




PID AND PREDICTIVE
CONTROL OF
ELECTRICAL DRIVES
AND POWER
CONVERTERS USING
MATLAB®/SIMULINK®





PID AND PREDICTIVE
CONTROL OF
ELECTRICAL DRIVES
AND POWER
CONVERTERS USING
MATLAB®/SIMULINK®

Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng



This edition first published 2015
© 2015 John Wiley & Sons Singapore Pte. Ltd.

Registered office
John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628.

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
expressly permitted by law, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be
addressed to the Publisher, John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South
Tower, Singapore 138628, tel: 65-66438000, fax: 65-66438008, email: enquiry@wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice
or other expert assistance is required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant
the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related
products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or
particular use of the MATLAB® software.

Library of Congress Cataloging-in-Publication Data applied for.

Hardback ISBN: 9781118339442

Typeset in 9/11pt TimesLTStd by Laserwords Private Limited, Chennai, India

1 2015

http://www.wiley.com
mailto:enquiry@wiley.com


Contents

About the Authors xiii

Preface xv

Acknowledgment xix

List of Symbols and Acronyms xxi

1 Modeling of AC Drives and Power Converter 1
1.1 Space Phasor Representation 1

1.1.1 Space Vector for Magnetic Motive Force 1
1.1.2 Space Vector Representation of Voltage Equation 4

1.2 Model of Surface Mounted PMSM 5
1.2.1 Representation in Stationary Reference (𝛼 − 𝛽) Frame 5
1.2.2 Representation in Synchronous Reference (d − q) Frame 7
1.2.3 Electromagnetic Torque 8

1.3 Model of Interior Magnets PMSM 10
1.3.1 Complete Model of PMSM 11

1.4 Per Unit Model and PMSM Parameters 11
1.4.1 Per Unit Model and Physical Parameters 11
1.4.2 Experimental Validation of PMSM Model 12

1.5 Modeling of Induction Motor 13
1.5.1 Space Vector Representation of Voltage Equation of Induction Motor 13
1.5.2 Representation in Stationary 𝛼 − 𝛽 Reference Frame 17
1.5.3 Representation in d − q Reference Frame 17
1.5.4 Electromagnetic Torque of Induction Motor 19
1.5.5 Model Parameters of Induction Motor and Model Validation 19

1.6 Modeling of Power Converter 21
1.6.1 Space Vector Representation of Voltage Equation for Power Converter 22
1.6.2 Representation in 𝛼 − 𝛽 Reference Frame 22
1.6.3 Representation in d − q Reference Frame 23
1.6.4 Energy Balance Equation 24

1.7 Summary 25
1.8 Further Reading 25
References 25



vi Contents

2 Control of Semiconductor Switches via PWM Technologies 27
2.1 Topology of IGBT Inverter 28
2.2 Six-step Operating Mode 30
2.3 Carrier Based PWM 31

2.3.1 Sinusoidal PWM 31
2.3.2 Carrier Based PWM with Zero-sequence Injection 32

2.4 Space Vector PWM 35
2.5 Simulation Study of the Effect of PWM 37
2.6 Summary 40
2.7 Further Reading 40
References 40

3 PID Control System Design for Electrical Drives and Power Converters 41
3.1 Overview of PID Control Systems Using Pole-assignment Design Techniques 42

3.1.1 PI Controller Design 42
3.1.2 Selecting the Desired Closed-loop Performance 43
3.1.3 Overshoot in Reference Response 45
3.1.4 PID Controller Design 46
3.1.5 Cascade PID Control Systems 48

3.2 Overview of PID Control of PMSM 49
3.2.1 Bridging the Sensor Measurements to Feedback Signals (See the lower part of

Figure 3.6) 50
3.2.2 Bridging the Control Signals to the Inputs to the PMSM (See the top part of

Figure 3.6) 51
3.3 PI Controller Design for Torque Control of PMSM 52

3.3.1 Set-point Signals to the Current Control Loops 52
3.3.2 Decoupling of the Current Control Systems 53
3.3.3 PI Current Controller Design 54

3.4 Velocity Control of PMSM 55
3.4.1 Inner-loop Proportional Control of q-axis Current 55
3.4.2 Cascade Feedback Control of Velocity:P Plus PI 57
3.4.3 Simulation Example for P Plus PI Control System 59
3.4.4 Cascade Feedback Control of Velocity:PI Plus PI 61
3.4.5 Simulation Example for PI Plus PI Control System 63

3.5 PID Controller Design for Position Control of PMSM 64
3.6 Overview of PID Control of Induction Motor 65

3.6.1 Bridging the Sensor Measurements to Feedback Signals 67
3.6.2 Bridging the Control Signals to the Inputs to the Induction Motor 67

3.7 PID Controller Design for Induction Motor 68
3.7.1 PI Control of Electromagnetic Torque of Induction Motor 68
3.7.2 Cascade Control of Velocity and Position 70
3.7.3 Slip Estimation 73

3.8 Overview of PID Control of Power Converter 74
3.8.1 Bridging Sensor Measurements to Feedback Signals 75
3.8.2 Bridging the Control Signals to the Inputs of the Power Converter 76

3.9 PI Current and Voltage Controller Design for Power Converter 76
3.9.1 P Control of d-axis Current 76
3.9.2 PI Control of q-axis Current 77
3.9.3 PI Cascade Control of Output Voltage 79



Contents vii

3.9.4 Simulation Example 80
3.9.5 Phase Locked Loop 80

3.10 Summary 82
3.11 Further Reading 83
References 83

4 PID Control System Implementation 87
4.1 P and PI Controller Implementation in Current Control Systems 87

4.1.1 Voltage Operational Limits in Current Control Systems 87
4.1.2 Discretization of Current Controllers 90
4.1.3 Anti-windup Mechanisms 92

4.2 Implementation of Current Controllers for PMSM 93
4.3 Implementation of Current Controllers for Induction Motors 95

4.3.1 Estimation of 𝜔s and 𝜃s 95
4.3.2 Estimation of 𝜓rd 96
4.3.3 The Implementation Steps 97

4.4 Current Controller Implementation for Power Converter 97
4.4.1 Constraints on the Control Variables 97

4.5 Implementation of Outer-loop PI Control System 98
4.5.1 Constraints in the Outer-loop 98
4.5.2 Over Current Protection for AC Machines 99
4.5.3 Implementation of Outer-loop PI Control of Velocity 100
4.5.4 Over Current Protection for Power Converters 100

4.6 MATLAB Tutorial on Implementation of PI Controller 100
4.7 Summary 102
4.8 Further Reading 103
References 103

5 Tuning PID Control Systems with Experimental Validations 105
5.1 Sensitivity Functions in Feedback Control Systems 105

5.1.1 Two-degrees of Freedom Control System Structure 105
5.1.2 Sensitivity Functions 109
5.1.3 Disturbance Rejection and Noise Attenuation 110

5.2 Tuning Current-loop q-axis Proportional Controller (PMSM) 111
5.2.1 Performance Factor and Proportional Gain 112
5.2.2 Complementary Sensitivity Function 112
5.2.3 Sensitivity and Input Sensitivity Functions 114
5.2.4 Effect of PWM Noise on Current Proportional Control System 114
5.2.5 Effect of Current Sensor Noise and Bias 116
5.2.6 Experimental Case Study of Current Sensor Bias Using P Control 118
5.2.7 Experimental Case Study of Current Loop Noise 119

5.3 Tuning Current-loop PI Controller (PMSM) 123
5.3.1 PI Controller Parameters in Relation to Performance Parameter 𝛾 123
5.3.2 Sensitivity in Relation to Performance Parameter 𝛾 124
5.3.3 Effect of PWM Error in Relation to 𝛾 126
5.3.4 Experimental Case Study of Current Loop Noise Using PI Control 126

5.4 Performance Robustness in Outer-loop Controllers 128
5.4.1 Sensitivity Functions for Outer-loop Control System 131
5.4.2 Input Sensitivity Functions for the Outer-loop System 135



viii Contents

5.5 Analysis of Time-delay Effects 136
5.5.1 PI Control of q-axis Current 137
5.5.2 P Control of q-axis Current 137

5.6 Tuning Cascade PI Control Systems for Induction Motor 138
5.6.1 Robustness of Cascade PI Control System 140
5.6.2 Robustness Study Using Nyquist Plot 143

5.7 Tuning PI Control Systems for Power Converter 147
5.7.1 Overview of the Designs 147
5.7.2 Tuning the Current Controllers 149
5.7.3 Tuning Voltage Controller 150
5.7.4 Experimental Evaluations 154

5.8 Tuning P Plus PI Controllers for Power Converter 157
5.8.1 Design and Sensitivity Functions 157
5.8.2 Experimental Results 158

5.9 Robustness of Power Converter Control System Using PI Current Controllers 159
5.9.1 Variation of Inductance Using PI Current Controllers 160
5.9.2 Variation of Capacitance on Closed-loop Performance 163

5.10 Summary 167
5.10.1 Current Controllers 167
5.10.2 Velocity, Position and Voltage Controllers 168
5.10.3 Choice between P Current Control and PI Current Control 169

5.11 Further Reading 169
References 169

6 FCS Predictive Control in d − q Reference Frame 171
6.1 States of IGBT Inverter and the Operational Constraints 172
6.2 FCS Predictive Control of PMSM 175
6.3 MATLAB Tutorial on Real-time Implementation of FCS-MPC 177

6.3.1 Simulation Results 179
6.3.2 Experimental Results of FCS Control 181

6.4 Analysis of FCS-MPC System 182
6.4.1 Optimal Control System 182
6.4.2 Feedback Controller Gain 184
6.4.3 Constrained Optimal Control 185

6.5 Overview of FCS-MPC with Integral Action 187
6.6 Derivation of I-FCS Predictive Control Algorithm 191

6.6.1 Optimal Control without Constraints 191
6.6.2 I-FCS Predictive Controller with Constraints 194
6.6.3 Implementation of I-FCS-MPC Algorithm 196

6.7 MATLAB Tutorial on Implementation of I-FCS Predictive Controller 197
6.7.1 Simulation Results 198

6.8 I-FCS Predictive Control of Induction Motor 201
6.8.1 The Control Algorithm for an Induction Motor 202
6.8.2 Simulation Results 204
6.8.3 Experimental Results 205

6.9 I-FCS Predictive Control of Power Converter 209
6.9.1 I-FCS Predictive Control of a Power Converter 209
6.9.2 Simulation Results 211
6.9.3 Experimental Results 214



Contents ix

6.10 Evaluation of Robustness of I-FCS-MPC via Monte-Carlo Simulations 215
6.10.1 Discussion on Mean Square Errors 216

6.11 Velocity and Position Control of PMSM Using I-FCS-MPC 218
6.11.1 Choice of Sampling Rate for the Outer-loop Control System 219
6.11.2 Velocity and Position Controller Design 223

6.12 Velocity and Position Control of Induction Motor Using I-FCS-MPC 224
6.12.1 I-FCS Cascade Velocity Control of Induction Motor 225
6.12.2 I-FCS-MPC Cascade Position Control of Induction Motor 226
6.12.3 Experimental Evaluation of Velocity Control 228

6.13 Summary 232
6.13.1 Selection of sampling interval Δt 233
6.13.2 Selection of the Integral Gain 233

6.14 Further Reading 234
References 234

7 FCS Predictive Control in 𝜶 − 𝜷 Reference Frame 237
7.1 FCS Predictive Current Control of PMSM 237

7.1.1 Predictive Control Using One-step-ahead Prediction 238
7.1.2 FCS Current Control in 𝛼 − 𝛽 Reference Frame 239
7.1.3 Generating Current Reference Signals in 𝛼 − 𝛽 Frame 240

7.2 Resonant FCS Predictive Current Control 241
7.2.1 Control System Configuration 241
7.2.2 Outer-loop Controller Design 242
7.2.3 Resonant FCS Predictive Control System 243

7.3 Resonant FCS Current Control of Induction Motor 247
7.3.1 The Original FCS Current Control of Induction Motor 247
7.3.2 Resonant FCS Predictive Current Control of Induction Motor 250
7.3.3 Experimental Evaluations of Resonant FCS Predictive Control 252

7.4 Resonant FCS Predictive Power Converter Control 255
7.4.1 FCS Predictive Current Control of Power Converter 255
7.4.2 Experimental Results of Resonant FCS Predictive Control 260

7.5 Summary 261
7.6 Further Reading 262
References 262

8 Discrete-time Model Predictive Control (DMPC) of Electrical Drives
and Power Converter 265

8.1 Linear Discrete-time Model for PMSM 266
8.1.1 Linear Model for PMSM 266
8.1.2 Discretization of the Continuous-time Model 267

8.2 Discrete-time MPC Design with Constraints 268
8.2.1 Augmented Model 269
8.2.2 Design without Constraints 270
8.2.3 Formulation of the Constraints 272
8.2.4 On-line Solution for Constrained MPC 272

8.3 Experimental Evaluation of DMPC of PMSM 274
8.3.1 The MPC Parameters 274
8.3.2 Constraints 275



x Contents

8.3.3 Response to Load Disturbances 275
8.3.4 Response to a Staircase Reference 277
8.3.5 Tuning of the MPC controller 278

8.4 Power Converter Control Using DMPC with Experimental Validation 280
8.5 Summary 281
8.6 Further Reading 282
References 283

9 Continuous-time Model Predictive Control (CMPC) of Electrical Drives and Power
Converter 285

9.1 Continuous-time MPC Design 286
9.1.1 Augmented Model 286
9.1.2 Description of the Control Trajectories Using Laguerre Functions 287
9.1.3 Continuous-time Predictive Control without Constraints 289
9.1.4 Tuning of CMPC Control System Using Exponential Data Weighting and

Prescribed Degree of Stability 292
9.2 CMPC with Nonlinear Constraints 294

9.2.1 Approximation of Nonlinear Constraint Using Four Linear Constraints 294
9.2.2 Approximation of Nonlinear Constraint Using Sixteen Linear Constraints 294
9.2.3 State Feedback Observer 297

9.3 Simulation and Experimental Evaluation of CMPC of Induction Motor 298
9.3.1 Simulation Results 298
9.3.2 Experimental Results 300

9.4 Continuous-time Model Predictive Control of Power Converter 301
9.4.1 Use of Prescribed Degree of Stability in the Design 302
9.4.2 Experimental Results for Rectification Mode 303
9.4.3 Experimental Results for Regeneration Mode 303
9.4.4 Experimental Results for Disturbance Rejection 304

9.5 Gain Scheduled Predictive Controller 305
9.5.1 The Weighting Parameters 305
9.5.2 Gain Scheduled Predictive Control Law 307

9.6 Experimental Results of Gain Scheduled Predictive Control of Induction Motor 309
9.6.1 The First Set of Experimental Results 309
9.6.2 The Second Set of Experimental Results 311
9.6.3 The Third Set of Experimental Results 312

9.7 Summary 312
9.8 Further Reading 313
References 313

10 MATLAB®/Simulink® Tutorials on Physical Modeling and Test-bed Setup 315
10.1 Building Embedded Functions for Park-Clarke Transformation 315

10.1.1 Park-Clarke Transformation for Current Measurements 316
10.1.2 Inverse Park-Clarke Transformation for Voltage Actuation 317

10.2 Building Simulation Model for PMSM 318
10.3 Building Simulation Model for Induction Motor 320
10.4 Building Simulation Model for Power Converter 325

10.4.1 Embedded MATLAB Function for Phase Locked Loop (PLL) 325
10.4.2 Physical Simulation Model for Grid Connected Voltage Source Converter 328

10.5 PMSM Experimental Setup 332



Contents xi

10.6 Induction Motor Experimental Setup 334
10.6.1 Controller 334
10.6.2 Power Supply 334
10.6.3 Inverter 335
10.6.4 Mechanical Load 335
10.6.5 Induction Motor and Sensors 335

10.7 Grid Connected Power Converter Experimental Setup 335
10.7.1 Controller 335
10.7.2 Inverter 336
10.7.3 Sensors 336

10.8 Summary 337
10.9 Further Reading 337
References 337

Index 339





About the Authors

Liuping Wang received her PhD in 1989 from the University of Sheffield, UK; subsequently, she was
an Adjunct Associate Professor in the Department of Chemical Engineering at the University of Toronto,
Canada. From 1998 to 2002, she was a Senior Lecturer and Research Coordinator at the Center for Inte-
grated Dynamics and Control, University of Newcastle, Australia before joining RMIT University where
she has been Professor of Control Engineering since 2006. She is the author of three books, joint editor of
two books, and has published over 180 papers. Liuping Wang has successfully applied PID control and
predictive control technologies to many industrial processes. She is a Fellow of Institution of Engineers,
Australia.

Shan Chai was born in Shandong, China, in 1981. He received his B.Eng. degree in Electronics Engi-
neering from Shandong University, China in 2004 and his M.Eng. in Electrical Engineering from RMIT
University, Australia in 2007. Since 2009 he has been working toward the PhD degree at RMIT that he
was awarded in 2013. Dr Shan Chai works in the electrical drives industry.

Dae Yoo received his B.Eng, MSc, and PhD in Electrical Engineering from the RMIT University,
Melbourne, Australia in 2003, 2006 and 2013 respectively. From 2006 to 2007, he worked as an
embedded software engineer at Orbital Engine Company, WA, Australia, where he was involved
in various research oriented automotive projects for developing internal combustion engine control
software. During 2008–2009 and since 2012, he has been at the Toyota Technical Center, Melbourne,
Australia, where he is a control/software engineer developing advanced control algorithms for motor
control units in Toyota’s hybrid system.

Lu Gan, was born in Anhui Province of China, in 1987. He received his B.Eng. degree in Electrical
Engineering from RMIT University, Australia, in 2009. Since then he has been working at RMIT towards
the PhD degree that he received in 2014. Dr Lu Gan aspires to work in the electrical drives industry.

Ki Ng was born in Hong Kong, in 1986. He received his B.Eng. degree in Electrical Engineering from
RMIT University, Australia, in 2009. He is currently working toward a PhD degree at RMIT University,
Melbourne, Australia.





Preface

About This Book
Electrical drives play a critical role in electromechanical energy conversions. They are seen everywhere in
our daily life from the cooling fans, washing machines to computers. They are the fundamental building
blocks in manufacturing, transportation, mineral processing, wind energy and many other industries. For
the last several decades, the advances of electronically switched semiconductors in the form of power
electronics have made AC motor drives gain more prominence over the DC machines in industries since
they allow a direct connection to power grids via grid connected power converters and have a more
reliable physical structure. The grid connected three phase power converter has wide applications in
renewable energy generation.

This book gives an introduction to the automatic control of electrical drives and grid connected three
phase power converters, and to recent developments in design and implementation. When they are com-
bined together as one unit, it will provide a direct connection for the electrical drives to the power grid
for electromechanical energy conversions and renewable wind energy applications. In the context of
control system design, electrical drives and grid connected three phase power converters share similar
characteristics in their dynamic models and use the same type of semiconductors as actuators in the
implementation of control systems. Therefore, in this book, electrical drives and power converters will
be studied as individual components of the larger system and examined in the same framework.

As electrical drives and power converters have restricted operations imposed by electronically switched
semiconductors, their operational constraints are paramount in the design and implementation of the
control systems. In this regard, model predictive control has an established reputation in successfully
handling the operational constraints in an optimal manner. Two chapters of this book will be devoted
to seeking new predictive control technologies that address the specific needs of controlling electrical
drives and power converters, and an additional two chapters will apply the existing predictive control
technologies to these systems. Since PID control systems are used in the majority of industrial electrical
drives and power converters, understanding these control systems and having the capability to design
and implement them are important to a control engineer. There are three chapters in the book that will
systematically cover PID control system design, PID control system implementation with anti-windup
mechanisms and tuning of PID control systems. All control systems presented in this book have been
experimentally validated using self-built test-beds with industrial sized motors. To assist the reader, tuto-
rials about the real-time control system implementation and the physical model based simulators are
presented in this book.

This book is intended for readers who have completed or are about to complete four years engineering
studies with some basic knowledge in electrical and control systems. The targeted readers are students,
practitioners, instructors and researchers who wish to learn electrical motor control and power converter
control. The book is self-contained with MATLAB/Simulink tutorials and supported with simulation and
experimental results. It is worth mentioning that the material contained in the first five chapters is aimed
at readers who are working or are going to work in the relevant engineering field.
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Outline of This Book
The structure of the book is illustrated by the block diagram as shown in Figure 0.1. There are ten chapters
in this book, covering the topics of mathematical modeling, control of semiconductor switches, PID con-
trol system design, implementation and tuning, Finite Control Set (FCS)-predictive control in both d − q
and 𝛼 − 𝛽 reference frames, traditional predictive control in both continuous-time and discrete-time. PID
controllers (see Chapters 3–5) are implemented using Pulse-Width-Modulation (PWM) technologies
introduced in Chapter 2. The traditional model predictive controllers (see Chapters 8–9) use this tech-
nology too. However, FCS-predictive controllers (see Chapters 6–7) are implemented without PWM
mechanisms by directly optimizing the switching patterns of semiconductors. Hence, this has signifi-
cantly simplified the implementation procedure of control systems.

This book begins by discussing the physical models of electrical drives and grid connected three phase
power converter since mathematical modeling is the first step toward the design and implementation
of control systems. In Chapter 1, the mathematical models of machine drives and power converter are
derived in a unified way that firstly uses space vector description of physical variables such as voltage,
current and flux, and secondly converts the space vector based model to various reference frames. By
adopting this unified framework, it is hoped that through the derivations in a similar process, the dynamic
models of drives and power converters can be easily understood by a reader who does not have exten-
sive background in AC machines and power converters. It must be emphasized, due to the efforts of
generations of electrical engineers (see for example Park (1929), Duesterhoeft et al. (1951), Vas (1992),
Leonhard (2001), Drury (2009), Hughes and Drury (2013), Quang and Dittrich (2008)), that the dynam-
ics models are highly structured and have incredibly high fidelity, which forms the solid basis for control
system designs introduced in the book.

From a control engineer’s perspective, the next natural question following from mathematical mod-
eling is how to realize manipulated control variables in applications. It has been well established that
control of semiconductor switches is the most efficient and convenient means to achieve control of AC

Ch.10 Test-bed and Simulink tutorial

Ch.7 FCS α − β

Ch.6 FCS d − q

Ch.5 PID tuning

Ch.4 PID implem.

Ch.3 PID design

Ch.2 PWM

Ch.1 Modeling

Ch.9 CMPC

Ch.8 DMPC

Figure 0.1 Book structure diagram
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machine drives and power converters. It is shown in Chapter 2 that they act as actuators in the imple-
mentation of control systems where the manipulated control inputs in the form of three phase voltage
signals are realized by turning on and off semiconductor switches. Also, the PWM implementation of
control systems dictates the operational limits termed linear modulation range, which, in later chapters,
will be translated into constraints imposed in the PID and predictive controllers using PWM mechanisms
for implementation.

The next three chapters of this book will see the developments of PID control systems for electrical
drives and power converter (see Chapters 3–5). In Chapter 3, for AC motor control systems, electrome-
chanical torque control is achieved using PI control of currents in the d − q reference frame, followed
by achieving further requirements of controlling angular velocity and position via a cascade control
system architecture. Identical control strategies are deployed to control the currents of a three phase
power converter and its DC voltage in a grid connected environment. In all PID controller designs pre-
sented in the book, the pole-assignment control method is used. The reasons for this choice of design
method is that it is perhaps among the simplest control system design methods and yet offers an effective
means of selecting desired closed-loop performance in terms of response to reference signals and to dis-
turbance rejection. In Chapter 4, PI controller implementation is discussed for both current controllers
as inner-loop controllers, and velocity and DC voltage controllers as outer-loop controllers. In partic-
ular, continuous-time controllers are discretized for digital implementation, and operational constraints
imposed by PWM operations are taken into consideration in the implementation of PI controllers. In order
to avoid integrator wind-up in the presence of control signal reaching saturation limits, anti-windup mech-
anisms are proposed together with digital implementation, which leads to the so-called velocity form that
has naturally embedded anti-windup mechanisms and is convenient for implementation. A MATLAB
tutorial is introduced in this chapter to show how an embedded function can be created for the PI con-
troller with its anti-windup mechanism, which has been directly used in the experimental validation. In
Chapter 5, sensitivity functions in feedback control systems are introduced to measure the closed-loop
control system performance against set-point following, disturbance rejection and noise attenuation in
the frequency domain. Current control systems are analyzed for the effects of current sensor errors and
harmonics caused by the voltage source inverter used in implementation of the control system. When
velocity control, position control or DC voltage control is required in a cascade control structure, perfor-
mance robustness in the outer-loop control system is considered where a weighting function is introduced
to quantify the difference between the desired closed-loop performance and the actual closed-loop per-
formance. Parameter variations are also studied using Nyquist plots. A large number of experiments are
conducted in this chapter to demonstrate tuning procedures of the PI cascade control systems.

There are two approaches used in this book to generate the gate signal for the semiconductor switches.
The first approach uses Pulse Width Modulation (PWM) based on which PID controllers (see Chapters
3–5) and traditional model predictive controllers are implemented (see Chapters 8–9). In control appli-
cations, the control signals calculated are the three phase voltage signals that are obtained from one of
the controller designs using the model either in the d − q reference frame or 𝛼 − 𝛽 reference frame. The
role of the voltage source inverter with power electronics devices is to realize three phase voltage control
signals as closely as possible. Namely, the sinusoidal phase voltage signals created by turning on-off
each power switch with PWM technologies are aimed to be closely matched with three phase voltage
control signals. The second methodology features a much simpler approach in the implementation of
control systems that generates such a gate signal by direct optimization of an error function between the
desired control signals and those that can be achieved by semiconductor switches (see Chapters 6–7). In
the second approach, there is no need to use the PWM technology; therefore it significantly reduces the
complexity of controlling semiconductor switches.

In Chapter 6, in the d − q reference frame, finite control set (FCS) predictive controllers are used to
directly optimize inverter states; as a result, PWMs are not required in the implementation of control sys-
tems, which simplifies the implementation procedure. The original FCS predictive control systems did
not include integrators in their design and implementation. Consequently, there are steady-state errors
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within control systems. The existence of steady-state errors affects closed-loop performance, particu-
larly when there are parameter uncertainties in the system, which is the main reason why the majority
of practical control systems have integrator in the controller structure. By analyzing the original FCS
predictive control system without constraints, the discrete-time feedback controller gain and locations of
closed-loop eigenvalues are revealed. To embed integrators in the FCS predictive controller, a cascade
control system structure is proposed where the inner-loop system is controlled with the original FCS pre-
dictive controller and the outer-loop is by an integrated feedback control. There are perhaps many ways
to include integrators in the FCS predictive control system; however, the proposed approach has kept
the spirit of the original FCS predictive control system and maintained its simplicity both conceptually
and computationally. Because the FCS predictive control systems are designed for current control, this
chapter will also show how to design velocity and position control for AC drives when current controllers
are FCS predictive controllers.

In Chapter 7, under investigation is the finite control set (FCS) predictive current control in the 𝛼 − 𝛽
reference frame (or stationary frame). In the 𝛼 − 𝛽 reference frame, the currents i𝛼(t) and i𝛽 (t) are linear
combinations of three phase currents ia(t), ib(t) and ic(t). Thus, they are sinusoidal functions. So are
the voltage variables 𝑣𝛼(t) and 𝑣𝛽(t). The current reference signals to FCS predictive control systems
are sinusoidal signals, which differentiates current control systems in the 𝛼 − 𝛽 reference frame from
those in the d − q reference frame. It will be shown in this chapter that the original FCS predictive
controllers are single-input and single-output controllers in exceptionally simple forms. However, in
order to track sinusoidal current reference signals without steady-state errors, a controller with resonant
characteristic is required in the 𝛼 − 𝛽 reference frame. Extensive simulation and experimental results
have been presented in these two chapters to show the outstanding closed-loop control performance of
FCS predictive control systems.

The next two chapters of this book (see Chapters 8–9) apply the traditional model predictive con-
trol algorithms to AC machine drives and power converters. These predictive control algorithms were
derived for general applications without those restrictions imposed on system dynamics. The MATLAB
programs used in applications were given in Wang (2009). Although the traditional predictive control
algorithms could be applied to current control, their advantages are perhaps lost to the simpler and more
effective FCS predictive control approaches, also to simpler PI controllers. Therefore, in Chapters 8 and
9, velocity control in AC drives and DC voltage control in power converters are considered, and for these
cases, traditional model predictive controllers offer the advantages of designing the control systems using
multi-input and multi-output approaches in the presence of constraints.

The final chapter of this book will discuss the test beds used in the experimental evaluations of control
systems. For those who wish to know how to perform real-time simulations using the physical models
of drives and power converter, Simulink tutorials are given to show the model building process in a
step-by-step manner.

References

Drury B 2009 The Control Techniques Drives and Controls Handbook 2nd edn. IET.
Duesterhoeft W, Schulz MW and Clarke E 1951 Determination of instantaneous currents and voltages by means of

alpha, beta, and zero components. Transactions of the American Institute of Electrical Engineers 70(2), 1248–1255.
Hughes A and Drury B 2013 Electric Motors and Drives: Fundamentals, Types and Applications 4th edn. Elsevier.
Leonhard W 2001 Control of Electrical Drives 3rd edn. Springer.
Park RH 1929 Two-reaction theory of synchronous machines – part I. AIEE Transations 48(2), 716–739.
Quang NP and Dittrich JA 2008 Vector Control of Three-Phase AC Machines 1st edn. Springer.
Vas P 1992 Electrical Machines and Drives – A Space-Vector Theory Approach. Oxford University Press, New York,

USA.
Wang L 2009 Model Predictive Control System Design and Implementation Using MATLAB 1st edn. Springer,

London.



Acknowledgment

We wish to thank the Australian Manufacturing Cooperative Research Center (AMCRC) for financial
support over the projects of Control Systems and Regenerative Machine Stop. We gratefully acknowledge
the help and support of Mr Pat Borland, the owner of ANCA Pty, who gave us the first opportunity to
work in the field of AC drive control and shared with us many of his valuable experiences in the industry.

We wish to thank Professor Mike Johnson from the University of Strathclyde, UK for carefully reading
the manuscript and giving us feedback.

On suggestions and feedback, our thanks go to Professor Stephen Boyd and Dr Nicholas Moehle at
Stanford University, USA, Professor Jose Rodriguez and Ms Margarita Norambuena at Santa Maria,
Chile, Dr Craig Buhr at MathWorks, USA, and Mr Gerardo Medrano who works in the Australian wind
energy industry.

Asking for Feedback
We would like to ask our readers to contact us about any errors or suggestions for future improvement
of our book.

Liuping Wang, Shan Chai, Dae Yoo, Lu Gan, Ki Ng
Melbourne, Australia





List of Symbols and Acronyms

Symbols
arg min Minimizing argument
A State matrix of state-space model
B Input-to-state matrix of state-space model
C State-to-output matrix of state-space model
D Direct feed-through matrix of state-space model
(A,B,C,D) State-space realization
ΔU Parameter vector for the control sequence in discrete time MPC
Δu(k) Incremental control at sample k
Fx,Φ Pair of matrices used in the prediction equation X = Fxx(ki) + ΦΔU
B𝑣 Viscous friction coefficient in PMSM
fd Viscous friction coefficient in induction motor model
G(s) Transfer function model
𝛾 Tuning parameter for PI controllers
i𝛼 , i𝛽 Currents of PMSM and power converter in 𝛼 − 𝛽 reference frame
id, iq Currents of PMSM and power converter in d − q reference frame
isd, isq Stator currents of induction motor in d − q reference frame
is𝛼 , is𝛽 Stator currents of induction motor in 𝛼 − 𝛽 reference frame
Iq×q Identity matrix with appropriate dimensions
J Performance index for optimization
Jm Moment of inertia (kg ⋅ m2)
Kc Proportional control gain
Klqr Feedback control gain using LQR
Kmpc Feedback control gain using MPC
Kfcs Feedback control gain using FCS predictive control in d − q reference frame
k𝛼fcs, k𝛽fcs Feedback control gain using FCS predictive control in 𝛼 − 𝛽 reference frame
Kob Observer gain vector
li(t) The ith continuous-time Laguerre function
L(t) Continuous-time Laguerre functions in vector form
Ls Inductance of power converter and PMSM
Lr, Ls Inductance of stator / rotor winding of induction motor
Lh Machine mutual inductance of induction motor
𝜆 Lagrange multiplier
𝜆i(A) The ith eigenvalue of matrix A



xxii List of Symbols and Acronyms

𝜆l, 𝜆m, 𝜆h Scheduling parameters
𝜇 Disturbance vector
N Number of terms used in Laguerre function expansion in continuous time
Nc Control horizon
Np Prediction horizon
Ωmpc,Ψmpc Pair of matrices in the cost of predictive control in either the continuous-time or

discrete-time design, J = 𝜂TΩmpc𝜂 + 2𝜂TΨmpcx(t) + cons
𝜂 Parameter vector in the Laguerre expansion
p Scaling factor for continuous-time Laguerre functions
Q,R Pair of weight matrices in the cost function of predictive control
Rs Resistance of stator in PMSM and induction motor, also grid resistance in power

converter
Rr Resistance of rotor winding.
r(⋅) Set-point signal
q−i Backward shift operator, q−i[f (k)] = f (k − i)
S(s) Sensitivity function
Si(s) Input sensitivity function
Si Switching state of inverter
Sd, Sq Normalized voltage variables of converter’s d-axis voltage 𝑣d and q-axis voltage 𝑣q

T(s) Complementary sensitivity function
Te Electromagnetic torque (N ⋅ m)
TL Load torque (N ⋅ m)
Tp Prediction horizon in continuous-time
𝜏D Derivative control time constant
𝜏f Derivative control filter time constant
𝜏I Integral control time constant
𝜃r Mechanical position of motor shaft (radian)
𝜃e Electrical position of motor shaft (radian)
𝜃s Position of synchronous flux (radian)
𝜓s Stator flux of induction motor (Wb)
𝜓rd, 𝜓rq Rotor flux of induction motor (Wb)
u(⋅) Control signal
us𝛼 , us𝛽 Stator voltages of induction motor (V) in 𝛼 − 𝛽 reference frame
usd, usq Stator voltages of induction motor (V) in d − q reference frame
𝑣𝛼 , 𝑣𝛽 Voltages of PMSM and power converter (V) in 𝛼 − 𝛽 reference frame
𝑣d, 𝑣q Voltages of PMSM and power converter (V) in d − q reference frame
𝜔e Electrical motor speed (rad/s) (or RPM)
𝜔m (or 𝜔r) Mechanical motor speed (rad/s) (or RPM)
𝜔s Speed of synchronous flux (rad/s) (or RPM)
𝜔g Grid frequency (rad/s).
𝜔slip Slip in induction motor
umin, umax Minimum and maximum limits for u
𝑤n Bandwidth or natural frequency in PI controller design (rad/s)
x(⋅) State vector
x(ti + 𝜏|ti) Predicted state vector at time 𝜏 given current state vector x(ti)
x̂(t) Estimated state vector in continuous-time
𝜉 Damping coefficient in PI controller design
Y Predicted output data vector
Zp Number of pole pairs



List of Symbols and Acronyms xxiii

Acronyms

CMPC Continuous-time model predictive control
DMPC Discrete-time model predictive control
MMF Magnetic motive force
PMSM Permanent magnetic synchronous machine
PLL Phase-locked loop
PID Proportional, integral and derivative
FCS Finite control set
FCS-MPC Finite control set predictive control
I-FCS-MPC Integral finite control set predictive control





1
Modeling of AC Drives and
Power Converter

Building mathematical models of AC drives and power converters is the first step towards the design and
implementation of control systems. This chapter presents the mathematical models of machine drives
and power converters in a uniform way that firstly uses space vector description of the physical variables
such as voltage, current and flux, and secondly converts the space vector based model to various reference
frames. From Sections 1.1 to 1.4, the Permanent Magnetic Synchronous Machine (PMSM) will be used
as an example to illustrate in detail how its dynamic model is established. In Section 1.5, the dynamic
model for an induction machine is obtained by following the same thought process used for the PMSM.
Section 1.6 derives the dynamic model for a 2-level grid connected voltage source converter, also using
the same approaches as electrical drives. In the Summary section 1.7, characteristics of dynamic models
are highlighted for future applications.

1.1 Space Phasor Representation
The analysis of a three phase system could be significantly simplified by adopting vector based
approaches. Here, the concept of space vector will be introduced first before deriving a model of a
PMSM. To simplify the analysis, a 2-pole machine with balanced three phase windings is assumed.

1.1.1 Space Vector for Magnetic Motive Force

Figure 1.1 shows the cross section of stator windings for a 2-pole machine. By Ampere’s law, a magnetic
motive force (MMF) will be generated when current is flowing in the windings. The peak of magnetic
motive force produced by each phase will align with their own magnetic field and is separated by 120∘
from each other. Here, it is assumed that phase current has a frequency 𝜔, initial angle 𝜙0 and amplitude
Is. When each of the three phase windings is provided with balanced three phase currents, where

ia(t) = Is cos(𝜔t + 𝜙0) (1.1)

ib(t) = Is cos(𝜔t + 𝜙0 − 2𝜋∕3) (1.2)

ic(t) = Is cos(𝜔t + 𝜙0 − 4𝜋∕3). (1.3)

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®, First Edition.
Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng.
© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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http://www.wiley.com/go/wang/pid


2 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

Im

a′

b′
c′

Fb(t)

Fc(t)

Fa(t)

C

a

Re

b

θr

θ

Figure 1.1 Cross section of stator winding. ⊗ and ⊙ denote the cross sections of the wires, Fa(t), Fb(t) and Fc(t)
are the peaks of magnetic motive forces for the three phase currents, 𝜃r is the position of the rotor and 𝜃 is an arbitrary
position.

each phase current will produce a sinusoidal distributed MMF whose peak aligns with their respective
magnetic axis for each phase, which are

Fa(t) = Nsia(t) = Fm cos(𝜔t + 𝜙0) (1.4)

Fb(t) = Nsib(t) = Fm cos(𝜔t + 𝜙0 − 2𝜋∕3) (1.5)

Fc(t) = Nsic(t) = Fm cos(𝜔t + 𝜙0 − 4𝜋∕3), (1.6)

where Fm = NsIs is the magnitude of the peak MMF, Ns is a constant related to the number of coil turns
and winding factor and Is is the amplitude of the phase current.

At a certain position 𝜃, referred to the magnetic axis of phase a-a’ in Figure 1.1, the magnetic motive
forces contributed from each phase winding are

Fa(t)
𝜃 = Fa(t) cos(0 − 𝜃) (1.7)

Fb(t)
𝜃 = Fb(t) cos(2𝜋∕3 − 𝜃) (1.8)

Fc(t)
𝜃 = Fc(t) cos(4𝜋∕3 − 𝜃), (1.9)

which are functions of 𝜃. Therefore, the resultant total MMF at the position 𝜃 is the summation of
Equations (1.7)–(1.9), which gives

F(t)𝜃 = Fa(t) cos(−𝜃) + Fb(t) cos(2𝜋∕3 − 𝜃) + Fc(t) cos(4𝜋∕3 − 𝜃). (1.10)

Note that
cos(−𝜃) = Re{e−j𝜃}; e−j𝜃 = cos(𝜃) − j sin(𝜃).

Equation (1.10) can also be represented by

F(t)𝜃 = Re{Fa(t)e
−j𝜃 + Fb(t)e

−j(𝜃−2𝜋∕3) + Fc(t)e
−j(𝜃−4𝜋∕3)}

= 3
2

Re
{2

3

(

Fa(t) + Fb(t)e
j 2𝜋

3 + Fc(t)e
j 4𝜋

3

)

e−j𝜃
}

. (1.11)

Based on the calculation of the total MMF at the position 𝜃, the space vector of the three-phase peak
MMF is defined by

−→
F (t) = 2

3

(

Fa(t) + Fb(t)e
j 2𝜋

3 + Fc(t)e
j 4𝜋

3

)

. (1.12)
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For notational simplicity, the rest of this chapter will use the notation
−→
{.} to denote a space vector. With

this definition, the total MMF at the position 𝜃 is expressed as

F(t)𝜃 = 3
2

Re
{−→

F (t)e−j𝜃
}

. (1.13)

Furthermore, it can be verified that by substituting (1.4)–(1.6) into (1.12), the space vector of the
three-phase peak MMF

−→
F (t) has the following compact expression:

−→
F (t) = 2

3

(

Fa(t) + Fb(t)e
j 2𝜋

3 + Fc(t)e
j 4𝜋

3

)

= 2
3

Fm

(

cos(𝜔t + 𝜙0) + cos(𝜔t + 𝜙0 − 2𝜋∕3)e j 2𝜋
3 + cos(𝜔t + 𝜙0 − 4𝜋∕3)e j 4𝜋

3

)

= Fme j(𝜔t+𝜙0). (1.14)

In the derivation of (1.14), the following equalities are used:

cos(𝛼) = 1
2
(e j𝛼 + e−j𝛼)

1 + e j 4𝜋
3 + e j 8𝜋

3 = 0.

Following the compact expression of
−→
F (t) given by (1.14), the total MMF at the position 𝜃 is also simply

expressed as

F(t)𝜃 = 3
2

Re(−→F (t)e−j𝜃)

= 3
2

Fm cos(𝜔t + 𝜙0 − 𝜃). (1.15)

As shown by (1.14), the space vector
−→
F (t) is a rotating vector in the complex plane. As a result, the

instantaneous value of F(t)𝜃 in (1.11) and its equivalent (1.15) can be interpreted as the magnitude of the
projection of

−→
F (t) on the position 𝜃.

Figure 1.2 gives an example of the vector representation of MMF at t = 0 while assuming 𝜙0 = 0. In
this figure, at t = 0, the vectors of peak MMF for each phase current are

−→
Fa = Fm cos(0)e j0 = Fm

Im

a′

a

b′ C′

c

b

Re

Fc

Fa
Fb

θ
3
2F

Figure 1.2 Space vector of MMF (t = 0 and 𝜙0 = 0).
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−→
Fb = Fm cos

(

−2𝜋
3

)

e j 2𝜋
3 = −1

2
Fme j 2𝜋

3

−→
Fc = Fm cos

(

−4𝜋
3

)

e j 4𝜋
3 = −1

2
Fme j 4𝜋

3

and the resulting total peak MMF is,

−→
F = 2

3
(−→Fa +

−→
Fb +

−→
Fc) = Fm.

thus, the total MMF at angle 𝜃 is the magnitude of projection
−→
F onto angle 𝜃,

F(0)𝜃 = Fm cos(𝜃).

1.1.2 Space Vector Representation of Voltage Equation

The use of space vector facilitates the derivation of voltage equation for the PMSM with a compact
expression. This derivation is the key to form the dynamic model for current control.

With a similar principle, the space vector for three-phase stator current can be written as

−→
is = 2

3

(

ia(t) + ib(t)e
j 2𝜋

3 + ic(t)e
j 4𝜋

3

)

(1.16)

−→
is = Ise

j(𝜔t+𝜙0) (1.17)

and the space vector of three-phase stator voltage is defined as

−→
𝑣s =

2
3

(

𝑣a(t) + 𝑣b(t)e
j 2𝜋

3 + 𝑣c(t)e
j 4𝜋

3

)

, (1.18)

where 𝑣a(t), 𝑣b(t) and 𝑣c(t) are terminal line-to-neutral voltage for each phase, respectively.
When a surface-mounted PMSM is considered, the space vector of stator flux consists of two parts.

One is produced by the stator current while the other is produced by the permanent magnets of the rotor:

−→
𝜑s = Ls

−→
is + 𝜙mge j𝜃e , (1.19)

where 𝜙mg is the amplitude of the flux induced by the permanent magnets of the rotor in the stator phases
and this parameter is assumed constant in the design, 𝜃e is the electrical angle of the rotor, and Ls is the
sum of leakage inductance and mutual inductance.

With the space vector representation of voltage, current and flux, the stator voltage equation in space
vector form can be written according to voltage law,

−→
𝑣s = Rs

−→
is +

d−→𝜑s

dt
, (1.20)

where −→
𝑣s is the space vector of stator voltage, Rs

−→
is is the voltage drop on the resistors of the stator and

d−→𝜑s

dt
is the induced voltage due to changing of magnetic flux. Taking the derivative of the second term of

the flux based on (1.19) gives
d(𝜙mge j𝜃e )

dt
= j𝜔e𝜙mge j𝜃e ,

where 𝜃e(t) = 𝜔et. Thus, the vector voltage equation of a PMSM is obtained by replacing the flux deriva-
tive in (1.20) with the calculated derivative based on (1.19), which leads to

−→
𝑣s = Rs

−→
is + Ls

d
−→
is

dt
+ j𝜔e𝜙mge j𝜃e . (1.21)

This is the fundamental equation that governs the relationship between the current and voltage of PMSM
in a space vector form, based on which the dynamic models will be obtained.
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1.2 Model of Surface Mounted PMSM
As seen from the previous sections, the space vectors of three-phase voltages, currents and flux are three
rotating vectors in the complex plane. The speed of their rotation depends on the frequency (𝜔) of the
three-phase voltages and currents. In the complex plane, as shown in Figure 1.3, each vector (see the
three phase current

−→
is ) could be decomposed into a component on real axis (see i𝛼) and a quadrature

component on imaginary axis (see i𝛽). Such a decomposition could be carried out with respect to different
reference frames (see the d − q reference frame). Importantly, control strategies will devised according
to the models in the relevant reference frames.

This section presents the two most widely adopted reference frames and their relationships,
which are the stationary reference frame (also called 𝛼 − 𝛽 reference frame) and the synchronous
reference frame (also called d − q reference frame). Both reference frames are illustrated in
Figure 1.3.

1.2.1 Representation in Stationary Reference (𝛼 − 𝛽) Frame

One choice of the reference frame is a stationary reference frame with the real (𝛼) axis aligned with the
peak MMF (Fa(t), see Figure 1.1) and the imaginary (𝛽) axis in quadrature (see Figure 1.3).

By projecting the space vectors of voltage and current onto real (𝛼) and imaginary (𝛽) axes, these
vectors can be represented by the complex notations,

−→
𝑣s = 𝑣𝛼 + j𝑣𝛽 (1.22)

−→
is = i𝛼 + ji𝛽 . (1.23)

Substituting the complex representations (1.22) and (1.23) into the space vector voltage equation (1.21),
and equating their real and imaginary parts in both sides, respectively, gives the model of PMSM in the
𝛼 − 𝛽 reference frame,

𝑣𝛼 = Rsi𝛼 + Ls

di𝛼
dt

− 𝜔e(t)𝜙mg sin 𝜃e (1.24)

𝑣𝛽 = Rsi𝛽 + Ls

di𝛽
dt

+ 𝜔e(t)𝜙mg cos 𝜃e. (1.25)

This model of PMSM will be used in the Chapter 7 for a current controller design in the 𝛼 − 𝛽 reference
frame.

One might ask what is the relationship between the current and voltage variables in the 𝛼 − 𝛽 ref-
erence frame and the original three phase variables. This unique relationship is given by the Clarke

q
β

is

d
iβ

iq
iα

id
θe

α

Figure 1.3 Illustration of stationary reference frame and synchronous reference frame. 𝜃e is the electrical angle of
the rotor. Current space vector is projected to two reference frames.
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β

ib

ic

ia
α

Figure 1.4 Illustration of Clarke transformation of current.

transformation. Taking the three phase currents as an example, the transformation of three phase variables
to their components in the 𝛼 − 𝛽 reference frame is achieved by Clarke transformation, where

⎡
⎢
⎢
⎣

i𝛼
i𝛽
i0

⎤
⎥
⎥
⎦

= 2
3

⎡
⎢
⎢
⎢
⎢
⎣

1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

1

2

1

2

1

2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

ia

ib

ic

⎤
⎥
⎥
⎥
⎦

. (1.26)

As shown in Figure 1.4, the transformation matrix is obtained by projecting ia, ib and ic on 𝛼 and 𝛽
axes, respectively. Here, it is seen that the 𝛼 axis is aligned with the direction of ia current which is also
the direction of the peak MMF Fa(t) (see Figure 1.1). The coefficient 2

3
here is to guarantee the energy

conservation. In addition, i0 represents the zero sequence component of three phase current and is zero
for balanced three phase currents. Conversely, the inverse Clarke transformation is defined as

⎡
⎢
⎢
⎣

ia

ib

ic

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 0 1

− 1

2

√
3

2
1

− 1

2
−

√
3

2
1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

i
𝛼

i𝛽
i0

⎤
⎥
⎥
⎥
⎦

. (1.27)

It is easy to show that

2
3

⎡
⎢
⎢
⎢
⎢
⎣

1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

1

2

1

2

1

2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 0 1

− 1

2

√
3

2
1

− 1

2
−

√
3

2
1

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎦

.

The current and voltage variables in the 𝛼 − 𝛽 reference frame are all sinusoidal in nature because they are
directly related to their original three phase current and voltage variables (see the Clarke transformation
(1.26)).
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1.2.2 Representation in Synchronous Reference (d − q) Frame

Another reference frame is the d − q reference frame, where the direct axis (d) is always aligned with
rotating flux produced by the permanent magnets of the rotor, and the q axis is in quadrature. Because
the rotor runs the same speed as the supplying frequency at steady-state, it is also called the synchronous
frame for PMSM.

To change the reference frame to the d − q reference frame, as shown in Figure 1.3, it is equivalent
to rotating the space vector in 𝛼 − 𝛽 reference frame clockwise by 𝜃e. Mathematically, this rotation of
space vectors is translated into multiplication by the factor e−j𝜃e , which leads to a set of new space vectors,

for example, voltage space vector −→𝑣s

′
, current space vector

−→
is

′
. By projecting these transformed space

vectors into the real and imaginary axes, the current and voltage variables in the d − q reference frame
are formed. That is,

−→
𝑣s

′ = −→
𝑣se

−j𝜃e = 𝑣d + j𝑣q (1.28)

−→
is

′
= −→

is e−j𝜃e = id + jiq (1.29)

where −→
𝑣s

′
and

−→
is

′
denote the space vectors referred to synchronous d − q reference frame.

Multiplying the the original space vector voltage equation (1.21) by e−j𝜃e leads to the following
equation:

−→
𝑣se

−j𝜃e = Rs

−→
is e−j𝜃e + Ls

d
−→
is

dt
e−j𝜃e + j𝜔e𝜙mg. (1.30)

Noting that
−→
is

′
= −→

is e−j𝜃e

and by taking derivative on both sides of this equality, it can be shown that

d
−→
is

dt
e−j𝜃e =

d
−→
is

′

dt
+ j𝜔e

−→
is

′
. (1.31)

Therefore, from (1.30), together with (1.31), the voltage equation in terms of the space vectors −→𝑣s

′
and

−→
is

′
has the following form:

−→
𝑣s

′ = Rs

−→
is

′
+ Ls

d
−→
is

′

dt
+ j𝜔eLs

−→
is

′
+ j𝜔e𝜙mg. (1.32)

This is the fundamental equation that governs the relationship between the voltage and current variables
in space vector form that leads to the dynamic model in the d − q reference frame.

Now, substituting (1.28) and (1.29) into (1.32), and because the real and imaginary components from
the left-hand side are equal to the corresponding components in their right-hand side, it can be shown
that the d − q model of PMSM is,

𝑣d = Rsid + Ls

did

dt
− 𝜔eLsiq (1.33)

𝑣q = Rsiq + Ls

diq

dt
+ 𝜔eLsid + 𝜔e𝜙mg, (1.34)

where (1.33) is obtained with the components from the real part whilst (1.34) is from the imaginary part.
There is a unique relationship between the variables in the 𝛼 − 𝛽 reference frame and those in the d − q

reference frame. The transformation of real and imaginary components in 𝛼 − 𝛽 frame to its counterparts
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q
β

iβ

θe

d

α
iα

Figure 1.5 Illustration of Park transformation of current from d − q reference frame to 𝛼 − 𝛽 reference frame.

in the rotating d − q reference frame is achieved by the so called Park transformation, as shown in
Figure 1.5, which leads to the current and voltage relations in the two reference frames:

[
𝑣d

𝑣q

]

=
[

cos 𝜃e sin 𝜃e

− sin 𝜃e cos 𝜃e

] [
𝑣𝛼
𝑣𝛽

]

(1.35)

[
id

iq

]

=
[

cos 𝜃e sin 𝜃e

− sin 𝜃e cos 𝜃e

] [
i𝛼
i𝛽

]

, (1.36)

where 𝜃e is the angle between the two reference frames and also the electrical angle of the rotor.
Conversely, the inverse Park transformation is defined as

[
𝑣
𝛼

𝑣𝛽

]

=
[

cos 𝜃e − sin 𝜃e

sin 𝜃e cos 𝜃e

] [
𝑣d

𝑣q

]

(1.37)

[
i𝛼
i𝛽

]

=
[

cos 𝜃e − sin 𝜃e

sin 𝜃e cos 𝜃e

] [
id

iq

]

. (1.38)

Combining Clarke transformation (1.26) with Park transformation (1.36) gives the Park-Clarke transfor-
mation from three-phase values to their representations in the d − q reference frame:

[
id

iq

]

= 2
3

⎡
⎢
⎢
⎣

cos 𝜃e cos
(

𝜃e −
2𝜋

3

)

cos
(

𝜃e −
4𝜋

3

)

− sin 𝜃e − sin
(

𝜃e −
2𝜋

3

)

− sin
(

𝜃e −
4𝜋

3

)
⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

ia

ib

ic

⎤
⎥
⎥
⎦

. (1.39)

The amazing fact about the mathematical model (see (1.33) and (1.34)) in the d − q reference frame
is that the current and voltage variables are no longer sinusoidal signals, instead, they are DC signals. In
other words, because of this, in the design of a control system, the reference signals to the closed-loop
system could be constants or step signals, which explains why PI controllers are widely used for this
class of systems.

1.2.3 Electromagnetic Torque

For the surface mounted PMSM, the d − q axis inductance is equal to each other due to the uniform
air-gap, that is

Ld = Lq = Ls
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and thus the stator flux in 𝛼 − 𝛽 reference frame is as in Equation (1.19). Similarly, the stator flux can
also be represented in the d − q frame by rotating the flux vector clockwise by 𝜃e, leading to

−→
𝜑s

′ = −→
𝜑se

−j𝜃e = Ls

−→
is

′
+ 𝜙mg (1.40)

and its real and imaginary parts are

𝜑d = Lsid + 𝜙mg (1.41)

𝜑q = Lsiq (1.42)

respectively, where the flux (𝜙mg) induced by the permanent magnets of the rotor is aligned with rotor
and its q-axis component is zero.

The electromagnetic torque is computed as the cross product1 of the space vector of the stator flux with
stator current in the 𝛼 − 𝛽 reference frame as

Te =
3
2

Zp
−→
𝜑s ⊗

−→
is (1.43)

or equivalently, in the d − q reference frame as,

Te =
3
2

Zp
−→
𝜑s

′
⊗

−→
is

′
, (1.44)

where Zp is the number of pole pairs. The cross product is calculated using two three dimensional vectors
[𝜑d, 𝜑q, 0] and [id , iq, 0] and the result is the vector [0, 0, 𝜑diq − 𝜑qid]. Hence,

Te =
3
2

Zp(𝜑diq − 𝜑qid). (1.45)

By substituting Equations (1.41) and (1.42) into (1.45), we obtain

Te =
3
2

Zp𝜙mgiq. (1.46)

With the flux of permanent magnet assumed to be a constant, the electromagnetic torque can be controlled
through varying the q-axis component of stator currents. Therefore, with the electrical model of PMSM
in d − q reference frame, the control of PMSM is analogous to the principle of controlling DC motors.

However, if one were to use the electrical model in the 𝛼 − 𝛽 reference frame to compute the electro-
magnetic torque Te, the matter would be more complicated. In this case, the space vector of the flux has
the relationship with the currents in the 𝛼 − 𝛽 reference frame:

−→
𝜑s = Ls

−→
is + 𝜙mge j𝜃e (1.47)

= Lsi𝛼 + 𝜙mg cos 𝜃e + j (Lsi𝛽 + 𝜙mg sin 𝜃e). (1.48)

This leads to the expression of the electromagnetic torque Te via the cross product of −→𝜑s ⊗
−→
is that has

the following form:

Te =
3
2

Zp[(Lsi𝛼 + 𝜙mg cos 𝜃e)i𝛽 − (Lsi𝛽 + 𝜙mg sin 𝜃e)i𝛼]. (1.49)

One could easily compute the torque Te from (1.49), when the i𝛼 and i𝛽 currents are given. However, in
reverse, it would be difficult to determine the trajectories of i𝛼 and i𝛽 if a desired electromagnetic torque

1 The cross product of two vectors −→a and
−→
b is the vector −→c = −→a ⊗ −→

b . Letting −→a = [a1, a2, a3] and
−→
b = [b1, b2, b3],

the vector −→c = [c1, c2, c3] has the components: c1 = a2b3 − a3b2, c2 = a3b1 − a1b2 and c3 = a1b2 − a2b1 (see
Kreyszig (2010)).
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Te were given, which is what is required in the control of the electromagnetic torque. This explains why in
the control strategies chosen for the later chapters, the mathematical model in the d − q reference frame
is predominately used for the reason that there is a simple relation between the electromagnetic torque
Te and the iq current (see (1.46)).

It is worthwhile to emphasize that in the context of controlling a PMSM drive, if the model used for
the control system design is based on the 𝛼 − 𝛽 reference frame, then the manipulated variables are the
voltage variables 𝑣𝛼 and 𝑣𝛽 . Similarly, if the model in the d − q reference frame is used in the design,
then the manipulated variables are the voltage variables 𝑣d and 𝑣q. However, in the implementation of
the control law, the control signals 𝑣d and 𝑣q will be converted to 𝑣𝛼 and 𝑣𝛽 signals using the inverse
Park Transform, then to three phase voltage signals 𝑣a, 𝑣b and 𝑣c that will be realized using a volt-
age source inverter typically consisting of a DC power supply and several semiconductor switches (see
Chapter 2). The same control law implementation procedure applies to other AC machine drives and
power converters.

1.3 Model of Interior Magnets PMSM
The main difference between an interior magnets PMSM and a surface mounted motor is that the salience
due to the rotor magnets results in a non-uniform air-gap flux. The derivation of its d − q model is very
similar to the surface mounted case and is briefly introduced here. The vector voltage equations are the
same as those in (1.20) and (1.32) and presented here again for convenience,

−→
𝑣s = Rs

−→
is +

d−→𝜑s

dt
(1.50)

−→
𝑣s

′ = Rs

−→
is

′
+

d−→𝜑s

′

dt
+ j𝜔e

−→
𝜑s

′
. (1.51)

In contrast to a surface mounted PMSM, the stator flux due to the salience of the interior magnets needs
to be modeled in the d − q reference frame with different inductances in the d − q axes,

−→
𝜑s

′ = 𝜑d + j𝜑q, (1.52)

where

𝜑d = Ldid + 𝜙mg (1.53)

𝜑q = Lqiq. (1.54)

Here the quadrature axis stator inductance Lq is usually smaller than the direct axis inductance Ld for
an interior magnets PMSM. Therefore, substituting (1.52), (1.53) and (1.54) into (1.51) yields the d − q
model for interior magnets PMSM,

𝑣d = Rsid + Ld

did

dt
− 𝜔eLqiq (1.55)

𝑣q = Rsiq + Lq

diq

dt
+ 𝜔eLdid + 𝜔e𝜙mg. (1.56)

It is apparent that the model of interior PMSM is equivalent to the surface mounted case if Ld = Lq = Ls.
For the interior magnets PMSM, the nonlinearity of torque is mainly due to the salience of the rotor,
which causes the non-uniformity of air-gap.

Its electromagnetic torque is obtained by substituting (1.53), (1.54) into (1.45):

Te =
3
2

Zp(𝜙mgiq + (Ld − Lq)idiq). (1.57)
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In comparison with torque equation (1.46) of a surface mounted machine, the extra component
3

2
Zp(Ld − Lq)idiq is the reluctance torque due to the saliency.

1.3.1 Complete Model of PMSM

For the PMSM with multiple pair of poles, the electrical speed relates to the mechanical speed by

𝜔e = Zp𝜔m (1.58)

where Zp denotes the pair of poles of the PMSM. The rotation of motor could be described by the fol-
lowing dynamic equation:

Jm

d𝜔m

dt
= Te − B𝑣𝜔m − TL (1.59)

with Jm denoting the total inertia, B𝑣 viscous friction coefficient and TL load torque. Replacing the
mechanical speed (𝜔m) with electrical speed 𝜔e in (1.59) gives

d𝜔e

dt
=

Zp

Jm

(

Te −
B𝑣
Zp

𝜔e − TL

)

. (1.60)

For the surface mounted PMSM or id = 0 control, there is no additional torque component. Thus, sub-
stituting the torque (1.46) into (1.60) yields

d𝜔e

dt
=

Zp

Jm

(
3
2

Zp𝜙mgiq −
B𝑣
Zp

𝜔e − TL

)

. (1.61)

Together with the electrical model derived in the last section, the complete model of a PMSM is repre-
sented by

did

dt
= 1

Ld

(𝑣d − Rsid + 𝜔eLqiq) (1.62)

diq

dt
= 1

Lq

(𝑣q − Rsiq − 𝜔eLdid − 𝜔e𝜙mg) (1.63)

d𝜔e

dt
=

Zp

Jm

(
3
2

Zp𝜙mgiq −
B
𝑣

Zp

𝜔e − TL

)

. (1.64)

1.4 Per Unit Model and PMSM Parameters
Using the explicit machine model (1.62) to (1.64) with SI unit to design the controller could lead to
numerical problems due to different units of machine parameters and variables. For example, in the third
equation (1.64), a small inertia value (Jm) in kg ⋅ m2 may lead to a very large coefficient for iq in Amp. As a
result, the controller gain becomes numerically very small for speed control purpose. Such wide variation
of numerical ranges makes the implementation on micro-controllers or Digital Signal Processors (DSP)
rather complex. Hence it is more convenient to use the per unit model of the PMSM for the design of
controllers.

1.4.1 Per Unit Model and Physical Parameters

In the per unit model, as an example, the base values of parameters and variables of a PMSM are listed
in Table 1.1. Here, only three independent base values need to be given. With the three independent
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Table 1.1 Base values for the per unit model

Symbol Description Base value SI unit

Pb Rated power 0.35 kW

Ub Rated voltage 150∕
√

3 V
Tb Rated torque 1.1 Nm
Ib Current 8.083 A
Rb Resistance 10.71 Ω
𝜔eb Velocity 630.63 rad∕s
Lb Inductance 0.017 H
Φb Flux 0.1373 Wb
Jb Inertia 0.0018 kg ⋅ m2

Bb Viscous coefficient 0.0018 Nm ⋅ s

values Pb, Ub and Tb chosen for this case, the other base values can be obtained by their inherent
relationships,

Ib = ZpPb∕Ub, Rb = Ub∕Ib, 𝜔eb = UbIb∕Tb

𝜙b = Ub∕𝜔eb, Lb = Rb∕𝜔eb

Jb = ZpPb∕𝜔
2
eb, Bb = Tb∕𝜔eb.

Scaling the parameters and variables in (1.62) to (1.64) with their own base values, the per unit version
of a machine model is

did

dt
=
𝜔eb

Ld

(𝑣d − Rsid + 𝜔eLqiq) (1.65)

diq

dt
=
𝜔eb

Lq

(𝑣q − Rsiq − 𝜔eLdid − 𝜔e𝜙mg) (1.66)

d𝜔e

dt
=

Zp

Jm

(
3
2

Zp𝜙mgiq −
B𝑣
Zp

𝜔e − TL

)

, (1.67)

where the notation refers to the per unit value of the machine variables and parameters with the exception
that 𝜔eb is in SI units. The numerical values and their per unit counterparts of machine parameters used
in obtaining the experimental and simulation results in this book are given in Table 1.2.

1.4.2 Experimental Validation of PMSM Model

The physical model developed is to be validated against the experimental data collected from the test-bed
that is described in detail in Chapter 10. The PMSM test-bed has its physical parameters defined by
Table 1.2. Using the parameters defined in the table, the differential equations (1.62)–(1.64) are solved
to yield the responses of id, iq currents and velocity 𝜔e. In both simulations and experiments, identical
step signals are applied to the 𝑣d and 𝑣q voltages as input to the dynamic system. The load torque TL = 0
Nm in both simulation and experimental validation. Figure 1.6 shows the experimental validation results
when the direct axis voltage is a step signal with amplitude 5 and 𝑣q is a step signal with amplitude of
20 (V). With these input voltage signals, the steady-state of the currents id (see Figure 1.6(a)) reaches
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Table 1.2 Parameters of PMSM

Symbol Description SI value SI unit Per unit

Jm Total inertia 0.47 × 10−4 kg ⋅ m2 0.0267
B𝑣 Viscous coeff. 1.1 × 10−4 Nm ⋅ s 0.0625
Ld d-axis inductance 7.0 × 10−3 H 0.4120
Lq q-axis inductance 7.0 × 10−3 H 0.4120
TL Load torque unknown Nm unknown
Rs Resistance 2.98 Ω 0.2781
𝜙mg Flux linkage due to

permanent magnet
0.125 Wb 0.9102

irated Nominal current 2.9 A 0.36
Zp No. of pole pairs 2

1.75 A and iq (see Figure 1.6(b)) reaches zero from the simulation results and the velocity reaches 73
rad∕s (see Figure 1.6(c)). The steady-state of the iq current is zero because the motor is not loaded and
the load torque is zero. In comparison between the simulation and experimental results, the physical
model developed here has a high fidelity in both transient responses and steady-state responses. The
discrepancies between the responses obtained using the model and those from the experimental test-bed
could be explained as the result of the net effects of the PWM harmonics (see Chapter 2), measurement
noise, pulsing torque, iron saturation and many other factors, which are ignored in the model.

1.5 Modeling of Induction Motor
Induction motor, or in other words, asynchronous motor generally contains two main components in its
structure: stator winding and rotor winding. Stator winding is supplied by an AC power source, which
will generate a rotating magnetic field, the so-called stator flux. Then, the constantly changing flux will
cause a current induced in the rotor winding based on Lenz’s Law, subsequently this induced current
will generate a magnetic field, the so-called rotor flux. Since both fluxes are opposite to each other, a
rotational force is generated to accelerate the rotor until the magnetizing torque is balanced to the load
torque. Because the actual rotor’s position is always lagging the flux position, in order to ensure the flux
cutting through the rotor winding, there is a difference between the angular speed𝜔s of the magnetic field
and the rotor electrical speed 𝜔e, which is called slip with 𝜔slip = 𝜔s − 𝜔e. 𝜔s is also called synchronous
flux angular speed.

The traditional three-phase AC induction motor has two types, wound and squirrel-cage, which
describes the form of the rotor winding. The wound rotor form has a brushed external connection;
typical applications include the wind-farm generators. The squirrel-cage rotor is more widely applied
and it has the rotor winding connection as a short-circuit without any external connections. The induction
motor discussed in this book is of the squirrel-cage type.

1.5.1 Space Vector Representation of Voltage Equation of Induction Motor

The use of the space vector simplifies the derivation of voltage equation for the induction machine and
makes the model derivation easier to understand. This derivation is the key to forming the dynamic
models for current control.
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Figure 1.6 Experimental validation (input voltage 𝑣d = 5 V and 𝑣q = 20 V). Noise free line: model outputs; noisy
line: outputs from test-bed. (a) id , (b) iq, and (c) 𝜔e.
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In modeling of the induction motor, the space vector for its three-phase stator current is written as

−→
is = 2

3

(

ia(t) + ib(t)e
j 2𝜋

3 + ic(t)e
j 4𝜋

3

s)

−→
is = Ise

j(𝜔s t+𝜙),

where 𝜔s is the angular speed of the stator side space vectors, and the space vector of three-phase stator
voltage is defined as

−→us =
2
3

(

ua(t) + ub(t)e
j 2𝜋

3 + uc(t)e
j 4𝜋

3

)

,

where ua(t), ub(t) and uc(t) are terminal line-to-neutral voltage for each phase, respectively. Similarly,

space vectors of three-phase rotor voltage and current are denoted by −→ur and
−→
ir . The rotor dynamics play

an important role in the mathematical model of an induction motor.
For a squirrel-cage induction motor, the space vector voltage equation of stators with respect to their

own winding systems is

−→us = Rs

−→
is +

d−→𝜓s

dt
, (1.68)

where Rs is the stator resistance and −→
𝜓s is the space vector of stator flux. With respect to its own winding

system, the space vector voltage equation of the rotor is

−→ur

∗ = Rr

−→
ir

∗
+

d−→𝜓r

∗

dt
= 0, (1.69)

where Rr is the rotor resistance,
−→
ir

∗
, −→ur

∗
and −→

𝜓r

∗
are rotor’s current, voltage and flux in space vector forms

with respect to the rotor reference frame. Due to the short-circuit of the rotor winding, the rotor voltage
vector in (1.69) is always equal to zero.

In order to synchronize the reference frame of the rotor windings with the reference frame of the stator
windings, a set of space vectors are defined to change the reference frame of the space vectors of the
rotor,

−→ur =
−→ur

∗
e j𝜃e

−→
ir = −→

ir
∗
e j𝜃e

−→
𝜓r =

−→
𝜓r

∗
e j𝜃e ,

where 𝜃e = 𝜔et, 𝜃e is the electrical angle of the rotor, and 𝜔e is the electrical angular speed of the rotor.
This transformation is based on the electrical field of the rotor windings lagging behind that of the stator
by 𝜃e radians; thus, in order to synchronize these two reference frames, the space vectors in the rotor
reference frame are advanced with the angle 𝜃e.

Now, multiplying both sides of (1.69) with the factor e j𝜃e and substituting the transformations into the
rotor voltage equation leads to

−→ur = Rr

−→
ir +

d−→𝜓r

dt
− j𝜔e

−→
𝜓r = 0, (1.70)

where the following equality is used,

d−→𝜓r

dt
e j𝜃e =

d−→𝜓r

dt
− j𝜔e

−→
𝜓r.

With the space vectors of both currents in stator and rotor, the instantaneous fluxes of both windings
are given based on their relationships to currents:

−→
𝜓s = Ls

−→
is + Lh

−→
ir (1.71)

−→
𝜓r = Lh

−→
is + Lr

−→
ir (1.72)

where Lh is the mutual machine inductance, Ls and Lr are the stator and rotor inductance, respectively.
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Note that there are coupling terms in the stator flux (see (1.71)) and rotor flux (see (1.72)). It seems
that the derivation of the induction motor model is more complicated than the process used in the PMSM
model, however, they follow the same thought process. Here it is to eliminate the rotor current

−→
ir from

the equations and find the relationship between the stator voltage and current.
Taking derivative of stator flux based on (1.71), and substituting the stator flux with stator and rotor

currents, the stator voltage equation (1.68) becomes:

−→us = Rs

−→
is + Ls

d
−→
is

dt
+ Lh

d
−→
ir

dt
. (1.73)

To eliminate the rotor current
−→
ir , the rotor flux equation (1.72) is used to find

−→
ir = 1

Lr

−→
𝜓r −

Lh

Lr

−→
is .

Substituting this into (1.73) yields

−→us = Rs

−→
is + Ls

(

1 −
L2

h

LsLr

)
d
−→
is

dt
+

Lh

Lr

d−→𝜓r

dt
.

To eliminate the derivative of the rotor flux from the above equation, the voltage balance equation from
the rotor (see (1.70)) is used, which leads to

d−→𝜓r

dt
= −

Rr

Lr

−→
𝜓r +

RrLh

Lr

−→
is + j𝜔e

−→
𝜓r ,

where the rotor current is replaced with stator flux and current. Finally, it can be verified that the stator
voltage equation is expressed in terms of the rotor flux and stator current:

−→us =

(

Rs + Rr

L2
h

L2
r

)
−→
is + Ls

(

1 −
L2

h

LsLr

)
d
−→
is

dt
+
(

−
LhRr

L2
r

+ j𝜔e

Lh

Lr

)
−→
𝜓r .

Although all the physical parameters are defined in the above model, they could have more compact
expressions. More specifically, define the following parameters used in the model, leakage factor:

𝜎 = 1 −
L2

h

LsLr

, (1.74)

stator time constant:

𝜏s =
Ls

Rs

, (1.75)

rotor time constant:

𝜏r =
Lr

Rr

, (1.76)

coefficients:

kr =
Lh

Lr

(1.77)

r
𝜎 = Rs + Rrk

2
r (1.78)

𝜏 ′𝜎 =
𝜎Ls

r𝜎
. (1.79)
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With these definitions of parameters, the voltage equation in space vector form is simply expressed as

−→
is + 𝜏

′
𝜎

d
−→
is

dt
=

kr

r𝜎

(
1
𝜏r

− j𝜔e

)
−→
𝜓r +

1
r𝜎

−→us (1.80)

where the rotor flux satisfies the differential equation:

−→
𝜓r + 𝜏r

d−→𝜓r

dt
= j𝜔e𝜏r

−→
𝜓r + Lh

−→
is . (1.81)

1.5.2 Representation in Stationary 𝛼 − 𝛽 Reference Frame

Upon obtaining the electrical model in the space vector form, the next step is to convert it to the model
in the 𝛼 − 𝛽 reference frame. The 𝛼 − 𝛽 reference frame is a stationary reference frame in the stator side
with the real (𝛼) axis aligned with the peak MMF (Fa(t), see Figures 1.1 and 1.3) and the imaginary (𝛽)
axis in quadrature (see Figure 1.3).

By decomposing the space vector voltage, current and flux onto the real and imaginary axes, they can
be represented by the complex notations,

−→us = us𝛼 + jus𝛽 (1.82)

−→
is = is𝛼 + jis𝛽 (1.83)

−→
𝜓r = 𝜓r𝛼 + j𝜓r𝛽 . (1.84)

To obtain the dynamic model in the 𝛼 − 𝛽 reference frame, the above variables are substituted into the
space vector model (1.80) and (1.81).

It can be readily verified that the electrical model of the induction motor in the 𝛼 − 𝛽 reference frame
is described by the following four differential equations:

dis𝛼

dt
= − 1

𝜏 ′𝜎
is𝛼 +

kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛼 +
kr

r𝜎𝜏
′
𝜎

𝜔e𝜓r𝛽 +
1

r𝜎𝜏
′
𝜎

us𝛼 (1.85)

dis𝛽
dt

= − 1
𝜏 ′𝜎

is𝛽 −
kr

r𝜎𝜏
′
𝜎

𝜔e𝜓r𝛼 +
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛽 +
1

r𝜎𝜏
′
𝜎

us𝛽 (1.86)

d𝜓r𝛼

dt
=

Lh

𝜏r

is𝛼 −
1
𝜏r

𝜓r𝛼 − 𝜔e𝜓r𝛽 (1.87)

d𝜓r𝛽

dt
=

Lh

𝜏r

is𝛽 + 𝜔e𝜓r𝛼 −
1
𝜏r

𝜓r𝛽 . (1.88)

1.5.3 Representation in d − q Reference Frame

To change the reference frame to the d − q frame is equivalent to rotating the space vector in 𝛼 − 𝛽 frame
clockwise by 𝜃s, that is

−→us

′ = −→use
−j𝜃s = usd + jusq (1.89)

−→
is

′
= −→

is e−j𝜃s = isd + jisq (1.90)

−→
𝜓r

′ = −→
𝜓re

−j𝜃s = 𝜓rd + j𝜓rq, (1.91)
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where −→us

′
,
−→
is

′
and −→

𝜓r

′
denote the space vectors referred to rotating d − q frame. 𝜃s = 𝜔st where 𝜔s is the

synchronous flux angular speed in the stator. In this rotating d − q reference frame, the rotor flux vector
is fixed to the real axis of the coordinate system. Therefore, the quadrature component of −→𝜓r

′
is zero.

Multiplying (1.80) with the factor e−j𝜃s and substituting in the space vectors in d − q frame gives

−→
is

′
+ 𝜏′𝜎

⎛
⎜
⎜
⎝

d
−→
is

′

dt
+ j𝜔s

−→
is

′⎞
⎟
⎟
⎠

=
kr

r𝜎

(
1
𝜏r

− j𝜔e

)
−→
𝜓r

′ + 1
r𝜎

−→us

′
, (1.92)

where the following equality is used:

d
−→
is

dt
e−j𝜃s =

d
−→
is

′

dt
+ j𝜔s

−→
is

′
.

Based on the real and imaginary components of (1.92), the dynamic electrical model in the d − q refer-
ence frame is obtained:

disd

dt
= − 1

𝜏 ′𝜎
isd + 𝜔sisq +

kr

r𝜎𝜏
′
𝜎𝜏r

𝜓rd +
1

r𝜎𝜏
′
𝜎

usd (1.93)

disq

dt
= −𝜔sisd −

1
𝜏 ′𝜎

isq −
kr

r𝜎𝜏
′
𝜎

𝜔e𝜓rd +
1

r𝜎𝜏
′
𝜎

usq. (1.94)

Similarly, it can be shown that the rotor flux in the d − q reference frame satisfies:

d𝜓rd

dt
=

Lh

𝜏r

isd −
1
𝜏r

𝜓rd (1.95)

0 =
Lh

𝜏r

isq − (𝜔s − 𝜔e)𝜓rd , (1.96)

where the q component of rotor flux 𝜓rq = 0. Since Equation (1.96) is an algebraic equation, it is not
included for control design. However, it yields the relationship used for estimation of 𝜔s:

𝜔s = 𝜔e +
Lh

𝜏r

isq

𝜓rd

, (1.97)

which is also called slip estimation and 𝜔e is the electrical angular velocity of the rotor. Since the rotor
flux 𝜓rd is not directly measured, the slip estimation is alternatively performed using the current isd to
replace 𝜓rd as

𝜔s = 𝜔e +
1
𝜏r

isq

isd

, (1.98)

where d𝜓rd

dt
= 0 is assumed in (1.95) to obtain the steady-state solution of isd in relation to 𝜓rd.

Relationships exist between the current, voltage and flux variables in the 𝛼 − 𝛽 reference frame and
the d − q reference frame, governed by the Clarke transformation (see Figure 1.4 for illustration), and
they are given below:

[
usd

usq

]

=
[

cos 𝜃s sin 𝜃s

− sin 𝜃s cos 𝜃s

] [
us𝛼

us𝛽

]

(1.99)

[
isd

isq

]

=
[

cos 𝜃s sin 𝜃s

− sin 𝜃s cos 𝜃s

] [
is𝛼

is𝛽

]

(1.100)

[
𝜓rd

𝜓rq

]

=
[

cos 𝜃s sin 𝜃s

− sin 𝜃s cos 𝜃s

] [
𝜓r𝛼

𝜓r𝛽

]

. (1.101)
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1.5.4 Electromagnetic Torque of Induction Motor

The electromagnetic torque of induction motor is calculated using the cross product of the space vectors
of rotor flux and and stator current in the d − q reference frame, which is

Te =
3
2

Zp

Lh

Lr

(−→𝜓r

′
⊗

−→
is

′
), (1.102)

where Zp is the number of pole pairs. The cross product, defined in Section 1.2.3, is calculated using
two three dimensional vectors [𝜓rd 0 0] and [isd isq 0] since 𝜓rq is zero. The result of the cross
product is the vector [0 0 𝜓rdisq]. Thus, in the d − q reference frame, the electromagnetic torque is
proportional to 𝜓rdisq, which is

Te =
3
2

Zp

Lh

Lr

𝜓rdisq. (1.103)

If the electromagnetic torque is calculated using the space vectors of rotor and stator current in the 𝛼 − 𝛽
reference frame, then it is proportional to the cross product of the space vectors of rotor flux and stator
current in the stationary frame,

Te =
3
2

Zp

Lh

Lr

(−→𝜓r ⊗
−→
is )

= 3
2

Zp

Lh

Lr

(𝜓r𝛼is𝛽 − 𝜓r𝛽 is𝛼). (1.104)

Note that the expression of electromagnetic torque Te in the d − q reference frame is only related to 𝜓rd

and isq. These two variables are DC variables, thus the torque control can be achieved by controlling 𝜓rd

and isq to their specified constant or piece-wise constant reference signals. On the other hand, in the 𝛼 − 𝛽
reference frame, it is much more difficult to achieve torque control because the expression in (1.104) is
associated with the fluxes in 𝛼 − 𝛽 reference frame that are sinusoidal signals.

The mechanical model of induction motor is derived from the general motion equation of motor rota-
tion, which is given as follows,

Jm

d𝜔m

dt
+ fd𝜔m = Te − TL, (1.105)

where 𝜔m(t) is the rotor’s mechanical velocity (𝜔m = 𝜔e

Zp
), Jm represents the inertia of the motor, fd is

the friction coefficient, Te and TL denote the electromagnetic torque and load torque, respectively. The
dynamic model of the mechanical equation is obtained by substituting Equation (1.104) into the motion
equation (1.105), giving

d𝜔m

dt
= −

fd

Jm

𝜔m + 3
2

ZpLh

LrJm

𝜓rdisq −
TL

Jm

. (1.106)

In terms of rotor’s electrical velocity,

d𝜔e

dt
= −

fd

Jm

𝜔e +
3
2

Z2
p Lh

LrJm

𝜓rdisq −
ZpTL

Jm

. (1.107)

1.5.5 Model Parameters of Induction Motor and Model Validation

The induction motor has the characteristics given by the nameplate data (see Table 1.3), and its parameters
used in the physical model are given in Table 1.4. These physical parameters are used in this book for
simulations and experiments.
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Table 1.3 Nameplate of the induction motor

Manufacturer SEW-EURODRIVE

Type 3-phase Cage
Rated power 0.75 kW
Supply frequency 50 Hz
Number of pole pairs 2
Rated Speed 1435 RPM
Rated stator current 1.75 A
Rated RMS phase voltage 415 V
Connection Y (star connection)

Table 1.4 Motor parameters

Rs(Ω) Rr(Ω) Ls(H) Lr(H) Lh(H) Jm(kg ⋅ m2) fd(Nm ⋅ s)

11.2 8.3 0.6155 0.6380 0.570 0.00214 0.0041

The induction motor model is validated against the test-bed used in this book (see Chapter 10 for
a detailed description of the test-bed). In the d − q reference frame, the responses of stator currents
isd, isq, rotor flux 𝜓rd and motor mechanical velocity 𝜔m are calculated by building an induction
motor simulator using the MATLAB/Simulink SimPower Toolbox, followed by entering the physical
parameters listed in Table 1.4 into this simulator. Choosing the voltage input signals, usd and usq,
as step signals with amplitudes of 10 V and 100 V respectively, the simulation results of currents,
flux and velocity are shown in Figure 1.7. With the identical conditions as the simulation conditions,
experiments are conducted using the test-bed. Figure 1.8 shows the experimental results of the currents,
flux and velocity. By comparing these two figures, it is seen that the steady-state responses are very
similar; however, the transient responses from the actual motor are faster than those produced by the
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Figure 1.7 Simulation result using SimPower model. (a) isd and isq currents and (b) Flux and velocity.
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Figure 1.8 Experimental results. (a) isd and isq currents and (b) Flux and velocity.

Simulink simulator. Also, due to the PWM mechanisms used in both the simulation and experiment,
the stator currents isd and isq contain substantial amount of harmonics (see Figures 1.7–1.8), par-
ticularly in the steady-state operations. Discussions about harmonics in the AC drives can be found
in Chapter 2.

For those who are interested in how to build a Simulink simulator using SimPower Toolbox, a
step-by-step tutorial for such a practice is given in Chapter 10.

1.6 Modeling of Power Converter
Figure 1.9 shows the block diagram of a grid-connected three phase voltage source converter. The sym-
bols [Sa, Sa], [Sb, Sb], [Sc, Sc] in Figure 1.9 denote six bipolar switching inputs with either value of 0 or 1
for an upper and lower leg of each phase respectively. These switching inputs are conducted in a comple-
mentary manner, for example, at any given time Sa + Sa = 1, Sb + Sb = 1, Sc + Sc = 1. This means that
only one of the switches is allowed to conduct at any one time.

Ea

Eb

Ec

Ls Rs

Sa Sb Sc

vdc

Cdc

RL

Sa Sb Sc

ia

ib

ic

+

−

Figure 1.9 Block diagram of two level voltage source converter.
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Before proceeding to the model derivation, several assumptions are made about the operation of the
converter. Firstly, it is assumed that all switches are ideal and operate in a continuous conduction mode
(CCM), and the grid voltage is symmetric and balanced as follows.

Ea = Em cos(𝜔gt) (1.108)

Eb = Em cos
(

𝜔gt − 2𝜋
3

)

(1.109)

Ec = Em cos
(

𝜔gt − 4𝜋
3

)

, (1.110)

where 𝜔g = 2𝜋f , f is the grid frequency (50 Hz used in this book). Secondly, the system is assumed to
be a three wire system, thus the sum of three phase currents and voltage is equal to zero.

ia + ib + ic = 0 (1.111)

Ean + Ebn + Ecn = 0. (1.112)

Thirdly, it is assumed that the inductance and resistance parameters, Ls and Rs, are ideal, therefore, they
have the same values for the three phase system. Even though these assumptions are ideal and do not
hold entirely in applications, their acceptance ensures the derivation of the dynamic model in a simpler
manner.

1.6.1 Space Vector Representation of Voltage Equation for Power Converter

The use of space vector simplifies the derivation of voltage equation for the two level voltage source
power converter. The space vector for three-phase grid current can be written as

−→
is = 2

3

(

ia(t) + ib(t)e
j 2𝜋

3 + ic(t)e
j 4𝜋

3

)

, (1.113)

while the space vector of three-phase voltage at the three nodes, on the grid side linked with the converter,
is defined as

−→
𝑣s =

2
3

(

𝑣a(t) + 𝑣b(t)e
j 2𝜋

3 + 𝑣c(t)e
j 4𝜋

3

)

(1.114)

and the space vector of the three phase grid voltage is described by

−→
Es =

2
3

(

Ea(t) + Eb(t)e
j 2𝜋

3 + Ec(t)e
j 4𝜋

3

)

. (1.115)

Based on these definitions, the space vector voltage at the nodes of the converter satisfies the voltage
equation:

−→
𝑣s = −Ls

d
−→
is

dt
− Rs

−−→
is(t) +

−→
Es. (1.116)

It is emphasized here that the above space vector voltage equation is obtained at the grid side.

1.6.2 Representation in 𝛼 − 𝛽 Reference Frame

The next step in the derivation of the model is to convert the model in the space vector form to the model
in the 𝛼 − 𝛽 reference frame. By representing the space vectors, voltage and current, in terms of their
real and imaginary components, they can be written in the complex notation,

−→
𝑣s = 𝑣𝛼 + j𝑣𝛽
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−→
is = i𝛼 + ji𝛽
−→
Es = E𝛼 + jE𝛽 .

To obtain the dynamic model in the 𝛼 − 𝛽 reference frame, the above variables are substituted into the
space vector model (1.116) where the rotating frame in the 𝛼 − 𝛽 has the same velocity as the rotating
speed of the space vector in the grid. Thus, by simply taking the components in the real and imaginary
axes, in the 𝛼 − 𝛽 reference frame, the electrical model of the voltage source converter is described by
the following two differential equations:

𝑣𝛼(t) = −Ls

di𝛼(t)
dt

− Rsi𝛼(t) + E𝛼(t) (1.117)

𝑣𝛽 (t) = −Ls

di𝛽(t)
dt

− Rsi𝛽 (t) + E𝛽(t). (1.118)

1.6.3 Representation in d − q Reference Frame

To change the reference frame to the d − q frame is equivalent to rotating the space vectors in (1.116)
clockwise by 𝜃g so that the synchronous reference frame is aligned with the grid voltage at 𝜔g frequency,
where 𝜃g = 𝜔gt and 𝜔g = 2𝜋f rad∕s, f is the grid frequency in Hz. Thus, the following rotated space
vectors are defined:

−→
𝑣s

′ = −→
𝑣se

−j𝜃g = 𝑣d + j𝑣q (1.119)

−→
is

′
= −→

is e−j𝜃g = id + jiq (1.120)

−→
Es

′
= −→

Ese
−j𝜃g = Ed + jEq, (1.121)

where −→
𝑣s

′
,
−→
is

′
and

−→
Es

′
denote the space vectors referred to rotating d − q frame. The grid voltage in the

q-axis, Eq, is zero.
Multiplying (1.116) with the factor e−j𝜃g and replacing the original space vectors by the space vectors

((1.119)–(1.121)) in the rotating frame gives

−→
𝑣s

′ = −Ls

d
−→
is

′

dt
− j𝜔gLs

−→
is

′
− Rs

−→
is

′
+ −→

Es

′
, (1.122)

where the following equality is used:

d
−→
is

dt
e−j𝜃g =

d
−→
is

′

dt
+ j𝜔g

−→
is

′
.

Based on the real and imaginary components of (1.122), it can be verified that the dynamic model in the
d − q reference frame is:

𝑣d = −Ls

did(t)
dt

+ 𝜔gLsiq − Rsid + Ed (1.123)

𝑣q = −Ls

diq(t)
dt

− 𝜔gLsid − Rsiq, (1.124)

where Eq = 0.
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1.6.4 Energy Balance Equation

The output of the voltage source converter is its DC voltage 𝑣dc on the capacitor (see Figure 1.9). To
derive the dynamic model for the 𝑣dc, the energy conservation is investigated, where

Pc = Pg − PL.

Here, Pc is the power consumed by the capacitor, Pg is power from the grid and PL is the power consumed
by the load. Assuming that the DC current for the capacitor is ic(t), then from the energy conservation,
the following equality is obtained:

𝑣dcic =
3
2
−→
𝑣s ⋅

−→
is − iL𝑣dc, (1.125)

where −→𝑣s ⋅
−→
is is the inner product2 of the space vectors of voltage and current, iL is the load current. In this

equation, the term 𝑣dcic is the energy conserved in the capacitor, the term iL𝑣dc is the energy consumption

of the load, and the term 3

2
−→
𝑣s ⋅

−→
is is the energy drawn from the grid, consisting of active power and reactive

power.
Since in the 𝛼 − 𝛽 reference frame, the following relationships hold:

−→
𝑣s = 𝑣𝛼 + j𝑣𝛽
−→
is = i𝛼 + ji𝛽 .

By substituting these equations into (1.125) and calculating the inner product, the capacitor current
satisfies:

ic =
3

2𝑣dc

(𝑣𝛼 i𝛼 + 𝑣𝛽 i𝛽 ) − iL.

Since ic = Cdc
d𝑣dc

dt
, the capacitor voltage 𝑣dc is described by the dynamic equation in the 𝛼 − 𝛽 reference

frame:

Cdc

d𝑣dc

dt
= 3

2𝑣dc

(𝑣𝛼 i𝛼 + 𝑣𝛽 i𝛽) − iL, (1.126)

where Cdc is the capacitance.
Similarly, in the d − q reference frame, (1.125) is expressed in terms of the space vectors of current

and voltage
−→
is

′
and −→

𝑣s

′
, which has the form:

𝑣dcic =
3
2
−→
𝑣s

′
⋅
−→
is

′
− iL𝑣dc

= 3
2
(𝑣did + 𝑣qiq) − iL𝑣dc, (1.127)

leading to the capacitor voltage 𝑣dc described in the d − q reference frame as

Cdc

d𝑣dc

dt
= 3

2𝑣dc

(𝑣did + 𝑣qiq) − iL. (1.128)

Supposing that at steady state operating conditions, the converter maintains a target DC bus voltage with
unity power factor, the reference signal to the iq current is chosen to be zero in order to achieve this
control objective.

2 The inner product of two vectors −→a and
−→
b is the scalar c = −→a ⋅

−→
b . Letting −→a = [a1, a2] and

−→
b = [b1, b2], the scalar

c = a1b1 + a2b2 (see Kreyszig (2010)).
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1.7 Summary
This chapter has derived the physical models of PMSM, induction machine and voltage source power con-
verter in both stationary reference frame (also called 𝛼 − 𝛽 reference frame) and synchronous reference
frame (also called d − q) reference frame.

There are two steps deployed in the derivation of the mathematical models. The first step is to use space
vector description of the physical variables for voltage, current and flux, and the second step is to convert
the space vector based model to various reference frames. The mathematical models are presented in
terms of differential equations that will be used for control system design in the future chapters.

1.8 Further Reading
General application characteristics of electric motors are discussed in Pillay and Krishnan (1991).
Books for electrical drives include Vas (1992), Vas (1993) Hughes and Drury (2013), Leonhard (2001),
El-Hawary (2011), Drury (2009), Quang and Dittrich (2008), Linder et al. (2010). Modeling and
simulation of AC motor drive was discussed in Pillay and Krishnan (1988), Pillay and Krishnan (1989),
Holtz (1994), Filho and de Souza (1997), Lorenz et al. (1994) and Ong (1998). Mathematical modeling
and analysis of converters were presented in Wu et al. (1991), in Lindgren (1998), in Abdel-Rahim and
Quaicoe (1994), in Blasko and Kaura (1997). The Park transformation was described in Park (1929)
and the Clarke transformation was described in Duesterhoeft et al. (1951). A system theory approach to
unify electrical machine analysis was discussed in Willems (1972).
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2
Control of Semiconductor Switches
via PWM Technologies

Control of the semiconductor switches is the most efficient and convenient means to achieve the control
of power converters and machine drives. They act as the actuators in the implementation of the control
systems where the manipulated control inputs in the form of three phase voltage signals are realized by
turning on and off the semiconductor switches.

Depending on the application, a large variety of power electronic devices, different in types of semicon-
ductor switches, construction topologies and concepts, have been developed. The common functionality
of these devices is to conduct power flow by varying the on–off duration of each switch. Among them,
the 2-Level Voltage Source Inverter (2L-VSI), as shown in Figure 2.1, is the most widely adopted mech-
anism to control three-phase AC machines. A similar topology is illustrated in the previous chapter for
the power converter (see Figure 1.9). Based on a DC power supply for controlling AC motors, the pri-
mary concern of using the semiconductor switches for the applications presented in this book is to create
sinusoidal phase voltage signals via the fundamental components of rectangular signals that are pro-
duced by varying magnitudes and frequencies through turning on–off each power switch for a duration
of time. A similar operational principle applies to the voltage source power converter (see Figure 1.9).
The command signal for turning on–off each power switch is called a gate signal.

There are two approaches used in this book to generate the gate signal for the semiconductor switches.
The first approach uses Pulse Width Modulation (PWM) based on which the PID controllers (see
Chapters 3 to 5) and the traditional model predictive controllers (see Chapters 8 to 9) are implemented.
In the control applications, the control signals calculated are the three phase voltage signals that are
obtained from one of the controller designs using the model either in the d − q reference frame or in
𝛼 − 𝛽 reference frame. The role of the voltage source inverter with the power electronics devices is
to realize the three phase voltage control signals as closely as possible. Namely, the sinusoidal phase
voltage signals contained as fundamental components of rectangular wave signals created by turning
on–off each power switch with the PWM technologies are aimed to be closely matched with the
three phase voltage control signals. The second methodology features a much simpler approach in the
implementation of the control systems that generates such a gate signal by direct optimization of an
error function between the desired control signals and those achieved by the semiconductor switches
(see Chapters 6 to 7). In this second approach, there is no need to use the PWM technology, therefore it
significantly reduces the complexity of controlling the semiconductor switches.

PWM technology, originally developed in the telecommunication engineering community, has gained
wide popularity and has been the subject of intensive research investigations in the control of power
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electronics over the past several decades (for example, Holtz, 1992, Holmes and Lipo, 2003). With PWM
technology and a voltage source inverter, the efficient control of the AC motor position, speed and torque
by Variable Speed Drive (VSD) becomes possible. Power converters are also controlled by the PWM
technology. A wide variety of PWM generation techniques has been developed, which could be cate-
gorized into two broad classes: continuous PWM (CPWM) and discontinuous PWM (DPWM) (Hava
et al., 1999, Zhou and Wang, 2002). Compared with DPWM, CPWM attains superior performance in
the low modulation index range which is within the operating conditions of servo drives and the power
converters for most of the time. Therefore, it has gained more popularity in servo drive and converter
applications. These methods could be implemented by two methodologies: carrier based PWM and direct
digital implementation. For a long time, the carrier based PWM implementation, such as Sine-Triangle
intersection techniques, has dominated the industrial applications. With the development of fast Digital
Signal Processors (DSPs), direct digital implementation has also gained popularity in more recent years,
of which the Space Vector Modulator (SVM) has been well recognized.

In Section 2.1, the topology of a two-level, voltage source inverter is introduced, where the relationship
between the semiconductor power switches and the three phase sinusoidal control signal is established.
The remainder of this chapter discusses how to manage the semiconductor power switches so that the
three phase sinusoidal control signal can be reconstructed. In Section 2.2, the six-step mode is intro-
duced. In Section 2.3, several carrier based PWM techniques are discussed, among which zero-sequence
techniques are used to improve the modulation index. Section 2.4 discusses the space vector modulation,
which has a direct digital implementation. In Section 2.5, a simulation study of the effect of PWM is
conducted to reveal the current ripples.

2.1 Topology of IGBT Inverter
One of the most widely adopted semiconductor power switches for the medium-range power con-
verter/inverter is the Insulated Gate Bipolar Transistor (IGBT), which offers the benefits of both
MOSFET and bipolar switches. However, IGBT can only allow the current to flow in one direction, and
hence a freewheeling diode in parallel is required to conduct the current flow in the opposite direction.
In the three-phase 2L-VSI for controlling AC machine, as shown in Figure 2.1, each leg of the inverter
has two pairs of such a combination consisting of an IGBT switch and a freewheeling diode, where their
middle point is linked to the loads, either a passive load or an AC motor. Here, the front-end rectifier is
replaced by two DC sources connected in series and each supply offers half of the total DC bus voltage
(Vdc∕2). For the simplification of analysis, it is sufficient to assume that the middle point (denoted
by O in Figure 2.1) between two DC sources is referred to the ground. Thus, all the voltages can be
represented with respect to the ground. For example, the neutral point voltage of AC motor is referred
to as 𝑣n with respect to the ground.

Vdc

Vdc

2

2

C

Sa

Sa

Sb

Sb

Sc

Sc

L R
Vn

Va
Vb

Vc

o
R

R

L

L

Figure 2.1 Topology of three-phase-leg IGBT.
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As seen in Figure 2.1, there are two IGBT switches for each of the three legs. Within each leg of
an inverter, only one switch is allowed to turn on (denoted by “1”) while the other is off (denoted by
“0”) at any given time to prevent short circuit. Thus, the switching states of the inverter can be identi-
fied by only considering the states of the three upper switches. With the states of three upper switches
denoted as Si (i = a, b, c), the states of their corresponding lower switches can be represented by their
negation Si (i = a, b, c). As a result, there are only eight possible switching states by turning on and off
all the switches in the inverter. Since the states of upper and lower switches within the same leg are
complementary to each other, all eight switching states can be independently identified by the states of
the three upper switches, as listed in Table 2.1. Among these, two switching states (

−→
V0 and

−→
V7), which

represent the cases where either all the upper or all the lower switches are turned on, leading to an
open circuit, are called zero vector. In contrast, the other six states that form a closed circuit, are called
active vector.

When the ith upper switch is on, that is Si = 1 and Si = 0, the output of the corresponding phase leg
is connected to the top rail of the supplies and thus 𝑣i =

Vdc

2
. Conversely, when the lower switch is on,

the output is connected to the bottom rail of the supplies and hence 𝑣i = − Vdc

2
. Corresponding to the

switching states in Table 2.1, the resulting output voltages 𝑣a, 𝑣b, 𝑣c, are summarized in Table 2.2.
Equivalently, the output voltages could be represented in terms of their switching states,

𝑣i = VdcSi −
Vdc

2
(i = a, b, c). (2.1)

Note that the output voltages are expressed with respect to the ground defined before. It follows that the
three-phase voltages with respect to the neutral point of the load are obtained by

𝑣an = 𝑣a − 𝑣n

𝑣bn = 𝑣b − 𝑣n (2.2)

𝑣cn = 𝑣c − 𝑣n.

From (2.1), it is seen that the three voltage signals 𝑣a, 𝑣b and 𝑣c generated from the voltage source
inverter via the semiconductor switches are in rectangular-wave forms with amplitude changes between

Table 2.1 Switching states of inverter

−→
V0

−→
V1

−→
V2

−→
V3

−→
V4

−→
V5

−→
V6

−→
V7

Sa 0 1 1 0 0 0 1 1
Sb 0 0 1 1 1 0 0 1
Sc 0 0 0 0 1 1 1 1

Table 2.2 Output voltage of inverter

−→
V0

−→
V1

−→
V2

−→
V3

−→
V4

−→
V5

−→
V6

−→
V7

𝑣a −
Vdc

2

Vdc

2

Vdc

2
−

Vdc

2
−

Vdc

2
−

Vdc

2

Vdc

2

Vdc

2
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Vdc

2
−

Vdc

2

Vdc

2

Vdc

2

Vdc

2
−

Vdc

2
−
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2
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−
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−
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−
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± Vdc

2
and, therefore, their fundamental components are of primary interest in the realization of the three

phase control signals.

2.2 Six-step Operating Mode
One of early technologies to control the power electronic switches is called six-step mode (see Holtz
(1992)). In this approach, the maximum magnitude of the fundamental with a 2L-VSI is achieved by
sequentially switching the six active vectors, that is starting from

−→
V1, to

−→
V2 and the on to

−→
V6 within one

electrical cycle. For one cycle of the six-step operation, each output voltage 𝑣i (i = a, b, c) will have half
of cycle connect to top rail of inverter and the other half bottom rail. As an example, Figure 2.2 illustrates
the rectangular wave of 𝑣c over one cycle and its associated fundamental where the period of the wave is
2𝜋

𝜔e
. Since this rectangular signal 𝑣c is an odd function, it can be approximated using a Fourier sine series

as (see Kreyszig (2010)) where

𝑣c(t) = b1 sin𝜔et + b3 sin 3𝜔et + · · · + bn sin n𝜔et + · · · ,

where n = 1, 3, 5, … , is an odd number and the coefficient for the nth index is

bn =
2𝜔e

𝜋 ∫
𝜋

𝜔e

0

Vdc

2
sin n𝜔etdt

= 2
n𝜋

Vdc. (2.3)

The fundamental component of the Fourier sine series b1 sin𝜔et is the approximated sinusoidal output
of the voltage source inverter for the third phase of the voltage and is the function to be closely matched
with the control signal at this phase. The rest of the components in the Fourier sine series are the har-
monics. The Fourier coefficient b1 = 2

𝜋
Vdc represents the amplitude of the fundamental component of

the rectangular wave 𝑣c(t) generated by one cycle of the six step operation. This amplitude of the fun-
damental voltage of six-step mode limits the maximum amplitude of the achievable modulation signal.
In other words, the maximum amplitude of the sinusoidal voltage signals that is achievable when using
the six-step mode is 2

𝜋
Vdc. From a control system design point of view, this means that if the calculated

control signal had an amplitude that exceeded this value, then the output of the inverter would not be
able to fully realize it.

One of the drawbacks for the six-step mode technique is that the amplitudes of the harmonics decay
in a linear way proportional to the index 1

n
. In particular, the third harmonic still has a relatively large

amplitude (see (2.3)) that only becomes one third of the fundamental component. From a control system
perspective, the harmonics become part of the noise and disturbances of the system. Therefore, their
amplitudes should be minimized. This means that the six-step mode technique will create large noise
effects and disturbances in the control system.

–Vdc/2

0

–π/ωe

+π/ωe

Vdc/2

Figure 2.2 Output 𝑣c of six-step mode.



Control of Semiconductor Switches via PWM Technologies 31

2.3 Carrier Based PWM
Use of the six-step mode to control the power electronic switches is relatively simple in implementation;
however, this approach has large harmonic components relative to the amplitude of the fundamental
component of the output voltage signal, which is 2

𝜋
Vdc. To reduce the effects of the harmonics, carrier

based Pulse Width Modulation (PWM) techniques with zero sequence injection are introduced.
In general, the carrier based PWM technique is to compare the amplitude of an input voltage signal

with that of a carrier signal, usually a periodic triangular signal with frequency fc. If the input voltage
signal (say phase A voltage, 𝑣∗a) is larger than the carrier in amplitude, the switch function Sa outputs high
level (logic “1”) and otherwise low level (logic “0”), leading to the actual voltage output calculated as

𝑣a = VdcSa −
Vdc

2
.

The carrier frequency (denoted by fc) is usually chosen to be much higher than the fundamental fre-
quency (denoted by f1) of the voltage signal and their ratio is the multiple of 3 for better reduction of
Total Harmonic Distortion (THD) (see Holmes and Lipo (2003)). For example, a ratio

fs

f1

= 21

could be used for this purpose.

2.3.1 Sinusoidal PWM

As one of the earliest PWM generation techniques (see Bowes, 1975), the Sinusoidal PWM (SPWM)
generates the digital pulses to control the IGBT switches by directly comparing the three-phase voltages
with the carrier, commonly a periodic triangular waveform. It was popular due to its simplicity and
feasibility to be implemented by analog circuits. As an example to demonstrate the working principle of
sinusoidal PWM technique, a carrier signal and three phase sinusoidal signals are shown in Figure 2.3
where the fundamental frequency of the sinusoidal signals is f1 and the carrier frequency is fc, and fc

f1
= 21.

The carrier signal has amplitude of ± Vdc

2
, where Vdc is the DC voltage of the power supply for the control

application of AC drives or Vdc as the DC voltage output for the control application of power converter. In
this illustration, there are 21 cycles of the carrier signal and one cycle of the three phase sinusoidal signals
(see Figure 2.3(a)). When comparing the three phase sinusoidal signals with the carrier signal, the values
of Sa, Sb and Sc are taken either 1 or 0, depending on whether the corresponding sinusoidal function is
greater or smaller than the carrier signal. The actual output voltages are in rectangular waveforms (see
Figure 2.3(b)) with their magnitudes being ± Vdc

2
and their switches dependent on the values of Sa, Sb

and Sc:

𝑣i = VdcSi −
Vdc

2
(i = a, b, c).

The fundamental components of the three rectangular waves in Figure 2.3(b) are found through Fourier
series analysis and are shown in the corresponding plots. It is seen that they have similar characteristics
as the input sinusoidal signals shown in Figure 2.3(a).

However, for the modulation to work within the linear range where its fundamental resembles the
desired signal, it requires that the maximum amplitude of the sinusoidal signal be less than Vdc

2
. Otherwise,

the exceeding parts will cause the switch states stay at either “1” or “0” and thus the fundamentals lose
their linear relationship to the desired reference voltage signals.

As a result, the controller output voltage should limit its value within ± Vdc

2
to avoid the nonlinear

modulation region if the sinusoidal PWM technique is used. The maximum modulation range could be
improved by zero-sequence injection, which has led to several different modulation schemes as intro-
duced below.
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Vdc/2

–Vdc/2

–Vdc/2

–Vdc/2

Vdc/2

Vdc/2

–Vdc/2

Vdc/2

Sine-triangle intersection
(a)

(b)

Figure 2.3 Illustration of sinusoidal PWM. Three phase voltage signals in (a) are reconstructed with Pulse-Width
Modulation (b). (a) Sine-triangle intersection. (b) Pulses and fundamental sinusoidal signals from Fourier analysis.
Top figure corresponds to solid-line wave in (a); middle figure corresponds to dashed-line wave in (a); bottom figure
corresponds to dotted-line wave in (a).

2.3.2 Carrier Based PWM with Zero-sequence Injection

To understand the carrier based PWM with zero-sequence injection, the existence of a zero sequence is
examined. For a three-phase system, let

𝑣∗a = 𝑣m sin(𝜔et)

𝑣∗b = 𝑣m sin
(

𝜔et − 2𝜋
3

)

(2.4)

𝑣∗c = 𝑣m sin
(

𝜔et + 2𝜋
3

)
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Figure 2.4 Carrier based PWM with zero sequence injection (Hava et al., 1999).

denote the desired reference voltages that will be closely approximated by the outputs of the voltage
source inverter. The neutral point voltage (𝑣n) with respect to ground, shown in Figure 2.1, can be repre-
sented by

𝑣n =
𝑣∗a + 𝑣∗b + 𝑣

∗
c

3
. (2.5)

If the desired three-phase voltage, 𝑣∗a, 𝑣∗b and 𝑣∗c , are balanced, it means that the neutral point voltage 𝑣n

equals 0. Because most balanced three-phase motors are three-wired systems with the isolated neutral
point, there is the freedom of adding a nonzero value voltage to the neutral point voltage (𝑣n), leading to
the modified three desired voltage signals,

𝑣∗∗a = 𝑣∗a + 𝑣n

𝑣∗∗b = 𝑣∗b + 𝑣n (2.6)

𝑣∗∗c = 𝑣∗c + 𝑣n.

Then, based on the modified three desired voltage signals, the sinusoidal PWM technique explained in the
previous section can be applied. Figure 2.4 illustrates the operation of the carrier based PWM technique
with zero-sequence injection, which shows that the same “zero sequence” is added to all three reference
voltage signals and these signals are compared with the carrier signal to produce the switching signals
Sa, Sb and Sc.

There are many approaches in choosing the zero-sequence signal, leading to a variety of car-
rier based PWM schemes in the literatures (see Hava et al., 1999). Amongst them, a commonly
encountered selection of the zero-sequence signal for injection is the third harmonic injection PWM
technique.

Third Harmonics Injection PWM (THIPWM) exploits the third harmonic component of the desired
reference signal as the injection signal. There are two types of injections with different amplitudes of the
third harmonic. With the desired reference voltage defined in (2.4), the THIPWM 1∕6 with one sixth of
the reference amplitude is given by

𝑣n = 1
6
𝑣m sin(3𝜔et).

Similarly, the THIPWM 1∕4 is given by

𝑣n = 1
4
𝑣m sin(3𝜔et).
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Figure 2.5 Waveform of THIPWM 1/6. Key: dashed-line original sinusoidal wave; dotted-line 1
6
𝑣m sin(3𝜔et);

solid-line sinusoidal wave with third harmonic injection.

With the third harmonics injection, the peak value of modified desired sinusoidal is reduced by the
injection, as the waveform in Figure 2.5 demonstrates.

It can shown that the maximum amplitude of the three phase voltage signals is reduced to

2
√

3

Vdc

2
= 1

√
3

Vdc

if the THIPWM1∕6 is used and to
3
√

3
√

7

Vdc

2

if the THIPWM1∕4 technique is used.
The ratio between the maximum amplitude of the three phase voltage signals and the value Vdc

2
is called

the modulation index, which is

m∗
max−THIPWM1∕6 =

2∕
√

3Vdc∕2

Vdc∕2
= 1.1547 (2.7)

for the THIPWM 1∕6 and

m∗
max−THIPWM1∕4 =

3
√

3∕
√

7Vdc∕2

Vdc∕2
= 1.1223 (2.8)

for the THIPWM 1∕4. Both modulation indices indicate that the linear modulation range is larger than
the one generated by the original sinusoidal PWM.

Note that THIPWM1/4 is derived for the purpose of the minimization of the Total Harmonic Distortion
(THD), whereas THIPWM1/6 is designed based on maximizing the linear modulation range (see Bowes
and Lai (1997)).

Now, with the Third Harmonic Injection technique, for the modulation to work within the linear range
where its fundamental resembles the desired signal, it requires that the maximum amplitude of the

sinusoidal signal be less than 1
√

3
Vdc or 3

√
3

√
7

Vdc

2
depending on whether THIPWM1∕6 or THIPWM1∕4

is being used. Basically, the modulation index will quantify the linear modulation range of the
three phase voltage signals with respect to the results from the original sinusoidal PWM. The linear
modulation range is translated into operational constraints from the perspective of controller design in
later chapters.
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2.4 Space Vector PWM
Space Vector PWM (SVPWM), as its name conveys, utilizes the concept of space vector and its geomet-
rical features to derive the on-off time duration for each switch. Similar to the definition of MMF space
vector in (1.12), the space vector of three-phase reference voltage is defined as

−→
V∗

s = 2
3

(

𝑣∗an + 𝑣
∗
bnej 2𝜋

3 + 𝑣∗cnej 4𝜋
3

)

. (2.9)

If a balanced three-phase voltage is employed, then
−→
V∗

s is a rotating vector with electrical speed𝜔e, which
is the frequency of sinusoidal signal.

The modulation of the desired space vector
−→
V∗

s is obtained by the time average of its two nearest active

vectors and a zero vector, either
−→
V0 or

−→
V7. Taking the first sector for example, as illustrated in Figure 2.6,

−→
V∗

s could be modulated with the time average of the active vector
−→
V1 and

−→
V2 within one sampling period

Ts by

Ts

−→
V∗

s = T1

−→
V1 + T2

−→
V2 (2.10)

where T1 and T2 are the duration of on-time for the active vectors
−→
V1 and

−→
V2 respectively. The relationship

between the modulated vector
−→
V∗

s and two nearest active vectors is obtained by applying the geometric
properties of the triangle,

Ts ⋅ |
−→
V∗

s |

sin
(

2𝜋

3

) =
T1 ⋅ |

−→
V1|

sin
(
𝜋

3
− 𝜃

) =
T2 ⋅ |

−→
V2|

sin(𝜃)
(2.11)

that implies the duty cycle ratio of each active vector is

T1

Ts

=
|
−→
V∗

s |

2

3
Vdc

⋅
sin

(
𝜋

3
− 𝜃

)

sin
(

2𝜋

3

) =
|
−→
V∗

s |

Vdc∕
√

3
⋅ sin

(
𝜋

3
− 𝜃

)

(2.12)

T2

Ts

=
|
−→
V∗

s |

2

3
Vdc

⋅
sin(𝜃)

sin
(

2𝜋

3

) =
|
−→
V∗

s |

Vdc∕
√

3
⋅ sin(𝜃), (2.13)

V6(101)V5(100)

V4(110)

V3(010) V2(011)

V1(001)
|Vi| = 2

3
Vdc

V0(000)

V7(111)
|Vmax| = 1

3
Vdc

T1

θ

T2 Vs

TsVs = T1V0 + T2V2

T0 + T7 = Ts − T1 − T2
*

Figure 2.6 Principle of SVM.
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where the length of each active vector |
−→
Vi| =

2

3
Vdc is used. It follows that the duration of the zero vector

applied is the remaining time of the sampling period,

T0 + T7 = Ts − T1 − T2. (2.14)

Since the hexagon has sixfold symmetry, the geometrical method discussed above can be used for the
other five sectors as well by rotating the modulation vector by (m − 1) 𝜋

3
rads with m = 1 · · · 6 denoting

the sector in which it locates. The conventional SVPWM symmetrically distributes the four switching
vectors, two active vectors and two zero vectors, within one sampling time, as shown in Figure 2.7.
Such an arrangement offers the benefits of fixed switching frequency and better harmonics reduction
performance.

Figure 2.7 shows a digital implementation of SVPWM within one sampling period for the example
illustrated in Figure 2.6. There are four switching vectors denoted by

−→
V0,

−→
V1,

−→
V2,

−→
V7 corresponding to

the four on-time periods, T0, T1, T2 and T7 calculated using (2.12)–(2.13). The arrangement of the four
switching vectors is shown in the top part of Figure 2.7, together with the three switching states Sa, Sb

and Sc. It is seen that the arrangement begins with the zero vector
−→
V0 and ends with the zero vector

−→
V7 for

the first half, and symmetrical with the second half of the graph. This forms a symmetrical pattern from
the center of the graph. The individual on-time period is also illustrated in the top part of Figure 2.7.

The bottom part of Figure 2.7 illustrates how SPVPWM is implemented. In the direct digital implemen-
tation, a parameter MAX is selected and a internal counter is set to count up and down within one sampling
period Ts to form two straight lines as illustrated, which can be described by the linear equations:

PWMtime =
2MAX

Ts

t 0 ≤ t <
Ts

2
(2.15)

PWMtime = 2MAX − 2MAX
Ts

t
Ts

2
≤ t < Ts. (2.16)

In the bottom part of Figure 2.7, on the vertical axis marked are the parameter MAX, and the three
IGBT switching counts PWMSa

, PWMSb
, PWMSc

. With the on-time periods T0, T1, T2 and T7 calculated,

MAX

Ts0

PWMSc

PWMSa

PWMSb

Sa

Sb

Sc

V0 V1 V2 V7 V7 V2 V1 V0
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Figure 2.7 Digital implementation of SVPWM.
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the corresponding count at which the IGBT switch turn-on period is calculated using the following
ratios:

PWMSa

MAX
=

T0

Ts

PWMSb

MAX
=

T0 + T1

Ts

(2.17)

PWMSc

MAX
=

T0 + T1 + T2

Ts

.

In this example, at the beginning of the sample period, Sa = Sb = Sc = 0. When PWMtime > PWMSa
and

PWMtime is increasing, the switching state Sa = 1. Similarly, when PWMtime > PWMSb
and PWMtime is

increasing, the switching state Sb = 1. The same conditions apply to the switching state Sc. After the
time t reaches Ts

2
, the operations continue in reverse. Namely, when PWMtime < PWMSc

and PWMtime

is decreasing, the switching state Sc = 0. The same conditions apply to the switching states Sb and Sa

to complete one cycle of space vector implementation of PWM. The maximum amplitude of the three
phase voltage signals to be realized by the space vector modulation technique is seen from Figure 2.6,
which is 1

√
3
Vdc. Thus, the modulation index is calculated as

m∗
SVPWM = 2

√
3
= 1.155. (2.18)

To ensure that the modulation is within the linear modulation range, it requires that voltages in the 𝛼 − 𝛽
reference frame satisfy √

𝑣𝛼(t)2 + 𝑣𝛽(t)2 ≤ 1
√

3
Vdc. (2.19)

This is based on the definition of the voltage space vector in relation to the voltage variables in 𝛼 − 𝛽
reference frame (see (1.22)). Similarly, the voltages in the d − q reference frame are also required to
satisfy √

𝑣d(t)2 + 𝑣q(t)2 ≤ 1
√

3
Vdc, (2.20)

based on the definition of the voltage space vector in relation to those in the d − q reference frame (see
(1.28)). The inequalities (2.19) and (2.20) will be used as constraints in the control system design and
implementation (see Chapter 4).

Note that the maximum amplitude of the three phase voltage signals when using the PWM with the
third harmonic injection technique ( 1

6
) is identical to the case when using the space vector modulation

technique, which is 1
√

3
Vdc. Thus, in the applications, the limit on the amplitude of the control signal is

often taken as 1
√

3
Vdc.

2.5 Simulation Study of the Effect of PWM
Since the time varying input voltages for AC drives and power converter are to be realized by the
PWM generation and inverter, taking the PMSM as an example, the complete plant model, as shown
in Figure 2.8, consists of machine model of PMSM, PWM and IGBT inverters. Note that Figure 2.8 is an
equivalent representation in d − q frame which does not illustrate the real hardware implementation in
three-phase representation. When the modulation signal (𝑣∗i ) works within the linear modulation region
of chosen PWM, the fundamental of output voltage (𝑣i) from the IGBT inverter approximates the desired
modulation signal, that is 𝑣∗i ≈ 𝑣i. With the combination of Park-Clarke and its inverse transformation of
which their multiplication is an identity matrix, it is assumed that 𝑣∗d ≈ 𝑣d and 𝑣∗q ≈ 𝑣q when using IGBT
inverters as actuators for controller implementation.
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Figure 2.8 Model of PMSM combined with PWM generator.

To study the impact of carrier frequency in PWM, simulation studies are performed using the phys-
ical parameters of the PMSM given in Table 1.2. Two sets of simulation results are obtained by using
the PMSM MATLAB/Simulink model illustrated in Figure 2.8. The first set of simulation results uses
a smaller PWM carrier frequency where fc = 1.05 kHz in contrast with the second set of simulation
results where a larger carrier frequency fc = 10.5 kHz is utilized. The voltage input signals to the PMSM
model are set as 𝑣∗d = 3 V and 𝑣∗q = 12.1244 V, and the DC bus voltage is fixed at 100 V so that the
modulation signal is within its linear modulation range. Figure 2.9(a) shows the three phase currents
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Figure 2.9 Spectrum of phase currents (fc = 1.05 kHz, 𝑣d = 3 V and 𝑣q = 12.1244 V).
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and Figure 2.9(b)shows the corresponding spectrum of A phase current for the lower carrier frequency
case. It is seen that with this lower carrier frequency, the ia, ib and ic currents contain a large amount
of high frequency harmonic noise (see Figure 2.9(a)) and the harmonics mainly occur around the car-
rier frequency and its multiples (see Figure 2.9(b)), that is 1.05n kHz with n denoting an integer in this
case. When the carrier frequency is increased to fc = 10.5 kHz, the high frequency harmonic noise in the
three phase currents is reduced as seen in Figure 2.10(a) and the current ripple still occurs at the carrier
frequency (see Figure 2.10(b)), but the multiples move to the high frequency region. At a certain high
frequency region, the current ripple is then attenuated by the limited bandwidth of the PMSM, which is
a first order type of system depending on the values of resistance (Rs) and inductance (Ld ,Lq).

In summary, the high frequency harmonic ripple with a low carrier frequency is much more severe
than the one with a high carrier frequency, and the harmonics occur around the carrier frequency and its
multiples. Thus, a higher carrier frequency in PWM offers improved performance in terms harmonics
attenuation. However, in practice, the resulting high switching loss, inherent characteristics of switching
devices and limited computational power prevent the use of a very high carrier frequency.
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Figure 2.10 Spectrum of phase currents (fc = 10.5 kHz, 𝑣d = 3 V and 𝑣q = 12.1244 V). (a) three-phase current and
(b) Spectrum of ia at steady-state.
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2.6 Summary
Two popular categories of PWM techniques, carrier based PWM and space vector based PWM, have also
been briefly revisited. It has been shown in Zhou and Wang (2002) that both implementation approaches
can lead to the same type of PWM, such as SVPWM, THIPWM and several variations of Discontinuous
PWM (DPWM) schemes (see Hava et al. (1999), Zhou and Wang (2002)). The implementation of these
PWM schemes is achieved by appropriate zero-sequence injection in the carrier based PWM approach,
while its corresponding equivalence is the varieties of the placement of zero-vector in the space vector
based PWM approach.

The maximum modulation index of the linear modulation ranges for different PWM is discussed.
Simulation results show that the PWM techniques have a reduced effect on the system when the carrier
frequency is increased.

2.7 Further Reading
A book was written on PWM by Holmes and Lipo (2003). An early work on sinusoidal PWM generator
was presented in Bowes (1975). Survey papers published on PWM technologies included Holtz (1992)
and Holtz (1994). PWM schemes based on voltage space vectors were realized and analyzed in van
der Broeck et al. (1988). Relationships between space-vector modulation and three-phase carrier-based
PWM were analyzed in Zhou and Wang (2002), Blasko (1997), Bowes and Lai (1997) and Chai and Wang
(2013). Carrier-based PWM-VSI over-modulation strategies were designed, analyzed and compared in
Hava et al. (1998). Graphic methods were discussed for carrier-based PWM-VSI drives in Hava et al.
(1999). Space vector modulation implementation with the ADMCF32X was discussed in Analog Devices
Inc (2000).

Geyer (2011) made comparative studies of control and modulation schemes for medium-voltage drives
between predictive control concepts and PWM-Based Schemes.
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3
PID Control System Design
for Electrical Drives and Power
Converters

Almost all electric drives and power converters in current industrial applications are controlled by PID
controllers. The control structures are already defined in commercial drives; however, the controller
parameters may be adjustable for performance improvement. In a typical drive, there are a number of
PID controllers used, depending on the actual applications.

To our knowledge from working with a number of industries, when AC drives are used as servo
drives to track velocity and position references, the PID control systems for the drives are in cascade
feedback structure in the q-axis, in which inner-loop q-axis current is controlled using a PI and the
outer-loop system is either controlled using PI for velocity control or PID for position control. This
structure at least can be traced back for the past two decades (see Quang and Dittrich (2008), Lorenz
et al. (1994), del Blanco et al. (1999)). It is necessary to use PID controllers for the outer-loop system
because of the closed-loop performance requirement for the disturbance rejection of load torque distur-
bances. However, in the inner-loop current controller design, a simpler choice for the q-axis current is a
proportional controller.

The first section of this chapter presents introductory materials for PID controller design and cascade
feedback control systems. Also highlighted in this section is an extremely simple approach to overcome
overshoot response to the reference signal of a PID control system. Using a PMSM drive as an example,
the next four sections of this chapter are devoted to discussing the design of PI controllers for current
control, cascade velocity control and cascade position control (see Sections 3.2–3.5). The similarities
between PMSM control and induction motor control are where they both use the same control system
architectures for the same control objectives whilst there may be a slight difference in the choice of ref-
erence signals. In Section 3.6, the general control system architecture of an induction motor is explained.
In Section 3.7, current control and velocity control of induction motor are introduced, where in addition,
the estimation of synchronous frequency or slip estimation is introduced. Although the control of power
converters also follows the similar control architectures as AC motor drives, the cascade control system
is used to control the d-axis current in order to achieve voltage control. In Section 3.8, the control system
architecture for a two level voltage source power converter is explained. In Section 3.9, PI current and
voltage control of a power converter is discussed, where in addition, a phase-locked-loop PI controller
is used for estimating the grid frequency.

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®, First Edition.
Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng.
© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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3.1 Overview of PID Control Systems Using Pole-assignment
Design Techniques

When using pole-assignment controller design technique for PID controllers, the starting point is to
assume that the transfer function of a plant model G(s) is available. In order to obtain unique solutions of
the controller parameters, its structure is restricted by the order of the transfer function G(s). For instance,
if the transfer function model is a first order model, then a PI controller is used, and if it is a second order
model, then a PID controller is used. With the model and the controller structure selected, the actual
closed-loop polynomial is parameterized using the unknown controller parameters, which is then made
to be equal to a desired closed-loop polynomial of the same order, leading to the unique solutions of the
PID controller parameters.

3.1.1 PI Controller Design

Assuming that a transfer function is given by

G(s) = b
s + a

(3.1)

and the PI controller is represented by

C(s) = Kc

(

1 + 1
𝜏Is

)

, (3.2)

where Kc is the proportional gain and 𝜏I is the integral time constant. The feedback PI control system is
illustrated in Figure 3.1, where R(s), E(s), U(s) and Y(s) denote the Laplace transforms of the reference
signal, error signal, control signal and output signal respectively.

To make the design simpler, the PI controller is written in the transfer function form,

C(s) =
c1s + c0

s
, (3.3)

where Kc = c1 and 𝜏I =
c1

c0
. We will first find the coefficients c1 and c0 based on the model (3.1), then

convert these coefficients into the standard PI controller parameters Kc and 𝜏I .
The closed-loop transfer function from the reference signal to the output signal is expressed as

Y(s)
R(s)

= G(s)C(s)
1 + G(s)C(s)

=
b

s+a

c1s+c0

s

1 + b

s+a

c1s+c0

s

=
b(c1s + c0)

s(s + a) + b(c1s + c0)
. (3.4)

Kc(τIs+1)
τIs

Plant
R(s) E(s) Y(s)U(s)+

−

Figure 3.1 Block diagram of PI control system.
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The closed-loop poles of the feedback system are the solutions of the polynomial equation with respect
to s, that is

s(s + a) + b(c1s + c0) = 0. (3.5)

Equation (3.5) is called a closed-loop characteristic equation. It is well understood that the locations of
the closed-loop poles determine the closed-loop stability as well as its response speed to reference signal
and disturbance rejection.

Since the model parameters a and b are given, the free parameters in (3.5) are the controller parameters
c1 and c0. To find the controller parameters c1 and c0, the following polynomial equation is set,

s(s + a) + b(c1s + c0) = s2 + 2𝜉𝑤ns +𝑤2
n, (3.6)

where the left-hand side of Equation (3.6) is the characteristic polynomial that determines the actual
closed-loop poles with the controller and the right-hand side is the desired closed-loop characteristic
polynomial that determines the desired closed-loop poles. The discussion on the desired closed-loop
characteristic polynomial with respect to the choice of natural frequency 𝑤n (or bandwidth) and
damping coefficient 𝜉 is discussed in Section 3.1.2. By equating these two polynomials, the actual
closed-loop poles are assigned to the desired closed-loop poles. This controller design technique is
called pole-assignment controller design.

Now, we compare the coefficients of the polynomial equation (3.6) on both sides. With the deliberately
chosen model structure and the controller structure, the coefficients for s2 on both sides of (3.6) are equal
to 1. Equating the coefficient of s on the left-hand side to the one on the right-hand side gives

a + bc1 = 2𝜉𝑤n. (3.7)

The same procedure is applied to the constant term, leading to

bc0 = 𝑤2
n. (3.8)

Solving (3.7) gives

c1 =
2𝜉𝑤n − a

b
(3.9)

and solving (3.8) gives

c0 =
𝑤2

n

b
. (3.10)

With the relationships between c1, c0 and Kc, 𝜏I (see Equation (3.3)), the PI controller parameters are
found as

Kc = c1 =
2𝜉𝑤n − a

b
(3.11)

𝜏I =
c1

c0

=
2𝜉𝑤n − a

𝑤2
n

. (3.12)

3.1.2 Selecting the Desired Closed-loop Performance

The natural frequency (or bandwidth)𝑤n and damping coefficient 𝜉 are the free parameters to be selected
by the designer as desired closed-loop performance specification.

The parameter 𝜉 is often chosen as 1 or 0.707 in practice. When 𝜉 = 1, the poles of the desired
closed-loop system are the solutions of the polynomial equation (see (3.6)),

s2 + 2𝑤ns +𝑤2
n = 0, (3.13)
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which are s1 = s2 = −𝑤n. Namely, we have two identical poles when 𝜉 = 1. With the second choice of
𝜉 = 1

√
2
≈ 0.707, the poles are a pair of complex-conjugate numbers determined by

s1,2 =
−2𝜉𝑤n ±

√
4𝜉2𝑤2

n − 4𝑤2
n

2
= −0.707𝑤n ± j0.707𝑤n, (3.14)

which have identical real and imaginary components.
When the damping coefficient 𝜉 = 0.707, the natural frequency 𝑤n is equal to the bandwidth of the

desired closed-loop control system that has the transfer function,

T(s) =
𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

, (3.15)

where the bandwidth is defined according to the cut-off frequency𝜔c with the parameter𝜔c being chosen
such that |T(j𝜔)| = T(0)

√
2

. It can readily verified that when s = j𝑤n, the magnitude of |T(j𝜔)| in (3.15) is
1
√

2
. Therefore, the larger 𝑤n is, the wider the desired closed-loop bandwidth is.

With the parameter 𝜉 chosen (either 1 or 0.707), the natural frequency 𝑤n becomes a closed-loop
performance parameter that the user specifies according to the desired closed-loop response requirement.
From the simulation of a step response using (3.15) (see Figure 3.2), the settling time1 Ts with respect to
the parameter 𝑤n is estimated as

Ts ≈
5𝜉
𝑤n

. (3.16)

With this estimate, we can convert the desired closed-loop settling time to the actual parameter 𝑤n that
will be used in the design of PI controller. For instance, if we want the desired closed-loop settling
time to be 4 to 5 seconds, then 𝑤n = 1. Figure 3.2 is used to illustrate the relationship between the
settling time and the parameter 𝑤n. Figure 3.3 shows the magnitudes of the frequency responses of the
closed-loop transfer function (3.15) with 𝑤n = 1 and 10. With 𝜉 = 0.707, we identify the bandwidth
is 𝜔c = 1 and 𝜔c = 10 respectively. However, with 𝜉 = 1, when s = j𝑤n, simple calculation shows
that |T(j𝜔)| = 0.5, which is less than 0.707, implying that with this choice of damping coefficient,
the bandwidth is narrower. In fact, the bandwidth is calculated as 𝜔c ≈ 0.645𝑤n as illustrated in
Figure 3.3.

0 5 10
0

0.5

1

1.5

Time (sec)

1
2

(a)

0 5 10
0

0.5

1

1.5

Time (sec)

1
2

(b)

Figure 3.2 Step response of the desired closed-loop transfer function. Key: line (1)𝑤n = 1, line (2)𝑤n = 10. (a) 𝜉 =
0.707 and (b) 𝜉 = 1.

1 Settling time is defined as the time required to complete 95 percent of the response.
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Figure 3.3 Magnitude of the frequency response of transfer function (3.15). Key: line (1)𝑤n = 1; line (2)𝑤n = 10;
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for the bandwidth. (a) 𝜉 = 0.707 and (b) 𝜉 = 1.

3.1.3 Overshoot in Reference Response

To examine the issue of overshoot in response to reference signal, the following example is used. Assume
that the plant is described by the transfer function

G(s) = 1
s(s + 1)3

. (3.17)

This model structure is not a first order system, therefore the design methods discussed in the previous
sections are not directly applicable. However, it can be designed using the frequency response data gen-
erated from the transfer function (3.17) that will capture the low to medium frequency information of the
system (see Wang and Cluett (2000)). With the frequency response approach, the PI controller is found
to have the parameters: Kc = 0.56, 𝜏I = 8., leading to a stable closed-loop system. In the following, we
will demonstrate that although it is the same PI controller, there are two approaches that can be used for
its implementation and the results are very different in terms of reference signal response.

3.1.3.1 The Traditional Approach

In the traditional implementation, the control signal u(t) is calculated using the following expression:

u(t) = Kc(r(t) − y(t)) +
Kc

𝜏I
∫

t

0
(r(𝜏) − y(𝜏))d𝜏, (3.18)

where r(t) and y(t) are the reference and output signals, respectively. The closed-loop transfer function
between the Laplace transform of the reference signal R(s) and the output Y(s) is

Y(s))
R(s)

=
Kc(𝜏Is + 1)

𝜏Is2(s + 1)3 + Kc(𝜏Is + 1)
. (3.19)

3.1.3.2 The Alternative Approach

In the alternative implementation, the control signal is calculated using

u(t) = −Kcy(t) +
Kc

𝜏I ∫
t

0
(r(𝜏) − y(𝜏)) d𝜏, (3.20)
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Figure 3.4 Closed-loop step response of PI control system. Key: line 1: the response from the original structure;
line 2: response from the alternative structure.

where the proportional controller Kc is implemented on the output signal only. The closed-loop transfer
function for the alternative approach is

Y(s)
R(s)

=
Kc

𝜏Is2(s + 1)3 + Kc(𝜏Is + 1)
. (3.21)

The closed-loop step responses for both controller implementations are simulated and compared in
Figure 3.4, which shows that the original PI closed-loop control system has a large overshoot, in contrast,
the alternative PI closed-loop control system has avoided this overshoot.

By comparing the closed-loop transfer function (3.19) from the original PI controller structure with
the one (3.21) from the alternative structure, we notice that both transfer functions have the same denom-
inator; however, the one from the original structure has a zero at − 1

𝜏I
. Because of this zero, the original

closed-loop step response had an overshoot. In other words, the alternative structure is equivalent to a
filter 1

𝜏I s+1
being added to the reference signal, which is, in fact, a two-degrees of freedom control system

illustrated in Chapter 5.
It is important to point out that the implementation of PI controller using the alternative structure (see

(3.18)) is useful for the outer-loop control systems where an overshoot response to a reference signal
is not desirable. However, if the PI controller is used in an inner-loop control system, then the original
implementation structure (see (3.20)) is recommended because it provides a faster dynamic response and
overshoot to reference signal is not an issue in this situation.

3.1.4 PID Controller Design

PID control is generally required when controlling the angular position of an AC drive because it has a
second order transfer function in the following form:

Y(s)
U(s)

= b
s(s + a)

. (3.22)

An ideal PID controller has the transfer function

C(s) = Kc

(

1 + 1
𝜏Is

+ 𝜏Ds

)

, (3.23)

where Kc is the proportional gain, 𝜏I is the integral time constant and 𝜏D is the derivative gain.
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We rewrite the PID controller given in (3.23) into the transfer function form

C(s) =
c2s2 + c1s + c0

s
. (3.24)

By comparing (3.23) with (3.24), we have the relationships,

Kc = c1; 𝜏I =
c1

c0

; 𝜏D =
c2

c1

. (3.25)

In the design, the first step is to find the parameters in (3.24), then convert them into the PID controller
parameters required in the implementation stage.

The pole-assignment controller design technique is used here to find the PID controller parameters
c2, c1 and c0. The closed-loop transfer function with the PID controller (3.24) and the dynamic transfer
function model (3.22) is

Y(s)
R(s)

=
b(c2s2+c1s+c0)

s2(s+a)

1 + b(c2s2+c1s+c0)
s2(s+a)

=
b(c2s2 + c1s + c0)

s2(s + a) + b(c2s2 + c1s + c0)
. (3.26)

Note that the closed-loop polynomial, which is the denominator of (3.26), is of a third order. In the
design of a pole-assignment controller, we will choose three desired closed-loop poles for the closed-loop
performance specification. The pair of dominant desired closed-loop poles are selected as s1,2 = −𝜉𝑤n ±
j𝑤n

√
1 − 𝜉2, where 𝜉 = 0.707, and the fast pole is then chosen to be s3 = −n ×𝑤n (n ≫ 1, for example,

10). With this specification, the parameter 𝑤n is approximately the bandwidth of the desired closed-loop
system. This leads to the desired closed-loop polynomial as

Ad
cl = (s2 + 2𝜉𝑤ns +𝑤2

n)(s + n ×𝑤n) = s3 + t2s2 + t1s + t0,

where t2 = (2𝜉 + n)𝑤n, t1 = (2𝜉n + 1)𝑤2
n, t0 = n𝑤3

n.
Letting the desired closed-loop polynomial equal to the actual closed-loop polynomial, and as the

result, the following polynomial equality is obtained:

s2(s + a) + b(c2s2 + c1s + c0) = s3 + t2s2 + t1s + t0. (3.27)

By comparing the coefficients from both sides of (3.27) and setting them to be equal, the controller
parameters are found as

c2 =
t2 − a

b
(3.28)

c1 =
t1

b
(3.29)

c0 =
t0

b
. (3.30)

Accordingly, the PID controller parameters are found for the position control of the outer-loop system:

Kc = c1 =
(2𝜉n + 1)𝑤2

n

b
(3.31)

𝜏I =
c1

c0

=
(2𝜉n + 1)𝑤2

n

n𝑤3
n

= (2𝜉n + 1)
𝑤n

(3.32)

𝜏D =
c2

c1

=
(2𝜉 + n)𝑤n − a

(2𝜉n + 1)𝑤2
n

. (3.33)



48 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

In the implementation of the PID controller for position control, it is almost without exception that the
implementation of the derivative term should be directly on the output signal to avoid the situation of
derivative “kick” due to step reference signal changes on the position. This is because the derivative of a
step signal is infinity at the time of change and the derivative action from the reference signal will lead
to a large amplitude in the control signal that could cause problems. Therefore, the control signal uD(t)
from the derivative term is

uD(t) = −Kc𝜏D

dy(t)
dt

. (3.34)

In the AC drive control, the derivative of the output (angular position), is the angular velocity that is
directly available for implementation. Additionally, the proportional control Kc can also be implemented
on the output only to avoid an overshoot in the reference response. Thus, the PID control signal u(t) is
calculated using the following equation:

u(t) = −Kcy(t) +
Kc

𝜏I
∫

t

0
(r(𝜏) − y(𝜏))d𝜏 − Kc𝜏D

dy(t)
dt

. (3.35)

3.1.5 Cascade PID Control Systems

Figure 3.5 shows a cascade feedback control structure, which represents the control systems used in
electrical drives and power converters. The inner-loop controller C1 (also called secondary controller)
is to control Plant1 (secondary plant), where its reference signal is the desired current signal U∗

1 (s) that
is also the control signal generated from the outer-loop controller. For the cascade control system, the
primary objective is to control the Plant2 (primary plant) with either a PI or a PID controller, depending
on the complexity of Plant2.

3.1.5.1 Why a Cascade Control System Is Used

There is always a primary control objective combined with a secondary control objective when deploying
a cascade control system structure. For the electrical drives and power converters, the primary objective
could be to control an AC motor’s angular velocity or position or a power converter’s voltage, however,
the secondary objective is to regulate the current flow. To our best knowledge, all industrial AC drives
for velocity and position control use a PI cascade control structure. The key to the success of the cascade
PI control systems for these applications lies in the large difference between the time constants of the
secondary plant and the primary plant. For instance, the response time of the current is much faster than
that of a motor’s velocity. There are a few distinguishing features when using a cascade control system
as discussed below.

1. Simplification of control system design. When using a cascade control system, a complex plant is
decomposed into two subsystems. For the electrical drives and power converters, these subsystems
are first order systems or second order systems. Because of the large difference between the time

PI/PID C1 Plant1 Plant2
R(s) Y(s)U1(s)++

– –

U1(s)*

Figure 3.5 Cascade feedback control structure.
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constants of the subsystems mentioned above, PI and PID controllers can be designed separately and
effectively using the models of the subsystems.

2. Effectively handling nonlinearity of current systems. As shown in Chapter 1, there are nonlinearities
in the current systems. With the inner-loop current control, a high gain feedback control is used in
practice to overcome the effects of nonlinearities.

3. Effectively handling parameter variations in current systems. The resistance and inductance in the
current systems are likely varying with respect to temperature and operating conditions. With high
gain feedback control, the impact of their variations on the current regulation is reduced.

4. Implementation of current constraints. Over-current protection is necessary in the control of electri-
cal drives and power converters. Because there is a primary control objective, the calculated current
signal may exceed its limits due to a large load. With the cascade control structure, the limits of the
current signal can be easily implemented with an anti-windup mechanism as the constraints on the
manipulated variable of the primary controller shown in Chapter 4.

5. Reducing computational cost. In the cascade control system design, the inner-loop current control
system will have a much larger bandwidth (𝑤n) than the one used in the outer-loop control system.
Dual sampling rate is used in the implementation of the cascade control system in which the outer-loop
control system is sampled in a much slower rate. As a result, the computational cost for the entire
control system is reduced.

3.1.5.2 Design Principle Used for the Cascade Control System

The design of a cascade control system begins with the secondary controller for the inner-loop system. In
principle, the inner-loop current controller can be either a proportional controller or a PI controller. When
designing a proportional controller for the inner-loop system, special attention is paid to the steady-state
gain of the closed-loop system that will be used in the model of the outer-loop controller design. The
bandwidth of the inner-loop control system is selected to be sufficiently large so that its dynamics can
be neglected when designing the primary controller.

Because the steady-state error is not a key issue for the inner-loop control system, the deployment of
proportional controller could provide the benefit of simplicity. However, the steady-state error needs to
be considered in the design of the primary controller and in the implementation of the current constraints
(see Chapter 4). Bearing in mind that the steady-state error changes with respect to the parameters of
the system when using a proportional controller, it is fair to say that the benefit of simplicity may be lost
when taking into consideration performance robustness, which may be one of the key reasons why the
majority of the industrial current controllers uses a PI controller.

3.2 Overview of PID Control of PMSM
The starting point is to assume a dynamic model of a PMSM in the d − q reference frame. For those who
are interested in the derivation of the dynamic model, Chapter 1 gives a detailed description of PMSM
drives.

Assume that a PMSM is described by the differential equations in the d − q rotating reference frame as

did(t)
dt

= 1
Ld

(𝑣d(t) − Rsid(t) + 𝜔e(t)Lqiq(t)) (3.36)

diq(t)
dt

= 1
Lq

(𝑣q(t) − Rsiq(t) − 𝜔e(t)Ldid(t) − 𝜔e(t)𝜙mg) (3.37)

d𝜔e(t)
dt

=
Zp

Jm

(

Te −
B𝑣
Zp

𝜔e(t) − TL

)

(3.38)
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Te =
3
2

Zp[𝜙mgiq + (Ld − Lq)id(t)iq(t)], (3.39)

where𝜔e is the electrical speed and is related to the rotor speed by𝜔e = Zp𝜔r with Zp denoting the number
of pole pairs, 𝑣d and 𝑣q represent the stator voltages in the d − q frame, id and iq represent the stator
currents in this frame, and TL is load torque that is assumed to be zero if no load is attached to the motor.
The electromagnetic torque Te consists of two parts: that produced by the flux of the permanent magnet
𝜙mg and that by id and iq, respectively.

The physical parameters in the dynamic model of a PMSM are the quadrature axis stator inductance
Lq and the direct axis inductance Ld, 𝜙mg that is the flux linkage due to permanent magnet, the stator
resistance Rs motor inertia Jm, viscous friction coefficient B𝑣. The physical parameters are measured
either through experiments or are given in the nameplate of a PMSM, as discussed in Chapter 1.

In the control system design, a cascade feedback and feedforward control system is configured for
velocity control. Figure 3.6 shows the velocity control system configuration of a typical industrial PMSM
drive. In the drive control systems, there are two PI controllers to control the d-axis and q-axis currents
and one PI controller in the outer-loop to achieve the primary control objective of regulating the velocity
(see Figure 3.6). Here, the velocity is controlled using a cascade control system structure for the reasons
discussed in Section 3.1.

3.2.1 Bridging the Sensor Measurements to Feedback Signals
(See the lower part of Figure 3.6)

The feedback signals to the controllers are d-axis current id and q-axis current iq. If the primary objective
is to regulate the electrical velocity, then 𝜔e will also be one of the feedback signals. There are several
procedures used to bridge the sensor measurements and the feedback signals.

There are three current sensors to measure the three phase currents ia, ib and ic as shown in Figure 3.6.
The transformation of the three-phase currents to their components in 𝛼-𝛽 frame is achieved by the Clarke
transformation,

[
i𝛼
i𝛽

]

= 2
3

⎡
⎢
⎢
⎣

1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

ia

ib

ic

⎤
⎥
⎥
⎦

. (3.40)
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Figure 3.6 Schematic diagram for cascade control of PMSM angular velocity.
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This transformation is to reduce the three measurements to two measurements, but the current variables
i𝛼 and i𝛽 are sinusoidal signals. To obtain the current feedback signals id and iq in the d − q reference
frame or the rotating reference frame, the following Park transformation is used,

[
id
iq

]

=
[

cos 𝜃e sin 𝜃e

− sin 𝜃e cos 𝜃e

] [
i𝛼
i𝛽

]

, (3.41)

where the sinusoidal signals i𝛼 and i𝛽 are converted to the d-axis current id and q-axis current iq. In a
normal steady-state operation of PMSM, the id and iq currents are expected to be constants. Hence, PI
controllers are used to regulate the id and iq currents.

To obtain the electrical velocity signal 𝜔e used in the velocity controller, an encoder is used to measure
the mechanical angle of the PMSM, 𝜃r . This mechanical angle 𝜃r is converted to electrical angle 𝜃e by
multiplying the number of pair of poles Zp (see Figure 3.6). By differentiating the electrical angle 𝜃e,
the electrical velocity 𝜔e is obtained for the PI of the velocity. Note that the parameter 𝜃e is used in the
inverse Clarke transformation in (3.41), thus, the measurement of angular position is important even for
the torque control of the PMSM.

3.2.2 Bridging the Control Signals to the Inputs to the PMSM (See the top
part of Figure 3.6)

The controllers’ outputs are the d-axis voltage 𝑣d and q-axis voltage 𝑣q. There are several mechanisms
used to transform the 𝑣d and 𝑣q voltages to the three phase voltages used to drive the PMSM. The steps
are reversed operations when dealing with the current measurements. Firstly, the voltages 𝑣𝛼 and 𝑣𝛽 in
the 𝛼 − 𝛽 reference frame are computed

[
𝑣𝛼
𝑣𝛽

]

=
[

cos 𝜃e − sin 𝜃e

sin 𝜃e cos 𝜃e

] [
𝑣d

𝑣q

]

. (3.42)

Note that the transformation matrix is an inversion of Park transformation. The 𝑣
𝛼 and 𝑣𝛽 are sinusoidal

signals with their frequency dependent on the electrical speed of the motor (𝜔e). To convert the voltages
in the 𝛼 − 𝛽 reference frame to the three phase voltages required to drive the PMSM, the inverse Clarke
transform is used. To do so, let 𝑣0 represent the zero sequence component of three phase voltage which
is zero for a balanced three phase voltage. Then, the inverse Clarke transformation leads to

⎡
⎢
⎢
⎣

𝑣a

𝑣b

𝑣c

⎤
⎥
⎥
⎦

=
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1 0 1
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√
3

2
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⎥
⎦

⎡
⎢
⎢
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𝑣0

⎤
⎥
⎥
⎦

. (3.43)

At this point, the control system has computed the three phase voltage signals needed to operate the
PMSM. The actual implementation of the control signals requires the devices of the semiconductor
switches connected with a DC power supply (see Chapter 2). The common functions of these devices are
to conduct power flow by varying the on–off duration of each switch. In the AC motor control case, the
primary concern is to achieve the desired sinusoidal phase voltage with varying magnitudes and frequen-
cies through turning on–off each power switch. The technology to generate such a gate control signal is
called Pulse Width Modulation (PWM) (see Chapter 2).

For those who are interested in how the gate control signal is generated in the implementation of the
PID control systems, Chapter 2 has described the PWM implementation procedure. In addition, Chapters
6–7 will discuss the predictive control technologies that directly generate this gate control signal without
deploying PWM.
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3.3 PI Controller Design for Torque Control of PMSM
Torque control is among the mainstream applications of PMSM. One of the well known examples is the
case when a PMSM is used in an electric car where a mimic to pedal control of a petrol car is designed
to make the driver feel more in control. In this application, the set-point signal to the electrical torque
could be obtained from the interpretation of the force to the foot pedal, then closed-loop control of the
electrical torque is utilized to achieve the control objective. This section will discuss how to design PI
control systems to achieve torque control.

Note that from (3.39), the electromagnetic torque Te(t) comprises two terms where the first term is
proportional to the q-axis current and the second term is proportional to the id(t)iq(t) product. Because of
this relationship, the closed-loop control of electromagnetic torque is achieved via closed-loop control
of the d-axis and q-axis currents.

3.3.1 Set-point Signals to the Current Control Loops

In the application of torque control, the set-point signals to the current loops are either constant or
piece-wise constant. In normal operation, the reference signal to the d-axis current is selected to be
zero for producing a maximum torque given the same amount of currents in the three phase windings.
By doing so, the second term in (3.39) is controlled to be zero at steady-state operation. Otherwise,
the electromagnetic torque Te would have a nonlinear relationship to iq. Thus, at the steady-state
operation, the influence on the electromagnetic torque is reflected by the reference signal to the
q-axis current.

For a surface mounted PMSM, the inductances Ld and Lq are identical, thus the second term in (3.39)
becomes zero from the dynamic structure of the PMSM. Then the relationship between electromagnetic
torque and the q-axis current for a surface mounted PMSM is

Te(t) =
3
2

Zp𝜙mgiq(t). (3.44)

Therefore, in order to control the electromagnetic torque, the control of q-axis current is required. The
set-point signal of the current i∗q is computed using the steady-state relation,

i∗q = 2
3

T∗
e

Zp𝜙mg

, (3.45)

where T∗
e is the reference signal to the electromagnetic torque.

If it is an interior mounted PMSM, the second term in (3.39) is not zero, which is a bilinear function
of the d-axis and q-axis currents. By approximating it using a first order Taylor series expansion, the
bilinear term becomes

id(t)iq(t) = i∗di∗q + i∗q(id(t) − i∗d) + i∗d(iq(t) − i∗q), (3.46)

where i∗d and i∗q are the steady-state values for the d- axis and q-axis currents, respectively. In the operation
of a PMS motor, it is a common practice to choose the steady-state value for the d-axis current to be zero,
which is enforced by choosing its set-point signal to be zero, leading to the set-point signal for the q-axis
current being calculated with (3.45). However, if the set-point signal of the d-axis current is not zero
(i∗d ≠ 0), then with its given value T∗

e , the set-point signal to the q-axis current is calculated using

i∗q = 2
3

T∗
e

Zp𝜙mg(1 + i∗d)
. (3.47)
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3.3.2 Decoupling of the Current Control Systems

There are nonlinear cross-coupling terms in (3.36) and (3.37) through 𝜔eiq, 𝜔eid and 𝜔e and these
cross-coupling terms can be eliminated using a technique called input-and-output linearization and also
decoupling using feedforward manipulation.

The central idea is to use auxiliary variables 𝑣̂d and 𝑣̂q such that

1
Ld

𝑣̂d =
1
Ld

(𝑣d + 𝜔eLqiq) (3.48)

1
Lq

𝑣̂q =
1
Lq

(𝑣q − 𝜔eLdid − 𝜔e𝜙mg). (3.49)

By substituting these equations into (3.36) and (3.37), we obtain the first order models for the electrical
part of the machine dynamics as

did

dt
= −

Rs

Ld

id +
1
Ld

𝑣̂d (3.50)

diq

dt
= −

Rs

Lq

iq +
1
Lq

𝑣̂q. (3.51)

Based on (3.50) and (3.51), two feedback controllers can be designed for the stator current control by
manipulating the auxiliary stator voltages in the d − q frame.

Because the set-point signals to the d and q current loops are constant or piece-wise constant as stated
previously, in order to ensure zero steady-state errors to a given reference signal, for the first order
dynamics exhibited in the current dynamic models (3.50) and (3.51), PI controllers are best suited to
the applications.

Using a proportional gain Kd
c and an integral time constant 𝜏d

I , the PI controller for the d-axis current
control has the form,

𝑣̂d(t) = Kd
c (i

∗
d(t) − id(t)) +

Kd
c

𝜏d
I
∫

t

0
(i∗d(𝜏) − id(𝜏))d𝜏. (3.52)

A similar PI controller form is assumed for the q-axis current control:

𝑣̂q(t) = Kq
c (i∗q(t) − iq(t)) +

Kq
c

𝜏
q
I
∫

t

0
(i∗q(𝜏) − iq(𝜏))d𝜏. (3.53)

Using the relationship (3.48) between 𝑣̂d and 𝑣d , the actual control signal, which is the d-axis voltage, is
calculated:

𝑣d(t) = Kd
c (i

∗
d(t) − id(t)) +

Kd
c

𝜏d
I
∫

t

0
(i∗d(𝜏) − id(𝜏))d𝜏 − 𝜔e(t)Lqiq(t). (3.54)

Figure 3.7 shows the d-axis current control using nonlinear feedforward compensation.
A similar procedure is applied for the q-axis current control using nonlinear feedforward compensation

(see (3.49)) leading to the computation of the control signal, which is the q-axis voltage, as

𝑣q(t) = Kq
c (i∗q(t) − iq(t)) +

Kq
c

𝜏
q
I
∫

t

0
(i∗q(𝜏) − iq(𝜏))d𝜏

+𝜔e(t)Ldid(t) + 𝜔e(t)𝜙mg. (3.55)
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Figure 3.8 PI control of electromagnetic torque using nonlinear feedforward compensation.

Figure 3.8 illustrates the PI controller structure for controlling the electromagnetic torque using nonlinear
feedforward compensation.

3.3.3 PI Current Controller Design

In the design of PI controllers for the current control loops, the Laplace transfer functions for the electric
system are obtained based on (3.50)–(3.51) as

Id(s)
V̂d(s)

=
1

Ld

s + Rs

Ld

(3.56)

Iq(s)

V̂q(s)
=

1

Lq

s + Rs

Lq

, (3.57)

where Id(s) and Iq(s) are the Laplace transforms of the d-axis and q-axis currents; V̂d(s) and V̂q(s) are the
Laplace transforms of the auxiliary voltage variables.

The transfer function of the PI controller for the d-axis current loop has the following form:

C(s) = Kd
c

(

1 + 1
𝜏d

I s

)

. (3.58)

In the controller design, the proportional gain Kd
c (or Kq

c ) and the integral time constant 𝜏d
I (or 𝜏q

I )
are determined using pole-assignment controller design. Based on the design approach introduced in
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Section 3.1, by letting a = Rs

Ld
and b = 1

Ld
, the proportional control gain and the integral time constant are

calculated as

Kd
c = Ld

(

2𝜉𝑤n −
Rs

Ld

)

= 2𝜉𝑤nLd − Rs (3.59)

𝜏d
I =

2𝜉𝑤n −
Rs

Ld

𝑤2
n

=
2𝜉𝑤nLd − Rs

Ld𝑤
2
n

. (3.60)

Similarly, the PI controller parameters for the control of q-axis current are calculated as:

Kq
c = 2𝜉𝑤nLq − Rs (3.61)

𝜏
q
I =

2𝜉𝑤nLq − Rs

Lq𝑤
2
n

. (3.62)

In the design, the damping coefficient 𝜉 is selected to be 0.707 and the natural frequency 𝑤n is selected
to determine the desired closed-loop settling time, which also corresponds to the desired bandwidth of
the closed-loop system. The larger 𝑤n is, the shorter the desired closed-loop settling time is. It is also
useful to choose this parameter relative to the bandwidth of the open-loop system, which is either Rs

Ld

or Rs

Lq
. Here, a normalized parameter 0 < 𝛾 < 1 is proposed to be used where the desired closed-loop

bandwidth is calculated as

𝑤n = 1
1 − 𝛾

Rs

Ld

(3.63)

for use in the d-axis current control, or

𝑤n = 1
1 − 𝛾

Rs

Lq

(3.64)

for the q-axis current control. With this type of formulae, the parameter 𝛾 is often selected around 0.9 to
give a satisfactory performance. The desired closed-loop performance in the d-axis may differ from the
one used in the specification of q- axis current control system.

3.4 Velocity Control of PMSM
There are two configurations for the PID current control systems. The d-axis current id is always con-
trolled by using a PI controller to ensure there is no steady-state error for the d-axis current. In the
majority of industrial electrical drives, the q-axis current control loop is also based on a PI controller.
However, from a control engineer’s point of view, for the q-axis current, because there is an outer-loop
PI control system, as shown in this chapter, it could use a high gain proportional control as the inner-loop
controller when using the nonlinear feedforward compensation proposed here.

3.4.1 Inner-loop Proportional Control of q-axis Current

In a cascade control system, the design begins with the inner-loop control systems. Because the inner-loop
is a proportional feedback controlled system, there is a steady-state error between the desired set-point
signal and the actual output signal. The steady-state error should be taken into consideration in the
design of the outer-loop control system. In order to make a suitable choice of the proportional gain,
we examine the characteristics of the proportional closed-loop inner-loop system. For a proportional
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gain Kq
c , the closed-loop transfer function between the set-point signal I∗q (s) and the actual current Iq(s) is

written as

Iq(s)
I∗q (s)

=

Kq
c

Lq

s + Rs

Lq
+ Kq

c

Lq

. (3.65)

The closed-loop pole for the q-axis current control is at − Rs

Lq
− Kq

c

Lq
. The larger Kq

c is, the faster the

inner-loop current response will be. In this particular case, the steady-state gain of the current control-loop
is calculated by setting s = 0 in (3.65) as

Iq(0)
I∗q (0)

=

Kq
c

Lq

Rs

Lq
+ Kq

c

Lq

.

The factors affecting the choice of the proportional gain for the current control loop include the dynamic
response speed, the closed-loop steady-state gain, and the noise level in the system. On one hand, we
desire a faster closed-loop response speed and a higher closed-loop steady-state gain, and on the other
hand, we will try to avoid amplification of the noise in the inner-loop system which will be the conse-
quence of higher gain and faster response speed.

Because the steady-state gain in the inner-loop control system will be used in the design of outer-loop
control system, it is convenient to directly specify its desired value, then incorporate it later in the design.
For this purpose, for the q-axis current control, we let the parameter 0 < 𝛼 < 1 represent the steady-state
gain for the current control loop, so that

𝛼 =

Kq
c

Lq

Rs

Lq
+ Kq

c

Lq

. (3.66)

By solving the steady-state equation, we obtain the proportional gain for the q-axis current control loop:

Kq
c = 𝛼

1 − 𝛼
Rs, (3.67)

where 0 < 𝛼 < 1.
By substituting the proportional controller gain (3.67) into the closed-loop transfer function (3.65), we

obtain
Iq(s)
I∗q (s)

=

𝛼

1−𝛼
Rs

Lq

s + 1

1−𝛼
Rs

Lq

, (3.68)

Because the open-loop pole is located at − Rs

Lq
, and from this equation it is seen that the closed-loop pole

is at − 1

1−𝛼
Rs

Lq
, thus the ratio between the closed and open-loop poles is 1

1−𝛼
. If the desired steady-state

gain 𝛼 = 0.9, the controller gain is Kq
c = 9Rs, the closed-loop pole is 10 times that of the open-loop pole

−10 Rs

Lq
. The implication for this choice is that the steady-state error for the current control loop is 10

percent. Namely, at the steady-state,

lim
t→∞

i∗q − iq(t)
i∗q

= 0.1, (3.69)

where i∗q is the reference signal for the q-axis current.
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Upon deciding the value of the proportional gain, the control signal for the q-axis current-loop is
calculated using the feedback and feedforward configurations:

𝑣q(t) = Kq
c (i∗q(t) − iq(t)) + 𝜔e(t)Ldid(t) + 𝜔e(t)𝜙mg. (3.70)

The closed-loop performance of the q-axis current system is mainly determined by the steady-state gain
𝛼. When 𝛼 = 0, the current control gain Kq

c becomes zero; and when 𝛼 = 1, the current control gain Kq
c

becomes infinity. Thus, the value of 𝛼 should be chosen away from these two extreme values. Although
the theoretical value of 𝛼 is between 0 and 1, but in practice, 𝛼 is found to be in the range between 0.7
and 0.9 in order to achieve high gain control for the inner-loop current system, which is the basis for the
cascade closed-loop control systems to work well. More discussion on the choice of 𝛼 with respect to
closed-loop performance will be given in Chapter 5. Figure 3.9 shows the configuration of the inner-loop
current control with nonlinear feedforward compensation.

3.4.2 Cascade Feedback Control of Velocity:P Plus PI

Figure 3.10 shows the cascade feedback control structure for velocity control of PMSM, where the
inner-loop controller is a proportional controller and outer-loop controller is a PI controller.

The design of outer-loop control system is based on the following equations:

d𝜔e(t)
dt

=
Zp

Jm

(

Te −
B𝑣
Zp

𝜔e(t) − TL

)

(3.71)

Te =
3
2

Zp[𝜙mgiq + (Ld − Lq)id(t)iq(t)], (3.72)

+

–

+

+

iq

vq(t)

ωe(t)id(t)Ld

ϕmgωe(t)

Kc
q

iq*

Figure 3.9 Expression of P controller with nonlinear feedforward compensation.
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Figure 3.10 Cascade feedback control of velocity using P plus PI structure.
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which are part of the dynamic equations from the model of PMSM (see (3.36)–(3.39)). These equations
have been used in describing the mechanical part of the system and the link between the mechanical and
electrical systems. By substituting (3.72) into (3.71), we obtain

d𝜔e(t)
dt

=
Zp

Jm

Te(t) −
B𝑣
Jm

𝜔e(t) −
ZP

Jm

TL

= 3
2

Z2
p𝜙mg

Jm

iq(t) +
3
2

Z2
p

Jm

(Ld − Lq)id(t)iq(t) −
B𝑣
Jm

𝜔e(t) −
Zp

Jm

TL. (3.73)

Note that the second term on the right-hand side of (3.73) is bilinear and contains a factor Ld − Lq. For
the class of surface mounted PMSM, Ld = Lq, thus this bilinear term vanishes. However, if Ld ≠ Lq, the
set-point signal for the current control of d-axis is chosen to be zero in the majority of the applications,
namely i∗d = 0, then in the steady-state, this term equals zero. Therefore, in the control system design for
the outer-loop system, this bilinear term is neglected. The fourth term in (3.73) is proportional to the load
torque, which is considered as a disturbance in control system design and should be completely rejected
in the steady-state by the outer-loop control system as long as it is a constant or varies in a step signal
manner. It is worthwhile to emphasis that because of the existence of load torque, without exception, the
outer-loop controller should contain an integrator in order to completely reject the disturbance caused
by the load torque.

By neglecting the bilinear term, we rewrite (3.73) in a first order differential equation:

d𝜔e(t)
dt

= −
B𝑣
Jm

𝜔e(t) +
3
2

Z2
p𝜙mg

Jm

iq(t) −
Zp

Jm

TL. (3.74)

From the control system design point of view, the output variable is 𝜔e(t) and the input variable is
current iq(t). However, because iq(t) is the output variable for the inner-loop control system, it is not
available for the manipulation needed for the outer-loop. What is available and free is the set-point signal
i∗q to the inner-loop control of the q-axis current. The relationship between iq and i∗q is characterized by
the inner-loop control of the q-axis current and is, in Laplace transform,

Iq(s) =

𝛼

1−𝛼
Rs

Lq

s + 1

1−𝛼
Rs

Lq

I∗q (s). (3.75)

The Laplace transform of (3.74) in regarding the relationship between Ωe(s) and Iq(s) is

(

s +
B𝑣
Jm

)

Ωe(s) =
3
2

Z2
p𝜙mg

Jm

Iq(s). (3.76)

By substituting (3.75) into (3.76), we obtain the transfer function between Ωe(s) and I∗q (s) as,

Ωe(s) =
⎛
⎜
⎜
⎜
⎝

3

2

Z2
p𝜙mg

Jm

s + B𝑣
Jm

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Kq
c

Lq

s + Rs

Lq
+ Kq

c

Lq

⎞
⎟
⎟
⎟
⎠

I∗q (s) (3.77)

=
⎛
⎜
⎜
⎜
⎝

3

2

Z2
p𝜙mg

B𝑣
Jm

B𝑣
s + 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝛼

(1 − 𝛼) Lq

Rs
s + 1

⎞
⎟
⎟
⎠

I∗q (s). (3.78)

This is the model for the design of the outer-loop velocity control system. Because it is a second order, a
PID controller is appropriate. However, if we closely examine the model, then we find that the closed-loop
time constant for the electrical system

Lq

Rs
is far smaller than the time constant for the mechanical system
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Jm

B𝑣
. In addition, with the proportional feedback control gain Kq

c being large (see Kq
c = 𝛼

1−𝛼
R with a large

𝛼), the dynamics from the inner-loop control of the q-axis current is ensured to be much faster than
the dynamics from the mechanical system ((1 − 𝛼) Lq

Rs
≫

Jm

B𝑣
. Therefore, the second order model (3.78) is

simplified to a first order system by neglecting the dynamics from the inner-loop control of q-axis current
by letting (1 − 𝛼) Lq

Rs
= 0, so that

Ωe(s)
I∗q (s)

=
3

2

Z2
p𝜙mg

B𝑣
𝛼

Jm

B𝑣
s + 1

=
3

2

Z2
p𝜙mg

Jm
𝛼

s + B𝑣
Jm

. (3.79)

With this first order model, the design of a PI controller leads to analytical solutions of the controller
parameters using the technique of pole-assignment controller design (see Section 3.1). To simplify the
notation, we let

a =
B𝑣
Jm

; b = 3
2

Z2
p𝜙mg

Jm

𝛼.

Here, by choosing a desired closed-loop poles s1,2 = −𝜉𝑤n ±𝑤nj
√

1 − 𝜉2, where the damping coefficient
𝜉 = 0.707, the proportional gain Kc is calculated as

Kc =
2𝜉𝑤n − a

b
(3.80)

and the integral time constant is calculated as

𝜏I =
2𝜉𝑤n − a

𝑤2
n

. (3.81)

Typically, the damping coefficient is chosen to be either 0.707 or 1, and the parameter 𝑤n is used as
the parameter for the desired closed-loop performance specification. A larger 𝑤n will correspond to
a wider closed-loop bandwidth, hence faster closed-loop response speed, but also more sensitivity to
measurement noise. It is worthwhile to note that the closed-loop steady-state gain 𝛼 from the inner-loop
control of q-axis current has been carried over to the model in the outer-loop, which will affect the
value of Kc for the outer-loop PI controller. More discussion on the natural frequency 𝑤n with respect to
closed-loop performance will be given in Chapter 5.

3.4.3 Simulation Example for P Plus PI Control System

In order to test the PID control system, we will first simulate the closed-loop performance using the
nonlinear model built using the process description (3.36–3.39). A Simulink model is constructed based
on the nonlinear model and the PI controllers are used with feedforward functions in the control system
architecture.

In this simulation example, the parameters for the nonlinear model are given as 𝜙mg = 0.125 Wb, Ld =
7 × 10−3 H, Lq = 7 × 10−3 H, Rs = 2.98 Ω, B𝑣 = 11 × 10−5 Nm ⋅ s, Zp = 2, Jm = 0.47 × 10−4 kg ⋅ m2. We
choose the steady-state gain for the q-axis inner-loop proportional control system 𝛼 = 0.9, which means
that the controller gain Kq

c is 𝛼

1−𝛼
Rs = 10Rs and the closed-loop pole for the q-axis inner-loop current

control system is located at s = −10 Rs

Lq
= −4257.
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The design of PI controller for the outer-loop is then based on the first order model

Ωe(s)
I∗q (s)

= b
s + a

, (3.82)

where a = B𝑣
Jm

= 2.34 and b = 3

2

Z2
p𝜙mg

Jm
× 0.9 = 14362. By choosing the damping coefficient 𝜉 = 0.707

and the natural frequency 𝑤n = 100 rad∕s, we obtain the PI controller parameters using (3.91) and
(3.92) as

Kc =
2𝜉𝑤n − a

b
= 0.0097; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

= 0.0139.

In the design of PI controller for the d-axis current, the closed-loop performance is specified by using
the damping coefficient 𝜉 = 0.707 and the natural frequency 𝑤n = 100 Wb.

With sampling interval Δt = 20 × 10−6 sec, the closed-loop response of the cascade PI control of the
nonlinear system is simulated, where the proportional controller is implemented on the output only to
reduce the overshoot. In the simulation, the load torque TL is chosen to be zero. Figure 3.11(a) shows the
closed-loop response of the angular electrical velocity 𝜔e in comparison with its set-point signal.

The closed-loop responses of the inner-loop control of the d-axis and q-axis currents are shown in
Figure 3.11(b) in comparison with their set-point signals. Finally, the inner-loop control signals (𝑣d and
𝑣q) are shown in Figure 3.11(c).
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Figure 3.11 Cascade feedback control of velocity of PMSM with both PI d-axis current controller and P q-axis
current controller. (a) Closed-loop response of the angular electrical velocity. Key: line (1) the actual velocity; line
(2) the reference velocity. (b) Closed-loop responses of the d-axis and q-axis currents. Key: line (1) the actual current;
line (2) the reference current. (c) Closed-loop control signal responses (the d-axis and q-axis voltages).
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It is interesting to note that despite of the implementation using the alternative PI controller structure
with the proportional gain Kc, there is an overshoot, approximately 20%, in the closed-loop velocity
response (see Figure 3.11(a)). This overshoot occurred because there is a large overshoot in the iq current
response (see Figure 3.11(b)) due to the load torque TL being zero. It is confirmed by experiments in
Section 5.6 of Chapter 5 that when a motor is free of load, there is an overshoot in the output velocity
response because of a large overshoot in the q-axis current.

From these figures, it is seen that the combination of proportional inner-loop control and PI outer-loop
produces stable closed-loop response with satisfactory transient performance. In addition, there is no
steady-state error between the desired electrical velocity and the actual velocity due to the integral control
action in the outer-loop control system. Because of the simple proportional control for the inner-loop
systems, very fast dynamic responses have been achieved for the inner-loop systems.

3.4.4 Cascade Feedback Control of Velocity:PI Plus PI

When using PI current controller, the steady-state error of current control system is eliminated, leading to
performance robustness in the presence of parameter variations. The cascade feedback control structure
when using PI plus PI configuration is similar to the diagram illustrated in Figure 3.10, except that the
inner-loop current controller Kq

c is replaced by the PI current controller designed in Section 3.3. We will
only describe the design of outer-loop velocity controller here.

Note that the dynamic system for the q-axis current is described by the first order differential equation:

diq

dt
= −

Rs

Lq

iq +
1
Lq

𝑣̂q, (3.83)

where 𝑣̂q is related to the original q-axis voltage by the following equation,

𝑣q = 𝑣̂q + 𝜔eLdid + 𝜔e𝜙mg. (3.84)

In order to design the outer-loop PI controller, we investigate the closed-loop transfer function between
the reference signal I∗q (s) and the feedback signal Iq(s). By assuming the cancelation of the nonlinear terms
using the feedforward term f q(t), we substitute the PI controller given by (3.55) into the original dynamic
model for the q-axis current (see 3.83), leading to the closed-loop differential equation:

diq

dt
= −

Rs

Lq

iq(t) +
1
Lq

Kq
c (i∗q(t) − iq(t)) +

Kq
c

𝜏
q
I Lq

∫
t

0
(i∗q(𝜏) − iq(𝜏))d𝜏). (3.85)

By taking Laplace transform on both sides, we obtain

sIq(s) = −
Rs

Lq

Iq(s) +
1
Lq

(Kq
c (I∗q (s) − Iq(s)) +

Kq
c

𝜏
q
I Lqs

(I∗q (s) − Iq(s)). (3.86)

Note that from the Section on PI current control (see (3.61) and (3.62)) the following relationships are
true:

Kq
c

𝜏
q
I

= Lq𝑤
2
n;

Kq
c

Lq

= 2𝜉𝑤n −
Rs

Lq

,

which gives the closed-loop transfer function,

Iq(s)
I∗q (s)

=
(2𝜉𝑤n −

Rs

Lq
)s +𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

. (3.87)
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The inner-loop closed-loop poles are located at s1,2 = −𝜉𝑤n ±𝑤n j
√

1 − 𝜉2 with 𝜉 = 0.707 and𝑤n being
a tuning parameter for the closed-loop performance. The steady-state gain of the closed-loop transfer
function is unity setting s = 0 in (3.87).

In order to design the outer-loop PI control system, from Section 3.4.1, we recall the transfer function
model between the q-axis current Iq(s) and the electrical velocity Ωe(s)is governed by

(

s +
B𝑣
Jm

)

Ωe(s) =
3
2

Z2
p𝜙mg

Jm

Iq(s). (3.88)

By substituting (3.87) into (3.88), we obtain the transfer function between the reference for the q-axis
current I∗q (s) and the electrical velocity Ωe(s) as,

Ωe(s)
I∗q (s)

=
⎛
⎜
⎜
⎜
⎝

3

2

Z2
p𝜙mg

Jm

s + B𝑣
Jm

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

(

2𝜉𝑤n −
Rs

Lq

)

s +𝑤2
n

s2 + 2𝜉𝑤ns +𝑤2
n

⎞
⎟
⎟
⎟
⎠

. (3.89)

We understand that in order to design a PI controller using pole-assignment controller design method, a
first order model is needed (see Section 3.1). Because (3.89) is a third order model, it needs to be approx-
imated by a first order model. Notice that the parameter 𝑤n is the natural frequency for the inner-loop
q-axis current control, and we select this parameter in the design. To obtain a first order approxima-
tion, we choose 𝑤n ≫

B𝑣
Jm

, for instance, 𝑤n = 10 B𝑣
Jm

rad∕s. With the selection of large 𝑤n by neglecting
the dynamics from the inner-loop current control, we obtain the first order model for the design of PI
controller:

Ωe(s)
I∗q (s)

≈
3

2

Z2
p𝜙mg

Jm

s + B𝑣
Jm

. (3.90)

In comparison with the proportional inner-loop control, here, the steady-state gain of the closed-loop
current control system is unity, thus, the model for the design of outer-loop controller is based on the
mechanical part of the PMSM without adding the steady-state component from the inner-loop current
control. This means that even if the physical parameters Rs and Lq changed due to temperature and
operating condition variations, the model used in the design for velocity control would still be free from
their effects.

From the first order model (3.90), the PI controller parameters are calculated using pole-assignment
controller design method. Here, we let

a =
B𝑣

Jm

; b = 3
2

Z2
p𝜙mg

Jm

.

Then, by choosing desired closed-loop poles s1,2 = −𝜉𝑤n ± j𝑤n

√
1 − 𝜉2, where the damping coefficient

𝜉 = 0.707 or 1, the proportional gain Kc is calculated as

Kc =
2𝜉𝑤n − a

b
(3.91)

and the integral time constant is calculated as

𝜏I =
2𝜉𝑤n − a

𝑤2
n

. (3.92)
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The natural frequency 𝑤n for the outer-loop PI control system is selected to be much smaller than that
of the inner-loop PI control system.

3.4.5 Simulation Example for PI Plus PI Control System

With the same system parameters as in Section 3.4.3, we simulate the closed-loop responses when using
PI inner-loop current control and PI outer-loop velocity control. In the design of inner-loop PI controllers,
the closed-loop performance parameters are selected as 𝜉 = 1 and𝑤n = 100 rad∕s for both d-axis current
and q-axis current controllers. In the design of outer-loop PI controller, the damping coefficient 𝜉 = 0.707
and the bandwidth𝑤n = 20 rad∕s. In this application, B𝑣

Jm
= 2.34, so that𝑤n = 100 ≫ 2.34 rad∕s ensures

a first order approximation for the outer-loop PI controller design.
In the closed-loop simulation, the load torque TL is chosen to be zero. The proportional control is

implemented on the output signal only. Figure 3.12(a) shows the closed-loop response of the electrical
velocity. The closed-loop responses of the inner-loop control of the d-axis and q-axis currents are shown
in Figure 3.12(b) in comparison with their set-point signals. Finally, the inner-loop control signals (𝑣d

and 𝑣q) are shown in Figure 3.12(c). It is seen that with the inner-loop PI control of q-axis current, the
overshoot is about 10 %. This overshoot is due to the large overshoot of iq current.
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Figure 3.12 Cascade feedback control of velocity of PMSM with both PI current controllers. (a) Closed-loop
response of the angular electrical velocity. Key: line (1) the actual velocity; line (2) the reference velocity.
(b) Closed-loop responses of the d-axis and q-axis currents. Key: line (1) the actual current; line (2) the reference
current. (c) Closed-loop control signal responses (the d-axis and q-axis voltages).
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3.5 PID Controller Design for Position Control of PMSM
Angular position of a PMSM is required to be controlled in some applications. If the position control
is used to track a desired reference position signal and if the load torque should change during the
operation, the controller must have an integrator as part of its structure in order to reject the torque
disturbance.

Similar to velocity control, the position control of PMSM uses the cascade control structure. The design
of inner-loop current control system for both d-axis and q-axis currents is identical to the previous veloc-
ity control case (see Sections 3.3 and 3.4.4), thus it will not be repeated here. Instead, we will focus on
the design of outer-loop position control.

Note that the angular position 𝜃e(t) is the integral of the velocity 𝜔e(t) with

𝜃e(t) = ∫
t

0
𝜔e(𝜏)d𝜏. (3.93)

Therefore, the Laplace transfer function between the velocity Ωe(s) and the angular position Θe(s) is

Θe(s)
Ωe(s)

= 1
s
. (3.94)

Recall from the original dynamic model that governs the relationship between the q-axis current iq(t) and
the angular velocity 𝜔e(t) (see 3.74), the relationship between Ωe(s) and Iq(s) is

(

s +
B𝑣
Jm

)

Ωe(s) =
3
2

Z2
p𝜙mg

Jm

Iq(s), (3.95)

which leads to
Θe(s)
Iq(s)

= 3
2

Z2
p𝜙mg

Jm

1

s
(

s + B𝑣
Jm

) . (3.96)

By substituting Iq(s)with the reference signal I∗q (s) to the inner-loop current control, we obtain the transfer
function model,

Θe(s)
I∗q (s)

= 3
2

Z2
p𝜙mg

Jm

1

s
(

s + B𝑣
Jm

)
𝛼

(1 − 𝛼) Lq

Rs
s + 1

. (3.97)

As before, we take an approximation of (3.97) by neglecting the inner-loop dynamics. As a result, the
second order model is obtained for the design of the position control of a motor, where

Θe(s)
I∗q (s)

= 3
2

Z2
p𝜙mg𝛼

Jm

1

s
(

s + B𝑣
Jm

)

= b
s(s + a)

, (3.98)

with a = B𝑣
Jm

and b = 3

2

Z2
p𝜙mg𝛼

Jm
, 𝛼 = 1 if PI controller is used for controlling of the q-axis current. This is

a second order model, which can be used for the design of a PID controller (see Section 3.1). An ideal
PID controller has the transfer function

C(s) = Kc

(

1 + 1
𝜏Is

+ 𝜏Ds

)

, (3.99)
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where Kc is the proportional gain, 𝜏I is the integral time constant and 𝜏D is the derivative gain. Following
the design steps outlined in Section 3.1, the PID controller parameters are found for the position control
of the outer-loop system:

Kc = c1 =
(2𝜉n + 1)𝑤2

n

b
(3.100)

𝜏I =
c1

c0

=
(2𝜉n + 1)𝑤2

n

n𝑤3
n

= (2𝜉n + 1)
𝑤n

(3.101)

𝜏D =
c2

c1

=
(2𝜉 + n)𝑤n − a

(2𝜉n + 1)𝑤2
n

. (3.102)

The control signal for the purpose of position control is computed using the combination of propor-
tional, integral and derivative terms:

i∗q(t) = Kc(𝜃
∗
e (t) − 𝜃e(t)) +

Kc

𝜏I
∫

t

0
(𝜃∗e (𝜏) − 𝜃e(𝜏))d𝜏 − Kc𝜏D𝜔e(t). (3.103)

With the implementation of derivative action on the output only, the configuration of the position control
algorithm using cascade feedback control is illustrated in Figure 3.13.

3.6 Overview of PID Control of Induction Motor
When parasitic effects such as eddy currents and magnetic field saturation are neglected, the dynamic
model of an induction motor is governed by the following differential equations (see Chapter 1):

isd(t) + 𝜏𝜎
disd(t)

dt
= 𝜔s(t)𝜏𝜎 isq(t) +

kr

r𝜎𝜏r

𝜓rd(t) +
1
r𝜎

usd(t) (3.104)

isq(t) + 𝜏𝜎
disq(t)

dt
= −𝜔s(t)𝜏𝜎 isd(t) −

kr

r𝜎
𝜔e(t)𝜓rd(t) +

1
r𝜎

usq(t) (3.105)

𝜓rd(t) + 𝜏r

d𝜓rd(t)
dt

= Lhisd(t) (3.106)

d𝜔m

dt
= −

fd

Jm

𝜔m + 3
2

ZpLh

LrJm

𝜓rdisq −
TL

Jm

(3.107)

𝜔s(t) = 𝜔e(t) +
Lhisq(t)
𝜏r𝜓rd(t)

, (3.108)
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Figure 3.13 Cascade feedback control of angular position of PMSM.
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where 𝜔e(t) = Zp𝜔m(t). In the induction motor model, isd(t) and isq(t) are the stator currents in the d − q
reference frame, 𝜓rd(t) is the rotor flux in d-axis. The input variables usd(t) and usq(t) represent the stator
voltages in the d − q reference frame.𝜔s(t) and𝜔m(t) are the synchronous and rotor velocity respectively.
TL(t) is the load torque that might change with respect to time. This model was derived and discussed in
Chapter 1.

It is seen from the dynamic model of the induction motor (3.104–3.108) that the control problem is
similar to that of PMSM, however, to a certain degree, it is more complex. From the control system design
point of view, the manipulated variables in the induction motor control problem are the stator voltages,
usd(t) and usq(t) (see (3.104) and (3.105)). Similar to PMSM control, there will be current controllers
to regulate the isd and isq stator currents by manipulating the stator voltages usd and usq in the d − q
reference frame. The design task of the PI current controllers is not new to us because it simply follows
the same current controller design procedures outlined in Section 3.3. However, the difference might be
the reference signal to the isd that is not zero, but a constant depending on the operating condition of𝜓rd(t)
that is the rotor flux in d-axis. If the control objective is to regulate the velocity of the induction motor,
it is seen from (3.107) that this objective will be achieved by manipulating the stator current isq while
maintaining the rotor flux 𝜓rd(t) as a constant specified as operating condition of the induction motor.

The additional complexity of the induction motor control problem originates from the discrepancy
between the synchronous velocity 𝜔s(t) and the rotor’s electrical velocity 𝜔e(t) (see (3.108)). In addition,
𝜔s(t) is not measured directly, however, it is used in the Park transformations to convert the current and
voltage variables in the 𝛼 − 𝛽 reference frame to the d − q reference frame. Thus, the estimation of 𝜔s(t)
is required as part of the control systems, and this is called slip estimation (see Section 3.7.3).

In the control system design, similar to PMSM control, a cascade feedback and feedforward control
system is configured for velocity control. Figure 3.14 shows the velocity control system configuration
of a typical industrial induction machine drive. In the drive control systems, there are two PI controllers
to control the d-axis and q-axis stator currents and one PI controller in the outer-loop to achieve the
velocity control of the motor (see Figure 3.14). Nonlinear compensation terms are used in the current
control loops and slip estimation is used to generate 𝜃s that is used in the Park transformation.
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+
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Figure 3.14 Schematic diagram for nonlinear cascade control of induction motor.
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3.6.1 Bridging the Sensor Measurements to Feedback Signals

The feedback signals to the controllers are d-axis stator current isd and q-axis stator current isq, and the
electrical velocity 𝜔e(t).

There are three current sensors to measure the three phase stator currents ia, ib and ic as shown in
Figure 3.14. The transformation of the three-phase currents to their components in 𝛼-𝛽 frame is achieved
by the Clarke transformation,

[
is𝛼
is𝛽

]

= 2
3

⎡
⎢
⎢
⎣

1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

ia

ib

ic

⎤
⎥
⎥
⎦

. (3.109)

To obtain the current feedback signals isd and isq in the d − q stator reference frame, the following Park
transformation is used,

[
isd

isq

]

=
[

cos 𝜃s sin 𝜃s

− sin 𝜃s cos 𝜃s

] [
is𝛼

is𝛽

]

, (3.110)

where the sinusoidal signals is𝛼 and is𝛽 are converted to the d-axis stator current isd and q-axis stator
current isq. Similar to the operation of PMSM, in a normal steady-state operation of an induction motor,
the isd and isq currents are regulated to their operating points.

Similar to PMSM, an encoder is used to measure the angle of the rotor 𝜃r, its differentiation leads
to the angular velocity of the induction motor, 𝜔m, obtained as the feedback signal for the PI of the
velocity. Using the information 𝜃r to calculate 𝜃e (= Zp𝜃r), and the reference signals i∗sd and i∗sq, based on
the integrated variables in (3.108), the estimation of synchronous angle 𝜃s is performed using

𝜃s(t) = 𝜃e(t) +
1
𝜏r

∫
t

0

i∗sq(𝜏)
i∗sd(𝜏)

d𝜏. (3.111)

As explained in the later section (see Section 3.7.3), the use of integrated variables and the reference
signals in the calculation will reduce the effect of noise.

3.6.2 Bridging the Control Signals to the Inputs
to the Induction Motor

The controllers’ outputs are the d-axis stator voltage usd and q-axis stator voltage usq. Identical mecha-
nisms are used to transform the usd and usq voltages to the three phase voltages as inputs to the induction
motor. Basically, the us𝛼 and us𝛽 are obtained via the calculation,

[
us𝛼

us𝛽

]

=
[

cos 𝜃s − sin 𝜃s

sin 𝜃s cos 𝜃s

] [
usd

usq

]

. (3.112)

Also, let us0 represent the zero sequence component of three phase voltage which is zero for a balanced
three phase voltage. Then, the inverse Clarke transformation leads to

⎡
⎢
⎢
⎣

𝑣a

𝑣b

𝑣c

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 1

− 1

2

√
3

2
1

− 1

2
−

√
3

2
1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

us𝛼

us𝛽

us0

⎤
⎥
⎥
⎦

. (3.113)
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At this point, the control system has computed the three phase voltage signals needed to operate the induc-
tion motor. The actual implementation of the control signals requires the devices of the semiconductor
switches connected with a DC power supply (see Chapter 2).

3.7 PID Controller Design for Induction Motor
From the dynamic relationships (see (3.104)–(3.108)), it is noticed that there are nonlinear coupled terms
in the dynamic model. Therefore, feedforward compensation will be used in the current control system
design.

3.7.1 PI Control of Electromagnetic Torque of Induction Motor

The strategy to control the electromagnetic torque of an induction motor is based on PI control of the
stator currents isd and isq in order to eliminate the steady-state errors for the current control systems. The
first step in the control system design is to determine the reference signals to the current control loops.

3.7.1.1 Reference Signal to q Axis Stator Current

Given a desired electromagnetic torque signal, T∗
e , and a desired rotor flux signal 𝜓∗

rd, the desired stator
current in the q axis is calculated as

i∗sq = 2
3

Lr

LhZp

T∗
e

𝜓∗
rd

, (3.114)

on the basis of the relationship given in (1.103). The desired stator current i∗sq is then used as the reference
signal to PI control of q-axis current.

3.7.1.2 Reference Signal to d Axis Stator Current

From the model equation (3.106), the dynamic response of 𝜓rd from isd is a first-order system with time
constant 𝜏r. The differential equation (3.106) can be expressed in terms of the set-point values𝜓∗

rd and i∗sd:

i∗sd(t) =
1
Lh

𝜓∗
rd(t) +

𝜏r

Lh

d𝜓∗
rd(t)
dt

. (3.115)

If the operation of field-weakening is not involved, the set-point for rotor flux 𝜓∗
rd will be constant. There-

fore, the derivative of the of reference rotor flux signal,
d𝜓∗

rd(t)

dt
, is taken to be zero. The reference signal

to the d axis stator current is determined via the steady-state relationship:

i∗sd(t) =
1
Lh

𝜓∗
rd, (3.116)

where Lh is the mutual machine inductance. However, if field-weakening is involved, the reference signal
to rotor flux 𝜓rd may change. If the trajectory of the 𝜓∗

rd is chosen to be a combination of constant signals,
interspaced with ramp signals between the transient periods, then the reference signal i∗sd is calculated
using (3.115).

3.7.1.3 PI Current Controller Design

The PI controller design for the d − q axes current controllers follows the same procedure as outlined
in Section 3.1. For illustration purpose, only the design of d-axis current is presented here. To design
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the PI controller for the isd current based on (3.104), let the auxiliary control variable ≊sd(t) be
defined by

1
𝜏 ′𝜎r𝜎

ûsd(t) =
1
𝜏 ′𝜎r𝜎

usd(t) +
kr

𝜏 ′𝜎r𝜎𝜏r

𝜓rd(t) + 𝜔sisq(t). (3.117)

By substituting this auxiliary variable into model equation (3.104), a linear time-invariant (LTI) model
is obtained with respect to the auxiliary control variable ûsd(t):

disd(t)
dt

= − 1
𝜏 ′𝜎

isd(t) +
1
𝜏 ′𝜎r𝜎

ûsd(t). (3.118)

The Laplace transfer function of (3.118) is

Isd(s)
Ûsd(s)

=
1

𝜏′𝜎 r𝜎

s + 1

𝜏′𝜎

.

Let a = 1

𝜏′𝜎
and b = 1

𝜏′𝜎 r𝜎
. By choosing the closed-loop bandwidth parameter𝑤n and a damping coefficient

𝜉, the PI controller parameters are calculated as (see Section 3.1)

Kd
c =

2𝜉𝑤n − a

b
; 𝜏d

I =
2𝜉𝑤n − a

𝑤2
n

.

The manipulated variable usd is computed using the position form of the PI controller where

usd = Kd
c (i

∗
sd(t) − isd(t)) +

Kd
c

𝜏d
I
∫

t

0
(i∗sd(𝜏) − isd(𝜏))d𝜏

−
kr

𝜏r

𝜓rd(t) − 𝜏′𝜎r𝜎𝜔s(t)isq(t).

Figure 3.15 shows the configuration of the d-axis current controller (PI), where a steady-state
pre-compensator 1

Lh
is used to convert the set-point of 𝜓∗

rd to the set-point of i∗sd .
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Figure 3.15 Block diagram of the PI controller with nonlinear feedforward compensation for d-axis stator current
control.
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3.7.2 Cascade Control of Velocity and Position

Similar to the design of PI control systems for a PMSM, the inner-loop control of isq uses either PI or
P controller with feedforward compensation because of the nonlinearity and the coupling terms, and the
outer-loop velocity control by manipulating the set-point of the current isq achieves the control objective.
However, the electrical-mechanical equation (3.107) reveals the dependence of velocity 𝜔m on both isq

and 𝜓rd. In order for the outer-loop velocity control to produce desirable closed-loop performance, the
variation of 𝜓rd needs to be minimized so that it can be closely approximated by a linear time-invariant
system. In other words, its value needs to converge to an expected steady-state value in a closed-loop
feedback control. The set-point signal for 𝜓rd is not zero. In an ideal situation, there would be a cascade
feedback and feedforward control of 𝜓rd , where an inner-loop proportional controller with feedforward
linearization is used to control isd by manipulating usd and an outer-loop PI controller is used to control
𝜓rd by manipulating the set-point signal i∗sd . However, this cascade control strategy for the rotor flux 𝜓rd

requires the signal 𝜓rd as the feedback signal, and this signal is not measured, although in Chapter 9, it
is shown that 𝜓rd could be estimated using an observer.

The cascade control of velocity involves the dynamics of the current isq and the dynamics of the veloc-
ity 𝜔m, which are described by models (3.105) and (3.107). The isq current model will be used for the
inner-loop design of proportional feedback linearization control system and the motion model for velocity
will be used for the design of a PI controller for the outer-loop system.

In the first stage of the design of a cascade control system, the inner-loop proportional controller or
PI controller needs to be considered. How to design a PI current controller is illustrated in Section 3.1,
here, it will be shown how a proportional controller will be designed.

From (3.105), an auxiliary variable ûsq(t) is defined by the relationship:

1
r𝜎𝜏

′
𝜎

ûsq(t) =
1

r𝜎𝜏
′
𝜎

usq(t) − 𝜔s(t)isd(t) −
kr

r𝜎𝜏
′
𝜎

𝜔e(t)𝜓rd(t). (3.119)

By substituting (3.119) into (3.105), we obtain the first order differential equation:

disq(t)
dt

= − 1
𝜏 ′𝜎

isq(t) +
1

r𝜎𝜏
′
𝜎

ûsq(t), (3.120)

which will be used as the basis for the design of the proportional controller for the inner-loop system.
The Laplace transfer function of (3.120) is

Isq(s)

Ûsq(s)
=

1

𝜏′𝜎 r𝜎

s + 1

𝜏′𝜎

. (3.121)

Since the proportional control will lead to a steady-state error in the closed-loop system, its closed-loop
steady-state gain is not unity, and this steady-state gain should be taken into consideration in the design of
the outer-loop control system. Consequently, we specify the desired inner-loop control performance via
the steady-state gain of the the proportionally controlled system. Let Kq

c denote the proportional feedback
controller gain. The closed-loop transfer function between the Isq(s) and set-point signal I∗sq(s) is

Isq(s)
I∗sq(s)

=

Kq
c

𝜏′𝜎 r𝜎

s + 1

𝜏′𝜎
+ Kq

c

𝜏′𝜎 r𝜎

. (3.122)

The closed-loop pole is found by setting the denominator s + 1

𝜏′𝜎
+ Kq

c

𝜏′𝜎 r𝜎
= 0 leading to

s = − 1
𝜏 ′𝜎

−
Kq

c

𝜏 ′𝜎r𝜎
.



PID Control System Design for Electrical Drives and Power Converters 71

For Kq
c > 0, the closed-loop pole is located at the left-hand side of the open-loop pole − 1

𝜏′𝜎
in the complex

plane, which means that the closed-loop dynamic response is always faster than the open-loop response.
The steady-state gain of the closed-loop transfer function (3.122) is calculated by letting s = 0, leading
to the definition of variable 𝛼, as

𝛼 =

Kq
c

𝜏′𝜎 r𝜎

1

𝜏′𝜎
+ Kq

c

𝜏′𝜎 r𝜎

. (3.123)

In the design of the proportional controller, we specify the desired closed-loop performance by choosing
a desired value for 𝛼, which from (3.123) gives the solution of the proportional controller gain Kq

c ,

Kq
c = 𝛼

1 − 𝛼
r𝜎. (3.124)

If we choose 𝛼 = 0.9, then the proportional controller gain is Kq
c = 9r𝜎 , and the closed-loop pole is at

s = − 10

𝜏𝜎
.

Assuming the set-point signal to the current control loop is i∗sq, the auxiliary control signal ûsq(t) is
calculated using the feedback error signal i∗sq(t) − isq(t)

ûsq(t) = Kq
c (i∗sq(t) − isq(t)).

Thus, from the relationship between ûsq(t) and usq(t) given by (3.119), we obtain the feedback control
signal usq(t) with linearization as

usq(t) = Kq
c (i∗sq(t) − isq(t)) + r𝜎𝜏

′
𝜎𝜔sisd(t) + kr𝜔m𝜓rd(t). (3.125)

Figure 3.16 shows the computation of the control signal usq(t) with feedforward compensations.
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Figure 3.16 Block diagram of P controller with nonlinear feedforward compensation for q-axis stator current
control.
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In the second stage of the design of a cascade control system, the outer-loop PI control system is con-
sidered for velocity control and PID control system is for the position control. The controller structures
are selected according to the complexity of the system dynamics (see Section 3.1).

3.7.2.1 Velocity Control

The mathematical model for the outer-loop control of 𝜔m(t) is based on the motion model (3.107). In
order to linearize the bilinear term isq(t)𝜓rd(t), the product is approximated using a first order Taylor
series expansion (see Goodwin et al., 2001, Bay, 1999):

isq(t)𝜓rd(t) ≈ −iss
sq𝜓

ss
rd + 𝜓

ss
rd isq(t) + iss

sq𝜓rd(t).

Substituting this approximation into (3.107), we obtain the linearized model for the design of PI control
of the velocity,

d𝜔m(t)
dt

= −
fd

Jm

𝜔m(t) +
3ZpLh

2LrJm

(−iss
sq𝜓

ss
rd + 𝜓

ss
rd isq(t) + iss

sq𝜓rd(t)) −
TL

Jm

,

which is

d𝜔m(t)
dt

= −
fd

Jm

𝜔m(t) +
3ZpLh

2LrJm

𝜓 ss
rd isq(t) +

3ZpLh

2LrJm

iss
sq𝜓rd(t) −

3ZpLh

2LrJm

iss
sq𝜓

ss
rd −

TL

Jm

, (3.126)

where 𝜅t =
3ZpLh

2LrJ
. The last three terms on the right-hand side of (3.126) are considered as disturbances in

the feedback control system. In particular, the constant term 𝜅ti
ss
sq𝜓

ss
rd is an input constant disturbance and

if the load torque TL

Jm
changes in a step signal manner, then both disturbances will be completely rejected

without steady-state error by the PI controller. The term 𝜅ti
ss
sq𝜓rd(t) is a linear function of the rotor flux

𝜓rd(t). Because isd(t) is under PI control, in the steady-state,𝜓rd(t)will converge to its set-point signal𝜓∗
rd,

where 𝜓∗
rd = Lhi∗sd, hence becoming a constant. This disturbance term will also be completely rejected

without steady-state error. In short, with PI control of velocity, all the constant terms on the right-hand
side of (3.126) are regarded as constant disturbances that will be completely rejected by the action of
integrator in the controller.

Based on (3.126), the Laplace transfer function between the velocity Ωr(s) and the current Isq(s) is
given by

Ωr(s)
Isq(s)

=
𝜅t𝜓

ss
rd

s + fd
Jm

.

By substituting the current feedback signal Isq(s) with its set-point signal I∗sq(s) using the closed-loop
transfer function (3.122), the relationship between the velocity Ωr(s) and the set-point signal for the
inner-loop current control is established

Ωr(s)
I∗sq(s)

=
𝜅t𝜓

ss
rd

s + fd
Jm

Kq
c

𝜏′𝜎 r𝜎

s + 1

𝜏′𝜎
+ Kq

c

𝜏′𝜎 r𝜎

, (3.127)

where Kq
c = 𝛼

1−𝛼
r𝜎 , and 𝛼 is the desired steady-state gain which is specified in the design of the inner-loop

proportional controller. Generally, 𝛼 is chosen close to unity in the range of 0 < 𝛼 < 1. Then, the assump-
tion can be made that the time constant Jm

fd
is far larger than the time constant (1 − 𝛼)𝜏𝜎 from the inner-loop

current control. The transfer function (3.127) is approximated as following

Ωr(s)
I∗sq(s)

=
𝜅t𝜓

ss
rd

s + fd
Jm

. × 𝛼 (3.128)
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Let a = fd
Jm

and b = 𝜅t𝜓
ss
rd × 𝛼 and the PI controller be represented by

C(s) =
c1s + c0

s
= Kc

(

1 + 1
𝜏Is

)

,

where Kc is the proportional gain and 𝜏I is the integral time constant. Following the design procedure
outlined in Section 3.1, the PI controller parameters are calculated as:

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

.

The control signal i∗sq(t) is computed using the position form from the outer-loop PI controller, where

i∗sq(t) = Kc(𝜔
∗
m(t) − 𝜔m(t)) +

Kc

𝜏I
∫

t

0
(𝜔∗

m(𝜏) − 𝜔m(𝜏))d𝜏.

If the inner-loop q-axis current controller is a PI controller, then the steady-state gain of the closed-loop
current control system is unity. In this case, the calculations of the Kc and 𝜏I for the velocity controller
are the same except the 𝛼 value in (3.128) is taken as unity.

3.7.2.2 Position Control

When considering angular position control of an induction motor, a PID controller is used in the
outer-loop control system. The design procedure follows the one stated in Section 3.5. The mathematical
model for outer-loop PID controller design is described by the following relation:

Θ(s)
I∗sq(s)

=
𝜅t𝜓

ss
rd

(

s + fd
Jm

)

s
× 𝛼. (3.129)

With the parameters a = fd
Jm

and b = 𝜅t𝜓
ss
rd × 𝛼, the calculations of the PID controller gains are

obtained as

Kc =
(2𝜉n + 1)𝑤2

n

b
(3.130)

𝜏I =
(2𝜉n + 1)𝑤2

n

n𝑤3
n

= (2𝜉n + 1)
𝑤n

(3.131)

𝜏D =
(2𝜉 + n)𝑤n − a

(2𝜉n + 1)𝑤2
n

, (3.132)

where the desired closed-loop polynomial is chosen to be Ad
cl(s) = (s2 + 2𝜉𝑤ns +𝑤2

n)(s + n𝑤n). Here, the
pair of dominant desired closed-loop poles are selected as s1,2 = −𝜉𝑤n ± j𝑤n

√
1 − 𝜉2, where 𝜉 = 0.707,

and the fast pole is then chosen to be s3 = −n ×𝑤n (n ≫ 1). The parameter 𝛼 is chosen to be unity if the
inner-loop q-axis current controller is a PI controller.

3.7.3 Slip Estimation

The position of the field is required in the vector control of an induction motor, the angle 𝜃s is estimated
for its use in the Park transformation. Here, the simple open-loop slip estimation is used, where the model
equation is defined as

𝜔s(t) = Zp𝜔m(t) +
isq(t)
𝜏risd(t)

. (3.133)
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By assuming the motor is started from rest and the initial values 𝜔s and 𝜔m are equal to zero, then
integrating both sides of the equation (3.133) leads to

𝜃s(t) = Zp𝜃r(t) +
1
𝜏r

∫
t

0

isq(𝜏)
isd(𝜏)

d𝜏, (3.134)

where 𝜃r(t) is the rotor position calculated from the encoder measurement. Because the current feedback
signals isd and isq typically contain a significant amount of noise, direct application of (3.134) leads to
inaccurate estimation of 𝜃s(t). The traditional approach is to use the reference signals i∗sd and i∗sq to replace
the actual isd and isq in order to reduce the effect of noise. In addition, if a proportional controller is used
for the q-axis current control, because the inner-loop proportional control causes a steady-state error
between the reference current i∗sq and the feedback current isq, the steady-state gain for the inner-loop
current control system (= 𝛼) needs to be considered, which yields the estimation of 𝜃s,

𝜃s(t) ≈ Zp𝜃r(t) +
1
𝜏r

∫
t

0

i∗sq(𝜏) × 𝛼
i∗sd(𝜏)

d𝜏, (3.135)

where 𝛼 = 1 if the inner-loop q-axis current is controlled using a PI controller.

3.8 Overview of PID Control of Power Converter
For a three phase system, the dynamic model of the grid connected voltage source power converter in
the d − q reference frame is expressed as

Ls

did

dt
= −Rsid + 𝜔gLsiq + Ed − 𝑣d (3.136)

Ls

diq

dt
= −𝑣q − Rsiq − 𝜔gLsid (3.137)

Cdc

d𝑣dc

dt
= 3

4
(Sdid + Sqiq) − iL, (3.138)

where 𝜔g is the grid frequency, Ed is a grid source voltage that is a constant or a slowly varying quantity,
id and iq are the grid currents in the d − q reference frame. The variable 𝑣dc is the output voltage of the
power converter. The d-axis voltage 𝑣d and q-axis voltage 𝑣q are the voltage control variables as the
inputs to the converter. The variables Sd and Sq are related to the voltages 𝑣d and 𝑣q via the relationship
below,

𝑣d = Sd × (𝑣dc∕2) (3.139)

𝑣q = Sq × (𝑣dc∕2). (3.140)

It is seen from these equations that the Sd and Sq are dimensionless, and with a 𝑣dc being regulated to
a constant value, they are the normalized voltage variables of d-axis voltage 𝑣d and q-axis voltage 𝑣q.
Because they are related to 𝑣dc through (3.138), if the control objective is to regulate the output voltage
of the converter 𝑣dc, the normalized voltage variables Sd and Sq are selected as the manipulated variables
in a cascade control structure (see Figure 3.17). The disturbances in this control system are the slow
variations of the grid voltage Ed and the load current iL, and disturbance rejection is one of the main
concerns in the design of the closed-loop control system.

There are three inductors acting as filters between the grid currents and the measured three phase
currents ia, ib and ic. The parameters for the inductor filters are the inductance Ls and the resistance Rs.
The role of the capacitor is to store the energy and to reduce voltage ripples and its capacitance is Cdc.
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Figure 3.17 Schematic diagram for a grid connected three phase power converter.

There are two control objectives for closed-loop control of the power converter. The first is to maintain
a constant output voltage 𝑣dc in the presence of load current (iL) variation, and the second is to achieve a
desired power factor of unity, which is translated to the control system specification of maintaining the
q-axis current to be at zero value in the presence of disturbance. Namely, the set-point signal i∗q(t) in the
power converter control problem is selected to be unity.

In the control system design, similar to the AC motor control problems, a cascade feedback and feed-
forward control system is configured for controlling the output DC voltage 𝑣dc. Figure 3.17 shows the
voltage control system configuration of a typical grid connected power converter. In the control system
configuration, there are two PI controllers to control the d-axis and q-axis currents and one PI controller
in the outer-loop to achieve the output voltage control (see Figure 3.17). A phase locked loop is used to
estimate the angle 𝜃g used in the Park transformation, which is the electrical angle of the grid currents.

3.8.1 Bridging Sensor Measurements to Feedback Signals

The feedback signals to the controllers are d-axis stator current id and q-axis stator current iq, and the
output voltage of the converter 𝑣dc.

There are three current sensors to measure the three phase filtered grid currents ia, ib and ic as shown in
Figure 3.14. The transformation of the three-phase currents to their components in 𝛼-𝛽 frame is achieved
by the Clarke transformation,

[
i𝛼
i𝛽

]

= 2
3

[
1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

]
⎡
⎢
⎢
⎣

ia

ib

ic

⎤
⎥
⎥
⎦

. (3.141)

To obtain the current feedback signals id and iq in the d − q reference frame, the following inverse Park
transformation is used,

[
id

iq

]

=
[

cos 𝜃g sin 𝜃g

− sin 𝜃g cos 𝜃g

] [
i𝛼
i𝛽

]

, (3.142)
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where the sinusoidal signals i𝛼 and i𝛽 are converted to the d-axis filtered grid current id and q-axis fil-
tered grid current iq. In a normal steady-state operation of a power converter, the id and iq currents are
regulated to their desired operating points. The electrical angle of the grid currents 𝜃g is estimated using
a phase-locked-loop (PLL) to be discussed in Section 3.9.5.

3.8.2 Bridging the Control Signals to the Inputs of the Power Converter

The controllers’ outputs are the normalized d-axis and q-axis voltages, Sd and Sq (see (3.140)). To obtain
the input signals to the power converter, the S𝛼 and S𝛽 are obtained via the calculation,

[
S𝛼
S𝛽

]

=
[

cos 𝜃g − sin 𝜃g

sin 𝜃g cos 𝜃g

] [
Sd

Sq

]

, (3.143)

which are sinusoidal signals with frequency𝜔g equal to the grid frequency. Also, let S0 represent the zero
sequence component of three phase normalized voltage which is zero for a balanced three phase voltage.
Then, the inverse Clarke transformation leads to,

⎡
⎢
⎢
⎣
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Sb

Sc

⎤
⎥
⎥
⎦

=
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⎢
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√
3

2
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√
3

2
1
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⎥
⎦

⎡
⎢
⎢
⎣

S𝛼
S𝛽
S0

⎤
⎥
⎥
⎦

. (3.144)

At this point, the control system has computed the three phase normalized voltage signals as inputs to
the power converter in order to achieve the control objectives. The actual implementation of the con-
trol signals requires the devices of the semiconductor switches connected with the electrical grid (see
Chapter 2).

3.9 PI Current and Voltage Controller Design for Power Converter

3.9.1 P Control of d-axis Current

The d-axis current controller is designed based on the differential equation:

did(t)
dt

= −
Rs

Ls

id(t) + 𝜔giq(t) +
Ed

Ls

−
Sd(t)𝑣dc(t)

2Ls

. (3.145)

Let the auxiliary control variable Ŝd be defined by

− 1
2Ls

Ŝd(t) = −
Sd(t)𝑣dc(t)

2Ls

+ 𝜔giq(t) +
Ed

Ls

. (3.146)

Substituting (3.146) into (3.145), we obtain the linear model for the design of inner-loop current con-
troller:

did(t)
dt

= −
Rs

Ls

id(t) −
1

2Ls

Ŝd(t). (3.147)

This is a first-order dynamic model. Because the controller operates in the inner loop system, the accuracy
of the controlled variable is not as important as the one from the outer loop system. Thus, a proportional
controller is used for controlling the d-axis current. Note that the open-loop transfer function based on
(3.147) is given by

Id(s)
Ŝd(s)

=
− 1

2Ls

s + Rs

Ls

. (3.148)
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With a proportional feedback controller Kd
c , the closed-loop transfer function between the reference signal

I∗d (s) and the feedback signal Id(s), is

Id(s)
I∗d (s)

=
− Kd

c

2Ls

s + Rs

Ls
− Kd

c

2Ls

. (3.149)

The steady-state gain of (3.149) is calculated by setting s = 0, which is

𝛼 =
− Kd

c

2Ls

Rs

Ls
− Kd

c

2Ls

. (3.150)

In the design, we specify the desired closed-loop performance by choosing a value of the steady-state
gain 0 < 𝛼 < 1 for the inner-loop closed-loop control. With the desired value 𝛼, the proportional feedback
controller gain Kd

c is found from the solution of (3.150):

Kd
c = − 2𝛼

1 − 𝛼
Rs. (3.151)

Substituting (3.151) into (3.149) forms the closed-loop transfer function for the design. The closed-loop
pole is calculated using this closed-loop transfer function at s = − 1

1−𝛼
Rs

Ls
. A typical choice for 𝛼 is 0.9,

and with this choice, the closed-loop pole is s = −10 Rs

Ls
, which is 10 times the original open-loop pole at

s = − Rs

Ls
. The steady-state gain for the closed inner-loop system will be considered in the design for the

outer-loop system. By substituting the controller gain Kd
c given by (3.151) into the closed-loop transfer

function of the d-axis current, we obtain

Id(s)
I∗d (s)

= 𝛼

(1 − 𝛼) Ls

Rs
s + 1

, (3.152)

which confirms that the time constant for the closed-loop system is 𝜏c = (1 − 𝛼) Ls

Rs
and steady-state gain

is 𝛼. This relation will be used in the design of outer-loop control system for the voltage.
The feedback realization for the auxiliary control variable Ŝd(t) is based on feedback error i∗d(t) − id(t),

where i∗d(t) is the reference signal to the inner-loop d-axis current control loop, namely,

Ŝd(t) = Kd
c (i

∗
d(t) − id(t)). (3.153)

Based on this, the actual inner-loop control signal Sd(t) is computed by substituting (3.153) into (3.146),
which is,

Sd(t) =
1

𝑣dc(t)
Ŝd(t)

= 1
𝑣dc(t)

(Kd
c (i

∗
d(t) − id(t)) + 2Ls𝜔giq(t) + 2Ed). (3.154)

Figure 3.18 shows the inner-loop d-axis current proportional control using a nonlinear feedforward com-
pensation.

3.9.2 PI Control of q-axis Current

To design the input and output feedback linearization controller for the q-axis current control, we consider
the dynamic model for the q-axis current:

diq(t)
dt

= −
Rs

Ls

iq(t) − 𝜔gid(t) −
Sq(t)𝑣dc(t)

2Ls

. (3.155)
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Figure 3.18 PI control of d-axis current using nonlinear feedforward compensation, where 𝑣d(t) = Sd(t)𝑣dc(t).

Similar to the controller design for the d-axis current loop, we choose an auxiliary control variable
Ŝq(t) as

− 1
2Ls

Ŝq(t) = −
Sq(t)𝑣dc(t)

2Ls

− 𝜔gid(t). (3.156)

By substituting this auxiliary control variable into (3.155), we obtain the linearized differential equation
that describes the q-axis current dynamics:

diq(t)
dt

= −
Rs

Ls

iq(t) −
1

2Ls

Ŝq(t). (3.157)

In the q-axis current control, a PI controller is needed to ensure zero steady-state error in the closed-loop
system. The auxiliary control signal Ŝq(t) is expressed using the feedback error i∗q(t) − iq(t) as,

Ŝq(t) = Kq
c (i∗q(t) − iq(t)) +

Kq
c

𝜏
q
I
∫

t

0
(i∗q(𝜏) − iq(𝜏))d𝜏,

where i∗q(t) is the set-point signal to the q-axis current, which is chosen to be zero in most
applications.

Upon obtaining the auxiliary control signal, the actual control signal Sq(t) is found based on (3.156):

Sq(t) =
1

𝑣dc(t)
(Ŝq(t) − 2𝜔gLsid(t))

= 1
𝑣dc(t)

(

Kq
c (i∗q(t) − iq(t)) +

Kq
c

𝜏
q
I
∫

t

0
(i∗q(𝜏) − iq(𝜏))d𝜏 − 2𝜔gLsid(t)

)

.

Figure 3.19 shows the inner-loop current control using PI with nonlinear feedforward compensation.
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Figure 3.19 PI control of q-axis current using nonlinear feedforward compensation, where 𝑣q(t) = Sq(t)𝑣dc(t).
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3.9.3 PI Cascade Control of Output Voltage

The objective of the outer-loop control system is to maintain steady-state operation of the output voltage
𝑣dc(t) in the presence of load current variation. The accuracy of the output response at steady-state is an
important factor so a PI controller is chosen for this control loop. The outer-loop PI controller is designed
based on the dynamic model that describes the relationship between the output variable 𝑣dc and the input
variable id given by (3.138), which is:

Cdc

d𝑣dc

dt
= 3

4
(Sdid + Sqiq) − iL, (3.158)

This is a bilinear model with respect to the control variables Sd and Sq. We first seek its linearization,
where a steady-state operation for the power converter is assumed with the defined parameters Sss

d , Sss
q ,

iss
d and iss

q . The bilinear terms are approximated by

Sd(t)id(t) ≈ −Sss
d iss

d + Sss
d id(t) + iss

d Sd(t) (3.159)

Sq(t)iq(t) ≈ −Sss
q iss

q + Sss
q iq(t) + iss

q Sq(t). (3.160)

In the majority of the applications, the reference signal to the q-axis current loop control system is zero,
the three quantities in (3.160) are very small in the steady-state; hence, they will be neglected in the
design, and their variations will be treated as part of the disturbance in the outer-loop control system. By
substituting (3.159) into (3.158), with the assumption that Sq(t)iq(t) ≈ 0, we obtain the linearized model
for the design of outer-loop PI controller:

Cdc

d𝑣dc

dt
= 3

4
(−Sss

d iss
d + Sss

d id(t) + iss
d Sd(t)) − iL(t). (3.161)

On the right-hand side of (3.161), all the terms, except 3

4
Sss

d id(t), are regarded as disturbances to the
outer-loop control system. Based on (3.161), the Laplace transfer function between Id(s) and Vdc(s) is
given by

Vdc(s)
Id(s)

= 3
4

Sss
d

Cdc

1
s
. (3.162)

Now, with the relationship between the set-point signal I∗d (s) and Id(s) given by (3.152), we obtain the
transfer function between Vdc(s) and I∗d (s):

Vdc(s)
I∗d (s)

= 3
4

Sss
d

Cdc

(1
s

) ⎛
⎜
⎜
⎝

𝛼

(1 − 𝛼) Ls

Rs
s + 1

⎞
⎟
⎟
⎠

. (3.163)

This is a second order model, however, in comparison with the integrator, the time constant (1 − 𝛼) Ls

Rs
is

very small and is taken to be zero as an approximation. Therefore, the model for the design of outer-loop
PI controller is approximated by the first order model:

Vdc(s)
I∗d (s)

≈ 3
4

Sss
d

Cdc

𝛼

s
. (3.164)

For notational simplicity, we let a = 0 and b = 3

4

Sss
d

Cdc
× 𝛼. By choosing a damping coefficient 𝜉 = 0.707,

the bandwidth of the outer-loop control system 𝑤n,the PI controller parameters are calculated as (see
Section 3.1),

Kc =
2𝜉𝑤n − a

b
=

2𝜉𝑤n

b
(3.165)

𝜏I =
2𝜉𝑤n − a

𝑤2
n

= 2𝜉
𝑤n

. (3.166)
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With the values of Kc and 𝜏I calculated, the reference signal to the inner-loop current control, i∗d(t), is
calculated using the PI controller:

i∗d(t) = Kc(𝑣
∗
dc(t) − 𝑣dc(t)) +

Kc

𝜏I
∫

t

0
(𝑣∗dc(𝜏) − 𝑣dc(𝜏))d𝜏, (3.167)

where 𝑣∗dc(t) is the set-point signal for the voltage.
Here, because of the linearization, the variables 𝑣dc(t), id(t) and Sd(t) are deviation variables. Special

care should be taken at the implementation of the PI controller (see Chapter 4).

3.9.4 Simulation Example

The nonlinear model for a two level power converter given by (3.136–3.138) is used in the control
system simulation. The parameters in the simulation are chosen as Ls = 2 × 10−3 H, Cdc = 10−3 F,
Rs = 1 Ω, Δt = 100 × 10−6 sec, Ed = 60 V, Idss = 7 A, 𝑣dcss = 80 V. The control objective is to
maintain the constant voltage by rejecting a load current disturbance iL that is a square wave signal
with its magnitude varying between 1 A and 0 A as shown in Figure 3.20(a). The inner-loop id current
is controlled with a proportional controller with the proportional gain Kd

c = − 2∗𝛼
1−𝛼

Rs with 𝛼 = 0.9,
which is also used to control the q-axis current for simplicity and outer-loop of voltage control is a PI
controller with the closed-loop specification of the damping coefficient 𝜉 = 0.707 and 𝑤n = 5 rad∕s.
From Figure 3.20(a), it is seen that when the load current iL is reduced to zero, the output voltage
𝑣dc is increased first; however, with the cascade current and voltage control, the output voltage 𝑣dc is
regulated to its set-point value of 100 V. When the load current iL increases, the output voltage 𝑣dc

is decreased first, then with the cascade control system, this disturbance is rejected and the voltage
is regulated back to its set-point. Figure 3.20(b) shows the control actions observed from the Sd and
Sq signals.

3.9.5 Phase Locked Loop

In the power converter control system, the seven pairs of candidate voltage variables are generated using
the electrical angle 𝜃g(t)where 𝜃g(t) is estimated using a Phase Locked Loop (PLL). Figure 3.21 shows the
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Figure 3.20 Cascade feedback control of with P q-axis grid current controller and P d-axis grid current controller
and outer-loop PI voltage controller. (a) Closed-loop response of converter. Top figure: key: line (1) the actual voltage;
line (2) the reference voltage. Bottom figure: current load disturbance iL. (b) Closed-loop control signal responses,
the normalized d-axis voltage Sd and q-axis voltage Sq).
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Figure 3.21 Phase Locked Loop for grid connected power converter.

block diagram of a phase locked loop for estimating the grid electrical angle 𝜃g(t) using the grid frequency
𝜔g = 2𝜋f (f is 50 Hz used in the simulations and experiments) together with the Park transformation.
The basic idea in a PLL is to use a PI feedback controller to automatically find the grid electrical angle
𝜃g(t). When the correct 𝜃g(t) is found, in the 𝛼 − 𝛽 reference frame, E𝛼(t) = cos 𝜃gE and E𝛽 (t) = sin 𝜃gE,
where E is the magnitude of grid voltage and is assumed constant. Then from the Park transformation,
we have the following relationships

Ed(t) = cos 𝜃gE𝛼(t) + sin 𝜃gE𝛽(t)

= (cos2𝜃g + sin2𝜃g)E = E (3.168)

Eq(t) = − sin 𝜃gE𝛼(t) + cos 𝜃gE𝛽(t)

= (− sin 𝜃g cos 𝜃g + cos 𝜃g sin 𝜃g)E = 0, (3.169)

Therefore, when the correct 𝜃g is found, the input signal to the PLL is zero as Eq(t) is zero. The input
signal 𝜔g = 2𝜋f provides the bias signal to the PLL.

The design model for the PI controller of the PLL system takes consideration of the integrator dynamics
together with a gain:

G(s) =

√

E2
d + E2

q

s
=

kp

s
. (3.170)

By letting a = 0, b = kp, following the same PI controller design procedure as discussed in Section 3.1,
the proportional and integral control gains for the PI controller are found:

kc =
2𝜉𝑤n

kp

; ki =
𝑤2

n

kp

, (3.171)

where 𝑤n and 𝜉 are chosen by the user. The parameters are also expressed in terms of PI controller
proportional gain Kc = kc and integral time constant 𝜏I =

2𝜉

𝑤n
. Since the grid frequency is unchanged, the

phase locked system could be turned on first to estimate the correct electrical angle 𝜃g, followed by the
switching on the PI control systems.

The key equations in computation of the 𝜃g(t) are summarized as follows. A MATLAB embedded
function is written in Chapter 10 to generate the grid electrical angle 𝜃g.

Algorithm 1 PLL

1. At sampling time t, assuming a grid electrical angle 𝜃g(t), use E𝛼(t) and E𝛽 (t) to compute the Ed(t)
and Eq(t) by the Park transformation:

[
Ed(t)
Eq(t)

]

=
[

cos 𝜃g(t) sin 𝜃g(t)
− sin 𝜃g(t) cos 𝜃g(t)

] [
E𝛼(t)
E𝛽(t)

]

.

2. Calculate the estimated grid frequency 𝜔̂g which is the output of the PI controller together with a
constant bias 2𝜋f = 𝜔g

𝜔̂g(t) = kcEq(t) + ki ∫
t

0
Eq(𝜏)d𝜏 + 2𝜋f .
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3. Calculate the estimated grid electrical angle using

𝜃g(t) = ∫
t

0
𝜔̂g(𝜏)d𝜏.

4. Go back to Step 1 with the estimated 𝜃g(t) and repeat the computational steps.

3.10 Summary
This chapter has presented PID controller design methodologies for closed-loop feedback control of
AC electrical drives and two level power converters. Although these electrical systems are different
in terms of their dynamics and control objectives, a unified framework is used in the design of PID
controllers.

1. All mathematical models are described in the d − q reference frame. In particular, the manipulated
variables are d-axis voltage and q-axis voltage, and the controlled variables are the d-axis current and
q-axis current.

2. If only current control is required (or torque control in the AC drive case), then two PI controllers
are used to control the d-axis currents and q-axis currents respectively, where the current reference
signals are known constants.

3. If velocity or position control is required in the AC drives, then cascade PI control system is needed,
which basically manipulates the current reference signal to the q-axis current (i∗q) using the output of
the outer-loop velocity or position controller. PI controller is sufficient for velocity control while PID
is used for position control.

4. If voltage control is required for the power converter, then cascade PI control system is needed. The
manipulated variable in the outer-loop voltage controller is the reference signal to the d-axis current
control (i∗d).

5. When the cascade PI control system is designed, it is simpler to use a proportional controller for
the inner-loop current control. However, there could be some performance discrepancies in terms of
disturbance rejections as discussed in Chapter 5.

6. The proportional controller in general is expressed as

u(t) = Kce(t) + f (t),

where e(t) is the feedback error and f (t) is the nonlinear feedforward signal. The proportional con-
troller is limited to the applications of inner-loop current control because it results in steady-state
errors. Since the steady-state value of the inner-loop current control system is considered in the
outer-loop control system design, it is suggested that the steady-state value of the inner-loop sys-
tem is selected as 𝛼 and the feedback controller gain Kc is chosen in relation to 𝛼. 𝛼 is selected to be
in the range of 0.85 to 0.95.

7. The PI controller in general is expressed as

u(t) = Kce(t) +
Kc

𝜏I
∫

t

0
e(𝜏)d𝜏 + f (t),

where e(t) is the feedback error and f (t) is the nonlinear feedforward signal. The PI controller can
be used either in the controlling of d-axis current and q-axis current, or as a controller used in the
outer-loop system. Assuming that the transfer function model for the design is a first order, having
the form

G(s) = b
s + a

,
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the PI controller parameters have the expressions:

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

,

where the controller performance is specified by choosing the damping coefficient 𝜉 and the bandwidth
𝑤n. It is suggested that the damping coefficient is selected to be 0.707 and the bandwidth 𝑤n = 1

1−𝛾
a

rad∕s with the parameter 𝛾 in the range of 0.85 to 0.95.

3.11 Further Reading
Books on control system design and analysis include Goodwin et al. (2001), Astrom and Murray (2008),
Astrom and Hagglund (1995). General application characteristics of electric motors are discussed in
Pillay and Krishnan (1991). Books for AC electric drives are Vas (1992), Vas (1993), Hughes and Drury
(2013), Leonhard (2001), El-Hawary (2011), Drury (2009), Trzynadlowski (2000), Quang and Dittrich
(2008). PID controllers for electric drives were discussed and compared with model predictive control in
Thomsen et al. (2011). FOC and DTC were studied in Casadei et al. (2002) for induction motors. A survey
paper was published on current control techniques for three-phase voltage-source PWM converters by
Kazmierkowski and Malesani (1998). Direct torque control for PMSM drives was analyzed in Zhong et
al. (1997). Torque minimization techniques for permanent magnet AC motor drives were discussed and
reviewed in Jahns and Soong (1996). A comparative study was presented for current control of PMSM
drives by Morel et al. (2009). Internal model control method was used for AC machine drive control by
Harnefors and Nee (1998). A survey paper was published on direct torque control of PWM inverter-fed
AC motors by Buja and Kazmierkowski (2004). PMS machines in the application of electric vehicles
were discussed in Liu and Liu (2012), Estima and Marques Cardoso (2012), Dai et al. (2007), Nasiri
(2007), induction motor was used in electric vehicles (see Dilmi (2005)). Renewable source applications
using power converter for the grid integration were discussed in Casadei et al. (2006), Alepuz et–al.
(2006). Induction motor control strategies were proposed in Takahashi and Noguchi (1986), Depenbrock
(1988), Lorenz et al. (1994). Current control of AC-drives using complex vector approaches was analyzed
in del Blanco et al. (1999). Slip estimation for induction motor was discussed in Rubin et al. (1992) and
Abbondanti and Brennen (1975). Induction motor control using dynamic feedback linearization was
discussed in Chiasson (1998). Adaptive flux observer of induction motor was discussed in Kubota et al.
(1990), Maes and Melkebeek (2000) and Kubota et al. (1993).

Mathematical modeling and analysis of converters were presented in Wu et al. (1991), in Lindgren
(1998), in Abdel-Rahim and Quaicoe (1994), in Blasko and Kaura (1997). Selected problems in control of
power electronics were given in Kazmierkowski et al. (2002), and selected control techniques in Liserre
et al. (2001), in Liu and Liu (2004), in Svensson (2001). Limitations of voltage-oriented PI current
control of grid-connected PWM rectifiers with LCL filters were discussed in Dannehl et al. (2009).
Current control of power converters was presented in Brod and Novotny (1985), in Kazmierkowski et al.
(1991), in B. H. Kwon and Youn (1998), in Pan and Chang (1994).

The phase locked loop was discussed in Chung (2000).
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4
PID Control System
Implementation

After the design of PID control systems for drives and power converters, in this chapter we will discuss
the implementation of PID cascaded control systems. Because the control systems for electrical drives are
configured as cascaded control systems and there are inner-loop and outer-loop PI controllers, there may
be differences between the implementation algorithms. Furthermore, there are operational limits that will
be imposed in the control system implementation. For instance, the operational limits of voltages and
currents are necessary for the protection of electronic equipment in the presence of a large load and in the
transient process. With these limits imposed, if a PI controller is used in the control system, anti-windup
mechanisms are required to ensure a satisfactory closed-loop performance.

In Section 4.1, we will first address the implementation of P or PI controllers in the inner-loop control
system, where operational constraints for the d-axis and q-axis voltages are introduced and two meth-
ods are discussed on how to implement these voltage constraints, followed by detailed discussions on
the implementation of current controllers for PMSM in Section 4.2, induction motors in 4.3 and power
converters in Section 4.4. In Section 4.5, we will address the implementation of PI controllers in the
outer-loop control system, where the operational limit is the current constraint that provides protection
for the electronic equipment in the case of a large load. In Section 4.6, a MATLAB tutorial is given to
demonstrate how to implement the PI controllers using the velocity form with an anti-windup mechanism.

4.1 P and PI Controller Implementation in Current Control Systems
There are two types of controllers we discussed in the previous chapter that can be used in the current-loop
control system. One is the P controller and the other is the PI controller. Because of the operational
constraints, special care is needed for saturation and anti-windup schemes.

4.1.1 Voltage Operational Limits in Current Control Systems

The current control signals are the d-axis and q-axis voltages, 𝑣d and 𝑣q. Due to inverter operation,
the d − q axes voltages for the electrical drives and power converter are limited by the PWM and DC
voltage (see Chapter 2). Suppose that the DC-bus voltage is Vdc (V), and using the PWM with harmonic
injection or the Space vector PWM, the amplitude of the space vector voltage signal is restricted to Vdc√

3
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Figure 4.1 Constraints on d-axis and q-axis voltages.

As discussed in Chapter 2, this limit is translated to the constraints on the amplitudes of the d axis and q
axis voltages as

√

𝑣2
d + 𝑣

2
q ≤ Vdc

√
3
. (4.1)

This is a nonlinear constraint equation. Figure 4.1 illustrates that the constraint equation is a circle with
radius Vdc√

3
, where the inside the circular area is the region where the constraint is satisfied.

Because the constraint equation is a quadratic function of both 𝑣d and 𝑣q, linear approximation is
proposed to obtain the limits for the d-axis and q-axis voltages.

4.1.1.1 Rectangular Approximation

The first approach is to approximate the circular area with a rectangular area that is also called boxed
constraints, as shown in Figure 4.2. The idea for using this rectangular approximation is to assume a
parameter 0 ≤ 𝜖 ≤ 1, where the maximum value of 𝑣q is set to

𝑣max
q = 𝜖

Vdc
√

3
. (4.2)

Accordingly, the maximum value of 𝑣d is calculated as

𝑣max
d =

√
1 − 𝜖2

Vdc
√

3
. (4.3)

For instance, if 𝜖 is chosen to be 0.8, then 𝑣max
q = 0.8 Vdc√

3
and 𝑣max

d = 0.6 Vdc√
3
. With the operational limits

specified, the box constraints in the current loop control system are specified as

−𝑣max
d ≤ 𝑣d(t) ≤ 𝑣max

d (4.4)

−𝑣max
q ≤ 𝑣q(t) ≤ 𝑣max

q . (4.5)

The advantage of using this rectangular approximation to the circular area is that the operational con-
straints are constants once the DC power supply voltage Vdc is determined. The constant constraints
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Figure 4.2 Constraints on d-axis and q-axis voltages with a rectangular approximation.

are easier to implement in a real-time control system. However, the shortcoming of this approach is its
conservativeness due to the area of rectangular being much smaller than the circular area as shown in
Figure 4.2.

4.1.1.2 Maintaining the Same Ratio

Another approach is to determine the maximum and minimum values of 𝑣d and 𝑣q in real-time by scaling
the values of actual 𝑣d and 𝑣q proportionally. Assume that at the sampling instant ti, the two current
control-loops have the computed control signals 𝑣̄d(ti) and 𝑣̄q(ti) and the voltage constraint equation
(4.1) is violated so that

√

𝑣̄d(ti)2 + 𝑣̄q(ti)2 >
Vdc
√

3
. (4.6)

If the violation occurs, the solution is then to find the 𝑣d(ti) and 𝑣q(ti) such that

√

𝑣d(ti)2 + 𝑣q(ti)2 =
Vdc
√

3
. (4.7)

This is indeed what the model predictive control tries to do as shown in later chapters of this book.
Because there are two degrees of freedom (𝑣d and 𝑣q) in the single equality constraint, a close approxi-
mation is to maintain the same ratio

𝑣̄d(ti)
𝑣̄q(ti)

=
𝑣d(ti)
𝑣q(ti)

, (4.8)

while satisfying the constraint (4.7).
Figure 4.3 illustrates a possible solution that will satisfy the constraint (4.7) while maintaining the

same voltage ratio. From the similar triangles shown in Figure 4.3, it is seen that the following equalities
are true:

𝑣d(ti)
Vdc√

3

=
𝑣̄d(ti)

√
𝑣̄d(ti)2 + 𝑣̄q(ti)2

𝑣q(ti)
Vdc
√

3

=
𝑣̄q(ti)

√
𝑣̄d(ti)2 + 𝑣̄q(ti)2

.
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Figure 4.3 Constraints on d-axis and q-axis voltages with an approximation by maintaining the same ratio.

Hence, the values of 𝑣d(ti) and 𝑣q(ti) are determined by

𝑣d(ti) =
𝑣̄d(ti)

√
𝑣̄d(ti)2 + 𝑣̄q(ti)2

×
Vdc
√

3
(4.9)

𝑣q(ti) =
𝑣̄q(ti)

√
𝑣̄d(ti)2 + 𝑣̄q(ti)2

×
Vdc
√

3
. (4.10)

It is easily verified that from (4.9) and (4.10) that

√

𝑣2
d + 𝑣

2
q =

Vdc
√

3
.

Without confusion, it is emphasized that the calculation of 𝑣d and 𝑣q using (4.9) and (4.10) is
based on the assumption that the constraint was violated. Thus in the implementation, the values of
𝑣d(ti) and 𝑣q(ti) calculated using (4.9) and (4.10) are the saturated control signals at time ti. Thus, the
limits of the d-axis and q-axis voltages are varying with respect to time, depending on the computed
control signals.

Although the implementation of the constraints is slightly more complicated than the constant con-
straints (see (4.4) and (4.5)), it will be shown in the next section that with a velocity form PI control
implementation, it is a straightforward task to convert the time-varying constraints into the operational
limits.

4.1.2 Discretization of Current Controllers

The first step in the implementation process is to discretize the continuous-time controllers. We will
first describe the general discretization process, then list the implementation equations for the current
controllers.
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For a proportional controller, assuming that the control system is sampled using a sampling interval
Δt, at time ti, the control signal u(ti) is computed based on the feedback error e(ti) and the feedforward
nonlinear compensation f (ti):

u(ti) = Kce(ti) + f (ti). (4.11)

Thus, the discretization is straightforward because there are no other dynamics involved in the propor-
tional controller except the feedback gain control. In the proportional control implementation, we will
take the actual reference signal r(t) and the actual physical feedback signal y(ti) to form the feedback
error e(ti) = r(ti) − y(ti). Also f (ti) consists of the actual physical measurements.

For a PI controller, because there is the integrator dynamic, we need to pay attention to how this con-
troller is discretized. Here, a PI controller in velocity form is suggested to be used in the implementation
of current controllers for the reason that this form takes the actual system input and output signals in the
computation and its flexibility in implementing the saturation and anti-windup mechanisms later on.

4.1.2.1 PI Controller in Position Form

In the general case, we assume that the feedback error is e(t) and the feedforward function is f (t), then
with Kc the proportional gain and 𝜏I the integral time constant, the control signal u(t) from a PI controller
is defined as

u(t) = Kce(t) +
Kc

𝜏I ∫
t

0
e(𝜏)d𝜏 + f (t). (4.12)

When at the sampling instant ti, the integral term is approximated by the finite sum,

∫
ti

0
e(𝜏)d𝜏 ≈

M−1∑

k=0

e(tk)Δt,

where ti = t0 + (M − 1)Δt with M being the number of samples, the control signal is discretized as

u(ti) = Kce(ti) +
Kc

𝜏I

M−1∑

k=0

e(tk)Δt + f (ti). (4.13)

This is the computational equation for implementation of a PI controller using the so called position form.
The name of position form refers to the computation that is based on the control signal itself. Because the
control signal u(ti) computed using (4.13) is meant for the deviation variable, not the actual control signal
used for the input to the physical system, there is a constant term that corresponds to the steady-state of
the control signal. This constant term needs to be considered in the implementation. Supposing that this
constant term is uss, which is assumed to be the steady-state value of the control signal, the actual control
signal to be used as the input to the physical system is

uact(ti) = u(ti) + uss. (4.14)

To understand the idea of the steady-state term, we consider the situation where an AC machine is stopped
in a stand-by operation with output velocity and the reference velocity being zero, however, the currents
and voltages are not zero. Here, the nonzero values of the voltages are the steady-state terms required
in the implementation of the current controllers. One of the main drawbacks when using the position
form is the requirement of these terms. The other drawback is that the position form will lead to an
oscillatory closed-loop response when the saturation limits are reached, so called integrator windup.
Although anti-windup mechanisms can be incorporated in the implementation, it is not a straightforward
approach unlike the velocity form as introduced below.
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4.1.2.2 PI Controller in Velocity Form

The velocity form implementation of PI controller is different from the position form implementation.
With the velocity form implementation, we consider the derivative of the control signal. Differentiating
(4.12), the derivative of the control signal is expressed as

du(t)
dt

= Kc

de(t)
dt

+
Kc

𝜏I

e(t) +
df (t)

dt
. (4.15)

Taking the approximation of the derivatives by the first order difference, at sample time ti, the derivatives
in (4.15) are written as

du(t)
dt

≈
u(ti) − u(ti − Δt)

Δt
=

u(ti) − u(ti−1)
Δt

(4.16)

de(t)
dt

≈
e(ti) − e(ti − Δt)

Δt
=

e(ti) − e(ti−1)
Δt

(4.17)

df (t)
dt

≈
f (ti) − f (ti − Δt)

Δt
=

f (ti) − f (ti−1)
Δt

, (4.18)

where for notational simplicity,
ti − Δt = ti−1.

Substituting these approximations into (4.15) with the simplified notations leads to the control signal
u(ti) at the sampling time ti:

u(ti) = u(ti−1) + Kc(e(ti) − e(ti−1)) +
Kc

𝜏I

e(ti)Δt + f (ti) − f (ti−1). (4.19)

To embed the steady-state value in the implementation, we define the actual control signal

uact(ti) = u(ti) + uss

uact(ti−1) = u(ti−1) + uss.

Thus, by adding the same steady-state value uss to both sides of (4.19), we obtain the computational
equation for the actual control signal used for the input to the system as

uact(ti) = uact(ti−1) + Kc(e(ti) − e(ti−1)) +
Kc

𝜏I

e(ti)Δt + f (ti) − f (ti−1). (4.20)

The computation of the actual control signal has embedded the steady-state value of the control signal
in the implementation. In the implementation, the algorithm requires the initialization of the actual con-
trol signal and the other signals from the system. Assuming that the closed-loop control occurs at time
ti = 0, the initial conditions for the control signal uact(−Δt), e(−Δt) and f (−Δt) are chosen to be equal
to the actual measurements of the control signal and other signals before the closed-loop control, and
the steady-state values are correctly identified. Consequently, all the variables in (4.20) use the actual
physical measurements.

4.1.3 Anti-windup Mechanisms

The two key points in the implementation of an anti-windup mechanism in controllers are to have a stable
controller structure and to make sure that the actual control signal equals the control signal computed
(see Goodwin et al., 2001). In the current control systems, if a proportional controller is used in conjunc-
tion with the input-output linearization, then the controller structure is stable (namely, with no pole on
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the imaginary axis or the right-hand side of the complex plane), and the actual control signal equals the
control signal computed because of the nonlinear compensations. Thus, for the current-loop control sys-
tems, if a proportional controller is used, we will only use a nonlinear saturation to limit the amplitude of
control signal, which is straightforward in the implementation. However, if a PI controller is used for the
current-loop control system, then an anti-windup mechanism is needed for the implementation, because
the PI controller has an integrator (namely, with a pole at the origin of the complex plane).

It is much more straightforward to implement anti-windup mechanisms in velocity form of PID con-
trollers, mainly because the velocity form of PID controller is derived to use the actual control signals (see
(4.20)). In addition, to achieve a stable controller structure when the saturation is reached, the derivative
of the control signal is taken to be zero in the velocity form implementation, that is du(t)

dt
= 0, leading to

uact(ti) = uact(ti−1). This means that the control signal becomes a constant when the saturation is reached
and it stops growing.

The saturation with anti-windup mechanism is summarized as follows. We assume that the actual con-
trol variable is limited by Umin and Umax. Namely, the actual control signal must satisfy the constraints:

Umin ≤ uact(t) ≤ Umax.

The actual control signal uact(ti) at sample time ti is calculated using the equation,

uact(ti) = uact(ti−1) + Kc(e(ti) − e(ti−1)) +
Kc

𝜏I

e(ti)Δt + f (ti) − f (ti−1). (4.21)

In order to stop the integration, when the actual control signal reaches the limit, we impose the limits on
the actual control signal with the computation that if uact(ti) < Umin, then uact(ti) = Umin; if uact(ti) > Umax,
then uact(ti) = Umax. When the sample time ti moves one step forward to ti+1, the signal uact(ti) carries the
information of saturation at the previous sample time and the control signal computation is automatically
informed of the saturation, thus both requirements in an anti-windup mechanism are satisfied.

4.2 Implementation of Current Controllers for PMSM
When implementing current control for PMSM, we have two options for the control system configuration.
The first is to use a proportional controller for the q-axis current control system and the second is to use
a PI controller for the same loop. PI controller is required for the d-axis current control because it is the
integral term that will eliminate steady-state error in the closed-loop system and there is no outer-loop
system for the d-axis current control. There are also two methods to calculate the saturation values for
the d-axis and q-axis voltages. One is to use box constraints (see (4.4) and (4.5)) and the other is to use
the nonlinear constraint calculated using (4.7) and (4.10). To simplify the expressions, we let

fd(t) = −𝜔e(t)Lqiq(t) (4.22)

fq(t) = 𝜔e(t)Ldid(t) + 𝜔e(t)𝜙mg. (4.23)

The computational steps are summarized as follows.

Algorithm 2 PI current control!anti-windup mechanism

1. Initialize the control system parameters before the closed-loop control. The initialization will lead to
the parameters in sampling time ti−1 where the sampling index i = 0.

• Initialization of the control signals. At the sampling instant i = 0, take the measurements of d-axis
voltage 𝑣d and q-axis voltage 𝑣q and assign these values to 𝑣d(ti−1) and 𝑣q(ti−1).

• Initialization of the feedforward term. Take the measurements of 𝜔e, iq and id, and calculate fd(ti−1)
and fq(ti−1) using (4.22) and (4.23) with the measured 𝜔e and iq values.
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• Initialization of the feedback errors. Use the reference signal from outer-loop control system, i∗q
to form the feedback error eq(ti−1) = i∗q(ti−1) − iq(ti−1) and use the set-point signal for the d-axis
current control i∗d to form the feedback error ed(ti−1) = i∗d(ti−1) − id(ti−1).
After the initialization, the clock ticks to the next sample period (say i = 1 at time t = ti) and the

closed-loop control begins.
2. At sampling time ti, take the measurements of 𝜔e(ti), iq(ti) and id(ti), and calculate fd(ti) and fq(ti)

using the following equations:

fd(ti) = −𝜔e(ti)Lqiq(ti) (4.24)

fq(ti) = 𝜔e(ti)Ldid(ti) + 𝜔e(ti)𝜙mg. (4.25)

3. Use the reference signal from outer-loop control system, i∗q(ti) to form the feedback error:

eq(ti) = i∗q(ti) − iq(ti)

and use the set-point signal for the d-axis current control i∗d(ti) to form the feedback error:

ed(ti) = i∗d(ti) − id(ti).

4. Calculate the actual control signal using

𝑣d(ti) = 𝑣d(ti−1) + Kd
c (ed(ti) − ed(ti−1)) +

Kq
c

𝜏I

ed(ti)Δt + fd(ti) − fd(ti−1)

𝑣q(ti) = 𝑣q(ti−1) + Kq
c (eq(ti) − eq(ti−1)) +

Kq
c

𝜏I

eq(ti)Δt + fq(ti) − fq(ti−1).

5. Check if the control signals are within the limits

√

(𝑣d(ti))2 + (𝑣q(ti))2 ≤ Vdc
√

3
.

6. If this is satisfied, then 𝑣d(ti)act = 𝑣d(ti) and 𝑣q(ti)act = 𝑣q(ti) are the actual voltage input signals at
the sample time ti, which will be implemented. However, if this constraint is violated, then scale the
control signals to satisfy the constraint by computing:

𝑣0
d =

𝑣d(ti)
√

(𝑣d(ti))2 + (𝑣q(ti))2

×
Vdc
√

3

𝑣0
q =

𝑣q(ti)
√

(𝑣d(ti))2 + (𝑣q(ti))2
×

Vdc
√

3

and updating 𝑣d(ti)act = 𝑣0
d; 𝑣q(ti)act = 𝑣0

q.
7. Implement the voltage control signals 𝑣d(ti)act and 𝑣q(ti)act to the system.
8. Update the control signals with the implemented values,

𝑣d(ti) = 𝑣d(ti)act

𝑣q(ti) = 𝑣q(ti)act.

9. When the next sample period arrives, repeat the computation from Step 2.
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If we use the box constraints for 𝑣d and 𝑣q, we will first assign parameter 0 ≤ 𝜖 ≤ 1, then set maximum
value of

𝑣max
q = 𝜖

Vdc
√

3
(4.26)

𝑣max
d =

√
1 − 𝜖2

Vdc
√

3
. (4.27)

At Step 5, we will check if

−𝑣max
d ≤ 𝑣d(ti) ≤ 𝑣max

d

−𝑣max
q ≤ 𝑣q(ti) ≤ 𝑣max

q .

If all the four constraints are satisfied, then 𝑣d(ti) and 𝑣q(ti) are the actual voltage input signals to the
system. Otherwise, if 𝑣d(ti) > 𝑣max

d , then 𝑣d(ti) = 𝑣max
d ; if 𝑣d(ti) < −𝑣max

d then 𝑣d(ti) = −𝑣max
d ; if 𝑣q(ti) >

𝑣max
q , then 𝑣q(ti) = 𝑣max

q ; if 𝑣q(ti) < −𝑣max
d then 𝑣q(ti) = −𝑣max

d .

4.3 Implementation of Current Controllers for Induction Motors
The implementation of PI current controllers for induction motors uses a similar procedure as the one
used in the controller implementation for PMSM. The key issues in the implementation of current control
for the induction motor are the estimation of some unmeasured variables. For induction motor control,
based on the current controller design stated in Section 3.6, the current-loop nonlinear compensation
functions are

fd(t) = −
kr

𝜏r

𝜓rd(t) − 𝜏′𝜎r𝜎𝜔s(t)isq(t) (4.28)

fq(t) = r𝜎𝜏
′
𝜎𝜔s(t)isd(t) + kr𝜔e(t)𝜓rd(t), (4.29)

where fd(t) is the nonlinear feedforward function for the d-axis current control and fq(t) for the q-axis
current control. Note that these compensators require the rotor flux 𝜓rd(t) and the synchronous speed
𝜔s(t).These signals are not measured by sensors, thus, estimation schemes are needed in order to access
the relevant information.

4.3.1 Estimation of 𝜔s and 𝜃s

The estimation of 𝜔s(t) is achieved using the slip estimation:

𝜔s(t) = Zp𝜔m(t) +
isq(t)
𝜏risd(t)

. (4.30)

Because of the large amount of noise in the d-axis and q-axis currents isd(t) and isq(t), direct application
of (4.30) will not lead to an accurate estimate of 𝜔s(t). Instead, the reference signals i∗sd(t) and i∗sq(t) are
used to replace the actual signals. If a PI controller is used to control the q-axis current, then the estimate
𝜔̂s(t) at the sampling time ti is calculated as

𝜔̂s(ti) = Zp𝜔m(ti) +
i∗sq(ti)
𝜏ri

∗
sd(ti)

. (4.31)
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Because integrators are used to control the currents, at the steady-state, isd(ti) = i∗sd(ti) and isq(ti) = i∗sq(ti).
Therefore, (4.31) provides a good estimate of 𝜔s(t) after the transient period.
𝜃s(t) is required in the computation of Park-Clarke transforms. The estimate of 𝜃s(t) is performed using

𝜃̂s(t) = Zp𝜃r(t) +
1
𝜏r

∫
t

0

i∗sq(𝜏)
i∗sd(𝜏)

d𝜏. (4.32)

Discretization of (4.32) gives the numerical solution of 𝜃̂s(t) that can be implemented in a control system,
where

𝜃̂s(ti) = Zp𝜃r(ti) +
1
𝜏r

M−1∑

k=0

i∗sq(tk)
i∗sd(tk)

Δt, (4.33)

where ti = t0 + (M − 1) ∗ Δt and M is the number of samples from time t0 to the time ti. The potential
problem of directly using the integral equation is that as time ti increases, the finite sum approximation
in (4.33) could become excessively, hence causing numerical overflow.

Instead of using the integral expression, the difference approximation of

d𝜃̂s(t)
dt

= 𝜔̂s(t)

leads to
𝜃̂s(ti) = 𝜃̂s(ti−1) + 𝜔̂s(ti)Δt. (4.34)

In addition, to avoid numerical overflow occurring, 𝜃s is converted to a value between 0 and 2𝜋. The
advantage of using the difference approximation is that the calculation is in a recursive manner; however,
it requires the initial guess of 𝜃̂s at the first sample. This could be taken approximately at the first sample,
𝜃̂s = 𝜃, but this approximation may have an error. Another approach is to combine the estimation (4.34)
with the one using (4.33). The idea is that at the initial period, (4.33) is used to correctly identify the
𝜃̂s, which does not have the problem of numerical overflow, and after this initial period, the difference
approximation (4.34) is used with the correct initialization of 𝜃s, which then will avoid the numerical
problem.

When the proportional controller is used to control the q-axis current, there is a steady-state error
between the isq(t) and the i∗sq(t). In the ideal case when there is no mismatch of the resistance 𝜏𝜎 between
the system and model, the steady-state gain for the q-axis current control is 𝛼. Thus, the estimation of
𝜔s(t) will take into account the steady-state discrepancy, which leads to :

𝜔̂s(ti) = Zp𝜔m(ti) +
i∗sq(ti) × 𝛼
𝜏ri

∗
sd(ti)

. (4.35)

Similarly, the estimation of 𝜃s(t) is performed using

𝜃s(t) ≈ Zp𝜃r(t) +
1
𝜏r

∫
t

0

i∗sq(𝜏) × 𝛼
i∗sd(𝜏)

d𝜏.

If a PI controller is used to control the q-axis current, then the parameter 𝛼 is unity.

4.3.2 Estimation of 𝜓rd

Because the rotor flux𝜓rd(t) is not measured in the system,𝜓rd(t)will be estimated in the implementation.
The rotor flux is related to the isd(t) current via the differential equation:

𝜓rd(t) + 𝜏r

d𝜓rd(t)
dt

= Lhisd(t). (4.36)
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Using the similar approach to the estimation of 𝜔s, because of the high noise level in the feed-
back signal isd(t), the set-point signal to 𝜓rd , which is 𝜓∗

rd(t) = Lhi∗sd(t), is used in the feedforward
function.

4.3.3 The Implementation Steps

By substituting the estimated variables into (4.28) and (4.29), the estimated feedforward compensation
functions are

f̂d(t) = −
kr

𝜏r

𝜓∗
rd(t) − 𝜏

′
𝜎r𝜎𝜔̂s(t)isq(t) (4.37)

f̂q(t) = r𝜎𝜏
′
𝜎𝜔̂s(t)isd(t) + kr𝜔e(t)𝜓

∗
rd(t). (4.38)

The implementation steps for the d-axis and q-axis current control of an induction motor are identical to
those outlined in Sections 4.1.1 to 4.2, where the topics of constraints handling, discretization of the PI
current controllers and velocity implementation of the current controllers are discussed.

4.4 Current Controller Implementation for Power Converter
The control signals in the power converter are the normalized d-axis voltage Sd(t) and normalized q-axis
voltage Sq(t), and they are related to the voltage of the converter 𝑣dc(t) via

𝑣d = Sd × (𝑣dc∕2) (4.39)

𝑣q = Sq × (𝑣dc∕2). (4.40)

With Sd and Sq as the control variables, the relationships become bilinear. Although the implementation
procedure of the current controllers is basically the same as the current controllers for the PMSM and
the induction motor, there are some differences caused by the bilinearities of the control variables given
in (4.39) and (4.40).

4.4.1 Constraints on the Control Variables

The constraint on the voltages due to the physical constraints from the inverter is

√

𝑣2
d + 𝑣

2
q ≤ 2𝑣dc

√
3
. (4.41)

This constraint is the same as the inverter constraint in the AC machines. By substituting (4.39) and (4.40)
into (4.41), we obtain the constraint on the control variables Sd and Sq:

√

S2
d + S2

q ≤ 2
√

3
. (4.42)

This is a circular constraint with radius 2
√

3
, and it is handled in the same manner as discussed in

Sections 4.1.1 to 4.2.
Because of the bilinear relationship between the control variables and the output voltage that is to be

controlled, the discretization of the PI controllers needs a small modification.
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Letting

fd(t) = 2Ls𝜔giq(t) + 2Ed(t) (4.43)

fq(t) = −2𝜔gLsid(t), (4.44)

the voltage control variables are 𝑣d(t) = Sd𝑣dc(t) and 𝑣q(t) = Sq𝑣dc(t). Then from the design of the PI
current controllers, the control variables are expressed in terms of the feedback errors and the feedforward
variables fd(t) and fq(t) where

𝑣d(t) = Kd
c (i

∗
d(t) − id(t)) +

Kd
c

𝜏d
I
∫

t

0
(i∗d(𝜏) − id(𝜏))d𝜏 + fd(t) (4.45)

𝑣q(t) = Kq
c (i∗q(t) − iq(t)) +

Kq
c

𝜏
q
I
∫

t

0
(i∗q(𝜏) − iq(𝜏))d𝜏 + fq(t). (4.46)

The velocity forms of the PI controllers will be derived in terms of the auxiliary variables 𝑣d and 𝑣q using
(4.45) and (4.46). They have the following forms:

𝑣d(ti) = 𝑣d(ti−1) + Kd
c (ed(ti) − ed(ti−1)) +

Kd
c

𝜏d
I

ed(ti)Δt + fd(ti) − fd(ti−1)

𝑣q(ti) = 𝑣q(ti−1) + Kq
c (eq(ti) − eq(ti−1)) +

Kq
c

𝜏
q
I

eq(ti)Δt + fq(ti) − fq(ti−1),

where ed(ti) = i∗d(ti) − id(ti) and eq(ti) = i∗q(ti) − iq(ti).Upon obtaining the values of 𝑣d and 𝑣q, the control
variables are obtained using

Sd(ti) =
𝑣d(ti)
𝑣dc(ti)

Sq(ti) =
𝑣q(ti)
𝑣dc(ti)

.

Note that the division operations are used in reconstructing the control variables. In order to ensure that
division is valid, the voltage 𝑣dc(ti) must satisfy 𝑣dc(ti) ≠ 0. Thus, the closed-loop current control systems
are switched on after the DC bus voltage is charged to a certain value. This means that the steady-state
values of the control signals and voltage signal must be considered in the calculation of the actual control
signals to be implemented. However, by using the velocity form of the PI controller, the initial condi-
tions of the Sd(ti−1), Sq(ti−1), 𝑣dc(ti−1) can be chosen to be equal to their measured values before the
closed-loop control begins. Thus, their steady-state values are not required explicitly in the computa-
tion of the control signals. This shows one of the advantages in using the velocity form of PI controller
implementation because it is much easier to handle steady-state values in the initialization stage of the
control system.

4.5 Implementation of Outer-loop PI Control System

4.5.1 Constraints in the Outer-loop

The manipulated variable in the outer-loop system is the reference current signal to the inner-loop system.
Thus, the constraints are imposed on the manipulated variable i∗q for the AC machines or i∗d for the power
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converters. The constraints provide over current protection in the event of overload or a large transient
response in the event of rapid start-up and shut-down of the machines.

4.5.2 Over Current Protection for AC Machines

As we know, it is the actual current iq on which we wish to impose the constraints for the over current
protection. However, because it is the feedback variable already used in the inner-loop system, it is not
available for manipulation in the outer-loop system. Instead, the outer-loop manipulated variable i∗q is
utilized to handle the constraints. Therefore, the relationship between the feedback current iq and the
reference i∗q is important for the implementation of the over current protection.

4.5.2.1 PI Control of q-Axis Current

When the current control-loop is controlled by a PI controller, the constraints are simply imposed as

−Imax
q ≤ i∗q(t) ≤ Imax

q , (4.47)

where Imax
q is the maximum current allowed. This is because when an integrator is used in the inner-loop

controller, in the steady-state
lim
t→∞

i∗q(t) − iq(t) = 0,

the constraints given by (4.47) are the same as the actual constraints on iq. However, this also means that
the simplified relationship only imposes accurate constraints on the steady-state over current protection,
and it does not provide the exact constraints in the transient period. If the constraints during the transient
period are imposed, then the current feedback error eq(ti) should be considered similar to the proportional
control case given below.

4.5.2.2 Proportional Control of q-Axis Current

If the inner-loop system is controlled by a proportional controller, then the steady-state current feedback
error eq(t) is not equal to zero:

lim
t→∞

eq(t) = lim
t→∞

i∗q(t) − iq(t) ≠ 0. (4.48)

Here, the inner-loop feedback error eq(t) is governed by the difference of the two currents:

eq(t) = i∗q(t) − iq(t). (4.49)

Thus, the feedback current is related to its reference via

iq(t) = i∗q(t) − eq(t). (4.50)

Assuming that the maximum current allowed is Imax
q , then the constraints using (4.50) are

−Imax
q ≤ i∗q(t) − eq(t) ≤ Imax

q , (4.51)

which leads to the constraints imposed on the reference current i∗q(t) as

−Imax
q + eiq(t) ≤ i∗q(t) ≤ Imax

q + eq(t). (4.52)
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In the case of proportional control of q-axis current, we will utilize the inner-loop feedback error eiq(t)
in the implementation of the outer-loop over current protection based on (4.52).

4.5.3 Implementation of Outer-loop PI Control of Velocity

As an example, we examine the implementation of outer-loop PI control of velocity for PMSM. The
control signal i∗q(t) is calculated using the PI controller as

i∗q(t) = Kc(𝜔
∗
e (t) − 𝜔e(t)) +

Kc

𝜏I
∫

t

0
(𝜔∗

e (𝜏) − 𝜔e(𝜏))d𝜏, (4.53)

where 𝜔∗
e (t) is the set-point signal for the electrical velocity. Equation (4.53) is the position form of the

PI controller implementation. For convenience of the implementation, the velocity form is preferred in
the applications as it is easier to deal with the steady-state, also integrator windup as well as ensuring
a smooth transition when the task of switching controller is performed. Following the same derivation
of the velocity form of the PI controller as discussed in Section 4.1.2, the outer-loop PI control signal
calculation is obtained as

i∗q(ti) = i∗q(ti−1) + Kc(𝜔
∗
e (ti) − 𝜔

∗
e (ti−1)) − Kc(𝜔e(ti) − 𝜔e(ti−1))

+
KcΔt

𝜏I

(𝜔∗
e (ti) − 𝜔e(ti)). (4.54)

We often prefer to implement the proportional control on the feedback signal only, which has an effect of
reducing overshoot in the closed-loop set-point response (see Section 3.1). This avoids the effect known
as “proportional kick”. The integral control must be implemented with the difference between the desired
set-point signal and the actual measurement to ensure zero steady-state error when tracking a constant
set-point signal. Thus, an alternative implementation of the PI controller for the outer-loop is

i∗q(ti) = i∗q(ti−1) − Kc(𝜔e(ti) − 𝜔e(ti−1)) +
KcΔt

𝜏I

(𝜔∗
e (ti) − 𝜔e(ti)). (4.55)

4.5.4 Over Current Protection for Power Converters

Similar principles apply to power converters. In the control of power converters, the constraints are
imposed on the id current. If a proportional controller is used to control the d-axis current, assuming
the the maximum current allowed is

−Imax
d ≤ id(t) ≤ Imax

d ,

then because
id(t) = i∗d(t) − eid(t),

the constraints on the reference current i∗d(t) are expressed as

−Imax
d + eid(t) ≤ i∗d(t) ≤ Imax

d + eid(t). (4.56)

4.6 MATLAB Tutorial on Implementation of PI Controller
The embedded PI controller function will be used in the simulation and implementation through the entire
book. It is written in a general form and small modification may be needed for individual applications.
One may wish to test this embedded function using the simulation examples given in Chapter 3.
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Tutorial 1 This tutorial is to illustrate how to implement the PI control algorithm in real-time. The core
of this activity is to produce a MATLAB embedded function that can be used in a Simulink simulation as
well as in xPC Target implementation. This embedded function is based on the PI controller velocity form
discussed in the previous sections. The entire embedded MATLAB completes one cycle of computation
for the control signal. For every sampling period, it will repeat the same computation procedure. The
embedded function is written in a set of general variables and it is suitable for all PI control applications
such as current, velocity and voltage controls.

Step by Step

1. Create a new Simulink file called PIV.mdl
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MATLAB function and

copy it to the PIV model.
3. Click on the icon of the embedded function, and define the input and output variables to the PIV

model so that the embedded function has the following form:

function uCur= PIV(yCur,rCur,Kc,tauI,Ts,uLmt)

where uCur is the calculated control signal at the sampling time ti, the first two elements (yCur
and rCur) among the input variables are the measurement of the output and the reference signals at
sampling time ti, Kc and tauI are the proportional gain and integral time constant, Ts is the sampling
interval and uLmt is the upper limit imposed on the control signal uCur. Here, we assume symmetric
constraints on the control signal for simplicity of the expressions.

4. At the top of the embedded function, find “Model Explorer”among the “Tools.” When opening the
Model Explorer, select “discrete” for the “update method” and input “Ts” into the “sample time”;
select “Support variable-size arrays”; select “Saturate on integer overflow”; select “Fixed point”.
Click “Apply” to save the changes.

5. We need to edit the input and output data ports in order to let the embedded function know which
input ports are the real-time variables and which are the parameters. This editing task is performed
using Model Explorer.

• click on “yCur”, on Scope, select “input”, assign port “1” and size “−1”, complexity “Inherit-
ed”, type “Inherit: Same as Simulink”. Repeat the same editing procedure for the reference signal
“rCur”.

• The rest of 4 inputs to the embedded function are the parameters required in the computation.
Click on “Kc”, on Scope, select “Parameter” and click “Tunable” and click “Apply” to save the
changes. Repeat the same editing procedure for the rest of the parameters, “tauI”, “Ts”, “uLmt”.

• To edit the output port from the embedded function, click on “uCur”, on Scope, select “Output”,
Port “1”, Size “−1”, Sampling Model “Sample based”, Type “Inherit: Same as Simulink”, and
click on “Apply” to save the changes.

6. In the following, the program will declare those variables that are stored in the embedded func-
tion during each iteration for their dimensions and initial values. “uPast” is the past control signal
(u(ti−1)), “yPast” is the past output signal (y(ti − Deltat)). Because the PI controller implemented
using velocity form takes the actual measured variables, the past input and output variables should
be initialized to the actual measured physical variables before the closed-loop control. These ini-
tial values can enter the computation as the extra parameters in the embedded function. Here, for
simplicity of the programming, they are assigned to zero. Enter the following program into the file:

persistent uPast
if isempty(uPast)

uPast=0;
end
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persistent yPast
if isempty(yPast)

yPast=0;
end
persistent rPast
if isempty(rPast)

rPast=0;
end

7. Calculate the actual control signals. Enter the following program into the file:

uCur=uPast+Kc*((rCur-yCur)-(rPast-yPast))...
+(Kc*Ts/tauI)*(rCur-yCur);

Alternatively, if one wishes to reduce overshoot in the set-point response by putting the proportional
control on output only, the following computation is used instead,

uCur=uPast+Kc*(-yCur+yPast)+(Kc*Ts/tauI)*(rCur-yCur);

8. Impose constraints on the control signal. Enter the following program into the file:

if (uCur>uLmt)
uCur=uLmt;

end
if (uCur<-uLmt)

uCur= -uLmt;
end

9. Update the past control and output signals. Updating uPast is part of the anti-windup implementation
for the constraints so that when the control signal reaches its limit, the integral action is stopped.
Enter the following program into the file:

uPast=uCur;
yPast=yCur;
rPast=rCur;

10. Test this program and compare the results with those presented in Section 3.4.5. The test should be
performed using the nonlinear model of PMSM to avoid any other errors caused by the physical
system simulation. You can test the two different ways to implement the proportional control as
indicated in Step 7.

4.7 Summary
In this chapter, we have discussed the implementation of PID cascade control systems, which have
imposed limits on the amplitudes of the voltage control signals and have anti-windup mechanisms. In
the implementation procedure, the continuous-time PID control algorithms are discretized and velocity
form expressions for the PID controllers are obtained. The velocity form of the PID controller calculates
the control signal using its incremental value that has included the steady-state of the control signals.
This characteristic is particularly useful when the control system begins its closed-loop operation with
nonzero initial conditions. Furthermore, the anti-windup mechanism is implemented with the velocity
form of PI controller based on an exceptionally simple approach.
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4.8 Further Reading
PID algorithms with anti-windup strategies were discussed and compared in Goodwin et al. (2001),
Bohn and Atherton (1995), Peng et al. (1996), Shin (1998). DSP solution for high position resolution
with sin/cos encoder was discussed in Staebler (2000). Clarke transformation was written in Duesterhoeft
et al. (1951). Slip estimation for induction motor was discussed in Rubin et al. (1992) and Abbondanti
and Brennen (1975).
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5
Tuning PID Control Systems
with Experimental Validations

After the cascade nonlinear PID control system is designed and implemented, tuning of the controllers
is essential for the operation of electric drives and power converters. This task is often performed against
actual systems, because there are modeling errors, noise, parameter variations, and other undesired fac-
tors that arise from the real system. The control systems for the electric drives and power converters could
become unstable when the parameters in the PID control system are not chosen suitably. This chapter
shows how to tune the cascade nonlinear controllers by using laboratory test-beds as examples.

This chapter begins with an introduction to sensitivity functions in feedback control systems (see
Section 5.1) explaining how the closed-loop control system performances against set-point following,
disturbance rejection and noise attenuation are measured by the key sensitivity functions in frequency
domain. Taking PMSM as an example, the next four sections analyze current control systems, the design
of outer-loop controller and the effect of time-delay in the current control loop. In Sections 5.2–5.3, cur-
rent controllers are analyzed against current sensor errors and harmonics caused by the voltage source
inverter used in the implementation of the control system. The proportional current controller is addressed
in an independent section because this structure is to be used in Chapters 6–7 as part of a predictive con-
trol system solution. In Section 5.4, performance robustness in an outer-loop control system is considered
where a weighting function is introduced to quantify the difference between the desired closed-loop per-
formance and the actual closed-loop performance. Sections 5.6–5.7 analyze PI cascade control systems
for induction motors and power converters with experimental validation results.

5.1 Sensitivity Functions in Feedback Control Systems
This section will briefly give the background to the analysis of feedback control systems that will be used
as the basis for tuning the closed-loop PI control systems.

5.1.1 Two-degrees of Freedom Control System Structure

Assuming that the system to be controlled has a transfer function denoted by G(s) and the controller has
a transfer function denoted by C(s), a feedback control system of a one-degree of freedom structure is
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Figure 5.1 One-degree of freedom control system structure.

represented by the block diagram, shown in Figure 5.1, where R(s) is the set-point signal, Y(s) is the
output and U(s) is the control signal. There is also an output disturbance in the system, denoted as Do(s).
At this point, for simplicity of the expressions, the measurement error Dm(s) representing both sensor
bias and sensor noise and the input disturbance Di(s) are assumed to be zero.

The Laplace transform of the error signal E(s) is expressed as

E(s) = R(s) − Y(s) = R(s) − G(s)U(s) − Do(s)

= R(s) − G(s)C(s)E(s) − Do(s). (5.1)

Therefore, the error signal is expressed as

E(s) = 1
1 + G(s)C(s)

R(s) − 1
1 + G(s)C(s)

Do(s). (5.2)

Then, the output of the control system is

Y(s) = R(s) − E(s) = (1 − 1
1 + G(s)C(s)

)R(s) + 1
1 + G(s)C(s)

Do(s)

= G(s)C(s)
1 + G(s)C(s)

R(s) + 1
1 + G(s)C(s)

Do(s) (5.3)

and the control signal is

U(s) = C(s)E(s) = C(s)
1 + G(s)C(s)

R(s) − C(s)
1 + G(s)C(s)

Do(s). (5.4)

The transfer function between the set-point signal and the plant output is

Y(s)
R(s)

= G(s)C(s)
1 + G(s)C(s)

(5.5)

and the set-point signal and the control signal is

U(s)
R(s)

= C(s)
1 + G(s)C(s)

. (5.6)

Similarly, by assuming R(s) = 0, we derive the transfer functions between the output disturbance and the
output, and the output disturbance and the control signal:

Y(s)
Do(s)

= 1
1 + G(s)C(s)

(5.7)

U(s)
Do(s)

= − C(s)
1 + G(s)C(s)

. (5.8)
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Figure 5.2 Two-degrees of freedom control system structure.

The closed-loop performance is directly related to the properties of these closed-loop transfer functions
that determine the behavior of the output signal and the control signal in relation to reference signal
R(s) and the output disturbance Do(s). In this controller structure, once the controller C(s) is selected,
all four closed-loop transfer functions are fixed, only one-degree of freedom is available to influence the
output response Y(s) to the reference signal R(s) and to the disturbance Do(s). This is called one-degree
of freedom design.

A two-degrees of freedom control system is shown in Figure 5.2. In this structure, an extra component
H(s) is placed after the reference signal R(s), which will be used in the design. How does this structure
offer a two-degrees of freedom in the design? For this, with the assumption that Di(s) = 0 and Dm(s) = 0,
we calculate the output response Y(s) in relation to the reference signal R(s) and the output disturbance
Do(s),

Y(s) = G(s)C(s)H(s)
1 + G(s)C(s)

R(s) + 1
1 + G(s)C(s)

Do(s). (5.9)

From this, we have the two transfer functions

Y(s)
R(s)

= G(s)C(s)H(s)
1 + G(s)C(s)

(5.10)

Y(s)
Do(s)

= 1
1 + G(s)C(s)

. (5.11)

Transfer function H(s) provides one more degree of freedom to shape the output response to the reference
signal R(s). This extra degree of freedom plus the original one-degree of freedom from the selection of
the controller gives the two degrees of freedom in the design. If the control system is configured as a two
degrees of freedom, then we can shape, independently, the output response to the reference signal and to
the disturbance.

In the industrial applications of electrical drive control, the overshoot response to a step reference sig-
nal in velocity control using PI controller or position control using PID controller is not desirable. The
same restriction on overshoot response in voltage control of power converter also exists. The overshoot
response to a reference signal is often considered an unsafe practice, which could cause equipment dam-
ages and accident. The remedy to overcome this overshoot is to use a two-degrees of freedom control
structure where an appropriate reference filter H(s) is deployed.

For a PI control system, it is seen that in the one-degree of freedom control system (see Figure 5.1),
the closed-loop transfer function that relates the reference signal R(s) to Y(s) is

Y(s)
R(s)

=
(c1s + c0)B(s)

A(s)s + (c1s + c0)B(s)
, (5.12)

where we have assumed that the system transfer function is G(s) = B(s)
A(s)

and the PI controller has the

transfer function C(s) = c1s+c0

s
. From (5.12), it is seen that the zero of the closed-loop transfer function

is located at s = − c0

c1
= − 1

𝜏I
. With the assumption that the PI controller is designed to produce a stable



108 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

closed-loop system, this stable zero is the main cause of the overshoot response to a step reference signal
when using the PI controller. Here, we assume that the system does not have its own stable zeros to cause
the overshoot response. As illustrated in Section 3.1, a simple and effective approach is to implement the
proportional controller Kc on the output only, that is to calculate the control signal as

u(t) =
Kc

𝜏I ∫
t

0
(r(𝜏) − y(𝜏))d𝜏 − Kcy(t). (5.13)

With this implementation, it can be readily verified that the closed-loop transfer function between the
reference signal R(s) and Y(s) is

Y(s)
R(s)

=
c0B(s)

A(s)s + (c1s + c0)B(s)
. (5.14)

By comparing (5.14) with (5.12), we realize that these expressions are identical if the closed-loop transfer
function (5.12) is multiplied with the filter H(s) having the following form

H(s) = 1
c1

c0
s + 1

= 1
𝜏Is + 1

, (5.15)

where 𝜏I =
c1

c0
. Thus, the second realization given by the closed-loop transfer function (5.14) is effectively

a two-degrees of freedom control system with the reference filter H(s) (see Figure 5.2). The requirement
for the filter H(s) to be stable is 𝜏I > 0.

Similarly, for PID controller implementation using the one-degree of freedom control system structure
(see Figure 5.1), the closed-loop transfer function between the reference signal and the output signal is

Y(s)
R(s)

=
(c2s2 + c1s + c0)B(s)

A(s)s + (c2s2 + c1s + c0)B(s)
(5.16)

and the cause of overshoot response to a step reference signal is due to the factor c2s2 + c1s + c0 in the
numerator of the closed-loop transfer function. In the implementation, we apply the same procedure by
calculating the control signal using the following equation,

u(t) =
Kc

𝜏I ∫
t

0
(r(𝜏) − y(𝜏))d𝜏 − Kcy(t) − Kc𝜏D

dy(t)
dt

. (5.17)

It can be verified that the closed-loop transfer function is

Y(s)
R(s)

=
c0B(s)

A(s)s + (c2s2 + c1s + c0)B(s)
, (5.18)

which effectively is a two-degrees of freedom control system (see Figure 5.2) with the reference filter
H(s) given by

H(s) = 1
c2

c0
s2 + c1

c0
s + 1

= 1
𝜏I𝜏Ds2 + 𝜏Is + 1

, (5.19)

where the following relationships are used (see Section 3.1):

Kc = c1; 𝜏I =
c1

c0

; 𝜏D =
c2

c1

.

The requirements for the reference filter H(s) to be stable are 𝜏I > 0 and 𝜏D > 0.
In summary, these simple modifications on the PID controller implementations lead to, in fact,

two-degrees of freedom control systems without the actual implementation of reference signal filters.
As a consequence, the overshoot response to a step reference signal is overcome.
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5.1.2 Sensitivity Functions

To understand the sensitivity functions and their roles in feedback control, we examine the block diagram
of a closed-loop feedback control system illustrated Figure 5.2. Based on the block diagram, we calculate
the feedback error of the closed-loop system firstly as

E(s) = H(s)R(s) − (Y(s) + Dm(s))

= H(s)R(s) − [G(s)(U(s) + Di(s)) + Do(s) + Dm(s)]

= H(s)R(s) − G(s)C(s)E(s) − G(s)Di(s) − Do(s) − Dm(s). (5.20)

By re-arranging (5.20), the closed-loop feedback error is

E(s) = H(s)
1 + G(s)C(s)

R(s) − G(s)
1 + G(s)C(s)

Di(s)

− 1
1 + G(s)C(s)

Do(s) −
1

1 + G(s)C(s)
Dm(s). (5.21)

Note that the feedback error is in relation to the output via,

E(s) = H(s)R(s) − Dm(s) − Y(s). (5.22)

By substituting (5.22) into (5.21), we obtain the expression of the closed-loop output Y(s) as

Y(s) = G(s)C(s)H(s)
1 + G(s)C(s)

R(s) + 1
1 + G(s)C(s)

Do(s) +
G(s)

1 + G(s)C(s)
Di(s)

− G(s)C(s)
1 + G(s)C(s)

Dm(s). (5.23)

Also, from the feedback error (5.21), we calculate the closed-loop control signal as

U(s) = C(s)E(s) = C(s)H(s)
1 + G(s)C(s)

R(s) − G(s)C(s)
1 + G(s)C(s)

Di(s)

− C(s)
1 + G(s)C(s)

Do(s) −
C(s)

1 + G(s)C(s)
Dm(s). (5.24)

Based on these relationships, the following sensitivity functions are defined:

The sensitivity function is defined as,

S(s) = 1
1 + G(s)C(s)

. (5.25)

The complementary sensitivity function is,

T(s) = G(s)C(s)
1 + G(s)C(s)

. (5.26)

The input disturbance sensitivity function is defined as,

Si(s) = G(s)
1 + G(s)C(s)

. (5.27)

The control sensitivity function is,

Su(s) = C(s)
1 + G(s)C(s)

. (5.28)
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Note that the superscripts of i and u are used for the input disturbance sensitivity (Si(s)) and con-
trol sensitivity (Su(s)) functions in order to avoid a potential confusion with the manipulated variables
Sd and Sq used in the converter control case. The sensitivity functions are related to each other in the
following ways.

The sensitivity plus complementary sensitivity equals to one:

S(s) + T(s) = 1
1 + G(s)C(s)

+ G(s)C(s)
1 + G(s)C(s)

= 1. (5.29)

The input disturbance sensitivity is related to the sensitivity via the following equality:

Si(s) = G(s)
1 + G(s)C(s)

= S(s)G(s). (5.30)

The control sensitivity is related to the sensitivity as described by the following equality:

Su(s) = C(s)
1 + G(s)C(s)

= S(s)C(s). (5.31)

With the sensitivity functions, we rewrite the output of the closed-loop system (5.23) as

Y(s) = T(s)H(s)R(s) + S(s)Do(s) + Si(s)Di(s) − T(s)Dm(s) (5.32)

and the control signal (5.24) as

U(s) = Su(s)H(s)R(s) − Su(s)Do(s) − Su(s)G(s)Di(s) − Dm(s). (5.33)

From these relationships, we can see that

1. The complementary sensitivity function T(s) represents the effects of both reference signal and
measurement errors on the output. If we want a fast response speed to a reference signal, then the
closed-loop bandwidth will be wider (larger 𝑤n). As a consequence, the closed-loop control system
will amplify the measurement noise. However, for the measurement error caused by sensor bias, the
closed-loop system will neither amplify it nor attenuate it because with PI control, |T( j𝜔)| ≈ 1 at the
lower frequency region.

2. The sensitivity S(s) represents the effect of output disturbance on the output.
3. The input sensitivity Si(s) represents the effect of input disturbance on the output.

5.1.3 Disturbance Rejection and Noise Attenuation

There are both noise and disturbance existing in a physical system. A good closed-loop performance
requires the minimization of the effects of both disturbance and noise. We call these disturbance rejection
and noise attenuation respectively.

For minimization of the effects of both input and output disturbances, we will make the magnitude of
the output in frequency response

|Yd( j𝜔)| = |S( j𝜔)(Do( j𝜔) + G( j𝜔)Di( j𝜔))| (5.34)

as small as possible. For minimization of the measurement error, we will make the magnitude of the
output in frequency response

|Ym( j𝜔)| = |T( j𝜔)Dm( j𝜔)| (5.35)
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as small as possible. We can not alter the disturbances and noise, because they already exist in the system.
Thus, what we will do is to make

• the magnitude of sensitivity S( j𝜔) (|S( j𝜔)|) small for disturbance rejection;
• the magnitude of complementary sensitivity T( j𝜔) (|T( j𝜔)|) small for noise attenuation.

These are the desirable design objectives for control systems. However, noting that the relationship
between the sensitivity and complementary sensitivity is constrained by

S( j𝜔) + T( j𝜔) = 1, (5.36)

which says that we can not make both |S( j𝜔)| and |T( j𝜔)| small over the same frequency bands. In other
words, if the disturbance is minimized in a given frequency region where |S( j𝜔)| is small, then inevitably
the measurement noise is not attenuated in the same frequency region where |T( j𝜔)| is large. The fre-
quency constraint (5.36) in the feedback control system leads to the following trade-off relationships
between disturbance rejection and noise attenuation.

Note that the disturbances existing in the system correspond to slow movement of the variables or slow
changes, therefore, the frequency contents of the disturbance term |Do( j𝜔) + G( j𝜔)Di( j𝜔)| are concen-
trated in the low frequency region. In contrast, the measurement noise corresponds to fast movement of
the variables or fast and frequent changes of the variables, therefore, the frequency contents of the mea-
surement noise |Dm( j𝜔)|are concentrated in the higher frequency region. This means that we can achieve
disturbance rejection by choosing the sensitivity function S( j𝜔) ≈ 0 at the low frequency region, which
implies T( j𝜔) ≈ 1 at the low frequency region, because S( j𝜔) + T( j𝜔) = 1. This is not too bad for noise
attenuation because |Dm( j𝜔)| is small in the low frequency region. At the high frequency region, to avoid
the amplification of measurement noise, we choose |T( j𝜔)| ≈ 0, which implies |S( j𝜔)| ≈ 1. This is not
too bad for disturbance rejection because |Do( j𝜔) + G( j𝜔)Di( j𝜔)| is small in the high frequency region.

Since the measurement error from sensor bias, which is a unknown constant quantity or a slowly
time-varying quantity, has predominantly low frequency contents, |T( j𝜔)| ≈ 1 does not reduce the effect
of sensor bias. The sensor bias error will be directly passed to the control system output. As a conse-
quence, sensor bias is not addressed in the feedback control system design. However, the sensor bias
error can be treated as an input disturbance that will be rejected in the design of outer-loop feedback
control (see Section 5.2.5).

5.2 Tuning Current-loop q-axis Proportional Controller (PMSM)
In principle, the bandwidth of current-loop control system is selected to be as wide as possible to ensure
a fast closed-loop response speed against the uncertainties due to inaccuracy of the feedforward compen-
sation as well as the fact that the inner-loop dynamics are neglected in the design of outer-loop control
system. This is translated into selecting a large 𝛼 value when using proportional control or a large 𝛾 value
when using PI control. In addition, it is shown in this section that the errors from the PWM form the input
disturbance in the current control system and this kind of disturbance will be compensated by the large
bandwidth in the current control. However, there are two key factors that will put an upper limit on the
closed-loop bandwidth, which are the unmodeled dynamics in the current-loop systems and the measure-
ment noise from the current sensors. These undesirable factors will affect the choice of bandwidth of the
current-loop closed-loop control system.

The sensitivity functions provide a good indication about how the compromise should be reached.
More specifically, we will investigate how the output current from the current-loops will respond to the
noise and disturbance. Since both the proportional controller and the proportional plus integral controller
have been proposed for the q-axis current control, we will investigate these two cases separately and
draw interesting conclusions. In both cases, d-axis current control is performed using a PI controller,
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therefore, its analysis follows identically from the case of q-axis current PI control (see Section 5.3).
Since the current control loops for the electrical drives and power converters are identical in design and
analysis, for additional simplicity, PMSM model is chosen as an example for illustrative purpose.

5.2.1 Performance Factor and Proportional Gain

The current-loop proportional controller for a PMSM is

Kq
c = 𝛼

1 − 𝛼
Rs, (5.37)

where 𝛼 is the steady-state gain of the inner-loop control system. In theory, 0 < 𝛼 < 1, but in practice, 𝛼
is found to be in the range between 0.8 and 0.95 in order to achieve high gain current control, which is
also fundamentally important for the cascade closed-loop control systems to work well. For simplicity,
we choose 𝛼 = 0.8 for a slow response speed, 𝛼 = 0.9 for a median response speed and 𝛼 = 0.95 for a
fast response speed in the current control systems. Figure 5.3 shows how the proportional gain in the
inner-loop changes as 𝛼 increases. It is seen that the proportional controller gain increases rapidly when
𝛼 exceeds 0.9 and it approaches ∞ when 𝛼 approaches 1.

5.2.2 Complementary Sensitivity Function

The complementary sensitivity function for the inner-loop system when using the proportional controller
(C(s) = 𝛼

1−𝛼
Rs) is calculated,

T(s) = G(s)C(s)
1 + G(s)C(s)

= 𝛼

(1 − 𝛼) Lq

Rs
s + 1

, (5.38)

where G(s) =
1

Lq

s+ Rs
Lq

. The complementary sensitivity function when using a proportional control is a first

order transfer function, having a steady-state gain of 𝛼 and time constant of (1 − 𝛼) multiplying the
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Figure 5.3 Variation of proportional gain for inner-loop current control (PMSM). The resistance R = 2.98 Ω.
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Figure 5.4 Complementary sensitivity function for inner-loop current control (PMSM). Key: line (1) 𝛼 = 0.9,
line (2) 𝛼 = 0.7, line (3) 𝛼 = 0.3.

corresponding open-loop time constant
Lq

Rs
. Thus, the ratio between the closed-loop and open-loop time

constants is 1 − 𝛼 and the ratio of closed-loop pole in magnitude to the open-loop pole is 1

1−𝛼
. Figure 5.4

shows the variation of the magnitude of the complementary sensitivity function with respect to 𝛼, where
the resistance Rs = 2.98 Ω and inductance Lq = 0.007 H. It is seen that with the increase of 𝛼, the mag-
nitude of the complementary sensitivity function increases, in particular, the |T( j𝜔)| approaches to 1 as
𝛼 approaching to 1. It is emphasized here that with a proportional controller, |T( j𝜔)| will not be equal 1
because when 𝛼 = 1, the proportional controller gain becomes infinity. The behavior of the complemen-
tary sensitivity function confirms that in order for the current control system to track a reference signal,
a larger value of 𝛼 is required.

Since the steady-state gain of the closed-loop system is 𝛼, the bandwidth of the q-axis current control
system is the frequency 𝜔b such that

|T( j𝜔)|
𝜔=𝜔b

= T(0)
√

2
= 𝛼

√
2
, (5.39)

where we have used the definition of the bandwidth (see Goodwin et al. (2001)). To find the value of 𝜔b,
letting the magnitude of the complementary sensitivity function equal to 𝛼

√
2

and s = j𝜔 and using (5.38),
the bandwidth of the closed-loop system for the q-axis current control is calculated by solving

𝛼
√

(1 − 𝛼)2𝜔2(Lq∕R)2 + 1
= 𝛼

√
2
, (5.40)

which leads to the bandwidth parameter 𝜔b:

𝜔b = 1
1 − 𝛼

Rs

Lq

. (5.41)

Here the closed-loop bandwidth for proportional current control is expressed as the function of the
parameter 𝛼 and the open-loop bandwidth that is Rs

Lq
. Say, if we choose 𝛼 = 0.9, then 1

1−𝛼
= 10, and

the closed-loop bandwidth is 10 times of the open-loop bandwidth. Similarly, if 𝛼 = 0.8, then 1

1−𝛼
= 5,

and the closed-loop bandwidth is 5 times of the open-loop bandwidth.
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5.2.3 Sensitivity and Input Sensitivity Functions

The sensitivity function is calculated as

S(s) = 1 − T(s) =
(1 − 𝛼)

(
Lq

Rs
s + 1

)

(1 − 𝛼) Lq

Rs
s + 1

. (5.42)

The input sensitivity function is related to the transfer function of inner-loop electrical system, which is
calculated as

Si(s) = S(s)G(s) =
(1 − 𝛼) 1

Rs

(1 − 𝛼) Lq

Rs
s + 1

. (5.43)

Against several choices of 𝛼, the magnitude of sensitivity function is shown in Figure 5.5(a) whilst the
magnitude of the input sensitivity function is shown in 5.5(b). It is seen that at the lower frequency, the
magnitude of the sensitivity is larger when 𝛼 is smaller, while at the higher frequency, the magnitude of
the sensitivity is smaller when 𝛼 is smaller. In comparison, the magnitude of input sensitivity behaves
similarly to that of sensitivity in the lower frequency region, but in the higher frequency region, the mag-
nitude of the input sensitivity becomes very small. The behavior of the sensitivity and input sensitivity
functions means that when 𝛼 is small, the proportional current control system will have a poor distur-
bance rejection property. This again enforces that in order for the current control system to work well, a
larger 𝛼 value is required for disturbance rejection and reference following.

5.2.4 Effect of PWM Noise on Current Proportional Control System

Let 𝜖1(t) denote the error for the d-axis voltage and 𝜖2(t) for the q-axis voltage, then the actual control
signals 𝑣̄d(t) and 𝑣̄q(t) to the modulators are expressed as

𝑣̄d(t) = 𝑣d(t) + 𝜖1(t) (5.44)

𝑣̄q(t) = 𝑣q(t) + 𝜖2(t). (5.45)

Here the PWM error signals, 𝜖1(t) and 𝜖2(t), are input disturbances to the current-loop control systems,
and they are, in general, periodic signals with their frequencies determined by the carrier frequency of
the PWM generator. The error signals, 𝜖1(t) and 𝜖2(t), are not observed directly from the control signals,
however, they are observed from the current measurements iq(t) and id(t). Here, we simulate the PWM

100

10–1

100

10–5

10–10

100 101010–10100 101010–10

Frequency (rad/sec)

|S
(j

ω
)|

(a)

Frequency (rad/sec)

|S
i (j

ω
)|

1
2
3

(b)

1
2
3

Figure 5.5 Sensitivity function and input sensitivity function for inner-loop current control (PMSM). Key: line (1)
𝛼 = 0.9, line (2) 𝛼 = 0.7, line (3) 𝛼 = 0.3. (a) Sensitivity function, and (b) Input sensitivity function.



Tuning PID Control Systems with Experimental Validations 115

5 10 15 20
0

0.05

0.1

Frequency (kHz)

N
or

m
al

iz
ed

 A
m

pi
tu

de

(a)

5 10 15 20
0

0.05

0.1

Frequency (kHz)

N
or

m
al

iz
ed

 A
m

pi
tu

de

(b)

Figure 5.6 Spectrum of PWM error signal. (a) Carrier frequency: 1 kHz, and (b) Carrier frequency: 5 kHz.

error signals by using constant input signals 𝑣d(t) and 𝑣q(t) to the Simulink PMSM simulator without
feedback control. The frequency contents of the PWM noise for the d-axis and q-axis are analyzed using
Fourier transforms and found to be identical. The fundamental frequency of the PWM error signal is
equal to the carrier frequency used. For instance, if the carrier frequency is 5 kHz, then the fundamental
frequency of the input disturbance due to PWM is 5 kHz, followed by the remaining harmonic frequencies
(see Figure 5.6(a)). If the carrier frequency for the PWM is reduced to 1 kHz, then the fundamental
frequency of the input disturbance due to PWM is 1 kHz followed by the multiple harmonic frequencies.
It is seen that the carrier frequency is essential to the frequency contents of the input disturbance due to
the PWM. As the carrier frequency increases, the spectrum of the input disturbance shifts to the higher
frequency band. The effect of the PWM errors on the current output signal is characterized through the
input sensitivity function in the frequency domain:

|Yd( j𝜔)| = |Si( j𝜔)||Di( j𝜔)|, (5.46)

where Yd( j𝜔) is the frequency response of the current signal, Si( j𝜔) is the frequency response of the
input sensitivity function and Di( j𝜔) is the frequency response of a PWM error signal. To investigate
how the choice of 𝛼 affects the current output in the presence of PWM error, |Yd( j𝜔)| is calculated with
𝛼 = 0.7 and 𝛼 = 0.9 with respect to the carrier frequency being 1 and 5 kHz, shown in Figures 5.7–5.8.
It is seen from these figures that |Yd( j𝜔)| has values at the fundamental carrier frequency and its
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Figure 5.7 |Yd( j𝜔)| = |Si( j𝜔)||Di( j𝜔)|, effect of PWM noise on the current output using P current control system
with varying carrier frequency. The proportional gain is Kc = 𝛼

1−𝛼 Rs, 𝛼 = 0.9. (a) Carrier frequency: 1 kHz, and
(b) Carrier frequency: 5 kHz.
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Figure 5.8 |Yd( j𝜔)| = |Si( j𝜔)||Di( j𝜔)|, effect of PWM noise on the current output using P current control system
with varying carrier frequency. The proportional gain is Kc = 𝛼

1−𝛼 Rs, 𝛼 = 0.7. (a) Carrier frequency: 1 kHz and (b)
Carrier frequency: 5 kHz.
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Figure 5.9 Effect of PWM noise on the current output with carrier frequency 20 kHz. (a) Spectrum of PWM error
signal and (b) |Yd( j𝜔)| with 𝛼 = 0.9.

harmonic frequencies. Its values between these harmonic frequencies are negligible. In addition, by
comparing these two figures, it is seen that when 𝛼 reduces, |Yd( j𝜔)| increases, implying that it is less
effective for compensating the PWM errors when a smaller value of 𝛼 is used in the design. Namely, a
larger closed-loop bandwidth in current control will be beneficial to reduce the errors originating from
the PWMs. If the carrier frequency for a PWM is much larger, say approximately 20 kHz, Figure 5.9(a)
shows the spectrum of the error signal from PWM as well as |Yd( j𝜔)| (see Figure 5.9(b)), where the
closed-loop performance is specified with the parameter 𝛼 = 0.9. It is seen from these figures that with
this much larger carrier frequency, the effects of the PWM errors are much reduced.

5.2.5 Effect of Current Sensor Noise and Bias

Current sensors are another source that generates high frequency noises. These noises from the current
sensors are measurement noises in the current-loop control. Let 𝜖3(t) and 𝜖4(t) denote the measurement
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noises, then the d-axis and q-axis currents are expressed as

id(t) = id0(t) + 𝜖3(t) (5.47)

iq(t) = iq0(t) + 𝜖4(t), (5.48)

where id0(t) and iq0(t) denote the actual d-axis and q-axis currents. It is relatively easy to understand
the existence of noises in the current-loop control systems. However, for the existence of disturbance in
the current-loop control systems, we need some explanation. The disturbances are caused by possible
current sensor bias errors. Current sensor bias error often occurs when the motor has been in operation
for a long time and the electronic components are ageing. It is known that the feedback d-q axis currents
id and iq are obtained through the Park-Clarke transformations of measured three phase currents ia, iband
ic. In practice, this measurement is often performed by two current sensors, which carry the sinusoidal
measurement on a DC offset. The DC offset voltage is sometimes drifting and thus causes the measured
three phase current being carried on a varied DC offset value (Gan and Qiu (2004)). This phenomenon
can be modeled by

ia = i′a + Ia;

ib = i′b + Ib;

ic = −(ia + ib).

where i′a and i′b are the actual three phase currents, ia, ib and ic are measured current values and Ia and
Ib are DC offset errors. The abc/dq transformation of the three phase measured currents would produce
sinusoidal oscillations on the actual d-q axis currents. The feedback variables id and iq are given by,

id(t) = id0(t) + idoff (t) (5.49)

iq(t) = iq0(t) + iqoff (t), (5.50)

where idoff (t) and iqoff (t) are the sinusoidal disturbances due to the offset errors,

idoff = Id cos(𝜔et + 𝜑) (5.51)

iqoff = Id sin(𝜔et + 𝜑), (5.52)

where

Id = 2
3

√

3(I2
a + IaIb + I2

b), 𝜑 = tan−1(−
Ia + 2Ib
√

3
).

Combining together the measurement noise and sinusoidal disturbances, the actual feedback variables
id(t) and iq(t) are expressed as

id(t) = id0(t) + idoff (t) + 𝜖3(t) (5.53)

iq(t) = iq0(t) + iqoff (t) + 𝜖4(t). (5.54)

The current sensor errors including bias and the sensor noise described in (5.53) and (5.54) affect the
closed-loop performance of the inner-loop current control systems. Their effects are analyzed using the
complementary sensitivity function T(s). The frequency response analysis is based on the relationship,

|Ym( j𝜔)| = |T( j𝜔)Dm( j𝜔)|, (5.55)

where T( j𝜔) is the complementary sensitivity function and Dm( j𝜔) is the frequency response of cur-
rent sensor errors that include both measurement noise and measurement bias. From Figure 5.4, it is
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seen that with the increase of 𝛼, the magnitude of T( j𝜔) increases. Hence, the effect of current sensor
noise will increase. Furthermore, the sinusoidal disturbance caused by the bias of the current sensor will
also be amplified more by a larger 𝛼value for the current-loop control system. The frequency of the
disturbance caused by current sensor bias error is dependent on the electrical velocity of the motor. If
the motor is running at a low speed, then the sinusoidal disturbance will appear in the low frequency
region and the current control system will amplify this disturbance because of the large amplitude of
the complementary sensitivity function at the lower frequency region (see (5.55) and Figure 5.4). This
is counter-intuitive. Although in general the effect of low frequency disturbances in the control system
will be reduced by a closed-loop system with wider bandwidth, in the case of current sensor bias error,
the low frequency disturbance occurred at the measurement, and it is part of measurement error, the
closed-loop current control with a wider bandwidth will amplify this sinusoidal disturbance. Therefore,
it is important to emphasize that the sinusoidal disturbances due to measurement errors can not be reduced
by increasing the current-loop controller gain. Instead, from sensitivity analysis, a larger controller gain
in the current-loop will amplify this sinusoidal disturbance. This sinusoidal disturbance can be rejected
in the outer-loop control system as part of the input disturbance. Because the sensor bias errors are
transformed into sinusoidal disturbances to the outer-loop system, in order to overcome this type of peri-
odic disturbances, repetitive control strategies were suitable for the outer-loop control system design.
A successful demonstration of this control principle with experimental evaluations was presented in
Chai et al. (2013).

5.2.6 Experimental Case Study of Current Sensor Bias
Using P Control

To examine how the current sensor bias affects the current control system, the PMSM test bed is setup
with an unknown current sensor bias. In practice, this sensor bias could be caused by the aging of elec-
tronics. Because the bias error through the Park-Clarke transformation becomes a sinusoidal disturbance
with its frequency centered at the electrical speed of the PMSM, in the experiment, the set-point signal
for velocity control (electrical velocity) is chosen to be 420 RPM. This is translated to a measurement
disturbance with center frequency at 420

60
= 7 rad∕s. Its effect on the current output is quantified in the

frequency domain using (5.55) via the complementary sensitivity function T( j𝜔). From Figure 5.4, it
is seen that as 𝛼 increases, at the low frequency region (here, we look at the frequency of 7 rad∕s), the
magnitude of the complementary sensitivity function increases. Hence, if there is a current sensor bias
error, this error will be amplified when 𝛼 increases.

In the experimental study, the closed-loop bandwidth for the outer-loop velocity control is chosen to
be 117 rad∕s for all the cases. The inner-loop current proportional control is varied with two different 𝛼
values. Corresponding to 𝛼 = 0.6, 0.8 are the proportional control gains Kq

c (= Kd
c ), 7.45 and 14.9 respec-

tively. The PMSM is running without load, thus the current is quite small. In Case A (see Figure 5.10),
when 𝛼 is small, it is seen that there is a small amount of oscillation in both current and velocity. In Case
B (see Figure 5.11), when 𝛼 is increased to 0.8 where the proportional feedback control gain is doubled
from the previous one, the oscillations in current and velocity become clearly visible and the magnitudes
of the oscillations have increased significantly.

This experimental study indicates that the current oscillation due to current sensor bias is a factor that
limits the bandwidth of the current control system. If the current sensors do not produce high quality
measurement, it is better to use a smaller value of 𝛼 or use a narrower desired bandwidth for closed-loop
current control. This current oscillation due to sensor bias is more severe when the motor is operating
at a low speed, which translates into a low frequency measurement disturbance that has more effect on
the current output because of the larger magnitude of the complementary sensitivity function at the low
frequency region.
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Figure 5.10 Case A. Current control with 𝛼 = 0.6, outer-loop velocity control with closed-loop bandwidth:
𝑤n = 1

1−𝛾 a rad∕s, 𝛾 = 0.98, a = 2.3404. Top plot: iq current; middle plot: output velocity; bottom plot: control

variables(solid-line: 𝑣d , dashed-line: 𝑣q).

5.2.7 Experimental Case Study of Current Loop Noise

Another factor that puts a restriction on the bandwidth of the current control system is the various noises
existing in the system. These noises could come from the high frequency components of the PWM errors
or the current sensor measurement noise. Their effects on the control signals (𝑣d and 𝑣q) and the current
output will increase when the parameter 𝛼 increases or the closed-loop bandwidth of the current control
system increases.

Experimental evaluation of the current control system is performed using a PI controller for the d-axis
current and a proportional controller for q-axis current, and PI velocity control in the outer-loop system.
The PWM switching frequency is set as 2 kHz, and sampling interval for the current control loops is
selected as Δt = 100 μs and the velocity control loop as Δt = 200 μs. The test-bed with xPC Target for
implementation was used in the experimental study. The remaining control system parameters are shown
in Table 5.1. The experimental results for the q-axis proportional controller using 𝛼 = 0.8 are shown in
Figure 5.12, with comparison to the experimental results obtained using 𝛼 = 0.5 shown in Figure 5.13.
The first thing observed from the experimental results is that with the proportional control of q-axis
current there is a steady error between the reference signal i∗q and the current feedback signal iq. With the
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Figure 5.11 Case B. Current control with 𝛼 = 0.8, outer-loop velocity control with closed-loop bandwidth: 𝑤n =
1

1−𝛾 a rad∕s, 𝛾 = 0.98, a = 2.3404. Top plot: iq current; middle plot: output velocity; bottom plot: control variables.

Table 5.1 Performance parameters and operational constraints
(proportional control)

Velocity controller id controller iq controller

𝑤n 𝜉 iqmax
𝑤n 𝜉 𝑣dmax

𝛼 𝑣qmax

Fig. 5.12 150 0.7 8 A 400 0.7 25.2 V 0.8 52.0 V
Fig. 5.13 150 0.7 8 A 400 0.7 25.2 V 0.5 52.0 V
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Figure 5.12 Case A. Kq
c = 𝛼

1−𝛼 Rs, Rs = 2.98 Ω, 𝛼 = 0.8. (a) Current iq and i∗q , (b) Voltage 𝑣d , (c) Voltage 𝑣q, and
Velocity 𝜔e.
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Figure 5.13 Case B. Kq
c = 𝛼

1−𝛼Rs, Rs = 2.98 Ω, 𝛼 = 0.5. (a) Current iq and i∗q , (b) Voltage 𝑣d , (c) Voltage 𝑣q, and
Velocity 𝜔e.
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smaller 𝛼 value, the steady-state error is larger. Because of the smaller current control gain Kq
c for the

q-axis, the current reference signal i∗q generated from the outer-loop velocity controller is much larger in
magnitude in order to achieve the same velocity (see Figure 5.13(b)). It is also observed that the control
signal 𝑣q contains much less noise when the smaller 𝛼 is used. The constraint on 𝑣q became activated
because of the larger amplitude of the noise.

5.3 Tuning Current-loop PI Controller (PMSM)
In this section, PI controllers are used to control the currents in d − q reference frame. Since the analysis
for the d axis current is identical to that of q-axis current, the presentation is only given for the q-axis
current control system. Because torque control belongs to the case where the current control systems use
PI controllers (see Section 3.3), the analysis of the PI current control in this section is extended to torque
control without any complications.

5.3.1 PI Controller Parameters in Relation to Performance Parameter 𝛾

If a PI controller is used for the q-axis current control, the controller parameters are

Kq
c =

2𝜉𝑤n −
Rs

Lq

1

Lq

= 2𝜉𝑤nLq − Rs (5.56)

𝜏
q
I =

2𝜉𝑤n −
Rs

Lq

𝑤2
n

=
2𝜉𝑤nLq − Rs

Lq𝑤
2
n

, (5.57)

where 𝜉 is the damping coefficient, which is chosen to be either 0.707 or 1, and 𝑤n is natural frequency
of the closed-loop current control system. The closed-loop control performance is selected based on the
parameter 𝑤n. For a larger 𝑤n, the closed-loop system will have a faster response speed.

Since the open-loop pole for the q-axis current dynamic system is at − Rs

Lq
, we can select the parameter

𝑤n in a relative value to the magnitude of the open-loop pole. Furthermore, if we select the damping
coefficient 𝜉 = 0.707, the closed-loop bandwidth 𝑤n is relative to the open-loop bandwidth via:

𝑤n = 1
1 − 𝛾

Rs

Lq

, (5.58)

where 𝛾 is chosen between zero and one. When 𝛾 is zero, the closed-loop bandwidth equals the open-loop
bandwidth; when 𝛾 → 1, the closed-loop bandwidth𝑤n → ∞. In the majority of applications, the param-
eter 𝛾 is selected in the range between 0.8 and 0.95. When 𝛾 is 0.8, the closed-loop bandwidth is five
times of the open-loop bandwidth; when 𝛾 is 0.9, the closed-loop bandwidth is ten times of the open-loop
bandwidth; and when 𝛾 is 0.95, the closed-loop bandwidth is twenty times of the open-loop bandwidth.

With this choice of 𝑤n, the proportional control gain of the PI controller is expressed from (5.56) as

Kq
c =

(
2𝜉

1 − 𝛾
− 1

)

Rs. (5.59)

If 𝜉 = 0.707,

Kq
c = 0.414 + 𝛾

1 − 𝛾
Rs. (5.60)

If 𝜉 = 1,

Kq
c = 1 + 𝛾

1 − 𝛾
Rs. (5.61)
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It is seen that the proportional gain is dependent on the resistance Rs with this choice of closed-loop
bandwidth, and the proportional gain is smaller when the damping coefficient is 0.707.

In a similar manner, the integral time constant 𝜏I is expressed from (5.57) as

𝜏I =
2𝜉𝑤n −

Rs

Lq

𝑤2
n

= (2𝜉 − 1 + 𝛾)(1 − 𝛾)
Lq

Rs

. (5.62)

If 𝜉 = 0.707, then

𝜏I = (0.414 + 𝛾)(1 − 𝛾)
Lq

Rs

. (5.63)

If 𝜉 = 1, then

𝜏I = (1 + 𝛾)(1 − 𝛾)
Lq

Rs

. (5.64)

It is seen that the integral time constant is also smaller for the case of 𝜉 = 0.707. Figure 5.14 shows
the variation of proportional gain and integral time constant with respect to the parameter 𝛾 . With 𝛾
increasing, the proportional gain increases while the integral time constant decreases.

5.3.2 Sensitivity in Relation to Performance Parameter 𝛾

With the expressions of proportional control and integral time constant in terms of the parameter 𝛾 , we
can derive the sensitivity function as

S(s) = 1
1 + G(s)C(s)

= s(s + a)
s2 + 2𝜉𝑤ns +𝑤2

n

= (1 − 𝛾)2a−1s(a−1s + 1)
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

, (5.65)

where a = Rs

Lq
and 𝑤n = a

1−𝛾
= 1

1−𝛾
Rs

Lq
rad∕s. It is seen from (5.65) that the magnitude of the sensitiv-

ity function is weighted by the factor (1 − 𝛾)2. The smaller this factor is, the smaller the magnitude of
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Figure 5.14 Variation of proportional gain and integral time constant for inner-loop current control (PMSM) using
PI controller (𝜉 = 0.707, Rs = 2.98 Ω, and Lq = 7 × 10−3 H). (a) Proportional gain, and (b) Integral time constant.
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the sensitivity function will be. In addition, at the zero frequency, with the PI controller the sensitivity
function S(0) = 0. The smaller magnitude of the sensitivity function will produce a closed-loop control
system that has a faster response for disturbance rejection.

Similarly, the complementary sensitivity function for the PI current control system is

T(s) = G(s)C(s)
1 + G(s)C(s)

= 1 − S(s)

= (1 − 𝛾)(2𝜉 − 1 + 𝛾)a−1s + 1
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

. (5.66)

Figure 5.15(a) and 5.15(b) show the magnitudes of the complementary sensitivity and sensitivity func-
tions respectively. It is seen from these plots that with the increase of parameter 𝛾 , the bandwidth of the
closed-loop system is increased. From (5.66) and Figure 5.15(a), it is seen that at the zero frequency,
with the PI controller the complementary sensitivity function is characterized by T(0) = 1. In addition,
because S(s) + T(s) = 1, for a smaller (1 − 𝛾)2, the magnitude of complementary sensitivity function is
larger because of the smaller magnitude of sensitivity function. A larger magnitude of complementary
sensitivity function will produce a closed-loop control system that has a faster reference response, but is
more sensitive to the measurement noise and model uncertainty in the current-loop control system. The
key characteristic here is that with T(0) = 1 the output of the closed-loop system (iq current) will follow
the reference signal (i∗q current) without steady-state error.

The input sensitivity function is calculated using the sensitivity (5.65) with a multiplication of the
transfer function of the current system, leading to

Si(s) = (1 − 𝛾)2a−1s(a−1s + 1)
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

× b
s + a

= (1 − 𝛾)2a−1s
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

× b
a
, (5.67)

where a = Rs

Lq
and b = 1

Lq
. From (5.67), it is seen that at the zero frequency, |Si(0) = 0|, meaning that

with a PI controller, a constant input disturbance will be completely rejected. Figure 5.16 shows the
magnitude of the input sensitivity function. It is observed from these plots that with the increase of
the parameter 𝛾 , the magnitude of the input sensitivity function decreases in the low and medium
frequency region.
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Figure 5.15 Complementary and sensitivity functions for inner-loop current control (PMSM) using PI controller
(𝜉 = 0.707, Rs = 2.98 Ω, and Lq = 7 × 10−3 H) Key: line (1) 𝛾 = 0.9, line (2) 𝛾 = 0.7, line (3) 𝛾 = 0.3. (a) Comple-
mentary sensitivity function, and (b) Sensitivity function.
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Figure 5.16 Input sensitivity function for inner-loop current control (PMSM) using PI controller (𝜉 = 0.707, Rs =
2.98 Ω, and Lq = 7 × 10−3 H) Key: line (1) 𝛾 = 0.9, line (2) 𝛾 = 0.7, line (3) 𝛾 = 0.3.

5.3.3 Effect of PWM Error in Relation to 𝛾

Based on the input sensitivity function, the effect of PWM error on the current output is investigated
based on the following relation:

|Yd( j𝜔)| = |Si( j𝜔)||Di( j𝜔)|, (5.68)

where |Si( j𝜔)| is the magnitude of the input sensitivity defined by (5.67) and Di( j𝜔) is the frequency
response of a PWM error signal (see Figure 5.6). Figures 5.17–5.18 show the magnitudes of the output
frequency response (|Yd( j𝜔)|) due to PWM error via the frequency response of the input sensitivity
function (see 5.68) with respect to three choices of carrier frequencies. The results show that the PWM
error is very small when a PI controller is used for current control. This is because with the integral
action, the input sensitivity function has a magnitude near zero in the frequency region that corresponds
to the fundamental carrier frequency. By comparing the results presented in Figure 5.17 with those in
Figure 5.18, it is seen that the higher the closed-loop bandwidth, the less effect of the PWM error will be.

Furthermore, in comparison with the proportional current control, the PI current controller has signif-
icantly reduced the effect of PWM error on the current output. The effect is approximately 5000 times
less when the carrier frequency is 1 kHz and about 250 times less when the carrier frequency is 20 kHz
(see Figures 5.7, 5.8 and Figure 5.9(b)). These comparative results may illustrate that it is important to
use the integral function for current control because the integral action can significantly reduce the errors
caused by the PWM implementation.

5.3.4 Experimental Case Study of Current Loop Noise Using PI Control

Experimental evaluation of the current control system is performed using PI controllers for the d-axis and
q-axis currents and PI velocity control in the outer-loop system. The PWM switching frequency is set as
2 kHz, and sampling interval for the current control loops is selected as Δt = 100 μs and the velocity con-
trol loop as Δt = 200 μs. The test-bed with xPC Target for implementation was used in the experimental
study. The remaining PI control system parameters are shown in Table 5.2. There are two cases inves-
tigated here. Both cases have identical settings of id current PI controller and outer-loop velocity con-
troller (see Table 5.2), as well as identical constraints on both q-axis over-current protection and voltage
constraints. The difference is the closed-loop performance specification of the q-axis current. In Case A,



Tuning PID Control Systems with Experimental Validations 127

1 2 3 4 5
0

1

2

3

4

5
x 10–6

Frequency (kHz)

|S
i (j

ω
)||
D

i(j
ω

)|

(a)

10 20 30 40 50 60
0

1

2

3

4

5
x 10–5

Frequency (kHz)

Si (j
ω

)||
D

i(j
ω

)|

(b)

10 20 30 40 50 60
0

2

4

6

8
x 10–3

Frequency (kHz)

Si (j
ω

)||
D

i(j
ω

)|

(c)

Figure 5.17 |Yd( j𝜔)| = |Si( j𝜔)||Di( j𝜔)|, effect of PWM noise on the current output using PI current control system

with varying carrier frequency. The bandwidth 𝑤n = 1
1−𝛾

Rs
Lq

rad∕s, Rs = 2.98 Ω, and Lq = 7 × 10−3 H, 𝛾 = 0.9. (a)

Carrier frequency: 1 kHz, (b) Carrier frequency: 5 kHz, and (c) Carrier frequency: 20 kHz.

Table 5.2 Performance parameter and operational constraints (PI control)

Velocity controller id controller iq controller

𝑤n 𝜉 iqmax
𝑤n 𝜉 𝑣dmax

𝛾 𝜉 𝑣qmax

Fig. 5.19 150 0.7 8 A 400 0.7 25.2 V 0.8 0.7 52.0 (V)
Fig. 5.20 150 0.7 8 A 400 0.7 25.2 V 0.5 0.7 52.0 (V)

a larger 𝛾 = 0.8 is used, which translates into the parameter 𝑤n being 5 Rs

Lq
= 2128.6 rad∕s. By compari-

son, in Case B, a smaller 𝛾 = 0.5 is selected for the closed-loop performance specification that gives the
parameter 𝑤n = 2 Rs

Lq
= 851.4 rad∕s. Thus, the closed-loop bandwidth in Case A is 2.5 times wider than

the one used in Case B. The experimental results for Case A are shown in Figure 5.19, and for Case B
are shown in Figure 5.20. By comparing the experimental results, the obvious conclusion is that with a
wider bandwidth for the q-axis current control, the noise level in the control signal 𝑣q has significantly
increased. This means that the noises due to the PWM switching errors and current sensor errors are
amplified when a higher current controller gain is used. However, the output velocity is not affected
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Figure 5.18 |Yd( j𝜔)| = |Si( j𝜔)||Di( j𝜔)|, effect of PWM noise on the current output using PI current control system

with varying carrier frequency. The bandwidth 𝑤n = 1
1−𝛾

Rs
Lq

rad∕s, Rs = 2.98 Ω, and Lq = 7e − 3 H, 𝛾 = 0.7. (a)

Carrier frequency: 1 kHz, (b) Carrier frequency: 5 kHz, and (c) Carrier frequency: 20 kHz.

by the high current noise level as observed by comparing Figure 5.19(e) with Figure 5.20(e). It is also
observed that the constraint on the 𝑣q voltage became activated because of the current noise. When using
PI control of q-axis current, it is seen that the actual current output iq is closely tracking its reference sig-
nal i∗q (see Figures 5.19(b)–5.20(b)), both in dynamic response and steady-state response. In contrast, the
steady-state errors exist when using proportional control of q-axis current (see Figures 5.12(b)–5.13(b)).

5.4 Performance Robustness in Outer-loop Controllers
The tuning process for the outer-loop controllers has to reach a compromise between the closed-loop
bandwidth and the effect of measurement noise from position sensors, load disturbance, PWM noise
and possible sinusoidal disturbance from inner-loop current control system due to current sensor bias,
and the neglected dynamics in the design. A faster closed-loop response in the outer-loop control sys-
tem will require a larger desired closed-loop bandwidth, which is necessary for high performance to
set-point response, load disturbance rejection and the current sensor bias compensation. On the other
hand, the measurement noise, PWM noise and the neglected dynamics in the design restrict the size of
the closed-loop bandwidth. One main factor that affects the bandwidth of the outer-loop control system is
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Figure 5.19 Case A. 𝑤n = 1
1−𝛾

Rs
Lq

rad∕s, Rs = 2.98 Ω, and Lq = 7 × 10−3 H, 𝛾 = 0.8. (a) Current iq and i∗q ,

(b) Voltage 𝑣d , (c) Voltage 𝑣q, and Velocity 𝜔e.
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Figure 5.20 Case B. 𝑤n = 1
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rad∕s, Rs = 2.98 Ω, and Lq = 7 × 10−3 H, 𝛾 = 0.5. (a) Current iq and i∗q ,

(b) Voltage 𝑣d , (c) Voltage 𝑣q, and Velocity 𝜔e.
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the neglected dynamics from the inner-loop control system. This raises the issue of performance robust-
ness. This section shows that there is a difference between the desired and actual sensitivity functions
for the outer-loop control system and this difference is quantified through a weighting function in the
frequency domain.

5.4.1 Sensitivity Functions for Outer-loop Control System

Similar to the inner-loop current control systems, there are sensitivity functions used to describe the prop-
erties of outer-loop control systems. With these sensitivity functions, we will determine the closed-loop
response to set-point change, disturbance rejection, measurement noise attenuation, and closed-loop
stability of the system.

There are two types of sensitivity functions for the outer-loop systems. One involves the desired sen-
sitivity functions, which are obtained using the first order model with the PI controller by neglecting
the inner-loop control system dynamics. The other involves the actual sensitivity functions, which are
obtained using both first order model and the inner-loop closed-loop model together with the PI controller.
The desired sensitivity functions reflect what we ask the system to do, whilst the actual sensitivity func-
tions reflect the reality of the control system. They could be quite different in applications, causing the
performance gaps between what we desired and what we actually achieved.

The desired complementary sensitivity function for the outer-loop system is calculated using the
formula

T(s) = G(s)C(s)
1 + G(s)C(s)

. (5.69)

Substituting C(s) = Kc(1 + 1

𝜏I s
) and the first order design model G(s) = b

s+a
into (5.69), together with the

calculations of the proportional gain Kc and the integral time constant 𝜏I , the desired complementary
sensitivity function is expressed as

T(s) =
(2𝜉𝑤n − a)s +𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

, (5.70)

where the proportional controller gain Kc and integral time constant are chosen as

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

.

Here, we have used the pole-assignment controller design technique in choosing the proportional gain
Kc and the integral time constant 𝜏I . The parameter 𝜉 is the damping coefficient, which is chosen to be
0.707, and the parameter 𝑤n then corresponds to the bandwidth of the desired closed-loop system. It is
emphasized that if a proportional controller is used in the inner current control loop, the steady-state gain
𝛼 should be included in the parameter b for the outer-loop controller design (see Chapter 3).

Based on the parameters of a PMSM, the desired complementary sensitivity function is

T(s) =
(2𝜉𝑤n −

B𝑣
Jm
)s +𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

. (5.71)

Similarly, based on the complementary sensitivity function (5.71), we calculate the desired sensitivity
function for the desired outer-loop system as

S(s) = 1 − T(s) = (s + a)s
s2 + 2𝜉𝑤ns +𝑤2

n

=
(s + B𝑣

Jm
)s

s2 + 2𝜉𝑤ns +𝑤2
n

. (5.72)
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The actual sensitivity functions for the outer-loop system will take into consideration the neglected
inner-loop closed-loop dynamics (see the cascade control system configurations in Chapter 3 illustrated in
Figure 3.10). These will determine how the closed-loop control system responds to the set-point change,
disturbance rejection and noise attenuation.

By letting F(s) denote the the inner closed-loop transfer function that relates the desired current refer-
ence signal I∗q (s) to the output current Iq(s) as

Iq(s)
I∗q (s)

= F(s), (5.73)

the complementary sensitivity function for the actual outer-loop system is calculated as

T(s)actual = C(s)F(s)G(s)
1 + C(s)F(s)G(s)

= C(s)F(s)G(s)
1 + C(s)G(s) − C(s)G(s) + C(s)F(s)G(s)

= C(s)F(s)G(s)
1 + C(s)G(s)(1 − C(s)G(s)(1−F(s))

1+C(s)G(s)
)
. (5.74)

Since the desired complementary sensitivity function is T(s) = C(s)G(s)
1+C(s)G(s)

, the actual complementary
sensitivity is simplified in notation as

T(s)actual = T(s)F(s) × 1
1 − T(s)(1 − F(s))

. (5.75)

This basically says that if | 1

1−T( j𝜔)(1−F( j𝜔))
| is approximately one for all 𝜔 ≥ 0, the actual complementary

sensitivity function can be approximated using the desired complementary sensitivity and the transfer
function F(s):

T(s)actual ≈ T(s)F(s), (5.76)

which gives a convenient estimate for the actual complementary sensitivity and the bandwidth of the
closed-loop system.

From this relation, the actual sensitivity function is obtained:

S(s)actual = 1 − T(s)actual = (1 − T(s)) × 1
1 − T(s)(1 − F(s))

, (5.77)

which could be approximated if | 1

1−T( j𝜔)(1−F( j𝜔))
| is approximately one for 𝜔 ≥ 0

S(s)actual ≈ 1 − T(s). (5.78)

To measure how much performance loss could occur to the complementary sensitivity function
when using the cascade PI control system, we will examine the magnitude of the weighting function
|

1

1−T( j𝜔)(1−F( j𝜔))
|. In order to make it close to one over the low and medium frequency region, a quick

look at the weighting function leads to two crude conclusions: either |F( j𝜔)| is close to one at the
low and medium frequency region or |T( j𝜔)| is small over the same frequency band. With the smaller
magnitude of the complementary sensitivity function, the closed-loop response speed to set-point
following and disturbance rejection will be compromised. Thus, the following analysis is focused on
how the bandwidth of the inner-loop control system affects the performance robustness of the outer-loop
control system.
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5.4.1.1 Actual Sensitivity Functions when Inner-loop Uses a P Controller for q-axis Current

If a proportional controller is used to control the q-axis current, then F(s) is expressed as

F(s) =
Iq(s)
I∗q (s)

=

Kq
c

Lq

s + Rs

Lq
+ Kq

c

Lq

= 1

(1 − 𝛼) Lq

Rs
s + 1

, (5.79)

where the proportional gain Kq
c = 𝛼

1−𝛼
R, 0 < 𝛼 < 1.

The weighting function (| 1

1−T( j𝜔)(1−F( j𝜔))
|) that alters the behavior of the actual complementary sensi-

tivity function is illustrated in Figure 5.21(a), where two 𝛼 values are used in the calculation. It is seen
from this figure that this weighting function has magnitude equal to one at both low and high frequency
regions and close to one at the median frequency region, and its magnitude is larger when 𝛼 is smaller.
As a result, the difference between the desired and actual sensitivity functions becomes negligible when
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Figure 5.21 Desired and actual sensitivity functions (Key: (1) desired function, (2) actual function). Inner-loop
current control specification: 𝛼 = 0.9, outer-loop velocity control specification: 𝛾 = 0.9. (a) Frequency weighting
function (| 1

1−T( j𝜔)(1−F( j𝜔)) |) with varying inner-loop proportional current control specification (Key: line (1) 𝛼 = 0.9,

line (2) 𝛼 = 0.8), (b) Complementary sensitivity function, and (c) Sensitivity function.
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a large 𝛼 is used in the inner-loop current control (see Figure 5.21(b)) for the complementary sensitivity
function and 5.21(c) for the sensitivity function).

In summary, in order to reduce the closed-loop performance variation for the outer-loop control system,
the closed-loop inner-loop current control system is required to have a large 𝛼 value that leads to a large
controller gain and wide closed-loop bandwidth.

5.4.1.2 Actual Sensitivity Functions when Inner-loop Uses a PI Controller

If a PI controller is used, the function F(s) is expressed as

F(s) = (1 − 𝛾)(2𝜉 − 1 + 𝛾)a−1s + 1
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

, (5.80)

where a = Rs

Lq
. With F(s) given by (5.80), it is calculated that

1 − F(s) = (1 − 𝛾)2a−1s(a−1s + 1)
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

. (5.81)

From (5.81), it is seen that with the PI controller, |(1 − F( j𝜔))| is zero at 𝜔 = 0 and |(1 − F( j𝜔))| → 1
as 𝜔→ ∞. Because the complementary function has the characteristic |T( j𝜔)| → 0 as 𝜔→ ∞,
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Figure 5.22 Desired and actual sensitivity functions (Key: (1) desired function, (2) actual function). Inner-loop
current PI control specification: 𝛾 = 0.9, outer-loop velocity control specification: 𝛾 = 0.9. (a) Frequency weighting
function (| 1

1−T( j𝜔)(1−F( j𝜔)) |) with varying inner-loop PI current control specification (Key: line (1) 𝛾 = 0.9, line (2)

𝛾 = 0.8), (b) Complementary sensitivity function, and (c) Sensitivity function.
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|T( j𝜔)(1 − F( j𝜔))| → 0 as 𝜔→ ∞. The quantity |T( j𝜔)(1 − F( j𝜔))| is small at the medium frequency
region for a large 𝛾 value for the inner-loop current control. Figure 5.22(a) shows the quantity
|

1

1−T( j𝜔)(1−F( j𝜔))
| for two 𝛾 values of 0.8 and 0.9 respectively. Since | 1

1−T( j𝜔)(1−F( j𝜔))
| is one at both low and

high frequency regions, the desired sensitivity functions are identical to the actual sensitivity functions.
However, in the medium frequency region, this quantity is not one, indicating that there is a difference
between the desired and actual sensitivity functions. When the inner-loop is controlled using a PI
controller with specification of 𝛾 = 0.9, the difference is about 0.5 percent at the maximum magnitude.
The results of the desired and actual complementary sensitivity functions are shown in Figure 5.22(b)
whilst the desired and actual sensitivity functions are shown in Figure 5.22(c). The results confirm that
when the inner-loop current control uses a PI controller with a large 𝛾 value that corresponds to a wide
closed-loop bandwidth, the difference between the desired and actual sensitivity functions is negligible.

By comparing Figure 5.22(a) (PI controller used in the inner-loop system) with Figure 5.21(a) (P
controller used in the inner-loop system), it is seen that there is a small difference in terms of the weight-
ing function |

1

1−T( j𝜔)(1−F( j𝜔))
|, however, their magnitudes are about the same order. It is evident that the

total area that the weighting function |
1

1−T( j𝜔)(1−F( j𝜔))
| covers is smaller when the inner-loop current PI

controller is used. This indicates that the combination of PI inner-loop control with outer-loop PI control
provides some advantages in terms of performance robustness. This conclusion is obtained in the absence
of parameter uncertainty. When there is parameter uncertainty in the inner-loop current control system,
it is expected that the inner-loop current PI controller will provide a much better robust performance
over the current P controller. This is because of the propagation of steady-state errors from inner-loop to
outer-loop when a proportional controller is used for current control.

5.4.2 Input Sensitivity Functions for the Outer-loop System

The disturbances existing in the outer-loop velocity control system consist of the input disturbances
coming from load torque variations, the harmonics from the PWM switching, and the current sensor bias
error. The sources of noises in the outer-loop are from the acoustical noise of PWM, measurement noise
of the encoder, which measures the angular position of the motor and measurement noise of the current
sensors. To examine how the input disturbance affects the output velocity, the input sensitivity function
is calculated using

S(s)i = G(s)(1 − T(s)) × 1
1 − T(s)(1 − F(s))

, (5.82)
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Figure 5.23 Magnitude of actual input sensitivity function. Inner-loop current PI control and outer-loop velocity
control specification: 𝛾 = 0.9. Key: inner-loop current controller (1) 𝛾 = 0.9; (2) 𝛾 = 0.8.
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where G(s) = b

s+a
, and for the PMSM, a = B

Jm
and b = 3

2

Z2
p𝜙mg

Jm
. Figure 5.23 shows the magnitude of

the input sensitivity function where a = 2.3404 and b = 1.5957 × 104. For this system, the magni-
tude of the input sensitivity function is quite large in the medium frequency region, because of the
large parameter b, which indicates that if any input disturbances fall within this frequency band,
they will be amplified. For a larger 𝛾 value in the inner-loop PI current control, the magnitude is
smaller, which means the closed-loop system will have a better disturbance rejection property. The
load torque disturbances are slow variations and have typically low frequency content. Therefore,
according to the behavior of the input sensitivity function, the load torque disturbance will be
completely rejected.

In summary, in order to maintain performance robustness when using cascade feedback control of
velocity, the bandwidth of the inner-loop current control is required to be as large as possible. Namely, if
the proportional current controller is used, a large 𝛼 value is desired, or if a PI current controller is used,
a large 𝛾 value is desired.

5.5 Analysis of Time-delay Effects
With the time-delay existing in the current-loop system, due to the PWM implementation and measure-
ment delay, the actual transfer function for the q-axis current system is modelled as a first order plus time
delay 𝜏d, that is

G̃(s) =

1

Lq

s + Rs

Lq

e−𝜏ds, (5.83)

where 𝜏d is a function of the PWM switching frequency and a function of the sampling interval
of the current sensor. The time delay due to PWM implementation is commonly approximated by
one sampling interval Δt (𝜏d ≈ Δt). The maximum time delay in the current control system in the
worst case scenario is 𝜏d ≈ 2Δt, which has taken into account of current sensor time delay. Because
the time-delay 𝜏d is not accounted for in the design of either proportional current control or the PI
current control, it causes modelling error between the actual plant G̃(s) and the model G(s) used for

the design. With the model defined by G(s) =
1

Lq

s+ Rs
Lq

, we can quantify the modeling error by either

additive error:

ΔG(s) = G̃(s) − G(s) =

1

Lq

s + Rs

Lq

(1 − e−𝜏d s) (5.84)

or the multiplicative error:

ΔGm(s) =
G̃(s) − G(s)

G(s)
= (1 − e−𝜏ds). (5.85)

The frequency response of multiplicative error is expressed by substituting s = j𝜔 into (5.85) as

ΔGm( j𝜔) = 1 − cos(𝜏d𝜔) + j sin(𝜏d𝜔) (5.86)

which gives its magnitude as

|ΔGm( j𝜔)| =
√

(1 − cos(𝜏d𝜔))2 + sin (𝜏d𝜔)2. (5.87)

A calculation of the derivative of (5.87) yields the maximum magnitude occurring at 𝜏d𝜔 = 𝜋, having
the value of 2. Figure 5.24 shows the magnitude of the multiplicative modeling error with the time delay
𝜏d = 2Δt and 3Δt, where Δt = 100 μs.
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Figure 5.24 Magnitude of multiplicative error as function of the sampling interval Δt. (a) |ΔGm( j𝜔)| for 𝜏d = 2Δt
and (b) |ΔGm( j𝜔)| for 𝜏d = 3Δt.

In the case of d = 2Δt, it is seen that the first maximum value of the multiplicative error is 2 at 𝜔 =
𝜋

𝜏d
= 15700 rad∕s, and in the case of 𝜏d = 3Δt, the maximum occurs at 𝜔 = 𝜋

𝜏d
= 10470 rad∕s. In order

to guarantee closed-loop stability in the presence of unmodeled time-delay 𝜏d, the following condition
is required to be satisfied:

|T( j𝜔)||1 − e−j𝜏d𝜔| < 1 (5.88)

for all 𝜔 ≥ 0.

5.5.1 PI Control of q-axis Current

If a PI controller is used in the current control, |T(0)| = 1 at 𝜔 = 0 and is approximately equal to 1 in the
low frequency region. It is known that at the desired closed-loop bandwidth 𝜔 = 𝑤n = 1

1−𝛾
Rs

Lq
, |T( j𝜔)| is

approximately 1
√

2
= 0.707. A crude estimation of the desired closed-loop bandwidth𝑤n is that it should

be much less than 𝜋

𝜏d
so that |T( j𝜔)| < 0.5 when the first maximum of |ΔGm( j𝜔)| (= 2) occurs at𝜔 = 𝜋

𝜏d
.

In the example of Rs = 2.98 Ω and Lq = 0.07 H, when𝑤n = 1

1−𝛾
Rs

Lq
rad∕s, with 𝛾 = 0.7,𝑤n = 1490 rad∕s,

the closed-loop system will be robustly stable if the time delay is 2Δt because |T( j𝜔)||ΔGm( j𝜔)| < 1
which is confirmed by Figure 5.25(a). However, when 𝛾 is increased to 0.9, |T( j𝜔)||ΔGm( j𝜔)| > 1 (see
Figure 5.25(b)), thus, the closed-loop current control system is no longer guaranteed to be stable with
this choice of closed-loop bandwidth.

5.5.2 P Control of q-axis Current

Because the complementary sensitivity function has a magnitude less than 1 at the lower frequency region
when the proportional controller is used in the current control, it is expected that the current control
loop is more robust in the presence of unmodeled time-delay. Figure 5.26 compares the magnitude of
the quantity T( j𝜔)||ΔGm( j𝜔) for 𝛼 = 0.7 and 𝛼 = 0.9. It is seen that the current closed-loop system
is robustly stable when 𝜏d = 2Δt as |T( j𝜔)||ΔGm( j𝜔)| < 1. It is apparent that the proportional current
control system provides a larger stability margin in the presence of unmodeled time delay.
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Figure 5.25 |T( j𝜔)||ΔGm( j𝜔)|, PI control of q-axis current. (a) 𝜏d = 2Δt and 𝛾 = 0.7, and (b) 𝜏d = 2Δt and 𝛾 = 0.9.
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Figure 5.26 |T( j𝜔)||ΔGm( j𝜔)|, P control of q-axis current. (a) 𝜏d = 2Δt and 𝛾 = 0.7, and (b) 𝜏d = 2Δt and 𝛾 = 0.9.

5.6 Tuning Cascade PI Control Systems for Induction Motor
PI cascade control system design for induction motor is discussed in Chapter 3 (see Sections 3.6–3.7).
This section is focused on tuning its closed-loop performance with experimental evaluations. For the
induction motor test-bed, the system parameters for the current controller design are given as

a = 1
𝜏 ′𝜎

= 167.76; b = 1
r𝜎𝜏

′
𝜎

= 9.41.

With the specification of the closed-loop bandwidth for the current controller as

𝑤n = 1
1 − 𝛾

a

and 𝜉 = 0.707, the PI controller gain Kc and 𝜏I for the current controller are:

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

.

The third section in Table 5.3 shows the parameters for the choices of 𝛾 = 0.7, 0.8, 0.9, 0.95.
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Figure 5.27 Sensitivity function and input sensitivity function for PI current control (induction motor). Key: line (1)
𝛾 = 0.95, line (2) 𝛾 = 0.9, line (3) 𝛾 = 0.8. (a) Complementary sensitivity function, (b) Sensitivity function, and (c)
Input sensitivity function.

The complementary sensitivity, sensitivity and input sensitivity functions for the current control sys-
tem are shown in Figure 5.27. There are six cases from experimental studies, presented in Table 5.3.
In the first four case studies (see rows from A to D), the outer-loop velocity controller has the same
closed-loop performance specification while the inner-loop current control systems have an increased
bandwidth. In the experiments, the proportional control gain Kc is implemented on the output only. The

Table 5.3 Inner-loop PI control on both d − q axes current and outer-loop PI control of velocity.
Eu =

∑
(u2

sd
+ u2

sq)∕M and E𝜔 =
∑

(𝜔∗
m − 𝜔m)2∕M, where M is the data length

Velocity controller Current controller Perform. measure

𝛾 Kc 𝜏I 𝛾 Kc 𝜏I Eu(×104) E𝜔 (×104)

A 0.7 0.0095 0.1744 0.7 66.1902 0.0020 1.9664 1.8740
B 0.7 0.0095 0.1744 0.8 108.1978 0.0014 1.9745 1.9489
C 0.7 0.0095 0.1744 0.9 234.2206 7.8326 × 10−4 2.1728 1.9840
D 0.7 0.0095 0.1744 0.95 486.2662 4.0653 × 10−4 3.5607 2.1672
E 0.8 0.0155 0.1267 0.8 108.1978 0.0014 1.9725 1.3549
F 0.9 0.0335 0.0686 0.8 108.1978 0.0014 1.9804 0.8952
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velocity overshoot response is due to the condition that the induction motor is running without load in
order to test the reference following response. For this type of test, the steady-state isq current is very
small, thus a large overshoot of the isq current occurs during the transient response. This free load test
condition is deployed for the induction motor control in this chapter. In contrast, the experimental results
will be obtained with appropriate load torque for induction motor control in Chapter 6, where this type
of overshoot is avoided in general because of the implementation of the proportional control on the
output only.

It is seen that with the increased current control loop bandwidth, the control signal variations increase.
In particular, when the bandwidth increases from 10 times of the open-loop bandwidth (𝛾 = 0.9) to 20
times of the open-loop bandwidth (𝛾 = 0.95), the variation of the control signals Eu =

∑
(u2

sd + u2
sq)∕M,

where M is the data length, has increased from 2.1728 × 104 to 3.5607 × 104. In the last two case studies
(see rows from E to F), the closed-loop bandwidth for the velocity control loop is increased from 5
times (𝛾 = 0.8) of the open-loop bandwidth of the mechanical system to 10 times of that of the same
system while the current loops have the same bandwidth for both cases. The numerical results indicate
that the variations of the control signals are about the same; however, the mean squared error for the
velocity is reduced when the closed-loop bandwidth of the velocity controller is larger. The experimental
results are illustrated via the closed-loop control responses. In particular, comparative results are used
to show the closed-loop performance differences when the bandwidth of the outer-loop system has a
different performance specification. In Figure 5.28 where the outer-loop velocity control system has a
relatively smaller bandwidth 𝛾 = 0.8, the velocity response is slower, but without oscillations. In contrast,
In Figure 5.29, when the outer-loop velocity control system has a larger bandwidth, the velocity response
is faster, but with oscillations. There are several factors that might cause the closed-loop oscillations,
including the unmodeled dynamics from the inner-loop control system and a mismatched mechanical
inertia parameter Jm.

5.6.1 Robustness of Cascade PI Control System

To test robustness of the cascade control system against physical parameter variations, experiments
are performed with respect to changes in both inner-loop and outer-loop systems. Table 5.4 summa-
rizes the numerical results about the robustness studies. For the inner-loop system, the resistance Rs is
changed from the nominal value of 11.2 Ω to an increased value of 1.5 × 11.2 Ω, then to a decreased
value of 0.5 × 11.2 Ω. Changes of resistance typically occur when the motor has been in operation
for a long time and its temperature variation leads to this variation. For the outer-loop system, the
inertial parameter Jm is changed from the nominal value of 0.00214 kg ⋅ m2 to an increased value of
3 × 0.00214 kg ⋅ m2 to a decreased value of 0.5 × 0.00214 kg ⋅ m2. Because the actual physical parame-
ters are unknown, the robustness verification is performed by changing the model parameters used in the

Table 5.4 Robustness analysis on speed control. Inner-loop PI control on both
d − q axes current and outer-loop PI control of velocity. Eu =

∑
(u2

sd + u2
sq)∕M and

E𝜔 =
∑

(𝜔∗
m − 𝜔m)2∕M, where M is the data length

Variation Velocity controller Current controller Perform. measure

Rs Jm 𝛾 Kc 𝜏I 𝛾 Kc 𝜏I Eu(×104) E𝜔(×104)

×0.5 0.8 0.0155 0.1267 0.8 74.2058 0.0021 1.9478 1.3597
×1.5 0.8 0.0155 0.1267 0.8 142.1898 0.0011 2.0269 1.3562

×0.5 0.8 0.0155 0.0634 0.8 108.1978 0.0014 1.9903 1.3229
×3.0 0.8 0.0155 0.3802 0.8 108.1978 0.0014 2.0118 2.6659
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Figure 5.28 Induction motor control. PI current controller 𝛾 = 0.8, 𝜉 = 0.707; outer-loop velocity control system
specification: 𝛾 = 0.8 and 𝜉 = 0.707. (a) Stator current (solid) and reference (dashed), (b) Stator voltage, and (c)
Velocity (solid) and reference (dashed).

PI control system design. Therefore, when the model parameter changes, the controller parameters may
also change.

5.6.1.1 Robustness of Current Control System

The first two cases presented in Table 5.4 are related to the variations of the resistance in the current
system while the outer-loop velocity controller takes the nominal design. Because the closed-loop specifi-
cation in the current control is related to the open-loop pole, the current controller has a lower proportional
gain (74.2058) than the nominal proportional gain (108.1978) and a larger integral time constant (0.0021)
than the nominal integral time constant (0.0014) by comparing the first row of the current controller with
the third row of current controller. Therefore, we may conclude that with this current controller design,
by using a smaller resistance value in the design, the resultant current control system will have a slower
closed-loop response. An overestimated resistance value will lead to a larger proportional gain and a
smaller integral time constant by comparing the second row of the current controller with the third row
of current controller. We conclude that using a larger resistance value will lead to a faster closed-loop



142 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

0 5 10 15 20
−5

0

5

i sd
 (

A
)

0 5 10 15 20
−5

0

5

Time (sec)

 i s
q 

(A
)

(a)

0 5 10 15 20

0 5 10 15 20

−200

0

200

Time (sec)

u s
d 

(V
)

−200

0

200

400

Time (sec)

u s
q 

(V
)

(b)

0 5 10 15 20
−500

0

500

1000

1500

2000

Time (sec)

ω
 (

R
PM

)

(c)

Figure 5.29 Induction motor control. PI current control. PI controller 𝛾 = 0.8, 𝜉 = 0.707; outer-loop velocity control
system specification: 𝛾 = 0.9 and 𝜉 = 0.707. (a) Stator current (solid) and reference (dashed), (b) Stator voltage, and
(c) Velocity (solid) and reference (dashed).

current response. For a conservative design, one may wish to consider the reduction of resistance if the
motor is to be in operation for a long time by choosing a smaller resistance value for the current con-
troller design. As we expected, the larger proportional gain and smaller integral time constant lead to a
larger variation of the control signals (see Eu); however, it has a little impact on the variation of velocity
(see E𝜔).

Figure 5.30 shows the closed-loop responses when Rs is half of the nominal value. In comparison,
Figure 5.31 shows the closed-loop responses when Rs is 1.5× the nominal value. By comparing these
two figures, it is seen that the variations in current control loop has a little impact on the velocity response
for this study; however, the variations of the control signals are larger when Rs is over-estimated.

5.6.1.2 Robustness of Velocity Control System

The last two cases presented in Table 5.4 are related to the variations of the inertia parameter Jm in the
velocity control system while the inner-loop current controller takes the nominal design. Because the
closed-loop bandwidth is specified in relation to the open-loop bandwidth, the change of the parameter
Jm does not alter the value of the proportional gain Kc; however, it changes the integral time constant 𝜏I .
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Figure 5.30 Induction motor control. Current control system specifications: PI controller 𝛾 = 0.8, 𝜉 = 0.707;
outer-loop velocity controller: 𝛾 = 0.8 and 𝜉 = 0.707. The Rs used in the design is half of the nominal value. (a)
Stator current (solid) and reference (dashed), (b) Stator voltage, and (c) Velocity (solid) and reference (dashed).

A smaller inertia Jm will lead to a smaller integral time constant and in contrast a larger Jm will lead to a
larger integral time constant. Therefore, in the design, if a smaller value of Jm is selected, in general the
closed-loop response speed is faster because of the smaller integral time constant. The variation of the
velocity is smaller when using a smaller Jm as measured by the value of E𝜔. In a conservative design, one
wishes to use a larger Jm value to enhance the robustness property of the closed-loop control system.

Figure 5.32 shows the closed-loop responses when the inertia parameter Jm is smaller than the nominal
value. In comparison, Figure 5.33 shows the responses when Jm is larger than the nominal value. When
the inertia parameter Jm is smaller, it is seen that the closed-loop velocity response exhibits oscillatory
behavior (see Figure 5.32); however, when the inertia parameter Jm is larger, the closed-loop velocity
response is slower and without oscillation. The experimental results confirm that choosing a smaller Jm

value will enhance the robustness property of the closed-loop velocity control system.

5.6.2 Robustness Study Using Nyquist Plot

Nyquist plots of the outer-loop control system provide an effective means to determine the bandwidth
𝑤n to be used in the design. A good design should have reasonable gain and phase margins to ensure
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Figure 5.31 Induction motor control. Current control system specifications: PI controller 𝛾 = 0.8, 𝜉 = 0.707;
outer-loop velocity controller: 𝛾 = 0.8 and 𝜉 = 0.707. The Rs used in the design is 1.5× the nominal value. (a) Stator
current (solid) and reference (dashed), (b) Stator voltage, and (c) Velocity (solid) and reference (dashed).

that the closed-loop system is robustly stable in the presence of factors known and unknown. When
using the Nyquist stability criterion, we examine the frequency response of the loop transfer function
(M( j𝜔)) that contains the transfer functions for the mechanical system, the outer-loop PI controller and
the neglected inner-loop system. The criterion states that a feedback control system with single input and
single output is stable if and only if, for the frequency response of the loop transfer function, number of
counter clockwise encirclements of the (−1, 0) point is equal to the number of poles of this loop transfer
function with positive real parts. In the control problems of electrical drives and power converters, this
loop transfer function does not contain any poles that have positive real parts; thus, for the closed-loop
stability of the single-input and single-output system, the frequency response should not encircle (−1, 0)
point on the complex plane.

A good design should have reasonable gain and phase margins to ensure that the closed-loop system
is robustly stable in the presence of factors known and unknown. Gain margin is defined as GM = 1

kg
,

where kg is the distance between the origin of the complex plane and the point that M( j𝜔) intersects the
real axis (see Figures 5.34 and 5.35). It means that if the loop gain were to exceed the reciprocal of kg,
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Figure 5.32 Induction motor control. Current control system specifications: PI controller 𝛾 = 0.8, 𝜉 = 0.707;
outer-loop velocity controller: 𝛾 = 0.8 and 𝜉 = 0.707. The Jm used in the design is half of the nominal value. (a)
Stator current (solid) and reference (dashed), (b) Stator voltage, and (c) Velocity (solid) and reference (dashed).

then the closed-loop system would become unstable. Clearly, there is no such intersection point for the
Nyquist plots shown in both Figures. This indicates that the cascade control system has “infinite” large
gain margin. Phase margin is defined as the additional phase lag that could be associated with M( j𝜔)
before the closed-loop system became unstable. It is the angle between the negative real axis and the line
that intersects the circle |M( j𝜔)| = 1 (see Figure 5.35).

5.6.2.1 Robustness in Resistance Variations

Figure 5.34 shows the variations of the resistance have little effect on the Nyquist loci of the cascade
control system, where the three Nyquist plots are not distinguishable. This is one of the advantages when
using cascade control system to safeguard parameter variations in the inner-loop control system. The
experimental validations also confirm that indeed the variations on Rs have very small effects on the
closed-loop velocity responses (see Table 5.4).



146 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

0 5 10 15 20

0 5 10 15 20

Time (sec)

0 5 10 15 20
Time (sec)

0 5 10 15 20
Time (sec)

0

200

−200

−200

0

200

400

–2

0

2

i s
q 

(A
)

i s
d 

(A
)

u s
q 

(V
)

u s
d 

(V
)

−5

0

5

(a) (b)

0 5 10 15 20
0

500

1000

1500

2000

Time (sec)

ω
 (

R
PM

)

(c)

Figure 5.33 Induction motor control. Current control system specifications: PI controller 𝛾 = 0.8, 𝜉 = 0.707;
outer-loop velocity controller: 𝛾 = 0.8 and 𝜉 = 0.707. The Jm used in the design is 3 times the original value. (a)
Stator current (solid) and reference (dashed), (b) Stator voltage, and (c) Velocity (solid) and reference (dashed).
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Figure 5.34 Nyquist plots with respect to changes in resistance with PI velocity control. Key: line (1) Rs = 0.5R0
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line (2) Rs = 1.5R0
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s = 11.2 Ω.
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Figure 5.35 Nyquist plots with a unit circle. Key: line (1) with Jm = J0
m, line (2) Jm = 0.5J0

m, line (3) Jm = 3J0
m

where J0
m = 0.00214 kg ⋅ m2.

5.6.2.2 Robustness in Presence of Inertia Parameter Variation

To examine the changes of inertia parameter Jm on the robustness of the cascade control of velocity
system, the parameter Jm was increased to 3 times of the nominal value (=0.0064) and then reduced to
0.5 of the nominal value (= 0.0013). With these two inertia values, two PI controllers are designed with
𝜏𝜔I = 0.2969 for the larger inertia value and 𝜏𝜔I = 0.0594 for the smaller inertia value, respectively. The
proportional control gain K𝜔

c is unchanged with respect to Jm in the proposed design. Figure 5.35 shows
the Nyquist plots for the three cascade control systems.

A unit circle is superimposed on the Nyquist loci to help identify the phase margins for the three system,
which is the angle between the left side of the real axis and the intersection point of the unit circle with
the Nyquist loci. At the nominal design with Jm = 0.0064, the phase margin is 67

∘
; with the increase

of the inertia parameter Jm in the model, the phase margin is increased to 85
∘
; but with the decrease of

the inertia parameter in the model, the phase margin is decreased to 54
∘
. The phase margin parameters

indicate that the closed-loop response speed will become slower when the parameter Jm used in the
design is larger than the actual inertia parameter, and the closed-loop response speed will become faster
or oscillatory when the parameter Jm used in the design is smaller than the actual inertia parameter. The
experimental results show that mismatch of the inertia parameter leads to sensitivity of the closed-loop
control performance, particularly in the lower speed range (see Figure 5.32).

5.7 Tuning PI Control Systems for Power Converter
The design of the current controllers and the voltage controller has been discussed in detail in the previous
chapter. The design equations are briefly listed here as a review, also in conjunction with the test-bed.

5.7.1 Overview of the Designs

The controller for the q-axis current loop is designed based on the first order transfer function model:

Iq(s)

Ŝq(s)
=

− 1

2Ls

s + Rs

Ls

, (5.89)
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where Ŝq(s) is the Laplace transform of the auxiliary control variable, which is related to the actual control
variable:

− 1
2Ls

Ŝd(t) = −
Sd(t)𝑣dc(t)

2Ls

+ 𝜔giq(t) +
Ed

Ls

. (5.90)

In the test-bed the resistance Rs = 0.2 Ω and the inductance Ls = 6.3 × 10−3 H.
In order to maintain unity power factor in the steady-state, the set-point signal to the q-axis current is

0 and a PI controller is always used in the closed-loop control of the q-axis current. Therefore, with the
pole-assignment controller design, the proportional controller gain Kc and the integral time constant are
chosen to be

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

, (5.91)

where a = Rs

Ls
and b = − 1

2Ls
. Specifically, with the damping coefficient 𝜉 = 0.707, the closed-loop band-

width 𝑤n is selected as

𝑤n = 1
1 − 𝛾

Rs

Ls

, (5.92)

where the parameter 0 < 𝛾 < 1 is assigned to achieve the desired closed-loop response speed.
For the outer-loop PI controller design, the following integrator model is used:

Vdc(s)
I∗d (s)

≈ 3
4

Sss
d

Cdc

𝛼

s
. (5.93)

Here, since a PI controller is used in the d-axis current control, the parameter 𝛼 is assigned to 1, as the
steady-state of the inner-loop current control gain is unity with PI control. The capacitor Cdc is 2.96 ×
10−4 F. The steady-state value of control variable Sd is chosen as 0.7965.

In the outer-loop controller design, since the open-loop pole for the integrating system is at s = 0,
there is no trivial benchmark for the selection of the desired closed-loop poles. However, what one could
do is to select the desired closed-loop bandwidth for the outer-loop system in relation to the inner-loop
system. The outer-loop bandwidth should be between 0.25 to 0.5 times the inner-loop bandwidth. The
main reason why the outer-loop bandwidth is narrower than the inner-loop system bandwidth is because
the dynamics from the inner-loop closed-loop system are neglected in the design of the outer-loop control
system. In the specification of the inner-loop bandwidth, it is parameterized as 1

1−𝛾
Rs

Ls
for a PI controller.

Say, if 𝛾 = 0.9, the inner-loop bandwidth is about 318 rad∕s. In the case studies, the candidates of the
parameter𝑤n for the outer-loop system are chosen to be 80 and 150. If a faster outer-loop voltage response
is desired, then the inner-loop d-axis current control system should have a wider bandwidth to achieve
this higher performance demand.

Table 5.5 lists the PI controller parameters for controlling id and iq currents and the PI controller param-
eters for the outer-loop voltage control. There are nine cases presented in this table. The first three cases
(A-C) show the variations of proportional gain and integral time constant for the current controllers
where the bandwidth of outer-loop voltage controller is fixed as 𝑤n = 80 rad∕s, but the bandwidths of
both current control systems increase. It is seen that as 𝛾 increases, the magnitude of the proportional
gain increases, but the integral time constant decreases. All the proportional controller gains for the cur-
rent controllers are negative because the steady-state gains of both d-axis and q-axis current systems are
negative. The next three cases (D-F) show that as the outer-loop bandwidth 𝑤n increases from 80 rad∕s
to 150 rad∕s, the proportional controller gain of the voltage controller increases while the integral time
constant decreases. The final three cases (G-I) show that as the outer-loop bandwidth𝑤n increases to 300
rad∕s, the proportional controller gain of the voltage controller is further increased and the integral time
constant is further decreased.
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Table 5.5 Inner-loop PI control of both d-axis and q-axis current and outer-loop PI control of voltage.
Es =

∑
(S2

d + S2
q)∕M, Evdc =

∑
(V∗

dc − Vdc)2∕M and Ei =
∑
((I∗d − Id)2 + (I∗q − Iq)2)∕M, where M is the data length

Voltage controller iq controller id controller Perform. measure

𝑤n Kc 𝜏I 𝛾 Kc 𝜏I 𝛾 Kc 𝜏I Es Evdc Ei

A 80 0.0561 0.0177 0.8 −2.428 0.0076 0.8 −2.428 0.0076 0.5648 8.7256 0.4918
B 80 0.0561 0.0177 0.9 −5.256 0.0041 0.9 −5.256 0.0041 0.5706 8.4745 0.3742
C 80 0.0561 0.0177 0.95 −10.912 0.0021 0.95 −10.912 0.0021 0.5616 8.1558 0.3056
D 150 0.1051 0.0094 0.8 −2.428 0.0076 0.8 −2.428 0.0076 0.5642 3.6898 0.5014
E 150 0.1051 0.0094 0.9 −5.256 0.0041 0.9 −5.256 0.0041 0.5753 3.2023 0.3709
F 150 0.1051 0.0094 0.95 −10.912 0.0021 0.95 −10.912 0.0021 0.5616 3.0648 0.3050
G 300 0.2102 0.0047 0.8 −2.428 0.0076 0.8 −2.428 0.0076 0.5785 2.4530 0.5044
H 300 0.2102 0.0047 0.9 −5.256 0.0041 0.9 −5.256 0.0041 0.5733 1.918 0.3688
I 300 0.2102 0.0047 0.95 −10.912 0.0021 0.95 −10.912 0.0021 0.5656 1.7604 0.3049
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Figure 5.36 Sensitivity function and input sensitivity function for PI current control (power converter). Key: line (1)
𝛾 = 0.95, line (2) 𝛾 = 0.9, line (3) 𝛾 = 0.8. (a) Complementary sensitivity function, (b) Sensitivity function, and (c)
Input sensitivity function.

5.7.2 Tuning the Current Controllers

Figure 5.36 shows the sensitivity functions for the PI current control for 𝛾 = 0.95, 𝛾 = 0.9 and 𝛾 = 0.8.
The complementary sensitivity function shown in Figure 5.36(a) illustrates that its magnitude for all
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cases is unity at the low frequency region, indicating that the current output signal will track its reference
signal without steady-state error. The bandwidth of the current control loop is calculated as 1

1−𝛾
Rs

Ls
rad∕s,

therefore, for 𝛾 = 0.95, the bandwidth of the current closed- loop system is about 20 times of that of the
open-loop system. The sensitivity function shown in Figure 5.36(b) illustrates that at the zero frequency,
its magnitude for all cases is zero, therefore, constant disturbances will be rejected without steady-state
error; however, the magnitude at the high frequency is unity, indicating that high frequency noise will be
amplified in the current control system. The input sensitivity function shown in Figure 5.36(c) illustrates
that at both low and high frequency regions, its magnitude is small, indicating that disturbances occurring
at the input variable, such as the error signal from the PWM switching, will be attenuated at both low and
high frequency regions; however, in the medium frequency region, they will be amplified. Furthermore,
the magnitude of the input sensitivity function is smaller when a larger 𝛾 value is used, namely a stronger
effect of input disturbance rejection will be achieved. Because the PWM switching errors occur at the
d-axis and q-axis voltages, which are the input variables to the current control systems, and these error
signals contain undesired harmonics, it is essential to overcome their influence by using a large 𝛾 value
to achieve a wide bandwidth for the current control system. On the other hand, the wide bandwidth
in the current control system will amplify various noises existing in a power converter. Therefore,
the ultimate choice of the parameter 𝛾 for the current control systems will be based on the balance
between harmonic disturbance rejection and noise attenuation. It is envisaged that the closed-loop
performance of a current control system will continue to improve when the parameter 𝛾 increases
because a wider closed-loop bandwidth will result in a better rejection of current harmonics; however,
there could be a critical point where further increasing the parameter 𝛾 leads to severe amplification of
the noises in the current control system, and the benefit of harmonic reduction via wider closed-loop
bandwidth diminishes.

5.7.3 Tuning Voltage Controller

Another benefit of a wider closed-loop bandwidth (or a larger 𝛾 value) can be explored for the design of
the outer-loop voltage controller in terms of actual closed-loop performance and robust stability, which
is discussed as follows.

The desired complementary sensitivity function for the PI controlled voltage in the outer-loop system
power is

T(s) =
2𝜉𝑤ns +𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

, (5.94)

where the design model (5.93) is used in the calculation of the complementary sensitivity function. The
PI controller parameters are shown in Table 5.5 where with 𝜉 = 0.707, 𝑤n is selected as 80 rad∕s and
150 rad∕s respectively. Similarly, based on the complementary sensitivity function (5.94), the desired
sensitivity and input sensitivity functions for the outer-loop system are

S(s) = 1 − T(s) = s2

s2 + 2𝜉𝑤ns +𝑤2
n

(5.95)

Si(s) = 3
4

Sss
d

Cdc

1
s

S(s) = 3
4

Sss
d

Cdc

s
s2 + 2𝜉𝑤ns +𝑤2

n

. (5.96)

Because in the design of the PI voltage controller the dynamics of the current closed-loop control system
are neglected, the characteristics of the three sensitivity functions are not exactly realized in the voltage
control system. There are discrepancies between the desired sensitivity functions which are specified by
the designer and the actual sensitivity functions of the closed-loop system because of neglected dynamics
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in the inner-loop current control system. Let F(s) represent the neglected dynamics in the inner-loop
current control system. With a = Rs

Ls
, more specifically, F(s) is calculated as function of 𝛾

F(s) = (1 − 𝛾)(2𝜉 − 1 + 𝛾)a−1s + 1
(1 − 𝛾)2a−2s2 + 2𝜉(1 − 𝛾)a−1s + 1

. (5.97)

For notational simplicity, we define

W(s) = 1
1 − T(s)(1 − F(s))

. (5.98)

Following from the procedures used previously in the analysis of PMSM (see Equation (5.75)) the actual
sensitivity functions in relation to the desired sensitivity functions are then expressed as

T(s)actual = T(s)F(s) × 1
1 − T(s)(1 − F(s))

=
2𝜉𝑤ns +𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

F(s) × W(s) (5.99)

S(s)actual = S(s) × 1
1 − T(s)(1 − F(s))

= s2

s2 + 2𝜉𝑤ns +𝑤2
n

W(s) (5.100)

Si(s)actual = Si(s) × 1
1 − T(s)(1 − F(s))

= 3
4

Sss
d

Cdc

s
s2 + 2𝜉𝑤ns +𝑤2

n

W(s). (5.101)

Equations (5.99 –5.101) indicate that if |W( j𝜔)| is approximately one for all 𝜔 ≥ 0, the actual sensi-
tivity functions can be closely approximated using the desired sensitivity functions. Because W( j𝜔) is a
function of the desired complementary sensitivity function T( j𝜔), the bandwidth of the voltage control
system 𝑤n has an effect on |W( j𝜔)|.

5.7.3.1 Variation of Outer-loop Bandwidth, Wn

Figures 5.37–5.38 illustrate the effects of the outer-loop bandwidth 𝑤n on the weighting function and
the sensitivity functions. In this case, the bandwidth of the current closed-loop control system is fixed
to 318 rad∕s (𝛾 = 0.9). If the outer-loop bandwidth is 30 (that is approximately 1∕10 of the inner-loop
bandwidth), as shown in Figure 5.37(a), the weighting function |W( j𝜔)| is close to one over the median
frequency region (it has a maximum of 1.1) and equal to one for both low and high frequency regions,
indicating that the discrepancies between the desired and actual sensitivity functions are small. In con-
trast, if 𝑤n is 300 that is close to the same bandwidth of the inner-loop control system, then |W( j𝜔)|
has a maximum of 6.5, which is very large and will significantly alter the characteristics of the actual
sensitivity functions over the median frequency region and cause significant performance uncertainty.
Figure 5.37(b) shows |W( j𝜔)| for 𝑤n = 80 rad∕s and 150 rad∕s respectively, which again confirms that
as the bandwidth of the outer-loop system increases with respect to a fixed bandwidth of the inner-loop
system, the magnitude of |W( j𝜔)| increases over the medium frequency region, thus the degree of per-
formance uncertainty increases. However, in comparison with the case where 𝑤n = 300 rad∕s, |W( j𝜔)|
is three times smaller when 𝑤n = 150 rad∕s.

To investigate further, Figure 5.38 illustrates the comparison results for the actual sensitivity func-
tions when using 𝑤n = 80 rad∕s and 𝑤n = 150 rad∕s respectively. For clarity, the linear scaled y-axis
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Figure 5.37 Weighting function (| 1
1−T( j𝜔)(1−F( j𝜔) |) for outer-loop voltage control (power converter), where the

bandwidth of the current inner-loop control system is fixed to 318 rad∕s. (a) Key: line (1) 𝑤n = 300 rad∕s, line (2)
𝑤n = 30 rad∕s. (b) Key: line (1) 𝑤n = 150 rad∕s, line (2) 𝑤n = 80 rad∕s.
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Figure 5.38 Sensitivity functions for the outer-loop voltage control (power converter) where PI current controllers
are used. Inner-loop current control system has bandwidth 318 rad∕s. Key: line (1) 𝑤n = 150 rad∕s, line (2) 𝑤n =
80 rad∕s. (a) Actual complementary sensitivity function, (b) Actual sensitivity function, and (c) Actual input sensitivity
function.
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is deployed in the plots. In Figure 5.38(a), the magnitude of the complementary sensitivity function
shows that the bandwidth of the closed-loop system when using 𝑤n = 150 is wider than the one when
using 𝑤n = 80 rad∕s, meaning that the closed-loop response speed to a reference signal is faster, but the
closed-loop system is more sensitive to measurement noise. From Figure 5.38(b), a much larger peak of
the magnitude of the sensitivity is seen in the case of 𝑤n = 150 rad∕s. If a disturbance has a frequency
content corresponding to the region where the peak occurs, then it will be amplified. The magnitude of
the input sensitivity shown in Figure 5.38(c) leads to the conclusion that the property of input distur-
bance rejection when using 𝑤n = 150 rad∕s is much superior than the one with 𝑤n = 80 rad∕s because
its magnitude is about half of the later case. Since disturbance rejection is often the main control objec-
tive for a power converter, the control system with the bandwidth 𝑤n = 150 rad∕s is preferable when the
inner-loop current control bandwidth is fixed to 318 rad∕s.

5.7.3.2 Relative Relationship of the Bandwidths between the Inner and Outer Loops

Figure 5.39 shows the results of the second investigation to reveal the relative relationship of the band-
widths between the inner and outer loops. In this case, the 𝛾 value for the current controllers is increased
to 0.95 (see Table 5.5), leading to the closed-loop bandwidth of the current control system being 20 times
of the open-loop system where 𝑤n = 1

1−𝛾
Rs

Ls
= 634.9 rad∕s. With this increased closed-loop bandwidth
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Figure 5.39 Sensitivity functions for outer-loop voltage control (power converter) where PI current controllers are
used. Inner-loop current control system has bandwidth 634.9. Key: line (1) 𝑤n = 300 rad∕s, line (2) 𝑤n = 150 rad∕s.
(a) Weighting function, (b) Actual complementary sensitivity function, (c) Actual sensitivity function, and (d) Actual
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for the inner-loop current control, it is anticipated that the outer-loop bandwidth of the voltage control
system could be increased. In this situation, if bandwidth of the outer-loop voltage control system is
selected as 300 rad∕s, it is less than half of the inner-loop bandwidth. The first difference is that with this
increased inner-loop current controller bandwidth, the peak of the weighting function |W( j𝜔)| (see 5.98)
has reduced, which is significant when comparing Figure 5.39(a) with Figure 5.37(a). In the previous
case when the inner-loop current controller is designed using 𝛾 = 0.9, the peak value for the weighting
function is 6.5 when the outer-loop bandwidth is 300 rad∕s. In comparison, the peak value is 1.89 with
the same outer-loop bandwidth, which results in much reduced performance uncertainty. The peak value
is also reduced for the outer-loop controller with the bandwidth of 150 (see Figure 5.37(b)). The investi-
gation of second case indicates that when the inner-loop current control system has a wider bandwidth,
the bandwidth of the outer-loop system could be increased accordingly.

In summary, the sensitivity function analysis for the outer-loop voltage control system demonstrates
that the bandwidth of the outer-loop control system is limited by the bandwidth of the inner-loop control
system. The inner-loop control system should have a much wider bandwidth than the outer-loop control
system in order to reduce performance uncertainty. For the power converter control, it is justifiable for
the outer-loop bandwidth to be half of the inner-loop bandwidth.

5.7.4 Experimental Evaluations

Experiments are conducted to evaluate the nine control systems with their parameters listed in Table 5.5.
The carrier frequency for the PWM signals is 1 kHz which is low due to the limitations of the exper-
imental setup. Because of this low carrier frequency, it is expected that the problem with harmonics
and noise will occur in the current control system. To determine the bandwidth of the d-axis and q-axis
current controllers, three experiments are conducted in which 𝛾 = 0.8, 𝛾 = 0.9 and 𝛾 = 0.95 are used.
These 𝛾 values correspond to the closed-loop bandwidth being 5, 10 and 20 times of the bandwidth of
the open-loop current system. The 𝛾 value should be as large as possible to obtain a sufficiently large
closed-loop bandwidth for disturbance rejection of the harmonics caused by the PWM switching and for
the preparation of the design of outer-loop voltage controller upon which its bandwidth is dependent.

In the experiments, a voltage reference signal V∗
dc is set at 55 V when the current and voltage controllers

are turned on, followed by a step change from 55 V to 60 V. At the operating condition of 60 V, a load
disturbance with a positive amplitude and a load disturbance with a negative amplitude occur. The times
of the step change and disturbance events are identical in the experiments. The disturbances are created
using resistance as load that will be changed via a switch in the experiments. With M being the number
of data point, the effort of the control signals is calculated as the sum of the mean squared error:

Es =
1
M

M−1∑

i=0

(Sd(ti)
2 + Sq(ti)

2), (5.102)

where Sd and Sq are the control signals for d-axis and q-axis current systems. To measure the performance
of the current controllers, the sum of the mean squared errors between the reference currents i∗d , i∗q and
the measured currents id and iq is calculated as

Ei =
1
M

M−1∑

i=0

((i∗d(ti) − id(ti))
2 + (i∗q(ti) − iq(ti))

2). (5.103)

With the voltage controller fixed in the first three experiments, the mean squared error between the
reference voltage and the measured voltage is computed as

Evdc =
1
M

M−1∑

i=0

(𝑣∗dc(ti) − 𝑣dc(ti))
2. (5.104)
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Their values are listed in the final three columns of Table 5.5. It is interesting to note that the mean
squared errors, Es and Ei are strongly dependent on the bandwidth of the current control systems. For
instance, when looking at Cases C, F and I where 𝛾 = 0.95 was used in the current control systems,
the value of Es reflecting the control signal variations is about 0.56, and the value of Ei reflecting the
reference tracking performance is about 0.3. These values were obtained with three different band-
widths for the voltage control system. This means that the current controllers predominately determine
the performance of current control systems and the voltage controller has little effect on the perfor-
mance of the current control systems. As for the performance of voltage control system, it is seen from
Table 5.5 that the value of Evdc reduces drastically with the increase of outer-loop bandwidth 𝑤n, in
contrast, it has a very small dependence on the current controllers. For instance, for the first three cases
(A, B, and C) with the same 𝑤n being 80 rad∕s, the value of Evdc reflecting the capability of refer-
ence tracking and load disturbance rejection is between 8 and 8.8; and for the next three cases (D, E,
and F) with the same 𝑤n being about 150 rad∕s, the value of Evdc is between 3 and 3.7. For the final
three cases (G, H, I), with the same 𝑤n being 300 rad∕s, the value of Evdc is between 1.8 and 2.5.
It is apparent that among the nine cases, when 𝛾 = 0.95, the current controllers with this large band-
width produced superior performance in terms of the variations of the control signals (see the smaller
Es values) and the variations of the d-axis and q-axis currents (see the smaller Ei values), which is
achieved regardless of the bandwidth of the voltage control system. This can be interpreted as a better
reduction of harmonics in the current control when using a wider closed-loop bandwidth in the current
control systems.

Figures 5.40–5.43 present the closed-loop responses based on the experimental results. In particu-
lar, Figure 5.40 illustrates control systems where the current controllers are designed using 𝛾 = 0.9
and the voltage control system has a bandwidth of 80 rad∕s. It is seen that with this set of controller
parameters, the closed-loop system has a slow set-point response and a slow response of disturbance
rejection. In contrast, the responses become faster when the bandwidth of voltage control system is
increased to 150 rad∕s (see Figure 5.41). Because the current controllers remain the same for both
cases, the plots also show that the d-axis current id and the q-axis current iq have similar character-
istics when Figure 5.40 is compared with Figure 5.41, except that the reference signal i∗d has a faster
dynamics response in Figure 5.41 due to the higher performance demand from the voltage controller.
To illustrate how the current controllers affect the closed-loop performance, Figure 5.42 shows the
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Figure 5.40 Power converter. PI current control of d-axis and q-axis currents, 𝛾 = 0.90, 𝜉 = 0.707. Outer-loop volt-
age control system specification:𝑤n = 80 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage and
reference.
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Figure 5.41 Power converter. PI current control of d-axis and q-axis currents, 𝛾 = 0.9, 𝜉 = 0.707. Outer-loop voltage
control system specification: 𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference and (b) Output voltage and
reference.
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Figure 5.42 Power converter. PI current control of d-axis and q-axis currents, 𝛾 = 0.95, 𝜉 = 0.707. Outer-loop volt-
age control system specification: 𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage
and reference.

case where the current controllers are designed using 𝛾 = 0.95 and the voltage control system has a
bandwidth of 150 rad∕s. In this case, because the voltage control system has the same bandwidth as
the case presented in Figure 5.41, it is anticipated that both cases should have similar responses to
set-point changes and disturbance rejections, and this is confirmed as the outcome of the comparison.
A further increase of bandwidth 𝑤n for the voltage control system results in a significant reduction in
the response speed to reference following and disturbance rejection as shown in Figure 5.43. Among
the nine cases, this is the best case in terms of closed-loop response speed of reference following and
disturbance rejection.
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Figure 5.43 Power converter. PI current control of d-axis and q-axis currents, 𝛾 = 0.95, 𝜉 = 0.707. Outer-loop volt-
age control system specification: 𝑤n = 300 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage
and reference.

5.8 Tuning P Plus PI Controllers for Power Converter

5.8.1 Design and Sensitivity Functions

There are two types of controllers that may be used to control the d-axis current. If the controller is a PI
controller, then the proportional controller gain and integral time constant are identical to the controller
parameters calculated for the q-axis current. However, if one chooses to use a P controller for the d-axis,
the proportional gain for the d-axis current is selected as

Kc = − 2𝛼
1 − 𝛼

Rs, (5.105)

where 0 < 𝛼 < 1 is the performance parameter selected by the user to achieve the desired closed-loop
response speed.

For the outer-loop PI controller design, the following integrator model is used:

Vdc(s)
I∗d (s)

≈ 3
4

Sss
d

Cdc

𝛼

s
, (5.106)

where 𝛼 is the value used in the proportional control of d-axis current (see Equation (5.105)).
The tuning procedure is identical to the case studies presented in Section 5.7. Here, the results are

presented in summary form. Again, nine cases are investigated in this study. Table 5.6 presents the current
and voltage controller parameters and the performance measurements in terms of Es, Evdc and Ei which
are defined in the previous section.

Figure 5.44 shows the complementary sensitivity, sensitivity and input sensitivity functions for the
inner-loop proportional control of d-axis current. From Figure 5.44(a), it is seen that with the increase
of 𝛼, the magnitude of the complementary sensitivity function increases, in particular, the |T( j𝜔)|
approaches unity as 𝛼 approaches 1. With a proportional controller, |T( j𝜔)| will not be equal 1 at 𝜔 = 0.
In comparison with a PI control of d-axis current that ensures constant value of T( j𝜔) = 1, this is one
of the disadvantages of using a proportional current controller. In order for the current control system to
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Table 5.6 Inner-loop P control on d-axis current and outer-loop PI control of voltage. Es =
∑
(S2

d
+ S2

q)∕M,

Evdc =
∑

(V∗
dc − Vdc)2∕M and Ei =

∑
((I∗d − Id)2 + (I∗q − Iq)2)∕M, where M is the data length

Voltage controller iq controller id controller Perform. measure

𝑤n Kc 𝜏I 𝛾 Kc 𝜏I 𝛼 Kc Es Evdc Ei

A 80 0.0701 0.0177 0.8 −2.428 0.0076 0.8 −1.6 0.5712 7.3716 4.1316
B 80 0.0623 0.0177 0.9 −5.256 0.0041 0.9 −3.6 0.5757 7.9901 1.0976
C 80 0.059 0.0177 0.95 −10.912 0.0021 0.95 −7.6 0.571 8.3825 0.4648
D 150 0.1314 0.0094 0.8 −2.428 0.0076 0.8 −1.6 0.5696 3.3802 3.7977
E 150 0.1168 0.0094 0.9 −5.256 0.0041 0.9 −3.6 0.5717 3.1963 1.024
F 150 0.1106 0.0094 0.95 −10.912 0.0021 0.95 −7.6 0.5765 3.2665 0.4702
G 300 0.2627 0.0047 0.8 −2.428 0.0076 0.8 −1.6 0.5765 3.1442 3.4188
H 300 0.2335 0.0047 0.9 −5.256 0.0041 0.9 −3.6 0.5734 2.0089 1.0278
I 300 0.2213 0.0047 0.95 −10.912 0.0021 0.95 −7.6 0.5752 1.8477 0.458

track a reference signal, a larger value of 𝛼 is required. Perhaps, the problem with disturbance rejection
should demand more investigation here. From Figure 5.44(b), it is seen that at the lower frequency,
the magnitude of the sensitivity function is larger when 𝛼 is smaller, while at the higher frequency,
the magnitude of the sensitivity is smaller when 𝛼 is smaller. In comparison, the magnitude of input
sensitivity (see Figure 5.44(c)) behaves similarly to that of sensitivity in the lower frequency region, but
in the higher frequency region, the magnitude of the input sensitivity becomes very small. The behavior
of the sensitivity and input sensitivity functions means that when 𝛼 is small, the proportional current
control system will have a poor disturbance rejection property. This again reinforces that in order for the
current control system to work well, a larger 𝛼 value is required for disturbance rejection and reference
following. In the control of power converter, the existence of harmonics due to PWM switching is a
problem, the characteristics of the sensitivity and input sensitivity indicate that the proportional control
system is less effective in terms of disturbance rejection when compared with the use of a PI controller
(see the characteristics of the sensitivity functions in Figure 5.36).

The complementary sensitivity, sensitivity and input sensitivity functions for the outer-loop voltage
control system when using proportional control of d-axis current are shown in Figure 5.45. Because
the outer-loop voltage control uses a PI controller, the characteristics of these functions are similar to
those when the d-axis current control uses a PI controller. Therefore, it is anticipated that the properties
of set-point following and load disturbance rejection are similar in both cases. Indeed, when the mean
squared errors Evdc listed in Table 5.6 are compared with those in Table 5.5, it is found that they are about
the same.

5.8.2 Experimental Results

Figures 5.46–5.49 show the experimental results for the control system configuration where a PI con-
troller is used to control the q-axis current and a P controller is for controlling the d-axis current, as well
as a PI controller is used to control the voltage in the outer-loop system. There are four cases presented in
these figures for comparison purposes. In Figure 5.46, both 𝛼 and 𝛾 are set to be 0.9 for the current control
systems that lead to modest current control bandwidths, while the outer-loop bandwidth is selected to be
𝑤n = 80 rad∕s which is considered to be a narrow bandwidth. In contrast, Figure 5.47 shows the same
current control systems; however with a wider bandwidth applied to the outer-loop voltage control sys-
tem. The comparison between the two sets of experimental results leads to the conclusions that because of
the choice of identical current controllers, the variations of the control signals Sd and Sq, id and iq currents
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Figure 5.44 Power converter. Sensitivity function and input sensitivity function for inner-loop P control of d-axis
current. Key: line (1) 𝛼 = 0.95 (𝛾 = 0.95), line (2) 𝛼 = 0.9 (𝛾 = 0.9), line (3) 𝛼 = 0.8 (𝛾 = 0.8). (a) Complementary
sensitivity function, (b) Sensitivity function, and (c) Input sensitivity function.

are about the same level, except that the set-point signal to the id current (i∗d) has a faster dynamic response
due to the higher performance specification from the outer-loop voltage controller. Because of the wider
bandwidth used in the control results presented in Figure 5.46, the voltage response to set-point change
and disturbance rejection in Figure 5.47 is much faster than that presented in Figure 5.46. The control
results presented in Figure 5.48 and 5.49 have used a higher closed-loop performance specification for
the current controllers, where both 𝛼 and 𝛾 are chosen to be 0.95 (20 times of the open-loop bandwidth).
It is noted that with this higher performance demand for the current controllers, the variations of the con-
trol signal Sd and Sq are larger than the cases presented in Figures 5.46 and 5.47. Furthermore, when the
bandwidth for the voltage controller 𝑤n is increased from 150 rad∕s to 300 rad∕s, the dynamic response
to set-point change and disturbance rejection becomes extremely faster (see Figures 5.48 and 5.49 for
comparison).

5.9 Robustness of Power Converter Control System Using PI
Current Controllers

It is difficult to obtain the exact value for the inductance in a power converter since this parameter may
change under the influence of the power network. The PI control system designed must be robust against
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Figure 5.45 Sensitivity functions for outer-loop voltage control (power converter) where the inner-loop d-axis P
current controller is used. Key: line (1) 𝑤n = 150 rad∕s, line (2) 𝑤n = 80 rad∕s. (a) Weighting function, (b) Actual
complementary sensitivity function, (c) Actual sensitivity function, and (d) Actual input sensitivity function.

the variations of the physical parameters. An investigation is performed here to evaluate the robustness
of the cascade PI control system.

5.9.1 Variation of Inductance Using PI Current Controllers

In the design of the PI current controller, the parameters Kc and 𝜏I are calculated using the following
equations:

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

, (5.107)

where a = Rs

Ls
, b = − 1

2Ls
and 𝑤n = 1

1−𝛾
Rs

Ls
rad∕s, which gives

Kc = −
Rs

2

(
2𝜉

1 − 𝛾
− 1

)

; 𝜏I = (1 − 𝛾)2 Ls

Rs

(
2𝜉

1 − 𝛾
− 1

)

.

These calculations imply that in the PI current controller design, the proportional gain Kc is not affected
by the uncertainty of the inductance, but the integral time constant is affected if the value of Ls changes
when maintaining the same desired closed-loop bandwidth. The value of 𝜏I increases if the inductance
increases. In other words, an underestimated inductance will lead to a smaller integral time constant
while an overestimated inductance will lead to a larger integral time constant.
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Figure 5.46 Power converter. PI control of q-axis current and P control of d-axis current, 𝛼, 𝛾 = 0.90, 𝜉 = 0.707.
Outer-loop voltage control system specification: 𝑤n = 80 rad∕s and 𝜉 = 0.707. (a) Current and reference, (b) Sd and
Sq, and (c) Output voltage and reference.

Because it is difficult to change the actual physical system, in the assessment of robustness of the
closed-loop control system, a set of inductances are used in the design of the current controllers, which
practically speaking is an attempt to create the scenario where inductance variation occurs without
changing the actual physical system. With this test-bed the nominal inductance was measured as L0

s =
6.3 × 10−3 H. There are six inductance values used in the design of current controllers with variations
ranging from 0.1L0

s to 3L0
s . The parameters for the six current controllers are listed in Table 5.7, where it

is seen that the proportional controller gain Kc remains unchanged as the inductance increases; however,
the integral time constant 𝜏I increases.

To assess how the variation of induction affects the closed-loop stability and performance, the family
of Nyquist plots is generated where the nominal Ls is taken as the “true” system’s inductance and the
current PI controllers are applied to this nominal system in order to obtain the inner-loop closed-loop
control systems. In the assessment, the outer-loop voltage controller is designed with a bandwidth
𝑤n = 150 rad∕s. Figure 5.50 shows the family of the Nyquist plots for the seven cases, which indicate
that all the closed-loop systems are stable for the variations of inductance. Additionally, all gain
margins and phase margins appear to be sufficient to guarantee a satisfactory closed-loop performance.
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Figure 5.47 Power converter. PI control of q-axis current and P control of d-axis current, 𝛼, 𝛾 = 0.90, 𝜉 = 0.707.
Outer-loop voltage control system specification:𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference, (b) Sd and
Sq, and (c) Output voltage and reference.

However, there are small variations on the gain and phase margins when the inductance changes. In
particular, when the inductance is overestimated (3L0

s ), it is seen that the closed-loop control system has
the least phase margin (see the thickest line in Figure 5.50), but largest gain margin. In comparison when
the inductance is underestimated (0.1L0

s ), then closed-loop control system has the least gain margin (see
the thicker line in Figure 5.50), but largest phase margin. The Nyquist plots for the remaining cases lie
between these two extreme cases. The assessment using Nyquist plots indicates that when the Ls value
is overestimated, the closed-loop control system will be more tolerant to gain variation, but less tolerant
to phase variation. The opposite is true when Ls is underestimated.

Experiments are conducted to evaluate the robustness of the PI control systems, where the set-point
signal for Vdc takes a step change from 55 V to 60 V, followed by two disturbance rejections. The exper-
imental results show that the mean squared errors Es and Evdc have small variations for the range of
inductances, whilst the variation of the mean squared error Ei is relatively larger (see Table 5.7).

Figure 5.51 shows the closed-loop control results when the inductance used in the design is 0.1L0
s whilst

Figure 5.52 shows the control results when the inductance is 3L0
s . The experimental results confirm that

the PI control system is robust against the variations of inductance.
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Figure 5.48 Power converter. PI control of q-axis current and P control of d-axis current, 𝛼, 𝛾 = 0.95, 𝜉 = 0.707.
Outer-loop voltage control system specification: 𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current (solid) and reference
(dashed), (b) Sd and Sq, and (c) Output voltage (solid) and reference (dashed).

5.9.2 Variation of Capacitance on Closed-loop Performance

The proportional controller gain Kc and 𝜏I for the voltage controller are calculated using

Kc =
2𝜉𝑤n − a

b
; 𝜏I =

2𝜉𝑤n − a

𝑤2
n

.

In the design, the model for the voltage control is an integrator, thus a = 0, and b is calculated using
(5.93) that is b = 3

4

Sss
d

Cdc
. Thus, the variation of capacitance Cdc in the design only affects the proportional

controller gain Kc for the outer-loop voltage control. If the value of Cdc used in the design is larger than
the actual capacitance, then the proportional control gain Kc calculated is larger. This implies that an
overestimated capacitance value will result in a higher gain and faster closed-loop response speed than
the desired specification. Conversely, an underestimated capacitance will lead to a smaller Kc.

In the assessment of the robustness of the cascade closed-loop system in the presence of capacitance
uncertainty, a set of capacitances are used in the design of voltage controller. With this test-bed the
nominal capacitance was estimated as C0

dc = 2.96 × 10−4 F. There are six capacitance values, in addition
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Figure 5.49 Power converter. PI control of q-axis current and P control of d-axis current, 𝛼, 𝛾 = 0.95, 𝜉 = 0.707.
Outer-loop voltage control system specification: 𝑤n = 300 rad∕s and 𝜉 = 0.707. (a) Current (solid) and reference
(dashed), (b) Sd and Sq, and (c) Output voltage (solid) and reference (dashed).
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Figure 5.50 Nyquist plots for the family of inner-loop d-axis PI current controllers together with the outer-loop
voltage controller as in Table 5.7. Key: thickest line Ls = 3L0

s , thicker line Ls = 0.5L0
s . The remaining lines are for the

other five cases listed in Table 5.7.
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Table 5.7 Robustness on inner-loop inductance variation, where the nominal inductance is L0
s = 6.3 × 10−3 H.

Inner-loop PI control of both d-axis and q-axis current and outer-loop PI control of voltage. Voltage controller 𝑤n is
150 rad∕s and current controller 𝛾 is 0.9. Es =

∑
(S2

d + S2
q)∕M, Evdc =

∑
(V∗

dc − Vdc)2∕M and

Ei =
∑
((I∗d − Id)2 + (I∗q − Iq)2)∕M, where M is the data length

Inductance Voltage controller iq controller id controller Perform. measure

Ls Kc 𝜏I Kc 𝜏I Kc 𝜏I Es Evdc Ei

A 0.1L0
s 0.1051 0.0094 −5.256 0.0004 −5.256 0.0004 0.5575 3.6958 0.608

B 0.5L0
s 0.1051 0.0094 −5.256 0.0021 −5.256 0.0021 0.5703 3.3675 0.3699

C L0
s 0.1051 0.0094 −5.256 0.0041 −5.256 0.0041 0.5695 3.3902 0.3739

D 1.5L0
s 0.1051 0.0094 −5.256 0.0062 −5.256 0.0062 0.5651 3.1933 0.3811

E 2L0
s 0.1051 0.0094 −5.256 0.0083 −5.256 0.0083 0.5559 3.2586 0.4118

F 2.5L0
s 0.1051 0.0094 −5.256 0.0103 −5.256 0.0103 0.5593 3.5586 0.5079

G 3L0
s 0.1051 0.0094 −5.256 0.0124 −5.256 0.0124 0.5569 3.9859 0.6975
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Figure 5.51 Power converter. Assessment of robustness of the PI control system with Ls = 0.1L0
s . Outer-loop voltage

control system specification: 𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage and
reference.

to the nominal value, used in the design of voltage controllers with variations ranging from 0.1C0
dc to

3C0
dc. With the desired closed-loop bandwidth 𝑤n is fixed to 150 rad∕s, the parameters for the seven

voltage controllers are calculated and listed in Table 5.8, where it is seen that the integral time constant
remains unchanged while Kc increases as the capacitance increases.

To assess how the variation of capacitance affects the cascade closed-loop system stability and perfor-
mance, the family of Nyquist plots is generated for the seven cases. In the plots, the nominal C0

dc is taken
as the converter’s true capacitance, and the PI controllers take their values from Table 5.8. PI controllers
are used to control the d and q axes currents, where the parameter 𝛾 = 0.9, meaning that the current con-
trol systems have a bandwidth 10 times that of its open-loop bandwidth. Figure 5.53 shows the family of
the Nyquist plots for the seven cases with different capacitance values. It is seen that all the closed-loop
systems are stable for the variations of capacitance. It appears that the gain margin for all the control
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Figure 5.52 Power converter. Assessment of robustness of the PI control system with Ls = 3L0
s . Outer-loop voltage

control system specification: 𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage and
reference.

Table 5.8 Robustness on outer-loop capacitance variation, where the nominal capacitance C0
dc is 2.96 × 10−4 F. PI

control of both d-axis and q-axis current and outer-loop PI control of voltage. Voltage control system bandwidth 𝑤n
is 150 rad∕s and current controller with 𝛾 is 0.9. Es =

∑
(S2

d + S2
q)∕M, Evdc =

∑
(V∗

dc − Vdc)2∕M and

Ei =
∑
((I∗d − Id)2 + (I∗q − Iq)2)∕M, where M is the data length

Capacitance Voltage controller iq controller id controller Perform. measure

Cdc Kc 𝜏I Kc 𝜏I Kc 𝜏I Es Evdc Ei

A 0.1C0
dc 0.0105 0.0094 −5.256 0.0041 −5.256 0.0041 0.5440 22.6975 0.3665

B 0.5C0
dc 0.0525 0.0094 −5.256 0.0041 −5.256 0.0041 0.5649 5.6644 0.3686

C C0
dc 0.1051 0.0094 −5.256 0.0041 −5.256 0.0041 0.5769 3.33047 0.3834

D 1.5C0
dc 0.1576 0.0094 −5.256 0.0041 −5.256 0.0041 0.5626 2.4917 0.3655

E 2C0
dc 0.2102 0.0094 −5.256 0.0041 −5.256 0.0041 0.5775 2.1956 0.3839

F 2.5C0
dc 0.2627 0.0094 −5.256 0.0041 −5.256 0.0041 0.5755 2.0425 0.3779

G 3C0
dc 0.3153 0.0094 −5.256 0.0041 −5.256 0.0041 0.5678 1.9347 0.3791

systems is quite large and less critical to the closed-loop performance. On the other hand, phase margin
becomes more critical for the design, as it becomes smaller when a larger Cdc value is used in the design.
In particular, when the capacitance is overestimated (3C0

dc), it is seen that the closed-loop control system
has the least phase margin (see the thickest line in Figure 5.53).

Figure 5.54 shows the closed-loop responses for the case when the capacitance is underestimated
(Cdc = 0.1C0

dc). From this figure, it is seen that the underestimated capacitance leads to a slower
closed-loop voltage response in both reference following and disturbance rejection. In contrast,
Figure 5.55 shows the closed-loop responses for the case when the capacitance is overestimated
(Cdc = 3C0

dc). It appears that the closed-loop response speed is much faster for both reference following
and disturbance rejection when a larger capacitance is used in the design of PI controller that leads to a
higher proportional control gain.
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Figure 5.54 Power converter. Assessment of robustness of the PI control system with Cdc = 0.1C0
dc. Outer-loop

voltage control system specification:𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage
and reference.

5.10 Summary
This chapter has investigated the tuning of the PID controllers for electrical drives and power converters.
The results are discussed and summarized as follows.

5.10.1 Current Controllers

In the current control system design, a high gain controller is preferable for three important reasons.
The first reason is that a high gain current controller will ensure a fast dynamic response to reference
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Figure 5.55 Power converter. Assessment of robustness of the PI control system with Cdc = 3C0
dc. Outer-loop volt-

age control system specification: 𝑤n = 150 rad∕s and 𝜉 = 0.707. (a) Current and reference, and (b) Output voltage
and reference.

changes and disturbance rejections. The second reason is to reduce the PWM errors which are modeled
as an input disturbance where this disturbance has the characteristics of periodic signals with a cen-
tral frequency at the PWM switching frequency. Therefore, to reduce the effect of modulation errors,
the amplitude of the input sensitivity function needs to be small at the low and medium frequency
regions. The third reason for a high gain current controller is that for velocity and voltage control,
a cascade control structure is needed. With this cascade control structure, the design is based on the
outer-loop dynamic model while neglecting the inner-loop feedback dynamics. With the high gain cur-
rent control, the closed-loop time constants from the current control become small, thus, the effects
of the neglected dynamics on the cascade control system performance are negligible as demonstrated
by the sensitivity function analysis. In short, if a PI controller is used for the current control and the
band width of the current control system is specified as 𝑤n = 1

1−𝛾
a rad∕s where s = −a is the open-loop

pole of the current system, then 𝛾 is recommended in the range of 0.9 to 0.95, which is 10 to 20 times
open-loop bandwidth.

5.10.2 Velocity, Position and Voltage Controllers

The velocity and voltage controllers are in the outer-loop of the control system structure. The primary
concern for these outer-loops is the robustness of the closed-loop system against unmodeled dynam-
ics neglected from the inner-loop system and the modeling errors of the mechanical part of the sys-
tem. In the outer-loop control system design, PI controllers are used for velocity and voltage control
and PID controller is used for position control because of the requirement of steady-state performance
for load disturbance rejection and reference following. For electrical drive control, when 𝑤n =

1

1−𝛾
a

rad∕s where s = −a is the open-loop pole of the mechanical system, 𝛾 is recommended to be in the
range of 0.6 to 0.9. Smaller 𝛾 will lead to a slower closed-loop response, but will have a larger toler-
ance to the unmodeled dynamics from the inner-loop system and from the potential mismatch of the
inertial parameter in the mechanical system. For the voltage control of power converters, because the
outer-loop system is modeled as an integrator system, there is no physical parameter to be used as
a benchmark for the open-loop dynamics. Thus, the bandwidth of the outer-loop controller is bench-
marked against the bandwidth of the inner-loop current control system. It is recommended to choose the
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bandwidth of the outer-loop system to be in the range of 5% to 10% of the bandwidth of the inner-loop
current control system. For position control, a smaller 𝑤n is needed because of the pure integrator in the
position model.

5.10.3 Choice between P Current Control and PI Current Control

Although the proportional current control is simpler in its structure, it has limited applications in current
control. If the control objective is for current regulation only, then PI controller is strongly recom-
mended because the integral action is necessary for eliminating steady-state errors to ensure satisfactory
operations of the electrical systems. When there is a cascade control for the voltage and velocity, then
proportional controller can be used for the inner-loop current control of q-axis current (electrical drives)
or d-axis current current (power converter) systems. However, the simpler controller structure when using
a P controller does not necessarily provide the advantages over a slightly more complicated PI controller
structure, because the the inner-loop PI controller has a better performance in disturbance rejection, also
a better performance against performance losses in the outer-loop control system. But if there is a time
delay in the current control system, the proportional controller could provide better robustness against
the neglected time delay.

5.11 Further Reading
Books on control system design and analysis include Goodwin et al. (2001), Astrom and Murray (2008).
Direct torque control for PMSM drives was analyzed in Zhong et al. (1997). Zmood et al. (2001) pre-
sented a frequency-domain analysis for three-phase linear current regulators.

Torque ripple minimization in PM synchronous motors using iterative learning control was presented
in Qian et al. (2004), Xu et al. (2004) and using repetitive control Mattavelli et al. (2005), Escobar
et al. (2007). Torque ripple minimization techniques for permanent magnet AC motor drives were dis-
cussed and reviewed in Jahns and Soong (1996), Mariethoz et al. (2009), Chai et al. (2013). Current
measurement error in vector-controlled AC motor drives was compensated in Chung and Sul (1998).
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6
FCS Predictive Control in d − q
Reference Frame

In essence, the core technique used in the design of PID controllers is to assign the actual closed-loop
poles to some desired locations specified by the user (see Chapters 3–5). With the PID controllers, the
implementation of the control system is achieved using the PWM technologies to control the semiconduc-
tor switches of a voltage source inverter (VSI), where approximation of the three phase voltage control
signals took place (see Chapter 2).

This chapter departs from the approaches used in the traditional PID control system design and imple-
mentation by directly optimizing the inverter states. As a result, the PWM is not required in the imple-
mentation of the control systems, which simplifies the implementation procedure. Since for a two level
VSI, there are eight combinations of inverter states, the terminology of finite control set (FCS) is given.
Furthermore, the optimization of the inverter states is performed using the receding horizon control prin-
ciple, which is the core of model predictive control. By combining the finite control set with model
predictive control technology, FCS-MPC is termed. The original FCS-MPC did not have integral action,
and relied on high gain feedback control to reduce the steady-state errors, resulting in performance losses
at its steady-state operation. How to add integrator to this class of control system is not obvious because
the original control problem is solved via numerical optimization. A reverse engineering practice takes
place in this chapter. Starting from the numerical optimization, it is shown in this chapter that, without
constraints, the original FCS-MPC system is a deadbeat feedback control system with a time-varying
feedback control gain where the discrete-time closed-loop poles are at the origin of the complex plane.
Subsequently, an integral controller is added to the original FCS-model predictive controller via a cas-
cade control structure in which the characteristics of the deadbeat control system are considered. In the
presence of the inverter states constraints, the original objective function is shown to be equivalent to an
objective function expressed in terms of the differences between the optimal inverter state calculated from
using the deadbeat controller and the candidate inverter states. This new FCS-MPC contains an integrator
to overcome steady-state errors, which is called an I-FCS model predictive controller (I-FCS-MPC). A
key outcome of the proposed approach is that the new objective function has an explicit relationship with
the sampling interval Δt, which acts as a weight coefficient towards the squared errors. This naturally
puts the sampling interval Δt as the parameter for determining the desired closed-loop performance.
Not only does it simplify the design, but also this performance parameter is similar to other classical
control strategies (such as hysteresis used control) in electrical drives and power converters, where their
minimum sampling frequency is restricted.

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®, First Edition.
Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng.
© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
Companion Website: www.wiley.com/go/wang/pid
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The remainder of this chapter is outlined as follows. In Section 6.1, the states of IGBT inverter are dis-
cussed in relation to its operational constraints, leading to the candidate variables for the control signals.
The next six sections will use the current control of a PMSM as an example to illustrate the FCS-MPC
algorithm and its modified version (I-FCS-MPC) that has embedded integrators in the control system. In
Section 6.2, the original FCS-MPC algorithm is used to control a PMSM, followed by a MATLAB tutorial
on real-time implementation of FCS-MPC (see Section 6.3). This FCS-MPC method is analyzed to yield
the feedback control gain and the closed-loop system eigenvalues, showing that they are at the origin of
the complex plane. Since the original FCS-MPC algorithm did not have integral action, which is required
to overcome steady-state errors and protect against performance uncertainty, a modified I-FCS-MPC is
proposed in a framework of cascade feedback control (see Section 6.5). Furthermore, for convenience of
digital implementation, in Section 6.6 the I-FCS-MPC algorithm is derived using the principle of reced-
ing horizon to take advantages of the incremental variables. MATLAB tutorial is given in Section 6.7 for
real-time implementation of the I-FCS-MPC algorithm. In Sections 6.8–6.9, this I-FCS-MPC is applied
to the current control of an induction motor and a power converter with experimental validations. Robust-
ness of the closed-loop system performance for the original FCS-MPC and the modified I-FCS-MPC is
compared by using Monte-Carlo simulations with random parameter variations (see Section 6.10). The
final two sections of this chapter are devoted to design and implementation of velocity and position con-
trol of a PMSM and an induction motor via the cascade feedback control structures (see Sections 6.11
and 6.12).

6.1 States of IGBT Inverter and the Operational Constraints
In the derivation of operational constraints, it is assumed that a three-phase 2L-VSI inverter is used
in the implementation of the current control. The operation of the three-phase 2L-VSI inverter
and its states were illustrated in Figure 2.1 and Table 6.1. Corresponding to the switching states
in Table 6.1, the resulting output voltage 𝑣i are summarized in Table 6.2. The transformation

Table 6.1 Switching states of inverter

−→
V0

−→
V1

−→
V2

−→
V3

−→
V4

−→
V5

−→
V6

−→
V7

Sa 0 1 1 0 0 0 1 1
Sb 0 0 1 1 1 0 0 1
Sc 0 0 0 0 1 1 1 1

Table 6.2 Output voltage of inverter

−→
V0

−→
V1

−→
V2

−→
V3

−→
V4

−→
V5

−→
V6

−→
V7

𝑣a −
Vdc

2

Vdc

2

Vdc

2
−

Vdc

2
−

Vdc

2
−

Vdc

2

Vdc

2

Vdc

2

𝑣b −
Vdc

2
−

Vdc

2

Vdc
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Vdc

2

Vdc
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−

Vdc

2
−

Vdc
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Vdc
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𝑣c −
Vdc
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−

Vdc

2
−

Vdc

2
−

Vdc

2

Vdc
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Vdc
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Vdc
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Vdc
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of the three-phase voltages to their components in 𝛼-𝛽 frame is achieved by the Clarke
transformation,

[
𝑣𝛼
𝑣𝛽

]

= 2
3

⎡
⎢
⎢
⎣

1 − 1

2
− 1

2

0
√

3

2
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3

2
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⎥
⎦

⎡
⎢
⎢
⎣

𝑣an

𝑣bn

𝑣cn

⎤
⎥
⎥
⎦

. (6.1)

Using (2.1) and (2.2), the 𝛼-𝛽 representation of three-phase output voltages can be expressed in terms of
the switching states of three upper leg switches,
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where the property that the Clarke transformation of any constant vector leads to a zero vector has been
utilized.

Let the matrix U be defined by the switching states:

U =
⎡
⎢
⎢
⎣

0 1 1 0 0 0 1 1
0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1

⎤
⎥
⎥
⎦

(6.3)

and matrix D be the Clarke transformation from the three phase voltage to 𝛼-𝛽 frame:

D =
⎡
⎢
⎢
⎣

1 − 1
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− 1
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3
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3
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The multiplication of D and U matrices leads to

DU =
⎡
⎢
⎢
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0 1 1
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. (6.5)

With the transformation matrix (6.5), the operational constraints due to the voltage source inverter are
expressed in the 𝛼 – 𝛽 frame as the equality constraints, which are characterized by the values in the
matrix

⎡
⎢
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0 1 1
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where Vdc is the voltage for the DC power supply. More precisely, the control variable 𝑣𝛼 will only take
the values defined by the first row of the matrix (6.6) while the control variable 𝑣𝛽 will only take the
values of the second row, with further constraints that their values must form the exactly paired relations
as in (6.6). These constraints result in the situation where the control movements are restricted to a finite
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control set of parameters. For instance, with the DC bus voltage Vdc given, the 𝑣𝛼 and 𝑣𝛽 voltage values
are chosen among the following set of parameters in pairs:

𝑣0
𝛼 = 0; 𝑣1

𝛼 = Vdc; 𝑣2
𝛼 =

1
2

Vdc; 𝑣3
𝛼 = −1

2
Vdc;

𝑣0
𝛽
= 0; 𝑣1

𝛽
= 0; 𝑣2

𝛽
=

√
3

2
Vdc; 𝑣3

𝛽
=

√
3

2
Vdc;

𝑣4
𝛼 = −Vdc; 𝑣5

𝛼 = −1
2

Vdc; 𝑣6
𝛼 =

1
2

Vdc; 𝑣7
𝛼 = 0;

𝑣4
𝛽
= 0; 𝑣5

𝛽
= −

√
3

2
Vdc; 𝑣6

𝛽
= −

√
3

2
Vdc; 𝑣7

𝛽
= 0.

The superscripts of 𝑣𝛼 and 𝑣𝛽 correspond to the indices of the IGBT’s switching states. Once one of the
indices is identified, the control action is determined and is implemented via the VSI inverter with the
actual voltage values shown in Table 6.2. Although the pair 𝑣0

𝛼 , 𝑣0
𝛽

are identical to 𝑣7
𝛼 , 𝑣7

𝛽
, what action

should the inverter take is different in the sense that one corresponds to all off-states while the other to
all on-states. To avoid excessive switching actions from the inverter, when 𝑣𝛼 = 0 and 𝑣𝛽 = 0, the action
that the inverter takes will depend on the inverter’s previous action. For instance, if the previous action
is two states on and one state off, then the inverter’s present action corresponding to 𝑣𝛼 = 0 and 𝑣𝛽 = 0
should be all states on.

The constraints on the control variables (𝑣d, 𝑣q) in d − q frame are functions of electrical angle 𝜃e due
to the deployment of the Park-transformation. Namely, the operational constraints in the d − q frame due
to the VSI inverter are also expressed as equality constraints with the following form:

[
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where 𝜃e is the electrical angle. A more compact form of (6.7) is given as
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(

𝜃e −
2𝜋

3

)

− cos
(

𝜃e −
4𝜋

3

)

0

0 − sin 𝜃e − sin
(

𝜃e −
2𝜋

3

)

− sin
(

𝜃e −
4𝜋

3

)

sin 𝜃e sin
(

𝜃e −
2𝜋

3

)

sin
(

𝜃e −
4𝜋

3

)

0

⎤
⎥
⎥
⎦

2
3

Vdc.

This basically says that with a given electrical angle 𝜃e, there are only seven pairs of 𝑣d and 𝑣q values
that can be exactly realized by the VSI inverter. In the 𝛼 − 𝛽 frame the constraints are the finite set of
constant parameters defined by (6.6) once the DC bus voltage Vdc is given, however, in the d − q frame,
this set of constant parameters becomes functions of the electrical angle 𝜃e.

It is emphasized that with a given 𝜃e value and a sampling time t, in the d − q frame, the set of 𝑣d and
𝑣q values are constant. For instance, with the given 𝜃e, the 𝑣d and 𝑣q are chosen among the following
parameters:

𝑣0
d = 0; 𝑣1

d = 2
3

Vdc cos 𝜃e; 𝑣2
d = 2

3
Vdc cos

(

𝜃e −
2𝜋
3

)

; 𝑣3
d = 2

3
Vdc cos

(

𝜃e −
4𝜋
3

)

;

𝑣0
q = 0; 𝑣1

q = −2
3

Vdc sin 𝜃e; 𝑣2
q = −2

3
Vdc sin

(

𝜃e −
2𝜋
3

)

; 𝑣3
q = −2

3
Vdc sin

(

𝜃e −
4𝜋
3

)

;

𝑣4
d = −2

3
Vdc cos 𝜃e; 𝑣5

d = −2
3

Vdc cos
(

𝜃e −
2𝜋
3

)

; 𝑣6
d = −2

3
Vdc cos

(

𝜃e −
4𝜋
3

)

; 𝑣7
d = 0;

𝑣4
q =

2
3

Vdc sin 𝜃e; 𝑣5
q =

2
3

Vdc sin
(

𝜃e −
2𝜋
3

)

; 𝑣6
q = 2

3
Vdc sin

(

𝜃e −
4𝜋
3

)

; 𝑣7
q = 0.
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Figure 6.1 The trajectories of 𝑣d and 𝑣q, where Vdc = 300 V. Solid-line: 𝑣1
d

and 𝑣1
q; dashed-line 𝑣2

d
and 𝑣2

q;

dash-dotted line 𝑣3
d and 𝑣3

q.

Assuming that Vdc = 300 V, among them, the six sets of 𝑣d and 𝑣q (see the indices from 1 to 6) are
sinusoidal functions with an amplitude of 200, the rest being zero. Because the first candidate set (𝑣1

d,
𝑣1

q) and the last candidate set (𝑣7
d, 𝑣7

q) have identical value of zero, there are only seven sets of candidate
variables to be evaluated. Figure 6.1 shows the three sets of trajectories of 𝑣d and 𝑣q with respect to the
variation of electrical angle 𝜃e (0 ≤ 𝜃e ≤ 2𝜋).

6.2 FCS Predictive Control of PMSM
After establishing the trajectories of the control signal in the d − q frame with respect to the electrical
angle 𝜃e, without using PWM in the implementation of the control signal, the selection of the control
signal 𝑣d and 𝑣q is confined to the seven possible choices listed in the previous section. The seven sets
of 𝑣d and 𝑣q values, at a given sampling time and 𝜃e, form the candidate sets for finite control set.

In order to determine which pair of control signals should be used for controlling the drives, an objective
function is required to reflect the purpose of controller design. Current control is often considered in the
majority of the applications when using the FCS-MPC approach. For current control, at the sampling
time ti, the objective function is chosen as sum of the square errors between the desired and predicted
signals:

J = (i∗d(ti) − id(ti+1))
2 + (i∗q(ti) − iq(ti+1))

2, (6.8)

where id(ti+1) and iq(ti+1) are one-step-ahead predictions of id(ti) and iq(ti), respectively.
In the calculation of the current prediction, a physical model in the d − q frame is needed, which

describes the relationship between the inputs 𝑣d, 𝑣q and the outputs id and iq. In the case of PMSM
control, the following differential equations are used in the calculation:

did(t)
dt

= 1
Ld

(𝑣d(t) − Rid(t) + 𝜔e(t)Lqiq(t)) (6.9)

diq(t)
dt

= 1
Lq

(𝑣q(t) − Riq(t) − 𝜔e(t)Ldid(t) − 𝜔e(t)𝜙mg). (6.10)
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At sampling time ti, assuming that a sampling interval Δt is used, let

did(t)
dt

≈
id(ti+1) − id(ti)

Δt
;

diq(t)
dt

≈
iq(ti+1) − iq(ti)

Δt
.

Then, the discretized differential equations become the difference equations:

id(ti+1) = id(ti) +
Δt
Ld

(𝑣d(ti) − Rid(ti) + 𝜔e(ti)Lqiq(ti)) (6.11)

iq(ti+1) = iq(ti) +
Δt
Lq

(𝑣q(ti) − Riq(ti) − 𝜔e(ti)Ldid(ti) − 𝜔e(ti)𝜙mg). (6.12)

By substituting (6.11) and (6.12) into (6.8), the objective function J now contains the variables that are
measured at the sampling time ti and the manipulated variables 𝑣d(ti) and 𝑣q(ti), that is

J =
(

i∗d(ti) − id(ti) −
Δt
Ld

(𝑣d(ti) − Rid(ti) + 𝜔e(ti)Lqiq(ti))
)2

+

(

i∗q(ti) − iq(ti) −
Δt
Lq

(𝑣q(ti) − Riq(ti) − 𝜔e(ti)Ldid(ti) − 𝜔e(ti)𝜙mg)

)2

. (6.13)

Since at the sampling instant ti, from Section 6.1, there are seven pairs of 𝑣d(ti) and 𝑣q(ti) available as
candidates, the next step in the FCS-MPC design is to find the pair of manipulated variables that will
minimize the objective function J (6.13). For this purpose, the seven values of the objective function J
are calculated with respect to the candidate pairs of 𝑣d(ti) and 𝑣q(ti) and denoted as J0, J1, J2, … , J7. A
simple search function is used to find the minimal value of J and its associated index k. Once this index
is found, the control signal at time ti to the VSI is determined through Table 6.1 and the corresponding
voltage is obtained through Table 6.2. However, in order to reduce unnecessary switchings, if the index
is found to be 0, then the previous states of the VS inverter are required to determine whether the index
0 or 7 should be used in the control action.

When the sampling time progresses to t = ti + Δt, the new measurements of id(ti+1), iq(ti+1) currents
and velocity measurement 𝜔e(ti+1) are obtained, the seven new pairs of candidates 𝑣d(ti+1) and 𝑣q(ti+1)
are computed due to the new electrical angle 𝜃e(ti+1). With all the variables in the objective function
(6.13) being updated, a minimization is performed to find the new minimal value of Jk and its index k at
sampling time t = ti + Δt, leading to the control signals for the voltage source inverter.

The essence of the finite control set method is based on the receding horizon control principle, which
uses one-step-ahead prediction and on-line optimization to solve the constrained optimal control prob-
lem. The closed-loop feedback mechanism is generated when using the updated id(ti) and iq(ti) current
measurements in the prediction. Therefore, the corresponding algorithm is called FCS-MPC algorithm.

For convenience of programming, the difference equations (6.11) and (6.12) may also be expressed in
matrix and vector forms:

[
id(ti+1)
iq(ti+1)

]

= (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

−

[
0

𝜔e(ti)𝜙mgΔt

Lq

]

+ ΔtBm

[
𝑣d(ti)
𝑣q(ti)

]

, (6.14)

where I is the identity matrix with dimension 2 × 2 and the system matrices Am(ti) and Bm are defined as

Am(ti) =
⎡
⎢
⎢
⎣

− Rs

Ld

𝜔e(ti)Lq

Ld

−𝜔e(ti)Ld

Lq
− Rs

Lq

⎤
⎥
⎥
⎦

;Bm =

[ 1

Ld
0

0 1

Lq

]

.

The finite control set method discussed here has found many applications in electrical drive control
and power converter control due to its simplicity in both concept and computation.
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6.3 MATLAB Tutorial on Real-time Implementation of FCS-MPC

Tutorial 2 The objective of this tutorial is to learn how to implement finite control set algorithm in
real-time. The core of this activity is to produce a MATLAB embedded function that can be used in a
Simulink simulation as well as in a xPC Target based implementation. This embedded function is based
on the computational algorithm given in Section 6.2. The entire embedded MATLAB completes one cycle
of computation for the control signals. For every sampling period, it will repeat the same computation
procedure.

Step by Step

1. Create a new Simulink file called FCS.mdl
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MATLAB function and

copy it to the FCS model.
3. Define the input and output variables to the FCS model so that the embedded function has the fol-

lowing form:

function [Ua,Ub,Uc,Ind]=
FCS(idRef,iqRef,id,iq,we,theta,Ld,Lq,Rs,Phi_mg,Tin,D,U)

where the first six elements among the input variables are the reference and measurement signals of
id and iq, electrical velocity 𝜔 and angle 𝜃; the next four elements are the parameters for the PMSM,
Tin is the sampling interval (Δt); D is the data matrix (see (6.4)) defined as

D = 2
3

Vdc

⎡
⎢
⎢
⎣

1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

⎤
⎥
⎥
⎦

.

U is the data matrix (see (6.3)) defined as

U =
⎡
⎢
⎢
⎣

0 1 1 0 0 0 1 1
0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1

⎤
⎥
⎥
⎦

.

4. At the top of the embedded function, find “Model Explorer” among the “Tools”. When opening the
Model Explorer, select “discrete” for the “update method” and input “Tin” into the “sample time”;
select “Support variable-size arrays”; select “Saturate on integer overflow”; select “Fixed point”.
Click “Apply” to save the changes.

5. We need to edit the input and output data ports in order to let the embedded function know which
input ports are the real-time variables and which are the parameters. This editing task is performed
using Model Explorer.

• click on “idRef”, on Scope, select “input”, assign port “1” and size “-1”, complexity “Inherited”,
type “Inherit: Same as Simulink”. Repeat the same editing procedure for the remaining input
variables, “iqRef”, “id”, “iq”, “we”, “theta”.

• The remaining 7 inputs to the embedded function are the parameters required in the computa-
tion. Click on “Ld”, on Scope, select “Parameter” and click “Tunable” and click “Apply” to
save the changes. Repeat the same editing procedure for the remaining parameters, “Lq”, “Rs”,
“Phi_mg”, “Tin”, “D”,“U”.

• To edit the output ports from the embedded function, click on “Ua”, on Scope, select “Output”,
Port “1”, Size “-1”, Sampling Model “Sample based”, Type “Inherit: Same as Simulink”,
and click on “Apply” to save the changes. Repeat the same editing procedure for Ub,Uc
and Ind.
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6. In the following, the program will declare those variables that are stored in the embedded function
during the repetition for their dimensions and initial values. “Xe” is the error vector between the
predicted and measured state vectors; “err” is the norm of the error vector and “ind_old” is the
previous ind. Enter the following program into the file:

persistent Xe
if isempty(Xe)
Xe=zeros(2,7);
end
persistent err
if isempty(err)

err=zeros(1,7)
end
persistent ind_old
if isempty(ind_old)

ind_old=0;
end

7. Form the system matrices F = (I + Am(ti)Δt), G = BmΔt and disturbance vector H. Enter the fol-
lowing program into the file:

F=[1-Rs*Tin/Ld Tin*we;
-Tin*we 1-Rs*Tin/Lq];

G=[Tin/Ld 0;
0 Tin/Lq];

H=[0; -Tin*we*Phi_mg/Lq];

8. Form the rotation matrix M with the real-time 𝜃 value from the input of the embedded function. Enter
the following program into the file:

M=[cos(theta) sin(theta);-sin(theta) cos(theta)];

9. Form the state vectors. Enter the following program into the file:

xRef=[idRef;iqRef];
x=[id;iq];

10. Note that the multiplication of the rotation matrix M with the D and U matrices will produce the 8
pairs of 𝑣d and 𝑣q values for a given 𝜃 at the sampling time ti. In a recursive manner, calculate the
one-step-ahead prediction of id and iq currents using (6.14) based on the 7 pairs of 𝑣d and 𝑣q values
(the 8th pair is a zero vector identical to the first pair, thus neglected). The state errors between
the desired and the measured id and iq currents are calculated using a vector form and its norm is
evaluated.

for i=1:7
xn=F*x+G*M*D*U(:,i)+H;
Xe(:,i)=xRef-xn;
err(:,i)=Xe(:,i)’*Xe(:,i);
end

11. In order to determine which pair of control signals should be used, the evaluation of the norm
of the state error vector is performed to find the index number that corresponds to the minimum
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sum of square errors (the objective function J given by (6.13)). If this index corresponds to the
first vector, then in order to reduce unnecessary control movement (or switches of the VSI), the
information of previous control switches will be needed to determine whether the all states-off or
all states-on control sequence should be used (see Table 6.1). Enter the following program into
the file:

[val ind]=min(err);
ind=ind-1;
if (ind==0)

if (ind_old==1 || ind_old==3 || ind_old==5)
ind=0;

else
ind=7;

end
end

12. On obtaining the index number that minimizes the objective function, the control sequence is found.
This index is translated into the switching states of the IGBT inverter. Enter the following program
into the file:

ind_old=ind;
Ua=U(1,ind+1);Ub=U(2,ind+1);Uc=U(3,ind+1);

13. The embedded function takes the values of Ua, Ub and Uc as its outputs, which is connected with
the next components of this finite control set system.

This embedded function is now interfaced with the simulator of PMSM to produce the Simulink simulator
called “simulator4FCS.mdl”.

6.3.1 Simulation Results

The finite control set method is attractive for the applications because of its simplicity in implementation,
where the PWMs are no longer required. The tuning parameter for the closed-loop performance is
the sampling interval Δt. In order to achieve satisfactory closed-loop performance, the sampling
interval Δt is selected as small as possible. The choice of Δt is critical in the design and imple-
mentation of finite set control method. For a large Δt, the finite control set method fails to produce
satisfactory results.

A PMSM model used in the simulation of FCS-MPC has the following parameters. The pair of poles
is 2; the resistance is Rs = 2.98 Ω; inductance Ld = Lq = 7 × 10−3 H; 𝜙mg = 0.125 Wb; inertia Jm =
1 × 10−5 kg ⋅ m2; B𝑣 = 11 × 10−5 Nm ⋅ s. The reference signal to the id current is i∗d = 0 A and i∗q is a step
signal with amplitude of ±2 A. The torque load disturbance is also a step signal with unit amplitude at
the start of the simulation, followed by a step change to −1 at half of the simulation time. The DC power
supply has voltage Vdc = 300 V.

There are two sampling intervals used in the simulation studies. In the first case, the sampling interval
is selected as Δt = 40 × 10−6 sec and in the second case, Δt is reduced to 10 × 10−6 sec.

6.3.1.1 Case A

Figure 6.2(a) shows the id and iq closed-loop current control results, and Figure 6.2(b) shows the nor-
malized three phase control signals, where the sampling interval Δt is 40 × 10−6 sec. It is seen that with
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Figure 6.2 Case A. Sampling interval Δt = 40 × 10−6 sec. (a) id and iq currents and (b) The normalized control
signals.

this selection of Δt, the closed-loop control results are very poor because of the large variations in both
id and iq currents.

6.3.1.2 Case B

In the second case study, the sampling interval is reduced to Δt = 10 × 10−6 sec. It is clearly seen from
Figure 6.3 that the closed-loop performance is significantly improved over the slower sampling case. The
improvement is evident as the variations of id and iq currents become very small.

Since the reference signal to the id current is 0 A, we can easily compute the mean value of id signal
to determine its offset error. When Δt = 40 × 10−6 sec, the mean value for the id current is −0.1947 A,
and Δt = 10 × 10−6 sec, the mean value is 0.0023 A. In an ideal case, the mean value of the id current
should be 0 A. Thus, it is seen that the FCS-MPC has a large offset error when the sampling interval is
not sufficiently small.
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Figure 6.3 Case B. Sampling interval Δt = 10 × 10−6 sec. (a) id and iq currents and (b) The normalized control
signals.
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This simulation results demonstrate that choice of sampling interval is critical in the implementation
of FCS-MPC method. In order for this method to produce satisfactory results, the sampling interval Δt
should be sufficiently small for practical implementations.

6.3.2 Experimental Results of FCS Control

The FCS-MPC algorithm is implemented on an experimental test-bed (see Figure 10.6 for illustration
of the test-bed) equipped with an eZdsp-F28335 module, a two-level IGBT inverter, a driving PMSM,
a rigid coupling, a second PMSM, a three-phase rectifier and a pure resistor load. The driving PMSM
is coupled with the second PMSM through the rigid coupling. An unknown load torque disturbance is
generated by varying the speed of the second PMSM. Furthermore, the second PMSM is connected to
the resistor load through the three-phase rectifier. With this setup, the kinetic energy is converted to the
electric energy dissipated by the resistor loads finally.

The algorithm is implemented with the per-unit model of the PMSM with its parameters given in
the simulation results (see Section 6.3.1). With the per-unit model, all the parameters and variables in
the d − q model are scaled by their respective unit values. The benefit of such an approach is that the
influence of the different units on the calculation, such as ampere, volts and rad/s, is eliminated. Since
all calculations are computed on a per-unit basis, it is more suitable for the implementation using a
Digital Signal Processor (DSP), particularly for the fixed-point implementation. Very critically, using
the DSP in the implementation of the FCS-MPC algorithm, a much faster sampling rate can be used in
the experiments.

The control objective is to maintain d-axis current zero and q-axis current to its desired set-point for the
purpose of optimal torque to current ratio. Thus, in the experiment, the d-axis current reference is kept
at zero for the control with optimal torque current ratio, while the q-axis reference signal is chosen to be
a square-wave signal as shown in Figure 6.4(b). In the experiment, the sampling interval Δt is 10 × 10−6

sec. With this fast sampling rate, the FCS-MPC algorithm successfully tracked the reference i∗d and i∗q
signals and rejected the unknown load torque disturbance, as shown by the experimental data illustrated
in Figure 6.4. It is interesting to note that the dynamic response to a step change in the reference i∗q is
immediate and the variations of both id and iq currents are very small; however, there are small offset
errors in both id and iq currents.
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Figure 6.4 Experimental results for FCS-MPC system. (a) id and (b) iq and i∗q .
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6.4 Analysis of FCS-MPC System
This section will examine the FCS predictive control algorithm and derive the corresponding closed-loop
feedback controller gain in which the locations of the closed-loop poles are identified.

6.4.1 Optimal Control System

In order to analyze the closed-loop performance via feedback control, the objective function J is rewritten
in vector form:

J =
[
i∗d(ti) − id(ti+1) i∗q(ti) − iq(ti+1)

]
[

i∗d(ti) − id(ti+1)
i∗q(ti) − iq(ti+1)

]

. (6.15)

Furthermore, the difference equations (6.11) and (6.12) are expressed in matrix and vector forms
given by (6.14). For notational simplicity, let the vector

[
fd(ti) fq(ti)

]T
be defined as

[
fd(ti)
fq(ti)

]

=
[

i∗d(ti)
i∗q(ti)

]

− (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

+

[
0

𝜔e(ti)𝜙mgΔt

Lq

]

. (6.16)

Then it can be verified by combining (6.16) with (6.14) that the objective function (6.15) has the compact
expression:

J =
([

fd(ti) fq(ti)
]
− Δt

[
𝑣d(ti) 𝑣q(ti)

]
BT

m

)
([

fd(ti)
fq(ti)

]

− ΔtBm

[
𝑣d(ti)
𝑣q(ti)

])

which is in the quadratic objective function form:

J =
[
fd(ti) fq(ti)

]
[

fd(ti)
fq(ti)

]

− 2
[
𝑣d(ti) 𝑣q(ti)

]
ΔtBT

m

[
fd(ti)
fq(ti)

]

+
[
𝑣d(ti) 𝑣q(ti)

]
Δt2BT

mBm

[
𝑣d(ti)
𝑣q(ti)

]

. (6.17)

Optimizing J becomes a least square minimization problem. Defining vector 𝑣dq(ti) =
[
𝑣d(ti) 𝑣q(ti)

]T
,

from the first derivative of the objective function J:

𝜕J
𝜕𝑣dq(ti)

= −2ΔtBT
m

[
fd(ti)
fq(ti)

]

+ 2Δt2BT
mBm

[
𝑣d(ti)
𝑣q(ti)

]

, (6.18)

the necessary condition of an extremum J is obtained as,

𝜕J
𝜕𝑣dq(ti)

= 0. (6.19)

To determine whether this extremum is a minimum, the second derivative is calculated as

𝜕2J
𝜕2𝑣dq(ti)

= Δt2BT
mBm. (6.20)

Note that since Ld > 0 and Lq > 0, the matrix BT
mBm is positive definite where

BT
mBm =

⎡
⎢
⎢
⎣

1

L2
d

0

0 1

L2
q

⎤
⎥
⎥
⎦

> 0,
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which is the sufficient condition to guarantee that the solution of (6.19) is a minimum of the objec-
tive function J. From (6.19), we find the control signal vector 𝑣dq(ti) = [𝑣d(ti)𝑣q(ti)]T that minimizes the
objective function J as:

[
𝑣d(ti)
𝑣q(ti)

]

= (Δt2BT
mBm)

−1ΔtBT
m

[
fd(ti)
fq(ti)

]

= 1
Δt

[
Ld 0
0 Lq

] [
fd(ti)
fq(ti)

]

. (6.21)

By substituting (6.16) into (6.21), with the definition of the 𝑣dq(ti), the optimal solution of the control
signals is obtained as

[
𝑣d(ti)
𝑣q(ti)

]

=

[
Ld

Δt
0

0
Lq

Δt

]([
i∗d(ti)
i∗q(ti)

]

− (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

+

[
0

𝜔e(ti)𝜙mgΔt

Lq

])

. (6.22)

Without considering the restriction of the control signals, this is the unconstrained optimal solution of the
predictive control system with one-step-ahead prediction. Because the actual electrical velocity 𝜔e(ti) is
used in the computation of the prediction, the control law is linear time-varying.

There is an alternative way to find the minimum of the objective function via the technique of complet-
ing squares. This completing squares approach will lead to a different method to evaluate the objective
function for finding the control signals among the candidate variables.

From the quadratic objective function (6.17), by adding and subtracting the term

[
fd(ti) fq(ti)

]
ΔtBm(Δt2BT

mBm)−1BT
mΔt

[
fd(ti)
fq(ti)

]

to the original objective function J, its value remains unchanged. With this term added, the following
three terms lead to completed squares, which is denoted by J0,

J0 =
[
𝑣d(ti) 𝑣q(ti)

]
Δt2BT

mBm

[
𝑣d(ti)
𝑣q(ti)

]

− 2
[
𝑣d(ti) 𝑣q(ti)

]
ΔtBT

m

[
fd(ti)
fq(ti)

]

+
[
fd(ti) fq(ti)

]
ΔtBm(Δt2BT

mBm)
−1BT

mΔt

[
fd(ti)
fq(ti)

]

=
([
𝑣d(ti)
𝑣q(ti)

]

− (Δt2BT
mBm)

−1BT
mΔt

[
fd(ti)
fq(ti)

])T

(Δt2BT
mBm)

×
([
𝑣d(ti)
𝑣q(ti)

]

− (Δt2BT
mBm)−1BT

mΔt

[
fd(ti)
fq(ti)

])

. (6.23)

Now, with J0 given by the completed squares (6.23), the original objective function J becomes

J = J0 + Jmin, (6.24)

where Jmin is

Jmin = −
[
fd(ti)fq(ti)

]
Bm(B

T
mBm)

−1BT
m

[
fd(ti)
fq(ti)

]

+
[
fd(ti)fq(ti)

]
[

fd(ti)
fq(ti)

]

.

Note that the weighting matrix Δt2BT
mBm in J0 (see (6.23)–(6.24)) is positive definite and Jmin is inde-

pendent of the variables 𝑣d(ti) and 𝑣q(ti). Thus, the minimum of the original objective function J is
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achieved if J0 is minimized. Furthermore, it is seen that the minimum of J0 is zero, from (6.23), if variables
𝑣d(ti) and 𝑣q(ti) are chosen to be

[
𝑣d(ti)
𝑣q(ti)

]

= (Δt2BT
mBm)−1BT

mΔt

[
fd(ti)
fq(ti)

]

. (6.25)

The solution obtained via completing the squares is identical to that obtained before (see (6.21)).
With the completing squares approach, the constant term Jmin can be easily examined via

Jmin =
[
fd(ti)fq(ti)

]
(I − Bm(BT

mBm)−1BT
m)

[
fd(ti)
fq(ti)

]

.

Since

Bm =

[ 1

Ld
0

0 1

Lq

]

it is easy to verify that the matrix I − Bm(BT
mBm)−1BT

m is a zero matrix, which leads to

Jmin =
[
fd(ti)fq(ti)

]
(I − Bm(B

T
mBm)

−1BT
m)

[
fd(ti)
fq(ti)

]

= 0, (6.26)

hence J = J0 from (6.24). This is an interesting conclusion, which basically says that the sum of squared
error between the predicted and the reference signals is zero if the control signals are chosen according
to (6.25).

6.4.2 Feedback Controller Gain

From (6.22), the feedback control gain in the one-step-ahead predictive control system at sampling instant
ti is identified

Kfcs(ti) =

[
Ld

Δt
0

0
Lq

Δt

]

(I + ΔtAm(ti)), (6.27)

which is obtained by examining the relationship between
[
𝑣d(ti) 𝑣q(ti)

]T
and

[
id(ti) iq(ti)

]T
. Immediately,

(6.27) reveals that the feedback controller gain Kfcs increases as the sampling interval Δt decreases. As
Δt → 0, the feedback controller gain Kfcs → ∞. Furthermore, for sufficiently small Δt, the controller
gain could be approximated by

Kfcs(ti) ≈

[
Ld

Δt
0

0
Lq

Δt

]

. (6.28)

To determine the internal closed-loop stability of the one-step-ahead predictive control system, consider
the discretized system model (6.14), which has the form,

[
id(ti+1)
iq(ti+1)

]

= (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

−

[
0

𝜔e(ti)𝜙mgΔt

Lq

]

+ ΔtBm

[
𝑣d(ti)
𝑣q(ti)

]

.

By substituting the feedback control signal (see (6.22)),

[
𝑣d(ti)
𝑣q(ti)

]

= −Kfcs(ti)
[

id(ti)
iq(ti)

]

+

[
Ld

Δt
0

0
Lq

Δt

][
0

𝜔e(ti)𝜙mgΔt

Lq

]

(6.29)
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into this equation where the reference signals are considered to be 0 in the original control law (see
(6.22)), it can be readily verified that the closed-loop system has the following form:

[
id(ti+1)
iq(ti+1)

]

=
[

0 0
0 0

] [
id(ti)
iq(ti)

]

. (6.30)

The two eigenvalues of the closed-loop system (6.30) are at the origin of the complex plane. Because
this is a discrete system, the location of the closed-loop eigenvalues at zero guarantees its stability at
sampling time ti. However, in order to guarantee the internal closed-loop stability for 0 ≤ i <∞, an
additional condition on the slow variation of the system matrix is required because the system is time
varying and the control law is time varying. This is based on the classical work in the area of linear
system theory Desoer (1969) which stated that for a linear time varying system, it is stable if it has all
eigenvalues lying strictly inside the unit circle and if it is slowly time varying. A question arises from the
fact that in this design, the closed-loop system matrix is zero in (6.30), but where does the time variation
of the control system come from? The answer to the question lies in the derivation of (6.30) where
the assumption that all the electrical parameters in the PMSM are exactly known values is implicitly
used. Under this assumption, the control law will result in a cancellation of the dynamics. Therefore,
in reality with some degree of parameter mismatch between the model and the PMSM, there would not
be the perfect cancellation, leading to the time-varying nature of the system matrix. Hence, the slow
time-variation of the controller gain is needed as part of the closed-loop stability condition. However, if
the sampling interval Δt is sufficiently small, then the controller gain is close to a constant gain matrix
(see (6.28)).

Because the closed-loop eigenvalues of the optimal control system are located at the origin of the
complex plane, the FCS-MPC design method is identical to the deadbeat control technique, which then
has a long history in the applications of electrical drives and power converters (see, for example, Gokhale
et al. (1987), Kawabata et al. (1990) and Malesani et al. (1999)).

6.4.3 Constrained Optimal Control

The one-step-ahead prediction of the current control system presented is an optimal control system with-
out constraints. As there are only seven sets of candidates of 𝑣d(ti) and 𝑣q(ti) for the implementation
of the one-step-ahead predictive control law, the optimal control signals computed using (6.22) are not
necessarily equal to one of the seven pair values. As discussed before, a search procedure was needed in
the determination of the actual control signals 𝑣d(ti) and 𝑣q(ti) among the candidates.

In the optimal control without constraints, the solution that minimizes the objective function is given
by (6.25), which virtually leads to the zero value of the objective function J. Letting the optimal control
signals be denoted by [

𝑣d(ti)opt

𝑣q(ti)opt

]

= (Δt2BT
mBm)

−1BT
mΔt

[
fd(ti)
fq(ti)

]

(6.31)

and replacing the corresponding terms in the objective function J0 (see (6.23)–(6.24)) with
[
𝑣d(ti)opt 𝑣q(ti)opt

]T
, we obtain the objective function for the constrained control problem:

J =
([
𝑣d(ti)
𝑣q(ti)

]

−
[
𝑣d(ti)opt

𝑣q(ti)opt

])T

(Δt2BT
mBm)

([
𝑣d(ti)
𝑣q(ti)

]

−
[
𝑣d(ti)opt

𝑣q(ti)opt

])

, (6.32)

where J = J0 because Jmin = 0. Since the weighting matrix Δt2BT
mBm is

Δt2BT
mBm =

⎡
⎢
⎢
⎣

Δt2

L2
d

0

0 Δt2

L2
q

⎤
⎥
⎥
⎦

,
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the objective function J can also be written as

J = Δt2

L2
d

(𝑣d(ti) − 𝑣d(ti)
opt)2 + Δt2

L2
q

(𝑣q(ti) − 𝑣q(ti)
opt)2. (6.33)

An immediate comment follows from (6.33). Note that the minimum value of the objective function
when 𝑣d(ti) ≠ 𝑣d(ti)opt and 𝑣q(ti) ≠ 𝑣q(ti)opt is weighted by Δt2, where Δt is the sampling interval that
is also the design parameter in this control scheme. With the same system parameters, a reduction of
the sampling interval Δt will reduce the minimum of the objective function Jmin. Equation (6.33) also
provides an insight into the choice of sampling interval Δt, where it is seen that the selection of Δt should
be made in relation to the size of inductance.

To seek the optimal solution that will minimize the objective function J with the limited choices
of 𝑣d(ti) and 𝑣q(ti), namely the seven pairs of 𝑣d(ti) and 𝑣q(ti), the seven values of the objective func-
tion J (6.33) are calculated with respect to the candidate pairs of 𝑣d(ti) and 𝑣q(ti) and denoted as J0,
J1, J2, … , J7. A simple search function is used to find the minimal value of Jk∗ and its associated
index k ∗. This search procedure is identical to that stated in Section 6.2. The control implementa-
tion procedure is also identical. There is a geometric interpretation for the minimization of the objec-
tive function (6.33) subject to the finite control set. When Ld = Lq, the variations of J form a family
of circles centered at (𝑣d(ti)opt, 𝑣q(ti)opt). The optimal solution is the pair of 𝑣d(ti)k and 𝑣q(ti)k values
that form a line to touch the circle in the shortest distance. This geometric interpretation is illustrated
in Figure 6.5.

Although the original objective function (6.13) is identical to the objective function (6.33) after the
analysis, the latter case offers an insight into the design problem, and is also more convenient in the
computation of the control law. For the objective function (6.33), we can firstly calculate the feedback
control gain Kfcs and the optimal control signal without constraints. Then we evaluate the cost function
with the actual seven pairs of voltage variables against the optimal solution. The pair that yields a smallest
cost function is the solution of the control signal.

The control law is summarized as follows.

(vd
opt vq

opt)

Jmin

β

α

Figure 6.5 Illustration of FCS-MPC solution with 𝜃e = 0.
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Algorithm 3

1. At sampling time ti, with the measured currents id(ti), iq(ti), and the reference currents i∗d(ti) and i∗q(ti),
compute the optimal control signals 𝑣d(ti)opt and 𝑣q(ti)opt via

[
𝑣d(ti)opt

𝑣q(ti)opt

]

=

[
Ld

Δt
0

0
Lq

Δt

]([
i∗d(ti)
i∗q(ti)

]

− (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

+
[

0
𝜔e(ti)𝜙mg

])

.

2. Compute the value of the objective function for k = 0, 1, 2 … , 61

Jk =
Δt2

L2
d

(𝑣d(ti)
k − 𝑣d(ti)

opt)2 + Δt2

L2
q

(𝑣q(ti)
k − 𝑣q(ti)

opt)2.

3. Find the minimum of the objective function Jk and its corresponding index number.
4. From this index number, construct the three phase voltage control signals.

Note that in the case that Ld = Lq, the weighting factors on the errors of 𝑣d and 𝑣q are identical, thus it is
sufficient to evaluate the objective function using

Jk = (𝑣d(ti)k − 𝑣d(ti)opt)2 + (𝑣q(ti)k − 𝑣q(ti)opt)2.

However, the factors Δt2

L2
d

and Δt2

L2
q

could help resolve the scaling problem that may arise from large errors

between these variables.

6.5 Overview of FCS-MPC with Integral Action
The FCS-MPC method discussed in the previous sections has found many applications in electrical
drives and power converters. As from the previous analysis, the design method adopted a high
gain feedback control with constraints in which the feedback control gain is designed using least
squares optimization and the seven candidate pairs of the electrical voltage values, 𝑣d(ti) and 𝑣q(ti),
form the finite control set for the constrained control. The finite control set controller does not have
integral action. As a result, from the simulation and experimental evaluation, it is seen that there are
steady-state errors in the closed-loop current responses. Similar to the other linear control systems,
the steady-state errors will be reduced if the feedback controller gain Kfcs is increased. Here, in
order to increase the feedback controller gain Kfcs, the sampling interval Δt should be reduced as
shown in (6.28).

Without integral action, the finite control set method faces two challenges. One is the existence
of steady-state errors between the desired current reference signals i∗d(t), i∗q(t), and the actual current
reference signals id(t), iq(t). These steady-state errors could occur when the closed-loop control system
changes its operating conditions. Their existence affects the performance of the closed-loop control
system in the steady-state operations. The other challenge is the quality of disturbance rejection.
Without integral action, as shown before in the PID controller chapters, the low frequency disturbance
could not be completely compensated with the feedback controller because the controller gain is not

1 Although the index k changes from 0 to 7, the first pair and the last pair of the candidate variables have the identical
values of zero (see Section 6.1). Thus, the actual evaluation neglects the last pair of candidate values.
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sufficiently high at the low frequency regions. This disturbance rejection problem particularly needs
attention in the control of power converters. Another important factor is that without integral action,
when the system parameters vary as it happens frequently in drives and power converters (for instance
the inductance and resistance change with the variation of load and temperature), the closed-loop
control system performance will face uncertainty, particularly in steady-state operations. Thus, from
the application point of view, it will be particularly important to incorporate integral action into the
FCS-MPC algorithm.

This section modifies the existing finite control set method to include integral action in the con-
troller. There are two mainstream approaches to design a control system with integral action. The
first approach is to embed the integrator into the controller and the second approach is to estimate
a constant input disturbance using an observer followed by substraction of this constant disturbance
from the control signal. The details of the latter approach can be found in Goodwin et al. (2000).
The first approach is the most widely used method in the applications. Among them are the PID
controllers that have embedded the integral function in the controller and the model predictive con-
trollers with incremental models (see Wang (2009)). Given that the FCS-MPC methods have been
accepted with proven record in the electrical drives and power electronics community, in this section,
we will propose some modifications to the original schemes so that integrators are embedded into
the scheme.

The essence of a simplified finite control set scheme is an optimal output feedback control with the
gain matrix Kfcs where the optimal control signals 𝑣d(ti) and 𝑣q(ti) are expressed in the feedback control
framework: [

𝑣d(ti)opt

𝑣q(ti)opt

]

= Kfcs

([
i∗d(ti)
i∗q(ti)

]

−
[

id(ti)
iq(ti)

])

, (6.34)

where the Kfcs is used for the reference signals as well as the measured current signals (a small modifica-
tion from the original scheme), also the feedforward compensation is neglected in this simpler expression.
This finite control set controller has proportional control, but does not include integral action which is
evident from (6.34). In order to generate integral action in the feedback controller, the integrated error
signals between the current reference signals i∗d(ti), i∗q(ti) and id(ti), iq(ti) will need to be included in the
controller. Since the FCS predictive controller is a discrete time controller, discrete-time control system
design is better suited for the proposed solution.

The operator for integrator in the discrete-time system is expressed as 1

1−q−1 where q−1 is the backward

shift operator defined as q−1x(ti) = x(ti−1). In a similar expression to a PI controller, an additional term
that has the functionality of an integrator is added to the original finite control set scheme, leading to the
new FCS predictive controller:

[
𝑣d(ti)opt

𝑣q(ti)opt

]

= Kfcs

⎡
⎢
⎢
⎣

kd

1−q−1 (i∗d(ti) − id(ti))
kq

1−q−1 (i∗q(ti) − iq(ti))

⎤
⎥
⎥
⎦

− Kfcs

[
id(ti)
iq(ti)

]

, (6.35)

where kd and kq are the integral gains for the id and iq currents where 0 < kd ≤ 1 and 0 < kq ≤ 1. It
could be interpreted that the FCS-MPC gain Kfcs acts similarly in a role to the proportional controller
gain Kc while the parameters kd and kq are integral gains in the discrete PI controller. Figure 6.6 shows
the configuration of the new FCS predictive controller with integral action, where the control signals
calculated are the 𝑣opt

d and 𝑣opt
q .

In the presence of constraints, there are seven pairs of candidate variables for the 𝑣d and 𝑣q voltages. As
before, upon obtaining the signals 𝑣d(ti)opt and 𝑣q(ti)opt at the sampling time ti, the actual control signals
𝑣d(ti) and 𝑣q(ti) are determined by computing the value of the objective function for k = 0, 1, 2, … , 6

Jk =
Δt2

L2
d

(𝑣d(ti)
k − 𝑣d(ti)

opt)2 + Δt2

L2
q

(𝑣q(ti)
k − 𝑣q(ti)

opt)2
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Figure 6.6 Feedback current control using I-FCS predictive control without constraints.

and finding the minimum of the objective function Jk and its corresponding index number. We call this
modified controller I-FCS-MPC.

The question remains as how to choose the integral gains kd and kq in the framework of I-FCS con-
troller. It is seen from Figure 6.6 that the I-FCS controller has two feedback loops. One is the inner-loop
proportional control system with the controller gain Kfcs while the outer-loop controllers are the integral
controllers. So from this design topology, we evaluate the closed-loop transfer function for the inner-loop
system based on which the outer-loop integral controllers will be designed.

Since the inner-loop system has the discrete-time state space model (from (6.14)):

[
id(ti+1)
iq(ti+1)

]

= (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

−

[
0

𝜔e(ti)𝜙mgΔt

Lq

]

+ ΔtBm

[
𝑣d(ti)
𝑣q(ti)

]

, (6.36)

with the feedback control signals 𝑣d(ti) and 𝑣q(ti) calculated using the feedback gain matrix Kfcs as illus-
trated in the inner-loop control system:

[
𝑣d(ti)
𝑣q(ti)

]

= Kfcs

[
ed(ti)I − id(ti)
eq(ti)I − iq(ti)

]

, (6.37)

where ed(ti)I and eq(ti)I are the reference signals to the inner-loop, also the manipulated signals from the
outer-loop system. The superscript I means integrated error. By substituting the control signals into the
state-space model (6.36), the inner-loop closed-loop system is formed:

[
id(ti+1)
iq(ti+1)

]

= (I + ΔtAm(ti) − ΔtBmKfcs)
[

id(ti)
iq(ti)

]

+ ΔtBmKfcs

[
ed(ti)I

eq(ti)I

]

−

[
0

𝜔e(ti)𝜙mgΔt

Lq

]

. (6.38)

Define the z-transforms of the reference signals and the feedback signals as Ed(z)I , Eq(z)I , Id(z) and Iq(z).
Note that the current vector on the left-hand side of (6.38) has the z-transform of [zId(z) zIq(z)]T . Thus
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the closed-loop relationship between the z-transform of the reference signals and the feedback signals is
obtained as [

Id(z)
Iq(z)

]

= (zI − (I + Am(ti)Δt) + ΔtBmKfcs)
−1ΔtBmKfcs

[
Ed(z)I

Eq(z)I
]

. (6.39)

Since the feedback control gain Kfcs is

Kfcs(ti) =

[
Ld

Δt
0

0
Lq

Δt

]

(I + ΔtAm(ti)),

it can easily be verified that the matrix (zI − (I + Am(ti)Δt) + ΔtBmKfcs)−1 is a diagonal matrix, having
the following form:

(zI − (I + Am(ti)Δt) + ΔtBmKfcs)
−1 =

[ 1

z
0

0 1

z

]

,

where the matrix ΔtBmKfcs = I + ΔtAm(ti). Therefore, the closed-loop transfer function given by (6.39)
becomes:

[
Id(z)
Iq(z)

]

=

([ 1

z
0

0 1

z

]

+ ΔtAm(ti)z−1

)[
Ed(z)I

Eq(z)I
]

. (6.40)

For sufficiently small Δt, the quantity ΔtAm(ti)z−1 could be neglected. So, in terms of approximation, the
inner-loop dynamics are expressed as

Id(z)
Ed(z)I

≈ z−1 (6.41)

Iq(z)
Eq(z)I

≈ z−1. (6.42)

By taking this approximation justified by using a small sampling interval Δt, the closed-loop transfer
functions here have some degree of mismatch with the steady-state gain. Also, the interactions in the
Am(ti)Δt matrix are neglected.

Upon simplifying the inner-loop system, the design of the outer-loop integral controller becomes
straightforward. It is apparent that considering the d-axis current, the open-loop transfer function for
the outer-loop system includes the integral controller kd

1−z−1 together with the time delay z−1 from the
inner closed-loop system. Hence, the outer closed-loop has the transfer function:

Id(z)
I∗d (z)

=
kdz−1

1 − z−1 + kdz−1
, (6.43)

where the closed-loop pole for this first order system is z = 1 − kd. By choosing a desired closed-loop pole
as 0 ≤ pcl < 1, the integral controller gain is determined as kd = 1 − pcl. Similarly, the outer closed-loop
system for the q-axis current has the transfer function

Iq(z)
I∗q (z)

=
kqz−1

1 − z−1 + kqz−1
, (6.44)

if the same desired closed-loop pole is used for the q-axis current controller design, then the integral
controller gain kq = 1 − pcl.

The desired closed-loop pole pcl is a pole in the discrete-time system and this parameter is the design
parameter selected by the user. We can choose its value relative its continuous-time counterpart. For
instance, if the continuous-time counterpart is s = −acl, the pole in discrete-time is z = pcl = e−aclΔt where
Δt is the sampling interval. Thus, we can determine the value of pcl according to the desired response
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time in the continuous-time. For instance, if we wish the desired closed-loop current control system to
have a time constant of 100 × 10−6 second (acl =

1

100×10−6 ), then with a sampling interval Δt = 10 × 10−6

second, pcl = e−acl×Δt = e−0.1 = 0.9048. If we reduce the desired closed-loop time constant to 50 × 10−6

second, then pcl = e−0.2 = 0.8187.
In the selection of the desired closed-loop pole, one should also take into consideration the small

mismatch of the steady-state gain and the existence of the interaction terms in the Am(ti) matrix, which
may affect the closed-loop performance. In general, the effects of the mismatch will be smaller if smaller
integral gains kd and kq are used.

6.6 Derivation of I-FCS Predictive Control Algorithm
The I-FCS predictive control algorithm outlined in Section 6.5 is derived in this section. The deriva-
tion process gives the justification for the algorithm and furthermore leads to the actual implementation
algorithm for the I-FCS predictive controller.

6.6.1 Optimal Control without Constraints

Consider the discretized linear model for the PMSM:
[

id(ti+1)
iq(ti+1)

]

= (I + ΔtAm(ti))
[

id(ti)
iq(ti)

]

+ ΔtBm

[
𝑣d(ti)
𝑣q(ti)

]

−

[
0

𝜔e(ti)𝜙mgΔt

Lq

]

. (6.45)

This approximation of the continuous-time differential equation model also holds at the sampling time
ti − Δt, which has the form:

[
id(ti)
iq(ti)

]

= (I + ΔtAm(ti−1))
[

id(ti−1)
iq(ti−1)

]

+ ΔtBm

[
𝑣d(ti−1)
𝑣q(ti−1)

]

−

[
0

𝜔e(ti−1)𝜙mgΔt

Lq

]

. (6.46)

Subtracting (6.46) from (6.45) leads to the difference model between the two sampling instants:
[

id(ti+1) − id(ti)
iq(ti+1) − iq(ti)

]

= (I + ΔtAm(ti))
[

id(ti) − id(ti−1)
iq(ti) − iq(ti−1)

]

+ ΔtBm

[
𝑣d(ti) − 𝑣d(ti−1)
𝑣q(ti) − 𝑣q(ti−1)

]

−

[
0

(𝜔e(ti)−𝜔e(ti−1))𝜙mgΔt

Lq

]

+ (Am(ti) − Am(ti−1))Δt

[
id(ti−1)
iq(ti−1)

]

, (6.47)

where in the process of derivation the following term is both added and subtracted to (6.47):

Am(ti)Δt

[
id(ti−1)
iq(ti−1)

]

.

Note that matrix (Am(ti) − Am(ti−1))Δt contained in the final term of (6.47) is expressed for the PMSM
case as

(Am(ti) − Am(ti−1))Δt =
[

0 a12

a21 0

]

,

where a12 = Δt
Lq

Ld
(𝜔e(ti) − 𝜔e(ti−1)) and a21 = −Δt Ld

Lq
(𝜔e(ti) − 𝜔e(ti−1)).



192 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

Because the quantity Δt(𝜔e(ti) − 𝜔e(ti−1)) is sufficiently small for a small sampling interval Δt (say,
50 × 10−6 sec), the matrix (Am(ti) − Am(ti−1))Δt is approximated by a zero matrix. Here, the incremental
change of the velocity 𝜔e(ti) − 𝜔e(ti−1) is also relatively small because of physically limited acceleration
of a motor, and in steady-state operation, this term is assumed to be zero. Thus the final term of (6.47) is
neglected. Approximation using zero for the second last term of (6.47) is also performed with the same
reasoning.

The following incremental variables are defined for notational simplicity:

Δid(ti+1) = id(ti+1) − id(ti) (6.48)

Δiq(ti+1) = iq(ti+1) − iq(ti) (6.49)

Δid(ti) = id(ti) − id(ti−1) (6.50)

Δiq(ti) = iq(ti) − iq(ti−1) (6.51)

Δ𝑣d(ti) = 𝑣d(ti) − 𝑣d(ti−1) (6.52)

Δ𝑣q(ti) = 𝑣q(ti) − 𝑣q(ti−1). (6.53)

With these incremental variables defined and the approximations taken, the incremental model of a
PMSM (6.47) becomes

[
Δid(ti+1)
Δiq(ti+1)

]

= (I + ΔtAm(ti))
[
Δid(ti)
Δiq(ti)

]

+ ΔtBm

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

. (6.54)

To include the integral action into the controller, choose the weighted current errors

ed(ti) = kd(i
∗
d(ti) − id(ti)); eq(ti) = kq(i

∗
q(ti) − iq(ti))

as the steady-states of the Δid(ti) and Δiq(ti), where 0 < kd < 1, 0 < kq < 1. By subtracting the
steady-states from the incremental model (6.54), we obtain:

[
Δid(ti+1) − ed(ti)
Δiq(ti+1) − eq(ti)

]

= (I + ΔtAm(ti))
[
Δid(ti) − ed(ti)
Δiq(ti) − eq(ti)

]

+ ΔtBm

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

. (6.55)

The control objective is to minimize the error function J, where

J =
[
Δid(ti+1) − ed(ti)
Δiq(ti+1) − eq(ti)

]T [Δid(ti+1) − ed(ti)
Δiq(ti+1) − eq(ti)

]

, (6.56)

which is to regulate the incremental current signals Δid(ti+1), Δiq(ti+1) to be as close as possible to ed(ti)
and eq(ti).

For notational simplicity, define the vector:
[

gd(ti)
gq(ti)

]

= −(I + ΔtAm(ti))
[
Δid(ti) − ed(ti)
Δiq(ti) − eq(ti)

]

= (I + ΔtAm(ti))
[

ed(ti) − Δid(ti)
eq(ti) − Δiq(ti)

]

. (6.57)

Then by substituting (6.55) with the simplified notation into the objective function (6.56), it can be readily
verified that the objective function has the expression

J =
([

gd(ti)
gq(ti)

]

− ΔtBm

[
Δ𝑣d(ti)
Δ𝑣q(ti)

])T ([
gd(ti)
gq(ti)

]

− ΔtBm

[
Δ𝑣d(ti)
Δ𝑣q(ti)

])

, (6.58)
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which is

J =
[
gd(ti) gq(ti)

]
[

gd(ti)
gq(ti)

]

− 2
[
Δ𝑣d(ti) Δ𝑣q(ti)

]
ΔtBT

m

[
gd(ti)
gq(ti)

]

+
[
Δ𝑣d(ti) Δ𝑣q(ti)

]
Δt2BT

mBm

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

. (6.59)

The objective function (6.59) is a quadratic function similar to the objective function (6.17) in Section
6.4. Following the same least squares minimization procedure as outlined in Section 6.4, the optimal
incremental control signals Δ𝑣d(ti) and Δ𝑣q(ti) that minimize the objective function (6.59) are found as

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

= (Δt2BT
mBm)

−1ΔtBT
m

[
gd(ti)
gq(ti)

]

= 1
Δt

[
Ld 0
0 Lq

] [
gd(ti)
gq(ti)

]

, (6.60)

where the matrix BT
mBm is positive definite, and given by

BT
mBm =

⎡
⎢
⎢
⎣

1

L2
d

0

0 1

L2
q

⎤
⎥
⎥
⎦

.

By substituting the variables gd(ti) and gq(ti) (see (6.57)) into the optimal solution (6.60), we obtain the
expression of the incremental control signals

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

= 1
Δt

[
Ld 0
0 Lq

]

(I + ΔtAm(ti))
[

ed(ti) − Δid(ti)
eq(ti) − Δiq(ti)

]

= Kfcs

[
ed(ti) − Δid(ti)
eq(ti) − Δiq(ti)

]

, (6.61)

where the feedback control gain Kfcs is defined by

Kfcs =
1
Δt

[
Ld 0
0 Lq

]

(I + ΔtAm(ti)),

which is identical to the case without integrator in Section 6.4.
Furthermore, since the weighted error signals are ed(ti) = kd(i∗d(ti) − id(ti)) and eq(ti) = kq(i∗q(ti) −

iq(ti)), the optimal incremental control signals finally have the following form:

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

= Kfcs

([
kd(i∗d(ti) − id(ti))
kq(i∗q(ti) − iq(ti))

]

−
[
Δid(ti)
Δiq(ti)

])

. (6.62)

The important point here is that the computation is presented in terms of Δ𝑣d(ti) and Δ𝑣q(ti) that are
the incremental variables. Also, the incremental feedback variables Δid(ti) and Δiq(ti), the error signals
i∗d(ti) − id(ti) and i∗q(ti) − iq(ti)) are used in the control law. Therefore, the steady-state information of the id

and iq currents is no longer required. The control signals are calculated based on the incremental signals
and their past values as

𝑣d(ti) = Δ𝑣d(ti) + 𝑣d(ti−1) (6.63)

𝑣q(ti) = Δ𝑣q(ti) + 𝑣q(ti−1). (6.64)

Again, there is no need to consider the steady-state values of the voltage signals in the implementation.
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Figure 6.7 I-FCS feedback current control using incremental variables.

Since in terms of the q−1 shift operator, the incremental control signal Δ𝑣d(ti) = 𝑣d(ti) − 𝑣d(ti−1) is
expressed as (1 − q−1)𝑣d(ti) and Δ𝑣q(ti) = 𝑣q(ti) − 𝑣q(ti−1) as (1 − q−1)𝑣q(ti), dividing (6.62) with the
factor 1 − q−1 leads to

[
𝑣d(ti)
𝑣q(ti)

]

= Kfcs

[ kd

1−q−1 (i∗d(ti) − id(ti))
kq

1−q−1 (i∗q(ti) − iq(ti))

]

− Kfcs

[
id(ti)
iq(ti)

]

. (6.65)

Here, we have also replaced the incremental current signals Δid(ti) = id(ti) − id(ti−1) by Δid(ti) =
(1 − q−1)id(ti) and Δiq(ti) = iq(ti) − iq(ti−1) by Δiq(ti) = (1 − q−1)iq(ti). The optimal control signals 𝑣d(ti)
and 𝑣q(ti) given by (6.65) are identical to the proposed control signals in (6.35). This completes the
derivation of the optimal control signal with integral action without constraints.

An equivalent expression of the cascade feedback system based on (6.62) is shown in Figure 6.7, which
can also be seen by moving the integrators in Figure 6.6 from outer-loops to the inner-loop.

6.6.2 I-FCS Predictive Controller with Constraints

In the previous section, the optimal controller with integral action was derived without constraints. Con-
siderable efforts were devoted to show the link between the cascade PI controller structure and the optimal
controller designed using an objective function. It becomes clear in this section that the objective func-
tion J used in the previous section provides the key to solution of the I-FCS controller. The derivation
procedure uses some of the results obtained from the analysis of FCS controller (see Section 6.4).

Consider the objective function (6.59). By adding and subtracting the term

[
gd(ti) gq(ti)

]
ΔtBm(Δt2BT

mBm)
−1BT

mΔt

[
gd(ti)
gq(ti)

]



FCS Predictive Control in d − q Reference Frame 195

to the original objective function J given by (6.59), its value remains unchanged. With this term added,
the following three terms lead to completed squares:

J0 =
[
Δ𝑣d(ti) Δ𝑣q(ti)

]
Δt2BT

mBm

[
Δ𝑣d(ti)
Δ𝑣q(ti)

]

− 2
[
Δ𝑣d(ti) Δ𝑣q(ti)

]
ΔtBT

m

[
gd(ti)
gq(ti)

]

+
[
gd(ti) gq(ti)

]
ΔtBm(Δt2BT

mBm)
−1BT

mΔt

[
gd(ti)
gq(ti)

]

=
([

Δ𝑣d(ti)
Δ𝑣q(ti)

]

− (Δt2BT
mBm)

−1BT
mΔt

[
gd(ti)
gq(ti)

])T

(Δt2BT
mBm)

×
([

Δ𝑣d(ti)
Δ𝑣q(ti)

]

− (Δt2BT
mBm)−1BT

mΔt

[
gd(ti)
gq(ti)

])

. (6.66)

Now, with J0 given by the completed squares (6.66), the original objective function J becomes

J = J0 + Jmin (6.67)

where Jmin is

Jmin =
[
gd(ti) gq(ti)

]
(I − Bm(BT

mBm)−1BT
m)

[
gd(ti)
gq(ti)

]

= 0,

because of the special form of the Bm matrix, where

Bm =
⎡
⎢
⎢
⎣

1

Ld
0

0 1

Lq

⎤
⎥
⎥
⎦

.

Thus, the minimum of the original objective function J is achieved if J0 is minimized with the optimal
control: [

Δ𝑣d(ti)
Δ𝑣q(ti)

]

= (Δt2BT
mBm)

−1BT
mΔt

[
gd(ti)
gq(ti)

]

. (6.68)

This solution is identical to the solution presented in (6.60) that has been derived without
constraints.

We define the unconstrained solution as the optimal solution denoted by Δ𝑣d(ti)opt and Δ𝑣q(ti)opt,
yielding [

Δ𝑣d(ti)opt

Δ𝑣q(ti)opt

]

= (Δt2BT
mBm)

−1BT
mΔt

[
gd(ti)
gq(ti)

]

. (6.69)

By substituting (6.69) into the objective function (6.67), we obtain

J =
([

Δ𝑣d(ti)
Δ𝑣q(ti)

]

−
[
Δ𝑣d(ti)opt

Δ𝑣q(ti)opt

])T

(Δt2BT
mBm)

([
Δ𝑣d(ti)
Δ𝑣q(ti)

]

−
[
Δ𝑣d(ti)opt

Δ𝑣q(ti)opt

])

.

Also, by definition of the incremental control signals, the following relationship is true:
[
Δ𝑣d(ti)opt

Δ𝑣q(ti)opt

]

=
[
𝑣d(ti)opt

𝑣q(ti)opt

]

−
[
Δ𝑣d(ti−1)opt

Δ𝑣q(ti−1)opt

]

.
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Thus, by calculating the actual incremental control signals using the same past control signal states,
that is, [

Δ𝑣d(ti)
Δ𝑣q(ti)

]

=
[
𝑣d(ti)
𝑣q(ti)

]

−
[
Δ𝑣d(ti−1)opt

Δ𝑣q(ti−1)opt

]

,

we arrive at the objective function that can be used in the I-FCS MPC design as

J =
([
𝑣d(ti)
𝑣q(ti)

]

−
[
𝑣d(ti)opt

𝑣q(ti)opt

])T

(Δt2BT
mBm)

([
𝑣d(ti)
𝑣q(ti)

]

−
[
𝑣d(ti)opt

𝑣q(ti)opt

])

= Δt2

L2
d

(𝑣d(ti) − 𝑣d(ti)
opt)2 + Δt2

L2
q

(𝑣q(ti) − 𝑣q(ti)
opt)2. (6.70)

In the presence of constraints, there are seven pairs of candidate variables for the 𝑣d and 𝑣q voltages. When
having the integrators in the I-FCS predictive controller, upon obtaining the signals 𝑣d(ti)opt and 𝑣q(ti)opt

with integral action at the sampling time ti, the actual control signals 𝑣d(ti) and 𝑣q(ti) are determined by
computing the value of the objective function for k = 0, 1, 2 … , 6

Jk =
Δt2

L2
d

(𝑣d(ti)
k − 𝑣d(ti)

opt)2 + Δt2

L2
q

(𝑣q(ti)
k − 𝑣q(ti)

opt)2. (6.71)

The pair of constrained control signals 𝑣d(ti)k and 𝑣q(ti)k is found to minimize the objective function Jk

subject to the index number k.

6.6.3 Implementation of I-FCS-MPC Algorithm

The design of the I-FCS predictive control system is shown in Figure 6.6 as the configuration of a cascade
feedback control system, which clearly indicated that integrators have been embedded in the outer-loop
systems. The equivalent control system structure is shown in Figure 6.7. Based on the latter structure,
the implementation algorithm for the I-FCS-MPC scheme is presented using the difference of the control
signals with recursive computation, offering convenience for real-time computation.

The I-FCS-MPC algorithm is summarized for the convenience of implementation.

Algorithm 4

1. Assume that the closed-loop control action begins at the sampling instant t0. It is reasonable to take
the initial values Δid(t0) = 0 and Δiq(t0) = 0. At the sampling time t0 − Δt, take the measurements of
𝑣d(t0 − Δt), 𝑣q(t0 − Δt), id(t0 − Δt), iq(t0 − Δt). Initialize the optimal control signals at the sampling
time ti − Δt as

𝑣d(ti−1)
opt = 𝑣d(t0 − Δt); 𝑣q(ti−1)

opt = 𝑣q(ti−1)

Δid(ti) = 0; Δiq(ti) = 0.

2. Perform the following computation at the sampling time ti with current measurements id(ti), iq(ti)
and their reference signals i∗d(ti), i∗q(ti). Calculate the optimal incremental control signals using the
following equation:

[
Δ𝑣d(ti)opt

Δ𝑣q(ti)opt

]

= Kfcs

[
kd(i∗d(ti) − id(ti)
kq(i∗q(ti) − iq(ti))

]

− Kfcs

[
Δid(ti)
Δiq(ti)

]

.

3. Calculate the optimal control signals using the past optimal control states:
[
𝑣d(ti)opt

𝑣q(ti)opt

]

=
[
𝑣d(ti−1)opt

𝑣q(ti−1)opt

]

+
[
Δ𝑣d(ti)opt

Δ𝑣q(ti)opt

]

.

4. Calculate the value of the objective function J with respect to the finite control set for k = 0, 1, 2, … , 6

Jk =
Δt2

L2
d

(𝑣d(ti)
k − 𝑣d(ti)

opt)2 + Δt2

L2
q

(𝑣q(ti)
k − 𝑣q(ti)

opt)2,
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where the values of 𝑣d(ti)k and 𝑣q(ti)k are selected among the pairs of the given array:

⎡
⎢
⎢
⎣

0 cos 𝜃e cos
(

𝜃e −
2𝜋

3

)

cos
(

𝜃e −
4𝜋

3

)

− cos 𝜃e − cos
(

𝜃e −
2𝜋

3

)

− cos
(

𝜃e −
4𝜋

3

)

0 − sin 𝜃e − sin
(

𝜃e −
2𝜋

3

)

− sin
(

𝜃e −
4𝜋

3

)

sin 𝜃e sin
(

𝜃e −
2𝜋

3

)

sin
(

𝜃e −
4𝜋

3

)
⎤
⎥
⎥
⎦

2
3

Vdc.

5. Find the minimum of Jk and its corresponding index, which leads to the control signals to be imple-
mented.

6. Go to Step 2 in the computation as the sampling time progresses to ti+1 = ti + Δt.

It is seen that the I-FCS-MPC algorithm is straightforward for implementation.

6.7 MATLAB Tutorial on Implementation of I-FCS
Predictive Controller

Tutorial 3 The real-time implementation of the I-FCS-MPC for PMSM is developed on the basis of the
original FCS-MPC program from Tutorial 2. Most of this MATLAB embedded function is identical to the
embedded MATLAB program called FCS.mdl, except that the optimal voltage control signals 𝑣d(ti)opt

and 𝑣q(ti)opt are computed explicitly.

Step by Step

1. Edit the Simulink file called FCS.mdl and save it as FCSInt.mdl. This is the new MATLAB embedded
function that performs the computation of I-FCS-MPC algorithm in real-time.

2. Change the embedded function name from “FCS” to “FCSInt” and double check the input and
output variables that appear in the following order together with the new file name.

[Ua,Ub,Uc,Ind]=
FCSInt(idRef,iqRef,id,iq,we,theta,Ld,Lq,Rs,Phi_mg,Tin,D,U)

3. The stages from Step 2 to Step 9 in Tutorial 2 remain unchanged. However, delete matrices G and H
from Step 7 in Tutorial 2 because they are no longer needed.

4. Delete the embedded program in Step 10 of the Tutorial 2.
5. Define the feedback controller gain kd = kq = 1 − pcl, where pcl is the location of the closed-loop

pole for the outer-loop current control system. In this example, pcl is selected to be 0.8. Enter the
following program into the file.

pcl=0.8;
kd=1-pcl;

6. Calculate the controller gain from FCS-MPC, where

Kfcs =
1
Δt

[
Ld 0
0 Lq

]

(I + ΔtAm(ti)).

Enter the following program into the file.

Kfcs=[Ld/Tin 0; 0 Lq/Tin]*F;

7. Calculate the optimal voltage control signals 𝑣d(ti)opt and 𝑣q(ti)opt using the updating equation:

[
𝑣d(ti)opt

𝑣q(ti)opt

]

=
[
𝑣d(ti−1)opt

𝑣q(ti−1)opt

]

+ Kfcs

[
kd(i∗d(ti) − id(ti))
kd(i∗q(ti) − iq(ti))

]

− Kfcs

[
Δid(ti)
Δiq(ti)

]

,
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where
[
𝑣d(ti−1)opt 𝑣q(ti−1)opt

]T
is called the “upast” vector and Δid(ti) and Δiq(ti) are generated

using the difference between current and past vectors. Enter the following program into the file.

vopt=upast-Kfcs*(x-xpast)+Kfcs*kd*(xRef-x);

8. Calculate the norm of the error vector between the seven 𝑣d and 𝑣q candidate variables and the
optimal control signals 𝑣d(ti)opt and 𝑣q(ti)opt. Enter the following program into the file.

for i=1:7
Xe(:,i)=vopt-M*D*U(:,i);
err(:,i)=Xe(:,i)’*Xe(:,i)*(Tin) ̂ 2/(Ld) ̂ 2;
end

9. Step 11, Step 12 and Step 13 in Tutorial 2 remain unchanged.
10. Update the past optimal control signal and past state variables. Enter the following program into

the file.

upast=vopt;
xpast=x;

This embedded function is now interfaced with the simulator of PMSM to produce the Simulink simulator
called “simulator4PIFCS.mdl”.

6.7.1 Simulation Results

In comparison with the simulation results presented in Section 6.3.1, the simulation setup conditions in
this section are identical to those used previously. Namely, the pair of poles is 2; the resistance is Rs =
2.98c Ω; inductance Ld = Lq = 7 × 10−3 H; 𝜙mg = 0.125 Wb; inertia Jm = 0.01 × 10−3 kg ⋅ m2; Bv =
11 × 10−5 Nm ⋅ s. The reference signal to the id current is i∗d = 0 A and i∗q is a step signal with amplitude
of±2 A. The torque load disturbance is also a step signal with unit amplitude at the start of the simulation,
followed by a step change to −1 at half of the simulation time. The DC power supply has voltage Vdc =
300 V.

There four simulation case studies presented in this section. In the first two cases, we will choose the
closed-loop pole for the outer-loop integral system as pcl = 0.8, hence leading to kd = kq = 1 − 0.8 = 0.2.
In the second two cases, the closed-loop pole is increased to pcl = 0.9, and kd = kq = 1 − 0.9 = 0.1. To
investigate how the choice of sampling rate affects the closed-loop control performance, we will use two
sampling intervals for in the simulation studies: Δt = 40 × 10−6 sec and Δt = 10 × 10−6 sec.

The feedback control gain Kfcs is a function of the electrical velocity 𝜔e and is calculated using

Kfcs(ti) =

[
Ld

Δt
0

0
Lq

Δt

]

(I + ΔtAm(ti)),

where

Am(ti) =

[
− Rs

Ld
𝜔e(ti)

−𝜔e(ti) − Rs

Lq

]

.

6.7.1.1 Case A

The sampling interval is selected as Δt = 40 × 10−6 sec, which gives the time-varying FCS-MPC gain as

Kfcs(ti) =
[

172.025 40 × 10−6𝜔e(ti)
−40 × 10−6𝜔e(ti) 172.025

]

.
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Figure 6.8 Simulation results for I-FCS-MPC of PMSM. Case A. Sampling interval Δt = 40 × 10−6 sec, kd = kq =
0.2. (a) id and iq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

Figures 6.8(a)–(c) show the id and iq closed-loop current control results, the normalized three

phase control signals and the minimum of the objective function Jmin =
Δt2

L2
d

(𝑣d(ti)act − 𝑣d(ti)opt)2 +
Δt2

L2
q
(𝑣q(ti)act − 𝑣q(ti)opt)2 where 𝑣d(ti)act and 𝑣q(ti)act are the actual voltage variables implemented on the

PMSM. With this larger sampling interval Δt, it is seen from Figure 6.8(a) that the steady-state errors in
both id and iq become very small. In general, when Δt is large, the overall performance is poor because
the variations of the id and iq currents are large. This variation is also reflected by the minimum of the
objective function Jmin that has a relatively large amplitude.

6.7.1.2 Case B

In the second case, the sampling interval Δt is reduced to 10 × 10−6 sec. The FCS-MPC gain is

Kfcs(ti) =
[

696.99 10 × 10−6𝜔e(ti)
−10 × 10−6𝜔e(ti) 696.99

]

.

Figures 6.9(a)–(c) show that the closed-loop control performance is much improved when the sampling
interval is reduced, where it is seen that the variations of id and iq currents become very small. However,
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Figure 6.9 Simulation results for I-FCS-MPC of PMSM. Case B. Sampling interval Δt = 10 × 10−6 sec, kd = kq =
0.2. (a) id and iq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

at t = 100 msec when the torque disturbance changes to −1 and the reference signal i∗q changes from +2
to−2, there is an undershoot in the iq current response, which is also seen by a large spike in the minimum
of the objective function (see Figure 6.9(c)). The simulation results in Case D where the integral gain is
reduced confirm that the undershoot and spike are caused by the large integral gain.

6.7.1.3 Case C

In the third case, we reduce the integral controller gain to kd = kq = 0.1, but with the sampling interval
Δt = 40 × 10−6 sec. Figures 6.10(a)–(c) show that the variations of the id and iq currents are slightly
reduced, which can also been seen from the minimum of the objective function (see Figure 6.10(c)).

6.7.1.4 Case D

In the fourth case, we will use the integral controller gain kd = kq = 0.1, together with the faster sampling
interval Δt = 10 × 10−6 sec. Figures 6.11(a)–(c) show the closed-loop control system performance. It is
seen that with the reduction of the integral controller gain, there is a slight reduction of the variations
of the id and iq currents. More importantly, at t = 100 μs when the torque disturbance and the reference
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Figure 6.10 Simulation results for I-FCS-MPC of PMSM. Case C. Sampling interval Δt = 40 × 10−6 sec, kd =
kq = 0.1. (a) id and iq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

signal change, neither the undershoot occurs in the iq current response, nor is there a large spike in the
minimum of the objective function (see Figure 6.11(c)).

It is interesting to note that with the I-FCS-MPC, the offset errors of the id and iq currents are sig-
nificantly reduced. For instance, in the slower sampling rate case (Δt = 40 × 10−6 sec, kd = kq = 0.2),
the mean value of id current is 0.0011 A. In comparison with the case using the original FCS controller,
where its mean value was −0.1947 A, the offset error is significantly reduced. In the faster sampling rate
case (Δt = 10 × 10−6 sec, kd = kq = 0.2), the mean value of the id current is −2.26 × 10−5 A, which is
also much smaller than the case when using the original FCS predictive controller where its mean value
is 0.0023. When kd = kq = 0.1, and using the I-FCS predictive controller, the offset error for the slower
sampling rate is 0.0021 A and for the faster sampling rate is 4.2475 × 10−5 A. Because these numbers
are very small, their increase has little effect on the closed-loop performance.

6.8 I-FCS Predictive Control of Induction Motor
The design of I-FCS-MPC for induction motor follows the exact steps outlined in the previous sections
for the PMSM. In particular, the embedded function for I-FCS-MPC function written in Tutorial 3 is
used to control the currents of induction motor with appropriate changes of motor parameters and input
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Figure 6.11 Simulation results for I-FCS-MPC of PMSM. Case D. Sampling interval Δt = 10 × 10−6 sec, kd =
kq = 0.1. (a) id and iq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

and output variables. We assume that the reader has already progressed through the sections that have
detailed the I-FCS-MPC of a PMSM. Therefore, in this section, we will only outline the differences
between the two controllers.

6.8.1 The Control Algorithm for an Induction Motor

The continuous-time model that describes the dynamics of an induction motor in d − q reference frame
are given by the differential equations:

isd(t) + 𝜏𝜎
disd(t)

dt
= 𝜔s(t)𝜏𝜎 isq(t) +

kr

r𝜎𝜏r

𝜓rd(t) +
1
r𝜎

usd(t) (6.72)

isq(t) + 𝜏𝜎
disq(t)

dt
= −𝜔s(t)𝜏𝜎 isd(t) −

kr

r𝜎
𝜔e(t)𝜓rd(t) +

1
r𝜎

usq(t). (6.73)

From (6.72) and (6.73), it can be easily verified that the system matrices Am(t) and Bm are written in the
following forms:

Am(t) =

[
− 1

𝜏𝜎
𝜔s(t)

−𝜔s(t) − 1

𝜏𝜎

]

; Bm =

[ 1

𝜏𝜎 r𝜎
0

0 1

𝜏𝜎 r𝜎

]

.
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The discretized prediction equations corresponding to (6.72) and (6.73) are in matrix form:
[

isd(ti+1)
isq(ti+1)

]

= (I + ΔtAm(ti))
[

isd(ti)
isq(ti)

]

+ ΔtBm

[
usd(ti)
usq(ti)

]

+
⎡
⎢
⎢
⎣

krΔt

𝜏𝜎 r𝜎𝜏r
𝜓rd(ti)

− krΔt

𝜏𝜎 r𝜎
𝜔e(ti)𝜓rd(ti)

⎤
⎥
⎥
⎦

, (6.74)

where I is the identity matrix with dimension 2 × 2.
At sampling time ti, the gain matrix for the FCS controller is calculated based on Am and Bm matrices

using a sampling interval Δt:

Kfcs(ti) = (Δt2BT
mBm)−1BT

mΔt(I + ΔtAm(ti))

=
[ 𝜏𝜎 r𝜎

Δt
0

0 𝜏𝜎 r𝜎
Δt

][ 1 − Δt

𝜏𝜎
𝜔s(ti)Δt

−𝜔s(ti)Δt 1 − Δt

𝜏𝜎

]

=
⎡
⎢
⎢
⎣

𝜏𝜎 r𝜎
Δt

(

1 − Δt

𝜏𝜎

)

𝜔s(ti)𝜏𝜎r𝜎

−𝜏𝜎r𝜎𝜔s(ti)
𝜏𝜎 r𝜎
Δt

(

1 − Δt

𝜏𝜎

)
⎤
⎥
⎥
⎦

. (6.75)

Then the optimal control signals usd(ti)opt and usq(ti)opt are calculated at sampling time ti,

[
usd(ti)opt

usq(ti)opt

]

=
[

usd(ti−1)opt

usq(ti−1)opt

]

+ Kfcs(ti)
[

kd(i∗sd(ti) − isd(ti))
kq(i∗sq(ti) − isq(ti))

]

− Kfcs(ti)
[
Δisd(ti)
Δisq(ti)

]

,

where 0 < kd < 1 and 0 < kq < 1 are the integral controller gain, and Δisd(ti) = isd(ti) − isd(ti−1),
Δisq(ti) = isq(ti) − isq(ti−1).

After calculating the value of the objective function J with respect to the finite control set for k =
0, 1, 2, … , 6

Jk =
Δt2

(𝜏𝜎r𝜎)2
(usd(ti)

k − usd(ti)
opt)2 + Δt2

(𝜏𝜎r𝜎)2
(usq(ti)

k − usq(ti)
opt)2 (6.76)

and finding the minimum of Jk and its corresponding index k∗, the pair of control signals usd(ti)k∗ and
usq(ti)k∗ is chosen for implementation.

One key difference between the FCS control systems of a PMSM and an induction motor is the com-
putation of the seven pairs of usd(ti) and usq(ti) values used in the evaluation of the objective function. In
the induction motor control, 𝜃s(t) is used to generate these voltage values, where 𝜃s is computed using
the following relationship:

𝜃s(t) = 𝜃e(t) +
1
𝜏r ∫

t

0

isq(𝜏)
isd(𝜏)

d𝜏

≈ Zp𝜃m(t) +
1
𝜏r ∫

t

0

i∗sq(𝜏)
i∗sd(𝜏)

d𝜏, (6.77)

where 𝜃m(t) is the measured rotor position from the encoder, Zp is the number of pole pair, and i∗sd(t) and
i∗sq(t) are the current reference signals used to approximate the current feedback signals isd and isq because
of their measurement noise. With 𝜃s(ti) determined at the sampling time ti, the seven pairs of candidate
voltage variables are formed:
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u0
sd = 0; u1

sd = 2
3

Vdc cos 𝜃s(ti);

u0
sq = 0; u1

sq = −2
3

Vdc sin 𝜃s(ti);

u2
sd = 2

3
Vdc cos

(

𝜃s(ti) −
2𝜋
3

)

; u3
sd = 2

3
Vdc cos

(

𝜃s(ti) −
4𝜋
3

)

;

u2
sq = −2

3
Vdc sin

(

𝜃s(ti) −
2𝜋
3

)

; u3
sq = −2

3
Vdc sin

(

𝜃s(ti) −
4𝜋
3

)

;

u4
sd = −2

3
Vdc cos 𝜃s(ti); u5

sd = −2
3

Vdc cos
(

𝜃s(ti) −
2𝜋
3

)

;

u4
sq = 2

3
Vdc sin 𝜃s(ti); u5

sq = 2
3

Vdc sin
(

𝜃s(ti) −
2𝜋
3

)

;

u6
sd = −2

3
Vdc cos

(

𝜃s(ti) −
4𝜋
3

)

;

u6
sq = 2

3
Vdc sin

(

𝜃s(ti) −
4𝜋
3

)

.

6.8.2 Simulation Results

In the simulation example, the embedded MATLAB function FCSInt.mdl written in Tutorial 3 is used
to control the induction motor with small modifications. For instance, the input and output variables are
defined using the following form:

function [Ua,Ub,Uc,val]= FCSInt(isdRef,isqRef,ws,thetas,isM,
Tin,U,r_sigma,D,tau_sigmat)

Once the parameters are determined, the embedded function can be changed accordingly.
In the simulation of current control, the reference signal to isd is 0.8 A and the reference signal to isq

is 3 A in the beginning of the simulation and changes to 1 A after 0.1 second. The DC power supply is
Vdc = 520 V. The parameters r𝜎 = 17.8250, 𝜏𝜎 = 0.0060 and 𝜏r = 0.0769. The load torque is TL = 2 Nm
in the simulation. In applications, kd and kq are often chosen to be either 0.2 or 0.1. It seems that the
simulation results show that when kd = kq = 0.2, there is a large overshoot on the isq current when it
performs a set-point change, which again confirmed the results shown in the Case A and B in the PMSM
control studies. Therefore, they are preferred to be kd = kq = 0.1 so to avoid the large spike when the isq

current makes a set-point change. There are two cases to be presented here: Case A is for Δt = 80 × 10−6

sec and Case B is for Δt = 50 × 10−6 sec.

6.8.2.1 Case A

The sampling interval is Δt = 80 × 10−6 sec, and kd = kq = 0.1. Figure 6.12 shows the closed-loop con-
trol results. Although the sampling interval is quite large, the variations of the isd and isq currents are
relatively small. The offset error is negligible. Overall, the performance is acceptable with this sam-
pling rate.

6.8.2.2 Case B

The sampling interval is reduced to Δt = 50 × 10−6 sec while keeping the integral gains kd = kq = 0.1.
Figure 6.13 shows the closed-loop control results. With the reduction of the sampling interval Δt, the
variations of the isd and isq currents are further reduced. This is consistent with the results obtained from
I-FCS predictive control of the PMSM (see Figures 6.8–6.11).
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Figure 6.12 Simulation results for I-FCS-MPC of induction motor. Case A. Sampling interval Δt = 80 × 10−6 sec,
kd = kq = 0.1. (a) isd and isq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

6.8.3 Experimental Results

The experimental results are obtained from the induction motor control test-bed where Simulink xPC
Target is used for control algorithm implementation. The induction motor is coupled with a servo DC
motor as its load (see Chapter 10). The supply voltage at DC-link is 520V.

In the current control scheme, the sampling interval is Δt = 80 μs that is the lowest limit restricted
by the equipment. The closed-loop reference signals for the d-axis stator current is i∗sd = 0.877 A and
the q-axis stator current is i∗sq = 1.5 A. Current control experiments have been conducted using both the
original FCS predictive control scheme and the I-FCS predictive control scheme.

6.8.3.1 Current Response

Figure 6.14 shows the experimental results obtained from using the original FCS-MPC scheme and
Figure 6.15 shows the corresponding results obtained using the I-FCS-MPC scheme where the inte-
gral gains are selected as kd = kq = 0.15. Comparing Figure 6.14(a)–(b) with Figure 6.15(a)–(b), it is
seen that the noise levels of both d-axis stator and q-axis stator currents are about the same. However,
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Figure 6.13 Simulation results for I-FCS-MPC of induction motor. Case B. Sampling interval Δt = 50 × 10−6 sec,
kd = kq = 0.1. (a) isd and isq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

calculations show that when using the original FCS predictive controller, the mean value of the error
i∗sd − isd is 0.0164 A and the same error for the q-axis current is 0.036 A. In comparison, when using the
I-FCS predictive controller, the mean value of the error i∗sd − isd is reduced to −2.5397 × 10−5 A and the
same error for the q-axis current is reduced to −3.6636 × 10−4 A. It means that when using the original
FCS-MPC scheme, the magnitudes of the off-set errors are about 648 and 98 times larger with respect
to d-axis and q-axis currents. It is worthwhile to note that the steady-state response of the original FCS
predictive control system is dependent on the selection of the system physical parameters. However, with
the integral FCS predictive controller, this performance uncertainty in steady-state operation is removed.

6.8.3.2 Frequency Response of Phase Current

Comparing Figure 6.14(c) with 6.15(c), no significant difference between the amplitude of the frequency
response of the phase current is observed. It is worthwhile to emphasize that because there is no modu-
lation used in the implementation, a key difference from PI controller implementation, the amplitude of
the phase current is quite widely spread for both cases.
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Figure 6.14 Experimental results of FCS-MPC of induction motor. Δt = 80 μs. (a) d-axis stator current (1) and
reference (2), (b) q-axis stator current (1) and reference (2), and (c) Amplitude of the frequency response of A phase
current.

6.8.3.3 Velocity Response

Although the steady-state errors when using the original FCS predictive controller are quite small for this
induction motor with this set of physical parameters, the dynamic response of the velocity is affected.
Figure 6.16 compares the open-loop responses of the speed of the motor with the original FCS predic-
tive controller and the I-FCS predictive controller. It is interesting to see that, under the identical load
condition of the coupled DC motor, the motor runs a bit faster during steady-state when using the I-FCS
method. The reason for the difference could be that with the I-FCS predictive control the mean values
of currents produced by the induction motor are larger and closer to the reference signals, hence leading
to a faster steady-state speed. This could also imply that the motor runs more efficiently when using the
I-FCS predictive controller which removes the steady-state current errors.

6.8.3.4 Selection of the integral Gain

The integral gains kd and kq are the performance parameters for the closed-loop current responses that
affect the dynamic response of the currents. In general, the larger the gains, the faster the current dynamic
response will be. Figure 6.17 shows the transient response of isq during the step change from 0 to 1.5 A
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Figure 6.15 Experimental results of I-FCS-MPC of induction motor. Δt = 80 μs, and kd = kq = 0.15. (a) d-axis
stator current (1) and reference (2), (b) q-axis stator current (1) and reference (2), and (c) Amplitude of the frequency
response of A phase current.
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Figure 6.16 Comparison of open-loop responses of the motor speed between I-FCS-MPC and FCS-MPC schemes.
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kq = 0.15; line (3) kd = kq = 0.25; line (4) set-point signal.

where three different sets of integral gains are used. When kd = kq = 0.05, the response time is slowest
as the closed-loop pole is closer to the unit circle. The fastest response is obtained with kd = kq = 0.25.
Note that, the transient responses are very close between kd = kq = 0.25 and kd = kq = 0.15, perhaps due
to the limitations of the inverter operation.

6.9 I-FCS Predictive Control of Power Converter
The design of I-FCS predictive control for power converter is identical to the controller design outlined
in the previous sections for the PMSM. We assume that the reader has already progessed through the
sections that have detailed the I-FCS predictive control of PMSM.

6.9.1 I-FCS Predictive Control of a Power Converter

The dynamic model of a power converter for current control, in d − q reference frame, is expressed as

Ls

did

dt
= −Rsid + 𝜔gLsiq + Ed − 𝑣d (6.78)

Ls

diq

dt
= −𝑣q − Rsiq − 𝜔gLsid (6.79)

Cdc

d𝑣dc

dt
= 3

4
(Sdid + Sqiq) − iL, (6.80)

where 𝜔g is the grid frequency, Ed is a grid source voltage that is a constant or a slow varying variable,
id and iq are the output variables, and 𝑣d , 𝑣q are the control variables. Sd and Sq are related to the control
variables 𝑣d and 𝑣q through the following relations:

𝑣d = Sd × (𝑣dc∕2) (6.81)

𝑣q = Sq × (𝑣dc∕2). (6.82)
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Equation (6.80) will not be used in the design of current controller, however, it describes the effect of the
load current disturbance iL, which is the disturbance to the current control system.

The system matrices Am and Bm for the converter are written in the following forms:

Am =

[
− Rs

Ls
𝜔g

−𝜔g − Rs

Ls

]

; Bm =

[
− 1

Ls
0

0 − 1

Ls

]

.

The discrete prediction equations corresponding to (6.78) and (6.79) are

[
id(ti+1)
iq(ti+1)

]

= (I + ΔtAm)
[

id(ti)
iq(ti)

]

+

[
Ed

Ls
Δt

0

]

+ ΔtBm

[
𝑣d(ti)
𝑣q(ti)

]

, (6.83)

where I is the identity matrix with dimension 2 × 2. Note that in the application of power converter
control, the system matrix Am is a constant matrix.

The gain matrix for the FCS controller is calculated based on Am and Bm matrices, independent of
sample time ti:

Kfcs = (Δt2BT
mBm)−1BT

mΔt(I + ΔtAm)

= −
Ls

Δt

[
1 − Rs

Ls
Δt 𝜔gΔt

−𝜔gΔt 1 − Rs

Ls
Δt

]

. (6.84)

Note that the FCS controller gain Kfcs is time invariant because of the invariance of the grid frequency
𝜔g, thus it can be calculated off-line.

Then the optimal control signals 𝑣d(ti)opt and 𝑣q(ti)opt are calculated at sampling time ti,

[
𝑣d(ti)opt

𝑣q(ti)opt

]

=
[
𝑣d(ti−1)opt

𝑣q(ti−1)opt

]

+ Kfcs

[
kd(i∗d(ti) − id(ti))
kq(i∗q(ti) − iq(ti))

]

− Kfcs

[
Δid(ti)
Δiq(ti)

]

,

where 0 < kd < 1 and 0 < kq < 1 are the integral controller gains, and Δid(ti) = id(ti) − id(ti−1), Δiq(ti) =
iq(ti) − iq(ti−1).

The objective function J with respect to the finite control set for k = 0, 1, 2, … , 6 is defined using the
optimal control signals, 𝑣d(ti)opt and 𝑣q(ti)opt, as

Jk =
Δt2

L2
s

(𝑣d(ti)
k − 𝑣d(ti)

opt)2 + Δt2

L2
s

(𝑣q(ti)
k − 𝑣q(ti)

opt)2. (6.85)

The next step is to find the minimum of Jk and its corresponding index k∗, with which the pair of control
signals 𝑣d(ti)k∗ and 𝑣q(ti)k∗ is chosen for implementation.

A key difference between the FCS control systems of a power converter and the AC drives is the
computation of the seven pairs of 𝑣d(ti) and 𝑣q(ti) values used in the evaluation of the objective function.
In the power converter control, 𝜃g(t) is used to generate these voltage values, where 𝜃g(t) is the grid
electrical angle estimated by the phase locked loop discussed in Section 3.9.5. With 𝜃g(ti) determined at
the sampling time ti, the seven pairs of candidate voltage variables are formed:

𝑣0
d = 0; 𝑣1

d = 2
3
𝑣dc cos 𝜃g(ti);

𝑣0
q = 0; 𝑣1

q = −2
3
𝑣dc sin 𝜃g(ti);
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𝑣2
d = 2

3
𝑣dc cos

(

𝜃g(ti) −
2𝜋
3

)

; 𝑣3
d = 2

3
𝑣dc cos

(

𝜃g(ti) −
4𝜋
3

)

;

𝑣2
q = −2

3
𝑣dc sin

(

𝜃g(ti) −
2𝜋
3

)

; 𝑣3
q = −2

3
𝑣dc sin

(

𝜃g(ti) −
4𝜋
3

)

;

𝑣4
d = −2

3
𝑣dc cos 𝜃g(ti); 𝑣5

d = −2
3
𝑣dc cos

(

𝜃g(ti) −
2𝜋
3

)

;

𝑣4
q = 2

3
𝑣dc sin 𝜃g(ti); 𝑣5

q = 2
3
𝑣dc sin

(

𝜃g(ti) −
2𝜋
3

)

;

𝑣6
d = −2

3
𝑣dc cos

(

𝜃g(ti) −
4𝜋
3

)

;

𝑣6
q = 2

3
𝑣dc sin

(

𝜃g(ti) −
4𝜋
3

)

.

Note that the 𝑣dc is the output of the power converter. Therefore this variable is measured and is required
to be updated when forming the candidate variables.

6.9.2 Simulation Results

In the simulation example, the embedded MATLAB function FCSInt.mdl written in Tutorial 3 is used
to control the power converter with small modifications. For instance, the input and output variables are
defined using the following form:

[Ua,Ub,Uc,val]=FCSInt(idqRef,idqMea,Vdc,Kfcs,U,kd,thetag)

where idqRef is the vector of the reference signals i∗d , i∗q and idqMea is the vector of the measured current
signals id and iq, Vdc is the DC voltage, which becomes a variable in the power converter case as an input
to the embedded function, Kfcs is the gain of the FCS controller, kdq is the integral gain set to be 0.05,
thetag is the grid electrical angle estimated by the phase locked loop, and U is the data matrix defined by

U =
⎡
⎢
⎢
⎣

0 1 1 0 0 0 1 1
0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1

⎤
⎥
⎥
⎦

.

Because the gain of FCS can be calculated off-line, the embedded function “FCSInt” does not require
the values of sampling interval and the inductance Ls, which means that the minimum of the objective
function val is not weighted by Δt2

L2
s

. There are two sampling intervals used in the simulation studies. In

Case A, the sampling interval Δt = 80 × 10−6 sec and in Case B, Δt = 40 × 10−6 sec. The model param-
eters used in the computation of gain matrix Kfcs are converter side resistance Rs = 0.2 Ω, inductance
Ls = 6.3 × 10−3 H and 𝜔g = 100𝜋 where the grid frequency is assumed to 50 Hz.

For Δt = 80 × 10−6, the gain matrix is

Kfcs =
[
−78.55 −1.9792
1.9792 −78.55

]

and for Δt = 40 × 10−6,

Kfcs =
[
−157.3 −1.9792
1.9792 −157.3

]

.

This simulation is going to be used to illustrate various operational scenarios. In Scenario A, for the
time interval 0 ≤ t ≤ 0.1 sec, the power converter starts up. In Scenario B, for the time interval 0.1 ≤
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Figure 6.18 Simulation results for I-FCS-MPC of power converter. Case A. Sampling interval Δt = 80 × 10−6

sec, kd = kq = 0.05. (a) id and iq currents, (b) The normalized control signals, and (c) Minimum of the objective
function.

t ≤ 0.2 sec, the d-axis current makes a set-point change. In Scenario C, for the time interval 0.2 ≤ t ≤
0.3 sec, current load disturbance iL = 2 A is added to the system. In Scenario D, for the time interval
0.3 ≤ t ≤ 0.38 sec, a negative current load disturbance iL = −2 A is added to the system. The simulation
results with respect to the four scenarios are discussed. Figure 6.18 shows the simulation results for the
I-FCS-MPC control system with sampling interval Δt = 80 × 10−6 sec, and in comparison. Figure 6.19
shows the results for the control system with sampling interval Δt = 40 × 10−6 sec.

6.9.2.1 Scenario A

In the simulation for the time period 0 ≤ t ≤ 0.1 sec, the I-FCS controller maintains the steady-state
operation of the power converter with the defined reference signals, i∗d = 3 A, and the i∗q = 0. In this initial
stage, the load current iL = 0. This scenario represents the situation when the converter starts up its initial
operation. Figures 6.18(a)–(c) illustrate the closed-loop control system responses with sampling interval
Δt = 80 × 10−6 sec. It is seen that in this initial stage, the variations of the id and iq currents are very
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Figure 6.19 Simulation results for I-FCS-MPC of power converter. Case B. Sampling interval Δt = 40 × 10−6 sec,
kd = kq = 0.05. (a) id and iq currents, (b) The normalized control signals, and (c) Minimum of the objective function.

small. Improved responses can be seen in Figures 6.19(a)–(c) arising from the reduction of sampling
interval to Δt = 40 × 10−6 sec.

6.9.2.2 Scenario B

The second scenario for the time period 0.1 ≤ t ≤ 0.2 sec represents the situation of set-point change
on id current with i∗q being 0 and the load current iL being 0. Here, i∗d is a step signal with its amplitude
increased from 3 A to 5 A. It is seen from Figures 6.18(a) and 6.19(a) that the output id has a fast response
to the step change without oscillation and overshoot. The steady-state error is zero. The faster sampling
rate produced better control results.

6.9.2.3 Scenario C

In the third scenario simulation for the time period 0.2 ≤ t ≤ 0.3 sec, a positive current load disturbance
iL = 2 A is added to the system. Note that with a positive iL disturbance, from (6.80), it is seen that the
effect is to decrease 𝑣dc. This represents the situation of drawing current from the DC bus. The simulation
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results show that the closed-loop control system is stable in the operation. However, the variations of the
control signals are much larger as seen from the minimum of the objective function (see Figures 6.18(c)
and 6.19(c)), which may be caused by the variations in the uncontrolled 𝑣dc. In addition, there are low
frequency oscillations in the id and iq currents. Because the magnitudes of the oscillations are small, they
are hardly noticed.

6.9.2.4 Scenario D

In the fourth scenario simulation for the time period 0.3 ≤ t ≤ 0.38 sec, a negative current load distur-
bance iL = −2 A is added to the system. This simulates the situation where current load is added to the
system. Because the reference signal id current is positive and there is no feedback control of voltage,
the load disturbance will charge the capacitor. If voltage control were used, this would correspond to the
situation of putting current to the electrical grid. During this operation, the low frequency oscillations in
Scenario C vanished and the variations of currents are small. Note that the current load disturbance iL

had a step change of magnitude of 4 when it changes from 2 A (see Scenario C) to −2 A for this scenario,
however, this large change did not cause performance degradation in the id and iq currents.

6.9.3 Experimental Results

In the experiments, the reference current i∗q is selected to be zero. A reference signal i∗d is set at 3 A
when the current controllers are turned on, followed by a step change from 3 A to 5 A. The inductance
is L0

s = 6.3 × 10−3 H and the resistance is Rs = 0.2 Ω. Sampling interval Δt = 80 × 10−6 sec. There is a
unknown load current in the system. In the first case, the original FCS predictive controller is used for the
current control. The experimental results are shown in Figure 6.20. Because there is no integral action,
there is a steady-state error between the reference current signal and the actual measured current signal.
It is seen that the steady-state error is larger for the id current. In the second case, the I-FCS predictive
controller is used in the experiment. The experimental results are shown in Figure 6.21. The original FCS
predictive controller had mean values of 3.3129 A and 5.2666 A for the set-points 3 A and 5 A in the
d-axis respectively, while I-FCS predictive controller had mean values of 3.0008 A and 4.9611 A, which
are significantly smaller.
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Figure 6.20 Experimental results for FCS-MPC of power converter. Δt = 80 × 10−6 sec. (a) id and iq currents and
(b) id and iq current errors.
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Figure 6.21 Experimental results for I-FCS-MPC of power converter. Δt = 80 × 10−6 sec, kd = kq = 0.05. (a) id
and iq currents, (b) id and iq current errors, and (c) Minimum of the objective function.

6.10 Evaluation of Robustness of I-FCS-MPC via Monte-Carlo
Simulations

This section will evaluate the robustness of the original FCS-MPC and the I-FCS-MPC systems with
respect to parameter variations in the current control system. More specifically, we will use the I-FCS
predictive control of power converter as the benchmark for the case studies.

In the I-FCS predictive control of a power converter, the main parameter uncertainty comes from the
variations of the inductance Ls in the converter. In the Monte-Carlo simulation, the inductance Ls is taken
as a random number within the range (0, 2L0

s ) H. There are 500 simulated experiments conducted with
the inductance parameter Ls calculated with the equation

Ls = L0
s ± 𝜖L

0
s ,

where 0 < 𝜖 < 1 is a random number with uniform distribution generated using the MATLAB random
number generator. Among the 500 experiments, 250 of them are calculated with −𝜖 and 250 with +𝜖.
Here, the nominal inductance L0

s = 6.3 × 10−3 H.
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The sampling interval in the Monte-Carlo simulation is chosen to be Δt = 80 × 10−6 sec. The integral
gain is set to be kd = kq = 0.05 for all cases. The reference signals and load current disturbances vary in
an identical manner to the four scenarios described in Section 6.9.2, where i∗q = 0 and i∗d is a step signal
with magnitude of 2 A, and the load current iL varying between ±2 A.

The model parameters used in the computation of gain matrix Kfcs are converter side resistance Rs =
0.2 Ω and inductance Ls = 6.3 × 10−3(1 ± 𝜖) H, which leads to

Kfcs =

[
− Ls

Δt
+ Rs −𝜔gLs

𝜔gLs − Ls

Δt
+ Rs

]

=
[
−78.75(1 ± 𝜖) + Rs −1.9792(1 ± 𝜖)

1.9792(1 ± 𝜖) −78.75(1 ± 𝜖) + Rs

]

, (6.86)

where 𝜔g = 2𝜋 × 50 and 0 < 𝜖 < 1 is a uniformly distributed random number.
To evaluate the robust closed-loop performance of the control systems, the mean square error is defined

as

MSE = 1
M

M−1∑

i=0

((i∗d(ti) − id(ti))2 + (i∗q(ti) − iq(ti))2),

where M is the number of samples used in the evaluation.
The original FCS predictive control algorithm discussed in Sections 6.2 and 6.4 is implemented through

the embedded MATLAB function given in Tutorial 2 to control the power converter where the Kfcs gain
varies with the Ls parameter generated through the Monte-Carlo experiments. Similarly evaluated is the
I-FCS predictive control algorithm with the identical simulation environment and parameter variations.
All physical parameters in the Simulink simulator of the converter remain unchanged in the Monte-Carlo
simulation experiments.

6.10.1 Discussion on Mean Square Errors

The mean square error results for the 500 simulations are shown in Figures 6.22–6.23 for the original
FCS predictive control system and the I-FCS predictive control system, respectively. From the larger scale
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Figure 6.22 Monte-Carlo simulation results for original FCS-MPC of power converter. Mean square error for vari-
ations of Ls. (a) Larger scale and (b) Smaller scale.
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Figure 6.23 Monte-Carlo simulation results for I-FCS-MPC of power converter. Mean square error for variations
of Ls. (a) Larger scale and (b) Smaller scale.

presentations of the mean square error, the failures of the closed-loop control results can be immediately
identified. There are 25 data points visible in Figure 6.22(a) and 1 data point visible in Figure 6.23(a). If
we count these large MSE numbers as the failed control systems because of the unacceptable deviations
of id and iq from their reference signals, then there are 25 FCS predictive control system failures and 1
I-FCS predictive control system failure. In the smaller scale presentations of the mean square errors (see
Figures 6.22(b) and 6.23(b)), there are far more data points in Figure 6.22(b) than those in Figure 6.23(b),
deviating from its targeted value occurring between the index of 250 to 500. It is clearly seen from the
mean square error plots that the I-FCS predictive controller has far better robust performance in the
presence of inductance variations.

To understand how the inductance variations affect the closed-loop performance, the mean square
errors are plotted against the variation of the inductance Ls. Figures 6.24 and 6.25 show the mean square
errors (<5), respectively. By comparing these two figures, several comments follow. In each figure, there
is a window to zoom in on the region where the smallest MSE values are. It is seen that the I-FCS
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Figure 6.24 Monte-Carlo simulation results of FCS predictive control of power converter. Mean square error for
variations of Ls.
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Figure 6.25 Monte-Carlo simulation results of I-FCS predictive control of power converter. Mean square error for
variations of Ls.

predictive control system has the smallest MSE, which is half of that value arising from the original FCS
predictive control system. We also notice that in the region where Ls = 6.3 × 10−3(1 + 𝜖) H (0 < 𝜖 < 1),
namely when Ls value used in the model is larger than the inductance of the physical system, both FCS
and I-FCS control systems do not have significant performance deterioration, as demonstrated by the
MSE values. However, in the region where Ls = 6.3 × 10−3(1 − 𝜖) H, namely when the Ls value used
in the model is smaller than the inductance of the physical system, the closed-loop control performance
using the original FCS-MPC system deteriorates rapidly as illustrated by the increase of MSE values (see
Figure 6.24). In contrast, the I-FCS-MPC system maintains its closed-loop control performance over a
much wider variation of the inductance parameter Ls, as illustrated by the almost constant value of MSEs
in Figure 6.25 with a much smaller Ls value.

The selected closed-loop control system responses for using FCS predictive controller and I-FCS pre-
dictive controller are illustrated in Figure 6.26 and Figure 6.27, respectively, where the failed control
responses are excluded. It is clearly seen that the FCS predictive control system has a steady-state error
in tracking the current references and its performance deteriorates severely when the model inductance
is less than the inductance in the physical system. In summary, the roles of the integrators used in current
control are to eliminate the steady-state errors, and equally importantly to safe-guard the closed-loop per-
formance in the presence of parameter variations. In the case of converter control, the under-estimated
inductance in the design could cause severe performance degrade without using integral action in the
controller. However by incorporating integrators in the current control, the closed-loop performance is
more robust against the variations of the parameters.

6.11 Velocity and Position Control of PMSM Using I-FCS-MPC
In this section, we will discuss the velocity and position control of a PMSM using I-FCS-MPC. These
control systems are configured in cascade feedback control structures and are identical to those used in
the design of PI current control systems as discussed in Chapters 3 to 5.

Figure 6.28 illustrates the control system configuration of velocity control of a PMSM, where the
inner-loop current controllers are the I-FCS controllers and the outer-loop control system uses a PI for
the velocity control. A similar figure is presented in Figure 6.29 to illustrate the position control of a
PMSM, in which the outer-loop control system uses a PID controller for position control. Although the
cascade control structures are identical to those introduced in the previous chapters (see Chapters 3 to
5), there are several differences that will be emphasized in the following discussions.
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Figure 6.26 Monte-Carlo simulation results of original FCS-MPC system when Ls changes. Variations of id and
iq currents. (a) Ls < 6.3 × 10−3(1 − 0.5𝜖) H, (b) 6.3 × 10−3(1 − 0.5𝜖) H < Ls < 6.3 × 10−3(1 + 0.5𝜖) H, and (c) Ls >

6.3 × 10−3(1 − 0.5𝜖) H.

6.11.1 Choice of Sampling Rate for the Outer-loop Control System

As we noticed from the diagrams, the inner-loop current control systems are discrete-time control sys-
tems, in contrast to the previously PI or P control of the currents. Although one considers that the PI
controllers of the currents are also implemented using discretized algorithms (see Chapter 4), the design
procedures between the continuous-time and discrete-time approaches are somewhat different to a cer-
tain degree. As we recall, the I-FCS-MPC is designed using a discrete model, and in order to obtain a
satisfactory control performance, the sampling interval Δt is chosen to be as small as possible to reduce
the variations of the id and iq currents. This, without any doubt, will result in the use of dual sampling
rate in the cascade control of velocity and position because the computational load of the single sam-
pling rate becomes too large if both inner-loop and outer-loop deploy the same fast sampling rate. For
the outer-loop velocity, the choice of sampling rate will take into consideration two factors: the neglected
dynamics from the current control loop and the computational cost without compromising closed-loop
performance.
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Figure 6.27 Monte-Carlo simulation results of I-FCS-MPC system when Ls changes. Variations of id and iq
currents. (a) Ls < 6.3 × 10−3(1 − 0.5𝜖) H, (b) 6.3 × 10−3(1 − 0.5𝜖) H < Ls < 6.3 × 10−3(1 + 0.5𝜖) H, and (c) Ls >

6.3 × 10−3(1 − 0.5𝜖) H.

6.11.1.1 Neglected Dynamics from I-FCS Current Control

Note that with the I-FCS controlling the currents, the closed-loop pole for the id current is z = pcl = 1 − kd

and the iq current z = pcl = 1 − kq. Because the integral gain kd and kq are quite small in the applications,
effectively, the closed-loop pole is quite large. For example, assuming the kd = kq = 0.1, the closed-loop
pole for the current control system is z = pcl = 0.9. Note that this pole is calculated in relation to the
very fast sampling rate used in the current controller. Now, if the outer-loop velocity control used the
same fast sampling rate as the inner-loop current control, a problem would arise from neglecting such
dynamics from the inner-loop system because of the relatively large closed-loop pole (for instance, 0.9).
However, if a much slower sampling rate is used to control the velocity in the outer-loop system, the
large closed-loop pole from the current control loop will be converted to the discrete-time pole location
using the slower sampling rate, which then becomes relatively small. For example, at the fast sampling
rate, the discrete pole is pcl = e−aΔt and at the slow sampling rate, the discrete-time pole is e−aΔT where
ΔT = nΔt. With this relationship, the original pole becomes (pcl)n with respect to slow sampling rate
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Figure 6.29 I-FCS-MPC position control of PMSM.

(or large ΔT). Supposing that the sampling interval for the outer-loop velocity control is 20 times larger
than the inner-loop current control, the closed-loop pole of the current control system becomes 0.920 =
0.1216, which is quite small.

With respect to the slow sampling rate in the velocity control, the closed-loop z-transfer function
between the desired current reference signal i∗q and the measured current signal iq is the first order transfer
function,

Iq(z)
I∗q (z)

=
(1 − (pcl)n)z−1

1 − (pcl)nz−1
. (6.87)
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For a small (pcl)n, this transfer function is approximated by a unit delay

Iq(z)
I∗q (z)

≈ z−1, (6.88)

where the integrator used in the current controller ensures that the steady-state gain. and the magnitude of
the frequency response of the transfer function (6.87) at the low frequency region is unity. This leads to
the neglected dynamics from the current control system, which may be beneficial from the discrete-time
design of the velocity control system.

Another way to examine the neglected dynamics from the current control system is to convert the
discrete-time pole pcl into a continuous-time pole. The corresponding continuous-time pole to the
discrete-time pole pcl with the fast sampling rate is to calculate the parameter a from the relationship
pcl = e−aclΔt, which gives

acl = −
ln(pcl)
Δt

.

Because of the integrator used in the current control, the steady-state gain of the current control system
is unity. Thus, in the continuous-time, the closed-loop transfer function between the desired reference
current signal I∗q (s) and the measured current control signal Iq(s) is described by

Iq(s)
I∗q (s)

=
acl

s + acl

= 1
1

acl
s + 1

. (6.89)

For a large value of acl, the closed-loop transfer function is approximated by

Iq(s)
I∗q (s)

≈ 1. (6.90)

Again, the dynamics from the inner-loop current control system are neglected if the value of acl is large,
or the sampling interval Δt used in the inner-loop current control is small. When using a continuous-time
controller such as a PI controller for velocity control, the sampling rate for the outer-loop system is
less restricted than its counter-part when using a discrete-time design technique. Because in the
continuous-time case, we have reconstructed the neglected dynamics in the continuous-time domain.
Thus, as long as we select the bandwidth of the velocity control system to be much narrower than the
bandwidth of the neglected current control system (acl), robust closed-loop stability and performance
can be established (see the analysis presented in Chapter 5).

6.11.1.2 Reducing Computational Cost

In general, a faster sampling rate demands a faster computational speed within one sampling interval,
and as a consequence, the computational cost increases as the sampling interval Δt reduces, because of
the requirement for more expensive digital signal processors. When the I-FCS predictive controllers are
used for the current control, a fast sampling rate is necessary to guarantee a satisfactory performance,
which will increase the computational cost. However, the simplified implementation without PWMs may
lead to computational savings. A further study is needed to clarify whether there is a saving when using
the I-FCS controllers.

Because the dynamics from the mechanical system of the motor (mainly its inertia), are much slower
than the dynamics in the current control system, suitably increasing the sampling interval Δt (or reducing
the sampling rate) for the outer-loop control system will not significantly affect the closed-loop control
performance.
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Typically, the sampling rate 1

Δt
is chosen to be 5 to 10 times the closed-loop bandwidth. In the PI veloc-

ity control system, this bandwidth is the parameter 𝑤n. In reality, this range of sampling rates will result
in more or less performance degradation from the desired closed-loop performance we aimed at. To make
the sampling effect truly negligible, the sampling rate should be 20 times the closed-loop bandwidth.

6.11.2 Velocity and Position Controller Design

Since the inner-loop current control systems are designed and implemented using a discrete-time model,
the option becomes available for the outer-loop velocity controller and position controller to be designed
using a discrete-time model. The advantages of using a discrete-time model for the design are that the
sampling rate is selected at the design stage and there are no approximation errors at the implementation
stage. The disadvantages of discrete-time design include the lack of flexibility with the sampling rate
when implementing the controller and the controller parameters are not directly related to the physical
parameters of the system. The discrete-time controller design techniques can be found in Goodwin et al.
(2001). We present our design the continuous-time domain in the next section.

6.11.2.1 Design of PI Velocity Controller

The design of PI velocity controller entirely follows the design procedure outlined in Section 3.4.4 of
Chapter 3. We briefly list the design equations for convenience.

For the PMSM, substituting the Laplace transform of the measured current Iq(s) by the the reference
current I∗q (s) based on the approximation of the inner-loop current control system (see (6.90)), we obtain
the design model for controlling the velocity,

Ωe(s)
I∗q (s)

≈
3

2

Z2
p𝜙mg

Jm

s + B𝑣
Jm

. (6.91)

Here, we let

a =
B𝑣

Jm

; b = 3
2

Z2
p𝜙mg

Jm

.

By choosing a pair of desired closed-loop poles s1,2 = −𝜉𝑤n ± j𝑤n

√
1 − 𝜉2, where the damping coeffi-

cient 𝜉 is chosen to be 0.707, the proportional gain Kc is calculated as

Kc =
2𝜉𝑤n − a

b
(6.92)

and the integral time constant is calculated as

𝜏I =
2𝜉𝑤n − a

𝑤2
n

. (6.93)

The specification of the closed-loop bandwidth for the velocity controller can also be selected in a rela-
tionship to the open-loop pole a (see Chapter 5) as

𝑤n =
1

1 − 𝛾
a, (6.94)

where 𝛾 is preferably chosen between 0.8 and 0.95.
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6.11.2.2 Design of PID Position Controller

The design of a PID position controller follows from the procedure listed in Section 3.5 of Chapter 3.
Begin from

Ωe(s)
I∗q (s)

≈
3

2

Z2
p𝜙mg

Jm

s
(

s + B𝑣
Jm

) . (6.95)

By defining the model parameters a and b as

a = B
Jm

; b = 3
2

Z2
p𝜙mg

Jm

,

with the pole-assignment controller design, the PID controller parameters are calculated using the
following equations,

Kc =
(2𝜉n + 1)𝑤2

n

b
(6.96)

𝜏I =
(2𝜉n + 1)𝑤2

n

n𝑤3
n

= (2𝜉n + 1)
n𝑤n

(6.97)

𝜏D =
(2𝜉 + n)𝑤n − a

(2𝜉n + 1)𝑤2
n

, (6.98)

where the parameters n ≥ 1 and𝑤n are used in the specification of desired closed-loop polynomial Ad
cl(s),

Ad
cl(s) = (s2 + 2𝜉𝑤ns +𝑤2

n)(s + n ×𝑤n).

The derivative term is implemented with a first order filter that has a time constant of 𝛽𝜏D (see
Figure 6.29).

In the selection of 𝑤n for the outer-loop position control, the parameter a in the model could be used
as a benchmark parameter, for example, 𝑤n = 1

1−𝛾
a. However, the open-loop system contains an inte-

grator that is the dominant pole of the system and thus this benchmark parameter may not be as useful
for the velocity control case. Instead, one could consider the bandwidth of the outer-loop position con-
trol in relation to the inner-loop current control system based on the performance analysis presented in
Chapter 5. For instance, the I-FCS-MPC current control leads to the closed-loop pole at −acl where acl

is calculated using the discrete-time closed-loop pole pcl,

acl = −
ln(pcl)
Δt

.

Then, the closed-loop bandwidth parameter 𝑤n for the position control could be selected as a fraction of
the parameter acl, say 𝑤n = 0.1acl, or using the ratio of the sampling rates in the relationship:

𝑤n = 𝜖
Δt
ΔT

acl, (6.99)

where Δt is the sampling interval for the inner-loop current control and ΔT is the sampling interval for
the outer-loop position control, and 0 < 𝜖 < 1 is a tuning parameter. However, because the parameter acl

is rather large in the I-FCS-MPC current control system, a small parameter 𝜖 may be needed.

6.12 Velocity and Position Control of Induction Motor Using
I-FCS-MPC

In this section, we will apply the I-FCS cascade control systems discussed in Section 6.11 to control the
velocity and position of an induction motor.
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6.12.1 I-FCS Cascade Velocity Control of Induction Motor

To demonstrate PI velocity control algorithm using the I-FCS-MPC inner-loop current control, two simu-
lation examples with different inner-loop sampling intervals are presented in this section. The outer-loop
PI controller called PIV.mdl programmed in Tutorial 1 is used in the simulation.

The induction motor model that describes the relationship between isq and the velocity 𝜔m(t) is given
by (3.107) in Chapter 3. Its linearized form is expressed as

d𝜔m(t)
dt

= −
fd

Jm

𝜔m(t) +
3ZpLh

2LrJm

𝜓 ss
rd isq(t) +

3ZpLh

2LrJm

iss
sq𝜓rd(t) −

3ZpLh

2LrJm

iss
sq𝜓

ss
rd −

TL

Jm

= −a𝜔m(t) + bisq(t) + d(t), (6.100)

where d(t) represents the disturbances including the effects of 𝜓rd(t) and the load torque TL as well as
the steady-state parameters.

In the simulation, the parameters for the PI controller design are a = 0.4423 and b = 257.7164. Choose
the damping coefficient 𝜉 = 0.707 and the bandwidth 𝑤n = 1

1−𝛾
a = 8.846, where 𝛾 = 0.95. Thus, the

bandwidth of the velocity control loop is 20 times the plant bandwidth.
To determine whether the choice of bandwidth for the outer-loop system is appropriate with regard

to unmodeled dynamics from the inner-loop system, the bandwidth of the current control system needs
to be examined. The inner-loop current control with the integral gain being 0.2 has the discrete-time
closed-loop pole located at 0.8. With the larger sampling interval Δt = 80 × 10−6 sec, the parameter that
determines the continuous-time pole location is computed as

acl = −
ln(pcl)
Δt

= − ln(0.8)
80 × 10−6

= 2789. (6.101)

The current control loop in an ideal situation, where there was no constraint on the voltage, would have
its closed-loop pole located at s = −2789. Thus, the selection of the velocity control bandwidth is far less
than the current control bandwidth so that the inner-loop dynamics can be safely neglected in the design.

With these choices of desired closed-loop performance parameters, the parameters for the PI controller
are calculated as

Kc =
2𝜉𝑤n − a

b
= 0.0468 (6.102)

and

𝜏I =
2𝜉𝑤n − a

𝑤2
n

= 0.1542. (6.103)

In the implementation of the velocity controller, the sampling interval is selected as ΔT = 400 × 10−6

sec and the constraints on the isq are imposed in the implementation with

−3 A ≤ isq ≤ 3 A.

The reference signal for isd is selected as 0.8772 A to reflect the operating condition of the induction
motor. A constant torque disturbance TL = 1 Nm is added to the simulation.

Since the sampling interval is adjustable and is the performance parameter in the I-FCS-MPC cur-
rent controller, two sampling intervals Δt = 80 × 10−6 sec and 50 × 10−6 sec are used, respectively, in
the simulation studies. Figures 6.30(a)–(c) illustrate the closed-loop control results for sampling inter-
val Δt = 80 × 10−6 sec in the inner-loop current control. In comparison, Figures 6.31(a)–(c) show the
closed-loop control results for sampling interval Δt = 50 × 10−6 sec. By comparing Figure 6.30(a) with
Figure 6.31(a), it is seen that in both cases, the current controllers track the reference currents with-
out steady-state errors; however, the current variations in both isd and isq are larger when the sampling
interval Δt is larger. Also, the current variations slightly increased when the output velocity took a step
change from 700 RPM to 1400 RPM (see Figure 6.30(a)–(b)). By contrast, when the sampling interval is
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Figure 6.30 Simulation results for I-FCS-MPC of induction motor. Case A. Sampling interval Δt = 80 × 10−6 sec,
kd = kq = 0.2. (a) isd and isq currents, (b) Velocity. Dashed-line: 𝜔∗

m, solid-line: 𝜔m, and (c) Minimum of the objective
function.

smaller, the current variations were much less affected when the step change in output velocity occurred
(see Figure 6.31(a)–(b)). This discrepancy in variations can also be noticed from the magnitudes of the
minimum of the objective functions (see Figures 6.30(c) and 6.31(c)) in which it is clearly seen that the
magnitude of Jmin has increased more significantly when Δt is larger. This indicates that if the AC motor
is to operate at a high speed, a faster sampling rate is required to reduce the variations of the currents.

It is interesting to note that with the two different sampling rates for the inner-loop current control,
despite the differences in current variations, the output velocity is almost identical to each other as seen
from Figures 6.30(b) and 6.31(b). This means that the dynamics of the current control systems are so fast
that they make little difference to the velocity control system.

6.12.2 I-FCS-MPC Cascade Position Control of Induction Motor

In the I-FCS-MPC cascade position control of an induction motor, the outer-loop position controller is a
PID controller. The design of the PID controller follows the same procedure used for position controlling
a PMSM that was discussed in Section 6.11.2. Therefore, the algorithm is not repeated here.
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Figure 6.31 Simulation results for I-FCS-MPC of induction motor. Case B. Sampling interval Δt = 50 × 10−6 sec,
kd = kq = 0.2. (a) isd and isq currents, (b) Velocity. Dashed-line: 𝜔∗

m, solid-line: 𝜔m, and (c) Minimum of the objective
function.

Similar to the position control of a PMSM, the mathematical model used in the design of a PID con-
troller for an induction motor is given as

Θr(s)
I∗sq(s)

= b
s(s + a)

, (6.104)

where Θr(s) and I∗sq(s) are the Laplace transforms of the rotor’s angular position and the reference signal
for the stator q-axis current. Here, the inner-loop current dynamics are approximated a unity gain because
the I-FCS-MPC system has a unity gain and a relatively small time constant (see the discussions in
Section 6.11).

In the simulation studies, the model parameters are identical to those used in velocity control where
a = 0.4423 and b = 257.7164 (see the previous simulation). The sampling interval for the inner-loop
current control is chosen to be Δt = 80 × 10−6 sec and Δt = 50 × 10−6 sec, respectively in order to study
the effect of sampling interval of current control on the closed-loop performance. The integral gain for
the current control is chosen as kd = kq = 0.1. For the outer-loop position control, the sampling interval
ΔT is selected as 400 × 10−6 sec. for both cases.
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The PID controller parameters are calculated using (6.96)–(6.98) where the bandwidth parameter 𝑤n

is the performance tuning parameter. Because the model for position control contains an integrator, the
parameter 𝑤n is often chosen in relation to bandwidth of the inner-loop control system, which is, in
this case, acl = 2789 (see (6.101)). On the first attempt to design of a PID position controller, the band-
width parameter 𝑤n is selected as 𝑤n = 𝜖

Δt

ΔT
acl = 0.125 × 2789 = 348 rad∕s (𝜖 = 0.625) (see (6.99)).

The closed-loop system simulation results indicate that this choice of closed-loop bandwidth leads to an
unstable system. Clearly, this bandwidth parameter𝑤n is too large because of the very large acl parameter
from the current control system. This indicates that the parameter 𝜖 in (6.99) should be very small for the
large acl parameter. On the second attempt, the bandwidth 𝑤n is selected in relation to the dynamics of
the velocity response, namely the a parameter in the model, which gives a much better choice for𝑤n. By
choosing the damping coefficient 𝜉 = 0.707 and the bandwidth 𝑤n = 1

1−𝛾
a = 22 rad∕s, where 𝛾 = 0.98,

and n = 1, the parameters for the PID position controller are calculated as

Kc =
(2𝜉n + 1)𝑤2

n

b
= 4.5813 (6.105)

𝜏I =
(2𝜉n + 1)

n𝑤n

= 0.1092 (6.106)

𝜏D =
(2𝜉 + n)𝑤n − a

(2𝜉n + 1)𝑤2
n

= 0.0448. (6.107)

The derivative term is implemented with a first order filter that has a time constant of 𝛽𝜏D with 𝛽 = 0.1(see
Figure 6.29). Note that the𝑤n parameter used in the second attempt is 15 times smaller than the one used
in the first attempt. In the implementation of the position controller, the constraints on the isq are imposed
via the constraints on the current reference signal i∗sq with

−3 A ≤ i∗sq ≤ 3 A.

The reference signal for isd is selected as 0.8772 A to reflect the operating condition of the induction
motor. A constant torque disturbance TL = 1 is added to the simulation.

The reference signal to the angular position is a step signal that simulates the situation of stopping the
motor to a given position. Figures 6.32–6.33 show the closed-loop control system responses for the two
cases where the sampling interval for the I-FCS current control isΔt = 80 × 10−6 sec andΔt = 50 × 10−6

sec, respectively. By comparing these two figures, it is seen that the larger sampling interval used in the
I-FCS-MPC system leads to larger current variations, however, there is little difference in the position
responses.

6.12.3 Experimental Evaluation of Velocity Control

The cascaded PI velocity control of induction motor using I-FCS current controller for the inner-loop
system is evaluated experimentally. The sampling interval for the I-FCS current controller is selected
as 80 × 10−6 sec, and the integral gain is selected as kd = kq = 0.15. The closed-loop current control
system has a discrete-pole located at 0.85 for both d-axis and q-axis currents. This inner-loop q-axis
current control system is approximated in discrete-time using the transfer function

Isq(z)
I∗sq(z)

= 0.15z−1

1 − 0.85z−1
, (6.108)

which has a unit steady-state gain and discrete-time pole at z = 0.85. With sampling interval of 80 × 10−6

second, this pole can also be converted to its continuous-time counterpart equivalent to s = −2031. This
gives the closed-loop time constant for the q-axis stator current control as approximately 4.92 × 10−4.
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Figure 6.32 Induction motor position control, Case A. Sampling interval Δt = 80 × 10−6 sec, kd = kq = 0.1. Band-
width for the position control system is 𝑤n = 22 rad∕s. (a) isd and isq currents, (b) Angular position (rad), and (c)
Minimum of the objective function.

In the design of the outer-loop velocity PI controller, sampling interval is selected as 400 × 10−6 second.
The bandwidth tuning parameter 𝛾 = 0.981 is selected for a fast velocity response, yielding𝑤n = 1

1−𝛾
a =

23.28 rad∕s where a = 0.4423. Comparing the bandwidths of both the inner-loop current control system
(approximately 2031 rad∕s) and the velocity control system (23.28 rad∕s), which is about 87 times wider,
it is concluded that the fast dynamics from the inner-loop current control system can be safely neglected.
With the parameter b = 257.7164 and 𝜉 = 0.707, the PI controller parameters used in the experiments
are

Kc =
2𝜉𝑤n − a

b
= 0.126 𝜏I =

2𝜉𝑤n − a

𝑤2
n

= 0.0599.

In the experiments, constraints are imposed on the isq current to ensure safe operation, where |isq| ≤
3 A. These constraints are implemented using the PI controller with anti-windup mechanism. To avoid
overshoot in the velocity response, the proportional control is implemented on the output only (see
Section 5.1). Two experiments are conducted with two different sets of velocity reference signals and
the corresponding results are discussed below.
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Figure 6.33 Induction motor position control, Case B. Sampling interval Δt = 50 × 10−6 sec, kd = kq = 0.1. Band-
width for the position control system is 𝑤n = 22 rad∕s. (a) isd and isq currents, (b) Angular position (rad), and
(c) Minimum of the objective function.

6.12.3.1 Step Reference Signal

Figure 6.34(a) shows the induction motor velocity control results with a series of step signals which
illustrate the behavior of the velocity control system over different operating conditions. The induction
motor starts from zero speed followed by a step change to 700 RPM and to 1400 RPM. Then the opera-
tion reverses following a series of step down to −1400 RPM. From Figure 6.34(a), it is seen that despite
the existing nonlinearity in the induction motor, the velocity response has no oscillation and no overshoot
over the entire operating regions. Also the velocity response speed is about the same over the entire oper-
ating region. This means that with the I-FCS predictive current control, the nonlinearities existing in the
induction motor are overcome and it behaves like a linear velocity control system. From Figure 6.34(b),
it is seen that there is no steady-state error for the velocity control system over the entire operating region;
also the transient behavior of the error signal has similar characteristics over the entire operating region,
which further confirms the characteristics of linear velocity control when the inner-loop current control
uses the I-FCS predictive controller. There is also no overshoot in the velocity response. Figure 6.34(c)
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Figure 6.34 Experimental results for induction motor speed control using cascade I-FCS controller with step refer-
ence. Key: line (1): actual measurement; line (2): set-point signal. Sampling interval Δt = 80 × 10−6 sec, kd = kq =
0.15. (a) Velocity response, (b) Velocity error, and (c) isd and isq currents.

illustrates the responses of isd and isq currents. It is seen from this figure that the isd current maintains the
steady-state operation and there are small perturbations when the step changes in velocity occur. Current
isq closely follows the current reference signal i∗sq which is the control signal from the outer-loop velocity
PI controller. It is seen that the constraints on i∗sq become active during the step changes, which means
that the maximum and minimum currents are deployed to achieve the closed-loop response.

6.12.3.2 Ramp Reference Signal

This set of test signals is intended to demonstrate the acceleration, de-acceleration, braking and zero
speed operations. Figure 6.35(a) shows the closed-loop velocity response that follows a ramp refer-
ence signal for acceleration, steady-state operation, de-acceleration, braking and zero speed operations.
It is seen from this figure that the velocity response is smooth without oscillations. The error signal
given in Figure 6.35(b) indicates that there is steady-state error for the ramp reference signal, but no
steady-state error at the steady-state operation at 1400 RPM and at the zero speed operation. Because
there is only one integrator in the PI velocity controller, the steady-state error for the ramp reference signal
is expected. Figure 6.35(c) shows the isd and isq current responses. It is seen that the isd current maintains
the steady-state operation and the isq current follows the reference current signal i∗sq. It is interesting to
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Figure 6.35 Experimental results for induction motor speed control using cascade I-FCS controller with ramp
reference. Key: line (1): actual measurement; line (2): set-point signal. Sampling interval Δt = 80 × 10−6 sec,
kd = kq = 0.15. (a) Velocity response, (b) Velocity error, and (c) isd and isq currents.

note that with this set of velocity reference signals, the constraints on the isq currents are not violated,
that are not active. Because of the ramp velocity reference signals, the velocity changes slowly and it
does not require a large current amplitude in the transient response.

6.13 Summary
This chapter proposed the I-FCS predictive current control system as well as the velocity, position and
voltage control systems that use the I-FCS predictive controllers in a cascade feedback structure.

The traditional FCS predictive current controller uses an objective function with sum of absolute errors
for d − q currents. This kind of objective functions is conceptually simple, however, it does not readily
yield an analytical optimal solution, hence hinders further analysis. Instead, this chapter has seen that
with a sum of squared errors, the objective function for the traditional FCS predictive current controller
has a simple analytical solution, leading to a closed-loop feedback control system that is equivalent to an
optimal deadbeat control system. It is shown that without the limitations imposed on the control signals,
this closed-loop feedback discrete-time control system has its eigenvalue at the origin of the complex
plane.
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With the limitations imposed on the control signals where at any given sampling instant ti, there are
only seven pairs of candidate control signal values available for the implementation. The proposed FCS
predictive control scheme then selects the pair of control signal values that minimize the objective func-
tion measured by the distances from the optimal control signals and those candidate variables that are
available for implementation. The error signals between the optimal control signals and the implemented
control signals act as an input disturbance to the current control system, which results in variations of
the current control signals as observed in the measured outputs.

The original FCS predictive controllers do not contain integrators in the design. There are drawbacks
associated with the control systems without integral actions. One of the key problems is the steady-state
performance of the current control systems that is not guaranteed error free in its mean value. Further-
more, the steady-state errors may vary with the physical parameters of the current system, leading to
performance uncertainty. By considering the dynamics of the original FCS-MPC system as one sample
delayed system, an integral control term is added to the FCS predictive controller via a cascade structure.
Here, the choice of integral term is based on the selection of the closed-loop pole for the current con-
trol system in a simple fashion where the integral gain kd = 1 − pcl, and pcl is the desired discrete-time
closed-loop pole. For the implementation of the I-FCS predictive current controller, it is proposed to use
incremental variables so as to avoid the use of steady-state values and to simplify the implementation.

When velocity, position and voltage control systems are needed in the applications, the cascaded con-
trol systems follow the identical procedures discussed in the previous Chapters 3–5 where the inner-loop
current control is performed by the I-FCS predictive controller. However, because the I-FCS predic-
tive controllers are designed and implemented in discrete-time, the inner-loop closed-loop time constant
needs to be converted into its continuous-time equivalent form so as to quantify the unmodeled dynamics
from the current control system. In addition, the sampling interval for the velocity, position and voltage
control should be much larger in the cascade structure to reduce computational load.

The design parameters for the I-FCS predictive control systems are the sampling interval Δt and the
location of the closed-loop pole of the current control system. The selections of these parameters are
discussed below.

6.13.1 Selection of sampling interval Δt

The closed-loop performance of the current control system is dependent on the choice of sampling inter-
val Δt. In general, the smaller Δt is, the smaller variations of the currents id and iq will be. On the other
hand, a smaller sampling interval Δt will lead to a larger computational load and more power losses due
to the faster switching of the voltage inverters. A compromise should be reached between these factors.
The size of Δt required to achieve satisfactory performance is relative to the value of inductance, as the
ratios, Δt

Ld
and Δt

Lq
, appear as the dominant factors in the proportional gains and as the weights in the objec-

tive functions. These quantities indicate that for a larger inductance, a larger Δt may be used. One way to
determine the appropriate value of Δt to achieve satisfactory performance and to increase the economic
benefit of the control system via reduced computational cost and power losses is to evaluate the variance
of the current signals against the reduction of sampling interval Δt. One may also adapt the sampling
interval Δt in real time to achieve the balance.

6.13.2 Selection of the Integral Gain

The selection of integral gain is straightforward. As the integral gain is a complement of the desired
closed-loop pole (kd = 1 − pd), the larger the integral gain, the faster the closed-loop current response
will be. Because the current control system is in a fast sampling environment, the integral gain is recom-
mended to be between 0.05 to 0.2.
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6.14 Further Reading
The model predictive torque control was proposed in Geyer et al. (2009) and implemented in Papafotiou
et al. (2009). FCS-MPC method was used in controlling PMSM drive systems by Preindl and Bolognani
(2013a), Preindl and Bolognani (2013b) and Chai and Wang (2012). Dead-beat control design technique
was discussed in Kukrer (1996). Time-delay effects were examined in the application of FCS-MPC in
Cortes et al. (2012). Steady-state performance of finite control set method was discussed in Lezana et al.
(2009) and in Aguilera et al. (2013). Finite control set for active front end power converter was presented
in Cortes et al. (2008b) and Kouro et al. (2009). Predictive current control of a voltage source inverter
was proposed in Rodriguez et al. (2007) and extended to electric drives and power converters in Cortes
et al. (2008a). Predictive torque control of induction machines was discussed in Nemec et al. (2007)
and Correa et al. (2007). A comparative study was presented for current control of PMSM drives in
Morel et al. (2009). A book was written based on FCS-MPC system (see Rodriguez and Cortes (2012)).
In Goodwin et al. (2005), an approach to solve the problem caused by a limited number of candidate
variables is proposed using model predictive control.

Dead-beat control techniques were discussed in Gokhale et al. (1987), Kawabata et al. (1990), Male-
sani et al. (1999), Mohamed and EI-Saadany (2007) and Yang and Lee (2002). Geyer (2011) made
comparative studies of control and modulation schemes for medium-voltage drives between predictive
control concepts and PWM-based schemes.
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7
FCS Predictive Control in 𝛼 − 𝛽
Reference Frame

In the previous chapter, the FCS current controllers in the d − q reference frame have been designed for
PMSM, induction motor and a two-level grid connected power converter. In the d − q frame, the current
reference signals are constant or piece-wise constant. Therefore, proportional plus integral controllers
derived in the form of finite control set are appropriate to regulate the currents in the rotating d − q
reference frame.

In this chapter, we will investigate the finite control set (FCS) predictive control of current in the 𝛼 − 𝛽
reference frame (or the stationary frame). In the 𝛼 − 𝛽 reference frame, the currents i𝛼(t) and i𝛽 (t) are
linear combinations of the three phase currents ia(t), ib(t) and ic(t). Thus, they are sinusoidal functions,
and the voltage variables 𝑣𝛼(t) and 𝑣𝛽(t) are also sinusoidal functions. The current reference signals to
the FCS predictive control systems are sinusoidal signals, which differentiates the current control sys-
tems in the 𝛼 − 𝛽 reference frame from those in the d − q reference frame. As we have discussed in
Chapter 1, the mathematical models for AC motors and power converters in the 𝛼 − 𝛽 reference frame
are de-coupled. Therefore, it will be shown in this chapter that the original FCS predictive controllers are
single-input and single-output controllers with exceptionally simple forms. However, in order to track the
sinusoidal current reference signals without steady-state errors, a controller with resonant characteristic
is required in the 𝛼 − 𝛽 reference frame. In the case of electrical drive control, the frequency of the sinu-
soidal reference signals is dependent on the speed of the motor, which leads to time-varying frequency in
the resonant controller. In the case of power converter control, the frequency of the sinusoidal reference
signal is dependent on the grid frequency, which is assumed to be a constant, thus the frequency that is
embedded in the resonant controller is also a constant.

This chapter consists of four sections. Using current control of PMSM as an example, in Section 7.1,
the original FCS predictive control algorithm is presented in the 𝛼 − 𝛽 reference frame. In Section 7.2, a
resonant FCS predictive control system is proposed to track the sinusoidal reference signals in the 𝛼 − 𝛽
reference frame. The resonant FCS predictive control algorithm is applied to the current control of an
induction motor and a power converter in Section 7.3 and 7.4 respectively, both with experimental results.

7.1 FCS Predictive Current Control of PMSM
The original FCS predictive control of current in the 𝛼 − 𝛽 reference frame is designed identically to the
controller in the d − q reference frame. This means that the sum of squares errors between the current
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reference signals (i∗𝛼 , i∗
𝛽
) and the one-step ahead prediction of the current signals (i𝛼 , i𝛽) is minimized at

the sampling time ti to obtain the optimal voltage control signals (𝑣𝛼, 𝑣𝛽 ). The receding horizon control
principle is applied leading to feedback control.

7.1.1 Predictive Control Using One-step-ahead Prediction

From Chapter 1, the dynamic model of PMSM that relates the 𝛼-𝛽 voltages to the currents is described
by the differential equations:

di𝛼(t)
dt

= −
Rs

Ls

i𝛼(t) +
1
Ls

𝑣𝛼(t) +
𝜙mg

Ls

𝜔e(t) sin 𝜃e(t) (7.1)

di𝛽(t)
dt

= −
Rs

Ls

i𝛽(t) +
1
Ls

𝑣𝛽 (t) −
𝜙mg

Ls

𝜔e(t) cos 𝜃e(t). (7.2)

It is seen from this model that in the 𝛼 − 𝛽 reference frame, there is no interaction between the currents
i𝛼 and i𝛽 , which will effectively reduce the current controller in this reference frame to a single-input and
single- output controller. Similar to the procedures used in Chapter 6, to calculate the control variables,
at the sampling time ti, the objective function is chosen as sum of the squared errors between the desired
and the predicted signals:

J = (i∗𝛼(ti) − i𝛼(ti+1))
2 + (i∗

𝛽
(ti) − i𝛽(ti+1))

2

=
([

i∗𝛼(ti)
i∗
𝛽
(ti)

]

−
[

i𝛼(ti+1)
i𝛽(ti+1)

])T ([
i∗𝛼(ti)
i∗
𝛽
(ti)

]

−
[

i𝛼(ti+1)
i𝛽(ti+1)

])

, (7.3)

where i𝛼(ti+1) and i𝛽(ti+1) are one-step-ahead predictions of i𝛼(ti) and i𝛽 (ti), respectively. The
one-step-ahead predictions of the i𝛼(ti+1) and i𝛽(ti+1) are expressed in matrix and vector forms:

[
i𝛼(ti+1)
i𝛽(ti+1)

]

= (I + ΔtAm)
[

i𝛼(ti)
i𝛽(ti)

]

+ ΔtBm

[
𝑣𝛼(ti)
𝑣𝛽 (ti)

]

+
⎡
⎢
⎢
⎣

𝜙mg

Ls
𝜔e(ti) sin 𝜃e(ti)Δt

− 𝜙mg

Ls
𝜔e(ti) cos 𝜃e(ti)Δt

⎤
⎥
⎥
⎦

, (7.4)

where I is the identity matrix with dimension 2 × 2 and the system matrices Am and Bm are defined as

Am =

[
− Rs

Ls
0

0 − Rs

Ls

]

;Bm =

[ 1

Ls
0

0 1

Ls

]

.

By substituting the one-step-ahead prediction given by (7.4) into the objective function J (7.3), we obtain,

J =
[
f𝛼(ti) f𝛽(ti)

]
[

f𝛼(ti)
f𝛽 (ti)

]

− 2
[
𝑣𝛼(ti) 𝑣𝛽 (ti)

]
ΔtBT

m

[
f𝛼(ti)
f𝛼(ti)

]

+
[
𝑣𝛼(ti) 𝑣𝛽 (ti)

]
Δt2BT

mBm

[
𝑣𝛼(ti)
𝑣𝛽(ti)

]

, (7.5)

where the functions f𝛼(ti) and f𝛽 (ti) are defined as

[
f𝛼(ti)
f𝛽 (ti)

]

=
[

i∗𝛼(ti)
i∗
𝛽
(ti)

]

− (I + ΔtAm)
[

i𝛼(ti)
i𝛽 (ti)

]

−
⎡
⎢
⎢
⎣

𝜙mg

Ls
𝜔e(ti) sin 𝜃e(ti)Δt

− 𝜙mg

Ls
𝜔e(ti) cos 𝜃e(ti)Δt

⎤
⎥
⎥
⎦

. (7.6)
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Following the similar derivation steps outlined in Chapter 6, we obtain the optimal control signals 𝑣𝛼(ti)
and 𝑣𝛽(ti) that minimizes the objective function J:

[
𝑣𝛼(ti)opt

𝑣𝛽(ti)opt

]

= (Δt2BT
mBm)

−1ΔtBT
m

[
f𝛼(ti)
f𝛽(ti)

]

= 1
Δt

[
Ls 0
0 Ls

] [
f𝛼(ti)
f𝛽 (ti)

]

. (7.7)

Note that in the 𝛼 − 𝛽 reference frame, the system matrix Am is diagonal and there is no interaction
between the i𝛼 and i𝛽 currents. The calculations of 𝑣𝛼(ti)opt and 𝑣𝛽(ti)opt signals are scalar operations.
More specifically, since the matrix I + AmΔt is a diagonal having the form:

I + AmΔt =

[
1 − RsΔt

Ls
0

0 1 − RsΔt

Ls

]

,

from (7.7), we have

𝑣𝛼(ti)
opt =

Ls

Δt
i∗𝛼(ti) −

Ls

Δt

(

1 −
Rs

Ls

Δt

)

i𝛼(ti) − 𝜙mg𝜔e(ti) sin 𝜃e(ti) (7.8)

𝑣𝛽(ti)opt =
Ls

Δt
i∗
𝛽
(ti) −

Ls

Δt

(

1 −
Rs

Ls

Δt

)

i𝛽(ti) + 𝜙mg𝜔e(ti) cos 𝜃e(ti) (7.9)

where i∗𝛼(ti) and i∗
𝛽
(ti) are current reference signals in the 𝛼 − 𝛽 reference frame, and i𝛼(ti) and i𝛽 (ti),𝜔e(ti),

𝜃e(ti) are the electric velocity and angle of the PMSM. It is clearly seen that predictive controller uses a
proportional feedback control with a feedforward compensation. Furthermore, the feedback control gain
is dependent on the sampling interval of the current control system with the value

k𝛼fcs = k𝛽fcs =
Ls

Δt
(1 −

Rs

Ls

Δt). (7.10)

In order to ensure a negative feedback in the current control, the quantity 1 − Rs

Ls
Δt > 0, that is Rs

Ls
Δt < 1.

7.1.2 FCS Current Control in 𝛼 − 𝛽 Reference Frame

A similar approach to the FCS in the d − q reference frame is adopted to the FCS problem in the 𝛼 − 𝛽
reference frame. Following the same procedure as outlined in Chapter 6, it is easy to show that the
objective function J (7.5) can also be expressed in terms of the optimal voltage signals in the 𝛼 − 𝛽
reference frame as

J =
([
𝑣𝛼(ti)
𝑣𝛽(ti)

]

−
[
𝑣
𝛼(ti)opt

𝑣𝛽 (ti)opt

])T

(Δt2BT
mBm)

([
𝑣𝛼(ti)
𝑣𝛽(ti)

]

−
[
𝑣
𝛼(ti)opt

𝑣𝛽(ti)opt

])

= Δt2

L2
s

(𝑣𝛼(ti) − 𝑣𝛼(ti)
opt)2 + Δt2

L2
s

(𝑣𝛽(ti) − 𝑣𝛽(ti)
opt)2. (7.11)

With both objective function and the optimal control signals defined, the next step in the FCS predictive
control is to find the control signal 𝑣𝛼(ti) and 𝑣𝛽(ti) that will minimize the objective function subject to
the limited number of choices of voltage variables. In the 𝛼 − 𝛽 reference frame, there are seven pairs
of candidate voltage values, which are also time-invariant. Their exact values are characterized by the
values listed below: [

0 1 1

2
− 1

2
−1 − 1

2

1

2

0 0
√

3

2

√
3

2
0 −

√
3

2
−

√
3

2

]

2
3

Vdc. (7.12)
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In FCS current control proposed in the 𝛼 − 𝛽 reference frame, the seven pairs of 𝑣𝛼 and 𝑣𝛽 values from
(7.12) are used to evaluate the objective function (7.11). The pair of 𝑣𝛼 and 𝑣𝛽 that has yielded a minimum
of the objective function J will be chosen as the FCS current control signals in the 𝛼 − 𝛽 reference frame.

As we may recall, in the d − q reference frame, there are also seven candidate pairs that the 𝑣d(ti)
and 𝑣q(ti) are permitted to take. However, the candidate variables are sinusoidal functions with respect
to the electrical angle 𝜃e(t) (see (6.7)). Because the candidate variables in the 𝛼 − 𝛽 reference frame
are constants, in addition to the optimal voltage variables being scalars (see (7.8), (7.9)), the real-time
computational load for the control law is less than that in the d − q reference frame.

It is worthwhile to emphasize that because the reference signals in the 𝛼 − 𝛽 frame are sinusoidal
signals, the error signals i∗𝛼(t) − i𝛼(t) and i∗

𝛽
(t) − i𝛽(t) will not converge to zero as t → ∞. However, as the

sampling interval Δt reduces, then |i∗𝛼(t) − i𝛼(t)| and |i∗
𝛽
(t) − i𝛽(t)| will reduce as the feedback controller

gain Ls

Δt
(1 − Rs

Ls
Δt) increases.

7.1.3 Generating Current Reference Signals in 𝛼 − 𝛽 Frame

The reference signals to the FCS-MPC system in the 𝛼 − 𝛽 reference frame are sinusoidal signals in
which their frequency is determined by the electrical velocity of the PMSM, 𝜔e(t). In the applications,
the desired operational performance of a PMSM in a closed-loop current control is specified via the
desired values of id and iq currents. For instance, the desired value for id is chosen to be a constant and

αβ

dq Δt

1−
Rs

Ls

Ls

Δt

Ls

Δt

ϕmg ωe (ti) sin θe (ti)

ϕmg ωe (ti) cos θe (ti)

∗ v opt
β ( t i )

v opt
α ( t i )

iα (ti)

iβ (ti)

iβ (ti)

∗iα (ti)
∗id (ti)

∗iq (ti)

+

+

+

–

+

+

–

–

Figure 7.1 FCS-MPC in 𝛼 − 𝛽 frame.
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the iq current is related to the demanded electrical torque. The reference signals to the id and iq currents
are transparent to the applications and easy to choose. For these reasons, the reference signals to i𝛼 and
i𝛽 currents are calculated using the inverse Park transformation:

[
i∗𝛼(t)
i∗
𝛽
(t)

]

=
[

cos 𝜃e(t) − sin 𝜃e(t)
sin 𝜃e(t) cos 𝜃e(t)

] [
i∗d(t)
i∗q(t)

]

. (7.13)

If the reference signal i∗d(t) is chosen to be zero, then i∗𝛼(t) = − sin 𝜃e(t)i∗q(t), and i∗
𝛽
(t) = cos 𝜃e(t)i∗q(t).

Figure 7.1 shows the configuration of the feedback control system to generate the optimal control
signals 𝑣𝛼(t)opt and 𝑣𝛽 (t)opt.

7.2 Resonant FCS Predictive Current Control
The FCS predictive current controllers in the 𝛼 − 𝛽 reference frame can not completely eliminate the
steady-state errors in the id and iq current because it, in essence, is a proportional control. To reduce the
steady-state errors in the id and iq currents, the feedback errors i∗𝛼(t) − i𝛼(t) and i∗

𝛽
(t) − i𝛽 (t) in the current

control system need to be reduced.

7.2.1 Control System Configuration

It is known from the internal model control principle (Francis and Wonham (1975)) that in order for
the feedback control system to track a periodic signal, the signal generator needs to be embedded in the
controller. For the case of the current control in the 𝛼 − 𝛽 reference frame, because the reference current
signals are sinusoidal signals, the generator of a sinusoidal signal should be embedded in the feedback
control system so that the output current signals i𝛼(t) and i𝛽(t) would track their reference signals without
steady-state errors. In short, the controller should have a polynomial factor 1 − 2 cos𝜔dz−1 + z−2, which
is (1 − ej𝜔d z−1)(1 − e−j𝜔d z−1), contained in its denominator where 𝜔d is the discrete frequency of the
sinusoidal reference signal. In other words, there is a pair of complex poles contained in the controller,
where the locations of the poles are at e±j𝜔d on the complex plane.

The controller that has the capability to track a sinusoidal reference signal or to reject a sinusoidal
disturbance signal is called a resonant controller in the power electronics community or a repetitive
controller in a general control community. The resonant FCS current controller is proposed to have the
feedback structure as illustrated in Figure 7.2. In the proposed control system structure, the feedback
controllers k𝛼fcs and k𝛼fcs derived from the one-step-ahead prediction and optimization shown in (7.10)
are used in the inner-loops for fast dynamic response, while two resonant controllers are used in the
outer-loops to provide further compensations for the tracking errors between the reference and feedback
current signals in the 𝛼 − 𝛽 reference frame.

The frequency𝜔d is the discrete frequency, having the unit of radian. Assuming that a sinusoidal signal
has a period of T , with a sampling interval Δt, the number of samples within this period T is NT = T

Δt
.

The discrete frequency 𝜔d is calculated as

𝜔d = 2𝜋
NT

= 2𝜋Δt
T

.

Suppose that the electrical velocity of the motor is 1000 RPM and the sampling interval is Δt = 100 ×
10−6 sec. Then the frequency parameter 𝜔d is then

𝜔d = 2𝜋 × 1000 × Δt
60

= 0.0105.



242 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

*

Discrete
current
model

*

1−2 cos ω
d
 q
−1

 + q
−2

k
1
 + k

2
 q
−1

k
1
 + k

2
 q
−1

1−2 cos ω
d
 q
−1

 + q
−2

iα (ti)iα (ti)
kα

fcs

kβ
fcs

iβ (ti)iβ (ti)

++

+

–

+

–

––

Figure 7.2 Resonant FCS-MPC in 𝛼 − 𝛽 frame.

The frequency parameter 𝜔d is time varying when the motor velocity changes. However, when the sam-
pling interval Δt is small, this variation has a small effect on the locations of the complex poles in the
controller. Let us say that the motor velocity varies from 100 to 10 000 RPM. When Δt = 100 × 10−6

sec, the corresponding 𝜔d for 100 RPM is approximately 0.001 rad and for 10 000 RPM is 0.1047 rad.
The controller poles for the former case are approximately z1,2 = 0.999995 ± j0.001 and the latter case
approximately z1,2 = 0.9945 ± j0.1045.

7.2.2 Outer-loop Controller Design

In Chapter 6 (see Section 6.4), the one-step-ahead predictive controller for the inner-loop system was
shown to result in a closed-loop system with a transfer function z−1. The same procedure is applied here
to obtain the same result in the 𝛼 − 𝛽 reference frame. We leave the derivation of this result as an exercise.

With the inner-loop system modeled as a one sample delay (z−1), the task of designing the resonant
controller in the outer-loop becomes straightforward. Figure 7.3 illustrates the outer-loop system for
controlling current i𝛼 with the resonant controller and the inner-loop approximated by the transfer func-
tion z−1.

It is clearly seen that the closed-loop system from the reference signal I∗𝛼 (z) to I𝛼(z) is described by the
z-transfer function

I
𝛼(z)

I∗𝛼 (z)
=

k1z−1 + k2z−2

1 − 2 cos𝜔dz−1 + z−2 + k1z−1 + k2z−2
. (7.14)

This is a second order discrete-time system with two closed-loop poles. Thus, the two coefficients from
the resonant controller, k1 and k2, can be uniquely determined by using the technique of pole-assignment
controller design.

+

–

*Iα (z) Iα (z)k1 + k2 z
−1

1−2 cos ωd z
−1 + z−2 z−1

Figure 7.3 Outer-loop system with inner-loop approximated by a sample of time delay.
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For simplicity, in the first approach, assuming that the desired closed-loops are identical real poles,
denoted as 0 ≤ 𝜆 < 1, the desired closed-loop polynomial for the discrete system is given by

(1 − 𝜆z−1)2 = 1 − 2𝜆z−1 + 𝜆2z−2.

By comparing the desired closed-loop polynomial with the actual closed-loop polynomial given by the
denominator of (7.14), we obtain the following equalities:

k1 − 2 cos𝜔d = −2𝜆

k2 + 1 = 𝜆2.

These equalities lead to the solutions for the gains of the resonant controller where

k1 = 2 cos𝜔d − 2𝜆 (7.15)

k2 = 𝜆
2 − 1. (7.16)

The performance tuning parameter for the resonant FCS controller is the location of the pair of desired
discrete closed-loop poles 0 ≤ 𝜆 < 1. This parameter is selected in the design to reflect the closed-loop
bandwidth of the control system, depending on the quality of the current model and current sensor noise
level. A smaller 𝜆 corresponds to faster closed-loop response for the resonant FCS control system, which
on the other hand, may cause noise amplification and the resulting closed-loop system to be less robust.

If one wishes to use the closed-loop performance specification in continuous-time that closely cor-
responds to the underlying physical system, then the desired closed-loop polynomial is chosen as s2 +
2𝜉𝑤ns +𝑤2

n. For 𝜉 = 0.707 (or other damping coefficient less than one), the pair of continuous-time com-
plex poles are s1,2 = −𝜉𝑤n ± j𝑤n

√
1 − 𝜉2. With a sampling interval Δt, the pair of poles are converted

from continuous-time to discrete-time via the following relationships:

z1 = e−𝜉𝑤nΔt+j𝑤n

√
1−𝜉2Δt

z2 = e−𝜉𝑤nΔt−j𝑤n

√
1−𝜉2Δt.

The desired closed-loop polynomial in discrete-time, but having a direct relation to the underlying
continuous-time performance, becomes

(1 − e−𝜉𝑤nΔt+j𝑤n

√
1−𝜉2Δtz−1)(1 − e−𝜉𝑤nΔt−j𝑤n

√
1−𝜉2Δtz−1)

= 1 − 2e−𝜉𝑤nΔt cos(𝑤n

√
1 − 𝜉2Δt)z−1 + e−2𝜉𝑤nΔtz−2. (7.17)

When the desired closed-loop poles are selected this way, the coefficients of the resonant controller are
found by comparing the desired closed-loop polynomial (7.17) with the actual closed-loop polynomial
given by the denominator in (7.14):

k1 = 2 cos𝜔d − 2e−𝜉𝑤nΔt cos(𝑤n

√
1 − 𝜉2Δt)

k2 = e−2𝜉𝑤nΔt − 1,

where 𝑤n is the desired bandwidth for the closed-loop current control system specified in the
continuous-time.

7.2.3 Resonant FCS Predictive Control System

The control system shown in Figure 7.2 is the resonant control system without the constraints of using
the finite control set in the 𝛼 − 𝛽 frame. The resonant control algorithm for using the finite control set is
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an extension of the unconstrained control case. We will first summarize the algorithm, followed by its
derivation.

Algorithm 5 The resonant FCS control signals in the 𝛼 − 𝛽 reference frame at sampling time ti, 𝑣𝛼(ti)
and 𝑣𝛽(ti), are found by finding the minimum of the objective function J with respect to the index k,

J = Δt2

L2
s

(𝑣𝛼(ti)k − 𝑣𝛼(ti)opt)2 + Δt2

L2
s

(𝑣𝛽 (ti)k − 𝑣𝛽(ti)opt)2, (7.18)

where the values of 𝑣𝛼(ti)k and 𝑣𝛽(ti)k (k = 0, 1, 2, … , 6) are given by the finite control set,

[
0 1 1

2
− 1

2
−1 − 1

2

1

2

0 0
√

3

2

√
3

2
0 −

√
3

2
−

√
3

2

]

2
3

Vdc

and the signals 𝑣𝛼(ti)opt and 𝑣𝛽 (ti)opt are computed recursively using the following equations:

𝑣𝛼(ti)
opt = 2 cos𝜔d𝑣𝛼(ti−1)

opt − 𝑣𝛼(ti−2)
opt + 𝑣𝛼(ti)

sopt (7.19)

𝑣𝛼(ti)sopt = k𝛼fcs[k1(i∗𝛼(ti) − i𝛼(ti)) + k2(i∗𝛼(ti−1) − i𝛼(ti−1))

− (i𝛼(ti) − 2 cos𝜔di𝛼(ti−1) + i𝛼(ti−2))] (7.20)

𝑣𝛽(ti)
opt = 2 cos𝜔d𝑣𝛽 (ti−1)

opt − 𝑣𝛽(ti−2)
opt + 𝑣𝛽 (ti)

sopt (7.21)

𝑣𝛽(ti)
sopt = k𝛽fcs[k1(i

∗
𝛽
(ti) − i𝛽 (ti)) + k2(i

∗
𝛽
(ti−1) − i𝛽 (ti−1))

− (i𝛽 (ti) − 2 cos𝜔di𝛽(ti−1) + i𝛽(ti−2))]. (7.22)

The feedback control gains used in the computation are defined as:

k𝛼fcs = k𝛽fcs =
Ls

Δt

(

1 −
Rs

Ls

Δt

)

(7.23)

k1 = 2 cos𝜔d − 2𝜆 (7.24)

k2 = 𝜆2 − 1. (7.25)

0 ≤ 𝜆 < 1 is the desired closed-loop pole location for the current control system.

To derive how the control signals are chosen in the presence of constraints, we will resort to the solu-
tion via predictive control. Consider the difference equations that describe the currents i𝛼 and i𝛽 at the
sampling time ti:

i𝛼(ti+1) =
(

1 −
Rs

Ls

Δt

)

i𝛼(ti) +
Δt
Ls

𝑣𝛼(ti) +
𝜙mg

Ls

Δt𝜔e(ti) sin(𝜃e(ti)) (7.26)

i𝛽(ti+1) =
(

1 −
Rs

Ls

Δt

)

i𝛽 (ti) +
Δt
Ls

𝑣𝛽(ti) −
𝜙mg

Ls

Δt𝜔e(ti) cos 𝜃e(ti). (7.27)

Because there is no interaction between the variables in the 𝛼 − 𝛽 reference frame, for simplicity, only
the prediction for i𝛼 is considered, and the results will extend naturally to the variable i𝛽 .

Define the operator D(q−1) as

D(q−1) = 1 − 2 cos𝜔dq−1 + q−2,
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with q−1 as the backward shift operator q−1f (ti) = f (ti−1). When the operator D(q−1) is applied to
sin(𝜃e(ti)), we obtain the result that

D(q−1) sin(𝜃e(ti)) = 0. (7.28)

To prove this relation is true, we note that

sin 𝜃e(ti) = sin𝜔eti = sin
(𝜔d

Δt
kiΔt

)

= sin(𝜔dki)

also,

sin(𝜔dki) =
ej𝜔dki − e−j𝜔dki

2j

D(q−1) = 1 − 2 cos𝜔dq−1 + q−2 = (1 − ej𝜔d q−1)(1 − e−j𝜔d q−1),

since

(1 − ej𝜔d q−1)ej𝜔dki = ej𝜔dki − ej𝜔d ej𝜔d (ki−1) = 0

(1 − e−j𝜔d q−1)e−j𝜔dki = e−j𝜔dki − e−j𝜔d e−j𝜔d (ki−1) = 0.

Therefore,

D(q−1) sin(𝜃e(ti)) = (1 − ej𝜔d q−1)(1 − e−j𝜔d q−1) ej𝜔dki − e−j𝜔dki

2j
= 0,

where we have used the backward shift relationship:

q−1ej𝜔dki = ej𝜔d (ki−1); q−1e−j𝜔dki = e−j𝜔d (ki−1).

By assuming that the electrical velocity 𝜔e as a constant (say in steady-state operation), the last term of
(7.26) vanishes when the operator D(z−1) is applied to it. This conclusion is important because this last
term is considered sinusoidal disturbance, which would be used as a feedforward compensation in the
original FCS-MPC system. With the resonant FCS predictive controller, this feedforward compensation
is no longer required.

Now, applying the operator D(q−1) to both sides of (7.26) yields

i𝛼(ti+1)
s =

(

1 −
Rs

Ls

Δt

)

i𝛼(ti)
s + Δt

Ls

𝑣𝛼(ti)
s, (7.29)

where

i𝛼(ti+1)
s = D(q−1)i𝛼(ti+1) (7.30)

i𝛼(ti)
s = D(q−1)i𝛼(ti) (7.31)

𝑣𝛼(ti)
s = D(q−1)𝑣𝛼(ti). (7.32)

The variables i𝛼(ti)s and 𝑣𝛼(ti)s are the filtered current and voltage signals with the denominator of the
resonant controller.

To include the resonant action into the controller, the weighted current errors

e𝛼(ti) = k1(i
∗
𝛼(ti) − i𝛼(ti)) + k2(i

∗
𝛼(ti−1) − i𝛼(ti−1))

is chosen as the steady-state of the i𝛼(ti)s, where k1 and k2 are given by (7.24) and (7.25). The steady-state
of 𝑣𝛼(ti)s is chosen to be zero. Subtracting the steady-state from the model (7.29) gives:

i𝛼(ti+1)
s − e𝛼(ti) =

(

1 −
Rs

Ls

Δt

)

(i𝛼(ti)
s − e𝛼(ti)) +

Δt
Ls

𝑣𝛼(ti)
s. (7.33)
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After applying the same procedure to the 𝛽-axis current, we obtain the formula for the i𝛽 variable as

i𝛽(ti+1)
s − e𝛽 (ti) =

(

1 −
Rs

Ls

Δt

)

(i𝛽(ti)
s − e𝛽(ti)) +

Δt
Ls

𝑣𝛽(ti)
s, (7.34)

where e𝛽(ti) = k1(i∗𝛽(ti) − i𝛽(ti)) + k2(i∗𝛽(ti−1) − i𝛽(ti−1)).
The control objective is to minimize the error function J, where

J =
[

i𝛼(ti+1)s − e𝛼(ti)
i𝛽 (ti+1)s − e𝛽(ti)

]T [
i𝛼(ti+1)s − e𝛼(ti)
i𝛽 (ti+1)s − e𝛽(ti)

]

, (7.35)

which is to regulate the filtered current signals i𝛼(ti+1)s, i𝛽 (ti+1)s to be as close as possible to e𝛼(ti) and
e𝛽(ti).

By substituting (7.33) and (7.34) into (7.35), and following the same derivation procedure as outlined
in Section 6.6, it can be shown that the optimal solutions of 𝑣𝛼(ti)s and 𝑣𝛽(ti)s that will minimize the
objective function (7.35) are given by

𝑣𝛼(ti)
sopt = k𝛼fcs(e𝛼(ti) − i𝛼(ti)

s) (7.36)

𝑣𝛽(ti)
sopt = k𝛽fcs(e𝛽(ti) − i𝛽(ti)

s), (7.37)

where the feedback controller gains are defined as

k𝛼fcs = k𝛽fcs =
Ls

Δt

(

1 −
Rs

Ls

Δt

)

. (7.38)

Furthermore, the objective function J can be expressed via completing squares as

J = Δt2

L2
s

(𝑣𝛼(ti)s − 𝑣𝛼(ti)sopt)2 + Δt2

L2
s

(𝑣𝛽 (ti)s − 𝑣𝛽(ti)sopt)2. (7.39)

Now, note that 𝑣𝛼(ti)s, 𝑣𝛼(ti)sopt, 𝑣𝛽 (ti)s, 𝑣𝛽(ti)sopt are filtered voltage variables. Thus, by definition of the
filtered control signals, the following relationships are true:

𝑣𝛼(ti)
opt =

𝑣
𝛼(ti)sopt

1 − 2 cos𝜔dq−1 + q−2

𝑣𝛽 (ti)
opt =

𝑣𝛽 (ti)sopt

1 − 2 cos𝜔dq−1 + q−2
,

which leads to the expressions of 𝑣𝛼(ti)sopt and 𝑣𝛽 (ti)sopt in a recursive manner:

𝑣𝛼(ti)sopt = 𝑣𝛼(ti)opt − 2 cos𝜔d𝑣𝛼(ti−1)opt + 𝑣𝛼(ti−2)opt (7.40)

𝑣
𝛽 (ti)

sopt = 𝑣𝛽 (ti)
opt − 2 cos𝜔d𝑣𝛽(ti−1)

opt + 𝑣𝛽(ti−2)
opt. (7.41)

By calculating the actual filtered control signals using the same past optimal control signal states, we
obtain

𝑣𝛼(ti)s = 𝑣𝛼(ti) − 2 cos𝜔d𝑣𝛼(ti−1)opt + 𝑣𝛼(ti−2)opt (7.42)

𝑣𝛽 (ti)
s = 𝑣𝛽(ti) − 2 cos𝜔d𝑣𝛽(ti−1)

opt + 𝑣𝛽 (ti−2)
opt. (7.43)

Substituting the filtered variables (7.40)–(7.43) into the objective function (7.39) yields

J = Δt2

L2
s

(𝑣𝛼(ti) − 𝑣𝛼(ti)
opt)2 + Δt2

L2
s

(𝑣𝛽 (ti) − 𝑣𝛽 (ti)
opt)2. (7.44)
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With the finite control set, the derived objective function here is identical to the one used in the Algorithm
5 (see (7.18)). This completes the derivation of the resonant FCS control algorithm.

It is emphasized that the resonant FCS control Algorithm 5 used the past optimal control signal states
(𝑣𝛼(ti−1)opt, 𝑣𝛼(ti−2)opt) together with the current (𝑣𝛼(ti)) to predict the filtered 𝑣𝛼(ti)s. If the past imple-
mented control signal states (𝑣𝛼(ti−1), 𝑣𝛼(ti−2)) were used in the prediction, then it could result in accu-
mulated errors from the finite control set and lead to steady-state errors in the resonant FCS control
system.

7.3 Resonant FCS Current Control of Induction Motor
In this section, we will discuss the FCS predictive control of induction motor in the 𝛼 − 𝛽 reference frame.
The control algorithms are similar to those derived for the PMSM and they will be briefly summarized
as the original FCS current control and the resonant current control. Experimental results will be used to
demonstrate the algorithms.

7.3.1 The Original FCS Current Control of Induction Motor

The mathematical model of the induction motor in the 𝛼 − 𝛽 reference frame is governed by the following
differential equations (see Section 1.5):

dis𝛼(t)
dt

= − 1
𝜏′𝜎

is𝛼(t) +
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛼(t) +
kr

r𝜎𝜏
′
𝜎

𝜔e(t)𝜓r𝛽(t) +
1

r𝜎𝜏
′
𝜎

us𝛼(t) (7.45)

dis𝛽 (t)
dt

= − 1
𝜏 ′𝜎

is𝛽 (t) −
kr

r𝜎𝜏
′
𝜎

𝜔e(t)𝜓r𝛼(t) +
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛽(t) +
1

r𝜎𝜏
′
𝜎

us𝛽(t). (7.46)

In this model, the motor velocity 𝜔e(t) and the rotor fluxes in the 𝛼 and 𝛽 reference frame (𝜓r𝛼(t), 𝜓r𝛽(t))
are considered as disturbances to the current control system. In the 𝛼 − 𝛽 reference frame, the fluxes are
sinusoidal functions.

The one-step predictions are expressed in matrix and vector form by using first order approximations
in the model equations (7.45) and (7.46)

[
is𝛼(ti+1)
is𝛽(ti+1)

]

= (I + ΔtAm)
[

i𝛼(ti)
i𝛽 (ti)

]

+ ΔtBm

[
us𝛼(ti)
us𝛽(ti)

]

+ Δt

[ kr

r𝜎 𝜏
′
𝜎𝜏r
𝜓r𝛼(ti) +

kr

r𝜎 𝜏
′
𝜎

𝜔e(ti)𝜓r𝛽(ti)
− kr

r𝜎𝜏
′
𝜎

𝜔e(ti)𝜓r𝛼(ti) +
kr

r𝜎𝜏
′
𝜎𝜏r
𝜓r𝛽(ti)

]

, (7.47)

where I is a 2 × 2 identity matrix and the system matrices Am and Bm are defined as

Am =

[
− 1

𝜏′𝜎
0

0 − 1

𝜏′𝜎

]

; Bm =

[ 1

r𝜎 𝜏
′
𝜎

0

0 1

r𝜎𝜏
′
𝜎

]

.

The final term in (7.47) is the disturbance that could be used in the feedforward compensation if the rotor
fluxes were estimated.

The objective function selected for calculating the control variables at sampling time ti, is given by

J =
[

i∗s𝛼(ti) − is𝛼(ti+1)
i∗s𝛽(ti) − is𝛽(ti+1)

]T [
i∗s𝛼(ti) − is𝛼(ti+1)
i∗s𝛽 (ti) − is𝛽 (ti+1)

]

, (7.48)
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where is𝛼(ti+1) and is𝛽 (ti+1) are the one-step-ahead predictions of is𝛼(ti) and is𝛽 (ti), respectively. Substitut-
ing the one-step-ahead prediction (7.47) into the objective function J (7.48) leads to

J =
[
f𝛼(ti) f𝛽(ti)

]
[

f𝛼(ti)
f𝛽 (ti)

]

− 2
[
us𝛼(ti) us𝛽(ti)

]
ΔtBT

m

[
f𝛼(ti)
f𝛼(ti)

]

+
[
us𝛼(ti) us𝛽(ti)

]
Δt2BT

mBm

[
us𝛼(ti)
us𝛽 (ti)

]

, (7.49)

where the auxiliary functions f𝛼(ti) and f𝛽 (ti) are defined as:

[
f𝛼(ti)
f𝛽(ti)

]

=
[

i∗s𝛼(ti)
i∗s𝛽 (ti)

]

− (I + ΔtAm)
[

is𝛼(ti)
is𝛽 (ti)

]

− Δt

[ kr

r𝜎 𝜏
′
𝜎𝜏r
𝜓r𝛼(ti) +

kr

r𝜎 𝜏
′
𝜎

𝜔e(ti)𝜓r𝛽(ti)
− kr

r𝜎𝜏
′
𝜎

𝜔e(ti)𝜓r𝛼(ti) +
kr

r𝜎𝜏
′
𝜎𝜏r
𝜓r𝛽(ti)

]

. (7.50)

The optimal control signals us𝛼(ti) and us𝛽(ti) that minimize the objective function J are computed as:

[
us𝛼(ti)opt

us𝛽 (ti)opt

]

= (Δt2BT
mBm)

−1ΔtBT
m

[
f𝛼(ti)
f𝛽 (ti)

]

= 1
Δt

[
r𝜎𝜏

′
𝜎 0

0 r𝜎𝜏
′
𝜎

] [
f𝛼(ti)
f𝛽 (ti)

]

. (7.51)

Note that in the 𝛼 − 𝛽 reference frame, the system matrix Am is diagonal and there is no interaction
between current is𝛼 and is𝛽 . Thus the calculations of optimal control signals uopt

s𝛼 and uopt
s𝛽 are scalar oper-

ation. Since the matrix I + AmΔt is a diagonal having the form:

I + AmΔt =

[
1 − Δt

𝜏′𝜎
0

0 1 − Δt

𝜏′𝜎

]

,

from (7.51), the optimal control signals are obtained as:

us𝛼(ti)
opt =

r𝜎𝜏
′
𝜎

Δt
i∗s𝛼(ti) −

r𝜎𝜏
′
𝜎

Δt

(

1 − Δt
𝜏 ′𝜎

)

is𝛼(ti) −
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛼(ti)

−
kr

r𝜎𝜏
′
𝜎

𝜔e(ti)𝜓r𝛽(ti) (7.52)

us𝛽 (ti)
opt =

r
𝜎𝜏

′
𝜎

Δt
i∗s𝛽 (ti) −

r
𝜎𝜏

′
𝜎

Δt

(

1 − Δt
𝜏 ′𝜎

)

is𝛽(ti) +
kr

r𝜎𝜏
′
𝜎

𝜔e(ti)𝜓r𝛼(ti)

−
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛽(ti), (7.53)

where i∗s𝛼(ti) and i∗s𝛽 (ti) are current reference signals in the 𝛼 − 𝛽 reference frame, 𝜔e(ti), is𝛼(ti) and is𝛽(ti)
are from the measurement at sampling time ti, 𝜓r𝛼(ti) and 𝜓r𝛽(ti) are estimated based on the model
equations as

𝜓r𝛼(ti) = 𝜓r𝛼(ti−1) + Δt

(
Lh

𝜏r

)

is𝛼(ti−1) −
1
𝜏r

𝜓r𝛼(ti−1)

−𝜔e(ti−1)𝜓r𝛽(ti−1)) (7.54)
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𝜓r𝛽(ti) = 𝜓r𝛽(ti−1) + Δt

(
Lh

𝜏r

)

is𝛽 (ti−1) + 𝜔e(ti−1)𝜓r𝛼(ti−1)

− 1
𝜏r

𝜓r𝛽(ti−1)). (7.55)

It is clearly seen that the rotor fluxes in the 𝛼 − 𝛽 reference frame are sinusoidal functions because the
stator current signals is𝛼(t) and is𝛽 (t) are sinusoidal functions.

The feedback control gains (see 7.52 and 7.53) are dependent on the sampling interval Δt of the current
control system with the equal value

k𝛼fcs = k𝛽fcs =
r𝜎𝜏

′
𝜎

Δt

(

1 − Δt
𝜏 ′𝜎

)

. (7.56)

In order to ensure a negative feedback in the current control, the quantity 1 − Δt

𝜏′𝜎
> 0, that is Δt

𝜏′𝜎
< 1, the

sampling time has to be smaller than the current model time constant 𝜏 ′𝜎 .
Since the voltage control variables have limited values, the optimal control signals given in (7.52) and

(7.53) are not exactly realized, thus, the objective function J needs to be further minimized. Following
the same derivation procedure outlined in Section 6.4, the objective function (7.49) is expressed as

J =
([

us𝛼(ti)
us𝛽 (ti)

]

−
[

us𝛼(ti)opt

us𝛽(ti)opt

])T

(Δt2BT
mBm)

([
us𝛼(ti)
us𝛽 (ti)

]

−
[

us𝛼(ti)opt

us𝛽(ti)opt

])

= Δt2

(r𝜎𝜏 ′𝜎)2
(us𝛼(ti) − us𝛼(ti)

opt)2 + Δt2

(r𝜎𝜏 ′𝜎)2
(us𝛽 (ti) − us𝛽 (ti)

opt)2, (7.57)

where us𝛼(ti) and us𝛽 (ti) are the pair of control signals to be selected among the seven pair of candidate
variables.

For induction motor control, the candidate variables are in identical forms to those used in the PMSM
control, whose values are restricted to the following seven pairs:

[
0 1 1

2
− 1

2
−1 − 1

2

1

2

0 0
√

3

2

√
3

2
0 −

√
3

2
−

√
3

2

]

2
3

Vdc. (7.58)

It is seen that once the voltage from the power supply Vdc is determined, the candidate variables are
time-invariant. Because the candidate variables in the 𝛼 − 𝛽 reference frame are constants, in addition to
the optimal voltage variables being scalars, the real-time computational load for the control law is less
than that in the d − q reference frame.

Figure 7.4 shows the configuration of the feedback control system to generate optimal control signals
us𝛼(t)opt and us𝛽(t)opt when using the proportional feedback and feedforward compensations.

From this figure it is seen that the original FCS predictive controller in the 𝛼 − 𝛽 reference frame is a
proportional controller with feedforward compensation. Because the reference signals in the 𝛼 − 𝛽 frame
are sinusoidal signals, the proportional controller will not completely eliminate the steady-state errors in
the closed-loop control systems. Furthermore, the steady-state errors reduce as the feedback controller
gain

r𝜎𝜏
′
𝜎

Δt
(1 − Δt

𝜏′𝜎
) increases which can be achieved by reducing the sampling interval Δt.

The reference signals to the FCS current control in the 𝛼 − 𝛽 reference signals are sinusoidal signals
in which their frequency is determined by the synchronous velocity of the induction motor 𝜔s(t). As
explained in Section 1.5, the stator current signals in the d − q reference frame are DC signals, there-
fore, their reference signals are constant or piece-wise constant, which are easier to specify. Therefore,
similar to the PMSM applications, the desired operational performance in a closed-loop current control
is specified via the desired reference values of stator currents i∗sd and i∗sq in the d − q reference frame. For

instance, the desired value for i∗sd is chosen related to the rotor flux as
𝜓∗

rd

Lh
and the i∗sq current is related to
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Figure 7.4 FCS-MPC in 𝛼 − 𝛽 frame.

required electromagnetic torque. With stator current reference signals specified, the reference signals to
i∗s𝛼 and i∗s𝛽 currents are calculated using the inverse Park transformation:

[
i∗s𝛼(t)
i∗s𝛽 (t)

]

=
[

cos 𝜃s(t) − sin 𝜃s(t)
sin 𝜃s(t) cos 𝜃s(t)

] [
i∗sd(t)
i∗sq(t)

]

. (7.59)

7.3.2 Resonant FCS Predictive Current Control of Induction Motor

The resonant controller for current control of an induction motor has a polynomial factor of
1 − 2 cos(𝜔d(t))z−1 + z−2, which is (1 − ej𝜔d (t)z−1)(1 − e−j𝜔d (t)z−1), where 𝜔d(t) is the discrete frequency
of the sinusoidal reference signal that is dependent on the synchronous system’s 𝜔s(t). The resonant
FCS current controller is proposed to have the feedback structure as illustrated in Figure 7.5. In the
proposed control system structure, the feedback controllers k𝛼fcs and k𝛼fcs derived from the one-step-ahead
prediction are calculated using

k𝛼fcs = k𝛽fcs =
r𝜎𝜏

′
𝜎

Δt

(

1 − Δt
𝜏 ′𝜎

)

.
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Figure 7.5 Resonant FCS-MPC in 𝛼 − 𝛽 frame.

These two proportional controllers are located in the inner-loops for fast dynamic response with a fast
sampling rate, while two resonant controllers are used in the outer-loops to provide further compensations
for the tracking errors between the reference and feedback current signals in the 𝛼 − 𝛽 reference frame.
Note that with the resonant controllers, the feedforward compensation terms in the original FCS current
controller are no longer required as the controllers have the capability to completely reject the sinusoidal
disturbances caused by the rotor fluxes. Thus the estimation of the rotor fluxes in the 𝛼 − 𝛽 reference
frame is avoided and so too are the associated estimation errors.

The frequency 𝜔d(t) is the discrete frequency, which has the unit of radian per sample interval. Unlike
the PMSM, the frequency 𝜔d is the discrete frequency of the synchronous frequency 𝜔s. For example,
if the synchronous velocity of the induction motor is 𝜔s = 200 rad/s, and the sampling interval is Δt =
20 μs, then the discrete frequency is

𝜔d = 𝜔s × Δt = 0.004 rad.

The frequency parameter 𝜔d is time-varying when the synchronous velocity changes. However, when
the sampling interval Δt is small, this variation has a small effect on the locations of the complex poles
in the controller.

The design of the resonant controller is identical to that used in the application of PMSM control (see
Section 7.2), where the coefficients of the resonant controller are calculated as

k1 = 2 cos𝜔d − 2𝜆

k2 = 𝜆
2 − 1,

where 0 ≤ 𝜆 < 1 is the desired discrete closed-loop pole location for the current control system, or

k1 = 2 cos𝜔d − 2e−𝜉𝑤nΔt cos(𝑤n

√
1 − 𝜉2Δt)

k2 = e−2𝜉𝑤nΔt − 1,

where 𝜉 = 0.707 and 𝑤n is the desired bandwidth for the closed-loop current control system specified in
the continuous-time.
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Figure 7.5 shows the configuration of the resonant FCS current control system in the 𝛼 − 𝛽 reference
frame. The implementation of the resonant FCS predictive controller is summarized below. The deriva-
tion of this algorithm follows a similar procedure presented in the resonant FCS predictive control of
PMSM (see Section 7.2.3).

Algorithm 6 The resonant FCS control signals in the 𝛼 − 𝛽 reference frame at sampling time ti, us𝛼(ti)
and us𝛽(ti), are found by finding the minimum of the objective function J with respect to the index k,

J = Δt2

(r𝜎𝜏 ′𝜎)2
(us𝛼(ti)

k − us𝛼(ti)
opt)2 + Δt2

(r𝜎𝜏 ′𝜎)2
(us𝛽(ti)

k − us𝛽 (ti)
opt)2,

where the values of us𝛼(ti)k and us𝛽 (ti)k (k = 0, 1, 2, … , 6) are given by the finite control set,
[

0 1 1

2
− 1

2
−1 − 1

2

1

2

0 0
√

3

2

√
3

2
0 −

√
3

2
−

√
3

2

]

2
3

Vdc

and the signals us𝛼(ti)opt and us𝛽(ti)opt are computed recursively using the following equations:

us𝛼(ti)opt = 2 cos𝜔dus𝛼(ti−1)opt − us𝛼(ti−2)opt + us𝛼(ti)sopt (7.60)

us𝛼(ti)
sopt = k𝛼fcs[k1(i

∗
s𝛼(ti) − is𝛼(ti)) + k2(i

∗
s𝛼(ti−1) − is𝛼(ti−1))

− (is𝛼(ti) − 2 cos𝜔dis𝛼(ti−1) + is𝛼(ti−2))] (7.61)

us𝛽(ti)
opt = 2 cos𝜔dus𝛽(ti−1)

opt − us𝛽(ti−2)
opt + us𝛽 (ti)

sopt (7.62)

us𝛽 (ti)
sopt = k𝛽fcs[k1(i

∗
s𝛽(ti) − is𝛽(ti)) + k2(i

∗
s𝛽 (ti−1) − is𝛽 (ti−1))

− (is𝛽 (ti) − 2 cos𝜔dis𝛽 (ti−1) + is𝛽(ti−2))]. (7.63)

The feedback control gains used in the computation are defined as:

k𝛼fcs = k𝛽fcs =
r
𝜎𝜏

′
𝜎

Δt
(1 − Δt

𝜏 ′𝜎
) (7.64)

k1 = 2 cos𝜔d − 2𝜆 (7.65)

k2 = 𝜆
2 − 1. (7.66)

0 ≤ 𝜆 < 1 is the desired closed-loop pole location for the current control system.

7.3.3 Experimental Evaluations of Resonant FCS Predictive Control

There are two sets of experimental evaluation results presented in this section. One is the original FCS
predictive control of induction motor while the other is the resonant FCS predictive control. Both eval-
uations use the same motor parameters and the same sampling interval where Δt = 80 × 10−6 sec. With
the motor parameters and the sampling interval, the proportional controller gains are calculated as

k𝛼fcs = k𝛽fcs = 1310.3.

In the experiments, the reference signals i∗s𝛼 and i∗s𝛽 are calculated using the inverse Park Transform

[
i∗s𝛼(t)
i∗s𝛽 (t)

]

=
[

cos 𝜃s(t) − sin 𝜃s(t)
sin 𝜃s(t) cos 𝜃s(t)

] [
i∗sd(t)
i∗sq(t)

]

, (7.67)

where the reference signal to the d-axis stator current i∗sd is 0.8772 A, and the reference signal to the
q-axis stator current i∗sq is 0 A for an initial period and a step change to 1.5 A. The induction motor has
an unknown load disturbance.
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7.3.3.1 Results from the Original FCS Predictive Current Control

The experimental results of the original FCS predictive control in the 𝛼 − 𝛽 reference frame are shown
in Figure 7.6 (a)–(c). In Figure 7.6(a), the stator currents, is𝛼 and is𝛽 , are shown to track the sinusoidal
reference signals and these signals are converted to their corresponding current signals in the d − q ref-
erence frame as seen in Figure 7.6(b). The frequency analysis of the A-phase current is performed and
its magnitude is presented in Figure 7.6(c). With respect to this set of physical parameters and the selec-
tion of sampling interval Δt, the tracking errors in both 𝛼 − 𝛽 reference frame and the d − q reference
frame are very small, not obvious from reading of the graphs. Indeed, the mean error between i∗s𝛼 and
is𝛼 is −1.5 × 10−3 A and the one between i∗s𝛽 and is𝛽 is −1.3 × 10−3 A, which are quite small. It may be
concluded from this test environment that the original FCS predictive current control system produces
a relatively small steady-state error for this choice of sampling interval. However, further tests need to
be conducted for performance robustness. It is envisaged that the closed-loop performance will degrade
when the physical parameters are varying and a larger load is added.
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Figure 7.6 Experimental results of current control using the original FCS-MPC scheme in 𝛼 − 𝛽 reference frame.
Δt = 80 μs. Key: line (1) Actual feedback; line (2) set-point signal. (a) Stator current response in 𝛼 − 𝛽 reference
frame, (b) Stator current response in d − q reference frame, and (c) Amplitude of the frequency response of A phase
current.
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Figure 7.7 Experimental results of current control using the resonant FCS-MPC scheme in 𝛼 − 𝛽 reference frame.
Δt = 80 μs. The closed-loop poles for the resonant controller are located at 0.92. Key: line (1) Actual feedback; line
(2) set-point signal. (a) Stator current response in 𝛼 − 𝛽 reference frame, (b) Stator current response in d − q reference
frame, and (c) Amplitude of the frequency response of A phase current.
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Figure 7.8 Comparison of open-loop response of the motor speed.
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7.3.3.2 Results from the Resonant FCS Predictive Current Control

The experimental results of the resonant FCS predictive control system are shown in Figures 7.7(a)–(c).
In Figure 7.7(a), it is seen that the stator currents in the 𝛼 − 𝛽 reference frame track their sinusoidal
current reference signals, and in Figure 7.7(b), the corresponding current signals are shown in the d − q
reference frame. Figure 7.7(c) shows the magnitude of the frequency response of A phase current. All
three figures confirm that the resonant FCS current control system provides a satisfactory closed-loop
performance. The mean error between i∗s𝛼 and is𝛼 is −1.2358 × 10−4 A and the one between i∗s𝛽 and is𝛽 is
−2.2802 × 10−4 A, which are about 10 percent of the mean errors produced by the original FCS predictive
controller. Furthermore, by comparing the open-loop velocity responses as shown in Figure 7.8, it is seen
that the two FCS current control schemes result in different motor velocity responses, particularly in the
steady-state. For the original FCS current controller, the steady-state speed is about 522 RPM and for
the resonant FCS current controller, the steady-state speed is about 548 RPM, which is a higher speed
given all other physical conditions being identical. This could mean that by regulating the steady-state
current responses closer to the desired reference signals, the induction motor has an improved efficiency
in operation.

7.4 Resonant FCS Predictive Power Converter Control
In this section, we will firstly discuss the original FCS predictive current control of a power converter
in the 𝛼 − 𝛽 reference frame, secondly propose the resonant FCS predictive control of power converter,
and thirdly present the experimental evaluation results of both control schemes.

7.4.1 FCS Predictive Current Control of Power Converter

The mathematical model of a power converter in the stationary frame is described by

di𝛼(t)
dt

= −
Rs

Ls

i𝛼(t) −
1
Ls

𝑣𝛼(t) +
1
Ls

E𝛼(t) (7.68)

di𝛽 (t)
dt

= −
Rs

Ls

i𝛽(t) −
1
Ls

𝑣𝛽 (t) −
1
Ls

E𝛽(t) (7.69)

d𝑣dc(t)
dt

= 3
4C

(S𝛼(t)i𝛼(t) + S𝛽(t)i𝛽(t)) − iL, (7.70)

where E𝛼 and E𝛽 are the stationary frame grid voltages, and i𝛼(t) and i𝛽(t) are the stationary frame grid
currents. 𝑣dc is the DC bus voltage as illustrated previously in Section 1.6 of Chapter 1.

The manipulated variables for the current control are the voltages 𝑣𝛼 , 𝑣𝛽 in the 𝛼 − 𝛽 reference frame,
and they are related S𝛼, S𝛽 and 𝑣dc(t) via the following relationships:

𝑣𝛼(t) =
S𝛼(t)𝑣dc(t)

2
(7.71)

𝑣𝛽 (t) =
S𝛽(t)𝑣dc(t)

2
. (7.72)

In the 𝛼 − 𝛽 reference frame, there are seven pairs of candidate voltage values 𝑣𝛼 and 𝑣𝛽 , which are
dependent on the DC bus voltage 𝑣dc(t). Their exact values are characterized by the values listed below:

[
0 1 1
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2
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2
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√
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2
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√
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√
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2

]

2
3
𝑣dc(t). (7.73)
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The variations of the candidate voltage values are caused by the changes of DC bus voltage 𝑣dc. This is
the key difference between the control of power converter and that of the AC drives as discussed in the
previous sections of this chapter.

It is seen from this model that in the 𝛼 − 𝛽 reference frame, there is no interaction between the currents
i𝛼 and i𝛽 , which will effectively reduce the current controller in this reference frame to two single-input
and single-output controllers. To calculate the control variables, at the sampling time ti, the objective
function is chosen as sum of the squared errors between the desired and predicted signals:

J = (i∗𝛼(ti) − i𝛼(ti+1))
2 + (i∗

𝛽
(ti) − i𝛽 (ti+1))

2

=
([

i∗𝛼(ti)
i∗
𝛽
(ti)

]

−
[

i𝛼(ti+1)
i𝛽 (ti+1)

])T ([
i∗𝛼(ti)
i∗
𝛽
(ti)

]

−
[

i𝛼(ti+1)
i𝛽(ti+1)

])

, (7.74)

where i𝛼(ti+1) and i𝛽(ti+1) are one-step-ahead predictions of i𝛼(ti) and i𝛽 (ti), respectively. The
one-step-ahead predictions of the i𝛼(ti+1) and i𝛽(ti+1) are expressed in matrix and vector forms:

[
i𝛼(ti+1)
i𝛽 (ti+1)

]

= (I + ΔtAm)
[

i𝛼(ti)
i𝛽(ti)

]

+ ΔtBm

[
𝑣𝛼(ti)
𝑣𝛽(ti)

]

+

[ 1

Ls
E𝛼Δt

1

Ls
E𝛽Δt

]

, (7.75)

where I is the identity matrix with dimension 2 × 2 and the system matrices Am and Bm are defined as

Am =

[
− Rs

Ls
0

0 − Rs

Ls

]

; Bm =

[
− 1

Ls
0

0 − 1

Ls

]

.

Substituting the one-step-ahead prediction given by (7.75) into the objective function J (7.74) leads to

J =
[
f𝛼(ti) f𝛽(ti)

]
[

f𝛼(ti)
f𝛽 (ti)

]

− 2
[
𝑣𝛼(ti) 𝑣𝛽 (ti)

]
ΔtBT

m

[
f𝛼(ti)
f𝛼(ti)

]

+
[
𝑣𝛼(ti) 𝑣𝛽 (ti)

]
Δt2BT

mBm

[
𝑣𝛼(ti)
𝑣𝛽 (ti)

]

, (7.76)

where the functions f𝛼(ti) and f𝛽 (ti) are defined as

[
f𝛼(ti)
f𝛽(ti)

]

=
[

i∗𝛼(ti)
i∗
𝛽
(ti)

]

− (I + ΔtAm)
[

i𝛼(ti)
i𝛽(ti)

]

−
⎡
⎢
⎢
⎣

1

Ls
E𝛼(ti)Δt

− 1

Ls
E𝛽 (ti)Δt

⎤
⎥
⎥
⎦

. (7.77)

The optimal control signals 𝑣𝛼(ti) and 𝑣𝛽(ti) that minimize the objective function J are given by the
following expression:

[
𝑣
𝛼(ti)opt

𝑣𝛽 (ti)opt

]

= (Δt2BT
mBm)−1ΔtBT

m

[
f𝛼(ti)
f𝛽(ti)

]

= − 1
Δt

[
Ls 0
0 Ls

] [
f𝛼(ti)
f𝛽 (ti)

]

. (7.78)

Note that in the 𝛼 − 𝛽 reference frame, the system matrix Am is diagonal and there is no interaction
between the i𝛼 and i𝛽 currents. The calculations of 𝑣𝛼(ti)opt and 𝑣𝛽(ti)opt signals are scalar operations,
which are given by

𝑣𝛼(ti)
opt = −

Ls

Δt
i∗𝛼(ti) +

Ls

Δt

(

1 −
Rs

Ls

Δt

)

i𝛼(ti) +
1
Δt

E𝛼(ti) (7.79)

𝑣𝛽 (ti)
opt = −

Ls

Δt
i∗
𝛽
(ti) +

Ls

Δt
(1 −

Rs

Ls

Δt)i𝛽 (ti) −
1
Δt

E𝛽(ti), (7.80)
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where i∗𝛼(ti) and i∗
𝛽
(ti) are current reference signals in the 𝛼 − 𝛽 reference frame, and i𝛼(ti) and i𝛽 (ti) are the

measured current of the power converter. It is clearly seen that predictive controller uses a proportional
feedback control with a feedforward compensation. Furthermore, the feedback control gain is dependent
on the sampling interval of the current control system, the gains being given by

k𝛼fcs = k𝛽fcs = −
Ls

Δt
(1 −

Rs

Ls

Δt). (7.81)

In order to ensure a negative feedback in the current control, the quantity 1 − Rs

Ls
Δt > 0, that is Rs

Ls
Δt < 1.

Here the feedback controllers have a negative gain because of the negative diagonal elements in Bm

matrix.
Taking a similar approach to that given in the derivation of d − q reference frame, it is easy to show

that the objective function J (7.76) can also be expressed in terms of the optimal voltage signals in the
𝛼 − 𝛽 reference frame as

J =
([
𝑣𝛼(ti)
𝑣𝛽(ti)

]

−
[
𝑣𝛼(ti)opt

𝑣𝛽 (ti)opt

])T

(Δt2BT
mBm)

([
𝑣𝛼(ti)
𝑣𝛽 (ti)

]

−
[
𝑣𝛼(ti)opt

𝑣𝛽(ti)opt

])

= Δt2

L2
s

(𝑣𝛼(ti) − 𝑣𝛼(ti)
opt)2 + Δt2

L2
s

(𝑣𝛽(ti) − 𝑣𝛽(ti)
opt)2. (7.82)

With both objective function and the optimal control signals defined, the next step in the FCS predictive
control is to find the control signal 𝑣𝛼(ti) and 𝑣𝛽(ti) that will minimize the objective function subject to
the limited number of choices of voltage variables as mentioned in (7.73). The pair of 𝑣𝛼 and 𝑣𝛽 that
yields a minimum of the objective function J will be chosen as the FCS-MPC current control signals in
the 𝛼 − 𝛽 reference frame.

The reference signals to the FCS current control in the 𝛼 − 𝛽 reference frame are sinusoidal signals
in which their frequency is determined by the grid frequency 𝜔g. In the applications, the desired oper-
ational performance of a power converter in a closed-loop current control is often specified via the id

and iq currents in the d − q reference frame for the reason that these reference signals are transparent
to the applications and easy to choose. For instance, the desired value for the id current is related to
real power in demand and iq is chosen to be 0 for unity power factor. With the reference signals i∗d(t)
and i∗q(t) determined, the reference signals to i𝛼 and i𝛽 currents are calculated using the inverse Park
transformation:

[
i∗𝛼(t)
i∗
𝛽
(t)

]

=
[

cos𝜔gt − sin𝜔gt
sin𝜔gt cos𝜔gt

] [
i∗d(t)
i∗q(t)

]

. (7.83)

In the majority of applications where i∗q(t) = 0, simply, i∗𝛼(t) = i∗d(t) cos𝜔gt, and i∗
𝛽
(t) = i∗d(t) sin𝜔gt.

Figure 7.9 shows the configuration of the feedback controller to generate optimal control signals 𝑣𝛼(t)opt

and 𝑣𝛽(t)opt. The resonant FCS current controller for the power converter is proposed to have the feedback
structure as illustrated in Figure 7.10. In the proposed control system structure, the feedback controllers
k𝛼fcs and k𝛽fcs derived from the one-step-ahead prediction and optimization are used in the inner-loops
for fast dynamic response, while two resonant controllers are used in the outer-loops to provide further
compensations for the tracking errors between the reference and feedback current signals in the 𝛼 − 𝛽
reference frame.

The frequency 𝜔d is the discrete frequency of the grid, having the unit of radian. Suppose that the
frequency of the grid is 50 Hz and the sampling interval is Δt = 80 × 10−6 second. Then the frequency
parameter 𝜔d is

𝜔d = 2𝜋Δt
T

= 2𝜋Δt
0.02

= 0.0251.
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Figure 7.9 FCS predictive current control in 𝛼 − 𝛽 frame.
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Figure 7.10 Resonant FCS predictive control of power converter in 𝛼 − 𝛽 reference frame.

The frequency parameter 𝜔d is time invariant in the design because the grid frequency is generally
assumed unchanged. In reality, it may change with respect to time. However, when the sampling interval
Δt is small, this variation has a small effect on the locations of the complex poles in the controller.
Let us say that the grid frequency varies from 50 to 50.5 Hz. When Δt = 80 × 10−6 sec, the corre-
sponding 𝜔d to 50 Hz is approximately 0.0251 rad and 50.5 Hz is 0.0254 rad. The controller poles for
the former case are approximately 0.9997 ± j0.0251 and the latter case approximately 0.9997 ± 0.0254.
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Therefore, there is no need to track the change of the grid frequency and incorporate it in the resonant
controller.

Assuming that the inner-loop system is modeled as one sample of delay, z−1, the task of designing the
resonant controller in the outer-loop becomes straightforward, which is identical to the design used in
the application of PMSM control (see Section 7.2). More specifically, the coefficients of the resonant
controller in Figure 7.10 are calculated as

k1 = 2 cos𝜔d − 2𝜆

k2 = 𝜆
2 − 1,

where 0 ≤ 𝜆 < 1 is the desired discrete closed-loop pole location for the current control system.
The performance tuning parameter for the resonant FCS controller is the location of the pair of desired

discrete closed-loop poles 0 ≤ 𝜆 < 1. The performance parameter is selected in the design to reflect the
closed-loop bandwidth of the control system, depending on the quality of the current model and current
sensor noise level. A smaller 𝜆 corresponds to faster closed-loop response for the resonant FCS predictive
control system, which on the other hand, it may cause noise amplification and the resulting closed-loop
system being less robust.

The algorithm for the resonant FCS predictive current controller is summarized as follows. The deriva-
tion of the algorithm follows a similar procedure as presented in the case of resonant FCS predictive
control of PMSM (see Section 7.2.3) and is not given here.

Algorithm 7 The resonant FCS control signals in the 𝛼 − 𝛽 reference frame at sampling time ti, 𝑣𝛼(ti)
and 𝑣𝛽(ti), are found by finding the minimum of the objective function J with respect to the index k,

J = Δt2

L2
s

(𝑣𝛼(ti)k − 𝑣𝛼(ti)opt)2 + Δt2

L2
s

(𝑣𝛽(ti)k − 𝑣𝛽(ti)opt)2, (7.84)

where the values of 𝑣𝛼(ti)k and 𝑣𝛽(ti)k (k = 0, 1, 2, … , 6) are given by the finite control set,
[
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2
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Vdc

and the signals 𝑣𝛼(ti)opt and 𝑣𝛽 (ti)opt are computed recursively using the following equations:

𝑣𝛼(ti)
opt = 2 cos𝜔d𝑣𝛼(ti−1)

opt − 𝑣𝛼(ti−2)
opt + 𝑣𝛼(ti)

sopt

𝑣𝛼(ti)
sopt = k𝛼fcs[k1(i

∗
𝛼(ti) − i𝛼(ti)) + k2(i

∗
𝛼(ti−1) − i𝛼(ti−1))

− (i𝛼(ti) − 2 cos𝜔di𝛼(ti−1) + i𝛼(ti−2))]

𝑣𝛽 (ti)opt = 2 cos𝜔d𝑣𝛽(ti−1)opt − 𝑣𝛽 (ti−2)opt + 𝑣𝛽(ti)sopt

𝑣𝛽(ti)sopt = k𝛽fcs[k1(i∗𝛽(ti) − i𝛽(ti)) + k2(i∗𝛽(ti−1) − i𝛽(ti−1))

− (i
𝛽(ti) − 2 cos𝜔di𝛽(ti−1) + i𝛽 (ti−2))].

The feedback control gains used in the computation are defined as:

k𝛼fcs = k𝛽fcs =
Ls

Δt
(1 −

Rs

Ls

Δt) (7.85)

k1 = 2 cos𝜔d − 2𝜆 (7.86)

k2 = 𝜆2 − 1. (7.87)

0 ≤ 𝜆 < 1 is the desired closed-loop pole location for the current control system.
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7.4.2 Experimental Results of Resonant FCS Predictive Control

There are two cases to be investigated in the experimental evaluations. One is the original FCS predictive
control and the other is the resonant FCS predictive control for the power converter. The model parameters
used in the computation of controller gains k𝛼fcs = k𝛽fcs are converter side resistance R = 0.2 Ω, inductance
Ls = 6.3 × 10−3 H. The grid frequency is assumed to 50 Hz that gives the parameter 𝜔g = 100𝜋 rad∕ sec.
The sampling interval used in the experiments is Δt = 80 × 10−6 sec. With these choices of physical
parameters, the discrete frequency 𝜔d = 100𝜋Δt = 0.0251 rad, and the feedback control gain

k𝛼fcs = k𝛽fcs = −
Ls

Δt

(

1 −
Rs

Ls

Δt

)

= −157.3.

The reference signals to the i𝛼(t) and i𝛽(t) current signals at sampling time ti are calculated using the
inverse Park transformation:

[
i∗𝛼(t)
i∗
𝛽
(t)

]

=
[

cos𝜔gt − sin𝜔gt
sin𝜔gt cos𝜔gt

] [
i∗d(t)
i∗q(t)

]

, (7.88)

where the reference signal i∗d(t) is a step signal that is changed from 3 A to 5 A and the reference signal
i∗q(t) is zero.

7.4.2.1 The Original FCS Predictive Control Results

Figure 7.11 shows the closed-loop current responses in the 𝛼 − 𝛽 reference frame and their errors in the
steady-state operation at i∗d = 3 A and i∗d = 5 A and for a step change in the i∗d(t). The error signals in the
figure clearly show that the responses contain periodic components, and therefore, they do not entirely
track the periodic current reference signals.

7.4.2.2 The Resonant FCS Predictive Control Results

In the design of the resonant FCS predictive controller, the closed-loop poles for the resonant control
system are chosen to be 𝜆 = 0.95, which leads to the controller gains:

k1 = 2 cos𝜔d − 2𝜆 = 0.0994 (7.89)

k2 = 𝜆2 − 1 = −0.0975. (7.90)
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Figure 7.11 Experimental results of current control of power converter using the original FCS scheme in 𝛼 − 𝛽
reference frame. Δt = 80 μs. Key: line (1) Actual feedback; line (2) set-point signal. (a) i𝛼 and i𝛼 current error and
(b) i𝛽 and i𝛽 current error.
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Figure 7.12 Experimental results of current control of power converter using the resonant FCS scheme in 𝛼 − 𝛽
reference frame. Δt = 80 μs. Key: line (1) Actual feedback; line (2) set-point signal. (a) i𝛼 and i𝛼 current error and
(b) i𝛽 and i𝛽 current error.

Figure 7.12 shows the closed-loop current responses in the 𝛼 − 𝛽 reference frame and their errors for
steady-state operation at i∗d = 3 A and i∗d = 5 A as well as the transient responses at the change from 3 A
to 5 A. From the error signals, it is clearly seen that the periodic components exhibited in the original
FCS predictive control system are removed. The removal of the periodic components in the error signals
is translated into a better tracking of the i∗d and i∗q reference signals. Here, the original FCS controller had
a mean value of 3.3129 A and 5.2666 A for the set point 3 A and 5 A respectively, which is about 10.43%
and 5.32% errors, respectively. In comparison, the resonant FCS controller had a mean value of 3.0008 A
and 4.9611 A for the same reference signal, which is about 0.0267% and 0.778% errors, respectively.

7.5 Summary
This chapter has presented the design and implementation of resonant FCS predictive current control in
the 𝛼 − 𝛽 reference frame.

It is shown that the traditional FCS predictive current controller that deploys a cost function using sum
of squared errors is essentially a high gain proportional controller in the absence of constraints. Thus,
in the steady-state operation, the current outputs cannot entirely follow the sinusoidal current reference
signals.

Taking a similar approach as proposed in Chapter 6, this chapter has analyzed the characteristics of the
closed-loop current control system that uses the original FCS current controller in the 𝛼 − 𝛽 reference
frame, which is a deadbeat control system with its closed-loop pole located at the origin of the complex
plane. In a cascade control system structure, a resonant controller is designed to track the sinusoidal
reference signal without steady-state errors. In the design of the resonate controller, the original FCS
predictive control system is modeled by one sample of delay. Since in the 𝛼 − 𝛽 reference frame, there are
no interactions between the 𝛼 − 𝛽 variables, the FCS proportional controller is decoupled into two single
input and single output controllers, leading to a reduced computational load and a simpler controller
structure in comparison with the its counterpart in the d − q reference frame.

With the limitations of the IGBT voltage inverter, the candidate variables in the 𝛼 − 𝛽 reference frame
are a set of constant variables for the electrical drives once the voltage of the power supply is given.
For the power converters, the candidate variables are functions of the voltage converter. In any case, the
candidate variables are not sinusoidal functions, which again leads to potential savings of computational
cost. Furthermore, the inverse Park transformation that converters the variables in the d − q reference
frame to the 𝛼 − 𝛽 reference frame is performed to generate the sinusoidal reference signals; however,
the nonlinear transformation occurs outside the current feedback-loop.
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Similar to the FCS predictive control in the d − q reference frame, the closed-loop performance of
the resonant FCS predictive control system is dependent on the choice of sampling rate. In general, a
smaller Δt will lead to smaller current variations. The selection of the desired closed-loop poles for the
resonant controller follows the specification on the desired closed-loop current response. In general, a
faster current response will demand a pair of desired closed-loop poles with a smaller magnitude.

7.6 Further Reading
The model predictive torque control was proposed in Geyer et al. (2009) and implemented in Papafotiou
et al. (2009). Finite control set predictive control was used in controlling PMSM drive systems (Preindl
and Bolognani (2013a), Preindl and Bolognani (2013b)). The dead-beat control design technique was
discussed in Kukrer (1996). Time-delay was examined in the application of finite control set in Cortes
et al. (2012). Finite control set predictive control for active front end power converter was presented in
Cortes et al. (2008b) and Kouro et al. (2009). Predictive current control of a voltage source inverter was
proposed in Rodriguez et al. (2007) with extension to electric drives and power converters in Cortes et al.
(2008a). A comparative study was presented for current control of PMSM drives by Morel et al. (2009).
Stationary frame three phase AC current regulators were designed in Holmes et al. (2009). Predictive
torque control of induction machines was discussed in Nemec et al. (2007), Correa et al. (2007). A book
was written based on finite control set predictive control (see Rodriguez and Cortes (2012)).

Proportional-resonant controller and filters for grid-connected voltage-source converters were
discussed in Teodorescu et al. (2006), PI-resonant controller in Liserre et al. (2006), adaptive resonant
controller in Timbus et al. (2006). Dead-beat control techniques were discussed in Gokhale et al.
(1987), in Kawabata et al. (1990), in Malesani et al. (1999), in Mohamed and EI-Saadany (2007) and in
Yang and Lee (2002). Geyer (2011) made comparative studies of control and modulation schemes for
medium-voltage drives between predictive control concepts and PWM-Based Schemes.

Internal model control principle was applied to minimize torque ripples Gan and Qiu (2004). Repetitive
predictive control algorithms were discussed in Cao and Low (2009), Wang et al. (2012), in Wang and
Rossiter (2008), in Wang et al. (2013), application to inverters in Zhou et al. (2009), in Tzou et al. (1997),
in Zhang et al. (2003), the continuous-time counter part was proposed in Wang et al. (2010).
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8
Discrete-time Model Predictive
Control (DMPC) of Electrical
Drives and Power Converter

The previous two chapters (Chapters 6 and 7) have seen the development of FCS predictive control
algorithms with experimental demonstrations. The FCS predictive control algorithms are limited to the
applications of current control because they are designed using a high gain feedback control approach,
and with an inversion of the dynamic model to reach a deadbeat control status. FCS predictive con-
trol algorithms work well for current control systems since these systems are first order systems that
are invertible and also benefit from high gain feedback control. In the next two chapters, the traditional
discrete-time and continuous-time model predictive controller will be used to control the AC drives and
power converters. These predictive control algorithms were derived for general applications without those
restrictions imposed on system dynamics. The MATLAB programs used in the applications were given in
Wang (2009). Although the traditional predictive control algorithms could be applied to current control,
their advantages are perhaps lost to the simpler and more effective FCS predictive control approaches,
also to the simpler PI controllers. Therefore, in Chapters 8 and 9, velocity control in AC drives and
voltage control in power converters are considered for in these cases where the traditional model pre-
dictive controllers (MPC) offer the advantages of designing the control systems using multi-input and
multi-output approaches in the presence of constraints.

The traditional MPC design is generally based on a linear model, therefore the nonlinearities existing
in AC motors and power converters will be linearized at their steady-state operating conditions. Taking
PMSM as an example, Section 8.1 shows how to obtain the discrete-time linear model with respect to
operating conditions. In Section 8.2, discrete-time MPC design with constraints is introduced based on
the PMSM model. In particular, the linearized model from Section 8.1 is used to formulate an augmented
model that directly uses the incremental voltage variables as the control inputs. This formulation leads
to the embedding of integrators into the predictive controller and simplifies the control implementation
process because it does not require the steady-state information and uses the actual physical variables in
the computation. In Section 8.3, experimental evaluations of the discrete-time model predictive control
system is presented using the PMSM test-bed. In the evaluations, the tuning of the discrete-time MPC
controller is discussed. In Section 8.4, discrete-time predictive control system is designed for the power
converter and experimental results are presented for demonstration.
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8.1 Linear Discrete-time Model for PMSM
The first step in the design of a continuous-time model predictive controller is to determine a linear model
based on the physical models of the electrical drives and power converters. The linearization step was not
required when the PID controllers were designed earlier. This material has been extensively covered in
textbooks (Goodwin et al. (2001), Bay (1999)). Perhaps, an interesting point is that the steady-state values
of the physical variables are not removed from the linearized physical model so that all the variables
remain to be the actual variables not the deviation variables as in the textbooks.

8.1.1 Linear Model for PMSM

A PMSM is described by the differential equations in the d-q rotating reference frame

did(t)
dt

= 1
Ld

(𝑣d(t) − Rsid(t) + 𝜔e(t)Lqiq(t)) (8.1)

diq(t)
dt

= 1
Lq

(𝑣q(t) − Rsiq(t) − 𝜔e(t)Ldid(t) − 𝜔e(t)𝜙mg) (8.2)

d𝜔e(t)
dt

=
Zp

Jm

(Te −
B𝑣
Zp

𝜔e(t) − TL) (8.3)

Te =
3
2

Zp[𝜙mgiq + (Ld − Lq)id(t)iq(t)]. (8.4)

Examining the physical model equations, it is seen that there are three terms having nonlinear expres-
sions: 𝜔e(t)iq(t) (8.1), 𝜔e(t)id(t) (8.2) and id(t)iq(t) (8.4). These are bilinear functions. In order to obtain
the linear approximations for these three terms, three operating points for these variables are selected as
i0
d, i0

q and 𝜔0
e , which are constant in the linearized model and form part of the system parameters.

The bilinear terms are approximated at the operating points using a first order Taylor series expansion as

𝜔e(t)iq(t) ≈ 𝜔
0
e i0

q + i0
q(𝜔e(t) − 𝜔

0
e) + 𝜔

0
e(iq(t) − i0

q) (8.5)

𝜔e(t)id(t) ≈ 𝜔0
e i0

d + i0
d(𝜔e(t) − 𝜔0

e) + 𝜔
0
e(id(t) − i0

d). (8.6)

By substituting these approximations into (8.1) and (8.2), it can be verified that the linearized model has
the following form,

dxm(t)
dt

= Amxm(t) + Bmu(t) + 𝜇0 (8.7)

y(t) = Cmxm(t), (8.8)

where xm(t) = [id(t) iq(t) 𝜔e(t)]T , u(t) = [𝑣d(t) 𝑣q(t)]T , y(t) = [id(t) 𝜔e(t)]T and the matrices Am,
Bm and Cm are defined as

Am =

⎡
⎢
⎢
⎢
⎢
⎣

− Rs

Ld

Lq

Ld
𝜔0

e
Lq

Ld
i0
q

− Ld

Lq
𝜔0

e − Rs

Lq
−( Ld

Lq
i0
d +

𝜙mg

Lq
)

0
3Z2

p𝜙mg

2Jm
− B𝑣

Jm

⎤
⎥
⎥
⎥
⎥
⎦

; Bm =
⎡
⎢
⎢
⎢
⎣

1

Ld
0

0 1

Lq

0 0

⎤
⎥
⎥
⎥
⎦

Cm =
[

1 0 0
0 0 1

]

; 𝜇0 =

⎡
⎢
⎢
⎢
⎢
⎣

− Lq

Ld
𝜔0

e i0q
Ld

Lq
𝜔0

e i0
d

− ZpTL

Jm

⎤
⎥
⎥
⎥
⎥
⎦

.
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𝜇0 is a constant vector that contains the steady-state parameters and the load torque. This term is regarded
as an input disturbance to the system and it is overcome when integrators are used in the predictive control
as shown in the sequel.

The control objective is to achieve the desired speed set-point whilst maintaining the id component at
zero and the d-axis and q-axis voltages within operational limits. Therefore, in the state-space formula-
tion, as seen above, the outputs are the d-axis current id and the electric velocity 𝜔e, and the iq current is
one of the state variables that will be measured in the implementation.

8.1.2 Discretization of the Continuous-time Model

The continuous-time state-space model for the PMSM given by (8.7) and (8.8) will be discretized for the
purpose of designing a discrete model predictive controller. In Chapters 6 and 7 the discretization of a
continuous-time model is performed using an approximation to the differential equation (see for example,
(6.1) and (6.12)), and the approximation error is dependent on the sampling interval Δt used in the calcu-
lation. The smaller Δt is, the smaller the approximation error. Furthermore, as Δt → 0, the coefficients of
the discrete-time model converge to their continuous-time counter-part (Middleton and Goodwin (1990)).

Here, instead of using the approximation of differential equations, the discretization of continuous-time
model is performed together with the mechanism of zero-order hold, which is a commonly used approach
in the computer controlled systems (Astrom and Wittenmark (1997)). This discretization method is
reviewed in the following discussions.

We begin with the linearized differential equations (8.7) and (8.8) that describe the dynamics of the
PMSM at a set of operating points specified by the user. Assuming a constant sampling interval Δt and
sampling index i, the sampling time is expressed as t0 = 0, t1 = Δt, t2 = 2Δt, … , ti = iΔt. Now, given
an initial condition vector xm(0), the analytical solution of the differential equation (8.7) at time t1 = Δt
is obtained via the expression

xm(t1) = eAmΔtxm(0) + ∫
Δt

0
eAm(Δt−𝜏)Bmu(𝜏)d𝜏 + ∫

Δt

0
eAm(Δt−𝜏)𝜇0d𝜏, (8.9)

where the first term on the left-hand side is the solution generated by the initial condition vector, the
second term is the one from the input signal and the third from the constant term. We emphasize that the
description of the response xm(t1) is exact. As the time progresses to the next sampling time t2 = 2Δt,
with the initial condition vector xm(t1), the analytical solution of the differential equation (8.7) at time t2

is obtained via the expression

xm(t2) = eAmΔtxm(t1) + ∫
2Δt

Δt

eAm(2Δt−𝜏)Bmu(𝜏)d𝜏 + ∫
2Δt

Δt

eAm(2Δt−𝜏)𝜇0d𝜏. (8.10)

For an arbitrary time ti = iΔt, with the initial condition vector xm(ti−1) the analytical solution of xm(ti) is
given by

xm(ti) = eAmΔtxm(ti−1) + ∫
iΔt

(i−1)Δt

eAm(iΔt−𝜏)Bmu(𝜏)d𝜏 + ∫
iΔt

(i−1)Δt

eAm(iΔt−𝜏)𝜇0d𝜏. (8.11)

Note that the first term of the analytical solution is dependent on the sampling interval Δt and the pre-
vious sampled state vector xm(ti−1). However, for the convolutional integrals, some manipulations are
required to obtain the discrete model. Firstly, assuming that a zero order hold is used in the control signal
implementation so that for (i − 1)Δt ≤ 𝜏 < iΔt, the control signal u(𝜏) is a constant vector with its value
equal to the beginning of the sample period, u(𝜏) = u(ti−1). With this assumption, the convolutional inte-
gral is simplified as the control signal u(𝜏) is taken out of the integration. Next, it can be shown that the
following integral equality holds:

∫
iΔt

(i−1)Δt

eAm(iΔt−𝜏′ )d𝜏
′ = ∫

Δt

0
eAm𝜏d𝜏, (8.12)
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where substitution of variable iΔt − 𝜏 ′ = 𝜏 is used in the derivation. With both the zero-order hold and
the integral equality (8.12), the discrete-time model is obtained:

xm(ti) = eAmΔtxm(ti−1) + ∫
Δt

0
eAm𝜏d𝜏Bmu(ti−1) + ∫

Δt

0
eAm𝜏d𝜏𝜇0. (8.13)

Let the discrete system matrices be denoted by

Ad = eAmΔt; Bd = ∫
Δt

0
eAm𝜏d𝜏Bm

and the discrete constant vector by 𝜇d = ∫ Δt

0 eAm𝜏d𝜏𝜇0. Then, the discrete time model (8.13) is written
in a compact form

xm(ti) = Adxm(ti−1) + Bdu(ti−1) + 𝜇d . (8.14)

The output y(ti) = Cdxm(ti) where Cd = Cm. Equation (8.14) can also be expressed in terms of a one-step
ahead prediction as

xm(ti+1) = Adxm(ti) + Bdu(ti) + 𝜇
d. (8.15)

Note that the constant vector 𝜇0 that contains the steady-state parameters and the torque disturbance
remains a constant vector, which is the constant input disturbance vector in the discrete-time model.

The computation of the quantity ∫ Δt

0 eAm𝜏d𝜏 uses the Taylor series expansion of the exponential matrix
eAm𝜏 followed by integration, yielding to

∫
Δt

0
eAm𝜏d𝜏 = IΔt +

AmΔt2

2!
+

A2
mΔt3

3!
+ … +

Aj
mΔtj+1

(j + 1)!
+ …

With this quantity computed, the matrices Ad and Bd are obtained via the following relations:

Ad = I + Am ∫
Δt

0
eAm𝜏d𝜏; Bd = ∫

Δt

0
eAm𝜏d𝜏Bm.

It is seen that the matrices Ad and Bd can be approximated using the relationships,

Ad ≈ I + AmΔt; Bd ≈ BmΔt,

when sampling interval Δt is small. These approximations are equivalent to the previous discrete-time
models used in Chapters 6 and 7 (see for example, (6.11) and (6.12)).

MATLAB functions such as “c2d” are commonly used in the computation of the Ad and Bd matrices.
Since there is only one predictive controller to control the id, iq currents and the velocity 𝜔e, the choice

of sampling interval Δt is critical for the implementation of the control system. The time constants for the
electrical system are very small in comparison with the mechanical system, as we discussed in Chapter
3, thus, in the predictive control system design, a balance needs to be reached to consider both cases. A
small Δt is needed in order to capture the dynamic responses of the id and iq currents, which consequently
will increase computational load.

8.2 Discrete-time MPC Design with Constraints
The MPC design used in this chapter is from Wang (2009) and this section summarizes the main steps
involved for an m-input, q-output and n-state model where in the experimental results section these are
specialized to the case of speed regulation for a PMSM when m = 2, q = 2, and n = 3. The MATLAB
programs used in this section can be found in Wang (2009).
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8.2.1 Augmented Model

In common with the PI controller, an integrator is usually embedded into the MPC design. Here the
benefit of the embedded integrator is exploited to eliminate the vector 𝜇d in (8.14) or 𝜇0 in (8.7), which
contains motor parameters that have a certain degree of uncertainty associated with them in applications,
and the load disturbance torque which is assumed to be an unknown constant. Once the integrators have
been added to the model, the optimization analysis is applied to the model expressed in terms of incre-
mental, rather than the actual variables. One of the advantages by using the incremental model is that the
steady-state values of the state variables as well as those of the control variables are not required in the
implementation. In addition, the differenced constant terms in linearized model, which are denoted by
the constant vector 𝜇d, are zero, when the state variables are expressed in terms of incremental variables.

Taking the difference between the current and next sample instances of the state-space model, that is
the difference between Equations (8.15) and (8.14), gives incremental state dynamics as

Δxm(ti+1) = AdΔxm(ti) + BdΔu(ti), (8.16)

where Δxm(ti) = xm(ti) − xm(ti−1), Δu(ti) = u(ti) − u(ti−1), 𝜇d − 𝜇d = 0. In a similar manner the output
incremental dynamics are given by

y(ti+1) − y(ti) = Cd(xm(ti+1) − xm(ti)) = CdΔxm(ti+1)

= CdAdΔxm(ti) + CdBdΔu(ti) (8.17)

or
y(ti+1) = y(ti) + CdAdΔxm(ti) + CdBdΔu(ti). (8.18)

By choosing a new state vector x(ti) =
[
Δxm(ti) y(ti)

]T
the augmented state-space model is obtained by

combining (8.16) with (8.17)

x(ti+1) = Ax(ti) + BΔu(ti) (8.19)

y(ti) = Cx(ti), (8.20)

where

A =
[

Ad 01

CdAd I

]

; B =
[

Bd

CdBd

]

; C =
[
02 I

]

and the 01, 02 and I, respectively, denote the zero and identity matrices of compatible dimensions. Since
the PMSM has two outputs and three state variables in the original model, the 01 matrix has the dimen-
sions of 3 × 2, 02 has the dimensions of 2 × 3 and I has the dimensions of 2 × 2.

It is emphasized that the constant vector term 𝜇d resulting from the linearization of the nonlinear
model and the existence of the unknown torque does not appear in the augmented model (8.19). As for the
output signal expressed by (8.20), y(ti) is the actual measured output signal as the steady-state values of its
individual components (id , iq currents and velocity𝜔e) have not been removed in the process of derivation.
If the control objective is to maintain plant steady-state operation and reject the unknown disturbances,
in the design of the regulatory type of control systems, the steady-state values of the augmented state
variable x(ti) are required to be removed in order to obtain a valid linear model at its operating conditions.
Because the steady-state value of the vector Δxm(ti) is a zero vector where the difference of a constant
vector is considered, the remaining steady-state values in x(ti) to be considered are the steady-states of the
output signals. A simple approach is to use the reference signals as the steady-state values of the output
signals. This means that to consider designing the predictive control system for maintaining steady-state
operation and rejecting the unknown disturbances requires the output equation (8.18) be modified as

y(ti+1) − yss = y(ti) − yss + CdAdΔxm(ti) + CdBdΔu(ti). (8.21)

For PMSM control, the steady-state vector yss can be selected as yss = [i∗d 𝜔∗
e ]T where i∗d and 𝜔∗

e are the
reference signals for id current and the motor velocity.
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8.2.2 Design without Constraints

Given the augmented state-space model, the next task is to optimize the incremental control signal Δu(ti)
using the framework of model predictive control. Model predictive control is a well established control
technology (see for example, Maciejowski (2000), Rawlings (2000), and Wang (2009)). Assuming that
at the sampling instant ti, ti > 0, the state vector x(ti) is available through measurement where the state
vector x(ti) provides the current plant information. The future control trajectory is denoted by the vector

ΔU =
[
Δu(ti) Δu(ti+1) … Δu(ti+Nc−1)

]T
,

where Nc is the control horizon dictating the number of parameters used to capture the future control
trajectory. With this given information x(ti), the future state vectors are predicted for Np samples, where
Np is termed the prediction horizon (Nc ≤ Np). It is assumed that after Nc samples, the incremental control
signal Δu(ti+k) becomes zero for all future samples (k ≥ Nc). The state vectors so obtained are written as
denoting the future state variables,

X =
[
x(ti+1|ti)T … x(ti+Np

|ti)T
]T
.

Using the augmented state-space model (8.19), the future state variables are calculated sequentially
using Δu(ti), Δu(ti+1), … ,Δu(ti+Nc−1), leading to the following equations:

x(ti+1|ti) = Ax(ti) + BΔu(ti)

x(ti+2|ti) = A2x(ti) + ABΔu(ti) + BΔu(ti+1)

⋮

x(ti+Np
|ti) = ANp x(ti) + ANp−1BΔu(ti)

+ · · · + ANp−Nc BΔu(ti+Nc−1),

which are written in a compact matrix and vector form, as

X = Fxx(ti) + ΦΔU, (8.22)

where

Fx =
⎡
⎢
⎢
⎢
⎣

A
A2

⋮
ANp

⎤
⎥
⎥
⎥
⎦

; Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

B 0 .. 0
AB B .. 0
A2B AB .. 0
⋮ ⋮ .. ⋮

ANp−1B ANp−2B .. ANp−Nc B

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The design criterion for the predictive controller is to find the control vector ΔU such that the following
cost function is minimized

J = XT Q̄X + ΔUT R̄ΔU,

where Q̄ = diag[Q, … ,Q] and R̄ = diag[R, … ,R] are block diagonal matrices that have identical com-
ponent matrices Q and R respectively. Here Q is a positive semi-definite matrix (with (Q, A) detectable)
and R is a positive definite matrix. The dimensions of the Q and R matrices are 5 × 5 and 2 × 2 for
the application of PMSM control. This expression for the objective function is used for simplicity in
formulation of the MPC problem in which, additionally, the application lies in disturbance rejection.

Substituting (8.22) into the cost function gives

J =ΔUT (ΦT Q̄Φ + R̄)ΔU + 2ΔUTΦTQ̄Fxx(ti)

+ x(ti)
T FT

x Q̄Fxx(ti), (8.23)
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or simply
J = ΔUTΩmpcΔU + 2ΔUTΨmpcx(ti) + constant (8.24)

where the data matrices are defined as

Ωmpc = ΦT Q̄Φ + R̄; Ψmpc = ΦTQ̄Fx.

From the first derivative of the objective function J:

𝜕J
𝜕ΔU

= 2ΩmpcΔU + 2Ψmpcx(ti), (8.25)

the necessary condition of an extremum J is obtained as

𝜕J
𝜕ΔU

= 0. (8.26)

Since the second derivative 𝜕2J

𝜕2ΔU
= 2Ωmpc which is positive definite based on the assumptions for Q̄ and

R̄, without constraints, the minimum of the cost function J is achieved with the optimal control vector

ΔU = −Ω−1
mpcΨmpcx(ti). (8.27)

Using receding horizon control, only the components (first two rows) in ΔU corresponding to Δu(ti) are
used, so that

Δu(ti) = −
[
I 0 … 0

]
Ω−1

mpcΨmpcx(ti) (8.28)

= −Kmpcx(ti), (8.29)

where the state feedback control gain matrix is defined as

Kmpc =
[
I 0 … 0

]
Ω−1

mpcΨmpc,

which is the first two rows of matrix Ω−1
mpcΨmpc.

The actual control signal applied to the plant is constructed using

u(ti) = Δu(ti) + u(ti−1), (8.30)

where both the current optimal control Δu(ti) and the past value u(ti−1) are known.
When the predictive controller is used for disturbance rejection, the control objective is to maintain the

plant in steady-state operation, and the incremental state vector Δxm(ti) has zero steady-state whilst the
steady-state of the plant output is a constant vector in the MIMO case (see 8.21). This control objective
is reflected in the selection of the cost function (8.23). When the predictive controller is used for tracking
reference signals, the references signals will enter the computation through the augmented output vari-
ables. This can be readily achieved by generalizing (8.23) where the steady-state vector yss is replaced
by the actual reference signal vector r(ti) at the sampling instant ti to form the feedback error y(ti) − r(ti).
Thus, the state vector in (8.23) or (8.27) becomes

x(ti) = [Δxm(ti)
T (y(ti) − r(ti))

T ]T .

It is worthwhile to emphasize that both y(ti) and r(ti) are the actual physical quantities without removing
their steady-state values, avoiding computation of the steady-state values of the outputs.

The data matrices Ωmpc and Ψmpc are calculated off-line to reduce computational demand in the the
implementation of the predictive controller.

A key strength of predictive control lies in its ability to systematically impose constraints on plant
input and output variables. The next two sections will detail how the constrained control problem is
systematically formulated and solved in a predictive control system.
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8.2.3 Formulation of the Constraints

As a first step in the introduction of constraints we consider control amplitude constraints imposed at the
sampling instant k by writing them in the form of a set of linear inequalities

umin ≤ u(ti) ≤ umax, (8.31)

where umin and umax are 2 × 1 data vectors containing the required lower and upper limits of the control
amplitude for each input signal, respectively. Also, the incremental changes in the control signal (Δu(ti) =
u(ti) − u(ti−1)) are limited in the applications, where the constraints are written in the form,

Δumin ≤ Δu(ti) ≤ Δumax. (8.32)

To impose the constraints at the sampling instant ti using the moving horizon window, Δu(ti) is related
to the parameter vector ΔU as given in (8.23). Firstly, note that the amplitude constraints (8.31) can be
written as

Δu(ti) ≤ umax + u(ti−1) (8.33)

−Δu(ti) ≤ −(umin + u(ti−1)) (8.34)

and the constraints on Δu(ti) as

Δu(ti) ≤ Δumax (8.35)

−Δu(ti) ≤ −Δumin. (8.36)

Secondly, the incremental control signal Δu(ti) is of the first 2 elements of the parameter vector ΔU. By
combining the constraints together, the following linear inequalities are obtained:

MΔU ≤ Γ (8.37)

where

M =
⎡
⎢
⎢
⎢
⎣

I 0 … 0
−I 0 … 0
I 0 … 0
−I 0 … 0

⎤
⎥
⎥
⎥
⎦

; Γ =
⎡
⎢
⎢
⎢
⎣

umax + u(ti−1)
−(umin + u(ti−1))

Δumax

−Δumin

⎤
⎥
⎥
⎥
⎦

.

8.2.4 On-line Solution for Constrained MPC

Iterative computation in the solution of the quadratic programming problem arises from the inequalities
(8.37) that represent the constraints. This formulation also means that at sampling instant ti (8.28) and
(8.30) must satisfy all of the constraints. If this is the case, the constrained and unconstrained optimal
solutions are identical but if (8.28) produces a control signal that partly violates the constraints then
iterative computation is needed to find the active constraints and hence the solution that minimizes the
cost function with these in place. Because the optimization problem is solved in real-time in conjunc-
tion with the control signal calculations, the key to solving the constrained optimization problem lies in
finding an algorithm that can be coded by the user for convenience of adding safety protection and other
computational requirements and has reliability in the presence of conflict constraints. Additionally, its
computational demand must be relatively low.

One established approach in the literature is to directly search for the active constraints using
optimization of Lagrange multipliers, see, for example, Luenberger (1969, 2003) and this algorithm is
summarized next.
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Using the Kuhn-Tucker conditions (Luenberger (2003), Boyd and Vandenberghe (2004)), the opti-
mization problem is to find the parameter vector ΔU by solving the following problem:

max
𝜆≥0

min
ΔU

[ΔUTΩmpcΔU + 2ΔUTΨmpcx(ti) + 2𝜆T (MΔU − Γ)], (8.38)

where 𝜆 is the vector of Lagrange multipliers, Ω and Ψ are the data matrices from the predictive control’s
cost function (8.24) and M and Γ are given by (8.37). Also the cost function is minimized with ΔU
unconstrained when

ΔU = −Ω−1
mpc(Ψmpcx(ti) + MT𝜆) (8.39)

and, on substituting (8.39) into (8.38), the Lagrange multiplier vector 𝜆 is obtained by solving

J = min
𝜆≥0

[𝜆T MΩ−1
mpcM

T𝜆 + 2𝜆T (MΩ−1
mpcΨmpcx(ti) + Γ) + x(ti)

TΨT
mpcΩ

−1
mpcΨmpcx(ti)], (8.40)

where the maximization problem (8.38) has been converted to this minimization problem by multiplying
the objective function by −1. For notational simplicity, (8.40) is written as

Ĵ = min
𝜆≥0

[𝜆TH𝜆 + 2𝜆T K], (8.41)

from this point onwards where H = MΩ−1
mpcMT and K = MΩ−1

mpcΨmpcx(ti) + Γ and the final term is inde-
pendent of 𝜆 and hence can be neglected. Although this is still a quadratic programming problem that
requires an iterative solution, the constraints are much simpler (𝜆 ≥ 0) and iterative solutions much easier
to find.

Hildreth’s algorithm (Hildreth (1957), Wismer and Chattergy (1978)) is one of the simple algorithms
for solving the quadratic optimization problem given by (8.41). This algorithm is suitable for real-time
computation and can be easily coded by the user for applications. The algorithm searches the active
constraints by finding the positive Lagrange multipliers element by element. Therefore, it entirely avoids
matrix operations in the process of finding the positive Lagrange multipliers. Taking matrix inversion in
real-time where there is no guarantee that the inversion exists leads to problems, which is the case when
the active constraints become conflict. The algorithm can be summarized using the following equations.
On iteration m + 1 this algorithm solves for the ith entry, denoted by 𝜆i, in the Lagrange multiplier vector
𝜆 using

𝜆m+1
i = max(0,

m+1
w
i
), (8.42)

with

𝑤m+1
i = − 1

hii

[

ki +
i−1∑

j=1

hij𝜆
m+1
j +

n∑

j=i+1

hij𝜆
m
j

]

, (8.43)

where n is the dimension of the Lagrange multiplier vector, hij is the element in row i and column j of H
and ki is the ith element in K. MATLAB program for this algorithm was given in Wang (2009).

Once convergence is achieved, the resulting 𝜆 is used to compute the parameter vector ΔU and hence
the predictive controller using (8.39) where the constraints corresponding to the nonzero Lagrange multi-
pliers are active and the rest inactive. Because the Lagrange multiplier vector 𝜆 contains the zero elements
for inactive constraints and positive elements for active constraints upon convergence, the constrained
control solution is simply computed using

ΔU = −Ω−1
mpc(Ψmpcx(ti) + MT𝜆), (8.44)

where 𝜆 is the computed Lagrange multiplier vector.
This algorithm has been used in this book to solve all the constrained optimization problems in

real-time for both discrete-time MPC and continuous-time MPC systems.
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8.3 Experimental Evaluation of DMPC of PMSM
In this section, the predictive control of PMSM is evaluated experimentally in which the experimental
results for three different cases are obtained and discussed. In particular, the performance of the MPC
controller is analyzed in terms of the constraints, tuning of controller feedback gain and load disturbance
rejection.

8.3.1 The MPC Parameters

The sampling interval Δt is selected as 200 × 10−6 second in order to capture the dynamics of the current
system. This sampling rate is relatively fast for the mechanical system, but slow for the current system.
Not being flexible in selecting the sampling rates for the electrical and mechanical systems is the first
drawback of the MPC approach.

To determine the steady-state operating conditions, the reference signal to d-axis current (i∗d) is used as
i0
d = i∗d = 0 and the reference signal 𝜔∗

e is used as 𝜔0
e = 𝜔∗

e = 800 RPM. However, there is some uncer-
tainty associated with determining the steady-state value i0

q because this value depends on the load torque
TL that is unknown (see 8.3). Thus, the steady-state value i0

q is estimated as i0
q = 1 A. As the parameters

in the state-space model of a PMSM are dependent on steady-state operating conditions, they all have
more or less uncertainties associated with them. The DC power supply has voltage Vdc = 100 V .

Now, with the steady-state parameters determined, the continuous-time linear model (8.7) for the
PMSM has the following system matrices

Am =

⎡
⎢
⎢
⎢
⎢
⎣

− Rs

Ld

Lq

Ld
𝜔0

e
Lq

Ld
i0
q

− Ld

Lq
𝜔0

e − Rs

Lq
−( Ld

Lq
i0
d +

𝜙mg

Lq
)

0
3Z2

p𝜙mg

2Jm
− B𝑣

Jm

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−425.7 83.8 1
−83.8 − − 425.7 −17.9

0 15957.4 −2.3

⎤
⎥
⎥
⎦

Bm =
⎡
⎢
⎢
⎢
⎣

1

Ld
0

0 1

Lq

0 0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

142.9 0
0 142.9
0 0

⎤
⎥
⎥
⎦

Cm =
[

1 0 0
0 0 1

]

.

There is no need to calculate the 𝜇0 term as it is not required in the predictive controller design.
With sampling interval Δt = 200 × 10−6 second, the discrete-time model

xm(ti+1) = Adxm(ti) + Bdu(ti)

has the system matrices calculated as

Ad = eAmΔt =
⎡
⎢
⎢
⎣

0.918 0.016 0.00016
−0.025 0.913 −0.0034

0 3.05 0.994

⎤
⎥
⎥
⎦

Bd = ∫
Δt

0
eAm𝜏d𝜏Bm =

⎡
⎢
⎢
⎣

0.027 0.00023
−0.00023 0.027
−0.00024 0.044

⎤
⎥
⎥
⎦

.

The matrices Ad and Bd here were computed using MATLAB function “c2d”.
In the predictive controller design, the control horizon Nc is selected as Nc = 5 for both inputs and the

prediction horizon Np is selected as Np = 20 for both outputs. Because of the large differences between
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the time constants in the electrical system and the mechanical system, parameters in the weight matrix
Q play an important role in determining the closed-loop performance. In order to ensure faster dynamic
responses in the electrical system, larger weights need to be placed on the coefficients corresponding to
the id and iq components of the Q. However, this task is time consuming, and is perhaps another drawback
of the approach.

To simplify the task, the weight matrices in the cost function (8.23) are

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 qid 0
0 0 0 0 q𝑤

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; R = r𝑤

[
1 0
0 1

]

, (8.45)

where qid and q𝑤 will be used as performance tuning parameters. The components in R matrix also affect
the closed-loop performance. The smaller the parameter r𝑤 is, the faster the closed-loop response will be.
However, it seems that for controlling the electrical drives and power converters using the discrete-time
MPC, the tuning parameter r𝑤 is less effective. In this application, r𝑤 is chosen to be 100.

8.3.2 Constraints

The maximum voltages in the servo drive are determined by the DC bus voltage (Vdc) and the pulse
width modulation techniques are adopted in the implementation in order to prevent the over-modulation
from occurring as discussed in Chapter 2. The linear modulation range limits amplitudes of maximum
achievable voltage so that

√

𝑣2
d + 𝑣

2
q ≤ Vdc

√
3

(8.46)

and this nonlinear limitation can be imposed using a rectangular area approximation to the circular area
(see Section 4.1.1 for discussions), as

|𝑣q| ≤ 𝜖 Vdc
√

3

|𝑣d| ≤
√
(1 − 𝜖2)

Vdc
√

3
,

where 0 ≤ 𝜖 ≤ 1. In the experimental evaluation, 𝜖 is selected as 0.5 and the DC supply voltage is Vdc =
100 V. With these specifications, the constraints on 𝑣d and 𝑣q become

− 28.87 ≤ 𝑣q ≤ 28.87

− 50 ≤ 𝑣d ≤ 50. (8.47)

The constraints on the incremental changes of the 𝑣d and 𝑣q are imposed as

−10 ≤ Δ𝑣q ≤ 10 − 10 ≤ Δ𝑣d ≤ 10.

8.3.3 Response to Load Disturbances

The load disturbance is represented as TL in (8.3), which can be modeled as a slowly varying signal, for
example, the external friction forces in a grinding process. Under the assumption that the load disturbance
mainly contains low frequency components, the design of MPC with the embedded integrator can reject
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the impact of external load disturbances. In order to achieve a fast response for the load disturbance
rejection, the weight coefficients are chosen to be qid = 1 and q𝜔 = 1.

In this case, the constraint on the q-axis voltage is specified by choosing 𝜖 = 0.9, leading to

−51.96 ≤ 𝑣q ≤ 51.96, −25.17 ≤ 𝑣d ≤ 25.17.

Because of the load torque disturbance, the limits on the q-axis voltage could prevent the velocity from
returning to the set-point 𝜔∗

e if they were too restricted. By choosing a larger 𝜖 so that a larger amplitude
is permitted for the q-axis voltage, this problem is avoided.

The experiment is carried out by suddenly switching on the resistor load when the coupled motor is
running at the constant speed (see Section 10.5 for description of the experimental setup). Using the setup
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Figure 8.1 PMSM control, rejection of an unknown step load disturbance. (a) Control signal 𝑣d , (b) Control signal
𝑣q, (c) d-axis current (id), (d) q-axis current (iq), and (e) motor speed (𝜔e.
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shown in Figure 10.6, a positive step load disturbance is added to the motor shaft at the sampling time t =
3.2 second (see Figure 8.1(e)). This equivalent step load disturbance TL has unknown amplitude, which
causes the id and iq currents to suddenly increase (see Figures 8.1(c)–(d)). To reject this disturbance, the
control signal 𝑣q increases from about 19 V to 30 V, and the control signal 𝑣d decreases from about 4 V
to close to 0 (see Figures 8.1(a)–(b)). After the transient response, the id current returns to its set-point
value at 0 and the iq current finds a new state-steady value that will compensate for the effect of the load
disturbance. It is seen that the response time for the motor speed 𝜔m is very fast (see Figure 8.1(e));
however, it takes a longer time for the id current to return to its desired value (see Figure 8.1(c)). For this
experiment of disturbance rejection, all the constraints on the control signals were naturally satisfied,
namely, they were not active.

8.3.4 Response to a Staircase Reference

Figure 8.2 shows the performance of the MPC controller in response to a staircase reference speed.
The control objective is to regulate the motor to a different reference speed while maintaining id at
zero. The controller gain for this case was selected to obtain a fast response while minimizing the
noise level, where the weight coefficients were chosen to be qid = 1 and q𝜔 = 1. Figure 8.2(c) shows
that the steady-state d-axis current is zero but corrupted by noise and high frequency ripples. The high
frequency ripples appear as pulsing torque (Jahns and Soong (1996)) in the closed-loop system due
to various reasons, such as current measurement errors (Chung and Sul (1998)), flux harmonics and
cogging torques (Xu et al. (2004)). It could also be caused by the modeling error when the chosen
operating conditions for linearization differ from the motor’s operating condition at the low speed. It
is also seen from Figures 8.2(c)–(d) that the frequency of oscillation increases as the synchronous
speed increases.
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Figure 8.2 PMSM control: closed-loop response to a staircase reference speed. (a) Control signal 𝑣d , (b) Control
signal 𝑣q, (c) d-axis current (id), and (d) motor speed (𝜔e.
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8.3.5 Tuning of the MPC controller

The desired closed-loop performance in the MPC design is dependent on the weight matrix Q and R
matrices in the cost function (8.23). With the special diagonal form, there are two parameters to be
selected in the performance specification, where qid is the weighting parameter on the d-axis current
and q𝜔 is the weighting parameter on the velocity 𝜔e. Their relatively large values produce high gains
in the closed-loop control that, in turn, amplify the noise and high frequency ripples in the drive. Hence
the selection of these weights is a trade-off between response and the attenuation of noise and high
frequency ripples.

There are two cases to be investigated here with respect to the weight coefficients qid and q𝜔. For
both cases, the value of qid is chosen to be 1, but q𝜔 varies. It is found that the ratio between the weight
coefficients q𝜔 and qid significantly affects the closed-loop responses.

8.3.5.1 Case A

q𝜔 = qid = 1. When q𝜔 = qid, which means that the reduction of the errors for the current control and
the velocity control has an equal importance, the closed-loop system has higher gains. Here, with these
weight matrices, the state feedback control gain matrix is

Kmpc =
[

0.3146 −0.6139 −0.0181 0.0350 −0.0009
−0.6700 10.4550 0.6348 0.0022 0.0791

]

and the closed-loop eigenvalues are

Eig =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.8942 + 0.1534i
0.8942 − 0.1534i

0.8008
0.9211
0.9879

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

8.3.5.2 Case B

q𝜔 = 0.01 and qid = 1. When q𝜔 is relatively smaller than qid, the emphasis is put on the reduction of
the error in the current id. The MPC controller has lower gains with this set of performance parameters.
Here, with this selection of the weight coefficients, the state feedback gain matrix is

Kmpc =
[

0.2536 −0.0723 −0.0046 0.0350 −0.0004
−0.0771 1.2510 0.0614 0.0029 0.0064

]

and the eigenvalues of the closed-loop predictive control system are

Eig =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.9548 + 0.1081i
0.9548 − 0.1081i

0.9250
0.9577
0.9877

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The experimental results can be compared from Figures 8.3–8.6. With the selection of performance
parameters in Case A, the impact of high gain feedback control is evident from the responses of the
current control signals and their differences (see Figure 8.3). In particular, the second row of the feedback
controller gain matrix Kmpc has components almost 10 times larger than those in Case B (except the
second last component). This results in much larger iq current response. It is seen that the constraints on 𝑣q

and Δ𝑣q become active in the start-up phase. In comparison, when q𝜔 is reduced to 0.01, the magnitudes
of both 𝑣d and 𝑣q have been significantly reduced (see Figure 8.4), and the control signals are far away
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Figure 8.3 Control signal when q𝜔 = 1. (a) Control signal 𝑣d , (b) Control signal 𝑣q, (c) Difference of the control
signal Δ𝑣d , and (d) Difference of the control signal Δ𝑣q.
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Figure 8.4 Control signal when q𝜔 = 0.01. (a) Control signal 𝑣d , (b) Control signal 𝑣q, (c) Difference of the control
signal Δ𝑣d , and (d) Difference of the control signal Δ𝑣q.
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Figure 8.5 Output response when q𝜔 = 1. (a) d-axis current (id), and (b) Motor speed (𝜔e).
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Figure 8.6 Output response when q𝜔 = 0.01. (a) d-axis current (id), and (b) Motor speed (𝜔e).

from their constraints. For the two choices of q𝜔 parameter, the closed-loop output responses, id current
and 𝜔m, are compared in Figures 8.5 and 8.6. It is seen from these two figures that the closed-loop output
responses from the smaller q𝜔 parameter case are more aggressive than those using a larger q𝜔.

This case study indicates that because of the much faster dynamics in the electrical system, the error
reduction on the id current response should have a much faster rate than the reduction on the velocity
response, which is translated into a choice of larger q𝜔 relative to the value of qid.

8.4 Power Converter Control Using DMPC with
Experimental Validation

The DMPC algorithms have also been successfully used in controlling the power converter with
constraints.

For the power converter control, the linearized continuous-time state-space model is described by the
differential equation:

dxm(t)
dt

= Amxm(t) + Bmu(t) (8.48)

y(t) = Cmxm(t), (8.49)
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where the state vector is xm(t) = [id(t) iq(t) 𝑣dc(t)]T , the control signal vector is u(t) = [Sd(t) Sq(t)]T ,
and the output vector is y(t) = [iq(t) 𝑣dc]T .

Am = 𝜔b

⎡
⎢
⎢
⎢
⎢
⎣

− R̄s

L̄s
𝜔g − Sdo

L̄s

−𝜔g − R̄s

L̄s
− Sqo

L̄s
Sdo

C̄dc

Sqo

C̄dc
0

⎤
⎥
⎥
⎥
⎥
⎦

,Bm = 𝜔b

[
− 𝑣dco

L̄s
0

0 − 𝑣dco

L̄s

]

, (8.50)

Cm =
[

0 1 0
0 0 1

]

,

where 𝜔b is the base value used in the per unit model (𝜔b = 2𝜋 × 50), Sdo = 0.6532, Sqo = −0.3232 are
the steady state control signals; 𝑣dco = 1.2247 is the steady state voltage in per unit value. By choosing
the steady-state control signal values as Sdo = 0.6532, Sqo = −0.3232 and the steady-state voltage value
as 𝑣dco = 60 V, the Am and Bm matrices are calculated as

Am =
⎡
⎢
⎢
⎣

−31.7460 314.1593 −622.0926
−314.1593 −31.7460 256.5100
198.6073 −81.8925 0

⎤
⎥
⎥
⎦

; Bm =
⎡
⎢
⎢
⎣

−972.0197 0
0 −972.0197

253.3784 0

⎤
⎥
⎥
⎦

,

where the parameters in the physical per unit model are R̄s = 0.04, L̄s = 0.3958 and C̄dc = 1.2399. Here,
with the per unit model, the parameters in the system matrices are scaled to a better numerically condi-
tioned system model. The continuous-time state space system matrices Am, Bm, Cm are further discretized
into Ad, Bd , Cd with the current loop sampling interval Δt = 100 × 10−6 sec, leading to the system
matrices,

Ad =
⎡
⎢
⎢
⎣

0.9957 0.0316 −0.0617
−0.0310 0.9962 0.0266
0.0199 −0.0079 0.9993

⎤
⎥
⎥
⎦

; Bd =
⎡
⎢
⎢
⎣

−0.0978 −0.0015
0.0018 −0.0970
0.0244 0.0004

⎤
⎥
⎥
⎦

.

The reference signal to current iq is chosen to be 0 and the reference signal to the voltage 𝑣dc is called
𝑣∗dc specified in the applications. Constraints are imposed on the control signals Sd and Sq to limit them
in the range of −1 to 1. In the discrete-time MPC system, the prediction horizon is selected as Np = 100
and the control horizon Nc = 10. The weight matrices Q and R are selected to be in identical forms as
those in (8.45), however with the different value r𝑤 = 3500, and the last two parameters in the diagonal
of Q matrix as qid = 1 and q𝜔 = 0.1 respectively. As the current and voltage loops have different time
constants, the element in Q matrix corresponding to the current is chosen to be much larger than the
element corresponding to the voltage variable in order to achieve satisfactory performance.

In the experimental evaluation, the reference to the DC bus voltage, 𝑣∗dc, is set to 55 V, then changed
to 60 V as a step signal. The load disturbance is introduced by changing the DC load from 20 Ω to 30 Ω.
Figure 8.7 shows the closed-loop responses of the DC bus voltage, id and iq currents and control signal
responses. From Figure 8.7(a) it is seen that the predictive control system is successful in tracking the
reference signal 𝑣∗dc without steady-state errors, also the load disturbance is rejected without steady-state
error. Figure 8.7(b) shows that the q-axis current follows a zero reference signal, however the d-axis
current varies in responses to the voltage reference signal and to the load change.

8.5 Summary
This chapter has presented the discrete-time model predictive control of electrical drives and power con-
verter. In this design, the predictive control system is centralized and integrators are embedded into the
predictive controller to overcome steady-state errors in the output responses. Experimental results are
obtained to demonstrate the control system design and implementations.
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Figure 8.7 Experimental results for discrete-time model predictive control of power converter. (a) DC bus voltage
response to step reference change and load change, (b) id and iq current response to step reference voltage change and
load change, and (c) Control signal responses to step reference voltage change and load change.

Although one might say that the design is straightforward with just one model, there are several draw-
backs with this particular predictive control approach. Because it uses only one model and one controller
in the design and implementation, it only permits one sampling rate for both currents, velocity or voltage,
which means that a suitable sampling rate is hard to find. For instance, a sampling interval is too large
for the current control system, yet is too small for the mechanical or the voltage system. This causes
numerical problems in the discretized model, although a per unit model helps to reduce the impact of the
numerical problems to some degree. The second drawback with this type of predictive control system is
that it requires a large “trial and error” effort in selecting the suitable weight matrices Q and R, which
could be caused again by the large discrepancies between the electrical time constants and the time con-
stants in the mechanical and voltage systems. The third drawback is that because the current iq in the AC
drives is a state variable, it is difficult to impose constraints on its value. The fourth drawback is that this
approach requires a larger computational load than the FCS-MPC or the PID control systems.

8.6 Further Reading
General literature in predictive control includes Rawlings (2000), Maciejowski (2000), Qin and Badg-
well (2003), Wang (2009), Rossiter (2003). A book was published on predictive control of electric drives
by Linder et al. (2010). Discrete-time model predictive control of PMSM drives was discussed in Linder
and Kennel (2005), Moon et al. (2003), in Liu and Li (2012), in Chai et al. (2013), for induction machine
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drives in de Santana et al. (2008), Maaziz et al. (2000) in Zhang et al. (1997), Kennel et al. (2001) for
induction motor control using Generalized Predictive Control. Design and implementation was discussed
in Bolognani et al. (2009), with field weakening features in Bolognani et al. (2008), with torque control
over modulation in Ishida et al. (2010), speed and position control in Bolognani et al. (2011). Applica-
tions for induction motor control can be found in de Santana et al. (2008) and DC-DC power supplies in
Beccuti et al. (2009). Cascade control of power converter using DMPC for both inner-loop and outer-loop
systems was presented in Ng and Wang (2013) with comparison between the cascade predictive control
system and the centralized predictive control system that was discussed in this chapter.

Model predictive controllers were compared with PID controllers in Thomsen et al. (2011). Direct cur-
rent control was discussed in Ambrozic et al. (2003). Hildreth’s quadratic programming procedure was
first proposed in Hildreth (1957). Another approach to solving (8.41) is to use Parallel Quadratic Pro-
gramming (PQP) (Brand et al. (2011)). In Wang and Boyd (2010), online optimization algorithms were
investigated for model predictive control. The characteristics of a discrete-time model were discussed in
Astrom et al. (1984).
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9
Continuous-time Model Predictive
Control (CMPC) of Electrical
Drives and Power Converter

Traditional model predictive control systems are designed based on a discrete-time model as shown in
Chapter 8. More recently, it has been established that there is no explicit obstacle to designing predictive
control systems using the models described in the continuous-time while the discretization comes later
at the implementation stage (see Wang (2009)). This may be viewed as an advantage in the control
design of electrical drives and power converters because the choice of sampling interval is particularly
important for the reasons of computational cost and the closed-loop performance, which then could be
tested without changing the original design in the continuous-time. The drawback of a continuous-time
design and a discrete-time implementation is the existence of approximation error in the implementation
stage, which needs to be considered carefully in the choice of sampling interval.

Control systems using model predictive control have the capability of handling constraints and opti-
mizing the closed-loop dynamic response in the presence of constraints. Because of these strengths,
the potential advantages of model predictive control are the improvement of power density for motors,
namely a smaller motor for a larger load. In these applications, when a larger load occurs, the constraint
on the torque current becomes active in the dynamic response phase, and when the control signal tends
to its steady-state value, the constraints are satisfied. With the characteristics of model predictive control,
the specification of motors could be smaller, where the maximum current is related to the steady-state
requirement of the torque current.

There are two major topics to be discussed in this chapter. Firstly, the basic approach to the design of
a continuous model predictive controller is introduced in which a single linearized state-space model is
used in the design of the control system for the AC motors and power converters. This is the simplest
approach with full consideration of the interactions between the variables. The main shortcoming of this
design is that it neglects the large difference between the time scales of the electrical and mechanical
systems, and it is not computationally effective. The second topic is to discuss how the nonlinearity
may affect the predictive control systems as the electrical drive models and power converter models are
linearized, and if it is necessary, how a gain scheduled MPC is designed and implemented so that the
predictive control system covers a large range of operating conditions.

In this chapter, an induction motor is used as the basis of the continuous-time predictive control system
design and implementation, followed by the application to power converters. Using induction motor as
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an example, Section 9.1 introduces the continuous-time MPC design based on one predefined operat-
ing condition. In Section 9.3, simulation and experimental results are presented for the continuous-time
predictive control of induction motor that demonstrates the selection of the performance tuning param-
eters. The same continuous-time MPC algorithm is applied to control a power converter in Section 9.4
and experimental validation results are also presented in the same section. Because of the existing non-
linearities in the electrical drives and power converter, the gain scheduled model predictive controller is
introduced in Section 9.5 based on the linear models derived from several operating conditions. This gain
scheduled continuous-time predictive controller is then implemented on the induction motor test-bed and
the experimental results presented in Section 9.6 show the closed-loop control performance over a large
operating region and significant improvement over the performance produced by the predictive controller
designed based on a single operating condition.

The MATLAB programs for the continuous-time predictive control algorithms can be found in Wang
(2009).

9.1 Continuous-time MPC Design
In this section, the Model Predictive Controller is designed based on a continuous-time model. The advan-
tages of continuous-time MPC include that the physical model is directly used for control design. In order
to achieve zero steady-state error and disturbance rejection, integrators are embedded in the predictive
controller.

9.1.1 Augmented Model

The linearized model of an induction motor for speed control purpose is described by the following
differential equations:

dxm(t)
dt

= Amxm(t) + Bmu(t) + 𝜇0

y(t) = Cmxm(t), (9.1)

where xm(t) = [isd(t) isq(t) 𝜓rd(t) 𝜔m(t)]T , u(t) = [usd(t) usq(t)]T , and with the coefficient 𝜅t =
3ZpLh

2LrJm
,

the matrices Am and Bm are defined as

Am =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1

𝜏′𝜎
𝜔0

m + 2Lh

𝜏r

i0sq

𝜓0
rd

kr

r𝜎 𝜏r𝜏
′
𝜎

− Lh

𝜏r

(i0sq)
2

(𝜓0
rd
)2

i0
sq

−𝜔0
m − Lh

𝜏r

i0sq

𝜓0
rd

− 1

𝜏′𝜎
− Lh

𝜏r

i0
sd

𝜓0
rd

− kr

r𝜎 𝜏
′
𝜎

𝜔0
m + Lh

𝜏r

i0sqi0
sd

(𝜓0
rd
)2

− kr

r𝜎𝜏
′
𝜎

𝜓0
rd − i0

sd

Lh

𝜏r
0 − 1

𝜏r
0

0 𝜅t𝜓
0
rd 𝜅t i

0
sq − fd

Jm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bm =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

r𝜎𝜏
′
𝜎

0

0 1

r𝜎𝜏
′
𝜎

0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

;Cm =
[

0 0 1 0
0 0 0 1

]

.

The constant vector 𝜇0, consisting of the steady-state parameters, is given by

𝜇0 =
[
−𝜔0

mi0
sq +

Lh

𝜏r
i0
sq𝜓

0
rd −

Lh

𝜏r

(isq)0

𝜓0
rd

𝜔0
mi0

sd +
kr

r𝜎𝜏
′
𝜎

𝜓0
rd 0 𝜅t i

0
sq𝜓

0
rd −

TL

Jm

]T

.
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Based on the above model, the operating condition of parameters 𝜔0
m, 𝜓0

rd, i0
sd and i0

sq need to be
pre-defined, since 𝜓0

rd is equal to the set-point value, i0sd is derived based on the steady-state relationship:

d𝜓rd(t)
dt

= 0,

which leads to

i0
sd =

𝜓0
rd

Lh

.

The i0
sq value is calculated using the steady-state velocity 𝜔0

m and the estimated steady-state torque
value TL:

i0
sq =

(fd∕Jm)𝜔0
m + TL

𝜅t𝜓
0
rd

,

where TL is the load torque that often changes with respect to time, so there is some uncertainty associated
with the parameter i0

sq.
In order to embed integrators into the continuous-time model predictive controller, an augmented

model is formulated. Taking a derivative operation on the state-space equation of the linearised
continuous-time state space model (9.1) leads to

ẍm(t) = Amẋm(t) + Bmu̇(t), (9.2)

where the derivative of the constant vector 𝜇0 is zero. To obtain the augmented model, firstly the auxiliary
variable vector z(t) is selected as z(t) = ẋm(t), then, the new state variable vector is chosen as x(t) =
[z(t)T y(t)T ]T . With the new state variable vector x(t),the augmented state-space model of the induction
motor becomes

ẋ(t) = Ax(t) + Bu̇(t) (9.3)

y(t) = Cx(t), (9.4)

where the augmented system matrices are given by

A =
[

Am O4×2

Cm O2×2

]

; B =
[

Bm

O2×2

]

; C =
[
O2×4 I2×2

]

and I∗×∗ and O∗×∗ are the identity and zero matrices with dimensions denoted by the sub-indices,
respectively. Note that in the augmented state-space model, the constant vector 𝜇0 is eliminated.

Several comments are in order about the augmented state-space model. Firstly, in the augmented model,
the first part of the state variables consists of ẋm(t). Because the predictive controller is designed to follow
step reference signals, the steady-state vector of xm(t) is a constant vector, and as a result, the steady-state
vector of ẋm(t), is ensured to be a zero vector for all operating conditions. This information provides the
convenience in the implementation of the predictive controller as it could be a nontrivial task to find the
steady-state values of the original state vector. The second part of the state variables consists of the plant
outputs whose steady-state values are the desired reference signals to the control system. At this point,
we could write the corresponding small signal model for the augmented model (9.4) by subtracting the
steady-state values of the outputs from the second part of state variables (ỹ1(t) = 𝜓rd(t) − 𝜓0

rd, ỹ2(t) =
𝜔m(t) − 𝜔0

m). Furthermore, the steady-state values 𝜓0
rd and 𝜔0

m are taken as the reference signals to the
control system and they can be included inside the objective function in the sequel.

9.1.2 Description of the Control Trajectories Using Laguerre Functions

When designing a continuous-time model predictive control system, the trajectories of the future con-
trol signals need to be described using orthonormal basis functions so that the optimization problem is
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converted to finding a set of coefficients that will minimize an objective function subject to constraints
(see Wang (2009)). Laguerre functions form a set of orthonormal basis functions that will be used to
describe the control trajectories.

The set of Laguerre functions is defined as (see Lee (1960)), for any p > 0,

l1(t) =
√

2p × e−pt

l2(t) =
√

2p(−2pt + 1) e−pt

⋮ = ⋮

li(t) =
√

2p
ept

(i − 1)!
di−1

dti−1
[ti−1e−2pt]. (9.5)

In the literature, parameter p here is called the time scaling factor for the Laguerre functions. This time
scaling factor plays an important role in the application of Laguerre functions since it determines their
exponential decay rate. It is used as a design parameter that the user will specify as part of the design
requirement.

Laguerre functions are one set of the orthonormal functions that satisfy the following orthonormal
properties:

∫
∞

0
l2
i (t)dt = 1 (9.6)

and

∫
∞

0
li(t)lj(t)dt = 0 i ≠ j. (9.7)

Assuming initial conditions of the state vector as L(0) =
√

2p
[
1 1 … 1

]T
, then the Laguerre functions

satisfy the state-space equation:

⎡
⎢
⎢
⎢
⎣

l̇1(t)
l̇2(t)
⋮

l̇N (t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−p 0 … 0
−2p −p … 0
⋮ … … ⋮

−2p … −2p −p

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

l1(t)
l2(t)
⋮

lN(t)

⎤
⎥
⎥
⎥
⎦

. (9.8)

Figure 9.1 shows the first three Laguerre functions for the scaling factor p = 1.
Because there are two inputs in the control system of the induction motor, each input will be described

using the expansion of Laguerre functions. For instance, within one optimization window of length Tp,
the derivative of the first control signal u̇1(𝜏), 0 ≤ 𝜏 ≤ Tp is described by a set of Laguerre functions

u̇1(𝜏) = L1(𝜏)
T𝜂1,

where L1(𝜏)T =
[
l1(𝜏) l2(𝜏) … lN (𝜏)

]
and 𝜂1 =

[
𝜉1 𝜉2 … 𝜉N

]T
.

Similarly, the derivative of the second control signal is described by

u̇2(𝜏) = L2(𝜏)
T𝜂2,

where L2(𝜏) may differ from L1(𝜏) in terms of the scaling factor p and the number of terms used in the
expansion. To distinguish these Laguerre function sets, N1 and p1 denote the number of terms and scaling
factor for L1, likewise, N2 and p2 for L2.

Because of the orthonormal properties and completeness of the Laguerre functions, their applications in
continuous-time model predictive control will ensure that the predictive control trajectories will converge
to the underlying optimal control trajectories as the numbers (N1, N2) of Laguerre functions increase
(Wang (2009)).
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Figure 9.1 Laguerre functions (p = 1). Solid line: l1(t); dashed line: l2(t); dotted line: l3(t).

9.1.3 Continuous-time Predictive Control without Constraints

In order to compute the optimal control solution, several steps are discussed in this section. Firstly, at
the current time ti, based on the plant model, the predicted response trajectory of the error state variable
vector x̃(t) = x(t) − x0, where x0 is the steady-state vector of x(t). At future time 𝜏, 𝜏 > 0, x̃(ti + 𝜏|ti) is
described as follows:

x̃(ti + 𝜏|ti) = eA𝜏 x̃(ti) + ∫
𝜏

0
eA(𝜏−𝛾)Bu̇(𝛾)d𝛾, (9.9)

where 𝛾 presents the time variable within the prediction window to distinguish it from 𝜏.
Since the induction motor model has 2 inputs, the control signal vector and the input matrix B can be

written as

u̇(𝜏) = [u̇1(𝜏)T u̇1(𝜏)T ]T

B = [BT
1 BT

2 ]
T .

The approximation by using Laguerre functions to both control signals leads to

u̇1(𝜏) = L1(𝜏)
T𝜂1

u̇2(𝜏) = L2(𝜏)
T𝜂2.

Therefore, the prediction of future state at time 𝜏 (see (9.9)) is rewritten with the orthonormal
expansion, as

x̃(ti + 𝜏|ti) = eA𝜏 x̃(ti) + 𝜙(𝜏)
T𝜂, (9.10)

where 𝜙(𝜏)T is the convolution integral

𝜙(𝜏)T = ∫
𝜏

0
eA(𝜏−𝛾)[B1L1(𝛾)

T B2L2(𝛾)
T ]d𝛾
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and the coefficient vector 𝜂 contains the two sub-coefficient vectors 𝜂1 and 𝜂2:

𝜂 = [𝜂T
1 𝜂T

2 ]
T ;

therefore, the matrix 𝜙(𝜏)T has dimension of n × (N1 + N2) and the optimal control coefficient vector has
dimension of N1 + N2.

By substituting the predicted state trajectory into the state-space model, the prediction of future output
at time 𝜏 is written as

y(ti + 𝜏|ti) = CeA𝜏 x̃(ti) + C𝜙(𝜏)T𝜂. (9.11)

The cost function, which is similar to the classical Linear Quadratic Regulator (LQR)’s cost function,
is chosen as

J = ∫
Tp

0
(x̃(ti + 𝜏|ti)

TQx̃(ti + 𝜏|ti) + u̇(𝜏)TRu̇(𝜏)d𝜏, (9.12)

where x̃(ti + 𝜏|ti) = x(ti + 𝜏|ti) − x0, Q and R are semi-positive and positive definite matrices. Note as
stated before that the first part of state vector x(t) is ẋm(t) having a zero steady-state vector and the second
part of x(t) has its steady-state vector corresponding to the reference signals because of the augmented
model used in the design (see (9.4)). More specifically, for the induction motor control application, the
steady-state vector is defined as

x0 =
[
0 0 0 0 𝜓0

rd 𝜔0
m

]T
. (9.13)

From the property of the orthonormal functions, ∫ ∞
0 L1(𝜏)L1(𝜏)T d𝜏 is equal to the identity matrix,

which is also true for ∫ ∞
0 L2(𝜏)L2(𝜏)T d𝜏. As a result, the second term of the cost function (9.12) is

expressed, by assuming R to be a diagonal matrix and sufficiently large prediction horizon Tp, as

∫
Tp

0
u̇(𝜏)T Ru̇(𝜏)d𝜏 = 𝜂T RL𝜂, (9.14)

where RL is a block diagonal matrix with two blocks corresponding to the weights on the control signals.
By substituting the prediction equation (9.10) into the cost function (9.12), it becomes:

J = ∫
Tp

0
(eA𝜏 x̃(ti) + 𝜙(𝜏)

T𝜂)TQ(eA𝜏 x̃(ti) + 𝜙(𝜏)
T𝜂)d𝜏 + 𝜂T RL𝜂, (9.15)

which is a quadratic function with respect to 𝜂:

J = 𝜂T [∫
Tp

0
𝜙(𝜏)Q𝜙(𝜏)Td𝜏 + RL]𝜂 + 2𝜂T ∫

Tp

0
𝜙(𝜏)QeA𝜏d𝜏 x̃(ti)

+x̃(ti)
T ∫

Tp

0
eAT 𝜏QeA𝜏d𝜏 x̃(ti). (9.16)

By defining two matrices as follows:

Ωmpc = ∫
Tp

0
𝜙(𝜏)Q𝜙(𝜏)Td𝜏 + RL (9.17)

Ψmpc = ∫
Tp

0
𝜙(𝜏)QeA𝜏d𝜏, (9.18)

the objection function (9.16) has the compact expression:

J = 𝜂TΩmpc𝜂 + 2𝜂TΨmpcx̃(ti) + x̃(ti)
T ∫

Tp

0
eAT 𝜏QeA𝜏d𝜏 x̃(ti). (9.19)
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Completing the squares in the cost function leads to

J = [𝜂 + Ω−1
mpcΨmpcx̃(ti)]TΩmpc[𝜂 + Ω−1

mpcΨmpcx̃(ti)]

+x̃(ti)
T ∫

Tp

0
eAT 𝜏QeA𝜏d𝜏 x̃(ti) − x̃(ti)

TΩT
mpcΨ

−1
mpcΩmpcx̃(ti). (9.20)

Since the last two terms are independent of 𝜂 and Ωmpc is a positive definite matrix, the minimum of the
cost function with respect to 𝜂 is achieved if the first term is set to zero, that is,

𝜂 = −Ω−1
mpcΨmpcx̃(ti). (9.21)

After the computation of optimal control coefficient vector 𝜂, the control trajectory u̇(𝜏) is reconstructed
with the Laguerre functions

u̇(𝜏) =
[

L1(𝜏)T O2

O1 L2(𝜏)T

]

𝜂,

where O1 and O2 are zeros vectors with their dimensions equal to those of L1(𝜏)T and L2(𝜏)T .
The principle of receding horizon control strategy is to use the information from the first sample of

the control trajectory. Hence, at the sampling time ti, the optimal control u̇(ti) for the unconstrained
problem is

u̇(ti) =
[

L1(0)T O2

O1 L2(0)T

]

𝜂. (9.22)

The actual control signal is computed using

u(ti) = u(ti−1) + u̇(ti)Δt, (9.23)

where Δt is the sampling interval used in the implementation of the continuous-time predictive control
system.

Without constraints, the optimal control solution can also be expressed as the state feedback control

u̇(t) = −Kmpcx̃(t), (9.24)

where the feedback control gain matrix is

Kmpc =
[

L1(0)T O2

O1 L2(0)T

]

Ω−1
mpcΨmpc. (9.25)

The data matrices Ωmpc and Ψmpc are computed off-line as the process of continuous-time MPC design.
Therefore, in the unconstrained case, while the feedback gain matrix Kmpc is computed off-line as shown
in (9.25), the on-line computation only involves Equation (9.24). Furthermore, the location of closed-loop
poles is evaluated by calculating the eigenvalues of (A − BKmpc). When the numbers of terms are large,
with a long prediction horizon Tp, the derivative of the control trajectory u̇(.) closely matches the under-
lying optimal control trajectory defined by the linear quadratic regulator (LQR) (Wang (2009)).

In the application of the induction motor, for a given operating condition, the time varying components
of the dynamic model are calculable, so that a linear time invariant model will be obtained for the MPC
design. For example, the velocity and flux references are set as, 𝜔∗

m = 1400 RPM and 𝜓rd = 0.6 Wb. The
CMPC design parameters include: the Laguerre function parameters N1 = N2 = 6 and p1 = p2 = 20,
prediction horizon Tp = 0.5, the weight matrices RL = rkI (rk = 1) and Q = CT C, then the closed-loop
eigenvalues are calculated as

[−139.72 ± j288.84 − 68.46 − 1.43 ± j2.16 − 5.39 × 10−6],

where one pole is almost located at the origin. Thus, the feedback control is considered marginally stable,
the change of tuning parameter rk could affect the closed-loop eigenvalues, Table 9.1 shows that smaller
weighting parameter rk does push the dominant eigenvalue away from the origin but not significantly.
Therefore, the method called exponential data weighting is used for such a situation.
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Table 9.1 Closed-loop eigenvalues with different weight coefficient in RL matrix

rk = 0.1 −139.72 ± j288.84 −68.46 −3.74 ± j3.74 −5.38 × 10−5

rk = 0.01 −139.72 ± j288.84 −68.46 −6.57 ± j6.53 −5.36 × 10−4

rk = 0.001 −139.72 ± j288.84 −68.45 −11.92 ± j11.88 −0.0053
rk = 0.0001 −139.72 ± j288.84 −68.35 −21.07 ± j20.88 −0.0529

9.1.4 Tuning of CMPC Control System Using Exponential Data Weighting
and Prescribed Degree of Stability

From the previous section, the closed-loop eigenvalues are heavily dependent on weight matrices Q and
RL. For example, in this induction motor case study, there are 36 elements in the Q matrix, and it is
a complicated matter to find the individual elements and the combinations of them to achieve desired
closed-loop performance. As demonstrated in Table 9.1, the variation of RL does not sufficiently change
the closed-loop performance as desired.

Exponential weighting is to use a time dependent weighting e−𝛼t (𝛼 > 0) in the cost function of the
predictive control system design, in order to produce a numerically well-conditioned Ωmpc matrix. On
the basis of exponential data weighting, a prescribed degree of stability is to ensure that the eigenvalues of
the closed-loop predictive control system are on the left-hand side of the −𝛽 line (𝛽 > 0) in the complex
plane.The locations of the desired closed-loop eigenvalues are illustrated in Figure 9.2.

The detailed information about the exponential data weighting and prescribed degree of stability can
be found in Wang (2009).

9.1.4.1 Selection of 𝜶

The idea behind the selection of 𝛼 is to make sure that the design model with (A − 𝛼I) is stable with all
eigenvalues on the left-half of the complex plane. The computation of the prediction when using A − 𝛼I
is numerically sound.

From a given augmented state-space model (A,B), the eigenvalues of A are determined. Because the
induction motor is a stable system, the unstable eigenvalues of A come from the integrators that have been
embedded in the model. In this case, any 𝛼 > 0 will serve the purpose of exponential data weighting.

Once the exponential weight factor 𝛼 is selected, the eigenvalues of the matrix A − 𝛼I are fixed. Since
this matrix is stable with an appropriate choice of 𝛼, the prediction of the state variables is numerically
sound. In general, if the eigenvalues of A − 𝛼I were further away from the imaginary axis on the complex
plane, then a smaller prediction horizon Tpwould be required.

Re

Im

0−β

Figure 9.2 Shaded area gives the prescribed degree of stability of −𝛽.
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9.1.4.2 Selection of degree of stability 𝜷

So far the closed-loop performance of a predictive control system is determined by the choice of Q and R
matrices. Tuning via Q and R could be very time consuming as it often requires finding the off-diagonal
elements in Q and R to achieve satisfactory performance. This is often performed in a trial-and-error
manner as demonstrated in Chapter 8. Now, with the additional parameter 𝛽 that dictates the degree of
stability, the closed-loop eigenvalues of the predictive control system are effectively positioned to the
left-hand side of the −𝛽 line on the complex plane. The parameter 𝛽 will be used to shift the closed-loop
eigenvalues of the predictive control system. In the design, the user will specify the parameter 𝛽 for the
location of the closed-loop eigenvalues, leading to the specification of the closed-loop response speed.
For instance, a larger 𝛽 will result in a faster closed-loop response speed.

Once a suitable value for 𝛽 is chosen, which is the degree of stability, the following Riccati equation
is solved for the P matrix:

P(A + 𝛽I) + (A + 𝛽I)TP − PBR−1BT P + Q = 0. (9.26)

A MATLAB script can be used for this solution:

[K,P,E]= lqr(A+beta*eye(n,n), B, Q, R);

The matrix Q𝛼 is then determined, with the values of 𝛼, 𝛽 and P, using

Q𝛼 = Q + 2(𝛼 + 𝛽)P.

The augmented state-space model (A,B) is modified for use in the design. The matrix B is unchanged;
however, the matrix A is modified to become A − 𝛼I. With this set of performance parameters (Q𝛼,R) and
the design model (A − 𝛼I,B), the predictive control problem is converted back to the original problem
stated in Sections 9.1 to 9.1.3.

9.1.4.3 The Parameters in Laguerre Functions

When N increases, the predictive control trajectory converges to the underlying optimal control trajectory
of the linear quadratic regulator. However, with a small N, the scaling factor in the Laguerre functions p
will affect the closed-loop response. The parameter p should be chosen close to the smallest magnitude of
the eigenvalue from the LQR design, then increasing the parameter N until the closed-loop eigenvalues
from predictive control system become close to those produced by the LQR system.

To demonstrate the effectiveness of the tuning procedure, we redo the example presented in Table 9.1.
For instance, if the parameters remain identical to the previous case, except the exponential data weight-
ing with prescribed degree of stability is applied, we choose the exponential weighting parameter 𝛼 = 1.2
to ensure that the design model is stable and all closed-loop eigenvalues to be on the left of s = −20 line
on the complex plane. The comparative results are illustrated in Table 9.2. It is interesting to note that for
this set of tuning parameters, the largest eigenvalue in the original design was located at −0.0529 and is
shifted to −40 in the tuning procedure with 𝛼 and 𝛽 parameters, but for those already located on the left
of the s = −𝛽 = −20, little change occurred.

Table 9.2 Eigenvalue comparison with and without using prescribed degree of stability
in MPC design

Closed-loop eigenvalues

𝛼 = 0; 𝛽 = 0 −139.72 ± j288.84 −68.46 −3.74 ± j3.74 −5.38 × 10−5

𝛼 = 1.2; 𝛽 = 20 −138.80 ± j291.24 −69.70 −38.76 ± j2.25 −39.91
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9.2 CMPC with Nonlinear Constraints
The strength of the continuous-time model predictive control system lies in the conceptual and computa-
tional simplicity when tackling the constrained control problem. It is paramount that suitable operational
constraints are in place for the safety of the equipment. Similar to the discrete-time MPC presented in
Chapter 8, the constraints implementation is established by using on-line Quadratic Programming (QP)
technique as discussed in Chapter 8.

In the case of the induction motor control, all constraints under consideration are input variable con-
straints, which are the stator voltages usd and usq. Assuming that the DC-bus voltage is supplied with
Vdc V , and with the modulation limitation, the manipulated variables are constrained by the following
relation: √

u2
sd + u2

sq ≤ Vdc
√

3
. (9.27)

This is a quadratic constraint with respect the input variables. The constrained predictive control prob-
lem becomes a quadratic optimization subject to quadratic constraints. The solution to this nonlinear
constrained optimization problem demands a substantial amount of on-line computational power, and
the nonlinear optimizer also complicates the real-time implementation of the gain scheduled predictive
control algorithm introduced later in this chapter. Two approaches are proposed here to approximate the
quadratic constraint (9.27).

9.2.1 Approximation of Nonlinear Constraint Using Four Linear
Constraints

The input constraints on the control signal magnitude usd(t) and usq(t) will be imposed in the design and
implementation. Assume here that the magnitude constraints are specified for the upper and lower limits
of the control signals as

umin
sd ≤ usd(t) ≤ umax

sd

umin
sq ≤ usq(t) ≤ umax

sq .

As shown in the previous section, the calculation of the amplitude of control signal is based on

u(ti) = u(ti−1) +
[

L1(0)T O2

O1 L2(0)T
]

𝜂Δt,

where Δt is the sampling interval. Together with the inequality constraints, the constraints on the control
signals are formulated as

[
umin

sd
umin

sq

]

≤
[

usd(ti−1)
usq(ti−1)

]

+
[

L1(0)T O2

O1 L2(0)T

]

𝜂Δt ≤
[

umax
sd

umax
sq

]

. (9.28)

9.2.2 Approximation of Nonlinear Constraint Using Sixteen Linear
Constraints

Figure 9.3 shows the constraint equation (9.27), which is the area of a circle with the radius of Vdc√
3
. In order

to obtain the linear approximation, the circular area is approximated using the area of an octagon as shown
in Figure 9.3. For notational simplicity, usd and usq are denoted as f and g, and a unit circle is chosen for
the initial analysis. On Figure 9.3, the eight pairs of the coordinates are marked in anti-clockwise manner,
and similarly marked are the eight straight lines. The values of the coordinates are given in Table 9.3.
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(–1/√2, 1/√2) (1/√2, 1/√2)

(–1/√2, –1/√2) (1/√2, –1/√2)

(–1, 0) (1, 0)

(0, 1)

(0, –1)

Figure 9.3 Approximation of circular constraint area using the area of an octagon.

Table 9.3 The values of the coordinates

k 1 2 3 4 5 6 7 8

fk 1 1
√

2
0 − 1

√
2

−1 − 1
√

2
0 1

√
2

gk 0 1
√

2
1 1

√
2

0 − 1
√

2
−1 − 1

√
2

There are four inequalities associated with the upper part of the circle, and four reversed inequalities
associated with the lower part of the circle. For k = 1, 2, 3, 4, the inequalities for the upper part of the
circle are expressed as

g −
gk − gk+1

fk − fk+1

f ≤ −
gk − gk+1

fk − fk+1

fk + gk. (9.29)

For k = 5, 6, 7, the inequalities for the lower part of the circle are expressed as

g −
gk − gk+1

fk − fk+1

f ≥ −
gk − gk+1

fk − fk+1

fk + gk. (9.30)

For k = 8, the inequality is

g −
g8 − g1

f8 − f1

f ≥ −
g8 − g1

f8 − f1

f8 + g8. (9.31)

The linear inequalities can be written in general forms as

𝛼kf + 𝛽kg ≤ 𝛾k (9.32)

or
𝛼kf + 𝛽kg ≥ 𝛾k, (9.33)
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where 𝛼k = − gk−gk+1

fk−fk+1
, 𝛽k = 1 and 𝛾k = − gk−gk+1

fk−fk+1
fk + gk for k = 1, 2, 3, 4, 5, 6, 7. For k = 8, 𝛼k = − g8−g1

f8−f1
,

𝛽k = 1 and 𝛾k = − g8−g1

f8−f1
f8 + g8. Note that the parameters 𝛼k and 𝛽k are independent of the radius of the

circle, however, the parameter 𝛾k is proportional to the radius, which is in the case of induction motor
control, Vdc

√
3
. Thus, all 𝛾k, k = 1, 2, … , 8 will multiply the radius to obtain their actual values for the

specific application.
For the induction motor control problem, f = usd(t) and g = usq(t). The next task is to reformulate

the inequalities with the Laguerre coefficient vector 𝜂 so that the linear inequalities become the linear
inequality constraints in the design of predictive control. Taking the example of first four inequalities,
by imposing the constraints on the first sample of the control signals, at the sampling instant ti, the
inequalities are

𝛼kusd(ti) + 𝛽kusq(ti) ≤ 𝛾k, (9.34)

for k = 1, 2, 3, 4. Since the control variables are related to the Laguerre coefficient vector through

usd(ti) = usd(ti − Δt) + L1(0)T𝜂1Δt (9.35)

usq(ti) = usq(ti − Δt) + L2(0)T𝜂2Δt, (9.36)

where L1(0)T =
√

2p1

[
1 1 … 1

]
and L2(0)T =

√
2p2

[
1 1 … 1

]
; 𝜂1 and 𝜂2 are the Laguerre coeffi-

cient vectors for u̇sd and u̇sq respectively as the Laguerre functions are used in describing the derivatives
of the control signals. By substituting (9.35) and (9.36) into (9.34), the following inequality expression
is obtained:

𝛼kL1(0)
TΔt𝜂1 + 𝛽kL2(0)

TΔt𝜂2 ≤ 𝛾k − 𝛼kusd(ti − Δt) − 𝛽kusq(ti − Δt), (9.37)

which is, in vector form,

[
𝛼kL1(0)TΔt 𝛽kL2(0)TΔt

]
[
𝜂1

𝜂2

]

≤ 𝛾k −
[
𝛼k 𝛽k

]
[

usd(ti − Δt)
usq(ti − Δt)

]

(9.38)

Similarly, for k = 5, 6, 7, 8, the kth inequality is expressed as

[
𝛼kL1(0)TΔt 𝛽kL2(0)TΔt

]
[
𝜂1

𝜂2

]

≥ 𝛾k −
[
𝛼k 𝛽k

]
[

usd(ti − Δt)
usq(ti − Δt)

]

, (9.39)

which is equivalent to

−
[
𝛼kL1(0)TΔt 𝛽kL2(0)TΔt

]
[
𝜂1

𝜂2

]

≤ −𝛾k +
[
𝛼k 𝛽k

]
[

usd(ti − Δt)
usq(ti − Δt)

]

. (9.40)

By combining the inequalities represented by (9.38) and those by (9.40), and writing them in a vector
form, the linear inequality constraints for the design of model predictive control are obtained:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼1 𝛽1

𝛼2 𝛽2

𝛼3 𝛽3

𝛼4 𝛽4

−𝛼5 −𝛽5

−𝛼6 −𝛽6

−𝛼7 −𝛽7

−𝛼8 −𝛽8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
L1(0)T O2

O1 L2(0)T
]

Δt𝜂 ≤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛾1

𝛾2

𝛾3

𝛾4

−𝛾5

−𝛾6

−𝛾7

−𝛾8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cc − 𝛼1 −𝛽1

−𝛼2 −𝛽2

−𝛼3 −𝛽3

−𝛼4 −𝛽4

𝛼5 𝛽5

𝛼6 𝛽6

𝛼7 𝛽7

𝛼8 𝛽8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
usd(ti − Δt)

usq(ti−1)

]

. (9.41)

With the constraints formulated, the continuous-time predictive control problem is expressed as minimiz-
ing the cost function J (9.19) subject to the set of linear inequality constraints (see (9.41)) in real-time,
which is solved using a quadratic programming algorithm as discussed in Chapter 8.
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9.2.3 State Feedback Observer

In continuous-time MPC design, the state variable vector contains the derivatives of the current signals.
Because these signals are generally noisy, differentiation of the current signals is to be avoided for the
reason that the derivative operation will amplify the noise in the current signals. A strategy is thus to use
a state observer for estimating the state variables, which has the added benefit of acting as a filter to the
measurement noise.

The observer equation for such an application has the following form:

dx̂(t)
dt

= Ax̂(t) + Bu̇(t) + Kob(y(t) − Cx̂(t)), (9.42)

where x̂(t) is an estimate of x(t), Kob is the observer gain and (A,B,C) are the system matrices of
the augmented model. Input u̇(t) is obtained from the solution of the predictive control. This is the
Luenberger observer, in which the observer gain matrix Kob calculated off-line to reduce computational
load.

The observer gain matrix Kob is chosen according to closed-loop performance specification of the
observer system and the pair of system matrices (A, C). For instance, the computation of the observer
gain Kob could be performed using the MATLAB function lqr, as

Kob = lqr(AT ,CT ,Qob,Rob)T ,

where AT and CT are transposed system matrices of the augmented model, Qob and Rob are weighting
matrices of the observer. The design of an observer is a dual task to the design of a controller, thus the
use of transposes of A and C matrices in the lqr function.

The continuous-time observer equation (9.43) is discretized for implementation, leading to

x̂(ti+1) = x̂(ti) + (Ax̂(ti) + Bu̇i(ti) + Kob(y(ti) − Cx̂(ti)))Δt. (9.43)

Thus, based on the current sample information of the optimal control solution u̇(ti) and the error signal
y(ti) − Cx̂(ti), the next sample of state estimate x̂(ti+1) is computed.

To complete this section, Figure 9.4 is used to illustrate the configuration of the continuous-time
MPC for speed control. The controlled outputs are the rotor flux 𝜓rd and the mechanical motor speed
𝜔m, and the control signals are, usd and usq. A Luenberger Observer is introduced for the estimation
of the synchronous flux position 𝜔s for d − q transformation, and the rotor flux 𝜓rd for feedback.
Another observer is used to estimate the state variable vector x(t) in order to avoid differentiation
of the current signals. Both observer gain matrices are found off-line to reduce computational
load.

ωm

ψrd
*

*
MPC

State
observer

usd

usq

dq
/

abc
PWM IM

Luenberger
observer

ωm

us

is

Enc

ψrd

θs
y(t)xm (t)˙

Figure 9.4 Speed control of induction motor using continuous-time MPC.
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Table 9.4 Continuous-time MPC parameters

i0sq TL 𝜔0
m 𝜔0

s 𝜓0
rd N p Tp

0.4194 A 0.5 Nm 1400 RPM 𝜔0
s = 298.4 rad∕s 0.6 Wb 6 20 0.5

9.3 Simulation and Experimental Evaluation of CMPC
of Induction Motor

The continuous-time predictive control system for induction motor is evaluated using the Simulink sim-
ulation program, then experimentally demonstrated using the test-bed.

The steady-state parameters used to obtain the linear model for the induction motor are listed in
Table 9.4. In the design of the continuous-time predictive controller, the prediction horizon Tp, the
Laguerre parameters N1 = N2 = N, p1 = p2 = p. The weighting matrices R = I (I being the identity
matrix) and Q = CT C where C is the output matrix for the augmented model. Exponential data weight-
ing is used to improve the numerical condition of the Hessian matrix Ωmpc, where 𝛼 = 1.2 is selected.
Together with the prescribed degree of stability, the closed-loop eigenvalues of the predictive control
system are positioned to the left of the s = −𝛽 line where 𝛽 = 20. The constraints on both stator voltages
are specified as

−90.1 ≤ usd ≤ 90.1; −286.4 ≤ usq ≤ 286.4.

Although the predictive controller is designed using the continuous-time model, the discretization
occurs at the implementation stage. In general, a smaller sampling interval would be preferred since
it results in a smaller approximation error associated with the discretization. However, due to the on-line
computational cost that restricts how fast the sampling rate could be, the experimental setup only allows
the sampling interval Δt not be less than 200 × 10−6 second. Thus, in both simulations and experiments,
the continuous-time model predictive controller is implemented using the lowest sampling interval pos-
sible (Δt = 200 μs).

9.3.1 Simulation Results

The simulation results for the continuous-time model predictive control of induction motor are shown in
Figure 9.5. As expected, the velocity response 𝜔m converges to the steady-state value of 1400 RPM (see
Figure 9.5(a)), while the rotor flux response 𝜓rd converges to 0.6 Wb (see Figure 9.5(b)). Both output
responses have no steady state error and have the settling times within 0.4 sec. Note that in the predictive
controller design the dominant constant of the closed-loop predictive control system is approximately
1∕𝛽. With 𝛽 = 20, the closed-loop settling time could be estimated as 5∕𝛽 = 0.25 seconds. It seems that
the settling time for both outputs is larger than 0.25 sec. This is because the constraint on usd becomes
active during the transient response (see Figure 9.5(c)) that resulted in slower closed-loop responses for
both outputs. The stator currents are part of the state variables and there are no constraints imposed on
the currents (see Figure 9.5d).

To demonstrate how the tuning parameter 𝛽 affects the closed-loop response, Figure 9.6 shows the
closed-loop output responses for five different values of 𝛽 varying from 5 to 20. Because of the effects of
the control signal constraints, although there are five sets of closed-loop poles, the closed-loop responses
have similar response times for the first four cases except for the one associated with 𝛽 = 5 which has
a longer setting time (see Figure 9.6). One comment is that with the continuous-time model predictive
control system, the closed-loop response times for the electrical and the mechanical systems are in the
same time scale, as demonstrated in the simulation studies.
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Figure 9.5 Simulation results of speed control using continuous-time MPC. Key: line (1) Actual feedback mea-
surement; line (2) Set-point signal. (a) Motor speed (𝜔m), (b) Flux response (𝜓rd), (c) Control signals, and (d) Stator
current signals.

0 0.5 1 1.5
0

500

1000

1500

Time (sec)

ω
r (

R
PM

)

1
2
3
4
5

(a)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

ψ rd
 (

W
b)

1
2
3
4
5

(b)
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9.3.2 Experimental Results

In the experimental evaluation, the parameter for the prescribed degree of stability is selected as 𝛽 = 15
while the rest of the parameters remain unchanged from the simulation evaluations. There are two sets
of experimental results presented for the evaluation. The first set of control experiments is performed
without the state observer where derivatives in the augmented state vector are calculated using their first
order approximations with the form: ẋm(ti) ≈

xm(ti)−xm(ti−1)
Δt

The second set of experiments is performed
with a full state observer in which the observer is designed using MATLAB “lqr” function with the
weighting matrices chosen as Qob = I and Rob = 10−5I. The experimental results for the first case are
illustrated in Figure 9.7 and the second case in Figure 9.8. When comparing these two figures, it is seen
that the closed-loop velocity response has about the same response time (see Figures 9.7(a) and 9.8(a)),
the rotor flux response has a larger peak when the observer is used (see Figures 9.7(b) and 9.8(b)),
the noise in the control signals has reduced when using observer (see Figures 9.7(c) and 9.8(c)). On
the other hand, it seems that without the observer, although the noise effect is larger, the closed-loop
dynamic system has a faster response. Particularly, this is seen in the response of the rotor flux, which
has a smaller peak without using the observer (see Figure 9.7(b)). This is because the closed-loop poles
of the state estimate predictive control system consist of the poles from the predictive control system
as well as those from the observer error system. Overall, the experimental results are similar to the
simulation results (see Figures 9.5 and 9.7). This means that the physical simulation model has a high
fidelity when comparing with the test-bed.
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Figure 9.7 Experimental results of CMPC of induction motor (without observer). (a) Motor speed (𝜔m), (b) Flux
response (𝜓rd), and (c) Control signals.
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Figure 9.8 Experimental results of CMPC of induction motor (with observer). (a) Motor speed (𝜔m), (b) Flux
response (𝜓rd), and (c) Control signals.

9.4 Continuous-time Model Predictive Control of Power Converter
The objective of the model predictive control system for a power converter is to regulate the DC bus
voltage at a desired value specified by the applications while maintaining unity power factor. With this
objective, the outputs of the regenerative power supply are chosen to be the voltage of the DC bus Vdc

and the current iq. When the system has a unity power factor, iq = 0, which is the set-point signal for
this output. The continuous-time model predictive control algorithm introduced for the induction motor
control is used here to control the power converter.

The steady state values of the parameters in the linear model are selected as iqo = 0, Vqo = 0, 𝑣dco = 𝑣∗dc
where 𝑣∗dc is the reference signal for 𝑣dc. For steady-state switching functions Sdo, Sqo are computed as
(Komurcugil and Kukrer (1998)),

Sdo =
2(Ed − RsId)

𝑣dco

= 0.952 (9.44)

Sqo =
−2𝜔gLsId

𝑣dco

= −0.403, (9.45)

where Id which is the steady-state value of id is chosen to be 4.69 A, Ed = 30 V and 𝑣dco = 65 V.
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The linear model used in the design of the model predictive controller is

ẋm(t) = Amxm(t) + Bmu(t)

y(t) = Cmxm(t), (9.46)

where Am,Bm and Cm are system matrices associated with the operating conditions of the power con-
verter and

Am =

⎡
⎢
⎢
⎢
⎢
⎣

− Rs

Ls
𝜔g − Sdo

2Ls

−𝜔g − Rs

Ls
− Sqo

2Ls

3Sdo

4Cdc

3Sqo

4Cdc
0

⎤
⎥
⎥
⎥
⎥
⎦

,Bm =

⎡
⎢
⎢
⎢
⎢
⎣

−𝑣dco

2Ls
0

0 −𝑣dco

2Ls

3ido

4Cdc

3iqo

4Cdc

⎤
⎥
⎥
⎥
⎥
⎦

,

Cm =
[

0 1 0
0 0 1

]

, xm(t) =
⎡
⎢
⎢
⎣

id(t)
iq(t)

Vdc(t)

⎤
⎥
⎥
⎦

, u(t)(t) =
[

Sd(t)
Sq(t)

]

,

where Sdo, Sqo, 𝑣dco, ido and iqo represents steady state equivalent solutions.
In the operation of the converter, there are low frequency disturbances and harmonic distortions, thus

integrators are needed in the controller. To embed the integrator, two auxiliary variables are chosen as

z(t) = ẋm(t)

y(t) = Cmxm(t)

and based on them, a new state variable vector is defined as x(t) = [z(t)T y(t)T ]T . With these auxiliary
variables, in conjunction with the original plant model, the augmented state space model is defined as:

[
ż(t)
ẏ(t)

]

=
[

Am OT
2×3

Cm O2×2

] [
z(t)
y(t)

]

+
[

Bm

O2×2

]

u̇(t) (9.47)

y(t) =
[
O2×3 I2×2

]
[

z(t)
y(t)

]

, (9.48)

where I2×2 is the identity matrix with dimensions 2 × 2; O2×2 is a 2 × 2 zero matrix, and O2×3 is a 2 × 3
zero matrix.

The system parameters used in the experimental setup are Ls = 8.9 × 10−3 H, Rs = 0.2 Ω,
Cdc = 296 μF, and the reference DC bus voltage, 𝑣∗dc is set to 65 V.

9.4.1 Use of Prescribed Degree of Stability in the Design

To illustrate the significance of the prescribed degree of stability used in the design of model predictive
control, a comparison study is done between the case where the prescribed degree of stability 𝛽 = 0 and
the case where 𝛽 = 30. With the value of 𝛽 = 30, all the closed-loop eigenvalues of the predictive control
system lie on the left of −𝛽 line on the complex plane. In the experimental results shown in Figure 9.9,
a step load change of the DC link resistance from 20 Ω to 40 Ω occurs at around 46 seconds, and the
transient responses of the DC bus voltage are compared. It is seen from this figure that it took about 0.1
seconds for the DC bus voltage to return to the reference signal when 𝛽 = 30, whilst when 𝛽 = 0 it took at
least more than 3 seconds for DC bus voltage to return to the vicinity of the reference signal. The results
clearly show that the transient response of DC bus voltage to a step load change is greatly improved for
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Figure 9.9 Comparison of DC bus voltage response to a step load change with 𝛽 = 0 and 𝛽 = 30.

the case of 𝛽 = 30. From hereafter, the experimental results are obtained with the prescribed degree of
stability (𝛽 = 30).

9.4.2 Experimental Results for Rectification Mode

The control objective is keep the DC bus voltage at 65 V, and iq current at zero for unity power fac-
tor. In the experimental testing, prior to the rectification mode, the converter is operating as a diode
rectifier where the switching functions of the IGBT are disabled and the current is only conducting
through the freewheeling diode of IGBT. At the time (around t = 33.3 second) when the rectification
mode is switched on, the predictive controller is activated to boost the DC bus voltage from 35 V to 65
V. Figure 9.10 shows the closed-loop responses of the outputs 𝑣dc(t) and iq(t) the state variable id(t). It
took about 0.1 second for both output signals (𝑣dc(t) and iq(t)) and the state id to complete the closed-loop
transient responses. In the rectification mode, it is seen from Figure 9.10(b) that while drawing an extra
current from the grid, iq is well maintained around zero which results in zero phase shift between phase
voltage and phase current (i.e unity power factor) and id is increased to a new steady-state value according
to the required DC bus voltage level. To confirm the reality of unity power factor, Figure 9.10(c) shows
phase A voltage and current in rectification mode, which indeed indicates the zero phase shift between
the phase voltage and current.

9.4.3 Experimental Results for Regeneration Mode

The control objective is to keep the DC bus voltage at 65 V, and iq current at zero for unity power factor.
Prior to the regeneration mode, the converter is operating in rectification mode. At around 70 second, as
shown in Figure 9.11(a), an extra current is injected in the DC bus, which results in an initial overshoot of
the DC bus voltage and the predictive controller regulates the DC bus voltage around 65 V. Figure 9.11(b)
shows the closed-loop responses of id and iq in regeneration mode. It is seen that the steady-state value
of id is negative which indicates that the current flow is reversed compared to the rectification mode. In
this case the extra current injected into DC bus is converted to AC currents which feeds back into main
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Figure 9.10 Experimental results of CMPC of power converter in rectification mode. (a) DC bus voltage Vdc, (b) id
and iq current signals, and (c) Phase voltage and current.

grid. For unity power factor operation, iq is still maintained around zero. This is evident via the plots of
phase A voltage and current in regeneration mode as shown in Figure 9.11(c), where it is seen that the
phase A voltage and its current have 180∘ of phase shift.

9.4.4 Experimental Results for Disturbance Rejection

The control objective is to keep the DC bus voltage at 65 V, and iq current at zero for unity power factor,
while load disturbances occur. A series of step changes in the load are simulated by inserting or removing
an extra DC load resistance in the circuit. At around t = 43.7 sec in Figure 9.12(a), the DC link resistance
is changed from RL = 20 Ω to RL = 40 Ω, corresponding to the case where the load current is decreased
from 3.2 A to 1.6 A.

In Figure 9.12(b), around t = 50.2 sec, the resistance is changed from RL = 40 Ω to RL = 20 Ω.
From the closed-loop response of the DC bus voltage in both figures, it is seen that the predictive con-
troller rejects the disturbance in a response time of about 0.1 second. Furthermore, from the closed-loop
responses of the id and iq currents shown in both figures, it is clearly seen that the iq current is kept well
around zero while the steady-state value of id changes according to the load requirements.
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Figure 9.11 Experimental results of CMPC of power converter in regeneration mode. (a) DC bus voltage 𝑣dc, (b) id
and iq current signals, and (c) Phase voltage and current.

9.5 Gain Scheduled Predictive Controller
Since the plant is a nonlinear system, its linearized model is dependent on its operating conditions. It
is apparent that for a linear model predictive controller to work in a wide range of operating conditions
a gain scheduled predictive controller is needed, where several linear time-invariant model predictive
controllers will be designed for the range of operating conditions. This gain scheduled controller will
have the capability to interpret the operating conditions, uses an appropriate linear predictive controller
and invoke mechanisms to ensure the continuity of the control signals.

9.5.1 The Weighting Parameters

One approach used in the design of a gain scheduled control system is to assign a set of weighting parame-
ters with values between 0 and 1 that will correspond to each operating condition of the nonlinear system.
Here, the parameters 𝜆l, 𝜆m and 𝜆h are used as the weights for low speed, median speed and high speed
operations. In the literature, there are two widely used approaches to calculate the weighting parameters.
The first approach, also the simplest approach, is to assign their values according to the set-point signal
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Figure 9.12 Experimental results of CMPC of power converter in disturbance rejection mode though load change.
(a) DC bus voltage 𝑣dc, id and iq response to a step load change of Rdc from 20 Ω to 40 Ω. (b) DC bus voltage Vdc, id
and iq response to a step load change of Rdc from 40 Ω to 20 Ω.

of the system. For instance, when the set-point velocity signal 𝜔0
m is at the low speed where 𝜔0

m = 𝜔l
m,

𝜆l = 1, 𝜆m = 0 and 𝜆h = 0; when the desired velocity is at the median speed (𝜔0
m = 𝜔m

m), 𝜆l = 0, 𝜆m = 1
and 𝜆h = 0; when the desired velocity is at the high speed where 𝜔0

m = 𝜔h
m, 𝜆l = 0, 𝜆m = 0 and 𝜆h = 1.

This approach takes into consideration the changes of plant dynamics due to set-point changes, however,
it does not consider the possibility that disturbances could cause the significant changes in plant dynam-
ics. Hence, with this simple approach, closed-loop instability could occur if severe disturbances were
encountered in plant operation.

The more general approach is to compute the weighting parameters 𝜆l, 𝜆m and 𝜆h according to the
actual measurement of velocity 𝜔m. In order to avoid random triggering of the model changes in the
presence of noises and transient responses, a band is formed around the desired speed. By assigning a
tolerance constant 𝛿 to desired speed ranges, the weighting constants 𝜆l, 𝜆m, 𝜆h are defined as

−𝛿 + 𝜔l
m ≤ 𝜔m ≤ 𝜔l

m + 𝛿 𝜆l = 1; 𝜆m = 0; 𝜆h = 0
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−𝛿 + 𝜔m
m ≤ 𝜔m ≤ 𝜔m

m + 𝛿 𝜆l = 0; 𝜆m = 1; 𝜆h = 0

−𝛿 + 𝜔h
m ≤ 𝜔m ≤ 𝜔h

m + 𝛿 𝜆l = 0; 𝜆m = 0; 𝜆h = 1.

Outside the band of the desired speed, neither linear models can accurately describe the dynamic system.
A traditional method is to use a combination of these two models from the neighbouring regions. For
instance, assuming that the actual operating condition is between the band of the desired median speed
and that of the desired high speed (𝜔m

m + 𝛿 ≤ 𝜔m(t) < 𝜔h
m − 𝛿), by defining 𝜆h (0 ≤ 𝜆h ≤ 1) as a function

of 𝜔m(t), 𝜆h(t) is calculated using the linear interpretation of the two boundaries between the median and
high speeds given by

𝜆h(t) =
𝜔m(t) − 𝜔m

m − 𝛿
𝜔h

m − 𝜔m
m − 2𝛿

. (9.49)

The weighting parameter 𝜆m follows as 𝜆m = 1 − 𝜆h (0 ≤ 𝜆m ≤ 1), and 𝜆l = 0 for this region. Similarly,
for 𝜔l

m + 𝛿 ≤ 𝜔m(t) < 𝜔m
m − 𝛿,

𝜆m(t) =
𝜔m(t) − 𝜔l

m − 𝛿
𝜔m

m − 𝜔l
m − 2𝛿

(9.50)

and 𝜆l(t) = 1 − 𝜆m(t), 𝜆h = 0.
Figure 9.13 illustrates the weighting parameters that have been used to represent the operating regions

of the induction motor.

9.5.2 Gain Scheduled Predictive Control Law

The weighting parameters will be used in the gain scheduled predictive control law to ensure
correct selection of the linear model and bumpless transfer from one predictive controller
to another.

We assume that there are three linearized models obtained for the three operating conditions with
their system matrices denoted by (Al,Bl,Cl), (Am,Bm,Cm), and (Ah,Bh,Ch), respectively. Note that the
cost function (9.19) is based on a linearized model from a single operating condition. The cost func-
tion for the gain scheduled model predictive control is a combination of cost functions generated for

Figure 9.13 Weighting parameters.
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different operating conditions. By using the weighting parameters 𝜆l, 𝜆m and 𝜆h, the cost function is
chosen as

J = 𝜆l(𝜂TΩl
mpc𝜂 + 2𝜂TΨl

mpcx̃(ti)) + 𝜆
m(𝜂TΩm

mpc𝜂 + 2𝜂TΨm
mpcx̃(ti))

+𝜆h(𝜂TΩh
mpc𝜂 + 2𝜂Ψh

mpcx̃(ti))

= 𝜂T (𝜆lΩl
mpc + 𝜆

mΩm
mpc + 𝜆

hΩh
mpc)𝜂

+2𝜂T(𝜆lΨl
mpc + 𝜆

mΨm
mpc + 𝜆

hΨh
mpc)x̃(ti), (9.51)

where x̃(ti) = x(ti) − x0,Ωl
mpc,Ωm

mpc,Ωh
mpc,Ψl

mpc,Ψm
mpc andΨh

mpc are the predictive control parameter matri-
ces (see (9.19)), computed on the basis of the model parameters for low, median and high speed of the
induction motor. If the reference signals to the system change, then the components in x0 that correspond
to the reference signals will change accordingly. By similar definition of operational constraints, the
Laguerre parameter vector 𝜂 is found by minimizing the cost function J (9.51) subject to approximated
operational constraints (9.41). With the optimal Laguerre coefficients vector, the control signal for the
gain scheduled predictive controller is realized at sample time ti via

u(ti) = u(ti−1) + L(0)T𝜂Δt. (9.52)

The control signal is ensured not to have a sudden jump effect when the operating condition changes.
This is because the computation of the control signal using (9.52) is based on the past sample of the
control signal and the derivative of the current control, and when Δt → 0, u(ti) = u(ti−1).

When an observer is used to estimate the state variable vector x(t), it is designed for each operational
condition and implemented using the linear interpretation in the same manner as the predictive controller.

Assume that the observer gains are Kl
ob, Km

ob and Kh
ob that are designed using (Al,C), (Am,C), and (Ah,C),

respectively. The three observer equations are

dx̂(t)l

dt
= Alx̂(t)l + Blu̇(t) + Kl

ob(y(t) − Cx̂(t)l) (9.53)

dx̂(t)m

dt
= Amx̂(t)m + Bmu̇(t) + Km

ob(y(t) − Cx̂(t)m) (9.54)

dx̂(t)h

dt
= Ahx̂(t)h + Bhu̇(t) + Kh

ob(y(t) − Cx̂(t)h). (9.55)

At any given time t, there is only one state vector x̂(t), however different the models. Thus, we assign the
common state vector x̂(t) as the weighted outcomes of the estimated states from (9.53)–(9.55). Similar
to the expression of the cost function, the gain scheduled estimated state vector x̂(t) is written as

dx̂(t)
dt

= 𝜆l(Alx̂(t) + Blu̇(t) + Kl
ob(y(t) − Cx̂(t)))

+ 𝜆m(Amx̂(t) + Bmu̇(t) + Km
ob(y(t) − Cx̂(t)))

+ 𝜆h(Ahx̂(t) + Bhu̇(t) + Kh
ob(y(t) − Cx̂(t))). (9.56)

When the differential equation is discretized using first order forward difference approximation, it is
written for implementation as

x̂(ti+1) = x̂(ti) + (𝜆lAl + 𝜆mAm + 𝜆hAh)x̂(ti)Δt + (𝜆lBl + 𝜆mBm + 𝜆hBh)u̇(ti)Δt

+(𝜆lKl
ob + 𝜆

mKm
ob + 𝜆

hKh
ob)(y(ti) − Cx̂(ti))Δt. (9.57)

This implementation of the observer also ensures that the observer states will not sudden jump when the
operating condition changes, as when Δt → 0, x̂(ti + Δt) = x̂(ti).
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9.6 Experimental Results of Gain Scheduled Predictive Control
of Induction Motor

There are three linear models used in the gain scheduled model predictive control system. The operating
condition for low speed operation is selected as 𝜔l

m = 300 RPM; for median speed operation is𝜔m
m = 700

RPM; and for high speed operation is 𝜔h
m = 1600 RPM.

In order to simplify the controller tuning procedure and also to improve the numerical condition of
the Hessian matrix of the predictive controller, the procedure for prescribed degree of stability with
exponential data weighting outlined in the previous sections is deployed to position the closed-loop poles
of the predictive controller at the left-hand side of −𝛽 line (𝛽 ≥ 0). The exponential data weighting
parameter 𝛼 > 0 is used to ensure that the augmented system matrix A has all eigenvalues on the left of
−𝛼 line so that numerical stability is preserved in the computation of prediction. For all three predictive
controllers, the weighting matrices R = I (I being the identity matrix) and Q = CT C where C is the
output matrix for the augmented model. The observer gain matrix Kob is computed using MATLAB
lqr function where the weighting matrices Q = I and R = 10−5 I. The remaining parameters used in the
implementation of the gain scheduled control system are listed in Table 9.5.

The operational constraints are specified by the capacity of the DC power supply, Vdc.

9.6.1 The First Set of Experimental Results

In the experiment, the motor starts from standstill, then steps up to 300 RPM, to 600 RPM, and then 1600
RPM. After that, the operation is reversed from the fastest speed to 0 RPM. The set-point signal for the
rotor flux is maintained to be constant during the operation.

In the first set of experiments, the Vdc value is chosen to match the actual capacity of the DC power
supply so that the nonlinear constraint

√

u2
sd + u2

sq ≤ 300

is imposed in the implementation.
The closed-loop responses for the velocity, flux and control signals are shown in Figures 9.14(a)–

9.14(e). It is seen from these plots that the closed-loop velocity and rotor flux follow their set-point signals
without steady-state errors, which also means that the variable load disturbance introduced through the

DC motor is completely rejected by the continuous-time predictive controller. The plot of
√

u2
sd + u2

sq

is shown in Figure 9.14(d) against the constraint 300 V, from which it is seen that the constraint is not
active during the operation.

Table 9.5 Controller design and implementation parameters

Model 1 Model 2 Model 3

Velocity 𝜔0
m 300 RPM 700 RPM 1600 RPM

Flux 𝜓0
rd 0.3 Wb 0.3 Wb 0.3 Wb

q-axis current i0sq 0.1 A 0.2 A 0.5 A
Number of terms N1 = N2 6 6 6
Scaling parameter p1 = p2 20 20 20
Prediction horizon Tp 0.5 0.5 0.5
Exponential weighting parameter 𝛼 1.2 1.2 1.2
Closed-loop pole position 𝛽 15 15 12
Operational tolerance parameter 𝛿 50 50 50



310 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

An observer has been used to estimate the state variables in the implementation of the linear predic-
tive controllers. Because integrators are used in the design, the first part of state variables consists of the
derivatives of the currents isd(t) and isq(t), which typically contain a large amount of measurement noise
as derivative action amplifies the measurement noise. The use of observed states for those derivative vari-
ables avoids the undesirable noise effect due to differentiation. Figure 9.14(e) shows the estimated dζ̂sd(t)

dt

and
dζ̂sq(t)

dt
. It is seen from the plots that the estimates of the derivatives indeed capture the dynamics of the

0 5 10 15 20
−500

0

500

1000

1500

2000

Time (sec)

R
ot

or
 S

pe
ed

 (
R

PM
)

1
2

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

ψ rd
 (

W
b)

1
2

(b)

0 5 10 15 20
−200

−100

0

100

Time (sec)

u sd
 (

V
)

u sq
 (

V
)

0 5 10 15 20
−50

0

50

100

Time (sec)

(c)

0 5 10 15 20
0

50

100

150

200

250

300

350

Time (sec)

A
m

pl
itu

de
 o

f 
V

s (
V

)

(d)

0 5 10 15 20
−100

0

100

Time (sec)

di
sd

/d
t

di
sq

/d
t

0 5 10 15 20
−200

0

200

Time (sec)

(e)

Figure 9.14 First set of experimental results of CMPC of induction motor control where constraints are not active.
(a) Motor speed response. Key: line (1) Set-point signal; line (2) actual feedback, (b) Rotor flux response. Key: line
(1) Actual feedback; line (2) Set-point signal, (c) Control signals. Top figure: usd ; bottom figure: usq, (d) Nonlinear

constraint. Dashed line: constraint; solid line
√

u2
sd + u2

sq, and (e) Estimated derivatives of state variables isd and isq.
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physical variables without the noise effect, also in the steady-state, the estimates are zero as expected. It
is worth emphasizing that the actual measurements 𝜓rd(t) and 𝜔m(t) are used as the inputs to the observer
without subtraction of their steady-state values.

9.6.2 The Second Set of Experimental Results

In the first set of experimental results, the constraints are not active because of the sufficiently large
capacity of the power supply. In the second set of experiments, the Vdc value is reduced to demonstrate the
situation where a smaller power supply is used and the nonlinear constraint becomes active in the transient
response to a large reference signal change and load disturbance rejection. The nonlinear constraint,

√

u2
sd + u2

sq ≤ 140, (9.58)

is imposed in the implementation.
The speed reference signal makes a large step change from 300 RPM to 1600 RPM at time t = 4

second (see Figure 9.15(a) for velocity and Figure 9.15(b) for flux). The large reference step change
on the velocity causes the control signals to increase (see Figure 9.15(c)), and as a result the quantity
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Figure 9.15 Second set of experimental results of CMPC of induction motor in the presence of constraints. (a) Com-
parison between constrained and unconstrained rotor speed responses. Key: line (1) Set-point signal; line (2) response
without constraint; line (3) response with constraint, (b) Comparison between constrained and unconstrained rotor
flux responses. Key: line (1) Set-point signal; line (2) response without constraint; line (3) response with constraint,
(c) Comparison between constrained and unconstrained control signal responses. Top figure: usd ; bottom figure: usq.
Key: line (1) unconstrained control signal; line (2) constrained control signal, and (d) Nonlinear constraint. Key: line

(1)
√

u2
sd + u2

sq without constraint; line (2)
√

u2
sd + u2

sq with constraint; line (3) the constraint.
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Figure 9.16 Third set of experimental results of CMPC of induction motor without gain scheduling. (a) Motor speed
response. Key: line (1) Set-point signal; line (2) actual feedback, and (b) Rotor flux response. Key: line (1) Actual
feedback; line (2) Set-point signal.

√

u2
sd + u2

sq suddenly increases to about 190 (see Figure 9.15(d)). When the constraint (9.58) is imposed

in the operation, control signals usd(t) and usq(t) are found such that the quantity
√

u2
sd + u2

sq ≤ 140.
It is seen from Figure 9.15(d) that the constraint becomes active during the transient period and the

quantity
√

u2
sd + u2

sq converges to a steady-state value afterwards. Figures 9.15(a)–9.15(b) compare the
closed-loop responses under the constrained control with the responses obtained without constraints. It
seems that imposing the nonlinear constraint has changed the characteristics of the closed-loop dynamics
in the sense that the responses are less oscillatory for this case.

9.6.3 The Third Set of Experimental Results

In the third set of experimental results, the gain scheduled predictive control system is compared with the
predictive control system designed using a single model. The results show that when a single predictive
controller is applied to the three operating regions, there is a performance loss due to the modeling errors.
Figures 9.16(a)–9.16(b) show the output responses when the linear model obtained at 𝜔0

m = 1600 RPM
is applied to entire operating regions. It is obvious that the closed-loop responses are oscillatory at
the operating condition when the set-point signal 𝜔0

m is at 300 RPM. This oscillation is caused by
the modeling error between the linear model obtained at 𝜔0

m = 1600 RPM and the actual system at
𝜔0

m = 300 RPM.

9.7 Summary
This chapter has presented continuous-time model predictive control applications to an induction motor
drive and a power converter with experimental validations. In the continuous-time design, different from
the discrete-time counter part, the linearized continuous-time models are directly used in the design
stage, and at the later stage, the control signals are discretized for digital implementation. This perhaps
offers some advantages at the applications of AC drive control and power converter control where the
time constants of electrical systems are significantly smaller than those from the mechanical systems
and choice of sampling interval requires compromise between the large and small time constants. With
the continuous-time design, it is possible to use a dual sampling rate in the implementation stage, for
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instance, a much faster sampling rate for the current measurement signals and a slower sampling rate for
the velocity measurement signal.

Another advantage of using the continuous-time predictive control design is its simple extension to
gain scheduled model predictive control. When using the traditional continuous-time model predictive
control, the nonlinear physical models are linearized at several operating conditions and a family of linear
model predictive controllers are designed. The gain scheduled model predictive controller is shown to
automatically interpret these linear model predictive controllers. The experimental results obtained from
gain scheduled predictive control of induction motor have shown its efficacy in controlling the AC drives.

The continuous-time model predictive controller is conceptually more complex than its discrete-time
counter part because Laguerre functions are used in the description of the control trajectories. However,
once this is overcome, the actual computational algorithms of the predictive controllers are available in
MATLAB for the design and implementation (see Wang (2009)).

9.8 Further Reading
The continuous time predictive control algorithm was from Wang (2009) where the MATLAB programs
used in the design can be found. In Wang et al. (2010), the continuous-time predictive control algo-
rithm with prescribed degree of stability was applied to continuous-time repetitive predictive control.
The continuous-time predictive control of an induction machine drive was presented in Wang and Gan
(2013). The cascade velocity control using CMPC for both inner-loop and outer-loop systems was pro-
posed in Gan and Wang (2012), and the corresponding cascade position control was presented in Gan and
Wang (2013). Comparison studies between the cascade predictive control and the centralized predictive
control were made in Ng and Wang (2013).

The quadratic programming procedure was first proposed in Hildreth (1957). Books on optimization
include Luenberger (2003), Boyd and Vandenberghe (2004).

Predictive control of a three-phase regenerative PWM converter was presented in Yoo and Wang
(2011).
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10

MATLAB®/Simulink® Tutorials
on Physical Modeling and Test-bed
Setup

In this chapter, it will be shown how to build the physical models of electrical drives and grid con-
nected power converter using MATLAB and Simulink. The mathematical models were given previously
in Chapters 1 and 2. We believe that the best learning strategy is to practice what you learned.

The physical model based simulations are considerably more complex than those simulations purely
based on differential equations, particularly when semiconductor switches and PWM modules are used
in the simulations. For those who are not familiar with Simulink simulations of electrical drives and
power converters, the tutorials are written in a step-by-step manner to guide the learner through them.

Because Simulink has undergone an upgrade in 2013, we envisage that it might take a while for some
readers to make the transition from their older versions of Simulink programs to the newer version. The
key difference is that the extension for Simulink files is changed from “.mdl” to “.slx” in the newer
version. Since there are no major changes in the functionalities of the physical components required
to produce the Simulink simulations, and with a consideration for those who are still using the older
version of the Simulink programs, the tutorials for the PMSM and induction motor are written using the
older version of Simulink and the tutorial for the grid connected three phase power converter is written
using the newer version. Nevertheless, the steps to write the Simulink programs are identical, apart from
the difference in the file extension and the locations of the Simulink components. We hope that the
reader will make adaptation to suit their own situation. Several embedded MATLAB functions shared in
all the physical models are produced in the tutorials, including the Park-Clarke transformation, inverse
Park-Clarke transformation and phase-locked-loop.

The remainder of this chapter is organized as follows. In Section 10.1, embedded functions are built for
Park-Clarke transformation and inverse Park-Clarke transformation. The simulation models for PMSM,
induction motor and power converter are built in Sections 10.2 to 10.4. In Sections 10.5 to 10.7, the
experimental test-beds for PMSM, induction motor and grid connected power converter are described.

10.1 Building Embedded Functions for Park-Clarke Transformation
The main reason to write these transformations as embedded functions is to avoid mistakes and confu-
sions. These embedded functions are written based on the mathematical equations given in Chapter 1.

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®, First Edition.
Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng.
© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
Companion Website: www.wiley.com/go/wang/pid
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To ensure consistency and clarity, two embedded functions are produced for Park-Clarke transformation
and inverse Park-Clarke transformation.

10.1.1 Park-Clarke Transformation for Current Measurements

We assume that the three phase currents ia, ib and ic are balanced so that

ia(t) + ib(t) + ic(t) = 0.

With this assumption, only two current measurements are required. Supposing that the phase A current
and phase C current are measured using current sensors to obtain ia(t) and ic(t), then the phase B current
is calculated using

ib(t) = −ia(t) − ic(t).

Then from the Clarke transformation, the currents in the 𝛼 − 𝛽 reference frame are calculated using the
relationship below:

⎡
⎢
⎢
⎣

i𝛼
i𝛽
i0

⎤
⎥
⎥
⎦

= 2
3

⎡
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⎢
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⎣

1 − 1

2
− 1
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0
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√
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1
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2
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⎥
⎥
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⎦

⎡
⎢
⎢
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ib
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⎤
⎥
⎥
⎦

,

which results in

i𝛼(t) = ia

i𝛽(t) = −
√

3
3

ia −
2
√

3
3

ic.

With the following Park transformation, the currents in the d − q reference frame are calculated:
[

id

iq

]

=
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

] [
i𝛼
i𝛽

]

.

Tutorial 4 The objective of this tutorial is to produce a MATLAB embedded function that will be used to
convert phase A and phase C current measurements to id and iq currents for the control systems designed
in the d − q synchronous reference frame.

Step by Step

1. Create a new Simulink file called PCCurrent.mdl
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MATLAB function and

copy it to the PCCurrent model.
3. Click on the icon of the embedded function, and define the input and output variables to the model so

that the embedded function has the following form:

function [id,iq]= PCCurrent(ia,ic,theta)

4. At the top of the embedded function, find “Model Explorer”among the “Tools”. When opening the
Model Explorer, select “Inherited” for the “update method”; select “Support variable-size arrays”;
select “Saturate on integer overflow”; select “Fixed point”. Click “Apply” to save the changes.
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5. Define the initial condition for 𝜃. Enter the following program into the file:

if isempty(theta)
theta=0;

end

6. Perform Park-Clarke transform to convert the two phase current measurements to i𝛼 and i𝛽 , then to
id and iq currents. Enter the following programs into the embedded MATLAB file:

id=cos(theta)*ia+sin(theta)*(-sqrt(3)/3*ia-2*sqrt(3)/3*ic);
iq=-sin(theta)*ia+cos(theta)*(-sqrt(3)/3*ia-2*sqrt(3)/3*ic);

10.1.2 Inverse Park-Clarke Transformation for Voltage Actuation

To convert the control signals 𝑣d and 𝑣q in the synchronous reference frame to three phase voltage 𝑣a, 𝑣b

and 𝑣c going to the inverter, an embedded MATLAB function is needed.
In the transformation, the following relationships are used.

[
𝑣𝛼
𝑣𝛽

]

=
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑣d

𝑣q

]
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where 𝑣0 = 0.

Tutorial 5 The objective of this tutorial is to create a MATLAB embedded function that will convert
control signals 𝑣d and 𝑣q to three phase voltage signals for the IGBT inverter.

Step by Step

1. Create a new Simulink file called IPCVoltage.mdl
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MATLAB function and

copy it to the IPCVoltage model.
3. Click on the icon of the embedded function, and define the input and output variables to the model so

that the embedded function has the following form:

function Vabc= IPCVoltage(vd,vq,theta)

4. At the top of the embedded function, find “Model Explorer” among the “Tools”. When opening the
Model Explorer, select “Inherited” for the “update method”; select “Support variable-size arrays”;
select “Saturate on integer overflow”; select “Fixed point”. Click “Apply” to save the changes.

5. Define the initial condition for 𝜃. Enter the following program into the file:

if isempty(theta)
theta=0;

end
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6. Calculate the three phase voltage signals. Enter the following program into the file:

T=[1 0;-1/2 sqrt(3)/2;-1/2 -sqrt(3)/2]...
*[cos(theta) -sin(theta);sin(theta) cos(theta)];
Vabc=T*[vd;vq];

10.2 Building Simulation Model for PMSM

Tutorial 6 The objective of this tutorial is to produce a Simulink program to simulate the dynamics of a
PMSM.

Step by Step

1. Create a Simulink file called PMSMModel.mdl.
2. To begin building the physical model based simulator, we need to define the simulation environment

for the PMSM. Perform the following tasks:
(a) Under the directory of SimPowerSystems, find “powergui” and move it to PMSMModel.mdl.
(b) Click on “powergui” to find “configure parameters”. Under the item of “Simulation type”,

choose “discrete”, and under the item of sample time, enter “Ts_sim=1e-06”, which is the
sampling interval for power electronic model.

3. Once the simulation environment is defined, a physical model is to be built for the PMSM machine. In
this step, we will choose the machine type and define the machine parameters according to machine
nameplate and the parameters defined at the end of this tutorial. The reader can also use their own
machine parameters. Perform the following tasks:
(a) Inside the directory of SimPowerSystems, find the “Machines” subdirectory. Within this direc-

tory, find “Permanent Magnetic Synchronous Machine” and move it PMSMModel.mdl.
(b) Click on “Permanent Magnetic Synchronous Machine” to find “Configuration”. Back EMF

Waveform: choose sinusoidal; mechanical input: torque; preset model:no
(c) Under the item “parameters”, stator phase resistance:Rs, inductances: [Ld Lq], Specify: choose

“Flux linkage established by magnets”, Flux linkage established by magnets: “Phi_mg”, Iner-
tia, friction, pole pairs: [Jm Bv 2]. Figure 10.1 shows the settings of all physical parameters
needed in the item “parameters”.

4. Build the power electronics devices for operating the PMSM. Inside the directory of SimPowerSys-
tems, there is a “Power Electronics” subdirectory. This step is to build the IGBT inverter. Perform
the following tasks:
(a) Find “Universal Bridge” and move it to the Simulink model.
(b) Select Power Electronic Device to IGBT/Diodes and number of bridge arms 3 and leave others

as default.
5. Build the DC power supply model. Perform the following tasks:

(a) At “Electrical Sources” subdirectory, find “DC voltage source”, move it to PMSMModel.mdl
and position it to the left of Universal Bridge. Make another copy of the “DC voltage source”.

(b) Set the amplitude to Vdc∕2 for each voltage source. Connect them together. Connect “+” ter-
minal from the first DC voltage source with ‘+’ terminal in Universal Bridge and connect the
“-” terminal of the second DC voltage source to the “-” terminal of the Universal Bridge.

6. Build current measurements. Perform the following tasks:
(a) At the “Measurements” subdirectory, find “Current Measurement”, move it to PMSMModel.mdl

and position it between the “Universal Bridge” and the PMSM motor. Copy to produce another
“Current Measurement”, and label them A, C phase currents.
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Figure 10.1 Parameters definition in Simulink model for PMSM.

(b) Connect terminal “A” from Universal Bridge to the terminal “+” in the A “Current Measure-
ment”, and connect the terminal “−” of phase A “Current Measurement” to the terminal “A”
in the PMSM. Repeat the connection for terminal C for the second “Current Measurement”.

(c) Connect the terminal “B” from Universal Bridge to the terminal “B” in PMSM without current
measurement.

7. To transform the phase A and phase C current measurements into d and q axis currents, the embedded
function “PCCurrent” produced in the Tutorial 4 is used. Perform the following tasks:
(a) Copy the icon of “PCCurrent” into PMSMModel.mdl and position it close to the current mea-

surements.
(b) Connect the output of current measurement A to the input ia of the PCCurrent function and

output of current measurement C to the input ic of the PCCurrent function.
(c) Put zero-order holds before the inputs to ia and ic currents to convert the sampling rates between

the SimPowerSystems and the controllers. Here the sampling time in the zero-order hold should
be equal to the sampling time of the current controllers.
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8. Build the Pulse-Width-Modulators. Perform the following tasks:
(a) Find “Discrete PWM Generator” in the path of “SimPowerSystems” − > “Extra Library” − >

“Discrete Control Blocks”. Copy it to PMSMModel.mdl.
(b) Set the Generator Mode to “3-arm bridge (6 pulses)”, Carrier frequency (Hz) to “2e3” (we can

select this case by case), Sample time to TS_SimP, which is the sampling interval for the power
electronics.

(c) A unit delay is inserted before “PWM Generator”, in order to avoid the singularity problem in
simulation.

(d) Another “Gain” block is valued as “1∕Vdc ∗ sqrt(3)” is inserted before “PWM Generator” to
convert the stator voltage in Volt into Modulation index (between -1 and 1)

(e) Connect the output of the “PWM Generator” to the input of the “Universal Bridge” at terminal
“g” (for gate signal).

9. The input signals to the “PWM Generator” should be three phase voltage signals, 𝑣a, 𝑣b and 𝑣c

in a vector form. To link the controller’s output signals, 𝑣d and 𝑣q, to the three phase signals, the
embedded function “IPCVoltage” is used, written in Tutorial 5. Perform the following tasks:
(a) Copy the icon of “IPCVoltage” the icon of “PCCurrent” into PMSMModel.mdl.
(b) Connect the output of “IPCVoltage” to the input of the unit delay block.

10. Build ground. In “Elements” subdirectory, find “ground” and move it to PMSMModel.mdl. Connect
“ground” to the in-between of two DC voltage sources.

11. Build outputs from the simulator. Perform the following tasks:
(a) In the directory of “commonly used blocks”, find “bus selector” and move it to PMSM-

Model.mdl.
(b) Connect the input of the “bus selector” to the output of “PMSM” terminal “m”.
(c) Open “bus selector” and find 13 signals on the left Table that are the input signals to the “bus

selector”. Click on “rotor speed wm” and select it. Repeat the process to select “rotor angle
thetam”. These are the mechanical speed and mechanical angle of the motor.

(d) Put zero-order hold before the “bus selector” to convert the sampling rate from SimPowerSys-
tems to controller sampling rate. The sampling time should be equal to the sampling time of the
current controller.

12. Generate electrical angle 𝜃e to the input of PCCurent and IPCVoltage, which are the Park-Clarke
Transform and inverse Park-Clarke Transform. Perform the following steps.
(a) Produce electrical angle. A “gain” block is connected to the output 2 of the “bus selector” with

gain equal to “2” that is the number of pair of poles for the study here.
(b) Connect the electrical angle to the input “theta” of the PCCurent and IPCVoltage.
(c) Use “mux” to put together the three outputs (id, iq and wm) from the simulator.

The following physical parameters are used to test this simulation program: Rs = 2.98; Ld = 7 ×
10−3; Lq = 7 × 10−3;𝜙mg = 0.125; p = 2; Kt = 3

2
× p × 𝜙mg; Jm = 0.47 × 10−4; B𝑣 = 11 × 10−5; TL = 1;

Vdc = 100. The following parameters are suggested for the numerical computations: power electronic
computational interval Tcs = 1 × 10−6; sampling interval Tin = 20 × 10−6; switching frequency of the
IGBT: Fc = 20 × 103; and the simulation time tsim = 0.2.

10.3 Building Simulation Model for Induction Motor
In the first step of building a simulation model, a MATLAB file is created for the parameters in the model
of the induction motor to be controlled. The parameters are based on the motor characteristics and the
nameplate on the motor. Also defined are the sampling interval used in the simulation, DC bus voltage and
set-point signal of the flux. The following MATLAB program is used in the simulation demonstration.
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Figure 10.2 Simulink diagram for simulation of PMSM.
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Tutorial 7 The objective of this tutorial is to create a MATLAB file for the induction motor parameters
that will be used in the simulation for induction motor modeling and control.

Step by Step

1. Create a new file called InModel.m
2. Define the induction motor parameters (warm state). Enter the following program into the file:

r_s = 11.2; (Ohm) %stator resistance
r_r = 8.3; %rotor resistance
l_ls = 0.0455; (H) %stator inductance
l_lr = 0.068; %rotor inductance
l_h = 0.570; %mutual inductance
l_s=l_h+l_ls;
l_r=l_h+l_lr;

3. Based on the physical parameters, calculate the motor constants. Enter the following program into
the file:

tau_s=l_s/r_s; %time constant of stator winding
tau_r=l_r/r_r; %time constant of rotor winding
sigma=1-((l_h*l_h)/(l_s*l_r)); %total flux leakage coefficient
l_st=sigma*l_s;
l_rt=sigma*l_r;
k_r=l_h/l_r;
k_s=l_h/l_s;
tau_st=sigma*tau_s; %(sigma*l_s)/r_s;
tau_rt=sigma*tau_r; %(sigma*l_r)/r_r;
r_sigma=r_s+(r_r*k_r*k_r);
tau_sigmat=(sigma*l_s)/r_sigma;

4. Define induction motor mechanical parameters. Enter the following program into the file:

z_p = 2; %pole pairs
J = 0.0052; %Inertia constant
F = 0.0023; %Friction coefficient

5. There are two sampling intervals used in the simulation. One is the sampling interval for the control
system, and the other is the sampling interval for the IGBT semiconductors.

TS = 100e-6; %sampling interval for control system (100us)
TSSimP=10e-6; %sampling interval for Power Electronics Model

6. Define DC bus voltage and set-point signal to rotor flux. Enter the following program into the file:

Udc=520; %dc bus Voltage (V)
psi_S=0.3; %Set-point for flux (Wb)

7. Run this program to produce the parameters for the physical model of the induction motor that will
be used in the simulation in the next tutorial.
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Tutorial 8 The objective of this tutorial is to produce a Simulink simulation program for a Squirrel cage
induction motor. The simulated component models consist of four parts: the physical induction motor
model; the power electronics, the DC voltage power supply and the current sensors. The tutorial will
show how these components are connected to form the physical model for the simulation of a Squirrel
case induction motor.

Step by Step

1. Create a Simulink file called Squirrel.mdl.
2. To begin building the physical model based simulator, we need to define the simulation environment

for the power electronics. Perform the following tasks:
(a) Inside the directory of SimPowerSystems, find “powergui” and move it to Squirrel.mdl.
(b) Click on “powergui” to find “configure parameters”. Under the item of “Simulation type”,

choose “discrete”, and under the item of sample time, enter “TSSimp”, which is the sampling
interval for power electronic model.

3. Once the simulation environment is defined, a physical model is to be created for the induction
machine. In this step, we will choose the rotor type and define the machine parameters according to
machine nameplate and the parameters calculated in the Tutorial 7. Perform the following tasks:
(a) Inside the directory of SimPowerSystems, find the “Machines” subdirectory. Within this direc-

tory, find “Asynchronous Machine SI Units” and move it Squirrel.mdl.
(b) Click on “Asynchronous Machine SI Units” to find “Configuration”. Rotor type: choose

Squirrel-Cage, which is the type of machines used in the simulation.
(c) Under the item “parameters”, nominal power:750/7.9, line-to-line voltage:415, frequency:50,

and define all the other machine parameters using those calculated by the MATLAB program
called InModel.m. Figure 10.3 shows the settings of all physical parameters needed in the item
“parameters”.

4. Build the power electronics devices for operating the induction motor. Inside the directory of Sim-
PowerSystems, there is a “Power Electronics” subdirectory. This step is to build the IGBT inverter.
Perform the following tasks:
(a) Find “Universal Bridge” and move it to the Simulink model.
(b) Select Power Electronic Device to IGBT/Diodes and number of bridge arms 3 and leave others

as default.
5. Build the DC power supply model. Perform the following tasks:

(a) At “Electrical Sources” subdirectory, find “DC voltage source”, move it to Squirrel.mdl and
position it to the left of Universal Bridge. Make another copy of the “DC voltage source”.

(b) Set the amplitude to Udc∕2 for each voltage source. Connect them together. Connect “+” ter-
minal from the first DC voltage source with “+” terminal in Universal Bridge and connect the
“-” terminal of the second DC voltage source to the “-” terminal of the Universal Bridge.

6. Build current measurements. Perform the following tasks:
(a) At the “Measurements” subdirectory, find “Current Measurement”, move it to Squirrel.mdl and

position it between the “Universal Bridge” and the induction motor. Copy to produce another
“Current Measurement”, and label them A, C phase currents.

(b) Connect terminal “A” from Universal Bridge to the terminal “+” in the A “Current Measure-
ment”, and connect the terminal “-” of phase A “Current Measurement” to the terminal “A”
in the induction motor. Repeat the connection for terminal C for the second “Current Measure-
ment”.

(c) Connect the terminal “B” from Universal Bridge to the terminal “B” in induction motor without
current measurement.
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Figure 10.3 Parameters definition in Simulink model of induction motor.

7. To transform the phase A and phase C current measurements into d and q axis currents, the embedded
function “PCCurrent” produced in the Tutorial 4 is used. Perform the following tasks:
(a) Copy the icon of “PCCurrent” into Squirrel.mdl and position it close to the current measure-

ments.
(b) Connect the output of current measurement A to the input ia of the PCCurrent function and

output of current measurement C to the input ic of the PCCurrent function.
8. Build the Pulse-Width-Modulators. Perform the following tasks:

(a) Find “Discrete PWM Generator” in the path of “SimPowerSystems” − > “Extra Library” − >

“Discrete Control Blocks”. Copy it to Squirrel.mdl.
(b) Set the Generator Mode to “3-arm bridge (6 pulses)”, Carrier frequency (Hz) to “2e3” (we can

select this case by case), Sample time to TS_SimP, which is the sampling interval for the power
electronics.

(c) A unit delay is inserted before “PWM Generator”, in order to avoid the singularity problem in
simulation.
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(d) Another “Gain” block is valued as “1∕Udc ∗ sqrt(3)” is inserted before “PWM Generator” to
convert the stator voltage in Volt into Modulation index (between −1 to 1)

(e) Connect the output of the “PWM Generator” to the input of the “Universal Bridge” at terminal
“g” (for gate signal).

9. The input signals to the “PWM Generator” should be three phase voltage signals, 𝑣a, 𝑣b and 𝑣c

in a vector form. To link the controller’s output signals, 𝑣d and 𝑣q, to the three phase signals, the
embedded function “IPCVoltage” is used, written in Tutorial 5. Perform the following tasks:
(a) Copy the icon of “IPCVoltage” the icon of “PCCurrent” into Squirrel.mdl.
(b) Connect the output of “IPCVoltage” to the input of the unit delay block.

10. Build ground. In “Elements” subdirectory, find “ground” and move it to Squirrel.mdl. Connect
“ground” to in-between the two DC voltage sources.

11. For the simplicity of this tutorial, the rotational angle 𝜃s of the d − q reference frame is generated by
“Repeating Sequence” under “Source” subdirectory. “Time values” set as [0 0.02] for 50 Hz, “Out-
put values” set as [0 2*pi]. Since the output of this block is in continuous-time, A “Rate Transition”
is needed for discrete time mode simulation.

12. In order to provide the inputs of the open-loop model, three “Constant” sources are inserted for
u_sd, u_sq and T_L where the values are choose as 10, 100 and 0, respectively for example.

13. To obtain the outputs of the simulation results, Find “To Workspace” block under “Sinks”. Change
the Variable name same as output variable, change the save format to “Array”, change the Sample
time to Ts. Three output variables are obtained in this simulation, “t” for time axis, “w” for motor
speed, “is_dq” for stator current in d − q reference frame.

14. Finally, press “Ctrl+E” to open “Configuration Parameters”, under “Solver options”, change Type
to “Fixed-step” and Fixed-step size to “TSSimP”.

10.4 Building Simulation Model for Power Converter

10.4.1 Embedded MATLAB Function for Phase Locked Loop (PLL)

In Section 3.9.5, the description of Phase-Locked Loop (PLL) is given. Simulink has a function for the
implementation of the PLL. However, for those who are interested in producing their own embedded
MATLAB function for the PLL, a MATLAB tutorial is given below.

The input signal to the PI current controller is the 𝑣q(t), and as shown in Figure 3.21, the output of
the PI controller will add the grid frequency 2𝜋f integrated to yield the estimated grid electrical angle 𝜃,
where in the simulation presented in Chapter 3, f = 50 Hz. We will use the PI controller velocity form
for the implementation of the PLL.

Note that as in Chapter 4, the discretized PI controller output at sampling time ti with the sampling
interval Δt is expressed:

u(ti) = u(ti−1) + Kc(𝑣q(ti) − 𝑣q(ti−1)) +
Kc

𝜏I

𝑣qΔt (10.1)

and with the control signal bias term 2𝜋f , the actual control signal is uact(ti) = u(ti) + 2𝜋f . By adding
2𝜋f to both sides of (10.1), it becomes:

uact(ti) = uact(ti−1) + Kc(𝑣q(ti) − 𝑣q(ti−1)) +
Kc

𝜏I

𝑣qΔt. (10.2)

Therefore, by choosing the initial condition uact(−Δt) = 2𝜋f , the actual control signal from the PLL will
be calculated recursively based on (10.2). The output of the PLL is the integrated variable of the actual
control signal uact(t). Equivalently,

d𝜃(t)
dt

= uact(t),
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which has the discretized form:
𝜃(ti) = 𝜃(ti−1) + uact(t)Δt.

The initial conditions for 𝑣q(−Δt) and 𝜃(−Δt) are set to zero as the best “guess,”
The tutorial below is a modified version the PIV.mdl function (see Tutorial 1) adapted for the PLL

application.

Tutorial 9 This tutorial will demonstrate how to implement the PLL algorithm in real-time.

Step by Step

1. Create a new Simulink file called PLLV.mdl
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MATLAB function and

copy it to the PLLV model.
3. Click on the icon of the embedded function, and define the input and output variables to the PLLV

model so that the embedded function has the following form:

function theta = PLLV(vq,KcPLL,tauIPLL,Ts)

where “theta” is the estimated grid electrical angle at the sampling time ti, the first element (vq)
among the input variables is the measurement of the q-axis voltage at sampling time ti, KcPLL and
tauIPLL are the proportional gain and integral time constant, Ts is the sampling interval.

4. At the top of the embedded function, find “Model Explorer”among the “Tools”. When opening the
Model Explorer, select “discrete” for the “update method” and input “Ts” into the “sample time”;
select “Support variable-size arrays”; select “Saturate on integer overflow”; select “Fixed point”.
Click “Apply” to save the changes.

5. We need to edit the input and output data ports in order to let the embedded function know which
input ports are the real-time variables and which are the parameters. This editing task is performed
using Model Explorer.

• click on “vq”, on Scope, select “input”, assign port “1” and size “-1”, complexity “Inherited”,
type “Inherit: Same as Simulink”.

• The rest of 3 inputs to the embedded function are the parameters required in the computation.
Click on “KcPLL”, on Scope, select “Parameter” and click “Tunable” and click “Apply” to
save the changes. Repeat the same editing procedure for the rest of the parameters, “tauIPLL”,
“Ts”.

• To edit the output port from the embedded function, click on “theta”, on Scope, select “Output”,
Port “1”, Size “-1”, Sampling Model “Sample based”, Type “Inherit: Same as Simulink”, and
click on “Apply” to save the changes.

6. In the following, the program will declare those variables that are stored in the embedded function
during each iteration for their dimensions and initial values. ‘uPast’ is the past control signal (u(ti−1)),
“vqPast” is the past error signal (𝑣q(ti−1)). Because the PI controller is implemented using velocity
form using the actual measured variables, the past input and output variables should be initialized
to the actual measured physical variables before the closed-loop control. Particularly, the control
signal needs to be initialized to the bias signal 2𝜋50. Both initial conditions of 𝑣q Enter the following
program into the file:

persistent uPast
if isempty(uPast)

uPast=2*pi*50;
end
persistent vqPast
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if isempty(vqPast)
vqPast=0;

end
persistent thetaPast
if isempty(thetaPast)

thetaPast=0;
end

7. Calculate the actual control signals. Enter the following program into the file:

uCurrent=uPast+KcPLL*(vq-vqPast)+(KcPLL*Ts)/tauIPLL*vq;
theta=thetaPast+uCurrent*Ts;
theta=mod(theta,2*pi);

8. Update the past control, error signal and output signals. Enter the following program into the file:

uPast=uCurrent;
vqPast=vq;
thetaPast=theta;

9. Test this program in the physical simulation model built in the next tutorials.

10.4.2 Physical Simulation Model for Grid Connected Voltage Source
Converter

Tutorial 10 The objective of this tutorial is to create a MATLAB file for the power converter parameters
that will be used in the simulation of power converter modeling and control.

Step by Step

1. Create a new file called PCModel.m
2. Define the power converter attributes.

% AC side
Eg = 415; % grid line-to-line rms voltage (V)
freq = 50; % grid frequency (Hz)
w = 2*pi*freq; % grid angular frequency (rad/s)
Ls = 6.3e-3; % converter-side inductance (H)
Rs = 0.2; % converter-side resistance (Ohm)

% DC side
Cdc = 2.96e-4; % dc bus capacitance (F)
Rl = 20; % dc load (Ohm)
Vdc = 800; % dc bus voltage (V) (steady state)

3. Define the sampling interval.

Ts = 100e-6; % control system (100us)
Ts_sim = 1e-6; % Power Electronics Model (1us)
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4. Define steady state value for the controller.

Vdco = Vdc;
ed = Eg*sqrt(2/3);
eq = 0;
Ido = 2/3*(Vdco ̂ 2)/(Rl*ed);
Iqo = 0;

% steady state value of control signal
Sdo = 2*(ed-Rs*Ido)/Vdco
Sqo = -2*w*Ls*Ido/Vdco
Udq0 = [Sdo;Sqo;0];
%%unit gain and wn=127,xi=0.707 to calculate KcPLL and tauIPLL
KcPLL = 180;
tauIPLL = 0.011;

5. Run this program to store the parameters into workspace.

Tutorial 11 The objective of this tutorial is to produce a Simulink program to simulate the behavior of
a grid connected power converter. The simulated component models consist of three parts: the electrical
source; the active and passive electrical components; and the current and voltage sensors. The tuto-
rial will show how these components are connected to form the physical model for the simulation of a
grid-connected power converter.

Step by Step

1. Create a Simulink file called PowerConverter.slx.
2. To begin building the physical model based simulator, we need to define the simulation environment

for the power electronics. Perform the following tasks:
(a) Under the directory of Simscape > SimPowerSystems, find “powergui” and move it to Power-

Converter.slx.
(b) Click on “powergui” to find “configure parameters”. Under the item of “Simulation type”,

choose “discrete”, and under the item of sample time, enter “Ts_sim”, which is the sampling
interval for power electronic model.

3. Build the physical model for the power converter. Perform the following steps:
(a) At “Electrical Sources” subdirectory, find “Three-Phase Programmable Voltage Source” and

move it to PowerConverter.slx.
(b) Select the physical parameters in the “Three-Phase Programmable Voltage Source” as grid

voltage “Eg”, phase “0”, and frequency “50”.
4. Build the RLC circuits. Perform the following steps.

(a) At the “Elements” subdirectory, find the “Three-Phase Series RLC Branch” and copy it to Pow-
erConverter.slx.

(b) Select “RL” and define its resistance (Rs) and inductance (Ls) according to the MATLAB pro-
gram called PCModel.m.

5. Build ground. In “Elements” subdirectory, find “ground” and move it to PowerConverter.slx. Con-
nect “ground” to the N terminal of three phase programmable voltage source.

6. Build the power electronics device for operating the power converter. Perform the following tasks:
(a) At “Power Electronics” subdirectory, find “Universal Bridge” and move it to PowerCon-

verter.slx.
(b) Select Power Electronic Device to IGBT/ Diodes and number of bridge arms 3.
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7. Build measurements for the three phase voltages and currents. At the ‘Measurements’ subdirectory,
find “Three-Phase V-I Measurement” and move it to PowerConverter.slx with position between the
“Three phase programmable voltage source” and the “three-phase series RLC Branch”.

8. Building DC side components. Perform the following tasks:
(a) In “Elements” subdirectory, find “Series RLC Branch” and move it to PowerConverter.slx twice.
(b) The branch type for the first one is selected as “C” with capacitance defined as Cdc (=2.96e − 4)

and the second one is selected as “R” with resistance defined as Rl (20).
(c) At the “Measurements” subdirectory, find “Voltage Measurement” and move it to PowerCon-

verter.slx
9. Connect all the components as shown in Figure 10.5.

10. Build the Pulse-Width-Modulators. Perform the following tasks:
(a) Find “PWM Generator (2-Level)” under “Pulse & Signal Generators”. Set the Carrier fre-

quency (Hz) to “1e3”, Sample time to Tssim.
(b) A unit delay is inserted before “PWM Generator”, in order to avoid the singularity problem in

simulation.
(c) Connect the output of the “PWM Generator” to the input of the “Universal Bridge” at terminal

“g” (for gate signal).
11. The input signals to the “PWM Generator” should be three phase normalized signals, Sa, Sb and

Sc in a vector form. To link the controller’s output signals, Sd and Sq, to the three phase signals, the
embedded function “IPCVoltage” is used, written in Tutorial 5. Perform the following tasks:
(a) Copy the icon of “IPCVoltage” into PowerConverter.slx.
(b) Connect the output of “IPCVoltage” to the input of the unit delay block.

12. To transform the phase A and phase C current measurements into d and q axis currents, the embedded
function “PCCurrent” produced in the Tutorial 4 is used. Perform the following tasks:
(a) Copy the icon of “PCCurrent” into PowerConverter.slx and position it close to the three phase

V-I measurements.
(b) “Demux” the three phase current signals.
(c) Connect the output of current measurement A to the input ia of the PCCurrent function and out-

put of current measurement C to the input ic of the PCCurrent function. Connect ib measurement
to terminator.

13. The next step is to use the PLL built in Tutorial 9 for estimating the grid electrical angle required in
the Park-Clarke transformation. Perform the following steps:
(a) Copy the icon of “PLLV” built from Tutorial 9 to the PowerConverter.slx.
(b) Create the input signal 𝑣q to “PLLV” by repeating the Step described in 12 with the measured

three phase voltage signals with the three phase V-I measurements. To avoid confusion, change
the names of the current variables and the embedded function to their respective voltage vari-
ables (PCCurrent to PCVoltage).

(c) Connect 𝑣q output to the input of PLL. Connect vd variable to terminator.
14. Connect the output of PLLV, “theta” to the “theta” input of the three embedded MATLAB functions:

“PCCurrent”, “PCVoltage” and “IPCVoltage”.
15. In order to provide the inputs of the open-loop model, a “Constant” source is inserted for udq0, the

values are as in PCModel.m, respectively for example.
16. To obtain the outputs of the simulation results, Find “To Workspace” block under “Sinks”. Change

the Variable name same as output variable, change the save format to “Array”, change the Sam-
ple time to Ts. Three output variables are obtained in this simulation, “log_time” for time axis,
“log_vdc” for DC bus voltage, “log_idq” for grid current in d − q reference frame.

17. Finally, open “Model Configuration Parameters”, under “Solver options”, change Type to
“Fixed-step” and Fixed-step size to “Ts_sim”.
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Figure 10.5 Simulink diagram for simulation of grid connected power converter.
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10.5 PMSM Experimental Setup
The experiments were conducted using the MATLAB realtime workshop and xPC host-target envi-
ronment. The host PC has installed the MATLAB real-time workshop compiler and the target com-
puter with the XPC Target kernel and the quadrature encoder card. The control system is developed
in MATLAB/Simulink and downloaded to the xPC Target. This setup allows rapid prototyping and
hardware-in-loop simulation functionality using the existing computer hardware.

To test the performance of the control systems under the change of load disturbance, a second PMSM
is coupled with the controlled PMSM through a rigid coupler, as shown in Figure 10.6. The generated
phase voltages from the second PMSM are fed to resistor loads through an uncontrolled three-phase
rectifier. With this setup, the equivalent load toque delivered by the electrical load is proportional to the
speed of the motor shaft.

Rotor position information is important in order to acquire the feedback speed and commutation angle
for both the abc/dq and dq/abc transformations. Hence a sine-cosine optical encoder with 512 cycles/rev
was equipped to acquire high resolution position information. As output, the encoder produces sine and
cosine signals that are converted to channel A and B pulses, respectively, as shown in Figure 10.7. The
quadrature counter card was employed to count both the rising and falling edges of a square wave. The
position was obtained using (Staebler (2000)):

𝜃 = 2𝜋
N

(

cnt ≫ 2 + 𝜙

2𝜋

)

, (10.3)

where N is number of cycles per revolution, cnt denotes the number of counts obtained by the quadrature
counter card and 𝜙 is the phase angle determined from sampled value of both the sine (denoted by A)
and cosine (denoted by B) signals using the expression:

𝜙 =
⎧
⎪
⎨
⎪
⎩

arctan
(

A

B

)

, A ≥ 0

arctan
(

A

B

)

+ 𝜋, A < 0
.

Figure 10.6 Experimental setup of PMSM and loads.
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Figure 10.7 Encoder signal.

However, the sampling time of the sine-cosine signal may not be synchronized with the counter card and
hence sudden variation in the position calculated by (10.3) can occur. There are two scenarios (Staebler
(2000)): (a) 0 ≤ 𝜙 ≤ 𝜋

2
and cnt%4 = 3 and (b) 3

2
𝜋 ≤ 𝜙 ≤ 2𝜋 and cnt%4 = 0. Case (a) arises because

sampling 𝜙 leads to the counter increasing and it should be increased by 1 to compensate for the mis-
match. Conversely, in case (b) sampling of 𝜙 lags the counter increasing and the counter value should be
decreased by 1.

A common method to obtain angular mechanical velocity 𝜔r is to calculate the derivative of a position
measurement. Its discrete implementation could use the first order approximation as

𝜔r(ti) ≈
𝜃r(ti) − 𝜃r(ti−1)

Δt
,

where Δt is the sampling interval, but this procedure would produce significant variation in velocity
due to quantization error of the position measurements. An alternative approach is to use the filtered
derivative of position measurement by passing 𝜃r(t) through the filter with transfer-function F(s) where

F(s) = s
𝜏f s + 1

(10.4)

to obtain 𝜔r(t). The differential equation for the filter implementation is

𝜏f 𝜔̇r(t) + 𝜔r(t) = 𝜃̇r(t).

The discrete-time implementation using the backward Euler approximation is

𝜔r(ti) ≈
𝜃r(ti) − 𝜃r(ti) + 𝜏f𝜔r(ti−1)

𝜏f + Δt
, (10.5)

where 𝜔̇r(t) ≈
𝜔r (ti)−𝜔r (ti−1)

Δt
and 𝜃̇r(t) ≈

𝜃r(ti)−𝜃r(ti−1)
Δt

. The choice of 𝜏f is a trade-off between filtering noise
and the lag introduced.
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10.6 Induction Motor Experimental Setup
The induction motor control experiments in this book are performed using the platform of MATLAB®/
Simulink®/xPC Target. Thus the control system software used in the implementation is simply
transformed from the simulation model where the embedded MATLAB functions written are used for
real-time control signal calculations. An illustration of the entire experimental test-bed is shown in
Figure 10.8, which comprises induction motor, a variable and unknown load, IGBT inverters, DC power
supply and couplings. Each component is detailed as follows.

10.6.1 Controller

The tasks of controller algorithm design, editing and simulation are accomplished using MAT-
LAB/Simulink in the host computer. This host computer is connected to the xPC Target object via
a cable. The xPC Target is another computer, which contains two extra boards: National Instrument
PCI-6024E and QUAD04. The former board is for control computation and the later one is for encoder
data gathering. Once the control program is designed, the host computer will compile and upload the
program to the Target computer, which will operate the control experiment in real time mode.

10.6.2 Power Supply

The power supply is divided into two components: low voltage and high voltage. The low voltage com-
ponent consists of the IGBTs of the Inverter at the low voltage side, which operates at 24 V. The high
voltage component is the DC power supply, with the DC bus voltage set at 520 V. The induction motor
is supplied at its rated voltage of 415 V after the modulation.

Figure 10.8 Test-bed of the induction motor control experiment.
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10.6.3 Inverter

The inverter used in this test-bed is a three-phase two-level voltage-source inverter (2L-VSI). The inverter
module has two layers. The first layer is a drive board, which reads the control commands from the
controller to control the IGBTs, the second layer contains the high voltage side of the IGBTs, which has
the DC-link bus capacitors and the protections, the IGBT modules are connected to a piece of heat-sink
material.

10.6.4 Mechanical Load

As shown in Figure 10.8, on the left hand wide of the test bench, a DC motor is coupled with the induction
motor. In order to provide the safe load torque to the induction motor shaft, there are two connections at
the terminal of DC motor. The first connection is illustrated in Figure 10.8, where the DC motor terminal
is connected to a current power supply, in order to provide the desired load torque, which is used in
the situation when the position control system is evaluated. The other connection is designed for speed
control, where power resistors, which have the properties of low resistance and high current capacity,
will be connected at the DC motor terminal. During the operation of the speed control system, there is
current flow through the power resistors due to the regeneration mode of DC motor. Thus, the DC motor
will provide the load torque at the opposite direction of the induction motor shaft. Moreover, the load
torque will be increased when the induction motor speed increases.

10.6.5 Induction Motor and Sensors

The induction motor used in this test-bed is from SEW-EURODRIVE, the data sheet of motor type
DRE80M4 can be easily found in their website. Its characteristics are given by the nameplate data (see
Table 1.3 in Chapter 1). The sensor components are encoder and current sensors. The encoder is built
on the induction motor shaft, which is an incremental encoder with resolution of 1024. The two current
sensors, for two phase currents measurement, are LTS-6-NP from RS company, which can handle the
current measurement of ±6 A. The power supply of both encoder and current sensors are connected from
the control board, in order to ensure the common ground.

10.7 Grid Connected Power Converter Experimental Setup
The test-bed shown in Figure 10.9 has been developed for this book to validate the control system designs
in the real hardware environment. As shown in this figure, the three phase grid connected power converter
in the laboratory set-up consists of a step-down transformer (see mark (2)) that is used to reduce the line
voltage from the main grid voltage (see mark (1)) of 415 V to 30 V. From the transformer, there are three
line reactors (see mark (3)) connected between the converter and the transformer. The converter (see mark
(4)) is made up of largely three components: a soft-start circuit, a number of sensors and a switching
module. The soft-start circuit mainly provides a starting mechanism to limit the in-rush current when
the DC-link capacitor is fully discharged at the start. The sensors include AC current sensors and DC
bus voltage sensors. The switching module consists of six IGBT devices including freewheeling diode.
The real-time control systems are developed using xPC target (see mark 5), and finally a DC-link load is
connected to the system (see mark 6).

10.7.1 Controller

The control algorithms are designed with MATLAB/Simulink and downloaded to a xPC Target computer
for real-time execution. The xPC Target is a software environment that allows users to use a x86-based



336 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

Figure 10.9 Experimental set-up of a grid connected power converter.

desktop computer (recycle of past computer) as a real-time controller. For the purpose of voltage source
converter control, National Instrument PCI-6024E and PCI-6601 PCI cards are installed to the computer
for analog-to-digital conversion and digital output.

10.7.2 Inverter

The IGBT module of the inverter is TOSHIBA Intelligent Power Module MIG100Q6CMB1X with max-
imum collector-emitter voltage rating as 1200 V, and the collector and forward current as 100 A.

10.7.3 Sensors

In order to performance grid synchronization, three transformers are used for AC voltage sensing. The
primary and secondary sides of the transformers are 230 V and 5 V respectively. Three closed-loop
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hall effect current transducers (LTS 6-NP) are used to measure the AC currents. A hall effect voltage
transducer is installed for DC voltage sensing.

10.8 Summary
This chapter has described the process of building physical models using MATLAB/Simulink for the
electrical drives and power converter. The experimental setup for the test-beds is also given in this chapter.

10.9 Further Reading
Introductory materials to MATLAB can be found in Gilat (2014) and in Attaway (2013), and to Simulink
in Zamboni (2013). User’s guide on the Simulink Real-Time simulation can be found in MathWorks Inc
(2014b). Detailed information about the SimPowerSystems used in the simulations of the electrical drives
and power converter can be found in MathWorks Inc (2014a). A book was published for simulation of
electrical machines using MATLAB by Ong (1998).
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