\\\\\\ Series on Parallel and Distributed Computing
AAAAAAA . Zomaya, Serles Editor WILEY

HANDBOOK OF

JENSOR NETWORRS

ALGORITHMS AND ARCHITECTURES

VAN STOIMENOVIC, EDITOR

HANDBOOK OF SENSOR
NETWORKS

ALGORITHMS AND ARCHITECTURES

Edited by

lvan Stojmenovic

University of Ottawa

WlLEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

HANDBOOK OF SENSOR
NETWORKS

WILEY SERIES ON PARALLEL
AND DISTRIBUTED COMPUTING

Editor: Albert Y. Zomaya

A complete list of titles in this series appears at the end of this volume.

HANDBOOK OF SENSOR
NETWORKS

ALGORITHMS AND ARCHITECTURES

Edited by

lvan Stojmenovic

University of Ottawa

WlLEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,

(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Handbook of sensor networks : algorithms and architectures / edited by Ivan Stojmenovic.
p. cm. --- (Wiley series on parallel and distributed computing)
Includes bibliographical references and index.
ISBN-13 978-0-471-68472-5 (cloth)
ISBN-10 0-471-68472-4 (cloth)
1. Sensor networks. I. Stojmenovic, Ivan.

TK7872.D48H358 2005
681'.2--dc22
2005005155

Printed in the United States of America

100 9 87 6 5 4 3 21

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To my daughter Milica, son Milos, and wife Natasa, my personal sensor network.
To Val and Emily from Wiley, for their timely and professional cooperation.

I CONTENTS

Preface

Contributors

1.

10.

Introduction to Wireless Sensor Networking
Fernando Martincic and Loren Schwiebert

Distributed Signal Processing Algorithms for the
Physical Layer of Large-Scale Sensor Networks
An-swol Hu and Sergio D. Servetto

Energy Scavenging and Nontraditional Power
Sources for Wireless Sensor Networks
Shad Roundy and Luc Frechette

A Virtual Infrastructure for Wireless Sensor Networks
Stephan Olariu, Qingwen Xu, Ashraf Wadaa, and Ivan Stojmenovic¢

Broadcast Authentication and Key Management
for Secure Sensor Networks
Peng Ning and Donggang Liu

Embedded Operating Systems for Wireless
Microsensor Nodes

Brian Shucker, Jeff Rose, Anmol Sheth, James Carlson,
Shah Bhatti, Hui Dai, Jing Deng, and Richard Han

Time Synchronization and Calibration in Wireless
Sensor Networks
Kay Romer, Philipp Blum, and Lennart Meier

The Wireless Sensor Network MAC
Edgar H. Callaway, Jr.

Localization in Sensor Networks
Jonathan Bachrach and Christopher Taylor

Topology Construction and Maintenance in Wireless
Sensor Networks
Jennifer C. Hou, Ning Li, and Ivan Stojmenovic¢

ix

XV

41

75

107

141

173

199

239

277

311

vii

viii CONTENTS

11. Energy-Efficient Backbone Construction, Broadcasting, and
Area Coverage in Sensor Networks 343
David Simplot-Ryl, Ivan Stojmenovi¢, and Jie Wu

12. Geographic and Energy-Aware Routing in Sensor Networks 381

Hannes Frey and Ivan Stojmenovié

13. Data-Centric Protocols for Wireless Sensor Networks 417
Ivan Stojmenovic¢ and Stephan Olariu

14. Path Exposure, Target Location, Classification, and
Tracking in Sensor Networks 457
Kousha Moaveni-Nejad and Xiang-Yang Li

15. Data Gathering and Fusion in Sensor Networks 493
Wei-Peng Chen and Jennifer C. Hou

Index 527

IEN PREFACE

Recent technological advances have enabled the development of low-cost, low-
power, and multifunctional sensor devices. These nodes are autonomous devices
with integrated sensing, processing, and communication capabilities. A sensor is an
electronic device that is capable of detecting environmental conditions such as temp-
erature, sound, chemicals, or the presence of certain objects. Sensors are generally
equipped with data processing and communication capabilities. The sensing circuitry
measures parameters from the environment surrounding the sensor and transforms
them into electric signals. Processing such signals reveals some properties of objects
located and/or events happening in the vicinity of the sensor. The sensor sends such
sensed data, usually via a radio transmitter, to a command center, either directly or
through a data-collection station (a base station or a sink). To conserve the power,
reports to the sink are normally sent via other sensors in a multihop fashion. Retrans-
mitting sensors and the base station can perform fusion of the sensed data in order to
filter out erroneous data and anomalies, and to draw conclusions from the reported
data over a period of time. For example, in a reconnaissance-oriented network,
sensor data indicates detection of a target, while fusion of multiple sensor reports
can be used for tracking and identifying the detected target.

This handbook is intended for researchers and graduate students in computer
science and electrical engineering, and researchers and developers in the telecom-
munication industry. It provides an opportunity for researchers to explore the cur-
rently “hot” field of sensor networks. It is a problem-oriented book, with each
chapter discussing computing and communication problems and solutions that
arise in rapidly emerging wireless sensor networks. The main purpose of the book
is to review various algorithms and protocols that were developed in the area,
with the emphasis on the most recent ones.

The handbook is based on a number of stand-alone chapters that together cover the
subject matter in a fully comprehensive manner. Edited books are normally collec-
tions of chapters freely selected by invited authors. This handbook follows a different
approach. First, the sensor network arena was divided into meaningful units, reflect-
ing the state of the art, importance, amount of literature, and, above all, comprehen-
siveness. Then the most suitable author for each chapter was selected, considering
their expertise and presentation skills. The editor also considered the geographical
distribution of authors, and representations from industry and top research insti-
tutions. Among the authors are researchers from Motorola, Intel, and Fujitsu
laboratories, MIT, IIT, Cornell University, University of Illinois, all in the United
States, plus researchers from Switzerland, Germany, France, Australia, and Canada.

ix

X PREFACE

Sensor networks are currently recognized as one of the priority research areas (for
example, a multidisciplinary program on sensors and sensor networks was launched
in 2003 at the U.S. National Science Foundation), and research activities recently
started booming. A number of ongoing projects are being funded in Europe, Asia,
and North America. Before Y2K, research on sensor networks was sporadic, and
were treated as a special case of emerging ad hoc networks. Sensor networks
were then quickly recognized as an independent topic, their name was added to
some event titles, and now events specializing in sensor networks have emerged
in the last two years. At least two new journals devoted exclusively to sensor
networks appeared in 2005.

As a result of the exponential growth in the number of researchers, publications,
conferences, and journals on sensor networks, a number of graduate courses fully or
partially concentrating on sensor networks have emerged recently. These courses are
mostly based on reading a selected set of recent articles, with the focus on certain
topics that reflect the interest of the instructor within the sensor networks domain.
It is expected that this book will provide a much needed textbook for such graduate
courses. Since the area is gaining popularity, a textbook is needed as a reference
source for use by students and researchers. The chapters cover subjects in a compre-
hensive manner, describing the state of the art and surveying important existing
solutions. They provide readable but informative content, with appropriate illus-
trations, figures, and examples. A number of chapters also provide some problems
and exercises for use in graduate courses.

This handbook is intended to cover a wide range of recognized problems in
sensor networks, striking a balance between theoretical and practical coverage.
The theoretical contributions are limited to the scenarios and solutions that are
believed to have practical relevance. The handbook content addresses the dynamic
nature of ad hoc and sensor networks. Due to frequent node addition and deletion
from networks (changes between active and inactive periods, done to conserve
energy, are one of the contributors to this dynamic) and possible node movement,
the algorithms that potentially can be used in real equipment must be localized
and must have minimal communication overhead. The overhead should take both
the construction and its maintenance for the structure used in solutions and ongoing
protocols into consideration. We believe that only this approach will eventually
lead to the design of protocols for real applications. We now explain our design
principles and priorities, used to cover the subject matter in this handbook.

A scalable solution is one that performs well in a large network. Sensor networks
may have hundreds or thousands of nodes. Priority is given to protocols that perform
well for small networks, and perform significantly better for large networks (more
precisely, are still working as opposed to crashing when other methods are applied).
In order to achieve scalability, new design paradigms must be applied. The main
paradigm shift is to apply localized schemes, in contrast with most existing proto-
cols, which require global information. In a localized algorithm, each node makes
protocol decisions solely based on the knowledge about its local neighbors. In
addition, the goal is to provide protocols that will minimize the number of messages
between nodes, because bandwidth and power are limited. Protocols should use a

PREFACE xi

small constant number of messages, often even none beyond preprocessing “hello”
messages. Localized message-limited protocols provide scalable solutions. Typical
local information to be considered is one-hop or two-hop neighborhood information
(information about direct neighbors and possibly the neighbors of neighbors).
Nonlocalized distributed algorithms, on the other hand, typically require global
network knowledge, including information about the existence of every edge in
the graph. The maintenance of global network information, in the presence of
mobility or changes between sleep and active periods, imposes huge communication
overhead, which is not affordable for bandwidth and power-limited nodes. In
addition to being localized, protocols are also required to be simple, easy to under-
stand and implement, and to have good average-case performance. Efficient
solutions often require position information. It has been widely recognized that
sensor networks can function properly only if reasonably accurate position infor-
mation is provided to the nodes.

BRIEF OUTLINE CONTENT

This handbook consists of 15 chapters. It begins with an introductory chapter that
describes various scenarios where sensor networks may be applied, and various
application-layer tools for enabling such applications. Applications include habitat
monitoring, biomedical sensor engineering, monitoring environments, water and
waste management, and military applications. The second chapter is on physical
layer and signal processing in sensor networks.

In sensor networks with tiny devices, which are usually designed to run on
batteries, the replacement of depleted batteries is not practical. The goal of the
third chapter is to explore methods of scavenging ambient power for use by low-
power wireless electronic devices in an effort to make the wireless nodes and
resulting wireless sensor networks indefinitely self-sustaining.

Chapter 4 describes a vision to build ultra-low-power wireless sensor systems and
a self-contained, millimeter-scale sensing and communication platform for a mas-
sively distributed sensor network. This vision is based on realistic assumptions
about sensors, such as limited ability to provide accurate position information
(therefore proposing the concept of cluster position information rather than individ-
ual position information), and lack of individual sensor identities (the property
commonly recognized but often implicitly assumed in protocols).

The power, computation, and communication limitations of sensor networks
make the design and utilization of security and fault-tolerance schemes particularly
challenging. Chapter 5 is intended as a starting point for studying sensor network
security. It focuses on recent advances in broadcast authentication and key manage-
ment in sensor networks, which are foundational cryptographic services for sensor
network security. It describes random key predistribution techniques proposed for
establishing pairwise keys between resource-constrained sensor nodes. Attacks
against location discovery and some additional security problems in sensor networks
are also discussed.

xii PREFACE

Chapter 6 reviews research on operating systems and middleware issues in the
emerging area of embedded, networked sensors. Chapter 7 addresses the issue of
calibration and time synchronization in sensor networks and related problems,
such as temporal message ordering. Chapter 8 reviews various medium-access
schemes for sensor networks, and the power efficiency aspects of these schemes.

In the position-determination problem, each sensor should be designed to
decide about its geographic position based on several reference nodes in the
network, in case it has no direct position service such as global positioning
system (GPS) attached. The position needs to be determined in cooperation with
other sensors, based on hop counts to reference nodes or other information. Chapter
9 reviews triangulation, multilateration, diffusion, and other types of solutions for
this problem.

The problem of deciding the best transmission radius of each sensor, and the links
that are desirable to have, is a challenging one. For instance, it is known that the
probability that a random-unit graph is connected has a sharp transition from 0
to 1, meaning that it is difficult to decide the best uniform transmission radius for
network connectivity and congestion avoidance. On the other hand, efficient loca-
lized methods exist where each node is designed to decide its own transmission
radius and links. Chapter 10 reviews topology construction and maintenance
schemes under various sensor architectures.

In a broadcasting (also known as data dissemination) task, a message is sent from
one node, which could be a monitoring center, to all the nodes in the network. The
activity scheduling problem is one of deciding which sensors should be active and
which should go to sleep mode, so that the sensor network’s life is prolonged. The
best known solutions to these two problems are based on the concept of localized
connected dominating sets. Sensors that are randomly placed in an area should be
designed to decide which of them should be active and monitor an area, and
which of them may sleep and become active at a later time. The connectivity is
important so that the measured data can be reported to the monitoring center.
Sensors may also be placed deterministically in an area to optimize coverage and
reduce their power consumption. Chapter 11 reviews solutions to these three related
problems in sensor networks.

Position information enables development of localized routing methods (greedy
routing decisions are made at each node, based solely on knowledge of positions of
neighbors and destination, with considerable savings in communication overhead
and with guaranteed delivery, provided location update schemes are efficient for a
given movement pattern. Power consumption can be taken into account in the rout-
ing process. Chapter 12 surveys existing position based and power aware routing
schemes. It also reviews physical layer aspects of position based routing.

Chapter 13 covers the emerging topic of data-driven routing, for example,
directed diffusion. It also covers the emerging topics of constructing and maintain-
ing reporting trees, dynamic evolution of the monitoring region for moving targets,
various training options, and receiving reports from a particular area of interest, that
is, geocasting.

PREFACE xiii

In order to monitor a region for traffic traversal, sensors can be deployed to
perform collaborative target detection. Such a sensor network achieves a certain
level of detection performance with an associated cost of deployment. Chapter 14
reviews solutions for the various path-exposure protocols and sensor deployment
for increased reliability of measurements. In the object-location problem, sensors
collaborate to detect the position of a mobile object. The goal is to derive the
location accurately, with a minimum number of sensors involved in the process.
This chapter also discusses sensor networks for target classification and tracking,
with respect to location-aware data routing to conserve system resources, such as
energy and bandwidth. Distributed classification algorithms exploit signals from
multiple nodes in several modalities and rely on prior statistical information about
target classes.

Data gathering in sensor networks differs from the general ad hoc network’s data
communication protocols. Sensors in general monitor or measure the same event or
data and report it to the monitoring center. Their data may be combined while being
routed (data fusion), to save energy and increase reliability of reports. Chapter 15
reviews protocols for data gathering and fusion in sensor networks. This chapter
also discusses the challenging problem of transport-layer protocols in sensor
networks. Due to severe power and computational limitations, providing quality
of service, delay, or jitter guarantees, in routing and data dissemination tasks by
sensors is a difficult problem. This chapter also reviews efficient sensor database
querying, for example, TinyDB. The sensor system should provide scalable, fault-
tolerant, flexible data access and intelligent data reduction, as its design involves
a confluence of novel research in database query processing, networking, algor-
ithms, and distributed systems.

ACKNOWLEDGMENTS

The editor is grateful to all the authors for their contribution to the quality of this
handbook. The assistance of reviewers for all chapters is also greatly appreciated.
The University of Ottawa (with the help of the National Science and Engineering
Research Council (NSERC) provided an ideal working environment for the
preparation of this handbook. This environment included computer facilities for
efficient Internet search, communication by electronic mail, and writing my own
contributions.

The editor is thankful to Dr. Albert Zomaya, editor of the Parallel and Distributed
Computing book series at Wiley, for his support and encouragement in publishing
this handbook at Wiley. Special thanks go to Richard Han and Krishna Sivalingam;
this book benefited greatly from their comments and suggestions. Val Moliere
(Editor, Wiley-Interscience), Emily Simmons, (Editorial Assistant), and Kirsten
Rohstedt (Editorial Program Coordinator) deserve special mention for their timely
and professional cooperation, and for their decisive support of this project.

xiv PREFACE

Finally, I thank my children Milos and Milica and my wife Natasa for their
encouragement, making this effort worthwhile, and for their patience during the
numerous hours at home that I spent in front of the computer.

I hope that the readers will find this handbook informative and worth reading.
Comments received by readers will be greatly appreciated.

IVAN STOIMENOVIC

School of Information
Technology and Engineering,
University of Ottawa, Ottawa,

Ontario, Canada

Ivan@site.uottawa.ca

www.site.uottawa.ca/~ivan

December 2004

EEEE CONTRIBUTORS

Jonathan Bachrach, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA 02139, jrb@ai.mit.edu

Shah Bhatti, University of Colorado, Department of Computer Science, Engineer-
ing Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Philipp Blum, Computer Engineering and Networks Laboratory, Department of
Information Technology and Electrical Engineering, Swiss Federal Institute of
Technology (ETH) Ziirich, CH-8092 Zurich, Switzerland

Edgar H. Callaway, Jr., Distinguished Member of the Technical Staff,
Florida Communication Research Lab, Motorola Labs, Plantation, FL 33322,
ed.callaway @ motorola.com

James Carlson, University of Colorado, Department of Computer Science, Engin-
eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Wei-Peng Chen, IP Networking Research, Fujitsu Laboratories of America, Inc.,
1240 East Arques Avenue, Sunnyvale, CA 94085, wei-peng.chen@us.fujitsu.com

Hui Dai, University of Colorado, Department of Computer Science, Engineering
Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Jing Deng, University of Colorado, Department of Computer Science, Engineering
Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Luc Frechette, Universite de Sherbrooke, Faculty of Engineering, Department of
Mechanical Engineering, 2500 boul. Universite, Sherbrooke, Quebec JIH 2R1
Canada, Luc.Frechette @ Usherbrooke.ca

Hannes Frey, University of Trier, System Software and Distributed Systems,
Behringstrasse 1, D-54286 Trier, Germany, frey @syssoft.uni-trier.de

Richard Han, University of Colorado, Department of Computer Science, Engin-
eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430,
rhan@cs.colorado.edu

Jennifer Hou, Department of Computer Science, University of Illinois, 3112 Seibel
Center, 201 N. Goodwin Avenue, Urbana, IL 61801-2302, jhou@cs.uiuc.edu

An-swol Hu, School of Electrical and Computer Engineering, 326 Rhodes Hall,
Cornell University, Ithaca, NY 14853-6701

XV

xvi CONTRIBUTORS

Ning Li, Department of Computer Science, University of Illinois, 3112 Seibel
Center, 201 N. Goodwin Avenue, Urbana, IL 61801-2302

XiangYang Li, Department of Computer Science, Illinois Institute of Technology,
Chicago, IL, 60616, xli@cs.iit.edu

Donggang Liu, Department of Computer Science, North Carolina State University,
Raleigh, NC 27695-8207

Fernando Martincic, Department of Computer Science, Wayne State University,
5143 Cass Avenue, 431 State Hall, Detroit, MI 48202

Lennart Meier, Computer Engineering and Networks Laboratory, Department
of Information Technology and Electrical Engineering, Swiss Federal Institute
of Technology (ETH) Ziirich, CH-8092 Zurich, Switzerland

Kousha Moaveni-Nejad, Department of Computer Science, Illinois Institute of
Technology, Chicago, IL, 60616

Peng Ning, Department of Computer Science, Room 250 Venture III (inside Suite
243) North Carolina State University, Raleigh, NC 27695-8207, pning@
ncsu.edu

Stephan Olariu, Department of Computer Science, Old Dominion University,
Norfolk, VA 23529-0162, olariu@cs.odu.edu

Kay Romer, Institute for Pervasive Computing, Department of Computer
Science, Swiss Federal Institute of Technology (ETH) Ziirich, CH-8092
Zurich, Switzerland, roemer @inf.ethz.ch

Jeff Rose, University of Colorado, Department of Computer Science, Engineering
Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Shad Roundy, LV Sensors, Inc., Emeryville, CA, sroundy @lvsensors.com

Loren Schwiebert, Department of Computer Science, Wayne State University,
5143 Cass Avenue, 431 State Hall, Detroit, MI 48202, loren@cs.wayne.edu

Sergio Servetto, School of Electrical and Computer Engineering, 326 Rhodes Hall,
Cornell University, Ithaca, NY 14853-6701, servetto@ece.cornell.edu

Anmol Sheth, University of Colorado, Department of Computer Science, Engin-
eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

Brian Shucker, University of Colorado, Department of Computer Science, Engin-
eering Center, ECOT 717, Campus Box 430 UCB, Boulder, CO 80309-0430

David Simplot-Ryl, IRCICA /LIFL, Univeriste Lille 1, CNRS UMR 8022, INRIA
Futurs, POPS research group, Bat. M3, Cité Scientifique, 59655 Villeneuve
d’Ascq Cedex, France, simplot@1ifl.fr

Ivan Stojmenovi¢, SITE, University of Ottawa, 800 King Edwards, Ottawa,
Ontario K1 N 6N5, Canada, ivan@site.uottawa.ca

CONTRIBUTORS XVii
Christopher Taylor, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA 02139
Ashraf Wadaa, Intel Corporation, Hillsboro, OR

Jie Wu, Department of Computer Science and Engineering, Florida Atlantic
University, 777 Glades Road, Boca Raton, FL 33431-6498, jie@cse.fau.edu

Qingwen Xu, Department of Computer Science, Old Dominion University,
Norfolk, VA 23529-0162

I CHAPTER 1

Introduction to Wireless Sensor
Networking

FERNANDO MARTINCIC and LOREN SCHWIEBERT
Wayne State University, Detroit, Michigan

This chapter introduces the topic of wireless sensor networks from the applications
perspective. A wireless sensor network consists of a possibly large number of wire-
less devices able to take environmental measurements such as temperature, light,
sound, and humidity. These sensor readings are transmitted over a wireless channel
to a running application that makes decisions based on these sensor readings.
Authors describe some examples of proposed wireless sensor applications, and
consider the following two questions to motivate an application-based viewpoint.
What aspects of wireless sensors make the implementation of applications more
challenging, or at least different? One widely recognized issue is the limited
power available to each wireless sensor node, but there are other challenges such
as limited storage or processing. What services are required for a wireless sensor
network application to achieve its intended purpose? A number of widely applicable
services, such as time synchronization and location determination are briefly
discussed in this chapter. Other services are needed to support database require-
ments, such as message routing, topology management, and data aggregation and
storage. As most of these topics are covered in separate chapters, this chapter
serves to provide a broad framework to enable the reader to see how these different
topics tie together into a cohesive set of capabilities for building wireless sensor
network applications.

1.1 INTRODUCTION

A wireless sensor network consists of a possibly large number of wireless devices
able to take environmental measurements. Typical examples include temperature,

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

2 INTRODUCTION TO WIRELESS SENSOR NETWORKING

light, sound, and humidity. These sensor readings are transmitted over a wireless
channel to a running application that makes decisions based on these sensor read-
ings. Many applications have been proposed for wireless sensor networks, and
many of these applications have specific quality of service (QoS) requirements
that offer additional challenges to the application designer. In this chapter, we intro-
duce the topic of wireless sensor networks from the perspective of the application.

Along with some examples of proposed wireless sensor applications, we consider
two questions to motivate an application-based viewpoint:

1. What aspects of wireless sensors make the implementation of applications
more challenging, or at least different?

One widely recognized issue is the limited power available to each wire-
less sensor node, but other challenges such as limited storage or process-
ing capabilities play a significant role in constraining the application
development.

2. What services are required for a wireless sensor network application to
achieve its intended purpose?

A number of widely applicable services, such as time synchronization and
location determination are briefly discussed. Other services are needed to
support database requirements, such as message routing, topology manage-
ment, and data aggregation and storage.

Because some of these topics are covered in separate chapters, this discussion
serves to provide a broad framework to enable the reader to see how these different
topics tie together into a cohesive set of capabilities for building wireless sensor
network applications.

1.2 DESIGN CHALLENGES

Several design challenges present themselves to designers of wireless sensor net-
work applications. The limited resources available to individual sensor nodes
implies designers must develop highly distributed, fault-tolerant, and energy-
efficient applications in a small memory-footprint. Consider the latest-generation
MICAz [1,2] sensor node shown in Figure 1.1.

MICAz motes are equipped with an Atmel128L [4] processor capable of a maxi-
mum throughput of 8 millions of instructions per second (MIPS) when operating at
8 MHz. It also features an IEEE 802.15.4 /Zigbee compliant RF transceiver, operat-
ing in the 2.4-2.4835-GHz globally compatible industrial scientific medical (ISM)
band, a direct spread-spectrum radio resistant to RF interference, and a 250-kbps
data transfer rate. The MICAz runs on TinyOS [5] (v1.1.7 or later) and is compatible
with existing sensor boards that are easily mounted onto the mote. A partial list of
specifications given by the manufacturers of the MICAz mote is presented in
Figure 1.2.

1.2 DESIGN CHALLENGES 3

Figure 1.1 MICAz sensor mote hardware. (Image courtesy of Crossbow Technology [3].)

For wireless sensor network applications to have reasonable longevity, an aggres-
sive energy-management policy is mandatory. This is currently the greatest design
challenge in any wireless sensor network application. Considering that in the
MICAz mote the energy cost associated with transmitting a byte over the transceiver
is substantially greater than performing local computation, developers must leverage
local processing capabilities to minimize battery-draining radio communication.
Several key differences between more traditional ad hoc networks and wireless
sensor networks exist [6]:

Individual nodes in a wireless sensor network have limited computational
power and storage capacity. They operate on nonrenewable power sources
and employ a short-range transceiver to send and receive messages.

The number of nodes in a wireless sensor network can be several orders of mag-
nitude higher than in an ad hoc network. Thus, algorithm scalability is an
important design criterion for sensor network applications.

Sensor nodes are generally densely deployed in the area of interest. This dense
deployment can be leveraged by the application, since nodes in close proximity
can collaborate locally prior to relaying information back to the base station.

Sensor networks are prone to frequent topology changes. This is due to several
reasons, such as hardware failure, depleted batteries, intermittent radio inter-
ference, environmental factors, or the addition of sensor nodes. As a result,
applications require a degree of inherent fault tolerance and the ability to
reconfigure themselves as the network topology evolves over time.

4 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Processor

Program Flash Memory
Measurement Serial Flash
Configuration electrically
erasable programmable read-
only memory (EEPROM)

Serial Communications
Analog toDigital Converter
Other Interfaces

Processor Current Draw

Frequency band

Transmit (TX) data rate

RF power

Receive Sensitivity
Adjacent channel rejection

Outdoor Range
Indoor Range
Radio Current Draw

Battery
User Interface
Size

Weight
Expansion Connector

Atmel ATMegal28L @ 8 MHz
128 kilobytes
512 kilobvytes

4 kilobytes

UART

10 bit ADC

Digital I/0, I2C, SPI
8 mA in active mode
< 1pA in sleep mode

2400MHz to 2483.5MHz

250kbps

-24dBm to 0dBm

-90dBm (min), -94dBm (typ)

47 dB, +5-MHz channel spacing
38 dB, -5-MHz channel spacing
75m to 100m

20m to 30m

19.7mA in receive mode

11mA (TX -10dBm)

14mA, (TX -5dBm)

17.4mA (TX OdBm)

20 pA in idle mode

(voltage regulator on)

1 pA in sleep mode

(voltage regulator off)

2 AA batteries

red, green, and yellow LED
2.25x1.25x0.251in.

(w/o battery pack)

0.7 oz (w/o batteries)

51 pin

Figure 1.2 MICAz mote specification [1].

- Wireless sensor networks do not employ a point-to-point communication para-
digm because they are usually not aware of the entire size of the network and
nodes are not uniquely identifiable. Consequently, it is not possible to individu-
ally address a specific node. Paradigms, such as directed diffusion [7,8], employ
a data-centric view of generated sensor data. They identify information
produced by the sensor network as (attribute, value) pairs. Nodes request
data by disseminating interests for this named data throughout the network.
Data that matches the criterion are relayed back toward the querying node.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 5

Even with the limitations individual sensor nodes possess and the design
challenges application developers face, several advantages exist for instrumenting
an area with a wireless sensor network [9]:

- Due to the dense deployment of a greater number of nodes, a higher level of
fault tolerance is achievable in wireless sensor networks.

Coverage of a large area is possible through the union of coverage of several
small sensors.

Coverage of a particular area and terrain can be shaped as needed to overcome
any potential barriers or holes in the area under observation.

It is possible to incrementally extend coverage of the observed area and density
by deploying additional sensor nodes within the region of interest.

- An improvement in sensing quality is achieved by combining multiple,
independent sensor readings. Local collaboration between nearby sensor
nodes achieves a higher level of confidence in observed phenomena.

- Since nodes are deployed in close proximity to the sensed event, this overcomes
any ambient environmental factors that might otherwise interfere with
observation of the desired phenomenon.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS

Several applications have been envisioned for wireless sensor networks [6]. These
range in scope from military applications to environment monitoring to biomedical
applications. This section discusses proposed and actual applications that have been
implemented by various research groups.

1.3.1 Military Applications

Wireless sensor networks can form a critical part of military command, control,
communications, computing, intelligence, surveillance, reconnaissance, and target-
ing (C4ISRT) systems. Examples of military applications include monitoring of
friendly and enemy forces; equipment and ammunition monitoring; targeting; and
nuclear, biological, and chemical attack detection.

By equipping or embedding equipment and personnel with sensors, their con-
dition can be monitored more closely. Vehicle-, weapon-, and troop-status infor-
mation can be gathered and relayed back to a command center to determine the
best course of action. Information from military units in separate regions can also
be aggregated to give a global snapshot of all military assets.

By deploying wireless sensor networks in critical areas, enemy troop and vehicle
movements can be tracked in detail. Sensor nodes can be programmed to send
notifications whenever movement through a particular region is detected. Unlike
other surveillance techniques, wireless sensor networks can be programmed to be
completely passive until a particular phenomenon is detected. Detailed and timely

6 INTRODUCTION TO WIRELESS SENSOR NETWORKING

intelligence about enemy movements can then be relayed, in a proactive manner, to
a remote base station.

In fact, some routing protocols have been specifically designed with military
applications in mind [10]. Consider the case where a troop of soldiers needs to
move through a battlefield. If the area is populated by a wireless sensor network,
the soldiers can request the location of enemy tanks, vehicles, and personnel
detected by the sensor network (Fig. 1.3). The sensor nodes that detect the presence
of a tank can collaborate to determine its position and direction, and disseminate this
information throughout the network. The soldiers can use this information to strate-
gically position themselves to minimize any possible casualties.

In chemical and biological warfare, close proximity to ground zero is needed for
timely and accurate detection of the agents involved. Sensor networks deployed in
friendly regions can be used as early-warning systems to raise an alert whenever the
presence of toxic substances is detected. Deployment in an area attacked by chemi-
cal or biological weapons can provide detailed analysis, such as concentration levels
of the agents involved, without the risk of human exposure.

1.3.2 Environmental Applications

By embedding a wireless sensor network within a natural environment, collection of
long-term data on a previously unattainable scale and resolution becomes possible.
Applications are able to obtain localized, detailed measurements that are otherwise
more difficult to collect. As a result, several environmental applications have been
proposed for wireless sensor networks [6,9]. Some of these include habitat monitor-
ing, animal tracking, forest-fire detection, precision farming, and disaster relief
applications.

? o
o
o) o o 5 0 © .)
o
---- o © 5
A © o .
o] O‘\ 3 _,-,‘ "“'.‘ o] @) 'e) % o IJ
‘ .\. o O
o _m_ ey o .]
7 _‘ ;-': 'e) o &
)) Ve s s T ¥e)
“.‘ 5 ,v“" O O O
o © .
© o)
9 o o o 5 5)
o .
-8 0 gl
) ° _ o) o)

o O & ot'f’...ﬁ— 5

Figure 1.3 Enemy target localization and monitoring.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 7

Habitat monitoring permits researchers to obtain detailed measurements of a par-
ticular environment in an unobtrusive manner. For example, applications such as the
wireless sensor network deployed on Great Duck Island [11] allow researchers to
monitor the nesting burrows of Leach’s Storm Petrels without disturbing these sea-
birds during the breeding season. Deployment of the sensor network occurs prior to
the arrival of these offshore birds. Monitoring of the birds can then proceed without
direct human contact. Similarly, the PODS project [12,13] at the University of
Hawaii uses wireless sensor networks to observe the growth of endangered species
of plants. Data collected by the sensor network is used to determine the environ-
mental factors that support the growth of these endangered plants. These two appli-
cations are discussed in detail in Sections 1.3.4 and 1.3.5.

Consider a scenario where a fire starts in a forest. A wireless sensor network
deployed in the forest could immediately notify authorities before it begins to
spread uncontrollably (see Fig. 1.4). Accurate location information [14] about the
fire can be quickly deduced. Consequently, this timely detection gives firefighters
an unprecedented advantage, since they can arrive at the scene before the fire
spreads uncontrollably.

Precision farming [15] is another application area that can benefit from wireless
sensor network technology. Precision farming requires analysis of spatial data to
determine crop response to varying properties such as soil type [16]. The ability
to embed sensor nodes in a field at strategic locations could give farmers detailed
soil analysis to help maximize crop yield or possibly alert them when soil and
crop conditions attain a predefined threshold. Since wireless sensor networks are
designed to run unattended, active physical monitoring is not required.

? AAA"AA

Figure 1.4 Forest-fire monitoring application.

8 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Disaster relief efforts such as the ALERT flood-detection system [17] make use
of remote field sensors to relay information to a central computer system in real
time. Typically, an ALERT installation comprises several types of sensors, such
as rainfall sensors, water-level sensors, and other weather sensors. Data from each
set of sensors are gathered and relayed to a central base station.

1.3.3 Health Applications

Potential health applications abound for wireless sensor networks. Conceivably,
hospital patients could be equipped with wireless sensor nodes that monitor the
patients’ vital signs and track their location. Patients could move about more
freely while still being under constant supervision. In case of an accident—say,
the patient trips and falls—the sensor could alert hospital workers as to the patient’s
location and condition. A doctor in close proximity, also equipped with a wireless
sensor, could be automatically dispatched to respond to the emergency.

Glucose-level monitoring is a potential application suitable for wireless sensor
networks [18]. Individuals with diabetes require constant monitoring of blood
sugar levels to lead healthy, productive lives. Embedding a glucose meter within
a patient with diabetes could allow the patient to monitor trends in blood-sugar
levels and also alert the patient whenever a sharp change in blood-sugar levels is
detected. Information could be relayed wirelessly from the monitor to a wristwatch
display. It would then be possible to take corrective measures to normalize blood-
sugar levels in a timely manner before they get to critical levels. This is of particular
importance when the individual is asleep and may not be aware that their blood-
sugar levels are abnormal.

The Smart Sensors and Integrated Microsystems (SSIM) project at Wayne State
University and the Kresge Eye Institute are working on developing an artificial
retina [18]. One of the project goals is to build a chronically implanted artificial
retina that allows a visually impaired individual to “see” at an acceptable level.
Currently, smart sensor chips equipped with 100 microsensors exist that are used
in ex vivo retina testing. The smart sensor comprises an integrated circuit (with
transmit and receive capabilities) and an array of sensors. Challenges in this appli-
cation include establishing a communication link between the retinal implant and an
external computer to determine if the image is correctly seen. Regulating the amount
of power used by the system to avoid damage to the retina and surrounding tissue is
also a primary concern.

1.3.4 Habitat Monitoring on Great Duck Island

Leach’s Storm Petrel (Fig. 1.5) is a common elusive seabird in the western North
Atlantic. Most of their lives are spent off-shore, only to return to land during the
breeding season. During this time, they nest in burrows located in soft, peaty soil,
and are active predominantly at night. It is believed Great Duck Island, located
15 km off the coast of Maine, has one of the largest petrel breeding colonies in
the eastern United States.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 9

Figure 1.5 Leach’s Storm Petrel. (U.S. Geological Survey photo by J. A. Splendelow.)

Petrel activity monitoring is a delicate problem, since disturbance or interference
on the part of humans can lead to nest abandonment or increased predation on chicks
or eggs.

To circumvent this problem, in the spring of 2002, the Intel Research Laboratory at
Berkeley initiated a collaboration with the College of the Atlantic in Bar Harbor and the
University of California at Berkeley to deploy a series of wireless sensor networks on
the island [11,19,20]. By the summer of 2002, 43 sensor nodes were deployed on the
island. The primary purpose of the sensor network was to monitor the microclimates in
and around nesting burrows used by the petrels. Thus, researchers could take multiple
measurements of biological parameters at frequent intervals, with minimal disturbance
to the breeding colony. It was necessary to enter the colony only at the beginning of the
study to insert sensor nodes into burrows and other areas of interest. Three major issues
explored in this experiment included:

1. Determination of the usage pattern of nesting burrows over the cycle when one
or both members of the breeding pair may alternate between incubation and
feeding.

2. Determination of changes in the environmental conditions of burrows and
surface areas throughout the course of the breeding season.

3. Measuring the differences in the microenvironments with and without large
numbers of nesting petrels.

By November 2002, 32 sensor nodes had collected over one million sensor read-
ings. For this particular application, the nodes were equipped with a separate
weather board that contained sensors to detect temperature, humidity, barometric
pressure, and midrange infrared. Motes periodically sampled and relayed their
sensor readings to different base stations located throughout the island. These
base stations provided researchers access to real-time environmental data gathered
by the sensor nodes via the Internet.

10 INTRODUCTION TO WIRELESS SENSOR NETWORKING

In June 2003, a second-generation network comprising 56 nodes was deployed.
This network was further augmented in July 2003 with an additional 49 nodes.
Finally, in August 2003, over 60 additional burrow nodes and 25 weather-monitoring
nodes were deployed on the island.

1.3.4.1 Hardware The system designers employed Mica motes (Fig. 1.6),
which are small devices equipped with a microcontroller, low-power radio,
memory, and batteries. The motes are designed with a single-channel 916-MHz
radio that provides bidirectional communication at 40 kbps, an Atmel Atmega
103 microcontroller operating at 4 MHz, and 512 kB of nonvolatile storage.
Power to the mote is supplied by a pair of AA batteries and a DC boost converter.

To allow sampling of the environment, the Mica mote was equipped with a Mica
weather board that contains temperature, photoresistor, barometric pressure, humid-
ity, and passive infrared sensors [11]. To protect the motes from adverse weather
conditions, the sensor package was sealed in a 10-micron parylene sealant that pro-
tected the electrical contacts from water. The sensors themselves remained exposed
so as not to hinder their sensitivity. The coated sensor was then encased in a venti-
lated acrylic enclosure. The acrylic enclosure was radio and infrared transparent and
also elevated the mote off the ground.

Due to the longevity of the proposed application, battery life was budgeted care-
fully. A conservative estimate of 2200 mAh total capacity was utilized. For illustra-
tive purposes, Table 1.1 lists the costs associated with performing basic Mica mote
operations and Table 1.2 lists the costs associated with basic sensor operations [21].

For the habitat monitoring application, an application lifetime of 9 months was
desired. Thus, with 2200 mAh of total power available, the sensor motes were

Figure 1.6 Mica sensor node (left) with the Mica Weather Board (right).

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 11

TABLE 1.1 Mica Mote Power Requirements for
Different Operations

Operation nAh

30-byte packet transmission 20.000
30-byte packet reception 8.000
1 ms radio listening 1.250
Sensor analog sample 1.080
Sensor digital sample 0.347
Reading sample from ADC 0.011
Flash read data 1.111
4-byte flash write/erase data 83.333

budgeted at 8.148 mAh of power consumption daily. However, sensor motes con-
sume 30 A in their sleep state [21]. This reduced the daily energy budget to
6.9 mAh available for sensing, communicating, and processing operations. The
application was responsible for determining how this energy budget was to be allo-
cated. Without any energy budgeting, a sensor mote operating at a 100% duty cycle
can only operate for 7 days [21].

1.3.4.2 Architecture The wireless sensor network architecture is divided into
distinct tiers (Fig. 1.7). The lowest level consists of autonomous motes, equipped
with various sensors, that perform basic networking, computing, and sensing
tasks. They are organized into a local one-hop network and collectively identified
as a sensor patch. One of the sensor motes within the sensor patch serves as a gate-
way between the sensor patch and the base station. It differs from other motes in that
it is equipped with a high-gain antenna able to transmit data over a 350-foot link to
the base station. The gateway node is also equipped with a solar panel and recharge-
able battery in order to be able to operate with a 100% duty cycle. Data relayed to
the base station are stored in a database and made available over the Internet.

TABLE 1.2 Individual Sensor Characteristics

Max Rate Start-Up Time Current

Sensor Accuracy Changeability (Hz) (ms) (mA)
Photoresistor N/A 10% 2000 10 1.235
12C temperature 1K 0.20K 2 500 0.150
Barometric pressure 1.5 mbar 0.5% 28 35 0.010
Barometric pressure 0.8 K 0.24 K 28 35 0.010
temperature
Humidity 2% 3% 500 500-30,000 0.775
Thermopile 3K 5% 2000 200 0.170

Thermistor 5K 10% 2000 10 0.126

12 INTRODUCTION TO WIRELESS SENSOR NETWORKING

=5 T Client, Data
70 00 \ service
! : -
: O O O I PR s
4 Gat#way ! ransit ke 3 o
« O O .’Ilgd’C/J ¢ _Internet
\ O 7 =, network .
J' O // [ot S s /! ‘_
e © O i Base
i remote
P link
£ o 9
'
! © o O Base
. station
« O
\ O 5
! s
! D 7

Sensor mote

Figure 1.7 System architecture for habitat monitoring.

These collected data are also relayed, via satellite transceiver, to an off-site research
facility located in Berkeley, California.

Periodically, motes took readings from each of their sensors. The data were
time-stamped and kept in flash memory. Readings were then transmitted in a
single 36-byte data packet. After successful transmission, motes entered their
lowest power state for the next 70 seconds. The duty cycle was an expected 1.7%
for the application. Each sensor mote was powered by two AA batteries with an esti-
mated 2200 mAh capacity.

Several key application requirements identified by the system designers
included Internet access, organization of the network as a hierarchy, sensor network
longevity, the ability to operate off the grid, remote sensor network management,
inconspicuous operation, in situ interaction, sensors and sampling, and data archiv-
ing capabilities.

1.3.4.3 Results Since this is one of the first long-term deployments of the Mica
mote platform, it was interesting to see how the wireless sensor network performed.
Ironically, although the readings collected by the wireless sensor network proved to
be unusable to researchers for making scientific conclusions, the fidelity of the
acquired sensor readings gave insight into overall network behavior.

Over 1.1 million readings were collected in a time span of 123 days. During
this period, abnormal operation was detected among the sensor node population.
Typical problems included nodes generating sensor readings that were outside
their predefined range, unreliable and erratic packet delivery, and system node
failure.

1.3 WIRELESS SENSOR NETWORK APPLICATIONS 13

1.3.5 PODS Project

Rare and endangered species of plants are threatened because they grow in limited
select locations. Evidently, these locations have special properties that sustain and
support their growth. The PODS project [12,13,22], located at Hawaii Volcanoes
National Park, consists of a wireless sensor network deployed to perform long-
term studies of these rare and endangered species of plants and their environment.

In Hawaii, the weather gradients are very sharp. In fact, regions of the island
exist where rain forests and deserts are located less than 10 miles apart. Thus, it
is not surprising that endangered species of plants are restricted to very small
areas. Unfortunately, weather stations located throughout the island provide insuffi-
cient information for the areas where these endangered plants exist. Consequently,
deploying a very dense wireless sensor network in the area of interest allows fine-
grained temperature, humidity, rainfall, wind, and solar radiation information to
be obtained by researchers.

In this particular wireless sensor network application, two types of data are col-
lected: weather data, which are collected every 10 minutes, and high-resolution
images, which are collected every hour. The data repository is a central server
located on a different island than where observations are made. Weather measure-
ments are maintained in a database and the high-resolution images are stored as indi-
vidual files.

Exception reporting is the type of monitoring of interest to the biological problem
studied on the island. Baseline information is developed that describes the expected
environmental conditions on the island. This baseline information is reported,
including periods during which the environment properly reflects it. The other infor-
mation gathered are the time periods and degree of variance from the baseline
model. These are the periods of most interest, because those intervals are when
significant changes to the organisms under observation are likely to occur. Data
summarization techniques are employed for these categorized data.

The high-resolution images collected every hour have a resolution of
1600 x 1200 pixels and serve several important interpretive functions. Images
permit casual observations during periods where environmental conditions are
reported as normal. During exceptional periods, when the environmental conditions
deviate from the norm, images provide an important visual check on the conditions
and permit a quick analysis of how the various types of vegetation under observation
are responding. Most images are taken close to the endangered plant species. This
permits observations of flowering, fruit set, fruit disappearance, leaf flushes, leaf
loss, and other significant events. Since the images are stored as individual files,
it is a simple matter to review them to confirm observations or review periods
that were not being monitored. The data measurements collected are generally
unfeasible to obtain via conventional monitoring techniques.

The type of deployable equipment allowed for research in the national park is
limited. As a minimum criterion, the equipment cannot pose a threat to any species.
Furthermore, it must not interfere or be a distraction to visitors. This is of particular
concern since some areas of the island are visited by a large number of tourists.

14 INTRODUCTION TO WIRELESS SENSOR NETWORKING

In some parts of the island, little can be done to hide the instrumentation. Therefore,
rocks were chosen as containers that camouflage and house the computer, sensing
instruments, and batteries. The availability of small trees along other parts of the
island expands the options for concealing sensor nodes. In some cases, short
hollow structures, designed to look like branches, were also used to house the sen-
sing equipment.

Upon initial deployment, the wireless sensor network engages in a neighborhood
discovery process. This gives each node information about which sensor nodes it can
communicate with directly. Next, the sensor network executes a routing protocol so
that senders are able to send messages to their desired destination. For this particular
application, requirements determine the functionality expected of the underlying
routing protocol. Since nodes both send and receive messages, the protocol must
provide nodes with routing information so that nodes can send messages specifically
to other nodes. Adaptability to changing network topologies is required, as sensor
nodes may be added, moved, or become depleted. Finally, the routing protocol
needs to be designed such that network connectivity is maintained even when
nodes are powered down to conserve battery life. As a result, Geometric Routing
Protocol [13] and Multi-path On-Demand Routing Protocol [13] were developed
for this particular application.

1.4 SERVICES

Most large-scale wireless sensor network applications share common character-
istics. Services such as time synchronization, location discovery, data aggregation,
data storage, topology management, and message routing are employed by these
applications. Each is briefly described in this section.

1.4.1 Time Synchronization

Time synchronization is an essential service in wireless sensor networks [23]. In
order to properly coordinate their operations to achieve complex sensing tasks,
sensor nodes must be synchronized. A globally synchronized clock allows sensor
nodes to correctly time-stamp detected events. The proper chronology, duration,
and time span between these events can then be determined. Incorrect time
stamps, due to factors such as hardware clock drift, can cause the reported events
relayed back to the base station to be assembled in incorrect chronological order.

Time synchronization is crucial for efficient maintenance of low-duty power
cycles. Sensor nodes can conserve battery life by powering down. When properly
synchronized, nodes are able to turn themselves on simultaneously. When powered
up, sensor nodes can relay messages to the base station and subsequently power
down again to conserve energy. Unsynchronized nodes result in increased delays
while they wait for neighboring nodes to turn their radios on, and in the worst
case, messages transmitted can be lost altogether.

1.4 SERVICES 15

1.4.1.1 Design Challenges Several common challenges exist for the design
of time synchronization protocols [23]. In order to perform synchronization,
nodes exchange messages with each other. However, factors in the network can
cause delays in message delivery. Four sources of error in network time synchroni-
zation can be identified. The first factor is send time, which includes the amount of
time required to construct and transmit a message from the sender. The second factor
is access time, which includes the delay experienced at the MAC layer, such as
waiting for the channel to become idle. The third factor is propagation time,
which includes the amount of time spent relaying the message across the various
network interfaces between the sender and the receiver. Finally, the fourth source
of delay is receive time, which includes the amount of time required by the receiver
to accept and decode the message and transfer it to the host.

1.4.1.2 Design Metrics A broad set of design metrics for time synchroniza-
tion protocols exist [23]. Factors such as energy efficiency, scalability, precision,
robustness, lifetime, and scope must all be taken into consideration. As with all pro-
tocols designed for wireless sensor networks, energy efficiency is a chief concern.
Protocols must be scalable, since sensor networks can potentially contain a very
large number of sensor nodes. The precision required may vary depending on the
type of sensor network application. For example, in some cases, an ordering of
detected events may be required so that a chronology of events can be assembled.
In other cases, it may be necessary to time-stamp events at finer resolution. For
example, real-time applications, such as target tracking, may require tight synchro-
nization between sensor nodes as they follow the object’s movements. Finally, since
sensor networks are generally left unattended for long periods of time, time synchro-
nization protocols must be fault-tolerant and adaptive to changing network topolo-
gies. For example, as new nodes are introduced and other nodes die, sensor nodes
must be able to synchronize themselves seamlessly with their neighbors.

1.4.1.3 Protocols Much work has gone into solving the problem of time syn-
chronization among sensor nodes. At a rudimentary level, where a simple causality
relationship [24,25] between detected events is desired, even traditional approaches
employed in other types of distributed systems, such as vector clocks [26,27], are
generally not practical for wireless sensor networks.

Vector clocks are not scalable in resource-constrained sensor networks with an
unknown or large number of nodes. The additional overhead required to transmit
vector time stamps with each message would quickly deplete a node’s battery, ren-
dering it useless. Furthermore, vector clocks are abstract in nature and do not indi-
cate the duration of an event in physical time measurements, such as minutes or
seconds. Other complex protocols, such as the network time protocol (NTP) [28],
are unsuitable for wireless sensor networks because of their computational
requirements.

Protocols such as TSync [29] and reference-broadcast system (RBS) [30] exploit
the broadcast nature of wireless sensor networks in order to achieve global time syn-
chronization with a high degree of accuracy.

16 INTRODUCTION TO WIRELESS SENSOR NETWORKING

In refs. [31] and [30], Elson et al. propose RBS, a time synchronization technique
that uses a third party to perform synchronization among nodes. Individual nodes
send reference beacons to their neighbors. The beacon’s time of arrival is used by
receiving nodes as a reference point for comparing local clocks. Since a reference
broadcast arrives at all receivers at essentially the same time, propagation error is
minimal. In the simplest form of RBS, a node broadcasts a single pulse to two recei-
vers. Upon receiving the reference broadcast, the receivers exchange their receiving
times and attempt to estimate their relative phase offsets. Through simulation, it has
been shown that 30 reference broadcasts improves the precision from 11 ps to
1.6 s when synchronizing a pair of nodes.

In ref. [32], the authors propose a networkwide time synchronization protocol
called Timing-Sync Protocol for Sensor Networks (TPSN). The protocol has two
phases: level discovery and synchronization. The level-discovery phase is initiated
when the sensor network is deployed. A node is elected as the root node (level 0)
and initiates the level-discovery phase by transmitting a level-discovery message,
which contains the node ID and level of the sender. Upon receiving this message,
a node assigns itself a level that is one level higher than the incoming level-
discovery message. Subsequent level-discovery messages received are discarded.
This broadcast phase continues until all nodes are assigned a level. The synchroni-
zation phase of the algorithm involves a two-way message exchange between a pair
of nodes. The authors assume that clock drift and propagation delay (in both direc-
tions) between a pair of nodes is constant in the period of time between a single
message exchange.

A node initiates synchronization by sending a pulse message that includes the
node’s level and local time. A node that receives the pulse message responds with
an acknowledgment that includes the original time stamp received, the relative
clock drift between both nodes, and the propagation delay. The node that initiated
the pulse calculates the actual ensuing clock drift and propagation delay, and syn-
chronizes itself with the receiving node. The synchronization phase is initiated by
the root node. Nodes at the level below the root node exchange messages with the
root node and adjust their clocks accordingly. Other nodes at lower levels, upon
overhearing that nodes at levels above them are performing time synchronization,
also initiate time synchronization. The authors report that their time synchronization
protocol is precise within 6.5 ws when implemented on Compaq IPAQs running the
Linux operating system. On Mica motes, they report their time synchronization
protocol achieves an accuracy of 29.13 ps.

In ref. [33] the authors describe two lightweight synchronization algorithms
called Tiny-Sync and Mini-Sync. Both techniques employ the conventional two-
way messaging scheme to determine the relative clock drift and offset between
the clocks of two sensor nodes.

In ref. [34], the authors describe lightweight tree-based synchronization (LTS),
which attempts to minimize the underlying complexity of the time synchronization
process, rather than attempting to maximize accuracy. Two approaches are pre-
sented in LTS. Both of them require sensor nodes to synchronize their clocks to a
reference point. The first approach given is a centralized algorithm that uses the

1.4 SERVICES 17

edges of the spanning broadcast to perform pairwise synchronization. The root of the
spanning tree is responsible for initiating synchronization. Under the assumption
that clock drift is bounded and given the required degree of precision, the reference
node calculates the time period a synchronization step is valid.

The second approach presented by the authors is completely distributed. Indivi-
dual sensor nodes request synchronization with other nodes as needed. When a node
decides it is necessary to synchronize its clock with another node, it sends a synchro-
nization request to the closest reference node. As a result, all nodes along the path
from the reference node and the node requesting synchronization must have their
clocks synchronized for the requesting node to synchronize its local clock properly.

1.4.2 Location Discovery

Location discovery involves sensor nodes deriving their positional information,
expressed as global coordinates or within an application-defined local coordinate
system. The importance of location discovery is widely recognized [35-40]. It
serves as a fundamental basis for additional wireless sensor network services
where location awareness is required, such as message routing. Furthermore, in
applications such as fire detection, it is generally not sufficient to determine if a
fire is present, but more importantly, where. A brief review of three proposed
solutions to location discovery are presented.

1.4.2.1 Multilateration by Distance Measurements Meguerdichian et al.
[35] describe a localized algorithm that uses multilateration for solving the problem
of location discovery. A node determines its location based on its distance from
neighboring nodes that serve as beacons. Beacons are nodes that are location-
aware and broadcast their location information periodically. They acquire their
location from multilateration procedures or other sources such as GPS. Distances
between neighboring nodes are estimated using received signal strength indication
(RSSI) or ultrasound techniques. Thus, a node requires only local neighbor infor-
mation to determine its position.

1.4.2.2 Ad Hoc Positioning System Niculescu and Nath [38] propose their
ad hoc positioning system (APS), whereby nodes determine their location in refer-
ence to landmarks that are location aware. Landmarks can be other sensor nodes,
base stations, or beacons that have positional information. Unlike GPS, where
direct line of sight is required with a series of satellites in order to triangulate a
location, landmark information is propagated through the wireless sensor network
in a multihop fashion.

When an arbitrary node in the wireless sensor network has distance estimates to
three or more landmarks, it computes its own position in the plane. The node utilizes
the centroid of the landmarks as its location estimate. Nodes in direct communi-
cation with a landmark infer their distance from it based on the received signal
strength of the landmark.

18 INTRODUCTION TO WIRELESS SENSOR NETWORKING

Through message propagation, nodes two hops away from a landmark estimate
their distance based on the distance estimates of nodes located next to the landmark.
The propagation schemes proposed by the authors eventually flood the entire net-
work until all nodes are able to determine their coordinates.

1.4.2.3 APS using Angle of Arrival 1In ref. [39], Niculescu and Nath present
two algorithms, DV-Bearing and DV-Radial, that allow sensor nodes to get a bearing
and a radial in relation to a landmark using angle of arrival (AoA) to derive position
information. The term “bearing” refers to an angle measurement with respect to
another object. A “radial” refers to a reverse bearing which is simply the angle at
which an object is seen from another location. The term “heading” refers to the
sensor node’s bearing with respect to true north and represents its absolute orientation.

Ao0A sensing requires sensor nodes to be equipped with an antenna array or sev-
eral ultrasound receivers. This equipment is currently available in small package for-
mats for wireless sensor network nodes such as the one developed for the Cricket
Compass Project [41,42]. The theory of operation is based on time difference of
arrival (TDoA) and phase difference of arrival. If a node sends an RF signal and
an ultrasound signal at about the same time, the receiving node can infer the distance
between the sender and itself by measuring the time difference between the arrival of
the RF signal and the ultrasound signal. To derive the angle of arrival of the signal,
the receiving sensor node uses two ultrasound receivers placed at a known distance
from each other.

1.4.3 Data Aggregation

Data aggregation and query dissemination are important issues in wireless sensor
networks [43]. Sensor nodes are typically energy constrained. Therefore, it is desir-
able to minimize the number of messages relayed, because radio transmissions can
quickly consume battery power. A naive approach to reporting sensed phenomena is
one where all (raw) sensor readings are relayed to a base station for off-line analysis
and processing. However, since sensor nodes within the same vicinity often detect
the same, common phenomena, it is likely some redundancy in sensor readings
will occur [44]. Local collaboration allows nearby sensor nodes to filter and process
sensor readings before transmitting them to a base station. Consequently, this pro-
cess can reduce the number of messages relayed to the base station.

Figure 1.8 represents an animal-tracking application where several sensor nodes
are randomly deployed in a forest. When an animal, represented by the solid square,
passes through the area being monitored, individual sensor nodes detect the presence
of the animal and relay their findings, in a multihop fashion, to the base station
located some distance away. In sufficiently dense sensor networks, overlapping
areas of coverage are possible. Thus, the animal may be detected by several sensors.

In the scenario presented in Figure 1.8, nodes A, B, C, D, and E sense the presence
of a nearby animal. Nodes B—FE each send a message to node A with their observed
sensor data. Node A forwards the received messages, along with its own set of sensor
readings, to the next node along the path to the base station. Thus, node A sends a total

1.4 SERVICES 19

station

Figure 1.8 Event detection and reporting without data aggregation.

of 5 messages, which are all subsequently relayed from node to node, until they reach
the base station. In total, 29 messages are transmitted throughout the network.

A reduction in communication and energy costs is possible if collected sensor
data is aggregated prior to relaying. Figure 1.9 is similar to Figure 1.8, except
that node A collects sensor readings from nodes B—FE and itself, applies an aggrega-
tion function ¢, and then relays the aggregated data. Results are compressed into a
single message, which is subsequently transmitted, in a multihop fashion, for further
analysis by the base station.

Various types of data aggregation are possible, depending on the level of refine-
ment desired. In-network processing can be designed to perform one or more of the
following operations:

. Aggregate the data into a single binary value. A Boolean (i.e., true or false)
value would be sufficient to indicate if an animal was detected or not.

. Aggregate the data readings into an area. Coordinates of a bounding box can
be given that defines the area where the sensor readings are observed. Nodes,

Animal . Base

station

Figure 1.9 Event detection and reporting with data aggregation.

20 INTRODUCTION TO WIRELESS SENSOR NETWORKING

upon receiving this area information, dynamically adjust the size of the bound-
ing box to accommodate their sensor readings before retransmitting.

. Aggregate the collected data by applying an application-specific aggregation
or filtering function. As an example, the average, maximum, minimum, or
sum of sensor values could be calculated en route prior to forwarding any
received information.

Energy conservation, as a result of data aggregation, is of particular concern for
sensor nodes close to the base station. Without any form of data aggregation, a
greater number of messages are transmitted. As a result, their batteries are depleted
quickly. Eventually, when nodes that communicate directly with the base station die,
the sensor network is rendered unusable, regardless of the remaining power of other
nodes (see Fig. 1.10), since no messages can reach the base station.

Data aggregation seeks to combine data arriving from different sources en route.
In [44], the authors study the energy savings and latency trade-offs caused by data
aggregation and how factors such as source (i.e., event) and sink (i.e., base station)
placements and network density affect this trade-off. A complexity analysis of optimal
data aggregation in sensor networks is also performed, and although it is shown that
optimal data aggregation is NP-hard, polynomial-time solutions exist for certain cases.

The work presented in [45] continuously computes aggregates of wireless sensor
network monitoring functions. Aggregates computed include sums, averages, and
counts. Network properties considered include loss rates, energy levels, and
packet counts. A novel tree construction algorithm is proposed to enable energy-
efficient computation of some classes of aggregates, and it is demonstrated, through
actual implementation and experiments, that wireless communication artifacts and
packet loss significantly impact the computation of these aggregate properties.
During experiments conducted on a test bed of 26 sensor nodes, packet loss for
each link was measured every minute for two hours under various topology settings.

Live node

K N Base - =
O - rN station Active link

N

‘
o) s
»{‘\ \
~ !

— e

i f: Inactive link
.

s

.

Figure 1.10 Event detection and reporting with data aggregation.

1.4 SERVICES 21

Although the majority of links were good, 10% of the nodes exhibited a packet rate
loss greater than 50%. As a result, the value of the COUNT aggregate, which reports
the total number of active sensor nodes in the network, fluctuated greatly over time.

The infrastructure presented for wireless sensor network monitoring consists of
three classes of software [45]:

1. The first component consists of a tool such as dump that is used to collect
detailed information about the system state. This is used to provide debugging
information about the sensor nodes and also report any logged information
kept by the nodes over a period of time.

2. The second category of tool is referred to as scans. These constitute a global,
albeit aggregated view, of the wireless sensor network and report metrics such
as overall resource consumption. An example of a scan is an escan whereby a
special user-gateway node initiates state information collection from the entire
system. However, instead of all nodes relaying their power level information,
data collected is aggregated en route in order to minimize the amount of infor-
mation propagated throughout the network.

3. The final category of tool is referred to as digests, which are simply aggregates
of some network property. Digests span the entire network, but unlike scans,
they are computed continuously. Computed information is propagated
throughout the network by piggybacking digests onto regular messages trans-
mitted throughout the sensor network. Clearly, the energy savings achieved is
offset by the increased latency.

The second contribution entails the design of protocols to enable computation of
network digests. Values such as node energy level, degree of connectivity, and
volume of traffic, are considered. Decomposable functions (i.e., functions that can
be expressed in terms of another function) such as sum, min, max, average, and
count are applied to these analyzed values. Digest computation is accomplished
using digest diffusion, which implicitly builds a broadcast tree where computed
partial results of decomposable functions are propagated toward the root.

For example, assume a connected homogeneous wireless sensor network exists
where all nodes are equipped with thermal sensors that record the ambient tem-
perature. Initially, every node assumes it has observed the highest temperature
reading and exchanges this information with its immediate neighbors. A node,
upon receiving a temperature measurement from a neighboring node, adjusts the
source of the highest reading, if necessary, and propagates this information
throughout the broadcast tree. Eventually, all nodes converge on the same maximal
temperature reading.

Broadcast tree maintenance is required as nodes fail over the lifetime of the
wireless sensor network. Thus, a node periodically broadcasts messages to maintain
the digest. Nodes use a time-out value to determine if a neighboring node is no
longer transmitting messages to it. Thus, a node may switch to a different parent
node when it is no longer receiving messages from its existing parent node.

22 INTRODUCTION TO WIRELESS SENSOR NETWORKING

1.4.4 Data Storage

Data storage presents a unique challenge to developers. Event information collected
by individual nodes must be stored at some location, either in situ or externally.
In some cases, where an off-line storage area is not available, data must be stored
within the wireless sensor network. Ratnasamy et al. [46,47] describe three data-
storage paradigms employable in wireless sensor networks:

1. External Storage. In this model, when a node detects an event, the corre-
sponding data are relayed to some external storage located outside the net-
work, such as a base station. The advantage of this approach is that queries
posed to the network incur no energy expenditure since all data are already
stored off-line.

2. Local Storage. In this model, when a node detects an event, event information
is stored locally at the node. The advantage of this approach is that no initial
communication costs are incurred. Queries posed to the wireless sensor net-
work are flooded to all nodes. The nodes with the desired information relay
their data back to the base station for further processing.

3. Data-Centric Storage. In this model, event information is routed to a prede-
fined location, specified by a geographic hash function (GHT), within the
wireless sensor network. Queries are directed to the node that contains the
relevant information, which relays the reply to the base station for further
processing.

For wireless sensor network applications that are envisioned to be long-lived,
even optimized communication schedules can deplete a node’s battery within a rela-
tively short period of time (i.e., a couple of months). Consider an environmental
application, such as microclimate monitoring, where individual sensor nodes period-
ically sample their local environment to measure temperature, light, precipitation,
pressure, and humidity levels. Over time, the amount of data generated by the
sensor network can be substantial. This is particularly true if individual sensor
nodes take samples at short regular intervals, such as every 30 minutes.

Ganesan et al. [48] look to provide a distributed, progressively degrading
storage model. This is achieved by constructing local, multiresolution summaries
of observed sensor data stored hierarchically throughout the wireless sensor net-
work. Queries on summary information are performed in a drill-down fashion:
coarse, highly compressed data are stored in nodes at the highest levels in the
hierarchy. As more detailed information is required, nodes at lower levels in the
hierarchy, with more detailed event information, are queried.

Summary information is created by employing a wavelet-based compression
technique, which offers the following advantages:

- A compact representation of data is produced that highlights interesting fea-
tures in the accumulated data, such as long-term trends, edges, and significant
anomalies.

1.4 SERVICES 23

. Spatiotemporal queries can be satisfied with little communication overhead by
employing drill-down querying. Basic information from the wireless sensor
network is gathered from nodes at the highest level in the hierarchy. As more
detailed spatiotemporal information is required, nodes further down the
hierarchy are queried for the relevant data.

- Aging, and subsequently discarding summaries selectively, gracefully degrades
query performance over time. Since wireless sensor networks are typically
resource-constrained, nodes discard older data in favor of newly gathered
sensor readings.

1.4.5 Topology Management and Message Routing

Wireless sensor networks can possibly contain hundreds or thousands of nodes.
Routing protocols must be designed to achieve an acceptable degree of fault toler-
ance in the presence of sensor node failures, while minimizing energy consumption.
Furthermore, since channel bandwidth is limited, routing protocols should be
designed to allow for local collaboration to reduce bandwidth requirements.

Observations made in ref. [49] show that, although intuitively it appears a denser
deployment of sensor nodes renders a more effective wireless sensor network, if the
topology is not carefully managed, this can lead to a greater number of collisions and
potentially congest the network. As a result, there is an increased amount of latency
when reporting results and a reduction in the overall energy efficiency of the net-
work. Furthermore, as the number of reported data measurements increases, the
accuracy requirements of the application may be surpassed. This increase in the
reporting rate by the deployed sensor nodes can actually harm the wireless sensor
network performance, rather than prove beneficial.

Message-routing algorithms in ad hoc networks can be separated into two broad
categories: greedy algorithms and flooding algorithms [50]. Greedy algorithms
apply a greedy path-finding heuristic that may not guarantee a message reaches its
intended receiver. One example of greedy routing, proposed by Finn in 1987, is for-
warding to a neighbor that is closest to the destination. Additional steps are required to
ensure the message is received by its intended recipient. Flooding algorithms employ
a controlled packet duplication mechanism to ensure every node receives at least one
copy of the message. For these algorithms to terminate, nodes in the sensor network
must remember which messages have been previously received.

In ref. [50], the authors present two distributed routing protocols, face routing and
greedy-face-greedy (GFG). Both algorithms guarantee packet delivery as long as the
wireless sensor network remains connected and static while the message is relayed
from sender to receiver. The medium access is ideal since it guarantees message
transmission between two neighbors in a finite time. The communication graph is
the unit graph where two nodes can communicate if and only if the distance between
them is at most R, where R is the transmission radius of all nodes.

Both algorithms require messages to carry some overhead information. However,
sensor nodes themselves do not need to maintain additional routing information.

24 INTRODUCTION TO WIRELESS SENSOR NETWORKING

The algorithms first construct a connected planar subgraph, called a Gabriel graph,
of the underlying wireless sensor network in a distributed fashion. Edge e is in the
Gabriel graph if and only if the circle with edge e as the diameter contains no other
nodes inside it. The Gabriel graph partitions the graph into faces that are bound by
polygons and make up the edges of the graph.

In the face-routing algorithm [50], the boundary of the face is traversed in a
counterclockwise fashion until an edge is found that intersects with the line that con-
nects the source and destination. The algorithm then continues to scan the next
adjoining face in a similar manner. The entire process iterates until the destination
is reached.

In the GFG algorithm [50], greedy routing (i.e., forwarding to the neighbor node
closest to the destination) is applied as long as the node currently holding the packet
has a neighbor closer to the destination node than itself. When current node A does
not have such a neighbor, face routing is applied until a node B, closer to the desti-
nation node than node A, is encountered. Node B then reverts back to greedy
forwarding. This reversal of modes can be repeated until the packet is delivered
to its intended destination. Greedy perimeter stateless routing (GPSR) [51] is a
routing protocol similar to GFG [50] that incorporates medium-access-layer and
mobility considerations.

Greedy routing algorithms have been found to work well in wireless sensor net-
works due to their efficiency and scalability [52]. Greedy forwarding techniques
offer several advantages over naive routing techniques (i.e., flooding):

- Nodes need to maintain only local topology information. This makes the
protocol highly scalable, since routing information to all destinations is not
maintained locally. Such a routing table would quickly grow in size, consuming
the node’s limited memory.

- The protocol is adaptable to frequent topology changes, since the routing
path can be dynamically adjusted based on the current one-hop neighborhood
of a node.

. Since only local information is used, nodes need not be aware of the topology of
the entire wireless sensor network.

Network self-organization can be extended further than simple topology manage-
ment. Assigning roles to sensor nodes based on their physical connectivity and
sensing capabilities is proposed in [53]. Metrics, such as sensing proximity value,
cumulative sensing degree, and other intermediate sensing parameters, allow the
wireless sensor network to be partitioned into distinct sensing zones. Sensing
zones are a collection of sensor nodes with a common sensing objective and a specific
sensing quality of service (sQoS). Coordinators are elected to act as leaders within a
sensing zone and are responsible for coordinating sensing-zone members and per-
forming network reorganization maintenance. This approach is an improvement
over other types of topology management schemes, such as hierarchical topologies,
since they may be too rigid for a particular wireless sensor network application.

1.5 WIRELESS SENSOR AND ACTOR NETWORKS 25
1.5 WIRELESS SENSOR AND ACTOR NETWORKS

Wireless sensor and actor networks (WSANSs) [54] can be considered as an exten-
sion of traditional wireless sensor networks. They consist of two major components:
sensor nodes and actor nodes. Sensor nodes are low-cost, low-power devices with
limited sensing, computational, and communication capabilities. Actor nodes are
resource-rich nodes equipped with more powerful processors, longer-range radio
transceivers, and longer-lasting, or possibly renewable, power sources. They may
also be able to navigate throughout the area covered by the sensor nodes. The
number of sensor nodes generally outnumbers the number of actor nodes by a
sizable quantity.
There are several defining characteristics of WSANSs. These include:

« Real-Time Requirements. Depending on the application, it may be necessary
for nodes within the sensor network to respond quickly to detected events.
For example, in an environmental monitoring application, if a fire is detected,
some sort of corrective action should be initiated as quickly as possible. The
data collected by the wireless sensor and actor network must be timely and cur-
rent when the corrective action is taken.

« Coordination. In a wireless sensor network, the process of data collection is
coordinated by a central entity, such as a base station. In a wireless sensor
and actor network, sensor—sensor coordination, actor—sensor coordination,
and actor—actor coordination are required. Sensor nodes report detected
events to actor nodes, which in turn, take some appropriate action. This may
include coordinating response activities with other actor nodes, providing
additional instructions to nearby sensor nodes, or processing sensed event infor-
mation to relay back to a central base station.

The roles of sensor nodes and actor nodes are to collect data from the environ-
ment and react appropriately to sensed events. The sensor—actor field defines the
area where sensor nodes and actor nodes are distributed. A central base station,
sometimes referred to as a sink, monitors and coordinates overall network activity.

When a sensor node observes a particular phenomenon, it transmits its findings to
a nearby actor node. The actor node processes all incoming data and initiates an
appropriate response or processes and relays the information to the sink. The
sink can then further process the received information and subsequently issue
additional commands to the actor nodes to gather more information, or react to,
the detected event.

1.5.1 Architecture

There are two possible types of architectures possible in WSANS:

1. Semiautomated Architecture. This architecture bears similarities to the
architecture in most wireless sensor networks. A central base station is used

26

INTRODUCTION TO WIRELESS SENSOR NETWORKING

to coordinate the efforts of the actor node and sensor nodes. Queries are issued
to the network and results are relayed to the base station for further processing.

2. Automated Architecture. This architecture does not require a central base

station to coordinate efforts. Actors are programmed to work autonomously
and respond to detected events appropriately. This architecture has a few
advantages over the semiautomated architecture: it exhibits a lower latency,
since sensed information is only relayed to actor nodes; and it has a longer
overall network lifetime, since event information is only relayed to the
actor node within one hop of the sensor nodes that detected the phenomenon.

Aside from communication between actor nodes and sensor nodes, communi-

cation between actor nodes must be coordinated as well in order to achieve the appli-
cation objectives. Actor nodes, being resource-rich nodes with high transmission
power, can transmit information over long distances, unlike sensor nodes. Further-
more, since the number of actor nodes in a wireless sensor and actor network is
typically small, communication among actor nodes is analogous to an ad hoc
sensor network.

The most crucial aspect of sensor—actor communication is low communication

delay due to the proximity between sensor nodes and actor nodes. Other issues to
consider include:

« What are the communication requirements between actor nodes and sensor

nodes? These requirements include factors such as ensuring communication
between actor nodes and sensor nodes consume minimal energy, the latency
in reporting sensed event information to the actor node(s), and ensuring a
proper ordering of event information.

Which sensors transmit to which actors? If an event is detected by multiple
sensor nodes, the sensor node may decided to relay information to a single
actor node, or perhaps, to a series of actor nodes. Both approaches have their
advantages and disadvantages. For example, information sent to a single
actor node consumes less overall energy since fewer messages are relayed
throughout the wireless sensor and actor network. However, relaying sensed
event information to multiple actor nodes provides an increased level of redun-
dancy. This may be a necessity if the network is deployed in a hostile environ-
ment where nodes are prone to failure.

What is the arrival time of messages? Consider a hypothetical security appli-
cation whereby actor nodes are deployed to monitor and patrol an art gallery.
If an intruder is detected, one objective of the actor nodes may be to surround
and immobilize the intruder. This requires that actor nodes receive notification
from sensor nodes that detect the intruder in a timely (i.e., relatively simul-
taneously) fashion in order to coordinate their movements.

As a consequence, the set of communication protocols for wireless sensor and

actor networks should provide real-time services within a specified upper bound

1.5 WIRELESS SENSOR AND ACTOR NETWORKS 27

for delay, relay messages in an energy-efficient manner among sensor nodes and
actor nodes, ensure the proper ordering of events, provide synchronization between
sensor nodes reporting an activity to multiple actor nodes, and allow messages to be
routed to arbitrary actor nodes.

Depending on the quality of service requirements of the wireless sensor and actor
network application, coverage of a sensed event is partitioned into four cases:

1. A minimal set of actor nodes cover the event region

2. A minimum set of sensor nodes cover the event region

3. A minimum set of actor nodes and sensor nodes cover the event region
4.

The entire set of actor nodes and sensor nodes in the event region monitor the
phenomenon

The first three cases are aimed at reducing the level of redundancy, while the last case
aims to provide maximal coverage of a detected event. There are trade-offs with both
approaches. The amount of energy consumed in the network is reduced in the first three
cases, at the expense of more intense coverage. The last case affords maximal coverage
of the detected phenomenon, but at the expense of higher energy consumption.

Aside from communicating with sensor nodes, actor nodes can communicate
directly with each other. Communication between actors can occur under various
circumstances. For example, an actor node that receives information from a
nearby sensor node requires the assistance of additional actor nodes in order to com-
plete its task. Similarly, if multiple actors receive the same event information, the
actor nodes can communicate with each other to coordinate their efforts.

1.5.2 Protocol Stack

As of the time of this writing, a de facto protocol stack for wireless sensor networks
or wireless sensor and actor networks did not exist [54]. Unfortunately, there is no
general consensus within the wireless sensor network research community about the
layer structure in wireless sensor networks. It is argued that strict layering guaran-
tees controlled interaction among layers, whereas a cross-layer design can produce
spaghetti-like code that is difficult to maintain because modifications must be propa-
gated across all protocols [55]. Furthermore, cross-layer designs can produce unin-
tended interactions among protocols that result in performance degradation.

Other researchers are in favor of adopting a cross-layer design to overcome
potential performance problems. The authors in [55] introduce a layered architecture
where protocols in different layers cooperate by sharing network-status information
while still maintaining separation between various layers. Despite the potential
ptifalls, several motivations for employing a cross-layering approach exist [56]:

- Optimization can be achieved in several layers. The optimization goals at a
particular layer can be designed to work with the optimization goals of other
layers above and below.

28

INTRODUCTION TO WIRELESS SENSOR NETWORKING

- Optimization in one level can require cooperation from other levels to show its

effects. Consider the case where the underlying routing protocol is designed to
select the shortest route possible. Although this optimization results in smaller
hop distances requiring less energy to transmit message packets, the larger
number of messages transmitted can result in a greater amount of contention.
If the medium-access control (MAC) layer is not optimized accordingly, the
routing protocol may suffer as a consequence.

« There are possible conflicts between optimization goals in distinct layers. Some

optimization solutions at distinct layers are orthogonal in design. For example, at
the network layer, it may be desirable to reduce the amount of overhead main-
tained at individual nodes. However, this may result in a lower quality of service
at the transport layer since less information is broadcast with individual packets.
Similarly, employing data-compression techniques may interfere with latency
requirements imposed by the application, as the nodes must wait to accumulate
and aggregate received information.

« Some scenarios do not require support from all layers. Consider a multihop

local positioning system (LPS) based on hop-by-hop distance measurements
to estimate the relative distance between an arbitrary node and an anchor
node. The network layer and transport layer, used to handle the end-to-end
data transmissions, are not required in this application. Consequently, these
layers can be omitted.

The authors in [54] suggest the protocol stack for sensor nodes and actor nodes

consist of three planes:

1. Communication Plane. This plane enables the exchange of information
between the various nodes within the wireless sensor and actor network. It
receives commands from the coordination plane and provides the appropriate
link relations between various nodes. The functionality of the communication
plane is contained within the constituent transport layer, routing layer, and
MAC layer.

(a) Transport Layer. Aside from providing the traditional reliability require-
ments, the transport-layer protocol is responsible for providing the real-
time requirements of the WSAN. For example, if the transport protocol
utilized in sensor—actor communication detects a low level of reliability,
the transport protocol employed in communication can notify other actors
of this situation.

(b) Routing Layer. Sensor nodes that detect an event have to select which
actor node(s) will receive the gathered sensor information. This poses a
challenge due to the existence of several actor nodes in the network.
Once a decision is made, the data are relayed to the appropriate node.
The routing protocol is responsible for determining the path messages
will take, performing any in-network data aggregation to reduce the

1.6 SENSOR QUERYING AND DATABASE SYSTEMS 29

number of messages relayed throughout the network, and supporting any
real-time communication requirements imposed.

(c) MAC Layer. To effectively transmit event information from a large
number of sensor nodes to actor nodes, a MAC protocol is essential. In
some applications, actor nodes may be mobile. Consequently, actor
nodes may leave the transmission area of some sensor nodes. One of
the functions of the MAC layer is to ensure connectivity between
sensor nodes and actor nodes. Contention-based protocols are generally
not suitable for real-time communication between sensor nodes and
actor nodes due to the latency imposed by handshaking. Exploiting the
periodic nature of sensor network traffic allows for the development of
collision-free real-time scheduling algorithms. These are more suitable
for wireless sensor and actor networks, since they can reduce the overall
delay and provide real-time guarantees.

2. Coordination Plane. Data received along the communication plane is for-
warded to the coordination plane, which processes the received information
and decides on an appropriate action. This enables nodes to collaborate and
achieve a higher-level objective. Issues such as sensor—sensor coordination
are addressed. These include decisions as to which sensor nodes will relay
information to the corresponding actor nodes, how routing of messages in a
multihop fashion is handled, how in-network data aggregation is performed,
and actor node selection.

3. Management Plane. This plane is responsible for monitoring and controlling
node functions. This includes functions such as node power management fea-
tures, node mobility management, and node fault management.

1.6 SENSOR QUERYING AND DATABASE SYSTEMS

Users of wireless sensor network applications are typically interested in continuous
streams of information [17] that represent the evolving status of the area under
observation as time progresses [57]. Query processing systems such as TinyDB
[58], Directed Diffusion [7,8], and Cougar [59] provide users of wireless sensor
network applications with a high-level interface for performing queries. This
relieves the user from writing complex code to gather information from the
sensor network.

Part of the ongoing research into sensor database systems includes distributed
query processing [60] and storage mechanisms [48] in sensor networks. The need
for scalable self-organized data retrieval and in-network processing is clear. A uni-
fied query processing/networking system involves an additional challenge to
designers of wireless sensor networks. Different applications have varying require-
ments in terms of information transfer rates, latency, coverage, and storage. The
trade-off between optimizing the network topology and performing efficient query
processing is an issue that needs to be resolved.

30 INTRODUCTION TO WIRELESS SENSOR NETWORKING

In TinyDB [58], users specify a set of declarative queries that define the infor-
mation to be gathered from the wireless sensor network. Queries indicate the type
of readings to be obtained, including the subset of nodes the user is interested in,
and any simple transformations to be performed over the collected data. They are
specified using a language like a structured query language (SQL). A sample
query could be expressed as follows:

SELECT AVG (temp)

FROM sensors

WHERE location in (0,0,100,100) AND light > 1000 lux
SAMPLE_PERIOD 10 seconds

TinyDB queries are generally specified on a PC and then distributed throughout
the sensor network by a query executor. The query is disseminated and results are
returned in an energy-efficient manner using a variety of in-network processing tech-
niques and cross-layer optimizations. For example, in the preceding sample query,
the query executor is responsible for determining which predicate to evaluate first in
the sensor network: the temp predicate or light predicate.

Queries in TinyDB are disseminated through the entire network and collected via
a routing tree. The root node of the routing tree is end point of the query, which is
generally where the user that issued the query is located. Nodes within the routing
tree maintain a parent—child relationship in order to properly propagate results to the
root. Research into query processing techniques include the design of an acquisi-
tional query processor for data collection in wireless sensor networks. Information
such as where, when, and how often data are physically collected and delivered, can
be leveraged to significantly reduce the overall power consumption in the sensor
network [61].

Directed diffusion [7,8] employs a different approach to query processing. Rather
than utilizing a specific query language, an application specifies a named interest,
which is used to query the sensor network. Interests contain the query particulars,
expressed through a sequence of attribute/value pairs. For example, an interest
expressed as:

location= [(100,100), (10,200)]
temperature = [10,20]

would report the temperature readings from all nodes located within the specified
location whose temperature is within the specified limits. The interest is initiated
by a sink node and flooded throughout the sensor network. A node that lacks data
matching an interest forwards it to its neighbor node. The decision as to which
node to forward the interest to is based on the contents of the interest. The notion
that cues can be embedded within the query itself is one of the core principles
behind data-centric routing. As the interest is propagated, nodes build routing
tables that are used to return matching data to the sink.

1.7 SENSOR NETWORK RELIABILITY 31
1.7 SENSOR NETWORK RELIABILITY

Several applications of wireless sensor networks exist where reliability of data deliv-
ery is critical. For example, consider a security application where sensors are
required to detect and identify the presence of intruders. Given the critical nature
of the application, when an intruder is detected, messages must reach the base station
in a timely and reliable manner. Three unique issues must be addressed when dis-
cussing data-delivery reliability in wireless sensor networks [62]:

1. Environmental Considerations. Wireless sensor networks can be deployed in
harsh environments. However, the limited lifetime of individual sensor nodes,
low bandwidth, and the size of the sensor network must be considered.

2. Message Considerations. Messages relayed throughout a wireless sensor net-
work are generally small compared to ad hoc networks. For example, a simple
query that requests information from a specific region of interest might be
flooded throughout the sensor network. The reduced message size affects
the type of loss—recovery scheme employed in the wireless sensor network.

3. Reliability Considerations. Traditional notions of reliability are concerned
with reception of 100% of all messages transmitted. However, in a wireless
sensor network, reliability may be expressed in terms of data gathered from
a particular subregion within the network, or as the fidelity of partial,
aggregated results.

1.7.1 PicoRadio Network

The authors in [63] present experimental measurements of radio energy consump-
tion and packet reliability for their prototype PicoRadio network that is composed
of PicoNodes [64]. Energy consumption is categorized by the energy consumed
when the radio is in different states (i.e., idle, transmitting, or receiving). Packet
delivery reliability is measured from a network and link perspective.

1.7.1.1 Hardware The prototype PicoNode consists of a StrongARM SA-1100
microprocessor, a Xilinx C4929XKA field-programmable gate array (FPGA), an
Ericsson PBA-313-01/2 Bluetooth radio, 4 MB of DRAM, 4 MB of flash memory,
and one of two possible custom sensor boards. The first board is configured with sen-
sors that obtain light, sound, temperature, and humidity measurements. The second
possible sensor board is configured with an accelerometer and magnetometer.

1.7.1.2 Protocol Stack The protocol stack utilized by each PicoNode in the
sensor network test bed includes [63]:

1. Physical Layer. Each PicoNode employs a 100-mW Bluetooth radio that sup-
ports 79 channels in the 2.4-GHz ISM frequency band with a maximum data

32 INTRODUCTION TO WIRELESS SENSOR NETWORKING

rate of 1 Mbps. The radios employ Gaussian frequency shift keying modu-
lation with 1 MHz channel spacing.

2. Data Link Layer. The data-link layer consists of three major components: the
transmit controller and data path (TCD), the receive controller and data path
(RCD), and the medium-access control (MAC). The TCD and RCD are
responsible for packet buffering, serialization, deserialization, cyclic redun-
dancy checking, and line balancing.

The MAC uses carrier sense multiple access (CSMA) with preamble
sampling (PS) for infrequent message broadcasts. For unicast traffic, a variant
of spatial time-division multiple-access (S-TDMA), referred to as on-demand
S-TDMA, is employed. Packet headers and payloads use an 8-bit cyclic redun-
dancy check (CRC) and a data acknowledgment retransmission scheme with
time-outs to help ensure packet reliability.

3. Network Layer. The network layer consists of four major components:
energy-aware routing (EAR) protocol, location service, neighbour list service
(NLS), and queuing service.

(a) EAR is a destination-initiated reactive routing protocol designed to
increase the survivability of the sensor network. Routing paths are
chosen in a probabilistic fashion where the probability of selecting a
route is inversely proportional to the average energy cost of that particular
route. This achieves an even energy depletion of the sensor network.

(b) The location service is called hop-terrain and makes use of a combination
of RSSI and hop counts from reference nodes in order to triangulate a
location.

(c) The NLS maintains a table that maps neighbor-node MAC IDs to network
addresses. Each entry in the table contains a link cost metric and a status
indicator. The cost metric indicates the average energy required to
perform a unicast transmission along a particular link.

(d) Finally, the queuing service manages the timing of events during node
initialization, neighbor discovery, location discovery, and MAC ID
assignment.

4. Application Layer. The application layer consists of a standard sensor board,
an optional sensor board, and the required application drivers that provide the
interface between adjacent layers. The initial target application for the Pico-
Radio project was indoor building monitoring. The test bed comprises of
three different types of nodes. The first type is sensor nodes that obtain
measurements. The second are controller nodes that issue queries to the net-
work. Finally, anchor nodes provide a location reference by periodically
broadcasting their locations to other nodes in the sensor network.

1.7.1.3 Packet Reliability Empirical data about energy consumption and
packet reliability of the PicoRadio network was gathered. Three configurations
with varying parameters were executed and the results were collected. The first

1.7 SENSOR NETWORK RELIABILITY 33

TABLE 1.3 PicoNode Experiment Configurations

System Description
Baseline CSMA and on-demand S-TDMA with
T;=T,S=20ms,and Ny, =9
Case 1 CSMA-PS with T, = 512 ps and T3 = 5 s
On-demand S-TDMA with Ty = 256 ms, § = 20 ms, and N, =9
Case 2 CSMA-PS with T, = 512 ps and T, = 5 s

On-demand S-TDMA with Ty= 90 ms, S = 10 ms, and N, =9

configuration is a baseline configuration. The subsequent two configurations,
denoted case I and case 2, have varying parameters. The configurations are summar-
ized in Table 1.3.

The sensor network consisted of 25 PicoNodes placed in an approximately
rectangular grid. Spacing between nodes varied from 3 to 7 m, with all nodes
placed at roughly the same elevation. At the beginning of each experiment, a con-
troller node broadcasted a query requesting all sensor nodes to relay 200 temperature
measurements at intervals of 5 s. T denotes the time period between samples, and N
denotes the total number of samples to be taken. These parameters are specified in
the query disseminated to each node.

The baseline configuration utilizes CSMA without any preamble sampling. The
radio is constantly on, even when the node is not transmitting or the channel is idle.
The size of the frame is denoted by T, the number of slots within the frame is
denoted by Ny, and the size of the slot spacing is denoted by S.

Nodes transmit their data packets during their designated time slots, and data
packets acquired from neighboring nodes are forwarded during the designated
frame using CSMA. Both case 1 and case 2 utilize CSMA with preamble sampling.
Nodes wake up every T, seconds to sense the channel. If no preamble is detected
within the time period denoted by T, the node goes back to sleep.

1.7.1.4 Results For the baseline configuration, the end-to-end packet loss ratio
(PLR) of individual sensor nodes varied from 0 to 0.2, with an overall average PLR
of 0.04 for the entire sensor network. The nodes with the best reliability were those
placed closest to the controller. Nodes located farthest from the controller and along
the edges of the sensor network exhibited the most packet loss. The hop count for
messages to reach the destination varied from a minimum of 1 hop to a maximum
of 8 hops.

For case 1, the variation in the PLR was lower, but the overall PLR for the net-
work remained the same. This is because for a given slot spacing, the preamble
sampling had a negligible impact on end-to-end packet reliability. In case 2, the
PLR ranged from 0O to 0.88, with an overall network average of 0.36. The higher
PLR was caused by more packet collisions due to the smaller frame size and slot
spacing.

34 INTRODUGTION TO WIRELESS SENSOR NETWORKING
1.8 SENSOR OPERATING SYSTEMS

TinyOS is an open-source operating system designed for wireless embedded sensor
networks [5,65]. It features a component-based architecture that enables implemen-
tation of sensor network applications. TinyOS features a component library that
includes network protocols, distributed services, sensor drivers, and data-acquisition
tools. TinyOS features an event-driven execution model and enables fine-grained
power management. It has been ported to several platforms with support for various
sensor boards.

Currently, over 500 research groups and companies use TinyOS and the sensor
motes developed by Crossbow [66]. A partial list of research projects [67] currently
under way is presented in Table 1.4. A partial list of companies [67] that use TinyOS
in commercial developments is provided in Table 1.5.

TABLE 1.4 TinyOS Research Projects

Project

Description

Calamari [68]
CotsBots [69]

Firebug [70]

galsC [71]
Great Duck Island [19]

Mate [73]
PicoRadio [74]

Sensing Structural
Integrity [75]

Telegraph [76]

TinyDB [77]

TinyGALS [72]

XYZ On A Chip [78]

Localization solutions for sensor networks

Inexpensive and modular mobile robots built using off-
the-shelf components to investigate distributed sensing
and cooperation algorithms in large (>50) robot
networks

Berkeley civil engineering project for the design and
construction of a wildfire instrumentation system using
networked sensors

Language and compiler designed for use with the
TinyGALS [72] programming model

Remote habitat monitoring of Leach’s Storm Petrel

Application-specific virtual machines for TinyOS networks

Development of mesoscale low-cost transceivers for
ubiquitous wireless data acquisition that minimizes
power /energy dissipation

Reporting the location and kinematics of damage during and
after an earthquake

Study of various technologies for adaptive data flow such as
streaming data from sensors, logs, and peer-to-peer
systems

Query processing system for extracting information from a
network of TinyOS sensors

Globally asynchronous and locally synchronous model for
programming event-driven embedded systems

Research focused on airflow measurement technology and
the use of sensor networks for controlling indoor
temperature

ACKNOWLEDGMENTS 35

TABLE 1.5 TinyOS Commercial Research Projects

Project Description

Digital Sun’s S. Sense [79] Soil-moisture sensor system for sprinkler systems to keep
grass green while conserving water

Dust Networks [80] Manufacturers of resilient, self-healing wireless mesh
networks optimized for low data-rate applications

Crossbow [66] Manufacturer of wireless sensor networks and wireless data
loggers that use TinyOS

Ember [81] Developer of wireless semiconductor systems that consist of

chips embedded with networking software and low-
frequency radio transmitter technology that support
wireless mesh monitoring and low-power autohealing
management networks

Sensicast [82] Provider of end-to-end intelligent wireless sensor network
solutions to original equipment manufacturers (OEMs)
and system integrators

Sensit [83] Developers of the most highly used wind-eroding mass
sensor worldwide

1.9 SUMMARY

This chapter outlined some envisioned, as well as implemented, wireless sensor
network applications. A brief overview of the various types of services required
by wireless sensor network applications was also presented. Although advances in
technology have increased the processing, storage, and communication capabilities
of sensor nodes, the main obstacle yet to be overcome is the limited power available
to sensor nodes. As battery technology and energy-harvesting techniques improve,
wireless sensor network applications will continue to flourish.

As wireless sensor network applications become increasingly more powerful and
proliferate, additional services that support their increased functionality will also be
required. Several research groups have begun to develop middleware to provide
needed services to support wireless sensor networks. Ideally, deployed wireless
sensor networks should configure, adjust, and heal themselves automatically with
minimal user intervention. Information sharing among independent sensor net-
works, deployed within the same region, even though they are distinct, is another
desirable quality. However, before these scenarios become a reality, much research
remains to be done.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under Grant
ANI-0086020.

36

INTRODUCTION TO WIRELESS SENSOR NETWORKING

REFERENCES

. Crossbow Technology MPR2400 MICAz, from http://www.xbow.com/products/

product_pdf_files/wireless_pdf/6020-0060-01_a_micaz.pdf/, December 2004.

2. See at http://www.xbow.com/products/productsdetails.aspx?sid=101.

. Crossbow Technology’s MicaZ sensor mote, from http: //gyro.xbow.com/other/micaz_

new.jpg, December 2004.

4. See at http://www.atmel.com.

10.

11.

12.

13.

14.

15.

16.

. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture

directions for network sensors. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
1X), pages 93—104, Cambridge, Massachusetts, November 2000.

. L F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

A survey. Computer Networks, March 2002.

. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Networking, pages 56—67, ACM Press,
2000.

. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed

diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking,
11(1):2-16, 2003.

. J. Agre and L. Clare. An integrated architecture for cooperative sensing networks. IEEE

Computer, pages 106—108, May 2000.
F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for

large-scale wireless sensor networks. In Proceedings of the 8th Annual International
Conference on Mobile Computing and Networking, pages 148—159, ACM Press, 2002.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor
networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop
on Wireless Sensor Networks and Applications, pages 88—97, ACM Press, 2002.

E. Biagioni. PODS: Interpreting spatial and temporal environmental information. In
Usability Evaluation and Interface Design: Cognitive Engineering, Intelligent Agents,
and Virtual Reality, Volume 1 of the Proceedings of HCI International 2001, the
9th International Conference on Human-Computer Interaction, pages 317-321,
New Orleans, Louisiana, August 2001.

E. Biagioni and K. Bridges. The application of remote sensor technology to assist
the recovery of rare and endangered species special issue on distributed sensor
networks. International Journal of High Performance Computing Applications, 16(3),
August 2002.

D. Niculescu and B. Nath. Ad hoc positioning system (APS), In Proceedings of GLOBE-
COM’01 (IEEE), pages 2926-2931, San Antonio, Texas, November 2001.

K. A. Sudduth. Engineering technologies for precision farming. Presented at the Inter-
national Seminar on Agricultural Mechanization Technology for Precision Farming,
Suwon, Korea, May 1999.

C.R.Locke, G.J. Carbone, A. M. Filippi, E. J. Sadler, B. K. Gerwig, and D. E. Evans. Using
remote sensing and modeling to measure crop biophysical variability. In Proceedings of the
5th International Precision Agriculture Conference, Minneapolis, Minnesota, July 2000.

17

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

REFERENCES 37

. P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. /IEEE Personal
Communications, 7:10—15, October 2000.

L. Schwiebert, S. Gupta, and J. Weinmann. Research challenges in wireless networks of
biomedical sensors. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, pages 151-165, ACM Press, 2001.

Habitat monitoring on great duck island, from http://www.greatduckisland.net/,
November 2004.

R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a sensor network
expedition. In Proceedings of the 1st European Workshop on Wireless Sensor Networks
(EWSN °04), January 2004.

J. Polastre. Design and Implementation of Wireless Sensor Networks for Habitat
Monitoring. Master’s thesis, University of California, Berkeley, May 2003.

See at http://www.botany.hawaii.edu/pods/.

F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey. /[EEE
Network, 18(4):45-50, July / August 2004.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, July 1978.

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, February 1985.

C. J. Fidge. Partial orders for parallel debugging. In ACM SIGPLAN/SIGOPS Workshop
on Parallel 4 Distributed Debugging, 1985.

F. Mattern. Virtual time and global states of distributed systems. In International
Workshop on Parallel and Distributed Algorithms, 1989.

D. L. Mills. Internet time synchronization: The network time protocol. In Global States
and Time in Distributed Systems, Zhonghua Yang and T. Anthony Marsland (eds.),
pages 91-102, IEEE Computer Society Press, 1994.

H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization service
for wireless sensor networks. Mobile Computing and Communications Review,
8(1):125-139, 2004.

J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using
reference broadcasts. In Proceedings of 5th Symposium on Operating Systems Design
and Implementation (OSDI), pages 147—163, December 2002.

J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In Proceed-
ings of the 2001 International Parallel and Distributed Processing Symposium
(IPDPS), Workshop on Parallel and Distributed Computing Issues in Wireless and
Mobile Computing, April 2001.

S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor net-
works. In Proceedings of the Ist International Conference on Embedded Networked
Sensor Systems (SenSys), pages 138—149, ACM Press, 2003.

M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization for wireless
sensor networks. In Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC 2003), Volume 2, pages 1266—1273, New Orleans, Louisiana,
March 2003.

J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor networks. In
Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and
Applications, pages 11-19, ACM Press, 2003.

38

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

INTRODUCTION TO WIRELESS SENSOR NETWORKING

S. Meguerdichian, S. Slijepcevic, V. Karayan, and M. Potkonjak. Localized algorithms in
wireless ad-hoc networks: Location discovery and sensor exposure. In Proceedings of the
2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages
106-116, ACM Press, 2001.

A. Savvides, C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc
networks of sensors. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, pages 166—179, ACM Press, 2001.

A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-hop multilateration
primitive for node localization problems. In Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, pages 112—121, ACM
Press, 2002.

D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proceedings of GLOBE-
COM’01 (IEEE), pages 2926-2931, San Antonio, Texas, November 2001.

D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings
of IEEE INFOCOM 2003—The Conference on Computer Communications, 22(1):
1734-1743, March 2003.

D. Niculescu and B. Nath. Localized positioning in ad hoc networks. In Proceedings of
the 1st IEEE International Workshop on Sensor Network Protocols and Applications,
Anchorage, Alaska, April 2003.

N. B. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for context-
aware mobile applications. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, pages 1-14, ACM Press, 2001.

Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket location-
support system. In Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pages 32—43, ACM Press, 2000.

J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan.
Building efficient wireless sensor networks with low-level naming. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles, pages 146—159, ACM
Press, 2001.

B. Krishnamachari, D. Estrin, and S. Wicker. Impact of data aggregation in wireless
sensor networks. In International Workshop of Distributed Event Based Systems
(DEBS), July 2002.

J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless
sensor networks. In Proceedings of the 1st IEEE International Workshop on Sensor
Network Protocols and Applications, May 2003.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. Ght: A
Geographic hash table for data-centric storage. In Proceedings of the Ist ACM Inter-
national Workshop on Wireless Sensor Networks and Applications, pages 78-87,
ACM Press, 2002.

S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. Data-
centric storage in sensornets with ght, a geographic hash table. Mobile Networks and
Applications, 8(4):427-442, 2003.

D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An evaluation
of multi-resolution storage for sensor networks. In Proceedings of the st International
Conference on Embedded Networked Sensor Systems, pages 89-102, ACM Press,
2003.

49

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.
67.

REFERENCES 39

. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. Infrastructure tradeoffs for sensor
networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications, pages 49—58, ACM Press, 2002.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in
ad hoc wireless networks. Wireless Networking, 7(6):609-616, 2001.

B. Karp and H. T. Kung. Gpsr: Greedy perimeter stateless routing for wireless networks.
In Proceedings of the 6th Annual International Conference on Mobile Computing and
Networking, pages 243-254, ACM Press, 2000.

G. Xing, C. Lu, R. Pless, and Q. Huang. On greedy geographic routing algorithms in
sensing-covered networks. In Proceedings of the 5th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pages 31-42, ACM Press, 2004.

M. Kochhal, L. Schwiebert, and S. Gupta. Role-based hierarchical self organization for
wireless ad hoc sensor networks. In Proceedings of the 2nd ACM International Confer-
ence on Wireless Sensor Networks and Applications, pages 98—107, ACM Press, 2003.
1. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: Research
challenges. Ad Hoc Networks, 2(4):351-367, October 2004.

M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad hoc network
design. Computer (IEEE), 37(2):48-51, February 2004.

Y. Zhang and L. Cheng. Cross-layer optimization for sensor networks. New York Metro
Area Networking Workshop 2003, New York, New York, September 2003.

A. Woo, S. Madden, and R. Govindan. Networking support for query processing in sensor
networks. Communications of the ACM, 47(6):47-52, 2004.

S. Madden, W. Hong, J. Hellerstein, and M. Franklin. Tinydb: A declarative database for
sensor networks, from http://telegraph.cs.berkeley.edu/tinydb.

Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor net-
works. ACM SIGMOD Record, 31(3):9-18, 2002.

X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in sensor
networks. In Proceedings of the Ist International Conference on Embedded Networked
Sensor Systems, pages 63—75, ACM Press, 2003.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional
query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, pages 491-502, ACM Press, 2003.

S. J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz. A scalable approach for
reliable downstream data delivery in wireless sensor networks. In Proceedings of the
Sth ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pages 78—89, ACM Press, 2004.

J. M. Reason and J. M. Rabaey. A study of energy consumption and reliability in a
multi-hop sensor network. Mobile Computing and Communications Review, 8(1):
84-97, 2004.

J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy. Picoradio supports
ad hoc ultra-low power wireless networking. Computer (IEEE), 33(7):42-48, July 2000.
TinyOS Community Forum, from http: //www.tinyos.net/, November 2004.

Crossbow Technology Inc., from http://www.xbow.com, November 2004.

TinyOS Community Forum related work, from http://www.tinyos.net/related.html,
November 2004.

40

68.

69.

70.
71.

72.

73.
74.
75.
76.

77.

78.

79.
80.
81.
82.
83.

INTRODUCTION TO WIRELESS SENSOR NETWORKING

Calamari: a sensor field localization system, from http://www.cs.berkeley.edu/kamin/
calamari/, November 2004.

CotsBots, from http://www-bsac.eecs.berkeley.edu/projects/cotsbots/, November
2004.

FireBug, from http://firebug.sourceforge.net/, November 2004.

galsC: A language for event-driven embedded systems, from http://galsc.sourceforge.
net/, November 2004.

TinyGALS: A programming model for event driven embedded systems, from
http: / /ptolemy.eecs.berkeley.edu/papers/03 /tinygals/, November 2004.

Mate, from http://www.cs.berkeley.edu/pal /mate-web/, November 2004.
PicoRadio, from http://bwrc.eecs.berkeley.edu/research/pico radio/, November 2004.
S. D. Glaser, from http://www.ce.berkeley.edu/glaser/curee.pdf, November 2004.

The Telegraph Project at UC Berkeley, from http://telegraph.cs.berkeley.edu/,
November 2004.

TinyDB: A declarative database for sensor networks, from http: //telegraph.cs.berkeley.
edu/tinydb/, November 2004.

XYZ on a chip: Integrated wireless sensor networks for the control of the indoor environ-
ment in buildings, from http: //www.cbe.berkeley.edu/research/briefs-wirelessxyz.htm,
November 2004.

Digital Sun, from http://www.digitalsun.com/, November 2004.

Dust networks, from http://www.dust-inc.com/products/main.shtml, November 2004.
Ember, from http://www.ember.com/index.html, November 2004.

Sensicast, from http: //www.sensicast.com/, November 2004.

Sensit Company, from http: //www.sensit.com/, November 2004.

I CHAPTER 2

Distributed Signal Processing
Algorithms for the Physical Layer
of Large-Scale Sensor Networks

AN-SWOL HU and SERGIO D. SERVETTO
Cornell University, Ithaca, New York

The ability to move the sensed data out of the network (the reachback communi-
cation) is one of the basic communication primitives that must be supported by
every sensor network. This is most commonly achieved by routing of information
through the network to some central data collection point that will act on the
sensed information. Authors propose an approach to this problem by developing
a method to allow all nodes in the network to cooperatively generate a strong infor-
mation bearing signal to communicate with a distant data collection point. Such a
solution would be extremely robust to the failure of nodes in the network and
would allow for the deployment of a homogeneous network of extremely small,
low-power nodes for a variety of applications. This approach to the sensor reach-
back problem is called cooperative reachback. In this chapter two aspects of the
cooperative reachback problem are considered: time synchronization and reach-
back modulation schemes. Time synchronization facilitates the design of coopera-
tive reachback modulation schemes. A system model that will apply to both the
time synchronization problem and reachback communication is described. Authors
then study the properties of waveforms generated by asymptotically dense networks
and then move into the development of a time synchronization mechanism for dense
networks using these waveform properties. In the asymptotic regime, this time
synchronization framework can keep the synchronization mean squared error
from increasing with distance from the ideal time source. Next, authors study the
performance of this asymptotically optimal scheme for networks of finite size.
They then develop a modulation scheme for reachback communication again
using these waveform properties and study its performance using simulations.

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

41

42 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS
2.1 INTRODUCTION

2.1.1 Reachback Communication and Cooperative Reachback

In the deployment of every sensor network, the ability to move the sensed data out of
the network is absolutely essential. We call this communication requirement reach-
back communication. This is most commonly achieved through the routing of infor-
mation through the network to some central data collection point that will act on the
sensed information. The scenario implies that the data collection point is within the
transmission range of one of the sensor nodes. However, this assumption may not
always be desired or practical. Potential applications of sensor networks range
from target tracking and classification [1,2] to habitat monitoring [3,4]. With such
a varying range of potential applications, the requirement that the data collection
node be within the transmission range of a sensor node is quite restricting.

Consider the dense aerial deployment of 100,000 cubic millimeter nodes in the
Amazon rain forest for habitat and environmental monitoring. Due to the low-
power nature of these sensor nodes, the communication range of each node may
only be on the order of meters. No one single node can communicate with a data
collection point that may be located on a low-flying aircraft, and thus the conven-
tional manner of routing information to the data collection point for reachback com-
munication will fail. In such a scenario, it is possible to deploy a tiered network
where a few more powerful nodes are included for reachback communication pur-
poses. However, such a solution means that the functionality of the network is
entirely dependent on the performance of these few communication nodes.

Our approach to this problem is to develop a method to allow all nodes in the
network to cooperatively generate a strong information-bearing signal to communi-
cate with a distant data collection point. Such a solution would be extremely robust
to the failure of nodes in the network and would allow for the deployment of a
homogeneous network of extremely small, low-power nodes for a variety of appli-
cations. We call this approach to the sensor reachback problem cooperative reach-
back. The avenue we explore in the development of algorithms for reachback is
motivated by recent work on the sensor broadcast problem [5a, 5b], where nodes
are able to agree on a common stream of bits to transmit.

2.1.2 Large-Scale Dense Sensor Networks

We consider the problem of cooperative reachback in the context of extremely dense
large-scale networks. In fact, the approach we take to studying these networks is to
assume that the number of nodes in a finite-area network grows unbounded. That is,
we consider an asymptotically dense network as a close approximation for realistic
large-scale dense networks.

Whereas infinitely large networks consisting of nodes with zero mass are clearly
not realizable by physical devices, there is a trend toward miniaturization of
these devices. For example, in recent work, a hardware simulation and deployment
platform for wireless sensor networks capable of simulating networks with on the

2.1 INTRODUCTION 43

order of 100,000 nodes was developed [6]. In addition, for many years now the Smart
Dust project has been seeking to build cubic-millimeter motes for a wide range of appli-
cations [7]. Furthermore, there is a trend toward the miniaturization of power sources
[8]. With large numbers and small nodes, we face a situation involving networks oper-
ating at high densities. This implies the need for cooperative reachback capabilities and
asymptotic behaviors provide a method to develop these abilities. Techniques devel-
oped in the asymptotic regime will have favourable scaling laws, and thus perform
well in practical situations with a large, but still finite, numbers of nodes.

2.1.3 Time Synchronization

In this chapter we consider two aspects of the cooperative reachback problem: time
synchronization and reachback modulation schemes. We study time synchronization
because it allows us to characterize a synchronized network. Once we have such an
understanding, we can apply this understanding to the design of cooperative
reachback modulation schemes. In fact, it would be ideal to design a mechanism
that can achieve cooperative reachback communication and network time synchro-
nization simultaneously.

One reason the time synchronization for large-scale dense networks is such a dif-
ficult problem is because of scalability issues. As the area of the network and the
number of nodes increase, multihop communication will most likely be required
for communication between nodes. This also means that timing information will
need to be distributed throughout the network in multiple hops, resulting in an
accumulation of timing error. For example, with reference-broadcast synchroniza-
tion (RBS) [9], which performs well for multi-hop synchronization, the average
path error still grows as ./n, where n is the number of hops. This problem of
timing error accumulation over multiple hops presents a significant problem for
large-scale wireless sensor networks since these networks have a large number of
nodes spread out over a wide area. However, the source of this problem may also
provide us with a solution. We ask the question: Given an extremely dense network
of nodes spread out over a finite area, can we use the large number of nodes to
improve synchronization performance?

2.1.4 Related Work

Due to the high level of interest in sensor networks, much recent work has been done
in the area of distributed signal processing for sensor and ad hoc networks. This
work covers topics ranging from cooperative routing, reachback communication,
to time synchronization. First of all, there has been much progress made in taking
a cross-layer approach to developing more efficient cooperative and distributed mul-
ticasting [10—12] and routing [13,14] techniques. The authors take a new perspec-
tive on the problems of routing and multicasting by jointly considering the network
layer and the physical layer.

In the area of reachback communication, there has been three significant direc-
tions of particular interest. One area is the use of cooperative diversity where

44 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

nodes achieve uplink transmit diversity by relaying each other’s messages. This idea
was introduced by Sendonaris et al. in refs. [15] and [16] and extended by Laneman
et al. in refs. [17] and [18]. A variation on the concept of cooperative diversity,
called coded cooperation, was considered in refs. [19] and [20]. The second direc-
tion of research has been the use of radar concepts for the upload of information
from sensor networks. This idea has been studied in refs. [21] and [22], where
synthetic aperture radar (SAR) techniques were employed.

The third direction of research regarding reachback communication has been the
study of cooperative reachback. This area of research employs the idea of having
nodes in the network cooperatively generate a signal that can more reliably transmit
information to a far receiver. In ref. [23], the authors consider the problem of distrib-
uted beamforming while accounting for phase errors arising from errors in node pla-
cement. It is shown that the expected received signal power grows linearly with the
number of nodes in the network, as does the variance of the received power. They
conclude that there are large potential gains from distributed beamforming as long as
the node placement errors are small compared to the carrier wavelength. In ref. [24],
the problem of coherent cooperative transmission from multiple antennas is con-
sidered. The authors present a system architecture for such a distributed transmission
array and analyze its performance. Another cooperative transmission scheme of
interest is presented in ref. [25]. The proposed “opportunistic large arrays” consider
the situation where there is one source of information and the remaining nodes act as
repeaters. The accumulation of energy as the repeater nodes relay the signal sent by
the leader node acts as a physical layer flooding algorithm and a method for reach-
back communication.

In the area of time synchronization for sensor networks, a great deal of work has
been done [9,26—31]. In this work however, we seek to address not only the time
synchronization of large-scale sensor networks but also the issue of cooperative
reachback. In fact, we propose a method that can maintain time synchronization
and reachback communication simultaneously for asymptotically dense networks.
A recent piece of work by Hong and Scaglione [32] also deals specifically with
the time synchronization problem for large-scale sensor networks and addresses
the reachback communication issue. In ref. [32], the authors model the sensor
nodes as pulse-coupled oscillators and apply the results of Mirollo and Strogatz
[33], who show that a network of pulse-coupled oscillators will converge toward
synchrony under the assumptions of no delays, a noise-free environment, identical
oscillators, and all-to-all coupling. In ref. [32], the authors extend the theoretical
results of Mirollo and Strogatz for better implementation in a wireless sensor net-
work and analyze the system through simulations. In this chapter we use a different
system model and analytically prove synchronization before evaluating the results
through simulations.

2.1.5 Chapter Organization

The chapter is organized as follows. In Section 2.2 we set up the system model that
will apply to both the time synchronization problem and reachback communication.

2.2 SYSTEM MODEL 45

We study the properties of waveforms generated by asymptotically dense networks
in Section 2.3, and then move into the development of a time synchronization mech-
anism for dense networks in Section 2.4 using these waveform properties. In the
asymptotic regime, this time synchronization framework can keep the synchroniza-
tion-mean-squared error from increasing with distance from the ideal time source. In
Section 2.5 we study the performance of this asymptotically optimal scheme for
networks of finite size. We then develop a modulation scheme for reachback
communication again using these waveform properties in Section 2.6, and study
its performance using simulations in Section 2.7. Concluding remarks are presented
in Section 2.8.

2.2 SYSTEM MODEL

As will become apparent later in the chapter, our methods for time synchronization
and cooperative reachback modulation are intimately related. In fact, the modulation
scheme can best be understood as an extension to the synchronization method. As a
result, the system model is set up mostly in the context of the time synchronization
problem.

2.2.1 Clock Model

We consider a sensor network with N nodes. The clock of one particular node in the
network will serve as the ideal time, and to this clock we wish to synchronize all
other nodes. This node can be any arbitrary node in the network and is not special
in any way. The system is defined relative to the clock of this arbitrary node. The
synchronization methods presented here synchronize the clocks of all nodes in a
network to the clock of one particular node. This is done to make the synchroniza-
tion scheme self-contained when the only clocks that the network has access to are
the clocks of its nodes. If we want the network synchronized to “real time,” then the
node initiating synchronization would need to have access to it. According to the
recommendations of Elson and Romer [26], we allow the local clock of each
node to be free-running. We never adjust the local clock frequency or offset, but
instead we seek to construct an “operational” clock on top of the free-running
local clock. The operational clock of each node will be synchronized to the ideal
clock, and it will be defined in terms of that node’s local clock.

We will call the node with the ideal clock node 1, and without loss of generality
we assume it lies in the center of the network. The clock of node 1, c;, will be
defined as ¢, =, and we also define the counter c;(f) = |¢] where ¢ € [0, o).
Note that c;, is continuous while c¢;(¢) takes only integer values. At any time ¢,,
c1(t,) is the number of ticks the counter of node 1 has made. From the expression
for ¢ (f), we can easily see that the counter of node 1 ticks on integer values of ¢.
We define the counter c;(¢) to simplify the description of the synchronization
procedure, since all synchronization pulses are sent at integer values of ¢.

46 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

Taking c¢; to be the ideal clock, we now define the clock of any other arbitrary
node i as ¢;. We define c¢; as

cis = ai(t — A) + Wi(r) 2.1

where

A; is an unknown constant modeling the fact that it is not known when ¢; is
started relative to c;.

a; >0 is a constant and for each i, & € [Mowbound> Qupbouna] Where
Qypbound> Yowbound => 0 are finite. This bound on «; means that the frequency
offsets between any two nodes cannot be unbounded. We assume that a
known function f,(s) with s € [owpound> Qupbouna] gives the percentage of
nodes with any given « value. Thus, the fraction of nodes with « values in
the range s to s; can be found by integrating f,(s) from sy to s;. We also
assume that |f,(s)| < G,, for some constant G,. We keep this function
constant as we increase the number of nodes in the network.

W;(?) is a zero mean Gaussian process with samples ‘I’tj ~ N(0, o?), for j E N,
independent and identically distributed. We assume o> < oo and note that o>
is defined in terms of the clock of node i. We assume that W;(¢) is Gaussian
since the root-mean-square (RMS) jitter is characterized by the Gaussian
distribution [34].

Thus, this model assumes that there is a bounded constant frequency offset between
the oscillators of any two nodes as well as some random frequency jitter.

The reasoning behind the clock model in equation (2.1) comes from the following
oscillator model for the instantaneous frequency f(7),

f@® =fo+Af + 1) 2.2)

where fj is the nominal frequency in hertz, Af models the frequency accuracy in
hertz, and f,(f) models the short-term stability of the oscillator in hertz. Note that
we ignore frequency drift, because we assume that it is negligible for short periods
of time, say, on the order of 100 s. From approximate long-term stability numbers
plotted in ref. [35], we find that the frequency offset over 100 s is on the order
1 x 107", which is two orders of magnitude less than the short-term frequency
stability standard deviation (1 x 10~7) and over five orders of magnitude less than
the frequency accuracy of the SPK-SPG series of oscillators manufactured by
SPK Electronics Company (www.spkecl.com). Note that the frequency stability
and offset values are given by the formula fip.; = (fineasurea — f0)/fo. In our clock
model, we assume that the oscillator of c; is running at fy even though f; may
be varying with time. The oscillators of ¢; are then defined relative to that
of ¢; by equation (2.2). We assume that ¢;, increments an integer value each
time the oscillator of node i completes a complete cycle. Thus, we have that

2.2 SYSTEM MODEL 47

a; =1+ (Af/fy) and o? = (oy, /fo)?, where oy, is the standard deviation of f.(?)
given in hertz.

As mentioned, the clocks ¢ and c;, for all i will be free-running clocks that will
have a synchronized “operational” counter built on top of them. This operational
counter is set up in the following manner. We first assume that node 1 at time ¢, deci-
des it needs to synchronize the remaining N — 1 nodes. Recall that node 1 is any
arbitrary node. Any one random node can detect an event and decide to synchronize
the network. In this case, that node will effectively be node 1. Node 1 will increment
its operational counter to a value of 1 at the next integer time ¢. That is to say, the
operational counter of node 1, denoted by s,(¢), will be s,(¢¥) = |t — n,], where
n, = |t.]. Our goal, ideally, will then be to construct an identical operational coun-
ter s;(t) = [t — n,] at node i. We want the operational counter at the ith node to
increment at integer values of ¢ and hold a value equal to s;(?).

2.2.2 Observation Model

Synchronization will be achieved by the transmission and observation of pulses. We
first make the following assumptions about pulse transmission and reception:

« No Propagation Delay. We assume no delay between the time a pulse is trans-
mitted and the time it is seen by other nodes. Under certain conditions this may
be reasonable, since the propagation time of radio waves traveling at the speed
of light over small transmission distances is negligible. However, in general
time delays need to be explicitly considered. We leave the rigorous analysis
of time delay for future work.

- No Transmission Delay or Time-Stamping Error. We assume that a pulse is trans-
mitted at exactly the time the node intends to transmit it. We make this assumption
since there will be no delay in message construction or access time [9], since our
nodes broadcast the same simple pulse without worrying about collisions. Also,
when a node receives a pulse it can determine its clock reading without delay,
since any time-stamping error is small and can be absorbed into the random jitter.

Because pulses are exchanged among many different nodes, to clearly describe
transmission and reception times in relation to different clocks, we define the
following notation (illustrated in Fig. 2.1):

. tj‘*l is the time, with respect to clock cg, that the ith node sees its jth pulse.

- 5,5 is the time of the nth transition of the operational counter s;(r) with
respect to ci.

« Let us also say that, in general, any value or variable X% means that we are
considering the value of X in terms of the timescale of c;.

To use pulse transmission and reception times to do accurate synchronization, we
need to model the relationship between transmissions and receptions. We only

48 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

c statts 1.5 time units before c3 starts

¢ ot oz 3 4 s 6

Figure 2.1 This figure illustrates ¢; and c3 as well as the operational counter of node 1, s,(%).
We assume node 3 is in the broadcast domain of node 1. In this illustration we assume W3(t) =
0 (no random clock jitter), a3 = 1, and A3 = 1.5. If we assume a pulse is transmitted by node
1 each time s, (¢) increments, the second pulse will be transmitted at sgfl = 4. Since node 3 can
hear the pulses of node 1, this pulse will be the second pulse heard by node 3. This occurs at
tg’3 =25= sg?,.

describe this relationship for a node i within the broadcast domain of node 1 since, as
we later show, this is the only important case.

We recall that by definition, s,/ | will be an integer and at this time a pulse will be
transmitted. Because node i is in the broadcast domain of node 1, we can describe
the pulse receive time at node i, with respect to the clock of node i, in terms of
the pulse transmission time (or equivalently, the time at which the operational
clock of node 1 increments) as the state equations

C1 — L
S}’l/+1,1 = Sl’l/,l + 1

= ai(sy — A) + Wilsy) | (2.3)
The first equation of equation (2.3) simply says that if the n'th pulse of node 1 is
transmitted at integer s,/ , in the time scale of node 1, then the (n" + 1) pulse will
be sent at s, + 1, in the time scale of node 1. The second equation of equation
(2.3) makes use of the clock model of node i(2.1) to tell us the time at clock c¢; of
a pulse transmission by node 1 at s,/ ;, where s} is in the timescale of ¢;. This
second equation effectively converts the time of a pulse transmission from the time-
scale of c; to that of ¢;. Under the assumption that node i is in the broadcast domain

of node 1, n’ = n. However, this does not hold in general because in the multihop

2.2 SYSTEM MODEL 49

case the nth pulse observed by the jth node does not necessarily correspond to the nth
pulse transmitted by node 1. So, in general, if we assume n' — n = k, where k € N,

then the expression is saying that the pulse seen by node j at tfl/ ;1s occurring at sZﬂrk I

2.2.3 Propagation Model

To model signal amplitude loss, we assume a general model K(d), where 0 <
K(d) < 1 for all d. Here K(d) is a fraction of the transmitted magnitude seen at dis-
tance d from the transmitter. For example, if the receiver node j is at distance d from
node 7, and node i transmits a signal of magnitude A, then node j will hear a signal of
magnitude AK(d). We derive K(d) from a power path-loss model since any
path-loss model captures the average received power at a given distance from the
transmitter. This average received power is perfect for modeling received signal
magnitudes in our problem setup, since we are considering asymptotically dense
networks. Due to the large number of nodes at any given distance d from the
receiver, using the average received magnitude at distance d as the contribution
from each node at that distance will give a good modeling of the amplitude of the
aggregate waveform. An example of K(d) is given in Section 2.5.

This K(d) is good for modeling aggregate signal-propagation distances, but to
model the magnitude of the aggregate signal at a given node j we choose to use a
random variable K;; with the following properties:

- For a given j, K;; are independent identically distributed (iid) for all i.
- K;; is independent from W;, for all j, i, [, and 1.
+0<K;; <1,0<EK;;) =<1, and Var(K;;) < 1.

Note that the requirements on the random variable K;; places restrictions on the
model K(d). Any function K(d) that yields a Kj; with the preceding requirements
can be used to model path loss.

To understand how K;; and K(d) are related and where the properties of K;; come
from, we give an intuitive explanation of the meaning of K ;: Pr(K;; € (k, k + A)) is
the fraction of nodes at distances d from node j such that K(d) € (k, k + A), where A
is a small constant. This means that, roughly speaking, for any given scaling factor
Kj; = k, fx,(k)A is the fraction of received signals with magnitude scaled by approxi-
mately k. Thus, if we scale the transmit magnitude A from every node i by an inde-
pendent K;;, then as the number of nodes, N, gets large, node j will see NfK,(k)A
signals of approximate magnitude Ak for all possible scaling factors K;; = k. This
is because taking a large number of independent samples from a distribution results
in a good approximation of the distribution. Thus, for large N, this intuition tells us
that by scaling the magnitude of the signal transmitted from every node i by an inde-
pendent sample of the random variable K;; gives an aggregate signal at node j that is
the same magnitude as if we generated the signal using K(d) directly.

For cooperative reachback, we assume that all nodes are equidistant from the far
receiver. This approximation holds for receivers that are far from the network. As a

50 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

result, we assume that (1) the propagation delay is the same for each node, and (2)
the path loss is the same for each node. Thus, for cooperative reachback we do not
need to use K;; and can work directly with K(d).

2.2.4 Synchronization and Communication Pulses

Each node will periodically transmit a scaled version of the pulse p(#) to achieve and
maintain synchronization. We call the interval of time during which a synchronization
pulse is transmitted a synchronization phase. Pulses are only transmitted during the
synchronization phases, and at other times the nodes can be dedicated to other
tasks. Thus, the smaller the synchronization phase, the better. The actual process of
synchronization is described in Section 2.4. We assume that p(¢) takes on the shape

1 — T, <t <0
p(t) = 0 1=0, t<—Tp, >y (2.4)
-1 0<t<my,

for some 7,, > 0, and 7,, is expressed in terms of c;.

The term T, should be chosen large compared to max; 07!, where 7' is the
value of o2 translated from the timescale of ¢; to ¢y, that is, af"" & Ty;. This way,
over each synchronization phase, with high probability a zero-crossing will occur.
For each node, the duration in terms of ¢; of a synchronization phase will be 27,,.
Note that we assume T7,, is a value that is constant in any consistent timescale.
This means that even though nodes have different clocks, identical pulses are trans-
mitted by all nodes. We assume that p(¢) is generated by a circuit in each node that
emits identical pulses. Each node knows only when to initiate the pulse so that it is
sent at the time the node intends it to be sent. We define a pulse to be transmitted
at time ¢ if the pulse makes a zero-crossing at time 7. Similarly, we define the pulse
receive time for a node as the time when the observed waveform first makes a
zero-crossing. A zero-crossing is defined for signals that have a positive amplitude
and then transition to a negative amplitude. It is the time that the signal first reaches
zero. Note that in this work we study the problem in baseband and do not consider the
effects of the carrier. For the exchange of synchronization pulses, we assume that
nodes can transmit pulses and receive signals at the same time. This simplifying
assumption is not required for the ideas presented here to hold.

For cooperative reachback communication, we modify the type of pulses being
transmitted by each node. The modification will fundamentally preserve the zero-
crossing property of p(), and it will be discussed in detail in Section 2.6.

2.2.5 Signal-Reception Model

The aggregate waveform seen by node j at any time ¢ is

: 2 kA maxK i
A=) —= Lt — 1, — T) 2.5)

Jo Mk
i=1 k

2.2 SYSTEM MODEL 51

where A;fm(t) is the waveform seen at node j written in the timescale of ¢; and 7, is
the number of nodes contributing to the signal, as it may be possible that only a
subset of nodes is transmitting (1), goes to infinity as N goes to infinity). The term
Kk is a scaling factor to ensure proper reception of the aggregate waveform by all
nodes in the network, and 7; is the random timing jitter suffered by the ith node.
We will see that 7; is Gaussian since W;(¢) is a Gaussian process, and T; ~
N (0,5%) will have 5% < B for all i and a constant B > (. If, on the other hand,
we assume that node j is receiver Rx a distance d, from the network, then the aggre-
gate waveform will be modeled as

N
c KAmaxK do)
ARy (D) = ZT(P(I -7 —T)) (2.6)
i=1

Note that each node can be told the values of N and 7, before deployment. Assuming
the system designer knows the area over which the network will be deployed, the
values of 7, can be approximated during the design of the network. Note that an
approximation of m, will not affect any of the analytical results; it is only important
that 7, is the correct order of magnitude.

To model the quality of the reception of A;‘nk(t) by node j, we model the
reception of a signal by defining a threshold y. The vy is the minimum received
maximum signal magnitude required for nodes to perfectly resolve the pulse
arrival time. If the maximum received signal magnitude is less than vy, then
the node does not make any observations and ignores the received signal wave-
form. We assume that y < Apx, Where Apax 1S the maximum transmit magnitude
of a node.

2.2.6 Synchronization Pulse Trains

In equation (2.5) and in the preceding discussions, we have focused on
characterizing the aggregate waveform for any one synchronization phase.
That is, equation (2.5) is the waveform seen by any node j for the synchroni-
zation phase centered around node 1’s transmission at ¢t = 7y, where 7y is a
positive integer. We can, however, describe a synchronization pulse train in
the following form:

oo Mg KA K.
2 Cl1 max N
A =" i — 1, — Tiy) 2.7)
g=1 i=1 Mk.q

where 7, , is the number of contributing nodes at the gth synchronization phase,
7, is the integer value of r at the gth synchronization phase, and T, is the jitter
suffered by the ith node in the gth synchronization phase. We seek to create this
pulse train with equispaced zero-crossings and use each zero-crossing as a syn-
chronization event.

52 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

2.3 STRUCTURAL PROPERTIES OF LARGE COLLECTIONS OF
RANDOMLY SHIFTED PULSES

2.3.1 The Structure of A.(t)

The aggregate waveform seen at each node j in the network and at the receiver Rx
described in Section 2.2.5 both have the form

1 N
An(t) =) CKip(t— 7 —T)) 2.8)
i=1

where C is a constant. As we let the number of nodes grow unbounded, N — oo, the
properties of this limit waveform can be characterized by Theorem 2.1.

Theorem 2.1 Let p(t) be as defined in equation (2.4), T; ~ N (0,62/(11-2) with
> /aci2 < B < oo for all i, and K; satisfying the conditions in Section 2.2.3. Then,
limy_ 0 An(f) = As(?) has the properties

- Ax(t) is odd about 7y, i.e. Ax(T9 — €) = —A(T + €), for some & > 0.

. Ax(t) is continuous

e A(T9) =0

¢« A(®) >0 for t€ (19— 7,7), and AL(t) <0 for t &€ (19,79 + 7 for
some 7 << Ty,

The properties outlined in Theorem 2.1 will be key to the synchronization mech-
anism and cooperative reachback modulation scheme that we propose. One important
issue to note is that Theorem 2.1 holds for any odd-shaped pulse (i.e., p(—t) = —p(?))
with compact support. Thus, the generation of rectangular pulses is not required. This
fact can be seen from the proof of Theorem 2.1, which is left for ref. [36]. However, we
develop and motivate a few important related lemmas in the next section.

2.3.2 The Polarity and Continuity of A.(f)

At time t = 71 # 7y, we have that

N

CK;
Ayn(T) = ZTP(TI —70—T)

i=1

Noq o
=Y —M;
; M)
where 1_/1,-(71) 2 CK;p(m1 — 79 — T;). We have the mean of M,‘(Tl) being

E(M(7y)) = CE(K)) Jp(ﬁ — 70 — Y)fr, (Y dyP (2.9)

2.3 RANDOMLY SHIFTED PULSES 53

where fr,() is the Gaussian probability density function (pdf)

1 exp{_(w— 70)2}
(0/ai)V2m 2a*/af)
It is clear that the Mi(Tl)’s, for different i’s, do not have the same mean and do
not have the same variance since the two quantities depend on the «; value. For
generality of notation with f,(s) from Section 2.2.1, we write the Gaussian distri-
bution for T as

fTi(l)[j) =

Jr(p,s) =

! exp{_(df— 70)2}
(a/s)V2m 2(0%/s2))’
and define the notation M;(ty, 5) EN i i(71). We use the results of Lemma 2.1 and a
corresponding lemma for 71 > 7 to prove the polarity result for A () in ref. [36].

Lemma 2.1 Given the sequence of independent random variables M;(m) with
7 < 19, E(Mi(71)) = p;, and Var(M;(7)) = af Then, for all i,

Yy > >y >0 (2.10)
07 <y <o 2.1

for some constants v,, y,, and 3, and
1, -
]ggoﬁ;wm =n(m) >0

almost surely, where

Qupbound

n(m) = CE<Ki>J J T = 70— D) fr (e 5) dirfu(s) ds

Qlowbound

Qupbound
=" Bon o as
lowbound

The results of Lemma 2.1 and the corresponding lemma for 7; > 7, are intuitive,
since given that p(¢) is odd, it makes sense for A.(?) to have properties similar to an
odd waveform. The proofs are left for the reader and can be found in ref. [36].

Knowing only the polarity of A«(?) is not entirely satisfying, since we would also
expect that the limiting waveform be continuous. This, in fact is true, and we see it in
the following lemma. Once again, the proof can be found in ref. [36].

Lemma 2.2
1 13-
Aw(t) = lim N; CKip(t — 7 — T}) = nggoN;M;(t) = (1)

is a continuous function of .

54 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS
2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION

2.4.1 A Synchronization Protocol

We consider a network of N nodes, uniformly distributed over the [0, 1] x [0, 1]
plane. We describe the mechanism for synchronizing this network to the clock of
node 1, which is assumed to be at the center of the network. In Section 2.4.3 we
explain why this mechanism is asymptotically optimal and good for the synchroni-
zation of dense networks.

Synchronization will be achieved in the following manner. Node 1 will start
transmitting pulses and continue to transmit pulses every time the counter s;(f)
increments. After the initial m pulses, the set of nodes in the broadcast domain of
1, not including node 1, will make an optimal estimate of the location of the
(m + D)th pulse and transmit at that time. We will call the set of nodes in the
broadcast domain of node 1 R,. The nodes in R, will then use their most recent m
observations to optimally estimate the time of pulse m + 2. The R, nodes will con-
tinue in this manner. The nodes that can hear the aggregate transmissions from R,
and node 1, the R3 nodes, will begin their own predictions and transmissions after
observing m pulses. This propagation will then continue until all nodes in the net-
work hear signals. Figure 2.2 illustrates this propagation.

Node 1 will initially transmit with magnitude A .. Once the R, nodes begin trans-
mitting, node 1 will scale its transmissions along with the other nodes. The R, nodes
and node 1 will each transmit with magnitude (A.xk/71), where 7, is the number of
nodesin U ,2:1Ri, where R, is node 1, and k is a constant that ensures that all nodes in
the network will be synchronized after a finite number of hops out from node 1. This
trend will continue so that the nodes in U %_;R; will transmit with magnitude
(AmaxK)/Mg_;» where m,_, is the number of nodes transmitting. Once all nodes in
the network are transmitting, the nodes will be transmitting with magnitude
(Amaxk)/N. Note that each node’s knowledge of ; will be gained from information
that is exchanged. The information that needs to be distributed is detailed in ref. [37].

The preceding mechanism is designed for asymptotically dense networks. In
applying it to finite-sized (N << o0) networks, we introduce a small amount of
feedback into the system to prevent small errors from accumulating. Node 1 is
the only node in the network that can observe the aggregate waveform and have
access to the ideal clock. We define a tolerance factor, g, such that if node 1’s
observed zero-crossing is more than ¢ from the ideal zero-crossing, then it informs
all nodes in the network to adjust their estimate. Tolerance factor o is defined as

Maximum allowed distance between ideal and observed zero-crossing

Time between synchronization pulses

where all times are defined in terms of c;. It is clear that ¢ is defined in the design of
the system so each node knows its value.

When node 1 notices that ¢ has been exceeded, it sends a 1-bit feedback to all
nodes. That bit will tell nodes whether the observed zero-crossing occurred before

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION 55

N nodes in ufit A
Node 1

P I Y G SR R R . -

R; nodes
R, nodes
R; nodes
v

Figure 2.2 This figure illustrates the propagation of the synchronization pulses starting from
node 1 at the center of a unit area square with N nodes uniformly distributed over the area. The
R, nodes hear the pulses from node 1, and the Rz nodes hear the aggregate signal from node 1
and the nodes in R,. This propagation continues beyond the R; nodes until all nodes in the
finite area can hear synchronization pulses.

or after the ideal zero-crossing location. If the observed zero-crossing occurred
before the ideal, then each node will delay all m of its observations by an adjustment
factor. If the observed zero-crossing occurred after the ideal, each node will shift all
of its observations back in time by an adjustment factor. This means that if, for
example, the observed zero-crossing occurred early, then by having each node
delay its set of m observations, the next estimate made by each node will occur
later. Since all nodes are making a later estimate, the next aggregate waveform
zero-crossing should be delayed as well, bringing it closer to the ideal zero-crossing
time. For each node i the adjustment factor is calculated as

Node i adjustment factor =

¢ x |Difference between most recent two observation times|

Note that these calculations are all done by node i in terms of its own timescale.
It is important to stress two things. First, this added feedback does not in any way

affect the asymptotic optimality of the synchronization mechanism. In an asympto-

tically dense network, the extra feedback and correction mechanism will simply not

56 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

be needed. It is added only to make the asymptotically optimal synchronization
mechanism robust for networks of finite size. Second, the reliance on node 1 to
initiate the feedback does not make the synchronization mechanism less robust
because node 1 is arbitrary. If this node 1 fails, then the synchronization mechanism
can simply be reinitiated using another node as node 1. Thus, the failure of node 1
does not prevent the network from synchronizing.

2.4.2 Optimality Conditions

The reason we propose the synchronization mechanism outlined in Section 2.4.1 is
that it does well in an asymptotically dense network. In fact, it is optimal in a manner
described in this section. The problem of synchronization is the challenge of having
the ith node accurately and precisely predict when node 1 increments its operational
counter. In our setup, the reception of a pulse by node i tells it of such an event.
Recalling that P, (s;‘ l) ~ N(0,0?), from equation (2.3) we see that the pulse
receive time at node 7, ,/;, is a Gaussian random variable whose mean is parameter-
ized by the unknown vector ¥ = [a;, 5 Syl 1> A i]- Thus, to achieve synchronization node
i will try to estimate the random variable tn,i using a series of m pulse receive times
as observations (recall that m is known). Note the observations are also random vari-
ables with distributions parameterized by 9. We define optimal synchronization as

node i making an estimate of t,;» denoted t,“(t" Listy s+ -+ > by i)» Which is a
function of past observations t i tn’ s tn_m ;» that meets the following optim-
ality criteria:
Eg(t,) ity sty gise sty) = Es(t)) (2.12)
: i i i i 2
argmm:,»iEﬁ(Ht At sty) — 1) (2.13)

for all . The subscript ¥ means that the expectation is taken over the distributions
involved given any possible . The first optimality condition comes from the fact
that given a finite m, it is reasonable to want the expected value of the estimate to
be the expected value of the random variable being estimated for all 9. As in the
justification for unbiased estimators, this condition eliminates unreasonable estima-
tors so that the chosen estimator will perform well, on average, for all values of 9.
The second condition is the result of seeking to minimize the mean-squared error
between the estimate and the random variable being estimated for all 9.

However, for optimal synchronization it seems reasonable to require that the
mean-squared error of a particular node placed in the broadcast domain of node 1
be same as when that node was placed far away from node 1. Thus, we go
beyond the preceding conditions and define an optimally synchronized network as
one where all nodes in the network can achieve the optimality conditions of
equations (2.12) and (2.13) and the mean-squared error achieved in equation
(2.13) for each node is the smallest possible mean-squared error achievable for
that node over the area of the network. Thus, the optimality condition for an

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION 57

optimally synchronized network is

Eg(I8) () ot it) — 1 1)
:rIEnEﬁ(||t Ot sl) — 1) J||) for all j,& (2.14)

This means that in order for the network with node j to be optimally synchronized at a
given time when s} (7) increments node j must have its minimum possible mean-squared
error over the area of the entire network (A). Thus, we see that an optimally synchro-
nized network is defined only for a given synchronization mechanism. Once a mech-
anism is determined, the mechanism will achieve optimal synchronization if each
node in the network is synchronized with the smallest possible minimum mean-squared
error the mechanism can achieve for that node placed anywhere in the network.

2.4.3 One-Hop Synchronization and Multihop Synchronization

Optimal one-hop synchronization can be achieved by designing an optimal estima-
tor (optimal in the sense of equations (2.12) and (2.13)) for estimating the next pulse
arrival given m arrivals. This is because the one-hop nodes are within the broadcast
domain of node 1 and are able to observe the exact time node 1 increments its oper-
ational counter and thus make the best estimate.

We show in ref. [38] that for any m consecutive observations, we have the
linear model

Y=H6+W (2.15)

where

Vi ol = ol

- {al(s , 1 }
1 1 - 1 7"
H=

o1 2 - -1

with W = [w - - - wy]". w1 18 some unknown integer. Based on our assumption that

W,(¢) is a Gaussian noise process with independent samples, W ~ N(0,) with
3 = ¢?1. What equation (2.15) fundamentally models is the fact that the vector of
pulse reception times of node i, given by [y; y2 -+ yn]’, will have a mean that
grows linearly.

With the observation model equation (2.15), we want to estimate the next pulse
arrival time y,,+1, which is jointly distributed with Y as

IR (PR A b

58 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

The optimal estimator for y,,; will be a uniformly minimum variance unbiased
(AUMVUA) estimat9r of 6; +m#6,. As shown in ref. [38], this can be found as
by = Oy + mbyy, Where

O = H'S'H)'H'S 'Y = H'H)'HY
We also show that (AbML is Gaussian with Eg((AbML) = 0; +mb, and

202(2m + 1)

q _ Tyn—1 T _
Varg(¢y,) = Co*(HH)™'CT = p—

Please also note that the preceding optimal estimation is carried out by node i
according to ¢;. Intuitively, it is most important to realize that the mean of ¢,,, trans-
lated to the timescale of c) is an integer value. This means that E(¢,,;) is when s (f)
increments. R

To see how ¢, is related to 7; from Theorem 2.1, start by seeing that

P ~ N<ai(sz}',1 — A) + may, M)

m(m — 1)

Using equation (2.1), we can translate (AI)ML into the time scale of ¢; as

This means that

N o 2(2 1
L NN(SZ/',J +m, <1 +(m+))>

: m(m — 1)

Since sfl'}, | + m is the ideal crossing time in the timescale of ¢y, it is 7. Thus,

(,2);/111‘ =7+T;
Therefore, we see that
o2 22m+1) o2
Var(T)) = 5 1+——~ | =— (2.16)
a; m(m — 1) a;

where &2 from Theorem 2.1 is

2 2 22m+1)
o =0 <1+—m(m—1))

For multihop synchronization, we first note that an optimally synchronized net-
work would be possible if every node in the network, no matter its distance from

2.4 PHYSICAL-LAYER TIME SYNCHRONIZATION 59

node 1, could somehow hear the synchronization pulses emitted by node 1. This
means that our goal for multihop synchronization would be to somehow allow the
nodes outside the broadcast domain of node 1 to observe node 1’s synchronization
pulses. We find that this is possible, as N — o0, by considering the zero-crossing of
the aggregate waveform generated by all nodes in the network.

Recall from Section 2.2.5 that the aggregate waveform observed by any node j is

Mk

KAmax K ji

Al (D) = le—“‘m Lp(t =7, = T)
=

where 7, was defined in Section 2.4.1. Note that the variance of 7; in the timescale
of ¢; is in the form required by Theorem 2.1. Also, the variance is upper bounded by
some constant, since ¢; is lower bounded by oo, pound- Thus, the properties of A;;‘oo)
are characterized by Theorem 2.1. Figure 2.3 illustrates the properties.

The result of Theorem 2.1 has significant implications for synchronization. First
note that since N — 00, A;‘m(q-(,) — 0, node j sees a zero crossing that occurs at an
integer value in the time scale of ¢; (as N — o0, we have 1, — o). Now following
our synchronization mechanism outlined in Section 2.4.1, we know that when the R,
nodes start transmitting synchronization pulses, the pulse transmission time
(70 + T;) for any node i in R, will satisfy the requirements of Theorem 2.1. This
is because node i is in the broadcast domain of node 1, and from earlier in this sec-
tion we know that its optimal estimate of the next pulse arrival time is a finite-mean
Gaussian random variable. Furthermore, the mean is the exact time node 1 incre-
ments its operational counter. Thus, we can apply Theorem 2.1 to the transmissions
of the R, nodes and any node / in R, U R3 will see a received signal Af"nz(ﬂ) = 0 for
N — oo, where T is the time when node 1 next increments s1(7). Since a node i in R3
can effectively see the exact time the pulse from node 1 makes a zero-crossing, its

N =400

Amplitude
Amplitude

15 H H H H H H H H H
05 06 07 08 09 1 11 12 13 14 15
Time Time

5 : : : : : : : : Lo
05 06 07 08 09 1 11 12 13 14 15

Figure 2.3 The pulse p(¢) is shown on the left figure, with 7p = 1 and A, = 1. On the right
we have a realization of Ay(¢) (N = 400), and we assume that K;; = 1 (no path loss) and T; ~
N(0,0.01) for all i. As expected from Theorem 2.1, we notice that the zero-crossing of the
simulated waveform is almost exactly at r = 1.

60 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

estimate 7; will have a minimum mean-squared error equal to if it were in the broad-
cast domain of node 1. This is the minimum mean-squared error for all nodes in the
network that is achievable by the synchronization mechanism. This is why the only
optimal estimator needed was the estimator outlined earlier in this section for nodes
in the broadcast domain of node 1. Now because the estimate made by node i in R3 is
the same as if it would have made in the broadcast domain of node 1, the pulse trans-
mission time for node i again satisfies the requirements of Theorem 2.1. Hence,
again Theorem 2.1 can be applied. This cycle will then repeat until all nodes are syn-
chronized, and then the cycle will continue to keep the nodes synchronized. It is
important to note that with this dense network, the network is optimally synchro-
nized at each step of the synchronization process since every node has access to
the transition times of node 1.

2.5 TIME SYNCHRONIZATION SIMULATION

2.5.1 Simulator Implementation

As mentioned, we study the synchronization problem in the asymptotically dense
regime, since it closely approximates the behavior of networks with large, but
still finite, densities. As a result, an obvious question is how well the limiting
regime actually approximates finite-density networks. In an effort to answer this
question, we implement a simulator to study the performance of our synchronization
mechanism on finite-density networks. This is a key step toward building a
massively distributed software radio. Note that the simulation results are presented
in time units that are unspecified. The reason for this is that any time units can be
used and the results will still hold. What is most important to note in the simulations
is that even with a finite number of nodes, the synchronization error closely approxi-
mates the limiting results presented in Section 2.4.3 thus showing that the limit
regime gives us analytical results that closely model finite-sized networks.

The time synchronization simulator is implemented in MATLAB, and the N
nodes are uniformly distributed over a circle with area 30. The node parameters
are independently and randomly generated using A; ~ N(0,0.1) and «o; = |X],
where X ~ N(1,0.01). The jitter variance is set to be Var(¥;) = 0.01 for all i. In
the generation of the aggregate waveform we use the following parameters:

Tne =0.2 Amax = 1 k=28 Kji=1

In determining the transmission range of the aggregate waveform, we assume
K(d) to be

1 d<e
Kd)=1{ [. (2.17)
d_B = €

Recall that K(d) models the signal amplitude loss, thus it is clear that equation (2.17)
is derived from the standard path-loss model where signal power decays as 1/d B

2.5 TIME SYNCHRONIZATION SIMULATION 61
for 2 < B < 4. For simulations we use
B=2 e=0.1 y=0.2

Last, for simulations we set the tolerance factor to be ¢ = 0.05. The details of the
simulator implementation can be found in ref. [37].

2.5.2 Simulation Results

Before presenting the results of the simulations, we first describe how we measure
the performance of the synchronization mechanism. Recall that ideally we would
want all nodes to transmit a synchronization pulse at the exact same time. This
means that in the ideal situation, when we translate each node i’s estimate of the
next zero-crossing location into the timescale of node 1, it should be the next integer
value of ¢. In reality, this is not the case and we use a measure, which we call the
average squared distance (ASD), to quantify the average distance of the nodes’ esti-
mates from the ideal integer time of ¢;. The ASD is calculated as follows:

1
ASD = = 1 —10)?
N;(' 0)

where N < N is the number of nodes currently making estimates, f, is the integer
value of # where node 1 will next increment its operational counter, and #{' is the
ith estimating node’s estimate of f(in the timescale of c;.

The first simulation result that we present in Figure 2.4 serves as motivation for
the modified synchronization mechanism that includes feedback. We see in the first

ASD vs. time (density =400)

ASD vs. time (density =400)

0.5 0.5
m=10 " " =1g
- m=15 : " - m=

5 045f- m=18 i i 5045 |- m1
(7] N " @
< 0.4 n " < 0.4
8 0.35 I " 8035
5 ST 5
s 03 Y z 03
° [i ! e kS
o 025 o R - 025
e R v Bl " o
g 02 P Pt i g 02
g it ! rabo o
% 0.15 R L] ?0.15
) U T R S
g 0.1 SN < 0.1
[' S gl Y 4
Z 0.05 Can S NGaT LT < 0.05

0 g LA = b 0 1 R o 4 e e e i 1 o i st]

0 50 100 150 0 50 100 150
Time Time

Figure 2.4 Left: A plot of ASD versus time for the synchronization mechanism without
feedback. The results were averaged over 10 runs. We see that synchronization is held for
a period of time, but not indefinitely. Right: A plot of ASD versus time for the
synchronization mechanism with feedback. We note that ASD is bounded and
synchronization can be maintain indefinitely.

62 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

panel of Figure 2.4 that for m = 10, 15, 20, synchronization is maintained over a
period of time. In fact, for m = 20, synchronization is maintained for over 70
time units. On average, as seen in the first panel of Figure 2.4, the larger the m
value, the longer synchronization can be maintained. However, in all cases synchro-
nization is eventually lost. This is due to the fact that small errors in the aggregate
waveform zero-crossing location accumulate. For example, if an observed zero-
crossing arrives late, then the next aggregate waveform zero-crossing may arrive
late as well, since all nodes are making an estimate using the delayed zero-
crossing. Thus, these errors accumulate and eventually the aggregate waveform
zero-crossing might be delayed so much that the nodes can no longer observe the
zero-crossing. We also note that the length of time synchronization can be main-
tained may vary a great deal and is difficult to predict from run to run. As a
result, by introducing feedback we can correct this drifting zero-crossing. An illus-
tration of ASD versus time for the mechanism with feedback is presented in the
right-hand panel of Figure 2.4. There we run the simulation once and notice that
in all cases the ASD is bounded and synchronization is maintained indefinitely.
Figure 2.5 is a close-up of the right-hand panel of Figure 2.4, showing the “saw-
tooth” waveform for m = 10 and m = 15. Each “tooth” coincides with one time
that the feedback triggered by node 1 adjusted each node’s observations. In fact,

ASD vs. time (density=400)
0.02 T T

0.018 | P) .
0.016
0.014

0.012

0.01f
0.008 |-

0.006 |

Average squared distance (ASD)

0.004

m=10
- m=15
- - m=20

0.002

0 50 100 150
Time

Figure 2.5 A plot of ASD versus time for the synchronization mechanism with feedback.
We see a “sawtooth” waveform for m = 10, 15, and each “tooth” occurs at a time where a
correction was made.

2.5 TIME SYNCHRONIZATION SIMULATION 63

the simulator tells us that for m = 10, there were six corrections, m = 15 had four,
and m = 20 so far did not require any corrections to the node observations.

Another key property of the synchronization mechanism with feedback is that it
performs well for a wide range of network sizes. In Figure 2.6 we plot the ASD
versus time for network sizes varying from N = 300 (density = 10, area = 30) to
N = 18,300 (density = 610, area = 30). In steady state all nodes are transmitting,
and we notice that the ASD curve for the 300-node network is at most 0.0005 greater
than the ASD curve for the 18,300-node network. This means that on average the
ASD varies only by at most 0.0005 for network sizes in this range, and thus the
mechanism is well suited for network sizes as small as a few hundred nodes. Of
course, as expected, the mechanism must make more active corrections based on
feedback from the network. In fact, we find that the average number of corrections
made for the 150 time units of the simulation was 18.2 for N = 300 and 2.9 for
N = 18,300. As a result, even though the mechanism performs well for networks
of only a few hundred nodes, it does require more active adjustments on the part
of the mechanism. Such a result is in line with our comment at the end of Section
2.4.1 since in the limit as N — oo the feedback and correction mechanism will
not be needed.

ASD vs. time (m=15)
0.015 T T

0.0145

0.014

0.0135 |

0.013 |]
0.0125 N]

0.012 |

Average squared distance (ASD)

---- density = 10
: N - density =210

0.0115 | SHE - - density =410| |
’ — density =610

0.011 . !
0 50 100 150

Time

Figure 2.6 A plot of ASD versus time for the synchronization mechanism with feedback for
different network sizes. Each plot was averaged over 500 runs. In steady state we see that the
mechanism performs well for a wide range of network sizes since the difference in ASD for a
network of N = 300 nodes and a network of 18,300 nodes is at most 0.0005.

64 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

Before concluding this simulation section, we connect the simulation results to the
analytical results presented in Section 2.4.3. From equation (2.16), we see that
variance of the time estimate in terms of ¢; should be the jitter variance o> multiplied
by a function of m and «;. Since the ASD approximates this synchronization error
averaged over all nodes, we would expect the simulation results to closely approxi-
mate the analytical value. Using m = 10, o; = 1, and using the simulation value
0 = Var(¥;) = 0.01, equation (2.16) gives us a value of about 0.01467. From the
right panel of Figure 2.4 we see that the ASD for m = 10 is consistently less than
0.02. Thus, even for a finite number of nodes, the synchronization mechanism gives
us a synchronization error that closely approximates the limiting analytical results.

Last, to better understand the simulation results in terms of some realistic num-
bers, we consider a system that uses a 1-MHz oscillator and sends a synchronization
pulse every microsecond. Using an oscillator from the SPK-SPG series of oscil-
lators, we have fy = 1 x 109Hz and Af = 4 100 Hz. Using a figure from ref. [35]
we take the standard deviation of f,.(¢) to be 0.001 Hz. For our clock model this trans-
lates into ao; € (1 — 100 x 1076, 1 4+ 100 x 107, ¢®> =1 x 1078, and ¢;(r) is
counting in microseconds. This means that our ASD value will be on the order of
1 x 10~ "® s, which translates into a timing jitter standard deviation of about 1 ps.

2.6 DISTRIBUTED FREQUENCY SHIFT KEYING

The time synchronization mechanism described in Section 2.4 forms the core on top
of which distributed frequency shift keying (dFSK) is built. In this section, we first
show how an aggregate waveform suitable now for both synchronization and
communication is generated, and then show how bits are modulated onto this new
waveform.

2.6.1 Waveform Generation

We observe that synchronization is achieved and maintained based solely on every
node i’s ability to observe a zero-crossing that occurs at the exact time s;(#) incre-
ments. It is possible to retain this property while generating an aggregate waveform
that is suitable for reachback communication.

Consider a network that has already been synchronized and is simply maintaining
synchronization. If instead of cooperatively generating a pulse train with zero-
crossings at integer values of #, the nodes generate an aggregate waveform similar
to that illustrated in Figure 2.7, time synchronization can still be maintained since
the waveform in Figure 2.7 has zero-crossings at integer values. Clearly, this
waveform can be easily generated, since each node can simply make a step in
its transmission waveform at the time it normally would have sent a pulse. Thus,
this waveform can be used for time synchronization and is generated simply by
modifying the type of waveform transmitted by each node.

From Figure 2.7, we see an interval between two transitions where the signal is
effectively flat with a magnitude of E(Kj;,)Anax. Let us call the transitions that

2.6 DISTRIBUTED FREQUENCY SHIFT KEYING 65

0.6 Aggregate waveform at node i

0.4

0.2

o

Amplitude

I
o
[N

i
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

Figure 2.7 This figure illustrates the aggregate waveform with N = 200 nodes seen at node
i. In this example Ap.x = 1, and we assume that the jitter variance of every node is the same in
the timescale of ¢; with standard deviation 0.05. For illustration purposes, we take K, to be
exponentially distributed with A = 2. Notice that even with only N = 200 nodes the zero-
crossings occur almost exactly in the correct place.

occur at the times where synchronization pulses would have occurred the primary
transitions. This flat interval between two primary transitions comes from the assump-
tion that the time between two synchronization pulses is long relative to the synchro-
nization pulse duration. From the figure we see that by putting extra transitions
between the primary transitions, it is possible to modulate information onto the aggre-
gate waveform. This idea is illustrated in Figure 2.8. For use with the synchronization
technique, we would like the waveform to be smooth at symbol boundaries. As a
result, we choose to have the waveform always transition from negative to positive
at the primary transitions. Because of this requirement, we must have the number of
zero-crossings, R, between t = 1y and ¢t = 7y + 1 take on the form R =2¢q + 1,
where ¢ is a nonnegative integer. Here 7 is any integer value of 7. Note that the
time it takes the aggregate waveform to make a primary transition will limit the
maximum value of R. The details of this relationship can be found in ref. [39].

2.6.2 Modulation Scheme

To study exactly how this modulation scheme would work, we focus on one interval
between t =7, and t =17, + 1. We consider the case where this cooperative

66 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

15 Reachback communication waveform

Amplitude

~0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

Figure 2.8 This figure illustrates 5 symbol periods, with R = 1, 3, 3, 1, 1, respectively. For
example, such a waveform could be used to send the bit stream 01100.

reachback communication system will do M-ary signaling. This means that g €
{0,1,....M—1}and R=2g+1 € {1,3,...,2M — 1}. Symbol S,, is a symbol
waveform with 2¢q, 4+ 1 zero-crossings between t = 7, and ¢t = 7, 4+ 1. Figure 2.8
illustrates an example of a waveform modulated in this manner.

An important point to note is that each node i looks for a zero-crossing only in a
small interval around its estimate of where the primary zero-crossing should be. As a
result, when other zero-crossings are placed betweent =7, + kandt =7, + k+ 1,
node i still only observes the zero-crossings att = 7, +k and t = 7, + k + 1. Thus,
the same synchronization properties are still maintained using the zero-crossings at
t = 1, + k for 7,, k € Z, while the other zero-crossings are used for communicating
with the far receiver.

2.7 dFSK RECEIVER SIMULATION

An interesting question regarding the design of a receiver for the dFSK waveforms
described in Section 2.6 is how the number of nodes, N, in the network affects the
performance. The dFSK waveforms were generated by infinitely dense networks,
and hence the waveforms were limiting waveforms. How would the probability of
bit error change if we instead had a finite number of nodes generating a waveform
that is only a crude approximation of the limiting waveform? We look for the answer

2.7 dFSK RECEIVER SIMULATION 67

by designing an optimal receiver for the limiting waveform and then using this recei-
ver to decode signals generated by networks of finite size.

We consider binary signaling using two waveforms so(¢) and s;(¢). As outlined in
Section 2.6.2, so(f) has one extra zero-crossing and s (¢) has three. We will design an
optimal receiver for detecting s(f) € {so(¢), s1(#)} when the received signal is

r(t) = s(r) + N(1)

where N(t) is zero-mean white Gaussian noise with power spectral density N,/2. We
assume that so(#) and s;(¢) are sent with equal probability.

Two sets of waveforms so(¢) and s1(¢) will be used for the simulations. The first
set of limiting waveforms shown in Figure 2.9 (a and b) are generated using

N=4000 K =1 Apu=1 Ti~N(0,0.0025)

for all i, while the second set in Figure 2.9 (c and d) is generated using

N = 4000 K =1 Apax =1 T; ~ N(0, 0.0225)

(a) Sp(f) and ag(1)

Amplitude
o
o v

-0.5f e
L i
-15 ! ! ! ! ! ! 1 1 !
0 0.1 02 03 04 05 06 07 08 09 1
Time
(b) s4(t) and aq(t)

Amplitude

0.1 02 03 04 05 06 07 08 09 1
Time

Figure 2.9 (a) The limit waveform sy(#) and its approximation ao(#) generated by N = 20
nodes using T; ~ N'(0,0.0025). (b) The limit waveform s;(f) and its approximation a;(f)
generated by N = 20 nodes using T; ~ N(0,0.0025). (c) The limit waveform so(f) and
its approximation ao(f) generated by N =20 nodes using T; ~ N(0,0.0225). (d) The
limit waveform s;(f) and its approximation a;(f) generated by N =20 nodes using
T; ~ N(0,0.0225).

68 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

(c) so(t) and aq(t)
1.5 T T T T T T T T T
1
B
2 05
g o0
< -0.5
-1
-1.5 1 1 1 1 1 1 1 1 1
0 014 02 03 04 05 06 07 08 09 1
Time

(d) s1(t) and aq(t)

Amplitude

0 01 02 03 04 05 06 07 08 09 1
Time

Figure 2.9 Continued.

The difference between these two sets of waveforms is the variance of the jitter T;.
We would like to determine if jitter variance has an impact on the performance of the
reciever. Note that for simulation purposes we assume that the limit waveforms are
generated by N = 4000 nodes, since these waveforms are indeed close to the limit
waveform under the simulation parameters. In Figure 2.9 we also show the wave-
forms ay(¢) and a;(¢), which are approximations of sy(#) and s;(¢), respectively, gen-
erated by much smaller networks. We will analyze the performance of the optimal
detector when the signals generated by the network are not s;(¢), but instead are a; (),
fori =0,1.

We first follow standard communication theory to design the optimal detector for
two known signals so(#) and s;(¢) corrupted by additive white Gaussian noise. A
detailed reference to this approach can be found in ref. [40]. We find that the optimal
detector is illustrated in Figure 2.10, where that orthonormal basis functions are
¢o(t) and ¢,(¢), and 50 and 5, are the signal space representations for so(f) and
s1(1), respectively.

The probability of bit error can be calculated as

b AN A?
= 2lagwiz) = 2w

where A = ||s) — 51| and Q is the standard Q-function. Recall that this is assuming
s(t) € {so(1),s1(¢)}, so the actual limit waveform is sent and that each waveform is

2.7 dFSK RECEIVER SIMULATION 69
00
r(t)— argmin || 7 — 5|

s={sg> 5}
=

“>

aey

<

©

Figure 2.10 A diagram for the optimal detector, where r(¢) is received and projected onto
the two orthonormal basis functions to get the signal space representation » = [ry r]. We
then decode to O or 1, depending if 7 is closer to sy or s;, respectively.

sent with probability 0.5. We plot this probability of error as a function of Ej,/Ny in
Figure 2.11 for the two different sets of sy(#) and s;(f) where

['sg@ydt + [si(r)de
Ey = 5

is the average energy per bit. That is, we plot

Ep
P, = Q(KN()) (2.18)
where K = A?/(2E,) by varying N.

The remaining curves in Figure 2.11 are simulations of the probability of error
when we send a(t) € {ao(f),a;(t)} instead of s(r) € {so(¥),s1(¢)}. We generate
a(t) with networks of varying size, N. We use the same detector illustrated in
Figure 2.10, but this time r(t) = a(f) + N(t), where a(f) € {aop(t),a (¢)}. Recall
that a;(f) is an approximation of s;(f), where i = 0, 1, that is generated using finite
N. In the simulations of Figure 2.11 we use N = 10, 40, 70, 100. In the left panel
we use T; ~ N(0,0.0025), and it is clear that using smaller N does not significantly
impact the bit error rate of the detector. In fact, the P, versus E, /Ny plots for N = 10,
40, 70, and 100 are almost completely on top of each other and they coincide with
the theoretical bit-error-rate plot generated from equation (2.18). What this means is
that for the coherent detection of dFSK signals with small jitter variance, N does not
have a significant impact on P, and signals generated from very small networks can
be detected using the detector shown in Figure 2.10. However, in the right figure of
Figure 2.11 we use T; ~ N(0,0.0225) and notice that for N = 10 the P, is higher
than the theoretical rate. We see that as N increases, the P, approaches the theoreti-
cal rate and at N = 100 the two are very close. Thus, for larger jitter variance, the
value of N has a more significant impact on the probability of bit error. This is
expected since with larger jitter variance, a;(f) will be more corrupted for a given

70 DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

o Probability of bit error with changing N 10 Probability of bit error with changing N
S 5
b =
= 1072 8 10?
5 2

o
2 2z
3 =
8103 8107
E - ',[lh_eo%.etical error @ o Th_eor(()etical error
TR TN
10 — N=100 10-4 — N=100
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Ep/Np(dB) Ep/Ng(dB)

Figure 2.11 We illustrate the theoretical bit-error-rate curve generated by equation (2.18).
We also plot the P, versus Ej/Ny curves for networks of size N = 10,40, 70, 100. Left: We
note that with 7; ~ A/(0,0.0025) all four curves nearly fall right on top of each other,
showing that N does not significantly affect P,. These curves were generated from 500,000
runs. Right: Here we plot using 7; ~ A(0,0.0225), and we notice that for small N, the
probability of error is noticeably worse than the theoretical error curve. As we increase N,
the P, curves approach the theoretical values. These curves were generated from 800,000 runs.

N. This can be seen in Figure 2.9. Note, however, that increased jitter variance does
not always negatively impact the system. From Figure 2.11 we also notice that for
T; ~ N(0,0.0225) the theoretical P, curve actually gives a lower probability of bit
error for a given signal-to-noise ratio Ej/Ny.

2.8 CONCLUSION

In this chapter we have presented the framework for a cooperative reachback
system. A synchronization mechanism designed specifically for large-scale dense
sensor networks was presented first. The mechanism generates an aggregate
waveform with equispaced zero-crossings that can be observed by all nodes in the
network, and the zero-crossings are used as synchronization events. The choice of
using zero-crossings for synchronization was motivated by the fact that low-
power zero-crossing detector circuits can be constructed. The performance of this
method of synchronization scales well with the number of nodes in the network.
A key feature is that it eliminates the error accumulation that occurs with most
traditional synchronization methods that route timing information throughout the
network. Simulation results show that through a minor modification to the synchro-
nization mechanism developed for asymptotically dense networks, the synchroniza-
tion ideas can be effectively applied to networks of finite size.

Using the waveform properties that were studied, we were able to modify the
pulse shapes emitted by the nodes in the network to create a waveform suitable
for reachback communication. The waveform encodes data in the frequency of
the zero-crossings, and hence we call the method distributed frequency shift

REFERENCES 71

keying. The important feature of dFSK is that it perfectly complements the time syn-
chronization method, since the network is able to do time synchronization and reach-
back communication simultaneously without extraneous computation. We also see
that a receiver designed to detect the limiting dFSK waveforms can be effectively
employed to detect waveforms generated by networks of finite size.

Note that the theory presented for the generation of waveforms for dFSK can be
applied directly to time synchronization as well. That is, it is possible to start the
synchronization processes by sending a continuous waveform instead of a series
of pulses. This allows for passband time synchronization with the center frequency
limited only by hardware performance and the magnitude of the timing jitter.

Future extensions to this work involve the consideration of nonzero signal-
propagation times. There is a need to consider time delays in sending signals
between nodes in the network and the different propagation delays in sending
information to the far receiver. Once we have explicitly considered the issue of
propagation delay, then these concepts can be implemented in our acoustic sensor
network test bed. We will seek to validate the simulation results for the synchroni-
zation of a finite sized network.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation, under awards CCR-0238271
(CAREER), CCR-0330059, and ANR-0325556.

REFERENCES

1. X. Wang and H. Qi. Acoustic target classification using distributed sensor arrays. In Pro-
ceedings of the International Conference on Acoustic, Speech, and Signal Processing
(ICASSP), Orlando, Florida, 2002.

2. Y. Tian and H. Qi. Target detection and classification using seismic signal processing in
unattended ground sensor systems. In Proceedings of the International Conference on
Acoustic, Speech, and Signal Processing (ICASSP), Orlando, Florida, 2002.

3. H. Wang, D. Estrin, and L. Girod. Preprocessing in a tiered sensor network for habitat
monitoring. EURASIP Journal on Applied Signal Processing, 4:392—401, 2003.

4. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring:
Application driver for wireless communications technology. In Proceedings of the st
ACM SIGCOMM Workshop on Data Communications in Latin America and the
Caribbean, San Jose, Costa Rica, 2001.

5a. S. D. Servetto. Sensing Lena—Massively distributed compression of sensor images. In
Proceedings of IEEE International Conference on Image Processing (ICIP), Barcelona,
Spain, September 2003.
5b. S. D. Servetto. Distributed signal proccessing algorithms for the sensor broadcast
problem. In Proceedings of the 37th Annual Conference on Information Sciences and
Systems (CISS), Baltimore, MD, March 2003.

6. C. Kelly IV, V. Ekanayake, and R. Manohar. SNAP: A sensor network asynchronous
processor. In Proceedings of the 9th International Symposium on Asynchronous Circuits
and Systems, Vancouver, BC, 2003.

72

7.

10.

11.

12.

16.

17.

18.

19.

20.

21.

22.

23.

DISTRIBUTED SIGNAL PROCESSING ALGORITHMS

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communicating with a
cubic-millimeter computer. Computer (IEEE), 34(1):44-51, 2001.

. H. Li, A. Lal, J. Blanchard, and D. Henderson. Self-reciprocating radioisotope-powered

cantilever. Journal of Applied Physics, 92(2):1122-1127, 2002.

. J. Elson, L. Girod, and D. Estrin. Fine-grained network time syncrhonization using refer-

ence broadcasts. In Proceedings of the 5th Symposium Operating Systems Design and
Implementation (OSDI), Boston, Massachusetts, 2002.

J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Algorithms for energy-efficient
multicasting in static ad hoc wireless networks. Mobile Networks and Applications,
6:251-263, 2001.

J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Energy-efficient broadcast and
multicast trees in wireless networks. Mobile Networks and Applications, 7:481-492,2002.
I. Maric and R. D. Yates. Cooperative multihop broadcast for wireless networks. IEEE
Journal on Selected Areas in Communications, 22(7):1080—1088.

. A. E. Khandani, J. Abounadi, E. Modiano, and L. Zheng. Cooperative routing in wireless

networks. In Proceedings of the Allerton Conference on Communications, Control and
Computing, 2003.

. A. Srinivas and E. Modiano. Finding minimum energy disjoint paths in wireless ad-hoc

networks. ACM Wireless Networks, forthcoming.

. A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity—part I: System

description. /IEEE Transactions on Communications, 51(11):1927-1938, 2003.

A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity—Part II: Implemen-
tation aspects and performance analysis. IEEE Transactions on Communications,
51(11):1939-1948, 2003.

J.N. Laneman, G. W. Wornell, and D. Tse. An efficient protocol for realizing cooperative
diversity in wireless networks. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT), Washington, D.C., 2001.

J. N. Laneman, D. Tse, and G. W. Wornell. Cooperative diversity in wireless networks:
Low-complexity protocols and outage behavior. IEEE Transactions on Information
Theory, forthcoming.

M. Janani, A. Hedayat, T. Hunter, and A. Nosratinia. Coded cooperation in wireless com-
munications: Space-time transmission and iterative decoding. IEEE Transactions on
Signal Processing, 52(2):362-371, 2004.

T. Hunter and A. Nosratinia. Coded cooperation under slow fading, fast fading, and
power control. In Proceedings of the 36th Asilomar Conference on Signals, Systems
and Computers, 2002.

B. Ananthasubramaniam and U. Madhow. Virtual radar imaging for sensor networks. In
Proceedings of the International Conference on Information Processing in Sensor
Networks (IPSN), Berkeley, California, 2004.

L. R. Varshney and S. D. Servetto. A Distributed Transmitter for the Sensor Reachback
Problem Based on Radar Signals. Paper presented at the NSF-RPI Workshop on Perva-
sive Computing and Networking, Troy, New York, April 2004.

G. Barriac, R. Mudumbai, and U. Madhow. Distributed beamforming for information
transfer in sensor networks. In Proceedings of the 3rd International Conference on
Information Processing for Sensor Networks (IPSN), pages 81—88, Berkeley, California,
2004.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

REFERENCES 73

Y.-S. Tu and G. J. Pottie. Coherent cooperative transmission from multiple adjacent
antennas to a distant stationary antenna through AWGN channels. In Proceedings of
the IEEE 55th Vehicular Technology Conference, Birmingham, Alabama, 2002.

A. Scaglione and Y. Hong. Opportunistic large arrays: Cooperative transmission in
wireless multihop ad hoc networks to reach far distances. IEEE Transactions on Signal
Processing, 51(8):2082-2092, 2003.

J. Elson and K. Romer. Wireless sensor networks: A new regime for time
synchronization. In Proceedings of the Ist Workshop on Hot Topics in Networks
(HotNets-I), Princeton, New Jersey, 2002.

S. Ganeriwal, R. Kumar, S. Adlakha, and M. B. Srivastava. Network-Wide Time Synchro-
nization in Sensor Networks. Technical Report NESL 01-01-2003, University of
California, Los Angeles, 2003.

K. Rémer. Time synchronization in ad hoc networks. In Proceedings of the 2nd ACM
International Symposium on Mobile Ad Hoc Networking and Computing, 2001.

R. Karp, J. Elson, D. Estrin, and S. Shenker. Optimal and Global Time Synchronization
in Sensornets. CENS Technical Report 0012, Center for Embedded Network Sensing,
April 2003.

J. V. Greunen and J. Rabaey. Lightweight time synchronization for sensor networks.
In Proceedings of the 2nd ACM International Workshop on Sensor Networks and Appli-
cations (WSNA), pages 11-19, San Diego, California, 2003.

S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor
networks. In Proceedings of the ACM SenSys’03, Los Angeles, California, 2003.

Y. Hong and A. Scaglione. A scalable synchronization protocol for large scale sensor net-
works and its applications. [EEE Journal on Selected Areas in Communications,
forthcoming.

R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators.
SIAM Journal on Applied Mathematics, 50(6):1645-1662, 1990.

N. Roberts. Phase noise and jitter: A primer for digital designers, from http://
www.eedesign.com/showArticle.jhtml?articleID=16501598, 2003.

Fundamentals of Quartz Oscillators, Application Note 200-2, Electronic Counters Series,
Hewlett Packaging, 1997.

A. Hu and S. D. Servetto. On the Scalability of Cooperative Time Synchronization in
Pulse-Connected Networks. Submitted for publication.

A. Hu and S. D. Servetto. Algorithmic aspects of the time synchronization problem in
large-scale sensor networks. Mobile Networks and Applications, forthcoming.

A. Hu and S. D. Servetto. Asymptotically optimal time synchronization in dense sensor
networks. In Proceedings of the 2nd ACM International Workshop on Sensor Networks
and Applications (WSNA), San Diego, California, 2003.

A. Hu and S. D. Servetto. dFSK: Distributed frequency shift keying modulation in dense
sensor networks. In Proceedings of the IEEE International Conference on Communi-
cation (ICC), Paris, France, June 2004.

S. G. Wilson. Digital Modulation and Coding. Prentice-Hall, 1996.

S. D. Servetto. Lattice quantization with side information: Codes, asymptotics, and appli-
cations in sensor networks. IEEE Transactions on Information Theory, forthcoming.
(Available from http://cn.ece.cornell.edu/.)

I CHAPTER 3

Energy Scavenging and
Nontraditional Power Sources for
Wireless Sensor Networks

SHAD ROUNDY
LV Sensors, Inc., Emeryville, California

LUC FRECHETTE

Universite de Sherbrooke, Sherbrooke, Canada

Wireless sensor networks are poised to become a very significant enabling technol-
ogy in many sectors. While there has been a significant research effort in this area
for a number of years, only more recently have companies begun to offer standard
wireless sensor platforms and customized wireless sensor network solutions. Almost
all of the available platforms are designed to run on batteries that have a very lim-
ited lifetime. However, longer lifetimes are necessary if wireless sensor networks
are to become a ubiquitous part of our environment. While progress can be made
by reducing the power consumption, eventually alternative power sources will
need to be employed. This chapter reviews many potential power sources for wire-
less sensor nodes. Traditional power sources, such as batteries, are reviewed along
with emerging technologies and currently untapped sources. Potential power
sources are classified as energy reservoirs, power-distribution methods, or
power-scavenging methods, which enable wireless nodes to be completely self-
sustaining. Several power sources capable of providing power on the order of
100 uw/ em’® for very long lifetimes are feasible. It is the authors’ opinion that no
single power source will suffice for all applications, and that the choice of a
power source needs to be considered on an application-by-application basis.

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

75

76 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES
3.1 INTRODUCTION

The last several years have witnessed a large research effort based around the vision
of ubiquitous networks of wireless sensor and communication nodes [1-3]. As the
size and cost of such wireless sensor nodes continue to decrease, the likelihood of
their use becoming widespread in buildings, industrial environments, automobiles,
aircraft, and so forth, increases. However, as their size and cost decrease, and as
their prevalence increases, effective power supplies become a larger problem.

The scaling down in size and cost of complementary metal-oxide semiconductor
(CMOS) electronics has far outpaced the scaling of energy density in batteries,
which are by far the most prevalent power sources currently used. Therefore, the
power supply is quickly becoming the largest and most expensive component of
the emerging wireless sensor nodes being proposed and designed. The cost of bat-
teries is compounded by the fact that batteries must be either replaced or recharged
on a regular basis. This regular maintenance could easily become the single greatest
cost of installing a wireless sensor network for many applications. If wireless sensor
networks are to truly become ubiquitous, replacing batteries in every device every
year or two is simply cost prohibitive.

The purpose of this chapter, then, is to review existing and potential power
sources for wireless sensor networks. Current state-of-the-art, ongoing research,
and theoretical limits for many potential power sources are discussed. One can clas-
sify possible methods of providing power for wireless nodes into three groups: store
energy on the node (i.e., a battery), distribute power to the node (i.e., a wire), and
scavenge available ambient power at the node (i.e., a solar cell). Power sources
that fall into each of these three categories are reviewed. Of course, combinations
of the three methods are also possible. In fact, even in an energy-scavenging
method some onboard energy storage must be available.

A direct comparison of vastly different types of power source technologies is
difficult. For example, comparing the efficiency of a solar cell to that of a battery
is not very useful. However, in an effort to provide a general understanding of a
wide variety of power sources, the following metrics will be used for comparison:
power density, energy density (where applicable), and average power density over
a year of use. Additional considerations are the complexity of the power electronics
needed and whether secondary energy storage is needed.

3.2 POWER CONSUMPTION

Before considering power sources, it is useful to consider the power demand of a
typical wireless sensor node. Assuming that the radio transmitter operates at
approximately 0 dBm (which would roughly correspond to an average distance of
10 m between nodes), the peak power consumption of the radio transmitter will
be around 2-3 mW, depending upon its efficiency. Using low-power techniques
[4], the receiver should not consume more than 1 mW. Including the dissipation
of the sensors and peripheral circuitry, a maximum peak power of 5 mW is quite

3.3 ENERGY RESERVOIRS 77

reasonable. Given a maximum data rate for the radio of 100 kbit/s, and an average
traffic load per node of 1 kbit/s (these numbers are based on real radio prototypes
and a realistic smart home scenario), every node operates at a duty cycle of approxi-
mately 1%. During the remaining 99%, the only activities taking place in a node are
a number of background tasks: low-speed timers, channel monitoring, and node syn-
chronization. The latter actually is the dominant power-consuming source of the
node if not handled appropriately. Using advanced “wake-up radio techniques” or
semi-asynchronous beaconing techniques; the average ‘“standby” power of the
node can be limited to 50 wW or lower. Combining peak and standby power dissi-
pation leads to an average power dissipation of approximately 100 pW.

Several small low-power wireless platforms are currently available commer-
cially. Companies providing wireless sensor platforms include Dust Networks [5],
Crossbow [6], Xsilogy [7], Ember [8], and Millenial Net [9]. The power needed
to operate these platforms depends on how and where they are used. Based on the
authors’ investigations, they generally require an average power consumption of
about one order of magnitude higher than the 100 wW proposed earlier (generally
one to several mW). However, research projects have demonstrated that a wide
range of applications is possible within a power budget of approximately
100 wW. For the purposes of this discussion, it will be assumed that a rough standard
of acceptability for a power source is its ability to provide 100 wW within the size
constraints of the application for a lifetime prescribed by the application. For pur-
poses of comparison, it is necessary to normalize the power potential of the different
technologies that will be discussed. While each application will have different
constraints on the overall size of the wireless sensor, a standard volume of 1 cm’
has been chosen as a reasonable size constraint for many applications. Therefore,
power (or energy) per cm® will be used as a primary metric of comparison.

3.3 ENERGY RESERVOIRS

Energy storage, in the form of electrochemical energy stored in a battery, is the pre-
dominant means of providing power to wireless devices today. Batteries are
probably the easiest power solution for wireless electronics because of their versa-
tility. However, several other forms of energy storage may be useful for wireless
sensor nodes. Regardless of the form of the energy storage, the lifetime of the
node will be determined by the fixed amount of energy stored on the device.
While it is cost effective in some applications to repeatedly change or recharge bat-
teries, if wireless sensor nodes are to become a ubiquitous part of the environment, it
will no longer be cost effective. The primary metric of interest for all forms of
energy storage will be usable energy per unit volume (J/ cm?) and the closely related
average power per unit volume per unit time (MW/cm3 /year) of operation. An
additional issue is that the instantaneous power that an energy reservoir can
supply is usually dependent on its size. Therefore, in some cases, such as micro-
batteries, the maximum instantaneous power density (uW/cm3) is also an issue
for energy reservoirs.

78 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

TABLE 3.1 Energy Density of Three Primary Battery Chemistries

Chemistry Zinc—Air Lithium Alkaline
Energy (J/cm?) 3780 2880 1200

3.3.1 Macroscale Batteries

Electrochemical batteries have been the dominant form of power storage and deliv-
ery for electronic devices for decades, thus their consideration for use in wireless
sensor networks is natural. Primary batteries are perhaps the most versatile of all
small power sources. Table 3.1 shows the energy density for a few common primary
battery chemistries. Figure 3.1 shows the average power available from these battery
chemistries versus lifetime. Figure 3.1 includes leakage and shelf-life effects. Note
that while zinc—air batteries have the highest energy density, their lifetime is very
short.

Because batteries have a fairly stable voltage, electronic devices can often be run
directly from the battery without any intervening power electronics. While this may
not be the most robust method of powering the electronics, it is often used and is
advantageous in that it avoids the extra power consumed by power electronics.

Macroscale secondary (rechargeable) batteries are commonly used in consumer
electronic products such as cell phones, personal digital assistants (PDAs), and note-
book computers. Table 3.2 gives the energy density of a few common rechargeable
battery chemistries.

It should be remembered that rechargeable batteries are a secondary power
source. Therefore, in the context of wireless sensor networks, another primary
power source must be used to charge them. In most cases it would be cost prohibitive
to manually recharge each device. More likely, an energy-scavenging source on the
node itself, such as a solar cell, would be used to recharge the battery. One item to

1000 A

/ Lithium

100

W/ cm3

10 \ \
AN ai
1 ine-air Alkaline
0 T T T T 1
0 1 2 3 4 5
Years

Figure 3.1 Continuous power per cm® vs. lifetime for three primary battery chemistries.

3.3 ENERGY RESERVOIRS 79

TABLE 3.2 Energy Density of Three Secondary Battery Chemistries

Chemistry Lithium NiMHd NiCd
Energy (J/cm?) 1080 860 650

consider when using rechargeable batteries is that electronics to control the charging
profile must often be used. These electronics add to the overall power dissipation of
the device. However, like primary batteries, the output voltages are stable and power
electronics between the battery and the load electronics can often be avoided.

3.3.2 Microscale Batteries

Microscale batteries could be grouped into two categories. The first includes extre-
mely thin (and often flexible) batteries that can be used in very small assembled
devices. The second includes thin-film batteries that are fabricated on a wafer
substrate (often silicon) and have the potential of being monolithically integrated
with electronics. Examples of the first kind include the products of Paper Power
[10] and Cymbet [11]. Research on thin-film batteries of the second kind are
included in the following discussion.

One of the main stumbling blocks to reducing the size of microbatteries is power
output due to surface area limitations of microscale devices. This is true for either
type of microbatteries, as classified here. However, it is even more acute for
on-chip microbatteries. For low-power sensor nodes, maximum power output is
generally not an issue. Therefore, the capacity, or energy density, of the battery dom-
inates its consideration for use. However, the maximum current output of a battery
depends on the surface area of the electrodes. Because microbatteries are so small,
the electrodes have a small surface area, and their maximum current output is also
very small. This problem can be alleviated to a certain degree by placing a large
capacitor in parallel with the battery capable of providing short bursts of current.
However, the capacitor itself consumes additional volume, and therefore may not
be desirable in many applications.

The challenge of maintaining (or increasing) performance of on-chip micro-
batteries while decreasing size is being addressed on multiple fronts. Bates et al.
at Oak Ridge National Laboratory have created a process by which a primary
thin-film lithium battery can be deposited onto a chip [12]. The thickness of the
entire battery is on the order of tens of wm, but the areas studied are in the cm?
range. This battery is in the form of a traditional Volta pile, with alternating
layers of lithium manganese oxide (or lithium cobalt oxide), lithium phosphate
oxynitride, and lithium metal. Maximum potential is rated at 4.2 V with
continuous/max current output on the order of 1 mA/cm” and 5 mA /cm? for the
LiCoO,~-Li-based cell.

Work is being done on thick-film batteries with a smaller surface area by Harb
et al. [13], who have developed microbatteries of Ni/Zn with an aqueous NaOH
electrolyte. Thick films are on the order of 0.1 mm, but overall thicknesses are

80 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

minimized by use of three-dimensional (3D) structures. While each cell is only rated
at 1.5 V, geometries have been duty-cycle optimized to give acceptable power out-
puts at small overall theoretical volumes (4 mm by 1.5 mm by 0.2 mm), with good
durability demonstrated by the electrochemical components of the battery. The main
challenges lie in maintaining a microfabricated structure that can contain an aqueous
electrolyte.

Radical 3D structures are also being investigated to maximize power output. Hart
et al. [14] have theorized a 3D battery made of series alternating cathode and anode
rods suspended in a solid electrolyte matrix. Theoretical power outputs for a 3D
microbattery are shown to be many times larger than a two-dimensional (2D) battery
of equal size (with far lower ohmic ionic transport distances, thus lower ohmic
losses).

For example, a 1-cm? thin film with each electrode having a thickness of 22 wm
and a 5-pm electrolyte would have a maximum current density on the order of 5 mA.
If the battery is restructured to have the same total volume, with square packing
electrode rods (as Hart et al. have proposed) with a 5-pm radius and a 5-pm
surface-to-surface distance, geometry dictates that the energy capacity is reduced
to 39% of the thin-film capacity (due to a higher volume percentage of electrode
material for the standard thin-film battery). However, while the energy density is
lower for the 3D battery, the power density is higher due to a higher surface area.
In fact, the 3D battery would have a total electrode area of 3.5 cm2, an increase of
350%. The increase in surface area alone improves the current density to
17.5 mA. Moreover, the ionic transport scale in the 2D structure is about 350%
longer than the 3D case because the electrodes for the 3D case are much thinner.
Therefore, decreased ohmic losses could further improve the maximum throughput
to 20 mA at 4.2 V. However, the inherent nonuniformities in current distribution in
3D batteries (exacerbated by the particular complexity of this cell) may lead to
difficulties with regard to device reliability on primary battery systems and cycle
life in secondary battery systems.

3.3.3 Ultracapacitors

Ultracapacitors represent a compromise of sorts between rechargeable batteries and
standard capacitors. Capacitors can provide significantly higher power densities than
batteries; however, their energy density is lower by about two orders of magnitude.
Ultracapacitors (also called supercapacitors or electrochemical capacitors) achieve
significantly higher energy density than standard capacitors, but retain many of
the favorable characteristics of capacitors, such as long life, high current density,
and short charging time.

Rather than just storing charge across a dielectric material, as capacitors do, ultra-
capacitors store ionic charge in an electric double layer to increase their effective
capacitance. The energy density of commercially available ultracapacitors is
about one order of magnitude higher than standard capacitors and about one
order of magnitude lower than rechargeable batteries (or about 50 to 100 J/cm?).
Because of their increased lifetimes, short charging times, and high power densities,

3.3 ENERGY RESERVOIRS 81

ultracapacitors could be very attractive as a secondary power source in place of
rechargeable batteries in some wireless sensor node applications. Corporations
working on such ultracapacitors include NEC [15] and Maxwell [16].

3.3.4 Microfuel Cells

Hydrocarbon-based fuels have very high energy densities compared to batteries. For
example, methanol has an energy density of 17.6 kJ /cm?, which is about six times
that of a lithium battery. Therefore, fuel cells are potentially very attractive for wire-
less sensor nodes. Like batteries, fuel cells produce electrical power from a chemical
reaction. A standard fuel cell uses hydrogen atoms as fuel. A catalyst promotes the
separation of the electron in the hydrogen atom from the proton. The proton diffuses
through an electrolyte (often a solid membrane), while the electron is available for
use by an external circuit. The protons and electrons recombine with oxygen atoms
on the other side (the oxidant side) of the electrolyte to produce water molecules.
This process is illustrated in Figure 3.2. While pure hydrogen can be used as a
fuel, other hydrocarbon fuels are often used. For example, in direct methanol fuel
cells (DFMC) the anode catalyst draws the hydrogen atoms out from the methanol.

Most single fuel cells tend to output open-circuit voltages around 1.0—1.5 V. Of
course, like batteries, the cells can be placed in series for higher voltages. The vol-
tage is quite stable over the operating lifetime of the cell, but it does fall off with
increasing current draw. Figure 3.3 shows the voltage versus current load for a typi-
cal fuel cell. Notice that as the current density increases, the dominant loss mechan-
ism also changes. Because the voltage drops with current, it is likely that some
additional power electronics will be necessary if replacing a battery with a fuel cell.

Large-scale fuel cells have been used as power supplies for decades. For
example, the Apollo spacecraft used alkaline fuel cells for electricity. More recently,

- R——

= Load & t
o 1 2
< + lons I
+ o~
T & T
=3 _ D - N
T) = © e, <
% +

2 EEE DR E

™ c i ® £
< w O S
o
1 (@]

H, Qe

Figure 3.2 Illustration of how a standard hydrogen fuel cell works.

82 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

1.2 4 Y Y — |deal voltage
Activation Resist
1.0 loss region esls arjce Transport
loss region :
loss region

0.8

> 0.6 A
v

0.2 1

O T T T T 1
0 200 400 600 800 1000

I (mA/cm?)

Figure 3.3 Typical voltage vs. current curve for a fuel cell.

fuel cells have been developed as alternative power supplies for automobiles. Cells
using a variety of fuels and electrolytes have been successfully used at the macro-
scale. Recently, fuel cells have gained favor as a replacement for consumer batteries
[17]. Small, but still macroscale, fuel cells are likely to soon appear in the market as
battery rechargers and battery replacements [18].

The research trend is toward microfuel cells that could possibly be closely inte-
grated with wireless sensor nodes. Like microbatteries, a primary metric of compari-
son in microfuel cells is power density in addition to energy density. As with
microbatteries, the maximum continuous current output is dependent on the elec-
trode surface area. Microfabricated fuel cells offer an advantage in surface-to-
volume ratio, thereby giving them a higher power density. Likewise microfabricated
features can potentially improve gas diffusion and lower the internal resistance [19],
both of which improve efficiency.

Fuel cells tend to operate better at higher temperatures, which are more difficult
to maintain for microfuel cells. Efficiencies of large-scale fuel cells have reached
approximately 45% electrical conversion efficiency and nearly 90% if cogeneration
is employed [20]. Efficiencies for microscale fuel cells will certainly be lower. The
maximum obtainable efficiency for a microfuel cell is still uncertain. Demonstrated
efficiencies are generally below 1% [21].

Many research groups are working on microfabricated partial systems that typi-
cally include an electrolyte membrane, electrodes, and channels for fuel and oxidant
flow. Recent examples include the hydrogen-based fuel cells developed by Hahn
et al. [22] and Lee et al. [23]. Both systems implement microfabricated electrodes
and channels for fuel and oxidant flow. The system by Hahn et al. produces
power on the order of 100 mW/ cm?® from a device 0.54 cm? in size. The system

3.3 ENERGY RESERVOIRS 83

by Lee et al. produces 40 mW/ cm?. It should be noted that the fundamental charac-
teristic here is power per unit area rather than power per unit volume, because the
devices are fundamentally planar. Complete fuel storage systems are not part of
their studies, and therefore an energy or power per unit volume metric is not
appropriate. Fuel-conversion efficiencies are not reported.

Hydrogen storage on a small scale is a difficult problem that has not yet been
solved. It is primarily for this reason that methanol-based microfuel cells are also
being investigated by numerous groups. Holloday et al. [21] have demonstrated a
research methanol fuel processor with a total size on the order of several mm®.
This fuel processor has been combined with a thin fuel cell, 2 cm?in area, to produce
roughly 25 mA at 1-V with 0.5% overall efficiency. They are targeting a 5% efficient
cell. Additionally, Mench et al. [24] have proposed a complete 3D methanol fuel cell
with a volume of 1 cm®. The system would contain all necessary elements except a
methanol reservoir. The projected power outputis 1 W/ cm’ at a projected efficiency
of 30%; however, to the authors’ knowledge, this has not been demonstrated. It
should be noted that this is a stacked fuel cell and that if fuel volume were included,
the power density would be lower.

Given the energy density of fuels such as methanol, fuel cells need to reach effi-
ciencies of at least 20% in order to be more attractive than primary batteries. Never-
theless, at the microscale, where battery efficiencies are also lower, a lower
efficiency fuel cell could still be attractive. Finally, providing for sufficient fuel
and oxidant flows is a very difficult task in microfuel cell development. The ability
to microfabricate electrodes and electrolytes does not guarantee the ability to realize
a microfuel cell. The problem of microfabricating the fuel reservoir and all of the
plumbing is arguably a more difficult task than the microfabrication of electrodes.
To the authors’ knowledge, a self-contained on-chip fuel cell has yet to be
demonstrated.

3.3.5 Micro-Heat Engines

At large scales, fossil fuels are the dominant source of energy used for electric-
power generation, mostly due to the low cost per joule, high energy density, abun-
dant availability, storability, and ease of transport. Power plants typically convert
the chemical energy of the fuel into thermal energy through combustion, then
convert thermal to mechanical power by driving a heat engine that implements a
thermodynamic cycle (such as gas turbines or internal combustion engines). The
engine then entrains a magnetic generator to produce the electrical power. To
date, the complexity and multitude of components involved in such a process
have hindered the miniaturization of heat engines and power generation approaches
based on combustion of hydrocarbon fuels. As the scale of a mechanical system is
reduced, the tolerances must reduce accordingly, and the assembly process becomes
increasingly challenging. This results in increasing costs per unit power and/or
deteriorated performance.

The extension of silicon microfabrication technology from microelectronics to
microelectromechanical systems (MEMS) is changing this paradigm. Complex

84 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

microsystems that integrate mechanical, chemical, thermal, fluidic, and electro-
magnetic functions on-chip can be batch fabricated with micron-scale precision
using photolithography, etching, and other microfabrication techniques. In the
mid-1990s, Epstein et al. proposed that microengines, that is, dime-size heat
engines, for portable power generation and propulsion could be fabricated using
MEMS technology [25]. The initial concept consisted of using silicon deep reactive
ion etching, fusion wafer bonding, and thin-film processes to microfabricate and
integrate high-speed turbomachinery, with bearings, a generator, and a combustor
within a cubic-centimeter volume. An application-ready power supply would also
require auxiliary components, such as a fuel tank, engine and fuel controller,
electrical power conditioning with short-term storage, thermal management and
packaging. Expected performance is 10-20 W of electrical power output at thermal
efficiencies on the order of 5—20%. Figure 3.4 shows a microturbine test device used
for turbomachinery and air bearing development.

Multiple research groups across the globe have also undertaken the development
of various micro-heat engine—based power-generation approaches. Ongoing micro-
engine projects include microgas turbine engines [25,26], Rankine steam turbines
[27], rotary Wankel internal combustion engines [28], free and spring-loaded
piston internal combustion engines [29,30], and thermal-expansion—actuated piezo-
electric power generators [31,32], to name a few. In addition, various static

4 mm Turbine—top

Microturbine bearing rig (section A-A)

44— 4mmdiam ——Pp

Figure 3.4 Microturbine development device, which consists of a 4-mm-diameter single-
crystal silicon rotor enclosed in a stack of five bonded wafers used for microair bearing
development.

3.3 ENERGY RESERVOIRS 85

approaches to convert heat into electricity are in development for small scales,
including thermoelectric [33,34], thermionic [35], and thermophotovoltaic [36]
components coupled with a heat source.

Most of these and similar efforts are at initial stages of development, and perform-
ance has not been demonstrated. However, predictions range from 0.1 to 10 W of
electrical power output, with typical masses ~1—5 g and volumes ~1 cm?. Microen-
gines are not expected to grow smaller in size due to manufacturing and efficiency
constraints. At small scales, viscous drag on moving parts and heat transfer to the
ambient air and between components increase, which adversely impacts efficiency.

The main system level parameter that emerges for wireless sensor applications is
the energy-conversion efficiency, 4 (ratio of output electrical power to what is avail-
able from the fuel). For a duration, #, and average power level, P, the mass of fuel
required is simply the product of duration and average power level, divided by
the fuel heating value, hy,.;, and efficiency: mype; = (t*P)/(hyue*). Typical values
of expected fuel requirements are presented in Table 3.3 for a 10-year mission con-
suming an average power of 1 mW (efficiency of 10% is assumed). The fuel require-
ment tends to dominate the envelope of the complete system, given the small engine
size and mass. If refueling is possible during the mission, then the overall size of the
power supply is dramatically reduced, and tends toward the size of the engine and
auxiliary components for short autonomous periods.

Alternatively, if high-quality (temperature) heat is available from the surround-
ings, the engine could scavenge it instead of burning fuel. Examples of such sources
include waste heat from large engines and solar irradiation. Lower efficiencies are,
however, expected if the heat-source temperatures are lower than those created by
combustion products (1000—1500 K). This situation is considered further in the
Section 3.5 on power scavenging.

Given the relatively large power level, a single microengine would only need to
operate at low duty cycles (less than 1% of the time) to periodically recharge a bat-
tery. The total operating time is therefore on the order of hundreds of hours, which
alleviates lifetime issues for the engine. It should also be noted that the inefficiency
of a heat engine will result in heat discharge to its surroundings. For example, an
engine with 1-W output power operating at 10% efficiency is consuming 10 W
from the fuel and discharging 9 W of heat during periods of operation. Specific
applications must allow release of this heat. Combining micro-heat engines with

TABLE 3.3 Fuel for 10-Year Mission at 1-mW Average Power Provided by a 10%
Efficient Micro-Heat Engine

Net Specific Energy (/e n)

Fuel (Wh/kg) Fuel Mass (g) Fuel Volume (cm?)
Gasoline 1324 66 94
Butane 1270 69 99

Hydrogen 3337 26 972

86 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

thermoelectrics that convert some of this waste heat would lead to greater overall
efficiency, but with a cost and size penalty for adding such components.

Overall, the greatest benefits of micro-heat engines are their high power density
(0.1-2 W/g, without fuel) and their use of fuels allowing high-density energy
storage for compact, long-duration power supplies. For long missions, the power
density is not as important as efficiency. Microengines will therefore require
many years of development before reaching the expected efficiencies and being
applicable for real-life applications.

3.3.6 Radioactive Power Sources

Some radioactive materials contain extremely high-energy densities. As with hydro-
carbon fuels, energy derived from radioactive materials has been used on a much
larger scale for decades. However, it has not been exploited on a small scale, as
would be necessary to power wireless sensor networks. The use of radioactive
materials can pose a serious health hazard, and is a highly political and controversial
topic. It should, therefore, be noted that the goal here is neither to promote nor to
discourage investigation into radioactive power sources, but to present their poten-
tial, and the research being done in the area.

The most probable method of generating power from radioactive materials on a
small scale is to make use of their natural decay. The total energy emitted by radio-
active decay of a material can be expressed as in equation (3.1).

E, =A.E,T (3.1

where E; is the total emitted energy, A, is the activity, E, is the average energy of
emitted particles, and T is the time period over which power is collected.
Table 3.4 lists several potential radioisotopes, their half-lives, specific activities,
and energy densities based on radioactive decay. It should be noted that materials
with lower activities and longer half-lives will produce lower power levels for
more time than materials with comparatively short half-lives and high specific
activities. The half-life of the material has been used as the time over which
power would be collected. Only alpha and beta emitters have been included, because

TABLE 3.4 Comparison of Radioisotopes

Half-Life Activity Volume Density Energy Density
Material (years) (Ci/cm?) (J/ecm?®)
B8y 45 x 10° 6.34 x 107° 2.23 x 10'°
O3Ni 100.2 506 1.6 x 10%
3254 172.1 151 3.3 x 108
0sr 28.8 350 3.7 x 108

32p 0.04 52 % 10° 2.7 x 10°

3.4 POWER DISTRIBUTION 87

of the heavy shielding needed for gamma emitters. Finally, uranium-238 is included
for purposes of comparison only.

While the energy density numbers reported for radioactive materials are extremely
attractive, it must be remembered that in most cases the energy is being emitted over a
very long period of time. Second, efficient methods of converting this power to electri-
city at small scales do not exist. Therefore, efficiencies would likely be extremely low.

Li and Lal [37] have used the ®Ni isotope to actuate a conductive cantilever. As
the beta particles (electrons) emitted from the ®*Ni isotope collect on the conductive
cantilever, there is an electrostatic attraction. At some point, the cantilever contacts
the radioisotope and discharges, causing the cantilever to oscillate. Up to this point,
the research has only demonstrated the actuation of a cantilever, and not electric
power generation. However, electric power could be generated from an oscillating
cantilever. The reported power output, defined as the change over time in the
combined mechanical and electrostatic energy stored in the cantilever, is 0.4 pW
from a 4mm x 4 mm thin film of ®Ni. This power level is equivalent to
0.52 pW/ cm’. However, it should be noted that using 1 cm® of ®*Ni is impractical.
The reported efficiency of the device is 4 x 107°.

3.4 POWER DISTRIBUTION

In addition to storing power on a wireless node, in certain circumstances power can
be distributed to the node from a nearby energy-rich source. It is difficult to charac-
terize the effectiveness of power-distribution methods by the same metrics (power or
energy density), because in most cases the power received at the node is more a
function of how much power is emitted rather than the size of the power receiver
at the node. Nevertheless, an effort is made to characterize the effectiveness of a
few power distribution methods as they apply to wireless sensor networks.

3.4.1 Electromagnetic (RF) Power Distribution

The most common method (other than wires) of distributing power to embedded
electronics is through the use of RF radiation. Many passive electronic devices,
such as electronic ID tags and smart cards, are powered by a nearby energy-rich
source that transmits RF energy to the passive device. The device then uses that
energy to run its electronics [38,39]. This solution works well, as evidenced by
the wide variety of applications where it is used, if there is a high-power scanner
or other source in very close proximity to the wireless device. It is, however, less
effective in dense ad hoc networks where a large area must be flooded with RF radi-
ation to power many wireless sensor nodes.

Using a very simple model and neglecting any reflections or interference, the
power received by a wireless node can be expressed by equation (3.2) [40]:

P’

i 32
47R2 (3-2)

88 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

where P is the transmitted power, A is the wavelength of the signal, and R is the dis-
tance between transmitter and receiver. Assume that the maximum distance between
the power transmitter and any sensor node is 5 m, and that the power is being trans-
mitted to the nodes in the 2.4—2.485-GHz frequency band, which is the unlicensed
industrial, scientific, and medical band in the United States. Federal regulations
limit ceiling-mounted transmitters in this band to 1 W or lower. Given a 1-W trans-
mitter, and a 5-m maximum distance, the power received at the node would be
50 wW, which is probably on the borderline of being useful for wireless sensor net-
works. However, in reality the power transmitted will fall off at a rate faster than
1/R? in an indoor environment. A more likely figure is 1/R *. While the 1-W limit
on a transmitter is by no means general for indoor use, it is usually the case that
some sort of safety limitation would need to be exceeded in order to flood a room
or other area with enough RF radiation to power a dense network of wireless devices.

3.4.2 Wires, Acoustic Emitters, Light, and More

Other means of transmitting power to wireless sensor nodes might include wires,
acoustic emitters, and light or lasers. However, none of these methods seem appro-
priate for wireless sensor networks. Running wires to a wireless communications
device defeats the purpose of wireless communications. Energy in the form of acous-
tic waves has a far lower power density than is sometimes assumed. A sound wave of
100 dB in sound level only has a power level of 0.96 LW /cm®. One could also ima-
gine using a laser or other focused light source to direct power to each of the nodes in
the sensor network. However, to do this in a controlled way, distributing light energy
directly to each node, rather than just flooding the space with light, would likely be
too complex and not cost effective. If an entire space is flooded with light, then this
source of power becomes attractive. However, this situation has been classified as
“power scavenging” and will be discussed in the following section.

3.5 POWER SCAVENGING

Unlike power sources that are fundamentally energy reservoirs, power-scavenging
(also referred to as energy scavenging or energy harvesting) sources are usually charac-
terized by their power density rather than energy density. Energy reservoirs have a
characteristic energy density, and how much average power they can provide is
then dependent on the lifetime over which they are operating. In contrast, power-
scavenging sources have a characteristic power density, and the total amount of energy
they provide depends on how long the source is in operation. Therefore, the primary
metric for comparison of scavenged sources is power density, not energy density.

3.5.1 Photovoltaics (Solar Cells)

At midday on a sunny day, the incident light on the Earth’s surface has a power den-
sity of roughly 100 mW/ cm?. Single-crystal silicon solar cells exhibit efficiencies of

3.5 POWER SCAVENGING 89

TABLE 3.5 Power from a Cadmium Telluride Solar Cell at Various Distances from a
60 W Incandescent Bulb and Under Standard Office Lighting Conditions

Distance 8 in. 12 in. 18 in. Office Light

Power (MW/cm2) 503 236 111 7.2

15%—-20% [41] under high light conditions, as one would find outdoors. Common
indoor lighting conditions have far lower power density than outdoor conditions.
Common office lighting provides about 100 p,W/cm2 at the surface of a desk.
Single-crystal silicon solar cells are better suited to high light conditions and the
spectrum of light available outdoors [41]. Thin-film amorphous silicon or cadmium
telluride cells offer better efficiency indoors because their spectral response more
closely matches that of artificial indoor light. Still, these thin-film cells only offer
about 10% efficiency. Therefore, the power available from photovoltaics ranges
from about 15 mW /cm? outdoors to about 10 wW /cm” indoors. Table 3.5 shows
the measured power outputs from a cadmium telluride solar cell (Panasonic
BP-243318) at varying distances from a 60-W incandescent bulb.

A single solar cell has an open circuit voltage of about 0.6 V. Individual cells are
easily placed in series, especially in the case of thin-film cells, to get almost any
desired voltage needed. A current vs. voltage (/-V) curve for a typical five cell
array (wired in series) is shown below in Figure 3.5. Unlike the voltage, current
densities are directly dependent on the light intensity.

Solar cells provide a fairly stable DC voltage through much of their operating
space. Therefore, they can be used to directly power electronics in cases where
the current load is such that it allows the cell to operate on high voltage side of
the “knee” in the /-V curve and where the electronics can tolerate some deviation
in source voltage. More commonly, solar cells are used to charge a secondary bat-
tery. Solar cells can be connected directly to rechargeable batteries through a simple

1.2 A
1.0
0.8
0.6
0.4
0.2

0 T T T T T T 1
0 0.5 1.0 1.5 2.0 25 3.0 3.5
Volts

mA

Figure 3.5 Typical I-V curve from a cadmium telluride solar array (Panasonic BP-243318).

90 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

series diode to prevent the battery from discharging through the solar cell. This
extremely simple circuit does not ensure that the solar cell will be operating at its
optimal point (which is at the knee in the /-V curve), and so power production
will be lower than the maximum possible. Second, rechargeable batteries will
have a longer lifetime if a more controlled charging profile is employed. However,
controlling the charging profile and the operating point of the solar cell both require
more electronics, which use power themselves. An analysis needs to be done for
each individual application to determine what level of power electronics would
provide the highest net level of power to the load electronics. Longevity of the
battery is another issue to be considered in this analysis.

3.5.2 Temperature Gradients

Naturally occurring temperature variations can also provide a means by which
energy can be scavenged from the environment. The maximum efficiency of
power conversion from a temperature difference is equal to the Carnot efficiency,
which is given as equation (3.3):

_ Thigh - Tlow

=— (3.3)
1 Thigh

Assuming a room temperature of 20°C, the efficiency is 1.6% from a source 5°C
above room temperature and 3.3% for a source 10°C above room temperature.

A reasonable estimate of the maximum amount of power available can be made,
assuming heat conduction through silicon material. Convection and radiation would
be quite small compared to conduction at small scales and low temperature differ-
entials. The amount of heat flow (power) is given by equation (3.4):

q =k— (3.4)

where k is the thermal conductivity of the material and L is the length of the material
through which the heat is flowing. The conductivity of silicon is approximately
140 W/mK. Assuming a 5°C temperature differential and a length of 1 cm, the
heat flow is 7 W /cm?. If Carnot efficiency could be obtained, the resulting power
output would be 117 mW /cm®. While this is an excellent result compared with
other power sources, one must realize demonstrated efficiencies are well below
the Carnot efficiency. This is particularly true of microscale devices.

A number of researchers have developed systems to convert power from tempera-
ture differentials to electricity. The most common method is through thermoelectric
generators that exploit the Seebeck effect to generate power. For example, Stordeur
and Stark [42] have demonstrated a microthermoelectric generator capable of
generating 15 MW/CH’IZ from a 10°C temperature differential. Furthermore, they
report a technology limit of about 30 wW/ cm? for the technology used. The first
wristwatches powered by body heat have been manufactured by Seiko and Citizen.

3.5 POWER SCAVENGING 91

The energy consumption of the Seiko watch is specified at 1 wW, with a driving vol-
tage of 1.5 V [43]. Citizen [44] employs a thermoelectric generator with a contact
area of 0.7 cm x 0.7 cm and a height of 1.5 mm that generates a voltage of 0.5V
and has a power output of 13.8 wW under load at a temperature difference of 1 K.
Additionally, Applied Digital Solutions has developed a thermoelectric generator
soon to be marketed as a commercial product. The generator is reported to be
able to produce 40 pW of power from a 5°C temperature differential using a
device 0.5 cm? in area and a few millimeters thick [45]. The output voltage of the
device is approximately 1 V. Finally, the thermal-expansion—actuated piezoelectric
generator referred to earlier [31] has also been proposed as a method to convert
power from ambient temperature gradients to electricity. While all of these devices
exhibit efficiencies well below the theoretical maximum efficiency, power densities
in the range of 50 to 100 wW /cm? of device area have been demonstrated. This level
of power could be enough to power a wireless sensor in an environment where ther-
mal gradients of 1°C to 5°C are common.

3.5.3 Human Power

An average human body burns about 10.5 MJ of energy per day. (This corresponds
to an average power dissipation of 121 W.) Starner has proposed tapping into some
of this energy to power wearable electronics [46]. For example, wristwatches are
powered using both the kinetic energy of a swinging arm and the heat flow away
from the surface of the skin [47].

The conclusion of studies undertaken at MIT suggests that the most energy-rich
and most easily exploitable source occurs at the foot during heel strike and in the
bending of the ball of the foot [48]. This research has led to the development of
piezoelectric shoe inserts capable of producing an average of 330 pW/ cm? while
a person is walking. The shoe inserts have been used to power a low-power wireless
transceiver mounted to the shoes. While this power source is of great use for a wire-
less node worn on a person’s foot, the problem of how to get the power from the shoe
to any other point of interest still remains.

The sources of power mentioned earlier are passive power sources in that the human
does not need to do anything other than what he or she would normally do to generate
power. There is also a class of power generators that could be classified as active human
power in that they require the human to perform an action that they would not normally
perform. For example, Freeplay [49] markets a line of products that are powered by a
constant-force spring that the user must wind up. While these types of products are
extremely useful, they are not very applicable to wireless sensor networks, because
it would be impractical and not cost efficient to individually wind up every node.

3.5.4 Wind/Airflow

Wind power has been used on a large scale as a power source for centuries. Large
windmills are still common today. The potential power from moving air is quite

92 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

easily calculated, as shown in equation (3.5):

1
P= Epmﬁ (3.5)

where P is the power, p is the density of air, A is the cross sectional area, and v is the
air velocity. At standard atmospheric conditions, the density of air is approximately
1.22 kg/m’. Figure 3.6 shows the power per square centimeter versus air velocity.

Large-scale windmills operate at maximum efficiencies of about 40%. The theoretical
maximum efficiency is 59%. Efficiency is dependent on wind velocity for a given design,
and average operating efficiencies are usually about 20%. Windmills are generally
designed such that maximum efficiency occurs at wind velocities around 8 m/s (or
about 18 mph). At low air velocity, efficiency can be significantly lower than 20%.
Figure 3.6 also shows power output assuming 20% and 5% efficiency in conversion.

The authors are aware of only one project to generate power from airflow at small
scales for use by wireless sensors. Federspiel and Chen [50] used a small (about
10 cm in diameter) airflow turbine to generate power intended for use by a Mica
Mote [6]. The reported power output and efficiency values are shown in
Table 3.6. The reported values in Table 3.6, taken together with the calculation in
Figure 3.6 indicate that power densities from air velocity are quite promising. As
there are many possible applications in which a fairly constant airflow of a few
meters per second exists, it seems that research leading to the development of
devices to convert airflow to electrical power at small scales is warranted.

3.5.5 Pressure Variations

Variations in pressure can also be used to generate power. For example, one could
imagine a closed volume of gas that undergoes pressure variation as the daily

100,000 -~~~ R A e e
10,000 === m o d o
1000 f----------i-= g - N A 3
c i ! ! !
[} 9 1 1 1
= 100 T : SR R b fr=mmnmmme i ‘
S : : : : :
j— I I I I I
10 -of AP fromee b - ‘ <
! ! | —8—Max power !
I VA R S I I | —A—20% Efficiency|-i
i i i | |—o—5% Efficiency |
0.1 T T T T T 1
0 2 4 6 8 10 12

m/s

Figure 3.6 Maximum power density from airflow. Power densities assuming 20% and 5%
conversion efficiencies are also shown.

3.5 POWER SCAVENGING 93

TABLE 3.6 Air Speed, Power, and Efficiency Values
Reported by Federspiel and Chen [50]

Air Velocity (m/s) Power (p,W/cmz) Efficiency (%)
2.5 100 5
4 215 5.5
5 350 11

temperature changes. Likewise, atmospheric pressure varies throughout the day. The
change in energy for a fixed volume of ideal gas due to a change in pressure is simply
given by

AE = APV (3.6)

where AE is the change in energy, AP is the change in pressure, and V is the volume.
A quick survey of atmospheric conditions around the world reveals that an average
atmospheric pressure change over 24 hours is about 0.2 in. Hg or 677 Pa, which cor-
responds to an energy change of 677 pJ/ cm’. If the pressure cycles through 0.2 in.
Hg once per day, for a frequency of 1.16 x 10, the power density would then be
7.8 nW /em®.

An average temperature variation over a 24-h period would be about 10°C. The
change in pressure to a fixed volume of ideal gas from a 10°C change in temperature
is given by

B mRAT
v

AP (3.7)
where m is mass of the gas, R is gas constant, and AT is the change in temperature.
If 1 cm® of helium gas were used, a 10°C temperature variation would result in a
pressure change of 1.4 MPa. The corresponding change in energy would be 1.4J
per day, which corresponds to 17 puW/ cm’®. While this is a simplistic analysis and
assumes 100% conversion efficiency to electricity, it does give an idea of what
might be theoretically expected from naturally occurring pressure variations.

To the authors’ knowledge, there is no research underway to exploit naturally occur-
ring pressure variations to generate electricity. Some clocks, such as the “Atmos
clock,” are powered by an enclosed volume of fluid that undergoes a phase change
under normal daily temperature variations. The volume and pressure change corre-
sponding to the phase change of the fluid mechanically actuates the clock. However,
this is on a large scale, and no effort is made to convert the power to electricity.

3.5.6 Time-Varying Structural Strain

Power can be scavenged from a surface undergoing a time-varying strain in a
number of ways. The most straightforward method is to attach a smart material

94 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

element to the surface that is undergoing strain. A number of smart materials exist,
including piezoelectric, magnetostrictive, and electroactive materials. However,
although there are many possible solutions, piezoelectric materials are by far the
most common. Because they have been widely used for a long time, available piezo-
electric materials exhibit very good electromechanical coupling. Furthermore,
piezoelectric materials can directly produce voltages on the right order of magnitude
for circuit applications. They are, therefore, the natural choice to pursue for strain-
induced energy-scavenging solutions.

It is useful to develop a simple analytical model for strain-based power gener-
ation in order to generate rough estimates of power generation and gain design
insight. If we assume, as is common, that the maximum power output available
from a piezoelectric element occurs when operating at one half its open-circuit
voltage and one half its closed-circuit current, we can develop a very simple
expression for maximum output power.

The established constitutive equations for a linear piezoelectric material in
reduced-matrix form are

(S} = [s*UT} + [dV{E} (3.8)
{D} =[dT} +[e"{E} (3.9

where {S} is the six-dimensional (6D) strain vector, {7} is the vector of stresses,
{D} is the 3D electric displacement vector, {E} is the electric-field vector, [s A
is the six-by-six compliance matrix evaluated at constant electric field, [d] is
the three-by-six matrix of piezoelectric strain coefficients, and [¢7] is the three-
by-three dielectric-constant matrix evaluated at constant stress. In many appli-
cations, the dominant stress state is one dimensional (1D), allowing equations 3.8
and 3.9 to be expressed as simple scalar equations. This simplification will be
used in the following discussion.

The open-circuit voltage (V,.) resulting from a strain (S) is given by
equation (3.10):

—dt,Y

Voe = ——5—
1+ ke

(3.10)

where 1, is the thickness of the piezoelectric element, Y is the elastic constant of the
material (Young’s modulus, ¥ = 1/s), and k is the piezoelectric coupling coefficient
(k= d*Y/e).

The short-circuit current developed is given by equation (3.11):

I,. = fdAYS @3.11)

where fis the frequency of the periodic strain, and A is the area of the piezoelectric
patch.

3.5 POWER SCAVENGING 95

Using the assumption made earlier, the maximum output power (P) is then given

by equation (3.12):
1 1 &y o,
P==Vo ||zl | =S 3.12
%)) =s+m G2

where v is the volume of the piezoelectric element (v = #,4). Note that the actual
power output will simply be the value calculated by equation (3.12) multiplied by
the efficiency of the power conditioning for the load.

As shown by equation (3.12), the power output is directly proportional to the
volume of piezoelectric material used. Not surprisingly, the power output is very
sensitive to both the coupling coefficient and the magnitude of the strain.

Figure 3.7 contains constant power-density contours calculated using the basic
model shown in equation (3.12). As such, they represent the maximum power
output possible from a surface undergoing a periodic strain at a given magnitude
and frequency. The calculations shown in Figure 3.7 assume a reasonable coup-
ling coefficient (k3;) of 0.3, a piezoelectric patch of 1 mm in thickness, and a
Young’s modulus of 52 GPa (PZT-5H). As can be seen from the graph, power
outputs on the order of 100 wW are possible given high enough strains and
frequencies.

Strain-based power generation has made its way into both the research and
commercial sectors. Elvin et al. [51] have reported producing a self-powered wire-
less strain sensor; however, the power production from the sensor is well below the
maximum values shown in Figure 3.7. MicroStrain Inc. is also marketing a wireless
sensor that incorporates strain-based power harvesting [52].

—8—10 uW/cm?2 AL,
1.E+00 1 ——50 uW/cm2 |- ---f----————-Fegm oo YT - :

—A—100 pW/cm?2
—%—500 pW/cm?2
—o— 1 uW/cm?2
1.E-01
1.0E-04 1.0E-03

Strain

Figure 3.7 Power profiles vs. strain and frequency for a piezoelectric strain-based generator.

96 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

3.5.7 Vibrations

Low-level mechanical vibrations are present in many environments. Examples include
automobiles, manufacturing and assembly equipment, aircraft, trains, heating, venti-
lation, and air-conditioning (HVAC) ducts, exterior windows, and small household appli-
ances. Table 3.7 shows results of measurements on several different vibration sources
performed by the authors. It will be noticed that the primary frequency of all sources
is between 60 and 200 Hz. Acceleration amplitudes range from about 1 to 10 m/ s%.

A simple general model for power conversion from vibrations has been presented
by Williams and Yates [53]. Note that this model is limited to generators containing
a sprung proof mass and assumes that the force exerted on that mass by the electro-
mechanical coupling is proportional to the velocity of the proof mass. The second
assumption is quite valid for electromagnetic generators, but less so for piezoelectric
and electrostatic generators. Other researchers are attempting to remedy these short-
comings developing technology-independent models that are not subject to these
assumptions [54,55]. Nevertheless, the model proposed by Williams and Yates
has been widely accepted and used in the research community. Furthermore, the
model can be used to quickly obtain rough estimates for potential power output
based on a given vibration source. Therefore, despite the fact that the model may
lack accuracy for some types of generators, it will be used here as a basis to estimate
the potential power output from common vibration sources. The final equation for
power output from this model is shown here as equation (3.13):

3
me, (3) A2
P= ©n (3.13)
w 2 w 2 ?

TABLE 3.7 Summary of Several Vibration Sources

Peak Acceleration Frequency
Vibration Source (m/ s2) (Hz)
Base of 3-axis machine tool 10 70
Kitchen blender casing 6.4 121
Clothes dryer 3.5 121
Door frame just as door closes 3 125
Small microwave oven 2.25 121
HVAC vents in office building 0.2-1.5 60
Wooden deck with foot traffic 1.3 385
Breadmaker 1.03 121
External windows next to a busy street 0.7 100
Notebook computer while CD is being read 0.6 75
Washing machine 0.5 109
Second story floor of a wood-frame office building 0.2 100

Refrigerator 0.1 240

3.5 POWER SCAVENGING 97

where P is the power output, m is the oscillating proof mass, A is the acceleration
magnitude of the input vibrations, is the frequency of the driving vibrations, w,
is the resonance frequency of the generator, ¢, is the mechanical damping ratio,
and {, is an electrically induced damping ratio. The primary idea behind this
model is that the energy removed from the oscillating proof mass by the electro-
mechanical coupling behaves as a linear viscous damper with damping ratio (.
The mechanical damping ratio ({,,) represents the viscous loss in the system. The
power output of the system as calculated by equation (3.13) is highly dependent
on the resonance frequency of the system. Figure 3.8 shows the power output for
a converter with a proof mass of 8.5 g (0.5 cm® of tungsten alloy), damping ratios
of 0.015 (for both ¢, and ¢,,,), and resonance frequency of 100 Hz. An input vibration
source of 2.25 m /s in magnitude was used.

If it is assumed that the resonance frequency of the generator is either designed or
tuned to match the dominant frequency of the input vibrations, equation (3.13)
reduces to the expression in equation (3.14):

mi,A?

= 3.14
4ol + &)’ G149

Three interesting relationships are evident from this model.

1. Power output is proportional to the oscillating mass of the system.
2. Power output is proportional to A> /.
3. Power is maximized for {, = {,,.

MicroWatts

—_
o
T

1072

1 3

10 10° 10
Hz

Figure 3.8 Power output vs. frequency of input vibrations. Proof mass is 8.5 g, damping
ratios are 0.015, and magnitude of input vibrations is 2.25 m/s2.

98 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

Point two indicates that the generator should be designed to resonate at the lowest
frequency peak in the vibrations spectrum provided that higher frequency peaks do
not have a higher acceleration magnitude. Many spectra measured by Roundy et al.
[56] verify that generally the lowest frequency peak has the highest acceleration
magnitude. The equivalent electrical damping ratio ({,) is dependent on both
design parameters and the specific load circuit applied. Point 3 indicates that
there is an optimal level of electrically induced damping, and that this optimal
level is equal to the amount of mechanical damping or pure loss. Therefore, to maxi-
mize the power output, the designer should try to minimize the mechanical damping
() and design the overall system such that the level of damping seen by the gen-
erator as a result of the electromechanical coupling matches the level of damping
attributable to pure loss. This principle will have slightly different implications
for different types of generators (e.g., piezoelectric, electromagnetic, electrostatic).

Figures 3.9 and 3.10 provide a range of power densities that can be expected from
vibrations similar to those listed previously in Table 3.7. The data shown in the
figures are based on calculations from the model of Williams and Yates, and do
not consider the technology that is used to convert the mechanical kinetic energy
to electrical energy. As with the calculations in Figure 3.9, a proof mass of 8.5 g
and damping ratios of 0.015 were used.

Several researchers have developed devices to scavenge power from vibrations.
Devices include electromagnetic [57-59], electrostatic [60—62], and piezoelectric
[63—65] methods to convert mechanical motion into electricity. Furthermore,
there are now a number of companies beginning to offer generators based on scaven-
ging power from vibrations [66—68]. Each approach offers benefits and drawbacks.
In general, electrostatic converters suffer from the necessity to reliably maintain
very small air gaps and generally exhibit lower power density, electromagnetic
converters often suffer from low output voltages, and piezoelectric converters

10,000

1000

puW/cms3

100

10

Figure 3.9 Power density vs. vibration amplitude for three frequencies.

3.5 POWER SCAVENGING 99

10,000 ------========m=p====msmmemeeee posesosososooaas ——0.5 m/s2
i —A—2.5m/s2

uW/cms3

Figure 3.10 Power density vs. frequency of vibration input for three amplitudes.

usually rely on relatively brittle ceramics. Based on theory, simulations, and exper-
iments, the opinion expressed by the authors is that piezoelectric generators offer the
best long-term solution for most applications. An example of a wireless transceiver
and piezoelectric vibration—based generator that powers the transceiver is shown in
Figure 3.11 [69]. The generator has a size of 1 cm® and produces 200 wW from input
vibrations of 2.25 m/s® at 120 Hz. The transmit power of the wireless transceiver
is 0 dBm.

Although quite a number of vibration-based generators have been demonstrated
in the literature, a number of research issues remain to be explored further. Under
many circumstances, the driving frequency will be known before the device is
designed and fabricated, and the appropriate resonance characteristics can thus be
“built in.” In other situations, however, this frequency will not be known a priori,
or it may change over time. It is also relevant to consider the mass fabrication of
such devices for use by other investigators. It would clearly be advantageous to
create a single design that operates effectively over a range of vibration frequencies.
Thus methods to improve the bandwidth of a generator without sacrificing the peak

NI
A

Piezoelectric generator

c02 Power circuit

Figure 3.11 Piezoelectric generator, power circuit, and radio powered from vibrations of
2.25m/s” at 120 Hz.

100 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

power output or methods to actively tune the resonance frequency of the generator
are important research areas. With few exceptions, researchers have focused on a
very limited set of potential geometries for analysis. A broader study of potential
design geometries for each of the three fundamental types of generators would be
beneficial. Finally, the transmission of power from the generator to the sensor
node is of critical importance. While a few researchers have studied this problem
[53,56,60], further optimization of power circuits is possible and will yield improved
power output.

3.6 SUMMARY

An effort has been made to give an overview of the many potential alternative power
sources for wireless sensor networks. Traditional power sources, such as batteries,
have been considered along with potential sources on which little or no work has
been done. Because some sources are fundamentally characterized by energy
density (such as batteries), while others are characterized by power density (such
as solar cells), a direct comparison with a single metric is difficult. Adding to this
difficulty is the fact that some power sources do not make much use of the third
dimension (such as solar cells), so their fundamental metric is power per square
centimeter rather than power per cubic centimeter. Nevertheless, in an effort to com-
pare all possible sources, a summary table is shown below as Table 3.8. Note that
power density is listed as ;LW/cm3; however, it is understood that in certain
instances the number reported really represents wW/ cm?”. Such values are marked
with a superscript a. Note also that with only two exceptions, values listed are num-
bers that have been demonstrated or are based on experiments rather than theoretical
optimal values. The authors were not able to find demonstrated or experimental
values for strain-induced generators or air pressure—induced generators. Therefore
theoretical values have been used, and these values are italicized. In many other
cases the theoretical best values are explained in the chapter text.

Almost all wireless sensor nodes currently available are powered by batteries.
This situation presents a substantial roadblock to the widespread deployment of
wireless sensor networks, because the replacement of batteries is cost prohibitive.
Furthermore, a battery that is large enough to last the lifetime of the device
would dominate the overall system size and cost, and thus is not very attractive.
It is therefore essential that alternative power sources be considered and developed.

This chapter has attempted to characterize a wide variety of such sources. It is the
authors’ opinion that no single alternative power source will solve the problem for
all, or even a large majority of cases. However, many attractive and creative sol-
utions do exist that can be considered on an application-by-application basis.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the helpful input of Dan Steingart, Prof. Paul Wright, and
Prof. Jan Rabaey. Dan was particularly helpful in doing background research for the

REFERENCES 101

TABLE 3.8 Comparison of Various Potential Power Sources for Wireless Sensor
Networks

Secondary
P/cm’ E/cm® P/em?®/yr Storage Voltage Comm.
Power Source (WW/ em®) / em’) (MW / cm’ /Y) Needed Regulation Available

Primary battery — 2880 90 No No Yes

Secondary — 1080 34 — No Yes
battery

Microfuel cell — 3500 110 Maybe Maybe No

Ultracapacitor — 50-100 1.6-3.2 No Yes Yes

Heat engine — 3346 106 Yes Yes No

Radioactive 0.52 1640 0.52 Yes Yes No
(Ni)

Solar (outside) 15,000 — — Usually Maybe Yes

Solar (inside) 10° — — Usually Maybe Yes

Temperature TR — — Usually Maybe Limited

Human Power 330 — — Yes Yes No

Air flow 350° — — Yes Yes No

Pressure 17¢ — — Yes Yes No
Variation

Vibrations 200 — — Yes Yes Limited

Strain induced 200 — — Yes Yes Limited

Note: Values shown are actual demonstrated numbers except in two cases, which have been italicized.
“Denotes sources whose fundamental metric is power per square centimeter rather than per cubic centi-
meter.

PDemonstrated from a 5°C temperature differential.

“Based on reported values at an air velocity of 5 m/s and 11% conversion efficiency.

“Based on a 1-cm® closed volume of helium undergoing a 10°C temperature change once per day.

microbatteries section. Professors Wright and Rabaey were actively involved with and
have greatly supported the vibration-based energy-scavenging work for a number of years.

REFERENCES

1. J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan. Picoradios for
wireless sensor networks: The next challenge in ultra-low-power design. In Proceedings
of the International Solid-State Circuits Conference, San Francisco, California, February
2002.

2. B. Warneke, B. Atwood, and K. S. J. Pister. Smart dust mote forerunners. In Proceedings
of the 14th Annual International Conference on Microelectromechanical Systems (MEMS
2001), pages 357—-360, Interlaken, Switzerland, January 2001.

3. J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks, IEEE
Micro, 22(6):12-24, 2002.

102 ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

4. B. Otis and J. Rabaey. A 300 wW 1.9 GHz oscillator utilizing micro-machined resona-
tors. In IEEE Proceedings of the 28th European Solid State Circuits Conference,
vol. 28, September 2002.

5. See at http://www.dust-inc.com, 2004.

6. See at http://www.xbow.com, 2004.

7. See at http://www.xsilogy.com, 2004.

8. See at http://www.ember.com, 2004.

9. See at http://www.millenial.net, 2004.

10. See at http://www.paperpower.com, 2004.

11. See at http://cymbet.com, 2004.

12. J. Bates, N. Dudney, B. Neudecker, A. Ueda, and C. D. Evans. Thin-film lithium and
lithium-ion batteries. Solid State Ionics, 135:33-45, 2000.

13. J. N. Harb, R. M. LaFollete, R. H. Selfridge, and L. L. Howell. Mircobatteries
for self-sustained hybrid micropower supplies. Journal of Power Sources, 104:46-51,
2002.

14. R. W. Hart, H. S. White, B. Dunn, and D. R. Rolison. 3-D microbatteries. Electro-
chemistry Communications, 5:120—123, 2003.

15. See at http: //www.nec-tokin.com/english/product/product_list.html, 2004.

16. See at http: //www.maxwell.com/ultracapacitors/, 2004.

17. A. Heinzel, C. Hebling, M. Muller, M. Zedda, and C. Muller. Fuel cells for low power
applications. Journal of Power Sources, 105:250-255, 2002.

18. See at http://www.toshiba.co.jp/about/press/2003_03/pr0501.htm, 2003.

19. S. Kang, S.-J. J. Lee, and F. B. Prinz. Size does matter: The pros and cons of miniatur-
ization. ABB Review, 2:54—62, 2001.

20. K. Kordesh and G. Simader. Fuel Cells and Their Applications. VCH Publishers, 2001.

21. J. D. Holloday, E. E. Jones, M. Phelps, and J. Hu. Microfuel processor for use in a min-
iature power supply. Journal of Power Sources, 108:21-27, 2002.

22. See at http://www.pb.izm.fhg.de /hdi/040_groups/group4 /fuelcell_micro.html.

23. S.J. Lee, A. Chang-Chien, S. W. Cha, R. O’Hayre, Y. I. Park, Y. Saito, and F. B. Prinz.
Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. Journal
of Power Sources, 112:410-418, 2002.

24. M. M. Mench, Z. H. Wang, K. Bhatia, and C. Y. Wang. Design of a micro direct methanol
fuel cell (WDMFC). In Proceedings of the ASME International Mechanical Engineering
Congress and Exposition (IMECE), New York, November 2001.

25. A. H. Epstein et al. Micro-Heat Engine, Gas Turbine, and Rocket Engines—The MIT
Microengine Project. Paper AIAA 97-1773, presented at the 28th AIAA Fluid Dynamics
Conference, Snowmass Village, Colorado, June 1997.

26. K. Isomura, M. Murayama, H. Yamaguchi, N. Ijichi, H. Asakura, N. Saji, O. Shiga,
K. Takahashi, S. Tanaka, T. Genda, and M. Esashi. Development of Microturbocharger
and Microcombustor for a Three-Dimensional Gas Turbine at Microscale. Paper GT-
2002-30580, presented at the ASME-IGTI 2002 TURBO EXPO, Amsterdam,
Netherlands, June 2002.

27. C. Lee, S. Arslan, Y.-C. Liu, and L. G. Fréchette. Design of a microfabricated Rankine
cycle steam turbine for power generation. In Proceedings of the ASME International

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

REFERENCES 103

Mechanical Engineering Congress and Exhibition (IMECE), Washington, D.C.,
November 2003.

K. Fu, A. J. Knobloch, F. C. Martinez, D. C. Walther, C. Fernandez-Pello, A. P. Pisano,
and D. Liepmann. Design and fabrication of a silicon-based MEMS rotary engine. In Pro-

ceedings of the ASME International Mechanical Engineering Congress and Exhibition
(IMECE), New York, November 2001.

L. M. Matta, M. Nan, S. P. Davis, D. V. McAllister, B. T. Zinn, and M. G. Allen.
Miniature Excess Enthalpy Combustor for Microscale Power Generation. AIAA Paper
2001-0978, presented at the 39th Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, January 2001.

T. Toriyama, K. Hashimoto, and S. Sugiyama. Design of a resonant micro recipro-
cating engine for power generation. In Proceedings of Transducers’03, the 12th
International Conference on Solid-State Sensors and Actuators, Boston, Massachusetts,

June 2003.

S. Whalen, M. Thompson, D. Bahr, C. Richards, and R. Richards. Design, fabrication
and testing of the P3 micro heat engine. Sensors and Actuators, 104(3):200-208,
2003.

D. Santavicca, K. Sharp, J. Hemmer, B. Mayrides, D. Taylor, and J. Weiss. A solid piston
micro-engine for portable power generation. In Proceedings of the ASME International
Mechanical Engineering Congress and Exhibition (IMECE), Washington, D.C.,
November 2003.

S. B. Schaevitz, A. J. Franz, K. F. Jensen, and M. A. Schmidt. A combustion-based
MEMS thermoelectric power generator. In Proceedings of Transducers’0l the 11th
International Conference on Solid-State Sensors and Actuators, pages 30—33, Munich,
Germany, June 2001.

L. Sitzki, K. Borer, S. Wussow, E. Schuster, P. D. Ronney, and A. Cohen. Combustion in
Microscale Heat Recirculating Burners. Paper No. 2001-1087, presented at the 39th
AIAA Aerospace Sciences Meeting, Reno, Nevada, January 2001.

C. Zhang, K. Najafi, L. P. Bernal, and P. D. Washabaugh. Micro combustion-thermionic
power generation: Feasibility, design and initial results. In Proceedings of Trans-
ducers’03, the 12th International Conference on Solid-State Sensors and Actuators,
Boston, Massachusetts, June 2003.

O. M. Nielsen, L. R. Arana, C. D. Baertsch, K. F. Jensen, and M. A. Schmidt. A thermo-
photovoltaic micro-generator for portable power applications. In Proceedings of Trans-
ducers’03, the 12th International Conference on Solid-State Sensors and Actuators,
Boston, Massachusetts, June 2003.

H. Li and M. Lal. Self-reciprocating radio-isotope powered cantilever. Journal of Applied
Physics, 92(2):1122-1127, 2002.

D. Friedman, H. Heinrich, and D.-W. Duan. A low-power CMOS integrated circuit for
field-powered radio frequency identification. In Proceedings of the 1997 IEEE Solid-
State Circuits Conference, pages 294-295, 474, 1997.

See at http://www.hitachi.co.jp/Prod/mu-chip/, 2003.

A. A. Smith. Radio Frequency Principles and Applications: The Generation, Propa-
gation, and Reception of Signals and Noise. IEEE Press, 1998.

J. F. Randall. On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D.
thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, May 2003.

104

42.

43.

44.
45.
46.

47.
48.

49.
50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

ENERGY SCAVENGING AND NONTRADITIONAL POWER SOURCES

M. Stordeur and I. Stark. Low power thermoelectric generator—self-sufficient energy
supply for micro systems. In Proceedings of the 16th International Conference on
Thermoelectrics, pages 575-577, 1997.

M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and
S. Yamamoto. Microthermoelectric modules and their application to wristwatches as
an energy source. In Proceedings of the 18th International Conference on Thermoelec-
trics (ICT), pages 301-307, Baltimore, Maryland, August 1999.

Citizen Eco-Drive Thermo. Citizen press release, Basel, March 2003.

D. Pescovitz. The power of small tech. Smalltimes, 2(1):21-31, 51-54, 2002.

T. Starner. Human-powered wearable computing. IBM Systems Journal, 35(3):618—-629,
1996.

See at http://www.seikowatches.com, 2004.

N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics.
IEEE Micro, 21:30-41, 2001.

See at http://www.freeplay.net, 2004.

C. C. Federspiel and J. Chen. Air-powered sensor. In Proceedings of IEEE Sensors 2003,
Toronto, October 2003.

N. G. Elvin, A. A. Elvin, and M. Spector. A self-powered mechanical strain energy
sensor. Smart Materials and Structures, 10:293-299, 2001.

See at http://www.microstrain.com/white_strain_energy_harvesting.htm, 2004.

C. B. Williams and R. B. Yates. Analysis of a micro-electric generator for microsystems.
In Proceedings of Transducers 95/ Eurosensors IX, pages 369-372, 1995.

P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes. Architectures for
vibration-driven micropower generators. Journal of Microelectromechanical Systems,
13(3):1-12, 2004.

S. Roundy. On the effectiveness of vibration based energy harvesting. Journal of Intelli-
gent Material Systems, forthcoming.

S. Roundy, P. K. Wright, and J. Rabaey. A study of low level vibrations as a power source
for wireless sensor nodes. Computer Communications, 26(11):1131-1144, 2003.

R. Amirtharajah and A. P. Chandrakasan. Self-powered signal processing using
vibration-based power generation. Journal of Solid-State Circuits, 33(5):687—-695, 1998.
M. El-hami, P. Glynne-Jones, N. W. White, M. Hill, S. Beeby, E. James, A. D. Brown,
and J. N. Ross. Design and fabrication of a new vibration-based electromechanical
power generator. Sensors and Actuators A (physical), 92:335-342, 2001.

N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen. A laser-
micromachined multi-modal resonating power transducer for wireless sensing systems.
Sensors and Actuators A (physical), 97-98:685-690, 2002.

S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang.
Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 9:64-76, 2001.

M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, T. Kawahara, and K. Yano.
Electric-energy generation using variable-capacitive resonator for power-free LSI:
Efficiency analysis and fundamental experiment. In Proceedings of the 2003
International Symposium on Low Power Electronics and Design (ISLPED 2003),
pages 193-198, Seoul, Korea, August 2003.

62.

63.

64.

65.

66.
67.
68.
69.

REFERENCES 105

P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green.
MEMS electrostatic micropower generator for low frequency operation. Sensors and
Actuators A (physical), forthcoming.

P. Glynne-Jones, S. P. Beeby, E. P. James, and N. M. White. The modelling of a piezo-
electric vibration powered generator for microsystems. In Proceedings of Transducers
'01, the 11th International Conference on Solid-State Sensors and Actuators, Munich,
Germany, June 2001.

G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre. Optimized piezoelectric energy
harvesting circuit using step-down converter in discontinuous conduction mode. /EEE
Transactions on Power Electronics, 18(2):696—703, 2003.

S. Roundy and P. K. Wright. A piezoelectric vibration based generator for wireless
electronics. Smart Materials and Structures, 13:1131-1142, 2004.

See at http://www.ferrosi.com, 2004.
See at http://www.continuumcontrol.com, 2004.
See at http://www.intellisense.com, 2004.

S. Roundy, B. Otis, Y.-H. Chee, J. Rabaey, and P. K. Wright. A 1.9 GHz transmit beacon
using environmentally scavenged energy. In Proceedings of the 2003 International
Symposium on Low Power Electronics and Design (ISPLED 2003), Seoul, Korea,
August 2003.

I CHAPTER 4

A Virtual Infrastructure for Wireless
Sensor Networks

STEPHAN OLARIU and QINGWEN XU
Old Dominion University, Norfolk, Virginia

ASHRAF WADAA

Intel Corporation, Hillsboro, Oregon

IVAN STOJMENOVIC

University of Ottawa, Ontario, Canada

Overlaying a virtual infrastructure over a physical network is a time-honored
strategy for conquering scale. There are, essentially, two approaches for building
such an infrastructure. The first is to design the virtual infrastructure in support
of a specific protocol, routing, for example. However, more often than not, the
resulting infrastructure is not useful for other purposes. The alternative approach
is to design the general-purpose virtual infrastructure with no particular protocol
in mind. The challenge, of course, is to design the virtual infrastructure in such a
way that it can be leveraged by a multitude of different protocols.

The main goal of this chapter is to propose a lightweight and robust virtual infra-
structure for a network, consisting of tiny energy-constrained commodity sensors
massively deployed in an area of interest. In addition, we present evidence that
the proposed virtual infrastructure can be leveraged by a number of protocols ran-
ging from routing to data aggregation.

4.1 INTRODUCTION

Recent advances in nanotechnology have made it possible to develop a large variety
of microelectromechanical systems (MEMS), miniaturized low-power devices that
integrate sensing, special-purpose computing, and wireless communications

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

107

108 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

capabilities [1-5]. It is expected that these small devices, referred to as sensors, will
be mass-produced, making their production cost-negligible. Individual sensors have
a small, nonrenewable energy supply and, once deployed, must work unattended.
For most applications, we envision a massive deployment of sensors, perhaps in
the thousands or even tens of thousands [6—-9].

Aggregating sensors into sophisticated computational and communication infra-
structures, called wireless sensor networks, will have a significant impact on a wide
array of applications, ranging from military, to scientific, to industrial, to health care,
to domestic, establishing ubiquitous wireless sensor networks that will pervade
society, redefining the way in which we live and work [10—13]. The novelty of wire-
less sensor networks and their tremendous potential for relevance to a multitude of
application domains has triggered a flurry of activity in both academia and industry.
We refer the reader to refs. [7,14—19] for a summary of recent applications of wire-
less sensor networks.

The fundamental goal of a sensor network is to produce, over an extended period
of time, globally meaningful information from raw local data obtained by individual
sensors. Importantly, this goal must be achieved in the context of prolonging as
much as possible the useful lifetime of the network and ensuring that the network
remains highly available and continues to provide accurate information in the
face of security attacks and hardware failure. The sheer number of sensors in a
sensor network combined with the unique characteristics of their operating environ-
ment (anonymity of individual sensors, limited energy budget, and a possibly hostile
environment), pose unique challenges to the designers of protocols. For one thing,
the limited energy budget at the individual sensor level mandates the design of ultra-
lightweight data gathering, aggregation, and communication protocols. An import-
ant guideline in this direction is to perform as much local data processing at the
sensor level as possible, avoiding the transmission of raw data through the sensor
network.

Recent advances in hardware technology are making it plain that the biggest
challenge facing the wireless sensor network community is the development of
ultralightweight communication protocols ranging from training, to self-organiz-
ation, to network maintenance and governance, to security, to data collection and
aggravation, to routing [12,20,21].

4.1.1 The Name of the Game: Conquering Scale

Overlaying a virtual infrastructure over a physical network is a time-honored strat-
egy for conquering scale. There are, essentially, two approaches to this exercise. The
first is to design the virtual infrastructure in support of a specific protocol. However,
more often than not, the resulting infrastructure is not useful for other purposes. The
alternate approach is to design a general-purpose virtual infrastructure with no par-
ticular protocol in mind. The challenge, of course, is to design the virtual infrastruc-
ture in such a way that it can be leveraged by a multitude of different protocols [22].

To the best of our knowledge, research studies addressing wireless sensor net-
works have thus far taken only the first approach. To wit, in ref. [15] a set of

42 THE SENSOR MODEL 109

paths is dynamically established as a result of the controlled diffusion of a query
from a source node into the network. Relevant data are routed back to the source
node, and possibly aggregated, along these paths. The paths can be viewed as a
form of data-dissemination and aggregation infrastructure. However, this infrastruc-
ture serves the sole purpose of routing and data aggregation, and it is not clear how it
can be leveraged for other purposes. A similar example is offered by ref. [23], where
sensors use a discovery procedure to dynamically establish secure communications
links to their neighbors; collectively, these links can be viewed as a secure com-
munications infrastructure. As before, it is not clear that the resulting infrastructure
can be leveraged for other purposes.

We view the principal contribution of this chapter at the conceptual level. Indeed,
we introduce a simple and natural general-purpose virtual infrastructure for wireless
sensor networks, consisting of a massive deployment of anonymous sensors. The
proposed infrastructure consists of a dynamic coordinate system and a companion
clustering scheme. We also show that the task of endowing the wireless sensor net-
work with the virtual infrastructure—a task that we shall refer to as training—can be
performed by a protocol that is at the same time lightweight and secure. In addition,
we show that a number of fundamental tasks, including routing and data aggre-
gation, can be performed efficiently once the virtual infrastructure is in place.

The remainder of this chapter is organized as follows: Section 4.2 discusses the
sensor model used throughout the work. Section 4.3 discusses wireless sensor
networks, as a conglomerate of individual sensors that have to self-organize and
self-govern. In particular, we discuss interfacing wireless sensor networks with
the outside world, as well as a brief preview of the training process. Next, Section
4.4 offers a brief overview of location awareness in wireless sensor networks. We
also provide a lightweight protocol allowing the sensors to acquire fine-grain
location information. Section 4.5 presents an overview of the general-purpose
virtual infrastructure for wireless sensor networks. Specifically, Subsection 4.5.1
discusses the details of our dynamic coordinate system, the key component of our
general-purpose virtual infrastructure; and Subsection 4.5.2 discusses the clustering
scheme induced by the dynamic coordinate system. Section 4.6 is the backbone of
the entire chapter, presenting the theoretical underpinnings of the training process.
Section 4.8 proposes routing and data-aggregation algorithms in a trained wireless
sensor network. Section 4.9 takes a close look at the problem of energy expenditure
related to routing data in a wireless sensor network. Finally, Section 4.10 offers con-
cluding remarks and maps out areas for future investigations.

4.2 THE SENSOR MODEL

We assume a sensor to be a device that possesses three basic capabilities: sensory,
computation, and wireless communication. The sensory capability is necessary to
acquire data from the environment; the computational capability is necessary for
aggregating data, processing control information, and managing both sensory and
communication activity. Sensor clocks drift at a bounded rate allowing only

110 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

short-lived and group-based synchronization, where a group is loosely defined as the
collection of sensors that collaborate to achieve a given task. The details of a light-
weight synchronization protocol for wireless sensor networks will be the subject of
another chapter in this book.

We assume that individual sensors operate subject to the following fundamental
constraints:

- Sensors are anonymous—they do not have fabrication-time identities.

- Sensors are tiny, commodity devices that are mass-produced in an environment
where testing is a luxury.

. Each sensor has a nonrenewable energy budget; when the on-board energy
supply is exhausted, the sensor becomes nonoperational.

- In order to save energy, each sensor is in sleep mode most of the time, waking
up at random points in time for short intervals under the control of an internal
timer.

- Each sensor has a modest transmission range, perhaps a few meters. This

implies that outbound messages sent by a sensor can reach only the sensors
in its proximity, typically a small fraction of the sensors deployed.

.

Once deployed, the sensors must work unattended, it is either infeasible or
impractical to devote attention to individual sensors.

At any point in time, a sensor, will be engaged in performing one of a finite set of
possible operations, or will be asleep. Example operations are sensing (data acqui-
sition), routing (data communication; sending or receiving), and computing (e.g.,
data aggregation). We assume each operation performed by a sensor consumes a
known fixed amount of energy and that a sleeping sensor performs no operation
and consumes essentially no energy.

It is worth mentioning that while the energy budget can supply short-term appli-
cations, sensors dedicated to work over years may need to scavenge energy from the
ambient environment. Indeed, it was shown recently that energy scavenging from
vibration, kinetics, magnetic fields, seismic tremors, pressure, and so on, will
become reality in the near future [24,25].

4.2.1 Genetic Material

We assume that just prior to deployment (perhaps onboard the aircraft that drops
them in the terrain) the sensors are injected with the following genetic material:

. A standard public-domain pseudorandom number generator
- A set of secret seeds to be used as parameters for the random number generator
« A perfect hash function ¢

- An initial time, at which point all the clocks are synchronous; later, synchroni-
zation is lost due to clock drift

4.3 STRUCTURE AND ORGANIZATION OF A WIRELESS SENSOR NETWORK 111

The way in which this genetic material is used by individual sensors will be dis-
cussed in detail later in the chapter. For a more detailed discussion and applications
to securing sensor networks we refer the interested reader to refs. [26] and [27].

4.3 STRUCTURE AND ORGANIZATION OF A WIRELESS
SENSOR NETWORK

We envision a massive deployment of sensors, perhaps in the thousands or even tens
of thousands. The sensors are aggregated into sophisticated computational and com-
munication infrastructures, called wireless sensor networks, whose goal is to pro-
duce globally meaningful information from data collected by individual sensors.
However, the massive deployment of sensors, combined with anonymity of individ-
ual sensors, limited energy budget and, in many applications, a hostile environment,
pose daunting challenges to the design of protocols for wireless sensor networks. For
one thing, the limited energy budget at the individual sensor level mandates the
design of ultralightweight communication protocols. Likewise, issues concerning
how the data collected by individual sensors could be queried and accessed, and
how concurrent sensing tasks could be executed internally, are of particular signifi-
cance. An important guideline in this direction is to perform as much local data pro-
cessing as possible at the sensor level, avoiding the transmission of raw data through
the network. Indeed, it is known that it costs 3 J of energy to transmit 1 kb of data a
distance of 100 m. Using the same amount of energy, a general-purpose processor
with the modest specification of 100 million instructions/watt executes 300 million
instructions [20,21].

As a consequence, the wireless sensor network must be multihop, and only a lim-
ited number of the sensors count the sink among their one-hop neighbors. For reasons
of scalability, it is assumed that no sensor knows the topology of the network.

4.3.1 Interfacing Wireless Sensor Networks

We assume that the wireless sensor network is connected to the outside world (e.g.,
point of command and control, the Internet, etc.) through a sink. The sink may or
may not be collocated with the sensors in the deployment area. In case of a noncol-
located sink, the interface with the outside world may be achieved by a vehicle driv-
ing by the area of deployment, or a helicopter, aircraft, or low earth orbit (LEO)
satellite overflying the sensor network, and collecting information from a select
group of reporting nodes. In such scenarios communication between individual sen-
sors is by radio, while the reporting nodes are communicating with the noncollo-
cated sink by radio, infrared, or laser [8,9]. One can easily contemplate a
collection of mobile sinks for fault tolerance.

When the sink is collocated with the wireless sensor network, it can also be in
charge of performing any necessary training and maintenance operations. Through-
out this chapter we shall assume that the sink is collocated with the sensors, and we
shall refer to it occasionally as training agent (TA, for short), especially in contexts

112 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

where the sink engages in training operations. Moreover, we shall assume that the
sink is centrally placed in the deployment area. This is for convenience only; it
will be clear that the virtual infrastructure induced by the sink is topologically invar-
iant to translating the sink out of its central position. A corollary of this is that our
approach works equally well with eccentric sinks as well as with moving ones. We
shall not elaborate this point further in this chapter.

4.3.2 Synchronization

The problem of synchronizing sensors has deep implications on the types of appli-
cations for which wireless sensor networks are a suitable platform. Not surprisingly,
the synchronization problem has received a good deal of well-deserved attention in
the recent literature [28,29]. To the best of our knowledge, all the synchronization
strategies used are active in the sense that time awareness is propagated from
sensor to sensor in the network. Our strategy is passive in the sense that the sensors
synchronize to a master clock running at the sink. In addition to being simpler, our
method promises to be far more accurate as we avoid the snowballing effect of errors
inherent to active propagation.

Using the genetic material, each sensor can generate (pointers into) three
sequences of random numbers as follows:

1. A sequence f,1,...,t;,... of time-epoch lengths

2. A sequence ny,ny,...,n;,... of frequency sets drawn from a huge universe,
for example, the industrial, scientific, medical (ISM) band

3. For every i (i > 1), a permutation ff , fzi, ... of frequencies from n;

The interpretation of these sequences is: time is ruled into epochs: during the ith
time epoch, of length #;, frequency set n; is used, subject to the hopping sequence
ff , fzi, Thus, as long as a sensor is synchronous to the TA, it knows the current
time epoch, the offset into the epoch, the frequencies, and the hopping pattern for
that epoch.

Suppose that the TA dwells 7 microseconds on each frequency in the hopping
sequence. For every i (i > 1), we let [; stand for ¢;/7 (assumed to be an integer);
thus, epoch #; involves a hopping sequence of length /;. Think of epoch #; as being
partitioned into /; slot, each slot using its own frequency selected by the hopping pat-
tern from the set n;. We refer the reader to Figure 4.1 where some of these ideas are
illustrated. For example, time epoch +f_; uses a set of frequencies
ni—1 = {1,3,4,5,12,13,14,15,16}. Similarly, #; uses the set of frequencies
n; =1{2,3,6,7,10,11,12,14}, while epoch f; uses ni+; = {4,5,8,9,13,16}.
The figure also illustrates the specific frequencies used in each slot.

It is clear that determining the epoch and the offset of the TA in the epoch is
sufficient for synchronization. Our synchronization protocol is predicated on the
assumption that sensor clock drift is bounded. Specifically, assume that whenever
a sensor wakes up and its local clock shows epoch #;, the master clock at the TA

4.4 LOCATION AWARENESS IN WIRELESS SENSOR NETWORKS 113

Time epochs # t, t R iy t ti
L I 1 1 1 I | | =~

Freq 16 l l
Freq 15 [

Freq 14

Freq 13 I
Freq 12

Freq 11

Freq 10

Freq 9

Freq 8

Freq 7 .

Freq6 | | | [|
Freq 5

Freq4 | | [|]
Freq3 |_| E 1
Freq 2
Freq 1 l
i ——t \
2 [t Rt RN ST
. RTR-TR-TR-TR-TR-TR-TR-TR-TR-1] [R=TR-TR-TR-TR-TR-TR-1]

Figure 4.1 Sensor synchronization.

-

T

is in one of the time epochs #;,_i, #;, or t;;;. Using its genetic information, the
sensor knows the last frequencies A;_j, A;, and A;;; on which the TA will
dwell in the time epochs t,_, t;, and t;;|, respectively. Its strategy, therefore, is
to tune in, cyclically, to these frequencies, spending 7/3 time units on each of
them. It is clear that eventually the sensor meets the TA on one of these frequen-
cies. Assume, without loss of generality, that the sensor meets the TA on fre-
quency A in some (unknown) slot s of one of the epochs #;_;, t;, or t;+1. To
verify the synchronization, the sensor will attempt to meet the TA in slots
s+ 1, s+ 2, and s+ 3 at the start of the next epoch. If a match is found, the
sensor declares itself synchronized. Otherwise, the sensor will repeat the process
just delineated.

It is important to understand that the synchronization protocol outlined is prob-
abilistic: even if a sensor declares itself synchronized, there is a slight chance that
it is not. However, a missynchronization will be discovered quickly and the
sensor will reattempt to synchronize.

4.4 LOCATION AWARENESS IN WIRELESS SENSOR NETWORKS

Consider a circular deployment area along with a centrally placed TA equipped with
a long-range radio and a steady energy supply, that can communicate with the sen-
sors in the deployment area. Recall that, as noted before, the role of the TA is played
by the collocated sink.

It was recognized that some applications require that the collected sensory data
be supplemented with location information, encouraging the development of

114 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

communication protocols that are location-aware and perhaps location-dependent
[7,30—-33]. The practical deployment of many wireless sensor networks results in
sensors initially unaware of their location: they must acquire this information post-
deployment. Further, due to limitations in form factor, cost per unit and energy
budget, individual sensors are not expected to be global positioning system
(GPS)-enabled. Moreover, in many probable application environments, including
those inside buildings, hangars, or warehouses, satellite access is drastically limited.

The location awareness problem, then, is for individual sensors to acquire
location information either in absolute form (e.g., geographic coordinates) or rela-
tive to a reference point. The localization problem is for individual sensors to deter-
mine, as closely as possible, their geographic coordinates in the area of deployment.
Prominent solutions to the localization problem are based on multilateration or
multiangulation [30-36]. Most of these solutions assume the existence of several
anchors that are aware of their location (perhaps by endowing them with a GPS-
like device). Sensors receiving location messages from at least three sources can
approximate their own locations. For a good survey of localization protocols for
wireless sensor networks, we refer the reader to ref. [37].

For the sake of completeness, we now outline a very simple localization protocol
for wireless sensor networks that does not rely on multiple anchors.

4.4.1 A Simple Localization Protocol for Wireless Sensor Networks

The task of localization is performed immediately after deployment. If the sensors
are considered stationary, localization is a one-time operation.! Unlike the vast
majority of existing protocols that rely heavily on multilateration or multiangulation
and on the existence of a minimum of three anchors with known geographic pos-
ition, our protocol only requires one anchor—the TA—whose role can be played
by a collocated sink. The key idea of our protocol is to allow each sensor to deter-
mine its position in a polar coordinate system centered at the TA. In particular, each
sensor determines its polar angle with respect to a standard polar axis as well as a
polar distance to the TA.

Referring to Figure 4.2, assume without loss of generality that the TA is centrally
located.” The TA knows its own geographic coordinates, is not energy constrained
and it has (highly) directional transmission capabilities.

For some predetermined time, the TA transmits a rotating beacon, as illustrated in
Figure 4.2. The rotation is uniform with a period of T time units, known to all the
sensors in the deployment area. Every time the beacon coincides with the polar
axis the TA transmits a synchronization signal on a channel A, known to the sensors.

In outline, the protocol is as follows. A generic sensor a wakes up according to its
internal clock. It listens to channel A for 7 time units. Let 7y be the moment at which

"In fact, even if the sensors are stationary, they may move from their original deployment position due to
such factors as wind, rain, and small ground tremors.

The reader should have no difficulty confirming that this is assumed for convenience and the eccentric
TA case is perfectly similar.

4.4 LOCATION AWARENESS IN WIRELESS SENSOR NETWORKS 115

Figure 4.2 The localization protocol.

it hears the synchronization beacon. At that point it switches to channel w, on which
the rotating beacon is transmitted. Assume that the rotating beacon is received by
sensor a at time t;. The polar angle 6 corresponding to a is

. 27 (t — ty)

f=""" 4.1)

Similarly, the polar distance p can be determined by using the well-known

formula
PT 1/a
=|— 4.2
p (CPR> 4.2)

Pr and Py represent, respectively, the transmitted and received energy levels

where

c and «a are constants that depend on the atmospheric conditions at the moment
when the localization takes place. These values may be passed on by the TA,
along with Py.

It is worth noting that a sensor may perform several determinations of 6 and p and
use averages to improve the accuracy of the localization. Indeed, once ¢#; is known,
the sensor can go to sleep until time #; + 7', at which it knows that it needs to wake
up to receive the beacon again.

In some other applications, exact geographic location is not necessary: all that
individual sensors need is coarse-grain location awareness. There is an obvious
trade-off: coarse-grain location awareness is lightweight, but the resulting accuracy
is only a rough approximation of the exact geographic coordinates. In this chapter

116 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

we show that sensors acquire coarse-grain location awareness by the training
protocol that imposes a coordinate system onto the network. An interesting by-
product of our training protocol is that it provides a partitioning into clusters and
a structured topology with natural communication paths. The resulting topology
will make it simple to avoid collisions between transmissions of nodes in different
clusters, between different paths and also between nodes on the same path. This is in
contrast with the majority of papers that assume routing along spanning trees with
frequent collisions.

4.5 THE VIRTUAL INFRASTRUCTURE

The main goal of this section is to present a broad overview of the main compo-
nents of the proposed general-purpose virtual infrastructure for wireless sensor
networks.

4.5.1 A Dynamic Coordinate System

To help with organizing the virtual infrastructure we assume a centrally placed TA,
equipped with a long-range radio and a steady energy supply, that can communicate
with both the sink and the sensors in the deployment area.

Referring to Figure 4.3(a) the coordinate system divides the wireless sensor
network area into equiangular wedges. In turn, these wedges are divided into sectors
by means of concentric circles or coronas centered at the TA (sink). As will be
discussed in Subsection 4.5.2, the sensors in a given sector map to a cluster, the

Figure 4.3 Different perspectives of the dynamic coordinate system: (a) the dynamic
system, and (b) routing in a wireless sensor network.

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL 117

mapping between clusters and sectors being one-to-one. The task of training a
wireless sensor network involves establishing:

Coronas. The deployment area is covered by k coronas determined by k con-
centric circles of radii 0 < r; < r, < --- < r < t, centered at the sink.

Wedges. The deployment area is ruled into a number of angular wedges centered
at the sink.

As illustrated in Figure 4.3(a), at the end of the training period each sensor has
acquired two coordinates: the identity of the corona in which it lies, as well as the
identity of the wedge to which it belongs. It is important to note that the locus of
all the sensors that have the same coordinates determines a cluster.

4.5.2 The Cluster Structure

Clustering was proposed in large-scale networks as a means of achieving scalability
through a hierarchical approach. For example, at the medium access layer, clustering
helps increase system capacity by promoting the spatial reuse of the wireless chan-
nel; at the network layer, clustering helps reducing the size of routing tables and
striking a balance between reactive and proactive routing. It is intuitively clear
that wireless sensor networks benefit a great deal from clustering; indeed, separating
concerns about intercluster management and the intracluster management can sub-
stantially decrease and load balance the management overhead. Given the import-
ance of clustering, a number a clustering protocols for wireless sensor networks
have been proposed in the recent literature [38—40]. However, virtually all cluster-
ing protocols for wireless sensor networks assume tacitly or explicitly that individ-
ual sensors have identities.

The dynamic coordinate system suggests a simple and robust clustering scheme:
a cluster is the locus of all sensors having the same coordinates. It is important to
note that clustering is obtained for free once the coordinate system is established.
Also, our clustering scheme does not assume synchronization and accommodates
sensor anonymity: sensors need not know the identity of the other sensors in their
cluster. For an illustration, refer again to Figure 4.3(a). Each sector in the dynamic
coordinate system represents a cluster; indeed, as is easily visible, the sensors in a
sector share the same coordinates: the same corona number and the same wedge
number.

Recently Olariu et al. [27] showed that one can augment the virtual infrastructure
with a task-based management system where clusters are tasks with sensing, routing,
or collective data storage.

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL

The model for a wireless sensor network that we adopt assumes that after deploy-
ment the sensors must be trained before they can be operational. Recall that sensors

118 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

do not have identities and are initially unaware of their location. It follows that
untrained nodes are not addressable and cannot be targeted to do work in the net-
work. The main goal of this section is to present, in full detail, our lightweight,
highly scalable training protocol for wireless sensor networks. The key advantage
of this protocol is that each sensor participating in the training incurs an energy
cost that is logarithmic in the number of clusters and wedges defined by the protocol.
Being energy-efficient, this training can be repeated on a scheduled or ad hoc basis,
providing robustness and dynamic reorganization.

After deployment the individual sensors sleep until wakened by their individual
timers. Thus, each sensor sleeps for a random period of time, wakes up briefly, and if
it hears no messages of interest, selects a random number x and returns to sleep x
time units. Clocks are not synchronized, but over any time interval [z, ¢t + Af] a per-
centage directly proportional to At of the nodes are expected to wake up briefly.
During this time interval the sink continuously repeats a call to training, specifying
the current time and a rendezvous time. Thus, in a probabilistic sense a certain per-
centage of the sensor population will be selected for training. The time interval Ar
can be adjusted to control the percentage of sensors that is selected. Using the
synchronization protocol described in Subsection 4.3.2 the selected sensors reset
their clocks and set their timer appropriately before returning to sleep.

4.6.1 The Corona Training Protocol

The main goal of this subsection is to present the details of the corona training pro-
tocol. The wedge training protocol being quite straightforward will not be discussed
further in this chapter.

Let k be an integer’ known to the sensors and let the k coronas be determined by
concentric circles of radii 0 < r; < rp, < --- < r; < t, centered at the sink.

The idea of the corona training protocol is for each individual sensor to learn the
identity of the corona to which it belongs. For this purpose, each sensor learns a
string of log k bits, from which the corona number can be determined easily. To
see how this is done, it is useful to assume time ruled into slots sy, s2,...,Si—1
and that the sensors synchronize to the master clock running at the sink, as discussed
in Subsection 4.3.2.

In time slot s; all the sensors are awake and the sink uses a transmission range of
rrs2. As a net effect, in the first slot the sensors in the first k/2 coronas will receive
the message above a certain threshold, while the others will not. Accordingly, the
sensors that receive the signal set b; = 0, the others set b; = 1.

Consider a k-leaf binary tree T and refer to Figure 4.4. In the figure the leaves are
represented by boxes numbered left to right from 1 to k. It is very important to note
that the intention here is for the k boxes to represent, in left-to-right order, the k cor-
onas. The training protocols is for individual sensors to determine the “box” (i.e., the
corona) to which they belong.

3For simplicity, we shall assume that k is a power of 2.

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL 119

1

0
2 9
1
3 6 10 13
1

4 5 7 8 11 2 14 15

0/ \1
A e) Y 0 o 0 o I o
12 3 4 s 6 7 8 9 10 I 12 13 14 15 6

Figure 4.4 Corona training.

The edges of T are labeled by Os and 1s in such a way that an edge leading to a left
subtree is labeled by a 0 and an edge leading to a right subtree is labeled by a 1. Let /
(1 <1 < k) be an arbitrary leaf, and let by, by, ..., biogx be the edge labels of the
unique path leading from the root to /. It is both well known and easy to prove by
a standard inductive argument that

k
l:l+2b_,-§ (4.3)

As an illustration, applying equation (4.3) to leaf 7, we have 7 =140 %23+
1224+ 1%2" +0x2°.

Referring again to Figure 4.4, let the interior nodes of T be numbered in pre-
order from 1 to k— 1, and let 7" be the tree consisting of the interior nodes
only.4 Let u be an arbitrary node in 7', and let by, b,,...,bi_; be the edge
labels on the unique path from the root to u. We take note of the following tech-
nical result.

Lemma 4.1: Let p(u) be the preorder number of u in T’. Then, we have

i—1

p(u):l—l—ch
=1

j=

“In other words, 7’ is the tree obtained from T by ignoring the last level (i.e., the “boxes”).

120 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

where

1 if ;=0
G=1k .
Proof: The proof is by induction on the depth i of node u in T’. To settle the basis,
note that for i = 1, u must be the root and p(u) = 1, as expected.
For the inductive step, assume the statement true for all nodes in 7" of depth less
that u. Indeed, let v be the parent of u and consider the unique path of length i — 1

joining the root to u. Clearly, nodes u and v share by, b,,...,b;_» and, thus,
€1,€2,...,Ci—>. By the inductive hypothesis,
i—2
pM =1+ ¢ (4.4)
=1

On the other hand, since v is the parent of u, we can write

1 if uis the left child of v

pw) =p)+ 3 & . 4.5)
= otherwise

Notice that if u is the left child of v we have b;_; = O and ¢;_; = 1; otherwise, b;,_; =
1 and c;,_; = k/2"~!. This observation, along with equations (4.4) and (4.5) com-
bined, allows us to write

i—2 i—1
pu) =1 +ch+ci—l =1 ~|—ZC]'
=1 j=1
completing the proof of the lemma.]

Let u be an arbitrary node of 7’ and let n(u) denote its inorder number in 7. Let m be
the left-to-right rank among the leaves of T of the rightmost leaf of the left subtree of
T rooted at u.

Lemma 4.2: n(u) = m.

Proof: We proceed by induction on the inorder number of a node in 7”. Indeed, if
n(u) = 1, then u must be the leftmost leaf in 77 and, thus, its left subtree in 7 consists
of the leftmost leaf of 77, settling the base case.

Assume that the statement is true for all nodes of 7’ with inorder number smaller
than that of u. we shall distinguish between the following two cases:

Case 1: v is an ancestor of u in T’. Let T'(v) be the subtree of T’ rooted at v. In this
case, u must be the leftmost leaf in the right subtree of 7'(v). Let g be the left-to-right

4.6 THE LIGHTWEIGHT TRAINING PROTOCOL 121

rank among the leaves of T of the rightmost leaf of the left subtree of 7'(v). By the
inductive hypothesis, n(v) = gq. Since u is a leaf in 77, it has exactly two children in
T, namely, the leaves of ranks g+ 1 and ¢+ 2. Thus, in this -case,
n(u) =n(v)+1=gq+ 1, as claimed.

Case 2: u is an ancestor of v in T". Let T’(u) be the subtree of 7’ rooted at u. In this
case, v must be the rightmost leaf in the left subtree of 7'(u). Assume that n(v) = r.
Observe that v has exactly two leaf children 7. By the induction hypothesis, these
children have ranks r and r + 1. Thus, in this case, n(u) =n(v)+ 1 =r+1, as
claimed.

This completes the proof of the lemma.]

To illustrate Lemma 4.2, refer again to Figure 4.4 and let u be the internal node
labeled “6.” Recall that the tree 7" consists of the tree T with the level removed. It is
easy to verify that “6” is, in fact, the inorder number of u in 7”. By Lemma 4.2 this
coincides with the label of the box that is the leftmost leaf in the right subtree of
T’ (v) rooted at u.

With these technicalities out of the way, we now return to the corona training pro-
tocol. In our setting, the preorder and inorder numbers of internal nodes in T corre-
spond, respectively, to time slots in the training protocol and to the transmission
ranges used by the sink. More precisely, consider an arbitrary integer i,
(2 <i<logk— 1), and assume that at the end of time slot s a sensor has learned
the leftmost i — 1 bits by, by, ...,b;_;. The following important result is implied
by Lemma 4.1 and Lemma 4.2.

Theorem 4.1: Having learned bits by, by, ...,b;_1, a sensor must wake up in time
slot z =1+ Zj;i ¢j to learn bit b;. Moreover in time slot z the sink uses a trans-
mission range of rinorder(z)-

To illustrate Theorem 4.1, refer again to Figure 4.4 where the internal nodes are
labeled by their preorder numbers. Consider the node labeled 2. It is easy to
verify that its inorder number is 4. Thus, all the nodes in the subtree rooted at 2
will be awake in slot 2 and the sink will transmit with a transmission range of 7.
Consequently, the sensors at a distance from the sink not exceeding r4 will receive
the signal, while the others will not.

It is also worth noting that only the sensors that need to be awake in a given time
slot will stay awake; the others will sleep, minimizing the energy expenditure. Yet
another interesting feature of the training protocol we just described is that individ-
ual sensors sleep for as many contiguous slots as possible before waking up, thus
avoiding repeated wake—sleep transitions that are likely to waste energy.

At the same time, in case the corona training process has to be aborted before it is
complete, Theorem 4.1 guarantees that if the training process restarts at some later
point, every sensor knows the exact time slots when it has to wake up in order to
learn its missing bits.

122 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

Making the training protocol secure is especially important, since training is a
prerequisite for subsequent network operations. Recently, Jones et al. [26] and
Wadaa et al. [41,42] have shown that the training protocol described earlier can
be made secure.

4.7 TASK-BASED DATA PROCESSING AND COMMUNICATION

The goal of this section is to describe a task-based data-processing and communi-
cation system for wireless sensor networks that exploits the virtual infrastructure
introduced in this chapter. For this purpose, we shall adopt the view that the wireless
sensor network performs tasks mandated by a remote end user. The end user issues
queries expressed in terms of high-level abstractions, to be answered by the network.
The middleware, running at the sink, provides the interface between the application
layer (where the end user resides) and the wireless sensor network. Specifically, the
sink parses the queries from the application layer, considers the current capabilities
of the network including the remaining energy budget and negotiates a contract with
the application layer before committing the network [42]. After a contract has been
agreed upon, the middleware translates the corresponding query into low-level tasks,
assigned to individual clusters. The clusters must then perform these tasks and send
the aggregated data back to the sink for consolidation. The consolidated information
is then passed on to the application layer.

4.7.1 Associating Sensors with Tasks

For our purposes a task is a tuple 7(A, S, E), where

- A describes the action to be performed (i.e., detecting physical intrusion into the
deployment area).

- S specifies the identity of the cluster tasked with data collection (sensing).

. E specifies the minimum energy level required of sensors participating in the
task.

The suitably aggregated data collected by the sensors is to be routed to the sink
before being uploaded to the end user. In addition to the sensors in cluster S, a
number of sensors are selected to act as routers, relaying the data collected to the
sink. Collectively, these sensors are the workforce W(T) associated with T.

The process by which W(T) is selected follows. During a time interval of length A
the sink issues a call for work containing the parameters of 7. The sensors in the
same wedge as S and with corona numbers smaller than that of S that happen to
be awake during the interval A and that satisfy the conditions specified (membership
in S and energy level) stay awake and constitute W(T). It is intuitively clear that by
knowing the number of sensors, the density of deployment and the expected value of
sleep periods, one can fine-tune A in such a way that W(T') is commensurate with the

4.8 ROUTING AND DATA AGGREGATION 123

desired grade of service. It is extremely important to note that, as discussed in
Subsection 4.3.2, a by-product of the call for work is that all the sensors in W(T)
are synchronized for the duration of the task.

For an illustration of the concepts discussed in this subsection, we refer to
Figure 4.3(b). In the figure two tasks are in progress. One of these tasks has man-
dated sensors in cluster S; to collect data in support of a query. The sensors associ-
ated with this task as routers are those in the outlined sets in the same wedge as ;.
Since the width of each corona does not exceed the maximum transmission range t,,
communication between sensors in adjacent coronas is assumed. Also note that the
sensors that constitute the workforce of this transaction are synchronized. As for the
transmission of data, all the sensors in the same sector transmit at the same time. As
will be discussed in detail in Subsection 4.8.2, one of the benefits of our scheme is
that data aggregation can be accomplished in a straightforward manner.

The figure features a second task that involves data collection in a cluster S, along
with its workforce. As will be discussed in the next subsection, there is no collision
between the two tasks, as they use a different set of frequencies.

4.7.2 Task-Based Synchronization

The generic synchronization protocol discussed earlier in this chapter can be used as
a building block for a more sophisticated task-based synchronization protocol. The
motivation is to support multitasking. Indeed, it is often desirable for the sensors in a
cluster to perform several tasks in parallel.”> However, any attempt at synchroni-
zation using the generic synchronization protocol will result in all the concurrent
tasks using exactly the same frequency set and the same hopping sequence, creating
frequent collisions and the need for subsequent retransmission.

Suppose that we wish to synchronize the workforce W(T) of a task T that uses
some color class ¢ and that the generic synchronization protocol would show that
the actual time epoch is #;. The idea is to use the perfect hash function ¢ to compute
a virtual time epoch #; with j = ¢(i, k(c), T) to be used by W(T). Therefore, the
sensors in W(T) will act as if the real time were ¢;, using the frequency set n; and
the frequency hopping sequence fI,f,.... Thus, different concurrent tasks will
employ different frequency sets and hopping sequences minimizing the occurrence
of collisions.

4.8 ROUTING AND DATA AGGREGATION

The main goal of this section is to show that once a wireless sensor network has been
trained, both routing and data aggregation become easy and straightforward.

SHowever, the sets of sensors allocated to these tasks must be disjoint.

124 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

4.8.1 Routing

The routing problem in sensor networks differs rather substantially from routing in
other types of wireless networks. For one thing, individual sensors are anonymous,
lacking identities; thus, standard addressing methods do not work directly. For
another reason, the stringent energy limitations present in the sensor network
render the vast majority of conventional routing protocols impractical.

Given the importance of routing, it is not surprising to see that a number of rout-
ing protocols specifically designed for wireless sensor networks were proposed in
the literature [15,43-46]. For example, in ref. [15] Intanagonwiwat et al. describe
directed diffusion and a companion routing protocol based on interest tables at the
expense of maintaining a cache of information indexed by interest area at each
node. Shah and Rabaey [46] responds to client requests by selecting paths that maxi-
mize the longevity of the network rather than minimize total energy consumed by a
path with path options established by local flooding. Other routing protocols include
rumor routing [43], and multipath routing [44], among others. As we are about to
demonstrate, our training protocol provides a novel solution to the routing problem
by yielding energy-efficient paths-based routing.

Recall that sensor networks are multihop. Thus, in order for the sensing infor-
mation to be conveyed to the sink, routing is necessary. Our cluster structure
allows a very simple routing process, as described in the following paragraphs.
The idea is that the information is routed within its own wedge along a virtual
path joining the outermost sector to the sink, as illustrated in Figure 4.3(b). The col-
lection of all the virtual paths (one per wedge) defines a tree. In this tree, each
internal node, except for the root, has exactly one child, eliminating medium
access control (MAC)-level contention in sending sensor information to the sink.

Recently, a number of MAC-layer protocols for wireless sensor networks have
been proposed in the literature [47—49]. In fact, in our routing scheme by appropri-
ately staggering transmissions in neighboring wedges, collision and, therefore, the
need for retransmissions is completely eliminated. Thus, our training protocol
implies an efficient MAC protocol as well.

4.8.2 Data Aggregation

Once sensory data is collected by a multitude of sensors, the next important task is to
consolidate the data in order to minimize the amount of traffic to the sink. We place
the presentation in the context of our work model. To be more specific, we assume
that the cluster identified by (i, j))—that is, the set of sensors located in sector A; ;—
are tasked to perform a certain task 7. A number of sensors in sectors
Ai1,Ai2,..., A1 are selected to act as routers of the data collected by the sensors
in A; ; to the sink. Collectively, these sensors are the support sensors of task 7.

It is, perhaps, of interest to describe the process by which the sensors associated
with 7 are selected. To begin, during a time interval of length A the sink will issue a
call for work specifying the identity j of the wedge in which the task is to be per-
formed, as well as the identity i of the corona in which data are to be collected.

4.8 ROUTING AND DATA AGGREGATION 125

The sensors in wedge j that happen to wake up during the interval A and that have an
appropriate energy level stay awake and will participate in the task either as data
collectors or as routers, depending on their respective position within the wedge.
It is intuitively clear that by knowing the number of sensors, the density of deploy-
ment and the expected value of sleep periods, one can fine-tune A in such a way that
a suitable number of routers will be awake in wedge j in support of 7. Likewise, we
can select the set D of data collecting sensors in A; ;. Let S denote the set of support
sensors for 7. It is appropriate to recall that a by-product of the call for work is that
all the sensors in S are synchronized. In order to make the task secure the sensors in
S will share a secret key that allows them access to a set of time epochs, a set of
frequencies to be used in each time epoch, and a hopping sequence to be used
within each epoch. For details, we refer the reader to Section 4.2.

Assume that the results of the data collection specific to task 7 can be partitioned
into 2™, (m > 0), disjoint groups. Thus, each sensor performing data collection will
encode its data in a string of m bits.

Since, typically, D contains a large number of sensors, it is important to fuse indi-
vidual results into a final result that will be sent to the sink. We now outline a poss-
ible solution to the data-aggregation problem. Using the algorithms of Nakano and
Olariu [50,51] which do not require sensors to have identities, the sensors in D
acquire temporary identities ranging from 1 to |D]. Using their newly acquired iden-
tities, individual data values are being transmitted to the sensor whose identity is 1,
which will perform data aggregation and will send the final result to the sink. The
advantage of this data-aggregation scheme is that there is no data loss and all the
collected values will be correctly fused. There are, however, many disadvantages.
For one thing, the initialization algorithm of [50] requires every sensor in D to
expend an amount of energy proportional with log|D|. For another, the final
result of the data collection is concentrated in a single sensor (i.e., the sensor with
temporary identity 1), which is a single point of failure.

We now propose a much simpler data-aggregation scheme that involves some data
loss, but that is fault tolerant and does not require the sensors in D to have unique
identities. The idea is that the sensors in D transmit the data collected bit by bit, start-
ing, say, left to right, as follows: a value of 0 is not transmitted, while a 1 will be trans-
mitted. The sensors in A;_; ; that have been elected as routers in support of task 7
pick up the values transmitted. The following disambiguation scheme is used:

. No bit is received—in this case, a 0 is recorded.
. A bit of 1 is received—in this case, a 1 is recorded.
« A collision is recorded—in this case a 1 is recorded.

It is clear that as a result of this disambiguation scheme, every sensorin A;_ ; that
is in support of 7 stores the logical OR of the values stored by sensors in D. Note
also that while there was loss of information in the process of fusing data, no further
loss can occur in traversing the path from A;_ ; to the sink: this is because all routers
in A;_;; transmit the same bit string.

126 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

4.8.3 An Example

For an example of data aggregation consider a wireless sensor network that is tasked
to monitor and report the temperature in cluster A; ;. Referring to Table 4.1, for the
application at hand temperatures below 111°F are considered to be noncritical, and if
such a temperature is reported, no specific action is to be taken. By contrast, temp-
eratures above 111°F are considered to be critical, and they trigger a further moni-
toring action. The encoding featured in Table 4.1 is specifically designed to reflects
the relative importance of various temperature ranges. For example, the temperature
ranges in the noncritical zone are twice as large as those in the critical zone. Also,
notice that the leftmost bit differentiates critical from noncritical temperatures.
Thus, if the sink receives a reported temperature whose leftmost bit is a 1, then
further action is initiated; if, on the other hand, the leftmost bit is 0, then no special
action is necessary.

Let us see how our data aggregation works in this context. Referring to Figure 4.5,
assume that a group of three sensors in A; ; have collected data and are about to trans-
mit them to the sensors in A;_y ;. The values collected are encoded, respectively, as
0110, 0101, and 0110. Thus, none of the values indicates a critical situation. After
transmission and disambiguation, the sensors in A;_; ; will store 0111, which is
the logical OR of the values transmitted. Notice that although the data-aggregation
process involves loss of information, we do not loose critical information. This
is because the logical OR of noncritical temperatures must remain noncritical.
Conversely, if the logical OR indicates a critical temperature, one of the fused temp-
eratures must have been critical, and thus action must be initiated. It is also interest-

Figure 4.5 Data aggregation.

ITTT OITI 1011 0011 L7101 o101 1001 0001

1110 Orro 1010 0010 TTIOO OTO0 9poD

0ST=9v1 SvI—Ivl OPI—9€T SEI—I€l 0€I—9CI STI—ITI OCI—9IT SII—-III

OLT—TI0T 00I—16 06—18 08—IL OL—19 09—I¢ |ememdway,

Surpoouyy IRy, pue saduey daamerddun], T'v ATIV.L

127

128 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

ing to note that when the sensors in A;_ ; transmit to those in A;_, ;, no further loss
of information occurs.

4.8.4 Lossless Aggregation

It is worth noting that there is an interesting interplay between the amount of loss in
data aggregation and the amount of energy expended to effect it. As we are about to
show, if we are willing to expend slightly more energy, lossless data aggregation can
be achieved.

The corresponding trade-off is interesting in its own right, being characteristic of
choices that present themselves in the design of protocols for wireless sensor net-
works. For illustration purposes, assume that it is necessary to determine the maxi-
mum of the bit codes stored by the sensors in A; ; and refer to Figure 4.6.

To solve this problem, all the sensors in A;; that have collected relevant
information engage in the following protocol, which is guaranteed to aggregate
the values into the maximum. Assume that each sensor stores a d-bit code for the
range.

h(1111)

g(1101) i(1011)
j(1011)

g(1000) i(1011)
J(011)

Figure 4.6 Lossless data aggregation.

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 129

Protocol (Correct_Maximum): For every position p starting with the most signifi-
cant bit to the least:

1. Sensors in A; ; that have a 0 in position p listen for two time slots; if in any of
these slots a 1 or a collision message is received, they terminate their partici-
pation in the protocol.

2. Sensors that have a 1 in position p transmit in the first time slot and sleep in the
second.

3. Sensors in A;_ ; do the following:

3.1. Any sensor that has received a 1 or a collision in the first time slot, echoes
a 1 in the second.

3.2. Any sensor that has not received a transmission in the first slot sleeps in
the second slot.

To see why the two time slots for transmitting a single bit are necessary consider
the situation depicted in Figure 4.6(a) and the following simple “algorithm”:

Protocol (Incorrect_Maximum): For every position p starting with the most sig-
nificant bit to the least:

1. Sensors in A; ; that have a 0 in position p listen; if a 1 or a collision message is
received, they terminate their participation in the protocol.

2. Sensors that have a 1 in position p transmit.

Figure 4.6(a) depicts the case where, due to energy depletion the sensors that
participate in the protocol are sparsely deployed. Implicit in the protocol Incorrect_
Maximum is that every sensor can hear the transmission of every other sensor. In
particular, notice that in group A sensor a does not hear the transmission of
sensor b and continues transmitting even though it should not. Indeed, for this
reason, the value received by sensor g in A;_;; is not the correct maximum of
values stored by the sensors in group A. A similar situation occurs when sensor /
in A;_ ; heard the transmission of sensors a in group A and d in group B. Clearly
h stores a value that corresponds to no maximum.

Notice how protocol Correct_Maximum is sidestepping this difficulty. The trans-
mission of a single bit is separated into two time slots: first, all the sensors in A; ;
transmit their corresponding bit. In the second slot, the sensors in A;_;; echo
back the values received. Since the sensor in A; ; that store a 0 listen for two time
slots, they will realize that some sensor in A;; has a 1 in that bit position and,
consequently, they should drop out. The result is illustrated in Figure 4.6(b).

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE

The main goal of this section is to explore the problem of energy expenditure related
to routing data in a wireless sensor network. Indeed, we adopt a task-based model

130 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

Figure 4.7 A wedge W and the associated sectors.

[27,41,42] whereby the sensor network is subjected to a set T of tasks. Each task
involves the nodes in a sector (i.e., a cluster) and involves performing local sensing
by the sensors, data aggregation, and sending the resulting information to the sink.
Recall that, as discussed in Section 4.8, one of the key benefits of our training is that
transmitting the result of the task from a sector to the sink amounts to routing the
information along a path lying within the same wedge (see also Fig. 4.3(b)).
Thus, we associate each task with such a path. We will now analyze the energy
expended by sensors to fulfill their path-related duties.

Throughout the remainder of this chapter we assume a sensor network deployed
in a circular area and a collocated sink placed at its center. Consider a wedge W sub-
tended by an angle of 0 and refer to Figure 4.7. The wedge W is partitioned into k
sectors A, A, . ..,Ag by its intersection with k concentric circles, centered at the
sink, and of monotonically increasing radii rj < r, < ... < r. It is important to
note that r¢, the deployment radius, is a system parameter, and thus a constant for
a particular sensor network.

For convenience of notation we write rp = 0 and interpret Ay as the sink itself.
Let #, denote the maximum transmission range of a sensor.’

Let n denote the total number of sensors deployed in wedge W. We assume a uni-
form deployment with density p. In particular, with A standing for the area of wedge
W, we can write

0
n=pA= %r,f (4.6)
Let ny,np,n3,...,n; stand for the number of nodes deployed in the sectors
A1,As,A3, ..., A, respectively. Since the deployment is uniform, it is easy to

°Of course, 7, is a system parameter that depends on the particular type of sensors deployed.

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 131

confirm that for every i (1 <i < k),
0
ni=pA; = p—(r<2 — rl.zfl). 4.7

Let N denote the number of sector-to-sink paths (henceforth, simply denoted by
paths) that the wedge W sees during the lifetime of the sensor network. By our pre-
vious discussion there is a one-to-one map between paths and tasks. Thus, N equals
the total number T of tasks that the wedge can handle during the lifetime of the
network.

We make the following assumptions motivated by the uniformity of the deploy-
ment:

- Each sensor in W is equally likely to be the source of a path to the sink

« For 2 < i <k, each sensor in sector A;_; is equally likely to serve as the next
hop for a path that involves a node in A;.

By virtue of the first assumption, the expected number of paths originating at a node
in Wis
N
— (4.8)
n
Consider sector A;. Since the N paths have the sink as their destination, the nodes
in sector A; must collectively participate in all the N paths. Since A; contains n;
nodes, the expected number of transmissions per node is N/n;. Assuming a
power-degradation factor of o, 2 < a < 6, the energy expended by a node in A;

per path served is r{* + ¢ for some nonnegative constant c. Thus, the total energy
E| consumed by a node in A; to fulfill its routing duties is

N
E =—|rf
1= [+ c]
which, by equation (4.7), can be written as

N, 2N [, 2N| ,, ¢
E, :Z[rl +C]=pTr%[rl +C]=ﬁ|:rl +?:| 4.9)

It is very important to note that equation (4.9) allows us to determine the optimal
value r{" " of r, that minimizes the value of E;. For later reference, we note that
this value is

t if @ =2

opt — 2 1/a
d mm[(C) ,g] f2<a<6 (4.10)

132 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

Let T denote the total number of tasks performed by the entire wireless sensor
network (not just wedge W) during its lifetime, and let N be the corresponding
number of node-to-sink paths. Assuming that the T tasks are uniformly distributed
throughout the sensor network, we can write
N N
—=— 4.11

0 (4.11)

[\

w

By equations (4.9) and (4.11) combined, the total energy needed by a node in A;
to handle its routing duties is

2N a2 C N a—2 C

Let E denote the total energy budget of a sensor. Since the sensors in A must have
sufficient energy to handle their routing duties, by using equation (4.12) we can write

N
— |:rf‘2 + %} <E
pT I

Recalling that in our working model there is a one-to-one correspondence
between tasks and sector-to-sink paths, this inequality can be written in its
equivalent form

T
- |:rf‘_2 + %} <E (4.13)
p ri

4.9.1 Reasoning About the System Parameters

Inequality equation (4.13) can be interpreted in several ways, each expressing a
different view of the limiting factors inherent to the sensors deployed. The goal
of this subsection is to look at some of possible interpretations of inequality (4.13).
1. Network Longevity: We interpret 7, the number of transactions that the
system can sustain during its lifetime as the network longevity. Thus, inequal-

ity (4.13) allows us to write

pWErf
i +c

T<

(4.14)

which tells us that the longevity of the system is upper bounded by the ratio
(4.14). More specifically, the longevity is directly proportional to the deploy-
ment density and to the reciprocal of r{* + c. Consequently, if we wish to
design a wireless sensor network that must sustain a given number 7 of

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 133

transactions, we must select the deployment density as well as the radius of the
first corona accordingly. We also need to chose sensors packing an amount of
energy compatible with ratio (4.14).

2. Maximum Transmission Range Close to the Sink: First, assuming a known
deployment density’ p, inequality (4.13) shows that for a given energy
budget E, in order to guarantee a desired network longevity of T tasks, the
(maximum) transmission radius of sensors deployed in close proximity to
the sink must satisfy

. ¢ _mpE
rl 2+7%<—T (4.15)

with the additional constraint that r; < ¢, where, recall, 7, stands for the maxi-
mum transmission range of a sensor.

3. Deployment Density: Likewise, for a selected radius ry (t, > r;), and for a
given energy budget E, in order to guarantee a network longevity of T
tasks, the deployment density p must satisfy the inequality

T[rf‘ + c]

4.16
Emr} (4.16)

p>

This latter inequality can also be used (perhaps in conjunction with (14) to plan
future re-deployments as the existing sensors exhaust their energy budget.

4.9.2 Energy Expenditure

In this subsection we turn to the task of evaluating the energy expenditure per node
in an arbitrary sector A; with i > 1. Since the case i = 1 was handled in the previous
section, we now assume i > 2.

Observe that nodes in a generic sector A; (2 < i < k) are called on to serve two
kinds of paths:

1. Paths originating in a sector A; with i <j <k
2. Paths originating at a node in A;

It is easy to confirm that the number of paths involving nodes in A; includes all paths

except those originating in one of the sectors Ay, Ay, ..., A;—;. Therefore, the total
number of paths that the nodes in A; must handle is

N
N_;(nl +ny+ -+ nim)

"It is important to note that given the deployment area, the density can be engineered beforehand by
simply deploying a suitable number of sensors uniformly at random.

134 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

By equations (4.6) and (4.7) combined with elementary manipulations, this
expression can be written as

koo 2 2

N DY =GtV) Y P s 4.17)
2 2
i Tk

Recall that sector A; contains n; nodes. This implies that each node in A; must
participate in

paths. Using equation (4.7), the number of paths handled by each node in A; can be
written as

2N r2 1
) [l 1 4.18
pe[]— @19

Observe that the width of sector A; is r; — r;_;. It follows that the transmission range
needed to send information between A; and A;_; is r; — r,_;. We shall adopt a most
general power-degradation model according to which the energy expended by a
node in A; to send information to sensors in A;_; is

(ri—ri)*+c

where ¢ is a nonnegative constant.
Let the total amount of energy expended by a node in A; be E;. By equations
(4.11) and (4.18), we have

N o, 1 N
E; = |:1— Z]W[(n_"‘il) +]

Cmp Ty

Simple manipulations show that

N 2 R a—1
EZN[Lﬁ%M“)"y 62} 4.19)

— 2
TP i ri+riq P —ri

For later reference we will find it convenient to write

E;=E| +E/

4.9 EVALUATING ROUTING-RELATED ENERGY EXPENDITURE 135

where
N ? i — i)™
E =" [1 - r’zl] i = rim)™ (4.20)
TP i ri+rio
and
N 2
E;’:—|:1 f’ﬂ% 4.21)
mp re 1 —rig

We also assume that for all i, 1 <i < k, every sensor in sector A; should be within
transmission range from some sensor in sector A;_;. In particular, every sensor in
sector A; must be within transmission range from the sink.®

4.9.3 Optimizing the Size of Coronas

The main goal of this section is to show how to select the radii ry, 7, ..., r; in such a
way that fotal energy spent per sector-to-sink routing path is minimized. For this
purpose, let g; denote the total amount of energy expended by the nodes along a gen-
eric path transferring data from sector A; to the sink. Write 7y = 0 and assume that
Ap is the sink node itself; since in transmitting from A; to A;_; (2 <j <), the
amount of energy spent is (r; — rj—1)* + ¢, it follows that

& = XI:[(r, —ris)* +c] (4.22)
j=1
Recall the Lagrange identity [ref. 52, p. 64]:
i i i 2
Z (apby — aqbp)2 = Zaﬁ) Zblz, — (Z ayb,
I<p<g=i p=1 p=1 p=l1

For every j (1 <j < i), write a; = (r; — rj,l)"‘/2 and b; = 1. Noticing that

. Z,i;=1 a; =g —ic

: ZL:l b,2a =i
and substituting in Langrage’s identity, we obtain

i

Z (ap — a,)* = i(s; — ic) — Zap

I=p<qg=i p=l1

8For convenience of notation we write ry = 0 and interpret Ay as the sink itself.

136 A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

Thus, we can write

i(e; — ic) = Z (a,)* + Z (ay — a,)* (4.23)
p=1

1<p<gq<i

Clearly, the left-hand side of equation (4.23) is minimized whenever

Z (a, — aq)2 =0

l<p<q=i
which occurs if and only if
ap=a =a3=---=a;
Now, recalling that the optimal value of r; from equation (4.10) is

t if =2
opt: 2 1/
r. min{(Cz) ,tx} if2<a<6
o —

We can set for every

JA =j=0,
(4.24)
opt
Tj—Tj-1 =1
It is easy to see that equation (4.24) implies
ri=ixr (4.25)

and so, substituting in equation (4.23), we obtain

. . ca
g =i X mn{——
a—2,1%+c

To summarize, we state the following result.

Theorem 4.2 In order to minimize the total amount of energy spent on routing along
a path originating at a sensor in corona A; and ending at the sink, all the coronas must
have the same width and the optimal amount of energy is i times the energy needed
to send the desired information between adjacent coronas.

REFERENCES 137

4.10 CONCLUDING REMARKS AND DIRECTIONS
FOR FURTHER WORK

In this chapter we have proposed a general-purpose virtual infrastructure for a mas-
sively deployed collection of anonymous sensors. The key component of the virtual
infrastructure is a dynamic coordinate system that suggests a simple and robust clus-
tering scheme. We have also shown that training the sensors—the process of learn-
ing their coordinates—can be performed by a protocol that is lightweight. Being
energy efficient, this training can be repeated on either a scheduled or ad hoc
basis to provide robustness and dynamic reorganization.

We also showed that in a trained wireless sensor network the tasks of routing and
data aggregation can be performed by very simple and energy-efficient protocols.

It is important to point out that Olariu et al. [27] have shown that the virtual infra-
structure can be leveraged by a number of applications, including in-network data
storage and security-related problems. This is an extremely important problem, as
the information provided by the sensor network may be used for decision making
in military or civilian environments where human life is at stake.

The genetic material discussed in Subsection 4.2.1 has many other applications.
One of then is generational learning discussed in [53,54] in the context of modeling
wireless sensor networks, and by Jones et al. [55] in the context of biology-inspired
protocols for wireless sensor networks.

REFERENCES

—_

. C. C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris. WiseNET: An ultralow power
wireless sensor network solution. Computer (IEEE), 37(8):62-69, 2004.

. See at http://www.darpa.mil/mto/mems/.
. See at http://www.stanford.edu/class/ee321 /ho/MEMS-14-sensors.pdf.
. See at http://www.xs4all.nl/ganswijk/chipdir/m/sensor.htm.

AT S I

V. V. Zhirnov and D. J. C. Herr. New frontiers: Self-assembly and nano-electronics.

Computer (IEEE), 34(1):34-43, 2001.

. J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms enabling wireless

sensor networks. Communications of the ACM, 47(6):41-46, 2004.

7. F. Akyildiz, W. Su, Y. Sankarasubramanian, and E. Cayirci. Wireless sensor networks: A
survey. Computer Networks, 38(4):393-422, 2002; IEEE Wireless Communications,
9(1):40-48, 2002.

8. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for smart dust. In Proceed-

ings of the 5th Annual ACM /IEEE International Conference on Computing and Network-

ing (MobiCom’99), Seattle, Washington, August 1999.

9. B. Warneke, M. Last, B. Leibowitz, and K. Pister. SmartDust: Communicating with a
cubic-millimeter computer. Computer (IEEE), 34(1):44-51, 2001.

10. D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. Computer (IEEE),
37(8):41-49, 2004.

[=))

138

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

D. Culler and W. Hong. Wireless sensor networks. Communications of the ACM, 47(6):
30-33, 2004.

National Research Council. Embedded, Everywhere: A Research Agenda for Systems of
Embedded Computers Committee on Networked Systems of Embedded Computers, for
the Computer Science and Telecommunications Board, Division on Engineering and
Physical Sciences, Washington, D.C., 2001.

P. Saffo. Sensors, the next wave of innovation. Communications of the ACM,
40(2):93-97, 1997.

J. Agre and L. Clare. An integrated architecture for cooperative sensing networks. /[EEE
Computer, 33(5):106—108, 2000.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Directed diffu-
sion for wireless sensor networking. I[EEE/ACM Transactions on Networking, 11(1):
February, 2003.

K. Martinez, J. K. Hart, and R. Ong. Sensor network applications. Computer (IEEE),
37(8):50-56, 2004.

C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking architec-
ture and applications. IEEE Personal Communications, pages 52—59, August 2001.

R. Szewczyk, E. Osterweil, J. Polatre, M. Hamilton, A. Mainwaring, and D. Estrin.
Habitat monitoring with sensor networks. Communications of the ACM, 47(6):34-40,

. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of wireless micro-sensor

network models. Mobile Computing and Communications Review, 6(2):28—-36,

G. J. Pottie and W. J. Kaiser. Wireless integrated sensor networks. Communications of the
ACM, 43(5):51-58, 2000.

K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for self-organization of a wire-
less sensor network. IEEE Personal Communications, pages 16—27, October 2000.

L. Wang and S. Olariu. Towards a general-purpose virtual infrastructure for mobile
aD-HOC networks. In Ad Hoc and Sensor Networks, Y. Xiao and Y. Pan (eds.), Nova
Science Publishers, January 2005.

K. H. Chan, A. Perrig, and D. Song. Random key pre-distribution schemes for sensor
networks. In Proceedings of the IEEE Symposium on Security and Privacy, Berkeley,
California, May 2003.

S. Roundy, P. K. Wright, and J. Rabaey. Energy Scavenging for Wireless Sensor
Networks with Special Focus on Vibrations. Kluwer Academic Press, 2004.

N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounter piezoelectrics.
IEEE Micro, 21:30-41, 2001.

K. Jones, A. Wadaa, S. Olariu, L. Wilson, and M. Eltoweissy. Towards a new paradigm
for securing wireless sensor networks. In Proceeings of the New Security Paradigms
Workshop (NSPW’2003), Ascona, Switzerland, August 2003.

S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Wireless sensor networks: Lever-
aging the virtual infrastructure. IEEE Network, 18(4):51-56, 2004.

M. Sichitiu and C. Veerarithiphan. Simple accurate synchronization for wireless sensor
networks. In Proceedings of the IEEE Wireless Communications and Networking Confer-
ence (WCNC 2003), New Orleans, Louisiana, March 2003.

F. Sivrukaya and B. Yener. Time synchronization in sensor networks: A survey. IEEE
Network, 18(4):45-50, 2004.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

REFERENCES 139

N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very
small devices. IEEE Personal Communications, 7(5):28—-34, 2000.

N. Bulusu, J. Heidemann, and D. Estrin. Scalable coordination for wireless sensor
networks: Self-configuration localization systems. In Proceedings of the 6th International
Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, Lake
District, UK, July 2001.

S. Capkun, M. Hamdi, and J.-P. Hubeaux. GPS-free positioning in mobile ad-hoc
networks. Cluster Computing, 5(2):157-167, 2002.

L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating tiny sensors in time and
space: A case study. In Proceedings of the International Conference on Computer
Design (ICCD 2002), Freiburg, Germany, September 2002.

L. Doherty, H. S. J. Pister, and L. E. Ghaoui. Convex position estimation in wireless
sensor networks. In Proceedings of IEEE INFOCOM 2001, 3:1655-1663, April 2001.
D. Niculescu. Positioning in ad hoc sensor networks. IEEE Network, 18(4):24—-29, 2004.
C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning algorithms for distributed
ad-hoc wireless sensor networks. In Proceedings of the USENIX Technical Annual
Conference, pages 317—328, Monterey, California, June 2002.

K. Langendoen and N. Reijers. Distributed localization algorithm. In Embedded Systems
Handbook, R. Zurawski (ed.), CRC Press, forthcoming.

S. Bandyopadhyay and E. Coyle. An efficient hierarchical clustering algorithm for wire-
less sensor networks. In Proceedings of IEEE INFOCOM 2003—The Conference on
Computer Communications, 22(1):1713-1723, March 2003.

D. Coore, R. Nagpal, and R. Weiss. Paradigms for Structure in an Amorphous Computer,
MIT Atrtificial Intelligence laboratory Technical Report AI-1616, October 1997.

S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal energy-aware clustering
in sensor networks. Sensors, 2:258-269, 2002.

A. Wadaa, S. Olariu, L. Wilson, K. Jones, and Q. Xu. On training wireless sensor net-
works. In Proceedings of the 3rd International Workshop on Wireless, Mobile and
Ad Hoc Networks (WMAN’03), Nice, France, April 2003.

A. Wadaa, S. Olariu, L. Wilson, K. Jones, and M. Eltoweissy. Training a sensor networks.
Mobile Networks and Applications, February 2005, forthcoming.

D. Braginsky and D. Estrin. Rumor Routing Algorithm for Sensor Networks. Paper sub-
mitted to the International Conference on Distributed Computing Systems (ICDCS-22),
November 2001.

D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly resilient, energy-efficient
multipath routing in wireless sensor networks. ACM Mobile Computing and Communi-
cations Review, 5(4), 2001.

J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for dissemi-
nating information in wireless sensor networks. Wireless Networks, 8(3), March 2002.
R. C. Shah and J. Rabaey. Energy aware routing for low energy ad hoc sensor networks.

In Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC 2002), Orlando, Florida, March 2002.

E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. A physical
layer driven protocol and algorithm design for energy-efficient wireless sensor networks.
In Proceedings of the 7th Annual ACM/IEEE International Conference on Computing
and Networking (MobiCom 2001), Rome, Italy, July 2001.

140

48.

49.

50.

51.

52.

53.

54.

55.

A VIRTUAL INFRASTRUCTURE FOR WIRELESS SENSOR NETWORKS

A. Woo and D. E. Culler. A transmission control scheme for media access in sensor
networks. In Proceedings of the 7th Annual ACM/IEEE International Conference on
Computing and Networking (MobiCom 2001), Rome, Italy, July 2001.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In Proceedings of the 7th Annual ACM/IEEE International Conference
on Computing and Networking INFOCOM 2002, New York, June, 2002.

K. Nakano and S. Olariu. Randomized initialization protocols for radio networks. In
Handbook of Wireless Networks and Mobile Computing, Stojmenovi¢ (ed.), pages
195-218, John Wiley & Sons, 2002.

K. Nakano and S. Olariu. Uniform leader election for radio networks. IEEE Transactions
on Parallel and Distributed Systems, 13:516—526, 2002.

R. G. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics, Addison-Wesley,
1989.

D. Gracanin, M. Eltoweissy, S. Olariu, and A. Wadaa. On Modeling Wireless Sensor
Networks. Paper presented at 18th International Parallel and Distributed Processing
Symposium (IPDPS ’04), Workshop 12: Fourth International Workshop on Algorithms
for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe, NM, April 2004.
D. Gracanin, M. Eltoweissy, S. Olariu, and A. Wadaa. Dependability support in wireless
sensor networks. In Dependable Systems, H. Diab and A. Y. Zomaya (eds.), John Wiley &
Sons, 2005.

K. Jones, K. N. Lodding, S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Biomimetic
models for wireless sensor networks. In Handbook of Biolnspired Algorithms, S. Olariu
and A. Y. Zomaya (eds.), CRC Press, 2005.

I CHAPTER 5

Broadcast Authentication and
Key Management for Secure
Sensor Networks

PENG NING
North Carolina State University, Raleigh, North Carolina

DONGGANG LIU

University of Texas at Arlington, Arlington, Texas

This chapter is intended as a starting point for studying sensor network security. It
focuses on recent advances in broadcast authentication and key management in
sensor networks, which are foundational cryptographic services for sensor network
security. Authors describe WTESLA and multi-level WTESLA protocols developed
for scalable broadcast authentication in sensor networks. They then describe
random key predistribution techniques proposed for establishing pairwise keys
between resource constrained sensor nodes. Attacks against location discovery
and some additional security problems in sensor networks are then discussed.

5.1 INTRODUCTION

Recent technological advances have made it possible to develop distributed sensor
networks consisting of a large number of low-cost, low-power, and multifunctional
sensor nodes that communicate at short distances through wireless links [1]. Such
sensor networks may also include a few more powerful nodes called base stations
to facilitate computation as well as communication with the outside world. Sensor
networks are ideal candidates for a wide range of applications. Example applications
include monitoring of critical infrastructures such as the power grid, data acquisition
in hazardous environments, and military operations. The desirable features of dis-
tributed sensor networks have attracted many researchers to develop protocols
and algorithms that can fulfill the requirements of these applications.

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

141

142 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

It is necessary to guarantee the security of sensor networks as well as sensing
applications in hostile environments, especially when the failures of these
applications (e.g., critical infrastructure protection) may result in catastrophic
events with impacts affecting safety, security, the economy, and society at large.
In other words, sensor networks and sensing applications should work as expected,
and offer gracefully degrading services in hostile environments where there are mal-
icious attackers, even if some nodes fail or are compromised.

However, several unique features of sensor networks make it very challenging to
provide security in sensor networks. First, sensor nodes are typically resource con-
strained due to the need to lower the cost. As a result, it is usually undesirable to use
expensive mechanisms such as public key cryptography on such nodes. Second,
sensor networks are often deployed in an unattended fashion, possibly exposed to
physical attacks. Sensor nodes may be captured, and any secret information on a
captured node can potentially be disclosed to attackers. Thus, any security mechan-
ism for sensor networks has to be resilient to compromised nodes. Third, most sensor
network applications depend on local communication and computation because of
the resource constraints on sensor nodes. However, a determined attacker may
attack any node in a sensor network and use the information gathered from the com-
promised nodes to attack noncompromised ones in a certain region. This further
adds to the imbalance between the threat and the defense in sensor networks.

Security in sensor networks has attracted a lot of attention in the past several
years. Key management is one of the most fundamental security services for
sensor networks. The performance of several traditional key management
approaches has been examined on different hardware platforms [2]. To provide prac-
tical key management techniques for sensor networks, researchers have developed a
number of random pairwise key predistribution techniques [3—9], which can handle
the resource constraints on sensor nodes and are resilient to node compromises.
Moreover, a protocol suite called LEAP was developed to help establish individual
keys between sensor nodes and a base station, pairwise keys between sensor nodes,
cluster keys within a local area, and a group key shared by all nodes [10]. Another
fundamental security service is broadcast authentication, which verifies the integrity
and the source of broadcast messages to multiple receivers. A protocol named
MTESLA [11] has been adapted for sensor networks from TESLA, a multicast
stream authentication protocol [12,13], and later improved for higher scalability
in refs. [14] and [15].

Since the primary goal of sensor networks is to collect data from physical
phenomena, it is critical to ensure the authenticity and integrity of the collected
data in hostile environments, even if some nodes have been compromised. A
number of mechanisms were proposed to improve the security for in-network pro-
cessing [16]. An interleaved hop-by-hop authentication mechanism [17] and a
statistical hop-by-hop authentication mechanism [18] were developed to mitigate
malicious data injection in sensor networks. Several techniques were proposed to
use redundant information sources to detect malicious aggregators or sensor
nodes for secure data aggregation [19—-21]. Moreover, researchers have been inves-
tigating potential attacks against sensor networks and possible countermeasures,

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 143

including DOS attacks [22], attacks against routing mechanisms in sensor networks
[23], and Sybil attacks [24].

Despite the recent advances in sensor network security, sensor network security
is still not reality. Indeed, quite a number of problems remain unsolved or require
better solutions. Besides more effective and efficient techniques for some of the
preceding problems, such as key management and broadcast authentication, it is
necessary to have novel techniques to protect critical services such as clock
synchronization and location discovery, mitigate or defeat signal jamming, denial
of service, and other attacks, and provide additional capabilities such as intrusion
detection.

This chapter is intended as a starting point for studying sensor network security.
In the remainder of this chapter, we focus on recent advances in broadcast authen-
tication and key management in sensor networks, which are foundational crypto-
graphic services for sensor network security. In Section 5.2, we introduce
MLTESLA and multilevel wTESLA protocols developed for scalable broadcast
authentication in sensor networks. In Section 5.3, we describe random key predistri-
bution techniques proposed for establishing pairwise keys between resource-
constrained sensor nodes. In Section 5.4, we discuss additional security problems
in sensor networks. In Section 5.5, we conclude this chapter and identify a few
research areas that require further investigation.

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS

Broadcast authentication is an essential service in sensor networks. Because of the
large number of sensor nodes and the broadcast nature of wireless communication, it
is usually desirable for the base stations to broadcast commands, queries, and data to
sensor nodes. The authenticity of such commands and data is critical for the normal
operation of sensor networks. If convinced to accept forged or modified commands
or data, sensor nodes may perform unnecessary or incorrect operations, and cannot
fulfill the intended purposes of the network. Thus, in hostile environments (e.g.,
battlefield, antiterrorists operations), it is necessary to enable sensor nodes to auth-
enticate broadcast messages received from the base station.

Providing broadcast authentication in sensor networks turns out to be a nontrivial
task. On the one hand, public key—based digital signatures (e.g., the Rivest—
Shamir—Adleman (RSA) algorithm [25]), which are typically used for broadcast
authentication in traditional networks, are too expensive to be used in sensor net-
works, due to the intensive computation involved in signature verification and the
resource constraints on sensor nodes. On the other hand, secret key-based mechan-
isms (e.g., HMAC [26]) cannot be directly applied to broadcast authentication, since
otherwise a compromised receiver can easily forge any message from the sender.

In the following, we describe the wTESLA and multilevel wTESLA protocols,
which were proposed for broadcast authentication in sensor networks. uTESLA
employs a chain of authentication keys linked to each other by a pseudorandom
function [27], which is by definition a one-way function. Each key in the key

144 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

chain is the image of the next key under the pseudorandom function. uTESLA
achieves broadcast authentication through delayed disclosure of authentication
keys in the key chain. Multilevel uTESLA is aimed at improving the scalability
of uTESLA in large sensor networks. It includes several variations, all of which
are extended from the basic uTESLA protocol.

52.1 pTESLA

An asymmetric mechanism such as public key cryptography is generally required
for broadcast authentication [12]. Otherwise, a malicious receiver can easily forge
any packet from the sender, as discussed earlier. wTESLA introduces asymmetry
by delaying the disclosure of symmetric keys [11]. A sender broadcasts a message
with a message authentication code (MAC) generated with a secret key K, which is
disclosed after a certain period of time. When a receiver gets this message, if it can
ensure that the packet was sent before the key was disclosed, the receiver buffers this
packet and authenticates the packet when it later receives the disclosed key. To con-
tinuously authenticate broadcast packets, uTESLA divides the time period for
broadcast into multiple intervals, assigning different keys to different time intervals.
All packets broadcast in a particular time interval are authenticated with the same
key assigned to that time interval. Figure 5.1 illustrates the division of the time
line and the assignment of authentication keys.

To authenticate the broadcast messages, a receiver first authenticates the dis-
closed keys. wuTESLA uses a one-way key chain for this purpose. The sender selects
a random value K, as the last key in the key chain and repeatedly performs a pseu-
dorandom function F to compute all the other keys: K; = F(K;41),0 <i<n-—1,
where the secret key K; (except for Kp) is assigned to the ith time interval. Because
of the one-way property of the pseudorandom function, given K; in the key chain,
anybody can compute all the previous keys K;,0 < i < j, but nobody can compute
any of the later ones K;,j + 1 < i < n. Thus, with the knowledge of the initial key
Ky, which is called the commitment of the key chain, a receiver can authenticate
any key in the key chain by merely performing pseudorandom function operations.
When a broadcast message is available in the ith time interval, the sender generates a
MAC for this message with a key derived from K;, broadcasts this message along
with its MAC, and discloses the key K;_, for time interval I;_, in the broadcast mess-
age (where d is the disclosure lag of the authentication keys).

A J

Time
Figure 5.1 uTESLA.

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 145

Each key in the key chain will be disclosed after some delay. As a result, the
attacker can forge a broadcast packet by using the disclosed key. uTESLA uses a
security condition to prevent such situations. When a receiver receives an incoming
broadcast packet in time interval [;, it checks the security condition
W(T.4+A—Ty)/Ti:) <i+d—1, where T, is the local time when the packet is
received, T, is the start time of the time interval 1, T;, is the duration of each
time interval, and A is the maximum clock difference between the sender and
itself. If the security condition is satisfied, that is, the sender has not disclosed the
key K; yet, the receiver accepts this packet. Otherwise, the receiver simply drops it.

MTESLA is an extension to TESLA [12]. The only difference between TESLA
and uTESLA is in their key chain commitment distribution schemes. TESLA
uses asymmetric cryptography to bootstrap new receivers, which is impractical
for current sensor networks due to its high computation and storage overheads.
MTESLA depends on symmetric cryptography (with the master key shared between
the sender and each receiver) to bootstrap the new receivers individually. TESLA
was later extended to include an immediate authentication mechanism [13]. The
basic idea is to include an image under a pseudorandom function of a late message
content in an earlier message so that once the earlier message is authenticated, the
later message content can be authenticated immediately after being received. This
extension can also be applied to uTESLA.

The original TESLA protocol uses broadcast to distribute the initial parameters
(e.g., the key chain commitment) required for broadcast authentication. The authen-
ticity of these parameters is guaranteed by a digital signature generated by the
sender. However, due to the low bandwidth of a sensor network and the low com-
putational resources at each sensor node, wTESLA cannot distribute these initial
parameters using public key cryptography. Instead, the base station has to unicast
the initial parameters to the sensor nodes individually. This feature severely limits
the application of uTESLA in large sensor networks. For example, the implemen-
tation of uTESLA in [11] has 10 kbps bandwidth and supports 30-byte messages.
To bootstrap 2000 nodes, the base station has to send or receive at least 4000 packets
to distribute the initial parameters, which takes at least (4000 x 30 x 8)/
10, 240 = 93.75 s, even if the channel utilization is perfect. Such a method certainly
cannot scale up to very large sensor networks, which may have thousands of
nodes.

5.2.2 Multilevel uTESLA

Multilevel wTESLA was developed to improve the scalability of w#TESLA in large
sensor networks. The basic idea is to predetermine and broadcast the parameters
such as the key chain commitments instead of unicast-based message transmissions.
In the following, we first present the basic approach, and then describe several tech-
niques to deal with potential attacks against multilevel uTESLA.

For simplicity, we use two-level uTESLA to illustrate the idea. This can easily be
extended to multilevel wTESLA. Refer to ref. [15] for further details.

146 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

F F, F, F,
0 K., 0 K, 0 K., 0
| | | |
F1 F1 F'l F1 F‘ F' F1 F1 F1
K ‘ Km,% K.x,s =Ky KmE K‘v:,E ¢ K Knﬁj KM; G K. K»z,«
P -1~ L [1 1 ji A 1 1 i
F, =" K e oy _=="" F
e 7 -~ -~
Kio Ko Kiiz0 Kiso
Time

Figure 5.2 Organizing key chains in two levels.

5.2.2.1 Basic Approach The two-level uTESLA consists of a high-level key
chain and multiple low-level key chains. The low-level key chains are intended for
authenticating broadcast messages, while the high-level key chain is used to
distribute and authenticate commitments of the low-level key chains. The high-
level key chain uses a long enough interval to divide the time line so that it can
cover the lifetime of a sensor network without having too many keys. The low-
level key chains have short enough intervals so that the delay between the receipt
of broadcast messages and the verification of the messages is tolerable. Figure 5.2
illustrates two levels of key chains.

The lifetime of a sensor network is divided into ny (long) intervals of duration Ay,
denoted as I, I,..., and I,. The high-level key chain has no+ 1 elements
Ko.Ki, ..., K,,, which are generated by randomly picking K,, and computing K; =
Fo(Kiyy) fori =0,1,...,n9 — 1, where Fy is a pseudorandom function. The key K;
is associated with each time interval I;. We denote the starting time of /; as 7;. Thus,
the starting time of the high-level key chain is 77.

Since the duration of the high-level time intervals is usually very long compared
with the network delay and clock discrepancies, we choose to disclose a high-level
key K; used for ; in the following time interval ;. Thus, we use the following
security condition to check whether the base station has disclosed the key K;
when a sensor node receives a message authenticated with K; at time £
t 4 Omax < Tit1, Where 8y is the maximum clock discrepancy between the base
station and the sensor node.

Each time interval I; is further divided into n; (short) intervals of duration A;,
denoted as I; 1,12, ...,1; . If needed, the base station generates a low-level key
chain for each time interval /; by randomly picking K; ,, and computing K; ; =
Fi(K; 1) for j=0,1,...,n; — 1, where F is a pseudorandom function. The key
K; ; is intended for authenticating messages broadcasted during the time interval
I; ;. The starting time of the key chain (Kj) is predetermined as T;. The disclosure
lag for the low-level key chains can be determined in the same way as uTESLA
and TESLA [11,12]. For simplicity, we assume all the low-level key chains use the
same disclosure lag d. Further assume that messages broadcasted during I; ; are
indexed as (7,). Thus, the security condition for a message authenticated with K; ;

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 147

and received at time ¢ is: i < (i — 1) *n; +j+d, where i = [(t — T} + Smax)/
Ay] + 1, and &, is the maximum clock discrepancy between the base station and
the sensor node.

When sensor nodes are initialized, their clocks are synchronized with the base
station. In addition, the starting time 7, the commitment Ky of the high-level key
chain, the duration A of each high-level time interval, the duration A; of each
low-level time interval, the disclosure lag d for the low-level key chains, and the
maximum clock discrepancy dn,x between the base station and the sensor nodes
throughout the lifetime of the sensor network are distributed to the sensor nodes.

In order for the sensor nodes to use a low-level key chain (K;() during the time
interval I;, they must authenticate the commitment K;o before 7;. To achieve this
goal, the base station broadcasts a commitment distribution message, denoted as
CDM,;, during each time interval I;. (In this chapter, we use commitment distribution
message and its abbreviation CDM interchangeably.) This message consists of the
commitment K, of the low-level key chain (K;;,0) and the key K;_; in the
high-level key chain. Specifically, the base station constructs the CDM; message
as follows:

CDM; = i|Ki42,0|MACk: (il Kiy2,0DKi-1,

where “|” denotes message concatenation, and K. is derived from K; with a pseudo-
random function other than Fy and F. Thus, to use a low-level key chain (K;)
during I;, the base station needs to generate the key chain during /;_, and distribute
Ki,() in CDMi_z.

Since the high-level authentication key K; is disclosed in CDM; ;| during the time
interval I;,1, each sensor node needs to store CDM; until it receives CDM;, ;. Each
sensor node also stores a key K;, which is initially K. After receiving K; 1 in CDM;,
the sensor node authenticates it by verifying that F '1_1_/ (Ki—1) = K;. Then the sensor
node replaces the current K; with K;_;.

Suppose a sensor node has received CDM;_,. Upon receiving CDM,_; during
I;_1, the node can authenticate CDM,_, with K;_, disclosed in CDM;_;, and thus
verify K;o. As a result, the sensor node can authenticate broadcast messages sent
by the base station using the uTESLA key chain (K;o) during the high-level time
interval I;. Intuitively, this approach uses wTESLA in two different levels. The
high-level key chain relies on the initialization phase of the sensor nodes to distri-
bute the key chain commitment, and it only has a single key chain throughout the
lifetime of the sensor network. The low-level key chains depend on the high-level
key chain to distribute and authenticate the commitments.

The approach in the current form does not tolerate message losses very well.
There are two types of message losses: the losses of normal messages, and the
losses of CDM messages. Both may cause problems. First, the low-level keys are
not entirely chained together. Thus, losses of key disclosure messages for later
keys in a low-level key chain cannot be recovered even if the sensor node can
receive keys in some later low-level key chains. For example, consider the last

148 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

key K; , that is used to authenticate the packet in the key chain of time interval ;. If
the packets that disclose K;,, are lost, the sensor node then has no way to authenti-
cate this packet. As a result, a sensor node may not be able to authenticate a stored
message even if it receives some key disclosure messages later. In contrast, with
MTESLA a receiver can authenticate a stored message as long as it receives a
later key. Second, if CDM,_, does not reach a sensor node, the node will not be
able to use the key chain (K;o) for authentication during the entire time interval
I;, which is usually pretty long (to make the high-level key chain short).

To address the first problem, we further connect the low-level key chains to the
high-level one. Specifically, instead of choosing each X;,, randomly, we derive each
K, from a high-level key K;; (which is to be used in the next high-level time inter-
val) through another pseudorandom function Fy;. That is, K;,, = Foi(Kiy1). As a
result, a sensor node can recover any authentication key K; ; as long as it receives
a CDM message that discloses Ky with i/ > i + 1, even if it does not receive any
later low-level key K;; with j > j. Thus, the first problem can be resolved.
Figure 5.3 illustrates the key chains in two-level uTESLA.

The second problem does not have an ultimate solution. If the base station cannot
reach a sensor node at all during a time interval I;, CDM; will not be delivered to the
sensor node. However, the impact of temporary communication failures can be
reduced by standard fault-tolerant approaches. Multilevel uTESLA has the base
station periodically broadcast the CDM message during each time interval. Assum-
ing that the frequency of this broadcast is F', each CDM message is therefore broad-
casted F x Aj times. To simplify the analysis, we assume the probability that a
sensor node cannot receive a broadcast of a CDM message is py. Thus, the probability
that a sensor node cannot receive any copy of the CDM message is reduced to p}f xBo,

Note that even if a sensor node cannot receive any CDM message during a time
interval [;, it still has the opportunity to authenticate broadcast messages in time
intervals later than ;. Not having the CDM message in time interval I; only pre-
vents a sensor node from authenticating broadcast messages during /;;. As long as
the sensor node gets a CDM message, it can derive all the low-level keys in the
previous time intervals.

F F F, F
0 K., 0 K. 2 K, o
| pd | d | pd |
// // e
/7
F01// Fu1// Fm/’ For #
/7 // Ve /
7
4 £ 5 F 4 £ F 1 £ £ fi ok
K, 2 14 K,1 2 Ki—l,n, K=1E K:gE - Kum K=411 K-+12 < K+I.", K»z‘ﬂ
-+~ ! S S L S A ! s i
A ,/’// F //’/’ A ,//// Fy
3 3 &7 &7
K.q Kiia Kiza Kiso
Time

Figure 5.3 Key chains in two-level £#TESLA.

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 149

The security of multilevel wTESLA follows directly from the security of
MTESLA. Note that the high-level key chain is only used to authenticate the
commitment of each low-level key chain. As long as the security condition of each
KTESLA key chain is satisfied, the two-level uTESLA has the same degree of secur-
ity as all the uTESLA instances involved in this scheme. Thus, similar to uTESLA
and TESLA, a sensor node can detect forged messages by verifying the MAC with the
corresponding authentication key once the sensor node receives it. In addition, replay
attacks can be easily defeated if a sequence number is included in each message.

5.2.2.2 DOS Attacks Against Multilevel nTESLA One limitation of multi-
level uTESLA is that if a sensor node misses all copies of CDM; during the time
interval [;, it cannot authenticate any data packets received during I;,, before it
receives an authentic Kj,j > i+ 2. (Note that the sensor node does not have to
receive an authentic CDM message. As long as the sensor node can authenticate a
high-level key K; with j > i+ 2, it can derive the low-level keys through the
pseudorandom functions Fo, Fo;, and F.) Since the earliest high-level key K; that
satisfies j > i+ 2 is K13, and K;3 is disclosed during /; 4, the sensor node has
to buffer the data packets received during I;;, for at least the duration of one
high-level time interval.

This makes the CDM messages attractive targets for attackers. An attacker may
disrupt the distribution of CDM messages, and thus prevent the sensor nodes from
authenticating broadcast messages during the corresponding high-level time inter-
vals. Although the high-level key chain and the low-level ones are chained together,
and such sensor nodes may store the broadcast messages and authenticate them once
they receive a later commitment distribution message, the delay between the receipt
and the authentication of the messages may introduce a problem: An attacker may
send a large number of forged messages to exhaust the sensor nodes’ buffer before
they can authenticate the buffered messages, and force them to drop some authentic
messages.

The simplest way for an attacker to disrupt the CDM messages is to jam the com-
munication channel. We may have to resort to techniques such as frequency hopping
if the attacker completely jams the communication channel. The attacker may also
jam the communication channel only when the CDM messages are being trans-
mitted. If the attacker can predict the schedule of such messages, it would be
much easier for the attacker to disrupt such message transmissions. Thus, the base
station needs to send the CDM messages randomly or in a pseudorandom manner
that cannot be predicted by an attacker that is unaware of the random transmission.
For simplicity, we assume that the base station sends the CDM messages randomly.

An attacker may forge commitment distribution messages to confuse the sensor
nodes. If a sensor node does not have a copy of the actual CDM;, it will not be able to
get the correct K5, and cannot use the low-level key chain (K;,) during the time
interval [; 5.

Consider a CDM message: CDM; = i |K,-+2,0|MACK;(1' |Ki+20)|Ki—1. Once seeing
such a message, the attacker learns i and K;_;. Then the attacker can replace the

actual Ko or MACK,_/(i |Kit20) with arbitrary values K 120 OF MAC', and forge

150 BROADCAST AUTHENTICATION AND KEY MANAGEMENT
another message: CDM; = i|K,, ,|MAC'|K;_;. Assume a sensor node has an auth-
entic copy of CDM;_,. The sensor node can verify K;_; with K;_,, since K;_; is
included in CDM,;_;. However, the sensor node has no way to verify the authenticity
of Ki,,, or MAC' without the corresponding key, which will be disclosed later. In
other words, the sensor node cannot distinguish between the authentic CDM; mess-
ages and those forged by the attacker. If the sensor node does not save an authentic
copy of CDM,; during I;, it will not be able to get an authenticated K, o, even if it
receives the authentication key K; in CDM,;;; during [;1;. As a result, the sensor
node cannot use the key chain (K;) during /;;5.

Multilevel wTESLA uses two techniques to deal with the disk operating system
(DOS) attacks. One is a random selection technique to tolerate DOS attacks, and the
other uses precomputation to defeat such attacks. These two approaches can be com-
bined to provide additional trade-offs.

5.2.2.3 DOS-Tolerant Multilevel pTESLA DOS-tolerant multilevel
MTESLA involves an initial filtering and a random selection process to improve
the reliable broadcast of commitment distribution messages. For the CDM; messages
received during each time interval I;, each sensor node first tries to discard as many
forged messages as possible. There is a simple test for a sensor node to identify some
forged CDM; messages during /;. The sensor node can verify if Ff)_l_-’ (Ki-1) =K,
where K;_; is the high-level key disclosed in CDM,; and K; is a previously disclosed
high-level key. (Note that such a K; always exists, since the commitment K, of the
high-level key chain is distributed during the initialization of the sensor nodes.)
Messages that fail this test are certainly forged and should be discarded.

The simple test can filter out some forged messages; however, they do not rule
out the forged messages discussed earlier. To further improve the possibility that
the sensor node has an authentic CDM; message, the base station uses a random
selection method to store the CDM; messages that pass the test just cited. The
goal is to make the DOS attacks so difficult that the attacker would rather use con-
stant signal jamming instead to attack the sensor network. In other words, we want to
prevent the DOS attacks that can be achieved by sending a few packets. Some of the
strategies are also applicable to the low-level key chains as well as the (extended)
TESLA and uTESLA protocols.

Without loss of generality, we assume that each copy of CDM; has been weakly
authenticated in the time interval /; by using the preceding test. Assume there are m
buffers for CDM packets. During each time interval /;, a sensor node can save the
first m copies of CDM;. For the kth copy with k > m, the sensor node keeps it
with probability m/k. If a copy is to be kept, the sensor node randomly selects
one of the m buffers and replaces the corresponding copy. It is easy to verify that
if a sensor node receives n copies of CDM;, all copies have the same probability
m/n to be kept in one of the buffers.

During the time interval /;; |, a sensor node can verify if it has an authentic copy
of CDM,; once it receives and weakly authenticates a copy of CDM,; . Specifically,
the sensor node uses the key K; disclosed in CDM,; to verify the MAC of the buf-

5.2 BROADCAST AUTHENTICATION IN SENSOR NETWORKS 151

fered copies of CDM;. Once it authenticates a copy, the sensor node can discard all
the other buffered copies.

If a sensor node cannot find an authentic copy of CDM,; after the verification just
discussed, it can conclude that all buffered copies of CDM,; are forged and discard all
of them. The sensor node then needs to repeat the random selection process for the
copies of CDM, ;. Thus, a sensor node needs at most m + 1 buffers for CDM mess-
ages with this strategy: m buffers for copies of CDM;, and one buffer for the first
weakly authenticated copy of CDM,, ;.

It is easy to see that each sensor node needs to verify the MACs for at most m
times. The number of pseudorandom function operations required to weakly auth-
enticate the CDM messages depends on the total number of (true and forged)
CDM messages a sensor node receives. With m buffer random selections, the prob-
ability that a sensor node has an authentic copy of CDM; can be estimated as
P(CDM;) =1 — p™, where p = (No. forged copies)/(No. total copies).

5.2.2.4 DOS-Resistant Multilevel uTESLA DOS-resistant multilevel
MTESLA is intended for base stations with sufficient computational and storage
resources. When at least one copy of each CDM message can reach the sensor
nodes, DOS-resistant multilevel uTESLA can completely defeat the DOS attacks
without buffering and random selection.

The solution can be considered a variation of the immediate authentication exten-
sion to TESLA [13]. The idea is to include in CDM,; the image H(CDM,;) for each
i, where H is a pseudorandom function. As a result, if a sensor node can authenticate
CDM;,, it can get authentic H(CDM,;) and then authenticate CDM,;; when it is
received. Specifically, the base station constructs CDM; for the high-level time
interval I; as follows:

CDM; = i|Kit1,0/H(CDM;; 1) IMACk; (i Kit1,0|H(CDM; 1)) |Ki-1,

where “|” denotes message concatenation, H is a pseudorandom function other than
Fo and F1, and K] is derived from K; with a pseudorandom function other than H, Fy,
and F;.

Suppose a sensor node has received CDM;. Upon receiving CDM,, 1, the sensor
node can authenticate CDM; with K; disclosed in CDM, ;. Then the sensor node can
immediately authenticate CDM;; by verifying that applying H to CDM,; results in
the same H(CDM;,) included in CDM,;. As a result, the sensor node can authenti-
cate a commitment distribution message immediately after receiving it.

Alternatively, if H(CDM)) is predistributed before deployment, the sensor node
can immediately authenticate CDM; when receiving it, and then use H(CDM,)
included in CDM; to authenticate CDM,, and so on. One can see that in this
case, a sensor node does not use the disclosed high-level keys in CDM messages
directly. However, including such keys in CDM messages is still useful. Indeed,
when a sensor node fails to receive or keep an authentic CDM message, it can
use the random-selection mechanism and the approach described in the previous
paragraph to recover from the failure.

152 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

The cost, however, is that the base station has to precompute the CDM messages
in the reverse order. That is, in order to include H(CDM;,;) in CDM;, the base
station has to have CDM;,, which implies that it also needs CDM;,, and so on.
Therefore, the base station needs to compute both the high-level and the low-
level key chains completely to get the commitments of these key chains, and con-
struct all the CDM messages in the reverse order before distributing the first one
of them. (Note that the base station only needs to compute the high-level key
chain but not all the low-level ones during initialization. The base station can
delay the computation of a low-level key chain until it needs to distribute the com-
mitment of that key chain.)

This imposes additional computation during the initialization phase. Assume that
all the key chains have 1000 keys. The base station needs to perform about
1,001,000 pseudorandom function operations to generate all the key chain commit-
ments, and 1000 pseudorandom function operations and 1000 MAC operations to
generate all the CDM messages. Due to the efficiency of pseudorandom functions,
such computation is still practical if the base station is relatively resourceful. For
example, using MDS5 as the pseudorandom function, a modern personal digital
assistant (PDA) can finish the preceding computation in several seconds. Moreover,
the base station does not have to save the low-level key chains. Indeed, to reduce the
storage overhead, the base station may compute a low-level key chain (again) when
the key chain is needed. Thus, the base station only needs to store the high-level key
chain and the MAC:s of all the CDM messages. Further assume both the authentica-
tion key and the image of a pseudorandom function are 8 bytes. To continue the ear-
lier example, the base station needs (8 + 8) x 1000 = 16,000 bytes to store the high-
level key chain and the MACs.

The immediate authentication of CDM; depends on the successful receipt of
CDM;_;. However, if a sensor node cannot receive an authentic CDM; due to com-
munication failure or an attacker’s active disruption, the sensor node has to fall back
to the DOS-tolerant multilevel uTESLA. This implies that the base station still
needs to distribute CDM messages multiple times in a random manner.

Now let us assess how difficult it is for a sensor node to recover if it fails to receive
an authentic CDM message. We assume an attacker will launch a DOS attack to deter
this recovery. To recover from the failure, the sensor node has to buffer an authentic
CDM message by the end of a later high-level time interval and then authenticate this
message. For example, suppose a sensor node buffers an authentic CDM,;. If it
receives a disclosed key in interval /1, it can authenticate CDM,;; immediately
and gets H(CDM,j;1). The sensor node then recovers from the failure. Thus, if a
sensor node fails to receive an authentic CDM;, the probability that it recovers
from this failure within the next / high-level time intervals is 1 — mel, where

_ No. forged copies of each CDM message

~ No. total copies of each CDM message

and m is the number of buffers for CDM messages.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 153

The base station needs to broadcast each CDM message multiple times to
alleviate communication failures and to help sensor nodes recover from failures
under potential DOS attacks. A sensor node in this scheme only needs a large
number of CDM buffers temporarily during recovery. Moreover, a sensor node
only needs to recover one authentic CDM message in order to go back to normal
operations, and the sensor node may recover over several high-level time intervals.
Thus, the bandwidth required for CDM messages can be much less than DOS-
tolerant multilevel uTESLA.

DOS-resistant multilevel wTESLA introduces additional computation require-
ment before deployment, though it can defeat the DOS attacks when at least one
copy of each CDM message reaches the sensor nodes. Fortunately, such compu-
tation is affordable if the base station is relatively resourceful. It is also possible
to perform such computation on powerful machines and then download the result
to the base station before deployment. In addition, the communication overhead
and the storage overhead on sensor nodes in this scheme is potentially much less
than that in DOS-tolerant wTESLA. Thus, when the required computational
resources are available (on either the base station or some other machines), DOS-
resistant multilevel uTESLA is more desirable. Otherwise, DOS-tolerant multilevel
MTESLA could be used to mitigate the DOS attacks.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS

As one of the most fundamental security services, pairwise key establishment
enables the sensor nodes to communicate securely with each other using crypto-
graphic techniques such as encryption and authentication. However, due to the
resource constraints on sensor nodes, it is undesirable for them to use traditional
pairwise key establishment techniques such as public key cryptography and key dis-
tribution center (KDC).

Instead of the traditional approaches to key establishment, a promising alterna-
tive is key predistribution, where keying materials are predistributed to sensor
nodes before deployment. As two extreme cases, one may set up a global key
among the network so that two sensor nodes can establish a key based on this
global key, or assign each sensor node a unique random key with each of the
other nodes. However, the former is vulnerable to the compromise of a single
node, and the latter introduces substantial storage overhead on sensor nodes.

There have been a number of recent advances in key predistribution for sensor
networks, starting from the probabilistic key predistribution scheme proposed by
Eschenauer and Gligor [3]. In this section, we describe several of these advances.

5.3.1 Random Key Predistribution Based on Key Pools

Eschenauer and Gligor developed the first random key predistribution scheme based
on probabilistic key sharing [3]. The main idea is to let each sensor node randomly
pick a set of keys from a key pool before the deployment so that any two sensor

154 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

nodes have a certain probability to share at least one common key. By configuring
the size of the key pool and the size of the key ring, which includes the keys a sensor
node selects, this scheme provides good security properties with reasonable over-
head. For convenience, we call this scheme basic probabilistic key predistribution.

The basic probabilistic key predistribution scheme consists of three phases: key
predistribution, shared key discovery, and path-key establishment. The key predis-
tribution phase is performed to generate the key pool and distribute keys to sensor
nodes. After being deployed, if two sensor nodes need to establish a pairwise key,
they first attempt to do so through shared key discovery, during which they discover
whether they share a common key. If they do, there is no need to start path-key
establishment; otherwise, these two nodes start the path-key establishment phase
to establish a pairwise key with the help of other sensor nodes.

Eschenauer and Gligor studied the connectivity between sensor nodes resulting
from the basic key predistribution as random graphs [3]. Consider a graph of n
sensor nodes where there is an edge between two nodes if and only if they
share a common key. Let p be the probability that two sensor nodes have a
shared key, and n be the number of sensor nodes in a network. This graph can
be modeled as a random graph G(n,p) of n nodes for which the probability that
an edge exists between two nodes is p. According to the classic results on
random graph theory by Erdos and Rényi, there exists a value of p such that the
probability that a random graph is fully connected moves from O to 1 in a large
random graph. To further consider the fact that a sensor node has limited com-
munication range, the preceding random graph can be modified to have an edge
between two nodes only if they are neighbors. This requires a larger p to ensure
that the random graph of the sensors is fully connected. The additional analysis
by Eschenauer and Gligor also indicates that there are two critical parameters
during the phase of key predistribution: the size of the key pool (P), and the
size of each key ring (k). The probability of sharing at least one key between
two nodes increases when k increases give a fixed P, and decreases when P
increases given a fixed k. The adoption of the basic probabilistic key predistribu-
tion then involves determining the values of k and P for the network size and
memory constraints on sensor nodes.

A limitation of the basic probabilistic key predistribution scheme is that an
attacker may learn the pairwise keys shared between noncompromised nodes
when the attacker compromises a number of nodes. This is because all the sensor
nodes draw their keys from a common key pool, and by learning the keys from com-
promised nodes, the attacker will be able to get keys used by the noncompromised
nodes.

Chan et al. [4] developed a g-composite key predistribution scheme by extending
the basic probabilistic key predistribution scheme, aiming at addressing the problem
just discussed. The g-composite key predistribution also uses a key pool; however, it
also requires two nodes to compute a pairwise key from at least g predistributed keys
that they share. As a result, an attacker has to learn at least g keys shared between
two noncompromised nodes in order to recover the pairwise key they use. Chan
et al.’s analysis indicates that the g-composite scheme offers stronger resilience

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 155

against random node compromises than the basic probabilistic scheme when the
number of compromised nodes is small.

5.3.2 Random Pairwise Keys

The basic probabilistic key predistribution and the g-composite scheme do not allow
node-to-node authentication, since all nodes select keys from a common key pool
and there is no unique key and identity for node authentication. The random pairwise
keys scheme was proposed to address this limitation.

The random pairwise keys scheme randomly picks pairs of sensor nodes and
assigns each pair a unique random key. Based on Erdos and Rényi’s results about
random graphs, we can easily determine a probability p that allows a sensor net-
works to be fully connected with a probability. In other words, given the storage
for m keys and the preceding probability p, there is a high probability for a sensor
network to be fully connected as long as the network size n is smaller than m/p.

In addition to allowing node-to-node authentication, the random pairwise keys
scheme has several other nice properties. Due to the simplicity of the approach, it
is possible to give a thorough security and performance analysis. Moreover, the
random pairwise keys scheme is resistant to node compromises. Since different
pairs of nodes share different keys, an attacker does not learn the keys shared
between noncompromised nodes by learning the keys stored on compromised
ones. Revocation in this scheme also becomes very straightforward; a sensor node
only needs to delete a key in order to revoke a compromised node.

A limitation of the random pairwise keys scheme is the strict limit on the network
size. The maximum supported network size is strictly limited by the available
memory for keys on sensor nodes and the probability for two sensor nodes to
share a common key.

5.3.3 Polynomial Pool-Based Key Predistribution

Polynomial pool—based key predistribution can be considered to be a combination
of the polynomial-based key predistribution [28] with the aforementioned random
key predistribution techniques based on key pools. Instead of using a pool of
random keys, this approach employs a pool of random polynomials. Due to the
nice threshold property provided by the polynomial-based key predistribution, the
polynomial pool—based approach offers more resilience against compromised
nodes. In the following, before discussing this approach, we first give an overview
of polynomial-based key predistribution.

5.3.3.1 Polynomial-Based Key Predistribution Polynomial-based key
predistribution [28] was developed for group key predistribution. Since our goal
is to establish pairwise keys, for simplicity, we only discuss the special case of pair-
wise key establishment in the context of sensor networks.

To predistribute pairwise keys, the (key) setup server randomly generates a bivari-
ate r-degree polynomial f(x,y) = Zi =0 a;x'y’ over a finite field F,, where g is a

156 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

prime number that is large enough to accommodate a cryptographic key, such that it
has the property of f(x,y) = f(y,x). (In the following, we assume all the bivariate
polynomials have this property without explicitly saying so.) It is assumed that
each sensor node has a unique ID. For each node i, the setup server computes a poly-
nomial share of f(x,y), that is, f(7, y). This polynomial share is predistributed to node
i. Thus, for any two sensor nodes i and j, node i can compute the key f(i, j) by eval-
uating f(i, y) at point j, and node j can compute the same key f(j, i) = f(i,) by eval-
uating f(j, y) at point i. As a result, nodes i and j can establish a common key f(i, j).

In this approach, each sensor node i needs to store a r-degree polynomial f(i, x),
which occupies (¢ 4+ 1) log g storage space. To establish a pairwise key, both sensor
nodes need to evaluate the polynomial at the ID of the other sensor node. There is no
communication overhead during the pairwise key establishment process. The secur-
ity proof in ref. [28] ensures that this scheme is unconditionally secure and #-collu-
sion resistant. That is, a coalition of no more than ¢ compromised sensor nodes
knows anything about the pairwise key between any two noncompromised nodes.

The polynomial-based key predistribution scheme just discussed has some limit-
ations. In particular, it can only tolerate the collusion of no more than compromised
nodes, where the value of ¢ is limited by the available memory space and the com-
putation capability on sensor nodes. Indeed, the larger a sensor network is, the more
likely it is that an adversary will compromise more than 7 sensor nodes and then the
entire network.

It is theoretically possible to use the general group key distribution protocol in
ref. [28] in sensor networks. However, the storage cost for a polynomial share is
exponential in terms of the group size, making it prohibitive in sensor networks.
In this chapter, we focus on the problem of pairwise key establishment.

5332 A Framework for Key Predistribution Based on
Random Polynomials A general framework called polynomial pool—based
key predistribution was proposed to develop secure and practical key establishment
techniques, using a pool of random bivariate polynomials. In the following, we first
discuss this general framework, and then present two efficient examples of this
framework.

The polynomial pool—based key predistribution is inspired by the studies in refs.
[3] and [4]. The basic idea can be considered as the combination of the polynomial-
based key predistribution and the key pool idea used in refs. [3] and [4]. However,
our framework is more general in that it allows different choices to be instantiated
within this framework.

Intuitively, this general framework generates a pool of random bivariate poly-
nomials and assigns shares on a subset of bivariate polynomials in the pool to
each sensor node. The polynomial pool has two special cases. When it has only
one polynomial, the general framework degenerates into the polynomial-based
key predistribution. When all the polynomials are 0-degree ones, the polynomial
pool degenerates into the key pool used in refs. [3] and [4].

Similar to the basic probabilistic key predistribution scheme, pairwise key estab-
lishment in this framework has three phases: setup, direct key establishment, and

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 157

path-key establishment. The setup phase is performed to initialize the nodes by dis-
tributing polynomial shares to them. After being deployed, if two sensor nodes need
to establish a pairwise key, they first attempt to do so through direct key establish-
ment. If they can successfully establish a common key, there is no need to start path-
key establishment; otherwise, these two nodes start path-key establishment, trying to
establish a pairwise key with the help of other sensor nodes.

« Phase 1: Setup. The setup server randomly generates a set F of bivariate ¢-
degree polynomials over the finite field F,. To identify different polynomials,
the setup server may assign each polynomial a unique ID. For each sensor node
i, the setup server picks a subset of polynomials F; C F, and assigns the shares
of these polynomials to node i. The main issue in this phase is the subset assign-
ment problem, which specifies how to pick a subset of polynomials from F for
each sensor node.

« Phase 2: Direct Key Establishment. A sensor node starts phase 2 if it needs to
establish a pairwise key with another node. If both sensor nodes have shares on
the same bivariate polynomial, they can establish the pairwise key directly
using the polynomial-based key predistribution. The main issue in this phase
is the polynomial share discovery problem, which specifies how to find a
common bivariate polynomial, of which both nodes have polynomial shares.
For convenience, we say two sensor nodes have a secure link if they can estab-
lish a pairwise key through direct key establishment. A pairwise key established
in this phase is called a direct key.

« Phase 3: Path-Key Establishment. If direct key establishment fails, two sensor
nodes need to start phase 3 to establish a pairwise key with the help of other
sensor nodes. To establish a pairwise key with node j, a sensor node i needs
to find a sequence of nodes between itself and node j such that any two adjacent
nodes in this sequence can establish a direct key. For the sake of presentation,
we call such a sequence of nodes a key path (or simply a path), since the pur-
pose of such a path is to establish a pairwise key. Then either node i or j initiates
a key establishment request with the other node through the intermediate nodes
along the path. A pairwise key established in this phase is called an indirect key.
A subtle issue is that two adjacent nodes in the path may not be able to com-
municate with each other directly. This framework assumes that they can
always discover a route between themselves so that the messages from one
node can reach the other. The main issue in this phase is the path discovery pro-
blem, which specifies how to find a path between two sensor nodes.

In the following, we describe two random key predistribution schemes that fall in
the framework of polynomial pool—-based key predistribution.

5.3.3.3 Random Subset Assignment Key Predistribution As an instan-
tiation of the polynomial pool—based key predistribution, the random subset assign-
ment scheme can also be considered as an extension to the basic probabilistic

158 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

scheme. Instead of randomly selecting keys from a large key pool and assigning
them to sensor nodes, this method randomly chooses polynomials from a random
polynomial pool and assigns their polynomial shares to sensor nodes. However,
these two schemes also differ from each other. In the basic probabilistic key predis-
tribution scheme, the same key may be shared by multiple sensor nodes. In contrast,
in the random subset assignment scheme, there is a unique key for each pair of
sensor nodes. If no more than ¢ shares on the same polynomial are disclosed,
none of the pairwise keys constructed using this polynomial between two noncom-
promised sensor nodes is disclosed.

Now let us describe this scheme by instantiating the three components in the gen-
eral framework.

1. Subset Assignment. The setup server randomly generates a set F of s bivariate
t-degree polynomials over the finite field F,. For each sensor node, the setup
server randomly picks a subset of s polynomials from JF and assigns shares as
well as the IDs of these s” polynomials to the sensor node.

2. Polynomial Share Discovery. Since the setup server does not predistribute
enough information to the sensor nodes for polynomial share discovery,
sensor nodes that need to establish a pairwise key have to discover a
common polynomial with real-time discovery techniques. To find a
common bivariate polynomial, the source node discloses a list of polynomial
IDs to the destination node. If the destination node finds that they have shares
on the same polynomial, it informs the source node the ID of this polynomial;
otherwise, it replies with a message that contains a list of its polynomial IDs,
which also indicates that the direct key establishment has failed.

3. Path Discovery. If two sensor nodes fail to establish a direct key, they need to
start the path-key establishment phase. During this phase, the source node tries
to find another node that can help it set up a pairwise key with the destination
node. Basically, the source node broadcasts two lists of polynomial IDs. One
list includes the polynomial IDs at the source node, and the other includes the
polynomial IDs at the destination node. These two lists are available at both
the source and the destination nodes after the polynomial share discovery.
If one of the nodes that receives this request is able to establish direct keys
with both the source and the destination nodes, it replies with a message
that contains two encrypted copies of a randomly generated key: one
encrypted by the direct key with the source node, and the other encrypted
by the direct key with the destination node. Both the source and the destination
nodes can then get the new pairwise key from this message. (Note that the
intermediate node acts as an ad hoc KDC in this case.) In practice, we can
require that a sensor node only contact its neighbors within a certain range.

The random subset assignment scheme has some nice properties. (We refer the
reader to ref. [6] for a detailed analysis of these properties.) In particular, when
the fraction of randomly compromised secure links is small (e.g., less than 50%),

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 159

given the same storage constraint, the random subset assignment scheme provides a
significantly higher probability of establishing secure communication between
noncompromised nodes than the basic probabilistic and the g-composite key predis-
tribution schemes. Figure 5.4(a) and 5.4(b) compare the security performance of the
random subset assignment scheme with these previous schemes. These figures
clearly show that before the number of compromised sensor nodes reaches a certain
point, the random subset assignment scheme performs much better than both of the
other schemes. When the number of compromised nodes exceeds a certain point, the
other schemes have fewer compromised links or keys than the random subset assign-
ment scheme. Nevertheless, under such circumstances, none of these schemes pro-
vides sufficient security due to the large fraction of compromised links (over 60%) or
the large fraction of compromised (direct or indirect) keys (over 80%). Thus, the

—~
o
~
ury
N

_k
o

|

‘
]

‘

‘

‘

|

|

|

o
o
|

—=—RS(s'=3,5=25,1=66)
_|—~—RS(s'=4,5=43,t=49)| |
—k—g-composite(g=1)
—e—g-composite(g=2)
—+—g-composite(g=3)
——Basic probabilistic
f 7

o
'S
|

Fraction of compromised keys
o o
o o
N

0 200 400 600 800 1000
Number of compromised nodes

o
'

~
—y
N

-y
o
I

o
[o]
I

——RS(s'=2,5=11,t=99)
—8—RS(s'=3,5=25,1=66)
””” /= ~| —+—RS(s'=4,5=43,t=49)
—%— g-composite(g=1)
N —&—g-composite(q=2) |-
—+— g-composite(q=3)
—-—Basic probabilistic
T T

o
(e}
I

o
IS
Il

©
N
|

Fraction of compromised links =

o
L

0 200 400 600 800 1000
Number of compromised nodes

Figure 5.4 Performance of the random subset assignment scheme under attacks. RS refers
to the random subset assignment scheme. Assume the network size is N = 20,000, that
each node has available storage for 200 keys, and that the probability of sharing a direct
key between two nodes is p = .33. (a) Fraction of compromised links between
noncompromised nodes vs. number of compromised nodes. (b) Fraction of compromised
keys (direct or indirect) between noncompromised nodes vs. number of compromised nodes.

160 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

random subset assignment scheme clearly has advantages over the basic probabilis-
tic and the g-composite schemes.

The random subset assignment scheme also has several advantages over the
random pairwise keys scheme [4]. In terms of security performance, the random
pairwise keys scheme does not allow reuse of the same key by multiple pairs of
sensor nodes [4]. Thus, the compromise of some sensor nodes does not lead to
the compromise of direct keys shared between noncompromised nodes. However,
the random pairwise keys scheme has a strict upper bound on the network size
for a given storage constraint and a desired probability to share common keys
between nodes. In contrast, the random subset assignment scheme allows the net-
work to grow by trading off with security. Moreover, in the random subset assign-
ment scheme, sensor nodes can be added dynamically without having to contact
the previously deployed sensor nodes. However, in the random pairwise keys
scheme, if it is necessary to dynamically deploy sensor nodes, the setup server
has to either reserve space for sensor nodes that may never be deployed, which
reduces the probability that two deployed nodes share a common key, or inform
some previously deployed nodes of additional pairwise keys, which introduces
additional communication overhead. Thus, in certain applications, the random
subset assignment scheme is a more attractive choice than the random pairwise
keys scheme.

5.3.3.4 Grid-Based Key Predistribution Grid-based key predistribution is
another instantiation of the general framework. Suppose a sensor network has at
most N sensor nodes. The grid-based scheme constructs an m x m grid and generates
2m bivariate polynomials {f{(x,y), f/(x,¥)};—0. . m—1, Where m = [v/N]. As shown
in Figure 5.5(a), each row i in the grid is associated with a polynomial f/(x, y), and
each column i is associated with a polynomial ff (x, y). The setup server assigns each

(@) (b)

Faa(x.) : ‘ Soa(x) :

f2xy) oI m JANER)) %

FALC75Y) T q,>£<,,> 1
fffffffffffff $ |

S (%) L L : :

1y (x.p) : : O—@ i —
2 A 2 B =~ =
=% s LI ¥

Figure 5.5 Grid-based key predistribution: (a) the grid, and (b) an example order of node
assignment.

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 161

sensor node in the network to a unique coordinate in this grid. For the node at the
coordinate (i, /), the setup server distributes the polynomial shares of f{(x,y) and
f(x,y) to this node. As a result, sensor nodes can perform share discovery and
path discovery based on this information.

For convenience, we encode the coordinate of a sensor node into a single-valued
node ID. Let [= [log, m]. Any valid coordinate can be represented as two [-bit
binary strings (one from the column, and the other from the row in the grid). We
then denote the ID of a sensor node as the concatenation of these two binary strings.
Syntactically, we represent an ID constructed from the coordinate (i,j) as i,). For
the sake of presentation, we also denote ID i as {i., i,), where i. and i, are the first and
last [bits of i, respectively.

The grid-based key predistribution scheme is also generalized as the hypercube-
based scheme, which has n dimensions in hypercube instead of two dimensions in
the grid. However, we do not discuss it, but refer the readers to ref. [29]. The details
of the grid-based key predistribution scheme are presented below.

- Subset Assignment. The setup server randomly generates 2m r-degree bivari-
ate polynomials F = {f{(x,y),f{ (x,¥)}i=0....m—1 Over a finite field F,. For each
sensor node, the setup server picks an unoccupied coordinate (i, ;) in the grid
and assigns it to the node. The ID of this sensor node is ID = (i, ;). The setup
server then distributes {ID,f{(j, x), f]-’(i, x)} to this node. To facilitate path dis-
covery and guarantee that there is at least one key path between two nodes if
there are no compromised nodes and that any two nodes can communicate
with each other, we require that the coordinates assigned to sensor nodes
are densely selected within a rectangle area in the grid. Figure 5.5(b) shows
a possible order to assign coordinates to sensor nodes. It is easy to see that if
there exist nodes at (i,) and {i’, "), then there must be a node at either (i, ;") or
{,J), or both.

« Polynomial Share Discovery. To establish a pairwise key with node v, node u
checks whether u, = v, or u, = v,. If u. = v,, both nodes u and v have poly-
nomial shares of f; (x,y), and they can use the polynomial-based key predistri-
bution scheme to establish a direct key. Similarly, if u, = v,, they both have
polynomial shares of fu”_(x, y), and can establish a direct key accordingly. If
neither of these conditions is true, nodes u and v go through path discovery
to establish an indirect key.

- Path Discovery. Nodes u and v need to use the path discovery if u, # v, and
u, # v,. However, we note that either node (u.,v,) or (v.,u,) can establish
direct keys with both nodes u and v. Indeed, if there is no compromised
node, it is guaranteed that there exists at least one node that can be used as
an intermediate node between any two sensor nodes due to the node-assignment
algorithm. For example, in Figure 5.5(a), both node {i’,j) and {i,j’) can help
node (i,j) establish a pairwise key with node {/,;). Note that nodes u and v
can predetermine the possible intermediate nodes without communicating
with others.

162 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

Dynamic Key-Path Discovery Although the path discovery algorithm just
described can predetermine the key paths that have one intermediate node, both
of the preceding intermediate nodes may have been compromised, or are out of
communication range in some situations. However, there are still alternative key
paths. In particular, we can reuse the predetermined paths at other nodes to find a
secure key path. For example, in Figure 5.5(a), besides node (i’,j) and (i,j’), node
(i,m — 2) has a predetermined path to node (/,;") through node (i, m — 2). Thus,
it can help node (i,j) set up a common key with node {/,;’). Indeed, there are up
to 2(m — 2) such nodes in the grid.

Due to the resource constraints on sensor nodes, we focus on the key paths that
can be discovered by reusing the predetermined key paths at other nodes. Specifi-
cally, a sensor node S can use the following dynamic path discovery to find a key
path to node D, using the predetermined key paths to D at a node with which §
can establish a direct key using a noncompromised polynomial. This choice reduces
the code size at sensor nodes, since we can reuse the code of computing predeter-
mined key paths between sensor nodes. The algorithm can be performed multiple
times to increase the chance of success.

1. The source node S randomly selects a noncompromised node that can estab-
lish a direct key with S using a noncompromised polynomial. Node S also gen-
erates a random number r, and maintains a counter ¢ with initial value 0. If
none of the nodes is selected, the protocol stops; otherwise, it goes to the
next step.

(The countervalue c is used to identify the randomly generated keys, since
this algorithm can be performed several times to increase the chance of suc-
cess, and different keys are used in different rounds for security purposes.)

2. For the selected intermediate node u, S increments the counter ¢ and computes
K. = F(r,c), where F is a pseudorandom function [27]. Then S sends u the IDs
of S and D, ¢, and K, in a message encrypted and authenticated with the direct
key Ky, , shared between S and u.

3. If u receives and authenticates such a message, it knows that S wants to estab-
lish a pairwise key with D. Node u then tries to establish a key with D using
one of its predetermined key paths to D. If this fails, u notifies S that the key
path discovery fails; otherwise, u sends D the IDs of S and D, ¢, and K, in a
message encrypted and authenticated with the key between u and D. To save
communication overhead, this message can be piggy-backed in the key estab-
lishment message between u and D.

4. When the destination node D receives such a message, it knows that S wants to
establish a pairwise key K p with it. Then it sets K5 p = K., and informs S of
the countervalue c. Finally, S and D can use Ks p to make their communi-
cation secure.

This grid-based scheme has a number of attractive properties. First, it guarantees
that any two sensor nodes can establish a pairwise key when there are no

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 163

compromised sensor nodes, assuming that the sensor nodes can communicate with
each other. Second, this scheme is sensitive to node compromises. Even if some
nodes are compromised, there is still a high probability that a pairwise key can be
reestablished between two noncompromised nodes. Third, a sensor node can directly
determine whether it can establish a direct key with another node, and if it can,
which polynomial should be used. As a result, there is no communication overhead
during polynomial share discovery.

5.3.4 Improving Random Key Predistribution with Expected
Deployment Locations

Despite the recent advances, key management in distributed sensor networks is still
not an entirely solved problem. This is especially because the performance of these
schemes, particularly the probability of establishing a common key between com-
municating sensors and the ability to tolerate compromised sensors, are highly
dependent on the memory available on sensor nodes. Because of the resource con-
straints on sensor nodes and the need to lower the cost of sensor networks, it is
always desirable to reduce the memory required by key management and allocate
more resources for the sensor network applications.

In some applications, the sensors may have low mobility, and we may be able to
predetermine the location of the sensors to a certain extent. In this case, we can use
the sensors’ location information to improve the performance of pairwise key
predistribution. In this subsection, we describe a simple location-aware deployment
model as well as a pairwise key management scheme that can take advantage of the
location information. More details of random key predistribution using deployment
knowledge can be found in refs. [7] and [8].

5.3.4.1 A Location-Aware Deployment Model We assume that sensors are
deployed in a two-dimensional area called the target field, and two sensors can com-
municate with each other if they are within each other’s signal range. The location
of a sensor can be represented by a coordinate in the target field. Each sensor has an
expected location that can be predicted or predetermined. After the deployment, a
sensor is placed at an actual location that may be different from its expected
location. We call the difference between the expected location and the actual
location of a sensor the deployment error for the sensor. Thus, this model can be
characterized by the following three parameters:

1. Signal Range d,. A sensor can receive messages from another sensor if the
former is located within the signal range of the latter. We model the signal
range of a sensor as a circle centered at its actual location with the radius
d,. For simplicity, we assume that the radius d, defining the signal range is
a networkwide parameter, and denote the signal range by d,. We say two sen-
sors are neighbors if they are physically located within each other’s signal
range.

164 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

2. Expected Location (L, Ly). The expected location (L, L) of a sensor is a
coordinate in the two-dimensional target field; it specifies where the sensor
is expected to be deployed. Sometimes, a sensor can be expected to be
deployed within an area instead of a particular location. In this case, we
assume the sensor is expected to be deployed at any location in that area
with equal probability.

3. Deployment Error €. We model the deployment error € with a probability
density function. The sensor expected to be deployed at (L, L,) may appear
at a particular area with a certain probability, which is calculated by the inte-
gration of probability density function € over this area. In some cases, the
sensor may have certain mobility, and appear somewhere near its expected
location with a certain probability. The actual location of a sensor at any
point in time may also be modeled by the probability density function. We
assume the deployment error is also a networkwide parameter.

5.3.4.2 Closest Pairwise Keys Scheme The closest pairwise keys scheme
is a variation of the random pairwise keys scheme that takes advantage of the sen-
sors’ expected locations. The basic idea is to have each node share pairwise keys
with ¢ other nodes whose expected locations are closest to this node’s expected
location, where c is a system parameter determined by the memory constraint.

Assume there is a setup server responsible for key predistribution, which is also
aware of the networkwide signal range and deployment error, and the expected
location of each sensor before deployment. Further assume each sensor has a
unique, integer-valued ID. We also use a sensor ID to refer to a particular sensor.
For convenience, we call a pairwise key shared directly between two neighbor
nodes a direct key, and a pairwise key established through other intermediate
nodes an indirect key.

The closest pairwise keys scheme predistributes pairwise keys between pairs of
sensors so that two sensors have a predistributed pairwise key if they have a high
probability of appearing in each other’s signal range. Although reasonable, this
idea is difficult to implement, since it is nontrivial to get the probability that two sen-
sors are neighbors. Indeed, this probability depends on the distribution of the
deployment error, which is generally not available and may vary in different appli-
cations. To simplify the situation, we predistribute pairwise keys between pairs of
sensors whose expected locations are close to each other, hoping that the closer
the expected locations of two sensors, the more possible that they are physically
located in each other’s signal range. We will then use a simple deployment error
model to analyze the probability that two neighbor sensors share a pairwise key.
The basic scheme follows:

- Key Predistribution. Based on the expected locations of the sensors, the setup
server predistributes pairwise keys on each sensor to facilitate establishing
pairwise keys during the normal operation. Specifically, for each sensor u,

5.3 KEY PREDISTRIBUTION IN SENSOR NETWORKS 165

the setup server first discovers a set S of c¢ other sensors whose expected
locations are closest to the expected location of u. For each sensor v in S, the
setup server randomly generates a unique pairwise key K, if no pairwise
key between u and v has been assigned. The setup server then distributes
(v, Kyy) and (u, K,,,,) to sensors u and v, respectively.

- Direct Key Establishment. After the deployment of the sensor network, if two
sensors # and v want to set up a pairwise key to secure the communication
between them, they only need to check whether they have a predeployed pair-
wise key with the other party. This information is obtained from the setup
server at the predistribution phase. The algorithm to identify such a common
key is trivial, because each pairwise key in a particular sensor was associated
with a sensor ID.

- Indirect Key Establishment. After deployment, if two neighbor sensors u and v
do not share a predistributed pairwise key, they can find an intermediate neigh-
bor sensor that shares pairwise keys with both of them to help establish a ses-
sion key. Basically, either of these two sensors can broadcast a request message
with their IDs. Without loss of generality, we assume u sends this request. Sup-
pose sensor i receives this request, and i shares a pairwise key k,,; with u, and a
pairwise key k,; with v. Sensor i then generates a random session key k and
sends a message back to u, which contains Ey, (k) and Ey, (k). These are the
session key k encrypted with k,; and k,;, respectively. Upon receiving this
reply message, sensor u can get the session key by decrypting Ej, ,(k), and
inform sensor v by forwarding Ey (k) to v. (Note that sensor i acts as a KDC
in this case.) Sensor u may receive multiple replies; it can choose any one of
them.

The analysis in ref. [8] indicates that if the expected locations are known and the
deployment of sensors follow a certain distribution centered at the expected
locations, the closest pairwise keys scheme can significantly improve the probability
that two neighbor nodes share a common key. Since each predistributed pairwise
key between two sensor nodes is randomly generated, no matter how many sensors
are compromised, the direct keys between noncompromised sensors are still secure.
This is a property inherited from the random pairwise keys scheme.

The essential approach of the closest pairwise keys scheme is to use deployment
knowledge to improve the probability of sharing keys between neighbor nodes. The
same general idea can also be applied to the basic probabilistic key predistribution,
the g-composite, the polynomial pool—based key predistribution, and the multispace
key predistribution schemes. Additional schemes using deployment knowledge can
be found in refs. [7] and [8].

5.3.5 Further Reading on Key Predistribution in Sensor Networks

As mentioned earlier, key management is one of the most fundamental security ser-
vices in sensor networks, and key predistribution is considered a promising approach

166 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

for efficient and resilient key establishment in sensor networks. What we have
described is by no means the complete picture. For additional information on key
predistribution in sensor networks, refer to refs. [3—10] and [30].

5.4 DEMAND FOR MORE SECURITY RESEARCH

Existing sensor network security research has been mostly on foundational crypto-
graphic services, or applying cryptographic techniques to protect sensor network
applications. Examples include resilient data aggregation [19—-21], secure in-network
processing [16], and hop-by-hop authentication for filtering out false data-injection
attacks [17,18]. These are certainly critical issues for sensor network security.

However, more issues are required for secure and resilient sensor networks. In
particular, we need novel solutions to protect fundamental services such as location
discovery and clock synchronization, which are also resilient in the presence of fail-
ures and malicious attacks. Moreover, intrusion detection in sensor networks is par-
ticularly important due to the fact that unattended sensor nodes can be easily
captured and compromised. Since the ultimate goal of sensor networks is to collect
data from physical environments, secure data collection and management is another
critical issue as well.

To illustrate the need for additional research, in the rest of this section we discuss
attacks against location discovery in sensor networks.

5.4.1 Attacks Against Location Discovery

Sensors’ locations play a critical role in numerous sensor network applications. For
example, target tracking applications require sensors’ locations to estimate the
moving direction of target objects. As another example, in geographical routing pro-
tocols (e.g., FACE [31,32], greedy perimeter stateless routing (GPSR) [32-34]),
sensor nodes make routing decisions at least partially based on their own and
their neighbors’ locations. Indeed, many sensor network applications will not
work without sensors’ location information.

A number of location discovery protocols [33,35-42] have been proposed for
wireless sensor networks in recent years. These protocols share a common feature:
They all use some special nodes, called beacon nodes, which are assumed to know
their own locations (e.g., through global positioning system (GPS) receivers or
manual configuration). These protocols work in two stages. In the first stage, non-
beacon nodes receive radio signals called beacon signals from the beacon nodes.
The packet carried by a beacon signal, which we call a beacon packet, usually
includes the location of the beacon node. The nonbeacon nodes then estimate certain
measurements (e.g., distance between the beacon and the nonbeacon nodes) based
on features of the beacon signals (e.g., received signal strength indicator, time differ-
ence of arrival). We refer to such a measurement and the location of the correspond-
ing beacon node collectively as a location reference. In the second stage, a sensor
node determines its own location when it has enough number-of-location references

5.4 DEMAND FOR MORE SECURITY RESEARCH 167

from different beacon nodes. A typical approach is to consider the location
references as constraints that a sensor node’s location must satisfy, and estimate it
by finding a mathematical solution that satisfies these constraints with minimum
estimation error. Existing approaches either employ range-based methods [35—
39], which use the exact measurements obtained in stage one, or range-free ones
[33,40-42], which only need the existences of beacon signals in stage one.

Despite the recent advances, location discovery for wireless sensor networks in
hostile environments, where there may be malicious attacks, has been mostly over-
looked. As a matter of fact, all of the existing location discovery protocols become
vulnerable in the presence of malicious attacks. As illustrated in Figure 5.6, an
attacker may provide an incorrect location reference by pretending to be valid
beacon nodes (Figure 5.6(a)), compromising beacon nodes (Figure 5.6(b)), or
replaying the beacon packets that were intercepted in different locations
(Figure 5.6(c)). In either of these cases, nonbeacon nodes will determine their
locations incorrectly.

Without protection, an attacker may easily mislead the location estimation at
sensor nodes and subvert the normal operation of sensor networks. The security
of location discovery can certainly be enhanced by authentication. Specifically,
each beacon packet should be authenticated with a cryptographic key known only
to the sender and the intended receivers, and a nonbeacon node accepts a beacon

(@) (b)
Beacon node 7, Attacking noden,,
. Malicious beacon
O (x%y") node n,
(xy) I’m n,; my location
Pmn,; (xy) is (x7y")

my location is (x,y)

(©
Beacon node n,,

I’'m n,; my location is
(xy)

(xy) Attacking node n,

(x°y)

Replay “I'm n,; my
location is (x,y)”

n

Figure 5.6 Attacks against location discovery services: (a) masquerade beacon nodes,
(b) compromised beacon nodes, and (c) replay attack.

168 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

signal only when the beacon packet carried by the beacon signal can be authenti-
cated. However, only having authentication does not guarantee the security of
location discovery, either. As discussed earlier, an attacker may forge beacon pack-
ets with keys learned through compromised nodes, or replay beacon signals inter-
cepted in different locations.

Most of the localization schemes for sensor networks have a certain ability to tol-
erate measurement errors (e.g., by averaging the effect of problematic location refer-
ences over all location references). For example, minimum mean-square estimation
(MMSE) has been used in most of the range-based and some range-free localization
schemes to improve the accuracy of location estimation when a sensor node has
redundant location references. However, these methods cannot properly handle
malicious location references, which typically include very large errors not seen in
natural faults.

To demonstrate the impact of malicious attacks, we performed an experiment
through simulation with the MMSE-based location estimation method in [35]. We
used nine honest beacon nodes and one malicious beacon node randomly deployed
in a30m x 30 m field. The node that estimates location is positioned at the center of
the field. The malicious beacon node always declares a false location that is x meters
away from its real location, where x is a parameter representing the location error
created by an attacker. To model the distance measurement error, we assume such
an error is uniformly distributed between —epn,x and ep,s. Figure 5.7 shows the
location estimation error (i.e., the distance between a sensor’s real location and
the estimated location) introduced by the malicious beacon node when the location
error x created by an attacker increases. We can clearly see that the malicious node
affects the estimated location significantly by declaring incorrect locations. Since an
attacker can introduce arbitrarily large errors by declaring false locations in beacon
packets, the preceding result implies that the attacker can introduce arbitrarily large
errors into a nonbeacon node’s location estimation.

14T : : : : : !
C | | | | |
[| | | | |
R R
5 g ! ! ! ! ;
A - I I I I
© 10 f--------- o R R ro A T
c r I I I I I
o C ! | | | |
B 8Ff--------- L LL LETTEEEY BERPEYS- . EREEREE e o
£ i ! ! ! ! !
+= L | | | |
I oooooe- A R iy P
s i : : : : ‘
'% /R . . . =8 enax=0| __|
8 - 1 i i | —%— epax=2
C [l | | |
- 2= enax=4 1
: | | | | :
Or NN TN SN SN [N TN SN SN TN NN SN SN SN N SN Y N SN SN NN Y SN SN NN NN SN S B
0 5 10 15 20 25 30

Location error introduced by a malicious beacon

Figure 5.7 Location estimation error introduced by malicious attacks.

REFERENCES 169

Such malicious attacks will generate similar impacts on the other localization
schemes. This is because an attacker may introduce arbitrary errors into location
estimation process, while all the existing localization techniques assume bounded
errors, which are only true in benign environments. As discussed earlier, such
attacks cannot be simply prevented by cryptographic techniques due to the threat
of compromised nodes and replay attacks. Thus, it is highly desirable to have
additional mechanisms to improve the security of location discovery in sensor
networks.

5.5 CONCLUSION

Sensor network security is a challenging problem, particularly due to the resource
constraints on sensor nodes, the threat of node compromises resulting from unat-
tended deployment, and the imbalance between the threat and the defense in
sensor networks. Foundational cryptographic services such as broadcast authenti-
cation and key management are definitely a necessary condition to ensure secure
and resilient sensor network applications. Other foundational services in sensor
network applications also deserve intensive investigation. Examples of such ser-
vices include secure clock synchronization, secure location discovery, secure
aggregation and in-network processing, cluster formation, and cluster head elec-
tion. Moreover, intrusion detection in sensor networks is highly desirable, particu-
larly due to the fact that unattended sensor nodes may be easily captured and
compromised. We expect to see more advances in sensor network security in the
next several years.

Research in sensor network security is likely to generate an impact beyond sensor
networks themselves. Experiences gained here will offer techniques and insights in
handling security problems arising in many other applications involving resource-
constrained devices interfacing with a malicious physical world.

REFERENCES

1. I F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:
A survey. Computer Networks, 38(4):393-422, 2002.

2. D. W. Carman, P. S. Kruus, and B. J. Matt. Constrains and Approaches for Distributed
Sensor Network Security. Technical report, NAI Labs, 2000.

3. L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM Conference on Computer and Communications
Security, pages 41-47, November 2002.

4. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor
networks. In IEEE Symposium on Research in Security and Privacy, pages
197-213, 2003.

170

5.

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

BROADCAST AUTHENTICATION AND KEY MANAGEMENT

W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key pre-distribution scheme for
wireless sensor networks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS’03), pages 42—51, October 2003.

. D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In Pro-

ceedings of the 10th ACM Conference on Computer and Communications Security
(CCS’03), pages 52—61, October 2003.

. W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A key management scheme for

wireless sensor networks using deployment knowledge. In Proceedings of IEEE INFO-
COM 2004, Hong Kong, March 2004.

. D. Liu and P. Ning. Location-based pairwise key establishments for static sensor net-

works. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks (SASN
’03), page 720082, October 2003.

. R. D. Pietro, L. V. Mancini, and A. Mei. Random key assignment for secure wireless

sensor networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks
(SASN ’03), October 2003.

S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security mechanisms for large-scale dis-
tributed sensor networks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS’03), pages 62—72, October 2003.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar. SPINS: Security protocols for
sensor networks. In Proceedings of 7th Annual International Conference on Mobile
Computing and Networks, July 2001.

A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authentication and signing of
multicast streams over lossy channels. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy, May 2000.

A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source authentication

for multicast. In Proceedings of the Network and Distributed System Security Symposium,
February 2001.

D. Liu and P. Ning. Efficient distribution of key chain commitments for broadcast authen-
tication in distributed sensor networks. In Proceedings of the 10th Annual Network and
Distributed System Security Symposium, pages 263—-276, February 2003.

D. Liu and P. Ning. Multi-level uTESLA: Broadcast authentication for distributed sensor
networks. ACM Transactions in Embedded Computing Systems, 3(4):800-836, 2004.

J. Deng, R. Han, and S. Mishra. Security support for in-network processing in wireless
sensor networks. In 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks
(SASN ’03), October 2003.

S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication
scheme for filtering false data in sensor networks. In Proceedings of the 2004 IEEE Sym-
posium on Security and Privacy, May 2004.

. F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false data in

sensor networks. In Proceedings of IEEE INFOCOM 2004, March 2004.

L. Hu and D. Evans. Secure aggregation for wireless networks. In Workshop on Security
and Assurance in Ad Hoc Networks, January 2003.

B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in sensor
networks. In Proceedings of the 1st ACM Conference on Embedded Networked Sensor
Systems (SenSys 03), November 2003.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

REFERENCES 171

W.Du, J. Deng, Y. S. Han, and P. K. Varshney. A witness-based approach for data fusion
assurance in wireless sensor networks. In Proceedings of the IEEE Global Communi-
cations Conference (GLOBECOM 03), December 2003.

A. D. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE Computer,
35(10):54-62, 2002.

C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and
countermeasures. In Proceedings of the Ist IEEE International Workshop on Sensor
Network Protocols and Applications, May 2003.

J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks: Analysis
and defenses. In Proceedings of the IEEE International Conference on Information
Processing in Sensor Networks (IPSN 2004), April 2004.

R. L. Rivest, A. Shamir, and L. A. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authen-
tication. Internet RFC 2104, February 1997.

0. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792—-807, October 1986.

C. Blundo, A. De Santis, Amir Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly-
secure key distribution for dynamic conferences. In Advances in Cryptology—CRYPTO
’92, LNCS 740, pages 471-486, 1993.

D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed sensor networks.
ACM Transactions on Information and System Security, forthcoming.

S. A. Camtepe and B. Yener. Combinatorial design of key distribution mechanisms for
wireless sensor networks. In Proceedings of the 9th European Symposium on Research
in Computer Security (ESORICS '04), 2004.

P. Bose, P. Morin, I. Stojmenovi¢, and J. Urrutia. Routing with guaranteed delivery in ad
hoc wireless networks. In Proceedings of the 3rd ACM International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications, pages
48-55, 1999.

P. Bose, P. Morin, I. Stojmenovi¢, and J. Urrutia. Routing with guaranteed delivery in ad
hoc wireless networks. ACM Wireless Networks, 7(6):609-616, 2001.

N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very
small devices. IEEE Personal Communications, pages 28—34, October 2000.

B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless networks.
In Proceedings of ACM MobiCom 2000, 2000.

A. Savvides, C. Han, and M. Srivastava. Dynamic fine-grained localization in ad-hoc
networks of sensors. In Proceedings of ACM MobiCom ’01, pages 166—179, July 2001.
A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration
primitive for node localization problems. In Proceedings of ACM WSNA 02, September
2002.

D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings
of IEEE INFOCOM 2003—The Conference on Computer Communications, 22(1):1734—
1743, March 2003.

A. Nasipuri and K. Li. A directionality based location discovery scheme for wireless
sensor networks. In Proceedings of the ACM WSNA’02, September 2002.

172 BROADCAST AUTHENTICATION AND KEY MANAGEMENT

39. L. Doherty, K. S. Pister, and L. E. Ghaoui. Convex optimization methods for sensor node
position estimation. In Proceedings of IEEE INFOCOM 2001, pages 1655-1663,
Anchorage, Alaska, April 2001.

40. D. Niculescu and B. Nath. DV based positioning in ad hoc networks. Telecommunication
Systems, 22:1-4, 267-280, 2003.

41. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local
information on an ad hoc sensor network. In /PSN’03, 2003.

42. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher. Range-free local-
ization schemes in large scale sensor networks. In Proceedings of ACM MobiCom 2003,
2003.

I CHAPTER 6

Embedded Operating Systems for
Wireless Microsensor Nodes

BRIAN SHUCKER, JEFF ROSE, ANMOL SHETH, JAMES CARLSON,
SHAH BHATTI, HUI DAI, JING DENG, and RICHARD HAN

University of Colorado at Boulder, Boulder, Colorado

Sensor nodes fall somewhere in between the single application devices that need no
operating system, and the more capable, general purpose devices with the resources
to run a traditional embedded operating system. This is reflected in the design of
sensornet operating systems, which provide a limited number of common services
for application developers. These common services typically include hardware man-
agement of sensors, radios, and I/ O buses, and devices such as external flash. Other
services needed by applications include task coordination, power management,
adapting to resource constraints, and networking. In this chapter, authors examine
the principles behind the design of sensornet operating systems, their basic architec-
ture, and features that are unique to the sensor network domain. These principles
are illustrated by examining two very different sensor operating systems, TinyOS
and MOS (the MANTIS operating system).

6.1 INTRODUCTION

The first question one might ask about operating systems for sensor networks is,
“Why do sensor nodes need an operating system at all?” Indeed, there are many
embedded devices that do not use an operating system. For devices customized to
a particular application, such as digital cameras or microwaves, it is much simpler
to run the application code directly on the microcontroller. On the other hand, more
general-purpose devices such as personal digital assistants (PDAs) use embedded
versions of full-blown operating systems, such as Windows Mobile PocketPC OS

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

173

174 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

or Embedded Linux, to provide basic services that are common to multiple
applications.

Sensor nodes fall somewhere in between the single-application devices that need
no operating system, and the more capable, general-purpose devices with the
resources to run a traditional embedded operating system. This is reflected in the
design of sensornet operating systems, which may not even be considered operating
systems in the traditional sense. A sensor operating system provides a limited
number of common services for application developers. These common services
typically include hardware management of sensors, radios, and I/O buses, and
devices such as external flash. Other services needed by applications include task
coordination, power management, adaptation to resource constraints, and network-
ing. In this chapter, we examine the principles behind the design of sensornet oper-
ating systems, their basic architecture, and features that are unique to the sensor
network domain. We will illustrate these principles by examining two very different
sensor operating systems, TinyOS [1] and MOS [2], the MANTIS operating system.

Figure 6.1 identifies the design space that sensor operating systems are targeting.
Minimum requirements of operating systems in terms volatile RAM for run-time
execution and permanent storage for code are shown in Figure 6.1. The design
space of sensor operating systems is in the far lower left of the figure, where both
TinyOS and MOS are clustered. Sensor operating systems impose the most minimal
needs in terms of RAM and flash, and are equivalent in memory requirements to
smart card operating systems. The design space of PDA-class operating systems
such as PalmOS and PocketPC OS are located about two magnitudes higher in
terms of memory requirements. Most embedded operating systems span the gap
between sensor-class operating systems and PDA-class operating systems. Real-
time embedded operating systems (RTOS) like QNX and VXWorks roughly fall
into the gap between the PDA-class operating systemes and sensor-class operating

100,000 JVM, Ligux
Mach
- A
B 10,000
o Personalia va A UCLinux
S 1000 PalmOS ,
o A
o PocketRC
5 100
[
E tMOS
E 10 JavaSQ
) &
o TinyOS
1
0.1
01 1 10 100 1000 10,000

Volatile storage (kB)

Figure 6.1 Minimum requirements of operating systems in terms of volatile RAM for run-
time execution and permanent storage for code.

6.2 MICROSENSOR NODE HARDWARE 175

systemes, requiring approximately 100 kB and 286 kB of ROM, respectively, but
are not shown because we were not able to determine their run-time footprints.
Also, we expect wCOS and AVRX embedded operating systems to fall into the
same range between sensor-class operating systems and PDA-class operating
systems. uCLinux requires resources on the order of a PDA-class operating
system. Much larger operating systems, such as Linux, are also shown for compari-
son. Windows-class operating systems fall into the Linux category as well.

Section 6.2 provides an overview of common features of microsensor node hard-
ware. In Section 6.3, we explore the fundamental principles of sensor node operating
system design, and Section 6.4 describes a set of features that are unique to sensor
node operating systems. We follow with a discussion of two operating systems,
TinyOS (Section 6.6) and MANTIS OS (Section 6.7). A detailed comparison of
the relative advantages and disadvantages of event-driven and multithreaded
sensor operating systems is presented in Section 6.8.

6.2 MICROSENSOR NODE HARDWARE

In developing operating systems for embedded microsensor nodes, the chosen hard-
ware has a direct effect on many aspects of the system design. The hardware of a
wireless microsensor node typically consists of five major subsystems, namely,
the microcontroller, sensors, radio, power unit, and permanent storage. Here we
discuss the primary aspects of the microcontroller and other devices that have the
greatest effect on the operating system.

6.2.1 Flash, SRAM, and EEPROM

Most low-power microcontrollers today utilize the Harvard architecture [3], which
means the processing unit uses physically separate storage and signaling pathways
for the executable instructions and the data [4—7]. Todays, this typically results in the
usage of flash memory for persistent storage of application code, the text segment,
and static RAM (SRAM) for data storage at run time.

In terms of both time and energy, flash memory is inexpensive to read but expens-
ive to write, which makes it well suited for program memory. Also, it may or may
not be possible for the microcontroller to write to its own flash memory; reprogram-
ming may require additional hardware. In either case, flash memory is written in
blocks (pages), but may be read at random. The number of writes to a particular
block is limited, as the blocks wear out over time. However, flash memory is non-
volatile, so it retains data when powered off.

SRAM is random access and is generally fast for reads and writes, but is volatile,
consumes more energy than flash, and costs more. SRAM does not wear out in the
same fashion as flash memory. For these reasons, SRAM is used in small quantities
as data memory. Extremely limited data memory is one of the major constraints in
sensor network programming.

176 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

Additional nonvolatile storage may take the form of a separate flash bank, or
another memory technology such as electrically erasable programmable read-only
memory (EEPROM). From an operating system perspective, EEPROM behaves
similarly to flash: it is nonvolatile, survives a limited number of writes, and may
be slow to write. Both flash and EEPROM come in fairly large units with serial inter-
faces as well as parallel interfaces; the serial devices may be used in a sensor node
similarly to a disk.

6.2.2 Peripheral Interfaces

Modern microcontrollers come with a number of peripheral interfaces, all integrated
on the same chip with the CPU and memory. Peripheral devices, such as the radio
and sensors, connect to the microcontroller through one or more of these interfaces.
Memory-mapped peripherals are rarely used.

Common interfaces include UART (universal asynchronous receiver transmitter),
SPI (serial peripheral interface), and I’C (inter-integrated circuit), among others.
Each type has unique characteristics, such as maximum speed, number of devices
per bus, and signaling protocol. However, the details are largely hidden from the
operating system designers, since the interfaces are implemented in hardware.

6.2.3 Radios

Radio-frequency (RF) devices may or may not have a large impact on the perform-
ance of a sensor operating system, depending on how much of the RF protocol is
handled in hardware. For example, the common Mica2 sensor node uses a
CC1000 radio [8] that provides a raw bit interface. Besides requiring somewhat
complex software to operate, the CC1000 constantly interrupts the CPU with
noise bits whenever it is on. This increases the energy cost of activating the radio,
and also reduces available CPU bandwidth. By contrast, the more recent MicaZ
node uses a packet-based CC2420 radio, which handles entire packet transfers in
hardware. This greatly reduces software complexity and allows the CPU to be in
a low-power mode even while the radio is sending or receiving a packet.

6.2.4 Sensors

Sensors are difficult to characterize as a group, because they come in such a wide
variety. Sensors may be digital or analog in nature, may or may not require signifi-
cant attention from the CPU, and may have power requirements ranging from insig-
nificant to dominant. In order to support the multitude of available sensors, an
operating system must be designed with flexibility and modularity in mind.

6.2.5 Power Systems

Sensor nodes typically run on batteries, which makes effective power management a
key challenge in operating system design, as described in Section 6.3.4. While

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN 177

methods of supplying continuous power in outdoor in situ deployments have been
investigated, for example, solar panels and other energy-scavenging techniques, it
is still necessary for operating systems to conserve power as much as possible.
There are some situations, such as in certain indoor sensor networks, when power
can be obtained from wall outlets, though communication continues to be conducted
via wireless multihop networking.

6.2.6 Contrast with PC Systems

Sensor nodes that are deployed in situ do not typically support output devices for
interaction, such as displays. User interaction is not a paramount requirement, as
it is in PC and PDA systems. The nodes are instead left physically unattended for
most of their lifetime. Similarly, in situ sensor nodes do not typically provide
input devices for user interaction such as keyboards or mice.

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN

Modern sensor operating systems differ from conventional PC operating systems in
a number of ways. These differences stem from the unique hardware and energy
constraints typically encountered in sensor networking. The following sections
describe the general principles behind sensor operating systems.

6.3.1 Managing Hardware

The first task of any operating system is to manage the hardware resources available
on the machine. Sensor operating systems are no exception to this rule. The operat-
ing system provides abstract services, such as reading sensors, sending and receiving
data over the radio, and using timers.

One of the primary hardware constraints on a typical microcontroller is the lack
of a memory management unit (MMU). Additionally, most sensor node controllers
only have a single operating mode, whereas a typical processor has both user and
supervisor modes. This eliminates the distinction between executing kernel code
and executing application code, so hardware management may be implemented as
a library of function calls. While these function calls can provide a clean, abstract
interface to the hardware, they do not provide protection from users who access
the hardware directly, either by accident or with malicious intent. This lack of pro-
tection has implications for system reliability, debugging, coordination of multiple
tasks, and security. Such concerns will be addressed in more detail below.

6.3.2 Task Coordination

Another major problem solved by the operating system is that of coordination of
multiple tasks. This primarily consists of two sub-problems: scheduling and syn-
chronization. The operating system must decide when to allocate the CPU to each

178 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

task, and it must provide mechanisms for the user to attain guarantees about
execution order and mutual exclusion when necessary.

Some systems solve both problems by restricting the user to a single task; this is
the case when running application code directly on a microcontroller (in a sense, the
degenerate case of operating systems). In such a model, there may be multiple logi-
cally distinct tasks present, but the coordination of those tasks is handled in an appli-
cation-specific way by the application programmer, rather than managed in a
standard way by the operating system. Some sensor operating systems, such as
TinyOS, solve the hardware management problem, but make no attempt to solve
the task coordination problem. Others, such as MOS, include task management
features.

There are two costs associated with task management: a small amount of CPU
bandwidth (consumed by the kernel to make scheduling decisions and context
switches) and a significant amount of memory. The memory cost is high because
multiple tasks, each with its own static memory requirements and execution
stack, may need to coexist in memory at the same time. While it is possible to
swap the memory of suspended tasks out to another device, such as flash
memory, this greatly increases the context switching time and thus the CPU over-
head of the scheduling system.

Task coordination does, however, move significant complexity away from the
applications and into the operating system. This may be a drawback if applications
are relatively simple, such as a single application thread and network stack. On the
other hand, if applications make use of such features, it makes sense to implement
them once in the operating system and test them thoroughly, eliminating the need for
application programmers to reimplement and debug such complex code multiple
times.

6.3.3 Resource Constraints

Sensor nodes must operate under resource constraints that are not major concerns on
PCs, or even on smaller embedded devices such as PDAs. For example, the Mica2
node has only 4 kB of data memory (SRAM), 128 kB of program memory (flash),
and an 8-bit, 7.3 MHz CPU. Each of these limitations affects the design of sensor
operating systems.

It has been argued that one should not design around these resource constraints,
because the hardware is subject to Moore’s law and will have increased in capability
by the time sensor networks are widely adopted. However, current sensor nodes are
expensive—on the order of $100 per node. The advances predicted by Moore’s law
can be applied to lower the cost, rather than increase the capability of a sensor node.
An operating system that runs within tight resource constraints will always run on
cheaper hardware, which can be economically deployed in larger numbers.

6.3.3.1 Data Memory Data memory is an extremely scarce resource,
especially in multithreaded systems that must keep multiple execution stacks present
at the same time. Besides the small size of physical memory, sensor nodes may also

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN 179

be limited by the lack of a hardware memory management unit. This alters the
memory model, since the entire system, including the operating system and all appli-
cation threads, runs in a single address space.

There are many techniques for reducing memory consumption, such as zero-copy
network stacks, lightweight thread management, and compile-time optimizations.
Some of these techniques impose limits on the services that the operating system
can provide.

The lack of hardware memory management makes proper software engineering
critically important on a sensor node. There is no way to prevent threads from writ-
ing over each other’s memory (although it may be possible to detect after the fact).
Even without multiple threads, an application could write over memory locations
that hold operating system state information, or even memory-mapped registers.
For example, dereferencing NULL on a Mica2 node will overwrite one of the micro-
controller’s internal general-purpose registers, resulting in unpredictable behavior
without ever raising an exception.

6.3.3.2 Program Memory Program memory is not as seriously constrained as
data memory, since flash memory is cheaper; storing a complete program image is
generally not a problem. It is also difficult (sometimes impossible) to write to a flash
bank by accident. The only unusual constraint with program memory is that flash
memory has a limited number of write—erase cycles. Of course, program memory
does not have to be changed often, so this constraint may not be of practical
significance.

6.3.3.3 CPU Bandwidth At first glance, it would seem that the common tasks
on a sensor node are I/O-bound: waiting for sensor events and transmitting /receiv-
ing data are the primary two. However, many research directions involve tasks that
may be CPU-intensive, such as data aggregation [9,10] and/or transformation, in-
network processing [11], and cryptography [12]. On an 8-bit microcontroller, oper-
ations such as encryption with split-key methods may take a long time to complete.

As mentioned in Section 6.3.2, a sensor operating system may or may not manage
the allocation of CPU cycles between tasks. If it does handle CPU scheduling, the
operating system must be capable of intelligently interrupting CPU-bound tasks in
order to service I/O-driven tasks within a reasonable time frame. Of course, if the
operating system does not manage scheduling, the application programmer must
ensure that the CPU-bound tasks pause periodically to give cycles to the I/O-
bound tasks.

6.3.4 Power Management

Power constraints on sensor nodes are severe. While Moore’s law applies to CPU
speed and memory size, it does not apply to battery capacity. Thus, it is not surpris-
ing the majority of the volume and mass of a sensor node such as the Mica2 is occu-
pied by the battery.

180 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

Because battery technology is not improving very fast, the lifetime of a sensor
node is increased primarily by reducing power consumption, rather than increasing
supply. Low-power components help, but even very low-power microcontrollers
and radios will drain a pair of AA batteries in a matter of days. Large-scale increases
in node lifetime are obtained by turning components off during times when they are
not needed. The “duty cycle” of a node is the fraction of the time that the node’s
high-power components are active, and may be on the order of 1%. This extends
the lifetime of a node from several days to several months (Fig. 6.2).

From the perspective of an operating system, power management comes in two
flavors: implicit and explicit. Implicit power management involves techniques that
do not require cooperation from the user or from applications. Implicit power man-
agement is common in PCs. For example, laptop operating systems may dim the
screen when running off battery power, and switch to full brightness when connected
to an AC outlet. Many systems turn off components that have not been used for a
long time (e.g., spinning down disks), and leave them off until needed. In both
cases, neither the users nor the applications are involved in the power management
decisions.

Explicit power management is user- or application-directed. In an explicit power
management scheme, the application uses a system call to give instructions or hints
to the operating system. These calls may indicate which resources the application is
going to use in the near future so that the operating system can determine which
components need to be powered on. Explicit systems are inherently more efficient
than implicit ones, since the operating system has more information to work with.
However, there is more work to be done by each application.

In sensor nodes, one of the largest power consumers is the radio. The cost of
transmitting one bit is on the order of a thousand times the cost of processing one
bit. Despite power optimizations in other modules, the power consumed by radio
transmission will continue to remain a concern because the laws of physics

40
35 1000 mAhr
—=— 2000 mAhr
——3000 mAhr

30
25 -

20

Months

15 1
10 1
5 4
0

.5 1 2 4 8 100
% Duty cycle

Figure 6.2 Operating life of a wireless sensor node, comparing 1% and 0.5% duty cycles.
Period = 300 seconds.

6.3 PRINCIPLES OF SENSOR OPERATING SYSTEM DESIGN 181

fundamentally limit the amount that can be conserved. Electromagnetic trans-
mission requires a certain transmit power in order to achieve a desired signal-
to-noise ratio (SNR) at the receiver. Radios present a difficult power management
problem, because they generally must be powered on in order to detect incoming
packets. To successfully transmit a packet, both the transmitter and receiver
nodes must power up their radios before the start of transmission. This means that
power management in a sensor network is not a local issue, but rather a network-
wide one. In order to move data across a multihop network, all of the nodes on
the path from data source to data sink must activate their radios in a coordinated
manner that is agreed upon in advance. This may involve integration with other
subsystems, such as the network routing system and time synchronization.

6.3.5 Networking

As implied by the term “sensor network,” the network stack is the primary application
running on a sensor node. The actual application software may be simple and
lightweight in comparison to the network stack. Of particular importance is the
memory consumption of the network stack: while a typical sensor network packet
might be only 32 bytes, 32 bytes is not that small compared to the total data
memory available.

Since memory is so limited and the network may be the primary memory consu-
mer, it is important to define cross-layer interfaces that avoid copying buffers. It also
may make sense to integrate network memory management closely with the operat-
ing system, to make maximum use of the data memory that is available.

6.3.6 Sensing

As the name sensor network implies, sensing is a key requirement that must be
smoothly supported by a sensor operating system. A variety of input sensors
should be supported, ranging from simple analog/digital (A /D) sampling and resis-
tive sensors to complex sensors requiring calibration and warm-up procedures,
including global positioning system (GPS) receivers. Calibrating sensors is an
especially difficult problem in situ. Some approaches seek to provide distributed
autocalibration to improve ease of in situ deployment and management while retain-
ing the accuracy of sensor readings [13]. A given sensor node may house multiple
sensors in order to provide multimodal sensing, for example, temperature, pressure,
and relative humidity. Some types of sensing behavior may be periodic in nature;
that is, the node wakes up every T seconds and takes a sensor reading. A sensor oper-
ating system should provide primitives when possible to support such periodic duty
cycle—based sensing. Other types of sensing behavior are more adaptive and data-
driven, for example, target tracking [14].

6.3.7 Applications

Sensor network applications are structured differently from traditional PC appli-
cations. Individual sensor nodes do not run complete applications—they do not

182 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

even have user interfaces onboard! Instead of a complete user-driven application, an
individual sensor node runs a small piece of a distributed application, which may be
connected to the user via some other back-end system, perhaps connected to the
sensor network through a gateway. Thus, it makes sense to optimize the operating
system for interactions with other machines, rather than direct operation by a
human user.

6.3.8 Maintenance

Since sensor nodes are intended to be deployed in large numbers [15], it is infeasible
to perform maintenance on each node manually. Thus, if any sort of software main-
tenance is required, the operating system must provide a remote maintenance inter-
face. For example, dynamic reprogramming (also called retasking) features allow a
network administrator to change the software on every node in a network after the
network is deployed. Such features require operating system support and must be
planned for in advance of deployment.

6.4 FEATURES OF SENSOR OPERATING SYSTEMS

In order to be of practical use, sensor operating systems must include features that
are uncommon in PC operating systems, or significantly different from their analogs
in the PC world. Several of those features are described below.

6.4.1 Dynamic Network Reprogramming

Two of the main features of wireless sensor networks are that they are unattended
and long-lived. Sensor networks could be installed in inaccessible and hostile
environments that cannot be accessed easily. Even if the individual nodes are acces-
sible, the scale of a network may be so large that manually accessing each node
in the network is highly impractical. Management of the network under such
conditions is a daunting task, and a sensor node operating system should have
features that enable network management to be handled remotely. The network
administrator should be able to address subsections of the network, as well as indi-
vidual nodes. Over time, due to changing conditions of the environment, it may be
necessary to retask some or all of the nodes in order to modify the behavior of the
network.

Dynamic network reprogramming is defined as the process of programming the
sensor nodes by disseminating code over a multihop network [16,17]. At present,
there are two main techniques that may be used to reprogram a sensor network.
The first technique is to transmit the entire code image as raw binary data. The
main drawback of this approach is that it requires synchronizing large amounts of
data across a multihop wireless network: the size of the updated code image is

6.4 FEATURES OF SENSOR OPERATING SYSTEMS 183

often much larger than main memory (a typical Mica2 node has only 4 kb of RAM)
and dwarfs the size of a 30—64-byte packet.

An alternative approach is to use a virtual machine (VM) on each node in the net-
work [18]. The use of a VM allows nodes to be retasked through small virtual pro-
grams—high-level program specifications that can be interpreted by the VM—that
can be disseminated throughout the network at a lower cost than an entire code
image. Upon receiving an updated virtual program, a node’s VM can interpret the
instructions into byte code, at which point the new program can replace the existing
code. While the use of VMs can provide a low-cost approach to dynamic network
reprogramming, it is still necessary to support raw binary retasking, since the VM
itself may require changes.

A sensor node operating system will need to provide the basic facilities that are
required to support both reprogramming paradigms. First, the network infrastructure
must be capable of disseminating code updates to all nodes in the network. The oper-
ating system must also allow access to nonvolatile data storage; since a sensor node
will need to be rebooted in order to replace old code, the updated code cannot be
stored in main memory. A file system is also required to accumulate the data as
packets arrive over the network, and to organize data in memory (Section 6.4.2).
The final requirement is a boot loader program that is capable of replacing the old
code with the updated code.

To support either of these reprogramming paradigms, the operating system
requires a mechanism by which data can be incrementally added to persistent sto-
rage until all the updated code has been received. This generally requires a file
system, as discussed in Section 6.4.2. Once the complete code image has been
stored, the operating system will set a flag that can be read by the boot loader, indi-
cating that the sensor node is ready to be retasked. Since the entire code image
cannot be replaced during run-time, the operating system must then restart the
sensor node, at which point the boot loader takes over. Upon rebooting, the flag indi-
cates to the boot loader that the node should be reprogrammed, at which point the
boot loader overwrites the existing code with the updated code image that was
stored in persistent memory.

Depending on the scale of the network and the nature of the application, it may
not be feasible for the reprogramming operation to stall the currently running task.
If continuous operation is required while the sensor node accumulates and
organizes the new code image, a portion of memory must be reserved that
cannot be used by the running task. Prior to reprogramming the node, the resources
that are allocated to the currently running task must be freed, after which memory
can be reflashed with the verified update. Fine-grained retasking of a network is
an ongoing area of research, since current mechanisms only allow retasking of
the entire code image of a node. New techniques are required in order to replace
a single thread while the operating system continues to run. In such cases, resource
management will play an important role. The operating system will need to ensure
that no dependencies exist between threads that could lead to a deadlock, since
any deadlock, while freeing resources, would require manual intervention to
reboot the node.

184 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

6.4.2 File System

It may not always be possible to transmit sensor data frequently, due to hardware
failures, environmental conditions, and the presence of physical layer jamming. Fur-
thermore, frequent transmissions over the radio are an expensive operation in terms
of energy consumption. Due to these and other factors, a sensor node must be able to
store data locally over a long period of time while multiple sensor readings are
collected.

At present, most sensor nodes only have around 4-12 kb of RAM, enough to
accommodate data processing, but insufficient for long-term logging of data. How-
ever, sensor nodes also provide a relatively large amount of persistent storage
through external flash memory. To take advantage of this persistent storage, an
abstraction layer must be provided that enables applications to access this
memory in a manner that is simple, efficient, and reliable. While a simple circular
buffer may suffice for the most rudimentary programs, this approach cannot satisfy
the needs of more complex applications, such as the Mate virtual machine [18]. In
order to support complex applications, as well as to provide a reliable logging mech-
anism for sensor data, a sensor network operating system must include a file system.

A file system tailored for sensor nodes needs to take into consideration a multi-
tude of resource constraints, and it should be optimized for the common operations
and data types observed in a sensor network. The three most commonly encountered
data sources in a sensor network are configuration data (sampling rate, various
thresholds, etc.), sequentially appended sensor data, and binary code images.
Clearly, the most common operation on files would be sequential appending and
reading of sensor data. Random access of file data is very rare, and is generally
only performed during dynamic reprogramming.

The most common persistent storage medium for sensor nodes is flash memory.
The characteristics of flash memory are significantly different from those of most
magnetic media, and it is important to take these differences into account when
designing a file system for a sensor network operating system. Flash memory has
a limited write lifetime—on the order of 10,000 write operations. The process of
writing data to flash is a multistep process that consumes a great deal of energy:
A write operation onto a flash page requires reading the entire page into RAM,
modifying the data as needed, erasing the target flash page, and finally, writing
the entire flash page.

The extremely low-frequency (ELF) flash-file system [19] is an example of a file
system designed for microsensor nodes. ELF employs a log-structured paradigm and
write caching to achieve wear leveling. ELF is adapted to the most common oper-
ations of sensor data logging, namely, write-appends, but supports a full set of
file I/O features, namely, sequential reads and writes as well as random reads and
writes. ELF provides additional features such as best-effort reliability of designated
files. A traditional log-structured file system creates a new sequential log entry for
each write operation that occurs. This type of operation causes very good wear level-
ing, since the flash memory can be used sequentially all the way through, only
returning to previously used blocks after all of the blocks in flash have been written
to at least once. Creating a log entry for each write-append operation is not feasible,

6.5 SENSOR NETWORK MANAGEMENT 185

as it would cause the run-time memory representation of a traditional log-structured
file with many small appends to grow to an unwieldy size. Caching individual writes
to the same page reduces the number of write-append operations, and therefore
improves the wear leveling of the flash pages. Furthermore, a log-structured file
system makes the file system resilient to crashes, which is critical if sensor data
are stored locally. Logging the operations performed by the file system provides a
reliable form of data recovery.

6.4.3 Bridging to IP Networks

Today’s architecture for interconnecting wireless sensor networks (WSNs) and the
Internet is based on treating the WSNs as a separate entity. In most existing deploy-
ments, a sensor network is treated as a large-scale distributed database, logically
separated from the Internet by a database application program interface (API),
and physically partitioned by a gateway that resides at the border between the
sensor network and an Internet-connected machine. The gateway’s primary task is
to collect data from the sensor network, then store the data in a local or remote data-
base. This architecture makes it difficult to introduce and integrate sensor networks
with new Internet-based applications. In order to add new features or new Internet-
based services, such as monitoring and management, each application developer
must either develop their own application-specific gateway or modify an existing
gateway’s APIL. The gateway is therefore a bottleneck when multiple applications
require access to the sensor network.

One solution to this problem is to overlay sensor networks over portions of the
Internet [20]. The gateway could encapsulate the sensor network packets within
transmission control protocol/Internet protocol (TCP/IP) (or user datagram proto-
col/IP (UDP/IP)) packets, which would then be sent over the Internet to the appro-
priate application end point on a remote IP host. With this approach, the gateway
only needs to understand the lowest level (i.e., the network layer) of the sensor
network in order to handle the translation between IP and sensor network routing.
To realize this architecture, conscious design decisions must be made in the
sensor network operating system. The network stack needs to be extensible
enough to allow seamless, easy translation between IP and sensor network packets.
The design of the gateway needs to take into consideration both data-driven
routing protocols [21] (which are typically addressless) and the integration with
[P-based routing. Lightweight data-driven routing protocols should be extensible
via application-level overlays over the Internet; since the Internet is relatively
high-bandwidth in comparison to sensor networks, this should cause minimal
impact in terms of overhead. Further discussion on the design of a sensor network
network stack is presented in Section 6.7.3.

6.5 SENSOR NETWORK MANAGEMENT

Sensor networks have a fundamentally different architecture from that of wired data
networks. Sensor networks are highly resource-constrained, communicate over low-

186 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

bandwidth wireless links, and are often deployed in physically inaccessible environ-
ments. The protocols and applications designed for sensor networks must therefore
be highly optimized for low resource consumption as compared to protocols devel-
oped for wired data networks [22]. Managing problems in a sensor network requires
querying the network for information, diagnosing the information to determine the
faults, and taking the necessary corrective measures to mitigate the problems.

Querying the network for diagnostic information needs to be performed in such a
way that it does not overload the network [23-25]. One commonly encountered pro-
blem is known as the response implosion problem [26,27], which occurs when a diag-
nostic query triggers a high volume of incoming replies, causing the central gateway
node to become the bottleneck. A sensor network operating system must also export a
rich set of interfaces to support troubleshooting; applications should have access to
the underlying system parameters so that optimization and troubleshooting can be
performed as needed. Interfaces should be exported at each layer of the operating
system so that the higher-layer applications can make full use of them to optimize per-
formance. For example, the medium-access control (MAC) layer of the network stack
should export variables like transmit power, preamble length, frequency channel,
enable or disable request to send/clear to send (RTS/CTS), and enable or disable
reliable link-layer acknowledgments (ACKs). Based on information from network
diagnosis, a command server could use these interfaces to refine the operation of
the MAC; for example, disabling ACKs when the link quality is excellent, or dis-
abling RTS/CTS in the absence of hidden terminals in the network.

6.6 TINYOS

The TinyOS operating system utilizes a unique software architecture that was
designed specifically for resource-constrained sensor nodes [1]. Primarily based
on the concept of wiring together components to create an application, the paradigm
strives to use as little memory as possible, while still handling multiple roles in a
sensor networking environment. Initially written in standard C, the project has
since moved to a custom language, nesC. This “Network Embedded Systems C”
uses C-like syntax, but adds some new features to support the structure and
execution model of a TinyOS application. We will discuss nesC and the component
design further, but first let us consider the execution model.

6.6.1 Execution Model

During the execution of a typical task in any operating system, stack memory is allo-
cated for storing activation records and local variables. This typically leads to the
allocation of a separate stack for each running task; however, since most low-
power microcontrollers have a small amount of system memory, the designers of
TinyOS chose to adopt a new execution model that is well suited for limited
memory scenarios.

6.6 TINYOS 187

In order to minimize the amount of memory used during execution, TinyOS
applications consist of multiple tasks that all share a single stack. Because of this
design, a task must run to completion before giving up the processor and stack
memory to another task. These tasks can be preempted by hardware event handlers,
which also run to completion, but before giving up the shared stack a task must store
any required state in global memory.

6.6.2 TinyOS Components

Another unique aspect of the TinyOS system is its usage of components to create
applications, rather than developing libraries of functions that would be called by
user programs. These components are separate blocks of code that have clearly
defined interfaces for both input and output. In order to “provide” an interface, a
component must implement a set of commands defined by the interface. In order
to “use” an interface, a component implements a different set of functions, called
events. Using this structure, a component that wants to utilize the commands of a
specific interface must also implement the events for that same interface.

Once a variety of components have been developed they must be organized in an
application-specific way to implement the desired application functionality. This is
done by using configuration components. These components essentially connect, or
“wire,” the functional components together. In wiring components, any component
that implements an interface can use or provide multiple interfaces as well as mul-
tiple instances of a single interface.

When completed, a TinyOS application can be represented as a directed graph in
which the wiring of commands and events between components dictates the edges of
the graph. This structure is best visualized as an upside-down tree where the root
node is the single executing task, and the bottom-tier leaf nodes are hardware
event handlers. In this model, events propagate from the bottom of the tree up
through various components where they are either handled directly by intermediate
components, or post a new task to run when the stack and processing time is next
available. From the executing task, commands typically run down the stack through
various protocol and driver components before actually reaching the point of hard-
ware manipulation.

6.6.3 The nesC Language

The first generation of TinyOS was implemented in the C language, which forced
its creators to use a large number of macros to reduce the amount of extra code
necessary to implement the unique component design and execution model. There
were four primary reasons for the large number of macros: simplifying access to
microcontroller features, accessing global variables specific to a given task (the
task frame), calling commands in another component, and signaling events from a
component. In many applications one of these four operations was occurring on
almost every line of source code, which made developing TinyOS components

188 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

quite cumbersome. It was decided that a new language, nesC, was the best way to
help ease the development of TinyOS applications.

The main goals of nesC were to allow for strict checking at compile time, while
also easing the development of TinyOS components. Two of the primary constraints
in nesC allow for the majority of its optimization. First, nesC programs are intended
to have all of their components compiled simultaneously. This allows for a large
number of in-line functions and streamlined execution, and it also lets the compiler
check for possible data race conditions. Second, dynamic memory allocation is not
supported in nesC or TinyOS. While this limitation lets the developer know exactly
what the resource requirements are for a given application, it also forces the devel-
oper to determine these requirements in advance, rather than letting them be dictated
by run-time characteristics.

6.7 MANTIS OPERATING SYSTEM (MOS)

The MANTIS Operating System (MOS) [28] is a larger sensor operating system that
is designed to behave similarly to UNIX and provide more built-in functionality than
TinyOS. MOS applications are written in standard C and executed as threads; the
MOS kernel includes scheduling and synchronization mechanisms. MOS also
includes a framework to allow a high degree of integration between device drivers,
network protocols, and the operating system.

6.7.1 Kernel

MOS is based on a multithreaded kernel, with Portable Operating System Interface
for UNIX (POSIX)-like semantics [29]. Scheduling is priority-based; round-robin
scheduling is used for multiple threads at the same priority level. Since all threads
must coexist in the same address space, the maximum stack size of each thread
must be specified when the thread is spawned. This allows the kernel to allocate a
block of data memory for the thread’s stack. The need to keep multiple stacks in
memory at the same time makes MOS (and multithreaded systems in general)
more resource-intensive than single-threaded systems like TinyOS.

The MOS kernel also provides counting semaphores and mutual-exclusion sema-
phores, as well as timers and sleep functions. These create a multiprogramming
model similar to that seen in conventional operating systems.

6.7.2 Memory Management

The layout of data memory in MOS is shown in Figure 6.3. Text does not appear, as
it is stored in program memory. Statically allocated memory, whose size is known at
start-up, begins at low addresses. When the node first starts up, the stack pointer is at
the high end of memory, and therefore the INIT thread stack is located in the top
block of memory. After start-up, the INIT thread becomes the idle thread, and it
keeps the same stack.

All of memory between the data section and the INIT /idle stack is managed as a
heap. When a thread is spawned, its stack space is allocated out of the available heap

6.7 MANTIS OPERATING SYSTEM (MOS) 189

0x1100
+ Idle thread
* Thread A stack |<— SP_A
* Thread B stack |4~ SP_B
Dynamically
com Buf ~ allocated
com Buf data (heap)
com Buf
0x400- com Buf
0x700
Statically
allocated
data
0x100 = =
0x0 eserve
SRAM

Figure 6.3 MOS data memory layout.

space. The space is reclaimed when the thread exits. Since communications buffers
are relatively large (and may be dynamic), they are also allocated out of the heap
space. It is also technically legal (albeit discouraged) for an application to allocate
memory dynamically out of the heap.

MOS fills a thread’s stack with a flag byte (OXEF) when the thread is spawned, so
stack usage can be determined while a thread is running by counting the number of
flag bytes still present from the end of the thread’s stack space. While this makes it
possible to detect stack overruns after the fact, it does not prevent them. Determining
the amount of stack space necessary for a thread—and not overrunning it—is still
the application programmer’s responsibility.

6.7.3 Com, Dev, and Net Layers

MOS separates hardware devices into two broad categories, each managed by its
own interface layer. The first category includes synchronous, unbuffered devices
and is associated with the Dev layer. The second category includes devices that
receive data asynchronously, requiring buffering, and is associated with the Com
layer. The abstraction layers for devices are shown in Figure 6.4.

Examples of Dev layer devices are most sensors, the file system, the onboard
sounder, and the random-number generator. Any number of such devices may
exist in a single system. Devices are all accessed through the same set of read,
write, mode, and ioctl functions, which are similar to UNIX stream functions.
The mode function is used to turn devices on and off. All Dev-layer functions are
synchronous, so they return only after the operation is completed.

190 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

Net layer Applications

Transport

Spanning tree Flooding

Com layer Dev layer

Radio driver (cc1000)
Serial driver

Com device N driver
Sensor 1 driver

File system driver
Sounder driver
Sensor 2 driver
Device N driver

Figure 6.4 MOS network and device abstraction layers.

Examples of Com layer devices are the radio and serial port. These devices are
handled separately from Dev-layer devices because they require the ability to
receive data in the background during times when there is no application thread cur-
rently blocked on a receive call. The interface to Com-layer devices is similar to that
of Dev-layer devices: sends are synchronous and receives block until a packet is pre-
sent. However, packets are being received in the background and buffered whenever
the device is turned on. The Com layer also provides the ability to perform a select
on multiple devices, returning when a packet is available on any selected device.
Select also has a nonblocking option and a time-out option.

It is important to note that device drivers in MOS are not associated with threads.
Rather, they are interrupt-driven state machines. Simple interrupt handlers shift
bytes from buffers to the hardware or vice versa while the application thread is
blocked, and the thread is woken up after the entire operation is complete. Thus,
other application threads may be running while a thread is waiting for a Com-
layer or Dev-layer operation.

One important break from UNIX is that MOS uses zero-copy mechanisms at all
levels of the network stack, including the Com layer [30]. There is a preallocated
pool of packet buffers that is “owned” by the Com layer. Device drivers may request
buffers, which they then fill with incoming data. When a buffer is full, the driver
swaps the filled buffer for another empty buffer. The filled buffer is queued until
an application performs a receive operation on the associated device.

When an application performs a receive, it is passed a pointer to the first filled
buffer on the specified device. At this point, the application “owns” a buffer that
originally was allocated by the Com layer. When the application is finished with
the buffer, it must return it to the Com layer through a “free” function call. When
the application frees the buffer, it is returned to the buffer pool.

This interface decision puts additional responsibility on the application, since it
must free every packet it receives. If the application fails to do so, it will eventually
consume all of the buffers in the Com-layer buffer pool, and the Com-layer devices

6.7 MANTIS OPERATING SYSTEM (MOS) 191

will no longer be able to receive packets. The trade-off for this added responsibility
and loss of isolation is a more efficient use of memory and CPU time.

To allow easy development of network algorithms, MOS also includes an inte-
grated, modular network layer. A user can elect to activate the Net layer instead
of dealing with the Com layer directly. The Net layer has its own thread, which is
necessary because network protocols may perform significant processing, including
generating and sending packets. The Net thread performs a select on all Com-layer
devices. Upon receiving a packet, it looks for a protocol ID in the packet and then
invokes the appropriate routing module. This allows multiple routing algorithms to
coexist and share the same communications devices.

The Net layer includes a notion of ports. Applications may perform a receive
operation on a port at the Net level, and routing modules may deliver packets to
ports. The Net level will buffer packets at each port until they are received by an
application, similar to the Com layer. During a send operation, the application spe-
cifies a destination port number and a routing module, followed by arguments
specific to the routing algorithm.

6.7.4 Power Management

MOS includes both explicit and implicit forms of power management. Explicit
power management is performed through the mode functions in the Com and Dev
layers, which activate and deactivate hardware devices such as the radio and sensors.
Besides on and off, the mode functions also support intermediate states (such as
standby), which have device-specific meanings.

To encourage power-efficient programming, all devices in MOS are set to the off
state initially, where they consume the minimum amount of power possible. Com-
layer devices will not receive packets until they are turned on. However, all of the
device drivers currently implemented for MOS include logic to turn the device on
and then off again if the user attempts to perform a synchronous operation while
in the off mode. In effect, the user is explicitly turning the device on by using it
in a synchronous call, since the user probably does not intend to block forever.
Even with this logic present, the mode functions are still useful because there
may be a performance advantage to keeping a given device on; for example,
when power-up is slow and the user knows the device will be needed again soon.

While device power management is handled explicitly, MOS handles CPU power
management implicitly. The MOS kernel may be in one of three modes: active, idle,
and power-save. In active mode, the CPU is fully powered and running instructions.
In idle mode, the CPU is not running instructions, but interrupts and peripherals are
enabled. Power consumption in idle mode is roughly half that of active mode.
In power-save mode, the CPU is completely powered down except for external inter-
rupts and the watchdog timer, and power consumption is reduced by three orders of
magnitude.

The MOS kernel uses a simple algorithm, executed as part of the idle thread, to
determine the CPU power mode. If at least one thread is ready to run, then the CPU
is left in active mode. If no thread is ready (that is, the idle thread is executed), but at

192 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

least one thread is blocked waiting for an interrupt, then the CPU is put into idle
mode. If no thread is running and no thread is waiting for an interrupt, then the
CPU is put into power-save mode.

The kernel sleep function is the main noninterrupt mechanism that threads use to
block. When switching to power-save mode, the kernel checks the sleep time on
every thread and computes the proper time to wake up so as not to miss any dead-
lines. The watchdog timer is used to wake the CPU back up at the proper time.

6.8 COMPARISON SUMMARY

In this section, we summarize the trade-offs between event-driven run-to-
completion sensor operating systems such as TinyOS, and preemptively time-
sliced multithreaded sensor operating systems such as MANTIS OS. Table 6.1 com-
pares the advantages and disadvantages of each approach.

An event-driven run-to-completion operating system is well suited to highly
memory-constrained devices such as the original Rene motes, which had only 512
bytes of SRAM [1]. Indeed, it is unlikely that a multithreaded system would be
capable of being implemented in such limited memory while also being able to
support multiple threads of execution. As a result, event-driven designs represent
the primary option, given severe memory constraints. An event-driven system
also offers the advantage of being well-suited to achieve energy efficiency. When
there are no events to be handled, for example, sensing events or radio packet
events, then the system need not execute, and can sleep itself. As a result, event-
driven systems were perfectly adapted to the first generation of wireless sensor nodes.

The drawbacks of an event-driven system relate to its run-to-completion para-
digm. Each task must run to completion before another task can execute. As a

TABLE 6.1 Comparing Event-Driven and Multithreaded Sensor Operating Systems

Operating System Advantages Disadvantages
Event-driven e Very compact memory e Application developer is
Run-to- footprint exposed to complexity—must
completion e Energy-efficient—sleeps determine when to relinquish
OS (TinyOS) system when no events control
to process (no tasks in e No fault-tolerant isolation
task queue) between applications
e OS code is simplified e Porting of existing C code

base becomes complicated

Preemptively e Programmer is hidden e Context switch time
Time-sliced from complexity e Memory overhead of a
Multithreaded of control and timing issues stack per thread
0OS (MOS) e Fault-tolerant isolation

of applications
e Leveraging existing C
code base is straightforward

6.8 COMPARISON SUMMARY 193

result, a programmer must be very careful to relinquish control in a timely manner,
to avoid blocking other tasks that need to run. The application programmer is thus
exposed to complexity in terms of needing to determine when to give up control of
the CPU. If a programmer is implementing a complex task, for example, in-network
processing or aggregation that employs onboard statistical analysis and/or a com-
pression algorithm, then implementing such a task as a single monolithic long-
lived execution module or component would prevent other application tasks from
executing in a timely manner; for example, radio packets could overflow their net-
work buffer because the networking component was unable to execute and process
radio packets fast enough. Programmers are forced to alter their programming prac-
tice and “slice-and-dice” their program into sufficiently small execution components
to avoid blocking the CPU. This further imposes a requirement on the programmer
to achieve a detailed semantic understanding of the program to be decomposed, so
that each component is sufficiently small. For example, porting a compression algor-
ithm or encryption algorithm to an event-driven system would require that the pro-
grammer understand compression or encryption in order to properly decompose the
algorithm. Even worse, understanding when the components are “sufficiently” small
depends on the delay tolerances of other tasks. An application developer will not
know a priori the other tasks to be run on the system, nor their latency tolerances.
In the worst case, the developer is forced to decompose a program into the finest
granularity. In addition, there is no isolation of faults between application tasks.
If one task executes a conditional while() loop whose condition is logically never
satisfied, then that task will execute in an infinite loop, blocking all other tasks.

In contrast, a multithreaded preemptively time-sliced system seeks to offer ser-
vices to the programmer that hide complexity, at the cost of additional complexity
in the operating system. Because each application thread operates in its own
execution environment, and the system handles automatic switching between
threads of execution, then the application developer need not be concerned with
such complexities as when to relinquish control of the CPU. This is automatically
done for the programmer by the system’s preemptive time-slicing. Moreover,
fault isolation between applications is accomplished by having multiple execution
environments. A single thread that operates in an infinite loop or that crashes will
not prevent other threads from executing. As a result, the complexities of control
and timing issues are hidden from the programmer, who can then concentrate on
the correctness of the program. A further benefit is that typical programmers already
trained in writing code for multithreaded systems will not need to change their
programming practice. This has important implications for easing the porting
from the vast C code base developed for multithreaded systems to a microsensor
node. The programmer who is porting an algorithm need not have a detailed seman-
tic understanding, and can focus on memory usage of the ported algorithm, which
also must be dealt with in an event-driven system. For example, porting of C
implementations of encryption standards, compression algorithms, stop-and-wait
reliability protocols, and so forth, have all been accomplished with relative ease
to the multithreaded MOS.

The costs of offering these multithreading services are a more complex operat-
ing system, context switch time, and extra memory overhead for one stack per

194 EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

thread. The advent of second-generation wireless microsensor nodes such as the
MICA?2 motes, which have 4 kB of SRAM, has enabled the development of com-
plete multithreaded systems such as MOS capable of supporting four to eight appli-
cation threads simultaneously. The RAM in current systems is sufficient to support
multiple stacks, with the expectation that from this point forward that Moore’s law
as applied to RAM will make multithreading increasingly affordable on microsen-
sor nodes. Context switch time will continue to remain an issue, though at present
our experience has not found this to be a significant problem in the sensing and
forwarding applications that have been developed on MOS. Multithreaded systems
additionally must be adapted to be energy-efficient. MOS implements power man-
agement such that when there are no more threads with meaningful execution, the
scheduler sleeps the system rather than have the idle thread spin in a continuous
loop. The duration of sleep is determined from the hints provided by each appli-
cation thread, namely, the argument it provided to the sleep() call. The complexity
of power managmenet is largely hidden from the user except through the sleep()
APL

Both multithreaded and event-driven systems also must handle synchronization
issues introduced by concurrency. When there is concurrent execution in a multi-
threaded system, it is important that code be synchronized in a thread-safe
manner. MOS provides mutual exclusion primitives, which can be used to build
thread-safe code. Provided the programmer is furnished with reentrant libraries,
then synchronization complexity can be reduced for the application programmer.
However, the designer in charge of the multithreaded operating system must then
assume the burden and complexity of realizing thread safety while avoiding dead-
lock and race conditions. An event-driven system such as TinyOS also faces similar
synchronization issues. TinyOS introduced atomic operations and the “async” key-
word to address race conditions [31]. This is limited to hardware event handlers.
These operations seek to guarantee correct concurrency in an event-driven model.

As sensor networks evolve, we expect to see increasing heterogeneity, with nodes
of different capabilities; for example, aggregators differ from leaf nodes in purpose
and capabilities. Thus, future sensor networks may consist of mixtures of nodes with
multithreaded and event-driven sensor operating systems. Recent research has also
investigated combining the best features of multithreaded and event-driven systems
in a new sensor operating system [32].

6.9 CONCLUSION

There are many unique challenges in designing a sensor node operating system,
ranging from limitations on power consumption, to flash-based file systems, to
remote network maintenance. This chapter has provided an overview of the prin-
ciples of sensor node operating system design. We showed how sensor hardware
characteristics must influence the decisions about the operating system architecture,
covering the problems of task coordination, management of constrained memory
and CPU resources, power management, network infrastructure, application

REFERENCES 195

design, and remote maintenance. Three of the more unusual features of sensor node
operating systems include dynamic network reprogramming, sensor node file sys-
tems, and the integration of sensor networks with traditional IP networks. Two
implementations of sensor operating systems were discussed, namely, the event-
based TinyOS, and the multithreaded MANTIS OS, and a comparison of the two
systems was provided. TinyOS is compact and energy efficient, but exposes the
application programmer to the complexity of control, as well as to the faulty beha-
vior of other applications. MOS adds multithreading capability, which shields the
application developer from control issues and fault isolation, but comes at the
cost of context switching and stack memory overhead.

REFERENCES

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems,
November 2000.

2. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and
R. Han. MANTIS: System support for MultimodAl NeTworks of In-situ Sensors.
In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA) pages, 50—-59. San Diego, California, September 2003.

3. Atmel AVR 8-bit RISC processor, from http: //www.atmel.com/products/AVR.

4. M. Leopold, M. B. Dydensborg, and P. Bonnet. Bluetooth and sensor networks: A reality
check. In Proceedings of the Ist ACM Conference on Sensor Systems (SenSys’03),
pages 103—113, Los Angeles, California, November 2003.

. The Smart-Its project, from http://www.smart-its.org/.
. The Eyes project, from http://eyes.eu.org/.

. Crossbow motes, from http://www.xbow.com.

0 9 N W

. Single chip ultra low power RF transceiver, from http://www.chipcon.com/files/
CC1000_Data_Sheet_2_1.pdf, 2001.

9. J. Zhao, R. Govindan, and Estrin. Computing aggregates for monitoring wireless sensor
networks. In Proceedings of the 1st IEEE International Workshop on Sensor Network
Protocols and Applications, Anchorage, Alaska, April—May 2003.

10. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A Tiny AGgregation
service for ad-hoc sensor networks. In Proceedings of the 5th Annual Symposium on
Operating Systems Design and Implementation (OSDI), Boston, Massachusetts,
December 2002.

11. R. Kumar, V. Tsiatsis, and M. Srivastava. Computation hierarchy for in-network proces-
sing. In Proceedings of the 2nd ACM International Workshop on Wireless Networks and
Applications (WSNA 2003), San Diego, California, September 2003.

12. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, SPINS: Security suite for sensor
networks. In Proceedings of ACM MobiCom 2001, pages 189—199, July 2001.

13. V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collaborative approach to

in-place sensor calibration. In Proceedings of the 2nd International Workshop on Infor-

196

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

EMBEDDED OPERATING SYSTEMS FOR WIRELESS MICROSENSOR NODES

mation Processing in Sensor Networks (IPSN’03), volume 2634 of Lecture Notes in Com-
puter Science, pages 301-316, Springer-Verlag.

J. Liu, P. Cheung, L. Guibas, and F. Zhao. A dual-space approach to tracking and sensor
management in wireless sensor networks. In Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA), Atlanta, Georgia,
September 2002. Also, Palo Alto Research Center Technical Report P2002-10077,
March 2002.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson Wireless Sensor
Networks for Habitat Monitoring. In Proceedings of the 1st ACM Workshop on Wireless
Sensor Networks and Applications (WSNA), pages 88—97, Atlanta, Georgia, September
2002.

J. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network
programming at Scale. In Proceedings of the 2nd ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), November 2004.

N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor networks, In
Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and
Applications (WSNA), pages 60—67, 2003.

P. Levis and D. Culler. Mate: A virtual machine for Tiny networked sensors. In Proceed-
ings of the ACM Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 2002.

. H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-structured flash file system for

wireless micro sensor nodes. In Proceedings of the 2nd ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 176—187, November 2004.

H. Dai and R. Han. Unifying Micro Sensor Networks with the Internet via Overlay Net-
working, Paper presented at the First IEEE Workshop on Embedded Networked Sensors
(EmNetS-I), Tampa, Florida, 2004.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion. In Proceedings of
ACM MobiCom 2000, pages 56—67, Boston, Massachusetts, August 2000.

J. D. Case, M. Fedor, M. L. Schostall, and C. Davin. Simple Network Management Pro-
tocol (SNMP). Internet RFC 1157, May 1990.

J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan, L. Girod,
B. Greenstein, T. Schoellhammer, T. Stathopoulos, and D. Estrin. EmStar: An Environ-
ment for Developing Wireless Embedded Systems Software. CENS Technical Report
0009, March 24, 2003.

L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D. Estrin. EmStar: A
software environment for developing and deploying wireless sensor networks. In Pro-
ceedings of the USENIX Technical Conference 2004.

P. Levis, N. Lee, and M. Welsh, TOSSIM: Accurate and scalable simulation of entire
TinyOS applications. In Proceedings of the 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 126—137, 2003.

C. Jaikaeo, C. Srisathapornphat, and C. Shen, Diagnosis of sensor networks. In Proceed-
ings of the IEEE International Conference on Communications (ICC), June 2001.

B. Deb, S. Bhatnagar, and B. Nath. A Topology Discovery Algorithm for Sensor Networks
with Applications to Network Management. DCS Technical Report DCS-TR-441,
Rutgers University, May 2001.

28

29.

30.

31.
32.

REFERENCES 197

. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald,
A. Torgerson, and R. Han, MANTIS OS: An embedded multithreaded operating
system for wireless micro sensor platforms. Mobile Networks and Applications, forth-
coming.

Portable Operating System Interface (POSIX)—Part 1: System Application Program-
ming Interface (API)[C Language]. ISO/IEC 9945-1:1996, IEEE standards, 1996.

H. K. Jerry Chu. Zero-copy TCP in Solaris. In Proceedings of the USENIX 1996 Annual
Technical Conference, San Diego, California, January 1996.

Race conditions, from http://www.tinyos.net/tinyos-1.x/doc/changes-1.1.html.

A. Dunkels, B. Gronvall, and T. Voight, Contiki—A Lightweight and Flexible Operating
System for Tiny Networked Sensors. Paper presented at the First IEEE Workshop on
Embedded Networked Sensors (EmNetS-I), Tampa, Florida, 2004.

I CHAPTER 7

Time Synchronization and Calibration
in Wireless Sensor Networks

KAY ROMER, PHILIPP BLUM, and LENNART MEIER
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

This chapter reviews time synchronization and calibration for wireless sensor
networks. First, time synchronization is considered, and then calibration. Time
synchronization can be considered as a calibration problem and many observations
about time synchronization can be transferred to calibration. Wireless sensor net-
works present a number of novel challenges to time synchronization, which many
traditional approaches fail to meet. We classify common approaches for synchroni-
zation in sensor networks and discuss underlying models, synchronization tech-
niques, and algorithms. In addition, common techniques for evaluating
synchronization algorithms and selected evaluation results are presented.

7.1 INTRODUCTION

Sensor networks are used to monitor real-world phenomena. For such monitoring
applications, physical time often plays a crucial role. We discuss these applications
of time in Section 7.1.1. Providing synchronized physical time is a complex task due
to various challenging characteristics of sensor networks. In Section 7.1.2, we pre-
sent these challenges and discuss why synchronization algorithms for traditional dis-
tributed systems often do not meet these challenges.

7.1.1 The Need for Synchronized Time

Physical time plays a crucial role for many sensor network applications. While many
traditional applications of time also apply to sensor networks, we will focus here on

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

199

200 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

areas specific to sensor networks. Figure 7.1 illustrates a rough classification of
applications of physical time: (a) at the interface between the sensor network and
an external observer, (b) among the nodes of the sensor network, and (c) at the inter-
face between the sensor network and the observed physical world. The following
paragraphs discuss applications of time in these three domains. Note that some
applications are hard to assign to a single domain. In such cases, we picked the
most appropriate domain.

7.1.1.1 Sensor Network: The Observer In many applications, a sensor net-
work interfaces to an external observer for tasking, reporting results, and manage-
ment. This observer may be a human operator or an autonomous computing
system. Tasking a sensor network often involves the specification of time windows
of interest such as “only during the night.” Since a sensor network reports obser-
vation results to an external observer, temporal properties of observed physical
phenomena may be of interest. For example, the times of occurrence of physical
events are often crucial for the observer to associate event reports with the originat-
ing physical events. Physical time is also crucial for determining properties such as
speed or acceleration.

7.1.1.2 Sensor Network: The Real World In sensor networks, many sensor
nodes may observe a single physical phenomenon. One of the key functions of a
sensor network is hence the assembly of those distributed observations into a coher-
ent estimate of the original phenomenon: this process is known as data fusion. Time
is a key ingredient for data fusion. For example, if sensors can only detect the proxi-
mity of an object, then higher-level information (such as speed, size, or shape) can
be obtained by correlating data from multiple sensor nodes. The velocity of a mobile
object, for example, can be estimated by the quotient of the spatial and temporal dis-
tances between two consecutive sightings of the object by different sensor nodes.
Since many instances of a physical phenomenon can occur within a short time,
one of the tasks of a sensor network is the separation of sensor samples, that is,

(b)

Q (a) (© o
> & Y

Figure 7.1 Applications of physical time: (a) interaction of an external observer with the
sensor network, (b) interaction among sensor nodes, and (c) interaction of the sensor
network with the real world.

7.1 INTRODUCTION 201

the partitioning of sensor samples into groups so that each represents a single
physical phenomenon. Temporal relationships (e.g., distance) among sensor
samples are a key element for separation.

Temporal coordination among sensor nodes may also be necessary to ensure cor-
rectness and consistency of distributed measurements [1]. For example, if the sampling
rate of sensors is low compared to the frequency of an observed phenomenon, it may
be necessary to ensure that sensor readout occurs concurrently at all sensor nodes in
order to avoid false observation results (e.g., for calibration, see Section 7.7.5.2).

It is anticipated that large-scale, complex actuation functions will be
implemented by the coordinated use of many simple actuator nodes. This requires
temporal coordination.

7.1.1.3 Within the Sensor Network Time is also a valuable tool for intranet-
work coordination among different sensor nodes. Many applications of time known
from traditional distributed systems also apply to wireless sensor networks.
Reference [2] points out a number of applications of time in distributed systems,
such as concurrency control (e.g., atomicity, mutual exclusion), security (e.g.,
authentication), data consistency (e.g., cache consistency, consistency of replicated
data), and communication protocols (e.g., at-most-once message delivery).

One particularly important example for concurrency control is the use of time-
division multiplexing in wireless communication, where multiple access to the
shared communication medium is typically achieved by assigning time slots to
the communicating nodes. This requires the participating sensor nodes to share a
common view of physical time.

A number of approaches intend to improve energy efficiency by frequently
switching sensor nodes or components thereof into power-saving sleep modes
(e.g., ref. [3]). In order to nonetheless ensure seamless operation of the sensor net-
work, temporal coordination of the sleep periods among sensor nodes may be
required.

Another important service for sensor network applications is temporal message
ordering (e.g., ref. [4]). Many data-fusion algorithms have to process sensor readings
ordered by the time of occurrence (e.g., the approach for velocity estimation just
sketched). However, the highly variable message delays in sensor networks imply
that messages from distributed sensor nodes may often not arrive at a receiver in
the order in which they were sent. Reordering messages according to the time of
sensor readout requires temporal coordination among sensor nodes.

Methods for localization of sensor nodes based on the measurement of time of
flight or difference of arrival time of certain signals also require synchronized
time (e.g., ref. [5]).

7.1.2 Revisiting Time Synchronization for Sensor Networks

Time synchronization is a research area with a very long history. Over time, numer-
ous algorithms have been proposed and have been in large-scale use. The network
time protocol (NTP) [6] is perhaps one of the most advanced and time-tested

202 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

systems. However, several unique characteristics of sensor networks often preclude
the use of existing synchronization techniques in this domain.

In the following, we discuss sensor network challenges that impact the design of
time synchronization approaches. Using NTP as an example, we will outline why
traditional approaches often do not meet the requirements of sensor networks (see
also ref. [7]). Note that some of the illustrated shortcomings of NTP are relatively
easy to fix, while others are not. To provide the necessary background, we will
first give an overview of NTP.

NTP was designed for large-scale networks with a rather static topology (such as
the Internet). Nodes are externally synchronized to a global reference time that is
injected into the network at many places via a set of master nodes (so-called “stra-
tum 1 servers). These master nodes are synchronized out of band, for example, via
global positioning system (GPS) (which provides global time with a precision sig-
nificantly below 1 ps). Nodes participating in NTP form a hierarchy: leaf nodes
are called clients, inner nodes are called stratum L servers, where L is the level of
the node in the hierarchy. The parents of each node must be specified in configur-
ation files at each node. Nodes frequently exchange synchronization messages
with their parents and use the obtained information to adjust their clocks by regularly
incrementing them.

7.1.2.1 Energy and Other Resources Sensor-network applications often
require sensor nodes to be small and cheap. This has a number of important impli-
cations. First of all, the amount of energy that can be stored in or scavenged by small
devices is typically very limited due to the low-energy density of available and fore-
seeable technology. To ensure longevity despite this limited energy budget, energy-
efficient design both in hardware and software becomes a dominating goal.
Additionally, computing, storage, and communication capabilities of individual
sensor nodes are rather limited due to size and energy constraints.

These constraints may preclude the use of GPS or other technologies for out-of-
band synchronization of NTP master nodes. NTP is also not optimized for energy
efficiency, simply because this is not an issue in infrastructure-based distributed sys-
tems. Energy overhead in NTP results from several sources. First, the service pro-
vided by NTP typically cannot be dynamically adapted to the varying needs of an
application. Hence, with NTP all nodes would be continuously synchronized with
maximum precision, even though only subsets of nodes might occasionally need
synchronized time with less-than-maximum precision.

Second, NTP uses the processor and the network in ways that would lead to sig-
nificant overhead in energy expenditure in sensor networks. For example, NTP
maintains a synchronized system clock by regularly adding small increments to
the system-clock counter. This behavior precludes the processor from being
switched to a power-saving idle mode. In addition, NTP servers must be prepared
to receive synchronization requests at any point in time. However, constantly listen-
ing is an energywise costly operation in sensor networks; many sensor network pro-
tocols therefore switch off the radio whenever possible.

7.1 INTRODUCTION 203

7.1.2.2 Network Dynamics Due to their deployment in the physical environ-
ment, sensor networks are subject to a high degree of network dynamics. Sensor
nodes can be mobile, die due to depleted batteries or due to environmental influ-
ences, and new sensor nodes may be added at any point in time. This results in rela-
tively frequent and unpredictable changes in the network topology and possibly even
in (temporary) network partitions. Mobile nodes can transport messages across par-
tition boundaries by storing a received message and forwarding it as soon as a new
partition is entered. The end-to-end delay of such message paths is very unstable and
hard to predict.

The operation of NTP is independent of the underlying physical network
topology. In the NTP overlay hierarchy, a master and a client can be separated by
many hops in the physical network, even though they are neighbors in the overlay
hierarchy. Due to the previously mentioned effects, multihop paths may be very
unstable and unpredictable in a sensor network. NTP, however, depends on the abil-
ity to accurately estimate the delay characteristics of network links.

NTP implicitly assumes that network nodes that shall be synchronized are a priori
connected by the network. However, this assumption may not hold in dynamic
sensor networks with mobile nodes. Consider, for example, an application where
mobile sensor nodes with sporadic network connectivity time-stamp sensor readings
and deliver these records to an observer as they pass by a base station (e.g., ref. [8]).
The base station may then want to compare time stamps generated by different
sensor nodes in order to evaluate the collected data. However, in the preceding
scenario, there might not be a network connection between the various originators
of the time-stamped messages at any point in time. Hence, NTP cannot be applied
in such settings.

7.1.2.3 Infrastructure In many applications, sensor networks have to be
deployed in remote, unexploited, or hostile regions. Sensor networks therefore
often cannot rely on sophisticated hardware infrastructure. For example, under
dense foliage or inside buildings, GPS cannot be used, since there is no free line
of sight to the GPS satellites.

In order to improve the precision and availability of synchronization in large net-
works, NTP injects the reference time into the network at many points. Hence, any
node in the network is likely to find a source of reference time in a distance of only a
few hops. Note that shorter paths tend to be more reliable and more predictable,
since they include fewer sources of error and unpredictability.

However, such an approach requires an external infrastructure of reference-time
sources that have to be synchronized with some out-of-band mechanism. Where this
is not feasible, NTP would have to operate with a single master node, which uses its
local time as the reference time. In large sensor networks, the average path length
from a node to this single master is long, leading to reduced precision. This is
particularly problematic when collocated sensor nodes require very precise
mutual synchronization, for example, to cooperate in observing a nearby physical
event. With a single master node, the collocated nodes might end up using different

204 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

synchronization paths, which results in different synchronization errors (i.e., time
offsets) with respect to the master node.

7.1.2.4 Configuration After initial deployment, it is often infeasible to phys-
ically access the sensor nodes for hardware or software maintenance. The large
number of nodes also precludes manual configuration of individual nodes. While tra-
ditional networks such as the Internet do also consist of a large number of nodes,
there is an accordingly large number of human network administrators, such that
each one takes care of a manageable number of computers. With sensor networks,
however, half a dozen human operators may be responsible for thousands of
sensor nodes.

NTP requires the specification of one or more potential synchronization masters
for each node. This is an appropriate solution for networks with a rather static top-
ology, where configurations remain valid for extended periods of time. In sensor net-
works, however, network dynamics necessitate a frequent adaptation of
configuration parameters.

7.2 SYSTEM MODEL

In the following subsections we analyze various synchronization approaches. We
now specify the system model for time synchronization, which we use as the foun-
dation of our analysis. First, we describe how we model clocks. We then specify the
characteristics of communication between nodes in a sensor network.

All our modeling is done in terms of discrete time and events. An event can
represent communication between nodes, a sensor measurement, the injection of
time information at a node, and so on. We denote the real time at which event a
occurs as f,, and the local time of node N, at that time as h;. Note that our model
does not explicitly contain node mobility or network dynamics; these aspects are
included implicitly by the absence or existence of corresponding communication
events.

7.2.1 Clock Models

Digital clocks measure time intervals. They typically consist of a counter 4 (which
we will also refer to as “the (local) clock™) that counts time steps of an ideally fixed
length; we denote the reading of the counter at real time ¢ as A(¢). The counter is
incremented by an oscillator with a rate (or frequency) f. The rate f at time ¢ is
given as the first derivative of h(f): f(¢) = dh(t)/dt. An ideal clock would have
rate 1 at all times, but the rate of a real clock fluctuates over time due to changes
in supply voltage, temperature, and so on. If the fluctuation were allowed to be arbi-
trary, the clock’s reading would obviously give no information at all. Fortunately, it
is limited by known bounds. Different types of bounds on the rate fluctuation lead to
different clock models.

7.2 SYSTEM MODEL 205

7.2.1.1 Constant-Rate Model The rate is assumed to be constant. This is
reasonable if the required precision is small compared to the rate fluctuation.

7.2.1.2 Bounded-Drift Model The deviation of the rate from the standard rate
1 is assumed to be bounded. We call this deviation the clock’s drift
p(t) = f(t) — 1 = dh(t)/dt — 1, and denote the corresponding bound with p,,,.:

“Pmax = p(1) = Prmax vt (7.1)

A reasonable additional assumption is p,(f) > —1 for all times . This means that
a clock can never stop (p;(f) = —1) or run backward (p,(r) < —1). Thus, if two
events a, b with t, < 1, occur at a node N; whose clock’s drift p; is bounded accord-
ing to equation (7.1), then node N; can compute lower and upper bounds
Aﬁ[a, b], Al[a, b] on the real-time difference Ala, b] := t, — 1, as:

Hi(ty) — Hi(t,
Alla, b] ::% Ala, b) :

_ Hw) = K@)

1 (7.2)

~ Pmax

This model is typically reasonable, since bounds on the oscillator’s rate are given
by the hardware manufacturer. Sensor nodes usually contain inexpensive oscillators,
and thus we have p,,, € [10 ppm, 100 ppm]." Note that in this model, the drift can
jump arbitrarily within the bounds specified in equation (7.1). The next model limits
the variation of the drift.

7.2.1.3 Bounded-Drift-Variation Model The variation 9(t) = dp(t)/dt of
the clock drift is assumed to be bounded:

_ﬁmax f ﬁ(t) S ﬁmax Vt (73)

This assumption is reasonable if the drift is influenced only by gradually chan-
ging conditions such as temperature or battery voltage. It makes drift compensation
possible: A node can estimate its current drift and compute bounds on its drift for
future times.

We can also assume both equation (1.1) and equation (1.3).

7.2.2 Software Clocks

A synchronization algorithm can either directly modify the local clock % or other-
wise construct a software clock c. A software clock is a function taking a local
clock value A(f) as input and transforming it to the time c(h(#)). This time is the
final result of synchronization, and we therefore call it the synchronized time. For
example, c(h(f)) = to+ h(t) — h(ty) is a software clock that starts with the correct

"Parts per million, that is, 107°. A clock with a drift of 100 ppm drifts 100 seconds in a million seconds, or
100 ps in one second.

206 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

real time 7, and then runs with the same speed as the local clock 4. In general, we
require that a software clock be a piecewise continuous, strictly monotonically
increasing function.

7.2.3 Communication Models

Communication is needed to obtain and maintain synchronization. In the following,
we identify different communication parameters that affect time synchronization.

7.2.3.1 Unicast versus Multicast If a message is sent by one network node
and is received by at most one other network node, we call this unicast or point-to-
point communication. Multicast communication occurs when a message is sent by
one network node and is received by an arbitrary number of other network nodes.
The case where all nodes within transmission range are recipients is called broad-
cast. Wireless sensor networks typically use simple broadcast radios, such that a
sensor node’s transmission is overheard by all nodes within its transmission range.

7.2.3.2 Symmetrical versus Asymmetrical Links If we assume that node
A can receive messages sent by node B if and only if node B can receive messages
sent by node A, we say that the link between these two nodes is symmetrical. Other-
wise, it is asymmetrical. An example for an asymmetrical link is the link between a
base station with high transmit power and a mobile device with low transmit power:
Beyond a certain distance between the two, only communication in direction from
the base station to the mobile device is possible. In wireless sensor networks, it is
reasonable to assume that there is a large number of small sensor nodes, and a
small number of more powerful (regarding energy, memory, processing power,
and transmit power) nodes. The links between these two types of nodes would
clearly be asymmetrical.

7.2.3.3 Implicit versus Explicit Synchronization When comparing clock
synchronization approaches, it is important to distinguish whether synchronization
information can be sent only with the messages that the sensor network application
transmits (“piggyback’), or whether additional communication (i.e., messages sent
only for the sake of synchronization) is allowed. There is a trade-off between the
amount of additional communication and the achievable synchronization quality.
Additional communication incurs additional energy consumption and can reduce
the bandwidth available for application data. Piggybacked time information does
typically not reduce available bandwidth significantly, since there are no additional
message headers to be transmitted or transmission slots to be occupied, and the time
information is small in size.

7.2.3.4 Delay Uncertainty As far as synchronization is concerned, the goal of
communication is to convey time information. The delay of the messages sent
between nodes has to be taken into account when extracting this time information;
we explore this in Section 7.4.1. The message delay consists of

7.2 SYSTEM MODEL 207

« The send time, lasting from when the application issues the send command to
when the node actually starts trying to send; it is caused by kernel processing,
context switches, and system calls, and hence varies with the current system
load.

- The (medium) access time, lasting from when the node is ready to send to when
it actually starts the transmission; this is the time that is spent waiting for access
to the wireless channel, and hence depends on the current network load.

- The propagation time, which is the time it takes for the radio signal to travel
from the sender to the receiver; it is constant for any pair of nodes with constant
distance, and is negligible compared to the other delay components in wireless
sensor networks (since distances are small and radio signals travel very fast).

. The receive time, lasting from the reception of the signal to the arrival of the
data at the application.

The send and receive time (and especially the uncertainty about them) can be
reduced by implementing the time-stamping of outgoing and incoming messages
at a very low level, for instance, in the MAC layer. As a general rule, message-
delay uncertainties in typical wireless sensor networks are rather large compared
to those in wired networks. This is due to the lower link reliability and bandwidth
(see Section 7.1.2).

7.2.4 Sources of Synchronization Errors

Clock synchronization algorithms face two problems: the information a node has
about the local time of another node degrades over time due to clock drift (the
two clocks “drift apart”), and its improvement through communication is hindered
by message-delay uncertainty.

The influence of drift and delay uncertainty on the quality of synchronization can
to a large extent be studied separately. The influence of the clock drift may dominate
over that of the message delays. This is the case in those sensor networks where
communication is infrequent. The reason for this is that with decreasing frequency
of communication, the uncertainty due to clock drift increases, while the uncertainty
due to message delays remains constant. A numeric example: Suppose the message
delay contributes 1 millisecond to a node’s uncertainty, and the clock drift is
bounded by p.x = 10 ppm. After 50 seconds, the drift’s contribution to the uncer-
tainty equals that of the delay. After one hour, it is 72 times larger. In this setting,
neglecting the delay uncertainty is acceptable.

The time information that is obtained through communication has to be processed
to achieve synchronization. As we show in Sections 7.4.1 and 7.4.2, the computation
power and memory size required to do this in a timely fashion can increase (even
nonlinearly) with the amount of communication and thus become very large.
There is a trade-off between computational power and storage capacity spent and
achievable synchronization.

208 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS
7.3 CLASSES OF SYNCHRONIZATION

Synchronization is commonly understood as “making clocks show the same time,”
but there are actually many different types of synchronization. In the following, we
give an overview of the various choices available for synchronization. When choos-
ing the synchronization approach for a given sensor network application, the maxim
is to fulfill the application’s requirements with the smallest possible effort in terms
of computation, memory, and especially energy.

7.3.1 Internal versus External

The synchronization of all clocks in the network to a time supplied from outside the
network is referred to as external synchronization. NTP performs external synchro-
nization, and so do sensor nodes synchronizing their clocks to a master node. Note
that it makes no difference whether the source of the common system time is also a
node in the network or not.

Internal synchronization is the synchronization of all clocks in the network,
without a predetermined master time. The only goal here is consistency among
the network nodes. External synchronization requires consistency within the
network and with respect to the externally provided system time.

In everyday life, we are mostly faced with external synchronization, namely, with
keeping wristwatches and clocks in computers, cell phones, personal digital assist-
ants (PDAs), cars, microwave ovens and so on, synchronized to the legal time.

7.3.2 Lifetime: Continuous versus On-Demand

The lifetime of synchronization is the period of time during which synchronization is
required to hold. If time synchronization is continuous, the network nodes strive to
maintain synchronization (of a given quality) at all times. For some sensor network
applications, on-demand synchronization can be as good as continuous synchroniza-
tion in terms of synchronization quality, but much more efficient. During the (pos-
sibly long) periods of time between events, no synchronization is needed, and
communication, and hence energy consumption, can be kept at a minimum. As
the time intervals between successive events become shorter, a break-even point
is reached where continuous and on-demand synchronization perform equally
well. There are two kinds of on-demand synchronization: event-triggered and
time triggered.

Event-triggered on-demand synchronization is based on the idea that in order to
time-stamp a sensor event, a sensor node needs a synchronized clock only immedi-
ately after the event has occurred. It can then compute the time stamp for the
moment in the recent past when the event occurred. Post facto synchronization
[9] is an example for event-triggered synchronization.

We use time-triggered on-demand synchronization if we are interested in obtain-
ing sensor data from multiple sensor nodes for a specific time. This means that there
is no event that triggers the sensor nodes, but the nodes have to take a sample at

7.3 CLASSES OF SYNCHRONIZATION 209

precisely the right time. This can be achieved via immediate synchronization (where
sensor nodes receive the order to immediately take a sample and time-stamp it) or
anticipated synchronization (where the order is to take the sample at some future
time, the target time). Anticipated synchronization is necessary if it cannot be guar-
anteed that the order can be transmitted rapidly and simultaneously to all involved
sensor nodes. This is especially the case if sensor nodes are more than one hop away
from the node giving the order.

Note that for successful anticipated synchronization, it is sufficient to maintain a
synchronization quality that guarantees that the target time is not missed. This
means that the required synchronization quality grows as the real time approaches
the target time. There is no need to synchronize with maximum quality right from
the beginning.

Analogously to the event-triggered post facto synchronization, we might refer to
time-triggered synchronization as pre facto synchronization.

7.3.3 Scope: All Nodes versus Subsets

The scope of synchronization defines which nodes in the network are required to be
synchronized. Depending on the application, the scope comprises all or only a subset
of the nodes (Fig. 7.2). Event-triggered synchronization can be limited to the collo-
cated subset of nodes that observe the event in question.

7.3.4 Rate Synchronization versus Offset Synchronization

Rate synchronization means that nodes measure identical time-interval lengths. In a
scenario where sensor nodes measure the time between the appearance and disap-
pearance of an object, rate synchronization is a sufficient and necessary condition
for comparing the duration of the object’s presence within the sensor range of differ-
ent nodes (but not for ordering the observations chronologically).

N, N, Ny, N, N

o

N
N
oD
A%
N
U
Y
(0]
he]
o
o
@

N

Y
N
%

owiey

Figure 7.2 Scope and lifetime define where and when synchronization is required.
(a) Shows the topology of some network, (b) illustrates the scope and lifetime of
the synchronization: Only nodes N,, N3, and N, need synchronization.

210 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

Offset synchronization means that nodes measure identical points in time, that is,
at some time ¢, the software clocks of all nodes in the scope show . Offset synchro-
nization is needed for combining time stamps from different nodes.

The difference between rate and offset synchronization is illustrated in
Figure 7.3. Node N, can compute the bird’s speed all by itself by dividing the dis-
tance between the bird’s positions at events a and b by the corresponding local-time
difference. For this, the node’s clock must be rate synchronized to the real-time
rate 1. Alternatively, data from nodes N, and N5 can be combined to compute the
bird’s speed; here, we would use events b and c¢. The nodes’ clocks have to be
offset synchronized for this.

7.3.5 Timescale Transformation versus Clock Synchronization

Time synchronization can be achieved in two fundamentally different ways. We can
synchronize clocks, that is make all clocks display the same time at any given
moment. To achieve this, we have to perform rate and offset synchronization (or
continuous offset synchronization, which, however, is costly in terms of energy
and bandwidth and requires reliable communication links). The other approach is
to transform timescales, that is, to transform local times of one node into local
times of another node.

Both approaches are equal in the sense that if we have either perfect clock syn-
chronization or perfect timescale transformation, the distributed sensor data can be
combined as if it had been collected by a single node. The approaches differ in
that clock synchronization requires either communication across the whole network
(for internal synchronization) or some degree of global coordination (for external
synchronization). This calls for communication over multiple hops (which, however,
tends to degrade synchronization quality), or well-distributed infrastructure, which,
for instance, guarantees that every sensor node is only a few hops away from a node
equipped with a GPS receiver. Timescale transformation does not have these draw-
backs, but may instead incur additional computation and memory overhead.

We illustrate the difference between clock synchronization and timescale trans-
formation using the example shown in Figure 7.3. If the clocks of all three nodes are

Figure 7.3 Atevents a, b, and ¢, nodes N, and N; measure the position of the bird and time-
stamp these data with their current local time. Rate or offset synchronization is needed,
depending on how the data from the three events are to be combined.

7.4 SYNCHRONIZATION TECHNIQUES 211

synchronized, node N; can directly combine the sensor data from nodes N, and N3,
since the time stamps refer to the same timescale. If the clocks are not synchronized,
a timescale transformation on the received time stamps is necessary. The final result
is identical to that of using synchronized clocks.

7.3.6 Time Instants versus Time Intervals

Time information can be given by specifying time instants (e.g., “s = 5) or time
intervals (“t € [4.5, 5.5]”). In both cases, the time information can be refined by
adding a statement about its quality. For instance, the time information may be guar-
anteed to be correct with a certain probability, or even probability distributions for
the time can be given. A measure for the quality of the time information can then be
defined; we will speak of its inverse, the time uncertainty.

For sensor networks, the use of guaranteed time intervals can be very attractive.
Interestingly, this approach has not received much attention, although it has a
number of advantages over using time instants: (1) Guaranteed bounds on the
local times at which sensor events occurred allow guaranteed bounds from
sensor-data fusion to be obtained. (2) The concerted action (sensing, actuating, com-
municating) of several nodes at a predetermined time always succeeds, each node
can minimize its uptime while guaranteeing its activity at the predetermined time.
(3) The combination of several bounds for a single local time is unambiguous and
optimal, while the reasonable combination of time estimates requires additional
information about the quality of the estimates.

7.4 SYNCHRONIZATION TECHNIQUES

In this section, building blocks and fundamental mechanisms of time synchroniza-
tion algorithms are presented. The section is organized by increasing complexity: In
Section 7.4.1, various approaches for obtaining a single reading of the clock of a
remote node are presented. In Section 7.4.2, techniques for maintaining synchroni-
zation are discussed. In Sections 7.4.3 and 7.4.4, it is shown how multiple samples
can improve synchronization between two nodes. Finally, various approaches
to organize the synchronization process in larger networks are discussed in
Section 7.4.5.

7.4.1 Taking One Sample

We start with the simple model shown in Figure 7.4(a), with two nodes N; and N, that
can exchange messages. Synchronization between these nodes means that the nodes
establish some relationship between their local clocks /' and /'

7.4.1.1 Unidirectional Synchronization The conceptionally simplest sol-
ution is illustrated in Figure 7.4(b). Node N; sends a message containing a local
time stamp h, to node N;, where it is received at local time Aj. The node N;

212 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

@) (b) (©

N, N N, N
. . h’
N; - h! I
h D
i d
SO I LA I
h n h n’

Figure 7.4 Uni- and bidirectional synchronization. (a) A node N; determines the offset of its
local clock relative to that of another node N;, using (b) un1d1rect10nal communication or using
(c, d) bidirectional communication. In contrast to (c), scheme (d) allows both nodes to
measure a round-trip time.

cannot determine the delay d of the message. It only knows that the local clock of
node N; showed 4, before its own local clock shows /7. Thus its local time when
the message was sent is i < hj, and local time at node N; when the message is
received is 4}, > h,. Time synchronization consists of estimating either Aj, or /2.

If a priori bounds on the message delay are known, that is, d;,in < d < dax, then
the estimation 4, ~ hj, — 1/2(dmin + dmax) (or alternatively A, ~ 4 1/2(dpin +
dmax)) minimizes the synchronization error in the worst case. Alternatively, H, —
dmax and h’g — din are lower and upper bounds on h’a (and hﬁ, + din and h; + dimax
are bounds on hﬁ,).

7.4.1.2 Round-Trip Synchronization A slightly more complex solution is
illustrated in Figure 7.4(c). Node N; sends a query message to node N;, asking for
the time stamp hi. Node N; measures the round-trip time D = h! — !, that is, the
length of the time interval between sending the request and receiving the reply. With-
out having a priori knowledge, node N; now knows that the delay d is bounded by 0
and D. If a priori bounds on the message delay are known, thatis, dyin < d < dpax, the
node N; knows that d is bounded by max(D — diax, dmin) and min(diax, D — dinin)-

The estimation hj, & k! — D/2 minimizes the worst-case synchronization error:

— (D — dyiy) and h£ — din are lower and upper bounds on hlﬂ Similarly, an esti-
mation and bounds for /. can be determined.

In comparison with the unidirectional approach, round-trip synchronization has
the advantage of providing an upper bound on the synchronization error. The mech-
anism known as probabilistic time synchronization, first presented in ref. [10], uses
this to decrease the synchronization error as follows: After receiving the reply mes-
sage, N; checks whether the worst-case synchronization error D /2 — din 18 below a
specified threshold. If not, it sends a new request message to N;. This procedure is
repeated until a pair of request and reply messages occurs that achieves the required
synchronization error. The smaller the chosen threshold, the more messages have to
be exchanged on average.

The main disadvantage of round-trip synchronization is that the number of mes-
sages increases linearly with the number of nodes that communicate with N;, while

7.4 SYNCHRONIZATION TECHNIQUES 213

in the unidirectional case, a single broadcast message sent by NV; can serve an arbi-
trary number of nodes. A combination of the advantages of both approaches is
known as eavesdropping or anonymous synchronization, and was first described
in ref. [11]. The basic idea is the following: Node N; sends a broadcast message
to N; and some additional node Ny; and N; replies with a broadcast message to N;
and N;. Node N, assumes that the second message was produced after it had received
the first message, thus node N, can do round-trip synchronization with the two local
receive time stamps and the send time stamp from N; without ever producing any
messages itself.

In Figure 7.4(d), two modifications of round-trip synchronization are illustrated.
First, it is not necessary that N, replies immediately to query messages. Node N; can
instead measure the duration D’ between receiving the query message and sending
the reply, and the node N; can then account for this duration in its calculations.
Second, the message exchange shown in Figure 7.4(c) is asymmetrical, that is,
only N; can do round-trip synchronization. Therefore, at least one additional mes-
sage from N; to N; is required, such that also N; can estimate or bound remote
time stamps.

7.4.1.3 Reference Broadcasting A third approach is shown in Figure 7.5. In
addition to nodes N; and N;, a so-called beacon node Ny is involved. The beacon
sends a broadcast message to the other nodes. TheA delays d (to N;) and d’ (to N))
are almost equal. N; then sends the time stamp h, to N;. Node N; measures the
length of the time interval D = hj, — hl, between the arrivals of the two messages
and can then estimate 4, ~ h', + D.

This approach was first proposed in ref. [12] under the name a posteriori agree-
ment. It became more widely known in the sensor network community as reference
broadcast synchronization (RBS) [9]. Its main advantage is that a broadcast message
is received almost concurrently (even though its delay is largely variable), and thus
the synchronization error typically is smaller than with unidirectional or round-trip
synchronization.

Figure 7.5 Reference broadcast synchronization. A node N; determines the offset of its local
clock relative to that of another node N; with the help of a third node N;. In (c), a variant of
reference broadcast synchronization is shown that can be used if N; and N; cannot directly
communicate with each other (dashed link in (a)).

214 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

The reference broadcast technique can be used in many variations. For example,
Figure 7.5(c) shows a solution presented in ref. [13] for the case that nodes N; and N,
while being able to receive messages from N, cannot communicate with each other
directly. Node N; replies to N, which then can estimate its own local time % and
send this information in another broadcast message to N; and N;. In ref. [9], yet
another version is described: All nodes report their time stamps to a single node,
which then broadcasts all information.

The disadvantage of the reference broadcast approach is that physical broadcasts
and a beacon node are required.

7.4.2 Synchronization in Rounds

Typically, two local clocks do not run at exactly the same speed. Therefore time syn-
chronization has to be refreshed periodically, the duration of the round depending on
the error budget and the amount of relative drift between the two clocks. Let the
length of a round be 7,,,,;- Assume a round consists of a first period with length
Tsample» Where one or more samples are taken according to one of the methods
described in Section 7.4.1, and a second period where the nodes do nothing. Let
us assume that an application allows for a total error of E,,,,;, the maximum error
after taking the samples is Ej,,p., and the maximal drift rate is pp,x. Then the maxi-
mum length of a round 7,,,,, has to satisfy

Etozal - Esample
Tround = P
'max

This relation implies that rounds can be longer if E,p. and pyax are small. For
example, algorithms that use the round-trip technique can bound E,,,;. according
to the measured round-trip time, and thus can dynamically increase 7., if the
round-trip time was small. Other algorithms compensate the drift of the local
clock and therefore can compute a smaller effective p,.x, Which also allows an
increase in Tyguq-

In some applications, E,,,; is smaller than what can be guaranteed by taking a
single sample. In such a case, multiple samples can be taken to achieve Ey,,. <
E, o1 Taking multiple samples increases Tygpe. At the limit, Togmpie X Troung; 1
this case, synchronization in rounds becomes a continuous process, where in
rounds follow each other seamlessly.

7.4.3 Combining Multiple Time Estimates

We now discuss techniques for combining multiple estimates of the local time of a
remote node. Figure 7.6(a) illustrates the situation: Every circle stands for a
single estimate of node N;’s local time I, at some event a, which occurs at N;’s
local time A,

7.4 SYNCHRONIZATION TECHNIQUES 215

(a) (b)

Figure 7.6 Multiple samples improve on the synchronization error. (a) Every point
represents a sample, that is a local time 4’ of node N; and an estimated local time # of
node N;. Using interpolation techniques improves on the synchronization error. The solid
line results from a linear regression on the samples, the dashed line is the result of a
phaselocked loop. (b) The same idea can be used for lower (57) and upper (A) bounds on
the local time of N; Also here, interpolation can considerably improve on the
synchronization error (i.e., on the uncertainty in this case). The solid lines are determined
by the convexhull approach, the dashed lines according to ref. [14].

7.4.3.1 Linear Regression The most widely used technique is linear
regression. A linear relation /' = a+ 8- h' is postulated and the coefficients a
and 3 are determined by minimizing the square of the difference between the
fitted // and the actual samples. This technique has a single parameter, that is, the
number of samples that are accounted for when computing the coefficients. A
large number of samples can improve the regression quality, but requires a large
amount of memory.

The coefficient B can be interpreted as an estimation of A”’s drift relative to A'.
Linear regression thus implicitly compensates for clock drift. If the drift is variable,
the postulated linear relationship between A’ and A’ does not describe reality very
well. In such a situation, the number of samples accounted for should be small.

The linear regression can be computed on-line, that is, incrementally whenever a
new sample is taken. An efficient on-line implementation can be found in ref. [15]. A
disadvantage of the linear-regression technique is that it weighs data points by the
square of their error against the fitted line. Outliers thus have a particularly strong
influence on the resulting coefficients « and .

7.4.3.2 Phase-Locked Loops Another method for processing a continuous
sequence of samples is based on the principle of phase-locked loops (PLL) [16].
The PLL controls the slope of the interpolation using a proportional-integral (PI)
controller. The output of a PI controller is the sum of a component that is pro-
portional to the input and a component that is proportional to the integral of the

216 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

input. The input of the controller is the difference between the actual sample and the
interpolated value. If the interpolation is smaller than the sample, its slope is
increased, otherwise it is decreased. The main advantage of the PLL-based approach
is that it requires far less memory than the linear-regression technique (in essence
only the current state of the integrator sum). The main disadvantage is that PLLs
require a long convergence time to achieve a stable rate [17]. The NTP algorithm
uses a PLL [18].

7.4.4 Combining Multiple Time Intervals

The techniques of Section 7.4.1 can also be used to derive lower and upper bounds
on the local time of a remote node. Figure 7.6(b) shows a sequence of lower and
upper bounds on the local times 4’ of a remote node N; on the y-axis and the corre-
sponding local times A’ of a node N; on the x-axis. In the previous section, the
samples formed a single cloud and the interpolation was a line “through the
middle of this cloud.” Here we have two clouds, one formed by the lower-bound
samples, the other by the upper-bound samples.

The convex-hull technique [19,20] interpolates the two clouds separately. One
curve is drawn above all lower bounds, a second below all upper bounds. While
linear-regression and PLL techniques tend toward the average of the individual
samples, the convex-hull technique ignores average values and accounts for the
samples with minimal or maximal error. This can result in improved robustness:
While the current average message delay can be very unstable, the minimal message
delay remains stable, though it may occur more or less frequently.

In ref. [14], it is proposed to interpolate lower- and upper-bound samples by a
single line as follows: First, the steepest and flattest lines that do not violate any
lower or upper bound are determined. The slopes of these lines represent bounds
on the drift of clock ' relative to h'. The “average”-line of these two extremal
solutions is used as the final interpolation; for a more detailed description, see
Section 7.5.3.

7.4.5 Synchronization of Multiple Nodes

Sensor networks most often have a much more complicated topology than the
simple examples shown in Figures 7.4 and 7.5, and not all sensor nodes can commu-
nicate with each other directly. Thus, multihop synchronization is required, which
adds an additional layer of complexity. Clearly, this could be avoided by using an
overlay network that provides virtual, single-hop communication from every
sensor node to a single master node. But as we saw in Section 7.4.1, the synchroni-
zation error directly depends on the message delay, which is very difficult to control
on a logical link that is composed of many physical hops. Therefore, performant syn-
chronization schemes have to deal with the multihop problem explicitly.

Figure 7.7 illustrates various approaches to multihop synchronization. We now
describe these four schemes and use them as examples to discuss the main problems
of multihop synchronization.

7.4 SYNCHRONIZATION TECHNIQUES 217

(©) (d)

Figure 7.7 Organizing synchronization in multihop networks. (a) Single-hop
synchronization with a set of master nodes that are synchronized out of band (e.g., using
GPS). (b) Single-hop synchronization in overlapping clusters, gateway nodes translate time
stamps. (c) Tree hierarchy with a single master node at the root. (d) Unstructured.

7.4.5.1 Out-of-Band Synchronization The conceptually simplest solution
is to avoid the problem: A large number of master nodes is distributed in the network
such that every node has a direct connection to at least one of these masters (e.g., ref.
[21]). The master nodes are synchronized among each other using some out-of-band
mechanism. The GPS is well suited to this purpose, as it provides time information
with submicrosecond accuracy. However, GPS receivers are still relatively costly,
consume a considerable amount of energy, and require a direct line of sight to a
number of satellites, and thus cannot operate inside buildings.

7.4.5.2 Clustering The authors of the RBS algorithm proposed to partition the
network into clusters [9]. All nodes within a cluster can broadcast messages to all
other members of the cluster, and thus the reference broadcast technique can be
used to synchronize the cluster internally. Some nodes are members of several clus-
ters and participate independently in all corresponding synchronization procedures.
These nodes act as time gateways to translate time stamps from one cluster to the
other. There is a trade-off in choosing the size of the clusters. On the one hand, a
small number of large clusters reduces the number of translations, and thus improves
the synchronization error; on the other hand, energy consumption grows quickly
with increasing transmission range; this makes choosing many small clusters attrac-
tive. This trade-off has been examined in ref. [22].

7.4.5.3 Tree Construction The most common solution of the multihop syn-
chronization problem is to construct a synchronization tree with a single master at
the root [14,23,24,31]. Single-hop synchronization is applied along the edges of
the tree. Various well-known algorithms can be used to construct such a tree [24].
Since the accuracy degrades with the hop distance from the root, a tree with mini-
mum depth is preferable. On the other hand, a small depth implies that the root has to
serve many clients, and thus consumes far more energy than the other nodes.

Tree construction faces two main problems: First, in sensor networks, the net-
work topology may be dynamic; nodes may be mobile and repeatedly join or
leave the network. The multihop synchronization algorithms have to explicitly
deal with such events. In particular, if the root node fails, a new root has to be elected

218 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

[31]. Second, two neighboring (in terms of physical location) nodes may have a
large hop distance in the synchronization tree. In consequence, the accuracy of syn-
chronization between these nodes is not as good as if they would synchronize
directly with each other.

7.4.5.4 Unstructured As illustrated in the tree-construction approach, the
multihop synchronization problem can be interpreted as the problem of determining
the links and directions over which time information is disseminated. In contrast to
tree-construction approaches, unstructured approaches do not first explicitly solve
this problem and then perform pairwise synchronization. Instead, time information
is exchanged between any pair (or group) of nodes that communicate. Whereas in
the tree-construction approach every pairwise synchronization is asymmetrical
(i.e., between a client and a local master), it is symmetrical in the unstructured
approach (i.e., between two equal peers). In ref. [25], such an approach has been pre-
sented for interval-based synchronization. Two nodes combine their bounds on real
time by selecting the larger lower bound and the smaller upper bound. A similar
approach for point estimates is asynchronous diffusion proposed in ref. [26].
Here, nodes that communicate adjust their synchronized clocks to the average of
their synchronized times. Like the interval-based solution from ref. [25], this
approach is completely local. Since these approaches do not maintain any global
configuration, node mobility does not cause particular problems. In contrast, cluster-
ing and tree-construction schemes require that the global configuration has to be
updated whenever nodes move or fail or when new nodes are added to the system.

Because algorithms that follow the unstructured approach do not attempt to com-
municate with a particular node (e.g., the parent node in a synchronization tree),
some of these algorithms piggyback time stamps on messages that are sent for
some other, not synchronization-related reason (e.g., refs. [25] and [27]). It could
be argued that these algorithms have virtually no communication overhead, as no
messages are generated exclusively for time synchronization.

7.5 CASE STUDIES

In the following subsections, we discuss a number of concrete synchronization
algorithms from the literature (ordered by publication date). The goal here is to
give an overview of the approaches (with reference to the techniques and classes dis-
cussed earlier in this chapter), rather than to discuss all the details. In addition, for
each algorithm we will give some experimental results. Table 7.1 summarizes the
underlying assumptions of the various protocols and classifies the approaches
according to the criteria discussed in Section 7.3.

7.5.1 Time-Stamp Synchronization

Time-stamp synchronization (TSS) [27] provides internal synchronization on
demand. Node clocks run unsynchronized, that is, time stamps are valid only in

*UOISNYJIP SNOUOIYOUASE = (JV ‘UONRZIUOIYOUAS UOIS
-nyIp own = J.L {[090301d UOIRZIUOIYOUAS W) SUIPOOY = S]] ‘UOTIRZIUOIYOUAS PISBQ-[BAIUI = Sq] ‘UONRZIUOIOUAS dwels-owr) = §S, ‘UONBZIUONIUAS Paseq
-90m 1YS1oMIYSI[-S 1T OUAS-TUIIA /SUAS-AW] -SIA/S.L (SHOMION] J0SUDS 10J 090101 OUAS-SUIuL], = NSJ.L ‘UONBZIUOIYOUAS ISLOPROI] 9OUSISJAI = S SUOUDINLGqY

>

oo

X
X

oo’

2 0O wn

0}

— 0 <
moO<OUwm
moO <O K

<

—~ QO n O KK

X

X

suondunssy

S/

MO <C<OULm

§aSSD])

SL

oy

S
J
I

X

oo

moO<OUwm

M= wn

O

— O wn

$S9008 JVIN

[ouueyOnNIA

}JUp papunog

]I JUBISUOD)
UOTIEOIUNUIWIOD [RUOTJOIPIE
jseopeolg

S[EAIJUT "SA SJUB)SU]
JUASYO0[d "SA WIOJSUBI],
JOSHJO "SA By

S19sQNS 'SA SApOU [V
PUBWIOP-UO "SA "JUOD)
[eUIO)X “SA [eUIoUY

av

ddlL

dS1d JUAS T, sdl

SSL

SL1 SIN/SL

NSd.L

Sqy

$[090}01J UONBZIUOIYIUAS-duIL], Jo suondumnssy pue sasse[) UONBZIUOIYIUAS [°L A TIV.L

219

220 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

the node that generated them. However, when a time stamp is sent to another node as
part of a message, the time stamp is transformed to the timescale of the receiver. For
messages sent over multiple hops, the transformation is repeated for each hop.

Time-stamp transformation is achieved by determining the age of each time
stamp from its creation to its arrival at a sensor node. On a multihop path, the age
is updated at each hop. The time stamp can then be transformed to the receiver’s
local timescale by subtracting the age from the time of arrival. The age of a time
stamp consists of two components: (1) the total amount of time the time stamp
resides in nodes on the path, and (2) the total amount of time needed to transfer
the time stamp from node to node. The first component is measured using the
local, unsynchronized clocks; the second component can be bounded by the
round-trip time of the message and its acknowledgment.

For the round-trip measurement, the technique depicted in Figure 7.4(d) is used,
where the sender is NV; and the receiver is N;. Message d, is a data message containing
the time stamp, and message d5 is an acknowledgment. Using the previous message
exchange (d,, d}), the receiver can use I — D' as an upper bound for the delay of
message d,. If a minimum delay is known, it can be used as a lower bound (otherwise,
0is used). Using storage time and the bounds on transmission delay just given, lower
and upper bounds of the time-stamp age can be determined. Additionally, pyax 1S
used to transform time intervals between node clocks as in equation (7.2).

With this approach, synchronization information is piggybacked to existing
(acknowledged) messages. There are no additional synchronization messages,
except when two nodes exchange a message for the first time. In this case, an
additional initialization message must be sent and acknowledged in order to
enable round-trip measurement. An acknowledgment is not needed if the sender
can overhear the receiver forwarding the message to the next hop, which is typically
the case in broadcast networks.

Measurements in a wired network with p,.x = 1 ppm showed that the average
uncertainty of the time-stamp interval is about 200 s for adjacent nodes. It increases
by an additional 200 s for each additional hop, and by about 2.5 s per age second.

7.5.2 Reference Broadcast Synchronization

RBS [9] provides synchronization for a whole network. The basic synchronization
primitive is a reference broadcast to a set of client nodes in the one-hop neighbor-
hood of a beacon node, as illustrated in Figure 7.5(b). The beacon node broadcasts
synchronization pulses. The clients then exchange their respective reception times
and use linear regression to compute relative offsets and rate differences to each
other. Using offset and rate difference, each client can transform a local clock read-
ing to the local timescale of any other client.

To extend this scheme to multihop networks, the network is clustered such that a
single beacon can synchronize all nodes in its cluster. Gateway nodes that participate
in two or more clusters independently take part in the reference broadcast procedure
of all their clusters. By knowing offsets and rate differences to nodes in all adjacent
clusters, gateway nodes can transform time stamps from one cluster to another.

7.5 CASE STUDIES 221

Time synchronization across multiple hops is then provided as follows. Nodes
time-stamp sensor data using their local clocks. Whenever time stamps are
exchanged among nodes, the time stamps are transformed to the receiver’s local
time using offset and rate difference.

In experiments it has been shown that adjacent Berkeley Motes can be synchro-
nized with an average error of 11 s by using 30 broadcasts. Over multiple hops, the
average error grows with O(y/n), where n is the number of hops.

7.5.3 Tiny-Sync and Mini-Sync

Tiny-Sync and Mini-Sync (TS/MS) [14] are methods for pairwise synchronization
of sensor nodes. Both TS and MS use multiple round-trip measurements and a line-
fitting technique to obtain the offset and rate difference of the two nodes. For this, a
constant-rate model (see page 205) is assumed. To obtain data points for line fitting,
multiple round-trip synchronizations are performed, as depicted in Figure 7.4(c),
where the client is N; and the reference is N;. Each round-trip measurement results
in a data point (1, [/, h.]). Then, the line-fitting technique depicted in Figure 7.6(b)
is used to calculate two lines with minimum and maximum slope. The slope and axis
intercept of these two lines then gives bounds for the relative offset and rate differ-
ence of the two nodes. The line with average slope and intercept of the two lines is
then used as the offset and rate difference between the two nodes.

Note that each of the two lines is unambiguously defined by two (a priori
unknown) data points. The same results would be obtained if the remaining data
points could be eliminated. Since the computational and memory overhead depends
on the number of data points, it is a good idea to remove as many data points as poss-
ible before the line fitting. TS and MS only differ in this elimination step. Essen-
tially, TS uses a heuristic to keep only two data points for each of the two lines.
However, the selected points may not be the optimal ones. MS uses a more complex
approach to eliminate exactly those points that do not change the solution. Hence,
TS achieves a slightly suboptimal solution with minimal overhead, and MS gives
an optimal solution with increased overhead.

Measurements on a 802.11 network with 5000 data points resulted in an offset
bound of 945 ws (3230 ws) and a rate bound of 0.27 ppm (1.1 ppm) for adjacent
nodes (nodes five hops away).

7.5.4 Lightweight Time Synchronization

Lightweight time synchronization (LTS) [24] is a synchronization technique that
provides a specified precision with little overhead, rather than striving for maximum
precision as do many other techniques.

Two algorithms are proposed: one that operates on demand for nodes that actu-
ally need synchronization, and one that proactively synchronizes all nodes. Both
algorithms assume the existence of one or more master nodes that are synchronized
out-of-band to a reference time. The proactive algorithm proceeds to construct span-
ning trees with the masters at the root by flooding the network. In a second phase,

222 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

nodes synchronize to their parent in the tree by means of round-trip synchronization.
The synchronization frequency is calculated from the requested precision, from the
depth of the spanning tree, and from the drift bound py,ax-

The on-demand version also assumes the existence of one or more master nodes.
When a node needs synchronization, it sends a request to one of the masters using
any routing algorithm (this is not further specified). Then, along the reverse path of
the request message, nodes synchronize using round-trip measurements. The synchro-
nization frequency is calculated as in the proactive version just described. In order to
reduce synchronization overhead, each node may ask its neighbors for pending
synchronization requests. If there are any such requests, the node synchronizes with
the neighbor, rather than executing a multihop synchronization with a reference node.

The overhead of the algorithms was examined in simulations with 500 nodes uni-
formly placed in a 120-m x 120-m area, a target precision of 0.5 s, and a duration of
10 h. The centralized algorithm performed an average of 36 pairwise synchroniza-
tions per node. The distributed algorithm executed 4—5 synchronizations per node
on average, if 65% of all nodes request synchronization.

7.5.5 Timing-Sync Protocol for Sensor Networks

The timing-sync protocol for sensor networks (TPSN) [23] provides synchroniza-
tion for a whole network. First, a node is elected as a synchronization master
(details for this are not specified), and a spanning tree with the master at the
root is constructed by flooding the network. In a second phase, nodes synchronize
to their parent in the tree by means of round-trip synchronization. Synchronization
is performed in rounds and initiated by the root broadcasting a synchronization-
request message to its children. Each child then performs a round-trip measure-
ment to synchronize with the root. Nodes further down in the tree overhear the
messages of their parents and start synchronization when their parents have syn-
chronized. To eliminate message-delay uncertainties, time-stamping for the
round-trip synchronization is done in the medium-access control (MAC) layer.
In the case of node failures and topology changes, master election and tree con-
struction must be repeated.

Measurements showed that two adjacent Berkeley Motes can be synchronized
with an average error of 16.9 s, which is a worse figure than the 11 ps given for
RBS in ref. [9]. However, the authors of ref. [23] claim that a reimplementation
of RBS on their hardware resulted in an average error of 29.1 s between adjacent
nodes, effectively claiming that TPSN is about twice as precise as RBS.

7.5.6 TSync

TSync [13] provides two protocols for external synchronization: the hierarchy refer-
encing time synchronization protocol (HRTS) for proactive synchronization of the
whole network, and the individual-based time request protocol (ITR) for on-demand
synchronization of individual nodes. Both protocols use an independent radio chan-
nel for synchronization messages in order to avoid inaccuracies due to variable

7.5 CASE STUDIES 223

delays introduced by packet collisions. In addition, the existence of one or more
master nodes with access to a reference time is assumed.

With HRTS, a spanning tree with the master at the root is constructed. Then, the
master uses the reference broadcasting technique illustrated in Figure 7.5(c) to
synchronize its children. Each child node now repeats the procedure for its subtree.

Measurements in a network of MANTIS sensor nodes showed a mean synchro-
nization error of 21.2 ps (29.5 s) for two adjacent nodes (nodes three hops away).
For comparison, RBS was also implemented, giving an average error of 20.3 ws
(28.9 ws).

7.5.7 Interval-Based Synchronization

Interval-based synchronization (IBS) was first proposed in ref. [28], where a
bounded-drift model (see page 205) is assumed. The network nodes perform exter-
nal synchronization by maintaining a lower and upper bound on the current time.
During communication between two nodes, the bounds are exchanged and com-
bined by choosing the larger lower and the smaller upper bound. This amounts to
intersecting the time intervals defined by each pair of bounds. Between communi-
cations, each node advances its bounds according to the elapsed real time and the
known drift bounds. In ref. [29], the model was refined by including bounded
drift variation and fault tolerance.

In ref. [25], the simple approach from ref. [28] was shown to be worst-case opti-
mal, where the worst case is the one where all clocks run with maximal drift. A con-
siderable improvement in the synchronization quality can be achieved by having each
node store, maintain, communicate, and use the bounds from its last communications
with other nodes. In ref. [30], it was shown that optimal IBS can only be achieved by
having nodes store and communicate their entire history. Obviously, this becomes
prohibitive with growing network size and lifetime. In realistic settings, the value
of a piece of history data decreases rapidly with its age. Therefore, efficient
average-case optimal synchronization can be obtained by using only recent data.

7.5.8 Flooding Time-Synchronization Protocol

The flooding time-synchronization protocol (FTSP) [31] can be used to synchronize
a whole network. The node with the lowest node ID is elected as a leader that serves
as a source of reference time. If this node fails, then the node with the lowest ID in
the remaining network is elected as the new leader. The leader periodically floods
the network with a synchronization message that contains the leader’s current
time. Nodes that have not yet received this message record the contained time
stamp and the time of arrival, and broadcast the message to their neighbors after
updating the time stamp. Time-stamping is performed in the MAC layer to minimize
delay variability, and hence uncertainty.

Each node collects eight (time stamp, time of arrival) pairs and uses linear
regression on these eight data points to estimate offset and rate difference to the
leader.

224 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

Measurements were performed in an eight-by-eight grid of Berkeley Motes,
where each Mote has a direct radio link to its eight closest neighbors. With this
setup, the network synchronized in 10 minutes to an average (maximum) synchro-
nization error of 11.7 ps (38 ws), giving an average error of 1.7 ws per hop.

7.5.9 Asynchronous Diffusion

Asynchronous diffusion (AD) [26] supports the internal synchronization of a whole
network. The algorithm is very simple: each node periodically sends a broadcast
message to its neighbors, which reply with a message containing their current
time. The receiver averages the received time stamps and broadcasts the average
to the neighbors, which adopt this value as their new time. It is assumed that this
sequence of operations is atomic, that is, the averaging operations of the nodes
must be properly sequenced.

Simulations with a random network of 200 static nodes showed that the synchro-
nization error decreases exponentially with the number of rounds.

7.5.10 Time Diffusion Synchronization

Time diffusion synchronization (TDP) [32] supports the synchronization of a whole
network. Initially, a set of master nodes — so-called leaders — is elected. For exter-
nal synchronization, these nodes must have access to a global time. This is not
required for internal synchronization, where masters are initially unsynchronized.

Master nodes then broadcast a request message containing their current time, and
all receivers send back a reply message. Using these round-trip measurements, a
master node calculates and broadcasts the average message delay and standard devi-
ation. Receiving nodes record these data for all leaders. Then they turn themselves
into so-called “diffused leaders” and repeat the procedure. The average delays and
standard deviations are summed up along the path from the masters. The diffusion
procedure stops at a given number of hops from the masters.

All nodes have now received from one or more masters m the time £,,, at the initial
leader, the accumulated message delay A,,, and the accumulated standard deviation
Bm- A clock estimate is computed as 2.,,w,,(h,, + A,,), where the weights w,, are
inversely proportional to the standard deviation 3,,. After all nodes have updated
their clocks, new masters are elected and the procedure is repeated until all node
clocks have converged to a common time.

In a simulation with 200 static nodes with 802.11 radios and a delay of 5 seconds
between consecutive synchronization rounds, the deviation of time across the net-
work dropped to 0.6 second after about 200 seconds.

7.6 EVALUATION STRATEGIES

Evaluating the precision of time synchronization in wireless sensor networks is not a
trivial task. For example, the authors of the RBS algorithm report 11 s precision on
the Berkeley Motes platform [9], while the authors of the TPSN algorithm report

7.6 EVALUATION STRATEGIES 225

29 ps for RBS on the same platform, concluding that TPSN is better, as it achieves
17 ws [23]. Which numbers are correct? Probably all of them, but the evaluation was
done slightly differently.

In this section, we discuss different evaluation strategies that have been applied to
time-synchronization algorithms for wireless sensor networks. There are various
aspects of the performance achieved by an algorithm than can be evaluated, for
example, the energy consumption or the message and memory overhead. The dis-
cussion in this section concentrates on various alternatives for the evaluation of
the precision of time-synchronization algorithms.

7.6.1 What Is Precision?

Figure 7.2(b) illustrates the scope and lifetime of synchronization in a sensor net-
work. The scope defines which nodes have to be synchronized, and the lifetime
defines when these nodes have to be synchronized. Thus, it is natural to evaluate
the precision in the shaded area of Figure 7.2(b). The precision is a metric that is
closely related to the synchronization error. While the precision is a single scalar
value for a whole network, the synchronization error is a function of time for a
single node. In the following, we discuss several alternatives to map such functions
to a single scalar precision value P.

7.6.1.1 Combining the Synchronization Error of Many Nodes At some
time ¢ within the lifetime of a sensor network, every node N; within the scope has a
synchronized time c(h'(1)). In the case of internal synchronization, the instan-
taneous precision p(t) is often defined as the maximal difference between any two
synchronized times, that is,

p(t) = rrgz}x{ci(hi(t)) - Cj(hj(t))}

for any nodes N; and N; within the scope. Some authors (e.g., ref. [32]) use the stan-
dard deviation among all c'(h'(7)) as a measure for the instantaneous precision at
time 7.

In the case of external synchronization, the instantaneous precision is more often
defined as the maximal synchronization error, that is,

p(t) = mlfclx{ci(hi(t)) —1}

for any node N; within the scope. This variant of precision is sometimes called accu-
racy. Alternatively, the precision can be defined as the average synchronization error
within the scope or the maximal synchronization error among the 90% (or 99%, etc.)
nodes in the scope with the smallest synchronization error.

7.6.1.2 Steady State and Convergence Time The instantaneous precision
p(t) obviously varies during the synchronization lifetime. The final precision metric

226 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

P can be derived by taking the maximum of p(¢) for all ¢ in the lifetime. Alterna-
tively, the average of p(f) can be used.

It is clear that the precision P improves in proportion to the time the synchroniza-
tion process is active, and that at some point, the improvement stops. Usually, the
precision P is evaluated after this point, that is, the lifetime of synchronization
starts after the synchronization process, and the precision P describes the steady
state.

Some authors evaluate the convergence time, which is the length of the interval
from the start of the synchronization process to the point in time where the precision
P stops to improve or reaches a specific value. If the lifetime is defined, the conver-
gence time indicates when the synchronization process has to be started such that the
desired precision P is achieved before the start of the lifetime and is maintained until
the end of the lifetime.

7.6.2 Goals of Performance Evaluation

There can be different reasons why the performance of an algorithm has to be eval-
uated, and different goals lead to different solutions.

The actual performance of a given synchronization algorithm strongly depends
on properties of the target platform. It is difficult to identify and model all the influ-
ence factors explicitly. A realistic estimation of the achievable precision is thus best
obtained by using measurements on the actual target platform, rather than using
simulation of a simplified target platform.

Sometimes, realistic estimation of the performance is less important than fairness
and repeatability of the evaluation. This is the case if several competing algorithms
have to be compared. Also in the optimization process of the parameters of a particu-
lar algorithm, it is important that differences in the performance are due to differ-
ences in the algorithm and not due to different conditions (e.g., message delays,
clock drift). Here, simulation based on recorded or generated traces is more appro-
priate than direct measurements.

If the goal of analyzing a particular synchronization algorithm is to give worst-
case guarantees on its performance, neither measurements nor simulation based
on recorded traces can be used, since both strategies only evaluate a finite number
of instances. Instead, the worst case has to be identified and the worst-case perform-
ance has to be determined analytically.

7.6.3 Measurements

7.6.3.1 Measurement Techniques Three fundamentally different measure-
ment strategies, which are illustrated in Figure 7.8, have been used in recent
publications.

Consider Figure 7.8(a). Every sensor node executes two synchronization pro-
cedures, synchronizing two different clocks. The first procedure is the actual syn-
chronization algorithm under test, using only the means of the platform on which
it is executed. The second procedure is another algorithm, which achieves a far

7.6 EVALUATION STRATEGIES 227

fi

file
Virtual nodes on a
single physical node

Out-of-band synchronization Generate events

Figure 7.8 Precision-measurement techniques. (a) Every node is synchronized out of band
and measures its own precision. (b) Every node generates events, the evaluation is centralized.
(c) Some nodes are virtual nodes on the same hardware platform as the master node.

better precision than the first. This is possible since this second synchronization uses
resources that are not offered by the target platform, but which are introduced for the
measurements. A GPS receiver for every sensor node can serve this purpose. Alter-
natively, cable connections can be used as an out-of-band mechanism with very low
delay variability to provide a reference time (e.g., refs. [9,33,34]). In ref. [31], a
single-hop RBS scheme is used to measure the precision achieved by the FTSP mul-
tihop algorithm. This approach has the advantage that every node can evaluate and
log its own precision, and these values can be collected at the end of the experiment
(or even on-line), providing complete information.

An alternative is shown in Figure 7.8(b). All sensor nodes generate some directly
observable event, for example, a rising edge on a particular I/O pin, when their syn-
chronized time reaches a particular value X. An external analyzer device then
records the time interval between the instance when a node’s synchronized time
is X and the instance when it really is X. Such a procedure has been used, for
example, in ref. [23]. Its advantage is that the precision of the measurement is not
limited by the resolution of the nodes’ clocks or the performance of a second syn-
chronization procedure.

As illustrated in Figure 7.8(c), ref. [22] proposes to measure the precision
achieved by one client node as follows: A client node synchronizes over several
hops to a master node. Master and client nodes are virtual nodes emulated on a
single physical node, and the intermediate nodes are all separate physical nodes.
Since the master and the client share a single hardware clock, the precision of the
client can easily be evaluated.

7.6.3.2 Systems and Topologies All three approaches do not scale well.
Therefore, only small networks have been used so far for measurements. The largest
experiment is described in ref. [31], where an 8-by-7 grid of Mica2 Motes is eval-
uated. In ref. [23], a chain of six Mica Motes is used, ref. [13] evaluates five
MANTIS Nymph nodes, ref. [27] evaluates a chain of seven standard PCs with
100 Mbit/s wired Ethernet, and ref. [9] evaluates IPAQ nodes communicating
over 802.11-b WLAN and Mica Motes.

228 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

How the synchronization error of hundreds of nodes should be measured is an
open question. Current evaluations of such large networks are all based on
simulation.

7.6.3.3 Results We will now give some measurement results from recent pub-
lications. Our intention is to give an idea about the order of magnitude of the achiev-
able precision and to illustrate that although all results are about precision, they are
difficult to compare. In ref. [31], the convergence time of the FTSP algorithm in a
7-by-8 grid is reported to be 10 minutes. A maximal error of 38 ws and an average
error (over all nodes) of 12 s is reported. For the TPSN algorithm, ref. [23] reports
a maximal error of 45 s for one hop and 74 s for five hops. Average errors (over
time) are 17 s for one hop and 38 s for five hops. The authors also provide the
percentage of the time when the synchronization error was below the average
error (>60%). The authors of RBS present in ref. [9] the distribution of the synchro-
nization error (over time) for one hop and the mean, median, 95%, and 99% values
over 300 trials for one to four hops.

Some authors evaluate the distribution of the synchronization quality in the
system. At some time ¢, either the synchronized times ¢'(h'(r)) of all nodes i [32],
or alternatively the corresponding synchronization errors e'(f) [13,23], are shown
in a histogram.

7.6.4 Simulation

Performance evaluation through simulation has the advantage that the resulting pre-
cision or accuracy of all nodes does not have to be measured, but is directly acces-
sible. Thus, much larger systems can be evaluated.

7.6.4.1 Systems and Topologies In ref. [32], systems with 200 nodes are
evaluated, and in refs. [26] and [32] systems with up to 500 nodes, always randomly
placed in a square area. The transmission range of the nodes is 10 m in a square of
length 80 m [33] or 120 m [24]; in ref. [26], various transmission ranges from 0.4 m
to 1 m are used in a square of length 10 m. In ref. [25], the transmission range is
varied between 0.1 and 0.5 times the width of the square area. In ref. [14], a
chain of 5 nodes is simulated.

7.6.4.2 Message Delays For simulation, a number of assumptions about the
behavior of the system have to be made (e.g., about message delays). In ref. [14],
measured delay traces from an 802.11 wireless local area network (LAN) are
used, and the authors of refs. [24] and [32] generate delay traces according to a
normal distribution. In ref. [32], an additional offset is added that increases when
the medium is saturated, that is, when more than 75% of the channel capacity is
used. The authors of ref. [25] assume zero message delay, arguing that the synchro-
nization errors induced by delay uncertainty and drift can be studied separately.

7.6 EVALUATION STRATEGIES 229

7.6.4.3 Clock Drift 1In refs. [26] and [33], every node is assigned an arbitrary
but constant drift rate between — 100 ppm and +100 ppm. In ref. [24], all nodes
have a drift rate of 50 ppm.

7.6.4.4 Results The main concern of ref. [24] is to compare centralized and
distributed versions of the LTS algorithm in terms of required messages and
achieved synchronization error. The average error (over all nodes) is evaluated as
a function of the hop distance to the master node. Reference [14] evaluates the syn-
chronization error and the drift-compensation error achieved by the TS/MS algor-
ithms as a function of time. A node one hop away from the master has an error of
1 ms after 83 minutes. A node with five hops distance achieves 3 ms. In ref. [25],
the average synchronization error (over time and over all nodes) is evaluated as a
function of the number of messages exchanged between the nodes. Also the
impact of the transmission range and of the number of master nodes is evaluated.
The authors of ref. [26] mainly evaluate how quickly (number of rounds) a network
synchronizes using the AD algorithm. This is evaluated as a function of the trans-
mission range and as a function of the number of nodes in the system. It is also
shown that the synchronization error decreases exponentially with the number of
rounds. The speed of convergence is also evaluated in ref. [32], for the TDP and
TPSN algorithms; the standard deviation of the nodes’ synchronization error is
shown as a function of time. It is argued that node mobility makes convergence
slower. In addition, histograms and three-dimensional plots of the distribution of
the synchronization error after convergence are presented.

7.6.5 Challenges of a Benchmark

So far, we have presented how synchronization algorithms are evaluated in the cur-
rent literature. We have seen that results of different authors are quite incomparable
due to widely differing goals, assumptions, and techniques. On the one hand, there is
not yet a common understanding about the requirements on synchronization in
sensor networks. On the other hand, there is also disagreement about available
resources and platforms.

A benchmark for comparing the various algorithms on common ground has not
yet been presented. In the following, we discuss why it is difficult to devise a bench-
mark that can be used with a large number of algorithms. Ideally, the comparison of
algorithms is based on simulation using system traces. Such traces should contain
the system and communication model (How many nodes are there? How many of
them are master nodes? Which node communicates with which other node at
which time?), and they should characterize the “adversary” of synchronization,
namely, all message delays and the drift rates of the nodes. But this would require
determining all communications before executing the algorithms. This is not poss-
ible for most of the algorithms, since they actively decide to generate messages,
depending on previous events. Furthermore, some algorithms require broadcast
communication, while others do not.

230 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS
7.7 CALIBRATION

In the previous sections, we have considered the problem of time synchronization,
where the output of a hardware clock had to be mapped to a timescale. Sensor cali-
bration is the problem of mapping the output of a sensor to a well-defined scale. In
this section, we take a step back from time synchronization and consider the more
general problem of calibration. As we will show, there is a close relationship
between calibration and time synchronization, since the latter can be considered a
special case of the former. It might be somewhat unfamiliar to consider a hardware
clock as a sensor, but as we will show in Section 7.7.1, the difference is rather subtle.
The remainder of this section is structured in a similar way as the discussion of time
synchronization in the previous sections. Section 7.7.2 explains why new
approaches are required for calibration in sensor networks, Section 7.7.3 presents
our system model for sensors, Section 7.7.4 discusses various classes of calibration,
and Section 7.7.5 presents concrete calibration algorithms from current literature.

7.7.1 Time Synchronization as Calibration

Sensors are hardware devices that have an input and an output. The input is a certain
physical quantity in the real world, such as temperature, light intensity, acceleration,
radio signal strength, and so on. The output typically is a variable electrical signal,
such as a voltage or current. An analog-to-digital (A /D) converter converts it to a
digital number.

A hardware clock typically consists of four components: a physical system that
has a periodic behavior (e.g., an oscillating quartz, decaying cesium, a pendulum),
a sensor that converts the physical phenomenon to an electrical signal, an A/D con-
verter (e.g., threshold detector) that converts the output of the sensor to a one-bit
number, and a counter that counts the number of rising (or falling) edges seen so
far in the digital output stream. Hence, a hardware clock contains, among other
things, a sensor and the physical phenomenon to observe.

Despite this analogy, time as a physical quantity has some unique characteristics.
For example, in many practical settings, observed physical quantities have a rather
limited range of values (e.g., temperature € [—30°C, +30°C]). Given a bounded
relative sensor error (i.e., bounded drift), the absolute measurement error is then also
bounded. However, physical time eventually grows beyond all bounds. Hence, the
absolute error of a software clock is unbounded unless synchronization messages
are exchanged. This explains the need for precise drift compensation and for repeat-
ing synchronization after a certain amount of time.

7.7.2 Revisiting Calibration for Sensor Networks

Calibration is a very old problem, since it is needed for almost all measurement instru-
ments. Despite this, calibration in sensor networks has so far not received much atten-
tion by researchers, at least when compared to time synchronization. However, a
number of challenges to calibration in sensor networks pose interesting questions.

7.7 CALIBRATION 231

A large number of sensor nodes often cannot be calibrated manually and indivi-
dually. This is particularly true for pairwise calibration, where a sensor measures a
quantity emitted by another device (i.e., an actuator). One example for this is
measuring the radio signal strength to infer the distance between devices. In such
a scenario, every sensor would have to be calibrated against every transmitter,
resulting in a quadratic number of calibration steps.

Sensors may be exposed to significant changes of environmental parameters (e.g.,
temperature, humidity) during the lifetime of a sensor network. Since the commonly
used low-cost sensors are rather sensitive to such changes, a one-time factory cali-
bration may not be sufficient. In this case, periodical calibration during the lifetime
of the sensor network is necessary.

7.7.3 System Model

The physical quantity g that is observed by a sensor is mainly a function of the size
of the sensor, of its orientation, of its location, and of time #. Since the size of a
sensor is nonzero, sensors can typically only observe the accumulation (e.g.,
weighted average) of a physical quantity over a certain area or volume. If we
assume that size, orientation, and location are constant properties of a sensor i,
we can denote the time-dependent physical quantity observed by the sensor as
qi(t). Often, g is a real-valued scalar function (e.g., for temperature sensors), but
may also be more complex (e.g., for a location sensor, g might return triples (x, y, z)).

The output of a sensor i under stimulus qi(t) is denoted as h'(¢). Note that A'(7) for
a given ¢'(f) typically depends on a number of parameters, for example, fabrication
tolerance of the sensor, environmental parameters such as temperature and humid-
ity, and wear of the sensor.

In analogy to software clocks, we introduce a software sensor as a function c that
maps a sensor output /() to c(h(z)). Software sensors are typically introduced to map
a sensor output to a standard scale (e.g., the Celsius scale). Here, the goal of cali-
bration is to find a suitable ¢ for a given scale. Often, g does refer to such a standard
scale, in which case the goal of calibration could be to find a ¢ that approximates
c(h'(1)) = ¢'(¢) for all 1.

As mentioned in the previous section, calibration may also be applied to actuators.
An actuator can be considered a reverse sensor that accepts a digital value A(7) as input
and produces a physical quantity g(¢) as output. For example, a heater may accept a
temperature specification as input and heat until this temperature is reached. A soft-
ware actuator ¢~ ' then maps a given value vto ¢~ ' (v), which can be used as an input
to the actuator to produce a certain physical quantity (e.g., such that g(¥) = v).

7.7.4 Classes of Calibration
In this subsection, we adapt the classes of time synchronization introduced in Sec-

tion 7.3 to calibration.

« Internal versus External_ For internal calibration, all software sensors i should
output the same value ¢'(h'(¢)) if they are exposed to an identical stimulus g(¢)

232 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

(note that if for instance g(r) = 25°C, then c¢'(h'(1)) = *(h*()) = 10°C would
mean that sensors 1 and 2 are internally calibrated). For external calibration, the
output of all software sensors must conform to a specified scale (e.g., if
g(t) = 25°C, then ¢'(h' (1)) = ¢*(h*(1)) = 25°C is required).

- Lifetime: Continuous versus On-Demand Because some of the parameters
that influence # may change over time, calibration may have to be repeated
to adapt to these parameters. Calibration may be performed continuously or
on demand.

.

Scope: All Nodes versus Subsets All nodes or only subsets of nodes might par-
ticipate in calibration. For example, only some nodes might be equipped with a
certain type of sensor, or the sensor might only be used by some nodes.

Rate versus Offset Sometimes it is sufficient if differences c'(h'(t,)) — c'(h'(t,))
(e.g., temperature differences) obtained from different sensor instances can be
compared. In this case, rate calibration is sufficient. If, however, absolute
values ¢'(h'(2)) (e.g., absolute temperature values) originating from different
sensor nodes are to be compared, offset calibration is needed.

.

« Scale Transformation versus Global Scale Rather than having all software
sensors adhere to a global scale, it might be advantageous (e.g., in terms of
overhead) to maintain local scales and transform sensor readings as they are
sent to nodes with a different scale (e.g., if node 1 uses the Celsius scale and
node 2 uses the Fahrenheit scale, then the transformation function for trans-
forming from node 1 to node 2 is c2(h'(1) = 1.8h (1) + 32).

- Point Estimates versus Bounds Software sensors may either output point esti-
mates (in analogy to time instants for time synchronization) or bounds (analo-
gous to intervals for time synchronization).

7.7.5 Case Studies

In this subsection, we present two calibration algorithms for sensor networks. As in
Section 7.5, we outline the algorithm and give an idea of its performance.

7.7.5.1 Calibration as Parameter Estimation Calibration as parameter
estimation (CPE) [35] provides a framework for external calibration where sensors
measure a quantity emitted by an actuator. Both the behavior of the actuator and the
sensor are unknown and must be taken into account for calibration. The general
approach here is the joint calibration of sensors and actuators such that the overall
system response is optimized.

The algorithm is illustrated by pairwise distance measurements between sensor
nodes using the time of flight of an ultrasound signal. Each node is equipped with
a speaker (the actuator) and a microphone (the sensor). Assuming the nodes have
synchronized clocks, one node emits an acoustic signal containing a time stamp
and the other receives the acoustic signal, computes the time of flight, and multiplies
with the speed of sound to obtain a distance estimate.

7.7 CALIBRATION 233

For our discussion, we consider a virtual distance sensor that directly outputs a
distance estimate h(f) given the true distance as the physical stimulus g(#). Due to
reasons discussed later, distance estimates include various systematic errors.
Hence, the goal of calibration is to find a function ¢ that maps the distance estimate
h(?) to the correct distance g(?).

For CPE, ¢ must now be parameterized, such that it is expressed as a function of &
and of parameters that describe the various error sources. These parameters are
related to both the sensor and to the actuator. For example, the distance h(r)
output by the sensor can be expressed in terms of the true distance ¢(?):

h(t) = Br + Bg + Grq(t) + Grq(t)

where By and By refer to constant distance offsets caused by startup times for
diaphragm oscillation in the transmitter and the receiver, respectively, and Gy and
Gy represent the distance-dependent influence of the transmitter volume and the
receiver sensitivity, respectively. Solving for c(h(?)) := g(f), we obtain

c(h(t)) = M

Gr + Gg
Although there is one instance of the previously given joint-calibration function for
every transmitter—receiver pair, there is only one set of parameters (B, B, G7, Gg)
for each of the N nodes. Hence, we can formulate a linear equation system with 4N
variables (i.e., the four parameters for each node just given) and 4N equations, which
requires 4N pairs (h(?), c(h(f)) = g()) to solve. Alternatively, more samples can be
collected and least-squares optimization can be used to obtain more accurate esti-
mates for the parameters. Once the parameters (Br, Br, Gr, Gg) for each node are
known, the calibration functions are also known.

The authors performed an experiment with an 8 x 4 square grid of Berkeley
Motes with a node distance of 30 cm, such that the true distances between pairs
of nodes can be easily calculated. Each node emitted an ultrasound beacon, which
allows all other nodes to estimate their distance to the transmitting node. The aver-
age error of the uncalibrated distance estimates is 74.6%. With the preceding cali-
bration procedure, the average error could be reduced to 10.1%.

7.7.5.2 Collaborative In-Place Calibration Collaborative in-place cali-
bration (CIC) [37] supports internal calibration under a number of assumptions:
the sensor nodes should be densely deployed, sensor orientation should have a neg-
ligible impact on the sensor output, spatial frequency of the observed physical quan-
tity should be low, temporal frequency of the quantity should be high. Essentially,
these assumptions ensure that collocated sensor nodes will see very similar stimuli
q(t) that change quickly over time. Additionally, it is assumed that g, h, c are real-
valued scalar functions. Calibration functions ¢ are assumed to be linear functions,
although the method could also be adapted to nonlinear functions. The algorithm
consists of two phases. In the first phase, pairwise calibration among collocated

234 TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

nodes is performed. In the second phase, calibration among remote nodes is per-
formed.

In the first phase, collocated pairs of nodes are calibrated against each other. Let
us assume node 1 has to be calibrated against node 2. Then the goal is to derive a
linear calibration function ¢'? with ¢'?(h'(r)) = h*(¢). First, both sensor nodes
record sensor readings h(t,), such that both nodes read out the sensor concurrently
at t,, which requires clock synchronization. The sensor nodes exchange these read-
ings, so that node 1 obtains a set of data points (¢,, hl(tx), hz(tx)). Since ¢!? is assumed
to be linear, it can be derived by linear regression from this set of data points. How-
ever, even though sensor readout is synchronized, it is possible that the two sensors
perceived different physical stimuli ql(tx) # qz(tx) due to their different locations.
Hence, such data points have to be eliminated before regression.

For this, confidence values are assigned to the data points, and the data points
with low confidence values are eliminated. The confidence values are obtained by
shifting a time window with a given size over the set of data points. For each
window position, the linear correlation coefficient » € [—1, 1] for the contained
data points is calculated. The larger r is, the better the data points fall on a line
(i.e., the closer ql(tx) and qz(tx) are). If r is positive, then each data point in the
window is further examined. If the data point contributes a positive addend to r,
then the confidence of this data point is increased by r. The initial confidence of
each data point is zero.

After this procedure, all data points with a confidence below a certain threshold
value are eliminated. With the remaining set, linear regression is performed to derive
a linear calibration function ¢'?. This function is also assigned a confidence that
equals the linear correlation coefficient of the used data points.

Calibration functions for remote nodes are obtained by concatenating multiple
calibration functions for collocated nodes. For example, for two remote nodes 1
and 3, the calibration functions ¢'? and ¢** may be concatenated to give a calibration
function 013(h1(t)) = c23(c12(h1(t))). However, there are typically many ways to
construct a remote calibration function from many local function. Due to inconsis-
tencies, it must be expected that for an alternate calibration function c’13, we have
cB(h'(@®) # ¢B(h' (). Hence, the second phase of the algorithm computes more
consistent nonlocal calibration functions ¢.

The algorithm generates a new set of data points and uses linear regression to
compute ¢¥. To obtain the data points, the algorithm enumerates all concatenated
paths up to a specified maximum length. The kth path {ck } is assigned a confidence

rY 3 by multiplying the confidences of the path segments. Using a set of random data
Values X;, the data points are calculated as (x;, (l/N)Ekrkck(xl)), where N is the
number of concatenated paths ¢/

The accuracy of the derived calibration functions for collocated sensors was
measured in an experiment, where nine Berkeley Motes with temperature sensors
were placed in a 3 x 3 square grid with a node distance of 5cm. A slowly
moving hair dryer was used as a heat source. About 70% of the pairwise calibration
functions deviated by less than 5°C, while more than 10% were off by more
than 10°C.

REFERENCES 235
7.8 SUMMARY

In this chapter, we discussed various aspects of time synchronization and calibration
in sensor networks. We outlined the applications of physical time and discussed why
existing algorithms for time synchronization have to be revisited. We also presented
common classes of and techniques for synchronization, reviewed time-synchroniza-
tion algorithms from the literature, and discussed evaluation strategies. Time syn-
chronization was identified as a special case of calibration, and many of the
observations about time synchronization could be transferred to calibration.

While time synchronization for sensor networks is an established field of
research, calibration has not received that much attention yet. However, we
expect that calibration becomes a more active field as sensor networks move
beyond the lab and small field experiments. Unfortunately, calibration is a much
more general and complex problem than time synchronization. Hence, it is likely
that research will first focus on more specific calibration problems. An interesting
question is, can techniques developed for time synchronization be adapted to cali-
bration problems?

The case studies of time synchronization algorithms and the discussion of evalu-
ation techniques illustrated the very real problem of evaluating and comparing syn-
chronization algorithms. Note that these difficulties also apply to calibration and
many other distributed algorithms. Hence, one of the challenges for future research
is the development of methods and tools for the evaluation of time synchronization
and calibration in large-scale sensor networks.

Current application-oriented projects (e.g., ref. [8]) indicate that many simplify-
ing assumptions about sensor networks (e.g., immobile nodes, fixed-network
topology) may not hold in practice. Hence, future work might have to revisit existing
approaches for time synchronization and calibration under updated assumptions.

REFERENCES

1. D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping with Irregular Spatio-
Temporal Sampling in Sensor Networks. Computer Communication Review,
34(1):125-130, 2004.

2. B. Liskov. Practical uses of synchronized clocks in distributed systems. In Proceedings of
the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC "91),
pages 1-10, August 1991.

3. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), Volume 3, pages 1567—-1576,
New York, June 2002.

4. K. Romer. Temporal message ordering in wireless sensor networks. In Proceedings of
the IFIP Mediterranean Workshop on Ad-Hoc Networks (Med-Woc-Net 2003), pages
131-142, Madhia, Tunisia, June 2003.

236

5.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

TIME SYNCHRONIZATION AND CALIBRATION IN WIRELESS SENSOR NETWORKS

L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating tiny sensors in time and
space: A case study. In Proceedings of the International Conference on Computer
Design (ICCD 2002), Freiburg, Germany, September 2002.

. D. L. Mills. Internet time synchronization: The network time protocol. IEEE

Transactions on Communications, 39(10):1482—-1493, October 1991.

. J. Elson and K. Romer. Wireless sensor networks: A new regime for time synchroniza-

tion. In Proceedings of the 1st Workshop on Hot Topics in Networks (HotNets-I),
Princeton, New Jersey, October 2002.

. P.Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-efficient

computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet.
In Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), pages 96-—107,
San Jose, California, October 2002.

. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using refer-

ence broadcasts. In Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, Massachusetts, December 2002.

F. Cristian. Probabilistic clock synchronization. Journal of Distributed Computing,
3:146-158, 1989.

D. Dolev, R. Reischuk, R. Strong, and E. Wimmers. A Decentralized High Performance
Time Service Architecture. Technical Report 95/26, Institute for Computer Science,
University of Liibeck, November 1995.

J. Y. Halpern and I. Suzuki. Clock synchronization and the power of broadcasting.
Distributed Computing, 5(2):73-82, 1991.

H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization service for
wireless sensor networks. Mobile Computing and Communications Review, 8(1):125—
139, January 2004.

M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization for wireless
sensor networks. In Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC 2003), Volume 2, pages 1266—1273, New Orleans, Louisiana,
March 2003.

W. H. Press, S. A. Teukolsky, W. T. Vetterli, and B. P. Flannery. Numerical Recipes in C,
Second Edition. Cambridge University Press, 1992.

F. M. Gardner. Phaselock Techniques. John Wiley & Sons, 1979.

R. Noro. Synchronization over Packet-Switched Networks: Theory and Applications.
Ph.D. thesis, EPFL, Lausanne, Switzerland, 2000.

D. L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE/
ACM Transactions on Networks, 3(3):245-254, June 1995.

J.-M. Berthaud. Time synchronization over networks using convex closures. I[EEE/ACM
Transactions on Networking, 8(2):265-277, 2000.

L. Zhang, Z. Liu, and C. Honghui Xia. Clock synchronization algorithms for network
measurements. In Proceedings of the 21st Annual Joint Conference of the IEEE Compu-
ter and Communications Societies (INFOCOM), Volume 1, pages 160—169, New York,
June 2002.

P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: A precise and accurate global
time service for large-scale systems. Real-Time Systems, 3(12):243-294, 1997.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

REFERENCES 237

S. Mitra and J. Rabek. Power efficient clustering for clock synchronization in dynamic
multihop networks, unpublished. See at http://theory.lcs.mit.edu/mitras/courses/
6829 /project/final_report.ps, 2003.

S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor net-
works. In Proceedings of the Ist International Conference on Embedded Networked
Sensor Systems (SenSys), pages 138—149, November 2003.

J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor networks. In
Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), pages 11-19, San Diego, California, September 2003.

P. Blum, L. Meier, and L. Thiele. Improved interval-based clock synchronization in
sensor networks. In Proceedings of the 3rd International Symposium on Information Pro-
cessing in Sensor Networks (IPSN), pages 349-358, Berkeley, California, April 2004.

Q. Li and D. Rus. Global clock synchronization in sensor networks. In Proceedings of
IEEE INFO COM 2004, Hong Kong, China, March 2004.

K. Rémer. Time synchronization in ad hoc networks. In Proceedings of the 2nd ACM
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 173—
182, Long Beach, California, October 2001.

K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In Proceedings
of the 2nd Annual ACM Symposium on Principles of Distributed Computing, pages
295-305, ACM Press, 1983.

U. Schmid and K. Schossmaier. Interval-based clock synchronization. Real-Time
Systems, 12(2):173-228, 1997.

L. Meier, P. Blum, and L. Thiele. Internal synchronization of drift-constraint clocks in
ad-hoc sensor networks. In Proceedings of the 5th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pages 90—97, Tokyo, Japan, May 2004.
M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchronization
protocol. In Proceedings of the 2nd ACN Conference on Embedded Networked Sensor
Systems (SenSys), pages 39—49, Baltimore, Maryland, November 2004.

W. Su and 1. F. Akyildiz. Time-diffusion synchronization protocol for sensor networks.
IEEE/ACM Transactions on Networking, 13(2): 384-397, 2005.

M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock synchronization in wireless local
area networks. In Proceedings of the 12th Euromicro Conference on Real Time Systems,
pages 183—189, June 2000.

P. Blum and L. Thiele. Clock synchronization using packet streams. In Brief Announce-
ments of the 16th International Symposium on DIStributed Computing (DISC 2002),
pages 1-8, Toulouse, France, October 2002.

K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor Networks. In
Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), pages 59-67, Atlanta, Georgia, September 2002.

V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collaborative approach to
in-place sensor calibration. In Proceedings of the 2nd International Workshop on Infor-
mation Processing in Sensor Networks (ISPN), pages 301-306, Palo Alto, California,
April 2003.

I CHAPTER 8

The Wireless Sensor Network MAC

EDGAR H. CALLAWAY, Jr.

Motorola Labs, Plantation, Florida

Wireless sensor networks usually employ performance metrics that are different
from those of more conventional data networks, emphasizing low power consump-
tion and low cost rather than data throughput or channel efficiency. Since power
is consumed every time a networked device accesses the channel (either transmitting
or receiving), the method by which the device accesses the channel can have a large
effect on its power consumption, and therefore the valuation of the wireless sensor
network as a whole. Should the channel-access method require specialized or
additional hardware (e.g., a second transceiver, or more processor memory), the
cost incurred can similarly affect network valuation. The open systems interconnec-
tion (OSI) stack places the responsibility for channel access in the medium-access
control (MAC) sublayer of the data link layer, the second layer of the stack. This
chapter will discuss the function of the MAC sublayer, identify some of the problems
that are addressed (or avoided) in a good MAC design, and review the relationships
between the performance goals of the network and tradeoffs that can be made in
selecting and designing a MAC protocol. The chapter will then review the major cat-
egories of MAC protocols used in data networks of all types, describe a selection of
MAC protocols designed for wireless sensor networks, and conclude with a look at
directions for future research.

8.1 INTRODUCTION

Wireless sensor networks usually employ performance metrics that are different
from those of more conventional data networks, emphasizing low-power consump-
tion and low cost rather than data throughput or channel efficiency [1]. Since power
is consumed every time a networked device accesses the channel (either transmitting
or receiving), the method by which the device accesses the channel can have a large

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

239

240 THE WIRELESS SENSOR NETWORK MAC

effect on its power consumption, and therefore the valuation of the wireless sensor
network as a whole. Should the channel-access method require specialized or
additional hardware (e.g., a second transceiver or more processor memory), the
cost incurred can similarly affect network valuation. The open systems interconnec-
tion (OSI) stack [2] places the responsibility for channel access in the medium-
access control (MAC) sublayer of the data-link layer, the second layer of the
stack. This chapter discusses the function of the MAC sublayer, identify some
of the problems that are addressed (or avoided) in a good MAC design, and
review the relationships between the performance goals of the network and trade-
offs that can be made in selecting and designing a MAC protocol. The chapter
then reviews the major categories of MAC protocols used in data networks of
all types, describes a selection of MAC protocols designed for wireless sensor
networks, and concludes with a look at directions for future research.

8.1.1 Function of the MAC Layer

The wireless communication medium is a resource that must be shared by all
network devices. Therefore, a scheme must be devised to provide access to it in
some way that meets the needs of the network application. This problem is
termed the MAC problem.

The communication medium has several dimensions that can be exploited for
access control, including time, frequency, and coding. In addition, several physical
parameters of the network devices themselves can also be employed, including
spatial separation, antenna directionality, transmitter power output, and receiver
sensitivity. Gummalla and Limb [3] provide a good survey of wireless MAC proto-
cols in general. Murthy and Manoj [4] provide an encyclopedic collection of MAC
protocols for ad hoc wireless networks.

For wireless sensor networks, the MAC problem assumes a collection of quasi-
stationary network devices. Here we define “quasi-stationary” to mean that the
network devices move slowly compared to the speed of network operation. Note
that, unlike many other types of networks, the assumption that all network devices
generate new frames at the same average rate is often not a good one for wireless
sensor networks, which may have very asymmetric data-generation patterns. The
transmissions of some devices, in fact, may consist entirely of acknowledgment
frames (devices that are data sinks), while other devices may generate the majority
of network traffic (devices that are data sources). This network heterogeneity can be
used to advantage in MAC algorithms.

There is a subtle yet important distinction between medium-access protocols and
multiple-access protocols. Multiple-access protocols solve the MAC problem, but in
addition attempt to service multiple simultaneous communication links [5]. This,
of course, requires multiple logical channels, so the MAC problem becomes one
of optimally sharing multiple communication media in a way that meets the
needs of the network application. Multiple-access protocols are therefore a subset
of the set of medium-access protocols.

8.1 INTRODUCTION 241

The structure of this chapter is as follows. The remainder of Section 8.1 discusses
features of the MAC problem, emphasizing those of special importance to wireless
sensor networks. Section 8.2 discusses several popular MAC methods employed
today. Section 8.3 focuses this discussion on MAC methods proposed for use in
wireless sensor networks. Section 8.4 concludes by considering some future direc-
tions for research.

8.1.2 Problems to Be Solved or Avoided by the MAC Layer

There are several important issues that arise during the solution of the MAC
problem. Many are specific to the particular type of solution selected; however, a
few are more generic and concern all MAC algorithms.

8.1.2.1 Fairness Most MAC algorithms are designed to be fair, that is, to pro-
vide equal access to the channel for all network devices that desire to use it. In most
applications it is undesirable to give some devices preferential treatment, allowing
them better access to the channel than other devices. “Better access to the channel”
in this context is usually defined as “faster access to the channel,” although in
general it may be best defined as “access to the channel leading to better quality
of service,” since the network application may value performance metrics other
than data throughput. This situation may occur, for example, in wireless sensor
networks that value long operational life over message latency. Such networks
may elect to distribute channel access in a manner that will tend to equalize the
remaining battery life of network devices, regardless of message latency; the goal
of these schemes is to have the batteries of all network devices reach depletion at
the same time, in a manner analogous to that of Oliver Wendell Holmes’ “one-
hoss shay” (“It ran a hundred years to the day”) [6]. It is also important to consider
that often a wireless sensor network performs a single application, as opposed to a
wireless local area network (WLAN), which has many independent users perform-
ing independent applications competing for the available communication medium.
Having collective or atomic network functionality can reduce the value of MAC
fairness; it may not be important, for example, that an individual message is sent
if others carrying identical information reach the same destination.

8.1.2.2 Latency Message latency, the time it takes for a message to travel from
an application on a source network device to an application on a destination device,
is important in most wireless data networks; in some, message latency (or its vari-
ation) can be of primary importance (most multimedia applications fall into this
category). MAC latency is a significant contributor to message latency in most
networks; the design of the MAC therefore can have a significant effect on the
suitability of the network for a proposed application. Increased MAC latency is
frequently traded for reduced energy consumption in the design of wireless sensor
network protocols [7].

242 THE WIRELESS SENSOR NETWORK MAC

8.1.2.3 Deadlock, Livelock, and Other Undesirable States Like most
algorithms, it is possible for MAC algorithms to exhibit unexpected (and therefore
undesirable) behavior under certain conditions, behavior that usually takes the form
of a drop in message throughput, often to zero. The algorithm reaches a state in
which communication is not possible, and from which it cannot extract itself (at
least in a given amount of time). The entry conditions to these states can be particu-
larly difficult to identify since, from an ad hoc network perspective, the MAC algor-
ithm is usually a distributed algorithm, and the variables involved may include
particular combinations of the physical location of the network devices, the network
topology, the offered message load, traffic history, and other factors difficult to
model a priori.

As the name suggests, MAC deadlock is a logical condition that can arise in
which a channel is available, network devices are operating properly, yet no attempt
to communicate is made. Deadlock can arise, for example, if each device in a
network is simultaneously expecting to receive a frame from another as a condition
for future transmissions. Since none of them receives the frame it expects, all stay in
a state of suspended animation, and communication halts.

A somewhat less common occurrence is receive livelock, in which there is so
much MAC control message (message setup) overhead (perhaps from a large
number of neighbors with much traffic to send) that the processing power of the indi-
vidual devices is exceeded, and no data transfer is possible. This can occur in a
so-called “broadcast storm,” when a broadcast message is distributed in an ad hoc
network without controlling the number of message retransmissions [8].

Another undesirable condition occurs in carrier sense multiple-access (CSMA)
algorithms (see Subsection 8.2.3.2) when the binary exponential backoff exponent
is allowed to increase without limit, a condition that forces network devices to
self-censor themselves to silence. Several issues with CSMA algorithms employing
the request-to-send/clear-to-send (RTS/CTS) exchange have been identified by
Ray, Carruthers, and Starobinski [9].

Deadlock, livelock, and other logical cul-de-sacs are often quite subtle, and must
be carefully considered with any MAC algorithm—along with the network topo-
logy, network device density, and other assumptions about the environment in
which the MAC algorithm must perform. M.A. Youssef et al. suggest that analyses
of a formal model for MAC algorithms are useful [10].

8.1.3 Important Factors in Wireless Sensor Network MAC Design

Due to the differing performance metrics applied to them, a MAC protocol suitable
for wireless sensor networks is often significantly different than one designed for
other applications, such as WLANSs.

8.1.3.1 Emphasis on Power Consumption As we have said, a primary
concern of wireless sensor networks is power consumption. It is desirable to place
the network devices in a low-power sleep mode as much as possible, to minimize
average power consumption. This means that a MAC protocol that requires network

8.1 INTRODUCTION 243

devices to monitor the channel constantly would be a poor choice for wireless sensor
networks, since their receivers would have to be constantly active and drawing
current. (Due to their low transmitter output power, the receivers of many wireless
sensor network devices dissipate more power than their transmitters, exacerbating
this situation.) Any energy expended monitoring a silent channel, or listening to a
network device that does not have a message to send, is wasted energy that could
better be used for actual communication.

It is not just the active time that costs. Transceivers transitioning from a sleep
state to an active state require a finite amount of time to lock synthesizers, regulate
voltages, program registers, and a host of other tasks. These take time and consume
energy, too, and if the MAC design requires frequent, short periods of activity, a sig-
nificant amount of energy will be consumed just waking the transceiver up [1]. This
wake-up problem can occur, for example, in a time-division multiple-access
(TDMA) system (see Section 8.2.1.2) sending frequent control frames.

8.1.3.2 Deemphasis on Throughput, Message Latency, and
Fairness As previously noted, wireless sensor networks emphasize low power
consumption and low cost over more traditional network performance metrics
such as data throughput, message latency, and even fairness. This change in empha-
sis leads to the selection of different trade-offs during the design of the wireless
sensor network MAC [7]. For example, as discussed before, the successful wireless
sensor network MAC is unlikely to employ a scheme requiring constant monitoring
of the channel. However, the decision to allow the network devices to sleep will
almost certainly result in an increase in message latency, since messages must
wait for devices to awaken before communication can be established. (The concept
of a low-power wake-up radio has been proposed as a way to have the best of both
worlds, i.e., the low message latency of an always-awake network device with low
average power consumption [11—13]. Such a receiver would draw only a few tens of
microwatts, and serve only to wake up the main receiver to receive the message.)
Fairness, to both network devices and messages, may also be traded for improved
power consumption. In many cases, wireless sensor networks are designed with a
tree topology, with a central device that is the primary data source, or primary
data sink, in the network. This is often the case in environmental sensing, for
example, where the purpose of the network is to send sensor data to a gateway
device for collection. In this case, it has been proposed that the MAC be optimized
for message transmission in the direction most of the messages are traveling, at the
expense of those that may travel in other directions, for an improvement in energy
efficiency and message latency [14]. It is also important to realize that there is often
a philosophical difference between wireless sensor networks and more conventional
data networks: Since wireless sensor networks often support a single application,
the information from multiple sensors can be redundant. Redundant information
can be delayed or even dropped from the network without affecting the common
task of the network devices. MAC protocols can take advantage of this to reduce
message fairness in certain situations, especially if a lower-cost or lower-power net-
work results. Conventional data networks, on the other hand, more often function as

244 THE WIRELESS SENSOR NETWORK MAC

“radio common carriers,” supporting applications of all types. In this case, the loss
of a single frame can be catastrophic, and link-level message fairness is of greater
importance. In these cases, energy may be spent to enhance fairness.

8.1.3.3 Low Channel Occupancy In the design of a MAC for wireless
sensor networks, it should be kept in mind that the most common state of the
network is that the channel is unused, that is, due to the low throughput of most wire-
less sensor networks, the majority of the time they are in operation there will be no
traffic on the channel within range of a given device. For lowest energy consump-
tion, therefore, it is incumbent on the designer to ensure that the most efficient
state of the MAC is that in which no traffic is present.

8.1.3.4 Self-Organization and Self-Maintenance Wireless sensor net-
works are typically designed to be ad hoc networks, installed by nonspecialists,
and must be self-organizing and self-maintaining. That is, there is no system admin-
istrator available to identify and correct problems. The wireless sensor network
MAC must therefore be utterly stable under a wide range of real-world conditions,
including a wide array of network topologies and data generation patterns.

8.1.3.5 Scalability Scalability is also an important factor in a wireless sensor
network MAC. Since wireless sensor networks are self-organizing, and have an
almost unlimited variety of applications, the MAC must be capable of operation
in networks of both large and small order, and with a wide range of device densities.

8.1.3.6 Quasi-Stationary Assumption 1t is often assumed that the devices
in wireless sensor networks are quasi-stationary, that is, any movement they may
make is slow relative to the speed at which the network may respond to such move-
ment. This assumption is often employed to increase the sleep periods of the net-
work devices, to improve overall energy efficiency, but it should be carefully
considered in light of the proposed application. For example, if an asset tracking
application is considered, it is important that the MAC be able to supply channel
access fast enough for the asset to be tracked through the network; otherwise,
since it will be unable to transmit a data frame, it will seem to have simply disap-
peared from the network once its motion begins.

8.1.3.7 Use of Unlicensed Frequency Bands An often-overlooked issue
with the wireless sensor network MAC is the fact that they are nearly always
employed on unlicensed frequency bands—bands that are shared with other ser-
vices. The fact that the channel is being shared with noncooperative devices per-
forming other services can greatly complicate MAC design. For example, the
MACs employed by the two services may interact in undesirable ways, producing
deadlock in one or both of the services, or greatly reducing quality of service
(QoS). This behavior may be hard to predict in advance, since there are many differ-
ent services operating on the unlicensed bands, and many potential interactions
between them.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 245

Coexistence between services can be an undocumented requirement in many
wireless sensor network applications, but it can be an extremely important one,
especially if the wireless sensor network is not the first service in the band. Being
second means that it is the responsibility of the wireless sensor network designer
to coexist with the existing service. However, it is unlikely that the existing service
has been designed to coexist with the incoming wireless sensor network, the exist-
ence of which the designers of the existing service may not have expected. The cor-
rect policy for the wireless sensor network to follow could perhaps be, “first, do no
harm,” but this philosophy can have unintended consequences.

For example, consider the use of CSMA on an unlicensed band. Should a device
back off if it detects any signal during its channel-sensing period, or just a signal
from a member of its network? If it desires to be a “good neighbor,” perhaps the
policy should be to back off upon detection of any signal energy, but this policy
is unproductive if the other signal is leakage from a microwave oven on the 2.4-
GHz industrial, scientific, medical (ISM) band; in fact, all that will be accomplished
is that the device’s own communication will be delayed. However, if a device is
required to not only detect signals in the channel but characterize them as well,
additional time must be taken to attempt to demodulate the signal, determine
baud rate, and perhaps even decode a frame header. Simply detecting energy in a
channel can be performed in a few microseconds, but characterizing a signal can
take much longer—and waste significant energy.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS

The following is a brief review of some of the most popular medium-access control
methods employed today. It is important to keep in mind that these methods may be
combined in a single application; for example, a system may employ a polling pro-
tocol on a given channel, but have multiple frequencies available for use (frequency-
division multiple access (FDMA)).

Numerous ways have been proposed to organize the various medium-access con-
trol methods; the taxonomy of Figure 8.1 is but one method. Classification of
medium-access control methods is made difficult not only by the fact that schemes
may be combined in various ways, but also because each method has many vari-
ations, so that even a precise definition of some methods can be elusive, and different
practitioners may reasonably disagree in some areas. In addition, it should be noted
that Figure 8.1 is not exhaustive; there are many other medium access control
methods that have been proposed but are not included here. Among these are
polarization-division multiple access (PDMA) [15] and space-division multiple
access (SDMA) [16,17], in which orthogonally polarized and highly directive anten-
nas, respectively, are employed to transmit to multiple receivers at the same time, on
the same frequency. Despite these limitations, it is instructional to consider some
broad classifications; Figure 8.1 divides medium-access protocols into fixed-
assignment, demand-assignment, and contention-access protocol categories.

246 THE WIRELESS SENSOR NETWORK MAC

Media access protocols

Fixed assignment Demand assignment Contention access
protocols protocols protocols
FDMA CDMA Trunking Polling ALOHA CSMA
Reservation
TDMA methods

Figure 8.1 Medium-access protocol taxonomy. Fixed-assignment and demand-assignment
protocols are often collectively referred to as “contention-free” protocols.

Fixed-assignment protocols are those for which, as the name implies, channel
assignments are fixed, regardless of need. Demand-assignment protocols schedule
channel access based on the demand of users having message traffic to transmit.
Those without traffic are not given channel access. In both of these types, users
transmitting messages are assured by the medium-access algorithm that their mess-
ages will not collide with messages from other devices in the network. In the
third category, contention-access (also called random access) protocols, this assur-
ance is not made; the protocols must include a recovery mechanism for message
collisions.

8.2.1 Fixed-Assignment Protocols

As previously noted, fixed-assignment protocols make fixed-channel assignments,
without consideration of any variation in communication needs that may exist
among devices in the network. This makes fixed-assignment protocols often the
easiest to implement, but also the most inflexible in response to changing network
conditions. This last characteristic is often a large disadvantage for wireless
sensor networks, due to their ad hoc, self-organizing, and self-maintaining nature,
and fixed-assignment protocols are rarely proposed for them. However, most
fixed-assignment protocols can be modified into demand-assignment variants,
some of which have been proposed for wireless sensor networks, so it is important
to understand their characteristics and limitations.

8.2.1.1 Frequency-Division Multiple Access Possibly the oldest method
of medium-access control is that of frequency-division multiple access (FDMA),
which can trace its roots to Marconi’s famous “four sevens” British patent of
1900 [18]. Marconi’s patent disclosed the use of tuned circuits to enable multiple
wireless stations to operate simultaneously without interference, by employing

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 247

different frequencies of operation. Prior to this time, only untuned systems were in
use and, as the range of wireless systems improved, interference was becoming a
serious problem that threatened to limit the utility of the nascent wireless industry.
Dividing the frequency spectrum into bands to be utilized by individual stations
(much later to be assigned and enforced by government regulation) greatly reduced
this problem, and FDMA was the primary multiple-access method used in all types
of wireless services for many decades to follow. The concept of FDMA is shown in
Figure 8.2.

Despite its popularity, FDMA is not without its weaknesses. Primary among
these, like all fixed-assignment protocols, is the need to plan ahead for the “worst
case” maximum-use scenario. Assigning frequencies for all potential users of the
spectrum, when far fewer users will in fact be present most of the time, leads to
poor spectrum utilization. Much of the time, a significant fraction of the available
spectrum will be unoccupied. While this is a minor or nonexistent problem for
some services, such as broadcasting, that occupy their assigned frequencies
almost continuously, it is a significant problem for other services, such as public
safety communications, that seldom require use of their frequencies (but must
have them when required). Just being able to predetermine the maximum number
of users may be impractical for some ad hoc systems, such as wireless sensor
networks. Another weakness is the spacing between users (guard bands) that must
be employed. A trade-off must be made between spectrum utilization efficiency
(higher when the guard bands are small) and the cost of filtering needed to select
the desired user (unfortunately, also higher when the guard bands are small).
Guard bands may be reduced, and less-expensive filtering used, by physically
spacing users so that the received adjacent-channel energy is attenuated; however,
this limits the attainable density of networked devices, and may not be practical
with mobile users.

Frequency t
A User 1
Guard band
5H User 2
Guard band
S User 3

Time
Figure 8.2 Frequency-division multiple access. A frequency band is reserved at all times for
each user.

248 THE WIRELESS SENSOR NETWORK MAC

8.2.1.2 Time-Division Multiple Access A second method of fixed-
assignment multiple access is time-division multiple access (TDMA). In the basic
TDMA scheme, shown in Figure 8.3, a single channel is time-shared, that is, use
of the channel is divided among several users by allowing each user to access the
channel periodically, but only for a small period of time (a “time slot”). After this
time slot, the user must relinquish the channel to another user. Since the channel
is only available to each user for a fraction of time, the raw (over-the-air) data
rate used by each user must be proportionally higher to maintain a given throughput.

TDMA first came into practical use in satellite communication systems [19], an
application for which FDMA has certain disadvantages, including the development
of intermodulation products in the satellite transponder [20]. Since it employs only
one channel, the use of TDMA eliminates the intermodulation problem in that appli-
cation. It has since come in to wide use in cellular telephone systems, including
Global System for Mobile Communications (GSM) [21], and the American National
Standards Institute /Telecommunications Industry Association/Electronics Industry
Association ANSI/TIA/EIA-136-B digital cellular standard [22].

Difficulties with TDMA largely center on the problem of synchronizing a number
of independent users. Since the time-base references of the users are independent,
the transmission of each user typically begins with a preamble that includes a bit
synchronization pattern, followed by a “start of burst delimiter” (SBD), a synchro-
nization code word indicating that data are to immediately follow. To account for the
finite accuracy of synchronization, the possibility of clock drift during the slot, and
differences in propagation delay between users, guard bands (periods of unassigned
time) between slots are typically employed. These features are shown in Figure 8.4.

TDMA is frequently employed as a demand-assignment protocol, rather than a
fixed-assignment protocol, by allowing users to request and receive multiple slots.
As a demand-assignment protocol, it has been proposed as the underlying structure
for a variety of wireless sensor network channel access methods [23,24]. Clare,
Pottie, and Agre [25] note that the network time synchronization inherent in
TDMA may also be used to synchronize sensor sampling and signal processing,
enabling coherent beam formation of the sensors. The achievement and maintenance
of time synchronization across a large multihop network, however, is quite difficult,
especially if low-power operation is required. Due to the unavoidable communi-
cation delay across the network, it is possible for instabilities to develop; the

A
Frequency

fi| Userl User 2 User 3 User 1 User 2

>

Time

Figure 8.3 Time-division multiple access. A periodic time slot is reserved for each user on a
single frequency.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 249

Guard band | Preamble SBD | Payload data Guard band | Preamble ‘
Slotn—1 | Slot n | Slotn+1
(Usern—1) (user n) (Usern+1)

Figure 8.4 Typical structure of a TDMA slot (not to scale).

delays themselves vary, of course, due to the changing routes messages may take
over the life of the network.

8.2.1.3 Code-Division Multiple Access As a type of spread-spectrum com-
munication, code-division multiple access (CDMA) is a more recent development
than FDMA and TDMA, and relies on the observation that coding, as well as
frequency and time, can be used to separate simultaneous transmissions in a fre-
quency band and thereby achieve multiple access. If the codes are orthogonal, or
nearly so, so that any bit errors caused by cochannel interference (interference
from other users on the same frequency, but employing different codes) can be
handled by forward error correction, multiple users may occupy the same band.

There are two fundamental types of spread-spectrum communication, frequency
hopping and direct sequence, and each may be used for CDMA. Frequency hopping,
as the name suggests, switches the carrier frequency of the modulated signal from
channel to channel in the frequency band in a pseudorandom pattern (the “code’).
The device may linger on a given channel for the duration of an entire message
(“slow hopping”), or it may stay on a given channel only for the duration of a
few symbols (“fast hopping”). In either case, multiple devices attempting to send
message traffic on the network may do so simultaneously, since it is unlikely that
they will be on the same carrier frequency at the same time. The sequence of trans-
mission frequencies is, of course, known at both the transmitter and the receiver, but
to other devices the sequence seems random. Direct sequence, on the other hand,
keeps the carrier frequency constant, but instead multiplies the transmitted binary
data by a predetermined, high-frequency, pseudorandom spreading code prior to
modulation of the carrier. The elements of the spreading code are called chips,
and there are typically 10 or more chips per transmitted bit of data. Since the rate
at which chips are sent (the chip rate) is greater than the bit rate, the direct sequence
signal occupies more bandwidth than the unspread signal. At the receiver, the
received signal is multiplied by an identical spreading code, producing the recovered
data. Multiple devices therefore may send message traffic on a given frequency
simultaneously, using orthogonal spreading codes.

CDMA employing direct-sequence spread spectrum has been widely used in cel-
lular telephone systems [26], including the ANSI/TIA/EIA-95-B [27] and TIA/
EIA/IS-2000 (Interim Standard) [28] standards. Frequency-hopping CDMA has
been less popular, although it has seen use in cordless telephone applications
[29]. While the use of CDMA has greatly increased the system capacities of cellular

250 THE WIRELESS SENSOR NETWORK MAC

telephone systems, it is not without its limitations; for example, in order to employ
CDMA at a receiver the power received from the multiple transmitters must be sub-
stantially equal. This “near—far problem” creates a requirement for power control at
the transmitters, so that their transmit powers vary inversely with respect to the path
loss to the receiver. Not only does this requirement make the network devices more
expensive and complicated, it makes CDMA useful only for networks having a
single coordinator or base station, since it is impossible in general to solve the
near—far problem for multiple receivers simultaneously.

8.2.2 Demand-Assignment Protocols

The economic viability of a wireless service is often a strong function of how effi-
ciently it uses available spectrum [30]. Spectral efficiency, in turn, is greatly affected
by the channel access method employed and, as we have said, fixed-assignment pro-
tocols are not particularly efficient. Demand-assignment protocols attempt to
improve on the channel inefficiencies of fixed-assignment protocols, by reassigning
unused channel assets to users that can use them. In general, this requires the use of a
controller to arbitrate between users, and makes demand assignment protocols more
complex than their fixed counterparts, since needy users and available channel assets
must be matched. It also generates the need for a logical control channel, separate
from the logical data channel over which messages are passed. In addition, the
requirement to request channel access before actually having the channel assigned
implies that there will be a setup delay between the time a user identifies a need
to communicate and the time a channel is assigned to do so. This time, which is
not present in fixed-assignment protocols, must be considered in the design of the
protocol to ensure adequate QoS for the desired application.

8.2.2.1 Polling The most straightforward way to perform demand-based chan-
nel access is to have a controlling device in the network (a controller) repetitively
ask all other network devices, one by one, if they need channel access. Devices
that do not need channel access decline, while those that do need channel access
inform the controller of that fact. The controller then assigns channel access for
the requesting device. (In the degenerate case, devices merely begin transmitting
upon receiving the query.) Polling is inherently fair, in the sense that the controller
is able to ensure that all devices can have access to the channel with the same QoS.

Possibly the most well-known system that employs the polling technique is the
Bluetooth™ (IEEE 802.15.1) Wireless Personal Area Network standard [31]. Blue-
tooth is ideally suited for a polling protocol, since it uses a star network topology,
with one master device (the controller) and a maximum of seven slave devices.
Time is divided into slots in the Bluetooth system; the master device can begin its
transmissions only on odd-numbered slots, while slave devices can begin their trans-
missions only on even-numbered slots. Slave devices can only transmit in response
to a query from the master device. Should a slave device have a message to transmit,
it must wait until the master device polls it before it can transmit.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 251

While useful in some applications, it is clear that polling is not appropriate for
many types of networks. For example, star networks that have a large number of
slaves are poor candidates for the polling technique, since an individual slave
would be infrequently polled, leading to message transmission delays and poor qual-
ity of service. Further, if message generation is not evenly distributed among net-
work devices, much network time will be spent uselessly polling devices with no
message traffic, while devices with large amounts of traffic stand idly by—unless
the polling device tracks message generation rates and modifies its polling pattern
accordingly, a complex undertaking. Probably the biggest liability for the polling
technique, however, is that it sets a power-consumption floor for devices in the net-
work. Even if the network has no message traffic to exchange, the controller must
continue to query each network device, and each network device must wake up,
receive the query, and transmit a reply. The power penalty is worst for the controller,
which must periodically contact all devices in the network, but is also a problem for
the other network devices. This problem can be ameliorated somewhat by allowing
the network device to miss a certain number of polls, in order to lower its power
consumption. Bluetooth, in fact, has established three lower-power modes—
HOLD, SNIFF, and PARK—to eliminate the polling overhead from network devices
and allow them to reduce their average power consumption [32].

8.2.2.2 Reservation Methods As the name suggests, reservation methods
require a device to reserve a communication channel prior to transmission. A typical
method is shown in Figure 8.5.

In a network of n devices, in which all devices can receive transmissions from all
other devices, time is divided into superframes, and each superframe is then further
divided into a reservation period and a data-transmission period. The reservation
period is divided into frames, with one frame assigned to each device in the network.
In a device’s reservation frame, the device transmits a code word, indicating whether
or not it has message traffic to send and, if it does, how many of data-transmission
slots A, B, and C it needs. All other devices do the same in turn. At the end of the
reservation period, all devices know which devices will be transmitting during the
data-transmission period.

As just described, the protocol is an example of an unfair algorithm: There are a
finite number of available data-transmission slots, and the devices request them in a
preferred order. Device 0 will always find slots available, and will therefore always
be able to transmit, while device n will find slots available only if all other network

A\ 4

< Superframe period

Reservation period | Data-transmission period Reservation period
|0|1|2|3|4|5|...|n| Slot A Slot B Slot C |0|1|2|3|4|5|...|n|...

Figure 8.5 A reservation channel-access protocol. Network devices 0—7 reserve time in
data transmission slots A, B, and C.

252 THE WIRELESS SENSOR NETWORK MAC

devices have left some for it. This unfairness may be acceptable (and even desirable)
if the devices are organized by expected QoS; for example, if device 0 transmits
emergency video for the fire department, and device n transmits, say, daily weather
reports. However, if a fairer algorithm is desired, there are a number of ways this can
be accomplished, for example, each device can include an aging value in its reser-
vation code word, indicating how long its data has been waiting for transmission.
Messages with the higher values can then be selected for transmission during the
data-transmission period.

A second example of a reservation protocol is packet-reservation multiple access
(PRMA) [33]. PRMA is an example of a combination MAC protocol, as it is a reser-
vation protocol with features of TDMA and ALOHA (see Section 8.2.3.1). In
PRMA, a star network is assumed. Time is divided into frames, each of which
has many numbered slots. The network controller transmits an acknowledgment
message at the end of each slot, which identifies that slot as being “reserved” or
“unavailable.” When a network device has message traffic (for the controller), it
uses the ALOHA protocol to contend for an available slot. When the controller suc-
cessfully receives the message, it replies with a “reserved” acknowledgment
message, indicating receipt and indicating that the network device has reserved
that slot for future frames. The network device now has an assigned slot in the
frame, similar to TDMA, and can transmit without fear of frame collision in that
slot in all future frames, since other network devices within range also detect the
acknowledgment message. When the network device has completed its traffic, the
slot reservation is released by the simple expedient of not transmitting in it. The net-
work controller then transmits an “available” acknowledgment message at the end of
the slot, informing the rest of the network.

8.2.2.3 Trunking Trunking is a multiple-access scheme that dynamically
assigns communication requests to available logical channels. Any fixed-assignment
MAC protocol—FDMA, TDMA, CDMA—can be employed, with the goal to sub-
stantially improve the channel efficiency without causing the QoS to any user to
degrade.

The earliest trunked systems were wired telephone systems, in which
multiple lines between points were installed, and calls were routed to a line with
available capacity. This greatly increased the reliability of the network, since a
single line outage would be unlikely to result in a loss of service, and also improved
infrastructure economy, since any peaks in call volume could be rerouted over other,
less busy, lines, and every line did not have to be designed for the peak call volume
requested over that route.

The first wireless systems to employ trunking methods (other than the microwave
systems employed by the telephone system itself) were FDMA land-mobile radio
(LMR) systems. These systems employed repeaters to provide communication
links among mobile devices, normally organized into groups, and between mobile
devices and wireline infrastructure such as telephone interconnect. Devices on
LMR systems typically have very low average data throughput, but very high
peak throughput—the worst-case scenario for channel efficiency using FDMA.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 253

To install an FDMA trunking system, the system operator amasses a collection of
5 to 40 FDMA frequency pairs (inbound/outbound), using a repeater for each of
them. One repeater is designated the control channel, while the others are used
for message traffic. When not engaged in sending or receiving message traffic,
network devices monitor the outbound control channel. When a device has a mess-
age for a particular group, it sends the request on the inbound control channel. The
trunking system identifies an available repeater (channel) and transmits a command
on the outbound control channel for all devices in the requested group to change to
the available channel, where the requesting device transmits and the rest of the group
receives [34]. Since a much larger number of users can be served with the existing
spectrum allocation, this scheme greatly improves the economics of LMR. In the
United States, FDMA trunking has since been expanded into the Associated
Public Safety Communications Officials (APCO) Project 25 Advanced Narrowband
Digital Communications (ANDC) standard [35].

Trunking principles can also be applied to TDMA systems. The TErrestrial
Trunked RAdio (formerly the Trans-European Trunked RAdio) (TETRA) standard
[36] employs TDMA with four slots per frame. The control frame is the last frame in
a series of eighteen consecutive frames, called a TETRA “multiframe.” Operation is
analogous to FDMA trunked systems; mobile devices monitor the (outbound) con-
trol frame transmitted by the base station, and are assigned communication
resources, in the form of identified slots in identified frames, to communicate.
TETRA is designed to transmit both voice and data as separate services; the use
of TDMA engenders great flexibility in channel access for this purpose, since
voice services can be assigned frequent, repetitive slots, while data transfers can
be assigned larger blocks of time and interrupted for the more latency-critical
voice transmissions.

8.2.3 Contention-Access Protocols

As we have seen, demand-assignment protocols can improve the channel efficiency
of fixed-assignment protocols. However, most demand-assignment schemes require
the existence of an entity from which to demand an assignment, that is, a network
controller. In many networks, for example, wireless sensor networks, such a control-
ler does not exist. Multihop ad hoc networks, in which the network architecture (and
even the order of the network) is not known a priori, are another difficult application
for both fixed and demand assignment protocols. To make matters worse, many
types of multihop ad hoc networks generate traffic patterns that have a low average
message rate, but a high peak rate—as noted earlier, a difficult type of traffic pattern
for a channel access protocol to support.

The solution to this dilemma is the third class of assignment protocols, contention
(random)-access protocols. In these protocols, devices contend (compete) among
each other for channel access; devices that lose access to the channel merely try
again later. Since frame collisions are not prohibited by contention-access protocols,
a method for detecting collisions (or at least determining a posteriori that they must
have occurred) and recovering from them must be included in the protocol.

254 THE WIRELESS SENSOR NETWORK MAC

8.2.3.1 ALOHA The ALOHA channel-access protocol [37] is generally con-
sidered the first channel-access protocol for wireless digital communications to
employ random access. The ALOHA communication system was part of a wireless
time-sharing system used to connect a mainframe computer near Honolulu with
remote users on other Hawaiian islands. The network therefore had a star topology;
it was assigned two radio channels, one for inbound traffic and one for outbound traf-
fic. All traffic was in the form of fixed-length frames, each 704 bits long (including
identification, control, payload, and parity bits). Since there was only one source of
outbound traffic, the mainframe computer, there was no medium-access control
issue on that channel. In the other direction, however, a method was needed to
assign the single inbound channel among the multiple remote users. This was a
nontrivial problem, especially since there was no guarantee that the remote users
could hear each other.

The ALOHA channel-access scheme that was developed to address this issue is
elegant in its simplicity, and operates as follows: Remote devices simply transmit
each frame as soon as it is generated, on the inbound channel. The transmissions
are completely asynchronous and independent of those that may (or may not) be
transmitted by other remote devices. If and only if a frame is received without
error at the mainframe, an acknowledgment frame is sent to the remote device via
the outbound channel. If a remote device does not receive the acknowledgment
frame within a time-out period, it waits a random length of time and then retransmits
the entire frame.

Assuming that message generation follows Poisson statistics, it can be shown that
the ALOHA system becomes unstable (i.e., the number of retransmissions
grows without bound) when the fraction of time the channel is utilized exceeds
1/(2e) ~ 0.184. This relatively low value is the major drawback to ALOHA channel
access, and modifying ALOHA to increase its channel utilization (and therefore
channel capacity) has been of much research interest. One of the first approaches
taken was to realize that a single transmitted frame could collide with two
frames—one starting before it and one starting after it had started—and that the
frame collision rate could be halved, and therefore the channel capacity doubled,
by quantizing time into slots, then synchronizing the remote users so that frame
transmission could only start at the beginning of each slot. Frames would not be
transmitted as soon as they were generated, as in ALOHA, but would be held in
queue until the beginning of the next slot. This became known as “slotted
ALOHA” [38], and has a capacity of 1/e ~ 0.368 (see Fig. 8.6).

Slotted or nonslotted, the ALOHA protocol is quite simple, and is often used as
part of more complex medium-access methods (e.g., PRMA, described in Section
8.2.2.2). One advantage is in asymmetrically powered star networks, in which the
controller is mains powered but the remote devices have limited power resources,
and in which communication is initiated solely by the remote devices. In these appli-
cations, using ALOHA, the initiating device(s) may stay asleep until a message is
generated, then wake up, transmit the message, receive the acknowledgment, and
return to sleep. The responding device must keep its receiver constantly active,
but the initiating device may have an extremely low duty cycle, since it need only

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 255

(a)
| Frame 1 | | Frame 2
| Frame 3 |
(b)
| Frame 1 Frame 2
Frame 3

Figure 8.6 (a) Nonslotted ALOHA: Frame 3 collides with frames 1 and 2. All three are lost.
(b) Slotted ALOHA: Frame 3 collides only with frame 2. Frame 1 survives.

be active for transmission and reception of a single packet. An application fitting this
description is that of wireless light switches, in which the lamp itself is mains pow-
ered and the switches are battery powered (or powered by the toggling of the switch
itself [39]). The power consumption of a receiver is trivial compared to that of the
lamp itself, so it remains on at all times; however, the battery-powered switches
benefit from the low duty cycle of the ALOHA protocol.

8.2.3.2 CSMA Carrier sense multiple-access (CSMA) algorithms attempt to
improve upon the relatively poor channel capacity of ALOHA, by requiring that a
device attempting to transmit first sense (monitor) the channel for any ongoing
activity prior to transmission [40]. There are many variations of CSMA, and they
have become popular for wireless personal area networks (WPANS5), largely because
of their distributed nature (no controller is needed), a requirement for ad hoc
networks, and for their overall adequate performance.

The fundamental principle of CSMA—that one should check to see that the chan-
nel is idle prior to transmission—is an old idea, and probably an anthropomorphic
one. A natural part of human conversation is to pause before speaking, to ensure
that the recipient is not already engaged. Early manual radiotelegraphic networks
operated in a similar fashion, even going so far as to employ what is now called
the request-to-send/clear-to-send (RTS/CTS) protocol, to minimize the effect of
simultaneous transmissions [41—43]. Its use in packet data networks, however, is
relatively recent; Kleinrock and Tobagi [ref. 40, p. 1401 fn] give credit to
D. Wax of the University of Hawaii, in an internal memorandum dated March 4,
1971. In a manner analogous to the ALOHA protocols, time in CSMA protocols
may be considered to be continuous (unslotted CSMA) or broken into discrete inter-
vals (slotted CSMA).

CSMA protocols can be further divided into two types, the nonpersistent CSMA
protocol and a number of persistent CSMA protocols. In nonpersistent CSMA, a
network device with a message to transmit operates as follows:

« The device senses the channel.
- If the channel is idle, the message is transmitted immediately.

256 THE WIRELESS SENSOR NETWORK MAC

. If the channel is busy, the device waits a random period of time (the “backoff
period”), senses the channel again, and repeats the process.

The protocol attempts to ensure that frame collisions do not occur by sensing the
channel, then waiting until sometime later if the channel is busy. Nonpersistent
CSMA is simple, and is used in several popular network standards, including the
IEEE 802.15.4 low-rate wireless personal area network (LR-WPAN) standard
[44]. However, in applications that value message throughput it is less than optimal,
because it is possible that the channel may become idle during the backoff time,
when the device is not monitoring the channel. Waiting until the backoff period
expires before attempting retransmission is therefore a waste of the channel
resource.

As a first attempt to overcome this weakness, one can consider a modification, the
so-called I-persistent protocol. 1-Persistent CSMA operates as follows:

. The device senses the channel.
- If the channel is idle, the message is transmitted immediately.

- If the channel is busy, the device continues to sense the channel (it is persist-
ent). When the channel becomes idle, the device immediately transmits (with
probability one, hence the name I-persistent).

The goal of 1-persistent CSMA is to make maximum use of the channel, by avoiding
the “dead air” during the backoff period of nonpersistent CSMA. However, consider
the situation of two network devices generating a message at the same time, and
finding the channel busy. Under I-persistent CSMA the two devices will wait
until the channel is idle, then both transmit simultaneously—with disastrous results!

One method to avoid this undesired behavior, while still improving channel effi-
ciency over nonpersistent CSMA, is, upon sensing an idle channel, to transmit the
message with some probability p, where p << 1. This variant, p-persistent CSMA,
operates as follows:

. The device senses the channel.

- If the channel is idle, the message is transmitted with probability p. With prob-
ability (1 — p), the device waits a fixed time (a single slot in slotted CSMA, a
predetermined time in unslotted CSMA). At the end of this new time, the device
senses the channel again, and repeats the process.

. If the channel is busy, the device continues to sense the channel. When the
channel becomes idle, the device proceeds as just outlined.

The optimal value of p for maximum throughput depends on the offered traffic rate
(and the propagation delay, usually neglected in wireless sensor networks); for a
detailed analysis, the interested reader is referred to Kleinrock and Tobagi [40].

A drawback to all CSMA protocols is the so-called hidden and exposed terminal
problems. Consider the linear network of Figure 8.7. Devices A and C are each

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 257

NN

NS

Figure 8.7 The hidden- and exposed-terminal problems. The circles indicate the communi-
cation range of each device.

within range of device B, but they are not in range of each other. Suppose device C
generates a message for device B while device A is transmitting to device B. Using
CSMA, device C will sense the channel, but find it idle—even though device A is
transmitting, it is out of range of device C. Device C will then begin to transmit (per-
haps after a few backoff periods if employing p-persistent CSMA), causing a frame
collision at device B. Device A is a “hidden terminal” to device C; it is in range of a
device that device C desires to contact, but is out of range of device C itself. The
hidden-terminal problem leads to a reduction in network throughput.

Now consider a second scenario. Device B transmits a frame to device A. Device
C generates a message for device D. Device C will sense the channel, but find it
occupied by device B. Since it finds the channel busy, device C will delay trans-
mission, even though, were it to transmit, it would not cause interference at either
device B (because it is transmitting) or device D (because it is out of range of
device B). This is the “exposed terminal” problem for CSMA,; it, too, leads to a
reduction in network throughput, since it prohibits transmission by devices that
would otherwise be able to safely do so. Much of the research into CSMA protocols
has been directed at ways to eliminate or reduce the severity of the hidden- and
exposed-terminal problems [45].

The first solution proposed for the hidden-terminal problem was the use of busy
tones [46]. This solution rests on the realization that the hidden-terminal problem,
and frame collisions in general, occur at the receiving device, while the CSMA
algorithm is being performed at the transmitting device. The busy-tone solution
requires each network device receiving a frame to simultaneously transmit a
“busy tone” on another signaling channel, indicating that its receiver is busy.
Devices desiring to transmit are required to check for the presence of busy tones
prior to transmission. If present, they delay transmission, since the channel (at the
receiving device, where it matters) is busy.

An implementation difficulty with the use of busy tones is the need for simul-
taneous transmission and reception (duplex operation). While busy tones have
been proposed as part of other medium-access protocols for wireless sensor
networks (e.g., power aware multiaccess protocol with signaling (PAMAS), in
Section 8.3.2; see also Haas, Deng, and Tabrizi [47]), duplex operation greatly
increases the complexity, cost, and power consumption of the network devices,
and so alternative solutions are frequently desired.

258 THE WIRELESS SENSOR NETWORK MAC

(a)
Alice Bob

(Alice realizes she has
something to say.) —» “Hey, Bob?”

“Yes, Alice?”

(Communication begins)

(b)
(Alice realizes she has
something to say.)—» “Hey, Bob?”
(Time-out expires, . . (Bob is
retry starts.) —] Hey, Bob? busy.)
(Time-out expires, . . (Bob is still
retry starts.)] Hey, Bob? busy.)
(Still no reply;
Alice gives up.)

Figure 8.8 Anthropomorphic view of CSMA/CA. (a) Successful. (b) Unsuccessful.

One way to attack these problems is to continue the anthropomorphic analogy a
step further (see Figure 8.8), by recognizing that something common in the initial
stages of a human conversation is a request to speak (“Hey, Bob?”), followed by a
grant of permission to speak (“Yes, Alice?”). This short exchange warns Bob that
Alice is attempting to speak, and ensures Alice that Bob is ready to receive her
statement. In particular, it confirms to Alice that Bob is not listening to someone
else speak—perhaps someone that Alice cannot hear. Should Bob not reply to
Alice, after a moment’s delay Alice may retry, repeating until the affirmative
reply is received or Alice gives up. Should Alice hear either a request to speak
from someone else, Carol (“Hey, Bob?”), or a grant of permission to speak from
Bob to someone else (“Yes, Carol?”), prior to her own request to speak, Alice
will wait a moment for that conversation to complete before speaking (see
Figure 8.9).

An analogous procedure can be performed on wireless data networks; this pro-
cedure is called carrier sense multiple-access with collision avoidance (CSMA/
CA). In CSMA/CA, after sensing that the channel is idle, the initiating device
first sends a short RTS frame to the responding device. If the responding device
is, in fact, idle, it returns a CTS frame to the initiating device, indicating that it
can begin transmission of its queued data frame. If the initiating device does not
receive a CTS frame after a predetermined period of time, it waits a further
random time (to avoid collisions with a potential competing device on the channel
in the same state), then retransmits the RTS frame.

8.2 COMMON MEDIUM-ACCESS CONTROL METHODS 259

Alice Bob Carol
(Alice realizes she has
something to say.) —» “Hey, Bob?”
(Alice overhears Carol’s
request, and defers her own.)
(Time-out expires. Alice does not “Hey, Bob?”
hear anything further, so she
sends her own request.)
“Yes, Alice?”
(Communication
begins)
(a)
(Alice realizes she has
something to say.) —» “Yes, Carol?”
(Alice overhears Bob’s reply to
Carol, and defers her own request.)f
(Time-out expires. Alice does not » o
hear anything further, so she Hey, Bob?
sends her own request.)
“Yes, Alice?”
(Communication
begins)
(b)

Figure 8.9 Request to speak and permission to speak. (a) Inhibition upon receipt of a request
to speak. (b) Inhibition upon receipt of permission to speak.

When network devices overhear RTS and CTS frames transmitted by others, they
are prohibited from transmitting for a period of time—long enough for other frames
to be successfully communicated. (This is the “collision avoidance” part of CSMA /
CA.) It is worth noting, however, that not all collisions are avoided in CSMA /CA.
For example, simultaneous RTS transmissions by two devices, both of which
detected an empty channel, are still possible. The recovery mechanism is the
random backoff they employ after they do not receive the expected CTS frame in
reply. Although never zero, the probability of RTS and other possible types of
frame collisions is made small by making the RTS and CTS frames very short.

Another influential single-channel solution to the hidden-terminal problem of
CSMA was MACA [48]. MACA solves these problems, and avoids the implemen-
tation complexity associated with channel sensing, by not sensing the channel at all.
(The name “MACA” is derived from “CSMA /CA,” by deleting the “CS.”) Rather, it
relies on the effect RTS and CTS frames have on eavesdropping devices.

260 THE WIRELESS SENSOR NETWORK MAC

MACA is based on the insight that, if a data field is placed in RTS and CTS
frames indicating the amount of data that is queued to be transmitted at the initiator,
any device that can hear either the RTS or CTS has sufficient information to avoid
frame collisions. An idle network device using MACA constantly monitors the
channel for RTS or CTS frames. If it receives an RTS frame addressed to itself, it
replies with a CTS frame and communication begins. If, however, it receives an
RTS frame addressed to another network device, it inhibits all potential trans-
missions of its own for the period of time needed for the device sending the RTS
frame to (1) receive a CTS frame, and (2) send its data frame. This time is
known, since the length of the data frame is included in the RTS frame. Similarly,
if it receives a CTS frame, it inhibits all potential transmissions of its own, for the
period of time needed for the device sending the CTS frame to receive its data
frame. This behavior is shown in Figure 8.10.

Alice Bob Carol

(Alice eavesdrops on an RTS RTS
sent by Bob to Carol; Alice [¢ >
inhibits her transmitter and
starts time-out timer.)

(Alice cannot hear Carol’s

CTS, sent to Bob.) < CTS

Data

(Alice’s time-out timer expires;
transmissions now possible.)

(2)

(Alice cannot hear Carol’s
RTS, sent to Bob.) RTS

(Alice eavesdrops ona CTS TS

sent by Bob to Carol; Alice |q---------- >

inhibits her transmitter and
starts time-out timer.) Data

(Alice’s time-out timer expires;
transmissions now possible.)

()

Figure 8.10 MACA operation. (a) Overheard RTS. (b) Overheard CTS. Carol is a hidden
device to Alice.

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 261

MACA was very influential, and led to many variants, including MACAW [49],
floor-acquisition multiple-access (FAMA) [45], and the medium-access control
methods used by WLAN standards, such as IEEE 802.11 [50]. Most variants
attempted to address identified weaknesses in MACA, such as the still-nonzero
probability of frame collisions [51] and its backoff algorithm. MACA proposed
the use of a simple binary exponential backoff, in which the backoff time is doubled
after every collision and returned to the minimal value after a successful RTS/CTS
exchange. This algorithm was shown [49] to be unfair, in that over time one network
device would “win” the channel and have a low backoff value (with frequent
channel access), while all remaining network devices would have very large backoff
values and be effectively frozen out of the network. MACA’s backoff problem has
been addressed in a number of ways; MACAW, for example, shares backoff values
between network devices.

One issue with CSMA schemes when applied in wireless sensor networks is the
active time of the receiver [52]. All persistent CSMA schemes require the receiver to
be active for relatively long periods to sense the channel, spending a considerable
amount of energy while receiving nothing but noise. This produces an average
power-consumption floor for the network device, even if it does not transmit or
receive a single frame. Wireless sensor networks are particularly sensitive to this,
since not only is power consumption a primary performance metric but data
throughput is typically low, making the CSMA channel monitoring all the more inef-
ficient. The IEEE 802.15.4 LR-WPAN standard, which employs a CSMA algorithm
for channel access, attempts a compromise for beaconing networks by offering an
optional battery-life extension (BLE) mode. In BLE mode, the number of slots fol-
lowing each beacon available for slotted CSMA channel-access is greatly restricted.
This improves device battery life, since devices can return to sleep quickly, but also
greatly limits channel capacity.

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS
SENSOR NETWORKS

This section reviews a number of MACs proposed for wireless sensor networks. This
collection is by no means exhaustive, and is meant only to convey to the reader the
wide variety of designs possible, and how the assumptions and priorities of the
designers affected their final designs.

8.3.1 Self-Organizing Medium-Access Control for Sensor Networks
and Eavesdrop-and-Register Protocols

Katayoun Sohrabi et al. proposed the self-organizing medium-access control for
sensor networks (SMACS) and eavesdrop-and-register (EAR) protocols in 1999
[23,53]. SMACS is a distributed protocol that incorporates features of FDMA,
TDMA, and CDMA. It is an excellent example of a wireless sensor network MAC
that trades something usually dear in data networks, bandwidth, for increased

262 THE WIRELESS SENSOR NETWORK MAC

energy efficiency. EAR expands the utility of the wireless sensor network by enabling
quasi-stationary network devices to support roaming devices. EAR allows roaming
devices to connect to the network without the large energy cost usually associated
with the tracking of mobile devices.

As shown in Figure 8.11, devices under SMACS begin their operation by monitor-
ing a previously determined common frequency X for a random period of time. At the
end of its random monitoring period, a device transmits a Type 1 message to establish a
communication link if it has not heard any Type 1 messages from other network
devices. In Figure 8.11, this occurs with device B. A Type 1 message is an invitation
for other devices in range to establish a joint communication link. Devices A and C
receive the Type 1 message and, after waiting for a random backoff period, each replies
with a Type 2 message. Device B receives both messages (assuming they did not
collide), and selects one with which to form a communication link. It may make
this selection on received signal strength, order in which the messages were received,
or upon some information included in the Type 2 messages, such as the number of
attached devices. Device B then sends a Type 3 message at the conclusion of its receiv-
ing period, to notify all devices in range of its decision. In this example, device C was
selected; device A, which was not selected, then turns off its receiver for a random
period of time before restarting the procedure with another receiving period.

Device A Device B Device C
=Rx
Type 1 Type 1 R =Tx
Type 2 ‘. = Sleep
Type 2
. Type 3 Type 3 R
I_ J Type 4

A

Frequency X

Frequency Y

Test

A 4

Test

A

Figure 8.11 SMACS operation.

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 263

In addition to the identity of the selected device, the Type 3 message also includes
timing information. SMACS and EAR employ a superframe of length T%.,,,.; how-
ever, unlike conventional TDMA, the superframes are not synchronous between
devices. Rather, the phase of their superframes are independent (i.e., the superframe
of each device begins at an independent time). To establish the communication link,
device B sends device C in its Type 3 message its schedule of existing links in its
superframe, plus the time until the start of its next superframe. Device C receives
the Type 3 message, and compares the link schedule of device B with its own
device schedule, taking into consideration the differing times at which their super-
frames start. It then identifies two (ideally sequential) time slots that are available to
both devices. It transmits the location of these time slots, together with a proposed
frequency for the new communication link (frequency Y), in a final Type 4 message.
Device B receives the Type 4 message and, at the appropriate time, moves to
frequency Y and exchanges a pair of test messages with device C to ensure that
the wireless link on that frequency is in fact open.

Devices B and C now have a communication link established with each other. This
link establishment process can be repeated a number of times, creating a dense net-
work among many devices. After the network is formed, as part of network mainten-
ance the devices periodically transmit a broadcast invitation (BI) message (a beacon)
to announce their presence to other network devices, encouraging them to form con-
nections. These invitation messages need not be sent every 75, , but may be sent on
some multiple of Ty, to trade off connection formation latency with energy effi-
ciency. Following the BI messages there is a small period (collection of slots)
during which the device monitors the frequency for the replies of any invitees.

Since coordination is not performed with all devices within range of devices B
and C to establish a noninterfering pair of time slots for this communication link,
if the SMACS procedure were performed in an ad hoc TDMA network on a
single frequency, frame collisions with neighboring devices would be unavoidable.
By employing multiple frequencies for its communication links, SMACS employs a
distributed form of dynamic FDMA to avoid these otherwise inevitable frame
collisions.

Sohrabi et al. [53] note that SMACS can be generalized to define the communi-
cation links to be specific frequency-hopping patterns, rather than fixed frequencies.
This extension moves SMACS from a TDMA /FDMA hybrid to a TDMA/CDMA
hybrid, and offers the advantage of protection against channel degradations, such as
multipath flat fading and the presence of fixed interfering signals, at the cost of
increased complexity. Since SMACS already requires a frequency-agile transceiver,
the additional complexity is due largely to the increased complexity of the protocol,
which must identify, select, and synchronize the orthogonal hopping patterns.

EAR extends SMACS for use with mobile devices. The assumptions made by the
EAR protocol are that there are only a few mobile devices in a randomly distributed,
much larger collection of stationary devices, and that, as before, energy consump-
tion, rather than connectivity, is of primary importance.

A mobile device begins the EAR algorithm by searching (monitoring) for BI
messages sent by stationary devices. It may receive several; if so, it selects one

264 THE WIRELESS SENSOR NETWORK MAC

based on its signal quality, identification, or other features. It then replies to the
selected BI message with a mobile invite (MI) message, requesting a connection
to the selected stationary device. If it elects to do so, the stationary device then
accepts the MI request by the transmission of a mobile response (MR) message
that includes the suggested slots for communication. Later, as the signal quality
of the connected stationary device falls below an acceptable threshold, a mobile dis-
connect (MD) message is sent by the mobile device to the stationary device, inform-
ing of the disconnection.

No acknowledgments are sent in the EAR algorithm, and the stationary
devices need send only one specialized message (the MR message). Instead of
acknowledgments, time-outs are used to reduce state misunderstandings between
devices. This simplifies the protocol and speeds connection establishment.

Since it establishes reserved, periodic communication links among neighboring
devices, SMACS is a good choice for wireless sensor networks supporting multime-
dia sensor applications like real-time video security systems. Message latency in its
TDMA-like structure should have much less variance than if, say, a CSMA channel-
access mechanism were employed, with its random backoff periods prior to trans-
missions; this meets a critical need of most multimedia applications. A weakness
of SMACS is the relatively high duty cycle imposed by its TDMA-like structure.
Since separate slots are reserved for communication with each device in range,
the duty cycle degrades as the network density (or communication range of the
device) increases. While CSMA protocols, by comparison, monitor the channel
for messages from all neighboring devices at once, performing a parallel operation,
SMACS reserves separate receive slots for each device individually, performing the
function in series. This increases energy expenditure accordingly in a network that is
lightly loaded. In addition, energy is expended during each transceiver warm-up
period prior to each communication slot; energy consumed during warm-up can
have a significant effect on overall energy efficiency [54,55].

8.3.2 PAMAS

As previously noted, power consumption of wireless sensor network devices is of
critical importance, and energy should be conserved whenever possible. As it hap-
pens, the power consumption of the receivers typically used in such networks often
approaches or even exceeds the power consumption of the transmitters (due to their
low output power), and if receivers are operated indiscriminately their energy use
can represent a significant fraction of the total energy used by network devices. It
is therefore productive to evaluate techniques to minimize the use of receivers.
Consider the network of four devices shown in Figure 8.12. In this network,
device B is transmitting a frame to device A. However, device C is also within
range of device B, and it overhears device B’s transmission. The key insight is
that reception of device B’s transmission to device A represents a waste of energy
by device C: Device B’s transmission is not for it, and it cannot receive any other
transmissions (for example, from device D) during device B’s transmission, since
the channel is occupied. To save energy, device C should then turn off its receiver

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 265

B’s transmission

. to A is overheard
B transmits to A. by C.

/‘\/\
o o o o

A B C D

Figure 8.12 Unnecessary reception in an ad hoc network.

and go to sleep for the duration of device B’s transmission. When one considers that
many wireless sensor networks are quite dense, with many receiving devices within
range of a single transmitting device, it becomes apparent that, networkwide, signifi-
cant energy can be saved.

This receiver power-off technique was applied in an early MAC protocol for
multihop ad hoc networks called PAMAS [51]. PAMAS is derived from the
MACA CSMA protocol (see Section 8.2.3.2), with several interesting modifications.
Principal among these is the use of a separate signaling channel: The RTS and CTS
messages in PAMAS are transmitted on the signaling channel, rather than on the
data channel, as done in MACA. To prevent collisions of RTS and CTS messages
sent by hidden devices (rare but possible in MACA), PAMAS includes the use of
receiver busy tones, also sent on the signaling channel. If a network device is receiv-
ing a message on the data channel, and receives an RTS message on the signaling
channel, it responds with a busy tone on the signaling channel, with a length
twice that of a CTS message. Should the neighboring target device of the RTS
send a CTS message, it would collide with the busy tone and appear to the requestor
as noise. The requesting device then performs the MACA binary exponential back-
off and retries the RTS at a later time.

The receiver power-off feature of PAMAS is employed in a network device when
either of the following two conditions exists:

1. The transmit message queue (messages generated but not yet sent) is empty
and a neighbor begins transmitting on the data channel.

2. The transmit message queue is not empty, but at least one neighbor is trans-
mitting a data message (detected by monitoring the data channel) and one
is receiving (detected by monitoring the signaling channel for the busy tone
sent at the start of each received frame). In this case, the device goes to
sleep because it is unable to transmit or receive a message.

An interesting feature of PAMAS’s receiver power-off scheme is that, unlike
many other energy-saving MAC techniques, message latency is not affected. To
see why, suppose device C in Figure 8.12 generates a message for device B while
device A is transmitting to device B. Device C is assumed to be out of the range
of device A; it is a “hidden device” (see Section 8.2.3.2) to device A. Since
device C detects the receive busy tone sent by device B, it goes to sleep; however,

266 THE WIRELESS SENSOR NETWORK MAC

it would be unable to transmit to device B in any case, since device B is already
occupied. Conversely, suppose device C again has a message for device B, but
this time device B is transmitting to device A. Again, device C goes to sleep; also
again, it would be unable to transmit its message anyway, since device B is occu-
pied. Hence, sleeping does not affect the latency of the message.

The fundamental difficulty with PAMAS is one of implementation: The require-
ment for a second (control) channel, in addition to the data channel, adds signifi-
cantly to the cost of the network device, since a second wireless transceiver, plus
duplexer, is required.

8.3.3 Sensor-MAC

Sensor-MAC (S-MAC—not to be confused with SMAC, discussed in Section 8.3.1),
was designed to address the following sources of energy waste in wireless sensor
networks [56,57]:

. Frame Collisions When frames collide, they must be retransmitted, at
additional energy cost.

. Overhearing When a network device receives a frame destined for another
device, it is a waste of energy, since it could have been sleeping instead.
This was an insight gleaned from PAMAS (Section 8.3.2).

-« Control Frame Overhead Since they require an expenditure of energy, but do
not directly result in the communication of information, the transmission and
reception of control packets represents a waste of energy.

Idle Listening (fruitless channel monitoring) Monitoring the channel for the
possible reception of messages that are not, in fact, sent represents another type
of wasted energy. As noted in Section 8.2.3.2, this type of wasted energy is
especially problematic in wireless sensor networks employing CSMA proto-
cols, since their devices monitor the channel during their CSMA contention-
based channel-access periods, yet network data throughput on such networks
is low.

S-MAC trades some message fairness and latency for reduced power consump-
tion by network devices. It assumes that the wireless sensor network is composed
of a large number of devices, that it employs multihop routing, and that message des-
tinations will be uniformly distributed throughout the network (i.e., there is no single
gateway device acting as a data sink). It also assumes that, as discussed in Section
8.1.3.2, message-level fairness can be sacrificed as long as application-level fairness
is maintained, and that message latency on the order of a few seconds is tolerable.

To reduce energy consumption, S-MAC limits device reception and transmission
to periodic active periods, interspersed by sleep periods. A complete active-sleep
cycle is called a frame, not to be confused with a data frame (i.e., data packet) as
defined in other services. (To avoid confusion, in the rest of this section a data
“frame” will be termed a “packet.”) Frames are synchronized with neighboring

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 267

devices by periodically broadcasting SYNC packets, which are very short, and
contain the address of the sender and the relative time at which it will return to
sleep. From these values, recipient devices can construct a table of their neighbors’
schedules, so that future synchronization to exchange messages is possible. As the
multihop network forms, differing clusters of devices may synchronize differently;
devices bordering several asynchronous clusters may elect to either synchronize to
all neighboring clusters (waking up in all of their active periods and thereby
suffering an energy expenditure penalty) or select and follow one cluster, recalling
the timing of the other(s) should that connectivity be needed.

As shown in Figure 8.13(a), unless transmissions are needed, the active portion is
spent constantly receiving. The active period is divided into two parts, one for
SYNC packets and one for data packets; the entire active period is also divided
into a large number of time slots. Slotted CSMA with RTS/CTS is used to access
the channel; each of the synchronization and data portions of the active period there-
fore can be considered to be a separate contention access period.

< Frame

Active period Sleep
(listening)

SYNC Data
«— period —»e——— period —»

———

Txx

Carrier
sense

Listen for Listen for Listen for
SYNC RTS CTS
@
' P2
; (@
E SYNC

(Sleep)
«
' P2
| (b)
: RTS CTS
; Tx ,X Rx x
E Carrier :
; sense : (Send data)
H H «
P2
(c)

Figure 8.13 S-MAC frame. (a) Reception. (b) Transmission of a SYNC packet. (c¢) Trans-
mission of a data packet.

268 THE WIRELESS SENSOR NETWORK MAC

When a device has no pending message traffic, it monitors the SYNC period for
possible SYNC transmissions from its neighbors, and then monitors the RTS portion
of the data period for possible message traffic for it. Following the RTS portion, it
then listens to the CTS portion—even though it has not transmitted an RTS of its
own—for reasons to be explained shortly. When a device is to transmit a SYNC
packet, Figure 8.13(b), it senses the channel for a random period of time during
the SYNC portion of the active period. After this time, if nothing is heard, it trans-
mits the SYNC packet. When a device is to transmit a data packet, Figure 8.13(c), it
senses the channel for a random period of time during the RTS portion of the data
period. After this time, if nothing is heard, it transmits its RTS packet, and then
awaits the CTS reply packet in the corresponding portion of the data period. The
data packet itself is transmitted at the beginning of what would otherwise be the
sleep period. This is deemed acceptable, since data packets are assumed to be rela-
tively rare events in a wireless sensor network and so do not significantly affect over-
all energy consumption.

S-MAC incorporates an intriguing technique to limit message latency while
achieving significant energy efficiency, called adaptive listening. Adaptive listening
is based on the observation that overhearing a neighbor’s transmissions can give a
device early warning that a message may be arriving shortly. Adaptive listening
requires a device that overhears a neighbor’s transmission of an RTS or CTS
packet to wake up for a short period of time at the end of the transmitted data
packet (the packet length is included in RTS and CTS frames). If the listening
device is in fact the next hop for the data packet, it may receive it from its neighbor
immediately, rather than at the next scheduled active time. (The use of active listen-
ing is why all devices monitor the CTS period even if they have not sent RTS pack-
ets.) If it is not the next hop for the data packet, it merely goes to sleep and returns to
its regularly scheduled operation. Adaptive listening enables two communication
links to be traversed per frame, rather than just one.

A final feature of S-MAC is the use of message passing. Consider the trans-
mission of a relatively large amount of data. They could be transmitted in a
single packet but, since wireless links have a nonzero bit error rate, it is likely
that a small number of bit errors would occur in such a long packet. The packet
likely would have to be retransmitted, at considerable energy cost, and perhaps
more than once. On the other hand, the data could be fragmented into many smaller,
independent packets, and sent via conventional CSMA. One then incurs a significant
control overhead, as many RTS/CTS pairs would be sent—one per packet—even
though it is not desirable to lose the channel to other devices before the data trans-
mission is complete and the transmission of so many control packets is a waste of
energy.

Message passing is the transmission of a series of small, related packets, each
fully acknowledged after their transmission, with only one RTS/CTS exchange at
the beginning of the sequence. (In S-MAC, the packet length field in the RTS and
CTS packets is modified in message passing to indicate the length of the trans-
mission of the entire series of packets, including acknowledgment times.) Message
passing can occupy a channel, “freezing out” devices with single packets to send,

8.3 SOME MAC METHODS PROPOSED FOR WIRELESS SENSOR NETWORKS 269

and is therefore inherently unfair at the communication link level; however, as dis-
cussed in Section 8.1.3.2, in wireless sensor networks it is often more important to
prioritize operation of the network as a whole, rather than individual messages.

S-MAC is a very promising MAC for wireless sensor networks. An area for
future evaluation is its performance in dense networks, where asynchronous
frames from neighboring device clusters may interfere with data transmissions. It
would also be interesting to investigate its performance in networks employing a
gateway device, where the assumption of evenly distributed message destinations
does not apply.

8.3.4 The IEEE 802.15.4/ZigBee™ MAC

The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 low-rate wire-
less personal area network (LR-WPAN) standard [44,58] is the first open standard
designed for wireless sensor networks. Promoted by the ZigBee™ Alliance [59],
an industry consortium, it is a flexible standard suitable for many network topologies
and wireless sensor applications, and includes many features designed to enable low
power consumption and low-cost implementation.

The IEEE 802.15.4 MAC supports both beaconing and nonbeaconing modes. The
nonbeaconing mode is especially useful for star networks in which there is one cen-
tral device that may be mains powered, with essentially unlimited power resources
available, surrounded by other network devices that may be battery-powered, with
more austere power budgets. The pedagogical example is that of a wireless light
switch controlling a lamp. The lamp, attached to the mains, can monitor the channel
constantly, while the switch remains idle unless it is toggled, when it transmits this
information to the lamp. Since it is rarely active, the switch may have an almost
unlimited battery life. The nonbeaconing mode also supports multihop networks,
in which a collection of always-active relaying devices transport messages perhaps
generated by another collection of very-low-duty cycle devices.

In the nonbeaconing mode, IEEE 802.15.4 specifies the use of unslotted, nonper-
sistent CSMA. Due to the small size of IEEE 802.15.4 frames (the maximum size,
including physical-layer preamble, is 133 bytes), an RTS/CTS exchange is not used.
To avoid the state of perpetual backoff, in which the CSMA backoff exponent grows
without bound, the number of backoffs that can be performed is limited. When the
maximum value is reached, a channel-access failure report is generated by the MAC
and sent to an upper layer of the communication stack.

The IEEE 802.15.4 standard also supports an optional superframe structure,
incorporating beacons. As shown in Figure 8.14, two exponent parameters, the super-
frame order (SO) and beacon order (BO), with SO < BO, define the superframe. The
length of the active portion of a superframe is 15.36 ms x 2°°, while the time
between beacon starts is 15.36 ms x 2%°. (Numerical timing values given in this
section are for the 2.4-GHz band physical layer. There is another physical layer
specified for operation below 1 GHz for which the logical operation is the same,
but the numerical timing values are different.) When SO < BO, an inactive period
exists prior to the next beacon, and may be used to sleep. The maximum value of

270 THE WIRELESS SENSOR NETWORK MAC

B T
v/ eacon Tx CFP

CAP GTS |GTS Inactive

*——— 15.36 ms x 250 ———»|

< 15.36 ms x 25° g

Figure 8.14 The IEEE 802.15.4 superframe. Time values shown are for the 2.4-GHz phys-
ical layer. Abbreviations: CAP = contention access period. CFP = contention-free period.
GTS = guaranteed time slot.

SO and BO in beacon mode is 14, defining a beacon period of 251.65824 seconds, or
more than 4 minutes. Application and network designers can use these parameters to
trade off message latency, channel capacity, and battery life.

A beacon is transmitted at the start of a superframe. Following the beacon, the
rest of the active portion is a CSMA contention-access period (CAP). In star net-
works, however, a portion of the CAP can be reserved for specific devices, to guar-
antee them access to the channel. These reservations are called guaranteed time slots
(GTSs), and a maximum of seven of them, of varying length, can be used to avoid
the message latency jitter associated with the CSMA process. This is useful, for
example, in wireless game controllers and mice. When no GTSs have been allo-
cated, there is no contention-free period (CFP) and the entire active portion of the
superframe (excluding the beacon transmission) is the CAP.

The active portion of the superframe is divided into 16 slots. Each slot is further
divided into three backoff periods. When SO = 0, each slot is 960 ws long and each
backoff period 320 s long.

A device attempting to contact a beaconing device begins by synchronizing with
its beacon. It then performs a slotted, nonpersistent CSMA algorithm, again without
an RTS/CTS exchange, to gain access to the channel. The algorithm uses the back-
off periods as the slotted structure, rather than the superframe slots, to speed the
algorithm. To account for the nonzero receive-to-transmit turnaround time in prac-
tical hardware, the algorithm must find the channel clear during the first 128 s of
two consecutive backoff periods before it declares the channel idle. If only a single
sampling of the channel were performed, it would be possible to sample the channel
during the turnaround time of an exchange between neighboring devices, determine
that the channel was idle, and then produce a frame collision upon transmission.

For some applications, even the minimum length of the CAP (15.36 ms, less the
beacon transmission time) is much longer than required for the low activity of the
network. Keeping the receiver active is, as previously noted, a weakness of
CSMA, and receiver activity should be minimized wherever possible to optimize
energy efficiency. To this end, the IEEE 802.15.4 standard incorporates a BLE
mode. To employ the BLE mode, the beaconing device sets a BLE flag in its

8.4 FUTURE DIRECTIONS 271

beacon. It then limits its monitoring of the CAP to only six backoff periods. If it
hears no activity by the end of this time, it will return to sleep. When listening
devices detect the BLE flag, devices attempting to contact the beaconing device
set the initial value of their CSMA backoff exponent to a value of two or less.
While use of the BLE mode greatly increases the likelihood of frame collisions
due to the much shorter channel-sensing period, for low-activity networks it can
greatly reduce network device duty cycle: Employing BLE, with BO = 14, a
device can have a total duty cycle (inclusive of transmit, receive, and warm-up
periods) of less than 50 parts per million.

In addition to ZigBee, the IEEE 802.15.4 standard has been proposed for use in a
number of networks, including the neuRFon™ netform [60]. Independent perform-
ance evaluations of the standard are becoming available; Lu, Krishnamachari, and
Raghavendra [61], for example, point out the significant trade-offs made between
energy saving and message latency.

8.4 FUTURE DIRECTIONS

MAC development for wireless sensor networks has really just begun. Since there
are a wide variety of network applications (from multimedia distribution to the
transmission of daily weather reports), many different network topologies, and
many performance metrics from which to choose, the wireless sensor network
MAC is of much research interest.

The standard methods of TDMA and CSMA are subject to refurbishment when
old assumptions are reevaluated. For example, the assumption of random traffic pat-
terns is probably not realistic; many types of traffic occur in bursts in so-called
event-driven applications. Recent work [62,63] has shown that existing wireless
sensor network MAC designs can be improved by adapting them to this reality.

The assumption of omnidirectional communication, in which the range of a given
device is the same in all directions, can also be modified, with the use of directional
antennas. By improving spatial reuse, MAC algorithms employing these antennas
can enable improved QoS, specifically throughput and reduced message latency
[64,65]. While these parameters are usually not of primary interest in wireless
sensor network applications, it is interesting to speculate on the performance of a
MAC protocol that combines the use of directional antennas with the use of
power control [66,67]. Such a protocol may be very energy-efficient.

In addition to minimizing energy expenditures while maximizing QoS (however it
is defined for the network in question), there are a few other areas that deserve inves-
tigation. One is the study of how different MACs perform when they are placed in the
same channel, as often happens in unlicensed wireless bands. Is it possible to estab-
lish some global rules for MAC operation that can aid coexistence between services
competing for the same channel? Is it possible to predict, without a special-purpose,
event-driven simulator, the performance of two (or more) coexisting services?

Continuing further, there is the issue of cognitive radio, or radio systems that
dynamically adapt their behavior to their existing electromagnetic environment.

272 THE WIRELESS SENSOR NETWORK MAC

Is it possible to conceive of a wireless sensor network employing cognitive radio
techniques? It would seem that the channel sensing needed for effective cognitive
radio operation would be incompatible with the energy-expenditure requirements
of wireless sensor networks, but perhaps this problem awaits only a sufficiently
clever researcher for a solution.

REFERENCES

1. Anantha Chandrakasan et al. Design considerations for distributed microsensor systems.
In Proceedings of the IEEE Custom Integrated Circuits Conference, pages 279-286,
May 1999.

2. Hubert Zimmermann. OSI reference model—the ISO model of architecture for open
systems interconnection. /EEE Transactions on Communications, COM-28(4):425-432,
April 1980.

3. Ajay Chandra V. Gummalla and John O. Limb. Wireless medium-access control proto-
cols. IEEE Communications Surveys, 3(2):2—15, 2000.

4. C. Siva Ram Murthy and B. S. Manoj. Chapter 6 in Ad Hoc Wireless Networks—
Architectures and Protocols. Prentice Hall, 2004.

5. Dimitri Bertsekas and Robert Gallager. Data Networks, Second Edition. Prentice Hall,
1992.

6. Henry Petroski. To Engineer Is Human: The Role of Failure in Successful Design, pages
35-39. St. Martin’s Press, 1985.

7. Woo Chool Park et al. Trade-off energy and delay between MAC protocols for wireless
sensor networks. In Proceedings of the 6th International Conference on Advanced
Communication Technology, Volume 1, pages 157-160, Phoenix Park, Republic of
Korea, February 2004.

8. Sze-Yao Ni et al. The broadcast storm problem in a mobile ad hoc network. In Proceed-
ings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), pages 151-162, Seattle, Washington, August 1999.

9. Saikat Ray, Jeffrey B. Carruthers, and David Starobinski. RTS/CTS-induced congestion
in ad hoc wireless LANs. In Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC 2003), Volume 3, pages 1516—1521, New Orleans,
Louisiana, March 2003.

10. Moustafa A. Youssef, Arunchandar Vasan, and Raymond E. Miller. Specification and
analysis of the DCF and PCF protocols in the 802.11 standard using systems of commu-
nicating machines. In Proceedings of the 10th IEEE International Conference on
Network Protocols, pages 132—141, Paris, France, 2002.

11. Frazer Bennett et al. Piconet: Embedded mobile networking. IEEE Personal Communi-
cations, 4(5):8—15, October 1997.

12. Chunlong Guo, Lizhi (Charlie) Zhong, and Jan M. Rabaey. Low power distributed MAC
for ad hoc sensor radio networks. In Proceedings of the IEEE Global Telecoms Confer-
ence, Volume 5, pages 2944-2948, 2001.

13. Jan M. Rabaey et al. Picoradios for wireless sensor networks: The next challenge in ultra-

low power design. In IEEE International Solid State Circuits Conference Digest of Tech-
nical Papers, Volume 1, pages 200—202; Volume 2, pages 156157, 444-445, 2002.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

REFERENCES 273

Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra. An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor networks. In
Proceedings of the 18th International Parallel and Distributed Processing Symposium,
pages 224-231, 2004.

Bernard Sklar. A structured overview of digital communications—A tutorial review—
Part 1. IEEE Communications Magazine, 21(7):6—21, October 1983.

King-Tim Ko and Bruce R. Davis. A space-division multiple-access protocol for spot-
beam antenna and satellite-switched communication network. IEEE Journal Selected
Areas in Communications, SAC-1(1):126—132, January 1983.

Soheila V. Bana and Pravin Varaiya. Space division multiple access (SDMA) for robust
ad hoc vehicle communication networks. In Proceedings of the IEEE Intelligent Trans-
portation Systems Conference, pages 962—967, 2001.

Guglielmo Marconi. Improvements in Apparatus for Wireless Telegraphy. British patent
77717. The Patent Office, Newport, South Wales, April 26, 1900.

Tadahiro Sekimoto and John G. Puente. A satellite time-division multiple-access experiment.
IEEE Transactions on Communications Technology, COM-16(4):581-588, August 1968.

Adel A. M. Saleh. Intermodulation analysis of FDMA satellite systems employing
compensated and uncompensated TWTs. IEEE Transactions on Communications,
COM-30(5):1233-1242, May 1982.

GSM Technical Specifications. European Telecommunication Standards Institute
(ETSI), Sophia Antipolis, France. For a tractable entrance to GSM, see also Siegmund
M. Redl, Matthias K. Weber, and Malcolm W. Oliphant, An Introduction to GSM,
Artech House, 1995.

TDMA Third Generation Wireless, Rev B (ANSI/TIA/EIA-136-B-99), Telecommuni-
cations Industry Association, Arlington, Virginia, 1999.

Katayoun Sohrabi et al. A self organizing wireless sensor network. In Proceedings of the
37th Annual Allerton Conference on Communication, Control, and Computing, pages

1201-1210, 1999.

Saurabh Mishra and Asis Nasipuri. An adaptive low power reservation based
MAC protocol for wireless sensor networks. In Proceedings of the IEEE International
Conference on Performance Computing and Communications, pages 731-736, 2004.
Loren P. Clare, Gregory J. Pottie, and Jonathan R. Agre. Self-organizing distributed
sensor networks. In Proceedings of the SPIE Conference on Unattended Ground
Sensor Technologies and Applications, Volume 3713, pages 229-237, 1999.

William C. Y. Lee. Overview of cellular CDMA. [EEE Transactions on Vehicular
Technology, 40(2):291-302, May 1991.

Mobile Station—Base Station Compatibility Standard for Wideband Spread Spectrum
Cellular Systems (ANSI/TIA /EIA-95-B-99), Telecommunications Industry Association,
Arlington, Virginia, 1999. For a good reference for CDMA system design, see also
Jhong Sam Lee and Leonard E. Miller, CDMA Systems Engineering Handbook, Artech
House, 1998.

CDMA 2000® Series, Release A (2000), Telecommunications Industry Association,
Arlington, Virginia, 2000.

André Noll Barreto, Jiirgen Deiner, and Gerhard Fettweis. A frequency hopping algor-
ithm for cordless telephone systems. In Proceedings of the IEEE International Confer-
ence on Universal Personal Communications, Volume 2, pages 1273—1277, 1998.

274

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

THE WIRELESS SENSOR NETWORK MAC

Richard N. Lane. Spectral and economic efficiencies of land mobile radio systems. IEEE
Transactions on Communications, COM-21(11):1177-1187, November 1973.

Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Information
Technology—Telecommunications and Information Exchange between Systems—Local
and Metropolitan Area Networks—Specific requirements—Part 15.1: Wireless Medium
access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal
Area Networks (WPANs), IEEE Std 802.15.1-2002. IEEE Press, 2002.

Jaap C. Haartsen and Sven Mattisson. Bluetooth—A new low-power radio interface pro-
viding short-range connectivity. In Proceedings of the IEEE, 88(10):1651-1661, October
2000.

D. J. Goodman et al. Packet reservation multiple-access for local wireless communi-
cations. IEEE Transactions on Communications, 37(8):885—-890, August 1989.

Arthur Chrapkowski and Gary Grube. Mobile trunked radio system design and simu-
lation. In Proceedings of the IEEE Vehicular Technology Conference, pages 245-250,
1991.

Gregory M. Stone and Karen Bluitt. Advance digital communications system design con-
siderations for law enforcement and internal security purposes. In Proceedings of the
IEEE 29th Annual International Carnahan Conference on Security Technology, pages
402-408, 1995.

European Telecommunication Standards Institute. Terrestrial Trunked Radio (TETRA);
Voice plus Data (V+ D); Part 2: Air Interface (Al), Document ETSI EN 300 392-2
V2.4.2 (2004-02). European Telecommunication Standards Institute, 2004.

N. Abramson. The ALOHA system—Another alternative for computer communications.
In Proceedings of the AFIPS Fall Joint Computer Conference, Volume 37, pages 281—
285, 1970.

Lawrence G. Roberts. ALOHA Packet System With and Without Slots and Capture,
ARPANET Satellite System Note 8 (NIC Document 11290). ARPA Network Information
Center, Stanford Research Institute, Menlo Park, California, June 26, 1972. Reprinted in
Computer Communications Review, 5(2):28—42, April 1978.

Fast wie ein Perpetuum Mobile (Almost like perpetual motion). Markt & Technik,
47:45-47, November 15, 2002. See at http: //www.elektroniknet.de.

Leonard Kleinrock and Fouad A. Tobagi. Packet switching in radio channels: Part I—
Carrier sense multiple-access modes and their throughput-delay characteristics. /[EEE
Transactions on Communications, COM-23(12):1400—-1416, December 1975.

William Walker. How a C.W. traffic net operates. QST, 36(4):48-49, 128, 130, April
1952.

George Hart. Message handling. In The ARRL Operating Manual, Second Edition, Robert
Halprin (ed.), Chapter 4. American Radio Relay League, Newington, Connecticut, 1985.
Edgar H. Callaway, Jr. Wireless Sensor Networks: Architectures and Protocols, page 28.
CRC Press, Boca Raton, Florida, 2004.

Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Information
Technology—Telecommunications and Information Exchange between Systems—Local
and Metropolitan Area Networks—Specific requirements—Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (WPANs), IEEE Std 802.15.4-2003, IEEE Press, 2003.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

REFERENCES 275

Chane L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in
wireless networks. ACM SIGCOMM Computer Communications Review (Proceedings of
the ACM SIGCOMM 97 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications), 27(4):39-49, October 1997.

Fouad A. Tobagi and Leonard Kleinrock. Packet switching in radio channels—Part II:
The hidden terminal problem in carrier sense multiple-access and the busy tone solution.
IEEE Transactions on Communications, COM-23(12):1417-1433, December 1975.
Zygmunt J. Haas, Jing Deng, and Siamak Tabrizi. Collision-free medium access control
scheme for ad-hoc networks. In Proceedings of the IEEE Military Communications
Conference, Volume 1, pages 276—280, 1999.

Phil Karn. MACA—A new channel-access method for packet radio. In Proceedings of
the ARRL/CRRL Amateur Radio 9th Computer Networking Conference, pages 134—
140, 1990.

Vaduvur Bharghavan et al. MACAW. ACM SIGCOMM Computer Communication
Review (Proceedings of the Conference on Communications Architectures, Protocols
and Applications), 24(4):212-225, October 1994.

Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Information
Technology—Telecommunications and Information Exchange Between Systems—Local
and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std
802.11-1999 (ISO/IEC 8802-11: 1999). IEEE Press, 1999.

Suresh Singh and C. S. Raghavendra. PAMAS—Power Aware Multi-Access protocol
with Signalling for ad hoc networks. ACM Sigcomm Computer Communication
Review, 28(3):5-26, July 1998.

Alec Woo and David E. Culler. A transmission control scheme for media access in sensor
networks. In Proceedings of the 7th Annual Conference on Mobile Computing and
Networking, pages 221-235, 2001.

Katayoun Sohrabi et al. Protocols for self-organization of a wireless sensor network.
IEEE Personal Communications, 7(5):16-27, 2000.

Eugene Shih et al. Physical layer driven protocol and algorithm design for energy-
efficient wireless sensor networks. In Proceedings of the 7th Annual ACM/IEEE
International Conference on Mobil Computing and Networking (MobiCom), pages
272-287, Rome, Italy, July 2001.

Andrew Y. Wang et al. Energy efficient modulation and MAC for asymmetric RF micro-
sensor systems. In Proceedings of the IEEE International Symposium on Low Power
Electronics and Design, pages 106—111, Huntington Beach, California, 2001.

Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks. USC/ISI Technical Report ISI-TR-543, September 2001.
Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with coordinated
adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking,
12(3):493-506, June 2004.

Jose A. Gutierrez, Edgar H. Callaway, Jr., and Raymond L. Barrett, Jr. Low-Rate Wireless
Personal Area Networks ... Enabling Wireless Sensors with IEEE 802.15.4™ . IEEE
Press, 2003.

See at http://www.zigbee.org.

276

60.

61.

62.

63.

64.

65.

66.

67.

THE WIRELESS SENSOR NETWORK MAC

L. Hester et al. neuRFon™ Netform: A self-organizing wireless sensor network. In
Proceedings of the 11th International Computer Communication and Networks Confer-
ence, pages 364-369, 2002.

Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra. Performance evaluation
of the IEEE 802.15.4 MAC for low-rate low-power wireless networks. In Proceedings of
the IEEE International Conference on Performance, Computing, and Communications,
pages 701-706, 2004.

Y. C. Tay, Kyle Jamieson, and Hari Balakrishnan. Collision-minimizing CSMA and its
applications to wireless sensor networks. IEEE Journal on Selected Areas in Communi-
cations, 22(6):1048—-1057, August 2004.

Jing Li and Georgios Y. Lazarou. A bit-map-assisted energy-efficient MAC scheme for
wireless sensor networks. In Proceedings of the 3rd International Symposium on Infor-
mation Processing in Sensor Networks (IPSN), pages 55-60, Berkeley, California,
April 2004.

Young-Bae Ko, Vinaychandra Shankarkumar, and Nitin H. Vaidya. Medium access
control protocols using directional antennas in ad hoc networks. In Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), Volume 1, pages 13-21, Tel-Aviv, Israel, March 2000.

Yu Wang and J. J. Garcia-Luna-Aceves. Collision avoidance in single-channel ad hoc
networks using directional antennas. In Proceedings of the 23rd International Conference
on Distributed Computing Systems (ICDCS), pages 640—649, May 2003.

Shu-Lin Wu, Yu-Chee Tseng, and Jang-Ping Sheu. Intelligent medium access for mobile
ad hoc networks with busy tones and power control. In Proceedings of the 8th Inter-
national Conference on Computer Communications and Networks, pages 71-76, 1999.
Maciej Zawodniok and Sarangapani Jagannathan. A distributed power control MAC
protocol for wireless ad hoc networks. In Proceedings of the IEEE Wireless Communi-
cations and Networking Conference (WCNC 2004), Volume 3, pages 1915-1920,
Atlanta, Georgia, March 2004.

I CHAPTER 9

Localization in Sensor Networks

JONATHAN BACHRACH and CHRISTOPHER TAYLOR

Massachusetts Institute of Technology, Cambridge, Massachusetts

Location, Location, Location
— Anonymous

In emerging sensor network applications it is necessary to accurately orient the
nodes with respect to a global coordinate system in order to report data that is geo-
graphically meaningful. Furthermore, basic middle ware services such as routing
often rely on location information (e.g., geographic routing). Application contexts
and potential massive scale make it unrealistic to rely on careful placement or uni-
form arrangement of sensors. Rather than use globally accessible beacons or
expensive GPS to localize each sensor, we would like the sensors to self-organize
a coordinate system. This chapter reviews localization hardware, discusses issues
in localization algorithm design, present the most important localization techniques,
and finally suggests future directions in localization. The goal of this chapter is to
outline the technical foundations of today’s localization techniques and present
the tradeoffs inherent in algorithm design. No specific algorithm is a clear favorite
across the spectrum. For example, some algorithms rely on pre-positioned nodes
while others are able to do without. Other algorithms require expensive hardware
capabilities. Some algorithms need a way of performing off-line computation,
while other algorithms are able to do all their calculations on the sensor nodes
themselves. Localization is still a new and exciting field, with new algorithms, hard-
ware, and applications being developed at a feverish pace; it is hard to say what
techniques and hardware will be prevalent in the end.

9.1 INTRODUCTION

Advances in technology have made it possible to build ad hoc sensor networks using
inexpensive nodes consisting of a low-power processor, a modest amount of

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

277

278 LOCALIZATION IN SENSOR NETWORKS

memory, a wireless network transceiver, and a sensor board; a typical node is
comparable in size to two AA batteries [1]. Many novel applications are emerging:
habitat monitoring, smart building failure detection and reporting, and target
tracking. In these applications it is necessary to accurately orient the nodes with
respect to a global coordinate system in order to report data that are geographically
meaningful. Furthermore, basic middleware services such as routing often rely on
location information (e.g., geographic routing).

Ad hoc sensor networks present novel trade-offs in system design. On the one
hand, the low cost of the nodes facilitates massive scale and highly parallel compu-
tation. On the other hand, each node is likely to have limited power, limited
reliability, and only local communication with a modest number of neighbors.
These application contexts and potential massive scale make it unrealistic to rely
on careful placement or uniform arrangement of sensors. Rather than use globally
accessible beacons or expensive global positioning systems (GPSs) to localize
each sensor, we would like the sensors to self-organize a coordinate system.

In this chapter, we review localization hardware, discuss issues in localization
algorithm design, present the most important localization techniques, and, finally,
suggest future directions in localization. The goal of this chapter is to outline the
technical foundations of today’s localization techniques and present the trade-offs
inherent in algorithm design. No specific algorithm is a clear favorite across the
spectrum. For example, some algorithms rely on prepositioned nodes (Subsection
9.2.1) while others are able to do without. Other algorithms require expensive hard-
ware capabilities. Some algorithms need a way of performing off-line computation,
while other algorithms are able to do all their calculations on the sensor nodes them-
selves. Localization is still a new and exciting field, with new algorithms, hardware,
and applications being developed at a feverish pace; it is hard to say what techniques
and hardware will be prevalent in the end.

9.2 LOCALIZATION HARDWARE

The localization problem gives rise to two important hardware problems. The first,
the problem of defining a coordinate system, is covered in Subsection 9.2.1. The
second, which is the more technically challenging, is the problem of calculating
the distance between sensors (the ranging problem), which is covered in the balance
of this section.

9.2.1 Anchor/Beacon Nodes

The goal of localization is to determine the physical coordinates of a group of sensor
nodes. These coordinates can be global, meaning they are aligned with some exter-
nally meaningful system like GPS, or relative, meaning that they are an arbitrary
“rigid transformation” (rotation, reflection, translation) away from the global
coordinate system.

9.2 LOCALIZATION HARDWARE 279

Beacon nodes (also frequently called anchor nodes) are a necessary prerequisite
to localizing a network in a global coordinate system. Beacon nodes are simply
ordinary sensor nodes that know their global coordinates a priori. This knowledge
could be hard-coded, or acquired through some additional hardware like a GPS
receiver. At a minimum, three noncollinear beacon nodes are required to define a
global coordinate system in two dimensions. If three-dimensional coordinates are
required, then at least four noncoplanar beacons must be present.

Beacon nodes can be used in several ways. Some algorithms (e.g., multidimen-
sional sealing—mobile application part (MDS—MAP), Subsection 9.4.2) localize
nodes in an arbitrary relative coordinate system, then use a few beacon nodes to
determine a rigid transformation of the relative coordinates into global coordinates
(see Appendix B). Other algorithms (e.g., approximate point in triangle (APIT)
Subsection 9.5.4) use beacons throughout, using the positions of several beacons
to “bootstrap” the global positions of nonbeacon nodes.

Beacon placement can often have a significant impact on localization. Many
groups have found that localization accuracy improves if beacons are placed in a
convex hull around the network. Locating additional beacons in the center of the net-
work is also helpful. In any event, there is considerable evidence that real improve-
ments in localization can be obtained by planning beacon layout in the network.

The advantage of using beacons is obvious: the presence of several prelocalized
nodes can greatly simplify the task of assigning coordinates to ordinary nodes. How-
ever, beacon nodes have inherent disadvantages. GPS receivers are expensive. They
also cannot typically be used indoors, and can also be confused by tall buildings or
other environmental obstacles. GPS receivers also consume significant battery
power, which can be a problem for power-constrained sensor nodes. The alternative
to GPS is preprogramming nodes with their locations, which can be impractical
(for instance, when deploying 10,000 nodes with 500 beacons) or even impossible
(for instance, when deploying nodes from an aircraft).

In short, beacons are necessary for localization, but their use does not come
without cost.

The remainder of Section 9.2 focuses on hardware methods of computing
distance measurements between nearby sensor nodes (i.e., ranging).

9.2.2 Received Signal-Strength Indication

In wireless sensor networks, every sensor has a radio. The question is: How can the
radio help localize the network? There are two important techniques for using radio
information to compute ranges. One of them, hop count, is discussed in Subsection
9.2.3. The other, received signal-strength indication (RSSI), is covered here.

In theory, the energy of a radio signal diminishes with the square of the distance
from the signal’s source. As a result, a node listening to a radio transmission should
be able to use the strength of the received signal to calculate its distance from the
transmitter. RSSI suggests an elegant solution to the hardware ranging problem:
all sensor nodes are likely to have radios, so why not use them to compute ranges
for localization?

280 LOCALIZATION IN SENSOR NETWORKS

14 —1
12 {o.8
10
§azz: 0.6
S 8 s
i) SSEEITEIEEREER 0.4
5] == R
6 .
! 0.2
4 e
o 0

1 2 3 4 5 6 7 8 9 10 11 12
Grid column

Figure 9.1 Diagram by Alec Woo that shows the probability of successful packet
transmission with respect to distance from the source. It shows that the fixed-radius disk
approximation of radio connectivity is quite inaccurate. It also demonstrates the difficulties
inherent in retrieving distance information from signal strength. (From ref. [3], with
permission.)

In practice, however, RSSI ranging measurements contain noise on the order of
several meters [2]. This noise occurs because radio propagation tends to be highly
nonuniform in real environments (see Fig. 9.1). For instance, radio propagates dif-
ferently over asphalt than over grass. Physical obstacles such as walls, furniture, and
the like, reflect and absorb radio waves. As a result, distance predictions using signal
strength have been unable to demonstrate the precision obtained by other ranging
methods, such as time difference of arrival (Subsection 9.2.4).

However, RSSI has garnered new interest recently. More careful physical analy-
sis of radio propagation may allow better use of RSSI data, as might better cali-
bration of sensor radios. Whitehouse [3] did an extensive analysis of radio signal
strength, which he was able to parlay into noticeable improvements in localization.
Thus, it is quite possible that a more sophisticated use of RSSI will eventually
prove to be a superior ranging technology, from a price/performance standpoint.
Nevertheless, the technology is not there today.

9.2.3 Radio Hop Count

Even though RSSI is too inaccurate for many applications, the radio can still be used
to assist localization. The key observation is that if two nodes can communicate by
radio, their distance from each other is less than R with high probability, where R is
the maximum range of their radios, no matter what their signal strength reading is.
Thus, simple connectivity data can be useful for localization purposes.

9.2 LOCALIZATION HARDWARE 281

In particular, many groups have found “hop count” to be a useful way to compute
internode distances. The local connectivity information provided by the radio
defines an unweighted graph, where the vertices are sensor nodes and edges rep-
resent direct radio links between nodes. The hop count /; between sensor nodes
s; and s; is then defined as the length of the shortest path in the graph between s;
and s;.

Naively, if the hop count between s; and s; is h;;, then the distance between s; and
s, dyj, is less than R*h,j, where R is again the maximum radio range.

It turns out that a better estimate can be made if we know n,,.,, the expected
number of neighbors per node. Then, as shown by Kleinrock and Silvester [4], it
is possible to compute a better formula for the distance covered by one radio hop:

1
dhop = R(l el — J ¢~ ot/ marccosi—1/ 112 dt) 9.1)
-1

Then, d;j ~ hjj * dj,p. Experimentally [5], equation (9.1) has been shown to be
quite accurate when 7., grows above 5. However, when nj,.; > 15, dj,p
approaches R, so equation (9.1) becomes less useful.

There are two problems with using hop count as a measurement of distance. First,
distance measurements are always integral multiples of dj,,,. This inaccuracy corre-
sponds to a total error of about 0.5R per measurement, which can be too high for
some applications. Second, environmental obstacles can prevent edges from appear-
ing in the connectivity graph that otherwise would be present. As a result, hop
count—based distances can be substantially too high, for example, as in Figure 9.2.

Nagpal et al. [5] demonstrate by algorithm that even better hop-count distance
estimates can be computed by averaging distances with neighbors. This benefit
does not begin to appear until n,.,; > 15; however, it can reduce hop-count error
down to as little as 0.2R.

A D

Figure 9.2 Examples of hop count. In this diagram, hsc = 4. Unfortunately, hgp is also
four, due to an obstruction in the topology. This is one of the ways that hop-count distance
metrics can experience dramatic error.

282 LOCALIZATION IN SENSOR NETWORKS

9.2.4 Time Difference of Arrival

Time difference of arrival (TDoA) is a commonly used hardware ranging mechan-
ism. In TDoA schemes, each node is equipped with a speaker and a microphone.
Some systems use ultrasound while others use audible frequencies. However, the
general mathematical technique is independent of particular hardware.

In TDoA, the transmitter first sends a radio message. It waits some fixed interval
of time, 4.4, (Which might be zero), and then produces a fixed pattern of “chirps” on
its speaker.

When listening nodes hear the radio signal, they note the current time, #,,4;,, then
turn on their microphones. When their microphones detect the chirp pattern, they
again note the current time, #,,,,,4. Once they have #,44i0, fsouna> and Z4e14y, the listeners
can compute the distance d between themselves and the transmitter using the fact
that radio waves travel substantially faster than sound in air.

d= (sradio - ssound) * (tsound — Lradio — tdelay) (92)

See Fig. 9.3 for an illustration.

TDoA methods are impressively accurate under line-of-sight conditions;
however, they perform best in areas that are free of echoes and when the speakers
and microphones are calibrated to each other. Several groups are working to com-
pensate for these issues, which will likely lead to even better field accuracy.

Nevertheless, rather good results can already be obtained, even in subpar con-
ditions. The Cricket ultrasound ranging system [6] can obtain close to centimeter
accuracy without calibration over ranges of up to 10 meters in indoor environments,
provided the transmitter and receiver have line-of-sight.

The downside of TDoA systems is that they inevitably require special hardware
to be built into sensor nodes, specifically a speaker and a microphone. TDoA
systems perform best when they are calibrated properly, since speakers and micro-
phones never have identical transmission and reception characteristics. Furthermore,
the speed of sound in air varies with air temperature and humidity, which introduce

z‘de/ay d/ (Sradio - Ssound)

>

Figure 9.3 Time difference of arrival (TDoA) illustrated. Sensor A sends a radio pulse
followed by an acoustic pulse. By determining the time difference between the arrival of
the two pulses, sensor B can estimate its distance from A.

9.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN 283

inaccuracy into equation (9.2). Finally, the line-of-sight constraint can be difficult to
meet in some environments.

It is possible to use additional constraints to identify and prune bad ranging data
(“outliers™) [7]. Representative constraints include:

« The range from node A to node B should be approximately equal to the range
from node B to node A (rag & rga).

- The pairwise ranges between nodes A, B, and C should obey the triangle
inequality (rAB + rac = FBc).

In the end, many localization algorithms use time difference of arrival ranging
simply because it is dramatically more accurate than radio-only methods.
The actual reason why TDoA is more effective in practice than RSSI is due to the
difference between using signal travel time and signal magnitude, where the
former is vulnerable only to occlusion while the latter is vulnerable to both occlusion
and multipath.

9.2.5 Angle of Arrival, Digital Compasses

Some algorithms depend on angle of arrival (AoA) data. These data are typically
gathered using radio or microphone arrays, which allow a listening node to deter-
mine the direction of a transmitting node. It is also possible to gather AoA data
from optical communication methods.

In these methods, several (3—4) spatially separated microphones hear a single
transmitted signal. By analyzing the phase or time difference between the signal’s
arrival at different microphones, it is possible to discover the AoA of the signal.

These methods can obtain accuracy to within a few degrees [8]. Unfortunately,
Ao0A hardware tends to be bulkier and more expensive than TDoA ranging
hardware, since each node must have one speaker and several microphones. Further-
more, the need for spatial separation between speakers is difficult to accommodate as
the form factor of sensors shrinks.

AoA hardware is sometimes augmented with digital compasses. A digital com-
pass simply indicates the global orientation of its node, which can be quite useful
in conjunction with AoA information.

In practice, few sensor localization algorithms absolutely require AoA infor-
mation, though several are capable of using it when it is present.

9.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN

9.3.1 Resource Constraints

Sensor networks are typically quite resource-starved. Nodes have rather weak pro-
cessors, making large computations infeasible. Moreover, sensor nodes are typically
battery powered. This means communication, processing, and sensing actions

284 LOCALIZATION IN SENSOR NETWORKS

are all expensive, since they actively reduce the lifespan of the node performing
them.

Not only that, sensor networks are typically envisioned on a large scale, with
hundreds or thousands of nodes in a typical deployment. This fact has two important
consequences: nodes must be inexpensive to fabricate, and trivially easy to deploy.
Nodes must be inexpensive, since fifty cents of additional cost per node translates
to $500 for a one-thousand node network. Deployment must be easy as well:
30 seconds of handling time per node to prepare for localization translates to over
8 man-hours of work to deploy a 1000-node network.

Localization is necessary to many functions of a sensor network; however, it is
not the purpose of a sensor network. Localization must cost as little as possible
while still producing satisfactory results. That means designers must actively
work to minimize the power cost, hardware cost, and deployment cost of their
localization algorithms.

9.3.2 Node Density

Many localization algorithms are sensitive to node density. For instance, hop-
count—based schemes generally require high node density so that the hop count
approximation for distance is accurate (Subsection 9.2.3). Similarly, algorithms
that depend on beacon nodes fail when the beacon density is not high enough in a
particular region. Thus, when designing or analyzing an algorithm, it is important
to notice the algorithm’s implicit density assumptions, since high node density
can sometimes be expensive if not totally infeasible.

9.3.3 Nonconvex Topologies

Localization algorithms often have trouble positioning nodes near the edges of a
sensor field. This artifact generally occurs because fewer range measurements are
available for border nodes, and those few measurements are all taken from the
same side of the node. In short, border nodes are a problem because less
information is available about them and that information is of lower quality.
This problem is exacerbated when a sensor network has a nonconvex shape:
Sensors outside the main convex body of the network can often prove unlocaliz-
able. Even when locations can be found, the results tend to feature disproportion-
ate error.

9.3.4 Environmental Obstacles and Terrain Irregularities

Environmental obstacles and terrain irregularities can also wreak havoc on localiz-
ation. Large rocks can occlude line of sight, preventing TDoA ranging, or interfere
with radios, introducing error into RSSI ranges and producing incorrect hop-count
ranges. Deployment on grass versus sand versus pavement can affect radios
and acoustic ranging systems. Indoors, natural features like walls can impede

9.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN 285

measurements as well. All of these issues are likely to come up in real deployments,
so localization systems should be able to cope.

9.3.5 System Organization

This Subsection defines a taxonomy for localization algorithms based on their
computational organization.

Centralized algorithms (Section 9.4) are designed to run on a central machine
with plenty of computational power. Sensor nodes gather environmental data and
pass them back to a base station for analysis, after which the computed positions
are transported back into the network. Centralized algorithms circumvent the pro-
blem of nodes’ computational limitations by accepting the communication cost of
moving data back to the base station. This trade-off becomes less palatable as the
network grows larger, however, since it unduly stresses nodes near the base station.
Furthermore, it requires that an intelligent base station be deployed with the nodes,
which may not always be possible. This scaling problem can be partially alleviated
by deploying multiple base stations (forming a multitier network).

In contrast, distributed algorithms are designed to run in the network, using
massive parallelism and internode communication to compensate for the lack of
centralized computing power. Often distributed algorithms use a subset of the
data to solve for each position independently, yielding an approximation of a
corresponding centralized algorithm where all the data are considered and used to
solve for all the positions simultaneously.

There are two important approaches to distributed localization. The first group,
beacon-based distributed algorithms (Section 9.5), typically starts with some
group of beacons (Subsection 9.2.1). Nodes in the network obtain a distance
measurement to a few beacons, then use these measurements to determine their
own location. In some algorithms, these newly localized nodes become beacons
to help other nodes localize.

The second group approaches localization by trying to optimize a global metric
over the network in a distributed fashion. This group splits out into two substantially
different approaches. The first approach, relaxation-based distributed algorithms
(Section 9.6) is to use a coarse algorithm to roughly localize nodes in the network.
This coarse algorithm is followed by a refinement step, which typically involves
each node adjusting its position to optimize a local error metric. By doing so,
these algorithms hope to approximate the optimal solution to a networkwide
metric that is the sum of the local error metric at each of the nodes.

Coordinate system stitching (Section 9.7) is the second approach to optimizing a
networkwide metric in a distributed manner. In these algorithms, the network
is divided into small overlapping subregions, each of which creates an optimal
local map. Finally, the subregions use a peer-to-peer process to merge their local
maps into a single global map. In theory, this global map approximates the global
optimum map.

The next four sections treat each of these groups in turn.

286 LOCALIZATION IN SENSOR NETWORKS
9.4 CENTRALIZED ALGORITHMS

This section is devoted to centralized localization algorithms. Centralization
allows an algorithm to undertake much more complex mathematics than is possible
in a distributed setting. However, as we said in the previous section, centralization
requires the migration of internode ranging and connectivity data to a sufficiently
powerful central base station and then the migration of resulting locations back to
respective nodes. The main difference between centralized algorithms is the type
of processing they do at the base station. We will discuss two types of processing:
semidefinite programming and multidimensional scaling.

9.4.1 Semidefinite Programming

The semidefinite programming (SDP) approach to localization was pioneered
by Doherty et al. [9]. In this algorithm, geometric constraints between nodes are rep-
resented as linear matrix inequalities (LMIs). Once all the constraints in the network
are expressed in this form, the LMIs can be combined to form a single semidefinite
program. This is solved to produce a bounding region for each node, which Doherty
et al. simplify to be a bounding box. See Figure 9.4 for some sample LMI
constraints.

Unfortunately, not all geometric constraints can be expressed as LMIs. In gen-
eral, only constraints that form convex regions are amenable to representation as
an LMI. Thus, AoA data can be represented as a triangle and hop-count data can
be represented as a circle, but precise range data cannot be conveniently represented,
since rings cannot be expressed as convex constraints. This inability to accommo-
date precise range data may prove to be a significant drawback.

Solving the linear or semidefinite program must be done centrally. The relevant
operation is O(kz) for angle of arrival data, and O(k3) when radial (e.g., hop count)

£

(a) (b) (c)

Figure 9.4 Semidefinite program constraints. (a) A radial constraint, for example, from
radio connectivity. (b) A triangular constraint, for example, from angle of arrival data.
(c) Location estimate derived from intersection of two convex constraints.

9.4 CENTRALIZED ALGORITHMS 287

data is included, where k is the number of convex constraints needed to describe
the network. Thus, running time is something of an Achilles’ heel for this algorithm.
A hierarchical version of this algorithm might have better scaling properties, but no
relevant performance data have been published to our knowledge.

The real advantage of this algorithm is its elegance. Given a set of convex con-
straints on a node’s position, SDP simply finds the intersection of the constraints.
However, SDP’s poor scaling and inability to effectively use range data will
likely preclude the algorithm’s use in practice.

9.4.2 MDS-MAP

MDS-MAP is a centralized algorithm due to Shang et al. [10]. Instead of using
semidefinite programming, however, MDS—MAP uses a technique from mathe-
matical psychology called multidimensional scaling (MDS).

The intuition behind MDS is simple. Suppose there are n points, suspended in a
volume. We do not know the positions of the points, but we do know the distance
between each pair of points. MDS is an O(n?) algorithm that uses the law of cosines
and linear algebra to reconstruct the relative positions of the points based on the
pairwise distances. The mathematical details of MDS are in Appendix C of this
chapter.

MDS-MAP is almost a direct application of the simplest kind of MDS: classic
metric MDS. The algorithm has four stages, which are as follows:

Step 1. Gather ranging data from the network, and form a sparse matrix R, where
r; is the range between nodes i and j, or zero if no range was collected (for
instance, if i and j are physically too far apart).

Step 2. Run a standard all-pairs shortest-path algorithm (Dijkstra’s, Floyd’s) on
R to produce a complete matrix of internode distances D.

Step 3. Run classic metric MDS on D to find estimated node positions X, as
described in Appendix C.

Step 4. Transform the solution X into global coordinates using some number of
fixed anchor nodes using a coordinate system registration routine B.

MDS -MAP performs well on RSSI data alone, getting performance on the order
of half the radio range when the neighborhood size ny,., is higher than 12.
As expected, MDS—MAP estimates improve as ranging improves. MDS—MAP
also does not use anchor nodes very well, since it effectively ignores their data
until stage 4. As a result, its performance lags behind other algorithms as anchor
density increases. The main problem with MDS-MAP, however, is its poor
asymptotic performance, which is O(n”) on account of stages 2 and 3. It turns out
that this problem can be partially ameliorated using coordinate system stitching:
see Section 9.7 for details.

288 LOCALIZATION IN SENSOR NETWORKS
9.5 BEACON-BASED DISTRIBUTED ALGORITHMS

In this section, we talk about beacon-based distributed algorithms. These algorithms
all extrapolate unknown node positions from beacon positions. Thus, they localize
nodes directly into the global coordinate space of the beacons. These algorithms
are also all distributed, so that all the relevant computation is done on the sensor
nodes themselves. We will present four beacon-based distributed algorithms:
diffusion, bounding box, gradient multilateration, and APIT.

9.5.1 Diffusion

Diffusion arises from a very simple idea: the most likely position of a node is at the
centroid of its neighbors’ positions. Diffusion algorithms require only radio
connectivity data. We describe two different variants below.

Bulusu et al. [11] localize unknown nodes by simply averaging the positions of
all beacons with which the node has radio connectivity. Thus, Bulusu et al. assume
that nodes have no way of ranging to beacons. This method is attractive in its blind-
ing simplicity; however, the resulting positions are not very accurate, particularly
when beacon density is low, or nodes fall outside the convex hull of their audible
beacons.

Fitzpatrick and Meertens [12] describe a more sophisticated variant: each node
is at the centroid of its neighbors, including nonbeacons. The algorithm is as
follows:

Step 1. Initialize the position of all nonbeacon nodes to (0, 0).
Step 2. Repeat the following until positions converge:

Step 2a. Set the position of each nonbeacon node to the average of all its
neighbors’ positions.

This variant requires fewer beacons than Bulusu et al.’s algorithm; nevertheless,
its accuracy is poor when node density is low, nodes are outside the convex hull
of the beacons, or node density varies across the network. In all of these cases, a
more sophisticated algorithm would improve accuracy dramatically. Fitzpatrick
and Meertens’s variant also uses substantially more computation than Bulusu
et al.’s approach, since positions must be exchanged between adjacent nodes
during step 2.

However, this algorithm is quite useful in networks where nodes are capable
of very little computation, but the network topology can be selectively changed to
improve localization. In particular, Savvides et al. [13] recommend placing some
beacons around the edges of the sensor network field. Selectively adding additional
beacons can also help resolve pathologies in the diffusion estimates. Bulusu et al.
[11] describe an approach for adaptive beacon placement to improve diffusion-
based localization.

9.5 BEACON-BASED DISTRIBUTED ALGORITHMS 289

9.5.2 Bounding Box

The bounding-box algorithm [14,15] is a computationally simple method of localiz-
ing nodes given their ranges to several beacons. See Figure 9.5 for an example.
Essentially, each node assumes that it lies within the intersection of its beacons’
bounding boxes. The bounding box for a beacon b is centered at the beacon position
(xp, ¥»), and has height and width 2d,, where d,, is the node’s distance to the beacon
measurement.

The intersection of the bounding boxes can be computed without use of floating-
point operations:

[max (x; — d;), max (y; —d;)] x [min (x; +d;), min(y; +d;)] 93

i=1---n ©-3)

The position of a node is then the center of this final bounding box, as shown in
Figure 9.5.

Whitehouse [3] analyzes a distributed version of this algorithm [15], showing that
unfortunately this version is highly susceptible to noisy range estimates, especially
small estimates that tend to propagate.

The accuracy of the bounding-box approach is best when the nodes’ actual pos-
itions are closer to the center of their beacons. Simic and Sastry [15] prove results
about convergence, errors, and complexity.

In any event, bounding box works best when sensor nodes have extreme
computational limitations, since other algorithms may simply be infeasible. Other-
wise, more mathematically rigorous approaches such as gradient multilateration
(Subsection 9.5.3), may be more appropriate.

o

ot

Figure 9.5 An example of the intersection of bounding boxes. The center of the intersection
is the position estimate for the unknown node. The size of the boxes is based on hop count
radio range from the beacons to the unknown node.

290 LOCALIZATION IN SENSOR NETWORKS

9.5.3 Gradient

The principal mathematical operation of the gradient method is called multilateration.
Multilateration is a great deal like triangulation, except that multilateration can incor-
porate ranges from more than three reference points. Formally, given m beacons with
known Cartesian positions b;,i = 1 ---m and possibly noisy range measurements r;
from the known nodes to an unknown sensor node s, multilateration finds the most
likely position of s. The mathematics of multilateration are outlined in Appendix 1.9.
Using gradients to compute ranges for multilateration has been proposed by a
number of researchers [11,16—19]. These algorithms all assume that there are at
least three beacon nodes somewhere in the network (though probably more). Each
of these beacon nodes propagates a gradient through the network, which is the
distributed equivalent of computing the shortest path distance between all the
beacons and all of the unlocalized nodes. The gradient propagation is as follows:

Step 1. For each node j and beacon k, let dj (the distance from j to k) be 0if j = £,
and oo otherwise.

Step 2. On each node j, perform the following steps repeatedly:
Step 2a. For each beacon k and neighbor i, retrieve d;;, from i.
Step 2b. For each beacon k and neighbor i, apply the following update formula:

djk = min (dy + ;'ij’ djk)

where 7;; is the estimated distance between nodes i and j. These internode dis-
tance estimates can be either unweighted (one if there is connectivity, zero
otherwise) or measured distances (e.g., using RSSI or TDoA).

After some amount of settling time, each value dj, will be the length of the shortest
path between node j and beacon k. Figure 9.6 shows the results of running the gra-
dient propagation algorithm with one beacon.

The gradient-based distance estimate to a beacon must be adjusted, since even
given perfect internode distance estimates, gradient distance estimates will always
be longer than (or exactly equal to) corresponding straight-line distances. Of
course, given imperfect internode distance estimates, gradient-based distance esti-
mate can actually be shorter than straight distances. In fact, Whitehouse [3]
shows that it is actually more likely that they are shorter, since underestimated
internode distances skew all subsequent gradient-based estimates. Niculescu and
Nath [20] suggest using a correction factor calculated by comparing the actual
distance between beacons to the shortest path distances computed during gradient
propagation. Each unlocalized node simply applies the correction factor from its
closest beacon to its gradient distance estimate.

As an alternative, Nagpal et al. [5] in their Amorphous algorithm suggest correct-
ing this distance based on the neighborhood size ny,.;, as we previously discussed in
Subsection 9.2.3.

9.5 BEACON-BASED DISTRIBUTED ALGORITHMS 291

Figure 9.6 Gradients propagating from a beacon (in the lower right corner). Each dot
represents a sensor node. Gray levels are based on their gradient value.

Once final distance estimates to beacons have been computed, the actual localiz-
ation process simply uses multilateration directly on the beacon positions k and the
distance measurements djy.

Like the other beacon-based distributed algorithms, this algorithm has the virtue
of being direct and easy to understand. It is also scales well (provided the density of
beacons is kept constant; otherwise, the communication cost can be prohibitive). It is
also quite effective in homogeneous topologies where there are few environmental
obstructions. However, even when using high-quality range data, this algorithm is
subject to the deficiencies described in Subsection 9.2.3 and demonstrated in
Figure 9.2, so it behaves badly in obstructed settings. It also requires substantial
node density before its accuracy reaches an acceptable level.

A number of variations to the multilateration approach have been suggested.
Niculescu and Nath [21] suggest propagating AoA information along links.
Nagpal [22] proposes refining the hop-count estimates by averaging values among
neighbors. This turns out to greatly increase the accuracy of gradient multilateration.

9.5.4 APIT

APIT [23] is quite a bit different from the beacon-based distributed algorithms
described so far. APIT uses a novel area-based approach, in which nodes are
assumed to be able to hear a fairly large number of beacons. However, APIT
does not assume that nodes can range to these beacons. Instead, a node forms
some number of “beacon triangles,” where a beacon triangle is the triangle
formed by three arbitrary beacons. The node then decides whether it is inside or out-
side a given triangle by comparing signal-strength measurements with its nearby

292 LOCALIZATION IN SENSOR NETWORKS

Figure 9.7 Node position estimated as the center of mass of the intersection of a number of
beacon triangles for which a given node is inside.

nonbeacon neighbors. Once this process is complete, the node simply finds the inter-
section of the beacon triangles that contains it. The node chooses the centroid of this
intersection region as its position estimate. Figure 9.7 shows an example of this
process: each of the triangles represents a triple of beacons and the intersection of
all the triangles defines the position of the unknown node.

The actual algorithm is as follows:

Step 1. Receive beacon positions from hearable beacons.
Step 2. Initialize inside-set to be empty.

Step 3. For each triangle 7; in possible triangles formed over beacons, add T; to
inside-setif nodeis inside T;. Goto Step 4 when accuracy of inside-set is sufficient.

Step 4. Compute position estimate as the center of mass of the intersection of all
triangles in inside-set.

The point in triangle (PIT) test is based on geometry. For a given triangle with
points A, B, and C, a given point M is outside triangle ABC, if there exists a direction
such that a point adjacent to M is further/closer to points A, B, and C simultaneously.
Otherwise, M is inside triangle ABC. Unfortunately, given that typically nodes
cannot move, an approximate APIT test is proposed that assumes sufficient node
density for approximating node movement. If no neighbor of M is further from/
closer to all three anchors A, B, and C simultaneously, M assumes that it is inside
triangle ABC. Otherwise, M assumes it resides outside this triangle.

This algorithm is described as being range-free, which means that RSSI range
measurements are required to be monotonic and calibrated to be comparable but
are not required to produce distance estimates. It could be that the effort put into
RSSI calibration would produce an effective enough ranging estimate to be useful
for gradient techniques described in Subsection 9.5.3, making the range-free

9.6 RELAXATION-BASED DISTRIBUTED ALGORITHMS 293

distinction potentially moot. The APIT algorithm also requires a relatively high ratio
of beacons to nodes, requires longer-range beacons, and is susceptible to erro-
neously low RSSI readings. On the other hand, He et al. [23] show that the algorithm
requires smaller amounts of computation and less communication than other
beacon-based algorithms. In short, APIT is a novel approach that is a potentially
promising direction that requires further study.

9.6 RELAXATION-BASED DISTRIBUTED ALGORITHMS

The class of relaxation-based distributed algorithms starts with nodes estimating
their positions with any of a variety of methods, such as gradient distance propa-
gation. These initial positions are then refined from position estimates of neighbors.

Savarese et al. [24] refine the initial gradient-derived positions using local neigh-
borhood multilateration. Each node adjusts its position by using its neighbors as
temporary beacons. Convex optimization can also be used to find an improved
position for situations where beacon distance estimates are unavailable.

An equivalent formulation to local multilateration is presented in ref. [25] and is gen-
erally referred to as a spring model. This description considers edges between nodes as
springs, with resting lengths being the actual measured distances. The algorithm involves
iteratively adjusting nodes in the direction of their local spring forces. The optimization
stops when all nodes have zero forces acting on them. If the magnitude of all the forces
between nodes is also zero, then the final positions form a global minimum.

Unfortunately, these relaxation techniques are quite sensitive to initial starting
positions. Bad starting positions will result in local minima. Priyantha et al. [25]
describe a technique for producing starting positions for nodes that nearly always
avoid bad local minima. The insight is that the network gets tangled and that,
using the spring model style, optimization is unable to fully untangle the network.
Their approach starts the network in a “fold-free” state.

The fold-free algorithm works by choosing five reference nodes, one in the center
ng and four on the periphery, n;, n,, ns3, ny. The four on the periphery are chosen so
that the two pairs ny,n, and n3, ng are roughly perpendicular to each other. The
choice of these nodes is performed using a hop-count approximation to distance.
The node positions (x;, y;) are calculated using polar coordinates (6;, p;):

0,' = h()’iR
) hii—ha;
. — arctan———~='
pi h3,i— ha;
h3 i —ha;
Xi = h(),iRlii (94)
hii—ho
yi = h(),iRl’li'z’

li = \/(h3,i —]’l4,i)2 + (hl,i - h2,i)2

where h;; is the hop count to reference node j and R is the maximum radio range.

294 LOCALIZATION IN SENSOR NETWORKS

These relaxation algorithms have the virtue that they are fully distributed and
concurrent and operate without beacons. While the computations are modest and
local, it is unclear how well these algorithms scale to much larger networks.
Furthermore, there are no provable means for avoiding local minima and local
minima problems could worsen at larger scales. To date, researchers have avoided
local minima by starting optimizations at favorable starting positions, but another
alternative would be to utilize optimization techniques, such as simulated annealing
[26], which tend to fall into fewer local minima.

9.7 COORDINATE SYSTEM STITCHING

In section 9.6, we showed one method of fusing the precision of centralized schemes
with the computational advantages of distributed schemes. Coordinate system
stitching is a different way of approaching the same problem. It has received a
great deal of recent work [20,27-29]. Coordinate system stitching works according
to the following algorithm:

Step 1. Split the network into small overlapping subregions. Very often each sub-
region is simply a single node and its one-hop neighbors.

Step 2. For each subregion, compute a “local map,” which is essentially an
embedding of the nodes in the subregion into a relative coordinate system.
Step 3. Finally, merge the subregions using a coordinate system registration
procedure. Coordinate system registration finds a rigid transformation that
maps points in one coordinate system to a different coordinate system.
Thus, step 3 places all the subregions into a single global coordinate
system. Many algorithms do this step suboptimally, since there is a closed-
form, fast, and least-square optimal method of registering coordinate systems.

We describe this optimal method in Appendix B.

Steps 1 and 2 tend to be unique to each algorithm, whereas step 3 tends to be the
same in every algorithm. We will describe three different methods of performing
steps 1 and 2, and finally explain the typical method of performing step 3.

Meertens and Fitzpatrick [28] form subregions using one-hop neighbors. Local
maps are then computed by choosing three nodes to define a relative coordinate
system and using multilateration (Subsection 9.5.3) to iteratively add additional
nodes to the map, forming a “multilateration subtree.”

Moore et al. [29] outline an approach that they claim produces more robust local
maps. Rather than use three arbitrary nodes to define a map, Moore et al. use “robust
quadrilaterals” (robust quads), where a robust quad is a fully connected set of four
nodes, where each subtriangle is also “robust.” A robust subtriangle must have the
property that:

bsin® 0 > dy,

9.7 COORDINATE SYSTEM STITCHING 295

where b is the length of the shortest side, 6is the size of the smallest angle, and d,,;, is a
predetermined constant based on average measurement error. The idea is that the
points of a robust quad can be placed correctly with respect to each other (i.e., without
“flips”). Moore et al. demonstrate that the probability of a robust quadrilateral experi-
encing internal flips given zero mean Gaussian measurement error can be bounded
by setting d,,;, appropriately. In effect, d,,;, filters out quads that have too much
positional ambiguity to be localized with confidence. The appropriate level of filtering
is based on the amount of uncertainty ¢” in the distance measurements.

Once an initial robust quad is chosen, any node that connects to three of the four
points in the initial quad can be added using simple multilateration (Subsection
9.5.3). This preserves the probabilistic guarantees provided by the initial robust
quad, since the new node forms a new robust quad with the points from the original.
By induction, any number of nodes can be added to the local map, as long as each
node has a range to three members of the map.

These local maps (which Moore et al. call “clusters”) are now ready to be stitched
together. Optionally, an optimization pass such as those in Section 9.6 can be used to
refine the local maps first.

Jiand Zha [30] use MDS to form local maps. We discussed MDS with MDS-MAP
in Subsection 9.4.2, and cover the mathematics of MDS in Appendix C. Ji and Zha use
an iterative variant of MDS to compensate for missing internode distances. This itera-
tive variant turns out to be intimately related to standard iterative least-square algor-
ithms, though it is somewhat more sophisticated. Ji and Zha focus on RSSI for range
data. Once again, subregions are defined to be one-hop neighborhoods.

The stitching phase (step 3 in previous algorithm), uses coordinate system
registration (described in Appendix B) in a peer-to-peer fashion to shift all the
local maps into a single coordinate system. One way of performing this stitching
is now described:

Step 1. Let the node responsible for each local map choose an integer coordinate
system ID at random.

Step 2. Each node communicates with its neighbors; each pair performs the fol-
lowing steps:
Step 2a. If both have the same ID, then do nothing further.

Step 2b. If they have different IDs, then register the map of the node with the
lower ID with the map of the node with the higher ID. Afterward, both
nodes keep the higher ID as their own.

Step 3. Repeat step 2 until all nodes have the same ID; now all nodes have a coor-
dinate assignment in a global coordinate system.

Limited work has been done on the mathematical properties of this scheme.
Moore et al. prove the probability of their algorithm constructing correct local
maps and prove error lower bounds on the local map positions. Meertens and
Fitzpatrick [28] devote some discussion to the topic of error propagation caused
by local map stitching. They point out that registering local maps iteratively can

296 LOCALIZATION IN SENSOR NETWORKS

lead to error propagation and perhaps unacceptable error rates as networks grow.
Furthermore, they argue that in the traditional communication model, where
nodes can communicate only with neighbors, this algorithm may converge quite
slowly, since a single coordinate system must propagate from its source across
the entire network. Future work is needed to curb this error propagation.

Furthermore, these techniques have a tendency to orphan nodes, either because
they could not be added to a local map or because their local map failed to overlap
sufficiently with neighboring maps. Moore et al. argue that this is acceptable because
the orphaned nodes are the nodes most likely to display high error. However, this
answer may not be satisfactory for some applications, many of which cannot use
unlocalized nodes for sensing, routing, target tracking, or other tasks.

Nonetheless, coordinate system stitching techniques are quite compelling. They
are inherently distributed, since subregion and local map formation can trivially
occur in the network and stitching is easily formulated as a peer-to-peer algorithm.
Furthermore, they enable the use of sophisticated local-map algorithms which
are too computationally expensive to use at the global level. For example, map for-
mation using robust quadrilaterals is O(n*), where n is the number of nodes in the
subregion; however, in networks with fixed neighborhood size n,,.,;, map formation
is O(1). Likewise, coordinate system stitching enables the realistic use of O(n3) mul-
tidimensional scaling in sensor networks.

9.8 FUTURE DIRECTIONS

The sensor network field and localization in particular are in their infancy. Much
work remains in order to address the varied localization requirements of sensor
network services and applications. Many future directions stand out as important
areas to pursue in order to meet both current and future needs.

Localization hardware will always involve fallible and imperfect components;
thus, calibration is imperative [3]. For example, raw measurements from
RSSI vary wildly from node to node, while most algorithms expect measurements to
be at minimum monotonic and comparable. If calibration can bridge this gap, a wide
variety of algorithms would become practical on cheap hardware.

Even with accurate calibration, localization hardware produces noisy measure-
ments due to occlusion, collisions, and multipath effects. This mandates an improve-
ment in measurement outlier rejection algorithms. Early work [7] has suggested that
outlier rejection can greatly improve the performance of localization algorithms.
Some early ideas [7] involve using consistency checks such as symmetry and geo-
metric constraints to reject improbable measurements, as discussed in Subsection
9.2.4. Other possibilities involve using statistical error models to identify outliers.

Future sensor networks will involve movable sensor nodes. New localization
algorithms will need to be developed to accommodate these moving nodes. Some
algorithms can tolerate a certain amount of movement, but more experiments and
algorithm development is required. Some researchers [11,31] have touched on
this issue with adaptive beacon placement, but much more work is needed.

9.9 CONCLUSION 297

No current localization algorithm adequately scales for ultrascale sensor net-
works (i.e., 10,000 nodes and beyond). It seems likely that such networks will
end up being multitiered, and will require the development of more hierarchical
algorithms.

9.9 CONCLUSION

In this chapter we presented the foundations of sensor network localization. We
discussed localization hardware, issues in localization algorithm design, major
localization techniques, and future directions. In this section, we summarize the
trade-offs and provide guidelines for choosing different algorithms based on context
and available hardware.

The first primary distinction between algorithms is those that require beacons
(described in Section 9.5) and those that do not (described in Sections 9.4, 9.6,
and 9.7). Beaconless algorithms necessarily produce relative coordinate systems
that can optionally be registered to a global coordinate system by positioning
three (or four) nodes. Often sensor network deployments make the use of beacons
prohibitive and furthermore many applications do not require a global coordinate
system. In these situations beaconless algorithms suffice. Finally, some algorithms
(such as APIT from Subsection 9.5.4) require a higher beacon-to-node ratio than
others to achieve a given level of accuracy.

The next distinction between localization algorithms is their hardware require-
ments. All sensor nodes have radios and most can measure signal strength, thus,
algorithms that rely on hop count or RSSI require the least hardware. Varying
degrees of ranging precision can be achieved from RSSI, with hop count being
at the low end, with one bit precision. Gradient algorithms (from Subsection
9.5.3 such as DV-hop and Amorphous can often produce quite accurate results
using only hop counts and sufficient node density. Sometimes, a microphone
and speaker are required for other reasons, making the use of more accurate
TDoA ranging possible. Sometimes nodes lack sufficient arithmetic processing,
making certain algorithms impractical. Algorithms such as bounding-box and
APIT make the least demands on processors (although APIT makes some
demands on memory).

Finally, certain algorithms are centralized while others are distributed. Centra-
lized algorithms typically compute more exact positions and can be competitive
in situations where accuracy is important and the exfiltration of ranging data and dis-
semination of resulting location data is not prohibitively time-consuming nor error-
prone. Centralized algorithms could actually be a viable option in many typical
deployments where a base station is already needed for other reasons. Distributed
algorithms are often local approximations to centralized algorithms, but have the
virtue that they do not depend on a large centralized computer and potentially
have better scalability.

Other issues to consider are battery life and communication costs. Often these
two are intertwined, as typically communication is the most battery-draining

298 LOCALIZATION IN SENSOR NETWORKS

sensor node activity. Consult He et al. [23] for a comparison of communication costs
(and other metrics) of a number of localization algorithms.

The development of localization algorithms is proceeding at a fast pace. While
the task appears simple, to compute positions for each node in a sensor network,
the best algorithm depends heavily on a variety of factors such as application
needs and available localization hardware. Future algorithms will address new
sensor network needs such as mobile nodes and ultrascale sizes.

APPENDIX A: MULTILATERATION

This Appendix derives a solution to the multilateration problem (Subsection 9.5.3).
See Figure 9.8 to see an example of this solution in practice.

Multilateration is a simple technique, but the specific mathematics of its
implementation vary widely, as do its application in sensor networks. The
purpose of multilateration is simple: given m nodes with known Cartesian positions
b;,i = 1---mand possibly noisy range measurements r; from the known nodes to an
unknown node s, multilateration finds the most likely position of s.

Multilateration is typically done by minimizing the squared error between the
observed ranges r; and the predicted distance |s — b;||:

s = argmin E(s)

m 9.5)
E(s) =Y (Is = bil = r)?
i=1

° ¢ Ending'
* point
Actual
Anchor position
nodes \
50 cm
° oulf———— o
Starting
point
[[) []

Figure 9.8 In this diagram, a single unknown node with ranges to six different beacons
localizes itself using multilateration. The ground truth position of the unknown node is
circled. The X’s mark the best estimate after each iteration of least squares, with darker
shades indicating higher iterations.

APPENDIX A: MULTILATERATION 299

This minimization problem can be solved using Newton—Raphson/least squares
as follows. First, approximate the error function e(s, b;) = ||s — b;|| — r; in equation
(9.5) with a first-order Taylor series about sy:

e(s, b;) ~ e(so, b;) + Ve(so, bi)(s — so)
= Ve(so, bi)s — (—e(so, b;) + Ve(so, b;)so)

S—bi

VeI =

Plug this approximation back into equation (9.5):

s A argmin Y _ (Ve(so, bi)s — (—e(so. b;) + Ve(so, bi)so))*

$ i=1

Stacking terms:

s A argmin ||As — b|? (9.6a)
[Ve(so, b1)
Ve(so, b2)

A=) (9.6b)
L Ve(S(), bm)

[—e(so, b1) + Ve(so, b1)so

—e(s0, b2) + Ve(so, by)so
b= . (9.6¢)

L —e(so, bm) + Ve(so, bn)so

The right side of equation (9.6a) is in exactly the right form to be solved by an
off-the-shelf iterative least-square solver. The resulting s is a good estimate of the
unknown sensor’s position, provided b; and r; are accurate. Here is a summary of
the multilateration method:

Step 1. Choose s, to be a starting point for the optimization. The choice is some-
what arbitrary, but the centroid b is a good one:

> b
i=1

Step 2. Compute A and b using sy and equations (9.6b) and (9.6¢).

b=

|-

Step 3. Compute s, = argmin |[[Ax — b||? using a least-square solver.

X
Step 4. If E(so) — E(sp) < €, then s; is the solution, otherwise set syp = s
and return to Step 2.

300 LOCALIZATION IN SENSOR NETWORKS

There are many ways to solve the multilateration problem. The one presented
here is equivalent to Newton—Raphson descent on the error function E (equation
(9.5)). Most alternate methods also attempt to minimize squared error using some
form of iterative optimization. To see a prototypical example of an algorithm that
uses multilateration, see Subsection 9.5.3.

APPENDIX B: COORDINATE SYSTEM REGISTRATION

Many localization algorithms compute a relative coordinate assignment for a group
of sensors and later transform this local coordinate assignment into a different
coordinate system. To do this, the algorithm must compute a translation vector, a
scale factor, and an orthonormal rotation matrix that define the transformation
from one coordinate system to the other. The process of finding these quantities is
known as “coordinate system registration.” Registration can be performed for two
dimensions as long as three points have known coordinates in both systems. The
three-dimensional version naturally requires four points.

We present Horn et al.’s method of solving the coordinate system registration
problem [32]. It has many advantages over commonly used registration methods:

- It has provable optimality over the canonical least-square error metric (equation
9.7)).

- It uses all the data available, though it can compute a correct result with as few
as three (or four) points.

« It can be computed quickly, since its running time is proportional to the number
of common points 7.

There is one caveat: even after a rigid transformation, it is unlikely that the known
points will precisely align, since the measurements used to localize the points are
likely to have errors. Thus, the best that can be done is a minimization of the
misalignment between the two coordinate systems. Let x;; and x,.; be the known pos-
itions of node i = 1 - - - n in the left-hand and right-hand coordinate systems, respect-
ively. The goal of registration is to find a translation ¢, scale s, and rotation R that
transform a point x in the left-hand coordinate system to the equivalent point x" in
the right-hand coordinate system using the formula:

X =sRx+1t 9.7

Horn et al. approach this problem using squared error; they look for a ¢, s, and R
that meet the following condition:

(t,5,R) = argmin Y |le;? (9.7a)
t,gs,R ;

e =Xxp; —SRx;; —t (9.7b)

APPENDIX B: COORDINATE SYSTEM REGISTRATION 301

In ref. [32], Horn et al. derive a closed form for equation (9.7) that can be
computed in O(n) time. The method is outlined in the following with emphasis on
the precise steps required to perform the computation. For more detail on the
mathematical underpinnings, see ref. [32]. To see the method in action, see
Figure 9.9.

Step 1. Compute the centroids of x; and x,:

I I
X == E Xy X =< E Xy, i
n4 n4
i=1 i=1

° X
00 o o
° °
°
°
°
°
°
°
o ° ")
° °
° ’
- | Xo
o © o Y o
) °
° 3 °
o o o
° ° o °
° o °
°
oo o ° o °
° [
° ° °
° ° o ° °
°
-]
o ° o ol o
o
° o %o o o
°
A Y’
° ° °
) X ° o
o® & °
°
?® ® ®
o ° o
&
oo ° °
° L
o o o ©
°
°
°

Figure 9.9 An example of coordinate system registration. In the upper left is a set of
reference points (X,Y). On the right, the reference points have been moved into a new
coordinate system by a linear transformation (X, Y’) = L(X, Y) and then jittered to simulate
position error. Finally, in the lower left the (X’,Y’) coordinate system is brought into
registration with the reference coordinate system (X,Y).

302 LOCALIZATION IN SENSOR NETWORKS

Step 2. Shift the points so that they are defined with respect to the centroids:

_ , _
i = XL X X i = Xri — Xr

!
X

Now the error term in equation (9.7b) can be rewritten as

J J /
€ =X, —stZ!i —t

! =t—X+sRx
As it turns out, the squared error from equation (9.7) is minimized when
t = 0, independent of s and R. Therefore:
t =X, — sRx 9.8)
So after s and R have been computed, equation (9.8) can be used to compute ¢.
Since ¢ = 0, the error term can be rewritten as:
ei =x, ; — sRx;; 9.9)

Now that ¢ is out of the way, we can focus on finding s and R. Equation (9.9)
can be rewritten as

€;

1
= e ARy (9.10)

So now we need only find

n
(s, R) = argmin el
gmin) lle

i=1

) 1 n , n
= arglgmgz (B +SZ 7,117 .11
s, Py Py

n
~2) - (R
i=1

By completing the square in s, it can be shown that equation (9.11) (and thus
equation (9.7)) is minimized when

$= \/ SIS P 9.12)
i=1 i=1

Step 3. Use equation (9.12) to compute the optimal scale factor s. Now equation
(9.11) can be simplified to

R = argrgin 2 (Z ||x’”||2> (Z ||x;!i||2> - Zx’m. SR)| 9.13)
i=1 i=1 i=1

APPENDIX B: COORDINATE SYSTEM REGISTRATION 303
Equation (9.13) is minimized when the following is true:
n
/ /
R = argglax me. - (Rx; ;)
i=1

This is the same as

R = argmax Trace(R" M) (9.14a)
R
M=>"x ()" (9.14b)
i=1

Mis a2 x 2or3 x 3 matrix, depending on whether the points x;; and x,; are
two- or three-dimensional. For the remainder of this discussion, assume M is
3 x 3; the results are similar for the two-dimensional case.

Step 4. Compute M using equation (9.14b).
Step 5. Compute the eigen decomposition of M”M. That is, find eigenvalues A,

A2, Az and eigenvectors iy, iip, it3 such that
MM =)\11)]1:{{ +)\21?1212%w +)\31)31?!?

Step 6. Compute S = (M"M)"/? and U = MS~". That is,
S = A} + v/ ainih + /i
1 1
U=MS"'= M(ﬁlﬁT + ——inil + ﬁy}T)
m 1 2 3

Note that M = US, and that U is orthonormal, since UTU = I. We can now
write Trace(RTM) from equation (9.14a) as:

Trace(R" US) = /A Trace(R" Uiy itl)
+ /Ao Trace(R! Uiiyii3)
+ /A3 Trace(R! Uiiz it})

Trace(RT Ui;iil) can be rewritten as (Rii; - Uil;). Since i; is a unit vector, and
since U and R are orthonormal transformations, (Ri; - Uii;) < 1, with equality
only when Rii; = U;. Therefore:

Trace(RTUS) < \/x + \/)Tz + \//Tg = Trace(S)

The maximum value of Trace (RTUS) occurs when R'U =1, that is,
when R = U. Therefore, the rotation R necessary to minimize the error in
equation (9.13) is given by

1 1 1
R=U=M|—=ini| +—=iniy +——1isi} 9.15
<mu1ul muzuz uzity ()

304 LOCALIZATION IN SENSOR NETWORKS

Step 7. Compute R using equation (9.15). R is an orthonormal matrix that encap-
sulates the rotation and possible reflection necessary to transform x;; into x,.;.

Step 8. Now we have R and s, so use equation (9.8) to compute 7. R, s, and ¢ form
a complete linear transformation between the two coordinate systems that
minimizes equation (9.7).

Step 9. For each point x in the left-hand coordinate system, compute the corre-
sponding position x" in the right-hand coordinate system using

X =1+ sRx

Even though this math may look imposing, it is straightforward to implement,
and gives provably optimal results. As you will see shortly, many algorithms
depend on coordinate system registration, either to shift a completely localized
relative topology into global coordinates, or to ‘“stitch together” small local
topologies into a single consistent coordinate assignment. This Appendix descri-
bed a powerful closed-form method of performing the necessary registration
operations.

APPENDIX C: MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) was originally developed for use in mathematical
psychology. It comes in many variations, but all the variations share a common goal.
Given a set of points whose positions are unknown and measured distances between
each pair of points, multidimensional scaling determines the underlying dimension-
ality of the points, and finds an embedding of the points in that space that honors the
pairwise distances between them.

Clearly, MDS has potential in the sensor localization domain. Using only ranging
data, without anchors or GPS, MDS can solve for the relative coordinates of a group
of sensor nodes with resilience to measurement error and rather high accuracy.

This Appendix focuses on a type of multidimensional scaling called classical
metric MDS, classical because it uses only one matrix of “dissimilarity” or distance
information, and metric because the dissimilarity information is quantitative (e.g.,
distance measurements), as opposed to ordinal. There are many other types, but
they are not common in sensor networks, so they are omitted for brevity.

Let there be n sensors in a network, with positions X;,i =1---n, and let
X =[X,Xs,...,X,]". Here, X is n x m, where m is the dimensionality of X. For
now, consider m to be an unknown. Let D = [d;;] be the n x n matrix of pairwise
distance measurements, where d;; is the measured distance between X; and X; for
i # j,and d; = 0O for all i. The distance measurements d;; must obey the triangular
inequality: d;; + dy > dj for all (i, j, k).

The goal of MDS is to find an assignment of X in low-dimensional space that
minimizes a “stress function,” defined as:

X = argmin Stress(X) 9.16)

APPENDIX C: MULTIDIMENSIONAL SCALING 305

Y i (dy —) 9.17)
" 1)
Y Y8

In equation (9.16), g is the distance between X; and X;. Thus, the metric MDS
stress function is closely related to the squared error function we have seen in
other techniques, such as multilateration (Subsection 9.5.3).

Classic metric multidimensional scaling is derived from the law of cosines, which
states that given two sides of a triangle d;;, di, and the angle between them 6, the
third side can be computed using the formula:

Stress(X) =

d]zk = dUz + di — Zd,:]-d,'k COS O_jik (918)
Rewriting:
1
i cos Ojic = 5 (dj +djy — dp) (9.19)
The left side of equation (9.19) can be rewritten as a dot product:
1
(X; = X)) (X = X)) = 5 (d] +djf —d}) (9-20)

If all measurements are perfect, then a good zero-stress way to solve for the
positions X is to choose some X, from X to be the origin of a coordinate system,
and construct a matrix B, — 1) — 1) as follows:

1

by =5

(dozi +dg - d,.f.) 9.21)

Matrix B is known as the matrix of scalar products. As we know from equation
(9.20), we can write B in terms of X. Call X(’n_l)xm the matrix X where each of the X
is shifted to have its origin at Xo: X! = X; — Xo. Then, using equations (9.20)
and (9.21),

X'xT =B

We can solve for X’ by taking an eigen decomposition of B into an orthonormal
matrix of eigenvectors and a diagonal matrix of matching eigenvalues:

B=XxXxT=uvuvu"
¥ gy (9.22)

The problem is that X’ has too many columns: we need to find X in 2-space or
3-space. To do this, we throw away all but the two or three largest eigenvalues
from V, leaving a 2 x 2 or 3 x 3 diagonal matrix, and throw away the matching
eigenvectors (columns) of U, leaving U,—1)x2 or Ugy—1)3. Then X’ has the proper
dimensionality.

306 LOCALIZATION IN SENSOR NETWORKS

Note that this method produces a coordinate system that is a linear transformation
from the coordinate system of the true X;. Reconciling the two requires a registration
procedure like that of Appendix B.

Remember, though, that we said this method only works when the data dj; is per-
fect, which is an unrealistic assumption. In practice, there is some error, which ends
up in the stress value of the final coordinate assignment. Fortunately, the classic
metric MDS method generalizes to gracefully cover measurement errors. In the pre-
ceding, we chose a single point from our data to be the origin. This choice gives X
an undue influence on the error of X. Thus, real MDS does not use a point from the
data; rather, it uses a special point in the center of the X;. This point is found by
“double centering the squared distance matrix. The squared distance matrix
D?> = [d,j] To double center a matrix, subtract the row and column means from
each element. Then, add the grand mean to each element. Finally, multiply by
—1/2. The elementwise formula for double centering is below:

l n n

(9.23)
= inaxja
a=1
Reformulating equation (9.23) in matrix notation:
1
Busn = — 5JDZJ =Xxx" (9.24a)
1 r
Juscn = Inxn ——€' e (9.24b)
n
eixn =1[1,1,1,...,1] (9.24¢)

Equation (9.24) is an expression for X in terms of D, in m-dimensional space. If
m = n — 1, then there is a trivial assignment of X - - - X,, that makes Stress (X) = 0.
As m decreases, it turns out that Stress (X) must increase or stay the same; it
cannot decrease. We know that the measurements D originate from a two- or
three-dimensional space. If the measurements from D are perfect, then there is a
zero-stress assignment of X when m =2 or 3. However, measurement error
makes it unlikely that such an assignment really exists. Thus, some stress is
nevitable as we reduce the dimensionality from n to 2 or 3.

As before, this dimensionality reduction is done by taking an eigen decompo-
sition of B, then removing eigenvalues and eigenvectors. This is a safe operation
because B is symmetric positive definite, and therefore has n positive eigenvalues.

B=xx"=uvuvuT
T (9.25)

APPENDIX C: MULTIDIMENSIONAL SCALING 307

= &
= E
= = =
= =
5
=
=n
£ B o
P = =0
100 . E E
=]
50 =
=
=
= =
=
50 100 Ground truth position
Hm MDS position estimate

Figure 9.10 Topology constructed by multidimensional scaling. Each internode range
measurement has zero-mean Gaussian error with a standard deviation of 10 units.

Thus, multidimensional scaling provides a method of converting a complete
matrix of distance measurements to a matching topology in 2-space or 3-space.
This conversion is quite resilient to measurement error, since increased measure-
ment error simply becomes an increase in the stress function. To see an example
of MDS in action, look at Figure 9.10.

Unfortunately, multidimensional scaling has some disadvantages. First, the main
computation of MDS, the eigen decomposition of B (equation (9.25)) requires 0(n3)
time. As a result, a single pass of multidimensional scaling cannot operate on a large
topology, particularly in the constrained computational environment of sensor
networks. Second, classic MDS requires that D contain a distance measurement
for all pairs of nodes. This requirement is impossible to meet with ranging hardware
alone in large networks; thus, implementations of MDS in sensor networks must do
preprocessing on measured data to generate D (Subsection 9.4.2) or use coordinate
system stitching to distribute the computation (9.7).

To conclude, here are the steps of classic metric multidimensional scaling:

Step 1. Create the symmetric matrix D = [d;;], with d;; = 0 and d;; + dy > dj.
Step 2. Create the symmetric matrix J (equation 9.24b).

308 LOCALIZATION IN SENSOR NETWORKS

Step 3. Compute B using D> = [dizj] and J (equation (9.24a)).
Step 4. Take an eigen decomposition UVU” of B.

Step 5. Let V, be the diagonal matrix of the d largest eigenvalues in V, where d is
the desired dimensionality of the solution.

Step 6. Let U, be the d eigenvectors from U that match the eigenvalues in V.

Step 6. Compute X,; = [X1, X5, ... x,1" using X, = Ude/z. Here, V,l/2 can be
computed by taking the square root of each of V,’s diagonal elements.

Step 7. (Optional) Transform the X; from X, into the desired global coordinate
space using some coordinate system registration algorithm (Appendix B).
These transformed X; are the solution.

REFERENCES

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for networked sensors. In Proceedings of the 9th International Conference
on Architectural Support for Programming Language and Operating Systems
(ASPLOS-IX), pages 93—104, Combridge, Massachusetts, November 2000.

2. P. Bahl and V. Padmanabhan. Radar: An in-building rf-based user location and tracking
system. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer and
Communication Societies (INFOCOM 2000), pages 775—-784, Tel-Aviv, Israel, March
2000.

3. Cameron Whitehouse. The Design of Calamari: An Ad-Hoc Localization System for
Sensor Networks. Master’s thesis, University of California at Berkeley, 2002.

4. L. Kleinrock and J. A. Silvester. Optimum transmission radii for packet radio networks or
why six is a magic number. In Proceedings of the IEEE National Telecommunications
Conference, pages 4.3.1-4.3.5, Birmingham, Alabama, December 1978.

5. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local
information on an ad hoc sensor network. In Proceedings of the 2nd International Work-
shop on Information Processing in Sensor Networks (ISPN ’03), Palo Alto, California,
April 2003.

6. H. Balakrishnan, R. Baliga, D. Curtis, M. Goraczko, A. Miu, N. Priyantha, A. Smith,
K. Steele, S. Teller, and K. Wang. Lessons from developing and deploying the cricket
indoor location system. Preprint, November 2003.

7. Y. Kwon, K. Mechitov, S. Sundresh, W. Kim, and G. Agha. Resilient Localization for
Sensor Networks in Outdoor Environments. Technical Report UITUCDCS-R-2004-2449,
University of Illinois at Urbana-Champaign, June 2004.

8. N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for context-
aware mobile applications. In Proceedings of the 7th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom), pages 1-14, Rome,
Italy, July 2001.

9. L. Doherty, L. El Ghaoui, and K. S. J. Pister. Convex position estimation in wireless
sensor networks. In Proceedings of the 20th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM 2001), Volume 3, pages 1655-1663,
Anchorage, Alaska, April 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

REFERENCES 309

Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from mere
connectivity. In Proceedings of the 4th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2003), pages 201-212, Annapolis, Maryland,
June 2003.

N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann. Scalable, ad hoc
deployable rf-based localization. In Proceedings of the Grace Hopper Celebration of
Women in Computing Conference 2002, Vancouver, British Columbia, Canada, October
2002.

S. Fitzpatrick and L. Meertens. Diffusion based localization. Private communication,
2004.

A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration
primitive for node localization problems. In Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA), pages 112-121,
Atlanta, Georgia, September 2002.

A. Savvides, C.-C. Han, and M. B. Srivastava. Dynamic fine-grained localization in ad-
hoc networks of sensors. In Proceedings of the 7th Annual Conference on Mobile Com-
puting and Networking, pages 166—179, Rome, Italy, July 2001.

S. Simic and S. Sastry. Distributed Localization in Wireless Ad Hoc Networks.
Memorandum No. UCB/ERL M02/26, University of California, Berkeley, 2002.

W. J. Butera. Programming a Paintable Computer. Ph.D. thesis, Massachusetts Institute
of Technology, 2002.

D. Niculescu and B. Nath. Localized positioning in ad hoc networks. Ad Hoc Networks,
1:247-259, 2003.

J. D. McLurkin. Algorithms for Distributed Sensor Networks. Master’s thesis, UCB,
December 1999.

R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from
local information on an ad hoc sensor network. In Proceedings of the 2nd International
Workshop on Information Processing in Sensor Networks (IPSN °03), Palo Alto,
California, April 2003.

D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proceedings of
GLOBECOM 01 (IEEE), pages 2926—2931, San Antonio, Texas, November 2001.

D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In Proceedings
of IEEE INFOCOM 2003—The Conference on Computer Communications,
22(1):1734—-1743, March 2003.

R. Nagpal. Organizing a global coordinate system from local information on an amor-
phous computer, 1999.

T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-Free Localization
Schemes in Large Scale Sensor Networks. Paper Submitted to MobiCom 2003.

C. Savarese, J. Rabaey, and J. Beutel. Locationing in distributed ad-hoc wireless
sensor networks. In Proceedings of the 2001 International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2001), pages 2037-2040, Salt Lake City,
Utah, May 2001.

N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free distributed local-
ization in sensor networks. In Proceedings of the Ist International Conference on
Embedded Networked Sensor Systems (SenSys-03), pages 340-341, Los Angeles,
California, November 2003.

310

26.

27.

28.

29.

30.

31.

32.

LOCALIZATION IN SENSOR NETWORKS

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, no. 4598, pages 671-680, May 13, 1983.

S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-hoc net-
works. In Proceedings of the 34th Annual Hawaii International Conference on System
Sciences (HICSS-34), Volume 9, page 9008, Maui, Hawaii, January 2001.

L. Meertens and S. Fitzpatrick. The Distributed Construction of a Global Coordinate
System in a Network of Static Computational Nodes from Inter-Node Distances. Kestrel
Institute Technical Report KES.U.04.04, Kestrel Inistitute, Palo Alta, California, 2004.

D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with
noisy range measurements. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys-04), pages 50—61, Baltimore, Maryland,
November 2004.

X. Ji and H. Zha. Sensor positioning in wireless ad hoc networks using multidimensional
scaling. In Proceedings of IEEE INFOCOM 2004—The Conference on Computer
Communication, 23(1):2652—-2661, March 2004.

N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller. Mobile-assisted localiz-
ation in wireless sensor networks. In Proceedings of the 24th Annual Joint Conference of
the IEEE Communications Society on Computer Communications (INFOCOM 2005),
Miami, Florida, March 13-17, 2005.

B. K. P. Horn, H. Hilden, and S. Negahdaripour. Closed-form solution of absolute orien-
tation using orthonormal matrices. Journal of the Optical Society of America A, 5(7),
1988.

I CHAPTER 10

Topology Construction and
Maintenance in Wireless
Sensor Networks

JENNIFER C. HOU and NING LI
University of lllinois, Urbana, lllinois

IVAN STOJMENOVIC

University of Ottawa, Ontario, Canada

Energy efficiency and network capacity are two of the most important issues in wire-
less sensor networks. Topology-control algorithms have been proposed to maintain
network connectivity while reducing energy consumption and improving network
capacity. Several studies have also been performed to investigate critical conditions
on several network parameters in order to ensure network k-connectivity (in the
asymptotic sense). In this chapter, several problems (and their corresponding sol-
utions) related to topology construction, maintenance, and connectivity in wireless
sensor networks are discussed. Specifically, topics discussed include (1) various
communication models and generation of random network topologies; (2) neighbor
discovery and maintenance; (3) basic connectivity properties of wireless sensor net-
works (with the random unit graph model as the underlying model); (4) localized
topology construction algorithms, along with their associated geometric structures
in both homogeneous and heterogeneous networks, and (5) how to enhance fault
tolerance in topology construction and connectivity.

10.1 INTRODUCTION

To construct and maintain an efficient network topology is a very important task in
wireless sensor networks. Instead of transmitting with the maximal power, nodes in
a multihop wireless network collaboratively determine their transmission power and

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

311

312 TOPOLOGY CONSTRUCTION AND MAINTENANCE

define the network topology by forming the proper neighbor relation under certain
criteria. This is in contrast to the “traditional” network, in which each node transmits
with its maximal transmission power and the topology is built implicitly by routing
protocols (that update their routing caches as in timely a way as possible) without
considering the power issue. A desirable network topology not only reduces
energy consumption and prolong network lifetime, but also improves spatial reuse
(and hence the network capacity [1]) and mitigate the medium-access control
(MAC) level contention.

The research in topology construction and connectivity has been approached
independently along two paths. In one path, researchers aim to determine critical
conditions on network parameters (such as the transmission range [2-5], the
number of neighbors [5,6], the minimum total power required [7—11], or the node
failure probability) to ensure network (k-)connectivity with high probability. Of
particular interest is how these critical conditions scale as the number of wireless
devices increases. In the other path, researchers aim to devise distributed algorithms
to enable each node to choose its own transmission power in order to minimize the
total transmission power of all wireless nodes, while maintaining (k-)connectivity.
This problem is, in general, NP-hard in the Euclidean plane [8]. What makes the
problem more complicated is that there is, in general, no central authority in a
multiple-hop wireless network, and each node has to make its decision based on
the information collected from the network. This implies the topology construction
algorithm should be distributed. To be less susceptible to mobility, the algorithm
should depend only on the information collected locally. Algorithms that depend
only on local information also incur less message overhead/delay in the process
of information collection, and are hence more scalable. Several researchers
have leveraged elegant graph-theoretic structures to develop localized heuristics
[12—19] or efficient algorithms with bounded approximation ratios [20,21].

In this chapter, we give an overview of research activities along these two
research thrusts, and present several problems (and their corresponding solutions)
related to topology construction, maintenance, and connectivity in wireless sensor
networks. We consider the problem that arises in topology construction (1) when
the network is heterogeneous and nodes may have different attributes (such as
transmission radii); and (2) when fault tolerance has to be taken into account (in
addition to the primary objectives of network connectivity and reduction in power
consumption).

The rest of this chapter is organized as follows. In Section 10.2, we introduce the
communication models for wireless sensor networks, including the unit-graph
model and other probabilistic models. In Section 10.3, we discuss the methods for
generating random unit graphs. The issue of neighbor discovery and maintenance
is treated in Section 10.4. Following that, we summarize in Section 10.5 several
localized geometric structures for topology construction, and discuss in Section
10.6 the problem that arises in the case of network heterogeneity. Several essential
connectivity properties of wireless sensor networks (with the random unit graph as
the underlying model) are presented in Section 10.7. Finally, we discuss the issue of
enhancing fault tolerance in topology construction and connectivity in Section 10.8.

10.2 COMMUNICATION MODELS 313
10.2 COMMUNICATION MODELS

In the subsequent discussion, we assume that all the communication activities of a
node take place in a single wireless channel, that is, each wireless device has one
transmitter and one receiver. A widely accepted basic graph-theoretical model for
wireless sensor networks is the unit-graph model. In the unit-graph model, two
nodes A and B are neighbors (and thus joined by an edge) if the Euclidean distance
between their coordinates in the network is at most R, where R is the transmission
radius and is assumed to be the same for all nodes in the network. Figure 10.1
gives an example of a unit graph with transmission radius as indicated. Because
of limited transmission radius, the routes are normally created through several
hops in such a multihop wireless network.

The unit-graph model assumes that all nodes use the same and fixed-transmission
radius. Variation of this model includes unit graphs with obstacles (or subgraphs of
unit graphs), and minpower graphs where each node has its own maximum trans-
mission radius and links are unidirectional or allowed only when bidirectional
communication is possible. Nodes in an ad hoc network may transmit with their
maximum transmission radius, or may adjust their transmission range, normally
selected from a discrete set of possible values.

The network is normally assumed homogeneous, with all the nodes possessing
the same network attributes (such as computational capacity, battery power, and
transmission radii). In heterogeneous networks, however, nodes may have different
network attributes. An example is heterogeneous (and often hierarchical) sensor net-
works, in which a large number of low-cost lightweight wireless devices (that
simply sense the environmental changes) and a few energy-rich devices (that
serve as cluster heads for data aggregation and in-network processing) coexist.
They scatter in a geographic region, have to dynamically organize themselves,

Vg

Vs

U1
v
'U4 0

1)8 v6

V7

[
2 U3

Figure 10.1 Unit-graph representation of multihop wireless network.

314 TOPOLOGY CONSTRUCTION AND MAINTENANCE

and convey the location/tracking information periodically or on-demand to data
sinks. Each type of node has its own battery power (and hence transmission
radius), computational capacity, and memory.

Credible research was conducted in the literature only for the unit-graph model,
while other models are sporadically mentioned, without many results. One example
is fuzzy unit graph, used in [22] to improve routing with guaranteed delivery [23]. In
this model, there exist two transmission radii, » and R. Two nodes always commu-
nicate if their distance is <r, never communicate of their distance if >R, and may or
may not communicate otherwise.

The unit-graph model is ideal in the sense that the probability of receiving a
packet between two nodes does not, in reality, suddenly change from 1 to 0 when
nodes move from distance R — & to R + ¢ for a very small e. There exist few articles
that consider a more realistic physical layer, but the first one to formalize the com-
munication model is ref. [24]. They applied the log normal shadow fading model to
represent a realistic physical layer to derive the probability p(x) for receiving a
packet successfully as a function of distance x between two nodes, as shown in
Figure 10.2. The transmission radius R is defined in ref. [23] as the distance
at which p(R) =0.5. Then p(x) is approximated reasonably accurately by
P(x) =1 — (x/R)"?/2 for x <R, and ((2R — x)/R)"?/2 otherwise, where B is the
power attenuation factor (between 2 and 6), and v depends on packet length L
(e.g., v=2 for L = 120). Two nodes are considered neighbors if the distance x
between them is such that p(x) > w, where w is a threshold parameter (for example,
when w = 0.05, then x ~ 1.4R).

Beta=4
— L=12
.

0.8+

0.7

0.6

0.54

0.4+

Probability of reception

0.34

0.2

0.1+

O T T T T T T
0 10 20 30 40 50 60 70

Distance

Figure 10.2 The packet reception probability in log normal shadow fading model, R ~ 41.

10.3 GENERATING RANDOM UNIT GRAPHS 315
10.3 GENERATING RANDOM UNIT GRAPHS

Parameters of a random unit graph are normally the number of nodes N and the
common transmission radius R. However, R may be a misleading parameter when
used in simulations, since all generated graphs may be either dense or sparse,
which has significant impact on the performance (for example, of routing protocols).
It is therefore preferable to use another parameter that can be easily interpreted and
matched directly with the graph density. That parameter is the average number of
neighbors d per each node. There exists a relation between R and d, since an approxi-
mate radius R can be obtained from the formula d = (N — 1)@R2 /A, where A is the
area of the region where nodes are placed. In case of a square of edge length a,
A = a*. This formula is obtained by finding the expected number of nodes inside
a circle with radius R (the formula multiplies number of other nodes with probability
of being generated inside the region).

In the literature, random unit graphs are normally generated by selecting each of
N nodes at random locations inside a square or circle. In the case of a square region,
this means generating x and y coordinates at random in an interval [0, a). Then all
N*(N — 1)/2 potential edges in the network among the N nodes are sorted by their
length in ascending order. The radius R that corresponds to a chosen value of d
is equal to the length of the N*d/2-th edge in the sorted order. Any edge no longer
than R will remain in the graph. Other edges are eliminated from the graph.
Dijkstra’s shortest-path algorithm (from one node to all other nodes) is used to
check the connectivity of the graph, if desired. This generation method is proposed
in ref. [25].

Sparse random unit disk graphs have high probability of being partitioned, which
increases the generation time of connected ones. In [52], Atay and Stojmenovic
addressed the following two problems: fast generation of sparse connected
random unit graphs and the nature of obtained graphs. They describe several new
generation schemes that resemble conference scenarios. These schemes select the
next node position based on the distribution of the nodes already placed. In the Mini-
mum Degree Proximity Algorithm (MIN-DPA), first a center node C is selected at
random among nodes having the smallest number of neighbors. Then the new
node is placed at random but constrained to be neighbor of C. The placed node
might affect the degree of not only the center node but also other nodes in the proxi-
mity. Based on this observation, Maximum Degree Proximity Algorithm (MAX-
DPA) imposes a maximum degree constraint for each node. In each round, a
random position X is generated repeatedly until it passes both the proximity test
(to be the neighbor of at least one already selected node) and the maximum
degree test. To check the latter, the approximate degrees of X and all already
selected nodes are calculated assuming that X is added to the set. If none of these
degrees is greater than or equal to the maximum degree allowed dmax, the position
is accepted. Authors [52] show that their new algorithms are significantly faster than
the well-known generation scheme for sparse graphs, and also have lower standard
deviation in node degree. In addition, they analyze the degree distribution and par-
tition patterns of graphs generated by different algorithms.

316 TOPOLOGY CONSTRUCTION AND MAINTENANCE
10.4 NEIGHBOR DISCOVERY

It is usually assumed in the literature that each node is aware of its direct neighbors.
In the case that the assumption does not hold, a node may broadcast a “hello” mess-
age, with all the nodes that receive the message being defined as the neighbors.
Although the problem of neighbor discovery does not appear trivial in real
networks, where transmission activities may interfere with each other and messages
may collide, surprisingly, this problem did not receive much attention in this
literature.

Alonso et al. [27] proposed a protocol for node discovery in single-hop ad hoc
networks, where each node is within transmission radius of each other. The protocol
discovers one edge in the network, which is considered to be detected after one end-
point was a single transmitter in one step, followed by the other endpoint being a
single transmitter in the next step with the edge confirmation. Therefore the protocol
remains short of achieving the larger goal of recognizing all edges and all nodes in
the network, since repeated application of one of the protocols described may not
lead to an efficient and terminating scheme for that goal.

In multihop ad hoc networks, nodes may not be within communication range
of each other. We assume that node B detects edge AB if B receives a packet
from A without any collision. Nodes that send “hello” messages are not able to
recognize a collision, because the signal from its own transceiver is so strong that
the receiver of the transmitting node cannot hear or even recognize the existence
of any other signal. The problem can be considered to have two variants: with
and without time synchronization of the sensors.

McGlynn and Borbash [28] assumed that time is synchronized and is divided
into slots. They considered the variant of the neighbor discovery problem by
enabling sensors to broadcast “hello” messages in different starting slots, and
devised methods for saving energy during the neighbor discovery process over
a longer period of time. They propose some variants of birthday protocols,
where each sensor may be active or in the sleeping mode. In their protocol, the
average number of neighbors N of each sensor is overestimated by a fixed
number N, equal to all sensors. Then each sensor transmits the message with
probability 1/N'.

The variant of the problem when all sensors are active and all begin initialization
in the same time slot is considered in ref. [29]. In this protocol, each node maintains
its own estimate N of the number of its neighbors based on its own collision experi-
ence, and transmits with probability 1/N. If a nontransmitting node experiences
collision, N is doubled. If silence is detected, N is halved. If a nontransmitting
node hears only one neighbor, N does not change. The algorithm in ref. [29] is
applied to single-hop networks (complete graphs), but can be extended to multihop
networks.

Neighbor discovery with all the physical layer characteristics taken into account
is considered in ref. [24]. The simplest protocol is that each node transmits “hello”
packets for a prespecified number of times, thus increasing the chance of being
discovered by its neighbor(s). In the variable transmission-count protocol, each

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 317

node transmits “hello” packets until it correctly identifies a certain number of
neighbors. Note that protocol in ref. [24] does not consider the impact of col-
lisions. The problem becomes much more difficult if both the physical-layer
characteristics and collisions are taken into account; this has not been addressed
in the literature.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION

In this section, we describe some basic geometric structures used in the various
topology construction protocols. Most of this section is devoted to a “chain” of
planar and such connected structures: MST (minimum spanning tree), LMST
(local minimum spanning tree), RNG (relative neighborhood graph), GG (Gabriel
graph), PDT (partial Delaunay triangulation), and DT (Delaunay triangulation).
They create a chain since MST C LMST C RNG C GG C PDT C DT. MST and
DT are global structures, while LMST, RNG, GG, and PDT are constructed based
only on local knowledge. Some other structures exist in literatures that need only
local knowledge. However, in addition to the knowledge of (mostly one-hop and
sometimes k-hop) neighbors, they may also require nodes to send additional mess-
ages between them in order to construct the graph. In addition, for a complete treat-
ment of the subject, we introduce relay-region—based and cone-based topology
construction approaches.

10.5.1 Minimum Spanning Tree

MST is a subgraph of a given unit graph that is connected, contains all the nodes, and
whose sum of edge lengths is minimized. It can be constructed using Dijkstra’s
algorithm as follows. All edges are sorted according to the increasing order by

Vg
U5

U1

1)4 'l)o
Vg UG
v7

Uy Vs

Figure 10.3 MST for a unit graph.

318 TOPOLOGY CONSTRUCTION AND MAINTENANCE

their lengths. Each edge is tested in that order (from shortest to longest) for inclusion
in MST. If adding the edge to the already constructed graph does not create a cycle,
the edge is then added to the constructed graph (that is, eventually to MST); other-
wise it is not added. This construction also can be used to show that the connected
unit graph contains MST as its subgraph (since edges whose length does not exceed
the transmission radius will already connect the graph while constructing MST).
Figure 10.3 shows an MST for a unit graph, with MST edges drawn in bold lines.

When several edges are of the same length, the MST may not be unique. In order
to have a unique structure for MST, one can label edges so that all edges become
distinct, and edges of the same length can be compared. This can be achieved by
introducing the weight of an edge AB as a record w(AB) = (|AB|, min(id(A), id(B)),
max(id(A), 1d(B))), where |AB]| is the length of AB, and id(A) and id(B) are unique
identifiers of its endpoints, and |AB|, min(id(A), id(B)), and max(id(A), id(B))
serve as the primary, secondary, and ternary keys in comparisons. Two edges are
compared first by their primary keys. If the primary keys are the same, secondary
keys are used. If the secondary keys are also the same, the ternary keys are used.
The defined edge weights can also be applied to other structures, which are
described in the following subsections, thus eliminating ambiguity and leading to
some desirable characteristics (e.g., degree limitation).

10.5.2 Local Minimum Spanning Tree

A localized MST-based topology control algorithm was proposed in ref. [14]. Each
node u first collects positions of its one-hop neighbors N1(u). Node u then computes
the minimum spanning tree MST(N1(u)) of N1(«). Node u keeps a directed edge uv
in LMST if and only if the edge uv is also an edge in MST(N1(v)). If each node
already has 2-hop neighboring information, the construction does not involve any
message exchange between neighboring nodes; otherwise, each node contacts

Vg
Vs
U1
U4

08 ‘U6
v7

(%) 3

Figure 10.4 LMST for a unit graph.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 319

A

MST LMSTI1
Figure 10.5 MST and LMST in two dimensions.

neighbors along its LMST link candidates, to verify the status at other nodes. The
variant with the union of edge candidates rather than their common intersection is
also considered in ref. [14], possibly leading to a directed graph (no message
exchange is then needed even with one-hop neighbor information). Figure 10.4
shows an example of an LMST graph.

In ref. [18], Li et al. showed that LMST is a planar graph (no two edges intersect).
Then they extended LMST to k-hop neighbors, that is, the same construction but
with each node having more local knowledge. They also proved that MST is a
subset of 2-hop—based LMST, but MST is not a subset of the one-hop—based
LMST considered in this article. We observed, however, on their diagrams that
LMST with 2-hop and higher local knowledge was mostly identical to the one con-
structed with only one-hop knowledge, and recommend that only that limited
knowledge be used, thereby reducing the communication overhead needed to main-
tain k-hop knowledge. MST and LMST are illustrated in Figure 10.5.

Theorem 10.1 MST is a subset of LMST [30].

Proof. Let LMST(A) = MST(n(A)) be the minimal spanning trees constructed
from n(A), which is the set containing A and its one-hop neighbors. We will show
that if an edge from MST has endpoints in n(A), then it belongs to LMST(A). Sup-
pose that this is not true, and let e be the shortest such edge. LMST(A) can also be
constructed by following Kruskal’s algorithm described earlier. Thus edges from A
to its neighbors and between neighbors of A are sorted in increasing order. They are
then considered for inclusion in LMST(A). Thus, when e is considered, since it is not
included in LMST(A), it creates a cycle C in LMST(A), with e being the longest edge
in that cycle. Some of the edges from C are not in MST. Consider now expanded
cycle C' constructed from C as follows. Let f be an edge from C that is not in
MST. Addition of f into MST creates a cycle B, with f being the longest edge in
the cycle. The cycle consists of fand a path consisting of edges from MST. Replace
fin C with all the edges from that path. Each such replacement enlarges the cycle C,
but does not add any edge longer than f, and consequently longer than e. At the end
of this process, after replacing all non-MST edges with the corresponding paths of

320 TOPOLOGY CONSTRUCTION AND MAINTENANCE

MST edges, edge e remains the longest edge of C’, but all the other edges of C’ are
now also in MST. This is a contradiction, since MST has no cycles. Therefore each
edge AB from MST belongs to both LMST(A) and LMST(B), and therefore to
LMST. (]

10.5.3 Relative Neighborhood Graph

Relative neighborhood graph (RNG) is introduced by Toussaint [31], and can be
defined, in the simplest form, as follows. An edge uv is included in RNG if and
only if it is not the longest edge in any triangle uvw. Figure 10.6 illustrates this defi-
nition. Consider the “lune,” which is the intersection of two circles centered at u and
v, both with radius uv. Edge uv is in RNG if and only if this lune has no other nodes
from an ad hoc network in its interior. In Figure 10.2, uv is not in RNG because of a
witness neighbor w that makes uv the longest edge in triangle uvw.

Using this definition, some edges may have very large degrees in several particu-
lar scenarios (e.g., many nodes can be located at the boundary of the lune just dis-
cussed). To obtain a degree-limited structure, the record w(AB) = (|AB|, min(id(A),
id(B)), max(id(A), id(B))) can be used instead, as described earlier. We refer to this
structure in the sequel, assuming random node placement and a very low chance of
any two edges being of the same length. The degree of such a structure is limited to 6
(for nodes located in a plane). This can be proved by contradiction. Assume that
node A has more than 6 neighbors in RNG. Then there exist two consecutive neigh-
bors B and C so that ZBAC < 7/6. Then BC is not the shortest edge in triangle
ABC, and either AB or AC is. This contradicts the definition of RNG. Note again
that such an argument cannot be used if one allows that AB = AC. Note also that
the same proof can be used to show the degree of limitation of MST or LMST in
two dimensions.

Theorem 10.2 The LMST of a unit graph is a subgraph of RNG of the same
graph [32].

Proof. It suffices to show that if an edge uv belongs to LMST, then it belongs to
RNG. By contradiction, suppose there exists an edge uv such that uv € LMST

Figure 10.6 (u,v) is not in RNG graph because of a witness node w.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 321

2 Uy

Figure 10.7 RNG in a small ad hoc network.

and uv & RNG. Then uv belongs to MST(n(x)) and to MST(n(v)), and since uv does
not belong to RNG, there exists a node w € n(u) N n(v) such that uv is the “longest”
edge in triangle uvw. Either edge uw or vw is not in LMST, since LMST is a tree
(from the local point of view). Without loss of generality, suppose uw is not in
LMST. Then uv can be replaced by uw in MST(n(u)), giving a spanning tree with
a lower overall weight (i.e., total sum of all edge lengths) than the minimal one
(MST(n(u))), which is a contradiction. Therefore LMST is a subgraph of RNG. [J

MST, LMST, and RNG are used in a number of articles where a sparsely con-
nected network is desirable. The average degree of a node in MST with n nodes

Figure 10.8 RNG in a large ad hoc network.

322 TOPOLOGY CONSTRUCTION AND MAINTENANCE

is 2(n — 1)/n ~ 2. LMST has an average degree of about 2.04 (that is, about 2%
more than MST), while RNG has an average degree of about 2.5.

Figure 10.7 and Figure 10.8 show RNGs in smaller and larger networks. LMST
and RNG are planar graphs, which follows from the planarity of the Gabriel graph
(which is their superset). Note that construction of LMST and RNG does not require
that the exact positions of nodes and their neighbors be known; only the correspond-
ing mutual distances are required. In both cases, each node requires that the distance
to its neighbors be known, as well as the distances between any pair of neighbors.

10.5.4 Gabriel Graph

The Gabriel graph (GG) is proposed in ref. [33], and is defined as follows. A GG
contains an edge UV if and only if the disk with diameter UV contains no other
node inside it. For instance, in Figure 10.9, UV is in GG while PQ is not, because
of a “witness node” W located inside the disk. This criterion can be tested in two
ways. Each common neighbor W of nodes U and V should be located at a distance
of at least |UV|/2 from the midpoint of UV for UV to be included in GG. Alterna-
tively, one can verify the angles from neighbors to UV. As shown in Figure 10.9, if
/. PWQ > /2 for a common neighbor W of P and Q, then PQ is not in GG. It
should be observed, as in the case of LMST and RNG, that the construction of
GG requires only the knowledge of the location of a node and those of its neighbors.
Figure 10.10 shows an example of a GG, with GG edges drawn as thick lines.

Theorem 10.3 RNG is a subgraph of GG.

Proof. Note that the lune in the RNG definition is a subset of the disk in GG defi-
nitions. Therefore, if the lune does not contain any neighbor, then the disk also
does not contain any neighbor. Therefore if an edge belongs to RNG it also belongs
to GG. O

A Gabriel graph was used in ref. [23] for routing with guaranteed delivery because
it was the densest known localized structure that was planar. The planarity of GG
(and consequently its subgraphs RNG and LMST) can be shown from the planarity
of Delaunay triangulation (see the next proof), which contains GG as its subset.

Figure 10.9 UV is included in GG, while PQ is not, because of witness W.

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 323

Figure 10.10 GG of a set of nodes in a unit graph.

However, in order to give a simpler proof, we concentrate on the GG case only, and
prove this directly.

Theorem 10.4 The Gabriel graph is a planar graph.

Proof. Suppose that, on the contrary, GG is not a planar graph. Let UV and PQ be
two of its edges that intersect (Fig. 10.11). Since UV is in GG, nodes P and Q are
outside the disk with diameter UV. Therefore ZUPV < /2, and LUQV < m/2.
Similarly, ZPUQ < 7/2 and £PVQ < 7/2. Then the sum of angles in quadri-
lateral UPVQ is <2 This is a contradiction, since the sum of angles in any
quadrilateral is 2. (]

Huang, Lu, and Roman [34] presented some statistics on the Gabriel graph. On a
random graph with 1600 nodes, they report an average face size of 4.3, 1369 faces,
average node degree about 3.8, and an average size of the outer face of 248. How-
ever, they counted each dangling edge once (an edge that belongs to only one face,
not to two different faces). If dangling edges are counted as two edges in the corre-

Figure 10.11 Planarity of GG, RNG, and LMST.

324 TOPOLOGY CONSTRUCTION AND MAINTENANCE

sponding face, then counting the average number of edges on a face of a planar
graph can be done as follows. Let N, F, and E be the number of nodes, faces, and
edges of a planar graph, respectively. The well-known Euler formula is
F=E—N+2. Let S be average number of edges on a face. Since each edge is
counted twice (whether or not it belongs to same or two different faces), we have
FS=2E. Thus S =2E/F,or S =2E/(E — N +2).

10.5.5 Delaunay Triangulation and Partial Delaunay Triangulation

Delaunay triangulation (DT) is a well-known and frequently used applied structure
in computational geometry [35]. It can be constructed in O(n log n) time for a set of n
points in the plane. One definition of Delaunay triangulation is as follows: an edge
uv belongs to DT if and only if there exists a circle, whose chord is uv, which does
not contain any other point from the set in its interior. It immediately follows that
GG is a subset of DT, since diameter uv (and the disk with diameter uv) is a special
case of a chord (and the corresponding circle).

Partial Delaunay triangulation (PDT) [16] is a subgraph of DT, and contains GG
as its subgraph. PDT can be constructed locally. More precisely, it is a subset of DT
containing edges of DT that can be locally confirmed. Let Disk(u, v) be the disk with
diameter uv. Given an edge uv, we consider three cases: (1) if Disk(u, v) contains no
other node from the network, then uv € GG C PDT; (2) if Disk(u, v) contains nodes
on both sides of uv, then uv & DT and uv & PDT; and (3) if Disk(u, v) only contains
nodes on one side of uv, let w be one such point that maximizes the angle
a = Luwv > /2. Consider the largest angle 8 = Zupv on the other side of uv,
where p is a node outside Disk(u,v). If a+ B> m, then uv & DT (and
uv & PDT); if @ + B < 7 (assume that no four nodes are cocircular), we can add
uv into PDT if the following two conditions are both satisfied, which depends on
whether one-hop or 2-hop neighbor topology is known to each node (this defines
two structures, PDT1 and PDT2, respectively). PDT definition is illustrated in
Figure 10.12.

Figure 10.12 Definition of the partial Delaunay triangulation (PDT).

10.5 LOCALIZED STRUCTURES FOR TOPOLOGY CONSTRUCTION 325

In the case of one-hop neighbor knowledge, assume w € n(u) is inside Disk(u, v),
with the largest angle « = Zuwv > /2. Edge uv is added to PDT1 if (1) there is no
node from n(u) that lies on the different side of uv and inside the circumcircle pas-
sing through u, v, and w; and (2) sin « > d/R, where R is the transmission radius of
each wireless node, and d = |uv|.

In the case of 2-hop neighbor knowledge, assume w € n(u) N n(v) is inside
Disk(u,v), with the largest angle « = Zuwv > /2. Edge uv is added to PDT2 if
(1) there is no node from n(u) U n(v) that lies on the different side of uv and
inside the circumcircle passing u, v, and w; and (2) cos a/2 > d/2R, where R is
the transmission radius of each wireless node.

The construction of PDT ensures that GG C PDT C DT. Since DT is planar, GG
and PDT are also planar. PDT1 C PDT?2, since more edges can be confirmed with
more knowledge. PDT1 has about 2% more edges than GG. The average degree
of a node of DT is about 5.9.

10.5.6 Yao Graph

The Yao,, graph [36] is proposed by Yao to efficiently construct an MST in high
dimensions. Any p equally separated rays originating at each node u define p
cones. In each cone, u then chooses the closest node v within the transmission
range, if there is any, and adds a directed link uv. This can result in a directed sub-
graph, as shown in Figure 10.13. Since Yao, contains MST as a subgraph, deleting
all unidirectional links still preserves network connectivity. Note that Yao,, is not
necessarily planar.

10.5.7 Minimum Power Topology

Rodoplu and Meng [12] introduced the enclosure graph for localized power-aware
topology control in ad hoc networks. The power needed for transmitting between

Figure 10.13 YAOgq for a unit graph. The arrows indicate the direction of communication.

326 TOPOLOGY CONSTRUCTION AND MAINTENANCE

two nodes at distance r is proportional to u(r) = r* + ¢, where « is power attenu-
ation factor (a number between 2 and 6), while ¢ is a constant that accounts for
the cost of running hardware at nodes and minimum reception power. Although
most researchers assume ¢ = 0, which enables them to prove some nice properties,
in reality it is ¢ > 0, which means that selecting a very close forwarding
neighbor may not be the best choice when energy is the criterion. An edge AB is
in the enclosure graph if and only if direct transmission between A and B is a
power-optimal solution for a given set of nodes. That is, u(|AB|) < u(|AC]) +
u(|CB|) for any common neighbor C of A and B. The enclosure graph is undirec-
tional. In the case when o = 2 and ¢ = 0, the enclosure graph becomes equivalent
to GG, illustrated in Figure 10.10.

10.5.8 Cone-Based Topology

Cone-based topology control (CBTC(«)) [13] is a two-phase localized algorithm.
Each node finds the minimal power p such that transmitting with the power p ensures
that the node can reach some node in every cone of degree a. The algorithm has been
proved to preserve network connectivity if @ < 57/6. Several optimizations to the
basic algorithm have also been discussed. These include (1) a shrink-back operation
can be added at the end to allow a boundary node to broadcast with less power, if
doing so does not reduce the cone coverage; (2) if a < 27/3, asymmetric edges
can be removed while maintaining the network connectivity; and (3) if there
exists an edge from node u to node v; and from node u to node v,, respectively,
the longer edge can be removed while preserving connectivity, as long as
dvi,vp) < max{d(u,v;), d(u,v,)}. As shown in Figure 10.14, the resulting sub-
graph may be directed.

An event-driven strategy was also proposed to reconfigure the network topology in
the case of mobility. Each node is notified when any neighbor leaves/joins the neigh-
borhood and/or the angle changes. The mechanism used to realize this requires the

Figure 10.14 CBTC (27/3) of a unit graph.

10.6 TOPOLOGY CONSTRUCTION IN HETEROGENEOUS NETWORKS 327

state to be kept at, and message exchanges among, neighboring nodes. The node then
determines whether it needs to rerun the topology control algorithm.

10.5.9 Bluetooth Scatternet Formation

Bluetooth technology is based on a medium-access frequency-hopping, where
master nodes decide about a series of frequencies for communication within a
piconet. A piconet consists of a master node and up to seven slave nodes. Piconets
can be connected to a scatternet via common nodes that can serve as common slaves,
or a master node in one piconet can serve as slave node in another piconet. Bluetooth
is currently considered energy expensive for application in sensor networks. The
creation of a connected degree-limited scatternet is a challenging problem that
attracted research interest recently. For instance, ref. [16] proposed a solution that
will optionally apply RNG, GG, or PDT to create a planar structure (if desired,
e.g., for routing), and then to apply a Yao graph that will limit degree while preser-
ving connectivity (and planarity). The last step is to decide about master—slave
roles. Since the Yao graph construct selects the closest nodes in each angular
range, all proposed methods tend to choose neighboring nodes that are relatively
close to the current node. When routing is applied in a scatternet that is constructed
in this way, the routes have relatively large hop count (although they can be power
efficient). An alternative design is proposed in ref. [37]. Since LMST and RNG are
degree limited, the Yao graph does not need to be applied on them. Each node has,
on average, two neighbors in LMST and 2.5 neighbors in RNG, and the scatternet is
already connected. Therefore the remaining links, up to seven per node, may be
chosen arbitrarily. If the hop count is the optimality metric, then these links can
be oriented toward the furthest neighbors in several angular ranges (to provide
good forwarding neighbors in all directions). If power or other metric is considered,
the best neighbors for the given metric can be added. The scatternet constructed in
this way improves routing performance [36].

10.6 TOPOLOGY CONSTRUCTION IN
HETEROGENEOUS NETWORKS

The homogeneity assumption usually does not hold in practice for various reasons.
First, even devices of the same type may have slightly different maximal trans-
mission power. Second, the environment settings also affect the transmission
range. For instance, a wireless device usually has a larger transmission range with
fewer obstacles around it. Finally, as mentioned in Section 10.2, there exist devices
of dramatically different capabilities in wireless sensor networks, for example, light-
weight sensor nodes versus energy-rich cluster heads. In this section, we consider
the issue of topology construction in heterogeneous wireless networks, where the
transmission range of each node may be different.

Most of the topology construction algorithms discussed in Section 10.5 assume
homogeneous wireless nodes with uniform transmission ranges. When directly

328 TOPOLOGY CONSTRUCTION AND MAINTENANCE

(a) (b) (©

Uy Uy Vy
- Y U
U3 U3 U3
vy vy vy
Y6 Y6 Y6
Us Us Vs
Ug Ug Ug

Original topology Topology by CBTC(2m/3) Topology by DLSS is strongly
(without topology control) without optimization connected.
is strongly connected. is not strongly connected:

there is no path from v, to vy.

Figure 10.15 An example that shows that CBTC(27/3) may render disconnectivity in
heterogeneous networks. There is no path from vg to vg due to the loss of edge (vq, vg),
which is discarded by vy, since vs and vg have already provided the necessary coverage.

applied to heterogeneous networks, these algorithms may render disconnectivity.
For example, as shown in Figure 10.15(a) and 10.15(b) (the arrows are used to indi-
cate the direction of the links), the network topology derived under CBTC (27/3)
without optimization may not preserve connectivity. Similarly, we show in
Figure 10.16(a) and 10.16(b) that the network topology derived by RNG may be
disconnected.

Since RNG is originally intended for undirected graphs only, one can tailor the
definition of RNG for directed graphs. The modified relative neighborhood graph
(MRNG) is defined as shown in Figure 10.17. An edge uv is included in MRNG

a b c
@) o, ©
V2 V2 V2
v 2 v Uy) D,
Vs 1 4 V5 1 Vs 1 4
Original topology (without Topology by RNG is not Topology by DLSS is strongly
topology control) is strongly strongly connected: there isno connected.
connected. path from v, to Vi.

Figure 10.16 An example that shows that RNG may render disconnectivity in
heterogeneous networks. There is no path from v, to v4 due to the loss of edge (v,, v4),
which is discarded since [(v, v{)| < |(V2, v4)l, and |(v4, vi)| < |(v2, v4)l.

10.6 TOPOLOGY CONSTRUCTION IN HETEROGENEOUS NETWORKS 329

- ~

”~ ~
e :\"“~\
/ 27N N
Ve / p\ \

/ / | S \
] ;7 7 N \
] 1,7’ \ \
] ‘ ‘o \
1 u‘—»lv 1
\ \] 1
\ \] !
\ \ ’ /
\ \ / ,/
\

. N / ,
~ -
N ®e -
~ ”
< -

Figure 10.17 The definition of modified relative neighborhood graph (MRNG).

if and only if there does not exist a third node p such that both # and v can reach p by
using the maximal transmission power, and w(up) < w(uv), w(vp) < w(uv). Unfor-
tunately, the topology derived by MRNG may still be disconnected, as shown in
Figure 10.18(a) and 10.18(b).

Two localized topology construction algorithms were proposed in ref. [38]. The
first one, directed relative neighborhood graph (DRNG), is an extension of RNG for
heterogeneous graphs. An edge uv is included in DRNG if and only if there does not
exist a third node w such that both u can reach w and w can reach v by using the
maximal transmission power, respectively, and w(up) < w(uv), w(pv) < w(uv).
The second one, directed local spanning subgraph (DLSS), is an extension of
LMST for heterogeneous graphs. In DLSS, each node u first builds its local spanning
subgraph S, of the one-hop neighborhood n(u). The algorithm to construct S, is simi-
lar to Kruskal’s algorithm. Edges are inserted into S, in ascending order of weight.
An edge pq is kept in S, only if p and g are not strongly connected before the inser-

(a) v (b) v (©) vy

L] L) L]

v v 1

U3 U3 U3
Vs Vs Us

Original topology (without Topology by MRNG is not Topology by DLSS is strongly
topology control) is strongly strongly connected: there isno connected.
connected. path from v to vs.

Figure 10.18 An example that shows MRNG may render disconnectivity in heterogeneous
networks. There is no path from v, to v3 due to the loss of edge (vs, v3), which is discarded
since |(vs, v)| < |(vs, v3)I, and |(v3, v)| < [(vs, v3)|.

330 TOPOLOGY CONSTRUCTION AND MAINTENANCE

- -

4

- —

-~
'

7’ - =~
’ s N S
’ / N \

/ ’ \ \
1 /7 7/ \ \ \
1 1,7 \ \ \
) " : 1 \
I u v 1
\ \ 1 I
) \ ! 1
\ \ ’ /
\ \ / ,/

\ \ /
(S ,
AN Sel__--"
~ ”
~ -

S ——

Figure 10.19 The definition of directed relative neighborhood graph (DRNG).

tion of pgq. This procedure repeats until the S, is strongly connected. Then u keeps a
directed edge uv if and only if uv is also an edge in S,. The definition of DRNG is
illustrated in Figure 10.19.

The following lemmas and theorems show that both DLSS and DRNG can pre-
serve the strong connectivity of the original graph.

Lemma 1. For any edge uv in the original graph E(G), u is still connected to v in
DLSS [37].

Proof. Sort all edges uv € E(G) in ascending order of weight, that is, w(uv,) <
w(uyvy) < - -+ < w(yv;), where [is the total number of edges. We now prove by
induction.

« Basis: The first edge u;v, satisfies w(u;v;) = min{w(uv)| uv € E(G)}. Accord-
ing to the algorithm for constructing S,, u;v; € E(DLSS), that is, u; is
connected to v; in DLSS.

Induction: Assuming the hypothesis holds for all edges u;v;, i < k, we prove uy is
connected to v, in DLSS. Since this is obviously true if u,v;, € E(DLSS), we only
need to consider the case where u;v; & E(DLSS). Before edge u;v; was con-
sidered in the local topology construction of v, there must already exist a path
p = (Wo = Ug, Wi, Wa, ..., Wy—1, W, = V) from 1 to vy, where ww; | € E(S,0),
Wi € E(Su), i=0,1,...,m— 1. Since edges are inserted in ascending order
of weight, we have w(ww; 1) < w(uv,). Applying the induction hypothesis, w;
is connected to w;; for i =0, 1, ..., m — 1. Therefore, u, is connected to vy.
O

Theorem 10.5 (Connectivity of DLSS [37]): DLSS preserves the connectivity of
G, that is, DLSS is strongly connected if G is strongly connected.

Proof. Suppose G is strongly connected. For any two nodes u, v € V(G), there
exists at least one path p = (wo=u, wy, wa, ..., Wy—1, W,, = v) from u to v,

10.7 CONNECTIVITY 331

where ww;, | € E(G),i=0,1,...,m — 1. Since w; is connected to w;,; by Lemma
10.1, u is connected to v in DLSS. [l

Lemma 10.2. DLSS is a subset of DRNG [37].

Proof. We prove by contradiction. Given any edge uv € E(DLSS), assume
uv & E(DRNG). According to the definition of DRNG, there must exist a third
node p such that w(up) < w(uv), w(pv) < w(uv). According to the construction of
DLSS, uv should not be inserted since u is connected to p and p is connected to
v, that is, uv & E(DLSS). O

Theorem 10.6 (Connectivity of DRNG [37]): If G is strongly connected, then
DRNG is also strongly connected.

Proof. This is a direct result of Theorem 10.5 and Lemma 10.2. U

Figure 10.20 shows DRNG and DLSS of a large network where 50 nodes are
randomly distributed in a 500 m x 500 m area, and the transmission ranges vary
from 100 m to 150 m.

10.7 CONNECTIVITY

In this section, we present some basic connectivity properties of the random unit-
graph model. In particular, we discuss the critical conditions, such as the trans-
mission range, the number of neighbors, and the minimum total power of all the
nodes (termed as the critical total power), to ensure network connectivity with
high probability. Two of the objectives that have been most commonly considered
in the literature are minimizing the maximum transmission range at each node
(assuming all nodes use a common transmission radius), and minimizing the total
power incurred by all the nodes.

10.7.1 Critical Transmission Range and Node Degree

One of the most fundamental questions is: Given a number of nodes #n to be deployed
in a region, which is the minimum value r of the transmitting range that ensures net-
work connectivity? If node placement is known in advance, the localized structures
given in Section 10.5 can be used to construct the topology and the value of r can be
determined accordingly. In the case that n nodes are uniformly randomly placed on a
unit disk and the transmission radius r(n) satisfies 72(n) = (logn + c(n))/n, it is
guaranteed that the network (of large sizes) is connected with probability approach-
ing 1 if and only if c¢(n) — o0 as n — oo. That is, r = O(y/logn/n) [10,39].

Penrose [2] shows that the longest edge M,, of the minimum spanning tree has the
following asymptotic distribution:

P(nﬂ'Mﬁ —logn <=a) — exp(—e™ %) as n — 0o

332 TOPOLOGY CONSTRUCTION AND MAINTENANCE

Original topology (without topology control) Topology by DRNG is strongly connected.
is strongly connected.

(©)

Topology by DLSS is strongly connected.
Figure 10.20 Topologies derived by DRNG and DLSS.

Thus if we let n7r(n) = logn + a, and @ — oo, the network is connected with the
probability approaching one. He also showed in ref. [3] that the longest nearest
neighbor and the longest MST edge have asymptotically (when n — 00) the same
value. Based on this observation, Ovalle et al. [30] proposed to use the longest
LMST edge to approximate the value of r(n) using a wave-propagation quazi-
localized algorithm. The differences between the exact and approximated values
of r(n) are estimated for two- and three-dimensional random unit graphs. Despite
a small number of additional edges in LMST with respect to MST (under 3%),
they can extend r(n) by about 33% its range on networks with up to 500 nodes,
which implies a 50% or more increase in energy consumption, depending on the
power attenuation factor. A quazi-localized scheme to construct MST from
LMST is then described in ref. [30]. The scheme needs less than seven messages
per node on average (for networks up to 500 nodes). It eliminates LMST edges

10.7 CONNECTIVITY 333

that are not in MST by a loop-breakage procedure, which iteratively follows dan-
gling edges from leaves to LMST loops, and breaks loops by eliminating their long-
est edges, until the procedure finishes at a single node (as a by-product, this single
node can also be considered as an elected leader of the network). The leader so
elected also learns the longest MST edge in the process, and can broadcast it to
other nodes. Note that this procedure operates only in two dimensions, since it is
based on a face routing scheme (cf. ref. [23]).

Santi and Blough [4] showed that, in two and three dimensions, the transmission
range can be reduced significantly if weaker requirements on connectivity are accep-
table. Halving the critical transmission range, the longest connected component
contains 90% of nodes approximately. This means that a considerable amount of
energy is spent in order to connect relatively few nodes.

It has also been shown in ref. [40] that, as the common transmission range
changes, the probability that the network is connected exhibits a sharp transition
within a relatively short interval (see Fig. 10.21). Similar transition phenomena
also exist for k-connectivity [19,39].

10.7.2 Critical Node Degree

Since the average number of neighbors d is approximated from d = (n — 1)r*m/A
(where A is the area of the region), it follows directly from Gupta and Kumar’s
result [10] (if the transmission radius r(n) satisfies m2(n) = (logn + c(n))/n, the
network (of large sizes) is connected with probability approaching 1 if and only if

100

90

80 1

70

60

50 1

40

Probability of connectivity

301

201

T T T T T T T T T T T T T T T T T T T T
1011121314 1516 17 18 19 20 2122 23 24 25 26 27 28 29 30
Density

o
-
N
w -
o~
o 4
o
~ -
o -
©

Figure 10.21 Sharp transition of probability of connected network with respect to common
transmission radius.

334 TOPOLOGY CONSTRUCTION AND MAINTENANCE

c(n) — o0 as n — oo that d = @(logn) is the average density for critical connec-
tivity. This means that each node needs to have, on average, ®(logn) neighbors
for the network to be connected.

Xu and Kumar [6] went one step further and showed that in a network with n
randomly placed nodes, if each node is connected to less than 0.074 log n nearest
neighbors, then the network is asymptotically disconnected with probability one
as n increases; on the other hand, if each node is connected to more than 5.1774
log n nearest neighbors, then the network is asymptotically connected with prob-
ability approaching one as n increases. It appears that the critical constant may be
close to one, but that remains an open problem.

10.7.3 Critical Total Power

Blough et al. [7] studied the critical total power for one-connectivity, based on results
on the asymptotic total weight for weighted minimal spanning trees [41,42]. Since the
proof is based on the results on the asymptotic total weight for weighted minimal
spanning trees, it cannot be easily generalized to the case of k-connectivity. Rengar-
ajan et al. [11] gave the expectation of the critical total power for 1-connectivity.

Clementi et al. [8] studied the problem of assigning transmission ranges for wire-
less nodes so as to minimize the total power consumption in the special case of the
path-loss exponent @ = 2, provided that any pair of nodes are within & hops. They
showed that given the upper bound on the number of hops 4, the total power incurred
O(n'/") with high probability. Their result cannot be readily generalized to the case
of a # 2. Gomez and Campbell [9] applied the results reported in ref. [41] and
showed that for the n nodes that are independently, uniformly distributed in a unit
d-dimensional cubic, the total length of the minimal spanning tree using the edge
weight function ¢(x) =x* is O(n'~*/9) with probability 1 as n— oo for
0 < a <d. Their results hold only for 0 < a < 2, which is out of the typical
range for the path loss exponent in the 2-dimensional case.

The entire preceeding analysis assumes that all the nodes are subject to the same
network parameter (e.g., common transmission power/range). Zhang and Hou [43]
investigate the critical total power required for maintaining asymptotic k-connectivity
in a heterogeneous random wireless network on a unit square S = [0,1]*. In their analy-
sis, each node is allowed to choose its own transmission power. Specifically, let W, ; be
the critical transmission power node i uses, and R,; the corresponding transmission
range of node i under the power model W,; = R f,-, where 2 < a < 4 is the path-loss
exponent. They showed that, under the assumption that wireless nodes are distributed
on a unit square according to a Poisson point process with density A and with the
use of the toroidal model (torus convention), the critical total power of all the
nodes, W, = > W;; = > RfY}, for maintaining k-connectivity is O(I'(a/2 + k)/(k —
1)!A!1=%/2) with probability approaching 1 as A — oo. This result suggests that the
power saved using optimal, nonuniform transmission ranges is on the order of
(log M)¥/? as compared to that using optimal uniform transmission ranges.

10.8 TOPOLOGY CONSTRUCTION AND CONNECTIVITY 335

10.8 TOPOLOGY CONSTRUCTION AND CONNECTIVITY WITH
CONSIDERATION OF FAULT TOLERANCE

Since a wireless sensor network is usually composed of a large number of unreliable
sensor nodes, fault tolerance is an important requirement for topology construction.
In particular, the network connectivity should be preserved even when some of the
sensor nodes fail or deplete their power. With the use of smaller transmission power,
most topology control algorithms actually decrease the number of possible routing
paths between any pair of nodes. The topology thus derived is more susceptible to
node failure. For instance, if node v, in Figure 10.3 fails, the network will be parti-
tioned into three disconnected components. One way to construct fault-tolerant
topology is to construct a k-vertex connected network. Note that a k-vertex
connected network is k — 1 fault-tolerant, that is, it can tolerate failure of at most
k — 1 nodes. A 3-vertex connected network is given in Figure 10.22. (For simplicity,
the term k-connectivity is used to refer to k-vertex connectivity.)

An alternate way to enhance fault tolerance in topology construction is to make
data sinks or network controllers aware of critical nodes and links in the network, so
that additional sensors can be woken up or deployed on demand in the network. A
node is defined to be critical if the subgraph of its p-hop neighbors (without the node
itself) is disconnected [26]. Similar definitions were given in ref. [26] for critical
links.

In this section, we first discuss the properties of k-vertex connected topologies
and present several algorithms that construct such topologies. Then we discuss
localized algorithms that detect such nodes and links.

10.8.1 K-vertex Connected Topologies

Since the problem of finding a minimum-cost k-connected subgraph has been proved
to be NP-hard, many approximation algorithms have been proposed (see, for
example, refs. [21] and [44] for a summary).

Penrose [3] studied k-connectivity in a geometric random graph of n nodes, each
with a transmission range of r. It has been proved that the minimum value of r at

Figure 10.22 A 3-vertex connected network.

336 TOPOLOGY CONSTRUCTION AND MAINTENANCE

which the graph is k-connected is equal to the minimum value of r at which the graph
has a minimum degree of k, with probability 1 as n goes to infinity. This result is
significant, since it links k-connectivity, a global parameter of the graph, to node
degree, a local parameter. However, the minimum value of » was not given in ref.
[3]. Bettstetter [40] also investigated the relation between the minimum node
degree and k-connectivity for geometric random graphs. The analytical expression
of the required range ry for the almost surely k-connected network is derived and
verified by simulation.

Li et al. [19] extended the work in ref. [3] and gave the lower and upper bounds
on the minimum value of r at which the graph is k-connected with high probability.
Yao,, s, a localized topology control algorithm based on the Yao structure, was also
proposed. Yao, ; is constructed by having every node u choose k closest neighbors in
each of the p > 6 equal cones around u. It was proved to preserve k-connectivity and
a length spanner.

Bahramgiri et al. [45] augmented the CBTC algorithm (Subsection 10.5.8) to pro-
vide fault tolerance. Specifically, let the directed subgraph of G, D(«), be the output
of the CBTC(«) algorithm. Let G(a) be the result of deleting all unidirectional links
in D(«). It was proved that G(27/3k) preserves k-connectivity of G.

In ref. [21], three approximation algorithms were presented to find the mini-
mum power k-connected subgraph. The first algorithm is global and gives an
O(kPB)-approximation, where [is the best approximation factor for the
k-UPVCS problem defined in ref. [21]. The second algorithm is also global
and improves the approximation factor to O(k) for general graphs. The third
algorithm is distributed and gives an k ‘“-approximation, where « is the expo-
nent in the propagation model. It first computes the MST of the input graph by
using a distributed algorithm, and then adds a path among the neighbors of each
node in the returned tree. Since this distributed algorithm is based on the distrib-
uted MST algorithm, it is not localized, that is, it relies on information that is
multiple hops away to construct the MST. This implies more maintenance over-
head, and delay will be incurred when the topology has to be changed in response
to node mobility or failure.

In [15], a centralized greedy algorithm, fault-tolerant global spanning subgraph
(FGSS)), was first presented. FGSS; is a generalized version of the Kruskal’s algo-
rithm for MST [46]. In FGSS,, different components are iteratively merged until
only one k-connected component remains. FGSS; preserves k-vertex connectivity
and is min—max optimal, that is, FGSS; minimizes the maximum transmission
power used in the network, among all algorithms that preserve k-vertex connectivity.
Based on this algorithm, fault-tolerant local spanning subgraph (FLSS;) is proposed
for topology control in wireless networks. In FLSS,, each node u applies the FGSS;
algorithm to its one-hop neighborhood, n(u), and determines its neighbor set locally.
It has been proved that FLSS, preserves k-vertex connectivity and maintains
bidirectionality for all links in the topology, while reducing the transmission
power and improving the network capacity. FLSS; has also been proved to be
min—max optimal among all strictly localized algorithms.

10.8 TOPOLOGY CONSTRUCTION AND CONNECTIVITY 337

10.8.2 Detection of Critical Nodes and Links

An alternative way to enhance fault tolerance is to make data sinks or network
controllers aware of critical nodes and links in the network. Algorithms for detecting
critical nodes and links based on global knowledge are well known. However, their
use in sensor networks is limited, since the controllers may not be able to learn the
overall network structure in a dynamic environment. It is therefore preferred that
sensors themselves detect locally critical links and/or nodes and report them to
the controllers.

Several localized definitions of critical nodes and links, using topological or
positional information, are introduced in ref. [26]. A node is critical if the subgraph
of its p-hop neighbors (without the node itself) is disconnected. Three definitions of
critical links are proposed, based on verifying common p-hop neighbors, loop
length, and critical status of link endpoints, respectively. The experiments with
random unit graph model of ad hoc networks show high correspondence of local
and global decisions. The errors mostly occur when alternative routes exist but
are relatively long. Note that for a given particular report path, the reporting
sensor and the network controller could be located in the same component after fail-
ure of a sensor on the route between them, and therefore the criticality of that sensor
does not necessarily imply the criticality of the overall route, as an alternate route
may already exist. However, in the case of monitoring and reporting by many or
all sensors and multiple reporting paths, the criticality of a node is likely to require
network maintenance. The notions can be generalized to the case of critical
k-connectivity of the network.

Localized algorithms for testing k-connectivity are proposed in ref. [47]. In the
first protocol, each node makes a criticality decision by verifying whether or not
each of its p-hop neighbors has degree (number of neighbors) at least k. The
second protocol also tests whether the subgraph of p-hop neighbors of a given
nodes is k-connected. The third protocol also verifies whether this subgraph contains
any critical nodes.

The proposed tests assume static sensors. In the case of mobile sensors (e.g.,
attached to some vehicles), the partition detection can be performed with the proto-
col [48], based on LMST structure [14]. Based on their speed and movement direc-
tions, two neighboring nodes A and B can predict when their link will break (details
are first described in ref. [49]). Using movement information from all neighbors,
nodes A and B construct LMST at the time their link will break. If at that time
AB is in LMST (no matter whether the link is or is not currently in LMST) then
the link is critical.

To the best of our knowledge, there have been no studies of connectivity issues
when realistic physical-layer characteristics are taken into account to model sensor
networks. What does it mean that a set of nodes is connected? There are several
possible definitions as a starting point. In the simplest definition, a network can
be considered g-connected if the network, consisting of edges whose probability
of receiving a packet is at least g, is connected. When a message is broadcast
from a source, it reaches any other node with a certain probability. However, mul-

338 TOPOLOGY CONSTRUCTION AND MAINTENANCE

tiple hops can drastically decrease the probability that a unicast/broadcast message
reaches one or all nodes. Alternatively, one can define the network as being
g-connected if the probability of a packet to be routed successfully between any
two of the nodes, or broadcasting from any node to reach all of the nodes in the
network, is >q [24].

We recommend to read [50,51] for a deeper treatment of topology in ad hoc and
sensor networks.

EXERCISES

10.1. Prove that MST is a subset of Yao,, [36].
10.2. Show that PDT1 C PDT2.

10.3. Prove that the enclosure graph for « =2 and ¢ = 0 becomes equivalent
to GG.

10.4. Prove that CBTC(«) preserves network connectivity for a < 577/6 [13].

REFERENCES

1. P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on
Information Theory, 46:388—-404, March 2000.

2. M. Penrose. The longest edge of the random minimal spanning tree. Annals of Applied
Probability, 7(2):340-361, 1997.

3. M. Penrose. On k-connectivity for a geometric random graph. Random Structures and
Algorithms, 15(2):145-164.

4. P. Santi and D. Blough. The critical transmitting range for connectivity in sparse wireless
ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):1-15, 2003.

5. P.-J. Wan and C. Yi. Asymptotic critical transmission radius and critical neighbor number
for k-connectivity in wireless ad hoc networks. In Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Tokyo, May
2004.

6. F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless
networks. Wireless Networks, 10(2):169-181, March 2004.

7. D. M. Blough, M. Leoncini, G. Resta, and P. Santi. On the symmetric range assignment
problem in wireless ad hoc networks. In Proceedings of the 2nd IFIP International Con-
ference on Theoretical Computer Science, pages 71—-82, Montreal, August 2002.

8. A.E.F. Clementi, P. Penna, and R. Silvestri. On the power assignment problem in radio
networks. Mobile Networks and Applications, 9(2), April 2004.

9. J. Gomez and A. Campbell. A case for variable-range transmission power control in wire-
less multihop networks. In Proceedings of IEEE INFOCOM 2004, Hong Kong, China,
March 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

REFERENCES 339

P. Gupta and P. Kumar. Critical power for asymptotic connectivity in wireless networks.
Stochastic Analysis, Control, Optimization and Applications, W. M. McEneaney, G. Xin,
and Q. Zhang (eds.), pages 547-566, Birkhauser, Boston, 1998.

B. Rengarajan, J. Chen, S. Shakkottai, and T. S. Rappaport. Connectivity of sensor net-
works with power control. In Proceedings of the 37th Asilomar Conference on Signals,
Systems and Computers, Volume 2, pages 1691-1693, Pacific Grove, California,
November 2003.

V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. IEEE Journal
on Selected Areas in Communications, 17(8):1333-1344, August 1999.

L. Li,J. Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer. Analysis of a cone-based
distributed topology control algorithm for wireless multi-hop networks. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), pages 264—-273,
Newport, Rhode Island, USA, August 2001.

N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology control
algorithm. In Proceedings of IEEE INFOCOM 2003, San Francisco, California, 2003.

N. Li and J. C. Hou. FLSS: A fault-tolerant topology control algorithm for wireless net-
works. In Proceedings of the ACM International Conference on Mobile Computing and
Networking (MobiCom), Philadelphia, Pennsylvania, September 2004.

X. Li, I. Stojmenovic, and Yu Wang. Partial Delaunay triangulation and degree limited
localized Bluetooth scatternet formation. IEEE Transactions on Parallel and Distributed
Systems, 15(4):350-361, April 2004.

X. Y. Li and I. Stojmenovic. Broadcasting and topology control in wireless ad hoc net-
works. In Handbook of Algorithms for Mobile and Wireless Networking and Computing,
A. Boukerche and I. Chlamtac (eds.), CRC Press, to appear.

X. Y. Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Localized low weight graph
and its applications in wireless ad hoc networks. INFOCOM, Hong Kong, China,
March 2004.

X.Y.Li, P.J. Wan, Y. Wang, and C. W. Yi. Fault tolerant deployment and topology con-
trol in wireless ad hoc networks. Wireless Communications and Mobile Computing,
4:109-125, 2004.

G. Calinescu, 1. L. Mandoiu, and A. Zelikovsky. Symmetric connectivity with minimum
power consumption in radio networks. In Proceedings of the 17th IFIP World Computer
Congress, pages 119—130, 2002.

M. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power optimization in fault-tolerant
topology control algorithms for wireless multi-hop networks. In Proceedings of the
ACM International Conference on Mobile Computing and Networking (MobiCom),
pages 300—-312, San Diego, California, September 2003.

L. Barriere, P. Fraigniaud, L. Narajanan, and J. Opatrny. Robust position based routing in
wireless ad hoc networks with unstable transmission ranges. In Proceedings of the 5th
ACM International Workshop on Discrete Algorithms and Methods for Mobile Comput-
ing and Communications DIALM’ 01, pages 19-27, Rome, Italy, July 2001.

P. Bose, P. Morin, 1. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in
ad hoc wireless networks. In Proceedings of the 3rd International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, pages 48-55,
Seattle, Washington, August 1999.

340

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

TOPOLOGY CONSTRUCTION AND MAINTENANCE

I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena.
Physical layer impact on the design and performance of routing and broadcasting proto-
cols in ad hoc and sensor networks. Computer Communications, 28(10):1138-1151, June
2005.

I. Stojmenovic and X. Lin. Loop-free hybrid single-path/flooding routing algorithms
with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1023—-1032, October 2001.

M. Jorgic, I. Stojmenovic, M. Hauspie, and D. Simplot-Ryl. Localized algorithms for
detection of critical nodes and links for connectivity in ad hoc networks. In Proceedings
of the 3rd Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pages
360-371, Bodrum, Turkey, June 2004.

G. Alonso, E. Kranakis, R. Wattenhofer, and P. Widmayer. Probabilistic protocols for
node discovery in ad hoc, single broadcast channel networks. In Proceedings of the
1EEE International Parallel and Distributed Processing Symposium Workshops, Nice,
France, 2003.

M. J. McGlynn and S. A. Borbash. Birthday protocols for low energy deployment and
flexible neighbor discovery in ad hoc wireless networks. In Proceedings of the ACM
International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Long Beach, California, October 2001.

A. Micic and I. Stojmenovic. A hybrid randomized initialization protocol for TDMA in
single-hop wireless networks. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium Workshops, Fort Lauderdale, Florida, April 2002.
F. J. Ovalle-Martinez, I. Stojmenovic, F. Garcia-Nocetti, and J. Solano-Gonzalez. Find-
ing minimum transmission radii and constructing minimal spanning trees in ad hoc and
sensor networks. In Proceedings of the 3rd Workshop on Efficient and Experimental
Algorithms, Angra dos Reis, Rio de Janeiro, Brazil, May 2004.

G. Toussaint. The relative neighborhood graph of finite planar set. Pattern Recognition
12(4):261-268, 1980.

J. Cartigny, F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Localized LMST and RNG
based minimum energy broadcast protocols in ad hoc networks. Ad Hoc Networks,
3(1):1-16, 2005.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analy-
sis. Systemic Zoology, 18:259-278, 1969.

Q. Huang, C. Lu, and G. C. Roman. Reliable mobicast via face-aware routing. In Pro-
ceedings of IEEE INFOCOM 2004, Hong Kong, China, March 2004.

A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, John Wiley & Sons, 1992.

A.C-.C. Yao, On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal of Computing, 11:721-736, 1982.

D. Yang and I. Stojmenovic. Bluetooth Scatternet Formation for Efficient Routing in
Ad Hoc Networks. In preparation.

N. Li and J. C. Hou. Topology control in heterogeneous wireless networks:
Problems and solutions. In Proceedings of IEEE INFOCOM, 2004, Hong Kong, China,
March 2004.

39

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

REFERENCES 341

. P. Panchapakesan and D. Manjunath. On the transmission range in dense ad hoc radio
networks. In Proceedings of the IEEE Signal Processing and Communications Confer-
ence (SPCOM), Bangalore, India, 2001.

C. Bettstetter. On the minimum node degree and connectivity of a wireless multihop net-
work. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), pages 80—91, Lusanne, Switzerland, 2002.

J. M. Steele. Growth rates of Euclidean minimal spanning trees with power weighted
edges. Annals of Probability, 16(4), 1988.

J. E. Yukich. Asymptotics for weighted minimal spanning trees on random points.
Stochastic Processes and Their Applications, 85:123—-128, 2000.

H. Zhang and J. C. Hou. On the Critical Total Power for Asymptotic k-Connectivity in
Wireless Networks. Technical Report UIUCDCS-R-2004-2386, Department of Computer
Science, University of Illinois at Urbana-Champaign, July 2004.

S. Khuller. Approximation algorithms for finding highly connected subgraphs. In
Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum, (ed.), PWS
Publishing Company, Boston, Massachusetts, 1996.

M. Bahramgiri, M. Hajiaghayi, and V. S. Mirrokni. Fault-tolerant and 3-dimensional
distributed topology control algorithms in wireless multi-hop networks. In Proceedings
of the 11th International Conference on Computer Communications and Networks
(IC3N), pages 392—397, October 2002.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48—50, 1956.

M. Jorgic and I. Stojmenovic. Localized algorithms for detection of k-connectivity in
ad hoc networks. In preparation.

1. Stojmenovic. LMST-Based Partition Detection for Mobile Sensors. In preparation.

I. Stojmenovic. M. Russell, and B. Vukojevic. Depth first search and location based loca-
lized routing and QoS routing in wireless networks. Computers and Informatics,
21(2):149-165, 2002.

P. Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. Submitted to ACM
Computing Surveys, 2004.

X. Y. Li and Y. Wang. Wireless sensor networks and computational geometry. In
Handbook of Sensor Networks, M. Ilyas (ed.), CRC Press, 2003.

F. Atay and I. Stojmenovic. Fast generation of connected random unit disk graphs in ad
hoc networks with reduced degree deviations, submitted for publication, 2000.

I CHAPTER 11

Energy-Efficient Backbone
Construction, Broadcasting, and
Area Coverage in Sensor Networks

DAVID SIMPLOT-RYL
IRCICA/LIFL, Universite Lille, Villeneuve d’Ascq, France

IVAN STOJMENOVIC

University of Ottawa, Ontario, Canada

JIE WU

Florida Atlantic University, Boca Raton, Florida

A backbone is a subset of sensors that is sufficient for performing assigned tasks. The
exact definition depends on the task or the particular desirable properties of a back-
bone. We discuss two specific kinds of backbones, neighbor and area dominating
sets, that we believe are the essential and perhaps only backbones required for
sensor networks. A sensor is covered by a backbone if it is in the backbone or is
a neighbor to a sensor in the backbone. This type of backbone is referred to here
as neighbor-dominating sets, or simply dominating sets. A point within a monitoring
area is covered by a sensor backbone if it is within sensing range of at least one
sensor from the backbone. This type of backbone is called area-dominating set. In
a broadcasting (also known as data-dissemination) fask, a message is sent from
one node, which could be a monitoring center, to all nodes in the network. Sensors,
which are randomly placed in an area, decide which of them should be active and
monitor an area, and which of them may sleep and become active at a later time. The
communication connectivity is important so that the measured data can be reported
to a monitoring center. This problem is known as the sensor-area coverage problem,
and needs to be solved efficiently to enable sensor functioning for a prolonged time.
Sensors may also be placed deterministically in an area to optimize coverage and
reduce power consumption. Most solutions considered in this chapter are based

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

343

344 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

on constructing area-dominating sets for sensor-area coverage. The best known sol-
utions for backbone construction, broadcasting, and sensor-area coverage problems
are based on the concept of localized connected dominating sets. For instance, one
solution to the broadcasting problem is that only nodes from a connected neighbor-
dominating set retransmit the message. This chapter reviews solutions to these three
related problems in sensor networks.

11.1 INTRODUCTION

11.1.1 Modeling Sensor Networks

A widely accepted basic graph-theoretical model for sensor networks is the unit-disk
graph model, defined as follows: two nodes, A and B, in the network are neighbors
(and thus joined by an edge) if the Euclidean distance between their coordinates in
the network is at most R, where R is the transmission radius that is equal for all nodes
in the network. There are two kinds of unit-disk graphs considered in sensor net-
works, sensing and communication unit-disk graphs, with corresponding sensing
and transmission radii, respectively. The relationship between sensing and trans-
mission radii may vary based on the particular hardware or application. There are
three basic cases: equal sensing and transmission (communication) radii, trans-
mission radius more than twice the sensing radius, and a communication range
that is between sensing and twice the sensing radii. Reasons for the three cases
become apparent later in the chapter.

Some solutions make use of sensor ability to adjust transmission radius, instead
of using the maximum radius, as determined by the unit-disk graph model. The unit-
disk graph model is not fully realistic, but is much better for approximation of a
sensor network than the random graph model (with each edge having equal prob-
ability of being selected for the graph), studied in ref. [1]. In the unit-disk graph
model, the probability of receiving a packet between two nodes suddenly changes
from 1 to O at distance R. A more realistic model is the fuzzy unit-disk graph pro-
posed in ref. [2]. In this model, there are two transmission radii, » and R. Two
nodes communicate with each other if the distance between them is <r; they do
not communicate with each other if their distance is >R, and may or may not com-
municate if the distance is between r and R. In a realistic physical-layer model, such
as the log normal shadowing model, random signal strength variations lead to a
model where the packet reception probability p(x) is a function of distance x
between two nodes. The transmission radius R is defined in ref. [3] as the distance
at which p(R) = 0.5. Two nodes are considered neighbors if the distance x between
them is such that p(x) > w, where w is a threshold parameter (for example, when
w = 0.05, then x & 1.4R). In the hitchhiking model [4], two transmission radii, r
and R, are also used. The receiver can receive a partial packet from the sender if
their distance is between r and R. The actual percentage of packet that can be
decoded depends on a particular signal model. It is assumed that each receiver
can assemble several partially received packets to one complete packet.

11.1 INTRODUCTION 345

11.1.2 Localized Algorithms and Message Complexity

Among recently developed strategies for constructing small connected dominating
sets, localized protocols offer the best prospect for achieving energy efficiency. In
a localized protocol, each node makes protocol decisions based solely on some
available local knowledge (to be more precise, based on the information from neigh-
bors within k hops for certain k), without resorting to global network information.
Because of the dynamic nature of sensor networks, the topology changes are
frequent and unpredictable. The local information must suffice for a sensor node
to make protocol decisions; otherwise, the increased communication overhead
could offset the energy savings and increase latency. In a centralized (or globalized)
algorithm, one or more nodes (or a central entity like a base station) need to learn
global node and/or edge structure, either the whole graph (for instance, to find a
route using the shortest-path algorithm), or a global structure derived from the
graph (such as minimal spanning tree, which can be used for optimal energy data
aggregation). Because of the huge communication overhead involved in gathering
such information in dynamically changing sensor networks, such protocols cannot
be energy efficient solutions in normally large sensor networks. This chapter conse-
quently discusses primarily localized solutions (some centralized algorithms are
described only for the sensor-area coverage problem).

The sensor network may operate with or without time synchronization between
sensors. In an asynchronous protocol, there is no common clock between the sen-
sors. Therefore, each sensor makes its own decision about being active or going
to a sleep state for an arbitrary period based on the overheard communication
from other sensors. In a synchronous protocol, sensors follow a common clock,
and therefore naturally may operate in rounds. In the case of sensor-area coverage,
for example, they exchange some messages (at the beginning of each round) in order
to decide which of them is needed for coverage in a given round, while the remain-
ing sensors may sleep for the rest of the round and wake up at the beginning of the
next round.

We further classify localized protocols according to the amount of information
required and to overhead in the construction and maintenance phases. The amount
of required information is related to the message complexity, which can be defined
as the average number of transmitted messages per sensor node in a protocol.
Although some protocols appear localized, an extensive message exchange with
neighbors amounts to collection and use of global information. In a strictly localized
protocol [5], all information processed by a node is either local in nature or global in
nature, but obtainable in a short constant time by querying only the node’s neighbors
or itself. In other words, only a small constant number of message exchanges with
neighbors is allowed. Strictly localized protocols may need some information that is
part of their input (such as destination position in a routing protocol) but cannot use
structures that are global in nature (e.g., information about which of the outgoing
links belongs to the minimum spanning tree (MST)). An interesting similar
definition is given in ref. [6]. An emergent algorithm is any computation that
achieves formally or stochastically predictable global effects by communicating

346 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

directly with only a bounded number of immediate neighbors and without the use of
central control or global visibility [6].

The sensors may or may not use position information in their decisions. The
availability of position information for proper sensor functioning was widely recog-
nized as highly desirable; however, it is a nontrivial problem and the precision of the
location information may impact the performance of a protocol. There exists a
variety of position-determination protocols [7], with a variety of message complex-
ities. If position information is used, we will make the simple assumption that it was
provided to the node message tree (here only messages transmitted by sensors are
counted), which is true only if it was provided externally via a global positioning
system (GPS) or similar beacons arriving from the environment.

The simplest local information required is certainly no knowledge at all about
existing neighbors. The blind flooding protocol for broadcasting (used in a typical
route discovery in reactive routing protocols), where each node will retransmit the
packet after receiving it the first time, belongs to this category. The next, and com-
monly used, assumption is the knowledge of one-hop neighbors (direct neighbors, or
nodes located within transmission radius R), and possibly their locations. To collect
such knowledge, a periodic “hello” message protocol is normally assumed, where
each sensor transmits one message informing neighbors about its existence. There-
fore, when message complexities are compared, we assume that one message per
node is needed to acquire one-hop information. A further common assumption is
of 2-hop neighbors, which are obtained after each node sends a message containing
the list of its one-hop neighbors. We will assume therefore that collecting this infor-
mation requires two messages per node. The actual cost could be higher, since such
messages in dense networks could be long and energy-consuming to transmit.

11.1.3 Does Sleeping Always Conserve Energy?

The importance of placing as many sensor nodes as possible into sleep mode is
apparent from the analysis of sensor energy expenditure. A sensor’s radio can be
in one of three active states—transmit, receive, idle—or in the sleep state. The
radio is turned off in sleep state. The power consumption for various types of sensors
and ad hoc nodes [8] shows that a sensor in the sleep state consumes 7—20 times less
energy than one in the idle state. The power consumption while receiving a message
is up to 10% higher than in idle state. Nodes spend 10—100% more energy while
transmitting than while receiving messages. For instance, the Windows Internet
Naming Service (WINS) seismic sensor consumes between 0.38 W and 0.7 W in
the transmit state, 0.36 W in the receive state, 0.34 W in the idle state, and
0.02 W in the sleep state [9]. Sensors in the idle state are listening to the traffic
and can be “alarmed” for any action. In the sleep state, however, they cannot receive
any message and cannot be alarmed to become active. The importance of placing as
many sensors as possible into the sleep state in order to prolong network life is
apparent. Shall sensors sleep whenever they know that they are not needed for
sensing or communication? Such an assumption is made in ref. [10], which proposed
an activity scheduling scheme that assumes that sensor reporting can be done at

11.2 BACKBONE CONSTRUCTION 347

predetermined times, along predetermined routes. In the route-discovery phase, each
node learns about some neighbors and receives some forwarding tasks [10]. In
addition, sampling, transmissions, and receptions along the route are also scheduled.
This enables sensors to sleep between two scheduled tasks [10].

Suppose, for simplicity, that sensors are changing between active and sleep states
on a regular basis, in rounds. The duration of a round cannot be made arbitrary, if
prolonged network life is desirable. We will demonstrate this in the case of energy
efficient behavior of a single sensor. Assume that there is fixed charge C for transition
between the active and sleep periods in sensor networks (this charge is not zero!).
Assume also for simplicity that energy consumption in the active state remains con-
sistent regardless of the amount of traffic handled (this, in fact, is not far from the rea-
lity [8]). Let F be the ratio of energy consumption between the active and sleep states,
and let S be the energy consumed in the sleep state per unit of time (therefore, in the
active state the consumption is SF per unit time). Suppose that 7'is the ratio of sensor
reporting (active) and sleep times. If the sensor remains in active mode, its energy
consumption is LSF over L time units. If the sensor decides to switch to sleep state
between reporting, then there are 2L/(T + 1) transitions, requiring energy of
2CL/(T + 1). The consumption for sleep periods is SLT /(T + 1), and consumption
during the active states is SLF /(T + 1). Thus overall consumption is 2CL/(T + 1) +
SLT/(T + 1)+ SLF/(T + 1) = L[2C 4 ST + SF]/(T + 1). This is compared to LSF
to conclude that switching to the sleep state between reporting periods is beneficial
only if T > 2C/(S(F — 1)). Therefore, the power needed for frequent transitions
may outweigh the benefits obtained from sleeping.

Clustering can be effectively used to minimize internal transmission in a cluster
with time division or frequency division. Energy awareness is not only a problem of
sleep and awake but also a problem of collision avoidance.

11.2 BACKBONE CONSTRUCTION

11.2.1 Backbone Construction, Maintenance, and Analysis

Most broadcasting, activity scheduling, and sensor-area coverage algorithms rely on
the concept of backbone. A backbone is a subset of sensor nodes that is able to per-
form data communication tasks and to serve nodes that are not in the backbone
(because it is close to them). A backbone can also be the set of active sensor
nodes, assuming then that the rest of the sensors are sleeping. There is a vast litera-
ture about backbone construction (see ref. [11] for a more comprehensive review).
The primary backbone concept used in the literature is the dominating-set concept.
A dominating set has the following property: each node is either in the dominating
set or has a one-hop neighbor that is in the dominating set. Further, the connectivity
property is often required for proper protocol functioning. A connected dominating
set (CDS) is a dominating set of nodes that is also a connected set.

Figure 11.1 illustrates the CDS concept. Nodes 13, 12, 11, 10, 9, 4, 3, 1 are
in CDS, and any remaining node is a neighbor of one listed. It is obvious that

348 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

Figure 11.1 A neighbor CDS consisting of nodes 13, 12, 11, 10, 9, 4, 3, 1.

broadcasting protocol, in which all nodes belonging to a CDS retransmit the mess-
age, will reach all nodes in a sensor network (assuming an ideal medium-access
layer). This does not mean that all of them indeed need to retransmit, as will be dis-
cussed later in the chapter. An activity-scheduling scheme may simply direct all sen-
sors in the backbone to be active, and allow all others to sleep. In this chapter,
we have described the two most important backbone concepts: neighbor- and
area-dominating sets. They can both be applied in the sensor networks. Once the
sensors for area coverage are selected (area-dominating set), their backbone (neigh-
bor-dominating set) can be constructed. Sensors in a connected neighbor-dominat-
ing set constructed over a connected area-dominating set can be used for
broadcasting in the sensor network. Thus, one can be considered a backbone of
another backbone. Note that area-dominating sets provide a network of medium
density, which has an impact on the selection and performance of broadcast proto-
cols for use in sensor networks (e.g., blind flooding may be an acceptable option).

The quality of a backbone construction/maintenance protocol is normally
evaluated by backbone size with respect to the minimal possible size for the same
network. The problem of constructing a CDS of minimal size (with a minimal
number of sensors in it) is known to be NP-complete even for centralized algorithms.
Therefore it is not surprising that finding good solutions by local means is a difficult
task, and one that has attracted significant interest in recent years. The approxi-
mation ratio of a scheme is the ratio of the number of sensors in the constructed
backbone over the minimal possible number of sensors in an optimal backbone.
There are other metrics that can be considered [12]: the protocol duration, message
overhead, and backbone robustness (does the backbone remains connected if one
node fails?). For each metric, the evaluation can be performed, analytically or
experimentally, using either average-case or worst-case performances. The ultimate
goal is certainly to have a winner in both categories (such as mergesort or heapsort
for the sorting problem). However, so far such a winner has not emerged, and
researchers have normally adopted one of the two ways for comparison. Arguably,
if a sensor network designer is presented with two protocols, one with excellent
average-case, but occasionally quite bad performance, and the other with
firm worst case guarantees (e.g., theoretically provable constant bound for the

11.2 BACKBONE CONSTRUCTION 349

approximation ratio) but considerably inferior in the average case, we believe that
the former would be the choice. This is the “philosophy” followed in this chapter.

Before describing some backbone schemes, we discuss their determinism and
cost aspects. Backbone construction schemes can be classified as probabilistic
and deterministic, based on whether or not a random number generator was used
to construct them. The random number usage here is limited to the network-layer
decisions; the underlying medium access scheme may still use random backoff
counters, for example, in a deterministic protocol.

The backbone construction protocols described in the literature normally con-
sider only construction cost. However, sensor networks are dynamic and the main-
tenance cost cannot be ignored; this is the cost to update the backbone when the
network changes. Both construction and localized maintenance protocols can be
further divided into quasi-local and local protocols. In a quasi-local (localized) pro-
tocol, all decisions are made based on local knowledge; however, the decisions
made in one part of the network may have an impact on decisions made in a distant
part of the network. Clustering is a typical example of a quasi-local protocol for both
the construction and maintenance phases. The construction phase starts from a few
selected “seed” nodes and propagates throughout the network. While this perform-
ance is debatable, the maintenance phase of quasi-local protocols is problematic,
because of possible “chain effect”: a simple change in an edge or addition/deletion
of nodes may trigger global backbone updates by propagation. Otherwise, a local
localized clustering procedure may have a negative impact on the quality (e.g.,
size) of the cluster structure. This chapter is therefore inclined toward local (loca-
lized) solutions, where, in both the construction and maintenance phases, the back-
bone status of each node depends solely on the local network configuration, typically
one-hop or 2-hop (2-hop neighbors are one-hop neighbors of one-hop neighbors).

We will now describe some localized backbone construction methods and discuss
them in the light of mentioned criteria and desirable properties.

11.2.2 Backbone Construction by Clustering

The distributed clustering algorithm [13] is initiated at all nodes whose id is lowest
among all their neighbors (locally lowest id nodes). All nodes are initially undecided.
If all neighbors of node A, which have a lower id, sent their cluster decisions and none
declared itself a clusterhead (CH), node A decides to create its own cluster and broad-
casts this decision and its id as a cluster id. If a node receives a message from a neigh-
bor that announces itself as a CH, it will send a message (to all its neighbors)
declaring itself a non-CH node, to enable more clusters to be created (note that
two CHs are not direct neighbors in the algorithm). Thus each node broadcasts its
clustering decision after all its neighbors with lower ids have already done so.
Non-CH nodes that hear two or more CHs will declare themselves as gateway
nodes. A sophisticated maintenance procedure for cluster formation when nodes
move is described in ref. [13]. To minimize the number of clusters, ref. [14] proposed
that node degree be applied as the primary key in clusterhead decisions. Nodes with
more neighbors are then more likely to become a CH. In the case of ties, lower id

350 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

nodes have an advantage. The clustering process requires one message per node in
the construction phase (after one “hello” message to find the ids of neighbors or
two “hello” messages to learn their degrees). Basagni [15] proposed variants of the
clustering algorithm [13], which uses a variety of weights for selecting best CHs.

In the protocol described in ref. [16], after the clustering process is completed,
each CH contacts neighboring CHs (up to three hops away) in order to eliminate
some gateway nodes, and to use only essential gateway nodes to preserve overall
connectivity. The construction and maintenance are fully localized. The protocol
in ref. [16] produces an excellent approximation ratio, but the message overhead
is significant, due to the overly high complexity of the election phase of the protocol
leader, which requires information to be propagated to the fragment members and to
nodes in adjacent fragments every time two fragments are merged into a new one.
The simulation results [12] show that approaches with nice theoretical features,
such as that presented in ref. [16], may hardly be applicable in practice due to the
message complexity of their operations.

Basagni, Carosi, and Petrioli [17] described such a clustering based backbone
scheme where nodes with more energy have higher chances to be clusterheads.
Their construction and maintenance procedures are ongoing process with decisions
based on received “hello” messages from neighbors. A node declares itself a CH if it
did not receive a “hello” packet from a CH with energy that differs by more than
certain threshold (“older” decisions have priority).

Chan and Perrig [5] described a localized clustering algorithm. New clusters are
spawned in a self-elective process, when no messages from other CHs are received.
Migration of an existing cluster is controlled by its CH. Each CH will periodically
poll all its followers (neighbors) to determine which is the best candidate to become
the new CH. The best candidate is the node that, if it were to become a CH, would
have the greatest number of nodes as followers while minimizing the amount of
overlap with existing clusters. The algorithm achieves a packing, efficiency close
to hexagonal packing, but is quasi-local because chain effect is not prevented. It
also has significant message overhead compared to other clustering protocols.

Wu and Dai [18] proposed a simple cluster formation in a dense network. First,
the neighborhood detection is done using Hello messages with shorter transmission
ranges than the normal one. The regular clustering algorithm is used to find CHs.
However, CHs are directly connected using the normal transmission range. There
are two versions of this approach. In the first version, the range of the Hello message
is % where r is the normal range. In this way, all CHs within three hops are con-
nected, and CHs are globally connected. In the second version, the range of Hello
message is ﬁ. During the transmission using the normal range r, % is used to connect
all CHs within three hops and 417 is used to cover the member in the cluster with a
radius of %.

In the protocol by Kuhn, Moscibroda, and Wattenhoffer [19], sensors may wake
up asynchronously at any time and do not have collision detection capabilities. They
only know the limit on the total number of sensors, and have no knowledge of pos-
sible neighbors. The algorithm computes asymptotically optimal clustering. The
main idea is that nodes, after some initial waiting, compete to become dominators

11.2 BACKBONE CONSTRUCTION 351

by exponentially increasing their sending probability on one channel. Two other
channels are then used to guarantee that the number of further dominators emerging
in the neighborhood of an already existing dominator remains small. The algorithm
can be simulated to work by using only one channel.

11.2.3 Backbone Construction by Nominating and Grid Partitioning

This section will describe two very simple schemes for backbone construction. In
ref. [20], the authors propose a simple method for determining the dominant set
(not necessarily connected). Each node nominates the neighbor with the largest id
among its neighbors to be in the dominant set (assuming that each node has a
unique identifier). This can produce the O(n) approximation ratio in the worst
case, but works well in the average case. An example of bad performance is a
linear chain of nodes with increasing identifiers. Each node needs one message to
learn the identifiers of neighbors, and possibly the second message to nominate a
neighbor into the dominant set. Connecting the dominant nodes is, unfortunately,
a nontrivial problem (e.g., the protocol in ref. [16] could be used for it).

Xu, Heidemann, and Estrin [21] discuss the following backbone construction
scheme called GAF. The given two-dimensional space is partitioned into a set of
squares (called cells), such that any node within a square can directly communicate
with any node in an adjacent square. Therefore, one representative node from each
cell is sufficient for a connected backbone. Each node transmits its id (which may
depend on its remaining energy) plus its coordinates (this requires one message
per node). In each cell, the node with maximal id is selected for the backbone.
The selected nodes in ref. [21] make a dominant set, but its average size (which
depends on the selected size of the square) may be higher than for other methods
considered here. Further, the dominant-set concept needs some parameters, such
as the size and position of squares, which have to be propagated in the network.
The method is simple, has no chain effect, and has a constant approximation
ratio. When crossing a boundary, nodes need to retransmit their information to main-
tain the dominant set. When crossing the second boundary in a larger movement, this
is not sufficient, as the moving node has no information about nodes in the new cell.
This can be resolved by triggering a round of Hello messages in that cell. The most
significant problem is that, for any ratio of transmission radius and grid size, the
dominant set obtained may disconnect the graph [17]. Although the network topo-
logy is connected, Basagni, Carosi, and Petrioli [17] observed that, for instance,
on a network with 50 nodes, GAF [21] get disconnected >40% of simulation
time for any grid size that produces a meaningful backbone size. An example illus-
trating that the partition may occur even for range transmission radii with respect to
grid size is given in Figure 11.2.

11.2.4 MPR-Based Backbone

Several broadcasting schemes are based on the concept of multipoint relays (MPR)
of anode S, defined as a minimal-size subset of neighbors of a given node S that will

352 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

Transmission radiJJs

——\

K

Figure 11.2 Leaders in a grid partitioning may be disconnected.

“cover” all 2-hop neighbors of S. A node is called covered if it can receive (directly
or via retransmissions by relay nodes of §) messages originating at S. Relay points of
S are one-hop neighbors of S that cover all 2-hop neighbors of S. The goal is to mini-
mize the number of relay points of S. The computation of an MPR set with minimal
size is an NP-complete problem. A heuristic algorithm, called a greedy set cover
algorithm, is proposed in ref. [22]. This algorithm repeats selecting node B, which
maximizes the number of neighbor nodes that are not yet covered.

Adjih, Jacquet, and Viennot [23] proposed to combine MPR and dominant-set
approaches. Each node computes its set to be forwarded to its neighbors and
transmits it to its neighbors. It then determines whether it belongs to the “MPR-
dominating set” if it either has the smallest id in its neighborhood, or the node is
a forwarding (relay) neighbor of the neighbor with the smallest id. Wu [24] observed
that a node with a smaller id than all its neighbors, but without two unconnected
neighbors, can be eliminated. The construction of an MPR-based backbone requires
2-hop neighbor knowledge, plus a message containing the list of relay nodes of each
node. This can be treated overall as CDS construction requiring three rounds of
messages, plus another round if the CDS decisions are to be communicated to
neighbors.

11.2.5 Wu’s Backbone

In a series of articles (the first one being ref. [25]), Wu et al. described, a lightweight
backbone construction scheme. We will use a modified definition from refs. [14] and
the [26] of basic concept [25], because of its reduced message overhead. A node is
an intermediate node if it has two unconnected neighbors [25]. In the example in
Figure 11.1, nodes C and K are the only nodes that are not intermediate. A node
A is covered by a neighboring node B if each neighbor of A is also a neighbor
of B, and key(A) < key(B). Assuming that the keys in Figure 11.1 are ordered

11.2 BACKBONE CONSTRUCTION 353

alphabetically, node H is covered by node I, G is covered by L, while A and B are
covered by E. Nodes not covered by any neighbor are intergateway nodes. A
node A is covered by two connected neighboring nodes B and C if each neighbor
of A is also a neighbor of either B or C (or both), key(A) < key(B), and key(A) <
key(C). An intermediate node not covered by any neighbor becomes an intergate-
way node. An intergateway node not covered by any pair of connected neighboring
nodes becomes a gateway node.

Dai and Wu [27] introduced a generalized dominant set, where coverage can be
provided by an arbitrary number of connected one-hop neighbors (instead of 1 or 2
as in the original definitions). The definition was modified in ref. [11] to the follow-
ing form to avoid similar message exchanges between neighbors. Node A is covered
by its one-hop neighbors B, C, D, . . . if the neighbors B, C, D, . . . are connected, any
neighbor of A is a neighbor of at least one of nodes B, C, D, ..., and key(A) < min
(key(B), key(C), key(D), .. .). It is then further computationally simplified by Carle
and Symplot-Ryl [28], as follows. First, each node checks if it is an intermediate
node. Then each intermediate node A constructs a subgraph G of its neighbors
with higher key values. If G is empty or disconnected, then A is in the dominating
set. If G is connected, but there exists a neighbor of A that is not a neighbor of any
node from G, then A is in the dominant set. Otherwise A is covered and is not in the
dominant set. Dijkstra’s shortest-path scheme can be used to test the connectivity.
This procedure is generalized since it allows coverage by any number of neighbors.
It is computationally even less expensive than the two-nodes coverage case.

The CDS concept [25,27] is illustrated in Figure 11.1, where the keys are
assumed to be ordered by their numerical id values: “1” < *“2” <... < “16.”
Nodes 6, 15, 16, 17, 14, and 8 do not have two unconnected neighbors that are
not in CDS (they are not intermediate). Node 2 is dominated by three connected
neighbors (nodes 3, 4, 12), since they have higher key values, and the remaining
neighbors 6 and 16 are “covered” by 3 and 12, respectively. Node 7 is covered by
four connected neighbors with higher keys 9, 13, 10, and 11 (the remaining neighbor
17 is covered by 11). Node 5 is covered by its neighbor 9, since other neighbors
(1 and 8) are neighbors of 9, and “5” < “9.” Node 1 remains in CDS because neigh-
bors with higher keys (4, 14, 5, 9, 13) are disconnected.

Wu’s concepts require either one-hop knowledge of neighbors with their pos-
ition, or 2-hop neighbor topology information. This can be obtained after one or
two Hello messages from each node. Experimental data from several sources
(e.g., ref. [12]) confirm that Wu’s concepts provide small-size CDS on average. It
was proved in ref. [27] that the generalized CDS concept has a constant approxi-
mation ratio on average, and very low probability of having an infinitely large
approximation ratio. An example of a “bad” approximation ratio is the case of a
linear chain of nodes with increasing keys, where almost all nodes are selected
into the CDS.

Each node makes decisions about CDS membership (in Wu’s concept) without
communications between nodes beyond the message exchanges that nodes use to
discover each other and establish neighborhood information. If knowledge of neigh-
bors that are in the CDS is needed, then one message from these nodes suffices.

354 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

In that case, such a message can be used to further reduce the size of the backbone.
As soon as one node decides to be in the CDS, it sends a packet informing neighbors
about the decision. Neighbors (which did not yet decide their membership) will then
consider such decided CDS neighbors as having higher key values, which may help
them in withdrawal from the CDS decision [28].

11.2.6 Enhanced Dominating Sets

The number of nodes in a CDS following Wu’s concepts can be reduced by applying
some enhanced concepts [29,30]. The first observation [29] is that if 2-hop topo-
logical knowledge is already required, it can be used to eliminate a few more
nodes from the CDS. Consider the example in Figure 11.1. Node D is in the CDS
although it is actually covered by nodes E, I, and L. The later three nodes all have
higher key values, and are connected. Node L, however, is not a one-hop neighbor
of D. This does not prevent node D from verifying whether any of its neighbors are
neighbors of L, or whether E, I, and L are connected, since L appears in the list of
neighbors sent to D by its one-hop neighbors; therefore, such a conclusion can be
made. The new definition therefore can be given as follows [29]. Node A is covered
by its 2-hop neighbors B, C, D, ... if the neighbors B, C, D, ... are connected
(according to information available to A), any neighbor of A and A itself is the neigh-
bor of at least one of nodes B, C, D, ... and key(A) < min (key(B), key(C),
key(D), ...). Note that A is not aware of possible links between its two 2-hop neigh-
bors, and therefore may declare the set disconnected although in reality it may be
connected. Note that Rule k in ref. [27] is general, allowing coverage by a set of
one-hop and 2-hop “marked” neighbors that are “glued” together by other
“marked” nodes (“marked” nodes are those that consider themselves to be in the
dominant set), which can be at an arbitrary hop distance. However, in algorithm 2
from ref. [27], implementing Rule k, nodes send their dominating status only to
their one-hop neighbors; therefore, the information about the dominating status of
2-hop neighbors and beyond is not made available for use in making a decision.
While implementation [27] is based on sending messages from each node (inform-
ing about withdrawal from the dominant set), the algorithm set forth in ref. [28] does
not use any message between nodes after gaining 2-hop topological knowledge.
Further, the observation described in ref. [29] is based on coverage by nodes that
may or may not be in the dominant set, while the definition given in ref. [27]
refers to only coverage by nodes that are in the dominant set.

The second observation [29] is that key values often present obstacles to selecting
proper nodes in the CDS. A definition that will allow key reversal may be beneficial.
Suppose that, in Figure 11.1 node G was actually renamed node M for a reason (e.g.,
high energy value). Then node M = G will be in the CDS, because of the highest-
key value. But this does not eliminate any other node from the CDS; therefore, its
inclusion is superfluous. How then can the key of M = G be reversed? All the neigh-
bors of M = G are neighbors of L, and L has a neighbor that is not a neighbor of
M = G. This is sufficient for node M = G to realize that L will not declare it as a
covering node, and therefore can safely withdraw from CDS. This concept can be

11.3 BROADCASTING IN SENSOR NETWORKS 355

formalized as follows. Node u is covered by node v if and only if one of the follow-
ing two conditions is satisfied:

(1) N(u) C N(v), where N(u) is a proper subset of N(v), that is N(v) # N(u) is
part of this condition), and
(2) N(u) = N(v) and key(u) < key(v).

Note that the preceding extended rule cannot be used jointly with other rules, such
as Wu and Li’s Rule 2 [25]. The generalization to coverage by several nodes and
the corresponding algorithms for backbone construction are presented in ref. [29].

The two enhancements described can be combined into a single one, by allowing
the node to be covered by either of the two ways [28].

11.2.7 Activity Scheduling in Ad Hoc Networks

In an ad hoc network that is not a sensor network, area coverage may not be required.
In such a case, activity scheduling (deciding which nodes should be active, and
which should go to sleep mode, so that the ad hoc network life is prolonged) can
be performed by applying the connected-neighbor dominant set concept. Nodes in
the connected-neighbor dominant set are active, while the rest of the nodes can be
put to sleep. However, in order to increase network lifetime, such decisions need
to be periodically reevaluated, as nodes that are saving energy need to contribute
at a later time. Each node in an asynchronous ad hoc network may wake up at its
predetermined time and evaluate whether it needs to be active based on a message
exchange with currently active neighbors. In the case of synchronous nodes, such
decisions are made in rounds. All nodes wake up at the same time, exchange
Hello messages, and then decide which of them will create a backbone. Any
described backbone decision process can be applied. If Wu’s concept is applied, a
suitably selected key value, which depends on the remaining node energy, is
selected and used. The other important parameter for making decisions is the
average number of neighbors (average degree) of each node. The choice of such a
best metric for prolonged network life was investigated in ref. [31].

11.3 BROADCASTING IN SENSOR NETWORKS

11.3.1 Taxonomy

In addition to the taxonomy discussed for the backbone construction, the broadcast-
ing protocols can be further classified. The next division is whether or not they are
reliable. Reliability is the ability of a broadcast protocol to reach all the nodes in the
network, assuming that the medium-access control (MAC) layer is ideal (every
message sent by a node reaches all its neighbors), location update protocol provides
accurate desired information to all nodes about their neighborhood, and the network
is connected. The blind-flooding protocol, where each node receiving the packet for
the first time will retransmit it, is a reliable protocol at the network layer. However,

356 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

as observed in seminal work [32], due to excessive retransmissions for dense
networks, collisions and contentions actually can make it very unreliable at the
MAC layer, plus there exists a large amount of redundancy. The probabilistic
(retransmissions with certain fixed probability), counter (retransmitting if the
number of received copies does not exceed a constant), and distance (retransmitting
if the distance to all senders exceeds certain threshold distance) solutions proposed
in ref. [32] are not reliable at the network layer, and also have inferior rebroadcast
savings (percentage of nodes that do not retransmit the packet) to the backbone-
based reliable solutions reviewed here. Note that the MAC layer cannot be reliable
(at least those currently considered for adoption in sensor networks), due to the
hidden-terminal problem (a node simultaneously receiving messages from two
other nodes that are not aware of each other’s transmission) and the probabilistic
nature of the protocols used.

The final classification of broadcasting schemes is determined according to the
packet content during the broadcasting process. The broadcast message sent by
the source, or retransmitted, might contain a broadcast message only. In addition,
it may contain a variety of information needed for proper functioning of the broad-
cast protocol, such as its own id, its position, one bit about its backbone status, a list
of one-hop neighbors, degree (number of its neighbors), or list of forwarding neigh-
bors, informing them whether or not to retransmit the message.

11.3.2 Backbone and Neighbor Elimination—Based Broadcasting

In ref. [14], the following framework and general algorithm were established for
reliable broadcasting. The algorithm is based on two concepts: CDS as the particular
type of backbone that provides reliability, and neighbor-elimination scheme. Back-
bone formation was already discussed in Section 11.2. Connectivity provides propa-
gation through the whole network, while domination assures reachability by all nodes.
Excess messages in any protocol affect node power and the bandwidth available; thus,
the main goal is to describe a reliable broadcast protocol with a minimal number
of retransmissions, that is, to construct a connected dominating set of minimal size.

The neighbor-elimination scheme was independently proposed in three papers in
August 2000 [33-35]. In this scheme, a node does not need to rebroadcast a message
if all its neighbors have been covered by previous transmissions. After each copy of
the same message is received, a node eliminates, from its rebroadcast list, neighbors
that are assumed to have correctly received the same message (based on one-hop
positional or 2-hop topological knowledge that the node has about its neighbors).
If the list becomes empty before the node decides to rebroadcast, the rebroadcasting
is canceled.

The general algorithm [14] for intelligent flooding is then the following one. The
source node transmits the packet. Upon receiving the first copy of the transmitted
packet intended for broadcasting, the node will not retransmit it if it is not in the
CDS. If it is in the CDS, it will select a time-out based on some criteria and some
random number. It will also eliminate all neighbors that received the same copy
of the message from its forwarding list (originally containing all one-hop neighbors).

11.3 BROADCASTING IN SENSOR NETWORKS 357

While waiting, more copies of the packet could be received. For each of them, all
neighbors receiving it are eliminated from the forwarding list. When timeout
expires, the node will retransmit if its forwarding list is non-empty, otherwise it
will cancel retransmission. This framework was applied in ref. [14] using clustering
based and Wu’s concept based backbones. Wu and Dai [36] propose a general algor-
ithm that unifies many neighbor elimination schemes.

Figure 11.3 illustrates the broadcasting algorithm [14], with C being the source
node, and nodes F, A, G, and H being in the connected dominating set following
definition [25,27], with key = (degree, id). Node E is covered by node G, while
node L is covered by connected neighbors with higher keys G and H. Similarly,
node [is covered by A and H. Other nodes are not intermediate (do not have two
unconnected neighbors). Covering relations are drawn in the dashed bolder edges.
Let the time-out be defined as time-out = (1/(number of uncovered neighbors),
id). Note that id is added to decide which node retransmits first in case of ties.
Node F then sets the time-out to % (three uncovered neighbors by source transmission
are A, G, E) and retransmits at the time-out expiration. Neighbors from CDS are A
and G, and they set time-outs to % and %, respectively, based on the number of neigh-
bors not receiving that transmission (based on their knowledge; it is possible that
some neighbors treated as uncovered actually already received the message from
nonneighbors in the process). Node A then retransmits because of shorter timeout.
After this retransmission, G changes the original time-out to % (only neighbor L
remains uncovered), and the remaining time-out is %— %, since % of the time already
lapsed. The time-out at H is % and is shorter, so it retransmits first. Node G then can-
cels retransmission.

To increase reliability at the MAC layer, Stojmenovic et al. [14] proposed the
retransmissions after negative acknowledgments (RANA) protocol. Collision

Figure 11.3 F, A, and H retransmit in the neighbor elimination and dominating set—based
broadcasting [14].

358 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

between two packets normally occurs after the initial portion of the first packet,
containing the sender’s information has already been received. The receiver node
can then send a negative acknowledgment back to the sender node, asking it to
retransmit again.

11.3.3 MPR

Several authors [33,37—39] independently proposed reliable broadcasting schemes
in which the sending node selects adjacent nodes that should relay the packet to
complete the broadcast. The ids of the selected adjacent nodes are recorded in the
packet as a forward list. An adjacent node that is requested to relay the packet
again determines the forward list. This process is iterated until the broadcast is
completed. The methods differ in the details on how a node determines its forward
list. The general principle was already outlined in the section on MPR-based
backbone.

The adaptation of multihop relaying presented in ref. [40] improves its perfor-
mance by the following observations: the broadcasting node transmits a list of its
neighbors at the time of broadcast packet transmission, not as part of any Hello
message. Knowledge of the 2-hop neighbors is used to determine which neighbors
also received the broadcast packet in the same transmission, and these nodes are
already covered and are removed from the neighbor graph used to choose the
next hop relaying nodes. Finally, if a broadcast message is received from a node
that is not listed as a neighbor, the message is retransmitted to deal with high mobi-
lity issues. In connected dominant set—based broadcast algorithm [41], the sender
node establishes priorities between the forwarding nodes and each forwarding
node should eliminate from consideration not only neighbors of the sender node,
but also neighbors of each relaying node with higher priority. Wu and Lou [43]
proved several extensions of MPR to generate a smaller CDS using 2-hop neighbor-
hood topology information to cover each node’s 2-hop neighbor set. Note that 2-hop
neighborhood topology includes all nodes within two hops and their connections. In
addition, they extended the notion of coverage in the original MPR and showed that
the extended MPR has a constant local approximation ratio compared with a logar-
ithmic local ratio in the original MPR.

Compared to backbone-based broadcasting, MPR broadcasting has a similar or
somewhat better performance in terms of rebroadcast savings, but has message
overhead due to the inclusion of the forwarding list in the packet, which may be
significant for energy-limited tiny sensors.

11.3.4 Broadcasting and Dominating Sets with Realistic
Physical Layers

We now describe the corresponding coverage, backbone notions, and broadcasting
process when the impact of the physical layer is considered. Let Ay, . .., A; be active
neighbors of given node B, and let x, . .. , x; be their respective distances to B. Then
p(xy), ... ,p(x,) are their packet reception probability rates for packets sent by B.

11.3 BROADCASTING IN SENSOR NETWORKS 359

The probability g(x) that at least one of the packets from the active nodes is received
by Bistheng = 1 — (1 — px))(1 — p(x2)) - - - (1 — p(xy)). Node B is m-covered by
active nodes Ay, ..., Ay if ¢ > m [3]. A set of nodes is the m-dominating set if each
node is either in the set or is m-covered by nodes from the set [3]. Note that, for
m = 1, and the unit-disk graph model, the well-known definition of dominant sets
follows.

These definitions can be used as a basis to generalize some well-known types of
dominating sets for the unit-disk graph to be applied under a realistic physical layer.
For example, the following definition is proposed in ref. [3] as a generalization of the
concept proposed by ref. [27]. Let Ay, ..., A, be the set of higher id neighbors of B.
If the set is empty or disconnected, then B is in the dominating set. If the set is con-
nected and each neighbor of B is m-covered by them, then B is not in the dominating
set. Finally, if any neighbor of B is not m-covered by the set, then B is in the
dominating set.

The broadcasting process with any notion of dominating sets and neighbor
elimination [14] can proceed as follows [3]. After receiving a broadcast message,
node A will set a time-out short if it is in the dominant set, and long if not. It calcu-
lates the probabilities of each neighbor for receiving the same message, and elimin-
ates m-covered neighbors from the list. This lists is updated for any further copy of
the received message. The update includes the time-out that can be extended with
more received messages. At the end of time-out, if all neighbors are m-covered,
retransmission is canceled. Otherwise, the node retransmits the packet.

Since the reception of any message is a probabilistic event, one retransmission by
any particular node may not suffice. To learn about the existence of neighbors, each
node may need to send several packets. The number of retransmissions needed for
learning about the satisfactory number of neighbors depends on density. In ref. [3],
it was proposed that each node retransmit Hello messages until a certain fixed
number of such packets or responses is received from neighbors, as an indirect measure
of density. A similar protocol also can be applied for the broadcasting task, modifying
any existing protocol originally designed for the unit graph as follows. Instead of
retransmitting only once, a given node can keep retransmitting until a certain fixed
number of packets (carrying the same packet) has been heard from neighbors, before
or after the first retransmission, or until a certain time-out expires (to handle the case of
low-degree nodes). If density is known, then a fixed number of retransmissions can be
replaced by a number depending on local density. Nodes that are, by original protocol,
supposed not to retransmit may also contribute by retransmitting the message, but
fewer times than other nodes. Further investigation and simulation is needed to find
a precise description of the winning protocols, following this general design principle.

11.3.5 Minimum Energy Broadcasting

Suppose that nodes in an ad hoc network can adjust their transmission radii, and that
they are aware of their own and the geographic position of their neighbors. The pro-
blem is to broadcast a packet to all the nodes in the network so that the sum of all
transmission power used is minimized. The power consumption for two nodes at

360 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

distance ris r 4+ ¢, where @ > 2 and c is a constant that includes signal processing
and minimal reception power. It is shown in ref. [43] that, for ¢ > 0 (which is a rea-
listic assumption), it is not optimal to minimize transmission range. Furthermore, it
was demonstrated that there exists an optimal radius, computed with a hexagonal
tiling of the network area, that minimizes the power consumption. For o > 2 and
¢ > 0, the optimal radius is r = (2¢/(a — 2))"/%, which is derived theoretically
and confirmed experimentally.

A localized broadcast algorithm, called TR-LBOP is proposed [43], which takes
this optimal radius into account. This protocol is experimentally shown to be have lim-
ited energy overhead with respect to globalized algorithms for all network densities.

11.4 SENSOR AREA COVERAGE

In area-coverage problems, a set of sensors is given and distributed over a given
area. Each sensor is able to cover a circle with radius centered at it. The problem
is to determine a small number of sensors that still cover the same area and are con-
nected, so that the sensor can report the detected information to a monitoring center.
The maximum network lifetime is certainly a related goal. Full coverage, energy
efficiency, and connectivity are critical requirements of any area-coverage protocol.
The objective of any area-coverage protocol is to achieve full area coverage, and
protocols can be classified into those that guarantee full area coverage (provided
such coverage exists) and those that do not guarantee it. A set of sensor nodes
that together fully cover a given area is called area-dominating set. Protocols can
also be divided into those that guarantee connectivity of selected active sensors
and those that do not.

There is a variety of problem statements, assumptions, and solution approaches
for the sensor area coverage. We will review them before presenting some solutions.
The problem is centered on a fundamental question: How well do the sensors
observe the physical space? This chapter discusses only the area-coverage problem,
meaning that each point in a given geographic area needs to be covered by at least
one sensor. Alternative formulations include covering certain points instead of area
(point coverage) and barrier coverage. Examples of barrier-coverage problems are,
minimizing the probability of undetected penetration through the sensor barrier and
minimal exposure path, measured as sensing time, with sensing ability diminishing
with distance. A survey of point- and barrier-coverage solutions is given in ref. [44].

The area-coverage problem can be further divided into single and multiple area
coverage. In single area coverage, each point in the area is required to be covered
at least by one sensor. In multiple area coverage, each point needs to be covered
multiple times, which could be a fixed k times coverage at a given time, or division
of sensors into maximum number of layers of area coverage. These layers can then
either alternate in time for coverage, or several layers can be used to cover an area
simultaneously for increased reliability.

The sensor deployment mechanism can be random or deterministic. A determi-
nistic sensor placement (placing sensors at desired locations) may be feasible in

11.4 SENSOR AREA COVERAGE 361

friendly and accessible environments. Random sensor distribution is generally
considered in remote or inhospitable areas, or when a fast deployment of a large
amount of sensors is desirable. We will consider only random placement in this
chapter. An example of deterministic placement is considered in ref. [45], where
the authors proposed path exposure (the likelihood of detecting a target traversing
the region using a given path) as the measure of goodness of the sensors that are
deployed to perform collaborative target detection. A centralized algorithm for pla-
cing sensors at selected locations to minimize path exposure is described in ref. [45].

In most articles in the literature, all sensing radii are equal, while a few articles
consider coverage with different sensing radii. We will consider only the case of
equal sensing radii at each node, since there is limited research done for the case
of adjustable ranges [46,47]. Wu and Yang [47] considered the cases where each
sensor is able to select one of two or three adjustable ranges, with the goal of mini-
mizing the overlapped sensing area, extending results from ref. [48].

There are also several variants regarding the relation between sensing and trans-
mission ranges. One common assumption is that sensing radius and communication
radius are equal [28]. However, some physical measurements indicate that the com-
munication range is normally larger than the reliable sensing range. This has impli-
cations on the selection of sensors for coverage, and also on the performance of other
relevant protocols. For example, Xing, Lu, Pless, and Huang [49] show that greedy
routing always works when the communication range is twice or more the sensing
range, and the area is covered and convex. They also consider restricting greedy
routing to nodes whose Voronoi regions intersect the source—destination line.

Most literature uses the unit-disk graph model for sensing, which is similar to the
unit-disk graph model used for communication. In this model, the sensor is able to
monitor an event if and only if the distance from the sensor to the event is at most S,
where S is its sensing radius. However, a closer look at the physical layer reveals that
sensing ability decreases with distance. Instead of the unit-disk graph model, it is
more realistic to use a model where the probability of sensing an event depends
on the distance from the sensor to that event. Liu and Towsley [50] approached
the coverage problem from a theoretical perspective and explored the fundamental
limits of the coverage of a large-scale sensor network.

Zhang and Hou [51] studied the fundamental limits of sensor network lifetime
that all algorithms can possibly achieve. If the lifetime of a sensor is 7, they derived
analytically and by simulation the minimum sensor density needed to achieve net-
work lifetime k7. They observed that the increase in lifetime per unit of nodal den-
sity becomes marginal when the density exceeds a certain threshold.

11.4.1 Threshold-Based Protocols

Ye et al. [52] proposed a simple localized protocol (called PEAS) for dynamically
selecting an area-dominating set in asynchronous sensor networks. Each sensor has
the same probing radius P and the same maximum transmission radius R, which is
also the monitoring radius. Any two active sensors must be at a distance of at least P,
which is enforced by the scheme. Initially all sensors are in sleeping mode, with an

362 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

exponentially distributed sleep-duration function. When sleeping time expires, the
sensor sends a probing message using transmission radius P. Each active sensor
that overhears this probing message should estimate whether or not its distance to
the probing sensor is below P. Since they are able to detect signals from a greater
distance, up to R, they should apply signal strength (which is considered an unreli-
able measurement due to fading effect) or time-delay measurements to make the
judgment. If the distance is below P, then it sends (a/the) message to the probing
sensor informing it about its activity. Upon receiving such a response, the probing
sensor again selects a new sleeping duration and continues to sleep, waking up at
a later predetermined time to reevaluate the decision. If the distance is above P,
then no response is generated. If the sensor does not receive any response to its prob-
ing signal, it decides to wake up and monitor the area, up to radius R. Once a sensor
wakes up, it continues to work until it dies. For this protocol, the probability of
having full coverage of a monitored area is close to 1 if the threshold P is less
than 1/(1 + «/5) ~ (0.3 of the sensing area’s radius S, that is, P < 0.3S. The ration-
ale is that otherwise activating the sensor has an insufficient contribution toward
covering some new area, due to it being too close to an already active sensor. The
method presented has a high degree of fault tolerance. However, this protocol is
probabilistic and does not ensure full area coverage. Figure 11.4 illustrates this pro-
tocol, with the black nodes being active and the white nodes being in sleep mode,
because each of them is contained within the threshold distance (smaller circles)
to one of the active nodes. The larger circles indicate the communication radius
for active nodes.

In ref. [53], three sensor-area covering schemes are proposed. In the probabilistic-
based scheme, each node decides whether or not to remain active with a fixed
probability, whose optimal value is derived based on the expected percentage of
the sensing area coverage, which in turn depends on the number of neighbors

Figure 11.4 Threshold-based area coverage.

11.4 SENSOR AREA COVERAGE 363

within transmission radius that announced active status and expected distance to
them. In the nearest neighbor—based scheme, the decision is based on the expected
distance (whose value is derived as a function of the ratio of the transmitting and
sensing radii and the number of active neighbors) to the nearest of the active neigh-
bors (this is similar to the PEAS scheme [52]). In the neighbor number—based
scheme, the decision is based on a counterthreshold compared to the number of
active nodes. All mentioned threshold values are determined numerically and exper-
imentally, for use in the schemes, and do not guarantee area coverage.

11.4.2 Some Covering and Connectivity Properties

In refs. [48] and [54], it is proved that if the transmission range is at least twice the
sensing range, and the area to be covered is convex, then the area coverage also
implies connectivity among the covering sensors. This follows from observing that
the distance between the centers of two intersecting circles of the same radius
cannot exceed twice the radius, therefore two sensors whose sensing radii intersect
are also communication neighbors. The distance between two nodes whose sensing
ranges S intersect is <2, which is within the transmission range R for R > 2S§. Di
Tian [55] generalized this proof by eliminating the need for the convexity condition.

When the sensing and transmission radii are equal, the coverage property can be
tested by verifying whether or not the perimeter of the sensing circle is covered by
other circles. This is illustrated in Figure 11.5. The number of uncovered arcs of a
circle can be at most two.

When the communication range exceeds the sensing range, this simple test
cannot be used. Finding the exact regions of intersection, or their size, is computa-
tionally sophisticated and time-consuming. However, one can apply the following
well-known geometric theorem [48,54] to efficiently confirm that a sensing circle
is fully covered by other sensing circles: It is shown that if there are at least two
covering circles and any intersection point of two covering circles inside the sensing
area is covered by a third covering circle, then the sensing area is fully covered.

Uncovered

Uncovered

Figure 11.5 Testing the coverage property when sensing and communication radii are equal.

364 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

This preceding result is illustrated in Figure 11.6. Sensors within a communi-
cation edge of each other are joined by an edge. The central darker sensing circle
is covered by other circles, and all the intersection points of other circles, which
are inside it, are covered by a third circle.

This result provides an efficient method for testing the full-coverage criterion.
However, it does not provide direct information about the possible size of the uncov-
ered region. One possible estimate is to generate a certain number of points at
random, test each for coverage with existing circles, and take the percentage of
covered points as the estimate (this method can be computationally expensive if
satisfactory precision is required). Another alternative is to make an estimate
based on the distances and positions of the active sensors. There exists a need for
designing more accurate and fast-coverage size-estimation protocols, including an
efficient test for confirming full coverage.

11.4.3 Hexagonal Area Coverage

Zhang and Hou [47] described an efficient algorithm for selecting covering sensors.
Sensors are assumed to be time synchronized, and they periodically make new
decisions about sensors that remain active to cover the area. In each round, a
single sensor starts the decision process, which then propagates to the whole
network. New sensors are selected so that the priority is given to sensors located
near optimal hexagonal area coverage, obtained when the area is ideally divided
into equal regular hexagons. The coverage is indeed very optimal, given the distri-
buted nature of the decisions. However, the need for a single sensor to start the
process may cause problems in applying it. Since time is synchronized, and
rounds are well defined, perhaps it is better to allow all sensors to make localized
decisions without waiting for any specific sensor to start the process (especially if

Figure 11.6 A circle is covered when all intersection points are covered.

11.4 SENSOR AREA COVERAGE 365

the sensor somehow decided to start the process and failed to do so because of
malfunctioning). The original sensing coverage may not be preserved (as shown
by experimental results).

11.4.4 Area Coverage Based on Neighbor Cooperation

The algorithm presented in ref. [56] divides the area into small grids, and then covers
each grid with a sensor. Each sensor that can cover a grid maintains a list of other
sensors that can also cover it, in a priority order. All sensors covering the same
grid can communicate with each other, since the communication range is at least
twice the sensing range. When sensor density is significant, sensors need a lot of
memory and processing time to maintain priority lists, plus the communication over-
head for making covering decisions in cooperative manner is nontrivial.

Hsin and Liu [57] investigated random and coordinated area-coverage algo-
rithms. Each sensor covers a circle of radius R. In their coordinated-coverage
scheme, a sensor may decide to sleep after receiving “permission” from sponsoring
neighbors, for the time such permission is given. A node that sponsors any other
node must be active. The decisions are not synchronized, since each sensor can
“negotiate” with its sponsors independently, and the scheme allows for several var-
iants with (sophisticated) protocol details. The authors suggest that nodes collect
information about residual energy from neighboring sensors. Sensors with high
residual energy are more likely to enter the sleep state than sensors with low residual
energy. Each sensor maintains its own delay counter, which is used for role altera-
tion. Coordinated schemes performed better in their experiments. Although the Hsin
and Liu’s [57] coordinated scheme has some desirable properties, such as localized
behavior, it may select too many sponsor nodes to be active, since there is no
coordination between nodes for the selection of as many as possible common
sponsor nodes.

11.4.5 Centralized Area-Coverage Protocols

Centralized (and distributed) schemes may be treated as localized schemes with
extended communication range, where any node can reach any other node. In this
scenario, obviously one node can make all sensing decisions for other nodes and
communicate them.

In ref. [58], a centralized algorithm is given for finding a small-size connected
sensor cover. A straightforward distributed version of the same algorithm is also
given. The sensing circles are not necessarily of the same size. In their greedy algor-
ithm, candidate sensors for inclusion are those sensors that partially (not fully) inter-
sect with sensors previously included in the area coverage. For each such sensor, a
shortest path from it to one of the sensors already selected is considered. Note that, if
coverage circles were the same, the considered path consists of one hop only, since
any two sensors whose coverage circles intersect must be neighbors. Circles of can-
didate sensors divide the area into subelements (each subelement is a small region
belonging entirely to some circles and entirely outside the remaining circles). The

366 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

length of each path is divided by the number of subelements. All sensors on the path
with the maxim of such a ratio are added to the covering set (the sensor that starts the
selected path is called “leader” here). In the distributed implementation, the sensor
that was last added (the leader) initiates the search for a new sensor/path to add. It
broadcasts the search message up to 2R hops, where R is the maximal hop distance
between any two sensors whose circles intersect (R = 1, if all circles are equal).
Sensors that receive such a message and have partial coverage perform the described
iteration, to select a new path and a new sensor “leader.” This process repeats until
the entire query region is covered.

We observe that the algorithm presented in ref. [58] may not converge with full
coverage of the region. For example, the corner of a region may just be fully covered
by the last leader, and all sensors within distance 2R may be fully covered as well.
On the other hand, uncovered regions may exist in other corners of the region. This
problem, however, can be resolved by some additional protocols, such as time-out at
sensors that activate if the region is partially covered, but no news is received within
the given time-out. More detail regarding parallel actions by several such sensors
needs to be added, and the quality of the final result may not differ significantly
from the one obtained by centralized implementation.

For simplicity of analysis, consider the case of equal sensing and transmission
radii (R = 1). Candidate search broadcast involves transmission from the leader,
and retransmissions by several of the neighbors to reach all nodes at distance two
(an MPR-like broadcasting method can be used), responses from each candidate
sensor, and another broadcast to communicate the decision. In dense sensor net-
works, many sensors are candidate sensors, thus too much traffic for selecting
each next sensor is easily generated. Let R be the transmission radius. Initially, all
sensors at the distance in the interval (0,2R) from the first leader are candidate sen-
sors for the next leader. There is, unfortunately, no limit on their number inside this
circle. It is also difficult to schedule so many transmissions at the MAC layer.

11.4.6 Localized Sensor Area Coverage

Tian and Georganas [46] proposed a solution for sensor area coverage in synchro-
nous networks where sensing range is equal to the transmission range. It requires
that every node know all its neighbors’ positions before making its monitoring
decision. At the beginning of each round, each node selects a time-out interval.
At the end of the interval, if a node sees that neighbors that have not yet sent any
messages together cover its monitoring area, the node transmits a “withdrawal”
message to all its neighbors and goes into the sleep mode. Otherwise, the node
remains active, but does not transmit any message. The process repeats periodically
to allow for changes in monitoring status. There are several problems in this proto-
col. Neighboring active sensors may fail without notice, and neighboring sensors
may not activate, believing that the sensor is “alive” and monitoring. This problem
can be resolved if neighboring information is exchanged at the beginning of each
round. However, this then involves significant communication overhead once sen-
sors start to die between activity periods. The other problem is that covering sensors

11.4 SENSOR AREA COVERAGE 367

may not be connected; thus, reporting to a monitoring station may not succeed. The
authors also discuss the case of different sensing radii at each sensor.

Jiang and Dou [59] describe several improvements to the algorithm in ref. [46].
They apply the criterion that a circle is covered completely if perimeters of other
circles covering it are fully covered by other covering circles (note that it can be
further simplified, as discussed later, to consider only intersection points). In the
algorithm presented in ref. [59], at the beginning of each round, each node sends
a hello message to inform about its position. The algorithm from ref. [46] is then
applied (which relies on node withdrawals with negative acknowledgments) for
all ratios of sensing and transmission radii, using criteria described here. Experimen-
tal data in ref. [59] show that this algorithm outperforms PEAS [52] with respect to
the number of nodes needed in the coverage, while completely preserving sensing
coverage of the original network.

Carle and Simplot-Ryl [28] described a localized algorithm for area coverage for
the case of equal sensing and transmission radii. This approach has been generalized
by Carle, Gallais, Simplot-Ryl, and Stojmenovic [60] for an arbitrary ratio of sen-
sing and transmission radii. The approach, in addition to being fully localized,
has a very small communication overhead. There are two variants in the approach.
One requires each sensor to send exactly one message, while the other requires that
only nodes that will remain active for covering the area send exactly one message.
The two approaches have a trade-off, since one message sent by each sensor that will
move to a sleep mode is expected to leave less active sensors for the area coverage.

The basic principle of the algorithm presented in ref. [60] is that each node selects
a time-out and listens to messages sent by other nodes before the time-out expires.
The time-out can be selected at random, or may depend on the sensor’s remaining
battery energy. Each received message provides information that a portion of the
sensing range is covered. This information is derived from the position of the trans-
mitting sensor, which is reported in the message. The reduction of the required area
coverage for monitoring implies an extension of time-out. Nodes with smaller uncov-
ered areas should receive a longer time-out, hoping that a message by a node that is
able to cover more area will cover that small portion as well. At the end of time-out,
the node verifies whether or not its sensing area is fully covered. If so, it goes to sleep
mode in the current round. The two variants differ in whether or not the node then
sends the message informing neighbors about the sleep status decision. These
messages are called negative acknowledgments. If such a negative acknowledgment
is sent by a node that will enter a sleep state, it still informs neighbors about a certain
area that has already been covered by sensors that will remain active. The benefits of
the negative acknowledgment message are illustrated in Figure 11.7 (where sensing
and communication radii are equal). Assume that nodes 1—4 announced their active
status. Although node 5 then decides to sleep, its withdrawal message reduces the
area to be covered by node 6 by the shaded area in Figure 11.7 (more precisely,
node 6 may now conclude that its sensing area is fully covered, which enables it
to select sleep mode). That shaded area is covered by active nodes 3 and 4, which
are not communication neighbors of 6. Sensor nodes whose sensing area is not
fully covered (or fully covered but with a disconnected set of active sensors) when

368 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

Figure 11.7 Negative acknowledgment by node 5 reduces the area to be covered by node 6.

the deadline expires decide to remain active for the considered round, and send a
message to all its neighbors informing them about the decision. Such a message is
called positive acknowledgment [60]. The process repeats in each round in synchro-
nous fashion.

The details of the protocol given in ref. [60] include how the time-out is decided,
and how the area coverage and connectivity tests are performed. First consider the
case of equal sensing and transmission radii. One important property of the protocol
is that no prior knowledge about neighbor existence and location is required. That is,
there is no communication overhead coming from the preprocessing step to collect
neighborhood information. The test for connectivity of covering circles must be
performed whenever 25 > R, where S and R are sensing and transmission radii.

The network can reselect covering nodes periodically to spread the sensing cost
dynamically over all nodes in a fair manner. This method significantly extends
the network’s life. If the density is more than 30 nodes per unit area, the area-
dominating graph is sparse, with nodes having on average three neighbors (this is
valid when sensing and communication ranges are equal). In addition, the distance
between its two neighboring nodes is typically two-thirds of the transmission radius.
Hence, active nodes form a very simple network with a structure similar to regular
hexagonal tiling.

11.4.7 Multiple Sensor Area Coverage

In ref. [53], the problem of covering each point in an area with at least k sensors
(k-coverage) is reduced to the simpler problem of determining the similar coverage
of all the intersection points of the sensing circles. A sensor is ineligible for turning

11.4 SENSOR AREA COVERAGE 369

active if all the intersection points inside its sensing circle are at least k-covered. To
find all the intersection points inside its sensing circle, a sensor v needs to consider
all the sensors in its sensing neighbor set, SN(v). Set SN(v) includes all the active
nodes that are within a distance of twice the sensing range to v. The algorithm is
then combined with SPAN activity-scheduling protocol [61], which is an inefficient
version of Wu’s dominating set definitions [25] published long before SPAN
(see ref. [25] for details).

Abrams, Goel, and Plotkin [62] studied the problem of partitioning the sensors
into covers so that the number of covers that include an area, summed over all k
areas, is maximized. Three approximation algorithms, assuming k is fixed, are
described. Randomized algorithm assigns to each sensor one of k covers at
random. In the distributed greedy algorithm, each sensor sets a time-out and listens
to decisions made by neighbors, increasing the counter in the appropriate set for
each message announcing the decision by a neighbor (the communication radius
is assumed to be twice the sensing radius). When time-out expires, each node selects
a set for which the corresponding counter is minimal. The centralized greedy algor-
ithm adds some weight, but otherwise runs a similar procedure. This article [62]
does not discuss what the best value is for k, that is, how many layers of coverage
could be reasonably achieved.

An adaptive localized multiple sensor area-coverage algorithm is proposed in ref.
[63]. The algorithm [63] adjusts k dynamically to reflect the sensor density. Each
sensor node selects a time-out, which depends on the portion of the area not covered
by other sensors, and has some random number or other parameter in the formula to
avoid simultaneous transmissions by neighbors. Suppose that node A received a
message from a neighbor that informed about i, the cover-layer number selected
by that neighbor, and its geographic coordinates. Node A adjusts the uncovered por-
tion of layer i at the node, and extends appropriately its deadline. When the time-out
expires, there are a few options for making a decision (which is then transmitted):

. Assign the layer j, which is a minimal number so that the area in layer j is not
yet fully covered;

- Among layers covered partially by some neighbors, and not yet fully covered,
choose one that maximizes the uncovered area;

- If all layers covered by some neighbors are fully covered, the sensor chooses a
new layer, and informs its neighbors about covering it.

This algorithm can be extended to provide layers for activity scheduling in static
ad hoc and sensor networks. Existing algorithms only select sensors for the next
round, one round at a time. The difference is that the required area coverage is
replaced by neighbor coverage. Each node again sets a time-out. The message
received from a neighbor gives selected layer i covered by that neighbor. Time-
out is extended, and covered neighbors at layer i are updated. At the end of the
time-out, the node may select either minimal j, so that its neighbors are not covered
at layer j, or layer j with a maximal number of uncovered neighbors. If all neighbors

370 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

are covered for all known layers, the node announces participating in the next
layer number.

11.4.8 Coverage Using the Physical-Layer Model of Sensing

Xing, Lu, Pless, and O’ Sullivan [64] consider a probabilistic model of sensor cover-
age. A point A is covered in a sensor network if the probability at which a target
located at A is detected by active sensors is above threshold 8 and the system
false-alarm rate is below threshold «. The probability of correct detection by a
sensor depends on the distance of the sensor. The authors describe a centralized
algorithm for deciding which sensors should remain active. Using the active sensors’
locations and local false-alarm rate, the location with minimal detection probability
is found. If that probability is below B, then the closest sensor to the considered
location is selected to become active. The authors also describe a distributed algor-
ithm that divides the network into grids, selects one sensor in each grid to be coor-
dinator, and then each coordinator follows the centralized algorithm to decide which
sensors from its grid need to be active. Neighboring coordinators collaborate to
improve the decisions in border areas.

A localized algorithm along these lines can be described as follows [65]. First, we
need an approximate function for sensing probability with respect to distance. Then
sensors select random time-outs and wait to hear from nearby sensors about their
active status. For each received message, the sensor adjusts (normally prolongs)
its time-out based on the measured coverage in its local area (e.g., the percentage
of its local area having “satisfactory” coverage) and the measured benefit if that
sensor is to become active. At the end of the time-out, if the sensor sees that its
local area already has satisfactory coverage by other active sensors, it decides to
sleep. Otherwise it decides to become active and informs its neighbors about it.
The local area to be considered may be a small circle around the sensor that has
high values for sensing. Some particular sample of points from the area can be
taken to reduce computation time.

11.4.9 Variations of the Sensor Area-Coverage Problem

Gui and Mohapatra [66] observe that it is not necessary to achieve a perfect sensing
coverage of a moving object. They found that the expected length of a straight-line
path and object should move before hitting the boundary of any covered area, for a
random sensor placement in the area, can be approximated by |X|/(4nr), where |X]| is
the area of a given field, »n is number of sensors, and 7 is their sensing radius.

Cardei and Du [67] considered the point coverage problem. A certain number of
points needs to be covered by sensors within sensing range of them. Each target
point needs to be monitored by at least one sensor. The authors divide the sensors
into disjoint sets, each covering target points, with sets being activated in turn.
They prove that the problem is NP-complete and propose a centralized solution
based on the heuristics of the disjoint set cover.

11.4 SENSOR AREA COVERAGE 371

Shakkottai, Srikant, and Shroff [68] showed that the necessary and sufficient
conditions for the random grid network of n nodes, arranged in a grid over a
square region of unit area, to cover the unit square region as well as ensure that
the active nodes that are connected are of the form pr?* = 6(log (n)/n), where r is
the transmission radius of each node, and p is the probability that a node is active.

11.4.10 Mobile Sensors for Improved Area Coverage

Zou and Chakrabarty [69] proposed a virtual force algorithm as a sensor deployment
strategy to enhance the coverage after an initial random placement of sensors. It is
assumed that sensors can move by “virtual force” with the force’s strength deter-
mined by node distance.

Cao, Wang, La Porta, and Zhang [70] considered the problem of moving some
sensors from their initial random placement in order to cover some areas that
were not covered by either the nature of randomness or some other effects such
as wind. It is also assumed that sensors can move after gathering some information
from neighbors. The algorithm proceeds in rounds. In each round, sensors commu-
nicate to local neighbors in order to construct Voronoi diagrams. Each sensor then
subtracts its sensing area from its Voronoi polygon, and moves in the direction of the
largest uncovered piece of area. The process repeats until no further improvement is
possible. The approach appears suitable when robots, equipped with sensors, are
monitoring an area, which can also be monitored by some static sensors. Voronoi
diagram construction, however, may not always be locally constructed, and it
may be better to use localized versions such as the partial Delauny triangulation
[71]. The Gabriel graph can also be used. An alternative approach may be to use
face routing [72] to estimate the size of a hole, find its centroid, estimate the
number of sensors that should move toward the centroid, and provide the best pos-
sible information to sensors for their move.

Wang, Cao, and La Porta [73] propose a proxy-based sensor deployment proto-
col. Instead of moving iteratively, sensors calculate their target locations based on a
distributive iterative protocol. Current proxy sensors advertise the service of mobile
sensors to their neighborhoods (up to certain parameter distance), searching for a
better coverage location. They collect bidding messages and choose the highest
bid. Then they delegate the bidder as the new proxy. The iterative moves are logical,
not physical. Actual movement only occurs when sensors determine their final
locations. If the bidding process is local, the sensor movement and the area-coverage
gains may be restricted. If the bidding process includes neighbors at several hops
distance, the communication overhead for bidding becomes significant. Bidding
decisions are based on price (number of logical movements made so far) and
distance that the moving sensors are physically supposed to move altogether. A pro-
cedure to prevent multiple healing is described, which includes some message over-
head. The bidding criterion does not include lost area coverage for moving out of the
current position. It is not certain whether the described procedure is always loop-free
and always converging. The difference between sensing and transmission radii (the
ratio is not discussed in ref. [73]) has a direct impact on message complexity.

372 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

The iterative nature of logical moves in ref. [73] may still easily lead each mobile
sensor to a local minimum. It may be better to apply an expanding ring strategy [74]
in search of the best proxy, by using the increasing sizes of distances from each
mobile sensor, and asking sensors within the ring to respond with their biddings
(these responses may be suspended on the way to the mobile sensor by intermediate
nodes that learn about better bids). The bidding price also includes the traveling dis-
tance for the mobile sensor, which chooses the best bid. Some mechanisms for avoid-
ing multiple healing of the same hole need to be added in the protocol, such as
reporting to only one mobile sensor (note that this is not sufficient, since few sensors
can be located around the same hole). Instead of moving, mobile sensors send the best
bid so far to the next ring, asking sensors from that ring to report their bids only if they
have a better bid to offer. This protocol should reduce the number of reports, because
substantially more free area needs to be made available to justify longer movement.

Wu and Yang [75] propose a scan-based movement-assisted sensor deployment
method (SMART) that uses scan and dimension exchange to achieve a balanced
state. In SMART, a given rectangular sensor field is first partitioned into a 2-D
mesh through clustering. Each cluster corresponds to a square region and has a clus-
terhead which is in charge of bookkeeping and communication with adjacent clus-
terheads. Clustering is a widely used approach in sensor networks for its support for
design simplification. In fact, it is shown in ref. [76] that clustering is the most effi-
cient for sensor network where data are continuously transmitted. A hybrid approach
is used for load balancing, where the 2-D mesh is partitioned into 1-D arrays by row
and by column. Two scans are used in sequence: one for all rows, followed by the
other for all columns. Within each row and column, the scan operation is used to
calculate the average load and then to determine the amount of overload and under-
load in clusters. The load is shifted from overloaded clusters to underloaded clusters
in an optimal way to achieve a balanced state. By optimal, we mean the minimum
number of moves and minimum total moving distance and minimum number of
moves. By a balanced state, we refer to a state where the maximum cluster size
(the number of sensors in a cluster) and the minimum cluster size are different by
at most 1. Using this 2-D scan without global information, each sensor moves at
most twice, although it may not be globally optimal in terms of total moving dis-
tance in 2-D meshes. SMART addresses a unique problem called empty cells in
sensor networks and provides a local solution to it.

Mobile and static sensors can use the perimeter created by a Gabriel graph to
make moving decisions after only one iteration, as elaborated in ref. [72]. First,
static sensors will locally communicate to ensure that their biddings are made for
nonintersecting coverage areas. They then send their bidding by the GFG routing
protocol [72] (which guarantees delivery in connected unit-disk graphs) in an arbi-
trary direction. Such routing will end up creating a loop along the perimeter. The
node that detects the loop will store the bid. Mobile sensors also will search for
the best bid by routing in arbitrary directions, ending on a perimeter. A similar
idea has been described in ref. [77] for the purpose of providing location service.
If the network of static sensors is disconnected, then mobile sensors will send one
message to each connected component and search several perimeters. Mobile

EXERCISES 373

sensors will set a criterion for selecting the bid, which will include the cost for
moving to a new location, and gain made for changing the coverage area (the differ-
ence between current and new coverage). After making a full traversal along the per-
imeter, the message sent by the mobile sensor will select the best bid and return it to
the node responsible for the bid, which in turn will eliminate the bid to prevent other
mobile sensors from taking it. The message is then routed back to the mobile sensor,
which performs the indicated move. Note that the proposed protocol has only one
iteration, flooding type of message circulation is avoided, and the message cost is
made quite uniform.

11.5 RELATED SURVEY ARTICLES

Because of space limitations, this chapter did not cover all relevant aspects of the
considered problems. For a more complete coverage, the reader is referred to several
complementary book chapters [11,78—-81]. In particular, ref. [78] contains compre-
hensive coverage of the topology aspects of these problems, ref. [11] discusses
broadcasting with directional antennas and reliable broadcasting, refs. [79] and
[81] give comprehensive coverage for broadcasting with adjustable transmission
powers with omnidirectional and directional antennas (that is, the minimum
energy broadcasting problem). Further, ref. [79] contains comprehensive coverage
of broadcasting reliability issues, deciding transmission radii, and resource-aware
broadcasting. Probabilistic broadcasting protocols are covered in refs. [11] and
[79] (see also the recent article, ref. [82]). Finally, ref. [80] describes routing and
broadcasting schemes for hybrid ad hoc and sensor networks.

ACKNOWLEDGMENTS

This research was supported by grants from NSERC, INRIA, and NSF. The authors are grate-
ful to Roger Wattenhoffer for a fruitful e-mail discussion that contributed to clarification of
major aspects of dominating sets and subsequently to an improved presentation of this
chapter. We are also grateful to Stefano Basagni for a careful reading of the manuscript
and several useful suggestions.

EXERCISES

11.1. Prove that intergateway and gateway nodes in Wu’s concept [14,25] create
dominating sets [26].

11.2. Write a procedure for deciding whether or not a node is an intermediate, inter-
gateway or gateway node in Wu’s concept [14,25,26].

11.3. Give a formal definition of an enhanced dominating set, generalizing the case
of coverage by one neighbor presented in this chapter. Describe the appropri-
ate efficient algorithm, and prove that the new set is indeed a CDS [30].

374

BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

11.4. To increase reliability, double (and in general 7-coverage) dominating sets can

be considered. In this approach, every neighbor needs to be covered by two (in,
general, 1) neighbors, instead of only one. Describe some backbone construc-
tion methods based on double domination, and some broadcasting schemes
that would require each node to receive the message at least twice [30].

11.5. Assume that each node knows its geographic location, but has no knowledge

about the existence or position of its neighbors. Describe a beaconless broad-
casting scheme that will work with such assumptions and will minimize the
number of retransmissions [81,83].

11.6. Suppose that broadcast messages need to be acknowledged. Describe a proto-

col that will minimize the number of acknowledgment packets for reliable
broadcasting [81].

11.7. Generalize the sensor area-coverage scheme [60], described in this chapter,

for the case of unequal sensing radii at sensor nodes.

11.8. Give an example showing that GAF [21] can disconnect the network [17].

(Hint: Consider scenarios with nodes near corners of grids and near some
empty grids.)

11.9. Suppose that sensor nodes are placed at vertices of a regular hexagonal tiling

with side length r corresponding to the transmission radius. Prove that the side
length that minimizes the total transmission power used when all nodes
retransmit the packet is r = (2¢/(a —)Y [43].

REFERENCES

1.

F. Kuhn and R. Wattenhoffer. Constant-time distributed dominating set approximation. In
Proceedings of the 22nd ACM Symposium on the Principles of Distributed Computing
(PODC), Boston, Massachusetts, July 2003.

L. Barriere, P Fraigniaud, L. Narajanan, and J. Opatrny. Robust position-based routing in
wireless ad hoc networks with irregular transmission ranges. Wireless Communications
and Mobile Computing, 3(2):141-153, 2003.

I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena.
Physical layer impact on the design and performance of routing and broadcasting proto-
cols in ad hoc and sensor networks. Computer Communications, 28(10), 1138-1151,
June 2005.

M. Agarwal, J. H. Cho, L. X. Gao, and J. Wu Energy Efficient Broadcast in Wireless
Ad Hoc Networks with Hitch-hiking, to appear in ACM/Kluwer MONET.

H. Chan and A. Perrig. ACE: An emergent algorithm for highly uniform cluster for-
mation. In Proceedings of the European Workshop on Wireless Sensor Networks
(EWSN 2004), pages 154—171, Berlin, Germany, January 2004.

D. A. Fisher and H. F. Lipson. Emergent algorithms: A new method for enhancing survi-

vability in unbounded systems. In Proceedings of the 32nd Annual Hawaii International
Conference on System Sciences (HICSS-32), Maui, Hawaii, January 1999.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

REFERENCES 375

D. Niculescu. Positioning in ad hoc sensor networks. IEEE Networks, 18:24-29,
July 4, 2004.

. L. M. Feeney. Energy efficient communication in ad hoc wireless networks. In Mobile

Ad Hoc Networking, S. Basagni, M. Conti, and S. Giordano, and I. Stojmenovic (eds.),
pages 301-327, IEEE/Wiley, 2004.

. V. Raghunathan, C. Schurger, S. Park, and M. B. Srivastava. Energy-aware wireless

microsensor networks. IEEE Signal Processing Magazine, 19:40-50, 2002.

M. L. Sichitiu. Cross-layer scheduling for power efficiency in wireless sensor networks.
In Proceedings of IEEE INFOCOM 2004, Hong Kong, China, March 2004.

I. Stojmenovic and J. Wu. Broadcasting and activity scheduling in ad hoc networks. In
Mobile Ad Hoc Networking, pages 205-229, S. Basagni, M. Conti, S. Giordano, and
1. Stojmenovic (eds.), IEEE Press, 2004.

S. Basagni, M. Mastrogiovanni, and C. Petrioli. A performance comparison of protocols
for clustering and backbone formation in large scale ad hoc networks. In Proceedings of
them 1st IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS
2004), Fort Landerdale, Florida, October 2004.

C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal
of Selected Areas in Communications, 15(7):1265-1275, 1997.

I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination
based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel
and Distributed Systems, 13(1): 14-25, January 2002.

S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the 1999 Inter-
national Symposium on Parallel Architectures Algorithms, and Networks (ISPAN 99),
pages 310—315, Freemantle, Australia, June 1999.

P.-J. Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of connected dominat-
ing sets in wireless ad hoc networks. Mobile Networks and Applications (MONET),
9(2):141-149, April 2004.

S. Basagni, A. Carosi, and C. Petrioli. Sensor-DMAC: Dynamic topology control for
wireless sensor networks. In Proceedings of the IEEE VTC, Los Angeles, California,
September 2004.

J. Wu and F. Dai. A distributed formation of a virtual backbone in MANETS using adjus-
table transmission ranges. In Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS), pages 372-379, Tokyo, Japan, March 2004.

F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing newly deployed ad hoc
and sensor networks. In Proceedings of the 10th Annual International Conference
on Mobile Computing and Networking (MobiCom), pages 260-274, Philadelphia,
Pennsylvania, September 2004.

J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers. In
Proceedings of the 17th Annual Symposium on Computational Geometry (SCG), pages
188—-196, Boston, Massachusetts, June 2001.

Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for
ad hoc networks. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking (MobiCom), pages 70—84, Rome, Italy, July 2001.

L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383-390, 1975.

376 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

C. Adjih, P. Jacquet, and L. Viennot. Computing Connected Dominating Sets with
Multipoint Relays. Research Report #4597, INRIA, October 2002. To appear in
Ad Hoc & Sensor Wireless Networks. Vol. 1, No. 1-2, 27-40.

J. Wu. An enhanced approach to determine a small forward node set based on multipoint
relay. In Proceedings of the IEEE VTC, Orlando, Florida, October 2003.

J. Wu and H. Li. On calculating connected dominating set for efficient routing in ad hoc
wireless networks. In Proceedings of the 3rd International Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and Communications (DIAL-M), pages 7—14,
Seattle, Washington, August 1999.

I. Stojmenovic. Comments and corrections to “Dominating Sets and Neighbor
Elimination-Based Broadcasting Algorithms in Wireless Networks.” IEEE Transactions
on Parallel and Distributed Systems, 15(11), 1054—1055, November 2004.

F. Dai, and J. Wu. An extended localized algorithm for connected dominating set for-
mation in ad hoc wireless networks. I[EEE Transactions on Parallel and Distributed
Systems, 15(10), 2004.

J. Carle and D. Simplot-Ryl. Energy efficient area monitoring for sensor networks. /[EEE
Computer, 37(2):40-46, February 2004.

F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Smaller connected dominating sets in
ad hoc and sensor networks based on coverage by two-hop neighbors. Submitted for
publication.

I. Stojmenovic. Data gathering and activity scheduling in ad hoc and sensor networks,
Proc. International Workshop on Theoretical Aspects of Wireless Ad Hoc, Sensor, and
Peer-to-Peer Networks, Chicago, USA, June 11-12, 2004.

J. Shaikh, J. Solano, I. Stojmenovic, and J. Wu. New metrics for dominating set
based energy efficient activity scheduling in ad hoc networks. In Proceedings of the IEEE
Conference on Local Computer Networks, pages 726—735, Bonn, Germany, October 2003.

S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu. The broadcast storm problem in a
mobile ad hoc network. In Proceedings of the 5th Annual ACM /IEEE International Con-
ference on Mobile Computing and Networking (MobiCom), pages 152—162, Seattle,
Washington, August 1999.

H. Lim and C. Kim. Multicast tree construction and flooding in wireless ad hoc networks.
In Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’00), pages 61-68, Boston,
Massachusetts, August 2000; see also Computer Communications, 24:3—4, 353-363,
February 2001.

W. Peng and X.-C. Lu. On the reduction of broadcast redundancy in mobile ad hoc
networks. In Proceedings of the 1st ACM International Symposium on Mobile and Ad Hoc
Networking and Computing, pages 129—130 Boston, Massachusetts, August 2000.

I. Stojmenovic and M. Seddigh. Broadcasting algorithms in wireless networks. In Proceed-
ings of the International Conference on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet SSGRR, L’ Aquila, Italy, July—August 2000.

J. Wu and F. Dai. A generic distributed broadcast scheme in ad hoc wireless networks. In
Proceedings of the 23rd IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 460—467, May 2003.

G. Calinescu, I. Mandoiu, P. J. Wan, and A. Zelikovsky. Selecting forwarding neighbors
in wireless ad hoc networks. In Proceedings of the 5th International Workshop on

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

REFERENCES 377

Discrete Algorithms and Methods for Mobile Computing and Communication (DIAL M
2001), pages 34—43, Rome, Italy, 2001.

A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying: An efficient technique for
flooding in mobile wireless networks. In Proceedings of the 35th Annual Hawaii Inter-
national Conference System Sciences (HICSS ’02), Big Island, Hawaii, January 2002.
M. T. Sun and T. H. Lai. Location aided broadcast in wireless ad hoc network systems. In
Proceedings of the IEEE Symposium on Ad Hoc Wireless Networks, at GLOBECOM,
November 2001.

W. Peng and X. Lu. AHBP. An efficient broadcast protocol for mobile ad hoc networks.
Journal of Science and Technology (Beijing, China), 2002.

W. Peng and X. Lu. Efficient broadcast in mobile ad hoc networks using connected
dominating sets. In Proceedings of the 7th International Conference on Parallel and
Distributed Systems (ICPADS 2000), Iwate, Japan, July 2000.

J. Wu and W. Lou. Extended multipoint relays to determine connected dominating sets in
MANETSs. In Proceedings of the Ist IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks (SECON 2004), Santa Clara,
California, October 2004.

F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Target transmission radius over LMST
for energy-efficient broadcast protocol in ad hoc networks. In Proceedings of the IEEE
International Conference on Communications (ICC), Paris, June 2004.

M. Cardei and J. Wu. Energy-efficient coverage problems in wireless ad hoc sensor
networks. Computer Communications, forthcoming.

T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja. Sensor deploy-
ment strategy for target detection. In Proceedings of the 1st ACM International Workshop
on Wireless Sensor Networks and Applications (WSNA), pages 42—48, Atlanta, Georgia,
September 2002.

D. Tian and N. D. Georganas. A coverage-preserving node scheduling scheme for
large wireless sensor networks. Wireless Communications and Mobile Computing,
3:271-290, 2003.

J.Wuand S. Yang. Coverage and connectivity in sensor networks with adjustable ranges.
In Proceedings of the 2004 International Workshop on Mobile and Wireless Networks
(MWN), Montreal, Canada, August 2004.

H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large sensor
networks. Ad Hoc and Sensor Wireless Networks, an International Journal, 1(1-2): 89—
124, 2005.

G. Xing, C. Lu, R. Pless, and Q. Huang. Greedy geographic routing is good enough in
sensing covered networks. INFOCOM 2004.

B. Liu and D. Towsley. A study of the coverage of large-scale sensor networks. In
Proceedings of the 1st IEEE International Conference on Mobile Ad Hoc and Sensor
Systems (MASS 2004), pages 475-483, Fort Lauderdale, Florida, October 2004.

H. Zhang and J. Hou. On deriving the upper bound of alpha-lifetime for large sensor
networks. In Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), pages 121132, Tokyo, Japan, May 2004.

F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust energy conserving
protocol for long-lived sensor networks. In Proceedings of the 23rd International

378

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE

Conference on Distributed Computing Systems (ICDCS), page 28, Providence, Rhode
Island, May 2003.

Di Tian and N. D. Georganas. Location and calculation-free node scheduling schemes in
large wireless sensor networks. Ad Hoc Networks, 2: 65-85, 2004.

X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. D. Gill. Integrated coverage and
connectivity configuration in wireless sensor networks. In Proceedings of the 1st ACM
Conference on Embedded Networked Sensor Systems (SenSys ’03), Los Angeles,
California, November 2003.

Di Tian. Node Activity Scheduling Schemes in Large-Scale Wireless Sensor Networks.
Ph.D. thesis, SITE, University of Ottawa, 2004.

T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for sensor networks. In
Proceeding of the Ist International Conference on Embeded Networked Sensor Systems
(SenSys ’03), pages 51-62, Los Angeles, California, November 2003.

C. F. Hsin and M. Liu. Network coverage using low duty-cycled sensors: Random and
coordinated sleep algorithms. In Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, Berkeley, California, April, 2004.

H. Gupta, S. R. Das, and Q. Gu. Connected sensor cover: Self-organization of sensor
networks for efficient query execution. In Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Annapolis,
Maryland, June 2003.

J. Jiang and W. Dou. A coverage preserving density control algorithm for wireless sensor
networks. In Proceedings of the 3rd International Conference on Ad-Hoc Networks and
Wireless (ADHOC-NOW °04), (LNCS 3158), pages 42—45, Vancouver, July 2004.

J. Carle, A. Gallais, D. Simplot-Ryl, and I. Stojmenovic. Localized Sensor Area Coverage
with Small Communication Overhead. 5th Scandinavian Workshop on Wireless Ad-Hoc
Networks (ADHOC °05), Stockholm, May 3-4, 2005.

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coordi-
nation algorithm for topology maintenance in ad hoc wireless networks. In Proceedings
of the 7th Annual International Conference on Mobile Computing and Networking
(MobiCom), Rome, Italy, July 2001.

Z. Abrams, A. Goel, and S. Plotkin. Set k-cover algorithms for energy efficient monitor-
ing in wireless sensor networks. In Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks (ISPN), pages 424-432, Berkeley,
California, April 2004.

I. Stojmenovic. An Adaptive Localized Algorithm for Multiple Sensor Area Coverage.
In preparation.

G. Xing, C.Lu, R. Pless, and J. O’Sullivan. Co-Grid: An efficient coverage maintenance pro-
tocol for distributed sensor networks. In Proceedings of the 3rd International Symposium on
Information Processing in Sensor Network (IPSN), Berkeley, California, April 2004.

I. Stojmenovic. A Localized Algorithm for Sensor Area Coverage Based on a Realistic
Physical Layer. In preparation.

C. Gui and P. Mohapatra. Target Tracking and Surveillance Using Sensor Networks. Paper
presented at the International Workshop on Theoretical and Algorithmic Aspects of Sensor,
Ad Hoc Wireless and Peer-to-Peer Networks, Fort Lauderdale, Florida, February 2004.

M. Cardei and D. Z. Du. Improving wireless sensor network lifetime through power
aware organization. Wireless Networks, 11(3): 333-340, May 2005.

68

69.

70.

71.

72.

73.

74.
75.

76.

7.

78.

79.

80.

81.

82.

83

REFERENCES 379

. S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage, connectivity,
and diameter. In Proceedings of IEEE INFOCOM 2003, San Francisco, California,
June 2003; See also Ad Hoc Networks, forthcoming.

Y. Zou and K. Chakrabarty. Sensor deployment and target localization based on virtual
forces. In Proceedings of IEEE INFOCOM 2003, pages 1293—1303, San Francisco,
California, March 2003.

G. Cao, G. Wang, T. La Porta, and W. Zhang. Distributed Algorithms for Deploying Mobile
Sensors. Paper presented at the International Workshop on Theoretical and Algorithmic
Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, Fort Lauderdale, Florida,
February 2004.

Xiang-Yang Li, Ivan Stojmenovic, and Yu Wang. PartialDelaunay triangulation and
degree limited localized Bluetooth multihop scatternet formation. IEEE Transactions
on Parallel and Distributed Systems, Vol. 15, No. 4, April 2004, 350-361.

P. Bose, P. Morin, 1. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in
ad hoc wireless networks. Wireless Networks, 7(6):609-616, November 2001.

G. Wang, G. Cao, and T. La Porta. Proxy-based sensor deployment for mobile sensor
networks. In Proceedings of the 1st IEEE International Conference on Mobile Ad Hoc
and Sensor Systems (MASS 2004), Fort Lauderdale, Florida, October 2004.

1. Stojmenovic. Deploying Mobile Sensors for Improved Area Coverage. In preparation.

J. Wu and S. Yang. SMART: A Scan-based Movement-Assisted sensoR deploymenT
Method in Wireless Sensor Networks. Paper presented at INFOCOM 2005, Miami,
Florida, March 2005.

W. Heinzelman. Application-Specific Protocol Architectures for Wireless Networks.
Ph.D. thesis, Massachusetts Institute of Technology, 2000.

1. Stojmenovic. A Scalable Quorum Based Location Update Scheme for Routing In Ad
Hoc Wireless Networks. Technical Report TR-99-09, SITE, University of Ottawa,
September 1999.

X.Y. Li and 1. Stojmenovic. Broadcasting and topology control in wireless ad hoc net-
works. In Handbook of Algorithms for Mobile and Wireless Networking and Computing,
A. Boukerche and I. Chlamtac (eds.), CRC Press, forthcoming.

F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Energy-efficient broadcasting in wire-
less mobile ad hoc networks. In Resource Management in Wireless Networking, Mihaela
Cardei, Ionut Cardei, and Ding-Zhu Du (eds.), pages 543—582, Kluwer, 2005.

Francois Ingelrest, David Simplot-Ryl, and Ivan Stojmenovic. Routing and broadcasting
in hybrid ad hoc and sensor networks. In Theoretical and Algorithmic Aspects of Sensor,
Ad Hoc Wireless and Peer-to-Peer Networks, Jie Wu (ed.), CRC Press.

Justin Lipman, Johnson Kuruvila, and Ivan Stojmenovic. Localized broadcasting in ad
hoc networks. In Wireless Ad Hoc and Sensor Networks, Ahmed Safwat (ed.), Kluwer,
forthcoming.

L. Orecchia, A. Panconesi, C. Petrioli, and A. Vitaletti. Localized techniques for broadcasting
in wireless sensor networks. In Proceedings of the DIALM-PODC Joint Workshop, on
Foundations of Mobile Computing, pages 41-51, Philadelphia, Pennsylvania, October
2004.

. L. Stojmenovic. Beaconless Area Based Broadcasting. In preparation.

380 BACKBONE CONSTRUCTION, BROADCASTING, AND AREA COVERAGE
FURTHER READING

Z. Hu and B. Li. On the fundamental capacity and lifetime limits of energy-constrained wire-
less sensor networks. In Proceedings of the 10th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS '04), pages 38—47, Toronto, Canada, 2004.

EEEN CHAPTER 12

Geographic and Energy-Aware
Routing in Sensor Networks

HANNES FREY

University of Trier, Trier, Germany

IVAN STOJMENOVIC

University of Ottawa, Ontario, Canada

Typical communication patterns within a sensor network are data delivery from
sensor nodes to one of selected information sinks, and information sinks requesting
a certain physical phenomenon or requesting sensor nodes lying within a sensed
area. In general, addressing is achieved by utilizing sensor locations. Geographic
routing algorithms allow routers to be nearly stateless since packet forwarding is
achieved by utilizing location information about candidate nodes in vicinity and
the location of the final destination only. By their localized nature, geographic rout-
ing algorithms are highly scalable solutions which do not require any additional
control overhead when network topology changes due to mobility or energy conser-
ving sleep cycles. Recent work investigated that location information may be utilized
to define new link metrics aiming on energy and physical layer optimized routing
paths instead of only minimizing the number of hops needed to reach the desired
destination. This chapter reviews geographic and energy aware routing algorithms
for sensor networks. It includes simple heuristic greedy forwarding strategies,
strategies which obtain guaranteed delivery by memorizing information about all
ongoing routing tasks, memoryless recovery strategies, energy aware routing strat-
egies aiming on increased network lifetime, and routing without information about
their neighbor nodes. The majority of geographic routing protocols assume a sim-
plified network model which does not take into account random variations in correct

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

381

382 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

message receipt. This chapter also discusses physical layer impact on both greedy
geographical routing strategies and their recovery strategies.

12.1 INTRODUCTION

Sensor networks are typically composed of hundreds to thousands of small collabor-
ating wireless sensor nodes that have limited computation and communication capa-
bilities. Communication patterns within a sensor network are data delivery from
sensor nodes to one or a subset of selected information sinks, and information
sinks requesting a certain physical phenomenon or requesting sensor nodes lying
within a sensed area. In general, addressing is achieved by utilizing sensor locations
or querying all sensor nodes matching a certain criterion instead of utilizing individ-
ual node addresses. Ease of deployment and the fact that sensor nodes are small and
closely located at the measured phenomenon makes an external power supply,
recharging batteries, or replacing depleted batteries impractical or even impossible.
Consequently, the lifetime of a sensor node is directly related to its on-board power
supply, and thus energy is the most sensitive resource with respect to the whole
network lifetime.

Communication between sensor nodes and information sinks can be achieved by
setting an appropriate transmission power (if possible) and sending data or control
messages directly to the desired recipient. However, this simple communication
form may degrade the bandwidth of the limited shared wireless communication
media, and moreover will drastically increase energy consumption at sender
nodes, since signal attenuation increases significantly with the distance to the mess-
age recipient. If no fixed networked infrastructure is additionally available, a
resource-saving communication may only be achieved by multihop ad hoc routing
techniques, where communication between any two network nodes requires colla-
borating with intermediate next-hop forwarding nodes.

Since location information is often available due to the very nature of sensor net-
works, the special class of geographic routing algorithms may be a good choice in
order to build a scalable resource-saving communication infrastructure. Geographic
routing algorithms allow routers to be nearly stateless, since packet forwarding is
achieved by utilizing location information about candidate nodes in the vicinity
and the location of the final destination only. By their localized nature, geographic
routing algorithms are highly scalable solutions that do not require any additional
control overhead when network topology changes due to mobility or energy-
conserving sleep cycles. In particular, due to the addressing scheme of sensor net-
works there is no need for an additional location service (producing an additional
network load), which is used in other ad hoc network scenarios in order to acquire
location information about individual network nodes before communication can
take place. Finally, location information about all neighbor nodes can be used in
order to estimate the signal strength needed to reach a certain neighbor node.
Recent work investigated that location information can be utilized to define new

12.2 GREEDY ROUTING ALGORITHMS 383

link metrics aiming at energy and physical-layer optimized routing paths instead of
only minimizing the number of hops needed to reach the desired destination.

12.2 GREEDY ROUTING ALGORITHMS

Greedy routing algorithms limit forwarding decisions on information about the pos-
ition of all nodes in the vicinity and forward a message to the “best” neighbor
regarding the position of the final destination and the metric being optimized.
Each forwarding node applies this greedy principle until the final destination (if
possible) is finally reached. The current required location information about neigh-
bor nodes is maintained by proactively exchanging short beacon messages (contain-
ing node ID and location) transmitted with maximum signal strength.

12.2.1 Progress, Distance, and Direction

The first geographic routing algorithm was described by Takagi and Kleinrock in the
mid-1980s [1]. They introduced the notion of progress in order to define the most
forward within radius (MFR) greedy routing scheme. The distance between the cur-
rent node S and the projection A’ of a neighbor node A onto the line SD connecting S
and final-destination node D is termed progress (see node A in Fig. 12.1). MFR
selects the neighbor node that maximizes progress, while nodes with negative pro-
gress are ignored (e.g., MFR selects node A in Fig. 12.1)." Alternatively, distance-
based greedy forwarding considers Euclidean distance instead of progress. Finn [3]
proposed the first distance-based greedy routing scheme, which selects a node closer
and minimizes the distance d to the final destination (e.g., node B in Fig. 12.1). This
scheme is the most widely applied greedy strategy in the literature, and it will sub-
sequently be referred as GREEDY. In recent years direction-based (DIR) greedy
routing, which considers the angle between the next hop, current, and destination
nodes, was investigated as a third alternative of greedy forwarding. The DIR
method, described by Kranakis et al. [4], selects the next hop forwarding node,
minimizing the deviation from the line connecting the current and the destination
node (e.g., node C in Fig. 12.1).

There are several variants of nodes that will be considered, along with the stop-
ping criterion in progress or distance-based routing schemes. In originally proposed
articles, greedy forwarding based on progress or distance considers nodes in the
forward direction (respectively closer to destination) only (e.g., nodes A, B, C,
and E in Fig. 12.1), since choosing a node in the backward direction (e.g., nodes
F and G in Fig. 12.1) might lead to a packet loop. Ref. [5] considers all nodes,
but routing stops at a node whose best choice is to return the packet to a neighbor
that sent the packet to it (the loop-free property has been proved for this variant).

"More precisely, in their original work MFR also considered nodes with negative progress. However, in
later studies (e.g., ref. [2]) MFR was often described to consider nodes with nonnegative progress only.
This chapter will use this variant when speaking of MFR.

384 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

Figure 12.1 Node A is maximizing progress, node B has the least distance to D, and node C
lies closest in direction to D.

A node where packet forwarding is stopped due to lack of a neighbor in the forward
direction, or by applying the described stoppage criterion, is termed a concave node.

12.2.2 Sensing Coverage and Greedy Routing

Many applications of sensor networks (e.g., tracking of moving targets) require a
specific class of sensor networks that provide sensing coverage, that is, every
point of a geographic area must be within the sensing range of at least one sensor
node. A simplified formal model assumes that every node N has the same sensing
range, which is a circle with radius R, centered at N. Thus, for a sensor network
covering an area A, the union of the circular sensing ranges of all network nodes
must at least contain the area A. In a similar way, a simplified formal communication
model can be defined by using a unique communication range R.. The communi-
cation network, which is often referred to as the unit-disk graph, has a bidirectional
communication link between any two sensor nodes X and Y, if and only if the
Euclidean distance between X and Y is less than R...

Xing et al. [6] investigated properties of greedy routing algorithms in sensing
covered networks having the double-range property, that is, R./R; > 2. Focus on
this special class is motivated by the geometric analysis from Wang et al. [7],
which showed that a sensing covered network is always connected if it has the
double-range property. The geometric analysis and simulation results from ref. [6]
demonstrate that greedy geographic routing is a viable and effective routing
scheme in sensing covered networks, and it turns out that the range ratio R./R;
has a significant impact on the quality of greedy routing in sensing covered
networks.

The qualitative properties of greedy routing in sensing covered networks may be
expressed in terms of network and Euclidean dilation. A subgraph H of G is termed a
network t-spanner of G if the length (measured in hops) of the shortest path between
any two nodes U and V in H is at most ¢ times longer than the shortest path produced
in G. The value ¢ is termed the network stretch factor of the spanner H. Network
dilation represents the stretch factor of a graph G relative to an ideal network

12.2 GREEDY ROUTING ALGORITHMS 385

producing a minimum number of hops of about |SD|/R. between source S and
destination D. Euclidean stretch factor and dilation can be defined in a similar
way by utilizing Euclidean distance instead of hop count.

Xing et al. [6] studied the dilation properties of sensing covered networks by
utilizing a known upper bound of the Euclidean stretch factor of Delaunay trian-
gulations (DTs). This well-studied graph structure can be defined as the twin of
the Voronoi diagrams. For a set of n nodes in two-dimensional (2D) space, the
Voronoi diagram partitions the plane into n Voronoi regions Vor(U), while each
Voronoi region contains all points in the plane that are closest to U (see the face
surrounding node F in Fig. 12.2, for instance). The DT can be obtained by connect-
ing each node pair (U, V) that shares a common boundary in the Voronoi diagram
(see the dotted lines in Fig. 12.2).

It is proved in ref. [6] that the DT is a subgraph of a sensing covered network
when the double-range property holds. This result and the known upper bound of
the Euclidean stretch factor of DTs is finally used to derive a constant upper
bound for the network dilation in a sensing covered network that has the double-
range property. Additionally, it is observed that any DT edge is shorter than 2R;.
Thus, when range ratio R./R; increases, the shortest path found in the DT gets
significantly longer than the shortest possible path in the complete network, since
all edges longer than 2R, are ignored by the DT.

Besides the results based on DT, properties of greedy routing are investigated in
ref. [6] as well. It is proved that greedy routing will always find a routing path
between any two nodes if the sensing covered network has a convex network bound-
ary and the double-range property holds. Additionally, the progress made in each
routing step is at least R, — 2R closer to the destination than the current forwarding
node. Furthermore, the latter result is used in order to estimate the quality of the
routing path produced by greedy routing. It is observed that in a sensing covered
network with the double-range property the path (from source S to destination D)
found by greedy routing is always no longer than about |SD|/(R. — 2Ry).

N
\

Figure 12.2 The bounded Voronoi greedy forwarding (BVGF) routing algorithm will select
the node closest to D, but considers only nodes having a Voronoi region intersecting the
straight line SD.

386 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

In summary, the result of DT and greedy routing motivate the bounded Voronoi
greedy forwarding (BVGF) algorithm [6] as follows. Greedy routing applied in sen-
sing covered networks will produce satisfactory path lengths if the range ratio R./R;
is significantly greater than 2, while, on the other hand, the upper bound of the path
lengths produced |SD|/(R. — 2Ry) tends to infinity when the range ratio is close to
2. The shortest path found in a DT is always upper bound by a constant, while
the upper bound becomes very conservative when the range ratio is increased.
Thus, the BVGF algorithm is a combination of both methods, greedy routing, and
routing along the edges of a DT. A node holding a packet addressed from the
source node S to the final destination D will consider only those neighbor nodes
U, where the line segment connecting S and D intersects Vor(U) or coincides
with one of the boundaries of Vor(U). From these subsets of one-hop neighbors,
the node closest to D will be selected as the next hop node. For instance, in
Figure 12.2 only nodes E, F, G, and H can be visited by BVGF. Note that BVGF
is not constrained to the edges of the DT. For instance, if source S is able to
reach node F, it will send the message to node F directly, since node F is closer
to D than E.

A theoretical analysis shows that BVGF will always find a path in sensing cov-
ered networks with the double-range property. An additional result shows that each
node visited by the path produced by BVGF has a distance of at most R, from the
line connecting source node S and final destination D. Finally, this result is used
to prove for the sensing covered network that the network dilation of the paths
produced by BVGF is always upper bound by a constant value, provided that the
range ratio is at least 2. In addition to this theoretical analysis, the average dilation
of BVGF has been investigated in a simulation environment. The simulation results
show that network dilations produced by BVGF are comparable to greedy
forwarding, while Euclidean dilations are always better for all range ratios within
2 and 10.

12.2.3 Real-Time Communication in Sensor Networks

Sensor network applications such as surveillance systems may require sensor nodes
to meet certain “soft” real-time communication constraints. Only a few results that
adequately address such real-time requirements exist for sensor networks. The
SPEED protocol by Lu et al. [8] is the first greedy-based protocol addressing
real-time guarantees for sensor networks. SPEED utilizes the notion of relay
speed in order to select one “best” next hop node in a greedy manner. Relay
speed toward a next hop node A is calculated by dividing the advance in distance
by the estimated send delay toward A. The single-hop delay toward a neighbor A
can be estimated by continuously measuring the round-trip delay between current
unicast data transmissions and the receipt of related acknowledgments. The esti-
mated single-hop delay is calculated by means of an exponential weighted
moving average over the previous average with the current single-hop delay.
The latter is obtained by subtracting the receiver-side processing time from the
round-trip delay experienced by the sender.

12.3 GUARANTEED DELIVERY BASED ON MEMORIZATION 387

Before selecting the next hop node, a set of candidate nodes is calculated by
selecting all nodes closer to the final destination than the current node and removing
all nodes having a relay time smaller than a certain threshold s, which is a
system-dependent parameter. The next hop node is selected according to a discrete
exponential distribution, while the node with the fastest relay speed is selected with
the highest probability. Selecting only nodes with a relay speed greater than a certain
threshold assures that this routing scheme, if successful, will guarantee delivery of a
packet within time d/s, with d being the distance between source and final destina-
tion. Furthermore, the randomized selection scheme provides traffic balance, and
thus reduced congestion, since packets are dispersed into a large relay area. The
authors of ref. [8] also propose neighborhood feedback-loop and back-pressure
rerouting mechanisms.

Huang, Dai, and Wu [9] considered a quality of service (QoS) routing scheme,
using progress instead of distance metric to advance toward the destination. The
selected neighbor is one that maximizes the ratio of progress and delay in sending
to a neighbor, where progress from node S when forwarding to neighbor A and
with destination D can be measured as SD - SA (the dot product of vector SD and
SA), and delay can be replaced by any other additive QoS metric. The authors
also proposed several ticket-based multipath schemes to search for QoS paths.
They also proposed a backward checking method that corresponds to the iterative
improvement method described here for power and cost aware routing protocols.

12.3 GUARANTEED DELIVERY BASED ON MEMORIZATION

Stojmenovi¢ and Lin proposed neighbor flooding as a recovery mechanism at con-
cave nodes, while every intermediate node handles received messages using the
basic routing algorithm (named f-GEDIR, f~-MFR, and f-DIR, for instance) [5].
Each concave node memorizes message IDs and rejects further copies of the
same message (more precisely, neighbors learn about their concave status from
the packet and do not select them as forwarding nodes). In original f~GEDIR or
J-MFR, each neighbor of a concave node initiates a separate routing task toward des-
tination D. Lin et al. proposed component routing [10], a more elaborate recovery
strategy where concave nodes determine connected components in the subgraph
of its neighbors and forward the message to only one “best” node in each com-
ponent. The number of routing tasks initiated due to concave nodes is thus reduced
significantly, since there are at most four connected components of neighbors of any
concave node in the unit graph model [10].

The geographical routing algorithm (GRA) by Jain et al. [11] maintains a routing
table that maps locations on next-hop forwarding nodes. A node receiving a message
addressed to destination D, will look up its routing table and find the position p that
is closest to the final destination D. The message will then be forwarded to the neigh-
bor node that is assigned with position p. Initially, the routing table contains position
information about neighbor nodes only, thus, operation of GRA is the same as
greedy forwarding. Message forwarding is deferred and a route discovery is invoked

388 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

if the routing table contains no position closer to the destination than the position of
the current forwarding node S itself. The route discovery will find an acyclic path
from the current node to the final destination and update the routing tables of all
nodes lying on that path. A new entry is added to the routing table that maps the
location of destination D on the next hop along the discovered path. Jain et al. pro-
pose breadth-first search (BFS) and depth-first search (DFS) as two possible route
discovery mechanisms. BFS is the same as flooding, that is, a node receiving a dis-
covery message appends its address on the path discovered so far and rebroadcasts
the packet. Additional broadcast packets received subsequently are ignored. DFS
yields only a single acyclic path from node S to destination D. Similar to BFS, a
node receiving a route-discovery packet puts its address into the packet, but for-
wards it to a single neighbor Y that has not been visited so far and that minimizes
the sum of the distance between S and Y and Y and D. If all neighbors have been
visited, the current forwarding node removes its address from the path discovered
so far and returns the packet to the node from which it was first received. Once
the final destination receives a route-discovery packet, it is able to send an acknowl-
edgment to the originator of the route discovery by utilizing the reverse of the path
stored in the discovery packet. All nodes along that path will receive the destination
acknowledgment and will update their routing table accordingly. On receipt of the
destination acknowledgment the originator S will continue to forward the original
message toward destination D.

Independently a localized DFS-based routing algorithm was proposed by
Stojmenovic et al. [12]. In contrast to the GRA algorithm, nodes do not store any
routing-table entries and the list of visited nodes is not stored in the DFS packet.
In order to enable DFS in a distributed manner, each node remembers if it has
already been visited by the DFS traversal. Additionally, each node memorizes the
node from where the packet was received for the first time. Packet forwarding is per-
formed by sorting all neighbor nodes with respect to their distance from the final
destination D and selecting the node that is closest to D. Already-visited neighbor
nodes have already transmitted a forward packet, therefore neighboring nodes can
overhear it and can learn their status and do not select them for another forwarding.
A returned message will be sent to the next choice in the sorted list of all next-hop
nodes. If all neighbors already have been visited or have returned the packet, then
the message will be returned to the neighbor node that sent the message for the
first time. In addition to the basic algorithm, Stojmenovic et al. discussed a possible
improvement with respect to QoS support. By utilizing information about its own
physical location and periodically updated position information about all neighbor
nodes, a node A can estimate the current speed and send direction of itself and its
neighbor B and can thus estimate how long the link between A and B will remain
stable. This link measure can be used in order to construct a path that provides a
specific connection-time requirement. Each node visited by the search message
will simply ignore all adjacent links that do not match this QoS requirement. In
addition, a minimum bandwidth requirement and maximum delay may be con-
sidered as well during DFS traversal. In a simplified model, total delay is decom-
posed into the number of hops x propagation delay per hop (which is directly

12.4 MEMORYLESS GUARANTEED DELIVERY 389

related to the bandwidth requirement per hop). In order to find a path with the
required maximum propagation delay, DFS traversal is limited to a maximum
path length and will consider only edges that have at least the minimum required
bandwidth. A node will return the search message immediately if the maximum
number of hops is exceeded or no outgoing edge matches the minimum bandwidth
requirement. Nodes located along the path found will memorize the uplink and
downlink edges of the path, which finally enables communication between source
S and destination D within the established QoS requirements. The DFS-based
QoS routing protocol can also be designed by using an advance (distance- or pro-
gress-based) per delay metric over links with sufficient bandwidth and connection
times. The search for such a path proceeds until the destination is found and overall
delay is acceptable.

12.4 MEMORYLESS GUARANTEED DELIVERY

Bose et al. described FACE, the first memoryless single-path recovery mechanism
with guaranteed delivery [13] in a unit-disk graph model of communication (assum-
ing ideal medium-access control (MAC) layer and connectivity). The FACE algor-
ithm is an improvement of the routing algorithm due to Kranakis et al. [4], which
guaranteed delivery in connected geometric planar graphs. A geometric planar
graph partitions the plane into faces bounded by the polygons made up of the
edges of the graph, and the nodes are described by geographic positions. A geo-
metric graph is said to be planar if there is no intersection between any two edges
of the graph (see the graph depicted in Fig. 12.3, for example).

The main idea of the FACE algorithm is to route a packet along the interiors of
the faces intersected by the straight line connecting the source node S and destina-
tion D (see Fig. 12.3). Each face interior is traversed by applying the right-hand rule

Figure 12.3 Face routing of a packet sent from source S to destination D leads to the path
SABCEFGHIHGKLMND if the right-hand rule is applied.

390 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

or the left-hand rule, that is, a packet is forwarded along the next edge clockwise or
counterclockwise from the edge where it arrived. When the packet arrives at an edge
intersecting the line connecting S and D, the next face intersected by this line is
handled in the same way. For example, in Figure 12.3 a packet routed from
source S to destination D visits the faces F, ..., F5. The algorithm proceeds until
the destination node is eventually reached or if the first edge of current face traversal
is traversed twice in the same direction. In the latter case, the destination node is not
reachable. Face routing is shown to be loop-free and to guarantee delivery in static
connected planar geometric graphs [13]. There are two main variants of FACE rout-
ing: the before crossing and after crossing protocols. They differ in the selection of
the next edge after the current node detects that the face for traversing needs to be
changed. The example in Figure 12.3 shows the before-crossing variant. The after
(before) crossing variant selects (does not select, respectively) the edge that is inter-
sected by the straight line SD. Note that nodes cannot be certain locally whether they
are following the right-hand or left-hand rule, because an open face has the opposite
orientation to the closed faces, and nodes are not aware locally whether or not they
are on the open face.

Ad hoc and sensor wireless networks can be modeled as unit-disk graphs. How-
ever, the unit-disk graph is not planar in general. Thus, before the FACE recovery
procedure can be performed, a planar subgraph has to be extracted from the com-
plete network graph. In the description of FACE, Bose et al. [13] proposed a distrib-
uted algorithm for extracting a planar subgraph from a unit-disk graph, which is
based on Gabriel graphs (GG) [14], a well-known geometric planar graph construc-
tion. A GG for a finite-point set S is constructed by connecting any two nodes X and
Y of S if and only if the circle with diameter (X, Y) contains no other node of S. This
test can be performed by each node without any message exchange with neighbors,
other than “hello” messages to learn their position. It is proved in ref. [13] that the
minimal spanning tree belongs to the intersection of the GG and the unit-disk graph,
therefore the network connectivity is preserved.

When the average density (average number of neighbors) increases, edges in GG
become smaller, therefore the routes in FACE routing become longer. The other
problem is that the routes may be long if an external face is encountered on the
route. On the other hand, the path produced by successful greedy routing is compar-
able to the one produced by Dijkstra’s single-source shortest path algorithm. Thus,
Bose et al. [13] proposed a combination of the FACE algorithm with distance-based
greedy routing, called GFG (greedy-face-greedy). A packet arriving at a concave
node is switched into recovery mode and routed along the faces until reaching a
node closer to the destination than the position of the concave node where recovery
mode was entered. At this node, routing is again performed in greedy mode. The
integration of GFG algorithm [13] with IEEE 802.11 was later implemented in
the greedy perimeter stateless routing (GPSR) protocol by Karp and Kung [15].
Their GPSR protocol is the same as GFG. More precisely, they use the before-
crossing instead of after-crossing variant, and also discuss the relative neighborhood
graph (RNG) as an alternative to the GG. These modifications do not improve the
performance of the routing protocol.

12.4 MEMORYLESS GUARANTEED DELIVERY 391

12.41 Connected Dominating Sets and Shortcuts

Face routing has an increased hop count compared to Dijkstra’s single-source short-
est path algorithm, since planar graph construction based on GGs favors short edges
over long ones. Datta et al. [16] improved the performance of GFG by the concept of
connected dominating sets (CDS), shortcut-based routing, and a combination of
both. Localized dominating-set construction in unit graphs is only possible with
one-hop neighbor information, while shortcut-based routing also requires infor-
mation about 2-hop neighbors.

A subset S of all network nodes G is called a dominating set if each node of G is
either an element of S or has at least one neighbor in S. If the dominating set is
connected, FACE routing constrained on CDS will produce shorter paths, since
the corresponding GG edges will be longer on average. If a concave node is not
in CDS, then it forwards the message to one of its adjacent nodes from CDS.
Face routing (in recovery mode of GFG) then proceeds using only nodes from
CDS. In greedy mode, the GFG algorithm works somewhat better on the whole
set than on CDS, since there are more neighbor choices and longer edges can be
used. The construction of CDS for unit-disk graphs is discussed in the chapter on
backbones (Chapter 11) in this book.

In addition to the next forwarding node, there might be more neighbor nodes on
the same path produced by FACE routing. For example, in Figure 12.3 the nodes A,
B, and C on the path produced by traversal of face F; are all within transmission
range of node S (the circle around S). When information about 2-hop neighbors is
available, the concept of shortcut-based routing can be applied at each node. A
forwarding node locally constructs the part of the planar graph seen by all its neigh-
bors. Based on this information a node can make a shortcut by sending the message
to the last known hop directly instead of forwarding it to the next hop along the path.
For example, in Figure 12.3 node $ could send the packet to node C directly.

12.4.2 Asymptotic Optimality of Face Routing

In order to analyze asymptotic behavior of combined greedy and face routing algo-
rithms, Kuhn et al. [17] constructed a family of networks where each localized
memoryless algorithm will produce a routing path that has quadratic cost compared
to the cost of the shortest weighted path. The cost of a path is calculated by summing
the cost produced by each path edge, while the theoretic results from ref. [17] are
valid for all cost metrics that are polynomial in the Euclidean distance. Due to the
lower-bound argument given in ref. [17], a localized memoryless algorithm produ-
cing at most quadratic path costs (compared to the shortest weighted path) for any
network configuration in the worst case can be denoted as asymptotic optimal.

It can be observed [18] that asymptotic optimality is sacrificed if face traversal is
switching back to greedy mode when the line connecting concave node S and final
destination D is intersected for the first time (i.e., GFG and its previously described
variants are not asymptotic optimal). On the other hand, the combination of greedy
and face routing becomes asymptotic optimal when packets in face mode traverse

392 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

the complete face and change back to greedy mode at the face edge that is closest to
the destination D. However, successful greedy routing is more efficient than face
routing in the average case, that is, even when not optimal in the worst case, switch-
ing back to greedy mode as soon as possible may be the better strategy in practice.

Kuhn et al. [19] described greedy other adaptive face routing plus (GOAFR+), a
greedy routing algorithm that overcomes the trade-off between asymptotic optimal-
ity and average case efficiency of combined greedy and face routing. The efficient
operation of face routing depends on the decision in the starting node of whether
a face is being traversed in the clockwise or counterclockwise direction. For
example, in Figure 12.4 applying the left-hand rule to traverse the outer face F
leads to the path MLK ... UTSR until arriving at the edge (R, Q) intersecting the
line connecting source S and destination D. In contrast, if the face traversal was
started in the opposite direction, the packet is forwarded along the significantly
shorter path MNOPQ before switching to face F».

In order to cope with that suboptimality, Kuhn et al. proposed an extension of the
GFG algorithm limiting the searchable area during face traversal. The GOAFR+
algorithm uses a circle C centered at the destination node D in order to restrict
face traversal to the searchable area C. The radius of C is initially set to p,|SD|
with p, > 1 so that source node S is also included within C (see the dashed circular
arc centered at D in Fig. 12.4). The greedy mode is applied as long as there is a next-
hop node closer to the destination D, and whenever possible the radius r¢ of C is
exponentially decreased (rc = r¢/p with p > py) as long as the currently visited
node stays within C. Whenever the greedy mode encounters a local minimum at a
node U, the algorithm continues with a modified version of face routing. When
the face is traversed completely without hitting the current circle C, the packet
will be sent to the node visited so far that is closer to D than U (and handled in
greedy mode again). However, if no visited node is closer to D than U, the algorithm
will terminate and report that no path from S to D exists. When C is hit for the first
time, face traversal is reversed and face exploration is applied in the opposite

Figure 12.4 The GOAFR+ algorithm limits exploration to a circle centered at D and
containing at least the node where the recovery procedure was invoked.

12.4 MEMORYLESS GUARANTEED DELIVERY 393

direction. If C is hit for the second time and none of the visited nodes is closer to D
than U, face exploration is continued as if started at node U, but the radius of circle C
is exponentially increased (r¢c = pr¢). In order to avoid a complete face exploration,
the algorithm applies an elaborate “early fallback” technique to return to greedy
routing as soon as possible. However, it is proved in ref. [18] that algorithms will
lose their asymptotic optimality when resuming greedy routing as soon as they arrive
at the first node closer to the destination D than the concave node U. GOAFR+
maintains two counters to keep track of the number of nodes closer to and the
number of nodes not closer to the destination than the starting node U of the current
face traversal. If face exploration has visited up to a constant factor o more nodes
closer to D, GOAFR+ will interrupt face traversal, advance to the node seen so
far that is closest to the destination D, and the packet will be handled in greedy
mode again. Thus, GOAFR+ does not explore the complete face in general, but
on the other hand, greedy routing is not resumed at the first node closer to destination
D than concave node U. The latter property of GOAFR+- is finally used in ref. [19]
in order to prove its asymptotic optimality. Finally, from simulation results it turned
out that p, = 1.4, p = V2, and o = 1/100 are good choices for practical purposes.

A simplified example of GOAFR+- is depicted in Figure 12.4, where source node
S will forward in greedy mode to node M, which has no neighbor closer to destina-
tion D. Thus, the recovery strategy of GOAFR+ will begin exploration of face F in
the clockwise direction. At node L, face traversal hits the circle centered at node D,
and the algorithm switches to exploration in the opposite direction. Each routing step
updates the number p of nodes closer and the number g of nodes not closer to the
destination D. When arriving at node P, a certain threshold condition p > 1/3¢q
holds (p =2, g =3, and o = 1/3) and the message will be handled in greedy
mode again.

For arbitrary unit-disk graphs (i.e., no restrictions regarding minimum node dis-
tance and maximum node degree), cost metrics divide into two classes, linearly
bounded and superlinear cost functions. The first ones are lowerbound by a linear
function, while for the latter there exists no such function. A theoretical result
from ref. [19] reveals that for any localized memoryless routing algorithm A,
there exists a node configuration where the cost of the path produced by A is
unbounded with respect to the path produced by the shortest weighted-path algor-
ithm if a superlinear cost function is considered. Thus, discussion of asymptotic
optimality is reasonable only if restricted minimum node distance, maximum
node degree, or linearly bounded cost metrics are considered. Standard cost metrics
like hop count or Euclidean distance are linearly bound from below, while energy
metrics defined as a polynomial d“, with « > 1 and d being the distance between
sender and receiver, fall into the class of superlinear functions. However, as dis-
cussed in Section 12.5, “Routing with Energy-Aware Cost Metrics,” from a practical
point of view even energy-aware metrics are often considered to be of the form
d® + ¢, with ¢ > 0, and are thus linearly bound in practice.

In order to prove asymptotic optimality for linearly bound cost metrics and arbi-
trary unit-disk graphs, Kuhn et al. described an improved version of GOAFR+,
which utilizes a routing backbone instead of using all possible edges from the

394 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

unit disk graph. Before routing takes place GOAFR+ precomputes a subgraph of the
unit disk graph that forms a connected dominating set of bounded degree. The dis-
tributed construction of such a graph structure is not described in ref. [19], but it is
referred to in existing methods described in refs. [20—22]. Similar to GFG-I, the
execution of GOAFR+ is restricted on the routing backbone, that is, a message is
first sent to a dominating set member (if necessary), and from there on routing
takes place along the routing backbone only until reaching a dominating set
member that has the final destination D in its neighborhood.

12.4.3 Routing Along Geographical Clusters

Typical sensor network scenarios assume that sensor nodes are densely deployed in
the monitored area. Greedy routing algorithms applied on uniformly distributed and
densely deployed network nodes perform close to the shortest-path algorithm and
are thus the first choice for such a scenario. However, even for densely deployed net-
work nodes a recovery strategy may still be necessary, since greedy forwarding
might get stuck at convex network boundaries or at network voids resulting from
an inhomogeneous node distribution. Such an inhomogenity may be due to the phys-
ical properties of the monitored surface (e.g., a lake inside the monitored area where
sensor nodes cannot be deployed).

Frey and Gorgen [23] observed that such an inhomogeneous node distribution
can have a significant impact on the recovery strategy being applied. Simulation
experiments show that performance of face routing and the internal nodes concept
may even degrade when node density is increased in a network scenario with an
inhomogeneous node distribution. On the other hand, face recovery in combination
with the shortcut procedure is almost unaffected by such an inhomogenity. However,
the shortcut procedure has an increased message complexity compared to face
routing or the internal nodes concept, since information about all 2-hop neighbors
is required.

Frey and Gorgen [23] described the geographic cluster routing (GCR) algorithm,
which is based on the concept of GFG and assumes that the network is modeled as a
unit-disk graph in the 2D Euclidean space as well. Routing in GCR is not performed
on a per-node basis, but packets are forwarded along the edges of adjacent geo-
graphical clusters. In order to define geographical clusters, the plane is partitioned
by an infinite mesh of regular hexagons (see Fig. 12.5), while each hexagon defines
one cluster. Two geographical clusters C; and C, are denoted as adjacent, if there are
at least two connected nodes with one located in C; and the other located in C,. The
graph resulting from adjacent clusters is not necessarily planar, thus, before face
routing can be applied, a planar subgraph has to be extracted in advance. This is
obtained by a variant of the localized planar graph construction applied by GFG.
However, the method used by GCR may produce a disconnected subgraph even
when the original graph is connected. Thus, in contrast with GFG and its variants,
GCR cannot guarantee delivery, even if there is a path from source to destination.
However, simulation results reveal that the delivery rate quickly tends to 100%
when network degree is increased. In particular, in densely deployed networks

12.4 MEMORYLESS GUARANTEED DELIVERY 395

S)

Figure 12.5 Geographic cluster routing explores the faces resulting from a planar graph
extracted from the graph defined by all connected clusters.

GCR achieves a comparable performance to that of GFG combined with the shortcut
procedure. However, message complexity is significantly decreased to an exchange
of one-hop neighbor information only. Thus, GCR is a good choice to apply as a
recovery strategy in densely deployed sensor networks.

12.4.4 Multicast Routing

A sensor network request may simultaneously address several different network
nodes or network regions. This can be achieved by sending a unicast message to
each individual entity. However, a resource-saving multicast strategy may be the
better choice in order to reduce the bandwidth requirement when the same packet
has to be delivered to multiple destinations. The majority of multicast protocols
addressed to wireless networks require a distribution structure for the delivery of
multicast messages. Mauve et al. [24] described a quasi-stateless protocol that
achieves multicast addressing based on destination positions and neither requires
construction and maintenance of a distribution structure nor resorts to some sort
of flooding. The proposed position-based multicast (PBM) algorithm is a generali-
zation of the GFG algorithm, with rules for splitting multicast greedy packets and a
repair strategy for concave nodes that includes one or more addressed destinations.

Minimizing the path length for individual nodes and reducing the total number of
message transmissions are two desirable and potentially conflicting properties of
multicast forwarding strategies. The greedy routing part of PBM utilizes a localized
criterion aimed at optimizing both objectives. In order to achieve short path lengths,
greedy routing may select for each destination D the neighbor node that is closest to
D. Applied as the sole optimization criterion, this strategy would lead to splitting
message forwarding as soon as there is no single node that is optimal with respect
to progress toward all destination nodes. Thus, while this criterion is a good

396 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

choice to minimize the path length for individual nodes, the total number of message
transmissions remains suboptimal. On the other hand, reducing bandwidth usage can
be obtained by sending along a single path as long as possible, that is, the message
will be duplicated only if no neighbor node exists that is closer to all the destination
nodes considered. However, it can be observed that splitting a packet too late may
again increase the total number of hops.

Mauve et al. derived an optimization criterion for greedy multicast forwarding
that combines both objectives into one expression. The function described in ref.
[24] depends on a parameter A within [0, 1] that can be used to bias the expression
between both extremes. A value close to 0 will result in splitting a message as soon
as possible, while the total number of single-hop transmissions is likely to decrease
when A is increased up to a value s < 1. Simulation results show that there exists an
optimal value for A within [0, 1] regarding the total network load produced.

Greedy multicast forwarding may arrive at nodes with no node closer to some of
the addressed destination nodes. Thus, similar to unicast greedy routing, a recovery
strategy must be employed in order to guarantee delivery to all destination
nodes. Mauve et al. generalized the face routing algorithm to support message
forwarding with multiple destinations. If a node has no neighbor with forward pro-
gress with regard to one or more destination nodes, face recovery will be invoked for
all these destinations, while all other destinations are handled in a greedy mode
further on. Face recovery is started by sending the recovery packet to the next
edge in a counterclockwise direction to the line connecting the current node and a
virtual position averaged over all affected destination nodes. A node receiving a
recovery packet checks to see if it is closer to some of the destinations addressed
by the packet. For all destinations where the receiving node is closer than the
node where face routing was invoked, the packet will revert to the greedy mode
again. For all remaining destinations face recovery is continued by transmitting to
the next edge in a counterclockwise direction from the last edge at which the
packet arrived.

Splitting a packet into a greedy and a recovery copy may lead to redundant mess-
age transmissions, since the greedy packet and the recovery packet may travel the
same edges for some hops. In order to reduce the load due to such redundant trans-
missions, PBM combines the greedy and recovery packet in one transmission as
long as possible, that is, the greedy packet will follow the path of the recovery
packet as long the next hop node selected by face exploration also provides progress
toward all destinations addressed by the greedy packet.

12.4.5 Routing Toward a Single Information Sink

All known memoryless routing strategies for arbitrary sender /receiver pairs resort to
some variant of face traversal in order to provide guaranteed delivery in a connected
network. However, for a typical sensor network scenario where each sensor node is
aware of the location of a single information sink D, a quasi-stateless alternative
(some nodes do need to memorize some information to facilitate routing) to face
routing has recently been proposed that enables a reliable traffic flow from each

12,5 ROUTING WITH ENERGY-AWARE COST METRICS 397

D

72N

- T
E F
Figure 12.6 The algorithm PAGER establishes an acyclic graph leading toward one
information sink.

sensor node toward D. The partial-partition avoiding geographic routing (PAGER)
algorithm by Zou et al. [25] is a two-phase distributed and stateless construction of
an acyclic graph leading toward the information sink D.

In the first phase the algorithm subsequently finds all shadow nodes where greedy
routing toward the information sink would fail. Concave nodes are declared to be
shadow nodes, and recursively other nodes are declared shadow nodes as well. A
node becomes a shadow node when all its neighbors, closer to destination D, already
became shadow nodes. For instance, in Figure 12.6, nodes A, B, and C are shadow
nodes as far information sink D is concerned.

Greedy routing started at nonshadow nodes is always successful when shadow
nodes are ignored. In order to enable successful traffic flow from all sensor nodes,
shadow nodes establish exit pointers as follows. Each shadow node that has a non-
shadow neighbor, or a neighbor with an already established pointer, will point to that
neighbor. Packets originated in shadow nodes will follow the exit pointers until the
first nonshadow node is reached. Routing then follows the greedy strategy until the
final destination D is finally reached. An example is given in Figure 12.6. Nodes B
and C will establish an exit pointer to nodes E and F, respectively. Afterwards, node
A will establish an exit pointer to both nodes B and C. Traffic originated in A will
follow exit pointers until reaching node E for instance. From there on, the packet
will be delivered successfully in greedy mode.

12.5 ROUTING WITH ENERGY-AWARE COST METRICS

Sensor nodes are typically equipped with small low-power batteries, and it is
impossible to recharge them in most sensor network scenarios. Thus, the lifetime
of a sensor network is directly related to the energy consumption produced by the
routing mechanism applied. If sensor nodes are able to adjust their signal strength,
routing algorithms could attempt to reduce power consumption by selecting next-
hop nodes within optimal transmission range. Geographic information can be
incorporated in order to enable a localized computation of the best next-hop node

398 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

by means of a power metric, which is a function that depends on the distance to the
receiving node. However, a power-metric considers the optimal transmission range
only, thus, single nodes might be selected by many routing tasks, which will result in
their premature failure. Using a cost-metric or a combination of both power- and
cost-metric might cause the nodes remaining battery power to increase the total net-
work lifetime by spreading the energy consumption evenly among all network
nodes. Such energy-aware metrics have been used to define novel energy-aware
routing algorithms, replace traditional link-metrics in existing routing algorithms,
and finally have also implicitly been applied to existing routing protocols by restrict-
ing the selection of next-hop forwarding nodes on an energy-optimized subgraph
that has been constructed in advance.

12.5.1 Making Existing Protocols Energy Aware

The total energy needed for communication between two devices S and D might be
reduced if the communication were relayed over an intermediate node R, while R
and S transmit with the minimal power needed to reach nodes S and D, respectively.
However, possible energy reduction depends on the position of the relay node R and
the additional energy dissipation at the receiving device. This observation was used
by Rodoplu and Meng [26] in order to define the minimum energy communication
network (MECN) algorithm? that constructs power-optimized paths between a set
of source nodes to one master node (i.e., the information sink in a sensor network
scenario). It is implicitly assumed that each node is able to reach each other node
in the network by transmitting with appropriate signal strength. In order to find
all power-efficient routes to the master node, the algorithm first extracts a sub-
network (termed enclosure graph) containing at least all shortest-path edges (with
respect to the power metric being optimized) leading from source nodes to the
master node. This is achieved by a localized algorithm utilizing position information
about all neighbor nodes and eliminating all nodes A for which it takes less power to
send messages over a relay node instead of sending it directly to A. As a result each
node obtains a reduced set of immediate neighbors, and thus in a second phase opti-
mal routes can be constructed in a more power-efficient way, since communicating
with neighbors in the enclosure graph requires less power than communicating with
all neighbors from the original network. Optimal routes are found in ref. [26] by
applying the distributed Bellman—Ford shortest-path algorithm. Each node calcu-
lates the minimum cost it can attain given the cost values of all its neighbors
from the enclosure graph and the power needed to transmit a message to that neigh-
bor. When the cost value of any neighbor is reduced, the current minimum cost value
is recalculated, and if it was reduced, the new value is announced again to all
immediate neighbors from the enclosure graph. The initial route setup from all
sources to the sink can be obtained by broadcasting from the sink using only the
edge of the enclosure graph, until all sources are reached.

®The algorithm was not termed MECN in the original work. However, this chapter will follow subsequent
publications (e.g., ref. [27]), which referred this algorithm as MECN.

12.5 ROUTING WITH ENERGY-AWARE COST METRICS 399

12.5.2 Localized Power- and Cost-Aware Routing

The majority of energy-aware geographic routing schemes described in the literature
utilizes the distance to neighbors in the vicinity and apply some sort of distributed
shortest weighted path algorithm to that information in order to construct a path from
the source to the final destination. Stojmenovic and Lin [28] were the first investi-
gating localized energy-aware greedy routing algorithms, that is, according to the
greedy routing principle a received message will be forwarded to the best node
regarding the energy metric being optimized.

According to refs. [26] and [29], a general power metric can, depending on node
distances, be derived based to the most common channel model used for radio fre-
quency systems. The received signal power for radio frequency communication
decreases by a factor 1/d“ (referred to as path loss model), with a > 2 and d denot-
ing the distance between the sending and receiving device. The correct choice of «
depends on the system being used and can be determined from field measurements.
A value of =2 is often used to model radio propagation at short distances
(referred as the free-space propagation model), while o = 4 is used for radio trans-
mission at longer distances (referred to as the two-ray ground reflection model).
Additionally, the expression may be normalized by ¢, which denotes the predetection
threshold at the receiver. Altogether this leads to an expression td®, which denotes
the minimum power the sender has to radiate in order to enable a signal detection at
distance d. Besides power consumption at the sender there is additional power con-
sumption at the receiver that is independent of the distance d and can thus be
described as a constant ¢ > 0. Summing the power expenditure for one signal trans-
mission altogether amounts to td* + c¢. (Note: The constant ¢ may also incorporate
additional power expenditure due to computer processing and encoding/decoding
on the sending and receiving devices.)

Assuming that additional nodes can be placed arbitrarily between source S and
destination D, the polynomial power consumption u(d) = td* + ¢ in case of direct
transmission can be converted to a linear function in d, producing minimal power
consumption. More precisely, there is an optimal number n = dc; of equally
spaced intermediate nodes producing a minimal total power consumption of
v(d) = dc,, where the constant values ¢; and ¢, are calculated from the constant
power metric parameters ¢, ¢, and « [28]. In reality, it is not possible to insert equally
spaced intermediate nodes. However, assuming that the power consumption for the
rest of the path is equal to the optimal one, this result can be used to define the
power-aware greedy routing algorithm POWER, where each intermediate node S
selects the best next-hop neighbor E closer to the final destination D, which mini-
mizes the sum u(s)+v(t), with s =|SA| and = |AD|. For example, in
Figure 12.7, node S will select node C as the next forwarding node, since the
power u(s) needed to transmit a message directly to C and the minimal power v(f)
needed to forward the packet over the remaining distance between C and D is mini-
mal compared to all other neighbors.

The theoretical result of the power optimal number of equally spaced intermedi-
ate nodes is directly related to the polynomial power-consumption formula td* + c.

400 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

Figure 12.7 S selects nodes C, A, and B in the POWER, PowerProgress, and [PowerProgress
methods, respectively.

If other power metrics were applied (e.g., a metric changing at a reference distance
between free-space propagation and the two-ray ground model) a new theoretical
analysis will be necessary in order to calculate these optimal values again before
the POWER routing algorithm can be applied. In particular, if the power metric is
given by empirical values only, an approximation by an appropriate choice of ¢
and a may be necessary. Kuruvila et al. [30] proposed a novel power-aware
greedy routing scheme, PowerProgress, which does not suffer from this fact. Let
u(s) be the power needed to transmit a message from node S to neighbor node A
at distance s. If all subsequent forwarding nodes make the same progress toward
the destination, the minimum number of forwarding steps amounts to d/(d — 1),
with d being the distance between S and D and ¢ being the remaining distance
between A and D. When each forwarding step consumes the same amount u(s) of
power, the total power consumption will be at least u(s)d/(d — t). Thus, a forward-
ing node applying the PowerProgress routing strategy will select the neighbor node
A that minimizes u(s)/(d — t) (with t < d), that is, the power spent per unit of pro-
gress made in terms of getting closer to the destination D (see Fig. 12.7).
Additionally, the IPowerProgress algorithm, which is an iterative refinement of
the optimal node found by the PowerProgress method, was described by Kuruvila
et al. In the first iteration step a node S applies the PowerProgress selection criterion
in order to find the optimal next-hop node E regarding the distance between S and
final destination D. However, sending the packet to node E may still be optimized
locally, that is, it might still be more power efficient to send the packet over a
relay node instead of sending it directly to E. Thus, the next iteration step selects
(if possible) a neighbor F of both S and E, which has a distance to D less than the
distance between S and D and which minimizes the sum R of power needed to
send from S to F and finally from F to E. However, the relay node F is selected
only if the power r needed to relay the packet is less than sending it directly to E.
If such a node F is found, the original next hop node E is replaced by F and the itera-
tive refinement method is applied again. The procedure repeats until no better node
can be found and the packet is sent to the last optimal relay node found. Note that the
node E, which was found initially, is not necessarily visited by the selected routing

12.5 ROUTING WITH ENERGY-AWARE COST METRICS 401

path. An example of the algorithm is depicted in Figure 12.7. First, node S will select
A according to the PowerProgress method. However, there is an optimal relay node
B producing less power consumption than would be spent by sending directly to
node A. The algorithm will terminate at node B, since there is no additional node
U that would further improve the power consumption when sending to B over
relay node U.

Kuruvila et al. [30] also defined the ProjProgress and IProjProgress algorithms,
which differ from PowerProgress and [PowerProgress in terms of measuring the pro-
gress made in each routing step. Instead of calculating distances, the progress made
by the projection of neighbor node A onto the line SD connecting source node S with
destination node D is considered. A node S, applying the ProjProgress, will forward
a message to the neighbor node A, minimizing the expression u(s)/(SD - SA), where
SD - SA denotes the dot product of vectors SD and SA (cf. difference between MFR
and GREEDY). The IProjProgress method is very similar to IPowerProgress, but
differs in the first iteration step, which selects the best node by applying the
ProjProgress method instead.

Singh et al. [31] have observed that minimizing hop count, delay, or the power
consumption of the paths produced by routing algorithms may be misguided in
the long term. A longer path passing through nodes that have plenty of energy
may be a better solution in terms of total network lifetime. In order to avoid
energy-critical nodes and to maximize the number of successful routing tasks, a
cost metric f(A) expressing a node’s reluctance to forward a packet is defined in
ref. [31]. It is an expression proportional to the inverse of the node’s remaining bat-
tery power, thus, a node’s reluctance increases significantly when its battery power
approaches 0. Stojmenovic and Lin [28] proposed a localized algorithm, COST,
which is based on that cost metric. The cost to route a packet addressed to D via
a neighboring node A is the sum of the cost f(A) and the estimated cost produced
to send along the remaining distance between node A and final destination D. The
cost of the remaining path is assumed to be proportional to the number of hops
between A and D, which in turn can be estimated as td/R, with d being the distance
between A and D, R expressing a node’s sending radius, and time ¢ set to an appro-
priate value (empirical results showed r = f(A) to be a good performing definition).
A node holding a packet addressed to D will select a next-hop node A closer to the
destination, which minimizes the expression c(A) = f(A) + td/R (with d = |AD|).
In their recent paper, Kuruvila et al. [30] also investigated the principle of pro-
portional progress in combination with the cost metric defined in ref. [31] and
defined the CostProgress routing scheme, which selects the forwarding neighbor
closer to the destination, which minimizes f(A)/(d — x). An iterative improvement
like TPowerProgress cannot be defined for CostProgress, since the overall cost
increases by adding intermediate nodes on a path.

Stojmenovic and Lin [28] also investigated combinations of power and cost
metrics in one expression in order to achieve both objectives, reducing energy dis-
sipation of the current message forwarding and increasing total network lifetime for
many routing tasks. A multiplicative expression termed power/cost metric can be
defined as powercost(S,A) = f(A)u(r) (with r = |AS| and u(r) = r* + ¢). Based

402 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

on that metric, a forwarding node running the PowerCost routing algorithm will
select the neighbor node A, minimizing the expression powercost(S,A)+
v(d)f'(A) with r = |SA|, d = |AD|, and f'(A) being the average reluctance of A
and its neighbors. A simpler algorithm is proposed in ref. [30], by selecting a neigh-
bor that minimizes powercost(S,A)/(|SD| — |AD|) (the algorithm is named Power-
Cost Progress). The ProjPowerCostProgress proposed in ref. [30] applies the same
metric, but a node S will forward a message to the neighboring node A closer to the
destination, which is minimizing the expression powercost(S,A)/(SD - SA). Finally,
similar iterative versions of to Power-Cost Progress and ProjPowerCostProgress
protocols are also described in ref. [30].

12.5.3 Energy-Aware Guaranteed Delivery

The localized energy-aware greedy routing algorithms described so far do not guar-
antee delivery even if there is a path from source to destination. Stojmenovic and
Datta [32] investigated a combination of face routing with power, cost, and
power/cost greedy routing algorithms (called PFP, CFC, and PcFPc, respectively),
which guarantee delivery in connected unit-disk graphs. More precisely, routing will
start with a power-, cost-, or power /cost routing scheme, respectively. As with GFG,
a message that encounters a concave node E also will be handled by the face routing
mechanism until the final destination D is reached or a node having a neighbor that is
closer to D than the distance between E and D is found. In the latter case, the mess-
age is sent to the best of these neighbors and is again handled by the corresponding
PFP, CFC, or PcFPc routing method. The choice of such nodes enables it to be
proved that the combined routing mechanism remains loop-free and guarantees
delivery.

Energy savings of PFP, CFC, and PcFPc result from the energy efficiency of the
greedy methods being applied when not in recovery mode. An additional perfor-
mance gain can be achieved by providing energy awareness in recovery mode,
too. Stojmenovic and Lin [32] investigated the impact of CDS construction on the
energy-efficiency of PFP, CFC, and PcFPc. A static selection of CDS results in a
shorter lifetime of nodes from CDS, which ultimately leads to a shorter lifetime
of the whole network. Thus, with the same argument applied to cost-routing, a
cost metric might be applied to the construction of the dominating set, taking the
node’s remaining battery power into consideration. This kind of energy-aware
dominating-set construction has been proposed by Wu et al. [33]. Roughly, the
algorithm is an extension of the basic distributed dominating-set construction
from ref. [34], where the energy level of each node serves as the primary key
when comparing two identifiers for a decision about including a CDS (the details
are in Chapter 11 in this book).

An additional improvement has been achieved in ref. [32] by applying the short-
cut procedure during the recovery mode of PFP, CFC, and PcFPc. In contrast to the
original shortcut procedure, the forwarding node considers an energy metric instead
of a hop-count metric. To apply this shortcut procedure, 2-hop neighbor information
is required.

12.6 BEACONLESS ROUTING 403
12.6 BEACONLESS ROUTING

The greedy forwarding mechanisms described need periodic hello messages (bea-
coning) transmitted with maximum signal strength by each node in order to provide
current position information to all one-hop neighbors. This proactive component of
greedy routing leads to additional energy consumption, which occurs independently
of current data traffic.

Heissenbiittel and Braun [35] proposed the beaconless routing (BLR) algorithm.
The contention-based forwarding (CBF) by Fiissler et al. [36] and implicit geo-
graphic forwarding (IGF) by Blum et al. [37] implement the same idea, focusing
on the integration of BLR with the IEEE 802.11 MAC layer. Since no beacons
are transmitted, a node, currently holding the packet with the known destination,
is generally not aware of any of its neighboring nodes and simply broadcasts a
data packet. The main idea of BLR is that each neighboring node receiving the
packet calculates a small transmission time-out before forwarding the packet,
depending on its position relative to the last node and the destination. The node
located at the “best” position introduces the fewest delays and retransmits the
packet first. The remaining nodes then cancel the scheduled packet.

For example, in Figure 12.8, node B is closest to the destination D, but its trans-
mission is not heard by node F, also closer to destination than S. To ensure that all
potential forwarding nodes detect this transmission, only nodes within a certain for-
warding area may be allowed as candidate nodes for the next forwarding step. The
forwarding area has the property that each node is able to overhear the transmission
of every other node within that area. Heissenbiittel and Braun show that the circle
with a diameter equal to the transmission radius, centered at the line SD with § as
one endpoint (the dotted circle in Fig. 12.8) is a good forwarding area with regard
to progress and successful hops before greedy routing fails. Several delay functions
are investigated, resulting in different forwarding behavior.

The authors of ref. [36] also propose a technique called the active selection
method. A forwarding node sends a control packet instead of the full message to
all its neighbors. Neighbors that provide forward progress respond after a time-out

@D

Figure 12.8 A possible forwarding region for BLR.

404 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

that depends on their distance to the destination. If a neighbor hears another neigh-
bor’s response, it does not respond itself (it is suppressed). The forwarding node then
sends the full message, indicating which of its neighbors will forward the message.
In a similar way, Zorzi [38] proposed to avoid duplicate forwarding in a BLR
scheme by applying the request-to-send/clear-to-send (RTS/CTS) MAC scheme
known from IEEE 802.11. The current node sends an RTS signal instead of the
message. Afterwards, the node waits for a node to respond with a CTS signal. If sev-
eral responses are received, the node selects the one that appears to be the best for
forwarding and then sends the packet to that neighbor directly.

The principle of sending a control message before selecting the appropriate next-
hop node can also be applied in order to describe a beaconless GFG (or alternative
protocol, for example, beaconless GOAFR+) scheme [39]. If no CTS signal is
received, the node assumes that no neighbor closer to the destination exists and
sends another RTS packet to enter the recovery mode. The following procedure is
repeated at each intermediate node S during the recovery phase of the beaconless
GFG protocol. Each receiving neighbor of S sets a time-out based on the distance
to S, so that closer neighbors have a smaller time-out, following the preference of
the localized planar graph extraction method. All neighbors participate (including
those closer to the destination) in competing for the forwarding neighbor for recov-
ery mode. When the time-out at neighbor A expires, A makes a decision whether or
not to report to S. If A heard a transmission from any node B such that B is located
inside the circle with diameter AS, then A cancels reporting to S. Otherwise, A
reports. Note that A reports even if it learns in the process that it will not be selected
as forwarding neighbor, because its report may prevent other nodes, not in GG, from
falsely reporting to S, which may contribute to the wrong choice of forwarding
neighbor at S. After receiving all replies from GG neighbors, node S selects,
among all neighbors from the GG, the one that creates the smallest angle in relation
to the incoming packet direction, in the direction decided (clockwise or counter-
clockwise), following the GFG (or alternative, e.g., GOAFR+) scheme.

12.7 PHYSICAL-LAYER IMPACT ON ROUTING

Almost all existing literature on geographic routing uses the unit-graph communi-
cation model, which does not take into account random variations in received
signal strengths. It was demonstrated by Schmitz et al. [40] that signal-strength fluc-
tuations have a significant impact on ad hoc network performance metrics, some-
times “outperforming” the impact of node mobility. Thus, nondeterministic radio
fluctuations cannot be ignored when designing robust ad hoc network protocols
based on ad hoc network simulation and analysis. For instance, in order to find
the positions of neighbors, nodes need to resort to a hello message exchange. This
is a simple procedure in the unit-graph model, accomplished by each node sending
one hello packet, which is then received by all neighbors located within transmission
radius R. However, with a realistic physical layer, hello message operation requires a
closer look [41].

12.7 PHYSICAL-LAYER IMPACT ON ROUTING 405

Independent of the physical-layer model being used (e.g., the combined Friis
and two-ray ground model used in ref. [45] or the log normal shadowing model
used in ref. [41], protocols dealing with physical-layer impact require nodes to esti-
mate the probability of receiving a bit or a packet based on either signal strength,
distance between nodes, or merely by deriving statistics from a number of bits or
packets recently sent between two nodes. The basic property of each of realistic
physical modeling is a rapidly decreasing packet reception probability. For example,
in the shadowing model used in ref. [41], the packet reception probability p(x)
depends on the probability of receiving a bit successfully, the length of the
packet, and the distance x between two nodes. Suppose R can be determined
in that way, so that the packet error rate at distance R is 0.5. Then the function
p(x) may have approximately the following values: p(0) =1, p(0.1R) ~ 1,
p(0.5R) = 0.9, p(R) = 0.5, p(1.5R) = 0.25, and p(2R) = 0. The given values are
only an illustration, but give a sufficient intuition on how to design physical
layer—aware routing schemes.

Kuruvila et al. [42,43] described geographic routing schemes that are amenable
to any realistic physical-layer model (which follows the basic properties of the wire-
less medium) and consider two basic medium access-layer approaches, with fixed
and variable packet lengths, while cases both with and without acknowledgments
are being considered. The described methods assume that all nodes use the same
transmission power for sending messages, and, in most cases, optimize the expected
(packet or bit) hop count on a route. In the case of routing without acknowledg-
ments, the goal is to find the route with the maximal probability of delivering a
packet at the destination.

In order to apply position-based routing, the first step is to find a reasonably accu-
rate approximation for the bit and packet reception probabilities for the given
physical-layer model. In refs. [42] and [43], Kuruvila et al. considered the lognormal
shadowing model and used the following function P(g,x) as an approximation
within 5% accuracy of the actual one. The functions P(g,x) = 1 — (x/R)?? /2 forx <
R and P(q,x) = (2 — x/R)?? /2 otherwise, where 8 is the power attenuation factor
(between 2 and 6). The constant R is determined so that the value of the considered
probability at distance R is P(q, R) = 0.5. The value ¢ depends on the length of the
considered entity. Bit reception probability is b(x) = P(1, x), while, for instance, for
packets 120 bits long the packet reception probability is p(x) = P(2,x). The reason
for using the approximation rather than the actual function is to reduce computation
time at each node (if the protocol is used in practice) and in order to simplify the
analyses and simulation of the protocol.

First, consider the case of routing with fixed-size packets and acknowledgments
using the same packet size. If the acknowledgments are of a different packet size, the
algorithms described are still applicable by changing only the corresponding for-
mulas involving acknowledgments. Let C be the node currently holding the mess-
age, D be destination node, A the forwarding neighbor considered, ¢ = |CD|,
a = |AD|, and x = |CA]| (see Fig. 12.9). Several localized position-based algorithms
are described in ref. [42]. The following discussion describes only the best per-
forming ones, which also apply a general design principle. The progress made by

406 GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

A

C D
Cc
Figure 12.9 Several physical-layer optimized localized routing schemes can be defined by
considering the probability of a successful transmission p(x) and the progress ¢ — a.

forwarding from C to A is ¢ — a, and this progress is probabilistic. In the aEPR
(expected progress routing) algorithm [42], the node C currently holding the
packet will forward it to a neighbor A (closer to the destination than itself), which
maximizes the expected progress, which is the product of the probability of success-
ful delivery and acknowledgment of the packet from C to A (which is p?(x)) and the
progress made (¢ — a) by forwarding to A. Thus in aEPR, the neighbor A that maxi-
mizes pz(x)(c — a) is selected.

The progress that can be made by sending a packet to A can also be considered
with respect to the cost measure for making this progress. The cost measure con-
sidered is the expected hop count. The expected hop count depends on the distance
and the selected number u of acknowledgments. The progress made could be
measured in different ways. In the aEPR-1 algorithm [42], the node C currently
holding the packet will forward it to a neighbor A (closer to the destination than
itself), which maximizes the ratio of expected progress and the cost of the progress
made. Since the considered cost, the expected hop count, is 1/p(x)> + 1/p(x),
aEPR-1 will select the neighbor A, which maximizes (¢ — a)/(l/p(x)2 + 1/p(x)).
This derivation is based on a single acknowledgment for each packet, which is
best only if packet reception probability is over 0.5. The optimal number of
acknowledgment retransmissions u is approximated as u &~ 1/p(x). The expected
hop count is then f(u,x) = 2/(p(x)(1 — (1 — p(x))*)). This variant, called aEPR-u,
selects the neighbor that maximizes (¢ — a)/f(u, x).

The iterative EPR (IaEPR) algorithm is an improved variant of aEPR-u. The algo-
rithm can be described as follows. As in aEPR-u, the node C currently holding a
message will first find a neighbor A that maximizes (¢ — a)/f(u, x). Then, an inter-
mediate common neighbor node B (closer to the destination than C, if it exists,
b =|BDJ) is found, which minimizes f(u;,|CB|)+ f(uy,|BA|), where u; ~
1/p(ICB|) and uy =~ 1/p(BA|). If f(u1, |CB|) + f(u2, |BA|) < f(u,x), then B becomes
the new forwarding neighbor, taking the role of A. This process is iteratively repeated
until no improvement is possible. Node C will forward the message to the selected
neighbor A, which then again applies the same scheme for its own forwarding.

Consider now the model that does not have hop-by-hop acknowledgments.
Localized protocols for this model are described in ref. [43]. It was proved in ref.
[43] that the packet delivery rate approaches 1 if a large number of intermediate
nodes is placed between the source and the destination nodes at distances between

12.7 PHYSICAL-LAYER IMPACT ON ROUTING 407

consecutive hops approaching 0. Following this observation, a localized algorithm
can be described as in ref. [43]: The node C currently holding a message will for-
ward it to its nearest neighbor A, which is closer to the destination than itself. The
process continues until the destination is reached or a node is reached that has no
neighbor closer to the destination.

A somewhat better performance is obtained by the following alternative scheme
[43]. The progress made by forwarding from C to A is ¢ — a. This progress is
probabilistic. In the non-acknowledged EPR (nEPR) algorithm [43], the node C
currently holding a message will forward it to a neighbor A (closer to the destination
than itself), which maximizes the expected progress, which is the product of the
probability of successful delivery p(x) of the message from C to A and the
progress (¢ — a) made by forwarding to A. Therefore, the neighbor A that maximizes
p(x)(c — a) is chosen to forward the message.

The iterative EPR (InEPR) algorithm [43] is an improved variant of nEPR. The
algorithm can be described as follows. As in nEPR, the node C currently holding a
message will first find a neighbor A that maximizes p(|CA|)(|CD| — |AD)). Then, if it
exists, an intermediate node B (closer to the destination than C and a neighbor to
both C and A) is found that satisfies p(|CB|)p(|BA|) > p(|CA|) and has the maximum
p(|CB|)p(|BA|) measure. If found, then B becomes the new forwarding neighbor,
taking the role of A. This process is iteratively repeated until no improvement is
possible. Node C will forward the message to the selected neighbor A, which then
again applies the same scheme for its own forwarding.

Now consider the case of variable packet lengths on each hop, and routing with
hop-by-hop acknowledgments [44]. The localized algorithms described remain the
same, with the following differences. Instead of the expected hop count in terms of
packets, the schemes measure the expected number of transmitted bits. The expected
hop count f(u, x) in aEPR-u and TaEPR is replaced by the expected bit count g(b, k)
for routing with acknowledgments. If the aEPR variant is considered, then the-
criterion maximizing p?(x)(c — a) is replaced by the criterion maximizing g(b, k)
(c — a). Observe here that k, the packet length corresponding to the optimal expected
bit count g(b, k) (determined in ref. [45]), is not a constant, since each neighbor,
being at a different distance, has its own optimal value for k. The case of variable
packet length and routing without hop-by-hop acknowledgments was also con-
sidered in ref. [44].

The algorithms described so far are physical layer—based solutions for greedy
position—based routing. Routing with guaranteed delivery for the unit-graph
model and an ideal MAC layer, as described in ref. [13], applies greedy routing
as long as possible, and when a node has no neighbor closer to the destination
than itself, it resorts to face-recovery mode until a node closer to it is found. The
recovery procedure is based on a planar graph locally defined. This procedure can
be adapted to the physical layer in a straightforward manner. The edges of the
planar graph are normally short ones, and therefore have relatively high reception
probabilities. They are therefore good choices for edge selection. Thus, the recovery
mode for the physical-layer impact routing may proceed in the same way as in the
unit-graph model. Only greedy mode needs to be changed.

408

GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

Finally, beaconless routing can be adapted to the physical layer by modifying
the criterion for selecting the best forwarding neighbor and the appropriate
time-out. The time-out can be based on the formulas already described here for
selecting the best forwarding neighbor. If a given node announces the request
for forwarding the packet several times, the best forwarding neighbors will receive
it, and the best will respond a few times to make sure the response was received
and it was selected.

EXERCISES

12.1

12.2

12.3

124

12.5

12.6

Show that any greedy routing algorithm that selects only nodes closer to the
destination is always loop free. Find a representation of MFR in terms of the
dot product and show in a similar way that MFR is also a loop-free routing
scheme. Finally, construct an example where DIR will end in a packet
loop [5].

Suppose a node configuration S = (0,0), A = (1,1), B=(1,—1),and D =
(3,0) ((x,y) represents the node position), while nodes S, A, B can mutually
reach each other and node D is disconnected from all other nodes. Show that
MEFR forwarding from node S to D will end in a loop and that such a loop can
also be constructed even when there is a path from source S to destination D.
Explain why this does not contradict the proof of the loop-free property of
MEFR [5] and show how this loop can easily be repaired in a practical
implementation.

The GEDIR [5] algorithm is an improvement of GREEDY that considers all
(i.e., even those in the reverse direction) neighbor nodes and selects the node
closest to the final destination. A message is dropped if it would be sent back
to the node where it was previously sent from. Show that GEDIR is a loop-
free routing algorithm and construct an example where GEDIR is successful
while GREEDY is not.

The nearest with forward progress (NFP) algorithm [2] is a progress-based
routing strategy which selects the neighbor with least forward progress as
the next hop node. Investigate whether the method provides loop-free oper-
ation or if there is a node configuration where this routing strategy will pro-
duce a packet loop.

Derive an expression that estimates the expected forward progress of MFR
applied on uniformly spatial distributed network nodes [46]. Use this
expression to estimate a lower bound on the average number of hops pro-
duced by MFR when routing a packet over a distance d.

Greedy routing is often used as a single-path strategy, that is, at any time
there is only one instance of the message in the network. In contrast, loca-
lized multipath strategies perform routing along a few recognizable paths

12.7

12.8

12.9

12.10

12.11

12.12

12.13

12.14

EXERCISES 409

simultaneously. Extend the GREEDY method presented to a multipath strat-
egy that forwards the packet along ¢ recognizable paths (however, paths can
have edges in common). Define the different rules for nodes receiving the
same greedy packet more than once [47].

Restricted directional flooding allows each intermediate node to forward a
packet to possibly more than one neighbor lying in the general direction
of the final destination [48,49]. Suppose the destination node D is located
somewhere inside a circle C centered at the last known position of D.
Apply the concept of restricted directional flooding and generalize dis-
tance-, progress-, and direction-based greedy routing methods in order to
address all possible destination locations within the circle C [50].

Show that in a sensing covered network with the double-range property any
node U lying within the Voronoi region Vor(V) is also covered by node V.
Use this result in order to prove that the Delaunay triangulation is always a
subgraph of a sensing covered network with double-range property.

Show that the combination of GREEDY with the recovery strategy FACE
is a loop-free routing strategy, while GEDIR and FACE may produce a
packet loop.

Construct an example to show that face routing may not be successful in a
connected unit-disk graph if it is applied in a subgraph that is not planar.

Suppose a weakened planar graph construction where the edges do not inter-
sect in one intersection point but where collinear edges may intersect. Is face
traversal always successful in such a graph construction?

Assume the following simple implementation of face routing. Face traversal
is always performed in the clockwise direction. When face exploration
encounters an edge intersected by the straight line connecting the last inter-
section point and final destination D, the next face is determined by simply
skipping the intersected edge and continuing face exploration with the next
edge clockwise from the intersected edge. Give an example where this
simple implementation of face routing will lead to a packet loop. What
additional condition must be checked in order to provide a loop-free oper-
ation of this algorithm?

It can be observed that face routing can produce a forwarding loop when the
network topology changes due to node mobility. Show that both adding a
new edge and removing an edge during face traversal may lead to a
packet loop. Find a solution utilizing the creation time of both message
and edges that will guarantee loop-free operation in the case where new
edges are added during face traversal.

Assume a GFG implementation with the following simplified recovery strat-
egy. The current face, which is traversed due to a packet recovery started at a
node A, will never be changed. The recovery strategy will fall back to

410

12.15

12.16

12.17

12.18

12.19

12.20

12.21

12.22

GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

greedy mode when arriving at a node B, which lies closer to the destination
D than the distance between A and D. Construct an example planar graph
where this algorithm will end in a loop.

Construct a family of unit-disk graphs in order to show that any memoryless
geographic routing algorithm with guaranteed delivery can produce a path
of length O(c?), where c is the length of the shortest path [17].

Addressing all nodes lying within a certain geographical area is termed geo-
casting. Define an algorithm based on planar graph traversal that achieves
geocasting with guaranteed delivery when the area is a circle centered
around a given center position [51].

The concept of Gabriel graphs [14] can be used to define a localized planar
graph construction for unit-disk graphs. By using information about all
neighbor nodes, a node U preserves an edge to its neighbor V if and only
if the circle with diameter |UV/| passing the nodes U and V does not contain
any other neighbor. Show that for a connected unit-disk graph the resulting
subgraph is planar and connected [13].

The localized planar graph construction from the previous exercise will not
work correctly if the unit-graph property is missing. Give an example where
two neighbor nodes U and V will produce an inconsistent view, that is, node
U will preserve edge UV, while node V will remove that edge.

Suppose a generalization of the unit-graph concept where any node can have
a sending range that varies within a maximum r and minimum r/~/2 trans-
mission range [52,53]. An edge exists between two nodes if they are
mutually included in their sending ranges (i.e., only bidirectional connec-
tions are considered). Show that by additional message exchange a localized
planar graph construction is also possible for this generalized network class.
Investigate whether localized planar graph construction is also possible for
variations in transmission range ratios that are larger than v/2.

Face traversal needs exact location information about neighbor nodes and
the final destination. Construct two examples where planar graph routing
will end in a routing failure due to imprecise location information about
the destination and the neighbor nodes, respectively [54].

Design and analyze a routing algorithm that will consider two types of
errors: transmission failures (the receiver node is believed to be within
the transmission radius, but it is not), and backward progress (the receiver
node is believed to be closer to destination node than the sender node, but
it is not) [55].

Planar graph routing applied on the network defined by connected geo-
graphical clusters may suffer from the fact that there are connected node
configurations where any extracted planar graph will be disconnected.
Give an example node configuration that proves this claim [23].

REFERENCES 411

12.23 Assume a simplified power metric d* with a > 2 and d is the distance

between the sender and the receiver. Show that it is always better to relay
traffic along an intermediate collinear node. Does this proposition also
hold if the power metric is extended by an additive constant ¢ > 0?

REFERENCES

10.

11.

12.

. Hideaki Takagi and Leonard Kleinrock. Optimal transmission ranges for randomly dis-

tributed packet radio terminals. [EEE Transactions on Communications,
32(3):246-257, March 1984.

. Ting-Chao Hou and Victor O. K. Li. Transmission range control in multihop packet radio

networks. IEEE Transactions on Communications, 34(1):38—-44, January 1986.

. Gregory G. Finn. Routing and Addressing Problems in Large Metropolitan-Scale Internet-

works. Technical Report ISI/RR-87-180, Information Sciences Institute (ISI), March 1987.

. Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric

networks. In Proceedings of the 11th Canadian Conference on Computational Geometry
(CCCG ’99), pages 51-54, Vancouver, Canada, August 1999.

. Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-path/flooding routing algorithms

with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1023-1032, October 2001.

. Guoliang Xing, Chenyang Lu, Robert Pless, and Qingfeng Huang. On greedy geographic

routing algorithms in sensing-covered networks. In Proceedings of the 5th ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’04),
pages 31-42, Tokyo, Japan, May 2004.

. Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless, and

Christopher Gill. Integrated coverage and connectivity configuration in wireless sensor
networks. In Proceedings of the Ist International Conference on Embedded Networked
Sensor Systems (Sensys '03), Los Angeles, California, November 2003.

. Chenyang Lu, John A. Stankovic, Tarek Abdelzaher, and Tian He. SPEED: A stateless

protocol for real-time communication in sensor networks. In Proccedings of the 23rd
International Conference on Distributed Computing Systems (ICDCS 2003), Providence,
Rhode Island, May 2003.

. C. Huang, F. Dai, and J. Wu. On-demand location-aided QoS routing in ad hoc networks.

In Proceedings of the 2004 International Conference on Parallel Processing (ICPP),
pages 502—509, Montreal, Canada, 2004.

Xu Lin, Mouhsine Lakshdisi, and Ivan Stojmenovic. Location based localized alternate,
disjoint, multi-path and component routing schemes for wireless networks. In Proceed-
ings of the 2001 ACM Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2001), pages 287—290, Long Beach, California, October 2001.

Rahil Jain, Anuj Puri, and Raja Sengupta. Geographical routing using partial
information for wireless ad hoc networks. IEEE Personal Communication, pages
48-57, February 2001.

Ivan Stojmenovic, Mark Russell, and Bosko Vukojevic. Depth first search and location
based localized routing and QoS routing in wireless networks. Computers and Infor-
matics, 21(2):149-165, 2002.

412

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. In Proceedings of the 3rd ACM International Work-
shop on Discrete Algorithms and Methods for Mobile Computing and Communications
(DIALM °99), pages 4855, Seattle, Washington, August 1999.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, 18:259-278, 1969.

Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th ACM/IEEE Annual International Conference on
Mobile Computing and Networking (MobiCom-00), pages 243-254, New York,
August 2000.

Susanta Datta, Ivan Stojmenovic, and Jie Wu. Internal node and shortcut based routing
with guaranteed delivery in wireless networks. In Proceedings of the IEEE International
Conference on Distributed Computing and Systems (Wireless Networks and Mobile
Computing Workshop [WNMC]), pages 461—-466, Phoenix, Arizona, April 2001.

Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal geo-
metric mobile ad-hoc routing. In Proceedings of the 6th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications
(DIALM-02), pages 24—33, New York, September 2002.

Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal and average-
case efficient geometric ad-hoc routing. In Proceedings of the 4th ACM International
Symposium on Mobile Computing and Networking (MobiHoc 2003), pages 267-278,
Annapolis, Maryland, 2003.

Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc
routing: Of theory and practice. In Proceedings of the 22nd ACM International
Symposium on the Principles of Distributed Computing (PODC), pages 63-72,
Boston, Massachusetts, July 2003.

Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Message-optimal connected dom-
inating sets in mobile ad hoc networks. In Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages
157-164, Lausanne, Switzerland, 2002.

Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Discrete mobile
centers. In Proceedings of the 17th Annual Symposium on Computational Geometry
(SCG), pages 188—196, 2001.

Yu Wang and Xiang-Yang Li. Geometric spanners for wireless ad hoc networks. In Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS °02), pages 171-180, July 2002.

Hannes Frey and Daniel Gorgen. Planar graph routing on geographical clusters. Ad hoc
Networks, forthcoming.

Martin Mauve, Holger Fiiler, Jorg Widmer, and Thomas Lang. Position-Based Multicast
Routing for Mobile Ad-Hoc Networks. Technical Report TR-03-004, Department of
Computer Science, University of Mannheim, Germany, 2003.

Le Zou, Mi Lu, and Zixiang Xiong. Pager: A distributed algorithm for the dead-end
problem of location-based routing in sensor networks. In Proceedings of the 13th
International Conference on Computer Communications and Networks (ICCCN '04),
pages 509-514, Chicago, Illinois, October 2004.

Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless networks. IEEE
Journal on Selected Areas in Communications, 17(8):1333—1344, August, 1999.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

REFERENCES 413

Li Li and Joseph Y. Halpern. Minimum-energy mobile wireless networks revisited. In
Proceedings of the 2001 IEEE International Conference on Communications (ICC
2001), Volume 1, pages 278—283, June 2001.

Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wireless networks.
IEEE Transactions on Parallel and Distributed Systems, 12(11):1122—1133, November
2001.

Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In Proceedings of
the 33rd Hawaii International Conference on System Sciences (HICSS-33), Volume 8§,
page 8020, Maui, Hawaii, January 2000.

Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Progress based localized power
and cost aware routing algorithms for ad hoc networks. In Proceedings of the 3rd Inter-
national Conference on AD-HOC Networks & Wireless (ADHOC-NOW ’04), pages
294-299, Vancouver, British Columbia, July 2004.

Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc
networks. In Proceedings of the 4th Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom-98), pages 181-190, New York, October
1998.

Ivan Stojmenovic and Susanta Datta. Power and cost aware localized routing with guar-
anteed delivery in unit graph based ad hoc networks. Wireless Communications and
Mobile Computing, 4:175-188, 2004.

Jie Wu, Fei Dai, Ming Gao, and Ivan Stojmenovic. On calculating power-aware con-
nected dominating sets for efficient routing in ad hoc wireless networks. Journal of
Communications and Networks, 4(1), March 2002.

Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In Proceedings of the 3rd International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DIALM ’99),
pages 7—14, Seattle, Washington, August 1999.

Marc Heissenbiittel and Torsten Braun. BLR: Beacon-less routing algorithm for mobile
ad-hoc networks. Computer Communications (Elsevier), 27(11):1076—1086, July 2004.

Holger FiiBler, Jorg Widmer, Michael Késemann, Martin Mauve, and Hannes
Hartenstein. Contention-based forwarding for mobile ad-hoc networks. Ad Hoc
Networks, 1(4):351-369, November 2003.

Brian M. Blum, Tian He, Sang Son, and John A. Stankovic. IGF: A State-Free Robust
Communication Protocol for Wireless Sensor Networks. Technical Report CS-2003-11,
Department of Computer Science, University of Virginia, April 21, 2003.

M. Zorzi. A new contention-based MAC protocol for geographic forwarding in ad hoc
and sensor networks. In Proceedings of the IEEE International Conference on Communi-

cations (ICC 2004), Volume 16, pages 34813485, Paris, 2004.

Ivan Stojmenovic. Beaconless Position Based Power Aware Routing and Routing with
Guaranteed Delivery. In preparation.

R. Schmitz, M. Torrent-Moreno, H. Hartenstein, and W. Effelsberg. The impact of wire-
less radio fluctuations on ad hoc network performance. In Proceedings of the 4th Inter-
national IEEE Workshop on Wireless Local Networks (WLN 2004), Tampa, Florida,
November 2004.

I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Pena.
Physical layer impact on the design and performance of routing and broadcasting

414

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

GEOGRAPHIC AND ENERGY-AWARE ROUTING IN SENSOR NETWORKS

protocols in ad hoc and sensor networks. Computer Communications (Elsevier),
forthcoming.

Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Hop count optimal position
based packet routing algorithms for ad hoc wireless networks with a realistic physical
layer. In Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS), Fort Lauderdale, Florida, October 2004.

Johnson Kuruvila, Amiya Nayak, and Ivan Stojmenovic. Greedy localized routing for
maximizing probability of delivery in wireless ad hoc networks with a realistic physical
layer. In CD Proceedings of the 1st International Workshop on AlgorithmS for Wireless
And mobile Networks (A-SWAN), Personal, Sensor, Ad-hoc, and Cellular Workshop (at
MobiQuitous), Boston, Massachusetts, August 2004.

Ivan Stojmenovic, Amiya Nayak, and Johnson Kuruvila. Design guidelines for
routing protocols in ad hoc and sensor networks with a realistic physical layer. IEEE
Communications Magazine (Ad Hoc and Sensor Networks Series), 43(3):101-106,
March 2005.

T. Nadeem and A. Agrawala. IEEE 802.11 fragmentation-aware energy-efficient ad-hoc
routing protocols. In Proceedings of the 1st IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (MASS), pages 90—103, Fort Lauderdale, Florida, October
2004.

Pedro Acevedo Contla and Milos Stojmenovic. Estimating hop counts in position
based routing schemes for ad hoc networks. Telecommunication Systems, 22:109—118,
2003.

Xu Lin and Ivan Stojmenovic. Location-based localized alternate, disjoint and multipath
routing algorithms for wireless networks. Journal of Parallel and Distributed Computing,
63:22-32, 2003.

Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A
distance routing effect algorithm for mobility (DREAM). In Proceedings of the 4th
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom-98), pages 76—84, Dallas, Texas, October 1998.

Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile ad hoc net-
works. In Proceedings of the 4th Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom-98), pages 66—75, Dallas, Texas, October
1998.

Ivan Stojmenovic, Anand Prakash Ruhil, and D. K. Lobiyal. Voronoi diagram and convex
hull based geocasting and routing in wireless networks. In Proceedings of the 8th IEEE
Symposium on Computers and Communications (ISCC), pages 51-56, Kemer-Antalya,
Turkey, July 2003.

Ivan Stojmenovic. Geocasting with Guaranteed Delivery in Sensor Networks. Paper
presented at the International Workshop on Theoretical and Algorithmic Aspects of
Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, Fort Lauderdale, Florida, February
2004.

Lali Barriere, Pierre Fraigniaud, Lata Narajanan, and Jaroslav Opatrny. Robust position-
based routing in wireless ad hoc networks with unstable transmission ranges. In Proceed-
ings of the 5th ACM International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications (DIALM '01), pages 19-27, Rome, Italy, July
2001.

53.

54.

55.

REFERENCES 415

Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond
unit disk graphs. In Proceedings of the 2003 Joint Workshop of Foundations of
Mobile Computing (DIALM-POMC), pages 69—78, San Diego, California, September
2003.

Karim Seada, Ahmed Helmy, and Ramesh Govindan. On the Effect of Localization
Errors on Geographic Face Routing in Sensor Networks. Technical Report 03-797,
University of Southern California USC, 2003.

S. Kwon and N. B. Shroff. Geographic Routing in the Presence of Location Errors.
Submitted for publication.

I CHAPTER 13

Data-Centric Protocols for Wireless
Sensor Networks

IVAN STOJMENOVIC

University of Ottawa, Ontario, Canada

STEPHAN OLARIU
Old Dominion University, Norfolk, Virginia

This chapter reviews a number of emerging topics pertaining to a data-centric view
of wireless sensor networks. These topics include data-driven routing, tracking
mobile objects, constructing and maintaining reporting trees, dynamic evolution
of a monitoring region for moving targets (mobicast), disseminating monitoring
tasks, data gathering, receiving reports from a particular area of interest, and send-
ing information and task assignment from a sink to all the sensors inside a geo-
graphic region (geocasting). The chapter also discusses various other issues,
including sensor training options, data aggregation, data storage, as well as
design guidelines for data aggregation and clustering, and rate-based data propa-
gation in wireless sensor networks.

13.1 INTRODUCTION

13.1.1 Sensors and Sensor Networks

Recent technological advances have enabled the development of low-cost, low-
power, and multifunctional sensor devices. These nodes are autonomous devices
with integrated sensing, processing, and communication capabilities. A sensor is
an electronic device that is capable of detecting environmental conditions such as
temperature, sound, or the presence of certain objects. Sensors are generally
equipped with data-processing and communication capabilities. The sensing circui-
try measures parameters from the environment surrounding the sensor and

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

417

418 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

transforms them into electric signals. Processing such signals reveals some proper-
ties about objects located and /or events happening in the vicinity of the sensor. The
sensor sends such sensed data, usually via radio transmitter, to a command center
either directly or through a data collection station (a base station or sink). To con-
serve the power, reports to the sink are normally sent via other sensors in a multihop
fashion. Retransmitting sensors and the base station can perform fusion of the sensed
data in order to filter out erroneous data and anomalies and to draw conclusions from
the reported data over a period of time. For example, in a reconnaissance-oriented
network, sensor data indicates detection of a target, while fusion of multiple
sensor reports can be used for tracking and identifying the detected target.

The block diagram of a typical sensor is depicted in Figure 13.1. The function-
ality of the sensing circuitry depends on the sensor capabilities. In general, the
sensing circuitry generates analog signals whose properties reflect the surrounding
environments. These signals are sampled using the analog/digital (A /D) converter
and stored in the on-board memory as a sequence of digital values. The sensed data
can be further processed using a data processor (microprocessor or digital signal
processor (DSP)) prior to sending them over to the base station using the radio trans-
ceiver. The capabilities of the data processor are subject to a trade-off. A powerful
DSP can be advantageous, since it will allow the sensor to transmit only important
findings rather than excessive raw readings. Reducing the sensor’s traffic generation
rate can save the energy consumed by the radio transmitter and can decrease radio
signal interference and collisions among the deployed sensors. On the other hand,
sophisticated data processing can consume significant energy and can be a cost
and a design burden by increasing the complexity of the sensor design. In all
cases, the sensor has to include some control logic to coordinate the interactions
among the different functional blocks. Such a control function also can be performed
by the data processor, if included. Individual sensors have severely limited band-
width and battery power. State-of-the-art sensors use one-to-all communication
provided by omnidirectional antennas and communication on a single common

¢

Data
Antenna
--------- Control
Sensing |_ Data processor
circuitry and control [\
pd i N
v 4 v Y
A/D _ Memory _ _ Radio
converter (RAM + ROM) transceiver

Figure 13.1 The block diagram design of a typical sensor.

13.1 INTRODUCTION 419

channel (sensors using several frequencies, frequency hopping, or several transcei-
vers and receivers are also being considered). Variants of IEEE 802.11 (designed to
operate efficiently at low poser consumption) are candidate medium-access control
protocols for sensor networks, while Bluetooth appears to be an energy-expensive
solution (Chapter 8 in this book is devoted to medium access). Sensor memory
and processing capabilities are limited. Routing tables, if used at all, must be
small. Data-compression and error-control schemes for sensor networks must be
carefully selected. Secure operation is difficult to provide. There exists a great
risk when using sensors. Sensor nodes can be defective, lost, damaged, compro-
mised, or expired. Sensors in the active state spend considerably more energy
than sensors in the sleep state, as discussed in several chapters in this book.

13.1.2 Applications and Physical Properties of
Wireless Sensor Networks

Once deployed, the sensors are expected to self-configure into a wireless network.
Sensor networks consist of a large number of sensor nodes that collaborate together
using wireless communication and asymmetric many-to-one data. Indeed, sensor
nodes usually send their data to a specific node called the sink node or monitoring
station, which collects the requested information. The limited energy budget at
the individual sensor level implies that in order to ensure longevity, the transmission
range of individual sensors is restricted, perhaps of the order of a few meters. In turn,
this implies that wireless sensor networks should be multihop. An important differ-
ence between wireless sensor networks and conventional networks is that sensor
nodes do not need node addresses (e.g., medium-access control (MAC) address
and Internet protocol (IP) address). In conventional networks (e.g., Internet), the
node address is used to identify every single node in the network. Various communi-
cation protocols and algorithms are based on this low-level naming. However, wire-
less sensor networks are information-retrieval networks, not point-to-point
communication networks. That is, wireless sensor network applications focus on
collecting data, rather than on providing communication services between network
nodes. Node address is not essential for sensor network applications.

Wireless sensor networks are a special case of ad hoc networks. However, there
are several major differences between wireless sensor networks and ad hoc net-
works. To begin, the nodes of a wireless sensor network are generally densely
deployed (e.g., hundreds or thousands of sensors may be placed, mostly at random,
either very close or inside the phenomenon to be studied). Also, the number of nodes
is typically not the same: while there are hundreds or thousands of sensors, the
number of nodes (laptops, personal digital assistants (PDAs), palmtops, etc.) in an
ad hoc network normally ranges from tens to hundreds. The sensors have a larger
failure rate and feature lower data reliability, and are subject to stringent limitations
in the energy budget, computing capacity, and memory. The nodes of an ad hoc
network are normally distinguished by their IP addresses or other identifiers,
while sensors are usually anonymous, lacking fabrication-time identifiers. Conse-
quently, they are being addressed and named using various strategies that either

420 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

endow sensors with temporary IDs or else rely on data or position-driven naming.
While ad hoc networks normally rely on topological information in their operation
(e.g., knowledge of one-hop and often times 2-hop neighbors), such information
may not be available in wireless sensor networks simply because of the lack of
IDs at the individual sensor level. In some cases, however, the sensors benefit
from a sense of relative geographic position with respect to the monitored
environment and/or with respect to a sink. Thus, positional information (covered
in Chapter 9 in this book) may be essential in some applications of sensor
networks, although it may not be essential for ad hoc networks.

Depending on the application, different architectures and design goals/
constraints have been considered for wireless sensor networks. We attempt to
capture architectural design issues and highlight their implications on the network
infrastructure and operation models proposed in the literature. We use the routing
protocol as a vehicle for discussion in order to highlight how the infrastructure
has been set to fit the network operational model and to deal with the specific archi-
tectural issue.

There are three main components in a sensor network. These are the sensor
nodes, the sink, and the monitored events. Aside from the few architectures that uti-
lize mobile sensors, most of the network architectures assume that sensor nodes are
stationary. On the other hand, supporting the mobility of sinks, clusterheads (CHs),
or gateways is sometimes deemed necessary. Routing messages from or to moving
nodes is more challenging, since route stability becomes an important optimization
factor, in addition to energy, bandwidth, and the like. The sensed event can be either
dynamic or static depending on the application. For instance, in a target detection/
tracking application, the event (phenomenon) is dynamic, whereas forest monitoring
for early fire prevention is an example of static events. Monitoring static events
allows the network to work in a reactive mode, simply generating traffic when
reporting. Dynamic events in most applications require periodic reporting, and con-
sequently generate significant traffic to be routed to the sink.

An important design consideration is the topological deployment of nodes. This
is usually application-dependent and affects the performance of the communication
protocol. The deployment is either deterministic or self-organizing. In deterministic
situations, the sensors are manually placed and data are routed through predeter-
mined paths. In addition, collision among the transmissions of the different nodes
can be minimized through the prescheduling of medium access. However, in self-
organizing systems, the sensor nodes are scattered randomly, creating an infrastruc-
ture in an ad hoc manner. In that infrastructure, the position of the sink or the CH is
also crucial in terms of energy efficiency and performance. When the distribution of
nodes is not uniform, optimal clustering becomes a pressing issue to enable energy-
efficient network operation. During the creation of an infrastructure, the process of
setting up the network topology is greatly influenced by energy considerations.
Since the transmission power of a wireless radio is proportional to distance squared
or even higher order in the presence of obstacles, multihop routing will consume less
energy than direct communication. However, multihop routing introduces signifi-
cant overhead for topology management and MAC. Direct routing would perform

13.1 INTRODUCTION 421

well enough if all the nodes were very close to the sink. Most of the time sensors are
scattered randomly over an area of interest, and multihop routing becomes unavoid-
able. Arbitrating medium access in this case becomes cumbersome.

Depending on the application of the wireless sensor network, the data-delivery
model to the sink can be continuous, event-driven, query-driven, and hybrid. In
the continuous-delivery model, each sensor sends data periodically. In event-
driven and query-driven models, the transmission of data is triggered when an
event occurs or when a query is generated by the sink. Some networks apply a
hybrid model using a combination of continuous, event-driven, and query-driven
data delivery. The routing and MAC protocols are highly influenced by the data-
delivery model, especially with regard to the minimization of energy consumption
and route stability. For instance, it has been concluded in that for a habitat monitor-
ing application where data are continuously transmitted to the sink, a hierarchical
routing protocol is the most efficient alternative. This is due to the fact that such
an application generates significant redundant data that can be aggregated en
route to the sink, thus reducing traffic and saving energy. In addition, in the continu-
ous data-delivery model time-based medium access can achieve significant energy
saving, the since it will enable turning off sensors’ radio receivers. Carrier sense
multiple access (CSMA) medium-access arbitration is a good fit for event-based
data-delivery models, since the data are generated sporadically.

In a wireless sensor network, different functionalities can be associated with the
sensor nodes. In the early work on sensor networks, all sensor nodes are assumed to
be homogenous, having equal capacity in terms of computation, communication,
and power. However, depending on the application a node can be dedicated to a par-
ticular special function, such as relaying, sensing, and aggregation, since engaging
the three functionalities at the same time on a node might quickly drain the energy of
that node. Some of the hierarchical infrastructures proposed in the literature desig-
nate a CH different from the normal sensors. While some networks have selected
CHs from the deployed sensors in other applications a CH is more powerful than
the sensor nodes in terms of energy, bandwidth, and memory. In such cases, the
burden of transmission to the sink and aggregation is handled by the CH.

13.1.3 Transport Layer Issues in Wireless Sensor Networks

The transport layer in wireless sensor networks is different from its counterpart in
ad hoc and other types of wireless networks. There are several reasons for this.
First, the reduced amount of traffic in sensor networks implies fewer congestion pro-
blems. Second, traditional end-to-end reliability does not usually apply in wireless
sensor networks. Additionally, acknowledgments consume significant amounts of
energy and are consequently avoided; similarly, the small on-board memory
makes data-significant buffering at the individual sensor nodes level infeasible.
The reliability of individual sensor measurement is low, and the goal is to provide
good reliability of global sensor nefwork measurement. Finally, quality of service
(QoS) issues are of a different type in sensor networks: here it is more important
to provide the reliability of a small amount of information rather than providing

422 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

bandwidth or delay guarantees. Therefore, the transport control protocols designed
for wired networks or for other kinds of wireless networks cannot be used for wire-
less sensor networks.

When an event occurs, there is usually a multiple correlated data flow from the
event to sink. A spatial correlation exists among the data reported. Several reports
may arrive at the sink, or several reports can be combined at intermediate nodes
to reduce communication (data fusion). The sink makes a decision on the event
based on these reports, which has a certain degree of collective reliability. The trans-
port-layer problem in wireless sensor networks can be defined concisely as follows:
to configure the reporting rate to achieve the required event detection reliability at
the sink with minimum resource utilization.

13.1.4 Query Processing

In other types of networks, queries are normally address-centric in the sense that
they are sent to an individual node using, for example, IP-based routing. By contrast,
the anonymity of sensors suggests that in wireless sensor networks queries be either
location-centric or data-centric. Queries are addressed to a geographic region rather
than to individual sensors. Since, as we discussed, the sensors do not have unique
IDs, routes are created based on the nature and value of data collected by sensors.
An example of data-driven routing is the response to a query that is asking to
report all sensor readings with temperature over 40°C.

Queries can be distinguished along several orthogonal axes. Spatially, queries
may be global and be sent to the entire deployment area, or area-specific, in
which case they are addressed to a geocasting region (where only sensors inside a
geographic region are asked to report), or to multigeocasting regions (where all sen-
sors located inside several geographic regions are asked to report). In terms of the
reporting mechanism there are several possible types of queries. We only mention
the following three: event-driven, on-demand, and persistent. In an event-driven
query, the sensor itself decides when it has something to report (for instance,
when it measures high temperature, which may indicate incipient fire). In an on-
demand query, the request comes from the end user via the sink. In a persistent
query, the end user expresses a long-term interest in an event or a disjunction of
events. The various sensors tasked with answering the persistent query report
whenever a trigger event occurs during the lifetime of the interest.

13.1.5 Data Aggregation in Wireless Sensor Networks

When data are measured or arrive from a neighbor, the sensor needs to decide
whether or not they are important enough to forward them. The coding techniques
used need to minimize the number of forwarded bits. The new data may also be com-
bined with other received data, in order to minimize the number of bits to forward.
Such data aggregation (also referred to as fusion) from multiple sensors is import-
ant, because of severe energy and bandwidth limitations as well as for numerous
other reasons, including reliability. The reliability of individual measurements

13.1 INTRODUCTION 423

depends on the sensing distance and other factors. For instance, some sensors may
be malfunctioning (there are also some security issues, see Chapter 7 in this book).
The process of data aggregation from multiple sensors is also referred to as colla-
borative signal processing. Some sensors may aggregate data by doing some com-
putation, such as computing the average of received values, computing the sum total
of received values, and computing the largest/smallest of the received values. In
order to maximize efficiency, wireless sensor networks may espouse division or
work and functional specialization of sensors. For example, based on their relative
position and remaining energy level, some sensors may forgo sensing, limiting their
activities to data aggregation and data forwarding, while some other sensors may
engage in a larger spectrum of activities or even in all the activities for which
they qualify. An interesting aspect of the division of work is that it is done dynami-
cally, balancing the load of the various sensors in order to extend as much as poss-
ible the useful life of the network.

13.1.6 Deployment Strategies, Time Synchronization and
Position Awareness

There are several strategies for deploying wireless sensor networks. The sensors can be
embedded in the ambient environment, be embedded in the asphalt covering streets
and highways, in the walls of building, in trees, and so on. They can be placed deter-
ministically by humans or robots, or incorporated in the paint coating walls, or
deployed in a purely random fashion. Most research is devoted to random placement,
where the sensors are dispersed randomly by plane, artillery, humans, or robots.
Further, the initial deployment may be followed by later redeployment, as necessary.

Wireless sensor network self-organization includes a time component. One
aspect of the problem is the time at which each sensor starts to operate. In many pro-
tocols, there exists an implicit assumption that all sensors start to operate at the same
time, which could be preprogrammed, or may be externally decided and communi-
cated. The later option is avoided because sensors need to be in the idle state to
receive any instruction, which is much more energy-consuming compared to the
sleep state (when receivers are turned off). Sensor network operation may require
time synchronization (covered in Chapter 7 in this book), whether or not all sensors
follow the same time or at least have synchronized time slots. Time synchronization
can be provided by a global positioning system (GPS), by collaborative efforts, or
can be achieved by some other means.

Some applications benefit or even require that the sensory data collected by sen-
sors be supplemented with location information, which encourages the development
of communication protocols that are location aware and perhaps location dependent.
The practical deployment of many sensor networks will result in sensors initially
being unaware of their location: they must acquire this information postdeployment.
In fact, in most of the existing literature, the sensors are assumed to have learned
their geographic position. The location-awareness problem is for individual sensors
to acquire location information either in absolute form (e.g., geographic coordinates)
or relative to a reference point. The localization problem is for individual sensors to

424 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

determine, as precisely as possible, their geographic coordinates in the area of
deployment. One simple solution to the localization problem is to use a GPS,
where sensors receive signals from several satellites and decide their position
directly. However, for tiny sensors such direct position learning may not be possible
or may not be sufficiently accurate enough (if a GPS signal is not provided with suf-
ficient accuracy) for the assigned task. However, due to limitations in form factor,
cost per unit, and energy budget, individual sensors are not expected to be GPS-
enabled. Moreover, in many occluded environments, including those inside build-
ings, hangars, or warehouses, satellite access is drastically limited.

Since direct reliance of GPS is specifically proscribed, in order to obtain location
awareness individual sensors exchange messages to collaboratively determine their
own geographic position (absolute or relative) in the network. The vast majority of
collaborative solutions to the localization problem are based on multilateration or
multiangulation. These solutions assume the existence of several anchors that are
aware of their geographic position (e.g., sinks or specialized sensors that can
engage in satellite communication). By exchanging messages with their neighbors,
individual sensors can conceivably measure signal strengths and/or time delays in
communication. Some approaches are based on hop-count distances to reference
points. Sensors receiving location messages from at least three sources can approxi-
mate their own locations. For a good survey on localization protocols for wireless
sensor networks, we refer the interested reader to the relevant Chapter 9 in this book.

In some other applications, exact geographic location is not necessary: all that
individual sensors need is coarse-grain location awareness. There is an obvious
trade-off; coarse-grain location awareness is lightweight, but the resulting accuracy
is only a rough approximation of the exact geographic coordinates. One can obtain
this coarse-grain location awareness by a training protocol that imposes a coordinate
system onto the sensor network. Olariu et al. [1] have shown that an interesting by-
product of such a training protocol is that it provides partitioning into clusters and a
structured topology with natural communication paths. The resulting topology will
make it simple to avoid collisions between transmissions of nodes in different clus-
ters, between different paths, and also between nodes on the same path. This is in
contrast with the majority of papers that assume routing along spanning trees with
frequent collisions. In the training protocol of Olariu et al. [1] the deployment
area is endowed with a virtual infrastructure (for details see a dedicated Chapter 4
in this book). To make the presentation self-contained, however, we now outline
the idea. Referring to Figure 13.2, the coordinate system divides the sensor network
area into equiangular wedges. In turn, these wedges are divided into sectors by
means of concentric circles or coronas centered at the sink. The task of training
the wireless sensor network involves establishing:

« Coronas: The deployment area is covered by coronas determined by con-
centric circles centered at the sink

. Wedges: The deployment area is ruled into a number of angular wedges
centered at the sink.

13.1 INTRODUCTION 425

Figure 13.2 Training a wireless sensor network.

Individual sensors can acquire the desired coarse-grain location awareness by learn-
ing the identity of the corona and the wedge to which they belong. As it turns out, the
training protocol is lightweight and does not require sensors to have IDs; moreover,
sensors are not aware of their neighbors within the same sector. It is worth noting
that location awareness is modulo the sector to which the sensor belongs. Since
accurate position information is unreliable because of shadowing, scattering, multi-
paths, and time synchronization problems, training provides a viable alternative.

13.1.6 Topology Control and Area Coverage

In addition to gaining a sense of their location, sensors also need to gain some
sense of their neighborhood. This can be achieved with various degrees of self-
organization. For example, if sensors have IDs, they can discover neighbors by
exchanging “hello” messages, and decide which neighbors and links are needed
for their best operation, or what transmission range to select, to provide a certain
density for reliable reporting and route construction. The communication may be
critical for sparse networks, while for dense networks collisions, congestions and
excessive energy expenditures may occur.

Since sensor batteries cannot be recharged under present-day technology, energy
consumption is considered the most important parameter contributing to the long-
evity of the network. The best energy-conservation method is to have as many sen-
sors as possible in sleep mode, where energy consumption is minimal. The network
must be connected to remain functional, so that the monitoring station can receive
the message sent by any of the active sensors. An intelligent strategy for selecting

426 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

and updating a set of active sensors that are connected is needed in order to extend
the network lifetime. After learning about neighboring sensors, sensors decide
whether to remain active or to go to sleep if their sensing areas are already covered.
This problem is known as the connected area coverage problem, which aims to
dynamically activate and deactivate sensors while maintaining the full coverage
of the monitoring area. Efficient solutions to the connected area coverage problem
are discussed in Chapter 11 in this book. When this coverage step is performed
first, the large sensor network becomes reasonably sparse, but remains connected.

In the case of training [1], the optimal solution might be to keep a few active
sensors in each sector, which can be decided by a simple leader election process.
For example, each sensor may choose a time-out based on its remaining energy,
and send a packet containing its sector information and remaining lifetime, so
that other sensors in the same sector can hear that message, cancel their own trans-
mission, and decide how long they could sleep.

Topology in sensor networks may change more frequently, because of failures,
changes in sleep/active periods, and perhaps mobility. Designing efficient proto-
cols for many operations requires a backbone, which is a subset of sensors, so
that each sensor is either in a backbone or near it. Backbone examples include clus-
tering and connected dominating sets. Active sensors can organize themselves into
clusters. In a clustering process, some sensors may be selected as clusterheads
(CHs), and every other sensor is assigned to one of the clusters. The alternative
organization is to create backbones via connected dominating sets (each node is
in such a set or is a neighbor of a node from the set). Backbone creation and
sensor area coverage (which decides activity schedules) are covered in Chapter
11 in this book.

13.1.7 Localized versus Centralized Protocols

Estrin, Govindan, Heidemann, and Kumar [2] promoted the design of localized
rather than centralized protocols in wireless sensor networks. Due to a number
of factors, the topology of wireless sensor networks changes frequently and self-
organization must be adaptive to local changes. Centralized protocols require
global network information at each sensor (sink only, respectively, with sink
making decisions) for making sensor decisions. This includes the use of topological
structures, such as minimal spanning tree (MST), whose local links cannot be locally
determined. There are a number of combinatorial optimization formulations of
sensor network design problems with linear programming solutions. These protocols
can perform well only when sensor networks are small. We do not discuss centra-
lized approaches further, since we believe in and assume large-scale wireless
sensor networks where centralized protocols do not work well.

Localized protocols only require local knowledge for making decisions, and a
limited (usually constant) amount of additional information (e.g., the position of
the sink). Some localized protocols may require preprocessing, such as constructing
a suitable topology for further operation. One typical example is setting up a cluster
structure. In addition to localized protocol operation, it is also important to consider

13.1 INTRODUCTION 427

the maintenance cost of such topology. For instance, if the cluster structure is
adopted, what happens when CHs move or fail? Does the update procedure
remain local, and, if so, what is the quality of the maintained structure over time?
Some maintenance procedures may not remain local. This happens when local
change triggers message propagation throughout the network. Of course, localized
maintenance is preferred, meaning that local topology changes should be performed
by a procedure that always remains local, involving only the neighborhood of the
affected sensors.

A number of protocols in the literature are localized, but use an excessive number
of messages between neighboring sensors. For instance, some topology control and
position determination protocols require over a dozen (sometimes even thousands
of) messages to be exchanged between neighbors. Because of the severely limited
bandwidth and energy budget and medium-access problems caused by excessive
messaging, messages between neighbors to construct/maintain topology, determine
position, or perform any other operation should be minimized, possibly avoided
entirely (e.g., some backbone construction methods do not require any message
after hello messages to learn that neighbors have been exchanged).

13.1.8 Roadmap of the Chapter

This chapter concentrates on localized protocols, featuring localized maintenance,
and a limited number of messages between neighboring sensors. We begin by dis-
cussing data gathering—the most fundamental problems in wireless sensor net-
works. Data gathering has an implicit routing component, with or without
involving data aggregation. Protocols for reporting an event (upon detecting it) by
a single sensor are described in Sections 13.2 and 13.4. These protocols can be con-
sidered as responses to an event-driven query. The event may be detected by a group
of sensors, but a single sensor reports it after data are aggregated first. Section 13.2 is
devoted to protocols where a report is sent to the sink based on its position or merely
distance to it (the later suffices in the case of direct transmission with omni-
directional antennas), without using any local information inferred by a dissemi-
nation originating from the sink. Section 13.3 discusses various ways for
disseminating monitoring tasks from sink to sensor nodes. This is mainly done by
applying broadcasting and geocasting protocols. Section 13.4 is devoted to data-
gathering methods that are based on broadcast trees, which are constructed during
the task-dissemination process from the sink, with sensors memorizing certain infor-
mation that is later used for reporting. Section 13.5 and 13.6 discuss the case when
all sensors in an area are requested to report as a reply to an on-demand query.
Section 13.5 focuses on the case where data aggregation is not applied, whereas
Section 13.6 looks at data aggregation as well. Data aggregation can be applied to
all active sensors, or only to the active sensors within a region or a cluster. Section
13.7 discusses the case of mobile sinks or sensors. In Section 13.8, we discuss the
problem of sending enough reports about an object to the sink so that the sink can
accurately determine the position of the object. It also discusses tracking mobile
objects using tree reconfiguration and mobicast protocols. Section 13.9 discusses

428 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

the problem of rate-based data propagation in sensor networks. Section 13.10
discusses an important corollary of the data-centric view of wireless sensor net-
works, namely, anonymity. Conclusions, exercises, and references complete this
chapter.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS
TOWARD THE SINK

13.2.1 Direct Reporting by Individual Sensors

The simplest way of reporting an event is to simply send a packet with sufficient
power to reach the sink. If communication is omnidirectional, the exact position
of the sink is not needed, since the approximate signal strength needed to reach
the sink will suffice. Since sinks can always operate with more power than sensors,
they can send a packet to all sensors announcing its presence, or assigning a task, or
perhaps informing about its location. Sensors can also apply the power-increasing
method to reach the sink, for example, to double the power applied for transmission
until the sink acknowledges the receipt of the report. Since such direct communi-
cation may be over a long distance, it will drain the power quickly, and will drain
it from all sensors. Therefore this method is presented here only for completeness,
and has not been seriously considered as a viable option except for some small-size
networks such as the home environment.

13.2.2 Direct Reporting by Cluster Heads

Heinzelman, Chandrakasan, and Balakrishnan [3] described the low-energy adap-
tive clustering hierarchy (LEACH) protocol for reporting data to the sink. Each
node randomly decides whether or not to become a CH. The parameter used in
decision making is the percentage of desired CHs. Sensors that decide to become
CHs send a packet with their decision. Each node reports to the CH with the highest
signal strength, and therefore clusters correspond to Voronoi diagrams of CHs. The
CHs assign to each sensor from their cluster a time slot for reporting, aggregate data
received from individual sensors, and send aggregated data directly to the sink. The
selection of CHs is repeated periodically, to balance energy consumption. The opti-
mal number of clusters is not investigated. LEACH is illustrated in Figure 13.3. The
major problem with LEACH is that the sink may be very far from many CHs, there-
fore direct reporting may be extremely energy-consuming or even impossible. This
basic method has variants that depend on how clusters are created. In some scenarios
(e.g., military applications, with sensors attached to soldiers), there may exist natural
cluster organization, especially if different types of sensors are being used. Different
methods for forming reporting clusters are investigated in ref. [4]. Each sensor
chooses a time-out interval. If no message is heard during that interval, the sensor
decides to form a cluster and to report; otherwise, it becomes the follower of the
sensor that sent the message.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS TOWARD THE SINK 429

Figure 13.3 Data aggregation at CHs and direct reporting to sink.

13.2.3 Design Guidelines for Clustering and Aggregation
in Sensor Networks

Mhatre and Rosenberg [5] considered the organization of sensors into clusters.
Sensors could use either a single- or multihop mode of communication to send
their data to their respective CHs. The CHs send their data directly to base stations.
The energy needed for communication between two nodes at distance r is pro-
portional to r “ + ¢, where « is a power attenuation factor (between 2 and 6), and
¢ is a constant that accounts for minimum reception energy and energy to run circui-
try. The goal is to minimize and balance energy consumption. The authors analyze
two modes of communicating between sensors and base stations, and derive con-
ditions under which single-hop transmission by all nodes is best. One of the
conclusions made is that, for a = 2, there is no benefit from multihop communi-
cation. When multihop communication is better, each CH is assumed to be at the
center of a circle divided into rings of equal width (equal to the used transmission
radius). Therefore, they assume that each multiple hop is of approximately equal
length and they find the optimal forwarding distance for each hop. The authors
[5] do not prove that it is indeed optimal to use each hop of equal length (i.e.,
that the rings indeed all need to have equal width for optimality). Their result is
based on minimizing the energy in a ring that is found to be critical. However,
other rings may not be critical at that time. Our analysis [6], presented below,
shows that, in fact, the rings are not of the same size for the optimal case (i.e.,
the sensor uses different transmission radii for maximizing network lifetime). We
also note that the communication from CHs to base stations can also be multihop,
via other CHs or even other sensors, instead of being single-hop. Finally, overall
analysis is based on each sensor having an equal amount of data to report, which
may not hold in a real application. Mhatre and Rosenberg [5] also studied the pro-
blem of determining and selecting the optimal number of CHs and required battery
energy. Their derivations, however, are very complex.

430 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

Suppose that N sensors are randomly placed in a circle with fixed radius P. The
task is to subdivide the circle into n rings, and determine their widths Ry, R,, ..., R,,
so that the network lifetime is optimized, where R; + R, + - - - + R, = P (that is, the
sum is fixed). Optimization variables are therefore n, Ry, R,, ..., R,. The sink is in
the center of the first circle, of radius R,. It is assumed that the energy required for
communication between two sensors (or sensor and sink) is proportional to d * + ¢,
for some constants « (2 < a < 6) and c. For instance, two particular models con-
sidered in ref. [7] are a =2, ¢ = 10%, and a =4, ¢ = 10®. For simplicity, the
energy is charged fully to the transmitting node. Suppose that the sensor distribution
is uniform, and therefore the number of sensors N; in the ith ring is proportional to
the areas of the rings. That is, N;/N; = R,Z/Rz, andthesumN; + N, +---+N, =N
is fixed, equal to the total number of sensors. It is assumed that each sensor helps a
proportional number of sensors from the rings farther from the sink in retransmit-
ting. To send a message from sensor in the ith ring to a sensor in the (i — 1)th
ring, we assume that the energy needed is proportional to R + ¢, as an average
amount with respect to ring size, or worst-case amount for the first ring (transmitting
to sink, which is the zeroth ring). We also assume that the maximum transmission
radius is limited, equal to T.

The sensors in the first ring spend (in the worst case) energy proportional to
RT + ¢ to send their own message directly to the sink, and to retransmit each
message. In addition, each of them retransmits a proportional number of messages
from sensors in all other rings. The number of sensors it helps is therefore
(Ny+---+N,)/N; = (N — N;)/N;, and the total number of messages it sends
is 1+ (N — N,)/N, =N/N, = P?/Ri. Thus the energy needed for these trans-
missions is (R 4 ¢)P> /R% This is a function of one variable, which has the mini-
mum at r; = (2¢/(a — 2)!/® For a = 2, the energy is minimized for the maximal
transmission range. The (unrealistic) case ¢ = 0 is easy to discuss. We therefore
continue the discussion only for the case ¢ > 0 and a > 2. Interestingly, the mini-
mal energy for the first ring is obtained for the target radius that does not depend
on P, N, and even n! The target radius for the first ring is adopted if r; < 7, other-
wise, it must be changed to ry = T. If P < ry, then the optimal number of rings is
n = 1. Moreover, in this case r; = P. We assume that P > r; in the remaining
analysis.

Now consider sensors in the last ring. They send only one message to sensors in
the previous ring, which requires energy proportional to R, + c. The sensor network
will maximize its lifetime when all sensors die at approximately the same time.
Otherwise, the sensor network will not be able to either monitor or report the
event. Therefore the optimal value of R, is obtained when energies in the first and
last rings are equal, that is, when Ry, + ¢ = (/] + c)P2/ r% (here the optimal value
for the first ring is already assumed). This equation has a straightforward solution
for r,, (see ref. [6] for the formula) as the optimal ring size. Interestingly, the solution
again does not depend on n and N, but it does depend on P, the overall circle size. If
this optimal ring size is > T, it should be reduced to 7. Note that r,, # r; (unless they
are both “trimmed” to the same value 7T'), which can be easily verified from the
equation.

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS TOWARD THE SINK 431

further energy savings cannot be achieved, because the limit on the first ring width does
not depend on P. If | 4 r,, < P, then more rings are needed, and the process can con-
tinue iteratively, from the last rings toward the first ring. Sensors in ring R; will forward
messages from a proportional number of sensors from rings R; for j > i. The number
ofsuch sensors is (N, + -+ + Niy1)/N; = (RZ 4+ --- + R7_|)/R?. Therefore, in the
worst case, the sensors in the ith ring are expected to spend energy (1 + (R + -+ -+
RI.ZJr D) /RI.Z)(Rf.‘ + ¢). Assume that the optimal values for rings n, ..., i + 1 are already
determined. The equation to be solved is then (1+ (rrzl + -+ ri2+])/
R?)(RY 4 ¢) = r® + c. This is the equation of one variable, and the function has its
minimum, obtained by standard calculus methods (finding a derivative) [6]. Let the
optimal solution be R; = r;. If this solution is larger than 7, then it should be changed
tol.If ri +r,+rn—1+---+r; <P, theni= 2, which determines the final value of
n. Otherwise, it continues with the next value of i, effectively increasing n by 1. Note
that, in the analysis presented, all sensors are assumed to be active.

Assume now that the transmission radii of all sensors are the same and fixed to 7.
Energy consumption can then be balanced by applying nonuniform sensor distri-
bution. This problem was studied in ref. [8], with solution techniques involving
sleep periods and energy consumption for routing tasks. We will extend the preced-
ing solution to the case of nonuniform densities, following ref. [6], keeping all sen-
sors active. Suppose that N sensors are randomly placed in a circle with fixed radius
P. The task is to subdivide the circle into n rings of the same fixed widths
T=R,=R,=,...,=R,, and corresponding sensor densities p;,p,, ...,p, in
these rings so that the network lifetime is optimized. The number of rings 7 is there-
fore n = P/T, since Ry + R, + - - - + R, = P. Optimization variables are therefore
P1>Pas- - - Ppy- The sink is in the center of the first circle, of radius T and density
p;- Since ring areas are the same, the number of sensors N; in the ith ring is pro-
portional to their densities. That is, N;/N; = p,-/pj, and the sum Ny +N, +--- +
N, = N is fixed, equal to the total number of sensors. If all densities were the
same, then balancing energy consumptions would not be possible, because sensors
in rings closer to the sink are getting an increasing number of forwarding tasks, and
the transmission energy per task is fixed. Therefore, for balanced energy consump-
tion we have p, > p, > --- > p,. Suppose that p, = 1, since other values would
simply result in multiplying other densities by the same factor. The energy consump-
tion is proportional to the numbers of messages sent. Sensors in the last ring send one
message per considered time unit (which depends on reporting the rate), as a result
of their monitoring. Sensors in the first ring, being more densely spread, require a
lower reporting rate for their own monitoring. They therefore send 1/p, reports in
the same time frame. Similarly, sensors in the ith ring generate 1/p; reports. Sensors
in the first ring retransmit a proportional number of messages from sensors in
all other rings. The number of sensors each of them helps is therefore
(Na/py+---+Nyu/p,)/N1 = —1)/p;, and the total number of messages it
sends is 1/p; +(n—1)/p, =n/p,. Thus, n/p; =1 or p; = n. Continuing this
discussion, we conclude that p;, = n 4+ 1 — i. With this solution, each sensor sends
on average one message per unit time, independently on the ring it is contained in.

If ry + r, > P, then the optimal value for n is n = 2. In the case of strict inequality,

432 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

13.2.4 Data Aggregation with Consensus

A data-aggregation and -consensus algorithm for object location and tracking by a
sensor network is described by Kumar, Schwiebert, and Brockmeyer [9]. The first
node that detects an event will first generate consensus by obtaining a quorum
from nodes having similar interests and area of coverage. If more than half of the
sensors close to the event confirm the same observation by acknowledging to the
initiating node, the node will report the event.

13.2.5 Multihop Reporting among Nodes or Clusters

The direct communication from CHs to sinks may be impossible because of distance
or can be extremely energy-consuming. Further, even communication from any
sensor to its own CH can have such problems. If multihop reporting is applied, pack-
ets can be forwarded among CHs only until they reach the sink (if transmission
power is adjusted to reach a neighboring CH), or the route could include bridge
(or gateway) sensors between adjacent clusters. Note that this multihop forwarding
using other CHs can be applied with or without further data aggregation, beyond the
initial one within each cluster.

Alternatively, cluster organization may not be necessary. Sensors may react to an
event by first finding consensus among other nearby sensors that detect the same
event (e.g., the consensus method [9]), and then the lead sensor applies multihop
reporting, that is, routing via other active sensors in the network toward the sink.

13.2.6 Reporting with Energy-Efficient Routing

Multihop reporting can be performed with a routing algorithm that aims at minimizing
hop count. Alternatively, the algorithm may attempt to minimize the energy expendi-
ture needed for a given routing task, or to maximize the network lifetime by con-
sidering the remaining energy when selecting forwarding neighbors. In Chapter 12
in this book, routing protocols with mentioned optimization criteria are surveyed.
For the sake of completeness, we summarize here a few relevant protocols.

Schurgers and Srivastava [10] propose that nodes collect several packets intended
for the same neighbor into a single packet. They claim that compression can be
achieved in this way, leading to more energy efficiency. They also propose stochas-
tic schemes where the best neighbor is chosen at random, an energy-based scheme
where the best neighbor is selected based on its energy, and a stream-based scheme
where busy nodes inform their neighbor by asking them to select other forwarding
nodes instead.

Chatzigiannakis and Nikoletseas [11] describe a routing protocol for sensors that
have the sense of direction, but do not know their coordinates. The monitoring center
is a wall known to sensors, and wider than the width of the sensor network. The task
of reporting from a sensor to the wall proceeds by a greedy algorithm, which follows
the direction orthogonal to the wall. At each step, the node currently holding the
message broadcasts a search message looking for another sensor within an angular

13.2 DATA GATHERING WITHOUT MEMORIZING LINKS TOWARD THE SINK 433

range with respect to the wall direction and at a certain minimum distance (and
maximum distance, which is the transmission radius). Thus, each sensor has the abil-
ity to estimate the distance to neighboring sensors. Each awake sensor located in the
desired cyclic sector will report back to current node A, but only the first such node B
will receive the full message from the current node. Current node A will wait to hear
the forwarded message from B to one of its neighbors. If successful, A will go to
sleep. If there is no closer node to the wall from B, a failure message is generated
and the message is backtracked to A. Note that no two consecutive backtrack
steps are possible, so this simple greedy routing may fail. Note also that the
greedy-face-greedy (GFG) algorithm [12] can be used to guarantee delivery.

13.2.7 Sector Routing

In the case of sector training [1], messages are not directed toward any particular
sensor. Instead, they are directed toward a sector. All active sensors inside the
sector receive the message. One of them decides to retransmit, and others in the
same sector (if more than one in a given sector is active) can overhear this trans-
mission, which prevents them from their own retransmissions. This assumes that
inside a sector the sensors are within the communication range of each other.
This may or may not be true in general. In any case, forwarding toward the sink
then follows a sector-routing principle: a route is created from sector to sector,
with an arbitrary sensor from each sector participating (see Fig. 13.2, showing a
route from the top sector toward the sink). In case of empty sectors, a variant of rout-
ing with guaranteed delivery [12] can be applied, since sectors are creating a planar
graph. In recovery mode, face routing can be employed using direction orthogonal to
the wall (that is, with the destination being imagined at infinity).

13.2.8 Data-Centric Storage

In some particular scenarios, wireless sensor networks can operate, at least tempor-
arily, without a sink. In this case, reports by sensors need to be stored in the sensor
network itself. Ratnasamy, Estrin, Govindan, Karp, Shenker, Yin, and Yu [13]
described a data-centric storage system for application in wireless sensor networks.
Sensors have a tiny memory, and therefore limited storage capacity. Therefore, they
need to distribute storage among themselves. The algorithm in ref. [13] is to apply a
hash function to a keyword assigned to a file, datum, information, or an object,
which will map it to a point with geographic coordinates. The hash function
needs to be carefully selected so that the obtained point is inside the geographic
region containing the sensors. A planar graph over sensor network can be obtained
by applying a Gabriel graph (GG) structure (described in Chapter 10). The infor-
mation is stored in all sensors on the face containing the mapped point. In order
to retrieve the information, GFG routing that guarantees delivery [12] can be
applied. Since the mapped node is generally not in the sensor network, routing
will create a loop along the face containing it. Sensors on that face have already
stored the information and can provide it to the requester.

434 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS
13.3 DATA DISSEMINATION FROM THE SINK

13.3.1 Broadcasting Short Packets from the Sink

This subsection discusses various ways the sink assigns monitoring tasks. The tasks
assigned to sensors need to be propagated to all active sensors in the network (broad-
casting), or to all the active sensors located inside a region of interest (geocasting),
consisting of currently active sensors (e.g., sensors selected for area coverage). One
simple solution, if it is assumed to have sufficient transmission power to cover the
entire deployment area, is that the sink sends one message that reaches all the
sensor nodes in the network. If the sink does not have sufficient power, the sensors
themselves need to retransmit such messages. If the packet containing the task and
the location of the sink is relatively short then the data dissemination can be fulfilled
by any of the broadcasting protocols, covered in Chapter 11. Most of these protocols
assume that the sensors know the position of their local neighbors. Otherwise, blind
flooding can be applied, meaning that each sensor receiving the packet for the first
time will rebroadcast it. This method is the most popular in the existing literature
(for instance, it was applied in protocols given in refs. [14] and [15]). Intelligent
flooding (broadcasting) schemes are surveyed in Chapter 11. Some sensors do not
need to retransmit the task packet, and the task can still be distributed to all the sen-
sors (assuming an ideal medium-access protocol). One such method is beaconless
area-based broadcasting [16], where a sensor whose communication area is comple-
tely covered by transmissions from other sensors does not need to retransmit. Note
that this method does not require prior knowledge of neighbors. When sensors need
to report using a broadcast tree, they can link themselves to one of the nodes from
which the packet was received.

Acknowledgments for the receipt of monitoring tasks may or may not be sent. If
requested, it can be provided, for instance, as follows. Lipman, Boustead, and
Chicharo [17] proposed to send acknowledgments only to neighbors along local
minimum spanning tree (LMST) edges. Each sensor then on average sends only at
most two acknowledgments, because of the sparse LMST structure. To construct
a LMST [18], each node first constructs a MST of its local neighbors (knowing
their geographic positions), and keeps edges that are included in such local MSTs
by both end points (see more details in Chapter 10). On average, each node will
send one acknowledgment only, since the average degree (average number of neigh-
bors) of a LMST is only slightly larger than two.

13.3.2 Broadcasting Long Packets from Sink

If the message containing a detailed assignment, or other type of message that needs
to be disseminated, is relatively long, then an alternative is to send two types of mess-
ages instead: a short message is sent first that offers a long message to sensors, fol-
lowed by a long message sent only to those sensors that require it. In the sensor
protocol for information via negotiation (SPIN) [19], each node that receives the
datum (full message) that is being broadcast will forward the corresponding

13.3 DATA DISSEMINATION FROM THE SINK 435

metadatum (short message) that has a considerably shorter bit length (e.g., 16 bytes
instead of 500) to all its neighbors. The metadatum is thus flooded. Neighboring
nodes that did not yet receive the full message will reply to the short message with
a request to receive it. The sensor will then respond by sending the full message to
all nodes that requested it. If an omnidirectional antenna is used, sensors may retrans-
mit the full message upon receipt of the first request for it. Note, however, that, short
request messages may be sent back to the transmitting node only if it is a neighbor in a
selected sparse, connected structure, as observed in ref. [20], greatly reducing the
amount of short messages needed. For example, if a LMST [18] is used as the
sparse structure, the reduction is about 2/d times, where d is the average number
of neighbors in the network. This reduction is possible if nodes have 2-hop topo-
logical or one-hop positional information about their neighbors.

13.3.3 Geocasting in Wireless Sensor Networks

Data dissemination, or task allocation, from the sink does not need to be propagated
to all active sensors. If only sensors that are close to a monitoring event (e.g., a fac-
tory that pollutes the environment) need to be alerted, then only sensors located
inside a geographic region need to receive the task. This problem is known as
geocasting. A survey of existing geocasting schemes is given in ref. [21]. It was
shown that most existing geocasting schemes do not guarantee delivery to all
nodes inside a region, the main reasons being either the partitioning of the network
inside the region, or applying greedy routing instead of one that guarantees delivery.

Yu, Govindan, and Estrin [22] considered a geocasting variant of the data-
gathering problem. They describe the geographic and energy-aware routing
(GEAR) algorithm, which uses energy-aware neighbor selection to route the
packet toward the target region, and recursive geographic forwarding, or restricted
blind flooding algorithm, to disseminate the packet inside the destination region.
Recursive forwarding applies GEAR to send messages to four subregions in the
geocast region, which repeats until the region has a single node inside it. Blind flood-
ing does not guarantee delivery to all sensors inside the region, because of possible
partition inside the region (but connectivity outside it), and can be replaced by a
more intelligent scheme (see Chapter 11 in this book). The GEAR algorithm selects
a forwarding neighbor (among those that are closer to the destination), which mini-
mizes a linear combination of their distance to the destination and the energy they
already spent. This is almost equivalent to the cost-aware localized scheme
by Stojmenovié¢ and Lin [7], originally proposed in 1998 (described in detail in
Chapter 12). Yu, Govindan, and Estrin [22] also claim that GEAR can avoid
holes by applying a learning A* algorithm-based approach, without presenting
details. To avoid holes, one can use, for example, the depth-first search (DFS)
approach [23]. This approach requires memorizing past traffic at nodes. Unfortu-
nately, it does not guarantee delivery to all sensors in the geocasting region, because
of possible partitioning inside the geocasting region.

We observe that, to guarantee delivery to all sensors in a geocasting region, and
also to avoid memorization, GFG [12] can be applied first, while some optimizations

436 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

(described in ref. [22]) can follow later on recursively. Note also that ref. [24] further
elaborated on the use of GEAR for various forms of data dissemination, without
giving its description.

Three existing geocasting algorithms that guarantee delivery to all nodes inside
the geocasting region (subject to the ideal medium-access layer and connectivity
of these nodes to the source) are described in refs. [21] and [25]. One algorithm
[21,25] is based on multicasting to entrance zones, and flooding from entrance
zones to nodes inside the geocasting region. Bose, Morin, Stojmenovié, and Urrutia
[12] observed that a geocasting algorithm will guarantee delivery if all faces of a
planar graph that are inside or intersect the geocasting region are traversed. The geo-
casting algorithm [12] is based on a DFS of the face tree, constructed from a node
inside the geocasting region.

Seada and Helmy [26] observed that it is sufficient to traverse only faces that
intersect the boundary of a given geocasting region, and proposed the following
algorithm. Source node first uses GFG algorithm [12] to forward the packet
toward the region. Each node that is inside region will retransmit the packet when
receiving it for the first time (“regional flooding”). If the node also has neighbors
outside geocast region, it will instruct them to perform face traversals using
“right-hand” rule (see chapter on routing in this book for details). The first node
inside the region to receive the face traversal packet floods it inside the region or
ignores it if that packet was already received and flooded before [26]. Figure 8 in
ref. [26] shows that face traversal was not assumed in cases when an outer node
brings the packet inside the region (the receiving node then only floods the
region, but does not instruct the sender node outside the region to then also perform
face traversal). Therefore, as elaborated in ref. [21], the algorithm [26] does not
guarantee delivery, despite the claim. A protocol that does guarantee delivery
(with proof of it) was described in refs. [21] and [26].

Algorithm Geocast_traversal_intersecting_faces

- The source node S sends the message toward the geocasting region, using the
GFG algorithm [12];

- Each node inside the region retransmits the message when receiving it for the
first time, and ignores it when receiving it again;

- Each internal border node (node inside a region having neighbor(s) on planar
graph outside the region) will instruct (together with retransmission) all its
perimeter neighbors outside the region to perform right-hand-based face
traversals;

- Each external border node (node outside the region having neighbor(s) on the
planar graph inside the region) will initiate right-hand-based face traversal(s)
with respect to all edges leading to internal-perimeter neighbors, after receiving
the first copy of the message, and will ignore further received copies unless a
packet is received from an external neighbor following a different “external”
face (in which case it forwards it along that face, as requested). Each traversal
is performed until another node that is inside the region is found.

13.4 DATA GATHERING BASED ON MEMORIZED BROADCASTING TREES 437

13.3.4 Multicasting in Wireless Sensor Networks

A monitoring task can also be disseminated to all the sensors located in several geo-
casting regions. Assuming that these regions are relatively small, a position-based
multicasting protocol [27] can be applied. Mauve, Fusler, Widmer, and Lang [27]
proposed two multicasting schemes, with some optimizations. In the optimal-
paths method, each node receiving a multicasting message for a group of nodes
will forward it to each neighbor that is closest to one of the group members.
More precisely, each group member is assigned to the neighbor that is closest to
it (provided that neighbor is closer to it than the current node). In the aggregate-
paths method, for each neighbor A, the number of destinations for which A is the
closest node is determined. Then a covering algorithm is applied. Basically, a neigh-
bor is chosen that covers the maximum number of destinations, these destinations
(and other nodes for which a selected node makes some progress) are eliminated
from the list, then another neighbor is chosen that covers the maximal number of
remaining destinations, and so on. The forwarding list of multicast group is similarly
changed as in the previous algorithm [27]. In both schemes, if no neighbor is closer
to one or more destinations, then the recovery mode in the GFG algorithm [12] is
applied. The virtual destination used for the recovery mode is calculated as the
position representing the average of the positions of the affected destination
nodes. When a node receives a multicast packet in recovery mode, it checks for
each destination, if it is closer to that destination than the node where the packet
entered recovery mode. For all destinations where this is the case, greedy multicast
forwarding can be resumed, as described in the corresponding scheme. For all other
destinations, recovery mode is continued, with an updated average of positions of
affected nodes (those not recovered yet). Both optimal- and aggregate-path methods
can be modified by considering metrics different from hop count, such as power,
cost, or delay. Greedy routing can be replaced by power and/or cost-aware routing
(see Chapter 12), and forwarding neighbors will be judged based on the metric in
question, combined with their coverage ability, for their selection.

13.4 DATA GATHERING BASED ON MEMORIZED
BROADCASTING TREES

Sensors (or their CHs, when they are clustered), may report back to the sink using a
tree structure that is constructed together with the task allocation from the sink. This
tree is referred to here as the broadcasting tree, since it is usually set during the
broadcasting operation. It sends task allocation and other (e.g., sink position) infor-
mation from the sink to all the sensors in the network. The use of broadcasting tree
also implies the need to memorize some information made available during
broadcasting process, which is then used in the reporting phase. The broadcasting
tree consists of links along which the sensors learned about the position of the
sink(s). Therefore, the sink monitoring implicitly informs the sensors that link to
be used for replying. Sensors then create links for reporting along the reverse broad-
cast tree. This term is used, since reporting is normally applied in the direction that is

438 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

opposite to the direction of request propagation from the sink. Most of the literature
considers this type of sensor training for reporting. Note that the broadcasting oper-
ation is applied when all active sensors are alerted to report possible events. The
broadcasting tree can also be set during a geocasting operation, where the monitoring
station requests reports only from sensors located inside a geographic region. This
can be further generalized to multigeocasting operations, which disseminates a
request to all sensors located inside several geocasting regions. Because of the vola-
tility of individual sensors (failures or changes between sleep and active periods), the
use of broadcasting trees for reporting has certain risks, since a particular node or link
may not be available although demanded by the memorized response path.

Carle and Simplot-Ryl [28] proposed the following framework for wireless
sensor network operation. Sensor-area monitoring consists of three phases or
subproblems. The first one is to select the sensors that are needed for connected-
area coverage, placing other sensors in sleep mode. The second phase is to construct
a broadcasting tree from the sink to all active sensors. They consider two types of
trees, minimum energy broadcasting or dominating set based. The last phase is to
report events using the reverse broadcast tree.

13.4.1 Directed Diffusion

Directed diffusion [14] is a often cited scheme for data gathering by using a data-
centric routing scheme. The data sink identifies a set of attributes and propagates
an interest message throughout the network. The interest is flooded throughout the
network (apparently blind flooding was used). Each receiving node records the inter-
ests and establishes the so called gradient, the state indicating the next hop direction
for other nodes to report data of interest. When an interest arrives at a data producer,
data are being forwarded to the sink along established gradients. Note that the algor-
ithm is similar to the well-known ad hoc on-demand distance vector (AODV) routing
scheme [29], considered as a possible routing standard. Flooding the interest with
attribute-based addressing corresponds to the route discovery with IP or ID addres-
sing. Instead of comparing their address with the destination address as in AODYV,
sensors in directed diffusion compare the interest from the packet with the data
they measure and their location if the interest is location specific. Therefore various
AODV optimizations that exist in the literature are applicable in the context of
directed diffusion. Although it is an on-demand localized scheme that does not
require prior “hello” messages, the scalability is questionable. If the interest is
location specific, then obviously it is much more efficient to route the request
(using, e.g., a protocol that guarantees delivery [12]) toward the location of interest
instead of flooding it to the whole network. The protocol described in ref. [14] uses
path memorization for reporting the sensor measurements back toward sink.

13.4.2 Reporting via Neighbor with Smaller Hop Count

Ding, Sivalingam, Kashyapa, and Chuan [15] considered the problem of finding a
route from a sensor to the single sink in a wireless sensor network. Following a

13.4 DATA GATHERING BASED ON MEMORIZED BROADCASTING TREES 439

reactive route discovery strategy, the sink floods the network and sets the routes. The
difference is that each sensor does not memorize the whole route, or a single pointer
to the previous sensor on the route, but instead memorizes its hop-count distance to
sink. When a packet is sent toward the sink, any neighbor at one less hop distance
can forward it, instead of reporting back to the first node that sent the task assign-
ment packet to it. For instance, a report can be sent to the neighbor with the highest
energy and smaller hop count, or any neighbor that sent the packet with a smaller
hop count from the sink [15]. The node can memorize few such alternatives
during the setup phase and try them one by one. Alternatively, a neighbor at one
less hop distance can simply retransmit, and the node can block further retransmis-
sions by a separate blocking packet.

Fujiwara, lida, and Watanabe [30] proposed a mechanism that allows nodes to
maintain their routes to the base station via multihopping, if needed. If a direct
link between any node and its base station is broken, the node starts monitoring com-
munications in its neighborhood to find a node that is still connected to the base
station, either directly or by multihopping. When the node finds a connected neigh-
bor, which should be one hop nearer, it marks it as its router and sends to it the packets
that must be sent to the access point. This allows nodes to always be able to connect
to their base station. The authors consider only the case of a single access point.

Zou, Nikolaidis, and Harms [31] described several localized schemes for con-
structing reporting trees for sensors to the sink. The tree construction starts at a
sink node, which floods a message in the network. Upon receipt of several copies
of the message, a given node may decide which of the nodes that sent the message
is best to use for reporting data back to the sink. Authors described several possible
localized criteria for selecting the best neighbor: minimum distance to the next hop,
maximum distance to the next hop, random next hop, maximum degree of the next
hop neighbor, and the maximum size of the 2-hop neighbor set of the next hop
neighbors.

Wireless sensor networks with multiple sinks are special cases of hybrid wireless
networks considered in ref. [32]. The hop distances to the closest sink, and therefore
the routes, can be similarly determined as in the case of the single sink [15,30], as
described in ref. [32]. Each access point sends messages toward sensors to establish
reporting links. Each sensor may receive such messages from multiple sinks, but will
forward them only from the closest sink. This will reduce the amount of traffic, with-
out affecting the choice of the closest sink. If all sinks start the process synchro-
nously, at the same time, then only one message is forwarded by each sensor.
Otherwise, sensors will forward a new message only if it comes from a sink that
is closer than the previously closest sink from which such a message was already
received. This algorithm constructs the reporting trees from each sink to all sensors
for which that sink is the closest one.

13.4.3 Reporting via Alternate Paths in a Broadcast Tree

Most of the current methods for reporting sensor data first construct a broadcast tree
from the source, then use this tree for reporting in reverse order. Nodes in the tree

440 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

Figure 13.4 Reporting from source S to MC via three alternate paths.

may first be selected so that they make minimal connected-area coverage. The pro-
blem is that if a node in the tree fails or is malfunctioning, then the reports can be lost
or compromised. To enhance the security of reporting, secondary and ternary paths
for reporting are proposed in refs. [33] and [34]. A primary broadcast tree is con-
structed from the monitoring center (MC). All nodes are labeled based on the first
hop out of the MC. Thus the network is effectively partitioned based on which
neighbor of the MC delivers the report to it. Now consider an edge AB in the net-
work, where A and B have two different labels. Such edges can serve as bridges
for the second copy of messages. Suppose that node S wants to send a report to
the MC (see Fig. 13.4). Node S can send one copy of the report directly to the
MC using the reverse broadcast tree. The second copy can be sent instead to a
node A with the same label as S, which has a neighbor B with a different label.
Then the report can be sent from S to A, and from A to B, and from B using the
reverse broadcast tree to the MC. The two paths should be disjoint, if possible. Simi-
larly, S may find even a ternary path through another bridge, on the other side of the
tree, for even higher security, or to provide the majority consensus to the MC, which
can choose two out of three reports. The construction of the secondary and ternary
paths may proceed as follows. Both end points A and B of each bridge edge AB can
initiate the construction of their private trees within the neighborhood with the same
label, in the same way the MC constructs its own broadcast tree. These trees are
labeled with the label of the other end point. That is, the private tree of A within
the neighborhood of A with the same primary label as A is labeled with the label
of B, and vice versa. Each node Q receiving such a message for the first time will
join the corresponding broadcast tree, and forward the message so that the tree is
enlarged. If the message is already received from another bridge node, with the
same “bridge” label, Q ignores it to avoid too much traffic and constructing
additional trees that may not significantly enhance security. If a message is received
with a different secondary label, Q accepts the participation in yet another tree and
enlarges it by rebroadcasting the message. Routing the report then follows the

13.5 PERIODIC REPORTS BY ALL SENSORS 441

constructed trees. The source node S sends the primary report on the primary tree,
and uses the secondary and perhaps the ternary tree to which it belongs to send
additional copies of the same report. Security can be jeopardized with the new
method if several nodes close to the sink, one or two hops away, located on several
branches of the tree, are all compromised. To prevent that, the sink must be particu-
larly responsible for the authentication of all nodes that are one hop and perhaps two
or three hops away from it in the broadcast tree.

13.5 PERIODIC REPORTS BY ALL SENSORS

13.5.1 PEGASIS: Chain of Reporting Nodes

Lindsey, Raghavendra, and Sivalingam [35] proposed a framework for energy-
efficient data gathering algorithms in wireless sensor networks. Their power-
efficient gathering in sensor information system (PEGASIS) protocol [35] first
organizes sensors into a chain, by a centralized algorithm (e.g., the sink can decide
about ordering of reports). Thus, sensors are initialized as ¢, ¢y, . . . , ¢,—1. Data gath-
ering is performed in rounds. In round , first find i = k mod n. Each round consists of
n iterations. In each iteration, only one sensor is sending a message, containing data
gathered by that sensor. Iterations are performed as follows: ¢, sends to ¢y, ¢; to
€2, ..., Ci—1 toc;. Then ¢, sends to ¢,,—», ¢,—2 t0 ¢,—3, . . ., Cizq tO c;. Finally, c;.
sends the gathered data to the MC. The distance to the MC is assumed to be larger
than the distances between the sensors. Chains can be difficult to construct in multi-
hop sensor networks. For single-hop networks, initialization algorithm needs to run,
or the MC needs to assign reporting indices to individual sensors. Once constructed,
when sensors change activity status (from active to passive) or stop functioning, the
order scheme needs to run again, or a maintenance procedure is needed. The scheme
is also not sensitive to the energy levels of the sensors, as different sensors consume
different amount of energy, depending mainly on their distances to the MC.

13.5.2 LMST- and Geocasting-Based Data Gathering

Several localized solutions are proposed in refs. [33] and [34]. One is a localized
algorithm that first constructs LMST (or other sparse structure such as the relative
neighborhood graph (RNG)). Instead of creating a chain, a token is circulated in
the network. The node currently having the token will send it to one of its LMST
neighbors. This can be done in different ways. Nodes can forward with equal prob-
ability of sending to one of its neighbors (not returning to the neighbor it came
from). Since the average degree of LMST is about 2.04 [18], there is on average
one such neighbor to forward the token. The forwarding probability may depend
on node densities. Neighbors with more LMST neighbors should have a smaller
probability of getting the token (since they may get tokens from more neighbors
in the process). Next, neighbors with more energy left may have a higher probability
of getting the token. Finally, in the case of monitoring an event that can be

442 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

geographically located, sensors nearby need to preserve more energy, and thus they
may decide to postpone reporting to the MC. Thus, instead of reporting every
nth time to the MC, the frequency may also be decided probabilistically, depending
on the energy level of the node. This scheme does not offer an immediate alternative
for the data aggregation. LMST may be converted to MST [36], or a spanning
tree may be constructed by broadcasting a message from the node holding the
token. The constructed tree may be used for data gathering from other sensors,
before the node holding the token sends the report to the MC. MST can also be
used for data aggregation, since reports can be sent toward the node holding the
token, and aggregated on the way.

Another solution proposed in refs. [33] and [34] is to apply the geocasting
algorithm [12,37], which follows a single path from the source while visiting
all nodes in the region. The algorithm guarantees to see all nodes, and on average
it does so twice during a single geocasting process, which can be repeated period-
ically. If the sink is fixed, preprocessing can de done to decide the entry edges and
reduce communication time, as described in refs. [21] and [25]. The advantage
over the solution just described is to guarantee the participation of each node
on a fairly regular basis.

13.6 DATA GATHERING WITH DATA AGGREGATION

Data collection, known as data gathering or data dissemination, can be considered
as a reverse multicasting task, with all nodes from the multicasting group reporting
their data to the MC. There are several cases that need to be distinguished in these
tasks. The data collected may or may not be aggregated at intermediate sensor
nodes. Data aggregation is applied when sensor measurements are correlated,
which is reasonable to assume when they measure the same event in nearby pos-
itions. In this case, it is not necessary that each individual report (which may not
be sufficiently reliable) reaches the monitoring center. Intermediate nodes may
combine (aggregate) data received from several neighbors, and possibly one
measured by itself, into a single report, and forward it toward the MC. In the
case of data aggregation, a distinction can be based on whether or not forwarding
sensors have their own data measured. Obviously, all sensors that want to report
data need to be included in the reporting tree. If data aggregation is not applied,
then clearly each reporting sensor may apply one of the routing algorithms with
guaranteed delivery (e.g., ref. [12]) for sending its report to the MC. If data aggre-
gation is applied, a distinction can be made between protocols applied within the
geocasting region, and outside of it. Outside the geocasting region, not all sensors
need to participate in reporting. The problem appears, then, to be the inverse of the
multicasting problem, that is, the multicast tree that is set while sending the request
to the sensors can be used to report data back from the sensors (assuming an on-
demand query was issued to all sensors).

13.6 DATA GATHERING WITH DATA AGGREGATION 443

13.6.1 Power-Efficient Data-Gathering and Aggregation Protocol

Tan and Korpeoglu [38] proposed a power-efficient data-gathering and aggregation
protocol (PEDAP) that assumes that locations of all nodes are known by the sink a
priori. The sink constructs a MST which is then used for data gathering and aggre-
gation. In the power-aware version of the same protocol, the MST is constructed
with weights on each edge calculated as the product of power consumption on the
edge and the reluctance of a neighbor to receive the packet (reluctance is the inverse
of the remaining energy at the node).

13.6.2 LMST-Based Data-Aggregation

Inside the geocast region, two cases for data aggregation may occur: all nodes in the
region sense the event, or some nodes are there only to forward traffic. If all sensors
within the region are reporting, the optimal tree to use is apparently the MST (as
observed in ref. [39]). The existing distributed algorithm for constructing a MST
require O(n log n) messages, with a high constant involved. The algorithm presented
in ref. [36] is based on breaking all cycles created in the LMST. Each of the LMST’s
links is broken by identifying the longest edge in it and removing it [36]. The
removal of one such edge may lead to a longer cycle, which is broken in the next
iteration. The LMST can also be broken differently, in the considered context.
The new solution [33,34] is to also start with the LMST structure. The (MC) will
create a tree out of the LMST by forwarding its request, within the geocasting
region, only along the LMST’s edges. When a node receives a message from the
MC, it will forward it on only on its remaining LMST edges, if any. However, if
a neighbour already received a message from the MC, that link is not used; an
LMST cycle is broken that way. The obtained tree is not necessarily MST, but its
approximation, which is expected to be very close to it in performance.
Figure 13.5 illustrates the construction of a LMST-Based data aggregation tree.
The edges of the LMST are drawn with thick edges, and all but one (drawn with
a dashed line) is included in the broadcasting tree. Edge WF is the only one that
is in the LMST, but not in the MST.

Figure 13.5 LMST-based energy-efficient data-aggregation tree.

444 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS
13.7 MOBILE SINKS OR SENSORS

13.7.1 Two-Tier Data Dissemination

Data dissemination for large-scale wireless sensor networks was considered in ref.
[40], for the case when multiple mobile sources send information constantly to mul-
tiple mobile destinations. The authors [40] proposed a two-tier data-dissemination
approach, source to destination and destination to source, with grid subdivision of
the area and greedy forwarding. The initial routes are set by flooding (if the destina-
tion locations are not known) or greedy forwarding (otherwise). Sources create grids
that contain sensors that are closest to the grid intersections. These sensors act as a
backbone for routing. When sources or sinks move to a new cell, they flood new
cells to find a new backbone sensor, so that the existing paths can be extended.
This article [40] does not give any concrete scheme for path optimization to
avoid using long paths.

The grid backbone assumes large sensor density, with all sensors being active.
However, if a sensor-area coverage scheme is applied to select active sensors, the
grid backbone can be replaced by a more efficient and more natural backbone of cov-
ering sensors (discussed in a separate chapter in this book). Grid division is
unnecessary overhead, and greedy forwarding may fail. GFG [12] can replace
greedy forwarding. If either sources or sinks are fixed, then mobile components
will initiate route maintenance toward stationary components. Let S be a fixed
source, and D be the initial position of a destination. Path extension from the new
destination position D’ toward the old position D can be applied up to a certain tra-
veled distance, then D’ can initiate routing toward the source until it reaches it. In
fact, the maintenance can stop when a node that already knows the path to S is
found. Alternatively, the new path search may terminate after reaching a node A’
that is a neighbor of a node A on the original path SAD. Instead of SADD’ the
new path, is then SAA'D’ [33,34].

Further optimizations can be achieved my merging some reporting streams
toward same sink or the same source. Suppose that messages from sensors A and
B, sent toward the same sink or source, are heard by sensor C, their common neigh-
bor. Sensor C can then offer to merge these streams, reporting its position. Nodes A
and B evaluate the gain obtained by each of such candidates C, in the case of several
such offers, and select the best one [33,34]. Note that A and B may or may not be
neighbors themselves, which results in two different protocols. The problem exists
when both sources and sinks can be mobile, since then the updates do not have pre-
cise destinations. The procedure then is an alternate the application of the described
procedure from both ends until the packets meet somewhere in the network.

13.7.2 Mobile Collectors

Tirta, Li, Lu, and Bagchi [41] proposed using a mobile collector, such as an airplane
or a vehicle, to collect sensor data from remote fields. The sensor network is clustered
and only CHs report data. They present three different schedules for the collector.

13.8 TRACKING OBJECTS IN SENSOR NETWORKS 445

In the round-robin scheme, each CH is visited in a predefined order, regularly for
same amount of time. In the rate-based scheme, the frequency of visits depends on
the amount of data reported. In the min-movement scheme, CHs are visited in specific
order, but the time spent with each of them depends on the amount of data to report
(more precisely, the collector stays with each CH until all data are collected).

13.7.3 Mobile Sensors

Taherian and O’Keefe [42] proposed an energy-aware event-dissemination protocol
for mobile sensor networks. In this protocol, each sink proactively constructs a
redundant tree in the network. This redundant tree is combined with probabilistic
forwarding. The main idea is to limit the number of parent and sibling nodes as
the redundant tree grows. The proposed redundant tree is not guaranteed to be con-
nected, that is, be useful for event dissemination. It is also not guaranteed to provide
full coverage of the sensor network area. Routing follows tree pointers if they exist;
otherwise, it applies a probabilistic forwarding scheme (which is similar to existing
beaconless routing schemes reviewed in Chapter 12).

13.8 TRACKING OBJECTS IN SENSOR NETWORKS

13.8.1 Tracking Objects Without Data Aggregation

We now discuss problems associated with tracking an object, possibly moving. This
section considers problem aspects when data aggregation is not involved. Each
report therefore needs to be sent directly to the base station. The problem is to
send a sufficient number of reports so that the position of the object can be reliably
determined by the base station, while minimizing the number of sensors that send
the report. We assume that each sensor knows its own location, and location of
its neighboring sensors. Although in reality the reliability of sensor observation
depends on the distance to the object, we consider a simplified model, assuming
that all sensors located within the sensing radius from the object can reliably
detect it. After detecting the object, sensors can measure either the distance to it,
or the direction (angle) toward it. The case of distance is similar to the position deter-
mination problem, discussed in Chapter 9. We therefore now study the case of
measuring an angle toward an object, without knowing the distance to it. All reports
will be assumed accurate, although in reality some reports may be false, and security
and report reliability issues need to be studied as well. Estrin, Govindan, Heide-
mann, and Kumar [2] were the first to investigate this problem. In their solution,
the sensor network is clustered first. CHs for which all neighboring CHs lie on
the same side of a line drawn toward the object elect themselves to participate in
object location. The goal is to elect sensors that form the longest baseline for tri-
angulation. There are several problems with this approach. In general, there are
two such nodes, which are tangent nodes from the object to the convex hull of
CHs. If one of them for any reason does not see the object (because of obstacles),

446 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

Figure 13.6 Longest baseline may not accurately determine the location of the object O; the
object R is inside the convex hull of the observing sensors.

the object cannot be accurately determined. Next, the longest baseline is not always
the best choice for accuracy (see Fig. 13.6 where the object R in drawn as a square).
Small or large angles in the triangle containing the baseline may cause large errors in
object positioning. Short and long baselines, with respect to other network measure-
ments, also cause large errors. What is a better criterion? It appears that it is better to
maximize the minimal angle in the triangle used to decide object location [43].

The next problem occurs when the object is inside the convex hull of participat-
ing CHs, as object R in Figure 13.6. In this case, no sensor reports the direction of the
object in ref. [2]. Therefore, there is a need for designing new protocols. In fact, the
problem appears to be quite challenging. Some proposals were given in ref. [43] as
follows. Each node can decide whether or not it is locally a northernmost (N), east-
ernmost (E), westernmost (W), or southernmost (S) node, by verifying whether or
not any sensor exists on the corresponding horizontal or vertical line passing through
the sensor. Similarly, NE, NW, SE and SW sensors can be found, by considering
directions /4 and 37/4. Every sensor that can see the object could report it to
its locally northernmost node, by sending /forwarding a message to its northernmost
neighbor, using the greedy routing or routing scheme [12]. The exact protocol
details and analysis are still under investigation [43]. The best approach appears
to be to use the multilateration technique, which is applied, for instance, in ref.
[4] for position determination based on distances. It is also interesting to consider
the different ways of selecting which sensors will participate. In addition, clustering
organization could be replaced by another backbone, for example, connected dom-
inating sets. Any type of backbone could be applied on an area covering the set of
Sensors.

13.8.2 Tree Reconfiguration for Tracking Mobile Objects

Zhang and Cao [44] discussed how to monitor an object by sensors located inside a
monitoring region, such as a circle. These sensors are organized into a tree, with one
of the sensors serving as the root. The root collects all reports, aggregates them, and
routes them to one or more sinks (base stations). In this method, the root keeps

13.8 TRACKING OBJECTS IN SENSOR NETWORKS 447

monitoring its distance to the target. When the distance becomes larger than a certain
threshold d, it will be replaced by the node that is closest to the center of the current
monitoring region.

13.8.3 Mobicast Protocol for Tracking Mobile Objects

One particular application of geocasting is tracking mobile objects. Mobile objects
create geocast regions that are time dependent, and data collection is performed by
the sensors in the vicinity of a moving object. The sink may collect reports from
the sensors in the vicinity of the object, and may send periodic signals to the
sensors adjusting the geocasting region, following the trajectory along with the
object advances. In mobicast application [45], however, the sensors themselves
adjust the geocasting region.

Huang, Lu, and Roman [45,46] proposed a mobicast protocol where the nodes
that belong to the forward, time-dependent region, or belong or are about to enter
the geocast region, retransmit the message. Their algorithm presented in ref. [45]
is an improved version of the one in ref. [46]. In their problem formulation, the
MC is not used to decide and inform about the geocast region. Instead, the sensors
themselves cooperate, follow the movement of an object, and inform the sensors,
which are approached by the object, to start monitoring. This is achieved by consid-
ering the planar graph of covering sensors, and forwarding messages to the faces of
the planar graph in the direction of object movement, with proper timing corre-
sponding to the arrival time of the object at the considered face. This is illustrated
in Figure 13.7. Suppose that the rectangle object, shown with dashed lines,
moved from the far left and is continuing toward the far right. All faces that the
object intersected are traversed by messages from sensors in these faces. They are
marked in Figure 13.7 by clockwise arrows along the face edges (following the

Figure 13.7 Reliable mobicast.

448 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

left-hand rule for face traversal). Node F, after receiving the signal from neighbors
C, E, or N, starts monitoring. It then estimates when the rectangle will reach two
other faces containing F, and will send a signal at the appropriate time, so that
nodes in these faces are alerted in time. In turn, node W decides when the rectangle
will reach that face, and sends the alert signal at the best possible time, so that all the
nodes on the long face are alerted just before the arrival of the rectangle. In that way,
alert messages are able to cross over obstacles, or areas without sensors. For
instance, node Z will be alerted although there is no direct neighbor of it that mon-
itored the same rectangle before the rectangle reached Z. In the algorithmic details
given by the authors [45], each node needs to learn all nodes that are on the same
face as the given node, which may not always be available from local knowledge.
However, we believe that this may be avoided by slightly changing the description.
Proper timing for reaching node Z is also an issue, since the face size may be signifi-
cantly larger than the average one, and the message may even follow the outer
boundary of the network. Face routing may not be necessary for alerting sensors
ahead of the arriving object. Greedy routing may be used, or, more precisely,
GFG [12]; it is its combination with face routing that guarantees delivery. If the
area is convex, completely covered by sensors, and the communication radius is
over twice as large as the sensing area, ref. [47] showed that greedy routing guaran-
tees delivery. The problem can even be considered as a variant of geocasting, with
sensors themselves issuing geocast messages toward the future location of the
object, alerting sensors in a certain area. If several such messages arrive at a
given node, it will forward only one of them, to control the overhead.

13.9 RATE-BASED DATA PROPAGATION IN SENSOR NETWORKS

In sensor networks, data sources sample data and propagate them to potential
consumers. A consumer may subscribe to a data item at a certain rate, and the sub-
scription rate may vary for different consumers. The problem is to construct a data
propagation tree to efficiently disseminate data from a source node at the required
rate to each of its consumers.

Singh, Pujar, and Das [48] proposed a breadth-first search-based protocol for a
one-to-one network model, assuming that the connections between sources and
consumers are with a wired network. We shall consider a sensor network, that is,
a wireless network, for connection between sources and consumers. In this scenario,
communication is one-to-all. The main difference from Singh et al.’s model [48] is
that the rates are marked at each node, instead of at each edge.

The proposed solution [49] is a generalized multicasting position-based protocol
(following a solution proposed in ref. [27]), which applies the multipoint relay (MPR)
strategy (see Chapter 11) in determining forwarding neighbors and their rates.

In a preprocessing step, each consumer reports to the source (assume that there is
only one source, for simplicity). Thus the source is informed about customers and
their preferred rates. The source then creates a list of customers and their rates
and makes forwarding decisions, that is, which neighbors will retransmit and at

13.10 ANONYMITY ISSUES IN WIRELESS SENSOR NETWORKS 449

what rates. Other nodes, receiving decisions to retransmit, will follow a very similar
protocol to determine their forwarding nodes.

Let S be the current node, and let C,, C,, ..., C, be consumers that S needs to
serve. Let Ry, Ry, ..., R, be their preferred rates. Let Ay, A,, ..., A,, be neighbors
of S. For each consumer, only neighbors that are closer to it than S can be considered
for serving and covering. Each possible covering of consumer C; by neighbor
Aj(|A;Ci| < |SC;]) is associated with the cost per progress, defined as R;/(|SC;|—
|A;Ci]). More precisely, since A;, once selected, will cover all consumers it is
closer, the cost of selecting A; is associated with the progress it makes toward all con-
sumers it could serve (it is closer than S to them). To avoid notational difficulties, let

By, Bs, ..., B be those consumers among C, C,, . .., C, that are considered for ser-
ving by A; (they are all closer to A; then to S, but not all such nodes need to be
selected). Let Py, P», ..., P; be their corresponding preferred rates. Then the cost

per progress for selecting A; is max(Py, P, ..., Py)/(|SB1| — |A;B| + |SB2|—
|AiBz| + - - - + |SBi| — |A;Bi|). An alternative measure is to consider each progress
individually: Py /(ISBy| — |A:B1)+ P2/(ISBa| — |A;Ba]) + - -+ Pi/(ISB¢| — |A:By).
However, this is not likely to be a better criterion, since one small progress can
easily undermine a number of good progresses made. The selection of covering
neighbors and their rates then can proceed in the following manner:

. If there is any consumer served by a single neighbor, then that neighbor is
selected; moreover, the selected neighbor will also cover other consumers
that are closer to it than to S.

- Select one of the remaining consumers with maximal preferred rate, and con-
sider the cost of each neighbor serving it, and the additional benefit such a
choice makes overall. Select the node that then minimizes its own
max(Py, Py, ..., Pr)/(ISBi| — |AiB1| + |SB2| — |AiBa| + - - - + |SB| — |AiBy|).

- Repeat previous step until all consumers are covered.

13.10 ANONYMITY ISSUES IN WIRELESS SENSOR NETWORKS

In many applications, safeguarding output data assets, that is, data produced by the
wireless sensor network and consumed by the end user (application), against loss or
corruption is a major security concern. In these application domains, a wireless
sensor network is typically deployed in a hostile target environment for a relatively
long period of time. The network self-organizes and works to generate output data
that is of import to the application. For example, a wireless sensor network may be
deployed across a vast expanse of enemy territory ahead of a planned attack; the
network system monitors the environment and produces reconnaissance data that
are absolutely essential to a mission planning application. Periodically, during the
network lifetime, a mobile gateway, mounted on a person, land or airborne vehicle,
or a satellite, collects the output data assets from the network system, to maintain an
up-to-date state. This means the network system must store the output data assets

450 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

from the time it is produced until it is collected. Therefore, securing the output data
assets in the network is an important problem in this class of applications.

We view an attack on the output data assets in the sensor network as a type of
denial of service attacks. This view is based on the abstraction that output data
are stored in a logical repository, and that access to this output data repository
constitutes, in effect, a “service” provided by the network system to the application;
corruption or loss of output data denies the application access to that service.

13.10.1 What Is Anonymity?

Anonymity protects the identity of the sender or receiver and guarantees that both
parties involved in a communication remain anonymous to each other. Recent
years have seen a flurry of activity, and many anonymous communication systems
have been developed for the Internet. Most of the work on anonymity is concerned
with sender anonymity, receiver anonymity, and mutual anonymity. Quite recently,
traffic anonymity has also received well-deserved attention in the literature.
Recently, the problem of securing ad hoc networks has received a great deal of
well-deserved attention. To the best of our knowledge, the anonymity problem
has not been adequately addressed in wireless sensor networks [50].

The threat model assumed by Wadaa et al. [S0] comes from a data-centric view of
wireless sensor networks. The model is predicated on the assumption that the end-
goal of anonymity attacks on the wireless sensor network is to identify and eliminate
the minimum number of sensors to inflict maximum loss of data assets; eliminating a
sensor means disabling it so that it is permanently nonoperational. For any operation
cycle, if a sink suffers a permanent failure before transferring the contents of its data
repository to the gateway, then a portion of the data assets corresponding to the cycle
is irrevocably lost. The goal of the adversary is to eliminate all sinks. This can be
accomplished in two ways.

13.10.2 The Anonymity Threat Model

13.10.2.1 Brute-Force (Sink Nodes Not Identified) This can take the form
of randomly eliminating nodes in the network on the assumption that, statistically,
some sinks will be eliminated in the process. Coarse sink granularity and sink redun-
dancy mitigate the risk of loss of data assets as a result of this type of attack. A
straightforward special case is the massive elimination of all sensors in the network.

13.10.2.2 Smart (Sink Nodes Identified) The adversary analyzes network
traffic to deduce information about topology, traffic flow patterns, and other
system attributes. The goal is to discover sink nodes and to eliminate them. In
this chapter we assume the adversary engages in smart elimination attacks. The spe-
cifics of the architecture and the implementation of the adversary system are
assumed to be unknown.

13.11 CONCLUSIONS 451

13.10.3 Sender and Path Anonymity

Sender anonymity is most commonly achieved by transmitting a message to its des-
tination through one or more intermediate nodes in order to hide the true identity of
the sender. The message is thus effectively rerouted along what is called a rerouting
path. It is important to study rerouting-based anonymous communication systems in
terms of their ability to protect sender anonymity. The selection of rerouting paths is
critical for this kind of system. Olariu et al. [51] investigated how different path
selection strategies affect the ability to protect sender anonymity. For a given anon-
ymous communication system, they measure this ability by determining how much
uncertainty this system can provide in order to hide the true identity of a sender.
They call this measure the anonymity degree. In ref. [51] the authors assume a
passive adversary model: the adversary can compromise one or more nodes in the
system. An adversary agent at such a compromised node can gather information
about messages that traverse the node. If the compromised node is involved in the
message rerouting, it can discover and report the immediate predecessor and succes-
sor nodes for each message traversing the compromised node. We assume that the
adversary collects all the information from its agents at the compromised nodes
and attempts to derive the identity of the sender of a message.

Common sense indicates that the degree of anonymity increases with increasing
number of intermediate nodes between the sender and the receiver. Olariu et al. [51]
call this number of intermediate nodes the path length of the rerouting path. There is
a point, however, beyond which increasing the path length actually decreases the
degree of anonymity. The authors give a quantitative analysis of how path length
affects the degree of anonymity. Rerouting schemes give rise either to paths with
fixed length (where messages are forwarded to the receiver after traversing a fixed
number of intermediate nodes) or variable length (for example, where every
intermediate node randomly decides whether to forward the message to the receiver
directly or to another intermediate node). The authors show that variable path-length
strategies perform better than fixed path-length strategies in terms of degree of anon-
ymity. However, when the expected path length is sufficiently long, the difference of
anonymity degree is relatively small between different variable and fixed path-
length strategies. As a result of this study, Olariu et al. [51] argue that several
well-known anonymous communication systems are not using the best path selec-
tion strategies. They go on to propose an optimal method to select path lengths,
by showing that the path selection problem can be cast as an optimization problem,
whose solution yields an optimal path-length distribution that maximizes the degree
of anonymity.

13.11 CONCLUSIONS

We considered some relevant aspects of the process of issuing requests and collect-
ing data, with sensor ad hoc networks as the primary application of the presented
methods. Protocol efficiency was the primary goal, with efficiency defined by
some metrics or design characteristics (such as localized behavior of protocols).

452 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

Ad hoc and sensor networks have recently attracted exponentially increasing
interest, including the creation of new conferences, new journals, and publication
of a number of books. We envision that this trend will continue in the short term,
and we envision that data-centric operation problems, discussed in this chapter,
will continue to be intensively studied. We hope that the research efforts will lead
toward real applications of ad hoc networks, especially sensor networks.

Sensor networks pose a number of research challenges. In addition to the problems
discussed in this and other chapters in this book, we mention two more problem areas.
One is about the design of sensor network protocols for heterogeneous sensor networks,
the other is the investigation of various scenarios and protocols for wireless sensor and
actor networks. Actor nodes are active nodes, with higher energy and computation
capabilities, that are able to perform some actions and are able to move around.

EXERCISES

13.1. Describe a routing algorithm based on sector training [1] that will guarantee
delivery in when there are empty sectors.

13.2. Derive a formula for the error involved when the position of an object is deter-
mined based on the angles measured from three given sensors [43]. Show that
the error is minimized when the minimal angle in the triangle created by three
measuring sensors is maximized.

13.3. Prove that the geocast_traversal_intersecting_faces algorithm guarantees
delivery to all nodes inside the geocasting region, which is connected to the
source [21,25].

13.4. Design an algorithm for finding optimal ring sizes (for extending network life-
time) for reporting to a CH with data aggregation for the case of n rings [49].

13.5. Design some protocols for moving the sink to a new position near the old pos-
ition so that the overall energy consumption for reporting from last-hop sen-
sors is reduced. Design another procedure for moving the sink to reduce the
number of incoming reports that violate delay constraints [52].

13.6. Design an energy-efficient data-aggregation protocol for the following scenario.
There are two types of sensors in a geocasting region, plus sensors outside the
region. Some sensors inside the geocasting region are sensing and can perform
data aggregation, while some other sensors are not sensing, but can only per-
form data aggregation, if needed. Sensors outside the geocasting region can
only perform data aggregation, if needed, or can simply forward the traffic.

13.7. In aheterogeneous sensor network, there are two kinds of sensors. Some super-
sensors have high-energy resources and can communicate with each other and
with the sink with much smaller delays than communication between regular
sensors. Suppose that each node knows the distance to and label of the nearest

REFERENCES 453

supersensor, and that this information is communicated to neighboring
sensors. Describe a broadcasting protocol in this environment [32].

13.8. Describe a localized protocol for general multigeocasting problems, where a

monitoring task is to be disseminated from the sink to all the sensors located
inside several geographic regions that are of arbitrary sizes, shapes, and
locations, known to the sink.

ACKNOWLEDGMENT

This research is partially funded by NSERC Discovery grant.

REFERENCES

10.

. S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Wireless sensor networks: Lever-
aging the virtual infrastructure. [EEE Network, pages 51-56, July /August 2004.

. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable
coordination in sensor networks. In Proceedings of the 5th Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (MobiCom’99), pages
263-270, Seattle, Washington, August 1999.

. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-
cation protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii
International Conference on System Sciences (HICSS), Volume 8, page 8020, Maui,
Hawaii, January 2000.

. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local
information on an ad hoc sensor network. In Proceedings of the 2nd International Work-
shop in Information Processing in Sensor Networks (IPSN ’03), pages 333-348,
Palo Alto, California, April 2003.

. V. Mhatre and C. Rosenberg. Design guidelines for wireless sensor networks: Communi-
cation, clustering and aggregation. Ad Hoc Networks, 2(1): 45-63, 2004.

. S. Olariu and I. Stojmenovic. Design Guidelines for Clustering and Aggregation in
Sensor Networks. In preparation.

. L. Stojmenovi¢ and X. Lin. Power aware localized routing in wireless networks. IEEE
Transactions on Parallel and Distributed Systems, 12(11):1122-1133, November 2001.

. J. Lian, K. Naik, and G. B. Agnew. Data capacity improvement of wireless sensor net-
works using non-uniform sensor distribution. International Journal of Distributed
Sensor Networks, forthcoming.

. M. Kumar, L. Schwiebert, and M. Brockmeyer. Efficient data aggregation middleware for
wireless sensor networks. Paper presented at the 1st IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS 2004), Fort Lauderdale, Florida, October
2004.

C. Schurgers and M. Srivastava. Energy efficient routing in wireless sensor networks. In
Proceedings of MILCOM 2001, pages 357-361, Vienna, Virginia, October 2001.

454

11.

12.

13.

14.

15.

16.
17.

18.

20.

21.

22.

23.

24.

DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

I. Chatzigiannakis and S. Nikoletseas. A sleep-awake protocol for information propa-
gation in smart dust networks. In Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003), page 225, Nice, France, April 2003.
P. Bose, P. Morin, I. Stojmenovi¢, and J. Urrutia. Routing with guaranteed delivery in
ad hoc wireless networks. In Proceedings of the 3rd ACM Inernational Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications (D/
ALM’99), pages 48-55, Seattle, Washington, August 1999. See also in Wireless
Networks, 7(6):609-616, 2001.

S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, S. Shenker, L. Yin, and F. Yu. Data-
centric storage in Sensornets with GHT, a geographic hash table. Mobile Networks and
Applications (MONET), 8:427—-442, August 2003.

C. Intanagonwiawat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In Proceedings of the 6th Annual
ACM/IEEE International Conference on Mobile Computing and Networking (Mobi-
Com ’00), pages 56—67, Boston, Massachusetts, August 2000. See also IEEE/ACM
Transactions on Networking, 11(1):2—16, February 2003.

J. Ding, K. M. Sivalingam, R. Kashyapa, and L. J. Chuan. A multi-layered architecture
and protocols for large-scale wireless sensor networks. In Proceedings of the IEEE
Vehicular Technology Conference (VCT2003), Orlando, Florida, October 2003.

I. Stojmenovic. Beaconless Area Based Broadcasting. In preparation.

J. Lipman, P. Boustead, and J. Chicharo. Reliable minimum spanning tree flooding in
ad hoc networks. IEEE Transactions on Vehicular Technology, forthcoming.

N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology control
algorithm. In Proceedings of IEEE INFOCOM, Volume 3, pages 1702—1712, San Fran-
cisco, California, April 2003.

. W.R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dis-

semination in wireless sensor networks. In Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom ’99),
pages 174185, Seattle, Washington, August 1999.

M. Seddigh, J. Solano Gonzalez, and I. Stojmenovic. RNG and internal node based broad-
casting algorithms for wireless one-to-one networks. Mobile Computing and Communi-
cations Review, 5(2):37-44, 2001.

I. Stojmenovic. Geocasting in Ad Hoc and Sensor Networks. Technical Report TR-
2004-02, Computer Science, SITE, University of Ottawa, March 2004. See also in Theor-
etical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks,
Jie Wu (ed.), CRC Press, pages 79-97, 2005.

Y. Yu, R. Govindan, and D. Estrin. Geographic and Energy Aware Routing: A Recursive
Data Dissemination Protocol for Wireless Sensor Networks. Technical Report TR-
01-0023, Computer Science, University of California, Los Angeles, August 2001.

1. Stojmenovi¢, M. Russell, and B. Vukojevic. Depth first search and location based loca-
lized routing and QoS routing in wireless networks. Computers and Informatics,
21(2):149-165, 2002.

J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms to
application requirements. In Proceedings of the Ist International Conference on
Embedded Networked Sensor System (SenSys), pages 218—229, Los Angeles, California,
November 2003.

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

REFERENCES 455

. L. Stojmenovic. Geocasting with guaranteed delivery in sensor networks. IEEE Wireless
Communications Magazine, 11(6):29-37, December 2004.

K. Saeda and A. Helmy. Efficient geocasting with perfect delivery in wireless networks.
In Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC 2004), Volume 5, pages 2555-2560, Atlanta, Georgia, March 2004.

M. Mauve, H. Fusler, J. Widmer, and T. Lang. Position-Based Multicast Routing for
Mobile Ad Hoc Networks, Technical Report TR-03-004, Department of Computer
Science, University of Mannheim, March 2003. See also Poster: Position-based multicast
routing for mobile ad-hoc networks, In Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’03) (electronic
edition), Annapolis, Maryland, June 2003.

J. Carle and D. Simplot-Ryl. Energy efficient area monitoring by sensor networks.
Computer (IEEE), 37(2):40—47, February 2004.

C. Perkins and E. M. Royer. Ad hoc on-demand distance vector (AODV) routing. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA °99), pages 90—100, New Orleans, Louisiana, February 1999.

T. Fujiwara, N. Iida, and T. Watanabe. An ad hoc routing protocol in hybrid wireless
networks for emergency communications. In Proceedings of the 24th International Con-
ference on Distributed Computing Systems Workshops—W6: WWAN (ICDCSW ’04),
pages 748—754, Tokyo, Japan, March 2004.

S. Zou, 1. Nikolaidis, and J. J. Harms. Efficient data collection trees in sensor networks
with redundancy removal. In Proceedings of the 3rd International Conference on
AD-HOC Networks and Wireless (ADHOC-NOW 2004), pages 252—265, Vancouver,
British Columbia, July 2004.

F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Routing and broadcasting in hybrid
ad hoc and sensor networks. In Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless and Peer-to-Peer Networks, Jie Wu (ed.), CRC Press, pages 415-426, 2005.
I. StojmenoviC. Geocasting, Data Gathering and Activity Scheduling in Ad Hoc and
Sensor Networks. Technical Report TR-2003-05, Computer Science, SITE, University
of Ottawa, August 2003.

1. Stojmenovic. Data Gathering and Activity Scheduling in Ad Hoc and Sensor Networks.
Paper presented at the International Workshop on Theoretical Aspects of Wireless
Ad Hoc, Sensor, and Peer-to-Peer Networks, Chicago, Illinois, June 2004.

S. Lindsey, C. Raghavendra, and K. Sivalingam. Data gathering algorithms in sensor
networks using energy metrics. IEEE Transactions on Parallel and Distributed Systems,
13(9):924-935, September 2002.

F. J. Ovalle-Martinez, I. Stojmenovic, F. Garcia-Nocetti, and J. Solano-Gonzalez. Find-
ing minimum transmission radii and constructing minimal spanning trees in ad hoc and
sensor networks. Journal of Parallel and Distributed Computing, 65(2):132—141,
February 2005.

P. Morin. Online Routing in Geometric Graphs. Ph.D. thesis, School of Computer
Science, Carleton University, January 2001.

H. O. Tan and I. Korpeoglu. Power efficient data gathering and aggregation in wireless
sensor networks. ACM SIGMOD Record, 32(4):66—71, December 2003.

M. Khan, G. Pandurangan, and B. Bhargava. Energy-Efficient Routing Schemes for
Sensor Networks, Technical Report CSD TR 03-013, Purdue University, July 2003.

456 DATA-CENTRIC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for
large-scale wireless sensor networks. In Proceedings of the Sth International ACM Con-
ference on Mobile Computing and Networking (MobiCom), pages 148—159, Atlanta,
Georgia, September 2002.

Y. Tirta, Z. Li, Y. H. Lu, and S. Bagchi. Efficient collection of sensor data in remote fields
using mobile collectors. In Proceedings of the 13th International Conference on
Computer Communications and Networks (ICCCN 2004), pages 515-520, Chicago,
Illinois, October 2004.

S. Taherian and D. O’Keefe. Event dissemination in mobile wireless sensor networks.
Paper presented at the 1st IEEE International Conference on Mobile Ad Hoc and
Sensor Systems (MASS 2004), Fort Lauderdale, Florida, October 2004.

1. Stojmenovic. Object Location in Sensor Networks. In preparation.

W. Zhang and G. Cao. Optimizing tree reconfiguration to track mobile targets in sensor
networks. Mobile Computing and Communications Review, 7(3):39-40, July 2003.

Q. Huang, C. Lu, and G. C. Roman. Reliable mobicast via face-aware routing. In
Proceedings of IEEE INFOCOM, Hong Kong, China, March 2004.

Q. Huang, C. Lu, and G. C. Roman. Mobicast: Just-in-Time Multicast for Sensor
Networks under Spatiotemporal Constraints, Technical Report TR WUCS-02-42,
Washington University, St. Louis, Missouri, December 2002.

G. Xing, C. Lu, R. Pless, and Q. Huang. Greedy geographic routing is good enough in
sensing covered networks. IEEE INFOCOM 2004.

G. Singh, S. Pujar, and S. Das. Rate-Based Data Propagation in Sensor Networks. Paper
presented at the IEEE Wireless Communications and Networking Conference (WCNC
2004), Atlanta, Georgia, March 2004.

1. Stojmenovic. Rate Based Data Propagation in Sensor Networks. In preparation.

A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones. On providing anonymity in
wireless sensor networks. In Proceedings of the 10th International Conference on Paral-
lel and Distributed Systems (ICPADS-2004), pages 411-418, Newport Beach, California,
July 2004.

S. Olariu, A. Wadaa, L. Wilson, K. Jones, and M. Eltoweissy. Enforcing Anonymity in
Wireless Sensor Networks. In preparation.

K. Akkaya, M. Younis and M. Bangad. Sink repositioning for enhanced performance in
wireless sensor networks. Computer Networks, forthcoming.

I CHAPTER 14

Path Exposure, Target Location,
Classification, and Tracking in
Sensor Networks

KOUSHA MOAVENI-NEJAD and XIANG-YANG LI
lllinois Institute of Technology, Chicago, lllinois

Algorithms designed for sensor networks should be self-organizing (should not
depend on global infrastructure), robust (be tolerant to node failures and range
errors), and energy efficient (i.e., require little computation and, especially, com-
munication). This chapter briefly discusses what information is available to the
nodes whose location is unknown and the methods that this information can be
used to derive the location of the object. The localization and tracking problems
are introduced and methods to solve it are discussed. Some experimental location
and tracking systems are then reviewed.

14.1 INTRODUCTION

Wireless sensor networks are large-scale distributed embedded systems composed
of small devices that integrate sensors, actuators, wireless communication, and
microprocessors. With advances in hardware, it will soon be feasible to deploy
dense collections of sensors to perform distributed microsensing of physical
environments. Sensor networks will serve as a key infrastructure for a broad
range of applications, including precision agriculture, intelligent highway systems,
emergent disaster recovery, and surveillance.

Sensor networks are an emerging technology that promises the unprecedented
ability to monitor and instrument the physical world. Sensor networks consist of a
large number of inexpensive wireless devices (nodes) densely distributed over

Handbook of Sensor Networks: Algorithms and Architectures, Edited by Ivan Stojmenovié
Copyright © 2005 John Wiley & Sons, Inc.

457

458 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

the region of interest and have wireless connectivity. They are typically battery
powered with limited communication and computation abilities. Also each node
in a wireless sensor network is equipped with a variety of sensing modalities,
such as acoustic, seismic, and infrared.

Having location information can be very useful and has so many applications, it
can answer questions like: Are we almost to the campsite? What lab bench was
I standing by when I prepared these tissue samples? How should our search-and-
rescue team move to quickly locate all the avalanche victims? Can I automatically
display this stock devaluation chart on the large screen I am standing next to? Where
is the nearest cardiac defibrillation unit? and so on.

Service providers can also use location information to provide some novel
location-aware services. The navigation system based on a global positioning
system (GPS) is an example. A user can tell the system his destination and the
system will guide him there. Phone systems in an enterprise can exploit locations
of people to provide follow-me services.

Researchers are working to meet these and similar needs by developing systems
and technologies that automatically locate people, equipment, and other tangibles.
Indeed, many systems over the years have addressed the problem of automatic
location-sensing. Because each approach solves a slightly different problem or
supports different applications, they vary in many parameters, such as the physical
phenomena used for location determination, the form factor of the sensing appar-
atus, power requirements, infrastructure versus portable elements, and resolution
in time and space.

For outdoor environments, the most well-known positioning system is the GPS
[1], which uses 24 satellites set up by the U.S. Department of Defense to enable
global three-dimensional positioning services, and it provides an accuracy of
around 20 to 50 m. In addition to the GPS system, positioning can also be done
using some wireless networking infrastructures. Taking the personal communications
service (PCS) cellular networks as an example, the E911 emergency service requires
determining the location of a phone call via the base stations of the cellular system.

In GPS, triangulation uses ranges to at least four known satellites to find the
coordinates of the receiver, and the clock bias of the receiver. For our node-location
purposes, we are using a simplified version of the GPS triangulation, as we only deal
with distances, so there is no need for clock synchronization. Because of the
following reasons GPS is not suitable for wireless sensor networks and much
work has been dedicated recently to positioning and location tracking in the area
of wireless sensor networks. The reasons are:

- It is not available in an indoor environment because satellite signals cannot
penetrate buildings.

- For more fine-grained applications, higher accuracy is usually necessary in the
positioning result.

- Sensor networks have their own battery constraint, which requires special
design.

14.1 INTRODUCTION 459

Many applications of sensor networks require knowledge of physical sensor
positions. For example, target detection and tracking are usually associated with
location information [2]. Further, knowledge of sensor location can be used to
facilitate network functions such as packet routing [3-5], and collaborative
signal processing [6]. Sensor position can also serve as a unique node identifier,
making it unnecessary for each sensor to have a unique ID assigned prior to its
deployment.

In sensor networks the capabilities of individual nodes are very limited and nodes
are often powered by batteries only. To conserve energy, collaboration between
nodes is required and communication between nodes should be minimized. To
achieve these goals nodes in wireless sensor networks (WSNs) need to determine
a device’s context, and since each node has limited power, we want to determine
the location of individual sensor nodes without relying on external infrastructure
(base stations, satellites, etc.).

Location information not only can be used to minimize the communication
but also can be used to improve the performance of wireless networks and
provide new types of services. For example, it can facilitate routing in a wireless
ad hoc network to reduce routing overhead. This is known as geographic rout-
ing [7,8]. Through location-aware network protocols, the number of control
packets can be reduced. Other types of location-based services include geocast
[9], by which a user can request to send a message to a specific area, and temporal
geocast, by which a user can request to send a message to a specific area at a
specific time. In contrast to traditional multicast, such messages are not targeted
at a fixed group of members, but rather at members located in a specific physical
area.

However, location discovery in wireless sensor networks is very challenging.
First, the positioning algorithm must be distributed and localized in order to
scale well for large sensor networks. Second, the localization protocol must
minimize communication and computation overhead for each sensor, since
nodes have very limited resources (power, CPU, memory, etc.). Third, the posi-
tioning functionality should not increase the cost and complexity of the sensor,
since an application may require thousands of sensors. Fourth, a location-
detection scheme should be robust. It should work with accuracy and precision
in various environments, and should not depend on sensor-to-sensor connectivity
in the network.

The localization problem has received considerable attention in the past, as
many applications need to know where objects or persons are, and hence various
location services have been created. Undoubtedly, the GPS is the most well-
known location service in use today. The approach taken by GPS, however, is
unsuitable for low-cost, ad hoc sensor networks, since GPS is based on extensive
infrastructure (i.e., satellites). Likewise, solutions developed in the area of robotic
[10—12] and ubiquitous computing [13] are generally not applicable for sensor
networks, as they require too much processing power and energy. Recently, a
number of localization systems have been proposed specifically for sensor net-
works [14—16]. We are interested in truly distributed algorithms that can be

460 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

employed on large-scale ad hoc sensor networks (100+ nodes). Such algorithms
should be:

- Self-organizing (i.e., do not depend on global infrastructure)
- Robust (i.e., be tolerant of node failures and range errors)

- Energy efficient (i.e., require little computation and, especially, communi-
cation)

These requirements immediately rule out some of the proposed localization
algorithms for sensor networks. The rest of this chapter is organized as follows.
In Section 14.2, we briefly discuss what information is available to the nodes
whose location is unknown, and then we discuss the methods that use this infor-
mation to find the location of the object. In Section 14.3 the localization problem
is introduced and methods to solve it are discussed. Similarly in Section 14.4
the target-tracking problem is introduced and methods to solve it are discussed.
Section 14.5 reviews some experimental location and tracking systems, and finally
Section 14.6 concludes the chapter.

14.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION

There are several methods, such as time of arrival (ToA), time difference of arrival
(TDoA), and signal strength, with which an object can estimate its distance or its
relative location to a reference point. In this section several approaches, which
use the methods previously cited to calculate an object’s location, will be discussed.

14.2.1 Lateration

Lateration computes the position of an object by measuring its distance from mul-
tiple reference positions. Calculating an object’s position in two dimensions requires
distance measurements from three noncollinear points, as shown in Figure 14.1(a),
and in three dimensions, distance measurements from four noncoplanar points are

(a) a (b) &
)= }l

Figure 14.1 Trilateration method: (a) ideal situation and (b) real situation with error.

14.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION 461

required. Domain-specific knowledge can reduce the number of required distance
measurements. For example, if all reference points are above the object, then dis-
tance measurements from only three reference points are required. We now describe
two different lateration techniques.

14.2.1.1 Trilateration Trilateration is a well-known technique in which the
positioning system has a number of beacons at known locations. These beacons
can transmit signals so that other devices can determine their distances to these bea-
cons based on received signals. If a device can hear at least three beacons, its
location can be estimated. Figure 14.1(a) shows how trilateration works: A, B,
and C are beacons with known locations. From A’s signal, one can determine the
distance to A, and thus that the object should be located at the circle centered at A
with a radius equal to the estimated distance. Similarly, from B’s and C’s signals,
it can be determined that the object should be located at some circles centered at
B and C, respectively. Thus, the intersection of the three circles is the estimated
location of the device. The preceding discussion has assumed an ideal situation;
however, as mentioned earlier, distance estimation always contains errors that
will, in turn, lead to location errors. Figure 14.1(b) illustrates an example in practice.
The three circles do not intersect at a common point. In this case, the maximum-
likelihood method can be used to estimate the device’s location. Let the three
beacons A, B, and C be located at (x4, v4), (xg,y5), and (x¢, yc), respectively. For
any point (x,y) on the plane, a difference function is computed:

Ty = '\/(x —) 0= — | + '\/u — x5 =) — 1

+ '\/(x—xc)z-i-(y—)’c)z —rc

where ry, rg, and r¢ are the estimated distances to A, B, and C, respectively. The
location of the object can then be predicted as the point (x, y) among all points
such that o, , is minimized. In addition to using the ToA approach for positioning,
the angle of arrival (AoA) approach can be used. For example, in Figure 14.2, the
unknown node D measures the angle of LADB, ~BDC, and LADC by the
received signals from beacons A, B, and C. From this information, D’s location
can be derived [16].

14.2.1.2 Multilateration The trilateration method has its limitation in that at
least three beacons are needed to determine a device’s location. In a sensor network,
in which nodes are randomly deployed, this may not be true. Several multilateration
methods are proposed to relieve this limitation. The ad hoc localization system
(AHLoS) [17] enables nodes to discover their locations by using a set of distributed
iterative algorithms. Figure 14.3 shows an example in which, initially, beacon nodes
contain only nodes marked as reference points. Device nodes A, B, and C are at

462 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

. Reference point

A O Unknown point

Figure 14.2 Angle measurement from three beacons A, B, and C.

unknown locations. In the first iteration, as Figure 14.3(a) shows, the locations of
nodes A and C will be determined.

Once the location of a device is estimated, its role is changed to a beacon node so
as to help determine other devices’ locations. This is repeated until all host locations
are determined (if possible). As Figure 14.3(b) shows, in the second iteration, the
location of node B can be determined with the help of nodes A and B, which are
now serving as beacons.

If the distance or regular estimation is precise, we can show that the order in
which each node determines its location and then serves as a beacon node will

(@ , (b)
@ Reference point @ Reference point
O Unknown point O Unknown point
A A
B B

Figure 14.3 (a) Atomic multilateration and (b) iterative multilateration.

14.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION 463

not affect the number of nodes whose positions can be computed. However, when
the information is not precise, it does affect this and further, the precision of the
system.

14.2.2 Pattern Matching Using Database

Pattern matching (also known as fingerprinting) tries to compare the received signal
pattern against the training patterns in the database and to determine the likeli-
hood that the device is currently located in a position. A typical solution has two
phases:

1. Off-Line Phase. The purpose of this phase is to collect signals from all base
stations at each training location, thus the received signal strengths are
recorded in the database. For higher accuracy, one can establish multiple
entries in the database for the same training location. From the database,
some positioning rules, which form the positioning model, will then be
established.

2. Real-Time Phase. With a well-trained positioning model, one can estimate a
device’s location, given the signal strengths collected by the device from
all possible base stations. The positioning model can determine a number of
locations, each associated with a probability.

There are several similarity searching methods in the matching process in the
literature, such as nearest-neighbor algorithms (NNSS) [18,19] and probability-
based algorithms [20].

14.2.3 Network-Based Tracking

At the network level, location tracking may be done via the cooperation of sensors.
Tseng and colleagues [21] addressed these issues using an agent-based paradigm.
Once a new object is detected by the network, a mobile agent will be initiated to
track the roaming path of the object. Then the agent invites some nearby slave sen-
sors to cooperatively position the object and inhibit other irrelevant (i.e., farther)
sensors from tracking the object. More precisely, only three agents will be used
for the tracking purpose at any time, and they will move as the object moves.
The trilateration method is used for positioning.

Figure 14.4 shows an example. The sensor network is deployed in a regular
manner, and it is assumed that each sensor’s sensing distance equals the distance
between two neighboring sensors. Initially, each sensor is in the idle state, searching
for new objects. Once it detects a target, a sensor will transit to the election state,
trying to serve as the master agent. The nearest sensor will win. The master agent
will then dispatch two neighboring sensors as the slave agents; master and slave
agents will cooperate to position the object. In the figure, the object is first tracked
by sensors {Sp, 51,52} when resident in Ay, then by {Sy, S»,S53} when in A;, by

464 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

Figure 14.4 Roaming path of an object (dashed line).

{S>, 53,55} when in A,, etc. The master agent is responsible for collecting all sensing
data and performing the trilateration algorithm. It also conducts data fusion by
keeping the tracking results while it moves around. At the proper time, the master
agent will forward the tracking result to the data center.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS

In this section, we address the issue of localization in ad hoc sensor networks. That
is, we want to determine the location of individual sensor nodes without relying on
external infrastructure (base stations, satellites, etc.). Undoubtedly, the GPS is
the most well-known location service in use today. The approach taken by GPS,
however, is unsuitable for low-cost, ad hoc sensor networks, since GPS is based
on extensive infrastructure (i.e., satellites). Location service has many applications,
for example, it enables routing in sufficiently isotropic large networks, without the
use of large routing tables.

We assume that only a limited fraction of nodes, which are called anchor nodes,
have a self-location capability. Note that, in wireless ad hoc sensor networks, there
exist no fine control over the placement of the sensor nodes when the network is
installed (e.g., when nodes are dropped from an airplane). Consequently, we
assume that nodes are randomly distributed across the environment. For simplicity
and ease of presentation, we limit the environment to two dimensions, but all algor-
ithms are capable of operating in three dimensions. Figure 14.5 shows an example
network with 25 nodes; pairs of nodes that can communicate directly are connected
by an edge. The connectivity of the nodes in the network (i.e., the average number of
neighbors) is an important parameter that has a strong impact on the accuracy of
most localization algorithms.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 465

@ Anchor

o Unknown

Figure 14.5 Example network topology.

In some application scenarios, nodes may be mobile. Here, however, we focus on
static networks, where nodes do not move for a reasonably short period of time,
since this is already a challenging condition for distributed localization. Note that
anchor nodes have the same capabilities (processing, communication, energy con-
sumption, etc.) as all other sensor nodes with unknown positions. Ideally, the frac-
tion of anchor nodes should be as low as possible to minimize the installation costs.

14.3.1 Ad Hoc Positioning System

The ad hoc positioning system (APS) [16] is a distributed, hop-by-hop positioning
algorithm that provides the approximate location for all nodes in a network where
only a limited fraction of nodes have the self-location capability. Also, APS is
appropriate for indoor location-aware applications.

14.3.1.1 Algorithm 1t is not desirable to have the landmarks emit maximum
power to cover the entire network for several reasons: collisions in local communi-
cation, high power usage, coverage problems when moving. Also, it is not accepta-
ble to assume some fixed positions for the landmarks, as the applications envisioned
by APS systems are either in deployments from the air over inaccessible areas, or
possibly involving the movement and reconfiguration of the network. In this case,
one option is to use the hop-by-hop propagation capability of the network to forward
distances to landmarks. In general, they aim for the same principle as GPS, the
difference being that the landmarks are contacted in a hop-by-hop fashion, rather
than directly, as ephemerides are. Once an arbitrary node has estimated a number

466 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

(=3) of landmarks, it can compute its own position in the plane, using a procedure
similar to the one used in GPS position calculation described in the previous section.
The estimate we start with is the centroid of the landmarks collected by a node.
In what follows we refer to one landmark only, as the algorithm behaves identically
and independently for all the landmarks in the network. It is clear that the immediate
neighbors of the landmark can estimate the distance to the landmark by direct signal-
strength measurement. Using some propagation method, the second-hop neighbors
then are able to infer their distance to the landmark, and the rest of the network
follows, in a controlled flood manner, initiated at the landmark. Complexity of
signaling is therefore driven by the total number of landmarks, and by the average
degree of each node.

14.3.1.2 Distance to Anchors The APS system uses three methods of hop-
to-hop distance propagation and examines advantages and drawbacks for each of
them. Each propagation method is appropriate for a certain class of problems, as
it influences the amount of signaling, power consumption, and position accuracy
achieved.

Nodes that can communicate with anchor nodes directly are able to find their dis-
tance from anchor nodes, but this information is not available to all nodes. Nodes
share information to collectively determine the distances between individual
nodes and the anchors, so that an (initial) position can be calculated. None of the
alternatives engage in complicated calculations, so finding the distance to anchors
is communication bounded. Most of the distributed localization algorithms share
a common communication pattern: information is flooded into the network, starting
at the anchor nodes. A networkwide flood by some anchor A is expensive, since each
node must forward A’s information to its (potentially) unaware neighbors. This
implies a scaling problem: flooding information from all anchors to all nodes will
become too expensive for large networks, even with low anchor fractions. Fortu-
nately a good position can still be derived with knowledge (position and distance)
from a limited number of anchors. Therefore, nodes can simply stop forwarding
information when enough anchors have been located. This simple optimization
(have a flood limif) has been proved to be highly effective in controlling the
amount of communication. We now list three methods for determining the location.

« Sum-dist. This method is also known as DV-distance [16]. The most simple
solution for determining the distance to the anchors is simply adding the
ranges encountered at each hop during the network flood. Sum-dist starts at
the anchors, which send a message including their identity, position, and a
path length set to 0. Each receiving node adds the measured range to the
path length and forwards (broadcasts) the message if the flood limit allows it
to do so. Another constraint is that when the node has already received infor-
mation about the particular anchor, it is only allowed to forward the message
if the current path length is less than the previous one. The end result is that
each node will have stored the position and minimum path length to at least
flood-limit anchors.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 467

« DV-hop. A drawback of Sum-dist is that range errors accumulate when dis-
tance information is propagated over multiple hops. This cumulative error
becomes significant for large networks with few anchors (long paths) and/or
poor ranging hardware. A robust alternative is to use topological information
by counting the number of hops instead of summing the (erroneous) ranges.
This approach was named DV-hop by Niculescu and Nath [16], and
Hop-TERRAIN by Savarese et al. [22]. The DV-Hop propagation method is
the most basic scheme, and it first employs a classic distance vector exchange
so that all nodes in the network discover distances, in hops, to the landmarks.
Essentially, DV-hop consists of two flood waves. After the first wave, which
is similar to Sum-dist, nodes have obtained the position and minimum hop
count to at least flood-limit anchors. The second calibration wave is needed
to convert hop counts into distances such that nodes can compute a position.
This conversion consists of multiplying the hop count by an average hop
distance. Whenever an anchor A; infers the position of another anchor A,
during the first wave, it computes the distance between them, and divides that
by the number of hops to derive the average hop distance between A; and A,.
When calibrating, an anchor takes all remote anchors into account that it is
aware of. Nodes forward (broadcast) calibration messages only from the first
anchor that calibrates them, which reduces the total number of messages in the
network.

« Euclidean. A drawback of DV-hop is that it does not work for highly irregular
network topologies, where the variance in actual hop distances is very large.
Niculescu and Nath [16] have proposed another method, named Euclidean,
which is based on the local geometry of the nodes around an anchor. Again
anchors initiate a flood, but forwarding the distance is more complicated than
in the previous cases. When a node has received messages from two neighbors
that know their distance to the anchor, and to each other, it can calculate the
distance to the anchor. Figure 14.6 shows a node X that has two neighbors n;
and n, with distance estimates (a and b) to an anchor. Together with the
known ranges c, d, and e, there are two possible values (r; and r,) for the dis-
tance of the node to the anchor. Niculescu describes two methods to determine
which, if any, distance to use. The neighbor vote method can be applied if there
exists a third neighbor n3 that has a distance estimate to the anchor and that is
connected to either n; or n,. Replacing n; (or n;) by n3 will again yield a pair of
distance estimates. The correct distance is part of both pairs, and is selected by a
simple vote. Of course, more neighbors can be included to make the selection
more accurate.

14.3.1.3 Node Position Now nodes can determine their position using latera-
tion, min—max (presented by Savvides et al. [23]), or other methods based on the
distance estimates to a number of anchors provided by one of the three alternatives
(Sum-dist, DV-hop, or Euclidean). The determination of the node positions does not
involve additional communication.

468 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

Anchor

Figure 14.6 Determining distance using Euclidean.

14.3.2 Time-Based Positioning Scheme

The time-based positioning scheme (TPS) is meant for use with outdoor wireless
sensor networks. Many applications of outdoor sensor networks require knowledge
of physical sensor positions. For example, target detection and tracking is usually
associated with location information. Further, knowledge of sensor location can
be used to facilitate network functions such as packet routing and collaborative
signal processing. Sensor position can also serve as a unique node identifier,
making it unnecessary for each sensor to have a unique ID assigned prior to its
deployment.

TPS relies on an RF signal, which performs well compared to ultrasound, infra-
red, and so on, in outdoor environments. They measure the difference in arrival
times (TDoA) of beacon signals. TPS does not need the specialized antennae gen-
erally required by an AoA positioning system. This time-based location-detection
scheme avoids the drawbacks of many existing systems for outdoor sensor location
detection. Compared to existing schemes proposed in the context of outdoor sensor
networks, the TPS scheme has the following characteristics and advantages:

- Time synchronization of all base stations and nodes is not required in TPS.

« There are no requirements for an ultrasound receiver, second radio, or special-
ized antennae at base stations or sensors.

- The TPS algorithm is not iterative and does not require a complicated refine-
ment step.

- TPS has low computation cost.
- Sensors listen passively and are not required to make radio transmissions.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 469

14.3.2.1 Network Model Assume that the sensors are deployed randomly over
a two-dimensional monitored area (on the ground). Each sensor has limited
resources (battery, CPU, etc.), and is equipped with an omnidirectional antenna.
Three base stations A, B, C, with known coordinates (x,, y,), (x5, ¥»), and (xc, yc),
respectively, are placed beyond the boundary of the monitored area, as shown in
Figure 14.7. Let us assume A is the master base station. Assume the monitored
area is enclosed within the angle ZBAC. Let the unknown coordinates of a sensor
be (x,y), which will be determined by TPS. Each base station can reach all sensors
in the monitored area. One restriction on the placement of these base stations is that
they must be noncollinear, as otherwise, the sensor locations will be indistinguish-
able. If the monitored area is so large that three base stations cannot cover the whole
area completely, we can always divide the area into smaller subareas and place more
base stations.

14.3.2.2 Positioning Scheme The TPS time-based location-detection scheme
consists of two steps. The first step detects the time difference of signal arrival
times from three base stations. These time differences are transformed into range
differences from the sensor to the base stations. In the second step, we perform tri-
lateration to transform these range estimates into coordinates.

Given the locations (x4, Y.), (xp,¥»), and (x.,y.) of base stations A, B, and C,
respectively, the TPS system determines the location (x,y) of sensor S, as shown
in Figure 14.6.

« Range Detection. Let A be the master base station, which will initiate a beacon
signal every T seconds. Each beacon interval begins when A transmits a beacon
signal. Sensor S, base stations B and C will all receive A’s beacon signal,
respectively. Base station B will reply to A with a beacon signal conveying
the difference between the time the signal from A was received and the time

(@) (b)

Base station O Base station O
Sensor e Sensor e

Figure 14.7 TPS example: (a) sensor networks; (b) node S determines its position.

470 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

the replay was sent. This signal will reach S. After receiving beacon signals
from both A and B, C will reply to A with a beacon signal conveying the differ-
ence between the time the signal from A was received by C and the time the
replay was sent. This signal will also reach S, based on triangle inequality.

« Location Computation. Node S know the time the signal was sent from A and
the time it was received by B, C, and also by itself. Node S also has the same
information about the signal sent by B and C. Now node S can calculate its
position using trilateration.

14.3.3 GPS-less Low-Cost Outdoor Localization for
Very Small Devices

GPS solves the problem of localization in outdoor environments for PC-class nodes.
However, for large networks of very small, inexpensive, and low-power devices,
practical considerations such as size, form factor, cost, and power constraints of
the nodes preclude the use of GPS on all nodes. The GPS-less system [14] addresses
the problem of localization for such devices, with the following design goals.

« RF-Based. They focus on small nodes that have some kind of short-range RF
transceiver. The primary goal is to leverage this radio for localization, thereby
eliminating the cost, power, and size requirements of a GPS receiver.

« Receiver-Based. In order to scale well to a large distributed networks, the
responsibility for localization must lie with the receiver node that needs to be
localized, and not with the reference points.

« Ad hoc. In order to ease deployment, a solution that does not require preplan-
ning or extensive infrastructure is desired.

« Responsiveness. We need to be able to localize within a fairly low response
time.

« Low Energy. Small, untethered nodes have modest processing capabilities, and
limited energy resources. If a device uses all of its energy localizing itself, it
will have none left to perform its task. Therefore, we want to minimize compu-
tation and message costs to reduce power consumption.

« Adaptive Fidelity. In addition, we want the accuracy of our localization algor-
ithms to be adaptive to the granularity of available reference points.

This scheme uses an idealized radio model and proposes a simple connectivity-
based localization method for such devices in unconstrained outdoor environments.
It leverages the inherent RF communications capabilities of these devices. A fixed
number of nodes in the network with overlapping regions of coverage serve as
reference points and transmit periodic beacon signals. Nodes use a simple connec-
tivity metric to infer proximity to a given subset of these reference points and then
localize themselves to the centroid of the selected (proximate) reference points.

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 471

14.3.3.1 Localization Algorithm We considered two approaches to engineer
an RF-based localization system, based on measurements of received signal strength
and connectivity, respectively. The first approach for RF-based localization is to use
the measured signal strength of received beacon signals to estimate distance, as in
the RADAR system [19], with an outdoor radio signal-propagation model. We dis-
carded this approach for several reasons relating to our short-range (10-m) radios.
First, signal strength at short ranges is subject to unpredictable variation due to
fading, multipaths, and interferences. It does not therefore correlate directly with
distance. Moreover, short range does not allow much gain in density of reference
points when considering signal strength. We have found an idealized radio model
useful for predicting bounds on the quality of connectivity-based localization. We
chose this model because it was simple and easy to reason about mathematically.
This subsection presents this idealized model. To our surprise, this model compares
quite well to outdoor radio propagation in uncluttered environments, as we explore
in the next subsection. We make two assumptions in our idealized model:

1. Perfect spherical radio propagation
2. Identical transmission range (power) for all radios

Multiple nodes in the network with overlapping regions of coverage serve as
reference points (labeled R; to R,). They are situated at known positions, containing
their respective positions (X, ¥;) to (X,, Y,), that form a regular mesh and transmit
periodic beacon signals every T seconds. We assume that neighboring reference
points can be synchronized so that their beacon signal transmissions do not overlap
in time. Furthermore, in any time interval, each of the reference points would have
transmitted exactly one beacon signal.

Each mobile node listens for a fixed time period ¢ and collects all the beacon
signals that it receives from various reference points. We characterize the infor-
mation per reference point R; by a connectivity metric, defined as:

oMy = T o
N sent(i, t)
where N recv(i, t) is the number of beacons sent by R; that have been received in time
t, and N sent(i, t) is the number of beacons that have been sent by R;. In order to
improve the reliability of our connectivity metric in the presence of various radio
propagation vagaries, we would like to base our metric on a sample of at least S
packets, where S is the sample size, a tunable parameter of our method (i.e.,
N sent(i,t) = S). Since we know T to be the time period between two successive
beacon signal transmissions, we can set 7, the receiver’s sampling time as,

t=G+1—-9o)T O<ex

From the beacon signals that it receives, the receiver node infers proximity to a
collection of reference points for which the respective connectivity metrics exceed a
certain threshold. We denote the collection of reference points by R;1, Rp, . . ., Ri.

472 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

The receiver localizes itself to the region that coincides with the intersection of the
connectivity regions of this set of reference points, which is defined by the centroid
of these reference points:

X+ Xo+-+Xp Yi+Yo+---+7Y
(X,Y):(1+ 2-]: + k’ i1+ 2-11; + k>

14.3.4 Computational Complexity of Sensor Network Localization

The localization problem for sensor networks is to reconstruct the positions of all of
the sensors in a network, given the distances between all pairs of sensors that are
within some radius r of each other. In the past few years, many algorithms for sol-
ving the localization problem were proposed, without knowing the computational
complexity of the problem. Aspnes et al. [24] showed that no polynomial-time algor-
ithm can solve this problem in the worst case, even for sets of distance pairs for
which a unique solution exists, unless RP = NP.

Although the designs of the previous schemes have demonstrated clever engin-
eering ingenuity, and their effectiveness is evaluated through extensive simulations,
the focus of these schemes is on algorithmic design, without knowing the fundamen-
tal computational complexity of the localization process. In sensor network localiz-
ation, since only nodes that are within communication range can measure their
relative distances, the graphs formed by connecting each pair of nodes that can
measure each other’s distance are better modeled as unit disk graphs. Such con-
straints could have the potential of allowing computationally efficient localization
algorithms to be designed.

The localization problem considered here is to reconstruct the positions of a set of
sensors given the distances between any pair of sensors that are within some unit-
disk radius r of each other. Some of the sensors may be beacons, sensors with
known positions, but our impossibility results are not affected much by whether
beacons are available. To avoid precision issues involving irrational distances, it
is assumed that the input to the problem is presented with the distances squared.
If we make the further assumption that all sensors have integer coordinates, all dis-
tances will be integers as well.

For the main result, we consider a decision version of the localization problem,
which we call UNIT-DISK GRAPH RECONSTRUCTION. This problem essen-
tially asks if a particular graph with given edge lengths can be physically realized
as a unit-disk graph with a given disk radius in two dimensions. The input is a
graph G where each edge uv of G is labeled with an integer /,1%, the square of its
length, together with an integer r> that is the square of the radius of a unit disk.
The output is yes or no, depending on whether there exists a set of points in R?
such that the distance between u and v is [,v whenever uv is an edge in G and exceeds
r whenever uv is not an edge in G.

The main result, is that UNIT-DISK GRAPH RECONSTRUCTION is NP-hard,
based on a reduction from CIRCUIT SATISFIABILITY. The constructed graph for
a circuit with m wires has O(m?) vertices and O(m?>) edges, and the number of sol-

14.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS 473

utions to the resulting localization problem is equal to the number of satisfying
assignments for the circuit. In each solution to the localization problem, the
points can be placed at integer coordinates, and the entire graph fits in an O(m)-
by-O(m) rectangle, where the constants hidden by the asymptotic notation are
small. The construction also permits a constant fraction of the nodes to be placed
at known locations. Formally:

Theorem 14.1 There is a polynomial-time reduction from CIRCUIT SATIS-
FIABILITY to UNIT-DISK GRAPH RECONSTRUCTION, in which there is a
one-to-one correspondence between satisfying assignments to the circuit and sol-
utions to the resulting localization problem.

A consequence of this result is:

Corollary 14.1 There is no efficient algorithm that solves the localization problem
for sparse sensor networks in the worst case unless P = NP.

It might appear that this result depends on the possibility of ambiguous recon-
structions, where the position of some points is not fully determined by the
known distances. However, if we allow randomized reconstruction algorithms, a
similar result holds even for graphs that have unique reconstructions.

Corollary 14.2 There is no efficient randomized algorithm that solves the localiz-
ation problem for sparse sensor networks that have unique reconstructions unless
RP = NP.

Finally, because the graph constructed in the proof of Theorem 14.1 uses only
points with integer coordinates, even an approximate solution that positions each
point to within a distance & <% of its correct location can be used to find the
exact locations of all points by rounding each coordinate to the nearest integer.
Since the construction uses a fixed value for the unit disk radius r (the natural
scale factor for the problem), we have the following corollary.

Corollary 14.3 The results of Corollary 14.1 and Corollary 14.2 continue to hold
even for algorithms that return an approximate location for each point, provided the
approximate location is within er of the correct location, where ¢ is a fixed constant.

What we do not know at present is whether these results continue to hold for sol-
utions that have large positional errors, but that give edge lengths close to those in
the input. Our suspicion is that edge-length errors accumulate at most polynomially
across the graph, but we have not yet carried out the error analysis necessary to
prove this. If our suspicion is correct, we would have:

Conjecture 14.1 The results of Corollary 14.1 and Corollary 14.2 continue to hold
even for algorithms that return an approximate location for each point, provided the
relative error in edge length for each edge is bounded by &/n¢ for some fixed constant c.

474 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING
14.4 TARGET TRACKING AND CLASSIFICATION

One of the most important areas where the advantages of sensor networks can be
exploited is for tracking mobile targets. Scenarios where this network may be
deployed can be both military (tracking enemy vehicles, detecting illegal border
crossings) and civilian (tracking the movement of wild animals in wildlife pre-
serves). Typically, for accuracy, two or more sensors are simultaneously required
for tracking a single target, leading to coordination issues. Additionally, given the
requirements to minimize the power consumption due to communication or other
factors, we want to select the minimum number of sensors dedicated for the task,
while all other sensors should preferably be in the sleep or off state. In order to sim-
ultaneously satisfy requirements like power saving and improving overall efficiency,
we need large-scale coordination and other management operations. These tasks
become even more challenging when one considers the random mobility of the tar-
gets and the resulting need to coordinate the assignment of the sensors best suited for
tracking the target as a function of time. In this section we discuss managing and
coordinating a sensor network for tracking moving targets.

The power limitation due to the small size of the sensors, the large numbers of
sensors that need to be deployed and coordinated, and the ability to deploy sensors
in an ad hoc manner give rise to a number of challenges in sensor networks. Each of
these needs to be addressed by any proposed architecture in order for it to be realistic
and practical.

« Scalable Coordination. A typical deployment scenario for a sensor network
comprises a large number of nodes reaching in the thousands to tens of thou-
sands. At such large scales, it is not possible to attend to each node individually
due to a number of factors. Sensor nodes may not be physically accessible,
nodes may fail, and new nodes may join the network. In such dynamic and
unpredictable scenarios, scalable coordination and management functions are
necessary that can ensure the robust operation of the network. In the light of
target tracking, the coordination function should scale with the size of the
network, the number of targets to be tracked, number of active queries, and
SO on.

- Tracking Accuracy. To be effective, the tracking system should be accurate
and the likelihood of missing a target should be low. Additionally, the dynamic
range of the system should be high while keeping the response latency, sensi-
tivity to external noise, and number of false alarms low. The overall architec-
ture should also be robust against node failures.

« Ad hoc Deployability. A powerful paradigm associated with sensor networks is
their ability to be deployed in an ad hoc manner. Sensors can be thrown in an
area affected by a natural or man-made disaster or air dropped to cover a
geographical region. Thus sensor nodes should be capable of organizing them-
selves into a network and achieving the desired objective in the absence of any
human intervention or fixed patterns in the deployment.

14.4 TARGET TRACKING AND CLASSIFICATION 475

« Computation and Communication Costs. Any protocol being developed for
sensor networks should keep in mind the costs associated with computations
and communication. With current technology, the cost of computation locally
is lower than that of communication in a power-constrained scenario. As a
consequence, emphasis should be put on minimizing the communication
requirements.

- Power Constraints. The available power in each sensor is limited by the bat-
tery lifetime due to the difficulty or impossibility of recharging the nodes. As
a consequence, protocols that tend to minimize the energy consumption or
power-aware protocols that adapt to the existing power levels are highly desir-
able. Additionally, efforts should be made to turn off the nodes themselves, if
possible, in the absence of sensing or coordination operations.

14.4.1 Collaborative Signal Processing

Power consumption is a critical consideration in a wireless sensor network. The lim-
ited amount of energy stored at each node must support multiple functions, including
sensor operations, on-board signal processing, and communication with neighboring
nodes. Thus, one must consider power-efficient sensing modalities, low sampling
rates, low-power signal-processing algorithms, and efficient communication proto-
cols to exchange information among nodes. To facilitate monitoring of a sensor
field, including detection, classification, identification, and tracking of targets,
global information in both space and time must be collected and analyzed over a
specified space—time region. However, individual nodes only provide spatially
local information. Furthermore, due to power limitation, temporal processing is
feasible only over limited time periods. This necessitates collaborative signal pro-
cessing (CSP) (i.e., collaboration between nodes to process the space—time signal).
A CSP algorithm can benefit from the following desirable features:

« Distributive Processing. Raw signals are sampled and processed at individual
nodes, but are not directly communicated over the wireless channel. Instead,
each node extracts relevant summary statistics from the raw signal, which
are typically of smaller size. The summary statistics are stored locally in
individual nodes and may be transmitted to other nodes upon request.

« Goal-Oriented, On-Demand Processing. To conserve energy, each node only
performs signal-processing tasks that are relevant to the current query. In the
absence of a query, each node retreats into a standby mode to minimize
energy consumption. Similarly, a sensor node does not automatically publish
extracted information (i.e., it forwards such information only when needed).

« Information Fusion. To infer global information over a certain space—time
region from local observations, CSP must facilitate efficient, hierarchical infor-
mation fusion and progressively lower bandwidth information must be shared
between nodes over progressively large regions. For example, (high bandwidth)
time series data may be exchanged between neighboring nodes for classifi-

476 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

cation purposes. However, lower bandwidth closest point of approach (CPA)
data may be exchanged between more distant nodes for tracking purposes.

« Multiresolution Processing. Depending on the nature of the query, some CSP tasks
may require higher spatial resolution involving a finer sampling of sensor nodes, or
higher temporal resolution involving higher sampling rates. For example, reliable
detection may be achievable with a relatively coarse space—time resolution,
whereas classification typically requires processing at a higher resolution.

14.4.2 Target Tracking Using Space—Time Cells

14.4.2.1 Introduction Each object in a geographical region generates a time-
varying space—time signature field that may be sensed in different modalities, such
as acoustic, seismic, or thermal. The nodes sample the signature field spatially, and
the density of nodes should be commensurate with the rate of spatial variation in the
field. Similarly, the time series from each sensor should be sampled at a rate com-
mensurate with the required bandwidth. Thus, the rate of change of the space—time
signature field and the nature of the query determines the required space—time
sampling rate. A moving object in a region corresponds to a peak in the spatial
signal field that moves with time. Tracking an object corresponds to tracking the
location of the spatial peak over time.

14.4.2.2 Using Space—Time Cells To enable tracking in a sensor network,
the entire space—time region must be divided into space—time cells to facilitate
local processing. The size of a space—time cell depends on the velocity of the
moving target and the decay exponent of the sensing modality. It should approxi-
mately correspond to a region over which the space—time signature field remains
nearly constant. In principle, the size of space—time cells can be dynamically
adjusted as new space—time regions are created based on predicted locations of tar-
gets. Space—time signal averaging can be done over nodes in each cell to improve
the signal-to-noise ratio. We note that the assumption of a constant signature field
over a space—time cell is at best an approximation in practice due to several factors,
including variations in terrain, foliage, temperature gradients, and the nonisotropic
nature of the source signal. However, such an approximation can be judiciously
applied in some scenarios for the purpose of reducing intrasensor communication,
as well to improve algorithm performance against noise.

14.4.2.3 Single-Target Tracking One of the key premises behind the
networking algorithms being developed at Wisconsin [2] is that routing of infor-
mation in a sensor network should be geographic-centric rather than node-centric.
In other words, from the viewpoint of information routing, the geographic locations
of the nodes are the critical quantities rather than their arbitrary identities. In the
spirit of space—time cells, the geographic region of interest is divided into smaller
regions (spatial cells) that facilitate communication over the sensor network. Some

14.4 TARGET TRACKING AND CLASSIFICATION 477

B____ ___A
(R I
1 1
...i__/ I

L AT i

W AT | 17T

AT TiT T
/f_ i T
1 ; 1 :
b T C

Figure 14.8 A schematic illustrating detection and tracking of a single target.

of the nodes in each cell are designated as manager nodes for coordinating signal
processing and communication in that cell.

Figure 14.8 illustrates the basic idea of region-based CSP for detection and track-
ing of a single target. Under the assumption that a potential target may enter the
monitored area via one of the four corners, four cells, A, B, C, and D, are created
by the UW-API protocols [2]. Nodes in each of the four cells are activated to
detect potential targets.

Each activated node runs an energy-detection algorithm whose output is sampled
at an a priori fixed rate, depending on the characteristics of expected targets.
Suppose a target enters cell A. Tracking of the target consists of the following
five steps:

Step 1. Some and perhaps all of the nodes in cell A detect the target. These nodes
are the active nodes and cell A is the active cell. The active nodes also yield
CPA time information. The active nodes report their energy detector outputs
to the manager nodes at N successive time instants.

Step 2. At each time instant, the manager nodes determine the location of the
target from the energy detector outputs of the active nodes. The simplest
estimate of target location at an instant is the location of the node with the
strongest signal at that instant. However, more sophisticated algorithms for
target localization can be used. Such localization algorithms justify their
higher complexity only if the accuracy of their location determination is
finer than the node spacing.

Step 3. The manager nodes use locations of the target at the N successive time
instants to predict the location of the target at M(<<N) future time instants.

478 PATH EXPOSURE, TARGET LOCATION, CLASSIFICATION, AND TRACKING

Step 4. The predicted positions of the target are used by the UW-API protocols
[2] to create new cells that the target is likely to enter. This is illustrated in
Figure 14.8, where the three dotted cells represent the regions that the target
is likely to enter after the current active cell (cell A in Fig. 14.8). A subset
of these cells is activated by the UW-API protocols for subsequent detection
and tracking of the target.

Step 5. Once the target is detected in one of the new cells, it is designated as the
new active cell and the nodes in the original active cell (cell A in Fig. 14.8) can
be put in the standby state to conserve energy.

Steps 1-5 are repeated for the new active cell, and this forms the basis of detect-
ing and tracking a single target. For each detected target, an information field
containing tracking information, such as the location of the target at certain past
times, is usually passed from one active cell to the next one. This is particularly
important in the case of multiple targets.

14.4.2.4 Multiple-Target Tracking Figure 14.8 illustrates detection and
tracking of a single target. If multiple targets are sufficiently separated in space or
time, that is, they occupy distinct space—time cells, essentially the same procedure
as described in Section 14.4.2.3 may be used: a different track is initiated and main-
tained for each target. Sufficient separation in time means that the energy detector
output of a particular sensor exhibits distinguishable peaks corresponding to the
CPAs of the two targets. Similarly, sufficient separation in space means that at a
given instant the spatial target signatures exhibit distinguishable peaks correspond-
ing to nodes that are closest to the targets at that instant. The assumption of sufficient
separation in space and/or time may be too restrictive in general. In such cases,
classification algorithms are needed that operate on spatiotemporal target signatures
to classify them. This necessarily requires a priori statistical knowledge of typical
signatures for different target classes.

14.4.2.5 Target Classification Here, we focus on single-node (no collabor-
ation between nodes) classification based on temporal target signatures: a time
series segment is generated for each detected event at a node and processed for
classification. Some form of temporal processing, such as a fast Fourier transform
(FFT), is performed and the transformed vector is fed to a bank of classifiers corre-
sponding to different target classes. The outputs of the classifiers that detect the
target, active classifiers, are reported to the manager nodes as opposed to the
energy detector outputs. Steps (1) to (5) in Subsection 14.4.2.3 are repeated for
all the active classifier outputs to generate and maintain tracks for different classified
targets. In some cases, both energy-based CPA information and classifier outputs
may be needed.

Now we briefly describe the three classifiers explored in this chapter. Given a set
of N-dimensional feature vectors {x;x € RV}, we assume that each of them is
assigned a class label, o, € Q = {w;, wy, ..., w,}, that belongs to a set of m
elements. We denote by p(w,.) the prior probability that a feature vector belongs

14.4 TARGET TRACKING AND CLASSIFICATION 479

to class w,.. Similarly, p(w.|x) is the posterior probability for class w, given that x is
observed.

A minimum error classifier maps each vector x to an element in. such that the
probability of misclassification (i.e., the probability that the classifier label is differ-
ent from the true label) is minimized. To achieve this minimum error rate, the opti-
mal classifier decides x has label w; if p(w;|x) for all j # i, w;, w; €). In practice, it
is very difficult to evaluate the posterior probability