment M(t)−M(s) is inde-
pendent of M(s).

Let M(t) =
∫ t

0
X(s)dB(s). Since X(s) is nonrandom, E

∫ T

0
X2(s)ds =∫ T

0 X2(s)ds < ∞ by assumption. Thus the Itô integral M(t) is a martingale. It
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is also Gaussian by the Exercise 4.3. Thus it is a square-integrable martingale
with independent increments.

Exercise 4.6: Take f(x) = x2, then Itô’s formula gives
dX2(t) = 2X(t)dX(t)+d[X, X ](t), [X, X ](t) = X2(t)−X2(0)−2

∫ t

0 X(s)dX(s).

Exercise 4.7: Let f(x) =
√

x, then Itô’s formula gives
df(X(t)) = f ′(X(t))dX(t) + 1

2f ′′(X(t))d[X, X ](t)
= 1

2
√

X(t)
dX(t) − 1

8X(t)
√

X(t)
σ2(X(t))dt. Rearranging we obtain

dY (t) = 1
2

[
bY (t) + c−1

Y (t)

]
dt + dB(t).

Exercise 4.10: Let f(x, t) = txe−x. Then if x = B(t), we have X(t)/Y (t) =
f(B(t), t). Using Itô’s formula (with partial derivatives denoted by subscripts)
df(B(t), t) = fx(B(t), t)dB(t) + 1

2fxx(B(t), t)d[B, B](t) + ft(B(t), t)dt

t(1 − B(t))e−B(t)dB(t) + 1
2 t(B(t) − 2)e−B(t)dt + B(t)e−B(t)dt.

Exercise 4.13: E|M(t)| = E|B3(t) − 3tB(t)| ≤ E|B3(t)| + 3t|B(t)| < ∞,
since a Normal distribution has all moments. Use the expansion (a + b)3 =
a3+3a2b+3ab2+b3 with decomposition B(t+s) = B(t)+(B(t+s)−B(t)). Take
a = B(t), b = B(t+s)−B(t), and use the the fact that E(B(t+s)−B(t))3 = 0,
E(B(t + s) − B(t))2 = s, to get the martingale property. Using Itô’s formula
dM(t) = d(B3(t) − 3tB(t)) = 3B2(t)dB(t) + 1

26B2(t)dt − 3B(t)dt − 3tdB(t)
= (3B2(t) − 3t)dB(t). Since

∫ T

0 E(3B2(t) − 3t)2dt < ∞, M(t) is a martingale
on [0, T ] for any T .

Exercise 4.15: df(B1(t), . . . , Bn(t)) =
∑ ∂f

∂xi
(B)dBi(t) + 1

2

∑
i

∂2f
∂x2

i

(B)dt

= ∇f · dB + 1
2∇ · ∇fdt, where “·” is the scalar product of vectors and

B = (B1(t), . . . , Bn(t)) with dB = (dB1(t), . . . , dBn(t)). The operator ∇·∇ =
∆ =

∑
i

∂2

∂x2
i

is the Laplacian, so that the Itô’s formula becomes

df(B(t)) = 1
2∆f(B(t))dt + ∇f · dB.

Exercise 4.16: Denote φ(x) = Φ′(x) then ∂
∂xΦ( x√

T−t
) = φ( x√

T−t
) 1√

T−t
,

∂2

∂x2 Φ( x√
T−t

) = φ′( x√
T−t

) 1
T−t = − x

(T−t)3/2 φ( x√
T−t

), using φ′(x) = −xφ(x) and
∂
∂tΦ( x√

T−t
) = − 1

2φ( x√
T−t

) x
(T−t)3/2 . Thus by Itô’s formula for all 0 ≤ t < T ,

dΦ( B(t)√
T−t

) = φ( B(t)√
T−t

) 1√
T−t

dB(t) and Φ( B(t)√
T−t

) = 1
2 +
∫ t

0 φ( B(s)√
T−s

) 1√
T−s

dB(s).

Since φ( B(s)√
T−s

) 1√
T−s

≤ 1√
T−s

, the Itô integral above is a martingale. Thus for

all t < T and s < t, X(t) = Φ( B(t)√
T−t

) satisfies E(X(t)|Fs) = X(s).
Next, as t → T , X(t) → Y = I(B(T ) > 0)+ 1

2I(B(T ) = 0). The martingale
property holds also for t = T by dominated convergence.
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Exercise 4.18: dX(t) = tdB(t) + B(t)dt, d[X, X ](t) = (dX(t))2 = t2dt,

[X, X ](t) =
∫ t

0
s2ds = t3/3.

Exercise 4.19: X(t) = tB(t)−∫ t

0 sdB(s) =
∫ t

0 sdB(s)+
∫ t

0 B(s)ds−∫ t

0 sdB(s)
=
∫ t

0 B(s)ds. Thus X(t) is differentiable and of finite variation. Hence
[X, X ](t) = 0. Itô integrals of the form

∫ t

0 h(s)dB(s) have a positive quadratic
variation. In this case the Itô integral is of the form

∫ t

0
h(t, s)dB(s).

Exercises to Chapter 5

Exercise 5.1: By Example 4.5,
∫ t

0
b(s)dB(s) is a Gaussian process.

X(t) =
∫ t

0
a(s)ds +

∫ t

0
b(s)dB(s) is also Gaussian as

∫ t

0
a(s)ds is non-random.

Exercise 5.3: dX(t) = X(t)(B(t)dt + B(t)dB(t)). X(t) = E(R)(t), where

R(t) =
∫ t

0 B(s)ds+
∫ t

0 B(s)dB(s). Thus X(t) = e

∫ t

0
(B(s)− 1

2 B2(s))ds+
∫ t

0
B(s)dB(s)

.

Exercise 5.4: Let dM(t) = B(t)dB(t). Then dX(t) = X(t)dt + dM(t),
which is a Langevin type SDE. Solving similarly to Example 5.6 we obtain
X(t) = e−t(1 +

∫ t

0
esdM(s)) = e−t(1 +

∫ t

0
esB(s)dB(s)).

The SDE is not of the diffusion type as σ(t) = B(t). By introducing Y (t) =
B(t), it is a diffusion in two dimensions.

Exercise 5.5: Let U(t) = E(B)(t). Then dU(t) = U(t)dB(t). dU 2(t) =
2U(t)dU(t)+d[U, U ](t) = 2U 2(t)dB(t)+U2(t)dt = U2(t)(2B(t)+dt). So that
U2(t) = E(2B(t) + t).

Exercise 5.6: dX(t) = X(t)(X(t)dt + dB(t)). If dY (t) = X(t)dt + dB(t)
then X(t) = E(Y )(t).

Exercise 5.10: By definition, P (y, t, x, s) = P (B(t) + t ≤ y|B(s) + s = x)
= P (B(t)−B(s)+ t−s ≤ y−x|B(s)+s = x) = P (B(t)−B(s)+ t−s ≤ y−x)
by independence of increments. B(t) − B(s) has N(0, t − s) distribution, and
P (y, t, x, s) = Φ

(
y−x−t+s√

t−s

)
.

Exercise 5.12: X(t) =
∫ t

0

√
X(s) + 1dB(s). Assuming it is a martingale

EX(t) = 0, EX2(t) = E
(∫ t

0

√
X(s) + 1dB(s)

)2

= E
(∫ t

0
(X(s) + 1)ds

)
= t.

deuX(t) = ueuX(t)dX(t)+ 1
2u2euX(t)d[X, X ](t). d[X, X ](t) = (X(t)+1)dt, and

deuX(t) = ueuX(t)
√

X(t) + 1dB(t) + 1
2u2euX(t)(X(t) + 1)dt. Taking expecta-

tion m(t) = 1+ 1
2u2E

( ∫ t

0
euX(s)(X(s)+1)ds

)
= 1+ 1

2u2
∫ t

0
E
(
euX(s)X(s)

)
ds+

1
2u2

∫ t

0 E
(
euX(s)

)
ds. Thus ∂m

∂t = u2

2 E
(
euX(t)X(t)

)
+ u2

2 EeuX(t) and the de-
sired PDE follows.
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Exercises to Chapter 6

Exercise 6.1: Denote L = 1
2

∂2

∂x and f(x, t) = eux−u2t/2. Then Lf = 1
2u2f

and ∂f
∂t = − 1

2u2f . Thus Lf + ∂f
∂t = 0. By Ito’s formula and Corollary 6.4

f(B(t), t) = euB(t)−u2t/2 is a martingale. Since f solves Lf + ∂f
∂t = 0 for any

fixed u, take partial derivative ∂f
∂u and interchange the order of differentiation

to have that for any fixed u, ∂
∂uLf + ∂

∂u
∂f
∂t = L(∂f

∂u ) + ∂
∂t

∂f
∂u = 0, so that

∂f
∂u solves the backward equation for any fixed u and in particular for u = 0.
Calculating the derivatives we get the result.

Exercise 6.2: The generator is given by (6.30) L = σ2

2
d2

dx2 − α d
dx . The

backward equation is σ2

2
∂2f
∂x2 − α∂f

∂x = ∂f
∂t . The fundamental solution is given

by the probability density of the solution to the SDE X(t).
p(t, x, y) = ∂

∂y P (t, x, y), where P (t, x, y) = P (X(t) ≤ y|X(0) = x). By (5.13)

P (t, x, y) = P (xe−αt + e−αt
∫ t

0
eαsdB(s) ≤ y) = P (

∫ t

0
eαsdB(s) ≤ yeαt − x)

= Φ
(√

α(yeαt−x)√
eαt−1

)
since

∫ t

0
eαsdB(s) has N(0, 1

α (eαt − 1)) distribution. Thus

p(t, x, y) = ∂
∂y P (t, x, y) = φ

(√
α(yeαt−x)√

eαt−1

) √
αeαt

√
eαt−1

with φ denoting the density
of N(0, 1).

Exercise 6.4: L = 1
2

∂2

∂x2 + cx ∂
∂x . Take f(x) = x2, then Lf(x) = 1+ 2cx2 and

by Theorem 6.11 X2(t) − ∫ t

0 (Lf + ∂f
∂t )(X(s))ds = X2(t) − t − 2c

∫ t

0 X2(s)ds
is a martingale.

Exercise 6.6: Using Corollary 6.4 or Itô’s formula, we have df(B(t) + t) =
f ′(B(t) + t)dB(t) + f ′(B(t) + t)dt + 1

2f ′′(B(t) + t)dt. A necessary condition
for f(B(t) + t) to be a martingale is that dt term is zero. This gives f ′(x) +
1
2f ′′(x) = 0. For example, take f(x) = e−2x and check directly that e−2(B(t)+t)

is a martingale. (e−2(B(t)+t) = E(2B)(t)).

Exercise 6.7: df(X(t), t) = ∂f
∂xdX(t) + ∂2f

∂x2 d[X, X ](t) + ∂f
∂t dt. The term

with dB(t) is given by σ(X(t), t)∂f
∂x (X(t), t)dB(t). Thus the PDE for f is

σ(x, t)∂f
∂x (x, t) = 1.

Exercise 6.8: By letting v′ = y we obtain a first order differential equation
y′ + 2µ

σ2 y + 2
σ2 = 0. Use the integrating factor V (x) = exp

( ∫ x

a
2µ(s)
σ2(s)ds

)
, to

obtain (yV )′ = − 2
σ2 V and y = − 1

V

∫
2

σ2 V . The result follows.

Exercise 6.9: The scale function (6.50) S ′(x) = e−
∫ x 2µ

σ2 ds = e−
2µ

σ2 x gives
S(x) = Ce−

2µ

σ2 x. Px(Tb < Ta) = S(x)−S(a)
S(b)−S(a) = (e−

2µ

σ2 x−e−
2µ

σ2 a)/(e−
2µ

σ2 b−e−
2µ

σ2 a).
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Exercise 6.10: The generator of Brownian motion is 1
2

∂2f
∂x2 . By Theorem

6.6 f(x, t) = E(B2(T )|B(t) = x) = E((x + B(T ) − B(t))2|B(t) = x). By
independence of increments it is the same as E(x+B(T )−B(t))2 = x2 +T − t.

Exercise 6.12: Check condition 2, Theorem 6.23 to decide convergence of the
integral

∫∞
1 exp

(
− ∫ x

1
2s2

σ2s2α ds
)( ∫ x

1
1

σ2y2α exp(
∫ y

1
2s2

σ2s2α ds)dy
)
dx.

∫ x

1
2s2

σ2s2α ds =
2

σ2
x3−2α−1

3−2α . When 3 − 2α > 0 then exp(−x3−2α/σ2)
∫ x

1
exp(y3−2α/σ2)

σ2y2α dy ∼ C
x2

as x → ∞ and
∫∞
1

exp(−x3−2α/σ2)
∫ x

1
exp(y3−2α/σ2)

σ2y2α dydx converges. Conse-
quently, the process explodes. When 3−2α < 0 then the integral diverges and
there is no explosion. The case α = 3/2 needs further analysis.

Exercise 6.13: Check conditions of Theorem 6.28. µ(x) = 0, σ(x) = 1. I1 =∫ x0

−∞ 1du = ∞, I2 =
∫∞

x0
1du = ∞. Hence B(t) is recurrent. For the process

B(t)+t, µ(x) = 1 and σ(x) = 1. I2 =
∫∞

x0
exp

(
−2(u−x0)

)
du = 1

2 < ∞. Thus
B(t) + t is transient. The Ornstein-Uhlenbeck process is left to the reader.

Exercise 6.15: For n = 2, S(x) = lnx. So that for 0 < y < x, Px(Ty < Tb) =
ln x−ln b
ln y−ln b . Since X(t) does not explode, Tb ↑ ∞ as b ↑ ∞. Therefore
Px(Ty < ∞) = limb→∞ Px(Ty < Tb) = limb→∞ ln x−ln b

ln y−ln b = 1. For n ≥ 3,

S(x) = 1−x1−n/2

1−n/2 . Px(Ty < Tb) = b1−n/2−x1−n/2

b1−n/2−y1−n/2 → ( y
x)n/2−1 < 1. The explo-

sion test shows that X(t) does not explode, and limb→∞ Tb = ∞.

Exercise 6.17: Check (6.67). Since 1 =
∫ β

α
p(t, x, y)dy =

∫ β

α
p(t, y, x)dy, for

any C, C =
∫ β

α Cp(t, y, x)dy. Since C is a distribution on (α, β), it must be
the uniform density.

Exercise 6.18: To classify 0 as a boundary, calculate L1, L2 and L3, Remark
6.5, see also Theorem 6.29. µ(x) = b(a−x), σ2(x) = σ2x. For constants C1, C2

C1

∫ c

0 u−2ba/σ2
du ≤ L1 ≤ C2

∫ c

0 u−2ba/σ2
du, which shows that L1 converges if

2ba/σ2 < 1. Thus 0 is a natural boundary iff 2ba/σ2 ≥ 1. L2 < ∞. L3 < ∞
if ba > 0. So if 0 < 2ba/σ2 < 1, 0 is a regular boundary point, and if ba < 0,
0 is an absorbing boundary.

Exercises to Chapter 7

Exercise 7.1: Gt ⊆ Ft. Let s < t. By the smoothing property of conditional
expectation 3, p. 55 (double expectation), E(M(t)|Gs) = E(E(M(t)|Fs)|Gs)
= E(M(s)|Gs) = M(s).

Exercise 7.3: By convexity, property 6 p. 55 of conditional expectation,
E(g(X(t))|Fs) ≥ g(E(X(t)|Fs)). By the submartingale property E(X(t)|Fs) ≥
X(s). Since g is non-decreasing the result follows.
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Exercise 7.4: Since square-integrable martingales are uniformly integrable
(Corollary 7.8), there is Y such that M(t) = E(Y |Ft). Y = limt→∞ M(t). By
Fatou’s lemma (p. 41) E(Y 2) ≤ lim inft→∞ E(M2(t)) < ∞.

Exercise 7.5: Let τ be the first time B(t) hits a or b when B(0) = x,
a < x < b. τ is finite by Theorem 3.13. By stopping martingale B(t) we find
that P(B(τ) = b) = (x− a)/(b− a), P(B(τ) = a) = 1−P(B(τ) = b), Example
7.6. Stopping M(t), EM(τ ∧ t) = M(0) = x2, or EB2(τ ∧ t) − E(τ ∧ t) = x2.
Take t → ∞. τ ∧ t → τ , B2(τ ∧ t) → B2(τ), and by dominated convergence
EB2(τ) − E(τ) = x2. But EB2(τ) = a2P(B(τ) = a) + b2P(B(τ) = b) =
a2 b−x

b−a + b2 x−a
b−a . Thus E(τ) = EB2(τ) − x2, and the result follows.

Exercise 7.6: Let τ = inf{t : B(t)−t/2 = a or b}. As in the previous exercise,
we obtain EM(τ) = M(0) = ex or eaP(M(τ) = ea) + eb(1−P(M(τ) = eb)) =
ex. This gives P(B(τ) − τ/2 = a) = P(M(τ) = ea) = eb−ex

eb−ea .

Exercise 7.8: When the game is fair p = q = 1/2, use formula (7.17) to see
that u → 1. If p �= q, use (7.20) to see that u → 1 when p < q, and u → (q/p)x

when p > q.

Exercise 7.12:
∫ T

0
sign2(B(s))ds = T < ∞. Thus X(t) is a martingale.

[X, X ](t) =
∫ t

0
sign2(B(s))ds = t. By Levy’s theorem X is a Brownian motion.

Exercise 7.13: [M, M ](t) =
∫ t

0 e2sds = 1
2 (e2t − 1). Its inverse function is

g(t) = 1
2 ln(2t + 1). M(g(t)) is a Brownian motion by the DDS Theorem 7.37.

Exercise 7.16: X(t) = X(0)+ A(t) + M(t) = X(0)+
∫ t

0
µ(s)ds +

∫ t

0
σ(s)dBs

is a local martingale. Therefore A(t) = X(t) − M(t) is a local martingale as
a difference of two local martingales. A(t) is continuous. By using Corollary
7.30, A(t) has infinite variation unless it is a constant. Since A(t) is of finite
variation it must be zero. The result follows.

Exercise 7.17: By Itô’s formula
f(B(t), t)−∫ t

0

(
∂f
∂t (B(s), s)+ ∂2f

∂x2 (B(s), s)
)
ds =

∫ t

0
∂f
∂x (B(s), s)dB(s). The rhs.

is a continuous local martingale, and the lhs. is of finite variation. This can
only happen when the local martingale is a constant. Thus ∂f

∂x = 0, and f is
a constant in x, hence a function of t alone.

Exercise 7.18: We know Y (t) = 1
2B2(t) − 1

2 t, and B2(t) = 2Y (t) + t. Thus
B(t) = sign(B(t))

√
2Y (t) + t. Therefore dY (t) = sign(B(t))

√
2Y (t) + tdB(t)

or dY (t) =
√

2Y (t) + tdW (t), where dW (t) = sign(B(t))dB(t), W is a Brow-
nian motion. Weak Uniqueness follows by Theorem 5.11. Alternatively, one
can prove it directly by calculating of moments of Y (t), µn(t) = EY n(t) (by
using Ito’s formula µn(t) = n(n−1)

2

∫ t

0 (sµn−2(s) + 2µn−1(s))ds) and checking
Carleman’s condition

∑
(µn)−1/n = ∞, see Feller (1971).
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Exercises to Chapter 8

Exercise 8.1: I(τ1,τ2](t) = I[0,τ2](t)−I[0,τ1](t) is a sum of two left-continuous
adapted functions. Let τ be a stopping time. Then X(t) = I[0,τ ](t) is adapted.
{X(t) = 0} = {t > τ} =

⋃∞
n=1{τ ≤ t − 1/n} ∈ Ft, since {τ ≤ t − 1/n} ∈

Ft−1/n ⊂ Ft. See p. 54.

Exercise 8.2: The left-continuous modification of the process H(t− δ + ε) is
adapted and as ε → 0 tends to H(t − δ).

Exercise 8.4: Let X(t) =
∫ t

0
H(s)dM(s), then it is a local martingale as a

stochastic integral with respect to a local martingale.
[X, X ](t) =

∫ t

0
H2(s)d[M, M ](s). Thus E[X, X ](T ) < ∞. By Theorem

7.35. this condition implies X is a square integrable martingale.

Exercise 8.5: E(
∫ 1

0 N(t−)dM(t)) = 0, so that V ar(
∫ 1

0 N(t−)dM(t)) =
E(
∫ 1

0
N(t−)dM(t))2 = E

∫ 1

0
N2(t−)d[M, M ](t). [M, M ](t) = [N, N ](t) =

N(t), so that V ar(
∫ 1

0 N(t−)dM(t)) = E
∫ 1

0 N2(t−)dN(t) = E(
∑

τi≤1 N2(τi−1)),
where τi denotes the time of the i-th jump of N . But N(τi) = i, so that
V ar(

∫ 1

0
N(t−)dM(t)) = E(

∑
τi≤1(i−1)2 = E(

∑N(1)
i=1 (i−1)2) = E(

∑N(1)−1
k=0 k2)

= E(2N3(1) − 3N2(1) + N(1))/6, since τi ≤ 1 is equivalent to i ≤ N(1), and∑n
k=0 k2 = (2(n + 1)3 − 3(n + 1)2 + n + 1)/6. Alternatively

∫ 1

0 N2(t−)dN(t)
can be obtained by using formula (1.20) p. 12. Compute moments using the
mgf m(s) = EesN(1) = e−1ees

. m′(0) = EN(1) = 1, m′′(0) = EN2(1) = 2,
m(3)(0) = EN3(1) = 5, giving V ar(

∫ 1

0 N(t−)dM(t)) = 5/6.

Exercise 8.6: 1. S ∧ T and S ∨ T are stopping times, because {S ∧ T > t} =
{S > t} ∩ {T > t} ∈ Ft, {S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ Ft.
2. The events {S = T }, {S ≤ T } and {S < T } are in FS .
3. FS ∩ {S ≤ T } ⊂ FT ∩ {S ≤ T }. See p. 53 Theorem 2.38.

Exercise 8.9: M(t) is a continuous martingale, [M, M ](t) =
∫ t

0
H2(s)ds = t.

By Levy’s theorem it is a Brownian motion. If M(t) is a Brownian motion,
then [M, M ](t) =

∫ t

0
H2(s)ds = t for all t. Taking derivatives H2(t) = 1

Lebesgue a.s.

Exercise 8.10: The proof is not easy if done from basic properties. But it is
easy using Levy’s theorem. M(t) can be written as B(t) =

∫ t

0
dB(s), B(t∧T ) =∫ t

0 I[0,T ](s)dB(s), M(t) =
∫ t

0

(
2I[0,T ](s) − 1

)
dB(s). Exercise 8.1 shows that

I[0,T ](s) is predictable. Clearly, M(t) is a continuous local martingale as an
Itô integral. It is also a martingale, as E

∫ t

0 (2I[0,T ](s) − 1)2ds ≤ 9t < ∞.
[M, M ](t) =

∫ t

0 (2I[0,T ](s) − 1)2ds.
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If T ≥ t, then for all s ≤ t, I[0,T ](s) = 1 implying [M, M ](t) = t. If T < t,
then [M, M ](t) =

∫ T

0 (2I[0,T ](s) − 1)2ds +
∫ t

T (−1)2ds = T + (t − T ) = t. Thus
[M, M ](t) = t, for any T , and M is a Brownian motion by Levy’s theorem.

Exercise 8.11: d(B(t)M(t)) = B(t)dM(t)+M(t)dB(t)+d[B, M ](t). Since M
is of finite variation, by the property 7 of quadratic variation (8.19) [B, M ](t) =∑

s≤t ∆B(s)∆M(s) = 0, since by continuity of Brownian motion ∆B(s) =
0. Thus B(t)M(t) =

∫ t

0
B(s)dM(s) +

∫ t

0
M(s)dB(s). Both stochastic inte-

grals satisfy the condition to be a martingale, i.e. E
∫ T

0
B2(s)d[M, M ](s) =

E
∫ T

0
B2(s)dN(s) = E

∑
τi≤T B2(τi) = E

∑N(T )
i=1 τi < TEN(T ) = T 2 < ∞.

E
∫ T

0
M2(s)d[B, B](s) = E

∫ T

0
M2(s)ds =

∫ T

0
V ar(N(s))ds =

∫ T

0
sds < ∞.

The other two processes are martingales by similar arguments, verifying that
a purely discontinuous martingale is orthogonal to any continuous martingale,
i.e. their product is a martingale, p. 233.

Exercise 8.12: dX(t) = µX(t)dt + aX(t−)λdt + aX(t−)(dN(t) − λdt) +
σX(t)dB(t). aX(t−)(dN(t)−λdt)+σX(t)dB(t) = dM(t) is a martingale, as a
sum of stochastic integrals with respect to martingales.

∫
X(t−)dt =

∫
X(t)dt.

Thus X(t) is a martingale when µ = −aλ.

Exercise 8.13: B5(1) =
∫ 1

0

(
5B4(t) + 30(1 − t)B2(t) + 15(1 − t)2

)
dB(t). Use

Ito’s formula for B5(t) and that the following functions x5−10tx3 +15t2x and
x3 − 3xt produce martingales.

Exercise 8.15:
∫ 1

0 (sign(B(s)) − H(s))dB(s) = 0. The proposition follows
from E

∫ 1

0
(sign(B(s)) − H(s))2ds = 0.

Exercise 8.17: We show the continuous case, the case with jumps is similar.
E(X)(t) = eX(t)− 1

2 [X,X](t). By (8.82) X(t) = ln
∣∣∣U(t)
U(0)

∣∣∣+ 1
2

∫ t

0
d[U,U ](s)

U2(s) . By Itô’s

formula for lnU(t) we obtain [X, X ](t) =
∫ t

0
d[U,U ](s)

U2(s) . Thus E(X)(t) = U(t).

Exercises to Chapter 9

Exercise 9.1: Change the order of integration.

Exercise 9.3: P(T1 = x) = p(1−p)x−1, x = 1, 2, . . .. Use the lack of memory
property of Geometric distribution, P(T1 ≤ t + c|T1 ≥ t) = P(T1 ≤ c) to see
that the compensator of N(t) is p[t], where [t] stands for the integer part of t.

Exercise 9.4: Repeat the proof of Theorem 9.6 and condition on FTn−.

Exercise 9.5: Apply Theorem 9.18 to f(x) = xk.
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Exercises to Chapter 10

Exercise 10.2: By Theorem 10.3 the equivalent measure Q is given by
dQ/dP = e−µX+µ2/2 and dP/dQ = eµX−µ2/2.

Exercise 10.3: Since Y > 0 and E(Y/EY ) = 1, let Λ = Y/EY and define
dQ/dP = Λ = eX−µ−σ2/2. By Theorem 10.4, the Q distribution of Y is
N(µ + σ2, σ2). Thus EY I(Y > K) = EY EΛI(Y > K) = EY EQI(Y > K) =
eµ+σ2/2Q(Y > K). Finally, EY I(Y > K) = eµ+σ2/2Φ((µ + σ2/2 − K)/σ),
using 1 − Φ(x) = Φ(−x).

Exercise 10.4: X(t) = B(t)+
∫ t

0 cos sds. Thus by Girsanov’s Theorem 10.16

dQ/dP = e
−
∫ T

0
cos sdB(s)− 1

2

∫ T

0
cos2 sds.

Exercise 10.5: With X = H · B, E(X)(T ) = eX(T )−X(0)− 1
2 [X,X](T ).

[H ·B, H ·B](T ) =
∑d

i,j=1[H
i·Bi, Hj ·Bj ] =

∑d
i,j=1

∫ T

0
Hi(t)Hj(t)d[Bi, Bj ](t)∑d

i=1

∫ T

0 (H i(t))2dt =
∫ T

0 |H(s)|2ds, since [Bi, Bj ](t) = 0 for i �= j. Thus

E(H · B)(T ) = e
∑

n

i=1

∫
T

0
Hi(s)dBi(s)− 1

2

∑
n

i=1

∫
T

0
(Hi(s))2ds

e

∫ T

0
H(s)dB(s)− 1

2

∫ T

0
|H(s)|2ds.

Exercise 10.8: Since H(t) is bounded E
∫ T

0 H2(t)d[N̄ , N̄ ](t) = E
∫ T

0 H2(t)dt
is finite and M(t) is a martingale. By (9.5)

E(M)(t) = e

∫
t

0
H(s)dN̄(s)∏

s≤t(1 + ∆(H · N̄)(s))e−∆(H·N̄)(s). But the jumps
of the integral occur at the points of jumps of N̄ and ∆N̄ = ∆N , so that

∆(H · N)(s) = H(s)∆N(s). Next,
∏

s≤t e−∆(H·N̄)(s) = e
−
∑

s≤t
H(s)∆N(s) =

e
−
∫

t

0
H(s)dN(s). Proceeding,

∏
s≤t(1+∆(H · N̄)(s)) = e

∑
s≤t

ln(1+H(s))∆N(s) =

e

∫ t

0
ln(1+H(s))dN(s), and the result follows.

Exercise 10.9: Using (10.52) or (10.51) with µi(x, t) = µix, i = 1, 2, σ(x, t) =
σx, P corresponds to µ1, B(t) is a P-Brownian motion.

Λ(X)T = dQ
dP = E(µ2−µ1

σ B)(T ) = e
µ2−µ1

σ B(T )− (µ2−µ1)2

2σ2 T . Replace B(T ) by its

expression as a function of X . In this case B(T ) = (ln(X(T )
X(0) )−(µ1− 1

2σ2)T )/σ.

Exercise 10.11: By Corollary 10.11 M ′(t) is a Q-martingale if and only
if M ′(t)Λ(t) is a P-martingale. d(M ′(t)Λ(t)) = M ′(t)dΛ(t) + Λ(t)dM ′(t) +
d[M ′, Λ](t) = M ′(t)dΛ(t) + Λ(t)dM(t) − Λ(t)dA(t) + d[M ′, Λ](t). The first
two terms are P(local) martingales, as stochastic integrals with respect to
martingales (Λ(t) is a P-martingale). Thus −Λ(t)dA(t) + d[M ′, Λ](t) = 0.
But [A, Λ](t) = 0, since A is continuous and finite variation. Thus dA(t) =
d[M, Λ](t)/Λ(t).
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Exercise 10.13:
1. Using Girsanov’s Theorem 10.15, there exists an equivalent measure

Q1 (defined by Λ = dQ/dP = e−T/2−B(T )) such that W (t) = B(t) + t is a
Q1-martingale. We show that under Q1, N(t) remains to be a Poisson process
with rate 1. This follows by independence of N(t) and B(t) under P,
EQeuN(t) = EP (ΛeuN(t)) = EP (e−T/2−B(T )euN(t))= EP (e−T/2−B(T ))EP (euN(t))
= EP (euN(t)), since EP Λ = 1. This shows that one-dimensional distributions
of N(t) are Poisson (1). Similarly, the increments of N(t) under Q1 are Poisson
and independent of the past. The statement follows.

2. Let Λ = Λ(T ) = dQ2

dP = Λ1Λ2 = e−T−2B(T )e−T+N(T ) ln 2

= e−2T−2B(T )+N(T ) ln 2. Then B(t)+2t is a Q2-Brownian motion, and N(t) is a
Q-Poisson process with rate 2. To see this EQ(X) = EP (ΛX) = EP (Λ1Λ2X),
for any X and EP Λ1 = EP Λ2 = 1. So under Q2, N(t) − 2t is a martingale,
and B(t) + 2t is a martingale, thus X(t) = B(t) + N(t) is a Q2-martingale.

3. The probability measures defined as follows for a > 0 are equivalent to
P, dQa = e−a2T/2−aB(T )e(1−a)T+N(T ) ln a = e(1−a−a2/2)T−aB(T )+N(T ) ln adP,
and make the processes B(t) + at into a Qa-Brownian motion, and N(t) into
a Qa-Poisson process with rate a.

Exercises to Chapter 11

Exercise 11.3: If X = aS1+b for some a and b then EQ(X/r) = aEQ(S1/r)+
b = aS0 + b the same for any Q. Note that since the vectors S and β are not
collinear, the representation of X by a portfolio (a, b) is unique. Take the claim
that pays $1 when the stock goes up and nothing in any other case, then this
claim is unattainable. EQ(X) = 1.5(0.2 + pd) depends on the choice of pd.

Exercise 11.5: 1. EQ(M(t)|Fs) = EP (M(t)|Fs) = M(s) a.s. Take s = 0,
EP M(t) = EQM(t) = M(0).

2. If a claim is attainable, X = V (T ), where V (t)/β(t) is a Q-martingale.
Its price at time t is C(t) = V (t), which does not depend on the choice of Q.
By the martingale property V (t) = β(t)EQ(V (T )/β(T )|Ft). This shows that
C(t) = β(t)EQ(X/β(T )|Ft) is the same for all Q’s.

Exercise 11.10: Consider continuous time. d(S(t)
β(t) ) = dS(t)

β(t) + S(t)d( 1
β(t) ).

dR(t) = dS(t)
S(t) = β(t)

S(t)d(S(t)
β(t) ) − β(t)d( 1

β(t)). R(t) =
∫ t

0
β(u)
S(u)d(S(u)

β(u) ) +
∫ t

0
dβ(s)
β(s) .

The first integral is a martingale, as a stochastic integral with respect to a Q-
martingale. Thus EQR(t) =

∫ t

0
dβ(s)
β(s) , which is the risk-free return. In discrete

time the statement easily follows from the martingale property of S(t)/β(t).

Exercise 11.11: Let X(t) = S(t)e−rt. Then it is easy to see that X(t)
satisfies the SDE dX(t) = σX(t)dB(t), for a Q-Brownian motion B(t). By
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Itô’s formula d( 1
X(t) ) = −σ 1

X(t) (dB(t) − σdt) = −σ 1
X(t)dW (t), with dW (t) =

dB(t) − σdt. W (t) is a Q-Brownian motion with drift. Using the change
of measure dQ1/dQ = eσB(T )−σ2T/2, by Girsanov’s theorem W (t) is a Q1-
Brownian motion. Finally, −W (t) is also a Q1-Brownian motion, and we can
remove the minus sign in the SDE.

Exercise 11.12: By the Theorem 11.7, C(t) = EQ1(
S(t)
S(T ) (ST − K)+|Ft) =

StEQ1((1− K
S(T ) )

+|Ft). The conditional distribution of 1/S(T ) given Ft under
Q1 is obtained by using the SDE for 1/S(t). With Y (t) = 1/X(t) = ert/S(t),
we have from above dY (t) = σY (t)dW (t) and 1/S(t) = Y (t)e−rt. Using
the product rule d( 1

S(t) ) = 1
S(t) (−rdt + σdW (t)). Thus 1/S(t) is a stochastic

exponential, and 1/S(T ) = (1/S(t))e(T−t)(−r−σ2/2)+σ(W (T )−W (t)). Thus given
Ft, the Q1 conditional distribution of 1/S(T ) is Lognormal with mean and
variance − lnS(t) − (T − t)(r + σ2/2) and σ2(T − t). Using calculations for
the E(1 − X)+ similar to p. 313, we recover the Black-Scholes formula.

Exercise 11.14: From the first equation b(t) = (V (t)−a(t)S(t))e−rt. Putting
it in the self-financing condition dV (t) = a(t)dS(t)+b(t)d(ert), we get the SDE
for V (t).

For the other direction, let b(t) be as above. Then V (t) = a(t)S(t)+b(t)ert,
moreover the SDE for V (t) gives the self-financing condition.

Exercise 11.17: Let F (y) = e−rT E((ST /S − y)+), then C = SF (K/S).
Now, ∂C/∂S = F (K/S) − KF ′(K/S)/S and ∂C/∂K = F ′(K/S). Thus
S∂C/∂S + K∂C/∂K = SF (K/S) = C. The expression for ∂C

∂S in the Black-
Scholes model follows from the Black-Scholes formula.

Exercises to Chapter 12

Exercise 12.1: Use Theorem 12.5, C(t) = EQ( β(t)
β(s) (P (s, T ) − K)+| Ft)

= EQ( β(t)
β(s)P (s, T )I(P (s, T ) > K)| Ft) − KEQ( β(t)

β(s)I(P (s, T ) > K)| Ft). For
the first term take Λ2 based on the Q-martingale P (s, T )/β(s), s ≤ T , which
corresponds to numeraire P (t, T ), or T -forward measure. Since the expecta-
tion must be unity, Λ2 = P (s,T )

β(s)P (0,T ) . (Formula (12.53)). Then the first term is

EQ(P (s,T )β(t)
β(s) X |Ft) = P (t, T )EQ2(X |Ft). For the second term consider Λ1 =

1/(P (0, s)β(s)) based on the martingale P (t, s)/β(t), t ≤ s, which corresponds
to numeraire P (t, s), or s-forward measure. Then for any X , EQ( βt

βs
X |Ft) =

P (t, s)EQ1(X |Ft). This gives for the second term KP (t, s)Q1(P (s, T ) > K|Ft),
and the result follows.
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Exercise 12.3: 1. Follows by E|X | ≤
√

EX2.
2. By additivity of the integral

∫ T

0

(∑n−1
i=0 H(ti, s)

(
W (ti+1) − W (ti)

))
ds =∑n−1

i=0

(∫ T

0
H(ti, s)ds

) (
W (ti+1) − W (ti)

)
.

3. Let Xn(s) =
∑n−1

i=0 H(ti, s)
(
W (ti+1)−W (ti)

)
. Then Xn(s) is an approx-

imation to the Itô integral X(s) =
∫ T

0
H(t, s)dW (t). EX2(s) =

∫ T

0
EH2(t, s)ds <

∞, and under the stated conditions
∫ T

0
E(Xn(s)−X(s))2ds converges to zero.

This implies converges in L2 and in probability of
∫ T

0 Xn(s)ds to
∫ T

0 X(s)ds.

The rhs
∑n−1

i=0

(∫ T

0
H(ti, s)ds

) (
W (ti+1) − W (ti)

)
is an approximation of Itô

integral of Y (t), and converges to it in probability.

Exercise 12.5: Use the formula for the bond (12.32). f(t, T ) = − ∂ ln P (t,T )
∂T .

A cap is a sum of caplets, which are priced by (12.64).

Exercise 12.7: Let Y (t) =
∫ t

0
γ(s)dB(s) and X(t) =

∫ t

0
β(s)dB(s) for some

β(s) to be determined. Then E(X)(t) = c + (1 − c)E(Y )(t). Thus

dX(t) =
dE(X)(t)
E(X)(t)

=
(1 − c)dE(Y )(t)

c + (1 − c)E(Y )(t)
=

(1 − c)E(Y )(t)γ(t)
c + (1 − c)E(Y )(t)

dB(t), and

β(t) =
(1 − c)E(Y )(t)γ(t)
c + (1 − c)E(Y )(t)

=
(1 − c)γ(t)e

∫ t

0
γ(s)dB(s)− 1

2

∫ t

0
γ2(s)ds

c + (1 − c)e
∫

t

0
γ(s)dB(s)− 1

2

∫
t

0
γ2(s)ds

.

Existence of forward rates volatilities follows from equation (12.76).

Exercise 12.9: At Ti the following exchange is made: the amount received
is fi−1(Ti −Ti−1) and paid out k(Ti −Ti−1). The resulting amount at time Ti

is 1/P (Ti−1, Ti)− 1− kδ, using 1/P (Ti−1, Ti) = 1 + fi−1(Ti −Ti−1). Thus the
value at time t of the swap is

Swap(t, T0, k) =
n∑

i=1

EQ

(
β(t)
β(Ti)

(
1

P (Ti−1, Ti)
− 1 − kδ

)
| Ft

)
.

Using the martingale property of the discounted bonds (12.4), we obtain that
EQ

(
β(t)

β(Ti)
|FTi−1

)
= P (Ti−1, Ti). The result is obtained by conditioning on

FTi−1 in the above sum.

Exercise 12.10: Follows from the previous exercise.

Exercise 12.11: Consider the portfolio of bonds that at any time t < T is long
α+(t) of the T0-bond, short α+(t) of the Tn-bond, and for each i, 1 ≤ i ≤ n
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short α−(t)δk of the Ti-bond. The value of this portfolio at time t < T is
C(t) = α+(t)(P (t, T0) − P (t, Tn)) − kα−(t)b(t), with b(t) = δ

∑n
i=1 P (t, Ti).

By using the expression for the swap rate C(t) = b(t) (α+(t)k(t) − Kα−(t)). It
can be seen that this portfolio has the correct final value and is self-financing,
i.e. dC(t) = α+(t)d (P (t, T0) − P (t, Tn)) − kα−(t)db(t).

Exercises to Chapter 13

Exercise 13.1: Use Theorem 6.16 and formula (6.98) to find E(T0 ∧ Tb).
ET0 = limb→∞ E(T0 ∧ Tb) by monotone convergence.

Exercise 13.2: 1. d(e−cX(t)) = −ce−cX(t)dX(t) + c2

2 e−cX(t)d[X, X ](t) =
−ce−cX(t)σ

√
X(t)dB(t). By Theorem 13.1 X(t) ≥ 0 for all t. The function

e−cx
√

x is bounded for x ≥ 0. Thus e−cX(t) is martingale as an Itô integral of
a bounded process, Theorem 4.7.
2. Let τ = T ∧ t, then τ is a bounded stopping time. Applying Optional
stopping, we have e−cx = Ee−cX(0) = Ee−cX(τ) = E(e−cX(τ)I(τ = T )) +
E(e−cX(τ)I(τ = t)) ≥ E(e−cX(τ)I(τ = T )) = P(T ≤ t).

Exercise 13.5: 1. Let G(x) =
∫ x

a
du/g(u). Then G(x(t)) = G(x(0))+ t. Now

dY (t) = dt + σ(X(t))
g(X(t)) dB(t) − σ2(X(t))g′(X(t))

g2(X(t)) dt.

2. G(x) = x1−r/(c(1 − r)) and Y (t) = t − ∫ t

0
σ2(X(s))r
c(X(s))r+1 ds +

∫ t

0
σ(X(s))
(cX(s))r dB(s).

By the growth condition, E(
∫ t

0
σ(X(s))
(cX(s))r dB(s))2 =

∫ t

0 E( σ(X(s))
(cX(s))r )2ds ≤ Ct. It

follows E( 1
t

∫ t

0
σ(X(s))
(cX(s))r dB(s))2 → 0, and implies 1

t

∫ t

0
σ(X(s))
(cX(s))r dB(s) → 0 in

probability. It follows by the L’Hospital rule that 1
t

∫ t

0
σ2(X(s))r
c(X(s))r+1 ds → 0 on the

set {X(t) → ∞}. The LLN for Y (t) now follows.

Exercise 13.6: P (min(L1, L2, . . . , Lx) > t) = P (L1 > t, L2 > t, . . . , Lx > t)
= (P (L1 > t))x = (e−a(x)t)x = e−xa(x)t.

Exercise 13.7: 1. π1(t) =
∫ t

0

∑
k≥1 I(X(s−) ≥ k)dNλ

k (s) has jumps of size
one. Verify that A1

t =
∫ t

0 λXsds is its compensator. Similarly for the process
π2(t) =

∫ t

0

∑
k≥1 I(X(s−) ≥ k)dNµ

k (s).
2. X(t) = X(0) + A1(t) − A2(t) + π1(t) − A1(t) − π2(t) + A2(t).

Exercises to Chapter 14

Exercise 14.3: E(M(t)|Gs) = E(E(M(t)|Fs)|Gs) = E(M(s)|Gs) = M(s).

Exercise 14.5: Let Gt be the trivial σ-field, then Ŵ (t) = E(W (t)| Gt) = 0.
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Exercise 14.6: Using formally Theorem 14.6 with a(t) = b(t) = 0 and A(t) =
B(t) = 1, dX̂(t) = −v(t)X̂(t)dt + v(t)dY (t), and dv(t) = −v2(t)dt. Hence
dX̂(t) = −(1/t)X̂(t)dt+(1/t)dY (t). We obtain v(t) = 1/t and X̂(t) = Y (t)/t.
These can be obtained directly using Y (t) = ct + W (t).

Exercise 14.8: dX(t) = (µ + σ2/2)X(t)dt + σX(t)dB(t). Apply Theorem
14.6 with a(t) = µ + σ2/2, b(t) = σ, A(t) = B(t) = 1, see Example 14.1.
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