
Lecture Notes in Computer Science 1824
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Jens Palsberg (Ed.)

Static Analysis

7th International Symposium, SAS 2000
Santa Barbara, CA, USA, June 29 - July 1,2000
Proceedings

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Jens Palsberg
Purdue University, Department of Computer Science
West Lafayette, IN 47907, USA
E-mail: palsberg @cs.purdue.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Static analysis : 7th international symposium ; proceedings / SAS
2000, Santa Barbara, CA, USA, June 29 - July 1,2000. Jens Palsberg
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1824)
ISBN 3-540-67668-6

CR Subject Classification (1998): D.1, D.2.8, D.3.2-3, F.3.1-2, F.4.2

ISSN 0302-9743
ISBN 3-540-67668-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsrnannSpringer publishing group.
0 Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN: 10721137 06/3142 5 4 3 2 1 0

Preface

Static Analysis is a research area aimed at developing principles and tools for
high-performance implementation and verification of programming languages.
The series of Static Analysis Symposia is a forum for presentation and discussion
of advances in the area.

This volume contains the papers presented at the Seventh International Static
Analysis Symposium (SAS 2000) which was held on June 29–July 1, 2000 at the
University of California, Santa Barbara. Previous symposia were held in Venice,
Pisa, Paris, Aachen, Glasgow, and Namur.

The program committee met at Purdue University in March 2000 and se-
lected 20 papers from 52 submissions on the basis of four reviews per paper. The
program committee members were not allowed to author or co-author a submis-
sion. In addition to the 20 contributed papers, this volume contains two invited
papers by Daniel Jackson and Andreas Podelski. At the symposium, there was
also an invited talk by Matthias Felleisen and a tutorial by Roy Dz-ching Ju.

Special thanks to Wanjun Wang for helping me from start to finish.

April 2000 Jens Palsberg

General Chair

David Schmidt Kansas State University, USA

Program Committee

Patrick Cousot École Normale Supérieure, Paris
Gilberto Filé Padova University, Italy
Roberto Giacobazzi Università di Verona, Italy
C. Barry Jay University of Technology, Sydney
Thomas Jensen IRISA/CNRS, France
Neil D. Jones DIKU, Denmark
Jens Palsberg (chair) Purdue University, USA
David Sands Chalmers University of Technology, Sweden
David Schmidt Kansas State University, USA
Scott Smith Johns Hopkins University, USA
Bernhard Steffen University of Dortmund, Germany
Pascal Van Hentenryck Brown University, USA
Joe Wells Heriot-Watt University, Edinburgh, Scotland

The program committee thanks the following people for their assistance in eval-
uating the submissions:

Torben Amtoft
Roberto Bagnara
Frederic Besson
Bruno Blanchet
Chiara Bodei
Michele Bugliesi
Jan Cederquist
Mike Codish
Agostino Cortesi
Mads Dam
Dennis Dams
Giorgio Delzanno
Marc Eluard
Moreno Falaschi
Riccardo Focardi
Pascal Fradet
Rajiv Gupta
Jörgen Gustavsson
Christian Haack

Kevin Hammond
John Hatcliff
Sebastian Hunt
Michael Huth
Fairouz Kamareddine
Gabriele Keller
Andy M. King
Jens Knoop
Cosimo Laneve
Francesca Levi
Hans-Wolfgang Loidl
Renaud Marlet
Damien Massé
Laurent Michel
Markus Müller-Olm
Oliver Niese
Thomas Noll
Corina Pasareanu
Detlef Plump

Corrado Priami
Elisa Quintarelli
Francesco Ranzato
Laura Ricci
Olivier Ridoux
Oliver Rüthing
Andrei Sabelfeld
Davide Sangiorgi
Francesca Scozzari
Helmut Seidl
Christian Skalka
Ugo Solitro
Harald Sondergaard
Fausto Spoto
Allen Stoughton
Jean-Pierre Talpin
Phil Trinder
Tiejun Wang

Table of Contents

Invited Papers

Enforcing Design Constraints with Object Logic . 1
Daniel Jackson

Model Checking as Constraint Solving . 22
Andreas Podelski

Contributed Papers

Abstract Interpretation Based Semantics of Sequent Calculi 38
Gianluca Amato, Giorgio Levi

A Transformational Approach for Generating Non-linear Invariants 58
Saddek Bensalem, Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu,
Yassine Lakhnech

Deriving Parallel Codes via Invariants . 75
Wei-Ngan Chin, Siau-Cheng Khoo, Zhenjiang Hu, Masato Takeichi

Safety of Strictness Analysis via Term Graph Rewriting 95
David Clark, Chris Hankin, Sebastian Hunt

Checking Cleanness in Linked Lists . 115
Nurit Dor, Michael Rodeh, Mooly Sagiv

Confidentiality Analysis of Mobile Systems . 135
Jérôme Feret

Unified Analysis of Array and Object References in Strongly Typed
Languages . 155

Stephen Fink, Kathleen Knobe, Vivek Sarkar

Polymorphic versus Monomorphic Flow-Insensitive Points-to Analysis
for C . 175

Jeffrey S. Foster, Manuel Fähndrich, Alexander Aiken

Efficient Inference of Static Types for Java Bytecode 199
Etienne M. Gagnon, Laurie J. Hendren, Guillaume Marceau

Abstract Interpretation of Game Properties . 220
Thomas A. Henzinger, Rupak Majumdar, Freddy Mang,
Jean-François Raskin

VIII

FULLDOC: A Full Reporting Debugger for Optimized Code 240
Clara Jaramillo, Rajiv Gupta, Mary Lou Soffa

Partial Redundancy Elimination on Predicated Code 260
Jens Knoop, Jean-François Collard, Roy Dz-ching Ju

TVLA: A System for Implementing Static Analyses . 280
Tal Lev-Ami, Mooly Sagiv

Tree Schemata and Fair Termination . 302
Laurent Mauborgne

Abstract Interpretation of Probabilistic Semantics . 322
David Monniaux

Code Specialization Based on Value Profiles . 340
Robert Muth, Scott Watterson, Saumya Debray

Flattening Is an Improvement . 360
James Riely, Jan Prins

Model Checking Guided Abstraction and Analysis . 377
Hassen Säıdi

Abstract Domains for Sharing Analysis by Optimal Semantics 397
Francesca Scozzari

Concurrency Analysis for Java . 413
Cristian Ungureanu, Suresh Jagannathan

Author Index . 433

Enforcing Design Constraints with Object Logic

Daniel Jackson
Laboratory for Computer Science

Massachusetts Institute of Technology
dnj@lcs.mit.edu

Abstract. Design constraints express essential behavioural properties of a software
system. Two key elements of a scheme for enforcing design constraints are presented:
a logic for describing the constraints, and an analysis that can be used both to explore
the constraints in isolation (and thus gain confidence in their correctness), and to
check that they are obeyed by an implementation. Examples of applications of the
logic and its analysis at various levels of abstraction are given, from high-level designs
to finding bugs in code. The challenge of bridging several levels, and checking code
against abstract design constraints, is illustrated with a scenario from an air-traffic
control system.

Introduction

Implementations often violate their design constraints, and consequently behave in a way
that could not be predicted from the design alone. Safety problems aside, this seriously
diminishes the value of the design, since it can no longer be used as a surrogate for reason-
ing about the system and its interactions with its environment. Unfortunately, design con-
straints tend to be non-local, involving relationships between objects from different
modules. It is thus easy to break design constraints inadvertently during maintenance, and
hard to check them, or to determine which constraint has been violated when a failure
occurs.

One way to enforce design constraints is by static analysis of code. Given a design con-
straint and an implementation, the analysis determines whether the constraint is obeyed.
Ideally, it also identifies, if the constraint is found not to be obeyed, which parts of the code
are relevant, and what runtime scenarios might cause the violation.

Such an approach has two key elements: the language for the design contraints them-
selves, and the analysis mechanism by which the constraints are checked. In this paper, we
describe a design constraint language called Alloy, and a mechanism that can be used both
to check conformance of code, and to analyze the constraints in isolation.

Alloy is a first-order logic of sets and relations. We call it an ‘object logic’ because its
operators were chosen to make it easy to write constraints on configurations of objects. The
notion of object is completely abstract, so that it can be applied both to the conceptual enti-
ties of a system’s domain and to their realization in the code as data structures in heap. The
analysis mechanism is based on constraint satisfaction, and involves translation to a bool-
ean formula and then the application of an off-the-shelf SAT solver.

The purpose of this paper is to illustrate the use of Alloy and its analysis in a number of
small case studies at different levels of abstraction, and to articulate some of the challenges
of checking design conformance. So far, we have used Alloy to express and analyze high-
level designs, and to find bugs in low-level code. We have yet to connect the two levels.

Our paper is organized as follows. In Section 1, we explain the rationale behind our
approach, arguing in particular for static analysis rather than a synthetic approach in which

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 1-21, 2000.
 c Springer-Verlag Berlin Heidelberg 2000

conformance is obtained by construction. Section 2 gives an outline of Alloy, by formally
defining a kernel into which any Alloy constraint can be translated. Section 3 illustrates
Alloy first with some toy examples, and then three applications demonstrating its use at dif-
ferent levels of abstraction. Section 4 describes how constraint satisfaction, which lies at the
core of the Alloy analyzer, is used to perform a variety of analyses. Section 5 describes some
preliminary experience in applying the ideas of design conformance to an air-traffic con-
trol system. The paper closes with a discussion of related work, and a brief mention of an
alternative approach to analyzing code.

1 Rationale

Industrialized economies are rapidly becoming dependent on a complex software infra-
structure. All kinds of activities, from transportation to energy distribution, rely increas-
ingly on the correct working of software systems that are largely invisible – except when
they fail. This has created a renewed interest in development method, a field that for many
lost its appeal in the face of a spectacularly successful PC industry that at times seemed to
do just fine without it.

As the architecture of our computing infrastructure comes to resemble the early central-
ized systems more than the free-standing personal computers of the 1980’s, so our attitude
to software is again emphasizing safety and reliability, themes that became unfashionable in
a period in which time-to-market was the only important metric. ‘We have become danger-
ously dependent on large software systems whose behavior is not well understood and
which often fail in unpredicted ways’ according to a recent presidential advisory committee
[20]. This as predicted thirty years ago, at the conference that gave software engineering its
name (and at which the term ‘software crisis’ was coined) [19]. As Dijkstra put it then: ‘The
dissemination of knowledge is of obvious value – the massive dissemination of error-
loaded software is frightening’.

To meet this challenge, the way software is produced must change. Software systems will
need to be designed, with a clear articulation both of the properties they will guarantee and
of the assumptions they make about the environment in which they operate. Although
almost any design work in advance of coding is useful, the greatest benefits will come if
there is a mechanism to enforce design constraints – ie, to ensure that the implementation
conforms to the design – not just at the start, but continuously, as the system evolves.

1.1 What is a Design Constraint?

A design constraint is a property of the internal workings of a software system that is essen-
tial to the system’s correct operation. Here we focus on an especially important and perva-
sive class of constraints: invariants on the system state.

Given that a design constraint describes behaviour and not syntactic structure, one
might wonder why we do not use the term ‘specification constraint’ instead. The term
‘specification’ is usually restricted to behaviour observed at an external interface; design
constraints are not restricted in this way, and may talk about internal behaviour. Put
another way, specifications are end-to-end, but design constraints can take a bird’s eye view
of the internal workings of the system, and constrain events and states that may never be
directly observable from outside.

In the air-traffic control system that we discuss below (in Section 5), aircraft are classi-
fied internally into active aircraft, for which radar signals are being received, and inactive

2 Daniel Jackson

aircraft, for which flight plans but no radar signals are available. Aircraft are assigned to
processes that compute their trajectories; these processes may die or become disconnected.
The system maintains a queue of aircraft waiting to be assigned. A crucial design constraint
says that every active aircraft is either waiting or has been assigned to a live process. If this
constraint does not hold, aircraft may be lost, and the air-traffic controller may be unaware
of aircraft within the airspace – clearly a source of potential catastrophe.

Although the notions of active, inactive and waiting aircraft, of connected and discon-
nected processes, and of assignment of aircraft to processes, etc, can all be interpreted intu-
itively by the user of the system, it would have been possible to design the system without
them. A specification would be confined to the events and states the user can directly
observe: the radar inputs, the trajectories displayed, and so on.

Of course, ideally we would like to check specification properties. But this seems infeasi-
ble. It would require end-to-end reasoning involving a long causal chain. It would have to
account, for example, for failures of the display driver on the controller’s screen. Moreover,
it is not clear that specification constraints are even expressible. Design constraints, on the
other hand, are easily expressed, and checking that code conforms to them seems within
reach.

1.2 Synthesis vs. Analysis

Roughly speaking, a mechanism to enforce design constraints falls into one of two catego-
ries. Synthetic mechanisms achieve conformance by construction, for example by generat-
ing code from designs. Analytic mechanisms give more leeway to developers, but apply
methods and tools to expose flaws in the code after its production, forcing the developer to
bring it into alignment with the design.

The key advantage of an analytic approach is that it can be lightweight [9]. One can char-
acterize essential properties of a system with very succinct design constraints. Even for a
system consisting of millions of lines of code, there are useful constraints that can be
expressed in tens of lines of Alloy. Back of the envelope sketches are equally terse, but are
not amenable to any form of analysis or tool support. If we burden our designs with a desire
to generate code from them, this succinctness must go.

Advocates of code generation will argue the advantage of having a single representation
of the system, and of the savings in not having to write code by hand. For domain-specific
applications this has appeal, but we believe it in general to be misguided:

· The extra effort invested in programming is not wasted. The value in methods that
employ additional representations is due largely to redundancy: in short, a better system
results when it has been described from two orthogonal viewpoints. If code is generated
automatically from designs, any errors in the design are likely to be carried over directly;
even if there is some room left for the developer, the benefits of an orthogonal view are
likely to be lost.

· Unlike code, representations that are not required to be executable can accommodate
multiple viewpoints. The intended behaviour of a software system is most easily expressed
with conjunction: as a collection of constraints that must be satisfied simultaneously. Syn-
thetic approaches demand a monolithic and usually sequential description, so that the
design comes to look like a program, begging the question of what properties it should con-
form to. New ideas about combining different viewpoints at the code level seem promising,
but it is not clear to what extent they may applied at more abstract levels [6,17].

3Enforcing Design Constraints with Object Logic

· A design from which code is to be generated must embody a full description of the
intended behaviour. In many cases code itself may be the most succinct representation.
Some sobering experiences with formal specification have led us to be less confident that
specifications are necessarily shorter and simpler than the code they describe. It is not at all
clear, for example, that one could construct a specification of an entire word processor that
is any less complex than its implementation.

Finally, for legacy code, analysis is the only option.

1.3 Desiderata

An analytic approach has two key elements: the constraint language and the analysis mech-
anism used to determine conformance. In this paper, we propose one combination of lan-
guage and mechanism, but we view this as just one possibility. For different aspects of a
system’s behaviour, different constraint languages will be appropriate. Our language is
aimed at the structural aspect, and would be complemented by an approach that addressed
temporal issues. Nevertheless, there are some basic criteria that all approaches must satisfy:

· Expressiveness. The language must be expressive enough to capture the essential design
constraints. Type annotations, the most successful example to date of checkable con-
straints, are too weak. For example, with types we might be able to say that no object in a
class A can contain an object in a class B, but we cannot express the ‘caching constraint’ that
whenever an object in class A contains an object in class B, there is another object in class C
that also contains the object.

· Tractability. A constraint language that is sufficiently expressive is unlikely to be decid-
able, but it must be tractable: that is, amenable to fully automatic analysis for the size of
problem that arises in practice.

· Accuracy, soundness and predictability. Conventional criteria for judging analyses were
developed in the context of optimizing compilers. In the context of tools for software devel-
opers, where spurious bug reports may be as bad as spurious proofs of correctness, terms
such as ‘conservative’ and ‘false positive’ are confusing. So let us say instead that an analysis
gives a correct answer in response to a query about whether a design constraint holds either
if (1) it says ‘yes’ and the constraint indeed holds (for all executions), or (2) it says ‘no’ and
the constraint does not hold (for some execution). An important pragmatic metric, which
we might call accuracy, is simply this: of 100 queries that arise in practice, for how many
does the analysis give a correct answer? By this metric, a conservative analysis that rarely
succeeds in showing a valid constraint to hold, but which never misses a failure, might rate
more poorly than an analysis that is neither conservative nor complete.

In addition to being accurate, we might want some notion of soundness: that every ‘yes’
or ‘no’ answer is correct (ie, that proofs or counterexamples can be trusted); or that both
‘yes’ and ‘no’ answers are correct, in which case there will be ‘maybe’ answers too. Finally, if
the developer can to some degree predict failures of analysis, incorrect results are more pal-
atable. In particular, small, semantics-preserving changes to the syntax of the code should
not affect the outcome.

· Incrementality. It must be possible to construct and check constraints incrementally. A
common scenario will be to check a basic constraint first, and then refine it to perform a
more exacting check. Completeness requirements on the constraints being checked – in the
worst case that they form some kind of abstract program with a structural correspondence

4 Daniel Jackson

to the implementation – are undesirable. Moreover, it should be possible to obtain more
refined checks by adding constraints, without retracting old ones. The constraint language
should therefore be declarative, allowing constraints to be formed with logical conjunction.
Incrementality with respect to code construction is important too, and argues for a static
rather than a dynamic analysis, so that modules can be checked before the modules on
which they depend have been written.

2 The Alloy Language

Alloy is a constraint specification language based on a simple logic. Here we present the
logic alone; the full language adds a variety of convenient shorthands and structuring
mechanisms [10]. The logic is defined in Figure 1, with an abstract syntax (on the left) and
a semantics (on the right). Most of its features are standard, so we focus here on its novel-
ties: the treatment of scalars as singleton sets, and the dot operator used to form ‘navigation
expressions’.

2.1 Syntax

The syntax is mostly standard, with ASCII characters in place of conventional mathemati-
cal symbols. The logic is strongly typed, and a formula is accompanied by declarations of
the set and relation variables; we call the combination of a formula and its declarations a
constraint. Each declaration associates a type with a variable. There are three kinds of type:

· the set type T, denoting sets of atoms drawn from T;

· the relation type S -> T, denoting relations from S to T;

· the function type T => t, denoting functions from atoms of T to values of type t.

Types are constructed from basic types that denote disjoint sets of atoms. We use upper
case names for basic types and lower case names for arbitrary types. So in the type T => t,
the index type T must be a basic type but t may be a set type, relation type or another func-
tion type.

Functions correspond to predicates of arity greater than two. The predicate Rides (r,j,h)
(not directly expressible in Alloy) that holds when jockey j rides horse h in race r, for exam-
ple, might be declared as a function

Rides : Race => Jockey -> Horse

and, for a given race r, the expression Rides[r] would then denote a relation mapping jock-
eys to their horses in that race. Functions retain the binary flavour of the logic: they fit natu-
rally into diagrams, lead to simpler expression syntax, and can accommodate multiplicity
markings. In the full language, the question marks in

Rides : Race => Jockey? -> Horse?

indicate that, in each race, a jockey rides at most one horse and a horse is ridden by at most
one jockey.

Sets, relations and functions allow the heap of an executing object-oriented program to
be modelled straightforwardly. Sets model not only classes and subclasses, but also collec-
tions of objects with particularly properties: such a set may contain objects in several
classes, and may change dynamically due to mutation of objects as well as creation and
destruction. A field in a class A of type B is modelled as a relation from A to B. Since object
references can always be encoded with relations, functions are not strictly necessary, but

5Enforcing Design Constraints with Object Logic

they are convenient. A table in a class A that maps keys of type K to values of type V may be
modelled as a function

table: A => K -> V

There are no scalar types: a scalar is represented as a set with a single element. This
allows navigation expressions to be written uniformly, without the need to convert back
and forth between scalars and sets, sidesteps the partial function problem, and simplifies
the semantics of the analysis (and its implementation).

Formulas have a conventional syntax. There is only one elementary formula, stating that
one expression is a subset of another; an equality of two expressions is written as a pair of
inequalities, one in each direction. In quantified formulas, the variable is declared to have
basic type, and is interpreted as being bound to singleton subsets of the type.

Expressions are formed using the standard set operators (union, intersection and differ-
ence), the unary relational operators (transpose and transitive closure), and the dot opera-
tor, used to form navigation expressions. The unary operators are prefixes, to make parsing
easy.

Set comprehension has the standard form. Set and relation variables are expressions, but
function variables, and functions in general, are not. Ensuring that functions can only be
applied to variables guarantees that an expression involving a function is always well
defined, since the function’s argument will denote a singleton set.

constraint ::= decl* formula
decl ::= var : typexpr
typexpr ::=
 type | type -> type | type => typexpr

formula ::=
 expr in expr subset
 | ! formula negation
 | formula && formula conjunction
 | formula || formula disjunction
 | all v : type | formula universal
 | some v : type | formula existential

expr ::=
 | expr + expr union
 | expr & expr intersection
 | expr - expr difference
 | expr . expr navigation
 | ~ expr transpose
 | + expr closure
 | {v : t | formula} comprehension
 | expr [var] application
 | var variable

M : formula → env → boolean
X : expr → env → value
env = (var + type) → value
value = P (atom × atom) + (atom → value)

M [a in b] e = X[a] e ⊆ X[b] e
M [! F] e = ¬ M [F] e
M [F && G] e = M [F] e ∧ M [G] e
M [F || G] e = M [F] e ∨ M [G] e
M [all v: t | F] e = . {M[F](e / v x {c}) | c ∈ e(t)}
M [some v: t | F] e = - {M[F](e / v x {c}) | c ∈ e(t)}

X [a + b] e = X[a]e ∪ X[b]e
X [a & b] e = X[a]e ∩ X[b]e
X [a - b] e = X[a]e \ X[b]e
X [a . b] e = {(x,z) | ∃y. (y,z) ∈ X[a]e ∧ (y,x) ∈ X[b]e}
X [~a] e = {(x,y) | (y,x) ∈ X[a]e}
X [+a] e = smallest r such that r ; r ⊆ r ∧ X[a]e ⊆ r
X [{v: t | F}] e = {c ∈ e(t) | M[F](e / v x {c})}
X [a[v]] e= X[a]e (c) where {(c,unit)} = e(v)
X [v] e = e(v)

Figure 1: Syntax and semantics of the Alloy logic

6 Daniel Jackson

2.2 Type System

We treat sets semantically as degenerate relations, viewing the set {e1, e2, …} as the relation
{(e1,unit), (e2,unit), …} where unit is a special atom that is the sole member of a special
type Unit. This allows the set operators to be applied equally to sets and relations.

2.3 Semantics

The meaning of the logic is given in a denotational style. There are two meaning functions:
M, which interprets a formula as true or false, and X, which interprets an expression as a
value. Values are either binary relations over atoms, or functions from atoms to values.
Interpretation is always in the context of an environment that binds variables and basic
types to values, so each meaning function takes both a syntactic object and an environment
as arguments.

Each definition defines the meaning of an expression or formula in terms of its constitu-
ents. For example, the elementary formula a in b is true in the environment e when X[a]e,
the relation denoted by a in e, is a subset of X[b]e, the relation denoted by b in e. The quan-
tified formula all v: t | F is true in e when F is true in every environment obtained by adding
to e a binding of v to the singleton set {c}, where c is a member of the set denoted by the type
t in e.

The dot operator is a form of relational composition. When s is a set and r is a relation,
s.r denotes the image of s under r. Combining this with the treatment of scalars as singleton
sets results in a uniform syntax for navigation expressions. For example, if p is a person,
p.mother will denote p’s mother; p.parents will denote the set of p’s parents; p.parents.brother
will denote p’s uncles; etc. (The definition still makes sense if neither argument is a set: ~q.p
will be the composition of two relations p and q, and ~t.~s the cross product of sets s and
t.)

The meaning of a constraint is the collection of well-formed environments in which its
formula evaluates to true. An environment is well-formed if: (1) it assigns values to the
variables and basic types appearing in the constraint’s declarations, and (2) it is well-
typed—namely that it assigns to each variable an appropriate value given the variable’s
type. For example, if a variable v has type S -> T in an environment e, then e(v), the value
assigned to v in e, must be a relation from the set denoted by S to the set denoted by T.

2.4 Shorthands

The full language provides a variety of shorthands and structuring mechanisms. We men-
tion a few briefly to give the flavour of the language and to make the examples below intelli-
gible:

· Implicit types. Alloy does not actually require type declarations as shown in Figure 1.
Instead, one declares domains, sets that form the coarsest classification of objects. Each
domain has a basic type implicitly associated with it; this type represents the set of objects
that might exist and is thus unchanging; the domain represents the objects that exist, and
may change over time. When declaring a relation, the left and right sides are sets that have
also been declared, and not basic types. So, for example, in a graphical user interface we
might declare a domain Window with a subset Visible representing those windows that are
showing; the declaration

occludes: Visible -> Visible

7Enforcing Design Constraints with Object Logic

implictly types the relation occludes and also states that it relates only windows that are
showing.

· Multiplicities. The symbols + (one or more), ! (exactly one) and ? (zero or one) are used
in declarations to constrain sets and relations. The declaration

r: S m -> T n

where m and n are multiplicity symbols, makes r a relation from S to T that maps each S to n
atoms of T, and maps m atoms of S to each T. Similarly, the declaration

S : T m

makes S a set of m atoms drawn from the set T. Omission of a multiplicity symbol implies
no constraint.

· Quantifier shorthands. The usual shorthands are available for quantifiers, such as quan-
tifying over several variables at once, and bounding their values with expressions. Alloy
provides some extra quantifier symbols, no, sole and one, for saying that there are no values,
at most one value, and exactly one value that satisfy the formula. Instead of using set con-
stants, Alloy allows quantifiers to be applied to expressions. The formula Q e, where Q is
any quantifier and e is a set-valued expression, is short for

Q v | v in e

so some e, no e, sole e, and one e say respectively that the set e is non-empty, empty, contain-
ing at most one element, and containing exactly one element.

· Paragraphs. An Alloy description is divided into paragraphs for modularity, and to dis-
tinguish different kinds of constraint. An invariant (introduced by the keyword inv) gives a
constraint that is intended to hold at all times. A definition (def) defines one set or relation
or function in terms of others; defined variables can in principle always be eliminated in
favour of more complex constraints. An assertion (assert) is a putative theorem to be
checked. A condition (cond) is a constraint that, unlike an invariant, is not expected always
to hold, but can be quoted in other paragraphs.

3 Examples

Paul Simon wrote in a 1973 song: ‘One man’s ceiling is another man’s floor’. Had he been
more inclined to precision, he might instead have written:

model FloorsAndCeilings {
domain {Man, Platform}
state {ceiling, floor : Man -> Platform!}
inv {all m: Man | some n: Man - m | m.ceiling = n.floor}
assert {all m: Man | some n: Man - m | m.floor = n.ceiling}
}

There are two domains: Man, the set of all men, and Platform, the set of all platforms, each
being a ceiling or a floor depending on a man’s perspective. The relations ceiling and floor
map each man to exactly one platform; the declarations themselves thus include, implictly,
the constraint that each man has exactly one ceiling and one floor. The invariant says that
for every man m, there is a man n distinct from m whose floor is m’s ceiling.

Since Alloy is always interpreted over finite domains, there cannot be an infinite sky-
scraper, and this must imply a cycle in the chain of floors and ceilings. We might wonder

8 Daniel Jackson

whether this implies that ‘One man’s floor is another man’s ceiling’. This assertion is invalid,
as Alloy’s analyzer will demonstrate by displaying a counterexample:

Domains:
 Man = {M0,M1,M2}
 Platform = {P0,P1,P2}
Relations:
 ceiling = {M0 -> P0, M1 -> P2, M2 -> P2}
 floor = {M0 -> P2, M1 -> P0, M2 -> P1}
Skolem constants:
 m = M2

The Skolem constant is a witness to the refutation of the assertion: the man M2 has a floor
P1 that is not the ceiling of another man.

Formalizing a statement from a different song, ‘Everybody loves my baby, but my baby
loves only me’, we get:

model Baby {
domain {Person}
state {me, baby : Person!
 loves : Person -> Person}
inv { (all p: Person | baby in p.loves) && baby.loves = me}
assert {baby = me}
}

There are two scalars (ie, singleton sets), me and baby, and a relation loves that maps each
person to the set of persons he or she loves. The statement is expressed as a conjunction,
that for every person p, the set of persons loved by p includes baby, and that the set of per-
sons baby loves is exactly the singleton set me. The assertion records David Gries’s observa-
tion that ‘I am my baby’ must follow. In this case, the assertion is valid and Alloy’s analyzer
finds no counterexamples.

We now move to some more practical examples, illustrating in outline how Alloy has
been used at different levels of abstraction. First, we discuss how we used it to explore a
problem in Microsoft COM. Here, the components of the Alloy description do not directly
map to the state of the system: one component, for example, represents the relationship
between COM interfaces that is implicit in the query interface method. Second, we look at
how Alloy was used to check properties of an intentional naming scheme. In this case, there
was a direct correspondence between the model and the realization of the lookup algorithm
in code. Most of our experience with Alloy has been at the level of one of these descriptions.
In the third example, we report on some recent work in which we used Alloy to specify the
behaviour of procedures and find bugs in their implementations.

3.1 Exploring Queries in COM

In attempting to use Microsoft COM to implement a novel component architecture, Sulli-
van and his colleagues came across an interesting anomaly [24]. COM allows one compo-
nent to aggregate other components, with the outer component passing off one or more
services of inner components as its own, thus avoiding the cost of explicitly delegating ser-
vice requests from outer to inner. Surprisingly, the rules of COM require in such a situation
that every service of an inner component be visible through the outer component: in other
words, hiding is compromised. Since this is clearly not the intent of the designers of COM,

9Enforcing Design Constraints with Object Logic

the published rules of COM must be amended. It turns out to be sufficient to weaken the
rules for inner components.

Sullivan explored this problem by formalizing the published rules of COM in the Z for-
mal specification language [23]. He then proved, by hand, a theorem stating that, whenever
aggregation is present, hiding is lost. By introducing a distinction between ‘legal’ and ‘ille-
gal’ components, he was able to qualify this theorem so that it applies only when the inner
components are legal.

In a subsequent collaboration, we translated the Z model to Alloy so we could apply our
automatic analysis [13]. With the support of the Alloy analyzer, we explored various refor-
mulations of the model, and in the process were able to reduce it to about a third of its orig-
inal size. At the same time, we checked a variety of assertions that we believed to hold,
many of which turned out to be invalid.

This case study illustrates the importance of analysis of constraints in their own right.
The issue here was not conformance of an implementation to a design, but rather the for-
mulation of the essential design constraints. With an automatic analysis tool at hand, we
were able to make more daring and radical changes to the constraints than we could ever
have considered without tools.

A simplified version of the Alloy description is shown in Figure 2. There are three
domains: Component, the set of COM components in the configuration in question; Inter-
face, the set of interfaces or services these components provide; and IID, the set of interface
identifiers or IID’s. The interfaces relation maps each component to the interfaces it pro-
vides. The iids relation maps each interface to its identifiers; these may be thought of as the
types of the interface (there being more than one because the types are arranged in a hier-
archy).

The function qi models the ‘query interface’ mechanism. For each interface i, there is a
relation qi[i] (implemented in the code as a method) that maps identifiers to interfaces.This
mechanism is the essence of COM, since it allows interfaces to negotiate dynamically, and
work together when their composition was not anticipated in advance. At runtime, to use a
particular service of a COM component, one gets a handle on an interface and then queries
it with the IID of the service of interest. If the component offers the service, an interface
providing that service will be returned.

Two auxiliary relations are defined: reaches, which maps an interface to all the interfaces
it reaches via a query; and iids_known, which associates with an interface the set of IID’s for
which a query will return successfully.

The invariants capture the standard rules of COM. The first two are as expected: that a
query, if successful, returns an interface with the requested IID(QueriesSound) and belong-
ing to the same component (QueriesLocal). The third (Identity) summarizes the notion of
identity in COM: that there is a global IID which, for any interface, returns a particular
interface of the component (whose pointer value may be used to test identity of compo-
nents). The remaining 3 invariants capture more subtle rules about queries, for example
that if a query from an interface i might lead to an interface j, then any query on j using an
IID provided by some interface of i must succeed (Symmetry).

Finally, the assertion expresses in more general terms the problem with aggregation: that
if any two components share an interface, they must provide the same IID’s.

10 Daniel Jackson

model COM {
domain {Component, Interface, IID}
state {

interfaces : Component + -> Interface
iids, iids_known : Interface -> IID+
qi : Interface => IID -> Interface?
reaches: Interface -> Interface
}

def reaches {all i | i.reaches = IID.qi[i]}
def iids_known {all i | i.iids_known = {x | some x.qi[i]}
inv QueriesSound {all i | all x: i.iids_known | x in x.qi[i].iids}
inv QueriesLocal {all c | all j : c.interfaces | all x: IID | x.qi[j] in c.interfaces}
inv Identity {some Unknown |all c | some j: c.interfaces | all i: c.interfaces | j = Unknown.qi[i]}
inv Reflexivity {all i | i.iids in i.iids_known}
inv Symmetry {all i, j | j in i.reaches -> i.iids in j.iids_known}
inv Transitivity {all i, j | j in i.reaches -> j.iids_known in i.iids_known}

assert NoHiding {
all c, d | some (c.interfaces & d.interfaces) -> c.interfaces.iids = d.interfaces.iids }
}

}

Figure 2: Simplified version of COM constraints

3.2 Checking an Intentional Naming Scheme

An intentional naming scheme allows objects to be looked up by their specifications rather
than their identities or locations. A recent framework supporting this idea [1] allows que-
ries called ‘name specifiers’ in the form of trees of alternating attributes and values. These
are presented to a name resolver whose database, called a ‘name tree’, is similarly struc-
tured, but which also contains ‘name records’ returned as the results of queries.

We used Alloy to check the correctness of a lookup algorithm that had been previously
specified in pseudocode and implemented in Java [16]. The Alloy description was about 50
lines long, with an additional 30 lines of assertions expressing the anticipated properties to
be checked. The code of the algorithm is roughly 1400 lines of Java, with an additional 900
lines of testing code. The Alloy analysis revealed that the algorithm returns the wrong
results in a number of important but tricky cases, and that a key claim made about the algo-
rithm (to do with the role of wildcards) is invalid.

This case study illustrates the value of partial modelling. Our description included only
one crucial operation – lookup – and summarized the others as invariants on the name tree.
To analyze the possible lookup scenarios, it was not necessary to write an abstract program
that generates different prestates for lookup by executing operations that mutate the name
tree. Instead, the analysis considered all lookup scenarios (within a bounded scope) that
began in states satisfying the given invariants.

The case study also supports the small scope hypothesis, discussed below, that subtle
errors can be detected by considering only small cases. All of the bugs that we found could
be illustrated with name trees and name specifiers involving at most 3 attributes, 3 values
and 3 objects.

11Enforcing Design Constraints with Object Logic

3.3 Finding Bugs in Code

Our third case study illustrates how Alloy can be used at a lower level, to check code [14].
We took a suite of list-manipulating procedures that have been used to evaluate shape anal-
yses [5]. Each procedure was specified by an Alloy constraint; we then used the Alloy ana-
lyzer to check that the body of the procedure satisfied the constraint. If the constraint was
not found to be satisfied, a counterexample was generated that corresponds to a bad execu-
tion of the procedure.

These constraints involved, for the most part, simple set inclusions. For example, we
specified for delete, a procedure that deletes an element from a list, that the set of list cells
reachable from the result afterwards is a subset of the set of cells reachable from the argu-
ment, and for merge that the set of cells in the result is the union of the sets of cells in each
argument. We also specified some more detailed properties, for example that the final list
returned by merge preserves the order of cells as they appeared in the argument lists.

In addition to checking user-defined properties, we analyzed the procedures for anoma-
lies by asserting constraints that might be generated automatically. For example, we
checked for null pointer dereferences, and creation of cyclic structures. Our analysis found
the bugs that had been previously found (although we did not consider memory leakage
issues which one the papers had addressed), and found one anomaly which had not been
identified before.

This experience again supported the small scope hypothesis; in fact, all bugs were found
by considering only two list cells. It also supported a related observation, previously made
by the developers of the ESC tool [4], that very few loop iterations are required to catch a
high proportion of bugs. In this case, considering at most one iteration sufficed.

The analyses took roughly this form:

model Merge {
domain {Cell}
state {List: Cell

next: List -> List?
...}

cond Merge {...}
assert {

Merge -> result.*next’ = p.*next + q.*next
}

}

There is a single domain, Cell, representing the set of all heap cells. The state consists of
List, the set of cells that are objects belonging to a class List, and a relation next modelling a
field of this class. This relation maps each List object to another List object, or does not map
it (modelling a null value in the heap). Were we translating a language without compile-
time typing, we would have declared the right-hand side of next to be Cell instead of List,
admitting the possibility that a List object points incorrectly to an object of a different class.
The condition Merge holds the translation of the body of the merge procedure. Finally the
assertion shown here expresses the set inclusion property, that the cells reachable from the
result in the poststate must be the union of those reachable from the arguments p and q in
the prestate. Alloy uses Z’s convention of referring to values in the poststate with a fresh
variable whose name is obtained by primig the name of the prestate variable.

12 Daniel Jackson

4 Analysis

Alloy’s analyzer is a constraint solver [12]. It reduces a variety of analysis questions to the
problem of finding a model of a relational formula: that is, an assignment of values to the
sets, relations and functions for which the formula evaluates to true. The analysis is based
on a translation to a boolean satisfaction problem, and gains its power by exploiting state-
of-the-art SAT solvers.

The details of the analysis are explained elsewhere [15]. Here, we describe the analysis
from the user’s point of view: what it does conceptually, and what guarantees it makes. This
allows us to focus on the encoding of various design questions as analysis problems, and in
particular on how the same analysis mechanism can be used both to explore constraints in
isolation and to check conformance of code to constraints.

Earlier (in Section 2.3), we described how a formula evaluates to true or false in the con-
text of an environment. The environments for which the formula is true are the models of
the formula. To avoid that term’s many overloadings, we often call them instances or solu-
tions instead. If a formula has at least one model, it is said to be consistent; when every well-
formed environment is a model, the formula is valid. The negation of a valid formula is
inconsistent, so to check an assertion, we look for a model to its negation; if one is found, it
is a counterexample.

Since the logic is undecidable, it is impossible to determine automatically whether a for-
mula is valid or consistent. We therefore limit our analysis to a finite scope that bounds the
sizes of the carrier sets of the basic types. We say that a model is within a scope of k if it
assigns to each type a set consisting of no more than k elements. Clearly, if we succeed in
finding a model to a formula, we have demonstrated that it is consistent. Failure to find a
model within a given scope, however, does not prove that the formula is inconsistent. In
practice, however, experience suggests that many errors can be found by considering only a
small scope (eg, at most 3 elements of each type). This small scope hypothesis is purely
empirical of course, since the language is undecidable, so for any scope there is a formula
whose smallest model occurs in a scope one larger.

When our analysis is used to check that an implementation satisfies a design constraint,
failure to find a counterexample does not therefore imply that the constraint holds. More-
over, it seems likely that often the encoding of the implementation will involve some
abstraction, so a counterexample may be spurious. Our hope is that the analysis, although
unsound, will turn out to be accurate, as it appears to be when applied to designs in isola-
tion.

The analysis is quite efficient. Valid assertions take longer to check, since the tool must
exhaust the entire space. In the three case studies describe above, most analyses were com-
pleted in less than 10 seconds (running the tool on a modestly equipped PC). It is hard to
measure the size of the space searched, but, roughly speaking, a scope of 3 (the default),
usually corresponds to a state that can be encoded with a few hundred bits, which gives
roughly 1060 cases.

13Enforcing Design Constraints with Object Logic

4.1 Analyzing Designs

A wide variety of analysis questions can be reduced to satisfaction problems. Here are some
examples of the kinds of question we have posed to our analysis tool, and which the Alloy
language has been designed to express:

· Consistency. In any declarative description, conjunction brings a risk of inconsistency.
To mitigate it, we perform consistency checks, asking our tool to provide configurations
satisfying an invariant, often with an additional condition. In our COM study, for example,
we checked that the rules we had formulated admitted the possibility of aggregations of two
components at once, and of aggregations of aggregations. The same strategy is applied to
descriptions of operations. Having formulated a specification of a procedure, for example,
it is important to check that there is at least some execution that satisfies it. In all these
cases, the analysis is presented with the invariant or operation to be checked, and if it finds
a model, consistency is established.

· Consequences. Having specified some constraints, it is wise to check that they have the
intended meaning by formulating some additional, weaker constraints that are expected to
follow. These questions are expressed in Alloy as assertions of the form

X -> Y

where X is the invariant or operation as specified, and Y is the consequence. The tool
negates the assertion, and looks for a model of

X && !Y

A solution to this formula is now a counterexample that demonstrates that the constraint
does not have the intended consequence. When X is an operation, Y may be a constraint on
the pre- or the poststate alone, or may be another operation, in which case the assertion is a
simple form of refinement theorem. Data refinement can be checked too, by formulating an
abstraction function as a constraint A and then checking

OpC && A -> OpA

where OpC is the concrete operation and OpA is the abstract operation.

· Comparisons. Another useful way to check that a constraint has been formulated cor-
rectly is to compare it to a variant. Given a constraint C and a variant Cv, we assert

C <-> Cv

and the analysis generates instances that satisfy one but not the other.

· Preservation of invariants. To check that every reachable state of a system satisfies an
invariant, we use the standard inductive strategy of showing that the invariant I is estab-
lished in the initial state

Init -> I

and preserved by each operation

Op && I -> I’

It is instructive to see some examples of analyses that would be desirable, but which are
impossible (at least by our current mechanism) because they would require finding a model
of a formula that cannot be expressed in first-order logic:

· Liveness assertions. As we saw above, the simple liveness assertion that an operation has
some executions can be checked. It would be nice to be able to analyze preconditions more

14 Daniel Jackson

directly. For example, given an operation Op, we might want to check that it has an execu-
tion from every state that satisfies Pre. In languages such as VDM in which the precondition
Pre is specified separately, this criterion is called ‘implementability’; in Z, where precondi-
tions are implicit, this criterion states that the implicit precondition is no stronger than Pre.
Let us suppose the operation involves a state with a single relation component R. The check
will then have the form

Pre -> some R’ | Op

where R’ denotes the value of R in the poststate. The quantifier is second-order, since its
variable is a relation and not a scalar.

· General Refinements. To relieve the developer of the burden of providing an abstraction
function, we might want to check refinement assertions similar to

OpC && A -> OpA

but with the abstraction function A represented not as a formula, but explicitly as a relation.
This goes beyond first-order logic in two ways: it requires a higher-order relation that maps,
for example, relations (in the concrete state) to relations (in the abstract state), and, even
worse, requires a quantifier over such relations!

4.2 Analyzing Implementations

To check conformance of a procedure’s implementation to its specification, we extract from
the procedure’s body a formula Code that describes its behaviour. The procedure’s behav-
iour can be specified with a constraint of the form Pre -> Post, for a precondition Pre that
mentions only prestates, and a postcondition Post, which may mention both pre- and post-
states. The check may then be formulated as an assertion

Code -> Pre -> Post

and its counterexamples will be executions of the procedure that start in a state satisfying
the precondition but end in a state violating the postcondition.

In extracting the formula from the code, we simply translate each elementary program
statement into a constraint. For example, the statement

x.f = y

which sets the field f of object x to point to object y becomes

x.f’ = y

where the dot is now Alloy’s navigation operator, and the equals sign is an equality on set
expressions. To this formula we must conjoin a frame condition

all o | o != x -> o.f’ = o.f

which says that the relation f changes at most at x.
As in Z, we can define a logical operator that mimics sequential composition. If S and T

are operation formulas in which the prestates are referred to as x, y, z etc, and the poststates
as x’, y’, z’, then the composition S ; T is short for the formula

some x0, y0, z0 | S [x0/x’, y0/y’, z0/z’] && T [x0/x, y0/y, z0/z]

where S [x0/x’, y0/y’, z0/z’] is the formula S with x0 substituted for x’, y0 for y’, and z0 for z’.
Suppose now that we have a procedure whose body consists of two statements S and T that

15Enforcing Design Constraints with Object Logic

have been translated and combined in this manner. The assertion that the procedure con-
forms to its constraint will be

some x0, y0, z0 | S [x0/x’, y0/y’, z0/z’] && T [x0/x, y0/y, z0/z] -> Pre -> Post

Although this formula appears to be second-order, after negation, the existential quantifier
can be skolemized away, giving a formula of the form

Pre && SS && TT && ! Post

where Pre mentions only the prestate, SS relates the prestate to an intermediate state, TT
relates the intermediate state to the poststate, and Post mentions prestate and poststate, but
not the intermediate state. A model of this formula will give values to all three states: it will
be a trace of the procedure that starts in a valid prestate but ends in a bad poststate.

If-statements are handled by conjoining the condition to the appropriate branch, so

if (C) then {S} else {T}

becomes

C && S || !C && T

Loops are unrolled at most a few times, and then treated as if-statements. One unrolling of

while (C) {S}

for example, gives

!C && SKIP || C && S && !C’

In the experiments we have performed so far [14], we do not construct formulas com-
positionally in the style this explanation suggests. Instead, we create labels for state compo-
nents at the points in the code at which they appear, generate a graph representing the
possible paths through the code for some maximum number of loop unrollings, and then
construct the formula using conjunction along paths and disjunction to merge branches.
This strategy gives more control over the naming of intermediate states, enables various
optimizations, and makes it easier to handle jumps and exceptions.

5 Scenario

The case studies that we have described so far show how our logic and analysis can be
applied at different levels of abstraction, but do not involve checking low-level code against
high-level design constraints. Our ambition is to bridge the gap between these levels, using,
as a starting point, the language and analysis we have developed. In this section, we
describe a scenario that illustrates more concretely what a design constraint is and how an
implementation might violate it. The scenario comes from a recent project in which we
redesigned and reimplemented the central component of CTAS, a new air-traffic control
system deployed in several US airports [11].

The Center/TRACON Automation System (CTAS) helps controllers manage air-traffic
flow at large airports. It receives as input the location, velocity, and flight plans of all aircraft
near an airport, along with weather data, information about available runways and stan-
dard landing patterns, and controller commands. It combines this information with aero-
dynamic models of specific aircraft types to make accurate predictions of aircraft
trajectories as much as forty minutes in advance. This information is fed into dynamic
planning algorithms that suggest a landing sequence to optimize usage of landing slots.

16 Daniel Jackson

The Communications Manager (CM) is the central component of CTAS. It acts as a
message switch between sources of data (from the radar systems and host computers), algo-
rithmic processes (that compute trajectories and juggle landing slots), and graphical user
interfaces. It also maintains a database of aircraft information. The CM is the ‘main’ process
responsible for initializing most of the other processes and terminating them when they
appear to be misbehaving. When an algorithmic process dies, a new one is restarted and the
CM connects to it, but if the CM dies, the system dies with it.

An essential aspect of the CM’s functionality is the allocation of aircraft amongst algo-
rithmic processes known as Route Analyzers (RA’s). As aircraft become active – that is,
radar signals are received showing them to be within the airspace – they are assigned to
RA’s for analysis. If an RA fails, its load must be transferred to other RA’s. The CM periodi-
cally balances the load, redistributing aircraft amongst RA’s.

This aspect of the state can be expressed like this:

model Allocation {
domain {Aircraft, Process}
state {Waiting, Assigned, Active : Aircraft

Analyzer, Connected : Process
analyzer (~load) : Assigned -> Analyzer!
}

inv NoLostAircraft {Active in Waiting + Assigned}
inv AnalyzersLive {Assigned.analyzer in Connected}
}

The state consists of two domains, Aircraft and Process, some sets classifying these
domains, and a relation analyzer (with transpose load) that maps each aircraft to the pro-
cess to which it has been assigned. The sets classifying Aircraft are: Waiting, the aircraft that
are in a queue waiting to be assigned; Assigned, the aircraft that are currently assigned to
processes; and Active, the aircraft for which radar signals are being received. The sets classi-
fying Process are: Analyzer, those processes that are RA’s; and Connected, the processes that
are live and connected to the CM.

There are two crucial design constraints. NoLostAircraft says that every active aircraft is
either waiting to be assigned or is assigned. AnalyzersLive says that any analyzer that some
aircraft is assigned to is actually connected.

A significant part of the code of the CM is concerned with maintaining these invariants.
As aircraft become active, they are placed in the waiting queue. At some point, aircraft are
taken from the queue and distributed amongst RA’s. When aircraft become inactive (usu-
ally because they have landed), they are unassigned. The load is rebalanced periodically.
When the CM detects that an RA has died, it redistributes its load amongst the other RA’s.

We checked these constraints by hand against two versions of the system: the original
version, written in C, and our reimplementation in Java. We found no violations in the C
code, although we did discover that expected representation invariants associated with the
abstract properties are not preserved. In the Java code, which we had written ourselves (and
which fortunately is not deployed in any airport!), we found a serious violation of one of the
constraints.

Of course, no invariant that a system actively maintains can be true continuously, since it
must at least be violated during the operations that reestablish it. So we had to identify
points in the code at which the invariants were expected to hold. In addition, we had to

17Enforcing Design Constraints with Object Logic

relate the sets and relations of the abstract model to the concrete representations of the
code. In the Java code, for example, the Waiting set is realized as a vector of aircraft objects
and the analyzer relation is realized as a hash table from aircraft identifiers to proxy client
objects that encapsulate communication with RA’s.

The offending code was found in the method that is executed when an RA has died:

public void delRA (Client ra) throws ClientClosedException {
RAs.removeElement (ra);
RALoads.remove (ra);
Enumeration e = acidRAs.keys ();
while (e.hasMoreElements ()) {

AircraftId acid = (AircraftId) e.nextElement ();
Client acidRA = (Client) acidRAs.get (acid);
if (acidRA.equals (ra)) {

assignAcidToRA (acid, findLeastLoadedRA ())}
}

}

The code is simple (but wrong). It first removes the RA from the vector of connected RA’s
and removes the record of its load. It then iterates through all the aircraft that are assigned
to RA’s, and when it finds one that is assigned to the RA that has just gone down, reassigns it
to the least loaded RA, determined by a call to an auxiliary procedure.

The problem arises when the RA that has died is the last connected RA. In this case, the
aircraft assigned to it should be transferred to the waiting queue to be subsequently reas-
signed when an RA is brought up again. Instead, the procedure findLeastLoadedRA throws
an exception, and the aircraft are left in limbo, assigned to a dead RA.

We are now investigating how this analysis might be performed automatically. Our
CTAS redesign made only half-hearted use of object models and design constraints, so we
are now revisiting it, capturing essential design constraints in Alloy and examining the
code to see what checking conformance would involve. So far, our observations support the
arguments we have made in this paper:

· There are essential design constraints that can be expressed in a few lines of Alloy on
which the integrity of the entire system depends. A full description of required behaviour
would be enormous, but the integrity of the system rests on a few simple properties. Partial-
ity is key; although the code is concerned with exactly how aircraft are distributed amongst
RA’s in order to balance load, the design constraint addresses only the fundamental ques-
tion of whether they are assigned to processes that are connected.

· There seems to be no fundamental obstacle to checking conformance of code to con-
straints. The relationship between the abstract sets and relations of the constraints, and the
structures of the code, is relatively straightforward. A small repertoire of representations
seems to cover most cases: in our CTAS code, for example, every relation is implemented as
a field of an object, with a vector of tuples, or with a hash table.

· Although design constraints are simple to express, implementations often violate them.
Our CTAS implementation was intended to demonstrate the plausibility of our redesign.
Had correctness been a focus, we might not have made the error described here. Our code,
however, is less than 20,000 lines long. In a larger system with a greater division of responsi-
bility, such errors are easier to make and harder to detect without tools.

18 Daniel Jackson

6 Related Work

Model checking. The success of state exploration techniques in hardware has led to a variety
of attempts to apply similar ideas to software. The Bandera project [2] aims to extract state
machines from code that can then be analyzed with standard model checkers; a prototype
tool includes static analyses, such as slicing, for reducing the size of the extracted machine,
and a notion of specification patterns that allows the developer to express constraints using
standard templates, from which formulas in various temporal logics can be automatically
generated. The Java Pathfinder tool [7] takes a more direct approach, and translates Java
directly into Promela, the input language of the SPIN [8] model checker. A fundamental
difference between these approaches and ours is that they focus on temporal properties –
namely the sequencing of events – rather than on structural relationships between objects.

Most model checkers (with the exception of process algebra checkers such as FDR [21]
and the Concurrency Workbench [3]) do not allow constraints to be explored indepen-
dently. Technically speaking, the term ‘model checking’ refers to determining whether a
state machine is a model of a temporal logic formula. Exploration of constraints in their
own right would require validity checking of temporal logic formulas, which is less tracta-
ble, and not usually supported by tools.

Static analysis. Traditional static analyses, being designed for compilers, check the code
against a fixed repertoire of constraints. Recently, Sagiv, Reps and Wilhelm have developed
a parametric shape analysis (PSA) [22] that can accommodate constraints in first-order
logic. PSA is sound for ‘yes’ answers, and can thus prove that constraints hold, but not for
‘no’ answers, and it does not provide concrete counterexamples. The PREfix tool developed
by Intrinsa (and now owned by Microsoft) finds anomalies in code by an interprocedural
analysis that combines traditional dataflow with arithmetic constraint solving. It offers no
soundness guarantees, but appears to be accurate, and has reportedly found several thou-
sand bugs in the code of Windows 2000. The Reflexion Model Tool [18] checks gross struc-
tural properties of code by comparing the results of a static analysis, under a user-defined
abstraction mapping, to the user’s model.

Theorem proving. The Extended Static Checker (ESC) [4] finds errors in Java code by
generating proof obligations using a weakest precondition semantics that are submitted to
Simplify, a specialized theorem prover. ESC trades soundness for accuracy. Subtle violations
of abstraction are possible which open loopholes in the conventional rules for modular rea-
soning. Since these rarely occur in practice, ESC ignores them, and although it may there-
fore miss errors, it will produce fewer spurious complaints. ESC can accommodate user-
defined specifications that involve first-order formulas with uninterpreted functions, arith-
metic and quantifiers.Nevertheless, ESC has been mostly used to catch array bounds viola-
tions and null pointer dereferences, and has yet to be applied to the kinds of design
constraint we have described here.

7 Discussion

Our analysis plays two roles in the approach we have described: both in the exploration of
the constraints themselves, and in checking the conformance of code to the constraints. For
the latter, a key advantage of our analysis mechanism is that it treats elementary program
statements as constraints, and can therefore take specifications of procedures as surrogates

19Enforcing Design Constraints with Object Logic

for their code. Libraries are easily handled by writing constraints for the procedures, which
are then used by the analysis at each call site.

Nevertheless, it is not necessary that the same mechanism be used for both analyses. It
seems likely that there are abstraction-based mechanisms more in the style of conventional
static analyses that will be more suitable, at least some of the time, for analyzing code.

Existing static analyses cannot be easily adapted to this task for two reasons. First, most
do not accommodate user-defined constraints. Second, the abstractions used tend to
bound sets uniformly from above. To check a constraint that involves both existential and
universal quantification, it will be necessary to compute both upper and lower bounds at
once.

With Martin Rinard, we are looking into static analyses that can check conformance to
design constraints, and which are compositional and can scale to large programs. It is not
clear how these analyses will compare to our satisfaction-based analysis. Our guess is that
they will scale more readily, but provide less accuracy. This suggests that it may be fruitful
to apply a coarser static analysis on the program as a whole, and then, when the analysis
fails and indicates that a design constraint may have been violated, to apply the satisfaction-
based analysis locally in an attempt to find a counterexample.

Acknowledgments

The notion of design constraints was developed in collaboration with Martin Rinard. Man-
dana Vaziri worked with the author on the code analysis scheme, and did the shape analysis
case study. Sarfraz Khurshid analyzed Intentional Naming. The analysis of COM was done
with Kevin Sullivan, and extends his previous work. Albert Lee analyzed the CTAS code by
hand as part of this masters thesis. Ilya Shlyakhter and Ian Schechter implemented parts of
the Alloy analysis tool. The author would like to thank Michelle Eshow, CTAS’s develop-
ment manager, and her colleagues for help understanding CTAS, and Michael Jackson, for
his insightful comments on an earlier draft of this paper. This research was funded in part
by the MIT Center for Innovation in Product Development under NSF Cooperative Agree-
ment Number EEC-9529140, by a grant from Nippon Telephone and Telegraph, by a grant
from NASA, and by an endowment from Douglas and Pat Ross.

References

1. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The Design and
Implementation of an Intentional Naming System. Proc. 17th ACM Symposium on Operating Sys-
tem Principles (SOSP’99), Kiawah Island, SC. Dec. 1999.

2. The Bandera Project, Kansas State University. http://www.cis.ksu.edu/santos/bandera/.
3. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In: R. Alur and T. Henzinger, edi-

tors, Computer-Aided Verification (CAV’96), volume 1102 of Lecture Notes in Computer Science,
pages 394–397, New Brunswick, NJ, July 1996. Springer-Verlag.

4. D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. Extended static checking. Technical Report 159,
Compaq Systems Research Center, 1998.

5. Nurit Dor, Michael Rodeh & Mooly Sagiv. Detecting Memory Errors via Static Pointer Analysis.
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’98), Montreal, June 1998.

6. William Harrison and Harold Ossher. Subject-Oriented Programming – A Critique of Pure
Objects. Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’93), September 1993.

20 Daniel Jackson

7. K. Havelund and T. Pressburger. Model Checking Java Programs Using Java PathFinder. To
appear: International Journal on Software Tools for Technology Transfer, Springer-Verlag.

8. Gerard J. Holzmann. The Model Checker Spin. IEEE Transactions on Software Engineering: Special
issue on Formal Methods in Software Practice, Volume 23, Number 5, May 1997, pp. 279–295.

9. Daniel Jackson and Jeannette Wing. Lightweight Formal Methods, IEEE Computer, April 1996.
10. Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. Technical Report 797, MIT Labo-

ratory for Computer Science, Cambridge, MA, February 2000.
11. Daniel Jackson and John Chapin. Simplifying Air-traffic Control: A Case Study in Software

Design. IEEE Software, May 2000.
12. Daniel Jackson, Ian Schechter and Ilya Shlyakhter. Alcoa: the Alloy Constraint Analyzer. Proc.

International Conference on Software Engineering, Limerick, Ireland, June 2000.
13. Daniel Jackson and Kevin Sullivan. COM Revisited: Tool Assisted Modelling and Analysis of Soft-

ware Structures. Submitted for publication. Available at: http://sdg.lcs.mit.edu/~dnj/publications.
14. Daniel Jackson and Mandana Vaziri. Using a SAT Solver to Find Bugs in Code. Submitted for publi-

cation. Available at: http://sdg.lcs.mit.edu/~dnj/publications.
15. Daniel Jackson. Automating First Order Logic. Submitted for publication. Available at: http://

sdg.lcs.mit.edu/~dnj/publications.
16. Sarfraz Khurshid and Daniel Jackson. Exploring the Design of an Intentional Naming Scheme with

an Automatic Constraint Analyzer. Submitted for publication. Available at: http://sdg.lcs.mit.edu/
~dnj/publications.

17. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier and J. Irwin, Aspect-
Oriented Programming. Proceedings of European Conference on Object-Oriented Programming
(ECOOP’97), pp. 220-242.

18. Gail C. Murphy, David Notkin and Kevin Sullivan. Software Reflexion Models: Bridging the Gap
Between Source and High-Level Models. Proc. Third ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE’95), October 1995.

19. P. Naur and B. Randell (eds). Software Engineering: Report on a Conference sponsored by the NATO
Science Committee, Garmisch, Germany, October 1968, Brussels, Scientific Affairs Division,
NATO, January 1969, 231 pp.

20. President’s Information Technology Advisory Committee. Report to the President. Information
Technology Research: Investing in Our Future. February 1999. Available at: http://www.ccic.gov/ac/
report/

21. A.W. Roscoe. Model-checking CSP. In: A Classical Mind: Essays in Honour of C.A.R. Hoare. Pren-
tice-Hall 1994, ISBN 0-13-294844-3.

22. Mooly Sagiv, Tom Reps and Reinhard Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
Proc. ACM Symposium on Principles of Programming Languages (POPL’99), San Antonio, TX, Jan.
20–22, 1999, ACM, New York, NY, 1999.

23. J. Michael Spivey. The Z Notation: A Reference Manual. Second ed, Prentice Hall, 1992.
24. Kevin Sullivan, M. Marchukov and D. Socha. Analysis of a conflict between interface negotiation

and aggregation in Microsoft’s component object model. IEEE Transactions on Software Engineer-
ing, July/August, 1999.

21Enforcing Design Constraints with Object Logic

Model Checking as Constraint Solving

Andreas Podelski

Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken, Germany

podelski@mpi-sb.mpg.de

Abstract. We show how model checking procedures for different kinds
of infinite-state systems can be formalized as a generic constraint-solving
procedure, viz. the saturation under a parametric set of inference rules.
The procedures can be classified by the solved form they are to compute.
This solved form is a recursive (automaton-like) definition of the set of
states satisfying the given temporal property in the case of systems over
stacks or other symbolic data.

1 Introduction

In the large body of work on model checking for infinite-state systems (see e.g.
[2,3,4,5,6,7,8,9,10,11,12,15,16,17,18,20,21,22,26,27,28]), we can distinguish two
basic cases according to the infinite data domain for the program variables.
In the first case, we have pushdown stacks or other ‘symbolic’ data implemented
by pointer structures. These data are modeled by words or trees, and sets of
states are represented by word automata or tree automata. In the second case,
program variables range over reals or other numeric data, and sets of states are
represented by arithmetic constraints. Accordingly, the respective model check-
ing procedures operate on automata or on arithmetic constraints. Whereas they
are essentially fixpoint procedures based on the predecessor or the successor op-
erator in the second case, they seem to require ad-hoc reasoning techniques in
the first case. In this paper, we show how all these procedures can be formalized
as one generic constraint-solving procedure, viz. the saturation under a para-
metric set of inference rules; the procedures can be compared by the solved form
they are to compute.

We will use constraints ϕ (such as x = y + 1 over the domain of reals or
x = a.y over the domain of words) in order to form Constraints Φ (such as X =
{x | ∃y ∈ Y : x = y + 1} or X = {x | ∃y ∈ Y : x = a.y}).1 A specification of a
transition system by a guarded-command program, together with a specification
of a temporal property by a modal µ-calculus formula, translates effectively to
a Constraint Φ such that the intended solution of Φ is the temporal property
(i.e., the value of a variable X of Φ is the set of states satisfying the property).
Model checking for the transition system and the temporal property amounts to
solving that Constraint Φ. Solving Φ means transforming Φ into an equivalent
Constraint Φ′ in solved form.
1 Notation: constraints ϕ are first-order, Constraints Φ are second-order.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 22–37, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Model Checking as Constraint Solving 23

In each Constraint solving step, a direct consequence under a logical inference
rule is added as a conjunct to the Constraint (“saturation”). When no more new
conjuncts can be added, the Constraint is in solved form. This generic model
checking procedure is parametrized by the set of inference rules.

The purpose of the solved form of a Constraint is to exhibit its set of solutions;
technically, this means that known (and algorithmically more or less pleasing)
tests for emptiness and for membership are applicable. (Strictly speaking, the
test of the membership of the initial state of the system in this set is still part
of the model checking procedure.)

We can compare the two cases of ‘symbolic’ vs. numeric data structures by
the two basic cases of solved forms. The solved form is a recursive definition of
sets of states in the first case, and a non-recursive definition (viz. a symbolic
state enumeration) in the second case.

Our uniform definition of model checking and the classification according
to solved forms allows us to contrast the two cases with each other. Model
checking over the reals is ‘harder’ than over the words in the sense that solving a
Constraint Φ over the reals means ‘eliminating the recursion’. For example, the
Constraint X = {x | ∃y ∈ X : x = y+1}∪{0} gets transformed into in its solved
formX = {x | x ≥ 0}; however, the ConstraintX = {x | ∃y ∈ X : x = a.y}∪{ε}
is already in solved form (representing the set a� of all words a.a . . . a including
the empty word ε). The first Constraint arises from the CTL formula EF(0) and
the program consisting of the loop with the one instruction x:=x-1, the second
from the CTL formula EF(ε) and the program with pop(a,x).

Our technical setting uses concepts from logic programming. In order to ad-
dress the reader who is not familiar with those concepts, we will first consider
two concrete examples of infinite-state systems and use them to illustrate our
approach (Sections 2 and 3). We then generally characterize the temporal prop-
erty of a system in terms of a solution of a Constraint Φ (Section 4). In our
formalization of the model checking procedure, the first step in the design of
a concrete procedure is to define the solved form of a Constraint; we give a
generic definition and its two instances corresponding to symbolic and numeric
systems, respectively (Section 5). The second step is to instantiate the parameter
of the generic Constraint-solving procedure, namely the set of inference rules,
for concrete examples of infinite-state systems (Section 6).

2 Finite Automata as Infinite-State Systems

We will rephrase well-known facts about finite automata in order to illustrate
our notions of constraints ϕ and Constraints Φ and the correspondence between
a specific solution of Φ and a temporal property.

The notion of constraints ϕ. A finite automaton is given essentially by a finite
edge-labeled directed graph G. Some nodes of the graph G are marked as initial
and some as final. We will write Q = {1, . . . , n} for its set of nodes and Σ
for its set of edge labels. The graph defines a transition system. The states are

24 Andreas Podelski

pairs 〈i, x〉 consisting of a node i and a word x (i.e. x is an element of the free
monoid Σ� over the alphabet Σ). The edge 〈i, a, j〉 from node i to node j labeled
by a defines the following state transitions:

state 〈i, x〉 can take a transition to state 〈j, y〉 if x = a.y holds.

The formula x = a.y is an example of a constraint ϕ (over the variables x and y).
The constraint is satisfied by words x and y if the first letter of x is a, and y is
obtained from x by removing the first letter.

We note that a finite automaton defines a special case of an infinite-state
transition system where each execution sequence is finite (infinite with self-loops
on 〈i, ε〉). This view will be useful when we extend it to pushdown systems in
Section 3.

The notion of Constraints Φ. It is well known that a finite automaton can be
associated with a regular system of equations, which is a conjunction of equations
of the form pi = [ε∪] ⋃

... a.pj where the union ranges over all edges 〈i, a, j〉 from
node i to node j; the ‘empty word’ ε is a member of the union if the node i is
marked final.

A regular system of equations is an example of a Constraint Φ (over the
variables p1, . . . , pn). Its variables range over sets of words. Being interested in
the least solution, we can it equivalently as the conjunction of the following
(superset) inclusions:

pi ⊇ a.qi (for each edge 〈i, a, j〉),
pi ⊇ ε (if the node i is marked final).

We next introduce a syntactic variant of the inclusion pi ⊇ a.qi that makes
explicit the role of constraints:

pi ⊇ {x ∈ Σ� | ∃y ∈ Σ� (x = a.y, y ∈ pj)}.

Identifying sets and unary predicates, we write the above inclusion in yet another
syntactic variant, namely as a clause of a constraint data base or constraint logic
program:2

pi(x)← x = a.y, pj(y).

This notation leaves implicit the universal quantification of the variables x and y
for each clause. Thus, the only free variables in the clause above are the set
variables pi and pj . An inclusion of the form pi ⊇ ε translating the fact that the
node i is marked final can be written as a special case of clause called fact :

pi(x)← x = ε.

2 The close relationship between a clause p(x) ← . . . and an inclusion p ⊇ . . . un-
derlines the fact that the “predicate symbols” p in clauses stand for second-order
variables; they range over sets of (tuples of) data values.

Model Checking as Constraint Solving 25

Solutions of Constraints Φ and Temporal Properties. The correspondence be-
tween the least solution of a regular system of equations and the language rec-
ognized by a finite automaton is well known. If we note [[pi]] the value of the set
variable pi in the least solution of the regular system (viz. the Constraint Φ),
then the recognized language is the union of all sets of words [[pi]] such that the
node i is marked initial.

The set [[pi]] consists of all words accepted by the finite automaton when
starting from the node i. Now, we only need to realize that acceptance is a
special case of a temporal property, namely the reachability of an accepting
state which is of the form 〈j, ε〉 for a final node j:

x ∈ Σ� is accepted from node i ∈ Q iff 〈i, x〉 −→� 〈j, ε〉 for a final node j.

We introduce accept as the symbol for the atomic proposition that holds for
all accepting states. Then, the temporal property is specified by the formula
EF(accept) in the syntax of CTL, or by the formula µX. (accept ∨ ✸X) in the
syntax of the modal µ-calculus. We can now rephrase the above correspondence
as the following identity between the value [[pi]] of the variable pi in the least
solution of the Constraint Φ and the temporal property:

x ∈ [[pi]] iff 〈i, x〉 ∈ EF(accept). (1)

In Section 4, we will generalize this correspondence (which holds also for other
systems than just finite automata, other temporal properties than just reacha-
bility, and, accordingly, other solutions than just the least one).

3 Pushdown Systems

In the previous section, we have shown that a temporal property corresponds to
a specific solution of a Constraint Φ for a special example. In that example, the
Constraint Φ that is associated with the given transition system and the given
temporal property is already in what we define to be the solved form. There is no
reasonable way to simplify it any further; the tests for emptiness or membership
are linear in the size of Φ (we carry over the standard algorithms for automata).

In contrast, in the case of pushdown systems to be introduced next, the
associated Constraint Φ is not in solved form. The purpose of this section is to
illustrate that model checking for pushdown systems (in the style of e.g. [6,18])
is done by solving Φ, i.e. by bringing Φ into an equivalent solved form. Our
example temporal property is again reachability.

If we view the word x in the second component of a state 〈i, x〉 of the tran-
sition system induced by a finite automaton as the representation of a stack,
then each edge 〈i, a, j〉 defines a pop operation (at node i, if the top symbol is a,
pop it and go to node j). It is now natural to extend the notion of transition
graphs by allowing edges that define push operations (at node i, push a on top
of the stack and go to node j). Formally, the edge 〈i, !a, j〉 from node i to node j
labeled by a together with “!” defines the following state transitions:

26 Andreas Podelski

state 〈i, x〉 can take a transition to state 〈j, y〉 if a.x = y holds.

In contrast with the previous case, infinite execution sequences are possible in
the more general kind of transition system.

We extend the notion of regular systems of equations accordingly. Each
edge 〈i, !a, j〉 corresponds to an inclusion of the form

pi ⊇ {x | ∃y ∈ Σ� (a.x = y, y ∈ pj)}

which we will write equivalently as the clause

pi(x)← a.x = y, pj(y).

The new kind of clause contains constraints of a new form (the letter a is ap-
pended to the left of the variable x appearing in the head atom).

As before, each edge 〈i, a, j〉 translates to a clause pi(x)← x = a.y, pj(y). If
we are again interested in the reachability of accepting states defined as above
(wrt. a given set of nodes marked final), we translate each marking of a node j
as final to a clause pj(x)← x = ε (we say that these clauses express the atomic
proposition accept).

The Constraint Φ whose least solution characterizes the temporal property
EF(accept) in the same sense as in (1) is formed of the conjunction of the two
kinds of clauses translating pop resp. push edges of the transition graph, and of
the third kind of clauses expressing the atomic proposition accept .

We do not know of any algorithms for the tests for emptiness or member-
ship that apply directly to Constraints containing the three kinds of conjuncts.
We now define the solved form of a Constraint Φ as the smallest conjunction
containing all conjuncts of Φ and being closed under the two inference rules
below.

p(x)← a.x = y, q(y)
q(x)← q′(x)
q′(x)← x = a.y, r(y)

 � p(x)← r(x)

p(x)← q(x)
q(x)← r(x)

}
� p(x)← r(x)

(2)

We note that the first of the two inference rules is obtained by applying logical
operations to constraints ϕ over the logical structure of words. The conjunction
of the two clauses p(x) ← a.x = y, q(y) and q(y) ← y = a.z, r(z) (the second
clause is obtained by applying α-renaming to the clause p(x) ← a.x = y, q(y)
with the universally quantified variables x and y) yields the clause

p(x)← a.x = y, y = a.z, r(z).

The logical operations that we now apply are: forming the conjunction of con-
straints (here, a.x = y ∧ y = a.z), testing its satisfiability and transforming it
into the equivalent constraint x = z.

Model Checking as Constraint Solving 27

Given a Constraint Φ, we define the Constraint Φ′ as the part of Φ without
conjuncts of the form pi(x)← a.x = y, pj(y) (i.e. without the clauses that trans-
late push edges). If Φ is in solved form, then the least solution of Φ is equal to
the least solution of Φ′ (as can be shown formally). Hence, the tests of emptiness
or membership for the least solution of Φ can be restricted to the Constraint Φ′.
The conjuncts of Φ′ are of the form pi(x)← x = a.y, pj(y) (translating edges of
a finite automaton) or pj(x)← x = ε (translating the marking of final nodes)
or p(x)← r(x) (translating “ε-transitions of a finite automaton); thus, Φ′ cor-
responds to a finite automaton with ε-transitions (for which linear algorithms
are again well known).

The model checking procedure for pushdown systems is simply the Con-
straint solving procedure that we define as the iterative addition of new con-
juncts obtained by the inference step above (until no more new conjuncts can
be added).

The cubic complexity bound for this procedure, which can be described by
inference rules, can be inferred directly using the techniques of McAllester [23];
these techniques work by transferring known complexity bounds for deductive
database queries.

Atomic Propositions specified by Regular Sets. It should be clear by now how we
form the Constraint Φ corresponding to the temporal property EF(apL) where
the atomic proposition apL is given by a family L = (Li)i∈Q of regular word
languages Li ⊆ Σ� for each node i ∈ Q; the atomic proposition holds for all
states 〈i, w〉 where w ∈ Li (the atomic proposition accept is the special case
where all languages Li consist of the empty word ε). Each set Li is recognized
by a finite automaton with the set of nodes Qi such that Q ∩Qi = {i} and Li

is the set of all words accepted from node i (all nodes different from i are new).
We translate the finite automaton into a Constraint Φi such that value of the
variable pi in its least solution is Li (all other variables are new). We now form
the Constraint Φ as the conjunction of all clauses translating pop and push edges
of the transition graph of the pushdown system and of all Constraints Φi.

Automata and Guarded Command Programs. The purpose of Sections 2 and 3is
to convey the intuition behind the general framework through two concrete ex-
amples. Since the general setting uses guarded command programs, we need to
relate those with transition graphs of finite automata. An edge 〈i, a, j〉 from
node i to node j labeled a specifies the same transition steps as the following
guarded command:

z = i, head(x) = a [] z := j, x := tail (x)

The guarded command program obtained by the translation of a transition graph
has the program variables z (ranging over the finite set Q of program points)
and x (ranging over words denoting the stack contents).

The guarded command above can be represented in another form, where
primed variables stand for the value of the variable after the transition step.

28 Andreas Podelski

Here, the guard constraint α(z, x) and the action constraint γ(z, x, z′, x′) are
logical formulas (we indicate their free variables in parenthesis; the variable y is
quantified existentially at the outset of the guarded command).

z = i, x = a.y︸ ︷︷ ︸
α(z,x)

[] z′ = j, x′ = y︸ ︷︷ ︸
γ(z,x,z′,x′)

In the setting of Section 4, the guarded command will be translated to the
conjunct p(z, x)← z = i, x = a.y, z′ = j, x′ = y, p(z′, x′) of the Constraint Φ;
here p is a generic symbol for the (only one) variable of Φ. This translation is
equivalent to the one given in Section 2, in the sense that pi(x) is equivalent
to p(i, x).

4 Temporal Properties and Constraints Φ

Given a specification of a transition system (possibly with an infinite state space)
in form of a guarded command program P and of a temporal property in form of
a modal µ-calculus formula ∆, we will construct a Constraint Φ whose solution
(least, greatest or intermediate, according to the quantifier prefix of ∆) is the
temporal property.

The program P is a set of guarded commands α [] γ; the free variables of the
guard constraint α are the program variables x1, . . . , xn; its existentially quanti-
fied variables may be ‘shared’ with the action constraint γ which is a conjunction
of equalities x′ = e(x1, . . . , xn) with an expression e for each program variable x
(we omit any further formalization). We use x for the tuple x1, . . . , xn.

The formula ∆ consists of a sequence of quantifiers µX or νX applied to
a set of declarations of the form X = δ, where the language of expressions δ
is defined as follows. We assume the usual restrictions for the (closed, well-
formed) formula ∆ in positive normal form (negation is pushed to the atomic
propositions; as usual, we close the set of atomic propositions under negation).

δ ≡ ap | X1 ∨X2 | X1 ∧X2 | ✸X | ✷X

The Constraint Φ is defined as the conjunction of the following clauses, where pX

is a new symbol for a variable of Φ (for each X occurring in ∆).

Φ ≡

pX(x)← ap for X = ap in ∆,
pX(x)← pXi(x) for X = X1 ∨X2 in ∆, i = 1, 2
pX(x)← pX1(x), pX2(x) for X = X1 ∧X2 in ∆,
pX(x)←α, γ, pX′(x′) for X = ✸X ′ in ∆, α [] γ in P
pX(x)←∧

j ∀. . . αj , γj , pX′(xj) for X = ✷X ′ in ∆

In the last kind of clause, the conjunction
∧

j ranges over all guarded commands
of the program P ; the primed variables in each guarded command are renamed

Model Checking as Constraint Solving 29

apart (from x′ to x′
j; the renamed version of α [] γ is αj [] γj), and the universal

quantifier ranges over all variables other than x and xj.3

We assume that the quantifier prefix of ∆ is ξ1X1 . . . ξmXm where ξi is ei-
ther µ or ν; i.e., the formula is of the form

∆ ≡ ξ1X1 . . . ξmXm {Xi = δi | i = 1, . . . ,m}.

Then, the free variables of the Constraint Φ form the tuple 〈pX1 , . . . , pXm〉, and
a solution of Φ can be represented as a tuple 〈S1, . . . , Sm〉 of sets of states (states
are value tuples 〈v1, . . . , vn〉 for the program variables 〈x1, . . . , xn〉).

The intended solution 〈[[pX1]], . . . , [[pXm]]〉 of Φ according to the quantifier
prefix of ∆ is defined as the fixpoint of the logical consequence operator TΦ,

〈[[pX1]], . . . , [[pXm]]〉 = ξ1pX1 . . . ξmpXm TΦ(〈pX1 , . . . , pXm〉).

In order to define alternating fixpoints, we reformulate the usual logical con-
sequence operator for constraint logic programs as a fixpoint operator TΦ over
tuples 〈S1, . . . , Sm〉 of sets of states (see also [13]); its application is defined by
TΦ(〈S1, . . . , Sm〉) = (〈S′

1, . . . , S
′
m〉) where

S′
j = {〈v1, . . . , vn〉 | Φ ∪ pX1(S1) ∪ . . . ∪ pXm(Sm) � pXj (〈v1, . . . , vn〉)}.

Here, pXk
(Sk) stands for the conjunction of formulas pXk

(〈w1, . . . , wn〉) where
〈w1, . . . , wn〉 ∈ Sk (we always implicitely use the identification of sets and unary
predicates pX). The symbol � here refers to one single step of logical inference
(the modus ponens rule, essentially). When using clauses with constraints ϕ
(here, conjunctions α ∧ γ of guard and action constraints), the inference step is
taken wrt. the logical structure for the specific constraints (the domain of reals,
the monoid of words, etc.). The alternating fixpoints are well-defined due to our
assumption that ∆ is well-formed; we omit any further formal details.

Theorem 1. Given a specification of a transition system in form of a guarded
command program P and of a temporal property in form of a modal µ-calculus
formula ∆, the set of all states satisfying the temporal property is the value [[pX1]]
of the variable pX1 under the solution of Φ specified by the quantifier prefix of ∆.

Proof. The proof works by a logical formulation of the construction of an al-
ternating tree automaton as in [1], expressing the next-state relation used there
by the first-order constraints α ∧ γ that correspond to the guarded commands.
These constraints are inserted into the tree-automaton clauses (see Figure 1)
without changing their logical meaning; the clauses are then transformed into
the form as they occur in Φ; again, one can show this transformation logically
correct. []

3 The universal quantification in the body of clauses goes beyond the usual notion of
Horn clauses that is used in related approaches (see e.g. [14,15,16,25]). It is needed
when successor values can be chosen nondeterministically. The direct-consequence
operator TΦ is still defined.

30 Andreas Podelski

Reachability for Guarded Command Programs. As an example, we consider the
most simple (and practically most important) temporal property, i.e. reacha-
bility, which is specified by the CTL formula EF(ap) or the modal µ-calculus
formula

∆ ≡ µXµX1µX2

X =X1 ∨X2,
X1=ap,
X2=✸X

 .

Given ∆ and a guarded command program P whose program variables form the
tuple x, we form the Constraint

Φ ≡

pX(x) ← pX1(x)
pX(x) ← pX2(x)
pX1(x)← ap

 ∪ {pX2(x)← α, γ, pX(x′) | α [] γ in P}

Following Theorem 1, we deduce that the set of states satisfying the temporal
property ∆ is the value [[pX]] of the variable pX under the least solution of Φ.
The least solution is the fixpoint µpXµpX1µpX2 TΦ(〈pX , pX1 , pX2〉)).

Equivalently, the value [[pX]] is defined by the least solution of Φ′ (defined as
µpX TΦ′(pX)), where Φ′ is a simplified version of Φ defined by

Φ′ ≡ {pX(x)← ap} ∪ {pX(x)← α, γ, pX | α [] γ in P}.

Inevitability. The greatest solution of the Constraint

Φ′′ ≡ {pX(x)← ap, α, γ, pX | α [] γ in P}
is the property defined by the CLT formula EG(ap) or the modal µ-calculus
formula νX {ap ∧ ✸X}, which is the dual of the simplest case of a liveness
property, namely inevitability.

Clark’s completion. The conjunction of all clauses p(x)← body i defining the
predicate p is, in fact, only a syntactic sugaring for the formula that expresses
the logical meaning correctly, namely the equivalence (here, the existential quan-
tification ranges over all variables but the ones in x)

p(x)↔
∨
i

∃ . . . body i.

The two forms are equialent wrt. the least solution. The greatest solution, how-
ever, refers to the second form with equivalences (the so-called Clark’s comple-
tion), or, equivalently, to the greatest fixpoint of TΦ. All intermediate solutions
are defined by intermediate fixpoints of TΦ.

5 Solved Forms for Constraints Φ

We first give a general definition of solved forms (for all cases of data structures)
that is only parametrized by a subclass of solved-form clauses. We will then

Model Checking as Constraint Solving 31

instantiate the definition by specifying concrete subclasses for the two basic
cases of data structures.

The idea behind solved-form clauses is that they form a fragment of monadic
second-order logic (over the respective data structures) for which procedures
implementing tests for emptiness and membership are available. Note that it
makes sense here to admit also procedures that are possibly non-terminating
(but hopefully practically useful); e.g., one may trade this possibility with a
termination guarantee for the constraint solving procedure.

Definition 1 (General Solved Form). Given a class of solved-form clauses,
a Constraint Φ is said to be in solved form if it is equivalent to the Constraint Φ′

that consists of all solved-form clauses of Φ.

As always, the equivalence between Constraints Φ and Φ′ refers to the solution
specified by a given fixpoint (least, greatest, . . . , possibly alternating).

Definition 2 (Solved Form (1) for Words). The class of solved-form clauses
defining the solved form of Constraints Φ for systems over words consists of all
clauses of one of the three forms:

p(x)←x = a.y, q(y),
p(x)←x = ε,
p(x)← q(x).

In Section 2, we have seen that the class of clauses defined above corresponds
to the notion of a finite automaton. (As noted in Section 4, we can write these
clauses using a generic predicate symbol p, i.e. writing p(i, x) instead of pi(x).)

Generally, we say that a class of clauses (then called automaton clauses) cor-
responds to a given class of automata if each Constraint Φ consisting of such
clauses can be translated into an equivalent automaton in the class (i.e. such that
the recognized languages and the values under the specific solution of the Con-
straint Φ coincide). This kind of correspondence holds between several notions
of automata and their ‘corresponding’ form of automaton clauses (see Figure 1).
In each case, one can define a new class of solved-form clauses.

We have usually in mind automata on finite words or finite trees, but one can
consider also infinite objects (e.g. in order to model cyclic pointer structures),
terms in algebras other than the tree algebra, certain forms of graphs etc..

The results in [13] imply the correspondence between fixpoints and accep-
tance conditions for Constraints Φ over words and trees; i.e., every alternating
fixpoint specifying a solution of a conjunction of Horn clauses corresponds to a
specific acceptance condition (on infinite runs, i.e. based on the parity condition)
for the ‘corresponding’ automaton over words resp. trees. Thus, if Φ is in solved
form, algorithms implementing emptiness and membership tests are known.

The correspondence between fixpoints and acceptance conditions for Con-
straints Φ generalizes from the domain of words or trees to any constraint do-
main. However, emptiness and membership are undecidable for (any interesting
subclass of) recursive Constraints Φ over the reals (i.e. with conjuncts of the
form p(x)← ϕ, p(x′)), even if we consider the least solution only.

32 Andreas Podelski

p(x)← x = a.y, p(y) finite automaton (on words)
p(x)← x = ε

p(x)← x = f(y, z), q(y), r(z) tree automaton
p(x)← x = a

p(x)← x = f(y, z), y = z, q(y), r(z) “equality on brother terms”

p(x)← q(x), r(x) alternation

p(x)← ¬q(x) negation

stratified “weak alternating”

. . . νpµq . . . automata with parity condition

Fig. 1. Automaton clauses and corresponding notions of automata

This leads to the following definition of non-recursive solved-form clauses.
The definition means that the solution of a Constraint in solved form (2) is
essentially presented as a finite union of infinite sets of states, these sets being
denoted by constraints ϕ (whose free variables form the tuple x = 〈x1, . . . , xn〉).
Definition 3 (Solved Form (2), for Reals). The class of solved-form clauses
defining the solved form of Constraints Φ for systems over reals consists of all
clauses of the form (where ϕ is a constraint over reals)

p(x)← ϕ.

Definition 3 is parametric wrt. a given notion of constraints ϕ; it can be reformu-
lated for other domains such as the integers or the rationals. The free variables
of the constraints ϕ correspond to the program variables; some program vari-
ables (the control variables) range over a finite domain of program locations; we
can choose that domain as a finite subset of the constraint domain. We have
in mind linear or non-linear arithmetic constraints over the reals or over the
integers, as they are used in model checkers for network protocols with counters,
timed, linear-hybrid or hybrid systems, etc.. The class of constraints is closed
under conjunction and existential quantification; it may or may not be closed
under disjunction. It comes with a test of satisfiability (“|= ∃x ϕ(x) ?”), entail-
ment (“|= ϕ(x) → ϕ′(x)?”) and satisfaction for a given tuple of values of the
constraint domain (“|= ϕ(v1, . . . , vn) ?”).

6 Solving Constraints Φ

A Constraint solving procedure can be defined generically wrt. to a given set of
inference rules: iteratively add direct consequences as conjuncts; start from the
Constraint Φ constructed for the model checking problem (viz. for the program P
and the temporal formula ∆); terminate when no more new consequences can
be inferred. It is part of the inference system to specify whether ‘new’ refers to

Model Checking as Constraint Solving 33

the semantics of all of Φ or the semantics or the syntax of one of the conjuncts
of Φ.

Thus, a model checking procedure is specified by a set of inference rules.
These define transformations of constraints into equivalent constraints (as always
in this text, equivalence refers to the intended solutions).

The soundness of the model checking procedure holds by definition. The
completeness (the solution of the subpart Φ′ contains already the solution of the
solved form of Φ) is trivial for the inference rule (3) given below for systems over
reals. It requires more intricate reasoning in the case of the inference rule (2) for
pushdown systems.

A possible alternative to ensure completeness is to check whether the solved-
form clauses subsume all the other ones. To our knowledge, this alternative has
not yet been explored in practical systems.

In the remainder of this section we show that one can express the main ideas
of the model checking procedures for different examples of infinite-state systems
by means of inference rules (the parameter of our generic procedure).

In Section 3, we have seen the set of inference rules (2) for pushdown systems.
In the case of more general temporal properties (e.g. expressed with nested
fixpoints), the inference rules must be extended to memorize the priority of the
fixpoint operator for the ‘eliminated’ predicate q; this memorization technique
is described in [13]. The solved form is here an alternating Rabin automaton
with ε-transitions. Applying known results for those automata, we obtain the
complexity result of [28] in a direct way.

In passing, we observe that the model checking problem for the subclass of
finite-state automata viewed as infinite-state systems (with pop operations only)
has the same complexity.

Real-Valued Systems. The set of inference rules that accounts for the symbolic
model checking procedure for system over reals or integers (based on backward
analysis) consists of the following rule. (Forward analysis is accounted for differ-
ently; see e.g. [19,16]).

p(x)← α, γ, p(x′)
p(x)← ϕ

}
� p(x)← ϕ[x′/x], α, γ (3)

The application of the inference rule includes the test of satisfiability of the
constraint ϕ[x′/x] ∧ α ∧ γ. Note our conventions about notation: conjuncts in
clauses are separated by commas; the constraint ϕ[x′/x] is obtained by re-
naming the tuple x (of free variables of ϕ) to x′ (recall that the free vari-
ables in the guard constraint α and the action constraint γ form the tuples x
and 〈x1, . . . , xn, x

′
1, . . . , x

′
n〉 , respectively).

Meta-Transitions. The ultimate goal of a constraint solving procedure is to
add enough ‘interesting’ conjuncts, i.e. conjuncts forming the part Φ′ which is
relevant according to the definition of a solved form (i.e., the part to which
the emptiness or memberships tests refer). Other conjuncts may be inferred and

34 Andreas Podelski

added, however, in order to accelerate the inference of ‘interesting’ conjuncts. To
give a simple example, the guarded command z = #, x ≥ 0 [] z′ = #, x′ = x+ 1
(an increment loop for the integer variable x at the program location #) corre-
sponds to the clause

pX(z, x)← z = #, x ≥ 0, z′ = #, x′ = x+ 1, pX(z, x′). (4)

This clause entails the clause (where the variable k is implicitely existentially
quantified in x′ = x+ k)

pX(z, x)← z = #, x ≥ 0, z′ = #, x′ = x+ k, pX(z, x′). (5)

Boigelot [2] uses Presburger arithmetic in order to derive guarded commands
called meta-transitions corresponding to clauses such as (5). One application of
the inference rule (3) to the clause (5) yields a clause that subsumes all clauses
obtained by its application to the clause in (4) in an infinite iteration.

Queue Systems. A system with one queue is similar to a pushdown system in
that a dequeue operation corresponds to a pop operation and, hence, can be
translated to a clause of the same form (for better legibility, we return to our
notation of Section 3). A guarded command specifying an enqueue operation,
however, is translated to a clause with the constraint x.a = y expressing the
concatenation to the right of the word x modeling the queue contents.

p(x)← x = a.y, q(y) (dequeue).
p(x)← x.a = y, q(y) (enqueue).

Model checking for systems with queues is a topic of ongoing research; see
e.g. [2,3,7]. One possible (quite insufficient) inference rule is

p(x)← x.a = y, q(y)
q(x)← x = a.y, r(y)
r(x)← x = ε

 � p(x)← x = ε.

This rule can be generalized to any set of clauses specifying a finite automaton
that accepts only words ending with the letter a (here, q′1, . . . , q

′
n are new).

p(x)← x.a = y, q1(y)

q1(x)← x = b1.y, q2(y)
...

qn−1(x)← x = bn−1.y, qn(y)
qn(x)← x = a.y, r(y)

r(x)← x = ε

�

p(x)← x = y, q′1(y)

q′1(x)← x = b1.y, q
′
2(y)

...
q′n−1(x)← x = bn−1.y, q

′
n(y)

q′n(x)← x = ε

This schematic inference rule is used by Boigelot and Godefroid (see [2,3]).

Model Checking as Constraint Solving 35

7 Related Work and Conclusion

Since a fixpoint equation is a constraint over sets of states, the existence of
a characterization of a temporal property by a second-order Constraint is not
surprising. Our characterization (in Theorem 1) using clausal syntax with first-
order constraints seems to be the first one, however, that is useful for symbolic
model checking (where ‘symbolic’ refers to first-order constraints) for a very
general class of (nondeterministic) infinite-state systems. The characterization
holds for the full modal µ-calculus and for arbitrary guarded command programs
and is thus more general than in related approaches [1,15,14,16,19,18,25] (see also
Footnote 3). In the case of finite-state systems, Φ is the alternating automaton
constructed by Kupfermann, Vardi and Wolper [1] in a logical formulation; we
generalize that construction and its extensions for pushdown systems [18] and
for timed automata [19].

We have formalized model checking as a generic constraint-solving procedure
that is parametrized by logical inference rules. This allows us to classify the two
basic cases by the solved form, and to express the main ideas of model checking
procedures concisely.

Our formalization provides a formal support for proving a model checking
procedure correct (by checking soundness and completeness of the inference
rules, possibly employing proof-theoretic (as opposed to graph-theoretic) tech-
niques) and for analyzing its complexity (e.g. by writing the inference rules
as bottom-up logic programs and applying syntactic criteria as suggested by
McAllester [23]; see e.g. [17]).

Regarding future work, we note that the emptiness test or the test whether
an initial state 〈v1, . . . , vn〉 is a member of [[pX]] (in the notation of Theorem 1)
can be implemented by applying a refutation procedure to the conjunction of the
formula ¬∃xpX(x) (or of the formula ¬pX(〈v1, . . . , vn〉), respectively) with the
Constraint Φ. This is related to the procedures e.g. in [14,22,24,27,25]. Hybrid
forms combining that procedure and the one given in Section 6 and the relation
to ordered resolution have to be explored.

Acknowledgement

We thank Harald Ganzinger for discussions and for his suggestion of a general
solved form, and Giorgio Delzanno and Jean-Marc Talbot for comments.

References

1. O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In D. Dill, editor, CAV 94: Computer-aided Ver-
ification, LNCS, pages 142–155. Springer, 1994. 29, 35

2. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis,
University of Liège, May 1998. 22, 34

36 Andreas Podelski

3. B. Boigelot and P. Godefroid. Symbolic verification of communications protocols
with infinite state spaces using QDDs. In Proceedings of CAV’96, volume 1102 of
LNCS, Berlin, 1996. Springer. 22, 34

4. B. Boigelot and P. Wolper. Symbolic Verification with Periodic Sets. In D. L. Dill,
editor, Proceedings of CAV’94: Computer-aided Verification, volume 818 of LNCS,
pages 55–67. Springer, 1994. 22

5. B. Boigelot and P. Wolper. Verifying Systems with Infinite but Regular State
Space. In A. J. Hu and M. Y. Vardi, editors, Proceedings of CAV’98: Computer-
aided Verification, volume 1427 of LNCS, pages 88–97. Springer, 1998. 22

6. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Au-
tomata: Application to Model Checking. In A. W. Mazurkiewicz and J. Winkowski,
editors, CONCUR ’97: Concurrency Theory,, volume 1243 of LNCS, pages 135–
150. Springer, 1997. 22, 25

7. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configuarations. Theoretical Computer Science,
221:211–250, 1999. 22, 34

8. T. Bultan, R. Gerber, and W. Pugh. Symbolic Model Checking of Infinite-
state Systems using Presburger Arithmetics. In O. Grumberg, editor, Proceedings
of CAV’97: Computer-aided Verification, volume 1254 of LNCS, pages 400–411.
Springer, 1997. 22

9. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures.
In S. S. J. Bergstra, A. Ponse, editor, Handbook of Process Algebra. Elsevier Science
Publisher B.V., 1999. to appear. 22

10. O. Burkart and B. Steffen. Composition, decomposition and model checking op-
timal of pushdown processes. Nordic Journal of Computing, 2(2):89–125, 1995.
22

11. O. Burkart and B. Steffen. Model–checking the full modal mu–calculus for infinite
sequential processes. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
editors, International Colloquium on Automata, Languages, and Programming
(ICALP’97), volume 1256 of LNCS, pages 419–429. Springer, 1997. 22

12. W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining Constraint Solving
and Symbolic Model Checking for a Class of Systems with Non-linear Constraints.
In O. Grumberg, editor, Proceedings of the Ninth Conference on Computer Aided
Verification (CAV’97), volume 1254 of LNCS, pages 316–327. Springer, 1997. 22

13. W. Charatonik, D. McAllester, D. Niwinski, A. Podelski, and I. Walukiewicz. The
Horn mu-calculus. In V. Pratt, editor, Proceedings of LICS’98: Logic in Computer
Science, pages 58–69. IEEE Computer Society Press, 1998. 29, 31, 33

14. W. Charatonik, S. Mukhopadhyay, and A. Podelski. The Sµ-calculus. Submitted
to this conference. 29, 35

15. W. Charatonik and A. Podelski. Set-based analysis of reactive infinite-state sys-
tems. In B. Steffen, editor, Proceedings of TACAS’98: Tools and Algorithms for
the Construction and Analysis of Systems, volume 1384 of LNCS, pages 358–375.
Springer, 1998. 22, 29, 35

16. G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, editor,
Proceedings of TACAS’99: Tools and Algorithms for the Construction and Analysis
of Systems, volume 1579 of LNCS, pages 223–239. Springer, 1999. 22, 29, 33, 35

17. J. Esparza and A. Podelski. Efficient algorithms for pre� and post� on interproce-
dural parallel flow graphs. In T. Reps, editor, Proceedings of POPL’00: Principles
of Programming Languages, pages 1–11. IEEE, ACM Press, January 2000. 22, 35

Model Checking as Constraint Solving 37

18. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Electronic Notes in Theoretical Computer Science 9,
www.elsevier.nl/locate/entcs, 13 pages, 1997. 22, 25, 35

19. L. Fribourg and J. Richardson. Symbolic Verification with Gap-order Constraints.
Technical Report LIENS-93-3, Laboratoire d’Informatique, Ecole Normale Su-
perieure, Paris, 1996. 33, 35

20. S. Graf and H. Saidi. Verifying invariants using theorem proving. In Proceedings
of CAV’96: Computer-aided Verification, volume 1102 of LNCS, pages 196–207.
Springer, 1996. 22

21. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a Model Checker for
Hybrid Systems. In O. Grumberg, editor, Proceedings of CAV’97: Computer Aided
Verification, volume 1254 of LNCS, pages 460–463. Springer, 1997. 22

22. K. G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model check-
ing of real-time systems. In Proceedings of the 16th Annual Real-time Systems
Symposium, pages 76–87. IEEE Computer Society Press, 1995. 22, 35

23. D. McAllester. On the complexity analysis of static analyses. In A. Cortesi and
G. Filé, editors, SAS’99: Static Analysis Symposium, volume 1694 of LNCS, pages
312–329. Springer, 1999. 27, 35

24. S. Mukhopadhyay and A. Podelski. Model checking in Uppaal and query evalua-
tion. In preparation. 35

25. Y. S. Ramakrishnan, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient Model Checking using Tabled Resolution. In
O. Grumberg, editor, Proceedings of CAV’97: Computer-aided Verification, volume
1254 of LNCS, pages 143–154. Springer, 1997. 29, 35

26. T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A Comparison of Presburger
Engines for EFSM Reachability. In A. J. Hu and M. Y. Vardi, editors, Proceedings
of CAV’98: Computer-aided Verification, volume 1427 of LNCS, pages 280–292.
Springer, 1998. 22

27. H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive Model Checking. In R. Alur
and T. Henzinger, editors, Proceedings of CAV’96: Computer-aided Verification,
volume 1102 of LNCS, pages 208–219. Springer, 1996. 22, 35

28. I. Walukiewicz. Pushdown processes: Games and model checking. In Proceed-
ings of CAV’96: Computer-aided Verification, volume 1102 of LNCS, pages 62–74.
Springer, 1996. 22, 33

Abstract Interpretation Based Semantics of

Sequent Calculi

Gianluca Amato and Giorgio Levi

Università di Pisa, Dipartimento di Informatica
corso Italia 40, 56125 Pisa, Italy
{amato,levi}@di.unipi.it

Abstract. In the field of logic languages, we try to reconcile the proof
theoretic tradition, characterized by the concept of uniform proof, with
the classic approach based on fixpoint semantics. Hence, we propose a
treatment of sequent calculi similar in spirit to the treatment of Horn
clauses in logic programming. We have three different semantic styles
(operational, declarative, fixpoint) that agree on the set of all the proofs
for a given calculus. Following the guideline of abstract interpretation,
it is possible to define abstractions of the concrete semantics, which
model well known observables such as correct answers or groundness.
This should simplify the process of extending important results obtained
in the case of positive logic programs to the new logic languages de-
veloped by proof theoretic methods. As an example of application, we
present a top-down static analyzer for properties of groundness which
works for full intuitionistic first order logic.

1 Introduction

One of the greatest benefits of logic programming, as presented in [14], is that
it is based upon the notion of executable specifications. The text of a logic pro-
gram is endowed with both an operational (algorithmic) interpretation and an
independent mathematical meaning which agree each other in several ways. The
problem is that operational expressiveness (intended as the capability of direct-
ing the flow of execution of a program) tends to obscure the declarative meaning.
Research in logic programming strives to find a good balance between these op-
posite needs.

Uniform proofs [17] have widely been accepted as one of the main tools
for approaching the problem and to distinguish between logic without a clear
computational flavor and logic programming languages. However, that of uniform
proofs being a concept heavily based on proof theory, researches conducted along
this line have always been quite far from the traditional approach based on
fixpoint semantics. In turn, this latter tradition has brought up several important
1 The proofs of the properties which appear in the text are available at the the following
URL: http://www.di.unipi.it/~amato/papers.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 38–57, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Abstract Interpretation Based Semantics of Sequent Calculi 39

results concerning the effective utilization of Horn clauses as a real programming
language. Among the others, problems such as compositionality of semantics [7],
modularity [5,6], static analysis [13], debugging [8], have been tackled in this
setting. Adapting these results to the new logic languages developed via the
proof theoretic approach, such as λProlog [19] or LinLog [3], would probably
require at least two things:

– provide a fixpoint semantics for these new languages;
– generalize a great number of concepts whose definition is too much tied to

the case of Horn clauses.

This paper proposes a semantic framework which can be useful in such an ef-
fort. The main idea is to recognize proofs in the sequent calculi as the general
counterpart of SLD resolutions for positive logic programs. Thus, the three well-
known semantics (operational, declarative and fixpoint) for Horn clause logic
can be reformulated within this general setting and directly applied to all the
logic languages based on sequent calculi.

Moreover, these semantics are generalized to be parametric w.r.t. a pre-
interpretation, which is essentially a choice of semantic domains and intended
meanings for the inference rules. When a pre-interpretation is given, we have
fixed a particular property of the proofs we want to focus our attention on
(correct answers, resultants, groundness). Hence, classical abstractions such as
correct answers or resultants, used in the semantic studies of logic programs,
and abstractions for static analysis like groundness, can be retrieved in terms of
properties of proofs. Expressed in such a way, rather than referring to a compu-
tational procedure like SLD resolution, they are more easily extendable to other
logic languages.

It turns out that the most convenient way of defining pre-interpretations is
through abstract interpretation theory [11]. In this way, we provide a semantic
framework for the new proof-theoretic based logic languages to which most of
the studies we have for positive logic programs can be easily adapted.

The paper is much inspired by [7]. After some preliminaries, we introduce the
three semantic styles for sequent calculi, with respect to a particular concrete pre-
interpretation. It is shown that the three semantics coincide on the set of proofs
for a given calculus. Later, using techniques of abstract interpretation theory,
the concept of observable is introduced, as an abstraction of a set of proofs. This
gives corresponding notions of abstract semantics for sequent calculi. In general,
the properties of the abstract semantics will depend on completeness properties
of the abstract optimal semantic operators. For some observables, those that
separate sequents, there is a strict correspondence between abstract semantics
and semantics in a particular pre-interpretation induced by the observable.

Then, some examples of observables are provided: success sets, correct an-
swers, groundness. All of them are presented in the case of full first-order intu-
itionistic logic or in a yet more general setting. This gives an idea of the process
of importing well know observables for positive logic programs to broader frag-
ments of logic. This should be the first step towards a more detailed semantic
analysis of these extended languages. In particular, as an example of application

40 Gianluca Amato and Giorgio Levi

of the proposed methodology, a top-down static interpreter for groundness anal-
ysis of intuitionistic logic has been implemented in PROLOG and it is presented
in summary. Finally, possible future developments are discussed.

2 Proofs and Proof Schemas

2.1 Basic Definitions

Logics can be presented in several different ways: we will stick to a Gentzen-like
proof-theoretic formulation. Let us fix two languages D and G. We call clauses
the elements of D and goals the elements of G. If Γ and ∆ are two sequences of
clauses and goals respectively, Γ � ∆ is a sequent. If ∆ is a sequence of length
not greater than one, we have an intuitionistic sequent. In the following, we will
use the letter S and its variants to denote sequents.

A proof schema is a rooted ordered tree with sequents as nodes. Given a proof
schema p, we call hyp(p) (hypotheses) the sequence of leaves of p taken from a
pre-order visit of p and we write th(p) (theorem) for the root of p. When we
want to state that p is a proof schema with hyp(p) = S1, . . . , Sn and th(p) = S,
we write

p : S1, . . . , Sn � S . (1)

Note that a schema of height zero (when the root is also the only hypothesis) and
a schema of height one with no hypotheses are different objects. If S is a sequent,
a proof schema of S with height zero is the empty proof schema for S, and is
denoted by εS . This is because we assume that leaves are different from nodes
with out-degree zero. The former correspond to hypotheses, while the latter are
sequents introduced by an axiom.

Example 1. If D and G are first order languages with unary predicate symbols p
and r, the following is a proof schema

p(x)� r(x) ·� r(y)

·� r(x) ∧ r(y) ·� ∃z.p(z)
∀z.p(z)� ∀w.r(w)

(2)

Note that it is not a proof in any of the standard logical systems. The following
are respectively a proof schema p : · � p(x)� p(x) and the empty proof schema
p′ : q(x)� p(x) � q(x)� p(x) = εq(x)�p(x)

p : p(x)� p(x) p′ : q(x)� p(x) (3)

according to our convention on nodes with out-degree zero. �	
Now, we fix a set R of proof schemas of height one. We call inference rules

the elements of R. A proof schema p, which is obtained by gluing together the
empty proof schemas and the inference rules, is called proof. A proof with no
hypothesis is said to be final. A sequent S is provable if there is a final proof
rooted at S. Finally, we call logic a triple 〈D,G,R〉.

Abstract Interpretation Based Semantics of Sequent Calculi 41

Example 2. Assume R is the set of inference rules for first order logic. Then p
and p′ in the previous example are proofs. In particular, p is a final proof. Another
proof, a bit more involved, is the following

Γ � ∀x.p(x)
Γ � p(w)

Γ � ∃w.p(w)
(4)

where Γ is a list of sequents. �	
In the following, we will often work with the logic Lhc of Horn clauses and

with the first order intuitionistic logic Li. However, with the exception of Sect. 5,
all the framework can be directly applied to a generic logic system. Just note
that what we traditionally call inference rule, i.e. something like

Γ � G1 Γ � G2

Γ � G1 ∧G2
,

should be viewed as a collection of different inference rules, one for each instance
of G1, G2 and Γ .

2.2 Semantic Operators

Given a sequent S, we denote by SchS the set of all the proof schemas rooted
at S. For each p ∈ SchS of the form

p : S1, . . . , Sn � S , (5)

we have a corresponding semantic operator p : SchS1×· · ·×SchSn → SchS which
works by gluing proof schemas of the input sequents together with p, to obtain
a new proof schema of the output sequent S. If Sch is the set of all the proof
schemas, p : S1, . . . , Sn � S ∈ Sch and Xi ⊆ Sch for each i, we define a collecting
variant of the semantic operator p, defined as

p(X1, . . . , Xn) = {p(p1, . . . , pn) | ∀i. pi ∈ Xi ∩ SchSi} . (6)

We will write p(X) as a short form for p(X, . . . ,X) with n identical copies of X
as input arguments.

Working with a semantic operator for each proof schema is quite uncom-
fortable, especially when reasoning in terms of abstractions. We can actually
resort to a unique gluing operator. Given X1 and X2 subsets of Sch, we denote
by X1 3X2 the set

X1 3X2 =
⋃

p∈X1

p(X2) . (7)

In other words, X13X2 is the result of gluing together each proof schema in X1

with all the “compatible” proof schemas in X2. It turns out that 3 is (roughly)
the counterpart for sequent calculi of the �� operator for SLD derivations defined
in [9].

42 Gianluca Amato and Giorgio Levi

Example 3. Consider the proof p in Lhc given by

∀x.p(x)� p(a) ∀x.r(x) � r(b)

∀x.p(x), ∀x.r(x) � p(a) ∧ r(b)
∀x.p(x) ∧ ∀x.r(x) � p(a) ∧ r(b)

(8)

and the proofs p′

p(a)� p(a)

∀x.p(x)� p(a)
(9)

and p′′ = ε∀x.r(x)�r(b). Then, the proof p(p′, p′′) is

p(a)� p(a)

∀x.p(x)� p(a) ∀x.r(x)� r(b)

∀x.p(x), ∀x.r(x) � p(a) ∧ r(b)
∀x.p(x) ∧ ∀x.r(x) � p(a) ∧ r(b)

(10)

In particular, note that gluing with empty proofs has no effects. �	

3 The Concrete Semantics

Given a logic L = 〈D,G,R〉, we can introduce three different styles of semantics,
similar in spirit to the operational, declarative and fixpoint semantics of classic
logic programming. We follow the idea underlying [9] of having a common set
of semantic operators for both the top-down (operational) and the bottom-up
(fixpoint) styles.

3.1 Declarative Semantics

The fundamental idea is that a logic can be viewed as a signature for Σ-algebras,
where sequents correspond to sorts and inference rules to term symbols. A Σ-
algebra gives a choice of a semantic domain for each sequent and of a semantic
function for each inference rule. Roughly, a model for a logic in a given Σ-algebra
should assign, to each sequent, an element of its corresponding semantic domain,
in such a way that this assignment is well-behaved w.r.t. the inference rules.

To be more precise, we call pre-interpretation the choice of a nonempty or-
dered set I(Γ � ∆) for each sequent and of a monotonic function I(r) for each
inference rule r, where if hyp(r) = S1, . . . , Sn and th(r) = S,

I(r) = I(S1)× · · · × I(Sn)→ I(S) . (11)

Therefore, the concept of pre-interpretation is the same of ordered Σ-algebras
as defined in [18].

Abstract Interpretation Based Semantics of Sequent Calculi 43

Given a logic L with a pre-interpretation I, an interpretation is a choice of
an element JSK ∈ I(S) for each sequent S. An interpretation is a model when,
for each inference rule

r : S1, . . . , Sn � S , (12)

the following relation holds

I(r)(JS1K , . . . , JSnK) � JSK . (13)

The notion of pre-interpretation gives us a great flexibility. In [1] it is shown how
to obtain well known semantics such as correct answers or Heyting semantics for
a generic sequent calculus.

When we talk of programming languages, the idea is that a program P cor-
responds to a sequence of clauses. Given a goal G and a model J K, the corre-
sponding semantics of G in the program P is given by JP � GK.
Example 4. In the logic Lhc, consider the pre-interpretation I given by

– I(S) = {true, false} with false � true;
– if r ∈ R is the inference rule r : S1, . . . , Sn � S, then I(r) is the logical

conjunction of the n input values. If r has no hypothesis, then I(r) = true.

If P is a definite logic program, i.e. a set of definite clauses, and J K is an inter-
pretation, the set

IP =
{
A |

r
�∀P � A

z
= true and A is a ground atomic goal

}
(14)

is a Herbrand interpretation, where �∀P is the universal closure of the clauses
in P . Moreover, if J K is a model, IP is a Herbrand model.

Note that, given a PROLOG clause G :- B, the corresponding clause in Lhc

is the universally quantified formula �∀.(B ⊃ G). As a result, a query G for a
definite program becomes ∃.G in Lhc. Actually, the sequent

∀x.(p(x) ⊃ q(x)), ∀x.p(x)� ∃y.q(y) (15)

has an obvious final proof, but

p(x) ⊃ q(x), p(x)� q(y) (16)

is not provable since free variables are never instantiated in the sequent calculus
for Lhc. �	

A major drawback of this approach is that the process of defining a pre-
interpretation is quite arbitrary, especially for what concerns the inference rules.
In the following, we try to overcome this problem by just sticking to a specific
concrete pre-interpretation and deriving all the others by abstraction functions,
according to the theory of abstract interpretation.

Given a logic L, consider the syntactic pre-interpretation IL given by

44 Gianluca Amato and Giorgio Levi

– IL(S) = 〈P(SchS),⊆〉 for each sequent S;
– IL(r) is the semantic function corresponding to r ∈ R, as in (6).

Interpretations for IL are called syntactical interpretations. In the following,
these will be denoted by subsets of Sch. The convention does not rise any ambi-
guities, since if S1 �= S2, then SchS1 ∩SchS2 = ∅. A syntactical model, therefore,
is a set of proof schemas closed under application of inference rules. We denote
by Int the set of all the syntactical interpretations, which is a complete lattice
under subset ordering. In the remaining of this section, when we talk of inter-
pretations or models we always refer to the syntactical ones, unless otherwise
stated.

It is possible to concisely express the condition of a syntactical interpreta-
tion I being a model using the glue operator. The property to be satisfied is

R3 I ⊆ I . (17)

Models form a complete lattice under the same ordering of the interpretations.
However, it is not a sublattice, since the join operator and the bottom element
differ. In particular, the bottom element of the lattice of models is what we call
declarative semantics of L and we denote it by D(L).

D(L) turns out to be the set of final proofs of L. Hence, the declarative seman-
tics precisely captures all the terminating computations. For a valid treatment
of compositionality, we also need information about partial computations [5]. If ε
is the set of all the empty proof schemas, we call complete declarative semantics
of L, and we denote it by Dc(L), the least model greater then ε. It is possible to
prove that Dc(L) is actually the set of all the proofs of L.

3.2 Top-Down and Bottom-Up Semantics

The definition of the declarative semantics is non-constructive. We now present
a bottom-up construction of the least model using an operator similar to the
immediate consequence operator TP of logic programming. The TL operator,
mapping interpretations to interpretations, is defined as follows

TL(I) = I ∪ (R3 I) . (18)

We can prove that all the results which hold for the TP operator apply to TL
as well. In particular an interpretation I is a model iff it is a fixpoint of TL.
Moreover TL is continuous, hence TL ↑ ω is its least fixpoint. We call TL ↑ ω
the fixpoint semantics of L. It trivially follows that the fixpoint and declara-
tive semantics do coincide. Analogously to the complete declarative semantics,
we can define a complete fixpoint semantics as Tω

L (ε). As in the previous case,
Tω
L (ε) = Dc(L).
Note that inference rules are essentially treated like Horn clauses for a pred-

icate is a proof/1. For example, an inference rule like

Γ � ϕ Γ � ψ

Γ � ϕ ∧ ψ (19)

Abstract Interpretation Based Semantics of Sequent Calculi 45

corresponds to the Horn clause

is a proof(der(Γ � ϕ ∧ ψ, [P1, P2])) : −
P1 = der(Γ � ϕ,), P2 = der(Γ � ψ,),
is a proof(P1), is a proof(P2)

(20)

where der(Sequent ,List of Proof Schemas) is a coding for proof schemas. In
general, we have an infinite set of ground Horn clauses, since every instance
of (19) counts as a different inference rule and variables in the logic L are coded
as ground objects at the Horn clause level. These properties play a fundamental
role when we try to modify the set of inference rules to obtain new derived logic
systems, such as uniform logics [1].

The fixpoint construction is essentially a bottom-up process. Real inter-
preters, on the contrary, follow a top-down approach, since it is generally more
efficient. We consider here a transition system (Sch, �−→) that emulates such a
behavior. Assume p : S1, . . . , Sn � S is a proof schema and r : S′

1, . . . , S
′
m � Si is

an inference rule. We can define a new proof schema p′ = p(εS1 , . . . , r, . . . , εSn)
just replacing Si in the hypotheses of p with the inference rule r. We write
p �−→p′ when the above conditions are satisfied. In general, it is possible to
replace more than one hypothesis, hence we have the following transition rule

p �−→p(r1, . . . , rn) when
{
p : S1, . . . , Sn � S,
ri ∈ R ∪ ε and th(ri) = Si for each 1 ≤ i ≤ n.

(21)

We call complete operational semantics of L the interpretation

Oc(L) = {p ∈ Sch | ∃S. εS �−→� p} . (22)

It is possible to give a collecting variant of the operational semantics con-
struction, via a fixpoint operator UL on interpretations which uses the gluing
semantic operator:

UL(I) = I 3 (R∪ ε) . (23)

The idea is that UL(I) contains all the proof schemas derived by I with a step
of the transition system, i.e.

UL(I) = {p′ | ∃p ∈ I. p �−→p′} . (24)

Actually, we can prove that Uω
L (ε) = Oc(L). Moreover, we have Uω

L (ε) = Dc(L).
Hence, all the different styles of semantics do coincide.

From the implementation viewpoint, the great advantage of the top-down
operational semantic w.r.t. the bottom-up fixpoint one is that we do not need to
compute the entire semantics if we are only interested in part of it. An interpreter
for a logic language typically works with a program P and a goal G, trying to
obtain the proofs of the sequent P � G. The semantics of every other sequent in
the logic is computed only if it is needed for computing the semantics of P � G.

46 Gianluca Amato and Giorgio Levi

We call query whatever sequent in the logic L. According to this definition, a
query is a pair made of a program and a goal. We define the operational behavior
of L as a function B(L) : Query → Int such that

B(L)Q = {p ∈ Sch | εQ �−→� p} . (25)

In other words, B(L)Q is the set of proofs for the sequent Q in the logic L. The
fixpoint operator UL can be used to compute B(L) since it is B(L)Q = Uω

L ({εQ}).
There is an immediate result of compositionality for B. For each sequent S,

consider the set R = {ri}i∈I of all the inference rules rooted at S, such that ri :
Si,1, . . . , Si,mi � S. We have

B(L)S =
⋃
i∈I

ri
(
B(L)Si,1 , . . . ,B(L)Si,mi

)
. (26)

Unfortunately, this result is not what we desire in most of the cases, as shown
by the following example.

Example 5. When we work in Lhc, the above compositionality result gives us
the following property:

B(Lhc)P�G1∧G2 = B(Lhc)P�G1 ∧B(Lhc)P�G2 . (27)

However, the classical result of and-compositionality for definite logic programs
(w.r.t. correct answers or other observables) says that the semantics of G1 ∧ G2
can be derived from the semantics of G1 and G2. Since goals in definite programs
become existentially quantified in our setting, we would like a relationship be-
tween P � �∃.G1 ∧G2, P � �∃.G1 and P � �∃.G2. Unfortunately, this cannot be
derived directly from (26). �	

Note that UL works with proofs with hypotheses. For this reason, it is not
possible to retrieve only terminated computations using this fixpoint operator.
This is not a flaw in the definition of the operator, but an intrinsic limit of all
the kinds of top-down semantic refinements.

4 Abstraction Framework

The previous semantics are by far too detailed for most of the needs. However,
it is now possible to use the techniques of abstract interpretation [11] to de-
velop a range of abstract semantics for sequent calculi. We begin by defining the
fundamental concept of observable.

Definition 1 (Observable). An observable is a triple (D,α, γ) where D (the
abstract domain) is an ordered set w.r.t. the relation � and α : Int → D (the
abstraction function) is a monotonic function with γ as right adjoint.

Abstract Interpretation Based Semantics of Sequent Calculi 47

Since α and γ in (D,α, γ) uniquely determine each other [12], we will often
refer to an observable just by the abstraction function.

An abstract interpretation for a logic L is an element of the abstract do-
main D. Given an interpretation I, it is possible to define an abstract counter-
part α(I). Hence, it is possible to define abstract denotational, operational and
fixpoint semantics as the abstractions of the corresponding concrete semantics.
The question is whether it is possible to derive such abstract semantics working
entirely in the abstract domain.

Example 6. Given a logic L, take as abstract domain Ds the powerset of all the
sequents with the standard ordering, and as abstraction function the following

αs(I) = {S | ∃p ∈ I. th(p) = S and hyp(S) = ∅} . (28)

The right adjoint of α is the function

γs(A) = {p | hyp(S) �= ∅ or th(p) ∈ A} . (29)

We call (Ds, αs, γs) the observable of success sets, since it abstracts a set of
proofs in the set of the theorems they prove. �	

4.1 Abstract Semantic Operators

The only two operators we use in the specification of the concrete semantics are
union and gluing. Once we define an abstraction, we have an abstract operator∪α

correct w.r.t. ∪, defined as

⋃
α
{Aj | j ∈ J} = α

(⋃
{γ(Aj) | j ∈ J}

)
. (30)

In general, ∪α is the least upper bound of those elements in D which are the
image of some interpretation I. Moreover, it is a complete operator, i.e.

⋃
α
{α(Ij) | j ∈ J} = α

(⋃
{Ij | j ∈ J}

)
for each collection {Ij}j∈J of interpretations.

We could define an abstract operator 3α correct w.r.t. 3 as done for ∪α

in (30). However, 3 is never used in all its generality. Hence we prefer to consider
the optimal abstract counterparts of the two unary operators I �→ R3 I and
I �→I 3 (R ∪ ε). We define

R3α A = α(R3 γ(A)) , (31)
A3α (R∪ ε) = α(γ(A)3 (R∪ ε)) . (32)

When either R 3α A or A 3α (R ∪ ε) is complete, we say that the observable
is respectively denotational or operational, following the terminology introduced
in [2]. If, for each inference rule r ∈ R, there is an abstract operator r̃ correct

48 Gianluca Amato and Giorgio Levi

w.r.t. r as defined in (6), a correct abstract operator for R 3 A can be defined
as

R 3̃A =
⋃

α
r∈R

r̃(A) . (33)

Moreover, if all the r̃’s are optimal or complete, the same holds for (33).

Example 7. With respect to the observable αs, consider an inference rule r :
S1, . . . , Sn � S. The corresponding optimal abstract operator rαs is given by

rαs(X1, . . . , Xn) =

{
{S} if Si ∈ Xi for each i = 1 . . . n
∅ otherwise

(34)

and it can be proved to be complete. Then, it turns out that the observable
of success sets is denotational. An observable which is both operational and
denotational is that of plain resultants, defined as

αr(I) = {〈S, (S1, . . . , Sn)〉 | ∃p ∈ I. p : S1, . . . , Sn � S} . (35)

with the obvious ordering by subsets. Note that what is generally called resultant
is the reduced product [12] of αr and the observable of computed answers. �	

4.2 Pre-interpretations and Observables

By means of the observables we want to recover the great generality given by
the use of pre-interpretations, but in a more controlled way, in order to simplify
the definition and comparison of different semantics.

Given a logic L and an observable (D,α, γ), we have a corresponding pre-
interpretation Iα given by

– Iα(S) = 〈{x ∈ D | x � α(SchS)},�〉, where � is the ordering for D;
– Iα(r) = α ◦ r ◦ γ.

The idea is that, with the use of pre-interpretations, we break an abstract in-
terpretation in pieces, each one relative to a single sequent. If A is an abstract
interpretation, a corresponding interpretation J K w.r.t. Iα is

JSKα = A ∩α α(SchS) , (36)

for each sequent S, where ∩α is the optimal abstract operator which is correct
w.r.t. ∩. On the other side, given J Kα, we have the abstract interpretation

A =
⋃

α
{JSKα | S is a sequent} . (37)

However, in general, (36) and (37) do not form a bijection. Actually, an inter-
pretation w.r.t. Iα always keeps separate the semantics for different sequents,
while the same does not happen for abstract interpretations.

Abstract Interpretation Based Semantics of Sequent Calculi 49

Example 8. Consider the observable (D,α, γ) where D = {true, false}, with
false � true and

α(I) =

{
true if ∃p ∈ I. hyp(p) = ∅
false otherwise

(38)

The corresponding pre-interpretation Iα is the same as the one defined in Ex-
ample 4. Given the interpretation J K such that

q
S̄
y
= true for a given sequent S̄

and JSK = false for each S �= S̄, the composition of (36) and (37) is the inter-
pretation J K′ such that

JSK′ = (⋃
α
{JS′K | S′ is a sequent}

)
∩α true = true (39)

for each sequent S. �	
Given an observable α, we say that it separates sequents when

– γ(α(SchS)) = SchS for each sequent S;
– γ(α(

⋃
S XS)) =

⋃
S γ(α(XS)) if XS ⊆ SchS for each sequent S.

If α separates sequents, (36) and (37) form a bijection between the abstract
interpretations which are in the image of α and the interpretations J K such
that JSK is in the image of α for each sequent S. From this point of view, it
seems that observables are even more general than pre-interpretations. On the
other side, abstractions only cover a subset of all the pre-interpretations, those
whose abstraction function has a right adjoint.

Example 9. It is easy to prove that αs separates sequents. The corresponding
pre-interpretation Iαs is isomorphic to the pre-interpretation I given in Ex-
ample 4. Note that, thanks to abstract interpretation theory, we automatically
obtain an optimal candidate for the abstract semantic functions from the choice
of the abstract domain.

4.3 Abstract Semantics

We say that an abstract interpretation A is an abstract model when the corre-
sponding interpretation J Kα for Iα given by (36) is a model. In formulas, this
means that, for each inference rule r : S1, . . . , Sn � S,

α (r (γ(A ∩α α(SchS1)), . . . , γ(A ∩α α(SchSn)))) � A ∩α α(SchS) . (40)

In turn, this is equivalent to say that γ(A) is a syntactic model.
We would like to define the abstract declarative semantics Dα(L) as the least

abstract model for L. However, since our abstract domain is a poset, we are
not guaranteed that such an element exists. Nevertheless, when we work with a
denotational observable, we have:

– Dα(L) = α(D(L)), where Dα(L) is the least abstract model;

50 Gianluca Amato and Giorgio Levi

– Dc,α(L) = α(Dc(L)), where Dc,α(L) is the least abstract model greater than
α(ε).

Other conditions, such as surjectivity of α, imply the existence of Dα(L), whether
or not α is denotational. However, in this case, we cannot be sure of the stated
correspondence with α(D(L)).

As in the concrete case, we want to recover Dα(L) as the least fixpoint of a
continuous operator. If the observable is denotational, we define by

TL,α(A) = A ∪α (R3α A) , (41)

an abstract operator which is complete w.r.t. TL. Then, by well known results
of abstract interpretation theory [12],

TL,α ↑ ω = α(TL ↑ ω) = Dα(L) , (42)
Tω
L,α(α(ε)) = α(Tω

L (ε)) = Dc,α(L) , (43)

which are the required equalities.
Finally, let us come to the abstract operational semantics. In general, since

we do not have an abstraction on the level of the single derivation, we can only
abstract the collecting operational semantics given by UL. If 3 is operational,
we define

UL,α(A) = A3α (R ∪ ε) , (44)

which is a complete abstract operator w.r.t. UL. It is a well known result of
abstract interpretation theory that

Uω
L,α(α(ε)) = α(Uω

L (ε)) = α(Dc(L)) , (45)

Uω
L,α(α({εQ})) = α(Uω

L ({εS})) = α(B(L)Q) . (46)

Therefore, we have a top-down collecting construction of the abstract declarative
semantics and of the operational behavior of L.

Generally, if we replace the first equality with a “greater than” disequality in
the equations (42), (43), (45) and (46), they become true for every observable α.
In this case, the semantics computed in the abstract domain are correct w.r.t.
the real abstract semantics.

5 Examples

Now that the theory is well established, we can focus our attention on its appli-
cations. We will recover two of the most common abstractions used in the field of
logic programming, but working within the framework of the sequent calculus.
The advantage is that our definitions do not depend on any computational pro-
cedure used to interpret the language. In turn, this makes it easier to extend the
abstractions to different logic languages. Actually, the observables we are going
to discuss are general enough to be applied to the full first-order intuitionistic

Abstract Interpretation Based Semantics of Sequent Calculi 51

logic. The drawback of this approach is that observables like computed answers,
which rely on a specific computational mechanism, are not directly expressible.

In the following, we will assume to work in the domain of first-order intu-
itionistic logic. This means that 〈D,G〉 is a first-order language, while Term and
Var are the corresponding sets of first-order terms and variables. To simplify the
notation, in the forthcoming discussions we assume that, in each sequent, there
is at most one quantification for each bound variable.

Here is a summary of the inference rule schemas we use for the sequent
calculus of first-order intuitionistic logic.

Γ1, B, Γ2, C � D

Γ1, C, Γ2, B � D
interchange

Γ1, B,B � C

Γ1, B � C
contraction

Γ,B � B
id

Γ,⊥� ⊥ trueR
Γ � ⊥
Γ � B

⊥R

Γ � B

Γ � B ∨C ∨R1
Γ � B

Γ � C ∨B ∨R2
Γ,B � D Γ,C � D

Γ,B ∨ C � D
∨ L

Γ,B1, B2 � C

Γ,B1 ∧B2 � C
∧ L Γ � B Γ � C

Γ � B ∧ C ∧R

Γ � B Γ,C � E

Γ,B ⊃ C � E
⊃ L

Γ,B � C

Γ � B ⊃ C
⊃ R

Γ,B[x/t]� C

Γ, ∀x.B � C
∀L Γ � B[x/v]

Γ � ∀x.B ∀R
Γ,B[x/v]� C

Γ, ∃x.B � C
∃L Γ � B[x/t]

Γ � ∃x.B ∃R

provided that the variable v does not occur in the lower sequents of the ∃L
and ∀R schemas and B is an atomic formula in the id schema. When we want to
denote a well defined inference rule, which is an instance of one of these schemas,
we append appropriate indexes to the name of the schemas, like in ∃RΓ,∃z.ϕ,t(a)

for

Γ � ϕ[z/t(a)]
Γ � ∃z.ϕ .

5.1 Correct Answers

First of all, we want to extend the standard notion of correct answer for Horn
clauses to the general case of first order intuitionistic logic. Given a goal G

52 Gianluca Amato and Giorgio Levi

and a program P in pure logic programming, a correct answer θ is a function
(substitution) from the variables in G to terms, with the interesting property
that �∀P � Gθ is provable. Since the real logical meaning of evaluating G in a
program P is that of proving the closed sequent �∀P� �∃G, we can think of an ex-
tension of the concept of correct answer to generic sequents Γ � ϕ as a mapping
from existentially quantified variable in ϕ to terms. We require that Γ � ϕ{θ}
is provable for an appropriate notion of substitution {θ}.

However, note the following facts:

– if we only work with Horn clauses and a sequent Γ � ∃x.ϕ is provable, we
know that there exists a term t such that Γ � ϕ[x/t] is provable. This is not
true in the general case. Therefore, we can think of using partial functions
mapping variables to terms, so that we can choose not to give an instance
for some of the variables;

– consider the two sequents S = Γ � ∃x.ϕ and S′ = Γ � (∃x.ϕ) ⊃ ψ. The
role of the two existential quantifiers is completely different. In the first case
we are actually looking for a term t to substitute into the x. In the second
case, we are producing a new object a, forcing the fact that ϕ[x/a] holds.
To be more precise, in a proof for S, we introduce the formula ∃x.ϕ with
the rule ∃R or ⊥R, while in a proof for S′ we introduce it by ∃L. As a
consequence, we want to restrict our attention to the first kind of existential
quantifiers.

Given a formula ϕ, a variable x is said to be a query variable for ϕ if the
subformula ∃x.ϕ′ positively occurs in ϕ for some ϕ′. A (candidate) answer θ
for ϕ is a function from the query variables of ϕ to Term such that

– if ∃x.ϕ′ positively occurs in ϕ, θ(x) does not contain any variable which is
quantified in ϕ′;

– θ is idempotent, i.e. its domain (the set of variables for which θ is defined)
and range (the set of variables which occur in its image) are disjoint.

Let us point out that, when ϕ has no positive existentially quantified variables,
it has only a trivial candidate answer.

Given an answer θ for ϕ, we define the instantiation ϕ{θ} of ϕ via θ by
induction on the structure of the goals, as follows:

⊥{θ} = ⊥
A{θ} = A if A is an atomic goal

(ϕ′ ⊕ ϕ′′){θ} = ϕ′{θ} ⊕ ϕ′′{θ} for each binary logical symbol ⊕
(∀x.ϕ){θ} = ∀x.(ϕ{θ})
(∃x.ϕ){θ} = ϕ[x/θ(x)]{θ} if θ(x) is defined
(∃x.ϕ){θ} = ∃x.ϕ{θ} if θ(x) is undefined.

In other words, ϕ{θ} is obtained by replacing every existentially quantified sub-
formula ∃x.ϕ′ in ϕ such that θ(x) �= ⊥ with ϕ′[x/θ(x)].

Abstract Interpretation Based Semantics of Sequent Calculi 53

An answer for ϕ is said to be a correct answer for the sequent Γ � ϕ when
Γ � ϕ{θ} is provable. Given the standard functional ordering ≤ for candidate
answers, it is easy to check that, if θ is a correct answer for the sequent S and
θ′ ≤ θ, then θ′ is a correct answer, too. A correct answer for ϕ is total when its
domain coincides with the set of query variables for ϕ.

Example 10. Given the goal G = ∀x.∃y.p(x, y), the answers θ = {y � f(x)},
θ′ = {y � a} and θ′′ = {} give origin to the instantiated goals G{θ} =
∀x.p(x, f(x)), G{θ′} = ∀x.p(x, a) and G{θ′′} = G. It turns out that θ and θ′′

are correct answers for the sequent ∀x.p(x, f(x))� G.
Note that θ = {x � y} is not a candidate answer for G = ∃x.∀y.p(x, y),

since y is a bound variable in ∀y.p(x, y).

Assume we want to restrict ourselves to the fragment of Horn clauses. Let P
be a pure logic program and let G be a definite goal. A correct answer θ (in the
classical framework) for G in P is said total when it is idempotent and dom(θ) =
vars(G). Then, the two different definitions of total correct answers do coincide.

For example, let us consider the program p(X,X) and the goal p(X,Y). The
substitution {X/Y} is a (non total) correct answer in the classical setting, but
{x/y} is not a candidate answer for the sequent ∀x.p(x, x) � ∃x.∃y.p(x, y).
However, the equivalent correct answer {X/Z, Y/Z} is total, and corresponds to
a correct answer in our setting, too.

5.2 Groundness

A first order term t is ground when it contains no variables. If θ is a candidate
answer for ϕ, a variable x is ground in θ if θ(x) is ground. We also say that θ
is grounding for x. A typical problem of static analysis is to establish which
variables are forced to be ground in all the correct answers for a sequent S.
There are many studies on this subject for the case of Horn clauses (see, for
example, [4]), and some works for hereditary Harrop formulas, too (see [15]).

Given the set Gr = {g, ng}, a groundness answer for a formula ϕ is a partial
function β from the query variables of ϕ to Gr. Note that we do not assume
any ordering between g and ng. Given a candidate answer θ for ϕ, we define a
corresponding groundness answer αg(θ), according to the following:

αg(θ)(x) =

⊥ if θ is undefined in x,
g if θ is grounding for x,
ng otherwise

(47)

If θ is a correct answer for S, then αg(θ) is called a correct groundness answer
for S. Given the obvious functional ordering for groundness answers, it turns out
that if β is correct for S and β′ ≤ β, then β′ is correct.

54 Gianluca Amato and Giorgio Levi

Example 11. Let us give some examples of sequents and their corresponding
correct groundness answers:

sequent groundness answers
∀y.p(y)� ∃x.p(x) {x/g} {x/ng}

∀y.p(a, y) ∧ p(y, b)� ∃x.p(x, x) {x/g}
p(a) ∨ r(b)� ∃x.p(x) ∨ r(x) {x/g}

⊥� ∃x.p(x) {x/g} {x/ng}
∀y.p(y, y)� ∀x1.∃x2.p(x1, x2) {x1/ng}
∀y.p(y, y)� ∃x1.∃x2.p(x1, x2) {x1/g, x2/g}, {x1/ng, x2/ng}

∃y.p(y)� ∃x.p(x) {x/⊥}
p(t(a))� ∃x.p(r(x)) ∅

Note that we only give the maximal correct groundness answers, according
with the functional ordering.

We are interested in effectively computing the set of correct groundness an-
swers for a given input sequent. Using the theory presented in this paper, we
have developed a top-down analyzer for groundness, which works for the full
intuitionistic first-order logic. It is based on the idea that, given a proof of the
sequent S, it is possible to derive a groundness answer for S by just examining
the structure of the proof. In particular if p = r(p1, . . . , pn), it is:

ganswer(p)(x) =

g if r = ∃RΓ,∃x.ϕ,t and t is ground,
ng if r = ∃RΓ,∃x.ϕ,t and t is not ground,
{ganswer(pi)(x)} if r �= RΓ,∃x.ϕ,t and x appears in pi,

⊥ otherwise.
(48)

In general, if p is a final proof for S, we are not guaranteed that ganswer(p)
is a correct groundness answer for S. For example, if S = ∃x.t(x) � ∃y.t(y)
and p is the obvious corresponding final proof, it is ganswer(p) = {x/ng}, while
the only correct answer is {x/⊥}. However, if β is a correct groundness answer
for S, we can find a final proof p of S such that ganswer(p) ≥ β. As a result,
if I is the set of final proofs for S, then ↓ {ganswer(p) | p ∈ I} contains all
the correct groundness answers for S. In the language of the theory of abstract
interpretation, it means that ↓ {ganswer(p) | p ∈ I} is a correct approximation
of the set of correct groundness answers.

Now, let us consider the function αt which abstracts a formula ϕ with the
same formula, where terms have been replaced by the set of variables occurring
in them. We can trivially lift αt to work with sequents.

If we name by 〈D′,G′〉 the new language image of 〈D,G〉 via αt, we can define
a domain of groundness with set resultants Drg such as

Drg = P↓{〈S, β,R〉 | S is a sequent in 〈D′,G′〉,
R = {S1, . . . , Sn} is a finite set of sequents in 〈D′,G′〉,
β is a groundness answer for S} .

(49)

Abstract Interpretation Based Semantics of Sequent Calculi 55

where P↓(X) is the set of downward closed subsets of X , ordered by

〈S, β,R〉 ≤ 〈S′, β′, R′〉 iff S = S′ ∧ β ≤ β′ ∧R ⊇ R′ (50)

We can define an abstraction from syntactical interpretations to the domain of
groundness with resultants as

αrg(I) = {〈αt(S), β, {αt(S1), . . . , αt(Sn)}〉 | there exists p : S1, . . . , Sn � S in I
with ganswer(p) = β}

(51)

We obtain an observable which can be effectively used for top-down analysis of
groundness. The analyzer we have developed in PROLOG and which can be found
at the URL http://www.di.unipi.it/~amato/papers/sas2000final.pl is an
implementation of this observable, with some minor optimizations.

Example 12. By applying our analyzer to the sequents in the Example 11 we
obtain precisely the same set of correct groundness answers, with the following
exceptions:

sequent groundness answers
∃y.p(y)� ∃x.p(x) {x/g}
p(t(a))� ∃x.p(r(x)) {x/ng}

The previous example shows two different situations in which we lose pre-
cision. The first one is due to the fact that we abstract a term with the set of
its variables, loosing the information about the functors. To solve this problem,
the only solution is to improve our domain. The second situation arises from
the interaction between positively and negatively occurring existential quanti-
fiers, and can be addressed by improving the precision of the ganswer function.
It should be possible to define a complete ganswer function, such that if p is a
final proof for S, then ganswer(p) is a correct groundness answer for S. How-
ever, this involves examining the interaction between different quantifiers, and
can possibly lead to a further generalization of the notion of correct answers, as
a graph, linking quantifiers which produce “objects”, introduced by ∀R and ∃L,
and quantifiers which consume “objects”, introduced by ∀L and ∃R.

If we restrict ourselves to Horn clauses logic, the abstraction function is quite
precise, and we obtain a domain which, although expressed with a different
formalism, has the same precision of Pos [16,10].

6 Conclusions and Future Works

The usefulness of a general semantic framework strictly depends on its ability
to be easily instantiated to well known cases while suggesting natural extensions
to them. In the case of a framework which we want to use as a reference for the
development of procedures for static analyses, we also require that theoretical
descriptions can be implemented in a straightforward way.

56 Gianluca Amato and Giorgio Levi

In this paper we presented a semantic framework for sequent calculi mod-
eled around the idea of the three semantics of Horn clauses and around abstract
interpretation theory. With particular reference to groundness and correct an-
swers, we have shown that well known concepts in the case of Horn clauses
can be obtained as simple instances of more general definitions valid for much
broader logics. This has two main advantages. First of all, we can instantiate the
general concepts to computational logics other then Horn clauses, such as hered-
itary Harrop formulas. Moreover, the general definitions often make explicit the
logical meaning of several constructions (such as correct answers), which are oth-
erwise obscured by the use of small logical fragments. We think that, following
this framework as a sort of guideline, it is possible to export most of the re-
sults for positive logic programs to the new logic languages developed following
proof-theoretic methods.

Regarding the implementation of static analyzers from the theoretical de-
scription of the domains, not all the issues have been tackled. While a top-down
analyzer can often be implemented straightforwardly, like our interpreter for
groundness, the same definitely does not hold for bottom-up analyzers. Since for
a bottom-up analysis we have to build the entire abstract semantics of a logic,
we need a way to isolate a finite number of “representative sequents” from which
the semantics of all the others can easily be inferred: it is essentially a problem
of compositionality.

We are actually studying this problem and we think that extending the no-
tion of a logic L with the introduction of some rules for the decomposition of
sequents will add to the theoretical framework the power needed to easily de-
rive compositional TL operators, thus greatly simplifying the implementation of
bottom-up analyzers.

Moreover, the problem of groundness analysis for intuitionistic logic could
be further addressed. The precision we can reach with the proposed domain can
be improved by refining the abstraction function, and the implementation of the
analyzer could be reconsidered to make it faster. Finally, it should be possible
to adapt the domain to work with intuitionistic linear logic.

We think that our approach to the problem of static analyses of logic pro-
grams is new. There are several papers focusing on logic languages other than
Horn clauses [15] but, to the best of our knowledge, the problem has never been
tackled before from the proof-theoretic point of view. An exception is [20], which,
however, is limited to hereditary Harrop formulas and does not come out with
any real implementation of the theoretical framework.

References

1. G. Amato. Uniform Proofs and Fixpoint Semantics of Sequent Calculi. DRAFT.
Available at the following URL: http://www.di.unipi.it/˜amato/papers/, 1999.
43, 45

2. Gianluca Amato and Giorgio Levi. Properties of the lattice of observables in logic
programming. In M. Falaschi and M. Navarro, editors, Proceedings of the APPIA-
GULP-PRODE’97 Joint Conference on Declarative Programming, 1997. 47

Abstract Interpretation Based Semantics of Sequent Calculi 57

3. J. M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992. 39

4. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean func-
tions for dependency analysis: Algebraic properties and efficient representation.
In B. Le Charlier, editor, Proc. Static Analysis Symposium, SAS’94, volume 864
of Lecture Notes in Computer Science, pages 266–280. Springer-Verlag, 1994. 53

5. A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics for
Logic Programs. Theoretical Computer Science, 122(1–2):3–47, 1994. 39, 44

6. Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco Turini. Modular
logic programming. ACM Transactions on Programming Languages and Systems,
16(4):1361–1398, July 1994. 39

7. M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs.
Information and Computation, 1999. To appear. 39

8. M. Comini, G. Levi, and G. Vitiello. Modular abstract diagnosis. In Interna-
tional Workshop on Tools and Environments for (Constraint) Logic Programming,
ILPS’97 Postconference Workshop, 1997. 39

9. M. Comini and M. C. Meo. Compositionality properties of SLD-derivations. The-
oretical Computer Science, 211(1 & 2):275–309, 1999. 41, 42

10. A. Cortesi, G. Filè, and W. Winsborough. Prop revisited: Propositional Formula
as Abstract Domain for Groundness Analysis. In Proc. Sixth IEEE Symp. on Logic
In Computer Science, pages 322–327. IEEE Computer Society Press, 1991. 55

11. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238–252,
1977. 39, 46

12. P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103–179, 1992. 47, 48, 50

13. S. K. Debray. Formal bases for dataflow analysis of logic programs. In G. Levi,
editor, Advances in logic programming theory, pages 115–182. Clarendon Press,
Oxford, 1994. 39

14. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second
edition. 38

15. F. Malésieux, O. Ridoux, and P. Boizumault. Abstract compilation of λProlog.
In J. Jaffar, editor, Joint International Conference and Symposium on Logic Pro-
gramming, pages 130–144, Manchester, United Kingdom, June 1998. MIT Press.
53, 56

16. K. Marriott and H. Sondergaard. Abstract Interpretation of Logic Programs: the
Denotational Approach. In A. Bossi, editor, Proc. Fifth Italian Conference on
Logic Programming, pages 399–425, 1990. 55

17. D. Miller, F. Pfenning, G. Nadathur, and A. Scedrov. Uniform proofs as a founda-
tion for Logic Programming. Annals of Pure and Applied Logic, 51:125–157, 1991.
38

18. B. Möller. On the Algebraic Specification of Infinite Objects – Ordered and Cntin-
uous Models of Algebraic Types. Acta Informatica, 22:537–578, 1985. 42

19. G. Nadathur and D. Miller. An Overview of λProlog. In Kenneth A. Bowen and
Robert A. Kowalski, editors, Fifth International Logic Programmiong Conference,
pages 810–827. MIT Press, 1988. 39

20. P. Volpe. Abstractions of uniform proofs. In M. Hanus and M. Rodriguez-Artalejo,
editors, Algebraic and Logic Programming, Proc. 5th International Conference,
ALP ’96, volume 1139 of Lecture Notes in Computer Science, pages 224–237.
Springer-Verlag, 1996. 56

A Transformational Approach for Generating

Non-linear Invariants�

S. Bensalem1, M. Bozga1, J.-C. Fernandez2, L. Ghirvu1, and Y. Lakhnech1,��

1 VERIMAG
Centre Equation 2, avenue de Vignate F-38610 Gieres, France

Name@imag.fr
2 LSR

681, rue de la Passerelle 38402 Saint Martin d’Hères Cedex, France
Fernandez@imag.fr

Abstract. Computing invariants is the key issue in the analysis of
infinite-state systems whether analysis means testing, verification or pa-
rameter synthesis. In particular, methods that allow to treat combina-
tions of loops are of interest. We present a set of algorithms and meth-
ods that can be applied to characterize over-approximations of the set
of reachable states of combinations of self-loops. We present two families
of complementary techniques. The first one identifies a number of basic
cases of pair of self-loops for which we provide an exact characterization
of the reachable states. The second family of techniques is a set of rules
based on static analysis that allow to reduce n self-loops (n ≥ 2) to n−1
independent pairs of self-loops. The results of the analysis of the pairs
of self-loops can then be combined to provide an over-approximation of
the reachable states of the n self-loops. We illustrate our methods by
synthesizing conditions under which the Biphase Mark protocol works
properly.

1 Introduction

This paper proposes techniques for computing over-approximations of the set
of reachable states of a class of infinite state systems. The systems we consider
are systems whose variables can be seen as counters that can be incremented by
positive or negative constants or can be reset to some constant.

The problem of computing invariants of arithmetical programs in particular,
and infinite state systems in general, has been investigated from the seventies.
Abstract interpretation [CC77,CC92] is a precise and a formal framework which
has been used to develop techniques to tackle this problem. As pioneering work in
this field, one can mention M. Karr’s work [Kar76] based on constant propagation
for computing invariants that are systems of affine equations, P. & R. Cousot’s
work [CC76] which uses interval analysis to compute invariants of the form
x ∈ [a, b], x ≤ a, etc., and the work by P. Cousot and N. Halbwachs [CH78]

� Work partially supported by Région Rhône-Alpes, France
�� Contact author

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 58–72, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Transformational Approach for Generating Non-linear Invariants 59

which provides techniques that allow to compute linear constraints that relate
the program variables.

In recent years, the subject has known a renewal of interest with the devel-
opment of symbolic model-checking techniques for some classes of infinite state
systems as timed and hybrid automata [HNSY92,HPR94], finite communicating
automata [BG96,ABJ98], parameterized networks [KMM+97,ABJN99,BBLS],
and automata with counters [BGP97,WB98].

In this paper, we consider transition systems with finite control and with
counters as data variables. A transition consists of a guard and a set of assign-
ments. A guard is given by a Presburger formula that may contain parameters,
that is, variables that are neither initialized nor modified during execution. As-
signments may increment the counters by positive or negative constants or set
them to constant values. It should be noticed that this model is fairly general.
Indeed, it is computationally equivalent to Turing machines and syntactically
subsumes Timed Automa [AD94], Petri Nets with inhebitors, and Datalog Pro-
grams [FO97]. Indeed, each of these models can easily translated into our tran-
sition systems.

Given a transition syste we are interested in computing over-approximations
of the set of reachable states from parametric initial states, that is, states of the
form x̄ = x̄0, where x̄ are the variables of the system and x̄0, are freeze variables
(also called inactive auxiliary variables). In contrast to almost all the works
mentioned above, the techniques we present allow to derive non-linear invariants.
We concentrate on characterizing sets of states reachable by n-self-loops. This
is not an essential restriction, since every system can be transformed into one
with a single control location. Moreover, several spécification and programming
languages such as UNITY [KJ89] or the synchronous language Lustre [CHPP87]
consist of programs where all transitions are self-loops of a single control point.
Notice also that it is clear that the combined effect of self-loops cannot in general
be characterized by linear constraints. We present two families of complementary
techniques. The first one is presented as set of results that identify a number of
basic cases of pairs of self-loops for which we provide an exact characterization
of the reachable states. The second family of techniques is a set of rules based
on static analysis that allow to reduce n self-loops (n ≥ 2) to n− 1 independent
pairs of self-loops. The results of the analysis of the pairs of self-loops can then
be combined to provide an over-approximation of the reachable states of the n
self-loops.

The reduction techniques we present are in the same line as the decompo-
sition rules presented by Fribourg and Olsèn in [FO97], where they consider
Datalog programs, i.e., transition systems consisting of a single control location
and counters and where only x > 0 is allowed as guard. Notable differences are,
however, the fact that the systems they consider are syntactically more restricted
and that their rules are exact.

To illustrate the techniques we present in this paper, we consider the Biphase
mark protocol which is a parameterized protocol used as a convention for rep-
resenting both a string of bits and clock edges in a square wave. Using our

60 S. Bensalem et al.

techniques we have been able to provide a full parametric analysis of this pro-
tocol.

2 Preliminaries

We assume an underlying assertion language A that includes first-order predi-
cate logic and interpreted symbols for expressing the standard operations and
relations over some concrete domains. We assume to have the set of integers
among these domains. Assertions (we also say predicates) in A are interpreted
in states that assign values to the variables of A. Given a predicate P , we denote
by free(P) the set of free variables occurring in it. Similarly, if e is an expression
in A, we also write free(e) to denote the set of all variables which occur in e. As
expressiveness is not our issue in this paper, we will tacitly identify a predicate
with the set of its models.

As computational model we use transition systems. We restrict ourselves to
transition systems where the expressions occurring in an assignment to vari-
ables x are either constants or of the form x + k. Thus, a transition system is
given by a tuple (X ,Q, T , E , Π) where X is a finite set of typed data variables, Q
is a finite set of control locations, T is a finite set of transition names, E asso-
ciates with each transition τ a pair (E1(τ), E2(τ)) consisting of a source and a
target control location, and Π associates with each transition a guard gua(τ)
which is an assertion in the Presburger fragment of A with free variables in X
and a list affe(τ) of assignments of the form x := x + k or x := k with x ∈ X
and k ∈ ZZ and such that for each x ∈ X there is at most one assignment x := e
in affe(t). We denote by Base(τ) the set of variables occurring in τ . Notice that
we allow parameters in the guards of the transitions; parameters can be seen
as program variables that are not modified during execution. This allow us to
model parameterized protocols as the Biphase protocol, which we consider later
on, and to analyze these protocols using our techniques.

Clearly, (Q, T , E) builds a labeled graph which we call the control graph.
Henceforth, we denote the set of transitions τ with E1(τ) = E2(τ) = q by L(q),
i.e., L(q) is the set of self-loops in q. Moreover, we write τ(x̄), where x̄ is a set
of variables, for the projection of τ on x̄, that is, the transition whose guard is
obtained from the guard of τ by existentially quantifying all variables but x̄ and
whose assignments are obtained from τ by removing all assignments to other
variables than x̄.

A transition τ induces a relation τ−→ on configurations which are pairs of
control locations and valuations of the variables in X . Given a transition τ , and
configurations (q, s) and (q′, s′), (q′, s′) is called τ-successor of (q, s), denoted by
(q, s) τ−→ (q′, s′), if E(τ) = (q, q′), s satisfies gua(τ) and s′ satisfies s′(x) = s(e),
for each x := e in affe(τ), s′(x) = s(x), for each x that is not affected by τ . Given
a regular language L over T and given configurations (q, s) and (q′, s′), we say
that (q′, s′) is L-reachable from (q, s), denoted by (q, s) L−→ (q′, s′), if there exists
a word τ1 · · · τn ∈ L and configurations (qi, si)i≤n such that (q0, s0) = (q, s),
(qn, sn) = (q′, s′), and (qi, si)

τi−→ (qi+1, si+1). If ϕ and ϕ′ are predicates, we

A Transformational Approach for Generating Non-linear Invariants 61

write ϕ L−→ ϕ′ to denote the fact that there exists a state s that satisfies ϕ
and a state s′ that satisfies ϕ′ such that s L−→ s′. Identifying, a state with a
predicate characterizing it, we also use the notations ϕ L−→ s′ and s L−→ ϕ′,
respectively. Henceforth, given a control location q, in case all transitions in L
have q as source and target locations, we omit mentioning q in configurations.
Furthermore, given a predicate ϕ(x̄0, x̄), where x0 are freeze variables (also called
inactive auxiliary variables), and given a set L ⊆ L(q) of self-loops, we say that
ϕ(x̄0, x̄) is an L-invariant at q, if for every state s′ that is L-reachable from a
state s, ϕ[s(x̄)/x̄0, s

′(x̄)/x̄] is valid. Thus, ϕ(x̄0, x̄) is the set of states reachable
from a parametric state x̄ = x̄0 by taking sequences of transitions in L. The
predicate ϕ(x̄0, x̄) corresponds to the strongest postcondition of so-called most
general formulas used in [Gor75] and investigated in [AM80] in the context of
axiomatic verification of recursive procedures.

3 Characterizing Reachable States of Self-Loops

Throughout this section, we fix a transition system S = (X ,Q, T , E , Π). Our goal
is to transform S into a transition system S# such that S# does not contain
self-loops and such that the set of states reachable from a state s in S# is a
super-set of the set of states reachable from s in S, that is, S# is an abstraction
of S [CC77]. Thus, we will entirely concentrate on self-loops. The motivation and
justification behind this is many-fold. First, it is obvious that our model is as
expressive as Turing machines, since a two counter-machine is trivially encoded
in this model. Moreover, arithmetical programs, which can easily encoded in
our model, represent an interesting class of programs that have been widely
investigated starting with the pioneering work [CH78]. Moreover, even if we
restrict the control graph to a single node, we obtain, as discussed in [FO97], an
interesting class of Datalog programs. Our model allows to encode in a natural
way Petri Nets with inhibitors.

The main idea behind the transformation of S into S# is the following.
Consider a control location q and let ϕ(x̄0, x̄) be an L(q)-invariant at q. Then,
we obtain S# by applying the following transformations:

1. Add a new list of variables x̄0 with the same length as x̄.
2. Remove all transitions in L(q).
3. Let τ1, · · · , τn be all transitions with E2(τi) = q and let x̄ := ēi be the

assignment associated to τi. Add to x̄ := ēi the assignment x̄0 := ēi.
4. Replace each assignment x̄ := ē of a transition τ with E1(τ) = q and E2(τ) �=
q, by the predicate ∃ȳ · ϕ(x̄0, ȳ) ∧ gua(τ) ∧ x̄′ = ē[ȳ/x̄], where x̄′ stands for
the state variables after taking the transition. Note that S# does not satisfy
the syntactic restrictions on assignments as introduced in Section2; it is,
however, a transition system in the usual sense.

It is not difficult to check that S# is indeed an abstraction of S. Notice also
that in case all predicates ϕ(x̄0, x̄) used in the transformation for characterizing

62 S. Bensalem et al.

reachable states by self-loops are exact, the obtained system S# is then an exact
abstraction of S.

Our approach in computing invariants characterizing the effect of a set of
loops is based on the particular case of two self-loops that satisfy syntactic
conditions that allow us to analyze each self-loop in isolation and on a set of
static analysis techniques which allow us to reduce the analysis of n self-loops
to the analysis of a number of particular cases.

Given two transitions τ0 and τ1 with Base(τ0) = x̄ and Base(τ1) = x̄ȳ,
where x̄ and ȳ are two disjoint sets of variables, and such that x̄ is assigned
the list c̄ of constants in τ1. We say that τ0 enables τ1, if for every state s with

s(x̄) = c̄, there exists a state s′ such that s
τ∗
0−→ s′ and s′ satisfies the projection

on x̄ of the guard of τ1, i.e., s′ satisfies ∃ȳ · gua(τ1). Notice that τ0 does not
enable τ1 iff for every state s with s(x̄) = c̄, there is no state s′ such that

s
τ∗
0−→ s′ and s′ satisfies ∃ȳ · gua(τ1).

Lemma 1. Let τ0 and τ1 be two transitions such that Base(τ0)= x̄,Base(τ1)= x̄ȳ,
where x̄ and ȳ are two disjoint sets of variables, and such that x̄ is assigned the
list c̄ of constants in τ1.

Then, s
(τ0+τ1)

∗
−→ s′ iff s

τ∗
0−→ s′ or there exists a state s′′ such that 1) s

τ∗
0 τ1−→ s′′,

2) x̄ = c̄
τ∗
0−→ s′(x̄) and 3) one of the following conditions holds:

1. τ0 enables τ1 and s(ȳ)
τ1(ȳ)∗−→ s′(ȳ) or

2. τ0 does not enable τ1 and s(ȳ) τ1−→ s′(ȳ).

✷

Proof. We prove the implication from left to right by induction on the number of

times transition τ1 is taken from s to s′. Thus, suppose we have s
(τ0+τ1)

∗
−→ s′. The

induction basis follows immediately, since then we have s
τ∗
0−→ s′. Suppose now

that τ1 is taken n times with n > 0. Then, we have s
τ∗
0−→ s1

τ1−→ s′′
(τ0+τ1)

∗
−→ s′

and τ1 is taken n − 1 times in the computation from s′′ to s′. In case, τ0 does

not enable τ1, we have s′′
τ∗
0−→ s′. Hence, since ȳ ∩ Base(τ0) = ∅, s′(ȳ) = s′′(ȳ)

and x̄ = c̄
τ∗
0−→ s′(x̄). That is, s(ȳ) τ1−→ s′(ȳ) and x̄ = c̄

τ∗
0−→ s′(x̄).

Now, suppose that τ0 enables τ1, then, by induction hypothesis, s′′(ȳ)
τ1(ȳ)∗−→ s′(ȳ).

Since, ȳ ∩ Base(τ0) = ∅, s(ȳ) = s1(ȳ). Consequently, s(ȳ)
τ1(ȳ)∗−→ s′(ȳ). Moreover,

by induction hypothesis, x̄ = c̄
τ∗
0−→ s′(x̄).

✷

Lemma 1 states conditions under which the set of states reachable by repeated
execution of the transitions τ0 and τ1 can be exactly characterized by indepen-
dently considering the values of the variables x̄ that can be reached by applying τ0
and the values of ȳ that can be reached by applying τ1.

A Transformational Approach for Generating Non-linear Invariants 63

In the following, we present a lemma that allows us to apply a decomposition
similar to Lemma 1 while allowing τ0 to contain additional variables z̄ disjoint
from x̄ and ȳ that are not modified by τ1.

Lemma 2. Let τ0 and τ1 be two transitions such that Base(τ0) = x̄z̄,
Base(τ1) = x̄ȳ, where x̄, ȳ and z̄ are mutually disjoint sets of variables, and
such that the following conditions are satisfied:

1. For every state s′, if true τ1−→ s′ then s′ does not satisfy the guard of τ1.
2. x̄ is assigned the list c̄ of constants in τ1.
3. There is a list c̄′ of constants such that, for every states s and s′ with s(x̄) = c̄

and s
τ∗
0−→ s′, if s′ satisfies the guard of τ1 then s′(z̄) = s(z̄) + c̄′.

4. For every state s with s(x̄) = c̄ there is a state s′ such that s
τ∗
0−→ s′ and such

that s′ satisfies the projection on x̄ of the guard of τ1.

5. For all states s and s′ with s(x̄) = s′(x̄) = c̄ and for all k ≥ 0, s
τk
0−→ true iff

s′
τk
0−→ true.

Then, s
(τ0+τ1)

∗
−→ s′ iff s

τ∗
0−→ s′ or there exists a state s′′ such that

1. s
τ∗
0 τ1−→ s′′, x̄ = c̄

τ0(x)∗−→ s′(x̄) and

2. there exists k ∈ IN and a state s′′′ with s′′′(z̄) = s′′(z̄)+k ∗ c̄, s(ȳ) τk+1
1−→ s′(ȳ),

and s′′′(z̄)
τ∗
0−→ s′(z̄).

✷

Proof. (sketch).

Using Condition 1.,one can prove that s
(τ0+τ1)

∗
−→ s′ iff s

τ∗
0−→ s′ or there are

states s′′ and s′′′ and k ≥ 0 such that

s
τ∗
0 τ1−→ s′′

(τ+
0 τ1)

k

−→ s′′′
τ∗
0−→ s′.

Let us consider the second case. Here, by Condition 2., we have s′′(x̄) = c̄. Hence,
by Condition 3., in any state reachable from s′′ by applying (τ+0 τ1) k

′-times, the
value of z̄ is s′′(z̄) + k′ ∗ c̄′. Therefore, s′′′(z̄) = s′′(z̄) + k ∗ c̄.

Notice that Condition 4., is used to prove the ”only if” part of the statement.
Condition 5. guarantees that s′′′ is reachable from s′′ by (τ+0 τ1) k-times. It also
guarantees that the number of times τ0 can be taking starting in a state satisfying
x̄ = c̄ does not depend on z̄.

✷

Remark 1. It is important to notice that Condition 2 is syntactic, so it can be
easily checked. Moreover, the remaining conditions can be checked effectively,
since the sets of reachable states involved are expressible in Presburger arith-
metic. Indeed, if a language L is of the form L1+ · · ·+Ln, where each Li is either
finite or of the form w∗, where w is a word, then the set of states reachable by L

64 S. Bensalem et al.

from a (parametric) state x̄ = x̄0 is easily expressible in Presburger arithmetic.
Nevertheless, it is easy to give sufficient syntactic conditions that can be easily
checked. For instance, Condition 5. is satisfied, if z̄ does not occur in the guard
of transition τ0.

Example 1.
Let us consider the following self-loops:

{
τ0 : x < T → x := x+ 1; z := z + 1
τ1 : x = T ∧ y < C → x := 0; y := y + 1

It is easy to check that the premises of Lemma 2 are satisfied. Using the charac-
terization stated by the lemma and after simplification, we obtain the following
invariant:

(x − z = x0 − z0 ∧ x ≥ x0 ∧ z ≥ z0 ∧ y = y0)
∨ ∃k ≥ 1·

(y = y0 + k ∧ y ≤ C ∧ z = (z0 − x0) + k ∗ T + x ∧ x ≤ T)

✷

Lemma 2 can be generalized as follows to the case where z̄ is not augmented by
the same list c̄′ of constants:

Lemma 3. Assume the same premises as in Lemma 2 but condition 3. replaced
by:

There is a set I of values such that, for every states s and s′ with s(x̄) = c̄

and s
τ∗
0−→ s′, if s′ satisfies the guard of τ1 then

3.a there is c̄′ ∈ I with s′(z̄) = s(z̄) + c̄′ and

3.b for every c̄′′ ∈ I there is a state s′′ with s′′(z̄) = s(z̄) + c̄′′, s
τ∗
0−→ s′′, and

such that s′′ satisfies the guard of τ1.

Then, s
(τ0+τ1)

∗
−→ s′ iff s

τ∗
0−→ s′ or there exists a state s′′ such that

1. s
τ∗
0 τ1−→ s′′, x̄ = c̄

τ0(x)∗−→ s′(x̄) and

2. there exists k ∈ IN and a state s′′′ with s′′′(z̄) = s′′(z̄) +
i=k∑
i=1

c̄i with c̄i ∈ I,

s(ȳ)
τk+1
1−→ s′(ȳ), and s′′′(z̄)

τ∗
0−→ s′(z̄).

✷

Example 2.
Let us consider the following self-loops:

{
τ0 : x < T → x := x+ 1; z := z + 1
τ1 : t ≤ x ≤ T ∧ y < C → x := 0; y := y + 1

A Transformational Approach for Generating Non-linear Invariants 65

Now, applying Lemma 3 we obtain the following invariant:

(x − z = x0 − z0 ∧ x ≥ x0 ∧ z ≥ z0 ∧ y = y0)
∨ ∃k ≥ 1·

(y = y0 + k ∧ y ≤ C ∧ z ∈ (z0 − x0) + [k ∗ t, k ∗ T] + x ∧ x ≤ T)

✷

Remark 2. Notice that, if we remove Condition 3.b in Lemma 3, then only the

”only if” part of the conclusion is true, that is, we have s
(τ0+τ1)

∗
−→ s′ implies

s
τ∗
0−→ s′ or there exists a state s′′ such that

1. s
τ∗
0 τ1−→ s′′, x̄ = c̄

τ∗
0−→ s′(x̄) and

2. there exists k ∈ IN and a state s′′′ with s′′′(z̄) = s′′(z̄) +
i=k∑
i=1

c̄i with c̄i ∈ I,

s(ȳ)
τk+1
1−→ s′(ȳ), and s′′′(z̄)

τ∗
0−→ s′(z̄).

This result can of course be used to derive an invariant that is not necessarily
the strongest. ✷

4 Decomposition Techniques

We present hereafter heuristics which allow us to reduce the analysis of n ≥ 2 self-
loops to simpler cases such that, finally, we can apply the lemmata introduced
in Section 3.

Basically, we consider the case of n + 1 loosely-coupled self-loops. We show
that, their global analysis can be effectively reduced to n analysis of 2 self-loop
problems, when some syntactic conditions on the sets of used variables occurs.
The decomposition technique is stated by the following lemma and can be seen
as a direct generalization of lemma 1.

Lemma 4. Let τ0, τ1, · · · , τn be transitions such that Base(τ0) = x̄1 · · · x̄n,
Base(τi) = x̄iȳi and for each i = 1, · · · , n, x̄i is assigned by τi the list c̄i of
constants, and the sets of variables x̄i and ȳi are all pairwise disjoint.

If each ϕi is a (τ0(x̄i) + τi)∗-invariant, then
∧n

i=1 ϕi is a (τ0 + · · · + τn)∗-
invariant. ✷

Example 3. Let us consider the following three self-loops borrowed from the
description of the Biphase protocol, which we will consider in Section 5:

τ0 : x < max ∧ y < max → x := x+ 1 y := y + 1
τ1 : x ≥ min ∧ n < cell → x := 0 n := n+ 1
τ2 : y ≥ min ∧m < sample→ y := 0 m := m+ 1

We can easily check that the premises of Lemma 4 are satisfied. Hence, we can
split the analysis of the three self-loops into the independent analysis of the
following sets each consisting of two self-loops, as shown below:{

τ0(x) : x < max → x := x+ 1
τ1 : x ≥ min ∧ n < cell → x := 0 n := n+ 1

66 S. Bensalem et al.

{
τ0(y) : y < max → y := y + 1
τ2 : y ≥ min ∧m < sample → y := 0 m := m+ 1

Each case can be analyzed independently using the results established in the
previous section. We obtain that

ϕ1 = (x ≤ max ∧ n ≤ cell)

is a (τ0(x) + τ1)∗-invariant and that

ϕ2 = (y ≤ max ∧ m ≤ sample)

is a (τ0(y) + τ2)∗-invariant.
Thus, we can infer that

ϕ1 ∧ ϕ2 = (x ≤ max ∧ n ≤ cell ∧ y ≤ max ∧ m ≤ sample)

is a (τ0 + τ1 + τ2)∗-invariant. ✷

However, the invariants obtained in this way are too weak. The reason is
that by the decomposition of the set of loops we lost the overall constraint
induced on x̄ variables by the τ0 loop. That is, all variables occurring in τ0
are strongly related by this transition, and it is no more the case when taking
the projections. The following lemma solves this problem by adding some re-
synchronization variables in order to be able to reconstruct (at least partially)
the existing relation among the x̄ variables.

Lemma 5. Let τ0, τ1, · · · , τn be transitions s.t. the premises of Lemma 4 are
satisfied. Let (zi)i=1,n be fresh variables and let τ ′0(x̄i) be the transition obtained
from τ0(x̄i) augmented with the assignment zi := zi + 1.

If each ϕ′i is a (τ ′0(x̄i) + τi)∗-invariant, then ∃z1, · · · zn.(z1 = · · · = zn ∧∧n
i=1 ϕ

′
i) is a (τ0 + · · · + τn)∗-invariant. ✷

Intuitively, variables zi keep track of the number of times the transition τ0
is executed in each case. In this way, the global invariant can be strengthened
by adding the equality on zi variables. That is, when considered together, the
number of times τ0 is executed must be the same in all 1 ≤ i ≤ n cases.

Example 4. Let us consider again the three-loops presented above. After splitting
them and augmentation with fresh variables zx and zy, we obtain the following
sets of self-loops to be analyzed:

{
τ0(x) : x < max → x := x+ 1 zx := zx + 1
τ1 : x ≥ min ∧ n < cell → x := 0 n := n+ 1

{
τ0(y) : y < max → y := y + 1 zy := zy + 1
τ2 : y ≥ min ∧m < sample → y := 0 m := m+ 1

A Transformational Approach for Generating Non-linear Invariants 67

Applying, Lemma 3, we obtain that

ϕ′1 = (x ≤ max ∧ n ≤ cell ∧ n ·min+ x ≤ zx ≤ n ·max+ x)

is a (τ ′0(x) + τ1)∗-invariant and that

ϕ′2 = (y ≤ max ∧ m ≤ sample ∧ m ·min+ y ≤ zy ≤ m ·max+ y)

is a (τ ′0(y) + τ2)∗-invariant.
The global invariant computed is then ∃zx, zy.(zx = zy ∧ϕ′1 ∧ϕ′2), which can

be simplified to

x ≤ max ∧ n ≤ cell ∧ y ≤ max ∧ m ≤ sample ∧
n ·min + x ≤ m ·max+ y ∧ m ·min + y ≤ n ·max+ x.

This invariant is indeed stronger than the one computed in Example 3. ✷

5 The Biphase Protocol

The biphase mark protocol is a convention for representing both a string of bits
and clock edges in a square wave. It is widely used in applications where data
written by one device is read by another. It is for instance used in commercially
available micro-controllers as the Intel 82530 Serial Communication Controller
and in the Ethernet.

We borrow the following informal description of the protocol from J. S.
Moore:

In the biphase mark protocol, each bit of messages is encoded in a cell
which is logically divided into a mark subcell and a code subcell. During
the mark subcell, the signal is held at the negation of its value at the end
of the previous cell, providing an edge in the signal train which marks
the beginning of the new cell. During the code subcell, the signal either
returns to its previous value or does not, depending on whether the cell
encodes a ”1” or ”0”. The receiver is generally waiting for the edge that
marks the arrival of a cell. When the edge is detected, the receiver counts
off a fixed number of cycles, called sampling distance, and samples the
signal there. The sampling distance is determined so as to make the
receiver sample in the middle of the code subcell. If the sample is the
same as the mark, a ”0” was sent; otherwise a ”1” was sent. The receiver
takes up waiting for the next edge, thus phase locking onto the sender’s
clock.

The main interesting aspect (from the verification point of view) of this protocol
is the analysis of the tolerable asynchrony between the sender and the receiver.
Put more directly, the derivation of sufficient conditions on the jitter between
the clock of the sender and the clock of the receiver such that the protocol works
properly.

68 S. Bensalem et al.

To our knowledge, there has been some work on the verification of instances of
the protocol either using theorem-proving techniques [Moo93] or model-checking
[IG99,Vaa] and one work presenting full parameter analysis using PVS and the
Duration Calculus, however, without clock jitter.

Using the techniques presented earlier in this paper, we have been able to
fully analyze the protocol and to derive parameterized sufficient conditions for
its correctness.

5.1 Protocol Modeling

We use extended transition systems to model the protocol which consists of
a sender and a receiver exchanging boolean value. Some of the transitions are
marked with synchronization labels. Following, Vaandrager we model the clock
drifts and jitter using two different clocks which will be reset independently and
using two parameters min and max to bound the drift between these clocks.
The models of the sender, the receiver and their product are given in Figure 1,
Figure 2, and Figure 3.

2

1
τ s
112

τ s
111

τ s
21τ s

12

τ s
220

τ s
221

τ s
110

τ s
110 : x < max → x := x+ 1

τ s
111 : x ≥ min ∧ n < cell → x := 0 n := n+ 1

τ s
112 : x ≥ min ∧ n = cell → x := 0 n := 0 v := ¬v

get !false
τ s
12 : x ≥ min ∧ n = cell → x := 0 n := 0 v := ¬v

get !true
τ s
220 : x < max → x := x+ 1

τ s
221 : x ≥ min ∧ n < mark → x := 0 n := n+ 1

τ s
21 : x ≥ min ∧ n = mark → x := 0 n := n+ 1 v := ¬v

mark

Fig. 1. The sender

5.2 Invariant Generation

Using the techniques presented before we are able to construct the following
invariants for the product control locations:

A Transformational Approach for Generating Non-linear Invariants 69

43

τ r
34

τ r
43

τ r
331

τ r
330 τ r

440τ r
441

τ r
330 : y < max → y := y + 1

τ s
331 : y ≥ min ∧ v = old → y := 0

τ r
34 : y ≥ min ∧ v �= old → y := 0

m := 0
τ r
440 : y < max → y := y + 1

τ r
441 : y ≥ min ∧ m < sample → y := 0

m := m+ 1
τ r
43 : y ≥ min ∧ m = sample → y := 0

put !v �= old
Fig. 2. The receiver

2 3 2 4

1 41 3
τ s
112

τ s
111 τ s

111

τ s
112

τ r
34

τ r
43

τ r
43

τ r
34

τ s
21τ s

12 τ s
21

τ230 τ240

τ s
221 τ s

221

τ r
331 τ r

441

τ r
331

τ130 τ140τ r
441

τ s
12

τ130, τ140, τ230, τ240 : x < max ∧ y < max → x := x+ 1 y := y + 1

Fig. 3. The product

70 S. Bensalem et al.

ϕ13 = x ≤ max ∧ y ≤ max ∧ n ≤ cell
ϕ14 = x ≤ max ∧ y ≤ max ∧ n ≤ cell ∧ m ≤ sample

m ·min+ y ≤ n ·max + x ∧ n ·min + x ≤ m ·max+ y
ϕ23 = x ≤ max ∧ y ≤ max ∧ n ≤ mark
ϕ24 = x ≤ max ∧ y ≤ max ∧ n ≤ mark ∧ m ≤ sample

m ·min+ y ≤ n ·max + x ∧ n ·min + x ≤ m ·max+ y

5.3 Parameter Synthesis

One of requirements for correctness of the protocol states that the receiver does
not sample too late. That is, a bad behavior is obtained by allowing to take two
consecutive get actions by the protocol, without no put action in between. For
instance, such a scenario is possible when in state 14, the get transitions τs

112

or τs
12 are enabled before the put transition τr

43. To avoid such a situation, a
sufficient condition will be if ϕ14 ∧ (gua(τs

112)∨ gua(τs
12)) is not satisfiable. This

condition is the following:

x ≤ max ∧ y ≤ max ∧ n ≤ cell ∧ m ≤ sample
m ·min+ y ≤ n ·max + x ∧ n ·min+ x ≤ m ·max+ y

x ≥ min ∧ n = cell

and is equivalent after simplification to :

(cell + 1) ·min > (sample + 1) ·max

A second requirement states that the receiver does not sample too early. That
is, wrong behavior occurs when the receiver samples before the mark sub-cell
started. In this case, a bad scenario is that one in state 24 the put transition τr

43

is enabled before the mark transition τs
21. Here also, this behavior can be avoided

if the condition ϕ24 ∧ gua(τr
43) is not satisfiable. We obtained in this case:

x ≤ max ∧ y ≤ max ∧ n ≤ mark ∧ m ≤ sample
m ·min+ y ≤ n ·max + x ∧ n ·min+ x ≤ m ·max+ y

y ≥ min ∧ m = sample

and can be further simplified to the following condition depending only on
parameters:

(sample + 1) ·min > (mark + 1) ·max

6 Conclusions

In this paper, we presented a set of techniques which allow to compute an over-
approximation of the set of reachable states of a set of self-loops. The techniques
we presented can be partitioned in two classes: 1.) exact techniques that under

A Transformational Approach for Generating Non-linear Invariants 71

effectively checkable conditions allow to characterize the set of reachable states
of pairs of self-loops without loss of information and 2.) techniques that allow
to reduce more general cases of a set of self-loops to the analysis of a set of
pairs of self-loops. Using, our techniques we have been able to synthesize a set
of conditions on the parameters of the Biphase protocol that are sufficient to
ensure its correctness.

We plan to implement our techniques using decision procedures for Pres-
burger arithmetic to decide the conditions necessary for applying them. We also
plan to apply these techniques for generating test cases for protocols and test
objectives that involve data.

References

ABJ98. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems
with unbounded, lossy fifb channels. In CAV’98, volume 1427 of LNCS,
pages 305-318, 1998. 59

ABJN99. P.A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling Global
Conditions in Parameterized System Verification. In N. Halbwachs and D.
Peled, editors, CAV ’99, volume 1633 of LNCS, pages 134-145. Springer-
Verlag, 1999. 59

AD94. R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126, 1994. 59

AM80. K.R. Apt and L.G.L.T. Meertens. Completeness with finite systems of inter-
mediate assertions for recursive program schemes. SIAM J. Comp., 9:665-
671, 1980. 61

BBLS. K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting wsis sys-
tems to verify parameterized networks’In TACAS’OO. 59

BG96. B. Boigelot and P. Godefroid. Symbolic verification of communication pro-
tocols with infinite state spaces using QDDs. In CAV’96, volume 1102 of
LNCS, pages 1-12, 1996. 59

BGP97. Bultan, Gerber, and Pugh. Symbolic model checking of infinite state systems
using presburger arithmetic. In CAV: International Conference on Com-
puter Aided Verification, 1997. 59

CC76. P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proc. 2nd Int. Symp. on Programming, pages 106-130, 1976.
58

CC77. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fix-points.
In 4th ACM symp. of Prog. Lang., pages 238-252. ACM Press, 1977. 58, 61

CC92. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and
Comp., 2(4):511-547, 1992. 58

CH78. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
the variables of a program. In 5th ACM symp. of Prog. Lang., pages 84-97.
ACM Press, 1978. 58, 61

CHPP87. P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE, adclarative lan-
guage for programming synchronous systems. In 14th Symposium on Prin-
ciples of Programming Langiages, 1987. 59

72 S. Bensalem et al.

FO97. L. Fribourg and H. Olsen. A decompositional approach for computing least
fized-points of datalog programs with z-counters. Constraints, 2(3/4) :305-
335,1997. 59, 61

Gor75. G. A. Gorelick. A complete axiomatic system for proving assertions about
recursive and non-recursive programs. Technical report, Toronto, 1975. 61

HNSY92. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-
checking for real-time systems. In Seventh Annual IEEE Symposium on
Logic in Computer Science, pages 394-406. IEEE Computer Society Press,
1992. 59

HPR94. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid
systems by means of convex approximations. In Proceedings of the Interna-
tional Symposium on Static Analysis, volume 818 of LNCS, pages 223-237.
Springer-Verlag, 1994. 59

IG99. S. Ivanov and W. 0. D. Griffioen. Verification of a biphase mark protocol.
Report CSI-R9915, Computing Science Institute, University of Nijmegen,
August 1999. 68

Kar76. M. Karr. Affine relationships among variables of a program. Acta Infor-
matica, 6:133-151, 1976. 58

KJ89. K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley,
Austin, Texas, May 1989. 59

KMM+97. Y. Kesten, 0. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic Model
Checking with Rich Assertional Languages. In 0. Grumberg, editor, Proceed-
ings of CAV ’97, volume 1256 of LNCS, pages 424-435. Springer-Verlag,
1997. 59

Moo93. J. S. Moore. A formal model of asynchronous communication and its use
in mechanically verifying a biphase mark protocol. Formal Aspects of Com-
puting, 3(1), 1993. 68

Vaa. F. Vaandrager. Analysis of a biphase mark protocol with uppaal. Presenta-
tion at the meeting of the VHS-ESPRIT Project. 68

WB98. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state
spaces. In CAV’98, volume 1427 of LNCS, pages 88-97, 1998. 59

Deriving Parallel Codes via Invariants

Wei-Ngan Chin1, Siau-Cheng Khoo1, Zhenjiang Hu2, and Masato Takeichi2

1 School of Computing, National University of Singapore, Singapore
{chinwn,khoosc}@comp.nus.edu.sg

2 Department of Information Engineering, University of Tokyo, Japan
hu@ipl.t.u-tokyo.ac.jp, takeichi@u-tokyo.ac.jp

Abstract. Systematic parallelization of sequential programs remains
a major challenge in parallel computing. Traditional approaches using
program schemes tend to be narrower in scope, as the properties
which enable parallelism are difficult to capture via ad-hoc schemes.
In [CTH98], a systematic approach to parallelization based on the notion
of preserving the context of recursive sub-terms has been proposed. This
approach can be used to derive a class of divide-and-conquer algorithms.
In this paper, we enhance the methodology by using invariants to guide
the parallelization process. The enhancement enables the parallelization
of a class of recursive functions with conditional and tupled constructs,
which were not possible previously. We further show how such invariants
can be discovered and verified systematically, and demonstrate the
power of our methodology by deriving a parallel code for maximum
segment product. To the best of our knowledge, this is the first
systematic parallelization for the maximum segment product problem.

Keywords: Parallelization, Context Preservation, Invariants, Condi-
tional Recurrences, Constraints.

1 Introduction

It is well-recognised that a key problem of parallel computing remains the de-
velopment of efficient and correct parallel software. Many advanced language
features and constructs have been proposed to alleviate the complexities of par-
allel programming, but perhaps the simplest approach is to stick with sequential
programs and leave it to parallelization techniques to do a more decent transfor-
mation job. This approach could also simplify the program design and debugging
processes, and allows better portability to be achieved.

A traditional approach to this problem is to identify a set of useful higher-
order functions for which parallelization can be guaranteed. As an example,
Blelloch’s NESL language [BCH+93] supports two extremely important parallel
primitives, scan and segmented scan, that together covers a wide range of par-
allel programs. Specifically, segmented scan can be used to express non-trivial
problems (such as sparse matrix calculations and graph operations [Ble90]) that
are difficult to parallelize due to their use of irregular data structures.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 75–94, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

76 Wei-Ngan Chin et al.

However, before a programmer can use these higher-order parallel primitives,
she must manually match her problem to the sequential form of scan and seg-
mented scan (based on flattened list), shown below.1

scan (⊕) ([],w) = []
scan (⊕) (x : xs ,w) = [(w⊕x)]++scan (⊕) (xs ,w⊕x)

segscan (⊕) ([],w) = []
segscan (⊕) ((x , b) : xs ,w) = if b == 1 then [(x , b)]++segscan (⊕) (xs , x)

else [(w⊕x , b)]++segscan (⊕) (xs ,w⊕x)

(ASIDE : Our functions are defined using Haskell/ML style pattern-matching
equations. Notationwise, [] denotes an empty sequence, x : xs denotes an infix
Cons data node with x as its head and xs as its tail. Also, ++ is the sequence
concatenation operator.)

Note that operator ⊕ needs to be semi-associative2. This is required to help
distribute/parallelize the above scan and segscan functions.

The process of matching a given program to a set of higher-order primitives
is non-trivial, particularly for recursive functions with conditional and tupled
constructs. As an example, consider a sequential program to find the minimum
sum from all possible segments of elements.

mss([x]) = x
mss(x : xs) =min2(mis(x : xs),mss(xs))

mis([x]) = x
mis(x : xs) = if mis(xs) + x ≤ x thenmis(xs) + x else x

How may one match this function to an appropriate parallel primitive (eg.
scan)? Alternatively, could we directly derive a parallel equivalent of this func-
tion?

While the sequential version of mss is straightforward to formulate, the same
cannot be said for its parallel counterpart. Part of the complication stems from
the presence of the conditional construct and the need to invent new auxiliary
functions to circumvent its sequentiality.

In this paper, we propose a semi-automatic methodology for systematic
derivation of parallel programs directly from their sequential equations. We
focus on transforming recursive functions containing one or more conditional
constructs, and make use of an invariant , where appropriate, to guide the trans-
formation steps. In the case of mis , we first convert its sequential definition body
1 The functions defined in this paper are written in Haskell syntax. Particularly, the

parenthesis notation (·) converts an infix operator (such as ⊕) into its equivalent
prefix function.

2 An operator ⊕ is said to be semi-associative if there exists a companion operator
⊕̃ that is fully associative, such that ((a⊕b)⊕c) = (a⊕(b⊕̃c)) holds. For example,
− and ÷ are semi-associative operators with + and ∗ as their respective compan-
ions. Note that scan and segscan are usually defined using the more restricted full-
associative property whereby ⊕ = ⊕̃.

Deriving Parallel Codes via Invariants 77

(the second equation) into a contextual form: if • ≤ α1 then • + α2 else α3 ,
where • = mis(xs), α1 = 0, α2 = x , and α3 = x . By using the invariant
α3 ≥ α1 + α2, we can derive a parallel version of mis (and mss) as follows:3

mss([x]) = x
mss(xr++xs) = min2(mss(xr),min2(uT (xr) +mis(xs),mss(xs)))

mis([x]) = x
mis(xr++xs) = if mis(xs) ≤ uH (xr) thenmis(xs) + uG(xr) elsemis(xr)

uH ([x]) = 0
uH (xr++xs) = min2(uH (xs), uH (xr)− uG(xs))

uT ([x]) = x
uT (xr++xs) = min2(uT (xr) + uG(xs), uT (xs))

uG([x]) = x
uG(xr++xs) = uG(xs) + uG(xr)

(ASIDE : The concatenation operator ++ also serves as a sequence split-
ting operation when used as a pattern in the LHS of equation. Operationally, a
sequence may be implemented using a vector for easier data access and distri-
bution. However, this paper shall focus on high-level parallelization issues, and
omit detailed implementation concerns, such as data-type conversion & task
distribution.)

The main contributions of this paper are:

– We extend the parallelization methodology proposed in [CTH98] to cover re-
cursive functions with conditional and tupled constructs. These functions are
hard to parallelize, but we circumvent this difficulty by using an appropriate
normalization process. (Section 3)

– A novelty of our approach is the introduction of invariants to the paralleliza-
tion process. To the best of our knowledge, this is the first use of invariants
for the derivation of parallel programs. Such an effort significantly widens
the class of parallelizable functions. (Section 4)

– Instead of relying on user-defined invariants to improve parallelization op-
portunity, we demonstrate how invariants can be systematically generated
and verified through high-level constraint-solving techniques. (Section 4.3
with details in Appendix A)

– We demonstrate how the sequential code for maximum segment product
problem can be systematically parallelized using our methodology. To the
best of our knowledge, this is the first account of systematic parallelization
for this particular problem.

3 Here, we have used an inequality invariant during our parallelization. Alternatively,
we can employ a stronger equality invariant α3 = α1 + α2. This will produce a very
compact parallel code for mis.

78 Wei-Ngan Chin et al.

The outline of the paper is as follows: Section 2 describes the syntax of the
language processed by our method. Section 3 details our parallelization method-
ology. Section 4 discusses how invariants are discovered and verified through
constraint solving. We then apply our methodology to the parallelization of
maximum segment product problem in Section 5. Finally, we relate our work to
existing works done in the research community, before concluding the paper.

2 Language

We are mainly interested in deriving a class of divide-and-conquer algorithms
with simple split operators (e.g. ++). For simplicity, we shall focus on a strict
first-order functional language. (Limited support for passing function names as
parameters will also be provided through program schemes. For example, ssc in
Figure 1 is essentially a function scheme with ⊕ as its function-type variable.)

Definition 1: A First-Order Language

F ::= {f (pi,1, . . . , pi,ni) = ti}m
i=1

t ::= v | c(t1, . . . , tn) | if t1 then t2 else t3
| f (t1, . . . , tn) | let (v1, . . . , vn) = t1 in t2

p ::= v | c(p1, . . . , pn)
v ∈ Variables ; c ∈ Data constructors ; f ∈ Function names ✷

This language contains the usual data constructor terms, function calls, let
and if constructs. Also, each function f is defined by a set of pattern-matching
equations.

We shall focus on sequential functions that are inductively defined over linear
data types with an associative decomposition operator. For practical reasons, we
restrict the linear data type to List with ++ as its decomposition operator. We
shall only perform parallelization for a special sub-class of sequential functions,
called linear self-recursive functions.

Definition 2: Linear Self-Recursive Functions
A function f is said to be self-recursive if it contains only self-recursive calls.
In addition, it is said to be linear self-recursive (LSR) if its definition contains
exactly one self-recursive call. ✷

Though our methodology can support LSR-functions with multiple recur-
sion parameters and nested patterns, this paper shall restrict the sub-class of
functions considered to the following form.

- - - f ([],
vj �n
j=1) = Ez

- - - f (x : xs ,
vj �n
j=1) = Er〈f (xs ,
Drj 〈vj 〉�n

j=1)〉

Er〈 〉 denotes the context for the self-recursive call of f in the rhs of the definition,
while
Drj 〈 〉�n

j=1 denote the contexts for the accumulative parameters vj ∈ 1..n

appearing in the call to f . These expression contexts are referred to as Recurring
Contexts (or R-contexts in short), as they capture the recurring subterms for

Deriving Parallel Codes via Invariants 79

msp([x]) =x
msp(x : xs) =max2(mip(x : xs),

msp(xs))

mip([x]) =x
mip(x : xs) =

if x > 0 thenmax2(x , x∗mip(xs))
elsemax2(x , x∗mipm(xs))

mipm([x]) =x
mipm(x : xs) =

if x > 0 thenmin2(x , x∗mipm(xs))
elsemin2(x , x∗mip(xs))

sbp([x]) =conv(x)
sbp(x : xs) = if sbp(xs) ≤ 0 then

sbp(xs) + conv(x)
else 1

conv(x) = if x ==′)′ then − 1
else (if x ==′ (′ then 1

else 0
)

ssc (⊕) ([], c) =c
ssc (⊕) (x : xs, c) = if p(x) then c

else ssc (⊕) (xs, c) ⊕x

Fig. 1. Sample Sequential Programs

each self-recursive function. Note that there exists exactly one self-recursive f
call. Er〈 〉 and
Drj 〈 〉�n

j=1 do not contain other self or mutual-recursive calls.
Also, x , xs are allowed to occur freely in Er and
Drj �n

j=1.
Several example functions are available in Fig. 1. Here, function msp com-

putes the maximum segment product; function sbp checks a string for properly
paired bracket; and ssc is a higher-order program scheme. Notice that both ssc
and msp are LSR functions. However, mip, mipm , and sbp are not. Fortunately,
these functions can be converted easily using the following two pre-processing
techniques.

Firstly, tupling [Chi93,HITT97] may be used to eliminate multiple recur-
sive calls. For simple cases such as duplication of calls in mis and sbp, tupling
eliminates duplication via let abstraction. For more complicated cases, such as
multiple mutual-recursive calls of mip and mipm , it generates an LSR-function
miptup such that for any list l , miptup(l) = (mip(l), mipm(l)). The generated
miptup function is:

miptup([x]) = (x , x)
miptup(x : xs) = let (u, v) = miptup(xs)

in if x > 0 then (max2(x , x∗u),min2(x , x∗v))
else (max2(x , x∗v),min2(x , x∗u))

Secondly, a conditional normalization procedure [CDG96] can be applied to
combine recursive calls in different conditional branches together. Our condi-
tionals are first expressed in a more general guarded form:

(if b then e1 else e2) ⇔ if
{

b → e1

¬ b → e2

After that, the following duplicate elimination rule is applied to combine multiple
self-recursive calls in different branches together.

if { bi → E 〈ei〉 }i ∈ N ⇒ E 〈if { bi → ei}i ∈ N 〉

80 Wei-Ngan Chin et al.

For example, with segscan , we obtain:

segscan (⊕) ([],w) = []
segscan (⊕) ((x , b) : xs ,w) = (if b == 1 then [(x , b)] else [(w⊕x , b)]) ++

segscan (⊕) (xs , if b == 1 then x else w⊕x)

3 Parallelization Methodology

Our methodology for parallelization is based on the notion of generalizing from
sequential examples. Given a LSR-function, f , we attempt to obtain a more
general parallel equation directly from its sequential equation.

An earlier version of this methodology was presented in [CTH98]. However,
this earlier work did not handle recursive functions, with conditional and tupled
constructs, well. A major innovation of this paper is the use of invariants to
facilitate parallelization. We shall first see why such invariants are required, and
later show how they may be systematically discovered and verified.

The four steps of our parallelization methodology are now elaborated, using
mis (the auxiliary function of mss) as our running example.

Step 1 : R-Contexts Extraction & Normalization
The first step is to extract out R-contexts for both the recursive call and

each of the accumulative arguments. In the case of mis , we have the following
R-context.

(λ̂〈•〉. if α0 + • ≤ α1 then •+ α2 else α3)where αi = x ∀ i ∈ 0 . . . 3

We use the notation λ̂〈•〉.· · · to represent an R-context parameterized by a
special variable •, is known as the R-hole. • captures the position of the recursive
call/accumulative parameter. Also, context variables (e.g. {αi}i ∈ 0..3) are used
to capture each maximal subterm that does not contain •.

To obtain a simpler R-context, we apply a normalization process to the orig-
inal R-context. This process performs a series of semantic-preserving transfor-
mation to the R-context, aiming at reducing the depths & occurrences of the
R-hole, and the occurrences of context variables. The heuristics used by the
transformation is as follows.

Definition 3: Heuristics for Context Normalization
Consider a R-context with one or more R-holes. Our normalization attempts to:

– Minimise the depth4 of the R-holes or their proxies. (A proxy is a local
variable which denotes either a R-hole or its component – if the R-hole
is a tuple.)

– Minimise the number of occurrences of the context variables, where possible.
– Minimise the number of occurrences of the R-holes or their proxies. ✷

4 Depth is defined to be the distance from the root of an expression tree. For ex-
ample, the depths of variable occurrences c,x,xs,c in (c+(x+sum(xs,c))) are 1,2,3,3
respectively.

Deriving Parallel Codes via Invariants 81

A variety of laws, such as associativity and distributivity, will be employed in
the normalization process. These laws are assumed to be supplied by the user
beforehand. In the case of mis , we can normalize to obtain the following simpler
R-context:

λ̂〈•〉. if • ≤ α1 then •+ α2 else α3 where α1 = 0; α2 = x ; α3 = x

Finally, we parameterise the R-context with respect to context variables, and
obtain a skeletal R-context , Rmis , defined by:

Rmis(α1, α2, α3)
def≡ λ̂〈•〉. if • ≤ α1 then •+ α2 else α3

Such a normalization is helpful in the following ways:

– It can faciliate context preservation in Step 2.
– It can minimise the occurrences of context variables. This can help reduce
unnecessary auxiliary functions that are synthesized in Step 3.

Step 2 : Context Preservation
Our parallelization methodology is based on generalizing from sequential ex-

amples. This method relies on finding a second sequential equation with the same
skeletal R-context as the first equation. The second equation can be obtained by
unfolding the recursive call once, as follows.

f (x : (y : xs),
vi�n
i=1)

= σ1Er〈σ2Er〈f (xs ,
σ2 Dri〈σ1 Dri〈vi〉〉�n
i=1)〉〉

= (σ1Er ◦ σ2Er) 〈f (xs ,
(σ2 Dri ◦ σ1 Dri)〈vi〉�n
i=1)〉

where σ1 = [xs�→y : xs]; σ2 = [x�→y,
vi�→(σ1 Dri)〈vi〉�n
i=1]

In the above, (σ Er) performs substitution of variables in the context Er by
σ. Also, (σ1Er ◦ σ2Er) denotes context composition, in the obvious manner. In
the case of mis , we obtain:

mis(x : (y : xs)) = ((λ̂〈•〉. if • ≤ 0 then •+ x else x)
◦ (λ̂〈•〉. if • ≤ 0 then •+ y else y)) 〈mis(xs)〉

= (Rmis(0, x , x) ◦ Rmis(0, y, y)) 〈mis(xs)〉
Note that the respective R-contexts have been replicated by this unfold. In

order to check if the second equation has the same skeletal R-context structure
as the first equation, we must check if the following context preservation property
holds for each of our R-contexts.

Definition 4: Invariant-Based Context Preservation
A R-context E is said to be preserved modulo replication under an invariant P ,
if there exists a skeletal R-context R such that the following holds:

(E ⇒η
� R(ti)i ∈ N) ∧ P(ti)i∈ N ∧

(((R(αi)i ∈ N ◦ R(βi)i ∈ N) st (P(αi)i ∈ N ∧ P(βi)i ∈ N))
⇒η(R)

� (R(Ωi)i ∈ N st P(Ωi)i ∈ N))

82 Wei-Ngan Chin et al.

where both ⇒η
� and ⇒η(R)

� denote respectively a series of normalization trans-
formation. The former aims at normalizing the R-context E , as described in Step
1 above; the latter aims at transforming the replicated R-context to the desired
skeletal R-context R. αi and βi are context variables, and Ωi denote subterms
not containing R-hole, nor its proxies. The skeletal R-context R is said to be the
common context despite replication/unfolding. Notationwise, (e st p) denotes
an expression e that satisfies the invariant p. ✷

The term P(ti)i∈N specifies that the normalized R-context R〈ti〉i ∈ N satisfies
the invariant P ; we call it the pre-condition for R-context. The other three terms
on P ensure that all new R-context generated during context-preserving trans-
formation also satisfy P ; we call this the invariance condition for the invariant
across R-context replication. This condition can be independently expressed as:
P(αi)i ∈ N ∧ P(βi)i ∈N ⇒ P(Ωi)i ∈ N .

In the case of mis , we claim that Rmis(α1, α2, α3) is preserved modulo repli-

cation under the invariant Pmis (α1, α2, α3)
def≡ α3 ≥ α1 + α2. We will describe

how such an invariant is discovered (and verified) in Section 4. Here, we illus-
trate how Pmis can be used to preserve R-context during transformation. We
begin with the composition Rmis(α1, α2, α3) ◦ Rmis(β1, β2, β3), assuming that

the composition satisfies the invariance property P ′
mis

def≡ Pmis(α1, α2, α3) ∧
Pmis(β1, β2, β3). Note that at each transformation step, the expression under
transformation satisfies P ′

mis . Due to space constraint, we omit writing P ′
mis in

these steps, except for the first expression.

((λ̂〈•〉. if • ≤ α1 then • + α2 else α3)◦(λ̂〈•〉. if • ≤ β1 then • + β2 else β3))
st (α3 ≥ α1 + α2) ∧ (β3 ≥ β1 + β2)

⇒η(Rmis) {definition of ◦}
λ̂〈•〉. if (if • ≤ β1 then • + β2 else β3) ≤ α1 then (if • ≤ β1 then • + β2 else β3) + α2

else α3

⇒η(Rmis) {float out (• ≤ β1) & simplify}
λ̂〈•〉. if • ≤ β1 then if • + β2 ≤ α1 then • + β2 + α2 else α3

else if β3 ≤ α1 then β3 + α2 else α3

⇒η(Rmis) {flatten nested if}

λ̂〈•〉.if

8>><
>>:

(• ≤ β1) ∧ (• + β2 ≤ α1) → • + β2 + α2

(• ≤ β1) ∧ ¬(• + β2 ≤ α1) → α3

¬(• ≤ β1) ∧ (β3 ≤ α1) → β3 + α2

¬(• ≤ β1) ∧ ¬(β3 ≤ α1) → α3

⇒η(Rmis) {combine ≤ & regroup if}
λ̂〈•〉.if • ≤ min2(β1, α1 − β2) then • + β2 + α2 else

if

8<
:

(• ≤ β1) ∧ ¬(• + β2 ≤ α1) → α3

¬(• ≤ β1) ∧ (β3 ≤ α1) → β3 + α2

¬(• ≤ β1) ∧ ¬(β3 ≤ α1) → α3

Deriving Parallel Codes via Invariants 83

⇒η(Rmis) {float nonrec (β3 ≤ α1) & simplify}
λ̂〈•〉.if • ≤ min2(β1, α1 − β2) then • + β2 + α2 else

if β3 ≤ α1 then if

�
(• ≤ β1) ∧ ¬(• + β2 ≤ α1) → α3

¬(• ≤ β1) → β3 + α2
else α3

⇒η(Rmis) {simplify above box to β3 + α2, using P ′
mis}

λ̂〈•〉.if • ≤ min2(β1, α1 − β2) then • + β2 + α2 else

if β3 ≤ α1 then β3+α2 else α3

⇒η(Rmis) {extract}
λ̂〈•〉. if • ≤ Ω1 then • +Ω2 else Ω3

where Ω1 =min2(β1, α1 − β2) ;Ω2 = β2 + α2 ;
Ω3 = if β3 ≤ α1 then β3 + α2 else α3

The second last transformation step above is valid because the test (• ≤ β1)
∧ ¬(• + β2 ≤ α1) is false under the condition that • > min2(β1, α1 − β2),
β3 ≤ α1, and P ′

mis are true. In the last step, we obtain Rmis(Ω1,Ω2, Ω3). We
state without proof the validity of the invariance property:

Pmis(α1, α2, α3) ∧ Pmis(β1, β2, β3) ⇒ Pmis (Ω1,Ω2,Ω3).

The context-preserving transformation process described above is similar to
the normalization process in that we aim to simplify the R-context. However,
the former process is performed with a specific goal in mind: producing Rmis .
Goal-directed transformation can be effectively carried out by a technique
called rippling [BvHSI93], that repeatedly minimises the difference between
actual expression and the targeted skeletal R-context, Rmis . The detail of this
technique will be described in a forthcoming paper.

Step 3 : Auxiliary Function Synthesis

Successful context preservation ensures that a parallel equation can be de-
rived from its sequential counterpart. This assurance was proven in [CTH98]. To
synthesise the parallel equation for mis , we perform a second-order generalisa-
tion to obtain the following:

mis(xr++xs) = if mis(xs) ≤ uH (xr) thenmis(xs) + uG(xr) else uJ (xr)

The RHS is essentially similar to R-contexts of mis , with the exception of new
auxiliary functions (the second-order variables) uH , uG and uJ , to replace each
of the earlier context variables, {αi}i ∈ 1..3. Such functions are initially unknown.
We apply an inductive derivation procedure to synthesize their definitions. For
base case where xr = [x], inductive derivation yields:

uH ([x]) = 0 ; uG([x]) =x ; uJ ([x]) =x

For the inductive case we set xr = xa++xb, inductive derivation yields:

84 Wei-Ngan Chin et al.

uH (xa++xb) = min2(uH (xb), uH (xa) − uG(xb))
uG(xa++xb) = uG(xb) + uG(xa)
uJ (xa++xb) = if uJ (xb) ≤ uH (xa) then uJ (xb) + uG(xa) else uJ (xa)

The above result is essentially equivalent to the following substitutions:

α1 = uH (xa) α2 = uG(xa) α3 = uJ (xa)
β1 = uH (xb) β2 = uG(xb) β3 = uJ (xb)
Ω1 = uH (xa++xb) Ω2 = uG(xa++xb) Ω3 = uJ (xa++xb)

The corresponding parallel definitions are:

mis([x]) = x
mis(xr++xs) = if mis(xs) ≤ uH (xr) thenmis(xs) + uG(xr) else uJ (xr)

uH ([x]) = 0
uH (xr++xs) = min2(uH (xs), uH (xr)− uG(xs))

uG([x]) = x
uG(xr++xs) = uG(xs) + uG(xr)

uJ ([x]) = x
uJ (xr++xs) = if uJ (xs) ≤ uH (xr) then uJ (xs) + uG(xr) else uJ (xr)

Some of the functions synthesized may be identical to previously known
functions. For example, uJ is identical to mis itself. Such duplicate functions
can be detected syntactically and eliminated.

Step 4 : Tupling
While the equations derived may be parallel, they may be inefficient due to

the presence of redundant function calls. To remove this inefficiency, we perform
tupling transformation.

For mis , we remove its redundant calls by introducing the following tupled
function which returns multiple results.

mistup(xs) = (mis(xs), uH (xs), uG(xs))

After tupling, we can obtain the following efficient parallel program, whereby
duplicate calls are re-used, rather than re-computed. Note how mb , ha , ga , gb are
used multiple times in the second recursive equation.

mistup([x]) = (0, x , x)
mistup(xa++xb) =

let {(ma , ha , ga) = mistup(xa); (mb , hb , gb) = mistup(xb)}
in

(
(if mb ≤ ha thenmb + ga elsema), min2(hb, ha − gb), gb + ga

)

Deriving Parallel Codes via Invariants 85

4 Discovering Invariants

In general, it is non-trivial to preserve conditional R-context, particularly if it
has multiple R-holes. This is because the number of R-holes may multiply after
context replication. Our proposal to curbing such growth is to exploit invariant
during normalization. This new technique generalises our earlier method for
parallelization, and significantly widens its scope of application.

We have shown in Section 3 how an invariant can be used to achieve context
presevation. It remains to be seen how an invariant can be discovered. Instead
of relying on the user to provide an invariant, we achieve this eureka step by
employing constraint-solving techniques to systematically generate and verify
the invariant.

Invariant is originated from the need to facilitate normalization process dur-
ing context preservation. Specifically, constraints may be added to achieve nor-
malization; these constraints constitute the invariant. We have identified two
scenarios under which constraints may be needed during normalization, namely:
conditional laws and conditional elimination.

4.1 Conditional Laws

Some laws are conditional in nature. For example, the following four distributive
laws for ∗ over min2 and max2 are conditional upon the sign of input c.

c∗max2(a, b) = max2(c∗a, c∗b) if c ≥ 0
c∗max2(a, b) = min2(c∗a, c∗b) if c ≤ 0
c∗min2(a, b) = min2(c∗a, c∗b) if c ≥ 0
c∗min2(a, b) = max2(c∗a, c∗b) if c ≤ 0

Before these laws can be used in normalization process, we require their cor-
responding conditions to be satisfied. These conditions may become the invariant
for our R-context. Of course, we need to verify that they can be satisfied as a
pre-condition, and they obey the invariance property. An example of how such
conditional laws are applied is illustrated later in Section 5.

4.2 Conditional Elimination

During context preservation process, we may wish to eliminate some conditional
branches so as to reduce the number of R-holes. A branch can be eliminatd by
identifying constraint that is known not to be true at the branch. This constraint
may become the invariant for the corresponding R-context.

We would have encountered this situation in Section 3, if we tried to preserve
the contextual form of mis function, without any knowledge of invariant. We
repeat the problematic intermediate step of the transformation here:

λ̂〈•〉.if • ≤ min2(β1, α1 − β2) then •+ β2 + α2 else

if β3 ≤ α1 then if
{

(• ≤ β1) ∧ ¬(•+ β2 ≤ α1) → α3

¬(• ≤ β1) → β3 + α2
else α3

86 Wei-Ngan Chin et al.

At this step, there are five occurrences of •, instead of two in the original R-
context. The three extraneous occurrences of • can be found in the boxed branch
of the conditional shown in the last step of normalization.

A way to eliminate these redundant occurrences of the R-hole is to elimi-
nate one of these two branches (and thus make the test in the remaining branch
unnecessary). We therefore look for an invariant that enables such elimination.
A technique we have devised is to gather the conditions associated with the
two branches and attempt to find a constraint (exclusively in terms of either
{α1, α2, α3} or {β1, β2, β3}) that holds for either branch. If found, the corre-
sponding branch may be eliminated by using the negated constraint as invariant.
This constraint-searching technique is formulated as Ctx �B c where Ctx denotes
the condition associated with a branch, and c represents the desired constraint
expressed exclusively in terms of variables from B .

In the first branch, we obtain ¬(β3 < β1 + β2) as a candidate for invariant:

¬(• ≤ min2(β1 , α1 − β2)) ∧ β3 ≤ α1 ∧ (• ≤ β1) ∧ ¬(• + β2 ≤ α1)
�{β1 ,β2 ,β3 } β3 < β1 + β2

(1)

In the second branch, we find no candidate:

¬(• ≤ min2(β1 , α1 − β2)) ∧ β3 ≤ α1 ∧ ¬(• ≤ β1)
�{β1 ,β2 ,β3 } no constraint found (2)

If ¬(β3 < β1 + β2) is the invariant (and indeed it is), then the context-
preservation process can proceed, yielding the desired R-context form. Invariant
validation, as well as the discovery of invariant, is the job of constraint solver.

4.3 Constraint Solving via CHR

A convenient tool for solving constraints is the Constraint Handling Rules (CHR)
developed by Frühwirth [Frü98]. Using CHR, we can build tiny but specialised
constraint-solvers for operators that handle variable arguments. Currently, we
run CHR on top of a Prolog system (named ECLiPSe Prolog).

In this section, we demonstrate the use of CHR to help discover and verify the
invariant found in Section 4.2. The CHR rules defined for this problem are given
Appendix A. To discover the invariant for mis through conditional elimination,
we supply the context of rule (1) (ie., the premises) as a prolog program to
ECLiPSe Prolog (Here, Ai and Bi represent αi and βi respectively; H denotes •.
The predicates used are self-explanatory):

br1(A1,A2,A3,B1,B2,B3,H) :- minus(A1,B2,T), min2(B1,T,U), gt(H,U),
le(B3,A1), le(H,B1), add(H,B2,S), gt(S,A1).

We then ask Prolog to show us those constraints that are consistent with the con-
text. Following is the session (shortened for presentation sake) we have with Pro-
log. Note that constraints (19), (21), and (41) jointly infer that β3 < β1 + β2:

Deriving Parallel Codes via Invariants 87

[eclipse 6]: br1(A1,A2,A3,B1,B2,B3,H).
Constraints:
(19) le(H_892, B1_754)
(21) add(H_892, B2_296, _1397)
(41) lt(B3_986, _1397)
yes.
[eclipse 7]:

To verify that ¬(β3 < β1 + β2) is an invariant, we first verify its pre-condition.
Referring to the initial R-context of mis , we use CHR to verify the following
proposition:

(α1 = 0) ∧ (α2 = x) ∧ (α3 = x) � (α3 ≥ α1 + α2). (3)

To verify the invariance condition, we feed CHR with the following formula:

(α3 ≥ α1 + α2) ∧ (β3 ≥ β1 + β2) � (Ω3 ≥ Ω1 + Ω2) (4)

Algorithmically, we prove the validity of both formulae (3) and (4) by a standard
technique called refutation. That is, we attempt to find a condition under which
the negation of a formula is true. Failing to do so, we conclude that the formula
is true. Following is the Prolog program for verifying formula (4):

premise(V1,V2,V3) :- add(V1,V2,R), le(R,V3). % generic premise
omega1(A1,B1,B2,R) :- minus(A1,B2,T), min2(B1,T,R).
omega2(A2,B2,R) :- add(A2,B2,R).
omega3(A1,A2,A3,B3,R) :- le(B3,A1), add(A2,B3,R).
omega3(A1,A2,A3,B3,R) :- gt(B3,A1), R=A3.
neg_inv(A1,A2,A3,B1,B2,B3,R1,R2,R3) :- % Negated formula
premise(A1,A2,A3),premise(B1,B2,B3),omega1(A1,B1,B2,R1),
omega2(A2,B2,R2),omega3(A1,A2,A3,B3,R3),add(R1,R2,RR),gt(RR,R3).

Following is extracted from a session with ECLiPSe Prolog:

[eclipse 7]: neg_inv(A1,A2,A3,B1,B2,B3,R1,R2,R3).
no (more) solution.
[eclipse 8]:

5 MSP : A Bigger Example

Our parallelization method is not just a nice theoretical result. It is also prac-
tically useful for parallelizing more complex programs. In particular, we could
systematically handle recursive functions with conditional and tupled constructs
that are often much harder to parallelize. Let us examine a little known prob-
lem, called maximum segment product [Ben86], whose parallelization requires
deep human insights otherwise.

88 Wei-Ngan Chin et al.

Given an input list [x1, . . . , xn], we are interested to find the maximum prod-
uct of all non-empty (contiguous) segments, of the form [xi , xi+1, . . . , xj] where
1 ≤ i ≤ j ≤ n. A high-level specification of msp is the following generate-and-
test algorithm.

msp(xs) = max (map(prod , segs(xs)))

Here, segs(xs) returns all segments for an input list xs, while map(prod , segs(xs))
applies prod to each sublist from segs(xs), before max chooses the largest value.
While clear, this specification is grossly inefficient. However, it can be trans-
formed by fusion [Chi92a,TM95,HIT96] to a sequential algorithm. The trans-
formed msp, together with two auxiliary functions, mip, and mipm , were given
in Figure 1.

Functions mip and mipm are mutually recursive and not in LSR-form. Nev-
ertheless, we could use the automated tupling method of [Chi93,HITT97] to
obtain a tupled definition of miptup, as elaborated earlier in Section 2.

We focus on the parallelization of miptup as it must be parallelized before its
parent msp function. We could proceed to extract its initial R-context5 (shown
below) to check if it could be parallelized.

λ̂ 〈•〉. let (u, v) = • in if α1 > 0 then (max2(α2, α3∗u), min2(α4, α5∗v))
else (max2(α6, α7∗v), min2(α8, α9∗u))

where α1 = x ; α2 = x ; α3 = x ;α4 = x ; α5 = x ;
α6 = x ; α7 = x ; α8 = x ; α9 = x

Note the use of local variables u, v as proxies for the R-hole. The depth and
occurrences of these proxies should thus be minimised, where possible, during
normalization. Application of context preservation can proceed as follows.

(λ̂ 〈•〉. let (u, v) = • in if α1 > 0 then (max2(α2, α3∗u),min2(α4, α5∗v))
else (max2(α6, α7∗v),min2(α8, α9∗u)))

◦ (λ̂ 〈•〉. let (u, v) = • in if β1 > 0 then (max2(β2, β3∗u),min2(β4, β5∗v))
else (max2(β6, β7∗v),min2(β8, β9∗u)))

⇒η {tupled & conditional normalization}
λ̂ 〈•〉.let (u, v)=• in

if

(β1 > 0) ∧ (α1 > 0)
→ (max2(α2, α3∗max2(β2, β3∗u)) ,min2(α4, α5∗min2(β4, β5∗v)))

(β1 > 0) ∧ ¬ (α1 > 0)
→ (max2(α6, α7∗min2(β4, β5∗v)) ,min2(α8, α9∗max2(β2, β3∗u)))

¬ (β1 > 0) ∧ (α1 > 0)
→ (max2(α2, α3∗max2(β6, β7∗v)) ,min2(α4, α5∗min2(β8, β9∗u)))

¬ (β1 > 0) ∧ ¬(α1 > 0)
→ (max2(α6, α7∗min2(β8, β9∗u)) ,min2(α8, α9∗max2(β6, β7∗v)))

5 Note that the skeletal R-context always have its variables uniquely re-named to help
support reusability and the context preservation property.

Deriving Parallel Codes via Invariants 89

To normalize further, we need to distribute ∗ into max2 andmin2. This could
only be done with the set of distributive laws provided in Section 4.1.

Each of these laws has a condition attached to it. If this condition is not
present in the R-context, we must add them as required constraint before the
corresponding distributive law can be applied (Sec 4.1). Doing so results in the
following successful context preservation.

⇒η {add selected constraints & normalize further}
λ̂ 〈•〉.let (u, v) = • in

if

(β1 > 0) ∧ (α1 > 0)

→
(
max2(max2(α2, α3∗β2), (α3∗β3)∗u)),
min2(min2(α4, α5∗β4), (α5∗β5)∗v)

)

(β1 > 0) ∧ ¬ (α1 > 0)

→
(
max2(max2(α6, α7∗β4), (α7∗β5)∗v)),
min2(min2(α8, α9∗β2), (α9∗β3)∗u)

)

¬ (β1 > 0) ∧ (α1 > 0)

→
(
max2(max2(α2, α3∗β6), (α3∗β7)∗v)),
min2(min2(α4, α5∗β8), (α5∗β9)∗u)

)

¬ (β1 > 0) ∧ ¬(α1 > 0)

→
(
max2(max2(α6, α7∗β8), (α7∗β9)∗u)),
min2(min2(α8, α9∗β6), (α9∗β7)∗v)

)

st {α3 ≥ 0; α5 ≥ 0; α7 ≤ 0; α9 ≤ 0 }

⇒η {re−group branches & form skeletal R−ctx }
λ̂ 〈•〉.let (u, v) = • in if Ω1 > 0 then (max2(Ω2,Ω3∗u), min2(Ω4,Ω5∗v))

else (max2(Ω6,Ω7∗v), min2(Ω8,Ω9∗u))
where Ω1 =α1∗β1

Ω2 = if α1 > 0 thenmax2(α2, α3∗β2) elsemax2(α6, α7∗β8)
Ω3 = if α1 > 0 then α3∗β3 else α7∗β9

Ω4 = if α1 > 0 thenmin2(α4, α5∗β4) elsemin2(α8, α9∗β6)
Ω5 = if α1 > 0 then α5∗β5 else α9∗β7

Ω6 = if α1 > 0 thenmax2(α2, α3∗β6) elsemax2(α6, α7∗β4)

Ω7 = if α1 > 0 then α3∗β7 else α7∗β5

Ω8 = if α1 > 0 thenmin2(α4, α5∗β8) elsemin2(α8, α9∗β2)
Ω9 = if α1 > 0 then α5∗β9 else α9∗β3

We can now form an invariant from the constraints collected during trans-
formation. To do so, we take into consideration the conditional context in which
these constraints are used. We thus derive at the formula (α1 > 0 ⇒ α3 ≥ 0 ∧
α5 ≥ 0) ∧ (α1 ≤ 0 ⇒ α7 ≤ 0 ∧ α9 ≤ 0). We verify that this is indeed an
invariant by proving its pre-condition and invariance condition. We omit the
detail constraint solving in this paper.

Next, we synthesize the auxiliary functions needed for defining the parallel
version of miptup. After eliminating duplicated functions, we obtain:

90 Wei-Ngan Chin et al.

miptup([x]) = (x , x)
miptup(xr++xs) =

let (u, v) = miptup(xs)
in if uH 1(xr) > 0 then

(max2(uH 2(xr), uH 1(xr)∗u),min2(uH 4(xr), uH 1(xr)∗v))
else (max2(uH 2(xr), uH 1(xr)∗v),min2(uH 4(xr), uH 1(xr)∗u))

uH 1([x]) = x
uH 1(xr++xs) = uH 1(xr)∗uH 1(xs)

uH 2([x]) = x
uH 2(xr++xs) = if uH 1(xr) > 0 thenmax2(uH 2(xr), uH 1(xr)∗uH 2(xs))

elsemax2(uH 2(xr), uH 1(xr)∗uH 4(xs))

uH 4([x]) = x
uH 4(xr++xs) = if uH 1(xr) > 0 thenmin2(uH 4(xr), uH 1(xr)∗uH 4(xs))

elsemin2(uH 4(xr), uH 1(xr)∗uH 2(xs))

Finally, by tupling the definitions of uH 2 and uH 4 together, we obtain a
tupled function that is identical to the components of miptup. Consequently, we
can derive a very compact parallel algorithm shown below.

miptup([x]) = (x , x)
miptup(xr++xs) =

let (a, b) = miptup(xr); (u, v) = miptup(xs)
in if uH 1(xr) > 0 then (max2(a, uH 1(xr)∗u),min2(b, uH 1(xr)∗v))

else (max2(a, uH 1(xr)∗v),min2(b, uH 1(xr)∗u))
uH 1([x]) = x
uH 1(xr++xs) = uH 1(xr)∗uH 1(xs)

With these equations, we can proceed to parallelize the parent function
msptup using context preservation and normalization. Its parallel equations are:

msp(xr++xs) = let (a, b) = miptup(xr); (u, v) = miptup(xs)
inmax2(max2(max2(msp(xr),msp(xs)),

max2(mfp(xr) + a,mfp(xr) + b)),
max2(mfpm(xr) + a,mfpm(xr) + b))

mfp([x]) = x
mfp(xr++xs) = if uH 1(xs) > 0 thenmax2(mfp(xr)∗uH 1(xs),mfp(xs))

elsemax2(mfpm(xr)∗uH 1(xs),mfp(xs))

mfpm([x]) = x
mfpm(xr++xs) = if uH 1(xr) > 0 thenmin2(mfpm(xr)∗uH 1(xs),mfpm(xs))

elsemin2(mfp(xr)∗uH 1(xs),mfpm(xs))

Tupling can again be applied to obtain a work-efficient parallel program.

Deriving Parallel Codes via Invariants 91

6 Related Works

Generic program schemes have been advocated for use in structured parallel
programming, both for imperative programs expressed as first-order recurrences
through a classic result of [Sto75] and for functional programs via Bird’s ho-
momorphism [Ski90]. Unfortunately, most sequential specifications fail to match
up directly with these schemes. To overcome this shortcoming, there have been
calls to constructively transform programs to match these schemes, but these
proposals [Roe91,GDH96] often require deep intuition and the support of ad-
hoc lemmas – making automation difficult. Another approach is to provide more
specialised schemes, either statically [PP91] or via a procedure [HTC98], that
can be directly matched to sequential specification. Though cheap to operate,
the generality of this approach is often called into question.

On the imperative language (e.g. Fortran) front, there have been interests in
parallelization of reduction-style loops. A work similar to ours was independently
conceived by Fischer & Ghoulum [FG94,GF95]. By modelling loops via functions,
they noted that function-type values could be reduced (in parallel) via associative
function composition. However, the propagated function-type values could only
be efficiently combined if they have a template closed under composition. This
requirement is similar to the need to find a common R-context under recursive
call unfolding, which we discovered earlier in [Chi92b]. Being based on loops,
their framework is less general and less formal. No specific techniques, other
than simplification, have been offered for checking if closed template is possible.
Also, without invariant handling, their approach is presently limited.

The power of constraints have not escaped the attention of traditional work
on finding parallelism in array-based programs. Through the use of constraints,
Pugh showed how exact dependence analysis can be formulated to support bet-
ter vectorisation[Pug92]. Our work is complimentary to Pugh’s in two respects.
Firstly, we may take advantage of practical advances in his constraint technology.
Secondly, we tackle a different class of reduction-style sequential algorithms, with
inherent dependences across recursion. Thus, instead of checking for the absence
of dependence, we transform the sequential dependences into divide-and-conquer
counterparts with the help of properties, such as associativity and distributivity.
We originally planned to use the Omega calculator for our constraint solving.
However, some of our problems (e.g. msp) require constraints that fall outside
the linear arithmetic class accepted by Pugh’s system. This forces us to turn to
CHR to build our own specialised constraint solvers.

7 Conclusion

We have presented a systematic methodology for parallelizing sequential pro-
grams. The method relies on the successful preservation of replicated R-contexts
for the recursive call and each accumulative argument. The notion of context
preservation is central to our parallelization method. A key innovation in this
paper is the introduction of invariants to obtain context preservation. To support

92 Wei-Ngan Chin et al.

this, some constraint-solving techniques have been proposed. Finally, we demon-
strated the power of our methodology by applying it to parallelize a non-trivial
problem: maximum segment product.

We are currently working on an implementation system to apply con-
text preservation and invariant verification semi-automatically. Apart from the
heuristic of minimising both the depths and number of occurrences of R-holes,
we have also employed the rippling technique [BvHSI93], which has been very
popular in automated theorem-proving. It may also be possible for our method
to recover from failures when a given R-context could not be preserved. In partic-
ular, the resulting context may suggest either a new or a generalized R-context
that could be attempted. This much enhanced potential for parallelization is
made possible by our adoption of appropriate strategies and techniques (includ-
ing constraint handling) for guiding their applications.

Acknowledgment

The authors would like to thank the anonymous referees for their comments.
This work was supported by the research grant RP3982693.

References

BCH+93. G.E. Blelloch, S Chatterjee, J.C. Hardwick, J. Sipelstein, and M. Zagha. Im-
plementation of a portable nested data-parallel language. In 4th Principles
and Practice of Parallel Programming, pages 102–111, San Diego, California
(ACM Press), May 1993. 75

Ben86. Jon Bentley. Programming Pearls. Addison-Wesley, 1986. 87
Ble90. Guy E. Blelloch. Vector Models for Data Parallel Computing. MIT Press,

Cambridge, MA, 1990. 75
BvHSI93. A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Rippling: A heuristic

for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993. 83,
92

CDG96. W.N. Chin, J Darlington, and Y. Guo. Parallelizing conditional recurrences.
In 2nd Annual EuroPar Conference, Lyon, France, (LNCS 1123) Berlin Hei-
delberg New York: Springer, August 1996. 79

Chi92a. Wei-Ngan Chin. Safe fusion of functional expressions. In 7th ACM LISP and
Functional Programming Conference, pages 11–20, San Francisco, California,
June 1992. ACM Press. 88

Chi92b. Wei-Ngan Chin. Synthesizing parallel lemma. In Proc of a JSPS Seminar on
Parallel Programming Systems, World Scientific Publishing, pages 201–217,
Tokyo, Japan, May 1992. 91

Chi93. Wei-Ngan Chin. Towards an automated tupling strategy. In ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipu-
lation, pages 119–132, Copenhagen, Denmark, June 1993. ACM Press. 79,
88

CTH98. W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation.
In IEEE Intl Conference on Computer Languages, Chicago, U.S.A., May
1998. IEEE CS Press. 75, 77, 80, 83

Deriving Parallel Codes via Invariants 93

FG94. A.L. Fischer and A.M. Ghuloum. Parallelizing complex scans and reduc-
tions. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 135–136, Orlando, Florida, ACM Press, 1994.
91

Frü98. Thom Frühwirth. Theory and practice of constraint handling rules. Journal
of Logic Programming, 37((1–3)):95–138, Oct 1998. 86

GDH96. Z.N. Grant-Duff and P. Harrison. Parallelism via homomorphism. Parallel
Processing Letters, 6(2):279–295, 1996. 91

GF95. A.M. Ghuloum and A.L. Fischer. Flattening and parallelizing irregular ap-
plications, recurrent loop nests. In 3rd ACM Principles and Practice of
Parallel Programming, pages 58–67, Santa Barbara, California, ACM Press,
1995. 91

HIT96. Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms
from recursive definitions. In ACM SIGPLAN International Conference on
Functional Programming, pages 73–82, Philadelphia, Pennsylvannia, May
1996. ACM Press. 88

HITT97. Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation elimi-
nates multiple traversals. In 2nd ACM SIGPLAN International Conference
on Functional Programming, pages 164–175, Amsterdam, Netherlands, June
1997. ACM Press. 79, 88

HTC98. Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms.
In 25th Annual ACM Symposium on Principles of Programming Languages,
pages 316–328, San Diego, California, January 1998. ACM Press. 91

PP91. SS. Pinter and RY. Pinter. Program optimization and parallelization us-
ing idioms. In ACM Principles of Programming Languages, pages 79–92,
Orlando, Florida, ACM Press, 1991. 91

Pug92. William Pugh. The omega test: A fast practical integer programming algo-
rithm for dependence analysis. Communications of ACM, 8:102–114, 1992.
91

Roe91. Paul Roe. Parallel Programming using Functional Languages (Report CSC
91/R3). PhD thesis, University of Glasgow, 1991. 91

Ski90. D. Skillicorn. Architecture-independent parallel computation. IEEE Com-
puter, 23(12):38–50, December 1990. 91

Sto75. Harold S. Stone. Parallel tridiagonal equation solvers. ACM Transactions
on Mathematical Software, 1(4):287–307, 1975. 91

TM95. A. Takano and E. Meijer. Shortcut deforestation in calculational form. In
ACM Conference on Functional Programming and Computer Architecture,
pages 306–313, San Diego, California, June 1995. ACM Press. 88

A A Tiny Constraint Solver in CHR

In CHR, we define both simplification and propagation rules for constraints over
variables. Simplification rules are used by CHR to replace existing constraints
with simpler, logically equivalent, constraints, whereas propagation rules add
new constraints which are logically redundant but may cause further simplifica-
tion. The CHR rules used in the case of mis is defined below:

%% Rules for Negation.
ne(A,B) <=> A=B | fail. % "<=>" is a simplification rule

94 Wei-Ngan Chin et al.

ne(A,B) ==> ne(B,A). % "==>" is a propagation rule
%% Rules for inequalities.
le(A,B) <=> A=B | true. % reflexive
le(A,B),le(B,A) <=> A = B. % antisymmetry
le(A,B),le(B,C) ==> le(A,C). % transitive

lt(A,B) <=> A=B | fail. % non-reflexive
lt(A,B),le(B,A) <=> fail. % asymmetry
le(A,B),lt(B,A) <=> fail. % asymmetry
lt(A,B),lt(B,A) <=> fail. % asymmetry
lt(A,B),le(B,C) ==> lt(A,C). % transitive
le(A,B),lt(B,C) ==> lt(A,C). % transitive
lt(A,B),lt(B,C) ==> lt(A,C). % transitive
le(A,B), ne(A,B) <=> lt(A,B).
ge(A,B) <=> le(B,A).
gt(A,B) <=> lt(B,A).
%% Rules for addition.
add(X,Y,Z) <=> Y=0 | X=Z. % zero
add(X,Y,Z) <=> X=Z | Y=0. % zero
add(X,Y,Z) ==> add(Y,X,Z). % commutative
add(X,Y,Z), add(Z,U,W) ==> add(Y,U,R),add(X,R,W). % associative
add(X1,Y,Z1), add(X2,Y,Z2) ==> le(Z1,Z2) | le(X1,X2). %
add(X1,Y,Z1), add(X2,Y,Z2) ==> lt(X1,X2) | lt(Z1,Z2). %
add(X1,Y,Z1), add(X2,Y,Z2) ==> lt(Z1,Z2) | lt(X1,X2). %
add(X1,Y,Z1), add(X2,Y,Z2) ==> gt(X1,X2) | gt(Z1,Z2). %
add(X1,Y,Z1), add(X2,Y,Z2) ==> gt(Z1,Z2) | gt(X1,X2). %
%% Rules for subtraction
minus(X,Y,Z) <=> add(Y,Z,X). % normalise
%% Rules for minimum operation.
min2(A,B,C) <=> gt(A,B) | C = B.
min2(A,B,C) <=> le(A,B) | A = C.
min2(A,B,C) ==> min2(B,A,C). % commutative
min2(A,B,C),min2(C,D,E) ==> min2(B,D,F),min2(A,F,E). % associative
%% Rules for maximum operation.
max2(A,B,B) <=> min2(A,B,A).

Safety of Strictness Analysis via Term Graph

Rewriting

David Clark1, Chris Hankin1, and Sebastian Hunt2

1 Department of Computing, Imperial College, London SW7 2BZ
{djc,clh}@doc.ic.ac.uk

2 Department of Computing, City University, London EC1V 0HB
seb@soi.city.ac.uk

Abstract. A safe abstraction is presented for a restricted form of term
graph rewriting. This abstraction can be seen as a formalisation of the
rewrite system employed by the strictness analyser in the Concurrent
Clean compiler. Programs written in a core functional language are in-
terpreted as graph rewriting systems using a form of equational term
graph rewriting due to Ariola and Arvind. Abstract graphs are defined
by extending the signature of ordinary graphs and it is shown how to
extend a rewriting system on ordinary graphs to one on abstract graphs.
An abstraction relation between abstract graphs is used to define a no-
tion of safety with respect to a variant of Ariola and Arvind’s direct
approximation semantics, and this notion of safety is shown to be ade-
quate for strictness analysis. Abstract reduction is defined as the union
of the extended rewrite system with additional ‘heuristic’ reductions and
shown to be safe.

1 Introduction

In this paper we present a safe abstraction for a restricted form of term graph
rewriting system and show how it can form the basis of a strictness analyser for
an untyped core functional language. This work grows out of work by Eric Nöcker
on the strictness analyser used in the Clean compiler [16, 17] and subsequent
attempts to provide a satisfactory formal account of the method.

1.1 Background

Nöcker’s 1988 paper on the strictness analyser used in the Clean compiler [16, 17]
did not give a formal account of the algorithm. Claims made for the algorithm
included the ability to find higher order strictness information, a high speed of
execution of the algorithm and a high speed of execution of the resulting code.
(Apart from some material in Nöcker’s thesis [18] little has been published to
back up these claims.) As a method of strictness analysis it seems formidable in
practice but the lack of a formalisation meant that it was not possible to prove
that the algorithm was correct. Surprisingly, this has remained the situation
until the time of writing.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 95–114, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

96 David Clark et al.

The algorithm can be seen as having two parts: a method of rewriting so-
called abstract graphs together with a collection of heuristics which are used to
safely force termination of rewrite sequences. In this paper we provide the first
complete account of the first part of the algorithm and account for some, but
not all, of the heuristics.

The Clean strictness analyser works by manipulating abstract graphs, which
are just graphs over an extended signature. The additional symbols in the ex-
tended signature are used to allow a single abstract graph to represent a set of
ordinary graphs. In this, Nöcker’s work is clearly inspired by abstract interpre-
tation [10, 1, 15]. The intuitions behind the symbols used to construct abstract
graphs are as follows: ⊥ represents Ω, the undefined graph; � represents all
graphs; union symbols (rendered as ⊕ below) are used to represent a point of
non-deterministic choice within an abstract graph. (In the formalisation of the
current paper, ⊥ is indistinguishable from Ω and so the only additional symbols
used are � and ⊕.)

1.2 Related Work

There are a number of earlier papers which attempt to formalise the algorithm.
We briefly review these.

The first and (hitherto) most complete formal account of the strictness anal-
yser, is found in a pair of papers by Goubault et al [12, 22], which show how to
place the algorithm into an abstract interpretation framework. The first of these
papers [12] uses the syntax of abstract graphs to define a class of the lattices
required by abstract interpretation: each abstract graph is unravelled to a set of
regular trees and a standard ordering on trees is used to induce an ordering on
abstract graphs. There are two drawbacks with this approach. Firstly, sharing
information is lost. Secondly, to have a lattice based on regular trees, graphs
containing cycles via ⊕ have to be disallowed and precisely such graphs are used
in a key way in the Clean strictness analyser to represent lists. The second pa-
per [22] shows the rewriting of abstract graphs and the heuristics to be safe for
this restricted class of abstract graphs.

Nöcker, a co-author of [22], made another attempt to formalise the algorithm
in a paper [18] which gives a formal framework for abstract reduction for term
rewriting. The paper speculates on extending the formalisation to term graphs
via infinitary term rewriting but falls short of completing the extension. Hankin
and Clark [8] attempted to improve upon the the ordering in [12] but their
ordering also excludes cycles via ⊕.

The approach taken by Schütz et al [20] is, in effect, to do away with union
symbols altogether and develop a theory based on non-deterministic rewriting.
(The paper does contain a brief informal description of how unions are used to
obtain an efficient implementation. No attempt is made to formalise this use of
unions or prove it correct.) The result is interesting but it uses term rewriting
rather than graph rewriting and so does not apply directly to the Clean strictness
analyser. However this work inspired a related approach to term graph rewriting
by Clark [9] which sketched a proof for the correctness of abstract reduction.

Safety of Strictness Analysis via Term Graph Rewriting 97

Although our formalisation is not presented as an abstract interpretation,
there are striking similarities (see Sect. 7). Despite these similarities, it is not
yet clear whether our approach can be alternatively formalised as an abstract
interpretation.

One distinctive feature of our work (and Nöcker’s original work) is that while
⊕ seems to play the role taken by � in abstract interpretation, it is treated
in a purely syntactic manner, not as the join operation in a lattice. In this,
our work is reminiscent of Chuang and Goldberg’s syntactic approach to fixed
point computation [7]. More generally, the use of direct syntactic/operational
approaches in reasoning about program behaviour has proved very successful in
recent years (see [11] for some good examples). An example which is close in
spirit to the style of reasoning employed in the current paper is the use of the
notion of subject-reduction in the work of Wright and Felleisen [25].

1.3 Our Contribution

In the current paper we avoid the limitations of earlier approaches by working
directly with graphs, defining an abstraction relation between abstract graphs,
and defining a weak notion of homomorphism which allows us to compare ab-
stract graphs directly without unravelling. Our definitions do not give us a lattice
of abstract graphs. Nonetheless, as we show, using these definitions it is possible
to state and prove safety in a direct operational manner.

We believe that our formalisation is complete with respect to the clean strict-
ness analyser, in the following sense: all those abstract graphs which are used in
the analyser are allowed by our framework and we conjecture that no alterna-
tive to our notion of safety will allow more strictness properties to be inferred
from the results of abstract reduction. However, our work does not constitute
a complete proof of correctness for the analyser since it does not address the
‘loop detection’ heuristics which are used to force termination (see Sect. 6 and
Sect. 7).

1.4 Outline

In Sect. 2 we define a functional language and interpret its programs as term
graph rewriting systems of a restricted form (which we call simple functional
GRSs). In Sect. 3 we define abstract graphs and an abstraction relation between
ordinary and abstract graphs, and show how a simple functional GRS on ordinary
graphs can be extended to one on abstract graphs. In Sect. 4 we define a variant
of a direct approximation style semantics for our restricted class of rewriting
systems. In Sect. 5 we state our notion of safety using this semantics and show it
to be adequate for strictness analysis. In Sect. 6 we define abstract reduction and
show how to prove it safe by establishing that it commutes with the extended
simple functional GRS introduced in Sect. 3. Finally, in Sect. 7 we summarise
and suggest directions for future work. Proofs of key results are sketched in an
appendix.

98 David Clark et al.

2 Graph Rewriting Systems

Following Barendsen and Smetsers [6], we describe a core functional language
and show how its programs can be interpreted as term graph rewriting systems.

Let x, y, z range over a set Var of variables. A set F of function symbols
and a set C of constructor symbols, determines a signature S = F ∪ C. All
symbols in S are assumed to have a fixed arity: let Sk (Fk, Ck) denote the
subset of symbols in S (F , C) having arity k ≥ 0 and let Sk (F k, Ck) range
over Sk (Fk, Ck).

The syntax of a core functional language of supercombinators is as follows.

T ::= x |Sk(T1, . . . , Tk) | let x1 = T1, . . . , xn = Tn in T |
case T of P1 → E1; . . . ;Pk → Ek

P ::= Ck(x1, . . . , xk)

In let x1 = T1, . . . , xn = Tn in T , each xi is bound in all Ti as well as in T (so
this let is really a letrec). Function definitions are equations (one per function
symbol F) of the form F (x) = T .

Higher order functions are modelled in a standard way [13] by allowing partial
applications of functions to less than their complete complement of arguments.
This is done by requiring F to contain a binary application symbol @ and, for
each k ≥ 1, F ∈ Fk, 0 ≤ j < k, requiring Cj to contain a constructor symbol Cj

F .
Then Cj

F (E1, . . . , Ej) represents the partial curried application FE1 . . . Ej and
the meaning of @ is given by equations of the form:

@(Cj
F (x), y) = C

j+1
F (x, y) @(Ck−1

F (x), y) = F (x, y).

To interpret programs in this language as graph rewriting systems, we use
a restricted version of a form of equational term graph rewriting due to Ariola
and Arvind [3]. This form of graph rewriting corrects a defect in the earlier work
of Barendregt et al [5] concerning collapsing rules and cycles (see Ariola and
Klop [2] for a discussion). The solution depends on the use of a special ‘unboxed’
constant �, where the key feature of unboxed constants is that they can be
freely substituted for variables in the terms used to represent graphs. We use
the formalism of Ariola and Arvind [3], rather than that of Ariola and Klop [2],
because we exploit the distinction between boxed and unboxed constants (� is
unboxed) and because a variant of the graph model in the former allows us to
define safety of our abstraction in a natural way.

Definition 2.1 (GRS Term). Let UC denote some subset of C0 ∪ {�} nomi-
nated as the unboxed constants1. We require that � ∈ UC. Let v, w range over
Var ∪ UC. The GRS terms over signature S, denoted Ter(S), are defined as
follows:

L,M,N ::= let {x1 = E1, . . . , xn = En} in v

E ::=M | v |Sk(v1, . . . , vk) |Ω
1 In [3] all nullary symbols are unboxed.

Safety of Strictness Analysis via Term Graph Rewriting 99

Here and in the remainder of the paper, writing Sk(v) should be taken to im-
ply Sk �∈UC in the case that k = 0.

In a term M = let {x = E} in v, the order of bindings is irrelevant, all xi

are required to be distinct and are bound in all Ei as well as v (so let is a letrec).
The sets FV(M) and BV(M) of the free and bound variables, respectively, of M
are defined in the usual way. Ter◦(S) denotes the closed terms.

The root of M , denoted root(M), is v.

In [3], a unique canonical form is defined for each term by flattening nested
lets, removing ‘trivial’ bindings of the form x = v and substituting v everywhere
for x, and removing garbage. This is formalised in [3] as a strongly normalising
reduction system on terms. For example, the reduction rule for flattening has
the form:

let {x = E, y = let {x′ = E′} in w,x′′ = E′′} in v
→ let {x = E, y = w,x′ = E′,x′′ = E′′} in v

(assuming all bound variables distinct and the bound and free variables disjoint).
Removal of trivial bindings is straightforward apart from those of the form x = x
(the substitution has no effect, so removal of the binding would result in x
becoming free): these are dealt with by substituting � for x.

Definition 2.2 (Canonical Form). A term let {x = E} in v is in canonical
form if:

1. each Ei is either Ω or of the form Sk(v1, . . . , vk) ;
2. each xi is reachable from v (the term is garbage free).

Let M denote the result of flattening and removal of trivial bindings, and let
GC(N) denote N with garbage removed. Then GC(M) is said to be the canonical
form for M .

Terms M and N are said to be graph equivalent, written M ≡ N , if the
canonical forms for M and N are the same up to renaming of bound variables.

Canonical forms correspond in an obvious way to rooted labelled digraphs which
are finite and connected. As an example, consider the term

let {x′ = let {x = A(y, z), z = Ω} in x, y = F (x′, y′), y′ = C} in x′.

Assuming C ∈ UC, this has canonical form let {x = A(y, z), y = F (x,C), z =
Ω} in x, which directly corresponds to the following graph:

C

F

A

Ω

100 David Clark et al.

Predicates and relations defined on terms in canonical form are to be under-
stood as being implicitly extended to arbitrary terms via their canonical forms.
For example, the rooted homomorphism preorder � (see Def. 2.4) is extended
to arbitrary terms thus: M � N iff GC(M) � GC(N).

The correspondence between canonical forms and graphs makes it possible
to transpose many familiar graph definitions to terms in canonical form.

Definition 2.3 (Label, Vertex, Edge, Path). Let M = let {x = E} in v be
in canonical form.

1. For x ∈ BV(M) such that x is not bound to Ω, the label for x is the unique
S ∈ S such that x is bound to S(y).

2. The set of vertices of M , denoted vert(M), is FV(M) ∪ BV(M) ∪UC.
3. An edge2 in M is a pair (x, v) of vertices of M such that x = Sk(v1, . . . , vk)

is a binding in M with v = vj for some 1 ≤ j ≤ k.
4. For n ≥ 0, a path of length n in M is a sequence v0 · · · vn of n+ 1 vertices

of M , such that, for every 0 ≤ i < n, (vi, vi+1) is an edge in M .

Definition 2.4 (Homomorphism). Given termsM and N in canonical form,
a homomorphism from M to N is a map σ : vert(M)→ vert(N) such that:

1. σ(v) = v, if v �∈BV(M) ;
2. if x is bound to Sk(v) in M , then σ(x) is bound to Sk(σ(v)) in N .

(We write σ(v) to mean σ(v1), . . . , σ(vk).) If, furthermore, σ(root(M)) =
root(N), then σ is called a rooted homomorphism and we write σ :M � N . We
write M � N to mean that there exists such a σ.

Note that if x is bound to Ω in M , it is not necessary to have σ(x) bound to
Ω in N (or, indeed, even to have σ(x) ∈ BV(N)).
It is easily verified that (rooted) homomorphisms compose and that the identity
is a rooted homomorphism, hence � is a preorder (which, in fact, induces ≡).

We now introduce Ariola and Arvind’s formalisation of the general notion of
term graph rewrite rule.

Definition 2.5 (GRS Rewrite Rule). A GRS rewrite rule (henceforth, just
rewrite rule) ρ has the form:

z = El, x1 = E1, . . . , xn = En

z → Er

(n ≥ 0) where, letting lhs(ρ) denote the term let {z = El, x1 = E1, . . . , xn =
En} in z and letting rhs(ρ) denote Er:

1. lhs(ρ) is in canonical form and does not contain Ω (thus El and each Ei

must be of the form Sk(v));
2 The notions of edge and path defined here contain less information than the standard
ones but are sufficient for our purposes. The standard ones can be defined in similar
fashion.

Safety of Strictness Analysis via Term Graph Rewriting 101

2. FV(rhs(ρ)) ⊆ FV(lhs(ρ)) ∪ BV(lhs(ρ)).
The closure of lhs(ρ) is let {y = Ω, x = E, z = El} in z where y =

FV(lhs(ρ)).

Note that the function/constructor distinction plays no role in the above defini-
tion. This notion of rewrite rule is actually far too general for our purposes and
so below (Def. 2.8) we define a restricted form which is adequate for the core
functional language described above.

Definition 2.6 (Redex). Let P be a set of rewrite rules. Given term M in
canonical form, a P -redex in M is a pair (ρ, σ), where ρ is in P and σ is a
homomorphism from the closure of lhs(ρ) to M .

Let L be the closure of lhs(ρ). Then σ(root(L)) (which is necessarily in
BV(M)) is known as the root of the redex. Note that the domain of σ con-
tains FV(rhs(ρ)).

Definition 2.7 (Rewrite). Let P be a set of rewrite rules, let M = let {x1 =
E1, . . . , xn = En} in v and let ∆ = (ρ, σ) be a P -redex in M . Let xi be the root
of ∆. M is said to rewrite to GC(N) by ∆ if N =M [xi ← (rhs(ρ))σ], where Eσ

denotes the application of σ as a substitution on the free variables of E, and
M [xi ← E] denotes the term let {x1 = E1, . . . , xi = E, . . . , xn = En} in v.

If M rewrites to M ′ by some P -redex ∆, we write M P−→M ′. We write P−→−→
for the transitive reflexive closure of P−→ and we write P−→= for the reflexive
closure.

Definition 2.8 (Simple Functional GRS). A rewrite rule ρ is said to be
left-linear if the graph represented by lhs(ρ) is a tree. A simple functional GRS
over S is a set p of left-linear rewrite rules of a limited form, namely, for each
function symbol F ∈ F :

1. either a single rewrite rule of the form

z = F (y)
z → E

(note that y is a vector of variables, not arbitrary vertices);
2. or a family of n rewrite rules, each of either of the following two forms:

z = F (y0,y), y0 = Ci(xi)
z → Ei

z = F (Ci,y)
z → Ei

,

with each Ci a distinct constructor symbol, 1 ≤ i ≤ n.
When function symbol F is defined by a family of rules as in (2) we say that F
is pattern-matching.

Any program written in the core functional language described at the begin-
ning of this section can be translated in a straightforward manner into a simple

102 David Clark et al.

functional GRS. In essence, each use of case is translated to a pattern-matching
function definition (in general, this will involve lifting the locally bound variables
of a case to the top level, as in lambda-lifting). See Barendsen and Smetsers [6]
for examples.

Say that α−→ subcommutes with
β−→ if α←−; β−→ ⊆ β−→=;=

α←−. A rewrite re-
lation is said to be subcommutative if it subcommutes with itself. It is a standard
result that subcommutativity implies confluence (see eg [14]).

Proposition 2.9. The rewrite relation generated by a simple functional GRS is
subcommutative, hence confluent, up to ≡.

Proof. The restrictions placed on the form of rules allowed in a simple functional
GRS ensure that the rules are non-overlapping (non-interfering in the terminol-
ogy of [3]). Subcommutativity is immediate by Theorem 4.8 in [3]. ��

3 Abstracting a Simple Functional GRS

In this section we define abstract GRS terms as a superset of the ordinary GRS
terms and go on to define an abstraction relation on abstract terms. We then
define a way of extending a simple functional GRS on ordinary terms to one on
abstract terms.

Definition 3.1 (Abstract GRS Term). An abstract GRS term over S is a
GRS term over the signature S# = F ∪ C#, where C# is C plus the following
(assumed new) constructor symbols:

1. �, of arity 0, � ∈ UC;
2. for each k ≥ 1, the union symbol ⊕k of arity k (we will often omit the

superscript k).

Let H, J,K range over abstract terms.

Note that the abstract terms over S include the terms over S as a special case:
Ter(S) ⊂ Ter(S#).

Our formalisation of the meaning of ⊕ is provided below by the notions of
choice set and weak homomorphism. The first of these goes to heart of our graph-
based approach, showing how each vertex labelled ⊕ is used to represent a set
of non-⊕ vertices.
Definition 3.2 (Choice Set). Let H be an abstract term in canonical form.
Given v ∈ vert(H), a choice path for v is a path v = v0, . . . , vn in M such that,
for all 0 ≤ i < n, vi is labelled ⊕. Let the set of definite vertices of H, denoted
dvert(H), be the set {v ∈ vert(H) | v is not labelled ⊕}.

The choice set for v ∈ vert(H), denoted χ(v), is the smallest set X ⊆
dvert(H) such that:

1. � ∈ X if there is a choice path v = v0 · · · vi · · · vn = vi with 0 ≤ i < n ;
2. v′ ∈ X if there is a choice path v = v0 · · · vn = v′ and v′ is not labelled ⊕.

Safety of Strictness Analysis via Term Graph Rewriting 103

Lemma 3.3. If v ∈ dvert(H) then χ(v) = {v}. If x is bound to ⊕k(v) in H,
then χ(x) = χ(v1) ∪ · · · ∪ χ(vk).
The definition of homomorphism (Def. 2.4) requires that all labels are preserved.
Given the role played by⊕ labels, it is inappropriate to require them to be strictly
preserved when comparing abstract graphs. The following provides a weakening
of the notion of homomorphism which reflects the special status of ⊕:
Definition 3.4 (Weak Homomorphism). Given abstract terms H and J in
canonical form, a weak homomorphism from H to J is a map σ : dvert(H) →
dvert(J) such that:

1. σ(v) = v, if v �∈BV(H) ;
2. if x is bound to Sk(v) in H, Sk �= ⊕k, then σ(x) is bound to Sk(w) in J

and ∀i, 1 ≤ i ≤ k. ∀v ∈ χ(vi). σ(v) ∈ χ(wi).

If, furthermore, ∀v ∈ χ(root(H)). σ(v) ∈ χ(root(J)), then σ is called a rooted
weak homomorphism and we write σ : H � J . We write H � J to mean that
there exists such a σ.

It is easily verified that (rooted) weak homomorphisms compose and that the
identity is a rooted weak homomorphism, hence � is a preorder.

Example 3.5 (Weak Homomorphism).

�

G

A

F

G

� B

�

�

G

⊕

A B

F

There is a unique rooted weak homomorphism σ which maps the nodes labelled
F, G, A, B on the left to their counterparts on the right (we assume neither A or
B is unboxed). Since � is unboxed, the definition of weak homomorphism forces
σ(�) = �. Note that, like a homomorphism, a weak homomorphism cannot
decrease sharing. Hence there is no weak homomorphism from right to left.

The notions of choice set and weak homomorphism capture the meaning of
⊕ but they do not say anything about the meaning of �. To do this we define a
relation between abstract terms as follows:

Definition 3.6 (Abstraction Morphism). Given abstract terms H and J ,
both in canonical form, let τ : dvert(H) → dvert(J). The relation ≤τ ⊆
dvert(H) × dvert(J) is defined as follows: v ≤τ w iff w = τ(v) ∨ w = �. Then
τ is an abstraction morphism from H to J if:

1. τ(v) = v, if v �∈BV(H) ;
2. if x is bound to Sk(v) in H, Sk �= ⊕k, then either τ(x) = �, or τ(x) is

bound to Sk(w) in J and ∀i, 1 ≤ i ≤ k. ∀v ∈ χ(vi). ∃w ∈ χ(wi). v ≤τ w.

104 David Clark et al.

If, furthermore, ∀v ∈ χ(root(H)). ∃w ∈ χ(root(J)). v ≤τ w, then τ is called
a rooted abstraction morphism and we write τ : H �∼ J . We say that H is
abstracted by J , written H �∼ J , if there exists such a τ .

It is easily verified that (rooted) abstraction morphisms compose and that the
identity is a rooted abstraction morphisms, hence �∼ is a preorder. Clearly, all
terms are abstracted by �.
Example 3.7 (Abstraction).

A

G

F

G

B

�∼

�

G

F

⊕

A B

There is a unique rooted abstraction morphism τ from left to right. Note that τ
must map the two vertices labelled G on the left to a single vertex on the right.

Note the similarity between the definition of abstraction morphism and the defi-
nition of weak homomorphism. In fact, abstraction can be seen as a conservative
extension of weak homomorphism, which in turn can be seen as a conservative
extension of �, as shown by the following lemma:

Lemma 3.8. 1. � ⊆ � ⊆ �∼ .
2. �∼ restricts to � on terms not containing �.
3. � restricts to � on terms not containing ⊕.

We now define a simple functional GRS p# for rewriting abstract graphs.
The main burden of our remaining technical development is to define an ap-
propriate notion of safety and to show that rewriting abstract graphs using p#
safely approximates the rewriting of ordinary graphs using p. Unlike previous
approaches (eg [17, 22]), we do not define an abstract evaluator based on an ab-
stract notion of pattern matching. Instead, we provide rewrite rules which apply
whenever ⊕ or � occur in the pattern position for a pattern-matching function.

Definition 3.9 (Extension of a Simple Functional GRS). Let p be a simple
functional GRS. Then the extension of p to abstract terms, denoted p#, is p
extended with additional rules for each pattern-matching F as follows: let the
rule set for F in p comprise n rules, each of either of the two forms:

z = F (y0,y), y0 = Ci(xi)
z → Ei

z = F (Ci,y)
z → Ei

,

We add to p# the following rules:

Safety of Strictness Analysis via Term Graph Rewriting 105

1.

z = F (y0,y), y0 = ⊕k(z1, . . . , zk)
z → H

for each ⊕k, where H is the term

let {z′ = ⊕k(z′1, . . . , z
′
k), z

′
1 = F (z1,y), . . . , z

′
k = F (zk,y)} in z′

(z′ and each zi, z′i fresh). We call these the ⊕-lifting rules.
2.

z = F (�,y)
z → J

where J is the term3

let {z′ = ⊕n(z1, . . . , zn), z1 = Eσ
1 , . . . , zn = E

σ
n} in z′,

(each zi fresh) and σ(x) =
{
x if x ∈ y
� otherwise. We call these the � rules.

Note that p# is itself a simple functional GRS. The rewrite relation
p#−→−→ on

Ter(S#) is easily seen to be a conservative extension of p−→−→ on Ter(S).

Example 3.10 (Rewriting by p#). Suppose F is defined in p by the pair of rules:

z = F(Nil)
z → Nil

z = F(y), y = Cons(x1, x2)
z → F(x2)

Then we have the p# rewrite sequence:

Nil

⊕

F

�

Cons

�

p#−→
Nil

F

⊕

F

Cons

� �

p#−→−→
Nil

⊕

F

�
p#−→

Nil

⊕

⊕

Nil F

�

p#−→ . . .

It is clear from this example that not all abstract graphs have a normal form
with respect to

p#−→.
3 J will be different for different choices of ordering i = 1 . . . n on the rules for F . How-
ever, since ⊕n is a commutative operator with respect to the semantic precongruence
induced by C∼ (see Sect. 5), the differences are not semantically significant.

106 David Clark et al.

4 The Graph Model

We require a safety result which states that rewriting an abstract term H by the
rules in p# gives information which is valid for all terms M such that M �∼ H .
We state our safety property in terms of a variant of the direct approximation
style semantics defined in [3]. We begin by defining what we regard as the directly
observable part of a closed term.

Definition 4.1 (Directly Observable Approximation). Let S =
F ∪ C be a signature. Given M ∈ Ter◦(S), let UM = {z ∈
BV(M) | z does not have a label in C}. The map ω : Ter◦(S) → Ter◦(C) is de-
fined by ω(M) = M [UM ← Ω]. ω(M) is known as the directly observable ap-
proximation of M .

The following lemma collects together some basic facts about ω:

Lemma 4.2. Let H, J be closed abstract terms over S. Let −→ be the rewrite
relation generated by any simple functional GRS over S#.

1. ω(H) � H.
2. ω(H) � J ⇒ ω(H) � ω(J).
3. ω(H) � J ⇒ ω(H) � ω(J).
4. ω(H) �∼ J ⇒ ω(H) �∼ ω(J).
5. H −→−→ J ⇒ ω(H) � ω(J).

Definition 4.3 (Context). A context over signature S is a GRS term
let {x1 = E1, . . . , xn = En} in v except that (at most) one Ei is allowed to
be ✷. Let Ctx(S) denote the contexts over signature S.

Let C,D range over contexts. If C is a context containing the binding xi = ✷,
the result of placing a term M in C, written C[M], is the term C[xi ←M]. If ✷

does not occur in C then C[M] = C.

Definition 4.4 (Compatible Relation). We say that a binary relation R on
terms is compatible if, for all contexts C, for all terms M,N , if M R N then
C[M] R C[N].

A compatible preorder is said to be a precongruence. A compatible equivalence
relation is said to be a congruence.

It is standard that if R is a preorder (precongruence) then R ∩R−1 is an equiv-
alence relation (congruence).

Lemma 4.5. The following are compatible:

1. The transitive reflexive closure of any rewrite relation generated by a set of
GRS rewrite rules;

2. �, � and �∼.

Safety of Strictness Analysis via Term Graph Rewriting 107

Definition 4.6 (Observational Preorder and Observational Equiva-
lence). Let p be a simple functional GRS over signature S and let M,N ∈
Ter(S) be in canonical form. We say that M is observably less than N with re-
spect to p, written M ❁∼p N , if, for all contexts C ∈ Ctx(S) such that C[M] and
C[N] are closed, ∀M ′ p←−←− C[M]. ∃N ′ p←−←− C[N]. ω(M ′) � ω(N ′). We say that
M and N are observationally equivalent with respect to p, written M ∼=p N , if
M ❁∼p N and N ❁∼p M .

We will omit the p subscripts when it is not confusing to do so.

It is easily verified that ❁∼ is a preorder (hence ∼= is an equivalence relation).
Furthermore, because the definition of ❁∼ quantifies over all contexts, it follows
directly that ❁∼ is in fact a precongruence (hence ∼= is a congruence). The fol-
lowing result is an easy consequence of Lemma 4.2(5) plus confluence:

Proposition 4.7. If M p−→−→ N then M ∼=p N .

5 Safety

The previous section defines a semantic precongruence, ❁∼, based on the rooted
graph homomorphism preorder � and rewriting by a simple functional GRS p.
In this section we define a natural analogue of ❁∼ for abstract terms, based on the
abstraction preorder �∼ and rewriting by p#. As we show below, this ‘abstract’
precongruence is sound with respect to ❁∼, in the sense that it restricts to a
subrelation of ❁∼ on ordinary terms.

Definition 5.1 (Semantic Extension). Let S = F ∪ C, let R be a binary
relation on Ter◦(C) and let p be a simple functional GRS over S. The semantic
extension of R with respect to p, denoted [R]p⊆ Ter(S)×Ter(S) is defined thus:
M [R]p N iff for all contexts C ∈ Ctx(S) such that C[M] and C[N] are closed,
∀M ′ p←−←− C[M]. ∃N ′ p←−←− C[N]. ω(M ′) R ω(N ′).

It is easily seen that, if R is a preorder then so is [R]p, for any p. Note that ❁∼p
is [�]p (where � is implicitly restricted to Ter◦(C)× Ter◦(C)).

Proposition 5.2. Let p be a simple functional GRS over S. Then

[�∼]p# � Ter(S)× Ter(S) ⊆ ❁∼p

(where R � X denotes the restriction of R to X).

Proof. See Appendix.

Remark 5.3. We conjecture that [�∼]p# is in fact a conservative extension of
[�]p (ie, that ⊆ can be strengthened to = in the statement of the proposition).
In the current setting it is not clear that this is a useful property.

108 David Clark et al.

This result shows that, in principle, p# can be used to predict the semantics of
terms with respect to p. This is not obviously useful, since

p#−→−→ is no easier to
compute than p−→−→. In particular, it is easy to see that, in general, [�∼]p# will
be undecidable. Clearly we must settle for a sound method - one which allows
us to decide a subrelation of [�∼]p#, which, by the proposition, in turn decides
a subrelation of ❁∼p. The key to developing such a method is to show that

�∼ is
itself a safe approximation to [�∼]p#. Proving this directly is not straightforward
and we postpone it to Sect. 6 (Corollary 6.6).

Definition 5.4 (Safety). Let p be a simple functional GRS over S and let R
be a binary relation on Ter(S#). We say that R is safe if R ⊆ [�∼]p#.

Note that, because [�∼]p# is a preorder, R is safe iff R∗ is safe. The following
results shows this notion of safety to be adequate for strictness analysis:

Proposition 5.5. Let p be a simple functional GRS over S. Let ar−→ be some
notion of abstract reduction for p (that is, ar−→ is a binary relation on Ter(S#)).
If �∼ is safe and ar−→ is safe then H ar−→−→ Ω ⇒M ∼=p Ω for all M �∼ H.

Note that M need not be closed. This result entails, for example, that if �∼ and
ar−→ are safe, then F (Ω,�) ar−→−→ Ω implies F (Ω, x) ∼=p Ω, with x free. (This is
clearly an analogue of the usual denotational definition of strictness in the first
argument of a binary function: ∀d. f(⊥, d) = ⊥. Formalising this would involve
the elaboration of a denotational model for p but it is easy to see that trivially
non-terminating programs, such as let {z = L(0)} in z where L(x) → L(x), are
∼=p Ω.)

6 Abstract Reduction

We assume given some simple functional GRS p over a signature S = F ∪ C.
We define a relation ar−→, and show that it is safe. ar−→ is defined as the union

of a number of subrelations, Ri, each of which has the following property:

H Ri J ⇒ ω(H) �∼ ω(J) (1)

This allows us to establish safety of ar−→ via a commutativity property:

Lemma 6.1. Let ar−→ =
⋃

i∈I Ri with each Ri ⊆ Ter(S#)×Ter(S#). If each Ri

satisfies (1) and each R∗
i is compatible, then ar−→ is safe if it commutes with

p#−→.

Proof. See Appendix.

It follows easily from Prop. 4.7 that
p#−→ is safe, so it is reasonable to include

p#−→ in ar−→. Now consider Example 3.10. The function F is clearly strict but
we do not have F(Ω)

p#−→−→ Ω. We would like to add an ‘Ω-lifting rewrite rule’
F (Ω,y) → Ω for every pattern-matching F . Unfortunately this is not well-
defined, since Ω is disallowed in the left hand sides of rewrite rules, but the idea
motivates the following definition:

Safety of Strictness Analysis via Term Graph Rewriting 109

Definition 6.2. Let H, J be abstract terms in canonical form. Then H Ωl−→
GC(J) iff there exist pattern-matching F k, bound variables z, y0 ∈ BV(H), and
vertices v1, . . . , vk−1 ∈ vert(H), such that y0 is bound to Ω in H and z is bound
to F k(y0, v1, . . . , vk−1) in H and J = H [z ← Ω].

Lemma 6.3. 1. Ωl−→−→ is compatible and Ωl−→ satisfies (1).
2. Ωl−→−→ subcommutes with itself and with p−→−→ for any simple functional GRS

p.

Nöcker’s analysis method amounts to defining ar−→ as
p#−→ ∪ Ωl−→ plus some

‘heuristic’ reductions which are used to force termination. There are two forms
of heuristic described in [17]. The first of these dynamically coarsens the ab-
stract graph by replacing some parts of it by � (this may be done when some
bound on the number of rewrite steps is reached). The second form performs
checks to detect looping behaviour in the abstract evaluator and responds by
either replacing parts of the graph by Ω or introducing a cycle into the graph.
In addition, Nöcker’s analyser applies a number of reduction rules to simplify
subgraphs involving ⊕ (for example: ⊕(x, y, y)→ ⊕(x, y)).

We do not account for the heuristics based on loop-detection in the current
paper. Replacement by � and the simplification of ⊕ subgraphs are subsumed by
including �∼ in ar−→. Thus we arrive at the following notion of abstract reduction:

Definition 6.4. ar−→ =
p#−→∪ Ωl−→∪�∼.

Theorem 6.5. ar−→ commutes with
p#−→.

Proof. See Appendix.

Corollary 6.6. �∼ and ar−→ are safe.

Proof. The subrelations �∼,
p#−→, Ωl−→ are each compatible (Lemma 4.5,

Lemma 6.3(1)) and satisfy (1) (Lemma 4.2, Lemma 6.3(1)) thus safety of ar−→
follows by Lemma 6.1. Safety of �∼ is implied by safety of ar−→, since �∼ ⊆ ar−→. ��

7 Conclusions and Further Work

Nöcker’s method of abstract reduction is an intuitively appealing approach to
program analysis which is quite unlike any of the other approaches to strict-
ness analysis which have been proposed in the literature. In this paper we have
succeeded for the first time in formalising abstract reduction and proving its
correctness without any restrictions on the class of abstract graphs. Future work
will address the correctness of the heuristics based on loop-detection, which are
used in the Clean strictness analyser to force termination. We do not believe that
this will require a change to our formalisation. The main technical requirement is

110 David Clark et al.

to establish a standardisation result, allowing semantic properties to be inferred
from cyclic behaviour along particular (rather than all) reduction paths.

Being tailored to strictness analysis, the approach that we have taken is
rather ad hoc. Ideally, we would like to establish a general framework and explore
the application of abstract reduction to other program analyses. To start with,
it may be relatively easy to adapt the results of this paper to binding time
analysis. Beyond that, a striking aspect of the notion of abstraction developed
in this paper is that it is sensitive to differences in sharing. Information about
sharing properties can be very useful to language implementors [21, 6, 24] and
it will be interesting to see if a form of sharing analysis can be developed by
adapting our technique.

Another future direction would be to develop similar techniques for other
forms of operational semantics. It would be an advantage to have a framework
which applied directly to lambda calculi, rather than having to work with su-
percombinators. One possibility would be to use the rewriting theory of cyclic
lambda calculi developed by Ariola and Blom [4]. An alternative would be to
use an abstract machine approach, such as that used by Moran and Sands [19].

Finally, it remains open whether abstract reduction can be formalised within
the framework of abstract interpretation. We can draw the following analogies:
Collecting interpretation∼ graphs built using ⊕, ordered by �, plus the ⊕-lifting
rules; Abstraction of the collecting semantics ∼ graphs built using �, ordered by
�, plus the � rules; Widening ∼ heuristics modelled by �∼. But many unanswered
questions remain.

We would like to thank Richard Kennaway, Matthias Felleisen, Thomas
Jensen and the anonymous referees for their suggestions and comments.

References

[1] S. Abramsky and C.L. Hankin, editors. Abstract Interpretation of Declarative
Languages. Computers and Their Applications. Ellis Horwood, 1987. 96

[2] Z. Ariola and J. W. Klop. Equational term graph rewriting. Fundamentae Infor-
matica, 26(3,4):207–240, June 1996. 98

[3] Zena Ariola and Arvind. Properties of a first-order functional language with
sharing. Theoretical Computer Science, 146(1–2):69–108, July 1995. 98, 99, 102,
106

[4] Zena Ariola and Stefan Blom. Cyclic lambda calculi. In Proc. TACS’97. Springer-
Verlag, February 1997. LNCS 1281. 110

[5] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J.
Plasmeijer, and M.R. Sleep. Term graph rewriting. In Proc. PARLE 87, volume 2,
pages 141–158. Springer-Verlag LNCS 259, Eindhoven, The Netherlands, June
1987. 98

[6] Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functional languages
with graph rewriting semantics. Mathematical Structures in Computer Science,
6:579–612, 1996. 98, 102, 110

[7] Tyng-Ruey Chuang and Benjamin Goldberg. A syntactic approach to fixed point
computation on finite domains. In Proc. 1992 ACM Conference on LISP and
Functional Programming. ACM, June 1992. 97

Safety of Strictness Analysis via Term Graph Rewriting 111

[8] D. J. Clark and C. Hankin. A lattice of abstract graphs. In M. Bruynooghe and
J Penjam, editors, Proc. Programming Language Implementation and Logic Pro-
gramming, pages 318–331, Tallinn, Estonia, August 1993. Springer-Verlag LNCS
714. 96

[9] David J. Clark. Term Graph Rewriting and Event Structures. PhD thesis, Imperial
College, University of London, 1996. 96

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixed points. In
Proc. Fourth ACM Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, 1977. 96

[11] Andrew D. Gordon and Andrew M. Pitts, editors. Higher Order Operational Tech-
niques in Semantics. Publications of the Newton Institute. Cambridge University
Press, 1998. 97

[12] E. Goubault and C. L. Hankin. A lattice for the abstract interpretation of term
graph rewriting systems. In Term Graph Rewriting, theory and practice, pages
131–140. John Wiley and Sons Ltd., 1993. 96

[13] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Comparing curried
and uncurried rewriting. J. Symbolic Computation, 21:15–39, 1996. 98

[14] Jan Willem Klop. Term rewriting systems. In Samson Abramsky, Dov M. Gabbay,
and Tom Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 1–116. Oxford University Press, New York, 1992. 102

[15] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999. 96

[16] E. Nöcker. Strictness analysis based on abstract reduction of term graph rewrite
systems. In Proc. Workshop on Implementation of Lazy Functional Languages,
1988. 95

[17] E. Nöcker. Strictness analysis using abstract reduction. In Proc. Conference
on Functional Programming Languages and Computer Architectures (FPCA ’93),
Copenhagen, 1993. ACM Press. 95, 104, 109

[18] E. Nöcker. Efficient Functional Programming. PhD thesis, Department of Com-
puter Science, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The
Netherlands, 1994. 95, 96

[19] David Sands and Andrew Moran. Improvement in a lazy context: an operational
theory for call-by-need. In Proc. Twenty-sixth ACM Symposium on Principles of
Programming Languages, San Antonio, Texas, January 1999. 110

[20] M. Schütz, M. Schmidt-Schauß and S. E. Panitz. Strictness analysis by abstract
reduction using a tableau calculus. In A. Mycroft, editor, Proc. Static Analysis,
Second International Symposium, SAS ’95, number 983 in Lecture Notes in Com-
puter Science, pages 348–365, Glasgow, UK, September 1995. Springer Verlag.
96

[21] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In
Proc. 7’th International Conference on Functional Programming and Computer
Architecture, San Diego, California, June 1995. 110

[22] M. C. J. van Eekelen, E. Goubault, C. L. Hankin, and E. Nöcker. Abstract
reduction: Towards a theory via abstract interpretation. In Term Graph Rewriting,
theory and practice, pages 117–130. John Wiley and Sons Ltd., 1993. 96, 104

[23] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, Amsterdam, 1994. 112, 113

[24] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In
Proc. Twenty-sixth ACM Symposium on Principles of Programming Languages,
San Antonio, Texas, January 1999. 110

112 David Clark et al.

[25] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 15 November 1994. 97

A Appendix: proof outlines for key results

Proof: Proposition 5.2

Suppose M [�∼]p# N with M,N ∈ Ter(S) and suppose M ′ p←−←− C[M], with
C ∈ Ctx(S) a closing context for M and N . We must show that there exists

N ′ p←−←− C[N] such that ω(M ′) � ω(N ′). Since p−→ ⊆ p#−→, by definition of
[�∼]p# there exists J

p#←−←− C[N] with ω(M ′) �∼ ω(J). Then we may take N ′ = J ,

since
p#−→−→ and �∼ conservatively extend p−→−→ and �, respectively.

Proof: Lemma 6.1

Assume H ar−→−→ J . Let C ∈ Ctx(S#) be a closing context for H and J . Suppose

that H ′ p#←−←− C[H]. We must show that there exists J ′ p#←−←− C[J] such that
ω(H ′) �∼ ω(J ′). Compatibility of ar−→−→ follows from compatibility of the R∗

i (by
induction on the length of the ar−→−→ sequence), thus, by our initial assumption

we have C[H] ar−→−→ C[J]. Then, by commutativity, we have H ′ ar−→−→ J ′ p#←−←− C[J]
for some J ′. Since each Ri satisfies (1), so does

ar−→−→ (by induction on the length
of the ar−→−→ sequence) and hence ω(H ′) �∼ ω(J ′).

Proof: Theorem 6.5

We begin by factoring �∼ into the composition of a more primitive form of ab-
straction with �. We then prove commutativity using Vincent van Oostrom’s
method of decreasing diagrams [23].

Definition A.1 (Simple Abstraction). Let H, J be abstract terms in canon-
ical form such that FV(J) ⊆ FV(H) and BV(J) ⊆ BV(H). Define the relation
≤ ⊆ vert(H) × vert(J) thus: v ≤ w iff w = v ∨ w = �. Then H is simply
abstracted by J , written H � J , if:

1. root(H) ≤ root(J);
2. if x is bound to Sk(v) in H and x ∈ BV(J), then x is bound to Sk(w) in J

and ∀i, 1 ≤ i ≤ k. vi ≤ wi.

� is easily seen to be a partial order.

Lemma A.2. 1. � ⊆ �∼.
2. H �∼ K iff there exists J such that H � J � K.

Safety of Strictness Analysis via Term Graph Rewriting 113

(a)

C

.

⊕l

p�

Ωl p�′

(b)

ar′

b

p#a

Fig. 1. applying van Oostrom’s method

To use van Oostrom’s method, we must present
p#−→ and ar−→ as unions of labelled

subrelations (we actually present slightly different relations which have the same
transitive reflexive closure as these). Let ⊕l−→ be the reflexive closure of the
rewrite relation generated by just the ⊕-lifting rules in p# and let p�−→ be the
reflexive closure of the rewrite relation generated by p plus the � rules in p#.
It is immediate from the definitions that

p#−→= =
p�−→∪ ⊕l−→

Now let p�′−→ = p�−→, let �−→ = �, let �−→ = �, and define:

ar′−→ = p�′−→∪ ⊕l−→∪ Ωl−→= ∪ �−→∪ �−→

It is an easy consequence of Lemma A.2 plus transitivity of �∼ that ar′−→−→ = ar−→−→;
thus it suffices to prove that ar′−→ commutes with

p#−→. Next we define a strict
order ≺ on the labels of the subrelations; the Hasse diagram is shown in Fig. 1(a).
Now we consider each (a,b) ∈ {p�,⊕l} × {p�′,⊕l, Ωl,�,�}, and show that,
in each case, the diagram of Fig. 1(b) can be completed in a way which respects
≺ in the manner required by Theorem 2.3.5 of [23].

All the cases in {p�,⊕l}× {p�′,⊕l, Ωl} are very simple using subcommu-
tativity (Prop. 2.9, Lemma 6.3(2)). The remaining four cases are summarised by
the commuting squares in Fig. 2.

Cases (1), (2) and (3) are straightforward. Case (4) is more involved. In
general, the p� redex rewritten down the left hand side will be just one member
of a family comprising the set σ−1(σ(z)), where z is the root of the p� redex and
σ is the weak homomorphism witnessing � along the upper edge. Intuitively, this
family identifies a set of p� and Ωl redexes whose residuals we need to rewrite
along the lower horizontal edge. However, not every member of this family need
be the root of a redex, since the definition of weak homomorphism allows the
presence of vertices labelled ⊕ to ‘break’ potential redexes. It can be shown that
all these potential redexes can be exposed by use of � and ⊕l. Similarly, σ(z)
may be the root of a ‘broken’ redex on the right, hence the use of ⊕l rewrites

114 David Clark et al.

(1)

C .

⊕l

C

(2)

.

⊕l

.

(3)

C .

p�

C

p�

(4)

{⊕l, Ωl, p�′,.}

⊕l

p�

p�

.

Fig. 2. proof cases for Theorem 6.5

down the right hand side. Formalising the argument involves the following key
definition and lemmas:

Definition A.3 (Trace and Fragment). Let H be in canonical form. Let ∆
be a redex in H by a ⊕-lifting rule, let z be the root of ∆, and let H −→ H ′

by ∆. By the definition of the ⊕-lifting rules (Def. 3.9), z is bound to F (y0,v)
in H, for some pattern matching F , and y0 is bound to ⊕k(w). As a result of the
rewrite, all references to z in H are replaced by references to a fresh variable z′

bound to ⊕k(z′1, . . . , z
′
k) in H ′ with each z′i bound to F (wi,v)[z′/z]. We call z′

the trace of z by ∆ and we call the z′i the fragments of z by ∆.

Lemma A.4. Say that σ : H � K is strong on z if, for all x ∈ σ−1(z), if x is
bound to F (v) and F is pattern-matching, then v1 is not labelled ⊕.

Let K contain a redex ∆ by one of the ⊕-lifting rules, let the root of ∆ be z,
and let K −→ K ′ by ∆. If σ : H � K is strong on z then there exists σ′ : H � K ′

such that σ′ is strong on each of the fragments of z by ∆.

Lemma A.5. Let ∆ = (ρ, σ∆) be a p�-redex in K and let z be the root
of ∆. Let σ : H � K be strong on z and let {x1, . . . , xn} = {x ∈
σ−1(z) |x is not bound to Ω}. Then:

1. There are only two possibilities for each xi: (a) xi is the root of a redex
∆i = (ρ, σi) in H; (b) xi is bound to F (yi,v) in H with F pattern-matching
and yi bound to Ω (thus xi is the root of a Ωl redex).

2. For 1 ≤ i ≤ n define Ji according to the cases in part (1): (a) Ji = (rhs(ρ))σi ;
(b) Ji = Ω. If K −→ K ′ by ∆, then GC(H [x← J]) � K ′.

Checking Cleanness in Linked Lists

Nurit Dor1,�, Michael Rodeh2, and Mooly Sagiv1

1 Department of Computer Science, Tel-Aviv University, Israel
{nurr,sagiv}@math.tau.ac.il

2 IBM Research Laboratory in Haifa

Abstract. A new algorithm is presented that automatically uncovers
memory errors such as NULL pointers dereference and memory leaks in C
programs. The algorithm is conservative, i.e., it can never miss an error
but may report “false alarms”. When applied to several intricate C pro-
grams manipulating singly linked lists, the new algorithm yields more
accurate results, does not report any false alarm and usually runs even
faster and consumes less space than a less precise algorithm.

1 Introduction

Many nasty bugs result from misusing memory by NULL pointer dereference,
access to freed storage, or memory leaks. We refer to these errors as memory
cleanness errors since they should never occur in bug-free programs. No won-
der that many academic and commercial projects are aimed at producing tools
that detect classes of memory cleanness problems (see Section 4.1).

This paper does not intend to introduce another shape analysis or pointer
analysis algorithms. Instead, we focus on detecting cleanness violations by using
such algorithms. The main result of this research is a cleanness checking algo-
rithm that detects non-trivial bugs but does not yield too many false alarms. We
focus on C programs. However cleanness violations including the one addressed
by this paper also occur in Java programs. Some of them are detected by the
Java virtual machine at run-time1.

1.1 Main Results

In this paper we describe algorithms that automatically discover memory clean-
ness errors in C programs. The algorithms are conservative, i.e., they never
miss an error but they may generate “false alarms”. We applied the algorithms
to C programs which manipulate singly linked lists. Two major results have been
obtained:
� This research was supported by a grant from the Ministry of Science,Israel.
1 The third top ranked bug by Java users in Sun’s bug parade site as for August 1999
http://developer.java.sun.com/developer/bugParade/bugs/4014323.html deals with
Java’s image memory leaks. Users report system crashes due to such memory leaks.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 115–135, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

116 Nurit Dor et al.

– A new, efficient and quite precise algorithm for detecting memory clean-
ness errors (see Section 2). It does not yield any false alarm on quite in-
tricate C programs (see Table 1). On programs manipulating more compli-
cated data structures such as cyclic lists and tree, it produces false alarms.
It represents memory states as Shape Graphs with Reachability from stack
variables (see [5]) and thus we call it SG+R. To assess the usability of our
new algorithm we implemented it using PAG – a program analyzer genera-
tor developed at Saarland University [15]. On bad examples SG+R can be
rather slow. However, it is reasonably efficient on non-trivial programs that
we tried. It runs significantly faster than the algorithm described in [5] since
it avoids the cost of transitive closure. It also compares favorably with verifi-
cation systems aimed at showing memory cleanness since it does not require
loop invariants. Interestingly, SG+R runs significantly faster than the ver-
ification system described in [13] on the programs we tried. For example,
on the procedure swap shown in Fig. 1(c) the SG+R algorithm runs in less
than 0.01 seconds as opposed to 21.

program description

search.c searches for an element in a linked list

null deref.c searches a linked list but with a typical error of not
checking for the end of the list

delete.c deletes a given element from a linked list

del all.c deletes an entire linked list

insert.c inserts an element into a sorted linked list

merge.c merges two sorted linked lists into one sorted list

reverse.c reverses a linked list via destructive updates

fumble.c an erroneous version of reverse.c which loses the list

rotate.c performs a cyclic rotation when given pointers to the
first and last elements

swap.c swaps the first and second elements of a list, fails
when the list is 1 element long (see Fig. 1)

Table 1. Description of the analyzed programs. Some of these interesting pro-
grams are from LCLint [7], [13] and from first-year students. They are all in the
format shown in Fig. 1 and available at http://www.math.tau.ac.il/∼nurr.

– We use two of the well known pointer analysis techniques to check cleanness
and compare their cost and effectiveness to our new algorithm. The first
technique is flow-sensitive points-to analysis [1,24] (referred to as PT).
The second algorithm, SG, uses Shape Graphs and is a slight variant of
the shape analysis technique described in [21]. The SG algorithm is similar
to SG+R except that it does not (explicitly) track reachability from stack
variables. Our results are reported in Table 2 and Table 3. We compare
time, space and the number of false alarms. We believe that space is more

Checking Cleanness in Linked Lists 117

important than time since it is less implementation dependent and since it
is normally the bottleneck in scaling program analysis algorithms to handle
large programs (see also Section 3). We conclude that:
• As expected, the PT algorithm is the cheapest of the three but it is quite

imprecise. In fact, it cannot be used at all to check for memory leakage
errors which are quite problematic even in Java.

• The SG algorithm is less effective than the SG+R algorithm and is some-
times slower. This is an evidence to a general phenomenon in program
analysis were a less precise algorithm can be sometimes less efficient in
practice since the less precise algorithm may fail to detect the important
program invariants, thereby, abstracting situations that can never occur
in the program and thus consuming more time and space.

program SG+R SG PT
time space time space time space

search.c 0.02 860 0.04 934 0.01 357

null deref.c 0.03 968 0.02 1042 0.02 403

delete.c 0.05 1632 0.1 2147 0.01 560

del all.c 0.02 400 0.01 446 0.01 317

insert.c 0.02 1834 0.05 2272 0.03 1035

merge.c 2.08 4931 1718 138466 0 810

reverse.c 0.03 922 0.03 946 0.01 380

fumble.c 0.04 868 0.04 803 0.02 343

rotate.c 0.01 886 0.01 969 0 552

swap.c 0 478 0.01 573 0 295

Table 2. The CPU time (in seconds) and space (counted as the total number
of edges, see Section 3) used to analyze the tested programs using the three
implementations.

1.2 Limitations

The SG+R algorithm does not handle pointer arithmetic, casting, and function
pointers. There are also a few simplifying assumptions for ease of implementa-
tion. These features, which we can handle but preferred to ignore in this imple-
mentation, are: (i) address-of; (ii) arrays; and (iii) recursive functions. The cur-
rent implementation analyzes programs and handle procedures by call-string [25]
which is provided by PAG.

1.3 Outline of the Rest of this Paper

The rest of this paper in organized as follows. Section 2 describes the SG+R al-
gorithm. Section 3 describes the implementations and compares the algorithms.

118 Nurit Dor et al.

program real false alarms
errors SG+R SG PT

leak ref leak ref leak ref

search.c 0 0 0 2 0 5 0

null deref.c 3 0 0 2 0 5 0

delete.c 0 0 0 2 0 7 0

del all.c 0 0 0 0 0 6 4

insert.c 0 0 0 2 0 7 1

merge.c 0 0 0 6 0 8 5

reverse.c 0 0 0 0 0 7 0

fumble.c 1 0 0 0 0 6 0

rotate.c 0 0 0 2 0 5 1

swap.c 3 0 0 0 0 5 0

Table 3. The precision of the three algorithms in terms of false alarms reported
on the tested programs (see Section 3).

We conclude by discussing related work and assessing the potential and limita-
tions of our approach (Section 4).

2 The SG+R Algorithm

This section describes the SG+R algorithm for cleanness checking. The algo-
rithm is a standard iterative dataflow analysis algorithm (e.g., see [16]). It it-
eratively computes a finite set of “abstract descriptions” of all the stores that
occur at a given program point. It starts with the abstract description of the
initial store at the beginning of the program and then it repeatedly applies trans-
fer functions for every program statement and condition until a fixed point is
reached. Upon termination, it checks the cleanness conditions against the ab-
stract description.

The algorithm is conservative, i.e., upon termination, every store that can
possibly occur when the execution of a program reaches a given program
point, pt, is described by some abstract description computed at pt. However,
it may happen that an abstract description at pt describes a store that cannot
occur at pt, either because the class of inputs that is being considered is too
broad or since the algorithm over approximates the storage configurations. This
means that the algorithm can never miss a potential error but may report “false
alarms.”

The rest of this section is organized as follows: In Section 2.1, our mem-
ory abstraction is described. Then, in Section 2.2, we demonstrate the transfer
functions. Finally, in Section 2.3 we explain how cleanness is checked.

Checking Cleanness in Linked Lists 119

2.1 Shape Graphs with Reachability

A shape graph is an abstraction of the memory states in which the actual values
of both data and pointer cells are ignored. Instead, the shape graph captures the
“shape” of the data structures and the relationships between different stack (and
static) pointer variables. Heap cells are represented by shape-nodes and sets of
“indistinguishable” heap cells are represented by a single shape-node, called a
summary-node. The number of these shape graphs depends on the program but
not on its input.

Fig. 1(a) shows a declaration of a linked list data type in C and the main func-
tion that creates the list and then invokes the swap function shown in Fig. 1(c)
that swaps the first two elements via destructive updating. This program is used
as a running example in this section. Fig. 2 shows the three shape graphs that
occur when the SG+R algorithm analyzes the create list function: the shape
graph g1 represents the situation in which c is NULL; g2 represents a one element
linked list, g3 represents linked list of two or more elements pointed-to by c.
In g3, the shape node n2 represents the tail of the list pointed-to by c.

typedef struct
node {
struct node *n;
int data;

} List;

main() {
List *c;
c = create list();
c = swap(c);

}

List* create list() {
List *e,*c;
int i,size;

c = NULL;
scanf(”%d”,&size);
for(i=0; i<size; i++) {
e = malloc(sizeof(List));
e→data = i;
e→next = c;
c = e;
}

return c;
}

List* swap(List *c) {
List *p;
s1: if (c!=NULL) {
s2: p = c;
s3: c = c→n;
s4: p→n = c→n;
s5: c→n = p;
}
s6: return c;

}

(a) (b) (c)

Fig. 1. A C program with (a) a declaration of a linked list data type and a main
function, (b) a function that creates a NULL terminated list and (c) a function
that uses destructive updating to swap the first two elements of a list.

Formally, a shape graph is a directed graph with a set of shape-nodes,
variable-edges connecting pointer variables to shape nodes, and selector-edges
connecting shape nodes.

120 Nurit Dor et al.

(g1) c �� NULL (g2) c ����������n1

c
n �� NULL

(g3) c ����������n1

c
n �� n2

c
n ��

n��

NULL

Fig. 2. The shape graphs that arise from the analysis of the create list func-
tion shown in Fig. 1(b). Shape nodes are circles, named by ni. Appearance of
name p below the name ni means, “the cell(s) represented by ni are reachable
from p”, i.e., p ∈ reach(n).

Shape Node A shape node n has the following properties:

– The set ptb(n) consists of the stack variables that are directly pointing to all
the concrete heap cells represented by n. In g3, ptb(n1)={c} and ptb(n2)=∅.
In the shape graph there is a variable-edge from every variable in ptb(n) to
the node n. For vividness reasons, the ptb property is not displayed in the
figures inside the shape node. Note, that exactly one heap cell is represented
by n if ptb(n) is nonempty.

– The set reach(n) consist of the stack variables that via (chains of) se-
lectors reach all the concrete heap cells represented by n. In graph, g3,
reach(n1) = {c} and reach(n2) = {c} since all heap cells represented by n2

are reachable-from c. Pictorially we display the variables in reach of a node
below the name of the node.
The shape graph shown in Fig. 3 corresponds to a memory state in which c
points to a linked list of length four or more, and x points in between the
second and the last element of the list. Node n1 represents the first list
element, n3 represents the element pointed-to by x. Node n2 represents all
the elements between the element pointed-to by c and the element pointed-
to by x. It has the properties ptb(n2) = ∅ and reach(n2) = {c}. Node n4

represents all the list elements that are the tail of the list, it has the properties
ptb(n4) = ∅ and reach(n4) = {c, x}. Nodes n2 and n4 are distinguishable as
they represent disjoint sets of heap cells.

– The Boolean flag unshared(n) holds the value true for nodes represent-
ing heap cells that cannot be pointed-to by more than one selector. In g3,
unshared(n1) = true and unshared(n2) = true, since no heap cell repre-
sented by n2 can be pointed-to by two or more selectors. This implies that
two incoming selector-edges into n2 cannot simultaneously occur in any con-
crete state of data store.
As a matter of notation we use the term is(n) to describe nodes n with
unshared(n) = false. For example, n3 in shape graph g12 of Fig. 4 is shared.

Checking Cleanness in Linked Lists 121

– The Boolean flag alloc(n) indicates nodes which represent allocated heap
cells. This flag is false for nodes representing freed memory cells. We need
this information to detect usage of dead storage.

– The Boolean flag unique(n) indicates that n is a unique node, i.e., it repre-
sents exactly one heap cell. Nodes n with unique(n) = false may represent
more than one heap cell and are therefore called summary nodes. The node n2

in g3 is a summary node. Summary nodes are drawn as dotted circles.

c ����������n1

c
n �� n2

c
n ��

n�� 	
�����n3

c, x
n �� n4

c, x
n ��

n��

NULL

x

��

Fig. 3. A shape graph that arises in the SG+R algorithm when x traverses a
linked list pointed-to by c.

There is a special shape node NULL representing NULL pointers. It is important
to understand that properties of a node are conservative approximations of the
actual properties of all the heap cells represented by that node. For instance,
every pointer variable in reach(n) must reach all heap cells represented by n
but the converse need not hold, it may be that a variable x does not belong
to reach(n) and yet for every heap cell, l, represented by n there is a selector
path from x to l. In particular, a node n with reach(n) = ∅ may represent non-
garbage storage. Similar situation holds for the Boolean flags. If some Boolean
property, B, holds for a node n then for all heap cells represented by n B holds.
The opposite need not hold. For example node n with unique(n) = false may
represent a single heap cell.

Selector Edges There are two types of selector-edges: definite and indefinite.
Definite edges are drawn as solid lines and indefinite edges are drawn as dotted
lines (the reader may notice the analogy with [22] which is not explained here
for reasons of space). Selector edges are labeled with the name of the selector.

An indefinite selector-edge from a node m into n indicates that the heap cells
represented by m may have a selector into a heap cell represented by n. In g3,
the indefinite edge from n2 to itself represents selectors into next list elements.
This is an indefinite edge since it might not hold for all the heap cells represented
by n2, e.g., between the second and the fourth element. In some situations, the
analysis can be more precise by taking into account the fact that a selector-edge
is definite, i.e., it always exists.

122 Nurit Dor et al.

statement shape graphs after

s1: c != NULL? (g4) c ����������n1

c
n �� n2

c
n��

n��

NULL

s2: p = c; (g5) p

��

c ��	
�����n1

c, p
n �� n2

c, p
n ��

n��

NULL

s3: c = c →n; (g6) c

��

p ����������n1

p
n ��	
�����n2

c, p
n �� NULL

(g7) c

��

p ����������n1

p
n ��	
�����n2

c, p
n �� n3

c, p
n ��

n��

NULL

s′4:
t = c →n;

kill(p →n); (g8) c

��
t

��
p ����������n1

p
��������n2

c
n�� NULL

(g9) c

��
t

��

p ����������n1

p
��������n2

c
n ��	
�����n3

c, t
n �� NULL

(g10) c

��
t

��

p ����������n1

p
��������n2

c
n ��	
�����n3

c, t
n �� n4

c, t
n��

n��

NULL

s′′4 :
p →n = t;

kill(t); (g11) c

��

p ����������n1

p
n

��
��������n2

c
n�� NULL

(g12) c

��

p ����������n1

p
n

��
��������n2

c
n�� ��������is(n3)

c, p
n �� NULL

(g13) c

��

p ����������n1

p
n

��
��������n2

c
n�� ��������is(n3)

c, p
n �� n4

c, p
n ��

n��

NULL

s5:
kill(c →n);

c →n = p; (g14) c

��

p ��	
�����n1

c, p
n

��
��������n2

c
n�� NULL

(g15) c

��

p ��	
�����n1

c, p
n

��
��������n2

c
n�� n3,4

c, p
n ��

n��

NULL

s6:
kill(p);

return c; (g16) c ����������n2

c
n�� n1,3,4

c
n ��

n��

NULL

Fig. 4. The shape graphs that arise when the SG+R algorithm is applied to the
function in Fig. 1(c) with the input shape graph g3 of Fig. 2.

Checking Cleanness in Linked Lists 123

2.2 Handling Statements and Conditions

In this section we sketch the application of the iterative algorithm to the running
example. The algorithm iteratively computes a set of shape graphs at every
program point. To guarantee that the number of shape graphs is finite, we merge
shape nodes with the same properties to summary nodes. This causes a lose
in precision but ensures that the algorithm terminates. Note that the number
of shape nodes can be exponential in the number of stack variables. However,
measurements reported in the next section seem to indicate that this is not a
problem, at least for the tested programs.

The iterative algorithm analyzes the running example by applying the se-
quence of transfer functions belonging to the statements of the swap function
to each of the shape graphs in Fig. 2. Conditions are partly analyzed and shape
graphs are not propagated if the condition is not met. In the analysis of g1 the
condition at statement s1 is not met and the shape graph is immediately prop-
agated to the return statement s6. The analysis of g2 is not explained here.
Instead, Fig. 4 follows the evolution of g3, which is the interesting one. The
condition at statement s1 is met and g3 is propagated to statement s2.

Statement s2 generates a shape graph representing concrete stores where c
and p point to the heap cell represented by n1. Therefore, in g5, node n1 repre-
sents a heap cell pointed-to by c and p and thus ptb(n1) = {c, p}. Also, since n2

represents heap cells reachable-from c before the statement, after the statement
it represents heap cells reachable-from c and p and thus reach(n2) = {c, p}.
We see that for this statement, the update of reachability information is fairly
simple. We defer the explanation of updating reachability of general assignments
to the end of this subsection.

One of the interesting and complicated aspects of shape analysis is the way
linked lists are traversed. Statement s3 demonstrates this: in the shape graph
before this statement (g5) we know that n2 is unshared (unshared(n2) = true).
Therefore (only) two types of concrete memory states can be represented by
this shape graph: (i) memory states in which c and p both point to lists with
exactly two elements, and (ii) memory states in which c and p both point to lists
of length three or more. The shape analysis algorithm conservatively assumes
that both situations can happen. Hence, the statement c=c→n leads to two
shape graphs g6 and g7. The difference between these graphs is the presence
of a summary node n3 in g7 indicating that the list contains more than two
elements. In both of these shape graphs, n1 represents heap cells pointed-to by
(and reached-by) p while n2 represents heap cells pointed-to by c and reachable-
from p and c. Node n3 in g7 represents heap cells not pointed-to by any variables
but reachable-from p and c. This operation of advancing a pointer down the list
is called materialization in [3,21] since a new shape node (in this example the
node pointed-to by c was materialized).

Now, statement s4 is analyzed on the two shape graphs resulting from state-
ment s3. Our implementation uses a front-end to break complicated statements
into simpler ones in a usual way. Every assignment of the form l = r is per-
formed by: (i) generating a new temporary, say t, to store r; (ii) uninitializing l,

124 Nurit Dor et al.

denoted by kill(l); (iii) assigning t to l; and (iv) uninitializing t (of course the
first and the last stages can be sometimes avoided). So far, we have ignored this
issue for ease of understanding. Since s4 is rather complex, we chose to break
this statement into four stages (as in the implementation). For reasons of space,
we show two stages at each row in Fig. 4.

The effect of statement t = c→n on g6 is simply to assign NULL to t, and
then kill(p→n) removes the selector edge from the heap cell pointed-to by p.
As a result, in g8, n1 does not have selector edges. Also, the only heap cell
reachable-from p is the one directly pointed-to by p, represented by n1.

The effect of statement t = c→n on g7 is to materialize a new node rep-
resenting the heap cell pointed-to by t, thus generating two graphs and then
kill(p→n) removes the selector edge from the heap cell pointed-to by p. As a
result, node n1 in the resulting shape graphs g9 and g10 does not have selector
edges. Also, the only heap cell reachable-from p is the one directly pointed-to
by p, represented by n1.

Next, the assignment p→n = t is performed on g8 which connects the se-
lector edge of n1 to NULL and then kill(t) results in g11. Performing this as-
signment on g9 and g10 is more interesting since before this statement the heap
cell represented by n3 may have an incoming selector edge. Therefore, this state-
ment results in unshared(n3) set to false. After kill(t), we get the graph g12

(from g9) and g13 (from g10). Note that n3 and n4 in g13 are not merged since n3

has unshared = false and n4 has unshared = true. As we shall see, this is what
allows us to eventually conclude that c points to a linked list at s6. The update
of reachability for this statement is explained in Section 2.2.

The statement kill(c→n) at s5 also performs destructive update on the
selector from c which removes the selector edge from the heap cell pointed-to
by c into the heap cell pointed-to by c→n. Therefore, the analysis removes the
selector edge from n2. Moreover, the heap cell represented by n3 is unshared,
causing unshared(n3) to be set to true, but now n3 and n4 have the same
properties (excluding unique which is not used as a node distinction). Thus,
these nodes are merged, and therefore after c→n = p we get g15 where node n3,4

corresponds to n3 and n4 in g13 and to n3 in g12.
Before statement s6, we join the abstract representation from the true path

and the false path of the if statement at s1. Since at each program point, we
maintain a set of shape graphs, the join is a set-union operation generating the
set containing graphs g1,g14,g15 and more (those evolved from g2). This operation
is not shown in Fig. 4 since it only follows the evolution of g3.

At statement s6, the local variables are uninitialized and thus kill(p) causes
ptb(n1) from g14 to be set to empty, and thus nodes n1 and n3,4 are now merged,
resulting in g16.

The reader is referred to [21,22,17] for more elaborations on shape analysis
algorithms. Our way of conservatively and efficiently updating reachability in
linear time is new and thus explained in the next subsection.

Checking Cleanness in Linked Lists 125

Updating Reachability A statement such as s4 which assigns a new value to
a selector of a variable p can affect the reachability from other stack variables
“upstream” from p→n. Fig. 5(a) contains an interesting concrete store which
demonstrates the most complicated case arising in cyclic graphs. If the statement
kill(y→n) is performed on this store, l4 will no longer be reachable-from x
but l2 (and l1 and l3) will. Our current analysis therefore conservatively handles
reachability in this case: we remove the reachability from all the variables x that
can reach the heap cell pointed-to by y. Thus, when the statement is performed
on Fig. 5(b), we conservatively lose the fact that x is in reach(n2). In our running
example as well as in all the other programs this does not lead to false alarms
since no cyclic lists are created. The advantage of our simplified approach is
that it can be implemented in time linear in the size of the shape graph. A more
precise and more expensive solution is described in [20].

x �� l1
n �� l2

n �� l3
n �� l4

n

		

y

�� x ��	
�����n1

x, y

n

 n2

x, y

n

n��

n
�� 	
�����n3

x, y
n

��

y

��

(a) (b)

Fig. 5. A cyclic concrete store (a) and the corresponding shape graph (b).

2.3 Cleanness Checking

Every statement has a cleanness precondition, i.e., a requirement that every
store occurring at this statement must satisfy. For example a statement, st, of
the form y = x requires that x points to either NULL or to an allocated heap cell
before this statement. For example, st is not clean when x is uninitialized or refers
to a freed heap cell. Our tool conservatively checks cleanness preconditions by
investigating the resulting shape graphs. For each shape graph g that occurs be-
fore a statement st, we impose conditions that guarantee that the preconditions
of st are met by every store represented by g. These conditions are explained
below. They can be justified using the theory of abstract interpretation, see [4].
This is beyond the scope of this paper. Since the iterative algorithm is itself
conservative, we conclude that our tool can never miss a cleanness violation.

For each program point, our tool displays the shape graphs that violate the
cleanness conditions with an appropriate error message. The programmer can
see results of the analysis graphically and determine whether it is an error or a
false alarm. Of course, false alarms can be generated when the shape graph at a
given point describes memory states that can never occur at that point. However,
since the analysis is conservative, it will never miss a cleanness violation. We try

126 Nurit Dor et al.

to avoid reporting cleanness errors from the same cause at different program
points.

We conclude this subsection by specifying the cleanness conditions on shape
graphs.

Pointer Reference Condition When referring to a pointer x we check that
there is a definite variable-edge from x to a node n with alloc(n) = true. (For
simplicity, the NULL node has alloc = true). Here, we use the fact that the
analysis guarantees that if x can be uninitialized it must yield a shape graph
where there is no variable-edge from x. Similarly, if x may point to a freed
storage, there must be a shape graph where there is a selector edge from x to a
node n with alloc(n) = false. All references in our running example are safe.

Pointer Dereference Condition Every pointer dereference should produce
a reference and therefore the pointer reference condition must hold and also
there should be no variable edge from x to the NULL node. For example, when
analyzing the swap function in Fig. 1(c) on the shape graph g2 in Fig. 2 we report
a potential dereference to NULL. Fig. 6 shows the shape graph that arises. There
is a variable edge from c to the NULL node. Therefore, the statement p→n=c→n
is not safe. The tool reports an error message with this shape graph.

Memory Leakage Condition The memory leakage precondition is more com-
plicated and we will explain it on each of the two operations kill(x) and
kill(x→n), where memory leakage can occur. We only check memory leakage
if the statement does not raise other cleanness errors explained before.

When the statement kill(x) is applied, we need to assure that either: (i) x
is uninitialized; (ii) x is pointing to NULL; or (iii) x is pointing to a heap cell
which is also reachable from a different stack variable y. On the shape graph we
check that either: (i) There is no variable edge from x; (ii) There is a variable
edge from x to NULL; or (iii) There is a variable edge from x to a node n and
either: (a) there is a different variable y, y ∈ ptb(n) or y ∈ reach(n); or (b) there
is a definite incoming selector edge into n.

The condition (iii)(b) may seem surprising since a definite incoming selector-
edge may only emanate from a node n′ representing garbage heap cells. In this
case we choose not to report memory leakage since this error was issued when n′

became inaccessible.
When the statement kill(x→n) is applied, we need to assure that either:

(i) x→n is uninitialized; (ii) x→n is pointing to NULL; or (iii) the heap cell
pointed-to by x→n can be reached from a different stack variable y.

On the shape graph, let nx be target of the variable-edge from x (which must
exist since this statement does not raise a dereference violation). We check that
either: (i) There is no selector-edge from nx. (ii) There is a unique selector-
edge from nx and it is to NULL. (iii) For each successor node, n′, of nx (a
node that has an incoming selector-edge from nx) either: (a) there is a different

Checking Cleanness in Linked Lists 127

variable y, y ∈ ptb(n′) or y ∈ reach(n′), or (b) there is a definite incoming
selector edge into n′.

Note that this case is slightly more complicated than the kill(x) case mainly
because there can be more than one outgoing selector-edge from nx. As before
we try to avoid reporting the same error twice.

p ����������n1

p
n �� NULL

c

��

Fig. 6. A shape graph that arises after statement s3, c=c→n, when the shape
analysis algorithm is applied to the function in Figure 1(c) with input shape
graph g2 in Fig. 2.

3 Comparison

In this section we describe the implementation of the algorithms and analyze
the results of applying the algorithms to the programs listed in Table 1.

3.1 Implementation Issues

All algorithms were implemented using PAG. The time is measured by PAG
running on a Linux system on a PC Pentium 166 Mhz with 128MB.

All analyses conservatively take into account conditions of the form of pointer
(in)equalities. For ease of implementation, the treatment of NULL pointers is im-
proved by source-to-source transformation that uses a special variable to indicate
NULL. The cleanness checking is for: (i) NULL dereference; (ii) usage of uninitial-
ized pointers; (iii) usage of dead storage; and (iv) memory leakage.

The PT analysis computes the well-known points-to information. It rep-
resents the possibly many objects allocated at calls to malloc by creating a
named object based on the number of the node in the control flow graph (CFG).
The analysis is flow-sensitive, i.e., it considers the control flow of the program.
For detecting usages of uninitialized storage we keep a special location called
garbage which all pointers are initialized to. An additional analysis that en-
ables the removal of over-conservative selector edges to garbage is done. The
analysis indicates storage that may have been freed.

Cleanness checking in the PT algorithm is rather straightforward. The clean-
ness preconditions are: (i) In a reference to pointer x, x should not point to
garbage or to a possibly freed storage; (ii) In a dereference to pointer x, x must
not point to NULL; (iii) In assignments to x, the precondition is that another
pointer or selector points to the same location as x. Note that in our example

128 Nurit Dor et al.

the pointers points-to the heap. Therefore, in every assignment to a previously
assigned pointer we report a potential memory leakage. This is since we can not
guarantee that another pointer points to the same location as x.

The SG algorithm is similar to the SG+R algorithm but it does not track
down the reachability information. A node in the shape graph is not character-
ized by the set of reached-by variables. In practice, the SG and the SG+R algo-
rithms are the same implementation with a flag indicating whether to update or
not the reachability. Cleanness checking in the SG algorithm is exactly the same
as in the SG+R algorithm but in the SG algorithm reach(n) is always empty.

The SG algorithm is a slight improvement, in terms of precision of the [21]
algorithm in that the SG algorithm computes a set of shape graphs for each point
in the program while the [21] algorithm combines the different shape graphs at
a program point to one shape graph. This implies that the [21] algorithm will
have at least as many false alarms as the SG algorithm but we do not know if
it will run faster.

Precision Table 3 lists the number of real errors in the program (three of
the tested programs are incorrect) and the number of false alarms reported by
the algorithms. All algorithms are conservative, they do not miss any errors.
Therefore, the interesting number is the number of false alarms. Measuring false
alarms provides a true indication as to the precision of the pointer analysis as
opposed to say, the number of shape graphs or points-to pairs. We classify the
false alarms into two types. The first type, leak , are false alarms on memory
leakage. The ref false alarms column counts pointer reference and pointer deref-
erence false alarms (see Sections 2.3 for the SG+R algorithm). The reason for
this separation is that one does expects the PT algorithm to effectively detect
pointer reference errors but not memory leakage errors.

From the table we can establish the following observations:

– The SG+R algorithm yields no false alarms on the tested programs. This
indicates that the abstraction used by the SG+R algorithm has the exact
precision needed for analyzing the linked list programs. It does generate false
alarms on tree manipulation programs or when infeasible control flow paths
are conservatively taken into account.

– The SG algorithm does not yield false alarms of type ref. This indicates that
the relation between program variables which is kept by the abstraction of
the SG algorithm in the nodes’ ptb property is enough to avoid ref false
alarms.

– Explicit reachability information is needed to avoid false alarms on memory
leakage. The SG algorithm reports false alarms on memory leakage on almost
all programs. A common false alarm, repeated in many programs, is upon
correctly traversing a list. Fig. 7 is an example of a shape graph that arises
when traversing a list inside a loop. This graph represents a data structure
where c points to the head and x points to an element (third and on) inside
the structure2. Processing the statement x=x→n generates a false alarm on

2 From this shape graph we do not know that it represents a list.

Checking Cleanness in Linked Lists 129

memory leakage. This is because node n3 is not pointed-to by any other
variable, it does not have a definite incoming edge and we do not know that
it is reachable-from c. In the SG+R algorithm these false alarms are avoided
since we know that the node is reachable-from c.

– The PT algorithm is useless for checking memory leakage. Every assign-
ment to a previously allocated heap pointer is a potential leakage. This is
unfortunate since there are true bugs in programs that are only detected
when checking for memory leaks. For example, the program fumble.c that
erroneously loses part of the list.

– The PT algorithm is not precise enough to avoid false alarms of type ref. In
four out of the ten programs it reports false alarms, most of them on NULL
dereference. The PT algorithm does not track information about relations
between the variables in the program needed in order to correctly analyze
conditions and to avoid false alarms.

c �� ������� n1
n �� n2

n ��
n

n

��������� n3

n
��

n �� NULL

x

��

Fig. 7. A shape graph that arise by the SG algorithm when correctly traversing
a linked list. Processing the statement x=x→n on this shape graph yields a false
alarm.

Cost Table 2 lists the time and space requirements of the implementations on
the analyzed programs. The PT algorithm is the fastest, running a few millisec-
onds on all programs. The SG+R and SG algorithms are similar in the time
requirement with one exception, the program merge.c. This is the most com-
plicated program to analyze and the SG+R algorithm runs significantly faster
than the SG algorithm.

The time measurement is not a precise comparison since it is dependent on
both the PAG and our not-very-efficient implementation. Although the space
and time measurements fit one another very well, we regard the space mea-
surement as a more precise comparison. We count the space as the number of
total edges (variables and selectors) arising in all points in the program. For the
PT algorithm an edge corresponds to a points-to pair. In all programs the space
requirement was the smallest in the PT algorithm.

The space comparison between the SG and the SG+R is surprising. The
worst case space-complexity of the SG algorithm is smaller than that of the
SG+R algorithm. But, the space requirement of the SG algorithm is larger than
that of the SG+R algorithm. In all programs but one the number of edges in
the SG algorithm is greater than that of the SG+R algorithm.

130 Nurit Dor et al.

p �� ������� n1
n �� ������� n2

n �� NULL

c

�� p �� ������� n1
n �� ������� n2

n ��

n

��
n3

n

 n �� NULL

c

��

Fig. 8. The shape graphs that arise after statement c=c→n when the SG algo-
rithm is applied to the function shown in Figure 1(c) on a shape graph repre-
senting a linked list of length two or more elements (g3 shown in Fig. 2 without
reachability).

The reason for this extra edges is that in the SG algorithm there is less
information, it does not contain any explicit information on the reachability
from stack variables. This lack of information causes the analysis to be over-
conservative and generate shape graphs that are not generated by the SG+R
algorithm. For example, consider the program swap.c shown in Fig. 1 and the
result of the SG+R analysis on this program shown in Fig. 4. The SG algorithm
yields the shape graphs shown in Fig. 8 after statement s3. This is the first point
of the program where the SG algorithm yields over-conservative shape graphs
that are not generated by the SG+R algorithm. The second shape graph has
an over-conservative edge from node n2 to the NULL node. This edge will cause
the analysis to generate more redundant shape graphs as it progress through the
program.

Additional information used to compare the SG and the SG+R algorithms is
the total number of shape graphs that arise during the analysis and the maximal
number of shape graphs generated at a single point in the program. Table 4 lists
this information3. Again, in all programs but one the SG generates more shape
graphs than the SG+R algorithm.

4 Conclusion

4.1 Related Work

Dynamic Cleanness Checking The vast majority of cleanness checking tools
detect violations at run-time (e.g., see [2,29,18]). They can be effective in lo-
calizing the source of a violation — where a NULL pointer is dereferenced or
where leaking memory is created. The Java run-time environment also checks
for memory violations. However, it is clear that the effectiveness of run-time
checking depends on the proper choice of test cases to uncover violations. Since
run-time tools are intrusive, they are rarely used when the code is run in pro-
duction. For example, the experimental results of Safe-C [2] show that execution
3 This information is unavailable for the PT algorithm since in this algorithm there
is only one set of points-to relations for each point in the program.

Checking Cleanness in Linked Lists 131

program SG+R SG
total max total max

search.c 202 14 217 17

null deref.c 226 20 241 23

delete.c 296 21 374 26

del all.c 118 8 144 6

insert.c 301 17 362 19

merge.c 444 46 11416 1393

reverse.c 194 14 202 14

fumble.c 191 14 186 12

rotate.c 148 5 157 6

swap.c 134 5 144 6

Table 4. A comparison between the SG+R and the SG algorithms of the total
number of shape graphs (column 1) and the maximal number of shape graphs
that arises at a single point in the program (column 2).

overhead of cleanness checking ranges from 130% to 540%. These tools demand
manual runs and therefore they do not assure us against bugs.

Of course, any conservative tool including ours can also be used in conjunc-
tion with a dynamic tool to reduce the cost of run-time checks. The static tool
can indicate which run-time checks are redundant. For example, the absence of
memory leakage implies that garbage collection need not be invoked.

Static Cleanness Checking The LCLint tool can discover certain cleanness
violations by statically analyzing programs. The tool, which both industry and
academia use, has already been successfully applied to uncover some bugs in
real life C programs. It is quite efficient but is less ambitious than the SG and
the SG+R algorithms on heap allocated data structures. It requires the user to
supply annotations. It simplifies the analysis of loops by making it non conserva-
tive. For example, it does not detect the error in program null deref.c. Similar
comments go to the Prefix tool [19].

Compaq’s Systems Research Center also aims at developing tools for static
cleanness checking [6]. They have developed a tool called Extended Static Check-
ing that uses verification technology, but feels to the programmer more like a
type-checker. It requires simple annotations of pre- and post-conditions from
the programmer. The tool uses program verification to find violations of certain
cleanness conditions, such as NULL dereference and array bound violations. The
tool was originally designed for Modula3 and was ported for Java. The SG+R al-
gorithm compares favorably with the ESC tool for programs manipulating linked
list since we automatically infer strong invariants. However, we currently cannot
precisely handle arrays.

The algorithm of [13] is able to verify not only that a program is clean but also
to show that it is correct with respect to a given partial specification. However,

132 Nurit Dor et al.

it depends on user-provided loop invariants, it is applicable only to a subset of

Pascal, and its complexity is non elementary, i.e. 222··
. Our comparisons indicate

that the SG+R algorithm is faster by a factor of 10 to 100 than their algorithm.
Fradet, Gaugne, and Le Métayer suggest a Hoare-like logic that defines

programs that obey the no-NULL dereference cleanness condition in a subset
of C [9]. Although they propose a conservative algorithm that automatically
checks a subset of the logic, this method cannot be extended to automatically
check many programs since it cannot always phrase the loop invariants.

It is possible to use slicing techniques [11,12,8] to locate cleanness violations.
However, current-slicing techniques yield very conservative results in languages
that support pointers and references (especially in the presence of recursive data
structures). In other words, it seems that current slicing tools will yield an ex-
cessive number of false alarms.

Related Work on Pointer Analysis Many conservative algorithm were pro-
posed to analyze the content of the heap (e.g., [14,3,26,10,22]). Each of these
algorithms can be used to provide conservative cleanness with different levels of
cost and effectiveness. However, it should be noted that the practical benefits
of these algorithms are not proved yet (despite the interesting results in [28]
which shows that shape analysis can be used for parallelizations). Therefore, we
believe that our work contributes to the understanding of the benefits, costs,
and limitations of pointer analysis in general and shape analysis in particular.

4.2 Usability and Scalability

The usability of cleanness checking tools depend on many factors including:
(i) The ability to detect nontrivial bugs; (ii) The ease of use; and (iii) The
ability to scale for large realistic programs. An easy to use tool should: (i) Report
minimal false alarms; (ii) Demand minimal interaction with the user in general,
in particular annotations; and (iii) Provide useful error messages.

In this paper, we focused on the aspect of detection of nontrivial bugs and on
ease-of-use. We are encouraged by the fact that SG+R can detect bugs in C pro-
grams manipulating singly linked lists without any false alarms. Our tool is au-
tomatic, it analyzes the program without any interaction with the user and it
runs reasonably fast. We use PAG and the XVCG tool [23] for pictorial repre-
sentation of the shape graphs and the CFG. Last, the algorithm have already
generalized to handle many data structures including trees and doubly linked
lists [22].

The worst case complexity of our algorithm is quite high. It is linear in the
size of the shape graphs. The number of shape nodes is exponential in the num-
ber of pointer stack variables and the number of shape graphs is exponential
in the number of shape nodes. But the average time and space requirements of
our algorithm depend on the number of different aliasing configuration between
program variables. Our initial experience indicates that this number does not

Checking Cleanness in Linked Lists 133

necessarily correspond to the program size. For example, it takes 360 CPU sec-
onds to analyze a C program of size 1106 lines, and we generated 20 cleanness
messages.

Scaling our techniques for real large programs without generating too many
false alarms is a task that will take a significant effort. Examples of techniques
that may be useful are:

– User annotations can help, e.g., by requiring that the programmer specifies
pre- and post-conditions. One possibility is to use C assert statements or
Java extensions such as [27].

– Better interprocedural analysis can improve the precision and the cost of
the analysis. Currently we use the automatic call-string approach of PAG
to handle procedures. This approach is inadequate since it is both imprecise
and expensive.

– Programming languages such as Java simplify cleanness checking by restrict-
ing pointer manipulations and by supporting object oriented programming.
This can help in improving the efficiency and the effectiveness of static clean-
ness checking (as opposed to the Java virtual machine which enforces some
cleanness at run-time).

– Finally in some cases, practical tools can be developed by ignoring several
kinds of errors at the cost of not being conservative. For example, the Prefix
tool assumes that procedure parameters are not aliased. This can lead to
undetection of certain errors.

Acknowledgements

We are grateful to T. Ball for the merge.c program which has a high contribution
to the understanding of the capabilities and limitations of our algorithms. We are
also grateful for the helpful comments of T. Reps, N. Rinetskey and R. Wilhelm
which led to substantial improvements to this paper.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, Univ. of Copenhagen, May 1994. 116

2. T.M. Austin, S.E. Breach, and G.S. Sohi. Efficient detection of all pointer and
array access errors. In SIGPLAN Conf. on Prog. Lang. Design and Impl. ACM
Press, 1994. 130

3. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 296–310, New York, NY,
1990. ACM Press. 123, 132

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Symp. on Princ. of Prog. Lang., pages 269–282, New York, NY, 1979. ACM Press.
125

134 Nurit Dor et al.

5. N. Dor, M. Rodeh, and M. Sagiv. Detecting memory errors via static pointer
analysis. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE’98), pages 27–34, June 1998.
Available at “http://www.math.tau.ac.il/∼ nurr/paste98.ps.gz”. 116

6. Cop. Digital Equipment. Extended static checking. Available at
“http://www.research.digital.com/SRC/esc/Esc.html”, 1998. 131

7. D. Evans. Static detection of dynamic memory errors. In SIG-
PLAN Conf. on Prog. Lang. Design and Impl., 1996. Available at
“http://www.cs.virginia.edu/ evans/pldi96-abstract.html”. 116

8. J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In ACM Symp.
on Princ. of Prog. Lang., pages 379–392, January 1995. 132

9. P. Fradet, R. Gaugne, and D. Métayer. Static detection of pointer errors: an
axiomatisation and a checking algorithm. In Proc. European Symposium on Pro-
gramming, ESOP’96 , LNCS, 1996. 132

10. R. Ghiya and L. Hendren. Putting pointer analysis to work. In Symp. on Princ.
of Prog. Lang., New York, NY, 1998. ACM Press. 132

11. S. Horwitz and T. Reps. The use of program dependence graphs in software
engineering. In Proceedings of the Fourteenth International Conference on Software
Engineering, pages 392–411. ACM, New York, May 1992. 132

12. D. Jackson. Aspect, an economical bug detector. In Proceedings of the 13th Inter-
national Conference on Software Engineering, pages 13–22, May 1994. 132

13. J.L. Jensen, M.E. Joergensen, N.Klarlund, and M.I. Schwartzbach. Automatic
verification of pointer programs using monadic second-order logic. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., 1997. 116, 131

14. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 4, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ,
1981. 132

15. Florian Martin. PAG – an efficient program analyzer generator. International
Journal on Software Tools for Technology Transfer, 2(1):46–67, 1998. 116

16. Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997. 118

17. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999. 124

18. Cop. Parasoft. Insure++. Available at “http://www.parasoft.com/”, 1999. 130
19. Cop. Prefixco. Prefix automated code reviewer. Available at

“http://www.prefixco.com/”, 1999. 131
20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

Tech. Rep. TR-1383, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, July
1998. Available at “http://www.cs.wisc.edu/wpis/papers/parametric.ps”. 125

21. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1–50, January
1998. 116, 123, 124, 128

22. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. In Symp. on Princ. of Prog. Lang., 1999. Available at
“http://www.cs.wisc.edu/wpis/papers/popl99.ps”. 121, 124, 132

23. G. Sander. Graph layout through the vcg tool. Graph Drawing, DIMACS Inter-
national Workshop GD’94, pages 194–205, 1995. 132

24. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis.
In Symp. on Princ. of Prog. Lang., pages 1–14, 1997. 116

Checking Cleanness in Linked Lists 135

25. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.
117

26. J. Stransky. A lattice for abstract interpretation of dynamic (Lisp-like) structures.
Inf. and Comp., 101(1):70–102, Nov. 1992. 132

27. Reliable Systems. Icontract – desgin by contract. Available at
“http://www.reliable-systems.com/”, 1999. 133

28. Emilio Zapata. Automatic parallelization of irregular applications. In SPA99, 1999.
132

29. B. Zorn and P. Hilfinger. A memory allocation profilers for c and lisp programs.
Available at “ftp://gatekeeper.dec.com/pub/misc/mprof-3.0.tar.z”, 1991. 130

Confidentiality Analysis of Mobile Systems

Jérôme Feret

Laboratoire d’Informatique de l’École Normale Supérieure
ENS-LIENS, 45, rue d’Ulm, 75230 PARIS cédex 5, FRANCE

jerome.feret@ens.fr

http://www.di.ens.fr/~fere t

Abstract. We propose an abstract interpretation-based analysis for au-
tomatically detecting all potential interactions between the agents of a
part of a mobile system, without much knowledge about the rest of it.
We restrict our study to mobile systems written in the π-calculus, and in-
troduce a non-standard semantics which restores the link between chan-
nels and the processes that have created them. This semantics also allows
to describe the interaction between a system and an unknown context.
It is, to the best of our knowledge, the first analysis for this problem. We
then abstract this non-standard semantics into an approximated one so
as to automatically obtain a non-uniform description of the communica-
tion topology of mobile systems which compute in hostile contexts.

1 Introduction

Growing requirements of society impose the use of widely spread mobile systems
of processes. In such systems the communication topology dynamically changes
during processes computations, so that their analysis is a very difficult task.
Furthermore, the size of systems, such as the Internet for instance, is large enough
to prevent a single person from knowing the whole system. That is why we are
interested in validating properties on a mobile system, which is a part of bigger
one, called its context, without having precise knowledge of this context.

We address the problem of proving the confidentiality of such a mobile sys-
tem: we propose to automatically infer a sound and accurate description of the
topology of the interactions between the agents of this mobile system, in or-
der to prove that private information can only be communicated to authorized
agents. This description should be non-uniform, in order to distinguish between
recursive instances of processes. This allows for instance to prove that in an ftp
protocol the response to a query is returned to the correct customer.

We propose an automatic abstract interpretation-based analysis for the full
π-calculus [18,19] which is a suitable formalism to describe mobile systems of
processes. We present a new non-standard semantics, in the style of Venet’s
work [22], which mainly consists of labeling each recursive instance of processes
with markers, in a deterministic way inferred during process creation. This la-
beling allows to trace precisely the origin of channels and to distinguish between
recursive instances of processes, which cannot be done with the standard seman-
tics. Besides, we require no further restrictions on the π-calculus. Moreover, our

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 135–154, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

136 Jérôme Feret

semantics is general enough to approximate the potential behaviour of a small
known system in any unknown context.

Several abstractions of our non-standard semantics can be deduced, using
Abstract Interpretation, we propose a generic abstract semantics to describe the
interactions between processes and between the system’s context, in order to
automatically prove confidentiality properties. The implementation of the prod-
uct between this semantics and another one focusing on counting occurrences of
processes during computations [13] has lead to original results.

The standard semantics is given in Sect. 3. We define the non-standard se-
mantics in Sect. 4. We design a generic abstract analysis to validate confiden-
tiality of systems in Sect. 5 and instantiate it in Sect. 6.

Acknowledgments. We deeply thank anonymous referees for their signif-
icant comments on an early version. We wish also to thank Patrick and Rad-
hia Cousot, Arnaud Venet, Ian Mackie, François Maurel, David Monniaux and
François Pottier, for their comments and discussions.

2 Related Work

The problem of proving the confidentiality of a mobile system has been studied
extensively. Several type-based methods have been proposed to capture non-
interference properties between processes in [1,16] or to study information flow
properties in [15]. All these works rely on the use of a partial order of security
levels, and consist in statically checking that, owing analyzed properties, low
security level agents cannot violate higher security level information.

Control flow analysis only focus on the flow information. Several uniform (or
monovariant) analyses have been proposed [3,4]. Non-uniform (or polyvariant)
analysis allows to describe the interaction between iterations of the same re-
cursive process. This is not achievable by type-based methods, since the same
security level is inferred for all recursive instances of the same process. For in-
stance, in [20] to prove the confidentiality of a customer-server protocol, the
set of customers has to be known before the beginning of the analysis. Only
very few non-uniform analyses are available. Some alias analyses to infer pointer
equality relationships are non-uniform, e.g. [12] which refines a uniform analysis
(trivially based on type declaration). This has been applied by Colby to design
a non-uniform control flow analysis for cml in [6]. This requires a good uniform
approximation of the control flow of a system before starting the non-uniform
analysis.

Our study follows Venet’s work on the π-calculus [22], which allows to infer
a sound non-uniform description of the topology of communication between the
agents of friendly systems [18], in where resources cannot be nested. We consider
the full π-calculus with nested replications. Moreover, we consider any open sys-
tem and approximate the interaction between this system and its context which,
to the best of our knowledge has never been achieved in a control flow analysis
of the π-calculus. In particular, contrary to [1] we can propagate interactions

Confidentiality Analysis of Mobile Systems 137

without immediately reporting an error. Our framework can be easily adapted
to other formalisms such as the mobile ambients [5], for instance.

3 π-calculus

π-calculus [18,19] is a formalism used to describe mobile systems, which is based
on the use of processes and channels. We consider a lazy synchronous version
of the polyadic π-calculus, inspired by the asynchronous version introduced by
Turner [21] and the chemical abstract machine [2] in which communication prim-
itives are very simple while ensuring the same expressive power. Let Channel
be a countable set of channel names. The standard semantics of the π-calculus,
given in Fig. 1, relies on the use of both a reduction relation to define results of
processes computations, and a congruence relation to reveal redexes by making
the processes meet.

Example 1. We model a system S which describes an ftp protocol. A resource
creates repeatedly a new customer which sends a query to the server, composed
with data and his email address. Data processing is abstracted away to make
everything simpler. The server receives the query and returns the data back to
the customer’s email.

Syntax of S is given as follows:

S := (ν port)(ν gen) (Server — Customer — gen![])
where

Server := ∗port?[info,add] (add ![info])
Customer := ∗gen?[] ((ν data) (ν email) port![data,email] — gen![])

For example, a short computation of S is given as follows:

S → (ν port)(ν gen)(ν data1)(ν email1)
(Server — Customer — port![data1,email1] — gen![])

→ (ν port)(ν gen)(ν data1)(ν email1)
(Server — Customer — email1![data1] — gen![])

→ (ν port)(ν gen)(ν data1)(ν email1) (ν data2)(ν email2)
(Server — Customer — gen![] — email1![data1] — port![data2,email2])

→ (ν port)(ν gen)(ν data1)(ν email1) (ν data2)(ν email2)
(Server — Customer — gen![] — email1![data1] — email2![data2]) ✷

As illustrated in the above example, the configuration of a mobile system S
at any stage is always congruent to one of the particular form, (ν c)(P1 | ... | Pn)
where c is a sequence of names, and P1, ..., Pn are sub-processes beginning
with a matching, a message, an input guard or a replication guard. Those are
syntactic copies of sub-processes of S, which have been substituted during the
communications. Standard semantics does not allow to trace neither the origin
of those processes, nor the origin of the channels they have declared, because
of the use of α-conversion: in example 1, it is impossible to express that in the
sub-process emailn![datan], channels emailn and datan have been created by the
same recursive instance of the resource Customer.

138 Jérôme Feret

P ::= action.P (Action)
— (P | P) (Parallel composition)
— ∅ (End of a process)

action ::= c![x1, ..., xn] (Message)
— c?[x1, ..., xn] (Input guard)
— ∗c?[x1, ..., xn] (Replication guard)
— (ν x) (Channel creation)

where c, x1, ..., xn, x, y ∈ Channel , n > 0. Input guard, replication guard and channel
creation are the only name binders, i.e in c?[x1, ..., xn]P (resp. (ν x)P), occurrences
of x1, x2, ..., xn (resp. x) in P are considered bound. Usual rules about scopes,
substitution and α-conversion apply. We denote by FN (P) the set of free names
of P , i.e names which are not under a scope binder and by BN (P) the set of bound
names of P .

(a) Syntax

(ν x)P ≡ (ν y)P [x← y] if y
∈ FN(P) (α-conversion)
P | Q ≡ Q | P (Commutativity)

P | (Q | R) ≡ (P | Q) | R (Associativity)
(ν x)(ν y)P ≡ (ν y)(ν x)P (Swapping)
((ν x)P) | Q ≡ (ν x)(P | Q) if x
∈ FN(Q) (Extrusion)

where c, x, y ∈ Channel

(b) Congruence relation

c![x1, ..., xn]P | c?[y1, ..., yn]Q → P | Q[y1 ← x1, ..., yn ← xn]
c![x1, ..., xn]P | ∗ c?[y1, ..., yn]Q → P | Q[y1 ← x1, ..., yn ← xn] | ∗ c?[y1, ..., yn]Q

P → Q
(ν x)P → (ν x)Q

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′
P → P ′

P | Q→ P ′ | Q
where c, x1, ..., xn, y1, ..., yn ∈ Channel

(c) Reduction relation

Fig. 1. The chemical semantics

4 Non-standard Semantics

The non-standard semantics is a refined semantics, which aims at explicitly
specifying the links between channels and the instances of processes which have
declared them. Any instance of a process is identified unambiguously by a marker
in order to distinguish that instance from all others. Tracing the origin of channel

Confidentiality Analysis of Mobile Systems 139

names is then easily done by identifying each new channel name with the marker
of the process which has created it. Venet, in [22], has designed such a non-
standard semantics, but its applies only to a small part of the π-calculus, called
the friendly systems [18]. It especially requires resources not to be nested, and
the system to be closed. We propose a new non-standard semantics in order to
remove those restrictions.

4.1 Closed Systems

Let Lbl be an infinite set of labels. We denote by Id the set of all binary trees
the leaves of which are all labeled with ε and the nodes of which are labeled with
a pair (i, j) where both i and j are in Lbl . The tree having a node labeled a, a
left sibling t1 and a right one t2 is denoted by N(a, t1, t2).

Let us first consider the case of a closed mobile system S in the π-calculus
(the general case will be considered in Sect 4.2) and assume without any loss
of generality that two channel binders of S are never used on the same channel
name. We locate syntactic components of S by marking each sign ? and ! oc-
curring in S with distinct labels in Lbl , the subset of Lbl used in labeling S is
denoted by Lblused. A non-standard configuration is a set of thread instances,
where a thread instance is a triplet composed with a syntactic component, a
marker and an environment. The syntactic component is a copy of a sub-process
of S, the marker is calculated at the creation of the thread and the environ-
ment specifies the semantic value of each free name of the syntactic component.
Thread instances are created at the beginning of the system computation and
while processes are running. In both cases, several threads are spawned, corre-
sponding to a set of syntactic components, calculated by applying the function
Agent, defined as follows, either on S for initial threads, or on the continuation
of running processes.

Agent(∅) = {}
Agent(x!i[x1, ..., xn]P) = {x!i[x1, ..., xn]P}
Agent(y?i[y1, ..., yn]P) = {y?i[y1, ..., yn]P}
Agent(∗y?i[y1, ..., yn]P) = {∗y?i[y1, ..., yn]P}

Agent(P | Q) = Agent(P) ∪ Agent(Q)
Agent((ν x)P) = Agent(P)

Markers are binary trees in Id. Initial thread markers are ε, while new threads
markers are calculated recursively from the marker of the threads whose com-
putation has lead to their creation:

– when an execution does not involve fetching a resource, the marker of the
computed thread is just passed to the threads in its continuation;

– when a resource is fetched, markers of new threads in its continuation
are N((i, j), id∗, id!), where (∗y?i[y]P,id∗,E∗) is the resource thread and
(x!j [x]Q,id!,E!) the message thread.

140 Jérôme Feret

Environments map each free name of syntactic components to a pair (a, b)
where a is a bound name of S and b is a marker. Intuitively, a refers to the
binder (ν a) which has been used in declaring the channel, and b is the marker
of the thread which has declared it. While threads are running, environments
are calculated in order to mimic the standard semantics.

The translation of a labeled system S into a set of initial threads and non-
standard computation rules are given in Fig. 3. Standard and non-standard se-
mantics are in bisimulation. The proof relies on that non-standard computations
cannot yield conflicts between threads markers.

Example 2. We give the non-standard configuration describing the ftp server,
just after that two connections with customers have been completed.

Labelling of S is given as follows:

S:= (ν port)(ν gen) (Server — Customer — gen!6[])
where

Server := ∗port?1[info,add] (add !2[info])
Customer := ∗gen?3[] ((ν data) (ν email) port!4[data,email] — gen!5[])

The non-standard configuration is given as follows, each sub-process is de-
noted by the first label occurring in its syntax.

(
1, ε,

{
port 	→(port, ε)

)
(
3, ε,

{
gen 	→(gen, ε)
port 	→(port, ε)

)
(
2, id′1,

{
add 	→(email, id1)
info 	→(data, id1)

)
(
2, id′2,

{
add 	→(email, id2)
info 	→(data, id2)

)
(
5, id2,

{
gen 	→(gen, ε)

)

where

id1 = N((3, 6), ε, ε)
id′1 = N((1, 4), ε, id1)
id2 = N((3, 5), ε, id1)
id′2 = N((1, 4), ε, id2)

We shall remark that, since S has no embedded resources, markers are all
sequences, instead of trees. It explicitly appears that each time a copy of sub-
process 2 is created, both channels add and info are bound to two channel names
created by the same replication of the resource 3. ✷

4.2 Interactions with a Context

We now extend our non-standard semantics to open systems. An open system S
is a part of a bigger closed system, the rest of which is called its context. The
context is a set of processes, concurrently running with the processes of S. We
represent this context by the set of names it shares with S, called unsafe names,
and approximate it as an intruder which is able to form any possible process
working on these channel names. An interaction between S and its context,
may only consist in a communication between a process pS of the first one and a

Confidentiality Analysis of Mobile Systems 141

C0(S) = {(p, ε, Ep) | p ∈ Agent(S)} , where Ep =

(
FN (p) → BN (S)× Id

x �→(x, ε) .

(a) C0 calculates the set of initial threads

Let C be a non-standard configuration,
if there are λ, µ ∈ C,
with λ=(y?i[y1, ..., yn]P, id?, E?) and µ=(x!j [x1, ..., xn]Q, id!, E!),
such that E?(y) = E!(x),
then C →2 C′,
where C′ = (C \ {λ, µ}) ∪ (f?(Agent(P))) ∪ (f!(Agent(Q))),

f? : Ag �→

0
BBB@Ag, id?,

8>>><
>>>:

z �→E?(z) if z ∈ FN (Ag)∩ FN (y?i[y1, ..., yn]P)

yk �→E!(xk) if yk ∈ FN (Ag)

z �→(z, id?) if

(
z ∈ FN (Ag) ∩ BN (y?i[y1, ..., yn]P)

z
∈ {yk | k ∈ [|1;n|]}

1
CCCA

and f! : Ag �→

Ag, id!,

(
z �→E!(z) if z ∈ FN (Ag)∩ FN (x!j [x1, ..., xn]Q)

z �→(z, id!) if z ∈ FN (Ag)∩ BN (x!j [x1, ..., xn]Q)

!
.

(b) Non-standard communication

Let C be a non-standard configuration,
if there are λ, µ ∈ C,
with λ=(∗y?i[y1, ..., yn]P, id?, E?) and µ = (x!j [x1, ..., xn]Q, id!, E!),
such that E?(y) = E!(x),
then C →2 C′,
where C′ = (C \ {µ}) ∪ (f?(Agent(P))) ∪ (f!(Agent(Q))),
id∗ = N((i, j), id?, id!)

f? : Ag �→

0
BBB@Ag, id∗,

8>>><
>>>:

z �→E?(z) if z ∈ FN (Ag)∩ FN (y?i[y1, ..., yn]P)

yk �→E!(xk) if yk ∈ FN (Ag)

z �→(z, id∗) if

(
z ∈ FN (Ag) ∩ BN (y?i[y1, ..., yn]P)

z
∈ {yk | k ∈ [|1;n|]}

1
CCCA

and f! : Ag �→

Ag, id,

(
z �→E!(z) if z ∈ FN (Ag) ∩ FN (x!j [x1, ..., xn]Q)

z �→(z, id!) if z ∈ FN (Ag) ∩ BN (x!j [x1, ..., xn]Q)

!
.

(c) Non-standard resource fetching

Fig. 3. Non-standard semantics for close systems

process pcont of the second one, via an unsafe name. This communication is called
spying when pcont is the receiver, and spoiling when pcont is the message sender.
While spying, the context listens to new channel names which get unsafe. While
spoiling, the context may pass any name to S, either an unsafe name created by a
binder of S or a name created by the context itself, thus we have to introduce an

142 Jérôme Feret

infinite set of unsafe names that the context may have created. At last, spoiling
may lead to a resource fetching, which would require to create an unambiguous
marker, otherwise the consistency of the semantics would not be preserved.

Since α-conversion allows us to choose the names of new channels created
by the context, we may assume those channels have been declared by recursive
instances of a single process. Choosing cont?, cont! ∈ Lbl \ Lblused and ext ∈
Channel \ BN (S), such channels will be seen as if they were created by the
binder (ν ext) of a recursive instance of a process whose marker is tn, where tn
is recursively defined as follows:{

t0 = N((cont?, cont!), ε, ε)
tn+1 = N((cont?, cont!), ε, tn)

.

We then denote by EN the set {(ext, tn) | n ∈ N} and assume that every spoiling
message are syntactic copies of a single process, whose first sign is labeled with
cont!. The coherence of our semantics mainly relies on the fact that during a
computation, there cannot have been two different instances of a single process
with the same marker. We guarantee this property by associating to each spoiling
message an hypothetical fresh marker tn.

A non-standard configuration is now a triplet (C,Unsafe,Unused), where C is
a set of threads, Unsafe is a set of pairs (a,id), such that channel names created
by the binder (ν a) of the recursive instance of a process whose marker was id
is unsafe, and Unused is a set of fresh markers which have not been used as
markers for spoiling message. S may start with several initial configurations,
since free names have to be chosen among the set of initial unsafe names. The
transition relation � holds both with computations inside the mobile system S
and computations involving the system S and its context. Initial non-standard
configurations and computation rules are given in Figs. 4 and 6.

5 Abstract Semantics

We denote by C the set of all possible non-standard configurations. The set
of all possible non-standard configurations a system may take during a finite
computation is given by its collecting semantics [7], and can be expressed as
the least fix point of the ∪-complete endomorphism F on the complete lattice
(℘(C),⊆,∪, ∅,∩, C) defined as follows:

F(X) = C0(S) ∪ {C | ∃C′ ∈ X : C′ � C} .

({(p, ε, Ep) | p ∈ Agent(S)} , EN , {tn | n ∈ N}) ∈ C0(S)

⇐⇒

8><
>:
∀p ∈ Agent(S), ∀x ∈ FN (p),

Ep(x) = (x, ε) if x ∈ BN (S),
∃n such that Ep(x) = (ext, tn) otherwise

Fig. 4. Non-standard initial configurations for open systems

Confidentiality Analysis of Mobile Systems 143

C →2 C′

(C,Unsafe,Unused)# (C′,Unsafe,Unused)

(a) Non-standard safe transitions

Let (C,Unsafe,Unused) be a non-standard configuration,
if there is λ ∈ C, with λ=(x!j [x1, ..., xn]P, id!, E!),
such that E!(x) ∈ Unsafe,
then (C,Unsafe,Unused)# (C′,Unsafe′,Unused),
where C′ = (C \ {λ}) ∪ (f!(Agent(P))),

f! : Ag �→

Ag, id!,

(
z �→E(z) if z ∈ FN (Ag) ∩ FN (x!j [x1, ..., xn]P)

z �→(z, id!) if z ∈ FN (Ag) ∩ BN (x!j [x1, ..., xn]P)

!

and Unsafe′ = Unsafe ∪ {E(xk) | k ∈ [|1;n|]}.

(b) Non-standard spied communication

Let (C,Unsafe,Unused) be a non-standard configuration,
if there are λ ∈ C, with λ=(y?i[y1, ..., yn]P, id?, E?) and u1, ..., un ∈ Unsafe,
such that E?(y) ∈ Unsafe,
then (C,Unsafe,Unused)# (C′,Unsafe,Unused),
where C′ = (C \ {λ}) ∪ (f?(Agent(P))),

f? : Ag �→

0
BBB@Ag, id?,

8>>><
>>>:

z �→E?(z) if z ∈ FN (Ag)∩ FN (y?i[y1, ..., yn]P)

yk �→uk if yk ∈ FN (Ag)

z �→(z, id?) if

(
z ∈ FN (Ag) ∩ BN (y?i[y1, ..., yn]P)

z
∈ {yk | k ∈ [|1;n|]}

1
CCCA .

(c) Non-standard spoilt communication

Let (C,Unsafe,Unused) be a non-standard configuration,
if there are λ ∈ C, with λ=(∗y?i[y1, ..., yn]P, id?, E?), u1, ..., un ∈ Unsafe, id∈ Unused,
such that E?(y) ∈ Unsafe,
then (C,Unsafe,Unused)# (C′,Unsafe ,Unused′)
where C′ = C ∪ (f?(Agent(P))),
id∗ = N((i, cont!), id?, id),

f? : Ag �→

0
BBB@Ag, id∗,

8>>><
>>>:

z �→E?(z) if z ∈ FN (Ag)∩ FN (y?i[y1, ..., yn]P)

yk �→uk if yk ∈ FN (Ag)

z �→(z, id∗) if

(
z ∈ FN (Ag) ∩ BN (y?i[y1, ..., yn]P)

z
∈ {yk | k ∈ [|1;n|]}

1
CCCA,

and Unused′ = Unused \ {id}.

(d) Non-standard spoilt resource fetching

Fig. 6. Non-standard transitions for open systems

144 Jérôme Feret

Usually, this semantics is not decidable, we use abstract interpretation [8] to de-
sign an abstract domain in which a description of the collecting semantics will be
finitely designed. We introduce two lattices, left as parameter of our abstraction,
(Id �

1 ,�1,∪1,⊥1,∩1,�1) and (Id �
2 ,�2,∪2,⊥2,∩2,�2), to respectively represent

sets of markers and sets of pairs of markers, related to their concrete domains
via two monotone maps, γ1 and γ2:

γ1 : (Id �
1 ,�1) → (℘(Id),⊆), with γ1(⊥1) = ∅ ,

γ2 : (Id �
2 ,�2)→ (℘(Id× Id),⊆) with γ2(⊥2) = ∅ .

Let Pro be the set of all sub-processes of S, and Can be the set {(p, x, y) | p ∈
Pro, x ∈ FN (p), y ∈ {ext}∪BN (S)}. Can is the set of all possible interactions
between agents of S. The interaction (p, x, y) denotes the fact that the channel
name x ∈ FN (p) has been declared by the (ν y) binder, if y �= ext, or has been
declared by the context otherwise. Our abstract domain is then the product of
three functional domains:

C� = (C�
Pro × C�

Com × C�
Esc) where

C�
Pro : Pro → Id �

1

C�
Com : Can → Id �

2

C�
Esc : BN (S) ∪ {ext} → Id �

1

.

C�
Pro maps each sub-process to the set of markers it may be marked with.

C�
Com maps each interaction (P, x, y) to the set of pairs of markers (id1, id2), such

that x is the free name of a thread whose marker was id1; this thread may have
been declared by the (ν y) binder of a thread whose marker was id2. Finally C

�
Esc

maps each names x to the set of markers id such that a channel name declared
by the binder (ν x) of a thread whose marker was id may be unsafe.

An abstract configuration C� = (f �
pro, f

�
can, f

�
esc) is then related to a set of

concrete configurations by the monotone map γ, where γ(C�) is:

A ∈ ℘(C)

∣∣∣∣∣∣∣∣∣∣∣

∀(C, esc, unused) ∈ A,

∃(x, id) ∈ esc =⇒ id ∈ γ1(f �

esc(x))
∃(P, id, E) ∈ C, =⇒ id ∈ γ1(f �

pro(P))(
∃(P, id, E) ∈ C,

∃x ∈ FN (P)

)
=⇒

(
(id, id′) ∈ γ2(f �

can(P, x, y))
where E(x) = (y, id’)

)

.

The abstract semantics is given by an initial abstract configuration C�
0 and a

transition relation⇀, in Figs. 7 to 12. In the relationC�
1 ⇀ C�

2, C
�
2 represents new

interactions between agents induced by an abstract computation. The transition
relation ⇀ uses several abstract primitives, which must satisfy some soundness
conditions:

– two abstract projections: Π1 : Id �
2 → Id �

1 and Π2 : Id �
2 → Id �

1 ,
such that {u ∈ Id | ∃v ∈ Id such that (u, v) ∈ γ2(c)} ⊆ γ1(Π1(c))
and {v ∈ Id | ∃u ∈ Id such that (u, v) ∈ γ2(c)} ⊆ γ1(Π2(c));

Confidentiality Analysis of Mobile Systems 145

where

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

i�pro =

8><
>:

Pro → Id �
1

P �→ε�
1 if P ∈ (Agent(S))

P �→ ⊥�1 otherwise

i�can =

8>>>>>>>><
>>>>>>>>:

Can → Id �
2

(P, x, x) �→ε�
2 if

(
P ∈ (Agent(S))
x ∈ BN (S) ∩ FN (P)

(P, x, ext) �→(Inj1(ε�
1)) ∩2 (Inj2(t

�)) if

(
P ∈ (Agent(S))
x ∈ FN (S) ∩ FN (P)

(P, x, y) �→ ⊥�2 otherwise

i�esc =

8><
>:
BN (S) ∪ {ext} → Id �

1

ext �→t�
x �→ ⊥�1 if x ∈ BN (S)

Fig. 7. Initial abstract configuration

– two abstract injections: Inj1 : Id �
1 → Id �

2 and Inj2 : Id �
1 → Id �

2 ,
such that {(u, v) ∈ Id× Id | u ∈ γ1(c)} ⊆ γ2(Inj1(c))
and {(u, v) ∈ Id× Id | v ∈ γ1(c)} ⊆ γ2(Inj2(c));

– two abstract joins: !
=→ : Id �

2 × Id �
2 → Id �

2 and !← =
: Id �

2 × Id �
2 → Id �

2 ,

such that
{
(u, v) ∈ Id× Id

∣∣∣∣ ∃w ∈ Σ∗
(w, u) ∈ γ2(c)
(w, v) ∈ γ2(c′)

}
⊆ γ2(!

=→ (c, c′))

and
{
(u, v) ∈ Id× Id

∣∣∣∣ ∃w ∈ Id
(v, w) ∈ γ2(c)
(u,w) ∈ γ2(c′)

}
⊆ γ2(!← =

(c, c′));

– two abstract marker creators: push(i,j)
1 : Id �

1 × Id �
1 → Id �

1

and push(i,j)
2 : Id �

1 × Id �
2 → Id �

2 ,

such that
{
N((i, j), u, v)

∣∣∣∣ u ∈ γ1(cg)
v ∈ γ1(cd)

}
⊆ γ1(push

(i,j)
1 (cg, cd))

and
{
(N((i, j), u, v), w)

∣∣∣∣ u ∈ γ1(cg)
(v, w) ∈ γ2(cd)

}
⊆ γ2(push

(i,j)
2 (cg, cd));

– an abstract marker duplicator: dpush : Id �
1 → Id �

2 ,
such that {(u, u) | u ∈ γ1(c)} ⊆ γ2(dpush(c));

– initial abstract markers: ε�
1 ∈ Id �

1 , ε
�
2 ∈ Id �

2 , t
� ∈ Id �

1 such that
{ε} ⊆ γ1(ε

�
1), {(ε, ε)} ⊆ γ2(ε

�
2) and {tn | n ∈ N} ⊆ γ1(t�).

Roughly speaking, Π1 (resp. Π2) projects every pair of markers onto its first
(resp. second) component. Inj1 (resp. Inj2) constructs for every marker the set
of pair whose first (resp. second) component is that marker. !← =

and !
=→ allow

to calculate and propagate relational information between the components of a
pair of markers throughout communication and resource fetching computations.
push(i,j)

1 constructs every marker of the processes created during a replication,
using the set of markers of the resource given in its first argument and the
set of markers of the message sender given in its second argument. push(i,j)

2

146 Jérôme Feret

acts similarly to push(i,j)
1 , but it takes into account relational information about

markers of the free channels names of the message sender. dpush duplicates every
marker into a pair of markers, this is used while creating new channel names.

All these conditions imply the following proposition:

Proposition 1. If C ∈ γ(C�) and C � D, then there exists D� such that
C� ⇀ D� and D ∈ γ(C� �D�).

As a consequence, the abstract counterpart F
� of F, defined by

F
�(C�) = C�

0 � C� � {C� | C� ⇀ C
�} ,

satisfies the soundness condition F◦γ ⊆ γ◦F
�. Using Kleene’s theorem, we prove

the soundness of our analysis:

Theorem 1. lfp∅F ⊆ ⋃
n∈N

γ(F�n(⊥�))

We compute a sound approximation of our abstract semantics by using a
widening operator [7,9] ∇ : C� × C� → C� satisfying the following properties:

– ∀C�
1, C

�
2 ∈ C�, C�

1 � C�
2 � C�

1∇C�
2

– for all increasing sequence (C�
n) ∈

(
C�
)N, the sequence (C∇n) defined as{

C∇0 = C�
0

C∇n+1 = C∇n ∇C�
n+1

is ultimately stationary.

We can easily construct a widening operator ∇ on our abstract domain from
existing widening operators ∇1 on Id1 and ∇2 on Id2.

Theorem 2. Abstract iteration[9,10] The abstract iteration (C∇n)of F
� de-

fined as follows

C∇0 = ⊥

C∇n+1 =

{
C∇n if F

�(C∇n) � C∇n
C∇n ∇F

�(C∇n) otherwise

is ultimately stationary and its limit C∇ satisfies lfp∅F ⊆ γ(C∇).

Confidentiality Analysis of Mobile Systems 147

Let (f �
pro, f

�
can, f

�
esc) be an abstract configuration,

we consider u ∈ Channel and y?i[y1, ..., yn]P , x!j [x1, ..., xn]Q two sub-processes,
such that

f �
can(y?

i[y1, ..., yn]P, y, u) = id?
� ,

f �
can(x!

j [x1, ..., xn]Q,x, u) = id!
�,

⊥1
= (Π2(id
?
�)) ∩1 (Π2(id

!
�)),

and we introduce
idcan

∆
= (Π2(id

?
�)) ∩1 (Π2(id

!
�)),

idpro? ∆
= Π1(id

?
� ∩2 Inj2(idcan)),

idpro! ∆
= Π1(id

!
� ∩2 Inj2(idcan)),

idt
k

∆
= !"

=→
(!"
← =

(id?
� , id

!
�), f

�
can(x!

j [x1, ..., xn]Q,xk, t)) ∩2 Inj1(idpro
?).

Then we have
(f �

pro, f
�
can, f

�
esc) ⇀ (g�

pro, g
�
can, ∅)

where g�
pro =

(
p �→idpro? if p ∈ (Agent(P))

q �→idpro! if q ∈ (Agent(Q))}
and g�

can =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(p, z, z) �→dpush(idpro?) if

8><
>:

p ∈ (Agent(P))

z ∈ BN (P) ∩ FN (p)

z
∈ {yi | i ∈ [|1;n|]}

(p, yk, t) �→idt
k if

(
p ∈ (Agent(P))

yk ∈ BN (P) ∩ FN (p)

(p, z, t) �→f �
can(y?

i[y1, ..., yn]P, z, t) ∩2 Inj1(idpro
?) if

8><
>:

p ∈ (Agent(P))

z ∈ FN (P) ∩ FN (p)

z
= y

(p, y, u) �→f �
can(y?

i[y1, ..., yn]P, y, u) ∩2 Inj2(idcan) if

(
p ∈ (Agent(P))

y ∈ FN (P) ∩ FN (p)

(q, z, z) �→dpush(idpro!) if

(
p ∈ (Agent(Q))

z ∈ BN (Q) ∩ FN (q)

(q, z, t) �→f �
can(x!

j [x1, ..., xn]Q, z, t) ∩2 Inj1(idpro
!) if

8><
>:

q ∈ (Agent(Q))

z ∈ FN (Q) ∩ FN (q)

z
= x

(q, x, u) �→f �
can(x!

j [x1, ..., xn]Q,x, u) ∩2 Inj2(idcan) if

(
p ∈ (Agent(Q))

x ∈ FN (Q) ∩ FN (q).

Fig. 8. Abstract communication

148 Jérôme Feret

Let (f �
pro, f

�
can, f

�
esc) be an abstract configuration,

we consider u ∈ Channel and ∗y?i[y1, ..., yn]P , x!j [x1, ..., xn]Q two sub-processes,
such that

f �
can(∗y?i[y1, ..., yn]P, y, u) = id?

� ,

f �
can(x!

j [x1, ..., xn]Q,x, u) = id!
�,

⊥1
= (Π2(id
?
�)) ∩1 (Π2(id

!
�)),

and we introduce

idcan
∆
= (Π2(id

?
�)) ∩1 (Π2(id

!
�)),

idpro? ∆
= Π1(id

?
� ∩2 Inj2(idcan)),

idpro! ∆
= Π1(id

!
� ∩2 Inj2(idcan)),

ids,t
∆
= Inj1(idpro

!)∩2 !"
= →

(!"
← =

(id!
�, id

?
�), f

�
can(y?

i[y1, ..., yn]P, s, t)),

idt
k

∆
= f �

can(x!
j [x1, ..., xn]Q,xk, t).

Then we have
(f �

pro, f
�
can, f

�
esc) ⇀ (g�

pro, g
�
can, ∅)

where g�
pro =

(
p �→idpro? | p ∈ (Agent(P))

q �→idpro! | q ∈ (Agent(Q))

and g�
can =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(p, z, z) �→dpush(push(i,j)
1 (idpro?, idpro!)) if

8><
>:

p ∈ (Agent(P))

z ∈ BN (P) ∩ FN (p)

z
∈ {yi | i ∈ [|1;n|]}

(p, yk, t) �→push(i,j)
2 (idpro?, idt

k) if

(
p ∈ (Agent(P))

yk ∈ BN (P) ∩ FN (p)

(p, z, t) �→push(i,j)
2 (idpro?, idz,t) if

8><
>:

p ∈ (Agent(P))

z ∈ FN (P) ∩ FN (p)

z
= y

(p, y, u) �→push(i,j)
2 (idpro?, idy,u) ∩2 Inj2(idcan) if

(
p ∈ (Agent(P))

y ∈ FN (P) ∩ FN (p)

(q, z, z) �→dpush(idpro!) if

(
q ∈ (Agent(Q))

z ∈ BN (Q) ∩ FN (q)

(q, z, t) �→f �
can(x!

j [x1, ..., xn]Q, z, t) ∩2 Inj1(idpro
!) if

8><
>:

q ∈ (Agent(Q))

z ∈ FN (Q) ∩ FN (q)

z
= x

(q, x, u) �→f �
can(x!

j [x1, ..., xn]Q,x, u) ∩2 Inj2(idcan) if

(
q ∈ (Agent(Q))

x ∈ FN (Q) ∩ FN (q).

Fig. 9. Abstract resource fetching

Confidentiality Analysis of Mobile Systems 149

Let (f �
pro, f

�
can, f

�
esc) be an abstract configuration,

we consider u ∈ Channel and x!j [x1, ..., xn]Q a sub-process, such that
f �
can(x!

j [x1, ..., xn]Q,x, u) = id!
�,

⊥1

= (f �
esc(u)) ∩1 (Π2(id

!
�)),

and we introduce
idcan

∆
= (f �

esc(u)) ∩1 (Π2(id
!
�)),

idpro! ∆
= Π1(id

!
� ∩2 Inj2(idcan)).

Then we have (f �
pro, f

�
can, f

�
esc) ⇀ (g�

pro, g
�
can, g

�
esc)

where
g�
pro = {q �→idpro! if q ∈ (Agent(Q)),
g�
can =8>>>>>>>>>>><
>>>>>>>>>>>:

(q, z, z) �→dpush(idpro!) if

(
q ∈ (Agent(Q))

z ∈ BN (Q) ∩ FN (q)

(q, z, t) �→f �
can(x!

i[x1, ..., xn]Q, z, t) ∩2 Inj1(idpro
!) if

8><
>:
q ∈ (Agent(Q))

z ∈ FN (Q) ∩ FN (q)

z
= x

(q, x, u) �→f �
can(x!

i[x1, ..., xn]Q,x, u) ∩2 Inj2(idcan) if

(
q ∈ (Agent(Q))

x ∈ FN (Q) ∩ FN (q),

g�
esc = {t �→Π2(f

�
can(Q,xk, t) ∩2 Inj1(idpro

!)), ∀k ∈ [|1;n|].

Fig. 10. Abstract spied communication

Let (f �
pro, f

�
can, f

�
esc) be an abstract configuration,

we consider u ∈ Channel and y?i[y1, ..., yn]P a sub-process, such that
f �
can(y?

i[y1, ..., yn]P, y, u) = id?
� ,

⊥1
= (f �
esc(u)) ∩1 (Π2(id

?
�)),

and we introduce

idcan
∆
= (f �

esc(u)) ∩1 (Π2(id
?
�)),

idpro? ∆
= Π1(id

?
� ∩2 Inj2(idcan)).

Then we have (f �
pro, f

�
can, f

�
esc) ⇀ (g�

pro, g
�
can, ∅)

where
g�
pro = {p �→idpro? if p ∈ (Agent(P)),
g�
can =8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(p, z, z) �→dpush(idpro?) if

8><
>:
p ∈ (Agent(P))

z ∈ BN (P) ∩ FN (p)

z
∈ {yi | i ∈ [|1;n|]}

(p, z, t) �→f �
can(y?

i[y1, ..., yn]Q, z, t) ∩2 Inj1(idpro
?) if

8><
>:
p ∈ (Agent(P))

z ∈ FN (P) ∩ FN (p)

z
= y

(p, y, u) �→f �
can(y?

i[y1, ..., yn]P, y, u) ∩2 Inj2(idcan) if

(
p ∈ (Agent(P))

y ∈ FN (P) ∩ FN (p)

(p, yk, t) �→(Inj1(idpro?) ∩2 Inj2(f
�
esc(t))) if

(
p ∈ (Agent(P))

yk ∈ BN (P) ∩ FN (p).

Fig. 11. Abstract spoilt communication

150 Jérôme Feret

Let (f �
pro, f

�
can, f

�
esc) be an abstract configuration,

we consider u ∈ Channel and ∗y?i[y1, ..., yn]P a sub-process, such that
f �
can(∗y?i[y1, ..., yn]P, y, u) = id?

�

⊥1
= (Π2(id
?
�)) ∩1 (f

�
esc(u)),

and we introduce

idcan
∆
= (Π2(id

?
�)) ∩1 (f

�
esc(u)),

idpro? ∆
= Π1(id

?
� ∩2 Inj2(idcan)),

idpro∗ ∆
= push

(i,cont!)
1 (idpro?, t�),

ids,t
∆
= Inj1(t

�) ∩2 Inj2(Π2(f
�
can(y?

i[y1, ..., yn]P, s, t) ∩2 Inj1(idpro?))).

Then we have (f �
pro, f

�
can, f

�
esc) ⇀ (g�

pro, g
�
can, ∅)

where g�
pro =

n
p �→idpro∗ | p ∈ (Agent(P))

and
g�
can =8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(p, z, z) �→dpush(idpro∗) if

8><
>:

p ∈ (Agent(P))

z ∈ BN (P) ∩ FN (p)

z
∈ {yi | i ∈ [|1;n|]}

(p, yk, t) �→Inj1(idpro∗) ∩2 Inj2(f
�
esc(t)) if

(
p ∈ (Agent(P))

yk ∈ BN (P) ∩ FN (p)

(p, z, t) �→push(i,cont!)
2 (idpro?, idz,t) if

8><
>:

p ∈ (Agent(P))

z ∈ FN (P) ∩ FN (p)

z
= y

(p, y, u) �→push(i,cont!)
2 (idpro?, idy,u) ∩2 Inj2(idcan) if

(
p ∈ (Agent(P))

y ∈ FN (P) ∩ FN (p).

Fig. 12. Abstract spoilt resource fetching

6 Abstract Domains

Many domains can be used to instantiate the parametric domains Id �
1 and Id �

2

and their associated primitives, depending on which complexity and which level
of accuracy we expect. We have explained in [13, Sect. 6.1] that an unexpensive
uniform analysis can be obtained by instantiating both Id �

1 and Id �
2 with the

lattice {⊥,�} with the following concretization functions:

γ1 :

{
⊥ 	→ ∅
� 	→Id and γ2 :

{
⊥ 	→ ∅
� 	→Id× Id

.

For the sake of comparison, this analysis is at least as accurate as the one of
Nielson et al. [3] and takes into account unreachable code.

Non-uniform analyses [6,22] are much more expensive. We obtain an accu-
rate analysis by using the reduced product of both a non relational domain
Idun

1 (resp. Idun
2) and a relational domain Idrel

1 (resp. Idrel
2) to represent sets of

Confidentiality Analysis of Mobile Systems 151

markers (resp. sets of pairs of markers). Non relational domains provide an intel-
ligible description of markers, whereas relational domains are used in comparing
processes and channels markers.

We denote by Σ = (Lblused ∪ {cont?,cont!})2 the set of useful pairs of labels.
For the sake of simplicity, we first approximate every tree marker by the words
of Σ∗ written on the right combs of its elements, where the right comb of a tree
is defined as follows:{

right comb(ε) = ε

right comb(N(a, b, c)) = a.right comb(c)
.

This abstraction is motivated by the following theorem:

Theorem 3. Let (C0, unsafe0, unused0) � ... � (Cn, unsafen, unusedn), be a
non-standard computation sequence, where (C0, unsafe0, unused0) ∈ C0(S).

If there exist i, j ∈ [|0, n|], (p, id, E) ∈ Ci and (p′, id′, E′) ∈ Cj, such that
right comb(id) = right comb(id’) then id = id’.

Our non relational domain is based on the use of regular languages on Σ. Idun
1

is the set of regular languages on Σ, while Idun
2 is the set of pairs of languages

on Σ, defined pair wise. Associated abstract primitives are not detailed due to
lack of space, a full description of these primitives is given in [13, Sect. 6.3]. Since
there exist infinite chains in Idun

1 , a computable analysis needs a widening oper-
ator ∇. A convenient choice for L1∇L2 consists in the quotient of the minimal
automaton (G,→) of L1 ∪ L2 by the relation ∼n, defined as follows, where n is
a fixed integer:

– a ∼0 b ⇐⇒ true ;

– a ∼n+1 b ⇐⇒
{
∀c such that a λ→ c, ∃c′ such that c ∼n c′ and b

λ→ c′

∀c such that b λ→ c, ∃c′ such that c ∼n c′ and a
λ→ c′

.

Our relational approximation abstracts numerical relations between the num-
ber of occurrences of each label in sets of words and in sets of pairs of words.
We assign to each λ ∈ Σ two distinct variables xλ and yλ. We denote by V1 the
set {xλ | λ ∈ Σ}, and by V2 the set {xλ | λ ∈ Σ} ∪ {yλ | λ ∈ Σ}. The abstract
domains ℘(NV1) and ℘(NV2) are respectively related to ℘(Id) and ℘(Id× Id) by
two monotone maps γV1 and γV2 defined as follows:

γV1(A) = {u ∈ Σ∗ | ∃(nt)t∈V1 ∈ A, ∀λ ∈ Σ,nxλ
= |u|λ},

γV2(A) =

{
(u, v) ∈ Σ∗ ×Σ∗

∣∣∣∣∣ ∃(nt)t∈V2 ∈ A, ∀λ ∈ Σ,

{
nxλ

= |u|λ
nyλ

= |v|λ

}
.

Many relational numerical domains have been introduced in the litera-
ture [17,11,14]. We propose to use Karr’s affine relationship equality relations
domain. We define Idrel

1 by the set of affine equality relations systems on the set
of variables V1 , while Idrel

2 is the set of affine equality relations systems on the
set of variables V∈. Those domains are fully described in [17].

152 Jérôme Feret

8>>><
>>>:

(1, port,port) �→
�
(ε, ε),

n
xλ = yλ = 0, ∀λ ∈ Σ

�

(2, add, email) �→

0
BBBBBB@

((1, 4)(3, 5)∗(3, 6), (3, 5)∗(3, 6)) ,8>>><
>>>:
yλ = xλ, ∀λ ∈ Σ \ {(1, 4)}
xλ = 0, ∀λ ∈ Σ \ {(1, 4); (3, 5); (3, 6)}
x(3,6) = x(1,4) = 1

y(1,4) = 0

1
CCCCCCA

(2, info, data) �→

0
BBBBBB@

((1, 4)(3, 5)∗(3, 6), (3, 5)∗(3, 6)) ,8>>><
>>>:
yλ = xλ, ∀λ ∈ Σ \ {(1, 4)}
xλ = 0, ∀λ ∈ Σ \ {(1, 4); (3, 5); (3, 6)}
x(3,6) = x(1,4) = 1

y(1,4) = 0

1
CCCCCCA

(3, port,port) �→
�
(ε, ε),

n
xλ = yλ = 0, ∀λ ∈ Σ

�
(3, gen, gen) �→

�
(ε, ε),

n
xλ = yλ = 0, ∀λ ∈ Σ

�

(4, port,port) �→

0
BBB@

((3, 5)∗(3, 6), ε) ,8><
>:
yλ = 0, ∀λ ∈ Σ

xλ = 0, ∀λ ∈ Σ \ {(3, 5); (3, 6)}
x(3,6) = 1

1
CCCA

(4, email, email) �→

0
BBB@

((3, 5)∗(3, 6), (3, 5)∗(3, 6)) ,8><
>:
yλ = xλ, ∀λ ∈ Σ

xλ = 0, ∀λ ∈ Σ \ {(3, 5); (3, 6)}
x(3,6) = 1

1
CCCA

(4, data, data) �→

0
BBB@

((3, 5)∗(3, 6), (3, 5)∗(3, 6)) ,8><
>:
yλ = xλ, ∀λ ∈ Σ

xλ = 0, ∀λ ∈ Σ \ {(3, 5); (3, 6)}
x(3,6) = 1

1
CCCA

(5, gen, gen) �→

0
BBB@

(3, 5)∗(3, 6), ε),8><
>:
yλ = 0, ∀λ ∈ Σ)

xλ = 0, ∀λ ∈ Σ \ {(3, 5); (3, 6)}
x(3,6) = 1

1
CCCA

(6, gen, gen) �→
�
(ε, ε),

n
xλ = yλ = 0, ∀λ ∈ Σ

�

Fig. 13. f �
can: the ftp server analysis

Example 3. Our analysis may be used in proving the confidentiality of our ftp
server.We denote by C� = (f �

pro, f
�
can, f

�
esc) the result of our analysis. f

�
can is given

in Fig. 13 while f �
esc maps each channel to ⊥1. These results are precise enough

to prove that channels data (resp. email) can be passed only to channels info
(resp. add), and cannot be listened to by any processes of an unknown context.
Furthermore, using theorem 3, we can conclude that anytime a process 4 is
spawned, its free channels are bound to channels created by the same recursive
instance of resource 3. ✷

Confidentiality Analysis of Mobile Systems 153

7 Conclusion

We have designed a powerful non-standard semantics, which is able to describe
the behaviour of any mobile system expressed in the π-calculus, while tracing
precisely the origin of channels. Moreover, our abstraction allows to analyze the
behaviour of a part of a system whatever its context may be, which has many
applications, such as analyzing a system part by part or analyzing the security
of a known system inside a hostile context.

We have approximated this non-standard semantics into an abstract one,
which focuses on confidentiality properties. We have obtained results which
have at least the same level of accuracy than those obtained on the friendly
systems [22], while our semantics works on the full π-calculus and can be ap-
plied to open mobile system. Analyzing a system part by part may lead to more
accurate results than analyzing a complete system, especially while detecting
mutual exclusion [13].

References

1. Martin Abadi. Secrecy by typing in security protocol. In Proc. 5th FPCA, volume
523 of Lecture Notes in Computer Science, pages 427–447. Springer-Verlag, 1991.
136

2. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992. 137

3. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control flow analysis for the
π-calculus. In Proc. CONCUR’98, number 1466 in Lecture Notes in Computer
Science, pages 84–98. Springer-Verlag, 1998. 136, 150

4. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis of processes
for no read-up and no write-down. In Proc. FOSSACS’99, number 1578 in Lecture
Notes in Computer Science, pages 120–134. Springer-Verlag, 1999. 136

5. L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software
Science and Computational Structures, volume 1378 of Lecture Notes in Computer
Science, pages 140–155. Springer, 1998. 137

6. C. Colby. Analyzing the communication topology of concurrent programs. In
Symposium on Partial Evaluation and Program Manipulation, 1995. 136, 150

7. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, Inc., Englewood Cliffs, 1981. 142, 146

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pages 238–252, Los Angeles, California, U.S.A., 1977. 144

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of logic
and computation, 2(4):511–547, August 1992. 146

10. P. Cousot and R. Cousot. Comparing the Galois connection and widening--
narrowing approaches to abstract interpretation. In Programming Language Imple-
mentation and Logic Programming, Proceedings of the Fourth International Sympo-
sium, PLILP’92, volume 631 of Lecture Notes in Computer Science, pages 269–295.
Springer-Verlag, 1992. 146

154 Jérôme Feret

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the Fifth Conference on Principles of
Programming Languages. ACM Press, 1978. 151

12. A. Deutsch. A storeless model of aliasing and its abstraction using finite representa-
tions of right-regular equivalence relations. In Proceedings of the 1992 International
Conference on Computer Languages, pages 2–13. IEEE Computer Society Press,
Los Alamitos, California, U.S.A., 1992. 136

13. J. Feret. Conception de π-sa : un analyseur statique générique pour le π-
calcul. Mémoire de dea, SPP, september 1999. Electronically available at
http://www.di.ens.fr/˜feret/dea.html. 136, 150, 151, 153

14. P. Granger. Static analysis of linear congruence equalities among variables of a
program. In TAPSOFT’91, volume 493. Lecture Notes in Computer Science, 1991.
151

15. Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. In U. Nestmann and B. Pierce, editors, 3rd International Workshop on
High-Level Concurrent Languages (HLCL’98), volume 16(3) of Electronic Notes
in Theoretical Computer Science, Nice, September 1998. Elsevier. Available from
http://www.elsevier.nl/locate/entcs . Full version available as Sussex CSTR
98/02, 1998. Available from http://www.cogs.susx.ac.uk/. 136

16. K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as types
process behaviour. In Proc. ESOP’00, number 1782 in Lecture Notes in Computer
Science. Springer-Verlag, 2000. 136

17. M. Karr. Affine relationships among variables of a program. Acta Informatica,
pages 133–151, 1976. 151

18. R. Milner. The polyadic π-calculus: a tutorial. In Proceedings of the International
Summer School on Logic and Algebra of Specification. Springer Verlag, 1991. 135,
136, 137, 139

19. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1–77, 1992. 135, 137

20. James Riely and Matthew Hennessy. Secure resource access for mobile agents.
Draft. Available from http://www.depaul.edu/~jriely , June 1999. 136

21. D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, Edinburgh University, 1995. 137

22. A. Venet. Automatic determination of communication topologies in mobile sys-
tems. In Proceedings of the Fifth International Static Analysis Symposium SAS’98,
volume 1503 of Lecture Notes in Computer Science, pages 152–167. Springer-
Verlag, 1998. 135, 136, 139, 150, 153

Unified Analysis of Array and Object References

in Strongly Typed Languages

Stephen Fink1, Kathleen Knobe2, and Vivek Sarkar1

1 IBM Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA

2 Compaq Cambridge Research Laboratory
One Cambridge Center, Cambridge, MA 02139, USA

Abstract. We present a simple, unified approach for the analysis and
optimization of object field and array element accesses in strongly typed
languages, that works in the presence of object references/pointers. This
approach builds on Array SSA form [14], a uniform representation for
capturing control and data flow properties at the level of array elements.
The techniques presented here extend previous analyses at the array
element level [15] to handle both array element and object field accesses
uniformly.
In the first part of this paper, we show how SSA-based program analyses
developed for scalars and arrays can be extended to operate on object
references in a strongly typed language like Java. The extension uses
Array SSA form as its foundation by modeling object references as indices
into hypothetical heap arrays. In the second part of this paper, we present
two new sparse analysis algorithms using the heap array representation;
one identifies redundant loads, and the other identifies dead stores. Using
strong typing to help disambiguation, these algorithms are more efficient
than equivalent analyses for weakly typed languages. Using the results
of these algorithms, we can perform scalar replacement transformations
to change operations on object fields and array elements into operations
on scalar variables.
We present preliminary experimental results using the Jalapeño opti-
mizing compiler infrastructure. These results illustrate the benefits ob-
tained by performing redundant load and dead store elimination on
Java programs. Our results show that the (dynamic) number of memory
operations arising from array-element and object-field accesses can be
reduced by up to 28%, resulting in execution time speedups of up to 1.1×.

Keywords: static single assignment (SSA) form, Array SSA form, load
elimination, store elimination, scalar replacement, Java object references.

1 Introduction

Classical compiler analyses and optimizations have focused primarily on prop-
erties of scalar variables. While these analyses have been used successfully in
practice for several years, it has long been recognized that more ambitious
analyses must also consider non-scalar variables such as objects and arrays.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 155–174, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

156 Stephen Fink et al.

Past work on analysis and optimization of array and object references can
be classified into three categories — 1) analysis of array references in scientific
programs written in languages with named arrays such as Fortran, 2) analysis
of pointer references in weakly typed languages such as C, and 3) analysis of
object references in strongly typed languages such as Modula-3 and Java. This
research focuses on the third category.

Analysis and optimization algorithms in the first category were driven by
characteristics of the programming language (Fortran) used to write scientific
programs. These algorithms typically use dependence analysis [22] to disam-
biguate array references, and limit their attention to loops with restricted control
flow. The algorithms in this category did not consider the possibility of pointer-
induced aliasing of arrays, and hence do not apply to programming languages
(such as C and Java) where arrays might themselves be aliased.

Analysis and optimization algorithms in the second category face the
daunting challenge of dealing with pointer-induced aliases in a weakly typed
language. A large body of work has considered pointer analysis techniques
(e.g., [17,6,13,16,7,12]) that include powerful methods to track pointer references
both intra- and inter-procedurally. However, many of these techniques have
limited effectiveness for large “real-world” programs because the underlying
language semantics force highly conservative default assumptions. In addition,
these algorithms are known to be complex and time-consuming in practice.

The research problem addressed by our work falls in the third category
viz., efficient and effective analysis and optimization of array and object
references in strongly typed object-oriented languages such as Java. Recent
work on type-based alias analysis [11] has demonstrated the value of using type
information in such languages in analysis and optimization.

In this paper, we present a new unified approach for analysis and optimization
of object field and array element accesses in strongly typed languages, that works
in the presence of object references/pointers. We introduce a new abstraction
called heap arrays, which serves as a uniform representation for array and object
references. Our approach is flow-sensitive, and therefore more general than past
techniques for type-based alias analysis. In addition, our approach leverages past
techniques for sparse analyses, namely Array SSA form (SSA) [14,15] and scalar
global value numbering [1], to obtain analysis and optimization algorithms that
are more efficient than the algorithms used for weakly type languages such as C.

To illustrate this approach, we present two new analysis algorithms for
strongly typed languages: one identifies redundant loads, and one identifies dead
stores. We have implemented our new algorithms in the Jalapeño optimizing
compiler [3], and we present empirical results from our implementation. Our
results show that the (dynamic) number of memory operations arising from
array-element and object-field accesses can be reduced by up to 28%, resulting
in execution time speedups of up to 1.1×.

Our interest in efficient analysis arises from our goal of optimizing large Java
programs. For this context, we need optimization algorithms that are efficient
enough to apply at runtime in a dynamic optimizing compiler [3]. However,

Unified Analysis of Array and Object References 157

we believe that the approach developed in this paper will also apply to other
applications that require efficient analysis, such as program understanding tools
that need to scale to large programs.

The rest of the paper is organized as follows. Section 2 outlines the
foundations of our approach: Section 2.1 introduces heap arrays, and Section 2.2
summarizes an extension of global value numbering to efficiently precompute
definitely-same and definitely-different information for heap array indices. Sec-
tion 3 describes our algorithms to identify redundant loads and dead stores.
Section 4 contains our preliminary experimental results. Section 5 discusses
related work, and Section 6 contains our conclusions.

2 Analysis Framework

In this Section, we describe a unified representation called extended Array SSA
form, which can be used to perform sparse dataflow analysis of values through
scalars, array elements, and object references. First, we introduce a formalism
called heap arrays which allows us to analyze object references with the same
representation used for named arrays [14]. Then, we show how to use the
extended Array SSA representation and global value numbering to disambiguate
pointers with the same framework used to analyze array indices.

2.1 Heap Arrays

In this section, we describe our approach to analyzing accesses to object fields
and array elements as accesses to elements of hypothetical heap arrays. The
partitioning of memory locations into heap arrays is analogous to the partitioning
of memory locations using type-based alias analysis [11]. The main difference is
that our approach also performs a flow-sensitive analysis of element-level accesses
to the heap arrays.

We model accesses to object fields as follows. For each field x, we introduce
a hypothetical one-dimensional heap array, Hx. Heap array Hx consolidates all
instances of field x present in the heap. Heap arrays are indexed by object
references. Thus, a getfield1 of p.x is modeled as a read of element Hx[p], and
a putfield of q.x is modeled as a write of element Hx[q]. The use of distinct
heap arrays for distinct fields leverages the fact that accesses to distinct fields
must be directed to distinct memory locations in a strongly typed language. Note
that field x is considered to be the same field for objects of types C1 and C2,
if x is declared in class C1 and class C2 extends class C1 i.e., if C2 is a subclass
of C1.

Recall that arrays in an OO language like Java are also allocated in the
heap — the program uses both an object reference and an integer subscript
to access an array element. Therefore, we model such arrays as two-dimensional
1 We use getfield and putfield to denote general field access operators that may
appear in three-address statements, not necessarily in Java bytecode.

158 Stephen Fink et al.

heap arrays, with one dimension indexed by the object reference, and the second
dimension indexed by the integer subscript. To avoid confusion, we refer to the
array declared in the program as a “program array”, and its representation in
our model as its corresponding heap array.

The notation HT []R denotes a heap array, where R is the rank (dimension-
ality) of the underlying program array, and T is the element type. We introduce
a distinct heap array for each distinct array type in the source language. Java
contains seven possible array element types — bytes, chars, integers, longs, floats,
doubles and objects. We denote the heap arrays for one-dimensional program
arrays of these element types by Hb[], Hc[], Hi[], Hl[], Hf [], Hd[], and HO[]

respectively2. Thus, a read/write of a one-dimensional integer program array
element a[i] corresponds to a read/write of heap array element Hi[][a, i]. In
general, heap arrays for R-dimensional arrays of these types are denoted by
Hb[]R, Hi[]R, Hl[]R, Hf []R, Hd[]R, and HO[]R.

Note that we have only one heap array, HO[]R, that represents all R-dimen-
sional arrays of objects. We could refine this approach by examining all the
object array types used in the method being compiled, and replacing HO[]R by
a set of heap arrays, one for each LCA (Least Common Ancestor) in the class
hierarchy of the object array types.

Having modeled object and array references as accesses to named arrays,
we can rename heap arrays and scalar variables to build an extended version
of Array SSA form [14]. First, we rename heap arrays so that each renamed
heap array has a unique static definition. This includes renaming of the dummy
definition inserted at the start block to capture the unknown initial value of the
heap array.

We insert three kinds of φ functions to obtain an extended Array SSA form
that we use for data flow analyses3. Figure 1 illustrates the three types of φ
function.

1. A control φ (denoted simply as φ) corresponds to the standard φ function
from scalar SSA form [10], which represents a control flow merge of a set of
reaching definitions.

2. A definition φ (dφ) is used to deal with “non-killing” definitions. In scalar
SSA, form a definition of a scalar kills the value of that scalar previously
in effect. An assignment to an array element, however, must incorporate
previous values. dφ functions were introduced in our past work on Array
SSA form [14,15].

3. A use φ (uφ) function creates a new name whenever a statement reads a
heap array element. uφ functions were not used in prior work, and represent
the extension in “extended” Array SSA form.
The main purpose of the uφ function is to link together load instructions
for the same heap array in control flow order. Intuitively, the uφ function

2 By default, R = 1 in our notation i.e., we assume that the array is one-dimensional
if R is not specified.

3 The extended Array SSA form can also be viewed as a sparse data flow evaluation
graph [8] for a heap array.

Unified Analysis of Array and Object References 159

creates a new SSA variable name, with which a sparse dataflow analysis can
associate a lattice variable.
We present one dataflow algorithm that uses the uφ for redundant load
identification and one algorithm (dead store elimination) that does not
require a new name at each use. In this latter case the uφ function is omitted.

We will sometimes need to distinguish between references (definitions and
uses) that correspond directly to references in source and references added by
construction of our extended Array SSA form. We refer to the first as source
references and the second as augmenting references. In figure 1.c the references
to x1[j], x2[k] and x3[i] are source references. The other references in that code
fragment are all augmenting references.

Original program:

{x in

effect here. }
x[j] := ...

Insertion of dφ:

{x0 in

effect here. }
x1[j] := ...

x2 := dφ(x1,x0)

(a)

Original program:

{x in

effect here. }
if ... then

x[j] := ...

endif

Insertion of φ:

{x0 in

effect here. }
if ... then

x1[j] := ...

x2 := dφ ...

endif

x3 := φ(x2, x0)

(b)

Original program:

{x in

effect here. }
x[j] := ...

... := x[k]

... := x[i]

Insertion of uφ:

{x0 in

effect here. }
x1[j] := ...

x2 := dφ(x1,x0)

... := x2[k]
x3 := uφ(x2)

... := x3[i]
x4 := uφ(x3)

(c)

Fig. 1. Three examples of φ nodes in extended Array SSA form.

The dφ and uφ functions in extended Array SSA form do not lead to excessive
compile-time overhead because we introduce at most one dφ function for each
heap array def and at most one uφ function for each heap array use. Instructions
that operate on scalar variables do not introduce any heap array operations4.
So, the worst-case size of the extended Array SSA form is proportional to the
4 Note that local variables (stack elements) cannot be subject to pointer-induced
aliasing in a strongly typed language such as Java.

160 Stephen Fink et al.

size of the scalar SSA form that would be obtained if each heap array access is
modeled as a def. Past empirical results have shown the size of scalar SSA form
to be linearly proportional to the size of the input program [10], and the same
should hold for extended Array SSA form.

2.2 Definitely-Same and Definitely-Different Analyses for Heap
Array Indices

In this section, we show how the heap arrays of extended Array SSA form reduce
questions of pointer analysis to questions regarding array indices. In particular,
we show how global value numbering and allocation site information can be
used to efficiently compute definitely-same (DS) and definitely-different (DD)
information for heap array indices. For simplicity, the DS and DD analyses
described in this section are limited in scope to scalar references.

As an example, consider the following Java source code fragment annotated
with heap array accesses:

r = p ;
q = new Type1 ;
p.y = . . . ; // Hy[p] := . . .
q.y = . . . ; // Hy[q] := . . .
. . . = r.y ; // . . . := Hy[r]

Our analysis goal is to identify the redundant load of r.y, enabling the compiler
to replace it with a use of scalar temporary that captures the value stored into
p.y. We need to establish two facts to perform this transformation: 1) object
references p and r are identical (definitely same) in all program executions, and
2) object references q and r are distinct (definitely different) in all program
executions.

For a program in SSA form, we say that DS(a, b) = true if and only if
variables a and b are known to have exactly the same value at all points that are
dominated by the definition of a and dominated by the definition of b. Analogous
to DS, DD denotes a “definitely-different” binary relation i.e., DD(a, b) = true
if and only if a and b are known to have distinct (non-equal) values at all points
that are dominated by the definition of a and dominated by the definition of b.

The problem of determining if two symbolic index values are the same is
equivalent to the classical problem of global value numbering [1,18,21]. We use
the notation V(i) to denote the value number of SSA variable i. Therefore, if
V(i) = V(j), then DS(i, j) = true. For the code fragment above, the statement,
p = r, ensures that p and r are given the same value number (i.e., V(p) = V(r)),
so that DS(p, r) = true.

In general, the problem of computing DD is more complex than value
numbering. Note that DD, unlike DS, is not an equivalence relation because
DD is not transitive. DD(a, b) = true and DD(b, c) = true, does not imply that
DD(a, c) = true.

Unified Analysis of Array and Object References 161

For object references, we use allocation-site information to compute the DD
relation. In particular, we rely on two observations:

1. Object references that contain the results of distinct allocation-sites must be
different.

2. An object reference containing the result of an allocation-site must differ
from any object reference that occurs at a program point that dominates
the allocation site. (As a special case, this implies that the result of an
allocation site must be distinct from all object references that are method
parameters.)

For example, in the above code fragement, the presence of the allocation site
in q = new Type1 ensures that DD(p, q) = true.

For array references, we currently rely on classical dependence analysis to
compute the DD relationship within shared loops. Global DD is the subject of
future work.

Although the computations of DD for object references and array indices
differ, the algorithms presented here use both types of DD relation in the same
way, resulting in a unified analysis for arrays and objects. This unified approach
applies, for example, to analysis of Java arrays, which are themselves accessed
by reference. In this case we need to determine 1) if two arrays references are
definitely not aliased and 2) if the array indices referenced are definitely not the
same.

In the remainder of the paper, we assume that the index of a heap array is,
in general, a vector whose size matches the rank of the heap array e.g., an index
into a one-dimensional heap array Hx will be a vector of size 1 (i.e., a scalar), and
an index into a two-dimensional heap array Hb[] will be a vector of size 2. (For
Java programs, heap arrays will have rank ≤ 2 since all program arrays are one-
dimensional.) Given a vector index k = (k1, . . .), we will use the notation V(k)
to represent a vector of value numbers, (V(k1), . . .). Thus, DS(j, k) is true if and
only if vectors j and k have the same size, and their corresponding elements are
definitely-same i.e., DS(ji, ki) = true for all i. Analogously, DD(j, k) is true if
and only if vectors j and k have the same size, and at least one pair of elements
is definitely-different i.e., DD(ji, ki) = true for some i.

3 Scalar Replacement Algorithms

In this Section, we introduce two new analyses based on extended Array SSA
form. These two analyses form the backbone of scalar replacement transforma-
tions, which replace accesses to memory by uses of scalar temporaries. First,
we present an analysis to identify fully redundant loads. Then, we present an
analysis to identify dead stores.

Figure 2 illustrates three different cases of scalar replacement for object fields.
All three cases can be identified by the algorithms presented in this paper. For
the original program in figure 2(a), introducing a scalar temporary T1 for the
store (def) of p.x can enable the load (use) of p.x to be eliminated i.e., to

162 Stephen Fink et al.

Original program:

p := new Type1
q := new Type1
. . .
p.x := ...
q.x := ...
... := p.x

After redundant load
elimination:

p := new Type1
q := new Type1
. . .
T1 := ...
p.x := T1
q.x := ...
... := T1

(a)

Original program:

p := new Type1
q := new Type1
. . .

... := p.x
q.x := ...
... := p.x

After redundant load
elimination:

p := new Type1
q := new Type1
. . .
T2 := p.x

... := T2
q.x := ...
... := T2

(b)

Original program:

p := new Type1
q := new Type1
r := p
. . .

p.x := ...
q.x := ...
r.x := ...

After dead store
elimination:

p := new Type1
q := new Type1
r := p
. . .

q.x := ...
r.x := ...

(c)

Fig. 2. Object examples of scalar replacement

Original program:

x[p] := ...
x[p+1] := ...
... := x[p]

(a)

Original program:

... := x[p]
x[p+1] := ...

... := x[p]

(b)

Original program:

x[p] := ...
x[p+1] := ...
x[p] := ...

(c)

Fig. 3. Array examples of scalar replacement

be replaced by a use of T1. Figure 2(b) contains an example in which a scalar
temporary (T2) is introduced for the first load of p.x, thus enabling the second
load of p.x to be eliminated i.e., replaced by T2. Finally, figure 2(c) contains an
example in which the first store of p.x can be eliminated because it is known to
be dead (redundant); no scalar temporary needs to be introduced in this case.

Figure 3 shows array-based examples. To highlight the uniform approach for
both arrays and objects, these examples are totally analagous to the object based
examples in figure 2.

Past algorithms for scalar replacement (e.g., [4,2]) have been based on data
dependence analysis or on exhaustive (dense) data flow analysis (e.g., [5]).
In this section, we show how extended Array SSA form, augmented with the
definitely-same and definitely-different analysis information described in sec-
tion 2.2, can be used to obtain a simple sparse scalar replacement algorithm.
In addition, the use of SSA form enables our algorithm to find opportunities
for scalar replacement that are not discovered by past algorithms that focus
exclusively on innermost loops.

Unified Analysis of Array and Object References 163

The rest of this section is organized as follows. Section 3.1 describes our
analysis to identify redundant loads with respect to previous defs and previous
uses, and Section 3.2 outlines our algorithm for dead store elimination.

3.1 Redundant Load Elimination

Input: Intermediate code for method being optimized, augmented with theDS andDD
relations defined in Section 2.2.

Output: Transformed intermediate code after performing scalar replacement.

Algorithm:

1. Build extended Array SSA form for each heap array.
Build Array SSA form, inserting control φ, dφ and uφ functions as outlined in
Section 2.1, and renaming of all heap array definitions and uses.
As part of this step, we annotate each call instruction with dummy defs and uses
of each heap array for which a def or a use can reach the call instruction. If
interprocedural analysis is possible, the call instruction’s heap array defs and uses
can be derived from a simple flow-insensitive summary of the called method.

2. Perform index propagation.
(a) Walk through the extended Array SSA intermediate representation, and for

each φ, dφ, or uφ statement, create a dataflow equation with the appropriate
operator as listed in Figures 5, 6 or 7.

(b) Solve the system of dataflow equations by iterating to a fixed point.
After index propagation, the lattice value of each heap array, Ai, is L(Ai) =
{ V(k) | location A[k] is “available” at def Ai (and all uses of Ai) }.

3. Scalar replacement analysis.

(a) Compute UseRepSet = { use Aj [x] | ∃ V(x) ∈ L(Aj) } i.e., use Aj [x] is
placed in UseRepSet if and only if location A[x] is available at the def of Aj

and hence at the use of Aj [x]. (Note that Aj uniquely identifies a use, since
all uses are renamed in extended Array SSA form.)

(b) Compute DefRepSet = { def Ai[k] | ∃ use Aj [x]∈UseRepSet with V(x)=V(k) }
i.e., def Ai[k] is placed in DefRepSet if and only if a use Aj [x] was placed in
UseRepSet with V(x) = V(k).

4. Scalar replacement transformation.
Apply scalar replacement actions selected in step 3 above to the original program
and obtain the transformed program.

Fig. 4. Overview of Redundant Load Elimination algorithm.

Figure 4 outlines our algorithm for identifying uses (loads) of heap array
elements that are redundant with respect to prior defs and uses of the same
heap array. The algorithm’s main analysis is index propagation, which identifies
the set of indices that are available at a specific def/use Ai of heap array A.

164 Stephen Fink et al.

L(A2) L(A0) = � L(A0) = 〈(i1), . . . 〉 L(A0) = ⊥
L(A1) = � � � �
L(A1) = 〈(i0)〉 � update((i0), 〈(i1), . . . 〉) 〈(i0)〉
L(A1) = ⊥ ⊥ ⊥ ⊥

Fig. 5. Lattice computation for L(A2) = Ldφ(L(A1),L(A0)) where A2 :=
dφ(A1, A0) is a definition φ operation

L(A2) L(A0) = � L(A0) = 〈(i1), . . . 〉 L(A0) = ⊥
L(A1) = � � � �
L(A1) = 〈(i0)〉 � L(A1) ∪ L(A0) L(A1)

L(A1) = ⊥ ⊥ ⊥ ⊥

Fig. 6. Lattice computation for L(A2) = Luφ(L(A1),L(A0)) where A2 :=
uφ(A1, A0) is a use φ operation

L(A2) = L(A1) � L(A0) L(A0) = � L(A0) = 〈(i1), . . . 〉 L(A0) = ⊥
L(A1) = � � L(A0) ⊥
L(A1) = 〈(i01), . . . 〉 L(A1) L(A1) ∩ L(A0) ⊥
L(A1) = ⊥ ⊥ ⊥ ⊥

Fig. 7. Lattice computation for L(A2) = Lφ(L(A1),L(A0)) = L(A1)
 L(A0),
where A2 := φ(A1, A0) is a control φ operation

(a) Extended
Partial Array SSA
form:

p := new Type1

q := new Type1

. . .

Hx
1 [p] := ...

Hx
2 := dφ(Hx

1 ,Hx
0)

Hx
3 [q] := ...

Hx
4 := dφ(Hx

3 ,Hx
2)

... := Hx
4 [p]

Hx
5 := uφ(Hx

4)

(b) After index prop-
agation:

L(Hx
0) = { }

L(Hx
1) = {V(p)}

L(Hx
2) = {V(p)}

L(Hx
3) = {V(q)}

L(Hx
4) = {V(p),V(q)}

L(Hx
5) = {V(p),V(q)}

(c) Scalar replace-
ment actions selected:

UseRepSet = {Hx
4 [p]}

DefRepSet = {Hx
1 [p]}

(d) After
transforming
original program:

p := new Type1

q := new Type1

. . .

A tempV(p)
:= ...

p.x := A tempV(p)

q.x := ...

... := A tempV(p)

Fig. 8. Trace of load elimination algorithm from figure 4 for program in
figure 2(a)

Unified Analysis of Array and Object References 165

Index propagation is a dataflow problem, which computes a lattice
value L(H) for each heap variable H in the Array SSA form. This lattice value
L(H) is a set of value number vectors {i1, . . . }, such that a load of H[i] is
available (previously stored in a register) if V(i) ∈ L(H). Figures 5, 6 and 7
give the lattice computations which define the index propagation solution. The
notation update(i′, 〈i1, . . . 〉) used in the middle cell in figure 5 denotes a special
update of the list L(A0) = 〈i1, . . . 〉 with respect to index i′. update involves
four steps:

1. Compute the list T = { ij | ij ∈ L(A0) and DD(i′, ij) = true }. List T
contains only those indices from L(A0) that are definitely different from i′.

2. Insert i′ into T to obtain a new list, I.
3. If the size of list I exceeds the threshold size Z, then one of the indices in I

is dropped from the output list so as to satisfy the size constraint. (Since the
size of L(A0) must have been ≤ Z, it is sufficient to drop only one index to
satisfy the size constraint.)

4. Return I as the value of update(i′, 〈i1, . . . 〉).

After index propagation, the algorithm selects an array use (load), Aj [x], for
scalar replacement if and only if index propagation determines that an index
with value number V(x) is available at the def of Aj . If so, the use is included
in UseRepSet , the set of uses selected for scalar replacement. Finally, an array
def, Ai[k], is selected for scalar replacement if and only if some use Aj [x] was
placed in UseRepSet such that V(x) = V(k). All such defs are included in
DefRepSet , the set of defs selected for scalar replacement.

Figure 8 illustrates a trace of this load elimination algorithm for the example
program in figure 2(a). Figure 8(a) shows the partial Array SSA form computed
for this example program. The results of index propagation are shown in
figure 8(b). These results depend on definitely-different analysis establishing that
V(p) �= V(q) by using allocation site information as described in Section 2.2.
Figure 8(c) shows the scalar replacement actions derived from the results of
index propagation, and Figure 8(d) shows the transformed code after performing
these scalar replacement actions. The load of p.x has thus been eliminated in the
transformed code, and replaced by a use of the scalar temporary, A tempV(p).

We now present a brief complexity analysis of the redundant load elimination
algorithm in Figure 4. Note that index propagation can be performed separately
for each heap array. Let k be the maximum number of defs and uses for a single
heap array. Therefore, the number of dφ and uφ functions created for a single
heap array will be O(k). Based on past empirical measurements for scalar SSA
form [10], we can expect that the number of control φ functions for a single
heap array will also be O(k) in practice (since there are O(k) names created for
a heap array). Recall that the maximum size of a lattice value list, as well as
the maximum height of the lattice, is a compiler-defined constant, Z. Therefore,
the worst case execution-time complexity for index propagation of a single heap
array is O(k × Z2).

To complete the complexity analysis, we define a size metric for each method,
S = max(# instrs in method, k × (# call instrs in method)). The first term (#

166 Stephen Fink et al.

instrs in method) usually dominates the max function in practice. Therefore, the
worst-case complexity for index propagation for all heap arrays is

∑

heap array A

O(kA × Z2) = O(S × Z2),

since
∑

A kA must be O(S). Hence the execution time is a linear with a Z2

factor. As mentioned earlier, the value of Z can be adjusted to trade off precision
and overhead. For the greatest precision, we can set Z = O(k), which yields
a worst-case O(S × k2) algorithm. In practice, k is usually small resulting in
linear execution time. This is the setting used to obtain the experimental results
reported in Section 4.

We conclude this section with a brief discussion of the impact of the
Java Memory Model (JMM). It has been observed that redundant load
elimination can be an illegal transformation for multithreaded programs written
for a memory model, such as the JMM, that includes the memory coherence
assumption [20]. (This observation does not apply to single-threaded programs.)
However, it is possible that the Java memory model will be revised in the future,
and that the new version will not require memory coherence [19]. However, if
necessary, our algorithms can be modified to obey memory coherence by simply
treating each uφ function as a dφ function i.e., by treating each array use as
an array def. Our implementation supports these semantics with a command-
line option. As in interesting side note, we observed that changing the data-flow
equations to support the strict memory model involved changing fewer than ten
lines of code.

3.2 Dead Store Elimination

In this section, we show how our Array SSA framework can be used to identify
redundant (dead) stores of array elements. Dead store elimination is related
to load elimination, because scalar replacement can convert non-redundant
stores into redundant stores. For example, consider the program in Figure 2(a).
If it contained an additional store of p.x at the bottom, the first store of
p.x will become redundant after scalar replacement. The program after scalar
replacement will then be similar to the program shown in Figure 2(c) as an
example of dead store elimination.

Our algorithm for dead store elimination is based on a backward propagation
of DEAD sets. As in load elimination, the propagation is sparse i.e., it goes
through φ nodes in the Array SSA form rather than basic blocks in a control
flow graph. However, uφ functions are not used in dead store elimination, since
the ordering of uses is not relevant to identifying a dead store. Without uφ
functions, it is possible for multiple uses to access the same heap array name.
Hence, we use the notation 〈A, s〉 to refer to a specific use of heap array A in
statement s.

Unified Analysis of Array and Object References 167

Consider an augmenting def Ai, a source or augmenting use 〈Aj , s〉, and a
source def Ak in Array SSA form. We define the following four sets:

DEADdef (Ai) = {V(x)|element x of array A is dead at augmenting def Ai}
DEADuse(〈Aj , s〉) = { V(x) | element x of array A is dead at source use of Aj

in statement s}
KILL(Ak) = { V(x) | element x of array A is killed by source def of Ak}
LIVE(Ai) = { V(x) | ∃ a source use Ai[x] of augmenting def Ai }

The KILL and LIVE sets are local sets; i.e., they can be computed
immediately without propagation of data flow information. If Ai “escapes” from
the procedure (i.e., definition Ai is exposed on procedure exit), then we must
conservatively set LIVE(Ai) = UA

ind, the universal set of index value numbers
for array A. Note that in Java, every instruction that can potentially throw an
exception must be treated as a procedure exit, although this property can be
relaxed with some interprocedural analysis.

1. Propagation from the LHS to the RHS of a control φ:
Consider an augmenting statement s of the form, A2 := φ(A1, A0) involving a
control φ.
In this case, the uses, 〈A1, s〉 and 〈A0, s〉, must both come from augmenting
defs, and the propagation of DEADdef (A2) to the RHS is a simple copy i.e.,
DEADuse(〈A1, s〉) = DEADdef (A2) and DEADuse(〈A0, s〉) = DEADdef (A2).

2. Propagation from the LHS to the RHS of a definition φ:
Consider a dφ statement s of the form A2 := dφ(A1, A0). In this case use 〈A1, s〉
must come from a source definition, and use 〈A0, s〉 must come from an augmenting
definition. The propagation of DEADdef (A2) and KILL(A1) to DEADuse(〈A0, s〉)
is given by the equation, DEADuse(〈A0, s〉) = KILL(A1) ∪ DEADdef (A2).

3. Propagation to the LHS of a φ statement from uses in other statements:
Consider a definition or control φ statement of the form Ai := φ(. . .). The value
of DEADdef (Ai) is obtained by intersecting the DEADuse sets of all uses of Ai,
and subtracting out all value numbers that are not definitely different from every
element of LIVE(Ai). This set is specified by the following equation:

DEADdef (Ai) =

0
@ \

s is a φ use of Ai

DEADuse(〈Ai, s〉)
1
A− {v|∃w ∈

LIVE(Ai)s.t.¬DD(v, w)}

Fig. 9. Data flow equations for DEADdef and DEADuse sets

The data flow equations used to compute the DEADdef and DEADuse

sets are given in Figure 9. The goal of our analysis is to find the maximal

168 Stephen Fink et al.

DEADdef and DEADuse sets that satisfy these equations. Hence our algorithm
will initialize each DEADdef and DEADuse set to = UA

ind (for renamed arrays
derived from original array A), and then iterate on the equations till a fixpoint
is obtained. After DEAD sets have been computed, we can determine if
a source definition is redundant quite simply as follows. Consider a source
definition, A1[j] := . . . , followed by a definition φ statement, A2 := dφ(A1, A0).
Then, if V(j) ∈ DEAD(A2), then def (store) A1 is redundant and can be
eliminated.

As in the index propagation analysis in Section 3.1, the worst-case execution-
time complexity for dead store elimination is O(S × k2), where S is the size of
the input method and k is an upper bound on the number of defs and uses for
a single heap array. In practice, k is usually small resulting in linear execution
time.

4 Experimental Results

We present an experimental evaluation of the scalar replacement algorithms
using the Jalapeño optimizing compiler [3]. The performance results in this
section were obtained on an IBM F50 Model 7025 system with four 166MHz
PPC604e processors running AIX v4.3. The system has 1GB of main memory.
Each processor has split 32KB first-level instruction and data caches and
a 256KB second-level cache.

The Jalapeño system is continually under development; the results in this
section use the Jalapeño system as of April 5, 2000. For these experiments, the
Jalapeño optimizing compiler performed a basic set of standard optimizations
including copy propagation, type propagation, null check elimination, constant
folding, devirtualization, local common subexpression elimination, load/store
elimination, dead code elimination, and linear scan register allocation. Previous
work [3] has demonstrated that Jalapeño performance with these optimizations
is roughly equivalent to that of the industry-leading IBM product JVM and JIT.
The runs use Jalapeño‘s non-generational copying garbage collector with 300MB
of heap (which is shared by the application and by all components of the
Jalapeño JVM).

Our preliminary implementation has several limitations. Our current im-
plementation does not eliminate the null-pointer and array-bounds checks for
redundant loads. We do not use any interprocedural summary information, as
the Jalapeño optimizing compiler assumes on “open-world” due to dynamic
class loading. We do not perform any loop-invariant code motion or partial
redundancy elimination to help eliminate redundant loads in loops. Most
importantly, the Jalapeño optimizing compiler still lacks many classical scalar
optimizations, which are especially important to eliminate the register copies
and reduce register pressure introduced by scalar replacement. For these reasons,
these experimental results should be considered a lower bound on the potential
gains due to scalar replacement, and we expect the results to improve as
Jalapeño matures.

Unified Analysis of Array and Object References 169

Note that since the entire Jalapeño JVM is implemented in Java, the
optimizing compiler compiles not only application code and library code, but
also VM code. The results in this section thus reflect the performance of the
entire body of Java code which runs an application, which includes VM code
and libraries. Furthermore, the compiler inlines code across these boundaries.

For our experiments, we use the seven codes from the SPECjvm98 suite [9],
and the Symantec suite of compiler microbenchmarks. For the SPEC codes, we
use the medium-size (-s10) inputs. Note that this methodology does not follow
the official SPEC run rules, and these results are not comparable with any official
SPEC results. The focus of our measurements was on obtaining dynamic counts
of memory operations. When we report timing information, we report the best
wall-clock time from three runs.

Program getfield putfield getstatic put- aload astore Total
static

compress 171158111 33762291 4090184 377 39946890 19386949 268344802
jess 17477337 372777 109024 27079 7910971 60241 25957429
db 2952234 166079 88134 35360 2135244 428809 5805860
mpegaudio 81362707 13571793 18414632 3511 155893220 25893308 295139171
jack 9117580 2847032 226457 171130 1005661 860617 14228477
javac 5363477 1797152 188401 3421 449841 223629 8025921
mtrt 26474627 4788579 53134 1927 8237230 800812 40356309
symantec 28553709 15211818 41 0 303340062 123075060 470180690

Table 1. Dynamic counts of memory operations, without scalar replacement.

We instrumented the compiled code to count each of the six types of
Java memory operations eligible for optimization by our scalar replacement al-
gorithms: getfield, putfield, getstatic, putstatic, aload and astore.
Table 1 shows the dynamic count of each operation during a sample run of each
program.

Program getfield putfield getstatic putstatic aload astore Total

compress 25.9% 0.0% 0.0% 0.0% 0.0% 0.0% 16.5%
jess 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7%
db 21.8% 0.0% 0.0% 0.0% 0.0% 0.0% 11.1%
mpegaudio 57.1% 9.0% 0.0% 0.0% 20.3% 10.6% 27.8%
jack 15.2% 0.9% 0.1% 0.0% 0.0% 0.0% 9.9%
javac 3.2% 0.0% 0.0% 0.0% 0.1% 0.0% 2.2%
mtrt 1.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.7%
symantec 7.9% 3.8% 0.0% 0.0% 33.2% 0.4% 22.1%

Table 2. Percentage of (dynamic) memory operations eliminated.

170 Stephen Fink et al.

Table 2 shows the percentage of each type of memory operation eliminated by
our scalar replacement algorithms. The table shows that overall, the algorithms
eliminate between 0.7% and 27.8% of the loads and stores. The table shows that
redundant load elimination eliminates many more operations than dead store
elimination. On two codes, (mpegaudio and symantec), elimination of loads from
arrays play a significant role. On the others, the algorithm eliminates mostly
getfields. Interestingly, the algorithms are mostly ineffective at eliminating
references to static variables; however, table 1 shows that these references are
relatively infrequent.

Program Time Time Speedup
(no scalar replacement) (scalar replacement)

compress 5.75 5.32 1.08
jess 1.80 1.80 1.00
db 1.98 1.97 1.00
mpegaudio 7.25 6.59 1.10
jack 8.13 8.12 1.00
javac 2.61 2.60 1.00
mtrt 3.07 3.05 1.00
symantec 16.22 15.46 1.05

Table 3. Speedup due to scalar replacement.

Table 3 shows the improvement in running time due to the scalar replacement
algorithm. The results show that the scalar replacement transformations give
speedups of at least 1.05× on each of the three codes where the optimizations
were most effective. Mpegaudio shows the greatest improvement with a speedup
of 1.1×.

We conclude this section with a brief discussion of the impact of scalar
replacement on register allocation. It has been observed in the past that
scalar replacement can increase register pressure [5]. For example, the scalar
replacement transformations shown in Figure 2(a) and Figure 2(b) eliminate
load instructions at the expense of introducing temporaries with long live ranges.
In our initial experiments, this extra register pressure resulted in performance
degradations for some cases. We addressed the problem by introducing heuristics
for live range splitting into our register allocator, which solved the problem.

5 Related Work

Past work on analysis and optimization of array and object references can
be classified into three categories — analysis of array references in scientific
programs written in languages with named arrays such as Fortran, analysis of
pointer references in weakly typed languages such as C, and analysis of object

Unified Analysis of Array and Object References 171

references in strongly typed languages such as Modula-3 and Java. Our research
builds on past work in the third category.

The analysis framework based on heap arrays reported in this paper can be
viewed as a flow-sensitive extension of type-based alias analysis as in [11]. Three
different versions of type-based alias analysis were reported in [11] — TypeDecl
(based on declared types of object references), FieldTypeDecl (based on type
declarations of fields) and SMTypeRefs (based on an inspection of assignment
statements in the entire program). All three versions are flow-insensitive. The
disambiguation provided by heap arrays in our approach is comparable to the
disambiguation provided by FieldTypeDecl analysis. However, the use of value
numbering and Array SSA form in our approach results in flow-sensitive analyses
of array and object references that are more general than the three versions
of type-based alias analysis in [11]. For example, none of the three versions
would disambiguate references p.x and q.x in the example discussed earlier in
Figure 2(a).

In the remainder of this section, we briefly compare our approach with
relevant past work in the first two categories of analysis and optimization of
array and object references.

The first category is analysis and optimization of array references in scientific
programs. The early algorithms for scalar replacement (e.g., [4]) were based on
data dependence analysis and limited their attention to loops with restricted
control flow. More recent algorithms for scalar replacement (e.g., [5,2]) use
analyses based on PRE (partial redundancy elimination) as an extension to data
dependence analysis. However, all these past algorithms focused on accesses to
elements of named arrays, as in Fortran, and did not consider the possibility of
pointer-induced aliasing of arrays. Hence, these algorithms are not applicable to
programming languages (such as C and Java) where arrays might themselves be
aliased.

The second category is analysis and optimization of pointer references in
weakly typed languages such as C. Analysis of such programs is a major challenge
because the underlying language semantics forces the default assumptions to
be highly conservative. It is usually necessary to perform a complex points-to
analysis before pointer references can be classified as stack-directed or heap-
directed and any effective optimization can be performed [12]. To address this
challenge, there has been a large body of research on flow-sensitive pointer-
induced alias analysis in weakly typed languages e.g., [17,6,13,16,7]. However,
these algorithms are too complex for use in efficient analysis of strongly typed
languages, compared to the algorithms presented in this paper. Specifically, our
algorithms analyze object references in the same SSA framework that has been
used in the past for efficient scalar analysis. The fact that our approach uses
global value numbering in SSA form (rather than pointer tracking) to determine
if two pointers are the same or different leads to significant improvements in
time and space efficiency. The efficiency arises because SSA generates a single
value partition whereas pointer tracking leads to a different connection graph at
different program points.

172 Stephen Fink et al.

6 Conclusions and Future Work

In this paper, we presented a unified framework to analyze object-field and
array-element references for programs written in strongly-typed languages such
as Java and Modula-3. Our solution incorporates a novel approach for modeling
object references as heap arrays, and on the use of global value numbering and
allocation site information to determine if two object references are known to
be same or different. We presented new algorithms to identify fully redundant
loads and dead stores, based on sparse propagation in an extended Array SSA
form. Our preliminary experimental results show that the (dynamic) number of
memory operations arising from array-element and object-field accesses can be
reduced by up to 28%, resulting in execution time speedups of up to 1.1×.

In the near future, we plan to use our extended Array SSA compiler
infrastructure to extend other classical scalar analyses to deal with memory
accesses. An interesting direction for longer-term research is to extend SSA-
based value numbering (and the accompanying DS and DD analyses) to include
the effect of array/object memory operations by using the Array SSA analysis
framework. This extension will enable more precise analysis of nested object
references of the form a.b.c, or equivalently, indirect array references of the
form a[b[i]]. Eventually, our goal is to combine conditional constant and type
propagation, value numbering, PRE, and scalar replacement analyses with a
single framework that can analyze memory operations as effectively as scalar
operations.

Acknowledgments

We thank David Grove, Michael Hind, Harini Srinivasan, Mark Wegman and Bill
Thies for their comments and suggestions. Thanks also to the entire Jalapeño
team for their contribution to the infrastructure used for the experimental results
reported in this paper.

References

1. Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting Equality
of Variables in Programs. Fifteenth ACM Principles of Programming Languages
Symposium, pages 1–11, January 1988. San Diego, CA. 156, 160

2. R. Bodik and R. Gupta. Array Data-Flow Analysis for Load-Store Optimizations
in Superscalar Architectures. Lecture Notes in Computer Science, (1033):1–15,
1995. Proceedings of Eighth Annual Workshop on Languages and Compilers for
Parallel Computing, Columbus, Ohio, August 1995. 162, 171

3. Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John
Whaley. The Jalapeño Dynamic Optimizing Compiler for Java. In ACM Java
Grande Conference, June 1999. 156, 168

Unified Analysis of Array and Object References 173

4. David Callahan, Steve Carr, and Ken Kennedy. Improving Register Allocation
for Subscripted Variables. Proceedings of the ACM SIGPLAN ’90 Conference
on Programming Language Design and Implementation, White Plains, New York,
pages 53–65, June 1990. 162, 171

5. Steve Carr and Ken Kennedy. Scalar Replacement in the Presence of Conditional
Control Flow. Software—Practice and Experience, (1):51–77, January 1994. 162,
170, 171

6. David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of Pointers and
Structures. Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation, White Plains, New York, 25(6):296–310,
June 1990. 156, 171

7. Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive in-
terprocedural computation of pointer-induced aliases and side effects. In 20th
Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages, pages 232–245, January 1993. 156, 171

8. Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic Construction of
Sparse Data Flow Evaluation Graphs. Conference Record of the Eighteenth Annual
ACM Symposium on Principles of Programming Languages, January 1991. 158

9. The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98/, 1998. 169

10. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991. 158, 160, 165

11. Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias
analysis. In SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 106–117, May 1998. 156, 157, 171

12. Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In 25th
Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages, pages 121–133, January 1998. 156, 171

13. Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolau. Abstractions for
recursive pointer data structures: Improving the analysis of imperative programs.
Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pages 249–260, June 1992. 156, 171

14. Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in Paralleliza-
tion. In 25th Annual ACM SIGACT-SIGPLAN Symposium on the Principles of
Programming Languages, January 1998. 155, 156, 157, 158

15. Kathleen Knobe and Vivek Sarkar. Conditional constant propagation of scalar
and array references using array SSA form. In Giorgio Levi, editor, Lecture Notes
in Computer Science, 1503, pages 33–56. Springer-Verlag, 1998. Proceedings from
the 5th International Static Analysis Symposium. 155, 156, 158

16. William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural side effect
analysis with pointer aliasing. Proceedings of the ACM SIGPLAN ’93 Conference
on Programming Language Design and Implementation, pages 56–67, May 1993.
156, 171

17. J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.
Proceedings of the ACM SIGPLAN ’88 Conference on Programming Language
Design and Implementation, 23(7):21–34, July 1988. 156, 171

18. Steven S. Muchnick. Advanced Compiler Design & Implementation. Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1997. 160

174 Stephen Fink et al.

19. William Pugh. A new memory model for Java. Note sent to the JavaMemoryModel
mailing list, http://www.cs.umd.edu/ pugh/java/memoryModel, October 22, 1999.
166

20. William Pugh. Fixing the Java Memory Model. In ACM Java Grande Conference,
June 1999. 166

21. Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global Value Num-
bers and Redundant Computations. Fifteenth ACM Principles of Programming
Languages Symposium, pages 12–27, January 1988. San Diego, CA. 160

22. Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London
and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research
Monographs in Parallel and Distributed Computing. 156

Polymorphic versus Monomorphic

Flow-Insensitive Points-To Analysis for C�

Jeffrey S. Foster1, Manuel Fähndrich2, and Alexander Aiken1

1 University of California
Berkeley, 387 Soda Hall #1776, Berkeley, CA 94720

{jfoster,aiken}@cs.berkeley.edu
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052

maf@microsoft.com

Abstract We carry out an experimental analysis for two of the de-
sign dimensions of flow-insensitive points-to analysis for C: polymorphic
versus monomorphic and equality-based versus inclusion-based. Holding
other analysis parameters fixed, we measure the precision of the four de-
sign points on a suite of benchmarks of up to 90,000 abstract syntax tree
nodes. Our experiments show that the benefit of polymorphism varies
significantly with the underlying monomorphic analysis. For our equality-
based analysis, adding polymorphism greatly increases precision, while
for our inclusion-based analysis, adding polymorphism hardly makes any
difference. We also gain some insight into the nature of polymorphism
in points-to analysis of C. In particular, we find considerable polymor-
phism available in function parameters, but little or no polymorphism in
function results, and we show how this observation explains our results.

1 Introduction

When constructing a constraint-based program analysis, the analysis designer
must weigh the costs and benefits of many possible design points. Two important
tradeoffs are:

– Is the analysis polymorphic or monomorphic? A polymorphic analysis sepa-
rates analysis information by call site, while monomorphic analysis conflates
all call sites. A polymorphic analysis is more precise but also more expensive
than a corresponding monomorphic analysis.

– What is the underlying constraint relation? Possibilities include equalities
(solved with unification) or more precise and expensive inclusions (solved
with dynamic transitive closure), among many others.

Intuitively, if we want the greatest possible precision, we should use a poly-
morphic inclusion-based analysis, while if we are mostly concerned with effi-
ciency, we should use a monomorphic equality-based analysis. But how much
� This research was supported in part by the National Science Foundation Young
Investigator Award No. CCR-9457812, NASA Contract No. NAG2-1210, an NDSEG
fellowship, and an equipment donation from Intel.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 175–199, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

176 Jeffrey S. Foster et al.

Monomorphic
Steensgaard’s

Polymorphic
Steensgaard’s

Monomorphic
Andersen’s

Polymorphic
Andersen’s

✑
✑✑✰

◗
◗◗�

◗
◗◗�

✑
✑✑✰

Figure1. Relation between the four analyses. There is an edge from analysis x
to analysis y if y is at least as precise as x.

more precision does polymorphism add, and what do we lose by using equal-
ity constraints? In this paper, we try to answer these questions for a particular
constraint-based program analysis, flow-insensitive points-to analysis for C. Our
goal is to compare the tradeoffs between the four possible combinations of poly-
morphism/monomorphism and equality constraints/inclusion constraints.

Points-to analysis computes, for each expression in a C program, a set of
abstract memory locations (variables and heap) to which the expression could
point. Our monomorphic inclusion-based analysis (Sect. 4.1) implements a ver-
sion of Andersen’s points-to analysis [4], and our monomorphic equality-based
analysis (Sect. 4.2) implements a version of Steensgaard’s points-to analysis [29].
To add polymorphism to Andersen’s and Steensgaard’s analyses (Sect. 4.3), we
use Hindley-Milner style parametric polymorphism [21].

Our analyses are designed such that monomorphic Andersen’s analysis is at
least as precise as monomorphic Steensgaard’s analysis [16,28], and similarly
for the polymorphic versions. Given the construction of our analyses, it is a
theorem that the hierarchy of precision shown in Fig. 1 always holds. The main
contribution of this work is the quantification of the exact relationship among
these analyses. A secondary contribution of this paper is the development of
polymorphic versions of Andersen’s and Steensgaard’s points-to analyses.

Running the analyses on our suite of benchmarks, we find the following results
(see Sect. 5), where � is read “is significantly less precise than.” In general,

Monomorphic Steensgaard’s�
Polymorphic Steensgaard’s�
Polymorphic Andersen’s

Monomorphic Steensgaard’s�
Monomorphic Andersen’s ≈
Polymorphic Andersen’s

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 177

The exact relationships vary from benchmark to benchmark. These results are
rather surprising—why should polymorphism not add much precision to Ander-
sen’s analysis but benefit Steensgaard’s analysis? While we do not have definitive
answers to these questions, Sect. 5.3 suggests some possible explanations.

Notice from this table that monomorphic Andersen’s analysis is approxi-
mately as precise as polymorphic Andersen’s analysis, while polymorphic Steens-
gaard’s analysis is much less precise than polymorphic Andersen’s analysis. Note,
however, that polymorphic Steensgaard’s analysis and monomorphic Andersen’s
analysis are in general incomparable (see Sect. 5.1). Still, given that polymorphic
analyses are much more complicated to understand, reason about, and imple-
ment than their monomorphic counterparts, these results suggest that monomor-
phic Andersen’s analysis may represent the best design choice among the four
analyses. This may be a general principle: in order to improve a program analysis,
developing a more powerful monomorphic analysis may be preferable to adding
context-sensitivity, one example of which is Hindley-Milner style polymorphism.

Carrying out an experimental exploration of even a portion of the design
space for non-trivial program analyses is a painstaking task. In interpreting our
results there are two important things to keep in mind. First, our exploration of
even the limited design space of flow-insensitive points-to analysis for C is still
partial—there are dimensions other than the two that we explore that may not
be orthogonal and may lead to different tradeoffs. For example, it may matter
how precisely heap memory is modeled, how strings are modeled, whether C
structs are analyzed by field or all fields are summarized together, and so on.
Section 5 details our choices for these parameters. Also, Hindley-Milner style
polymorphism is only one way to add context-sensitivity to a points-to analy-
sis, and other approaches (e.g., polymorphic recursion [15]) may yield different
tradeoffs.

Second, our experiments measure the relative precision of each analysis. They
do not measure the relative impact of each analysis in a compiler. For example, it
may be that some points-to sets are more important than others to an optimizer,
and thus increases in precision may not always lead to better optimizations. How-
ever, a more precise analysis should not lead to worse optimizations than a less
precise analysis. We should also point out that it is difficult to separate the bene-
fit of a pointer analysis in a compiler from the design of the rest of the optimizer.
Measures of relative precision have the advantage of being independent of the
specific choices made in using the analysis information by a particular tool.

2 Related Work

Andersen’s [4] and Steensgaard’s [29] points-to analyses are only two choi-
ces in a vast array of possible alias analyses, among
them [5,6,7,8,9,10,11,15,19,20,27,28,31,33,34]. As our results suggest, the ben-
efit of polymorphism (more generally, context-sensitivity) may vary greatly with
the particular analysis.

178 Jeffrey S. Foster et al.

Hindley-Milner style polymorphism [21] has been studied extensively. The
only direct applications of Hindley-Milner polymorphism to C of which we are
aware are the analyses in this paper, the polymorphic recursive analysis proposed
in [15] (see below), and the Lackwit system [23]. Lackwit, a software engineering
tool, computes ML-style types for C and appears to scale very well to large
programs.

Mossin [22] develops a polymorphic flow analysis based on polymorphic re-
cursion and atomic subtyping constraints. Mossin’s system starts with a type-
annotated program and infers atomic flow constraints, whereas we infer the type
and flow annotations simultaneously and do not have an atomic subtyping sys-
tem. [15] develops an efficient algorithm for both subtyping and equality-based
polymorphic recursive flow analyses, and shows how to construct a polymorphic
recursive version of Steensgaard’s analysis. (In contrast, in this paper we use
Hindley-Milner style polymorphism, which can be less precise.) We believe that
the techniques of [15] can also be adapted to Andersen’s analysis.

Other research has explored making monomorphic inclusion-based analyses
scalable. [14] describes an online cycle-elimination algorithm for simplifying in-
clusion constraints. [30] describes a related optimization technique, projection
merging, which merges multiple projections of the same set variable. Our cur-
rent implementation uses both of these techniques, which makes it possible to
run the polymorphic inclusion-based analysis on our larger benchmarks.

Finally, we discuss a selection of related analyses. Wilson and Lam [31] pro-
pose a flow-sensitive alias analysis that distinguishes calls to the same function
in different aliasing contexts. Their system analyzes a function once for each
aliasing pattern of its actual parameters. In contrast, we analyze each function
only once, independently of its context, by constructing types that summarize
functions’ points-to effects in any context.

Ruf [26] studies the tradeoff between context-sensitivity and context-insen-
sitivity for a particular dataflow-style alias analysis, discovering that context-
sensitivity makes little appreciable difference in the accuracy of the results. Our
results partially agree with his. For Andersen’s inclusion-based analysis we find
the same trend. However, for Steensgaard’s equality-based analysis, which is
substantially less precise than Ruf’s analysis, adding polymorphism makes a
significant difference

Emami, Ghiya, and Hendren [11] propose a flow-sensitive, context-sensitive
analysis. The scalability of this analysis is unknown.

Landi and Ryder [20] study a very precise flow-sensitive, context-sensitive
analysis. Their flow-sensitive system has difficulty scaling to large programs;
recent work has focused on combined analyses that apply different alias analyses
to different parts of a program [35].

Chatterjee, Ryder, and Landi [6] propose an analysis for Java and C++ that
uses a flow-sensitive analysis with conditional points-to relations whose validity
depends on the aliasing and type information provided by the context. While
the style of polymorphism used in [6] appears related to Hindley-Milner style
polymorphism, the exact relationship is unclear.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 179

Das [7] proposes a monomorphic alias analysis with precision close to An-
dersen’s analysis but cost close to Steensgaard’s analysis. The effect of adding
polymorphism to Das’s analysis is currently unknown but cannot yield more
precision than polymorphic Andersen’s analysis.

3 Constraints

Our analyses are formulated as non-standard type systems for C. We follow
the usual approach for constraint-based program analysis: As the analyses infer
types for a program’s expressions, a system of typing constraints is generated
on the side. The solution to the constraints defines the points-to graph of the
program.

Our analyses are implemented with the Berkeley Analysis Engine (BANE) [1],
which is a framework for constructing constraint-based analyses. BANE supports
analyses involving multiple sorts of constraints, two of which are used by our
points-to analyses. Our implementation of Andersen’s analysis uses inclusion
(or set) constraints [2,18]. Our implementation of Steensgaard’s analysis uses a
mixture of equality (or term) and inclusion constraints. The rest of this section
provides background on the constraint formalisms.

Each sort of constraint comes equipped with a constraint relation. The rela-
tion between set expressions is ⊆, and the relation between term expressions is
=. For our purposes, set expressions se consist of set variables X ,Y, . . . from a
family of variables Vars (caligraphic text denotes variables), terms constructed
from n-ary constructors c ∈ Con , a special form proj (c, i, se), an empty set 0,
and a universal set 1.

se ::= X | c(se1, . . . , sen) | proj (c, i, se) | 0 | 1

Similarly, term expressions are of the form

te ::= X | c(te1, . . . , ten) | 0

Here 0 represents a special, distinguished nullary constructor.
Each constructor c is given a signature Sc specifying the arity, variance, and

sort of c. If S is the set of sorts (in this case, S = {Term,Set}), then constructor
signatures are of the form

c : ι1 × · · · × ιarity(c) → S

where ιi is s (covariant) or s (contravariant) for some s ∈ S. Intuitively, a con-
structor c is covariant in an argumentX if the set denoted by a term c(. . . ,X , . . .)
becomes larger as X increases. Similarly, a constructor c is contravariant in an
argument X if the set denoted by a term c(. . . ,X , . . .) becomes smaller as X
increases. To improve readability, we mark contravariant arguments with over-
bars.

One example constructor from Andersen’s analysis is

lam : Set×Set× Set→ Set

180 Jeffrey S. Foster et al.

The lam constructor models function types. The first (covariant) argument names
the function, the second (contravariant) argument represents the domain, and
the third (covariant) argument represents the range.

Steensgaard’s analysis uses a constructor

ref : Set×Term×Term → Term

to model locations. The first field models the set of aliases of this location, and
the second and third fields model the contents of this location. See Sect. 4.2 for
a discussion of why a set is needed for the first field. More discussion of mixed
constraints can be found in [12,13].

Our system also includes conditional equality constraints L ≤ R (defined on
terms) to support Steensgaard’s analysis (see Sect. 4.2). The constraint L ≤ R
holds if either L = R or L = 0 holds. Intuitively, if L is ever unified with a
constructed term, then the constraint L ≤ R becomes L = R. Otherwise L ≤ R
makes no constraint on R.

Our language of set constraints has no explicit operation to select components
of a constructor. Instead we use constraints of the form

L ⊆ c(. . . ,Yi, . . .) (∗)

to make Yi contain c−i(L) if c is covariant in i, and to make c−i(L) contain Yi

if c is contravariant in i. However, such a constraint is inconsistent if L contains
terms whose head constructor is not c. To overcome this limitation, we define
constraints of the form

L ⊆ proj (c, i,Yi)

This constraint has the same effect as (∗) on the elements of L constructed
with c, and no effect on the other elements of L.

Solving a system of constraints involves computing an explicit solved form of
all solutions or of a particular solution. See [3,12,13] for a thorough discussion
of the constraint solver used in BANE.

4 The Analyses

This section develops monomorphic and polymorphic versions of Andersen’s and
Steensgaard’s analyses. The presentation of the monomorphic version of Ander-
sen’s analysis mostly follows [14,30] and is given primarily to make the paper
self contained.

For a C program, points-to analysis computes a set of abstract memory lo-
cations (variables and heap) to which each expression could point. Andersen’s
and Steensgaard’s analyses compute a points-to graph [11]. Graph nodes repre-
sent abstract memory locations, and there is an edge from a node x to a node y
if x may contain a pointer to y. Informally, the analyses begin with some initial
points-to relationships and close the graph under the rule

For an assignment e1 = e2, anything in the points-to set for e2 must also
be in the points-to set for e1.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 181

a = &b;

a = &c;

*a = &d;

a

b

d

c

✏✏✏✏✶
�����

�����

✏✏✏✏✶ a b,c d✲ ✲

(a) Andersen’s Analysis (b) Steensgaard’s Analysis

Figure2. Example points-to graph

For Andersen’s analysis, each node in the points-to graph may have directed
edges to any number of other nodes. For Steensgaard’s analysis, each node may
have at most one out-edge, and graph nodes are coalesced if necessary to enforce
this requirement. Figure 2 shows the points-to graph for a simple C program
computed by Andersen’s analysis (a) and Steensgaard’s analysis (b).

4.1 Andersen’s Analysis

In Andersen’s analysis, types τ represent sets of abstract memory locations and
are described by the following grammar:

ρ ::= Px | lx
τ ::= X | ref (ρ, τ, τ) | lam(ρ, τ , τ)

Here the constructor signatures are

ref : Set×Set×Set→ Set
lam : Set×Set× Set→ Set

X and Px are set variables, and lx is a constant (a constructor of arity 0).
Contravariant arguments are marked with overbars. Note that function types
lam(· · ·) are contravariant in the domain (second argument) and covariant in
the range (third argument).

Memory locations can be thought of as abstract data types with two oper-
ations, one to get the value stored in the location and one to set it. Intuitively,
the get and set operations have types

– get : void → X
– set : X → void

where X is the type of data held in the memory location. Dereferencing a location
corresponds to applying the get operation, and updating a location corresponds

182 Jeffrey S. Foster et al.

to applying the set operation. Note that the type variable X appears covari-
antly in the type of the get operation and contravariantly in the type of the set
operation.

Translating this intuition into a set constraint formulation, the location of a
variable x is modeled with the type ref (lx,X ,X), where lx is a constant repre-
senting the name of the location, the covariant occurrence of X represents the
get method, and the contravariant occurrence of X (marked with an overbar)
represents the set method. For convenience, we choose not to represent the void
components of the get and set methods’ types.

We also associate with each location x a set variable Px and add the con-
straints X ⊆ proj (ref , 1,Px) and X ⊆ proj (lam , 1,Px). This constrains Px to
contain the set of abstract locations, including functions, in the points-to set X .
The points-to graph is then defined by the least solution of Px for every loca-
tion x. In the set formulation, the least solution for the points-to graph shown
in Fig. 2a is

Pa = {lb, lc} Pb = {ld} Pc = {ld}

In addition to reference types we also must model function types, since C al-
lows pointers to functions to be stored in memory. The type lam(lf, τ1, τ2) repre-
sents the function named f (every C function has a name) with argument τ1 and
return value τ2. For simplicity the grammar allows only one argument. In our im-
plementation, arguments are modeled with an ordered record {τ1, . . . , τn} [25].1

Figure 3 shows a fragment of the type rules for the monomorphic version
of Andersen’s analysis. Judgments are of the form A � e : τ ;C, meaning that
in typing environment A, expression e has type τ under the constraints C. For
simplicity we present only the interesting type rules. The full rules for all of C
can be found in [16].

We briefly discuss the rules. To avoid having separate rules for l- and r-
values, we model all variables as l-types. Thus the type of a variable x is our
representation of its location, i.e., a ref type.

– Rule (VarA) states that typings in the environment trivially hold.
– The address-of operator (AddrA) adds a level of indirection to its operand
by adding a ref constructor. The location (first) and set (third) fields of the
resulting type are 0 and 1, respectively, because &e is not itself an l-value
and cannot be updated.

– The dereferencing operator (DerefA) removes a ref and makes the fresh
variable T a superset of the points-to set of τ . Note the use of proj in case
τ also contains a function type.

– The assignment rule (AsstA) uses the same technique as (DerefA) to get
the contents of the right-hand side, and then uses the contravariant set field
of the ref constructor to store the contents in the left-hand side location.
See [16] for detailed explanations and examples.

1 Note that we do not handle variable-length argument lists (varargs) correctly even
with records. Handling varargs requires compiler- and architecture-specific knowl-
edge of the layout of parameters in memory. See Sect. 5.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 183

A � x : A(x); ∅ (VarA)

A � e : τ ;C

A � &e : ref (0, τ, 1);C
(AddrA)

A � e : τ ;C
C′ = C ∧ τ ⊆ proj (ref , 2, T)

A � *e : T ;C′
(DerefA)

A � e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ1 ⊆ proj (ref , 3, T) ∧
τ2 ⊆ proj (ref , 2, T)
A � e1=e2 : τ2;C

(AsstA)

A[x �→ref (lx,X ,X)] � e : τ ;C

A � let x in e ni : τ ;C
(LetRefA)

τf = ref (0, lam(lf,X ,Rf), 1)

τx = ref (lx,X ,X)
A[f �→τf , x �→τx] � e : τ ;C

C′ = C ∧ τ ⊆ proj (ref , 2,Rf)

A � fun f x = e : τf ;C
′

(LamA)

A � *e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ2 ⊆ proj (ref , 2, T) ∧
τ1 ⊆ proj (lam, 2, T) ∧
τ1 ⊆ proj (lam, 3,R)

A � e1 e2 : ref (0,R, 1);C

(AppA)

Figure3. Constraint generation rules for Andersen’s analysis. T and R stand
for fresh variables

– The rule (LetRefA) introduces new variables. Since this is C, all variables
are in fact updateable references, and we allow them to be uninitialized.

– The rule (LamA) defines a possibly-recursive function f whose result is e.
We lift each function type to an l-type by adding a ref as in (AsstA). For
simplicity the C issues of promotions from function types to pointer types,
and the corresponding issues with * and & applied to functions, are ignored.
These issues are handled correctly by our implementation. Notice a function
type contains the value of its parameter, X , not a reference ref (lx,X ,X).
Analogously the range of the function type is also a value.

– Function application (AppA) constrains the formal parameter of a function
type to contain the actual parameter, and makes the return type of the
function a lower bound on fresh variable R. Notice the use of *e1 in the
hypothesis of this rule, which we need because the function, an r-type, has

184 Jeffrey S. Foster et al.

been lifted to an l-type in (LamS). The result R, which is an r-type, is lifted
to an l-type by adding a ref constructor, as in (AddrA).

4.2 Steensgaard’s Analysis

Intuitively, Steensgaard’s analysis replaces the inclusion constraints of Ander-
sen’s analysis with equality constraints. The type language is a small modifica-
tion of the previous system:

ρ ::= Px | Lx | lx
τ ::= X | ref (ρ, τ, η)
η ::= X | lam(τ, τ)

with constructor signatures

ref : Set×Term×Term → Term
lam : Term×Term → Term

As before, ρ denotes locations and τ denotes updateable references. Follow-
ing [29], in this system function types η are always structurally within ref (· · ·)
types because in a system of equality constraints we cannot express a union
ref (. . .) ∪ lam(. . .). For a similar reason location sets ρ consist solely of vari-
ables Px or Lx and are modeled as sets (see below).

Each program variable x is modeled with the type ref (Lx,X ,Fx), where Lx
is a Set variable. For each location x we add a constraint lx ⊆ Lx, where lx is a
nullary constructor (as in Andersen’s analysis). We also associate with location x
another set variable Px and add the constraint X ≤ ref (Px, ∗, ∗), where ∗ stands
for a fresh unnamed variable.

We compute the points-to graph by finding the least solution of the Px
variables. For the points-to graph in Fig. 2b, the result is

Pa = {lb, lc} Pb = {ld} Pc = {ld}

Notice that b and c are inferred to be aliased, i.e., Lb = Lc. If we had instead
used nullary constructors directly in the ρ field of ref , or had the ρ field been a
Term sort, then the constraints would have been inconsistent, since lb �= lc.

In Steensgaard’s formulation [29], the relation between locations x and their
corresponding term variables Px is implicit. While this suffices for a monomor-
phic analysis, in a polymorphic analysis maintaining this map is problematic, as
generalization, simplification, and instantiation (see Sect. 4.3) all cause variables
to be renamed.

Mixed constraints provide an elegant solution to this problem. By explicitly
representing the mapping from locations to location names in a constraint for-
mulation, we guarantee that any sound constraint manipulations preserve this
mapping.

Figure 4 shows the constraint generation rules for Steensgaard’s analysis. The
rules are similar to the rules for Andersen’s analysis. Again, we briefly discuss
the rules. As before, all variables are modeled as l-types.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 185

A � x : A(x); ∅ (VarS)

A � e : τ ;C

A � &e : ref (∗, τ, ∗);C (AddrS)

A � e : τ ;C
C′ = C ∧ τ ≤ ref (∗, T , ∗)

A � *e : T ;C′
(DerefS)

A � e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ1 ≤ ref (∗, T1, ∗) ∧ τ2 ≤ ref (∗, T2, ∗) ∧

T2 ≤ T1

A � e1=e2 : τ2;C

(AsstS)

A[x �→ref (Lx,X ,Fx)] � e : τ ;C

A � let x in e ni : τ ;C
(LetRefS)

τf = ref (∗, ref (Lf, Tf, lam(X ,Rf)), ∗)
τx = ref (Lx,X ,Fx)

A[f �→τf , x �→τx] � e : τ ;C
C′ = C ∧ τ ≤ ref (∗, T , ∗) ∧ T ≤ Rf

A � fun f x = e : τf ;C
′

(LamS)

A � *e1 : τ1;C1 A � e2 : τ2;C2

C = C1 ∧ C2 ∧
τ1 ≤ ref (∗, ∗,F) ∧ F ≤ lam(Y,R) ∧

τ2 ≤ ref (∗, T , ∗) ∧ T ≤ Y
A � e1 e2 : ref (∗,R, ∗);C

(AppS)

Figure4. Constraint generation rules for Steensgaard’s analysis. T , T1, T2,Y,
and R are fresh variables. Each occurrence of ∗ is a fresh, unnamed variable

– Rules (VarS) and (LetRefS) are unchanged from Andersen’s analysis.
– Rule (AddrS) adds a level of indirection to its operand.
– Rule (DerefS) removes a ref and makes fresh variable T contain the points-to
set of τ .

– The assignment rule (AsstS) makes fresh variables Ti contain the points-to
sets of each ei. (AsstS) conditionally equates T1 with T2, i.e., if e2 is a pointer,
its points-to set is unified with the points-to set of e1. Using conditional
unification increases the accuracy of the analysis [29].

– Function definition (LamS) behaves as in Andersen’s analysis. Here,
ref (Lf, Tf, lam(X ,Rf)) represents the function type and the outermost
ref lifts the function type to an l-type. Again a function type contains the r-
types of its parameter and return value rather than their l-types. Notice
that the type of the function f points to is stored in the second (τ) field of
f’s type τf, not in the third (η) field. Thus in the assignment rule (AsstS),

186 Jeffrey S. Foster et al.

A � e : τ ;C �X �∈fv(A)
A � e : ∀ �X .τ\C;C

(Quant)

A � e : ∀ �X .τ\C′;C �Y fresh
A � e : τ [�X �→�Y];C ∧ C′[�X �→�Y]

(Inst)

Figure5. Rules for quantification

the Ti variables contain both the functions and memory locations that the ei

point to.
– Function application (AppS) conditionally equates the formal and actual
parameters of a function type and evaluates to the return type. Note the use
of *e1 in the hypothesis of this rule, which is needed since the function type
has been lifted to an l-type. Intuitively, this rule expands the application
(fun f x = e) e2 into the sequence x = e2; e.

4.3 Adding Polymorphism

This section describes how the monomorphic analyses are extended to poly-
morphic analyses. While ultimately we find polymorphism unprofitable for our
points-to analyses, this section documents a number of practical insights for the
implementation of polymorphism in analysis systems considerably more elabo-
rate than the Hindley/Milner system.

The rules in Figs. 3 and 4 track the constraints generated in the analysis of
each expression. The monomorphic analyses have one global constraint system.
In the polymorphic analyses, each function body has a distinct constraint system.

We introduce polymorphic constrained types of the form ∀ �X .τ\C. The type
∀ �X .τ\C represents any type of the form τ [�X �→�se] under constraints C[�X �→�se],
for any choice of �se. Figure 5 shows the additional rules for quantification. The
notation fv(A) stands for the free variables of environment A. Rule (Quant)
states that we may quantify a type over any variables not free in the type en-
vironment. (Inst) allows us to instantiate a quantified type with fresh variables,
adding the constraints from the quantified type to the system. These rules are
standard [24].

We restrict quantification to non-ref types to avoid well-known problems
with mixing updateable references and polymorphism [32]. In practical terms,
this means that after analyzing a function definition, we can quantify over its
parameters and its return value. The rule (Inst) says that we may instantiate a
quantified type with fresh variables, adding the constraints from the quantified
type to the environment.

If used näıvely, rule (Quant) amounts to analyzing a program in which all
function calls have been inlined. In order to make the polymorphic analyses
tractable, we perform a number of simplifications to reduce the sizes of quantified
types. See [17] for a discussion of the simplifications we use.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 187

As an example of the potential benefit of polymorphic points-to analysis,
consider the following atypical C program:

int *id(int *x) { return x; }

int main() {
int a, b, *c, *d;
c = id(&a); d = id(&b);

}

In the notation in this paper id is defined as fun id x = x. In monomorphic
Andersen’s analysis all inputs to id flow to all outputs. Thus we discover that c
and d both point to a and b. Polymorphic Andersen’s analysis assigns id type

∀X ,Rid. lam(lid,X ,Rid)\
ref (lx,X ,X) ⊆ proj (ref , 2,Rid)

Solving these constraints and simplifying (see [17]) yields

∀X . lam(lid,X ,X)\∅

In other words, id is the identity function. Because this type is instantiated for
each call of id, the points-to sets are computed exactly: c points to a and d
points to b.

There are several important observations about the type system. First, func-
tion pointers do not have polymorphic types. Consider the following example:

int *f(...) { ... }
int foo(int *(*g)()) { x = g(...); y = g(...); z = f(...); }
int main() { foo(f); }

Within the body of foo, the type of g appears in the environment (with a
monomorphic type), so variables in the type of g cannot be quantified. Hence
both calls to g use the same instance of f’s type. The call directly through f can
use a polymorphic type for f, and hence is to a fresh instance.

Second, we do not allow the types of mutually recursive functions to be
polymorphic within the recursive definition. Thus we analyze sets of mutually
recursive functions monomorphically and then generalize the types afterwards.

Finally, we require that function definitions be analyzed before function uses.
We formally state this requirement using the following definition:

Definition 1. The function dependence graph (FDG) of a program is a graph
G = (V, E) with vertices V and edges E. V is the set of all functions in the pro-
gram, and there is an edge in E from f to g iff function f contains an occurrence
of the name of g.

A function’s successors in the FDG for a program must be analyzed before the
function itself. Note that the FDG is trivial to compute from the program text.

188 Jeffrey S. Foster et al.

1. Make a fresh global constraint system Glob
2. Construct the function dependence graph G
3. For each non-root strongly-connected component S of G in final depth-first order
3a. Make a fresh constraint system C
3b. Analyze each f ∈ S monomorphically in C
3c. Quantify each f ∈ S in C, applying simplifications
3d. Compute C′ = C simplified and merge C′ into Glob
4. Analyze the root SCC in Glob

Figure6. Algorithm 1: Bottom-up pass

Figure 6 shows the algorithm for analyzing a program polymorphically. Each
strongly-connected component of the FDG is visited in final depth-first order.
We analyze each mutually-recursive component monomorphically and then apply
quantification. We merge the simplified system C′ into the top-level constraint
system Glob, replacing Glob by Glob ∧ C′. Notice that we do not require a call
graph for the analysis, but only the FDG, which is statically computable.

4.4 Reconstructing Local Information

After applying the bottom-up pass of Fig. 6, the analysis has correctly computed
the points-to graph for the global variables and the local variables of the out-
ermost function, usually called main. (There is no need to quantify the type of
main, since its type can only be used monomorphically.) At this point we have
lost alias information for local variables, for two reasons. First, applying simpli-
fications during the analysis may eliminate the points-to variables corresponding
to local variables completely. Second, whenever we apply (Inst) to instantiate the
type of a function f, we deliberately lose information about the types of f’s local
variables by replacing their points-to type variables with fresh type variables.

The points-to set of a local variable depends on the context(s) in which f
is used. To reconstruct points-to information for locals, we keep track of the
instantiated types of functions and use these to flow context information back
into the original, unsimplified constraint system.

Figure 7 gives the algorithm for reconstructing the points-to information for
the local variables of function f on a particular path or set of paths P in the
FDG. Note that Algorithm 2 requires f ∈ P . The constraints given are for
Andersen’s analysis. For Steensgaard’s analysis we replace ⊆ constraints by the
appropriate ≤ constraints. (Note that for Steensgaard’s analysis there may be
more precise ways of computing summary information. See [15].) In Algorithm 2,
the constraint systems along the FDG path are merged into a fresh constraint
system, and then the types of the actual parameters from each instance are
linked to the types of the formal parameters of the original type. We also link
the return values of the original type to the return values of the instances.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 189

1. Let C = Glob ∧
∧
g∈P

Cg be a fresh system

2. For each function g ∈ P

2a. Let lam(lg,G1,R1), . . . , lam(lg, Gn,Rn) be the instances of g’s function type.

2b. Let lam(lg,G,R) be g’s original function type
2c. Add constraints Gi ⊆ G and R ⊆ Ri for i ∈ [1..n].
3. Compute the points-to sets for f’s locals in C.

Figure7. Algorithm 2: Top-down pass for function f on FDG path or set of
FDG paths P

This algorithm computes the points-to sets for the local variables of f along
FDG path P . Because this algorithm is parameterized by the FDG path, it lets
the analysis client choose the precision of the desired information. An interactive
software engineering tool may be interested in a particular use of a function
(corresponding to a single path from f to the root), while a compiler, which
must produce code that works for all instances, would most likely be interested
in all paths from f to the root of the FDG.

In our experiments (Sect. 5), to compute information for function f we
choose P to be all of f’s ancestors in the FDG. This corresponds exactly to
a points-to analysis in which f and its ancestors are monomorphic and all other
functions are polymorphic. Clearly there are cases in which this choice will lead
to a loss of precision. However, the other natural alternative, to compute alias
information for each of f’s instances separately, would yield an exponential algo-
rithm. By treating f monomorphically, in an FDG of size n Algorithm 2 requires
copying O(n2) (unsimplified) constraint systems.

5 Experiments

We have implemented our analyses using BANE [1]. BANE manages the details
of constraint representation and solving, quantification, instantiation, and sim-
plification. Our analysis tool generates constraints and decides when and what
to quantify, instantiate, and simplify.

Our analysis handles almost all features of C, following [29]. The only excep-
tions are that we do not correctly model expressions that rely on compiler-specific
choices about the layout of data in memory, e.g., variable-length argument lists
or absolute addressing.

Our experiments cover the four possible combinations of polymorphism (poly-
morphic or monomorphic) and analysis precision (inclusion-based or equality-
based). Table 1 lists the suite of C programs on which we performed the anal-
yses.2 The size of each program is listed in terms of preprocessed source lines

2 We modified the tar-1.11.2 benchmark to use the built-in malloc rather than a
user-defined malloc in order to model heap usage more accurately.

190 Jeffrey S. Foster et al.

Table1. Benchmark programs

Name AST Nodes Preproc Lines Name AST Nodes Preproc Lines

allroots 700 426 less-177 15179 11988
diff.diffh 935 293 li 16828 5761
anagram 1078 344 flex-2.4.7 29960 9345
genetic 1412 323 pmake 31148 18138

ks 2284 574 make-3.72.1 36892 15213
ul 2395 441 tar-1.11.2 38795 17592
ft 3027 1180 inform-5.5 38874 12957

compress 3333 651 sgmls-1.1 44533 30941
ratfor 5269 1532 screen-3.5.2 49292 23919

compiler 5326 1888 cvs-1.3 51223 31130
assembler 6516 2980 espresso 56938 21537

ML-typecheck 6752 2410 gawk-3.0.3 71140 28326
eqntott 8117 2266 povray-2.2 87391 59689

simulator 10946 4216

and number of AST nodes. The AST node count is restricted to those nodes the
analysis traverses, e.g., this count ignores declarations.

As with most C programs, our benchmark suite makes extensive use of stan-
dard libraries. After analyzing each program we also analyze a special file of
hand-coded stubs modeling the points-to effects of all library functions used
by our benchmark suite. These stubs are not included in the measurements of
points-to set sizes, and we only process the stubs corresponding to library func-
tions that are actually used by the program. The stubs are modeled in the same
way that regular functions are modeled. Thus they are treated monomorphically
in the monomorphic analyses, and polymorphically in the polymorphic analyses.

To model heap locations, we generate a fresh global variable for each syntactic
occurrence of a malloc-like function in a program. In certain cases it may be
beneficial to distinguish heap locations by call path, though we did not perform
this experiment. We model structures as atomic, i.e., every field of a structure
shares the same location. Recent results [33] suggest some efficient alternative
approaches.

For the polymorphic analyses, when we apply Algorithm 2 (Fig. 7) to com-
pute the analysis results for function f, we choose P to be the set of all paths
from f to the root of the FDG.

5.1 Precision

Figures 8 and 9 graph for each benchmark the average size of the points-to sets
at the dereference sites in the program. A higher average size indicates lower
precision. Missing data points indicate that the analysis exceeded the memory
capacity of the machine (2GB).

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 191

allroots

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

diff.diffh

0
2
4
6
8

10
12

Mono
Ste

Poly
Ste

Mono
And

Poly
And

anagram

0
2
4
6
8

Mono
Ste

Poly
Ste

Mono
And

Poly
And

genetic

0

2

4

6

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ks

0
10
20
30
40

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ul

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ft

0

1

2

3

4

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compress

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ratfor

0
10
20
30
40
50
60

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compiler

0.9
0.95

1
1.05
1.1

1.15
1.2

Mono
Ste

Poly
Ste

Mono
And

Poly
And

assembler

0
20
40
60
80

100
120

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ML-typecheck

0
20
40
60
80

100

Mono
Ste

Poly
Ste

Mono
And

Poly
And

eqntott

0
5

10
15
20
25
30

Mono
Ste

Poly
Ste

Mono
And

Poly
And

simulator

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

less-177

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

li

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

flex-2.4.7

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

pmake

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
And

Figure8. Average points-to sizes at dereference sites. The black bars give the
results when strings are modeled; the white bars give the results when strings
are not modeled

192 Jeffrey S. Foster et al.

make-3.72.1

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

tar-1.11.2

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

inform-5.5

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

sgmls-1.1

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

screen-3.5.2

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

cvs-1.3

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

espresso

0
100
200
300
400
500

Mono
Ste

Poly
Ste

Mono
And

Poly
And

gawk-3.0.3

0
200
400
600
800

1000

Mono
Ste

Mono
And

Poly
And

povray-2.2

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
And

Figure9. Continuation of Fig. 8. Average points-to sizes at dereference sites.
The black bars give the results when strings are modeled; the white bars give
the results when strings are not modeled

We also measure the precision of the analyses both when each string is mod-
eled as a distinct location and when strings are completely ignored (modeled
as 0). Note the different scales on different graphs. For the purposes of this ex-
periment, functions are not counted in points-to sets, and multi-level dereferences
are counted separately (e.g., in **x there are two dereferences). Array indexing
on known arrays (expressions of type array) is not counted as dereferencing.

Table 2 gives the numeric values graphed in Figs. 8 and 9 and more detailed
information about the distribution of points-to sets. Due to lack of space, we
only give the data for the experiments that model strings as distinct locations.
See [17] for the data when strings are modeled as 0. For each analysis style, we
list the running time, the average points-to set sizes at dereference sites, and
the number of dereference sites with points-to sets of size 1, 2, and 3 or more,
plus the total number of non-empty dereference sites. (Most programs have some
empty dereference sites because of dead code.) We also list the size of the largest
points-to set.

Recall from the introduction that for a given dereference site, it is a theorem
that the points-to sets computed by the four analyses are in the inclusion rela-
tions shown in Fig. 1. More precisely, there is an edge from analysis x in Fig. 1

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 193

Table2. Data for string modeling experiments graphed in Fig. 8. The running
times are the average of three for the monomorphic experiments, while the poly-
morphic experiments were only performed once.

Name Monomorphic Steensgaard’s Polymorphic Steensgaard’s
Time Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites
(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot max

allroots 0.17 2.00 0 42 0 42 2 0.27 0.29 2.00 0 42 0 42 2
diff.diffh 0.23 11.25 12 1 23 36 17 0.29 0.55 2.36 14 13 9 36 5
anagram 0.25 6.74 11 1 30 42 9 0.37 1.00 5.45 12 0 30 42 8
genetic 0.36 4.95 22 8 46 76 15 0.45 1.18 1.43 62 10 4 76 10

ks 0.43 33.83 3 13 99 115 39 0.53 1.38 8.86 3 13 99 115 10
ul 0.49 2.22 55 129 54 238 4 0.59 2.97 2.16 55 137 46 238 4
ft 0.65 3.39 29 8 133 170 4 1.05 4.58 3.35 37 0 133 170 4

compress 0.73 2.13 181 44 36 261 8 0.94 5.32 1.44 181 44 36 261 3
ratfor 1.65 53.41 36 4 125 165 80 2.71 30.90 18.65 36 7 122 165 62

compiler 1.15 1.17 65 13 0 78 2 2.47 5.76 1.17 65 13 0 78 2
assembler 2.54 108.03 79 31 273 383 213 5.22 58.96 2.98 223 36 124 383 120

ML-typecheck 2.92 88.41 28 0 285 313 97 3.92 60.87 70.33 28 27 258 313 85
eqntott 2.70 27.82 68 110 436 614 42 3.45 54.17 6.17 76 133 405 614 11

simulator 3.78 150.11 24 13 259 296 223 5.70 118.20 33.71 105 5 186 296 89
less-177 5.66 185.55 69 13 490 572 219 18.28 321.89 114.13 80 14 478 572 173

li 18.67 643.88 8 0 933 941 657 33.33 695.71 629.01 8 0 933 941 644
flex-2.4.7 64.33 1431.68 13 0 1613 1626 1445 22.09 818.25 43.83 15 2 1609 1626 1226

pmake 20.98 556.19 40 2 2501 2543 570 373.97 4416.16 151.69 100 9 2434 2543 218
make-3.72.1 40.05 863.25 90 222 3170 3482 975 265.43 1045.70 556.94 311 158 3013 3482 666

tar-1.11.2 26.10 597.13 87 70 2031 2188 656 23.16 776.65 356.20 183 114 1888 2185 434
inform-5.5 47.81 1618.62 21 0 1268 1289 1648 2601.61 67608.52 408.47 28 0 1261 1289 601
sgmls-1.1 69.70 987.71 96 11 2382 2489 1046 126.08 3961.22 749.20 123 15 2351 2489 867

screen-3.5.2 64.79 1093.00 27 9 4915 4951 1110 65.37 1991.28 656.86 112 36 4803 4951 768
cvs-1.3 47.42 894.44 97 680 2276 3053 1242 124.80 2949.33 100.18 1159 141 1753 3053 367

espresso 34.40 391.59 101 530 5479 6110 456 104.65 3368.75 86.78 1238 595 4277 6110 171
gawk-3.0.3 78.30 927.57 139 50 4930 5119 966 — — — — — — — —
povray-2.2 64.72 515.85 761 407 8044 9212 618 111.38 6606.45 299.41 1027 659 7526 9212 434

Name Monomorphic Andersen’s Polymorphic Andersen’s
Time Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites
(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot max

allroots 0.18 1.57 18 24 0 42 2 0.14 0.22 1.57 18 24 0 42 2
diff.diffh 0.18 1.56 25 2 9 36 3 0.21 0.49 1.56 25 2 9 36 3
anagram 0.24 1.10 38 4 0 42 2 0.16 0.72 1.10 38 4 0 42 2
genetic 0.22 1.43 62 10 4 76 10 0.21 0.76 1.43 62 10 4 76 10

ks 0.37 3.58 9 22 84 115 5 0.33 0.98 3.58 9 22 84 115 5
ul 0.24 1.61 184 8 46 238 4 0.23 0.91 1.61 184 8 46 238 4
ft 0.42 2.12 75 0 95 170 3 0.56 2.25 2.12 75 0 95 170 3

compress 0.34 1.18 215 46 0 261 2 0.41 1.42 1.18 215 46 0 261 2
ratfor 0.63 6.27 56 9 100 165 47 1.22 5.99 6.27 56 9 100 165 47

compiler 0.57 1.17 65 13 0 78 2 0.96 5.07 1.17 65 13 0 78 2
assembler 1.07 2.87 225 36 122 383 120 3.02 80.46 2.87 225 36 122 383 120

ML-typecheck 0.99 45.87 101 30 182 313 78 1.79 14.81 45.87 101 30 182 313 78
eqntott 1.03 1.92 239 199 176 614 5 1.50 11.20 1.92 239 199 176 614 5

simulator 1.35 28.53 107 10 179 296 72 2.32 51.70 27.78 107 10 179 296 71
less-177 2.55 12.98 221 92 259 572 110 4.35 184.03 12.72 238 101 233 572 110

li 4.44 421.23 28 0 913 941 465 189.49 9929.88 421.23 28 0 913 941 465
flex-2.4.7 4.81 6.22 734 204 688 1626 1226 8.61 173.97 6.21 735 204 687 1626 1226

pmake 5.11 129.16 401 98 2044 2543 175 21.38 682.71 88.64 452 98 1993 2543 144
make-3.72.1 9.02 250.85 619 268 2595 3482 494 13.18 390.35 230.12 652 264 2566 3482 487

tar-1.11.2 6.89 69.07 330 741 1117 2188 200 7.74 327.48 66.11 336 742 1107 2185 194
inform-5.5 6.95 80.51 657 20 612 1289 227 — — — — — — — —
sgmls-1.1 8.14 224.11 687 321 1481 2489 506 40.52 1121.89 205.63 703 323 1463 2489 492

screen-3.5.2 7.45 206.48 339 39 4573 4951 241 1277.15 2028.85 195.83 342 44 4565 4951 232
cvs-1.3 10.82 71.27 1281 192 1580 3053 203 — — — — — — — —

espresso 12.89 101.21 1824 300 3986 6110 175 28.81 967.64 56.34 1973 304 3833 6110 152
gawk-3.0.3 12.40 157.28 1177 226 3716 5119 237 22.14 763.62 148.77 1184 228 3707 5119 225
povray-2.2 22.40 223.61 2474 588 6150 9212 402 169.51 5574.82 223.61 2474 588 6150 9212 402

to analysis y if for each expression e, the points-to set computed for e by anal-
ysis x contains the points-to set computed for e by analysis y. Two issues arise
when interpreting the average points-to set size metric. First, when two analy-
ses are related by inclusion the average size of points-to sets is a valid measure
of precision. Thus we can use our metric to compare any two analyses except
polymorphic Steensgaard’s analysis and monomorphic Andersen’s analysis.

194 Jeffrey S. Foster et al.

For these two analyses there is no direct inclusion relationship. For a given
expression e, if eS is the points-to set computed by polymorphic Steensgaard’s
analysis and eA is the points-to set computed by monomorphic Andersen’s anal-
ysis, it may be that eS �⊆eA and eS �⊇eA. Detailed examination of the points-to
sets computed by polymorphic Steensgaard’s analysis and monomorphic Ander-
sen’s analysis reveals that this does occur in practice, and thus the two analyses
are incomparable in our metric. The best we can do is observe that monomorphic
Andersen’s analysis is almost as precise as polymorphic Andersen’s analysis, and
polymorphic Steensgaard’s analysis is less precise than polymorphic Andersen’s
analysis.

Second, it is possible for a polymorphic analysis to determine that a
monomorphically non-empty points-to set is in fact empty, and thus have a
larger average points-to set size than its monomorphic counterpart (since only
non-empty points-to sets are included in this average). However, we can elimi-
nate this possibility by counting the total number of nonempty dereference sites.
(A polymorphic analysis cannot have more nonempty dereference sites than its
monomorphic counterpart.) The data in Table 2 shows that for all benchmarks
except tar-1.11.2, the total number of non-empty dereference sites is the same
across all analyses, and the difference between the polymorphic and monomor-
phic analyses for tar-1.11.2 is miniscule. Therefore we know that averaging
the sizes of non-empty dereference sites is a valid measure of precision.

5.2 Speed

Table 2 also lists the running times for the analyses. The running times include
the time to compute the least model of the Px variables, i.e., to find the points-to
sets. For the polymorphic analyses, we separate the running times into the time
for the bottom-up pass and the time for the top-down pass.

For purposes of this experiment, whose goal is to compare the precision of
monomorphic and polymorphic points-to analysis, the running times are largely
irrelevant. Thus we have made little effort to make the analyses efficient, and
the running times should all be taken with a grain of salt.

5.3 Discussion

The data presented in Figs. 8 and 9 and Table 2 shows two striking and consistent
results:

1. Polymorphic Andersen’s analysis is hardly more precise than monomorphic
Andersen’s analysis.

2. Polymorphic Steensgaard’s analysis is much more precise than monomorphic
Steensgaard’s analysis.

The only exceptions to these trends are some of the smaller programs (all-
roots, ul, ft, compiler, li), for which polymorphic Steensgaard’s analysis is
not much more precise than monomorphic Steensgaard’s analysis, and one larger

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 195

program, espresso, for which Polymorphic Andersen’s analysis is noticeably
more precise than Monomorphic Andersen’s analysis. Additionally, notice that
for all programs except espresso, polymorphic Steensgaard’s analysis has a
higher average points-to set size than monomorphic Andersen’s analysis. (Recall
that this does not necessarily imply strictly increased precision.)

To understand these results, consider the following code skeleton:

void f() { ... h(a); ... }
void g() { ... h(b); ... }
void h(int *c) { ... }

In Steensgaard’s equality-based monomorphic analysis, the types of all argu-
ments for all calls sites of a function are equated. In the example, this results
in a = b = c, where a is a’s points-to type, b is b’s points-to type, and c is c’s
points-to type. In the polymorphic version of Steensgaard’s analysis, a and b
can be distinct. Our measurements show that separating function parameters is
important for points-to analysis.

In contrast, in Andersen’s monomorphic inclusion-based system, the points-
to types of arguments at call sites are potentially separated. In the example, we
have a ⊆ c and b ⊆ c. However, function results are all conflated (i.e., every call
site has the same result, the union of points-to results over all call sites). The fact
that polymorphic Andersen’s analysis is hardly more precise than monomorphic
Andersen’s analysis suggests that separating function parameters is by far the
most important form of polymorphism present in points-to analysis for C.

Thus, we conclude that polymorphism for points-to analysis is useful pri-
marily for separating inputs, which can be achieved very nearly as well by a
monomorphic inclusion-based analysis. This conclusion begs the question: Why
is there so little polymorphism in points-to results available in C? Directly mea-
suring the polymorphism available in output side effects of C functions is difficult,
although we hypothesize that C functions tend to side-effect global variables and
heap data (which our analyses model as global) rather than stack-allocated data.

We can measure the polymorphism of result types fairly directly. Table 3 lists
for each benchmark the number of call sites and percentage of calls that occur
in void contexts. These results emphasize that most C functions are called for
their side effects: for 25 out of 27 benchmarks, at least half of all calls are in
void contexts. Thus, there is a greatly reduced chance that polymorphism can
be beneficial for Andersen’s analysis.

It is worth pointing out that the client for a points-to analysis can also have
a significant, and often negative, impact on the polymorphism that actually can
be exploited. In the example above, when computing points-to sets for h’s local
variables we conflate information for all of c’s contexts. This summarization
effectively removes much of the fine detail about the behavior of h in different
calling contexts. However, many applications require points-to information that
is valid in every calling context. In addition, if we attempt to distinguish all call
paths, the analysis can quickly become intractable.

196 Jeffrey S. Foster et al.

Table3. Potential polymorphism. The measurements include library functions.

Name Call Sites % Void Name Call Sites % Void

allroots 55 69 less-177 1091 56

diff.diffh 67 58 li 1243 37

anagram 59 75 flex-2.4.7 1205 79

genetic 79 75 pmake 1943 56

ks 101 84 make-3.72.1 1955 50

ul 103 74 tar-1.11.2 1586 54

ft 152 70 inform-5.5 2593 72

compress 138 73 sgmls-1.1 1614 62

ratfor 306 75 screen-3.5.2 2632 75

compiler 448 89 cvs-1.3 3036 55

assembler 519 66 espresso 2729 51

ML-typecheck 430 31 gawk-3.0.3 2358 51

eqntott 364 61 povray-2.2 3123 59

simulator 677 75

6 Conclusion

We have explored two dimensions of the design space for flow-insensitive points-
to analysis for C: polymorphic versus monomorphic and inclusion-based versus
equality-based. Our experiments show that while polymorphism is potentially
beneficial for equality-based points-to analysis, it does not have much benefit for
inclusion-based points-to analysis. Even though we feel that added engineering
effort can make the running times of the polymorphic analyses much faster, the
precision would still be the same.

Monomorphic Andersen’s analysis can be made fast [30] and often provides
far more precise results than monomorphic Steensgaard’s analysis. Polymorphic
Steensgaard’s analysis is in general much less precise than polymorphic Ander-
sen’s analysis, which is in turn little more precise than monomorphic Andersen’s
analysis. Additionally, as discussed in Sect. 4.3, implementing polymorphism is
a complicated and difficult task. Thus, we feel that monomorphic Andersen’s
analysis may be the best choice among the four analyses.

Acknowledgements

We thank the anonymous referees for their helpful comments. We would also like
to thank Manuvir Das for suggestions for the implementation.

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 197

References

1. A. Aiken, M. Fähndrich, J. S. Foster, and Z. Su. A Toolkit for Constructing
Type- and Constraint-Based Program Analyses. In X. Leroy and A. Ohori, editors,
Proceedings of the second International Workshop on Types in Compilation, volume
1473 of Lecture Notes in Computer Science, pages 78–96, Kyoto, Japan, Mar. 1998.
Springer-Verlag. 179, 189

2. A. Aiken and E. L. Wimmers. Solving Systems of Set Constraints. In Proceedings,
Seventh Annual IEEE Symposium on Logic in Computer Science, pages 329–340,
Santa Cruz, California, June 1992. 179

3. A. Aiken and E. L. Wimmers. Type Inclusion Constraints and Type Inference.
In FPCA ’93 Conference on Functional Programming Languages and Computer
Architecture, pages 31–41, Copenhagen, Denmark, June 1993. 180

4. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, Department of Computer Science, University of Copen-
hagen, May 1994. 176, 177

5. M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-Insensitive Interprocedural
Alias Analysis in the Presence of Pointers. In K. Pingali, U. Banerjee, D. Gelern-
ter, A. Nicolau, and D. Padua, editors, Proceedings of the Seventh Workshop on
Languages and Compilers for Parallel Computing, volume 892 of Lecture Notes in
Computer Science, pages 234–250. Springer-Verlag, 1994. 177

6. R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inference. In Pro-
ceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 133–146, San Antonio, Texas, Jan. 1999. 177,
178

7. M. Das. Unification-based Pointer Analysis with Directional Assignments. In
Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation, Vancouver B.C., Canada, June 2000. To appear.
177, 179

8. S. Debray, R. Muth, and M. Weippert. Alias Analysis of Executable Code. In Pro-
ceedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 12–24, San Diego, California, Jan. 1998. 177

9. A. Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting.
In Proceedings of the 1994 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 230–241, Orlando, Florida, June 1994. 177

10. N. Dor, M. Rodeh, and M. Sagiv. Detecting Memory Errors via Static Pointer
Analysis. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 27–34, Montreal, Canada, June
1998. 177

11. M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive Interprocedural Points-
to Analysis in the Presence of Function Pointers. In Proceedings of the 1994
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 242–256, Orlando, Florida, June 1994. 177, 178, 180

12. M. Fähndrich. BANE: A Library for Scalable Constraint-Based Program Analysis.
PhD thesis, University of California, Berkeley, 1999. 180

13. M. Fähndrich and A. Aiken. Program Analysis using Mixed Term and Set Con-
straints. In P. V. Hentenryck, editor, Static Analysis, Fourth International Sym-
posium, volume 1302 of Lecture Notes in Computer Science, pages 114–126, Paris,
France, Sept. 1997. Springer-Verlag. 180

198 Jeffrey S. Foster et al.

14. M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial Online Cycle Elimina-
tion in Inclusion Constraint Graphs. In Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 85–96,
Montreal, Canada, June 1998. 178, 180

15. M. Fähndrich, J. Rehof, and M. Das. Scalable Context-Sensitive Flow Analysis
using Instantiation Constraints. In Proceedings of the 2000 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, Vancouver B.C.,
Canada, June 2000. To appear. 177, 178, 188

16. J. S. Foster, M. Fähndrich, and A. Aiken. Flow-Insensitive Points-to Analysis
with Term and Set Constraints. Technical Report UCB//CSD-97-964, University
of California, Berkeley, Aug. 1997. 176, 182

17. J. S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus Monomorphic Flow-
insensitive Points-to Analysis for C. Technical report, University of California,
Berkeley, Apr. 2000. 186, 187, 192

18. N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set Constraints. In
Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages
42–51, Philadelphia, Pennsylvania, June 1990. 179

19. M. Hind and A. Pioli. Assessing the Effects of Flow-Sensitivity on Pointer Alias
Analyses. In G. Levi, editor, Static Analysis, Fifth International Symposium, vol-
ume 1503 of Lecture Notes in Computer Science, pages 57–81, Pisa, Italy, Sept.
1998. Springer-Verlag. 177

20. W. Landi and B. G. Ryder. A Safe Approximate Algorithm for Interprocedural
Pointer Aliasing. In Proceedings of the 1992 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 235–248, San Francisco,
California, June 1992. 177, 178

21. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17:348–375, 1978. 176, 178

22. C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU,
Department of Computer Science, University of Copenhagen, 1996. 178

23. R. O’Callahan and D. Jackson. Lackwit: A Program Understanding Tool Based on
Type Inference. In Proceedings of the 19th International Conference on Software
Engineering, pages 338–348, Boston, Massachusetts, May 1997. 178

24. M. Odersky, M. Sulzmann, and M. Wehr. Type Inference with Constrained Types.
In B. Pierce, editor, Proceedings of the 4th International Workshop on Foundations
of Object-Oriented Languages, Jan. 1997. 186

25. D. Rémy. Typechecking records and variants in a natural extension of ML. In Pro-
ceedings of the 16th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 77–88, Austin, Texas, Jan. 1989. 182

26. E. Ruf. Context-Insensitive Alias Analysis Reconsidered. In Proceedings of the
1995 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 13–22, La Jolla, California, June 1995. 178

27. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued
Logic. In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 105–118, San Antonio, Texas, Jan.
1999. 177

28. M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Anal-
ysis. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–14, Paris, France, Jan. 1997. 176,
177

Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis 199

29. B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the
23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32–41, St. Petersburg Beach, Florida, Jan. 1996. 176, 177, 184,
185, 189

30. Z. Su, M. Fähndrich, and A. Aiken. Projection Merging: Reducing Redundan-
cies in Inclusion Constraint Graphs. In Proceedings of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston,
Massachusetts, Jan. 2000. To appear. 178, 180, 196

31. R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C
Programs. In Proceedings of the 1995 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12, La Jolla, California, June 1995.
177, 178

32. A. K. Wright. Simple Imperative Polymorphism. In Lisp and Symbolic Computa-
tion 8, volume 4, pages 343–356, 1995. 186

33. S. H. Yong, S. Horwitz, and T. Reps. Pointer Analysis for Programs with Structures
and Casting. In Proceedings of the 1999 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 91–103, Atlanta, Georgia, May
1999. 177, 190

34. S. Zhang, B. G. Ryder, and W. A. Landi. Program Decomposition for Pointer
Aliasing: A Step toward Practical Analyses. In Fourth Symposium on the Founda-
tions of Software Engineering, Oct. 1996. 177

35. S. Zhang, B. G. Ryder, and W. A. Landi. Experiments with Combined Analysis
for Pointer Aliasing. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, pages 11–18, Montreal,
Canada, June 1998. 178

Efficient Inference of Static Types for Java

Bytecode�

Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau

Sable Research Group, School of Computer Science
McGill University, Montreal, Canada

[gagnon,hendren,gmarceau]@sable.mcgill.ca

Abstract. In this paper, we present an efficient and practical algorithm
for inferring static types for local variables in a 3-address, stackless, rep-
resentation of Java bytecode.
By decoupling the type inference problem from the low level bytecode
representation, and abstracting it into a constraint system, we show that
there exists verifiable bytecode that cannot be statically typed. Further,
we show that, without transforming the program, the static typing prob-
lem is NP-hard. In order to get a practical approach we have developed
an algorithm that works efficiently for the usual cases and then applies
efficient program transformations to simplify the hard cases.
We have implemented this algorithm in the Soot framework. Our ex-
perimental results show that all of the 17,000 methods used in our tests
were successfully typed, 99.8% of those required only the first stage, 0.2%
required the second stage, and no methods required the third stage.

1 Introduction

Java bytecode is rapidly becoming an important intermediate representation.
This is predominately because Java bytecode interpreters and JIT-compilers are
becoming more common, and such interpreters / compilers are now a standard
part of popular web browsers. Thus, Java bytecode (henceforth referred to as
simply bytecode) has become a target representation for a wide variety of com-
pilers, including compilers for Ada [23], ML [14], Scheme [5], and Eiffel [20].

Bytecode has many interesting properties, including some guarantees about
verifiable bytecode that ensure that verified bytecode programs are well-behaved.
For example, verifiable bytecode guarantees that each method invocation has the
correct number and type of arguments on the Java expression stack. Verification
is done partly statically via a flow analysis of the bytecode, and partly via checks
that are executed at runtime. As part of the static verification, a flow analysis
is used to estimate the type of each local variable and each location on the
expression stack, for each program point. However, as we will show in section 3
this is not the same typing problem as the one addressed in this paper.

Although bytecode has many good features, it is not an ideal representation
for program analysis / optimization or program understanding. For analysis /
� This work has been supported in part by FCAR and NSERC.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 199–220, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

200 Etienne M. Gagnon et al.

optimization, the expression stack complicates both the analyses and subsequent
transformations. In addition, the stack-based representation does not map nicely
to real register-based architectures. For these sorts of optimizing compiler appli-
cations a more traditional three-address code is preferable, and is used in many
optimizing Java compilers. For program understanding, the bytecode is too low-
level, and one would like to present a higher-level view to the programmer. One
example of a high-level representation is decompiling bytecode back to Java.
Note that to be generally useful such decompilers should work for any verifiable
bytecode, not just bytecode produced by Java compilers.1

When bytecode is translated to a three-address representation or high-level
representation it is important that all variables should be given a static type
that is correct for all uses of that variable. For a decompiler, each variable needs
to have a declared type that is type correct for all uses of that variable. For
three-address representations, the type of a variable can be used to improve
analysis and optimization. We have found having types for local variables to be
indispensable in our compiler, and one example use, improving the quality of
the call graph, is presented in section 7.2.

In this paper, we address the problem of inferring a static type for each vari-
able in a three-address representation of bytecode called Jimple[26,25]. Jimple is
part of the Soot compiler framework that is used for both compiler optimizations
and decompilation. It is a fairly standard representation, so our results should
apply to other similar representations.

In order to give a feel for the problem, consider the simple example in Fig-
ure 1. Figure 1(a) gives an untyped method in a Jimple-like intermediate repre-
sentation. Note that there is some type information which comes directly from
the bytecode. For example, the signature of method f is specified in the bytecode,
so we know a fixed type for the return value, and we know some type informa-
tion from new instructions. However, local variables, such as a, b, c and s do not
have an explicit type in the bytecode. We can determine correct types for these
variables by collecting type constraints. Figure 1(b) shows the class hierarchy,
and figure 1(c) shows the constraints imposed by each statement. We formulate
the typing problem as a graph problem. Figure 1(d) shows a graph that repre-
sents both the class hierarchy and the type constraints on the variables. Types
in the hierarchy are shown as double circles which we call hard nodes, while type
variables are shown as single circles which we call soft nodes. A solution to the
typing problem is found by coalescing nodes together. If nodes can be coalesced
so that each coalesced node contains exactly one hard node, then we have found
a solution to the typing problem. Figure 1(e) shows one possible coalescing of
the graph, and this corresponds to the typed method in Figure 1(e). Note that
there may be more than one correct solution. For this example another correct
solution would be to assign a, b and c the type Object. In general, we prefer

1 Also note that by combining a compiler that translates from a high-level language X

to bytecode with a decompiler from bytecode to Java, one has a tool for translating
from X to Java.

Efficient Inference of Static Types for Java Bytecode 201

a typing that gives more specific types since this will help more in subsequent
analyses.

public java.lang.String f()
{ <unknown> a;

<unknown> b;
<unknown> c;
<unknown> s;

s1: c = new C();
s2: b = new B();

if (...)
s3: a = c;

else
s4: a = b;
s5: s = a.toString();
s6: return(s);
}

class A extends Object
{ ... }

class B extends A
{ public String toString() ...;
...

}

class C extends A
{ public String toString() ...;
...

}

(a) untyped method (b) class hierarchy

s1: T (c)← C
s2: T (b)← B
s3: T (a)← T (c)
s4: T (a)← T (b)
s5: Object← T (a)

T (s)← String
s6: String ← T (s)

Object

T(a)

A

T(b)

C

StringT(s)

T(c)

B

(c) constraints (d) graph problem

Object String
T(s)

A
T(a)

B
T(b)

C
T(c)

public java.lang.String f()
{ A a;

B b;
C c;
java.lang.String s;

s1: c = new C();
s2: b = new B();

if (...)
s3: a = c;

else
s4: a = b;
s5: s = a.toString();
s6: return(s);
}

(e) solution (f) typed method

Fig. 1. Simple example of static typing

The type inference problem would seem easy at first glance, and for our
simple example it would be quite easy to deduce types during the bytecode
to Jimple translation. However, there are three points that make the general
typing problem difficult: (1) the program point specific nature of the bytecode
verification, (2) multiple inheritance due to interfaces, and (3) the correct typing

202 Etienne M. Gagnon et al.

of arrays. In fact, we will show that the type inference problem is NP-hard.
However, we propose an efficient, polynomial time, multi-stage algorithm that
bypasses this complexity by performing program transformations that simplify
the type inference problem, without affecting program semantics, when a difficult
case is encountered. Our algorithm performs two kinds of transformations: (1)
variable splitting at object creation sites, and (2) insertion of type casts that
are guaranteed to succeed at run-time. Our experimental results show that all of
the 16,492 methods extracted from 2,787 JDK 1.1 and SPEC jvm98 classes were
typed by our algorithm, without inserting any type casts. Variable splitting was
only applied in 29 methods.

It is important to contrast this work, where we find a static type consistent
with all uses of a variable, with other type inference analyses where the main
focus is to statically infer the set of dynamic (or concrete) types that a variable
could hold, at a particular program point at run-time [17,18,1,2]. We will call
such algorithms run-time type analysis to distinguish them from our static-type
analysis. For our example program in Figure 1(a), run-time type analysis would
infer that the variable a at program point s1 could have type B, whereas at
program point s5 a could have types {B, C}. In our typing problem we need
to find one static type that is consistent with all uses of a. As we show in
section 7.2, our static type is actually a reasonably good starting point for other
analyses, including a run-time type analysis we have built on top of typed Jimple.

Our paper is structured as follows. In section 2 we present our three-address
representation. In section 3 we show some examples to demonstrate why this
typing problem is difficult. In section 4, we define the general static type inference
problem, and give the main algorithm for programs without arrays. In section 5
we present extensions to our algorithm to handle arrays. In section 6 we show
how to infer integer types. Section 7 contains our experimental results. Finally,
we review related work in section 8 and present our conclusions in section 9.

2 A 3-Address Representation: Jimple

We assume that the reader is already familiar with Java bytecode. A complete
description of the class file format can be found in [13]. Furthermore, we assume
that all analyzed bytecode would be successfully verified by the Java bytecode
verifier[13]. It is important to remember that the verifiability of the code implies
that it is well behaved, but it does not imply that it is well typed.

While the bytecode format seems of great interest for implementing an inter-
preter, it is not well suited for reasoning about bytecode, since many operands
are on the stack and thus do not have explicit names. In order to alleviate this
difficulty, many Java optimizing compilers convert bytecode to a more traditional
3-address-code, where all stack-based operations are transformed into local vari-
able based operations. This is made possible by the conditions met by verified
bytecode, most notably: the constant stack depth at each program point, and
the explicit maximum depth of stack and number of local variables used in the
body of a method.

Efficient Inference of Static Types for Java Bytecode 203

The bytecode to 3-address-code transformation is done by computing the
stack depth at each program point, introducing a new local variable for each
stack depth, and then rewriting the instruction using the new local variables2.

For example:

iload_1 (stack depth before 0 after 1)
iload_2 (stack depth before 1 after 2)
iadd (stack depth before 2 after 1)
istore_1 (stack depth before 1 after 0)

is transformed into:

stack_1 = local_1
stack_2 = local_2
stack_1 = stack_1 iadd stack_2
local_1 = stack_1

In producing the 3-address-code it is simple to retain all type information
contained in bytecode instructions. So, for instance, every virtual method con-
tains the complete signature of the called method, as well as the name of the
class declaring the method. However, as there are no explicit types for locals or
stack locations, it is more difficult to find types for these variables. In our com-
piler we produce a 3-address representation called Jimple, that is first created
in an untyped version, where the types of local variables are unknown. Every
verifiable bytecode program has an equivalent untyped Jimple representation.

In final preparation, prior to applying the typing algorithms outlined in this
paper, a data flow analysis is applied on the Jimple representation, computing
definition-use and use-definition (du-ud) chains. Then, all local variables are split
into multiple variables, one for each web of du-ud chains. Our example would be
transformed to:

stack_1_0 = local_1_0
stack_2_0 = local_2_0
stack_1_1 = stack_1_0 iadd stack_2_0
local_1_1 = stack_1_1

Note that stack 1 has been split into stack 1 0 and stack 1 1, and similarly
local 1 has been split into local 1 0 and local 1 1. This splitting is quite
important, because a single local or stack location in the bytecode can refer to
different types at different program points. This form of Jimple looks overly long,
with many spurious copy statements. In our framework the code is cleaned up
using standard techniques for copy propagation and elimination.

3 Challenges of Typing

The static typing problem looks quite simple at first, but there are subtle points
that make the problem difficult. In this section we illustrate some difficulties by
2 In reality, the stack analysis, the introduction of new local variables, and the trans-

formation are not as straight-forward as it looks here. This is due to the presence
of subroutines (the jsr bytecode instruction) and double-word values (long, dou-
ble). A complete description of the bytecode to Jimple transformation can be found
in [26,25].

204 Etienne M. Gagnon et al.

showing differences between the typing problem for a 3-address representation
with local variables, and the typing approximation done by the Java verifier.
Another subtle point is how to deal with arrays, and this is dealt with in Sec-
tion 5.

3.1 Declared Variable Types versus Types at Program Points

Part of the Java verifier is a flow analysis that estimates, at each program point,
the type of values stored in each local variable and each stack location. This
type information is used to ensure that each bytecode instruction is operating
on data of the correct type. In our typing problem we wish to give a type to
each variable that is correct for all uses and definitions of that variable (i.e. the
same type must be correct at multiple program points).

Consider Figure 2 where two methods hard and harder illustrate the point.
In method hard, the Java verifier would infer that x has type CA at program
point s1 and type CB at program point s2. For program point s3 the verifier
merges the types from each branch by taking their closest common superclass,
which is Object. Thus, for three different program points, the verifier has three
different types. However, for our problem, we want to assign one type to local
variable x. In this case, it is possible to satisfy all constraints and assign type
Object to variable x. However, to find consistent types the whole method must
be analyzed, the types cannot be computed “on-the-fly” as is done in the verifier.

Now consider method harder in Figure 2. This is similar to the previous
case, but now it is not possible to give a single static type to variable y. At
program point s1 y must have type CA and at program point s2 y must have
type CB. In order to statically type this program, it must be transformed to
include extra copy statements (as one would get by translating from an SSA
form) or by introducing type casts. Note that one would not see the harder case
in bytecode produced from an ordinary Java compiler, however we have seen
cases like this in bytecode produced by compilers for other languages.

class CA extends Object { f(){...} ... }
class CB extends Object { g(){...} ... }
class MultiDef extends Object
{ void hard()
{ <untyped> x;

if(...)
s1: x = new CA();

else
s2: x = new CB();
s3: x.toString();
}

void harder()
{ <untyped> y;

if(...)
s1: { y = new CA(); y.f(); }

else
s2: { y = new CB(); y.g(); }
s3: y.toString();
}

}

Fig. 2. Multiple definition and use points

3.2 Problems Due to Interfaces

Interfaces in Java give a restricted form of multiple inheritance, and this leads
to problems in finding a static typing in some cases. Consider the example in

Efficient Inference of Static Types for Java Bytecode 205

Figure 3(a), where the class hierarchy is defined as in Figure 3(b). At program
point s1 aa has interface type IC, and at program point s2 aa has interface
type ID. The difficulty comes at the merge point because there is no single
superinterface for IC and ID, rather there are two unrelated choices, IA and IB.
The Java verifier will choose the type Object, and then check the invokeinterface
calls at runtime. These runtime checks will pass, and so from the verification
point of view, this program is well-behaved.

class InterfaceDemo
{ IC getC() { return new CC(); }
ID getD() { return new CD(); }

void hardest()
{ <untyped> aa;

if(...)
s1: aa = getC();

else
s2: aa = getD();

s3: aa.f(); // invokeinterface IA.f
s4: aa.g(); // invokeinterface IB.g
}

}

class CC implements IC
{ void f() {}
void g() {}

}

class CD implements ID
{ void f() {}
void g() {}

}

Interface IA { void f(); }
Interface IB { void g(); }
Interface IC extends IA, IB {}
Interface ID extends IA, IB {}

(a) untyped program (b) hierarchy

Fig. 3. Typing interfaces

Now consider our problem of finding one static type for aa. In this case there
is no solution, even though the bytecode is verifiable. If we chose type IA, then
the type at statement s4 is wrong, if we chose type IB, the type at statement
s3 is wrong, if we chose type IC, the type at statement s2 is wrong, and if we
chose type ID, the type at statement s1 is wrong. In fact, one can not write
a Java program like this Jimple program and give a correct static type to aa.
However, remember that our Jimple code comes from bytecode produced from
any compiler or bytecode optimizer, and so this situation may occur in verifiable
bytecode.

One might be tempted to think that adding extra copies of the variable, like
in SSA form would solve this problem as well. However, if we rewrite 3(a) in
SSA form, we get:

if(...)
s1: aa1 = getC();

else
s2: aa2 = getD();

s3a: aa3 = phi(aa1, aa2);
s3: aa3.f(); // invokeinterface IA.f
s4: aa3.g(); // invokeinterface IB.g

Clearly this does not solve the problem, there is still no type solution for aa3.

206 Etienne M. Gagnon et al.

4 Three-Stage Algorithm

4.1 Algorithm Overview

The goal of the typing algorithm is to find a static type assignment for all local
variables such that all type restrictions imposed by Jimple instructions on their
arguments are met. In order to solve this problem, we abstract it into a constraint
system. For convenience of implementation (and description), we represent this
constraint system as a directed-graph.

We initially restrict our type inference problem to programs that do not
include arrays, nor array operations. This allows us to illustrate the constraint
system.

Finding whether there exists or not a static-type assignment that solves this
constraint system is similar to solving the UNIFORM-FLAT-SSI problem, which
Tiuryn and Pratt have shown to be NP-Complete[24]. Thus, the overall typing
problem is NP-Hard.

Given this complexity result, we have chosen to design an efficient algorithm
that may perform program transformations to make the typing problem simpler.
We first give an overview of our algorithm, and then describe each stage in more
detail.

An Efficient 3-Stage Algorithm The algorithm consists of three stages. The
first stage constructs a directed-graph of program constraints. Then, it merges
the connected components of the graph, and removes transitive constraints. Fi-
nally, it merges single constraints. At this point, it succeeds if all variables have
valid types, or it fails if a variable has no type, or if a type error was detected
in the process.

If the first stage fails to deliver a solution, the second stage applies a vari-
able splitting transformation, and then reruns stage 1 on the transformed pro-
gram. We have only found one situation where variable splitting is required, and
that is for variables which are assigned new objects (i.e. for statements of the
form x = new A()).

If stage 2 fails, then stage 3 proceeds as follows. A new constraints graph is
built, where this graph only encodes variable definition constraints. In this graph,
variable use constraints are not recorded, and interface inheritance is ignored.
In other words, each interface has a single parent java.lang.Object. Then, the
constraints system is solved using the least common ancestor LCA of classes and
interfaces (which is now always unique). Once all variables are assigned a type,
use constraints are checked on every original Jimple statement, and type casts
are added as needed to satisfy the constraints. The verifiability of the original
program guarantees that these inserted casts will always succeed at run-time.

Handling Arrays This section describes the basic constraint system for pro-
grams without arrays. We extend the constraint system, with extra notation for
array constraints, in Section 5. We then show how to transform an array problem
into a restricted problem (with no array constraints), and how to propagate the
solution of the restricted problem back to the original array problem.

Efficient Inference of Static Types for Java Bytecode 207

Implementing the Algorithm We have implemented the algorithm, but in
this paper we do not discuss implementation details. It is quite straightforward to
achieve a simple implementation using efficient algorithms for strongly-connected
components and fast union on disjoint sets [6].

4.2 Stage 1

Constraint System In this section, we show how to transform the type in-
ference problem into a constraint system represented as a directed graph. Intu-
itively, the graph represents the constraints imposed on local variables by Jimple
instructions in the body of a method. In this initial version, we assume that the
analyzed Jimple code contains no arrays and no array operations. Further, we
infer primitive types as defined for Java bytecode [13]. In particular, boolean,
byte, short, and char are all treated as int. Section 6 presents an algorithm that
can be used to infer these different integer types.

The constraint graph is a directed graph containing the following components:

1. hard node: represents an explicit type;
2. soft node: represents a type variable; and
3. directed edge: represents a constraint between two nodes.

A directed edge from node b to node a, represented in the text as a ← b,
means that b should be assignable to a, using the standard assignment compati-
bility rules of Java [13,10]. Simply stated, b should be of the same type as a, or a
should be a superclass (or superinterface) of b.

The graph is constructed via a single pass over the Jimple code, adding nodes
and edges to the graph, as implied by each Jimple instruction. The collection
of constraints is best explained by looking at a few representative Jimple state-
ments. We will look at the simple assignment statement, the assignment of a
binary expression to a local variable, and a virtual method invocation. All other
constructions are similar.

A simple assignment is an assignment between two local variables [a = b]. If
variable b is assigned to variable a, the constraints of assignment compatibility
imply that T (a) ← T (b), where T (a) and T (b) represent the yet unknown re-
spective types of a and b. So, in this case, we need to add an edge from T (b) to
T (a) (if not already present). This is shown in figure 4.

T(a) T(b)

Fig. 4. b assigned to a

An assignment with a more complex right-hand-side results in more con-
straints. For example, the statement [a = b + 3], generates the following con-
straints: T (a)← T (b), T (a)← int, and int← T (b).

Our last and most complicated case is a method invocation, where constraints
are generated for the receiver, the actuals, and the variable on the left-hand-side.
For example, consider [a = b.equals(c)], or with the full type signature: a =

208 Etienne M. Gagnon et al.

virtualinvoke b.[boolean java.lang.Object.equals(java.lang.Object)] (c). We get the
following constraints, each involving a hard node: (1) java.lang.Object← T (b),
from the declaring class of equals; and (2) java.lang.Object ← T (c), from the
argument type in the method signature; and (3) T (a)← int, because the return
type of equals is boolean (we have a single integer type).

As shown in figure 1, our type inference problem now consists of merging
soft nodes with hard nodes, such that all assignment compatibility constraints,
represented by edges, are satisfied. Merging a soft node with a hard node is
equivalent to inferring a type for a local variable. If no such solution exists (or
it is too costly to find), or if a node needs more than one associated type (e.g.
a soft node is merged with two or more hard nodes), then the first stage of the
inference algorithm fails.

Connected Components Our first transformation on the constraint graph
consists of finding its connected components (or cycles). Every time a connected
component is found, we merge together all nodes of connected component, as
illustrated in figure 5.

AT(a) T(b)
T(a)
A

 T(b)

Fig. 5. Merging connected components

This is justified because every node in a connected component is indirectly
assignable to and from any other node in the same connected component. It
follows that all these nodes must represent the same type, in any solution to the
type inference problem.

We can divide connected components into three kinds. First, there are con-
nected components without hard nodes. In this case, nodes are simply merged,
and all constraints of all nodes are propagated to the representative node3. Sec-
ond, some connected components have a single hard node. In this case, all soft
nodes are merged with the hard node, then all constraints are verified. If any
constraint can’t be satisfied, the first stage of the algorithm fails. Third, it may
be that a connected component has two or more hard nodes. When this occurs,
the first stage fails.

In this step, we also take advantage of the verifier restrictions on primitive
types to merge respectively all values in a transitive relation with any of the
primitive types: int, long, float, and double. Figure 6 shows an example of prim-
itive type merge. It is enough that a node be indirectly assignable to or from
a primitive type hard node to be merged with it. This is because there is no
automatic conversion between primitive types.

Transitive Constraints Once the connected components are removed from
the constraint graph, we are left with a directed-acyclic-graph (DAG). Our next
3 Constraints from the representative node to itself are eliminated.

Efficient Inference of Static Types for Java Bytecode 209

T(a) T(b)
 T(b)

intT(a)int

Fig. 6. Merging primitive types

transformation consists of removing redundant constraints (edges) from this
DAG by eliminating any transitive constraints in the graph. A transitive con-
straint from a node y to a node x, is a constraint x ← y such that there exists
another constraint p← y where p is not x and there is a path from p to x in the
directed graph.

Transitive constraints are removed regardless of the kind of nodes involved
(soft, hard), with the exception of hard-node to hard-node constraints4. This is
shown in figure 7.

T(a) T(b) B T(b)T(a) B

Fig. 7. Removing transitive constraints

Single Constraints Nodes that have only one parent or one child constraint
can be simplified. A node x is said to have a single parent constraint to a node y,
if y ← x and for any p �= y there is no constraint p ← x. A node x is said to
have a single child constraint to a node y, if x ← y and for any p �= y there is
no constraint x← p.

Our next transformation consists of merging soft nodes that have single con-
straints to other nodes. To improve the accuracy of our results, we do this using
the following priority scheme:

1. Merge single child constraints: Merge x with y when x is a soft node with a
single child constraint to any other node y. (Merging with children results
in lower (thus more precise) types in the type hierarchy).

2. Merge with least common ancestor: This is a special case. When x is a
soft node that only has child constraints to hard nodes representing class
types, we can safely replace these constraints by a single child constraint
to the hard node representing the least common ancestor of the class types
involved. Then we can merge the resulting single child constraint.

3. Merge single soft parent constraints: Merge x with y when x is a soft node
with a single parent constraint to another soft node y.

4. Merge remaining single parent constraints: Merge x with y when x is a soft
node with a single parent constraint to another node y.

4 Hard-node to hard-node constraints represent the type hierarchy.

210 Etienne M. Gagnon et al.

Examples of this are shown in Figures 1 and 8.
When a soft node has no explicit parent, we can safely assume that it has the

hard node representing java.lang.Object as parent. We also introduce (as does
the verifier) a null type, which is a descendant of all reference types. When a
soft node has no child, which means that it was never defined, we assume that
it has null as a child.

Stage 1 succeeds if all soft nodes are merged with hard nodes at the end of
this step. It fails when merging a soft node with a hard node exposes an invalid
constraint, or when there remains a soft node at the end of the step.

T(a) T(b) B T(a)
B

 T(b)
B T(a)
 T(b)

Fig. 8. Merging single constraints

4.3 Stage 2

In some cases, stage 1 fails to deliver a solution. In our experiments, this only
happened in cases similar to the problem exposed in method harder of Figure 2.
More precisely, the source of the problem is that Java and other languages use
a simple new expression to both create and initialize a new object, whereas in
bytecode, the same operation is done in two separate steps: the object is created
using the new bytecode, but it is then initialized by invoking the <init> method
on the newly created object. This is shown in Figure 9, where the method called
java shows the method as it would appear in Java, and the method called
three address shows the extra <init> instructions that are exposed at the
bytecode level.

class CA
extends Object
{ ... }

class CB
extends Object
{ ... }

class MultiDef
extends Object

{ void java()
{ Object y;

if(...)
y = new CA();

else
y = new CB();

y.toString();
}

}

void three_address()
{ <untyped> y;
if(...)

{ y = new CA();
y.[CA.<init>()]();

}
else

{ y = new CB();
y.[CB.<init>()]();

}
y.toString();

}

void fixed_three_address()
{ <untyped> y, y1, y2;

if(...)
{ y1 = new CA();

y = y1;
y1.[CA.<init>]();

}
else
{ y2 = new CB();

y = y2;
y2.[CB.<init>]();

}
y.toString();

}

Fig. 9. Object creation in Java versus 3-address code

Efficient Inference of Static Types for Java Bytecode 211

In stage 2, we solve this problem by introducing copy statements at every ob-
ject creation site. This is shown in Figure 9 in the method fixed three address.
After inserting the extra copy statements, we simply reapply stage 1.

Experimental results show us that this very simple transformation is very
effective at solving all type inference difficulties found in code generated from
normal compilers.

4.4 Stage 3

It is possible that the previous stages fail and this would happen with the method
hardest in Figure 3. However, current compilers and programs seem not to ex-
pose such difficult cases. In the future, optimizing compilers could get more
aggressive, and programmers might start designing more elaborate interface hi-
erarchies. In order to provide a complete, yet efficient type inference algorithm,
we designed this third stage.

First, we note that, due to the good behavior guarantees provided by the
bytecode verifier, a very crude solution to all type inference problems would
be to separate local variables into sets of: reference, double, float, long and
int variables. Then, assign the type java.lang.Object to all reference variables.
Finally, introduce type casts at every location where use constraints would be
violated. All the introduced casts are guaranteed to succeed at runtime.

But this solution would be somewhat useless in the context of an three-
address code optimizer, as type information would be too general, and it would
not offer much information in decompiled Java programs.

Our solution also depends on the good behavior of verifiable bytecode, but
offers a much improved type accuracy without sacrificing simplicity. We simply
rebuild the constraint graph without use constraints5, and we ignore the interface
hierarchy by assuming that all interfaces have a single parent java.lang.Object.
In this hierarchy, every two types have an LCA.

As in stage 1, we merge strongly connected components. But, in this defi-
nition constraints graph, all hard-node to soft-node constraints are parent con-
straints. So, no strongly connected component contains a hard node. Thus, this
step will not detect any type error.

Then, as in stage 1, we eliminate transitive constraints and merge single con-
straints. When merging single constraints, we replace multiple child constraints
from a soft node to hard nodes by a single child constraint from the soft node
to the node representing the LCA type of classes and interfaces involved. Unlike
stage 1, this is guaranteed to deliver a solution.

The type assignment of this solution may violate some use constraints. So,
in a last step, we check every three-address statement for constraint violations,
and introduce type casts as needed.

Figure 10 shows this solution applied to the examples in Figure 2 (harder),
and Figure 3 (hardest).
5 A definition constraint is a constraint imposed by a definition e.g. x = new A is a

definition of x, and so it introduces a constraint that would be included in this graph.
A use constraint in imposed by a use of a variable e.g. return(x) uses x and so any
constraints imposed by this use would not be included in the graph.

212 Etienne M. Gagnon et al.

void harder()
{ Object y;

if(...)
s1: { y = new CA();

((CA) y).f(); }
else

s2: { y = new CB();
((CB) y).g(); }

s3: y.toString();
}

void hardest()
{ Object aa;

if(...)
s1: aa = getC();

else
s2: aa = getD();

s3: ((IA) aa).f(); // invokeinterface IA.f
s4: ((IB) aa).g(); // invokeinterface IB.g

}

(a) Figure 2 (harder) solution (b) Figure 3 (hardest) solution

Fig. 10. Adding casts

5 Array Constraints

To infer types in programs using arrays, we introduce array constraints in the
constraints graph. An array constraint represents the relation between the type
of an array and the type of its elements. We write A �→B, to indicate that B is
the element type of array type A (or more simply, A is an array of B). In graphs,
we represent these constraints using dashed directed edges from the array type
to the element type.

This simple addition allows us to collect constraints for all three-address
statements. For example, the program fragment a[d] = b; c = a; generates
the following constraints: a �→b, d← int, and c← a.

In Java bytecode, (A[] ← B[]) iff (A ← B) and (A ← B[]) iff (A ε {Object,
Serializable, Cloneable}). We take advantage of this to build an equivalent con-
straints graph without any array constraints. Then we solve the new problem
using the algorithm presented in Section 4. Finally, we use this solution to in-
fer the type of arrays, reversing our first transformation. This transformation is
applied in both stage 1 and stage 3, if needed.

We now give a more detailed description of this process. First, we compute
the array depth of soft nodes in the constraints graph using a work list algorithm
and the following rules:

– Every hard node has an array depth equal to the number of dimensions of
the array type it represents, or 0 if it is not an array type.

– null has array depth∞. (null is descendant of all types, including array types
of all depth6).

– A soft node with one or more child constraint has an array depth equal to
the smallest array depth of its children.

– A soft node with an array constraint has a depth equal to one + the depth
of its element node.

– When we verify our solution, a soft node with one or more parent constraints
must have an array depth greater or equal to the greatest array depth of its
parents7. (This rule is not used in stage 3).

6 We could also use 256, as Java arrays are limited to 255 dimensions.
7 If this rule fails, stage 1 fails.

Efficient Inference of Static Types for Java Bytecode 213

We merge with null all soft nodes with array depth equal to ∞. Then, we
complete the constraints graph by adding all missing array constraints (and soft
nodes) so that every node of array depth n greater than 0 (called array node)
has an array constraint to a node of array depth n− 1.

The final step in the transformation is to change all constraints between array
soft nodes and other nodes into constraints between non-array nodes using the
following rules:

– Change a constraint between two nodes of equal depth into a constraint
between their respective element nodes.

– Change a constraint between two nodes of different depth into a constraint
between the element type of lowest depth node and java.lang.Cloneable and
java.io.Serializable.

This is illustrated in figure 11.

a = new String[];

a[1] = b[3];
b = a;

T(b)

T(a)

T(b)
1

T(a)
1

0

0

T(a) == String[]

T(b) == String[]

1 0

01

String
0

T(b)
1

T(a)
1

1

String
0

T(a)

T(b)

 String[] String[]
1 1

 String[]

 String[]

Fig. 11. Solving array constraints

Then we use the algorithm of section 4 to solve the typing problem on the
graph of non-array nodes. Then we use this solution to infer the type of array
nodes. For example, if x �→y, and y = A, then x = A[]

In order to correctly handle the case of primitive array types (boolean[]...[],
short[]...[], char[]...[], byte[]...[]), we merge these hard nodes with all their same-
depth neighbors before constraints propagation8.

8 This is necessary because the depth 0 for all these types is int.

214 Etienne M. Gagnon et al.

6 Integer Types

While the algorithm presented in previous sections infers the necessary types for
optimizing three-address code, these types are not sufficient for Java decompilers.
All boolean, byte, short, char values are automatically operated upon as
int values by the bytecode interpreter. Furthermore, the Java verifier does not
check for consistent use of these types.

It is thus possible to construct bytecode programs with dubious semantics
as:
boolean erroneous(int a) // boolean return value
{ return a; // valid bytecode!
}
void dubious()
{ <unknown> b = erroneous(5);
System.out.[void println(int)](b); // prints 1 or 5?

}

We developed an algorithm that infers the basic types boolean, byte,
short, char, int for all variables that are assigned an int type by the ini-
tial 3-stage algorithm.

This algorithm operates in two stages. The first stage uses the type hierarchy
in Figure 12(a), and consists of:
– Constraints collection.
– Merging connected components. (This may fail).
– Merging single relations by aplying the following rules until a fixed point is

reached:
• Replacing all multiple child dependencies between a single soft node and

multiple hard nodes by a dependency on the least common ancestor type.
• Replacing all multiple parent dependencies between a single soft node

and multiple hard nodes by a dependency on the greatest common de-
scendent type.
• Merging a soft node with a single parent or single child hard node rep-

resenting either boolean, byte, short, char or, int.
If this stage fails to deliver a solution (remaining soft node, conflicting parent or
child constraints), then a second stage is performed using the type hierarchy in
Figure 12(b) and the following steps:
– Definition constraints collection.
– Merging connected components. (This always succeeds).
– Merging single relation by aplying the following rules until a fixed point is

reached:
• Replacing all multiple child dependencies between a single soft node and

multiple hard nodes by a dependency on the least common ancestor type.
• Merging a soft node with a single child hard node.

This will always deliver a solution. In the final type assignment, [0..127] is re-
placed by byte, and [0..32767] is replaced by char. Finally, use constraints are
verified and type casts are added as required.

The second stage might introduce narrowing type casts, and thus possibly
change the semantics of the program. However, this would only happen when
programs have dubious semantics to begin with. In our experiments, we have
not discovered a case where stage 2 was needed.

Efficient Inference of Static Types for Java Bytecode 215

int

short

byte

char

[0..1]

TOP

boolean

[0..32767]

[0..127]

int

short

byte

char

[0..32767]

[0..127]

boolean

(a) stage 1 (b) stage 2

Fig. 12. Integer type hierarchy

7 Experimental Results

The typing algorithm presented in this paper has been implemented in the Soot
framework[21]. The typing algorithm accepts untyped Jimple as input, and out-
puts typed Jimple. Typed Jimple is used by subsequent analyses including class
hierarchy analysis, pointer analysis and a Jimple to Java decompiler.

In this section we present the results of two set of experiments done using
our implementation. The first set of experiments was performed to test the
robustness of the typing algorithm as well as to gather empirical data about the
complexity of type constraints in programs compiled from various languages. In
the second experiment, the inferred types of Jimple were used to improve Class
Hierarchy Analysis.

7.1 Typing Java Bytecode

We have applied our typing algorithm on class files produced by compilers of five
different languages: Java[10], Eiffel[20], Ada[23], Scheme[5] and ML[14]. Table 1
shows a selection of our results to show the general trends. The benchmarks are
as follows: javac is the Sun’s javac compiler, jdk1.1 is everything in Sun’s java
class library for jdk1.1, kalman is a numeric Ada benchmark, compile to c is
the SmallEiffel compiler (version 0.79), lexgen is a lexer generator used in the
Standard ML of New Jersey benchmark suite, and boyer is one of the Gabriel
Scheme benchmarks.

The # methods column gives the total number of methods in the benchmark.
The next two columns give the number of methods that could be typed using
various steps of stage 1. The conn. comp. column counts the number of methods
that could be completely typed by finding connected components, while the
single cons. column counts the number of methods that needed both connected
components and the removal of single constraints. The stage 2 column counts
the number of methods that required the stage 2. The stage 3 column counts the
number of methods that needed stage 3. It is interesting to note that a significant
number of methods were typed using only connected components, and none of
the 16959 methods required insertion of type casts (stage 3).

216 Etienne M. Gagnon et al.

Language Benchmark # methods conn. comp. single cons. stage 2 stage 3

java: javac 1179 383 796 3 0
java: jdk1.1 5060 2818 2228 14 0
ada: kalman 735 463 262 10 0
eiffel: compile to c 7521 1562 5959 0 0
ml: lexgen 209 140 69 0 0
scheme: boyer 2255 820 1433 2 0

Table 1. Required steps

7.2 Improving Class Hierarchy Analysis

One of the motivations for producing typed Jimple was for use in compiler ana-
lyzes and optimizations, and our second experiment illustrates one such use. In
this experiment we measured the gains in the precision of the conservative call
graph built using class hierarchy analysis (CHA)[4,7,8]. The basic idea is that
for each virtual call of the form o.f(a1, a2, . . . , an), one needs to determine all
possible methods f that could be called given the receiver o and a given class
hierarchy. If the call graph is built using untyped Jimple, then type information
provided by a method signature must be used to estimate the type of the re-
ceiver o. This type is correct, but may be too general and thus CHA may be too
conservative about the destination of a virtual (or interface) call. If the call graph
is built using typed Jimple, then each receiver has an inferred type provided by
our algorithm, and this is often a tighter type than the type in the signature.
This improved type information reduces the number of possible destinations for
the call, and provides a better call graph on which further analysis can be made.

source program call-graph edges call-graph edges Reduction
language name untyped Jimple (#) typed Jimple (#) (%)

java: jack 10583 10228 3
java: javac 26320 23625 10
java: jimple 51350 33464 35
ada: rudstone 8151 7806 4
eiffel: illness 3966 3778 5
ml: nucleic 5009 4820 4

Table 2. Call graph reduction

Table 2 shows the number of call-graph edges for both untyped and typed
Jimple, and the percent reduction due to using typed Jimple. Again we present
a selection of benchmarks from a variety of compilers. Note that the very object-
oriented benchmarks like javac (10%) and jimple (35%) show significant re-
ductions if the static type of the receiver is known. This means that subsequent
analyses, including run-time type analysis, will start with a significantly better
approximation of the call graph. The other benchmarks show a reduction in
the 3% to 5% range, which is not as significant. This is mostly due to the fact
that these benchmarks have a much simpler call graph to begin with, and so
there is not much room for improvement.

Efficient Inference of Static Types for Java Bytecode 217

These results serve to illustrate one benefit of typed Jimple. In fact the types
are useful for a wide variety of other analyses including: (1) finding when an
invokeinterface can be replaced by an invokevirtual call (i.e. when the inferred
type of the receiver is a class, but the instruction is an invokeinterface), (2)
deciding when a method can be safely inlined without violating access rules,
(3) giving types to variables in decompiled code, and (4) as a basis for grouping
variables by type (i.e. a coarse grain run-time type analysis or side-effect analysis
can group variables by declared type).

8 Related Work

Related work has been done in the fields of type inference, typed assembly lan-
guages, and decompilation.

This work is a refinement of a preliminary report by Gagnon and Hendren[9].
In our preliminary work we proposed an exponential algorithm to solve difficult
cases, whereas in this work we avoid the exponential case by applying program
transformations, and we introduce the 3-stage approach. Further, this paper
addresses the problem of assigning different integer types.

In [12], Knoblock and Rehof present a superficially similar algorithm to type
Java bytecode. Their approach is different on many aspects. Their algorithm
only works with programs in SSA form. It consists of adding new types and
changing the interface hierarchy so that every two interfaces have a LUB and a
SUP in the resulting type lattice. Changing the type hierarchy has unfortunate
consequences: decompiled programs expose a type hierarchy that differs from the
original program, the globality of such a change makes this algorithm useless in
a dynamic code optimizers like HotSpot[22]. Our algorithm, on the other hand,
works with any 3-address code representation and has no global side effects. It
is thus suitable for use in a dynamic enviroment.

Type inference is a well known problem. There has been considerable work on
type inference for modern object-oriented languages. Palsberg and Schwartzbach
introduced the basic type inference algorithm for Object-Oriented languages [17].
Subsequent papers on the subject extend and improve this initial
algorithm [18,1,2]. These algorithms infer dynamic types, i.e. they describe the
set of possible types that can occur at runtime. Further, most techniques need
to consider the whole program.

As we emphasized in the introduction, our type problem is different in that
we infer static types. Further, we have a very particular property of having some
type information from the bytecode, including the types of methods. This means
that our type inference can be intra-procedural, and just consider one method
body at a time.

Work has been done by Morrisett et al.[16] on stack-based typed assembly
language. This work differs in that their typed assembly language is directly
produced from a higher level language. Their work emphasizes the importance
of having type information to perform aggressive optimizations. We agree that
types are important for optimization, and this is one good reason we need our
type inference.

218 Etienne M. Gagnon et al.

Our technique is related to the type inference performed by Java decompi-
lers[15,11,27,3] and other Java compilers that convert from bytecode to C, or
other intermediate representations. Proebsting and Watterson have written a
paper[19] on decompilation in Java. Their paper is mainly focused on recon-
struction high-level control statements from primitive goto branches. In their
text, they wrongfully dismiss the type inference problem as being solvable by
well known techniques similar to the Java verifier’s algorithm. As we have shown
in this paper, the problem is NP-Hard in general, and some bytecode programs
require program transformations in order to be typeable statically.

9 Conclusion

In this paper we presented a static type inference algorithm for typing Java
bytecode. We based our methods on a 3-address representation of Java bytecode
called Jimple. In effect, we perform the translation of untyped 3-address code to
typed 3-address code, where all local variables have been assigned a static type.

We have presented a constraint system that can be used to represent the
type inference problem. Using this representation, we developed a simple, fast
and effective multi-stage algorithm that was shown to handle all methods in a
set of programs (and libraries) produced from five different source languages. We
emphasized the difference between well behaved bytecode as defined by the Java
verifier, and well typed bytecode, as required by a static typing algorithm. Our
experimental results show that this efficient analysis can significantly improve
the results of further analyzes like Class Hierarchy Analysis.

Acknowledgments

We thank Raja Vallée-Rai and other Sable research group members for their
work on developing Jimple and the Soot framework.

References

1. Ole Agesen. Constraint-based type inference and parametric polymorphism. In
Baudouin Le Charlier, editor, SAS’94—Proceedings of the First International
Static Analysis Symposium, volume 864 of Lecture Notes in Computer Science,
pages 78–100. Springer, September 1994. 202, 217

2. Ole Agesen. The Cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In Walter G. Olthoff, editor, ECOOP’95—Object-
Oriented Programming, 9th European Conference, volume 952 of Lecture Notes in
Computer Science, pages 2–26, Åarhus, Denmark, August 1995. Springer. 202,
217

3. Ahpah Software Inc. http://zeus.he.net/˜pah/products.html. 218
4. David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function

calls. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, volume 31 of ACM SIGPLAN Notices, pages 324–
341, New York, October 1996. ACM Press. 216

Efficient Inference of Static Types for Java Bytecode 219

5. Per Bothner. Kawa - compiling dynamic languages to the Java VM, 1998. 199,
215

6. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press; McGraw-Hill Book, Cambridge New York, 1990. 207

7. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Walter G. Olthoff, editor,
ECOOP’95—Object-Oriented Programming, 9th European Conference, volume 952
of Lecture Notes in Computer Science, pages 77–101, Åarhus, Denmark, August
1995. Springer. 216

8. Mary F. Fernandez. Simple and effective link-time optimization of Modula-3 pro-
grams. In Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), pages 103–115, La Jolla, Califor-
nia, June 1995. 216

9. Etienne M. Gagnon and Laurie J. Hendren. Intra-procedural inference of static
types for java bytecode. Technical Report Sable 1998-5, McGill University, Mon-
treal, Canada, October 1998. http://www.sable.mcgill.ca/publications/. 217

10. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The
Java Series. Addison-Wesley, 1997. 207, 215

11. Innovative Software. http://world.isg.de. 218
12. T. Knoblock and J. Rehof. Type elaboration and subtype completion for Java

bytecode. In Proceedings 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages., pages 228–242, January 2000. 217

13. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, Reading, MA, USA, Jannuary 1997. 202, 207

14. MLJ. http://research.persimmon.co.uk/mlj/. 199, 215
15. Mocha. http://www.brouhaha.com/˜eric/computers/mocha.html. 218
16. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly

language. Lecture Notes in Computer Science, 1473:28–52, 1998. 217
17. Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Inference. In

Proceedings of the OOPSLA ’91 Conference on Object-oriented Programming Sys-
tems, Languages and Applications, pages 146–161, November 1991. Published as
ACM SIGPLAN Notices, volume 26, number 11. 202, 217

18. J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented
languages. ACM SIGPLAN Notices, 29(10):324–324, October 1994. 202, 217

19. Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation in Java
(does bytecode reveal source?). In USENIX, editor, The Third USENIX Confer-
ence on Object-Oriented Technologies and Systems (COOTS), June 16–19, 1997.
Portland, Oregon, pages 185–197, Berkeley, CA, USA, June 1997. USENIX. 218

20. Small Eiffel. http://SmallEiffel.loria.fr/. 199, 215
21. Soot. http://www.sable.mcgill.ca/soot/. 215
22. Sun Microsystems Inc. http://java.sun.com/products/hotspot/. 217
23. Tucker Taft. Programming the Internet in Ada 95. In Alfred Strohmeier, edi-

tor, Reliable software technologies, Ada-Europe ’96: 1996 Ada-Europe International
Conference on Reliable Software Technologies, Montreux, Switzerland, June 10–14,
1996: proceedings, volume 1088, pages 1–16, 1996. 199, 215

24. Jerzy Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual IEEE Sympo-
sium on Logic in Computer Science, pages 308–315, Santa Cruz, California, June
1992. IEEE Computer Society Press. 206

25. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a Java bytecode optimization framework. In Proceedings
of CASCON ’99, 1999. 200, 203

220 Etienne M. Gagnon et al.

26. Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Optimizing Java Bytecode using the Soot frame-
work: It is feasible? In David Watt, editor, CC2000—International Conference on
Compiler Construction, pages 18–34, Berlin, Germany, March 2000. 200, 203

27. WingSoft Corporation. http://www.wingsoft.com/wingdis.shtml. 218

Abstract Interpretation of Game Properties�

Thomas A. Henzinger1, Rupak Majumdar1, Freddy Mang1, and
Jean-François Raskin1,2

1 Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720-1770, USA

2 Département d’Informatique, Faculté des Sciences
Université Libre de Bruxelles, Belgium

{tah,rupak,fmang,jfr}@eecs.berkeley.edu

Abstract. We apply the theory of abstract interpretation to the ver-
ification of game properties for reactive systems. Unlike properties ex-
pressed in standard temporal logics, game properties can distinguish ad-
versarial from collaborative relationships between the processes of a con-
current program, or the components of a parallel system. We consider
two-player concurrent games —say, component vs. environment— and
specify properties of such games —say, the component has a winning
strategy to obtain a resource, no matter how the environment behaves—
in the alternating-time µ-calculus (Aµ). A sound abstraction of such a
game must at the same time restrict the behaviors of the component and
increase the behaviors of the environment: if a less powerful component
can win against a more powerful environment, then surely the original
component can win against the original environment.

We formalize the concrete semantics of a concurrent game in terms of
controllable and uncontrollable predecessor predicates, which suffice for
model checking all Aµ properties by applying boolean operations and
iteration. We then define the abstract semantics of a concurrent game
in terms of abstractions for the controllable and uncontrollable prede-
cessor predicates. This allows us to give general characterizations for the
soundness and completeness of abstract games with respect to Aµ prop-
erties. We also present a simple programming language for multi-process
programs, and show how approximations of the maximal abstraction
(w.r.t. Aµ properties) can be obtained from the program text. We apply
the theory to two practical verification examples, a communication pro-
tocol developed at the Berkeley Wireless Research Center, and a protocol
converter. In the wireless protocol, both the use of a game property for
specification and the use of abstraction for automatic verification were
instrumental to uncover a subtle bug.

� This research was supported in part by the DARPA (NASA) grant NAG2-1214, the
DARPA (Wright-Patterson AFB) grant F33615-C-98-3614, the MARCO grant 98-
DT-660, the ARO MURI grant DAAH-04-96-1-0341, and the NSF CAREER award
CCR-9501708.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 220–240, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Abstract Interpretation of Game Properties 221

1 Introduction

In compositional verification, one attempts to decompose the task of proving that
a system behaves correctly into subtasks which prove that the individual compo-
nents of the system behave correctly. Often such a proof decomposition cannot
proceed blindly, because an individual component may behave correctly only if
put into a certain context. Then, some assumptions about the environment of
the component are necessary for the subproof to go through. The interaction
between a component and its environment is naturally modeled as a two-player
infinite game on a state space. If the interaction is synchronous, then the game is
concurrent : in each round, both players choose their moves simultaneously and
independently, and the combination of the two moves determines the next state.
(Turn-based games for modeling asynchronous or interleaved interaction, where
in each round only one of the two players has a choice, can be considered a spe-
cial case of concurrent games.) If player 1 represents a component, and player 2
represents the environment assumptions, then a typical property of interest is
“Does player 1 have a strategy to reach a goal, say, obtain a resource, no matter
how player 2 behaves.” A rich logic for specifying such game properties formally
is the alternating-time µ-calculus, denoted Aµ [1], which subsumes several tem-
poral logics for expressing game properties. In [29] the abstract interpretation of
the more special case of turn-based games is considered, but the model checking
problem of a general class of game properties is not considered.

While there exist algorithms for model checking game properties [1,16], as
usual in model checking, the involved state spaces may be prohibitively large.
The common remedy is abstraction: the verification engineer attempts to sim-
plify the component model and the environment assumptions as much as possible
while still preserving soundness. If the simplifications are sound, and satisfy the
desired property, then we can be sure that the actual system also satisfies the
property. (By contrast, completeness must often be sacrificed: it may be that the
actual system is correct, while the simplified system is not. If an error is found
which has no counterpart in the actual system, then some of the simplifying
assumptions must be reversed.) For linear-time and branching-time properties,
it is well-known how to choose sound simplifications, and how to characterize
complete ones. For example, if the objective is to establish a temporal require-
ment for all traces of a system, then a sound simplification must allow more
traces; if the objective is to establish a temporal requirement for some trace,
then a sound simplification must allow fewer traces. For game properties, the
situation is more complicated. For example, with respect to the property “Does
player 1 have a strategy to reach a goal,” a simplification is sound if it restricts
the power of player 1 and at the same time increases the power of player 2. In
this paper, we give a general characterization of soundness and completeness for
simplifying games with respect to Aµ properties. This theory is then applied
to two practical verification examples, a wireless communication protocol and a
protocol converter.

We work in the abstract-interpretation framework of [7,9], which makes pre-
cise the notion of “simplification” used informally in the previous paragraph. We

222 Thomas A. Henzinger et al.

first give a set of predicates which are sufficient for model checking all Aµ prop-
erties by applying boolean operations and iteration. Following [9], this is called
the collecting semantics of a game. The essential ingredients of the collecting
semantics are the player-i controllable predecessor predicate, which relates a
state q with a set σ of states if player i can force the game from q into σ in
a single round, and its dual, the player-i uncontrollable predecessor predicate,
which relates q with σ if player i cannot prevent the game from moving from q
into σ in a single round. We then define what it means for an abstraction of the
collecting semantics and the corresponding abstract model checking algorithm
to be sound (if an abstract state qα satisfies an Aµ formula, then so do all states
in the concretization of qα), and complete (qα satisfies an Aµ formula if some
state in the concretization of qα does). The completeness of abstractions will be
characterized in terms of the alternating bisimilarity relation of [2]. This con-
trasts with the cases in linear-time and branching-time domains: for linear-time
properties, completeness requires trace equivalence; for branching-time proper-
ties, bisimilarity. Our results can thus be seen to be systematic generalizations of
the abstract-interpretation theory for temporal requirements from (single-player)
transition systems [6,26,12,14,11] to (mutli-player) game structures.

While our development applies to concurrent game structures in general,
in practice it is preferable to derive the abstraction of the collecting semantics
directly from the text of a program [7,14]. Such a direct computation (defined by
structural induction on the programming language) may lose precision, and we
typically obtain only an approximation of the maximal abstraction (an abstract
state qα satisfies an Aµ formula if all states in the concretization of qα do). We
introduce a simple programming language for multi-process programs based on
guarded commands [18]. We interpret processes as players in a concurrent game,
and show how to compute approximations of the maximal abstraction directly
from the program text. We present both domain abstraction, a nonrelational
form of abstraction where each variable is interpreted over an abstract domain,
and predicate abstraction, a relational abstraction which permits more accuracy
by relating the values of different variables via abstract predicates [24].

Abstract interpretation has been used successfully in the automated verifi-
cation of reactive systems [13,14,23,5,27]. We illustrate the application of the
theory to the automated verification of game properties with two practical ex-
amples. The first example originates from the Two-Chip Intercom (TCI) project
of the Berkeley Wireless Research Center [4]. The TCI network is a wireless local
network which allows approximately 40 remotes, one for each user, to transmit
voice with point-to-point and broadcast communication. The operation of the
network is coordinated by a base station, which assigns channels to the users
through a TDMA scheme. Properties specifying the correct operation of each
remote can be given in the game logic Aµ: each remote must behave correctly in
an environment containing the base station and arbitrarily many other remotes.
We verified the protocol for a base station and an arbitrary number of remotes.
Since the system is infinite state, in order to use our model checkerMocha [3],
we needed to abstract it to a finite instance. A bug was found on an abstract

Abstract Interpretation of Game Properties 223

version of the protocol. The violated property involves an adversarial behavior
of the base station with respect to a remote, and cannot be specified directly in a
nongame logic like Ctl. Thus, both game properties and abstract interpretation
were necessary in the verification process.

The second example concerns the automatic synthesis of a protocol converter
between a message sender which speaks the alternating-bit protocol and a re-
ceiver which speaks a simple two-phase protocol. We view the problem as a
special case of controller synthesis, which is in turn a special case of Aµ model
checking. We view the composition of the sender and the receiver as the system to
be controlled, and the protocol converter as the controller to be synthesized. The
requirements of the converter is written in the game logic Aµ. Using predicate
and domain abstractions, we are able to check for the existence and construct a
converter which satisfies the requirements.

2 Structures and Logics for Games

Alternating Transition Systems. An alternating transition system [1] is a
tuple S = 〈Σ,Q,∆,Π, π〉 with the following components: (i) Σ is the (finite) set
of players. (ii) Q is a (possibly infinite) set of states. (iii) ∆ = {δi : Q → 22Q |
i ∈ Σ} is a set of transition functions, one for each player in Σ, which maps each
state to a nonempty set of choices, where each choice is a set of possible next
states. Whenever the system is in state q, each player a ∈ Σ independently and
simultaneously chooses a set Qa ∈ δa(q). In this way, a player a ensures that the
next state of the system will be in its choice Qa. However, which state in Qa will
be next depends on the choices made by the other players, because the successor
of q must lie in the intersection

⋂
a∈Σ Qa of the choices made by all players.

We assume that the transition function is nonblocking and the players together
choose a unique next state: if Σ = {a1, . . . , an}, then for every state q ∈ Q
and every set Q1, . . . , Qn of choices Qi ∈ δai(q), the intersection Q1 ∩ . . . ∩Qn

is a singleton. Note that we do not lose expressive power by considering only
deterministic games, because nondeterminism can be modeled by an additional
player. (iv) Π is a set of propositions. (v) π : Π → 2Q maps each proposition to
a set of states.

From the definition it can be seen that alternating transition systems can
model general concurrent games, and includes as a special case turn-based games.
For two states q and q′ and a player a ∈ Σ, we say q′ is an a-successor of q if
there exists a set Q′ ∈ δa(q) such that q′ ∈ Q′. For two states q and q′, we say q′

is a successor of q if for all players a ∈ Σ, the state q′ is an a-successor of q. A
computation η = q0q1 . . . is a finite or infinite sequence of states such that qi+1 is
a successor of qi for all i ≥ 0. A computation produces a trace τ = π(q0)π(q1) . . .
of sets of propositions. A strategy for a player a ∈ Σ is a mapping fa : Q+ → 2Q

such that for w ∈ Q∗ and q ∈ Q, we have fa(w ·q) ∈ δa(q). Thus, the strategy fa
maps a finite nonempty prefix w · q of a computation to a set in δa(q): this set
contains possible extensions of the computation as suggested to player a by the
strategy. For fixed strategies F = {fa | a ∈ Σ}, the computation η = q0q1 . . .

224 Thomas A. Henzinger et al.

is consistent with F if for all i ≥ 0, qi+1 ∈ fa(q0q1 . . . qi) for all a ∈ Σ. For
a state q ∈ Q, we define the outcome LF (q) of F with source q as the set of
possible traces produced by the computations which start from state q, and are
consistent with the strategies F .

For ease of presentation, we consider in the following only two players, whom
we call player 1 and player 2 respectively, i.e., Σ = {1, 2}. The results generalize
immediately to multiple players.

Alternating-Time µ-Calculus. A game logic L is a logic whose formulas are
interpreted over the states of alternating transition systems; that is, for every
L-formula ϕ and every alternating transition system S , there is a set [[ϕ]]S of
states of S which satisfy ϕ. The L model checking problem for a game logic L
and an alternating transition system S asks, given an L-formula ϕ and a state q
of S , whether q ∈ [[ϕ]]S .

The formulas of the alternating time µ-calculus [1] are generated by the
grammar

ϕ ::= p | p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈I〉〉 © ϕ | |[I]| © ϕ | (µx : ϕ) | (νx : ϕ),

for propositions p in some set ΠL of propositions, variables x in some set X
of variables, and teams of players I = 1, 2, {1, 2}. Let S = 〈Σ,Q,∆,Π, π〉 be
an alternating transition system whose propositions include all propositions on
which formulas are constructed; that is, ΠL ⊆ Π . Let E : X → 2Q be a mapping
from the variables to sets of states. We write E [x �→ρ] for the mapping that
agrees with E on all variables, except that x ∈ X is mapped to ρ ⊆ Q. Given S
and E , every formula ϕ defines a set [[ϕ]]S ,E ⊆ Q of states:

[[p]]S ,E = π(p);
[[p]]S ,E = Q\π(p);
[[x]]S ,E = E(x);
[[ϕ1

{∨
∧
}
ϕ2]]S ,E = [[ϕ1]]S ,E

{∪
∩
}

[[ϕ2]]S ,E ;
[[
{〈〈1〉〉

|[1]|
}© ϕ]]S ,E = {q ∈ Q | (

{∃σ∈δ1(q).∀τ∈δ2(q)
∀σ∈δ1(q).∃τ∈δ2(q)

}
r ∈ σ ∩ τ : r ∈ [[ϕ]]S ,E)};

[[
{〈〈1,2〉〉

|[1,2]|
}©ϕ]]S ,E = {q ∈ Q | (

{∃σ∈δ1(q).∃τ∈δ2(q)
∀σ∈δ1(q).∀τ∈δ2(q)

}
r ∈ σ ∩ τ : r ∈ [[ϕ]]S ,E)};

[[
{

µ
ν

}
x : ϕ]]S ,E =

{∩
∪
}{ρ ⊆ Q | ρ = [[ϕ]]S ,E[x �→ρ]}.

If we restrict ourselves to the closed formulas, then we obtain a game logic,
denoted Aµ: the state q ∈ Q satisfies the Aµ-formula ϕ if q ∈ [[ϕ]]S ,E for any
variable mapping E ; that is, [[ϕ]]S = [[ϕ]]S ,E for any E .

The logicAµ is very expressive and embeds the game logics Atl and Atl∗ [1].
For example, the Atl-formula 〈〈1〉〉ϕ1Uϕ2 can be expressed in Aµ as (µx : ϕ2 ∨
(ϕ1 ∧ 〈〈1〉〉 © x)). Note that the fragment which restricts all game quantifiers
〈〈I〉〉 and |[I]| to the team I = {1, 2} is the standard µ-calculus. Thus, our results
include as a special case the results of [14].

Collecting Semantics of Alternating Transition Systems. Alternating
transition systems provide an operational semantics to our model of systems

Abstract Interpretation of Game Properties 225

with interacting components. In addition, we isolate the operators we need to
evaluate on an alternating transition system in order to compute the set of
states where a formula of the logic Aµ holds. We call these operators, follow-
ing [7,8], the collecting semantics of the alternating transition system. The col-
lecting semantics of an alternating transition system may be thought of as an
instrumented version of the operational semantics in order to gather useful infor-
mation about temporal properties of a system. Given an alternating transition
system S = 〈Σ,Q,∆,Π, π〉, the collecting semantics consists of the following
operators.

States satisfying a proposition or the negation of a proposition. For every propo-
sition p ∈ Π , and its negation p̄, we define 〈|p|〉 = π(p) and 〈|p̄|〉 = Q \ π(p).

Controllable and uncontrollable predecessors. We define the player-1 controllable
predecessor relation CPre1 : 2Q → 2Q as q ∈ CPre1(σ) iff ∃τ ∈ δ1(q). ∀τ ′ ∈
δ2(q). τ ∩ τ ′ ⊆ σ The state q is in the set of controllable predecessors of the set
of states σ if player 1 can make a choice such that for all choices of player-2, the
successor state of q lies in the set σ. Thus in q, player 1 has the ability to force the
next state of the game into σ. We define the player-1 uncontrollable predecessor
relation UPre1 : 2Q → 2Q as q ∈ UPre1(σ) iff ∀τ ∈ δ1(q). ∃τ ′ ∈ δ2(q). τ ∩τ ′ ⊆ σ.
So the state q is in the set of uncontrollable predecessors of the set of states σ
if for each choice of player 1 in q, there exists a choice of player 2 such that the
successor state of q is in σ. Thus in q, player 1 cannot force the game outside σ
without the cooperation of player 2, or equivalently, player 1 cannot avoid σ.
We can similarly define the player 2 controllable and uncontrollable predecessor
relations CPre2 and UPre2. The team-{1, 2} predecessor relations CPre{1,2} and
UPre{1,2} are defined as:

q ∈ CPre{1,2}(σ) iff ∃τ ∈ δ1(q). ∃τ ′ ∈ δ2(q). τ ∩ τ ′ ⊆ σ
q ∈ UPre{1,2}(σ) iff ∀τ ∈ δ1(q). ∀τ ′ ∈ δ2(q). τ ∩ τ ′ ⊆ σ

From the definitions above, we can establish the following propositions.

Proposition 1. The operators CPreI and UPreI (for I = 1, 2, {1, 2}) are duals
of each other, that is, if σ ⊆ Q is a set of states and ¬σ = Q\σ, then CPreI(σ) =
¬UPreI(¬σ).

Proposition 2. The operators CPreI and UPreI are monotonic, that is, for all
sets of states σ1, σ2 such that σ1 ⊆ σ2 ⊆ Q, we have CPreI(σ1) ⊆ CPreI(σ2)
and UPreI(σ1) ⊆ UPreI(σ2).

Model Checking with Game Operators The definition of Aµ naturally sug-
gests a model checking method for finite state systems, where fixpoints are com-
puted by successive approximations; note that the operators CPreI and UPreI

for I = 1, 2, {1, 2} correspond naturally to the semantics of the logical formulas
〈〈I〉〉© and |[I]|©. For alternating transition systems with a collecting seman-
tics defined by the above operators, one can similarly define a model checking

226 Thomas A. Henzinger et al.

Semi-algorithm ModelCheck
Input: the collecting semantics of an alternating transition system with

operators 〈| · |〉, CPreI , UPreI , a formula ϕ ∈ Aµ, and a mapping E
with domain X .

Output: [ϕ]S ,E :=
if ϕ = p then return 〈|p|〉;
if ϕ = p then return 〈|p|〉;
if ϕ = (ϕ1 ∨ ϕ2) then return [ϕ1]S ,E ∪ [ϕ2]S ,E;
if ϕ = (ϕ1 ∧ ϕ2) then return [ϕ1]S ,E ∩ [ϕ2]S ,E;
if ϕ = 〈〈I〉〉 © ϕ′ then return CPreI([ϕ

′]S ,E);
if ϕ = |[I]| © ϕ′ then return UPreI([ϕ

′]S ,E);
if ϕ = (µx : ϕ′) then

T0 := ∅;
for i = 0, 1, 2, . . . do

Ti+1 := [ϕ′]S ,E[x�→Ti]

until Ti+1 ⊆ Ti;
return Ti;

if ϕ = (νx : ϕ′) then
T0 := Q;
for i = 0, 1, 2, . . . do

Ti+1 := [ϕ′]S ,E[x�→Ti]

until Ti+1 ⊇ Ti;
return Ti.

Fig. 1. Aµ model checking

procedure that uses boolean operations, as well as the predecessor operations
CPreI and UPreI [1]. The procedure ModelCheck of Figure 1 takes as input an
alternating transition system S described by its collecting semantics, a formula
ϕ ∈ Aµ, and an environment E mapping variables to sets of states, and produces
a set [ϕ]S ,E of states.

Theorem 1. If the semi-algorithm ModelCheck terminates, then [ϕ]S ,E = [[ϕ]]S
for any closed formula ϕ of Aµ and any environment E.

In general, the fixpoints may not converge in a finite number of steps, and
transfinite iteration may be required.

3 Abstractions of Alternating Transition Systems

Let Qα be a set of abstract states and γ : Qα → 2Q be a concretization function
that maps each abstract state qα to a set of concrete states γ(qα) which qα

represents. We define a precision order �⊆ Qα×Qα on the abstract domain, as
qα1 � qα2 iff γ(qα1) ⊆ γ(qα2). Thus qα1 is more precise than qα2 if the set of concrete
states represented by qα1 is a subset of the set of concrete states represented
by qα2 . So by definition, γ is monotonic w.r.t. �. Let γ̂(σα) =

⋃{γ(qα) | qα ∈ σα}

Abstract Interpretation of Game Properties 227

denote the set extension of γ. We extend the order � over sets of abstract states,
giving �̂ ⊆ 2Qα × 2Qα

, as σα
1 �̂σα

2 iff γ̂(σα
1) ⊆ γ̂(σα

2). A set σα
1 of abstract states

is an approximation of a set σα
2 of abstract states if σα

1 �̂σα
2 .

Given an alternating transition system S with state space Q and set of ab-
stract states Qα with concretization function γ, we want to compute the abstrac-
tion of the concrete semantics of any Aµ-formula ϕ, denoted [[ϕ]]αS . An abstract
interpretation is sound if properties that we establish with the abstract algo-
rithm are true in the concrete semantics; i.e., γ̂([[ϕ]]αS) ⊆ [[ϕ]]S In the sequel,
we only consider sound abstract interpretations. Conversely, an abstract inter-
pretation is complete if properties that are true on the concrete domain can be
established by the abstract interpretation; i.e., [[ϕ]]S ⊆ γ̂([[ϕ]]αS). In general, an
abstract interpretation is not complete unless strong conditions are fulfilled by
the abstract domain and the concretization function. We will give a necessary
and sufficient condition on the abstract domain and the concretization function
for complete model checking of Aµ-properties. In addition to soundness and
completeness, one is also interested in the maximality of abstract interpreta-
tions. The abstract interpretation is maximal if we have for all abstract state
qα ∈ Qα, if γ(qα) ⊆ [[ϕ]]S then qα ∈ [[ϕ]]αS . This means that if a property is
true in all concrete states represented by an abstract state qα, then the abstract
model checking algorithm is able to establish it. As for completeness, maximal-
ity is also lost unless we impose strong conditions on the abstract domain and
operations necessary to compute the abstract semantics. We refer the interested
reader to [21,22] for a general treatment of maximality in abstract interpretation.

Abstraction of the Collecting Semantics. We have shown in the previous
section that [[ϕ]]S can be computed using the collecting semantics of S . We now
explain how the collecting semantics can be abstracted. For each component 〈|·|〉,
CPreI , and UPreI of the collecting semantics. We define the abstract counterpart
〈| · |〉α, CPreα

I , and UPreα
I .

Abstract semantics of propositions. For each proposition p ∈ ΠL we define
〈|p|〉α = {qα ∈ Qα | γ(qα) ⊆ 〈|p|〉} and 〈|p̄|〉α = {qα ∈ Qα | γ(qα) ⊆ 〈|p̄|〉}. From
this it follows that the abstract semantics for propositions is sound. Moreover,
for abstract states qα, rα with qα � rα, if rα ∈ 〈|p|〉α then qα ∈ 〈|p|〉α. Note that
given a proposition p ∈ ΠL and an abstract state qα, we can have qα �∈ 〈|p|〉α
and qα �∈ 〈|̄p|〉α. This occurs when the abstract state qα represents at the same
time concrete states where the proposition p evaluates to true and other concrete
states where the proposition p evaluates to false.

Abstract controllable and uncontrollable predecessors. Let qα be an abstract state
and σα be a set of abstract states, we define the abstract controllable predecessor
relation as: qα ∈ CPreα

I (σα) iff ∀q ∈ γ(qα). q ∈ CPreI(γ̂(σα)). So an abstract
state qα is included in the abstract controllable predecessors of an abstract re-
gion σα if all the concrete states represented by qα are in the controllable prede-
cessors of the set of concrete states represented by the set of abstract states σα.

228 Thomas A. Henzinger et al.

Similarly, the abstraction of the uncontrollable predecessor relation is defined
as qα ∈ UPreα

I (σα) iff ∀q ∈ γ(qα). q ∈ UPreI(γ̂(σα)). The soundness and the
maximality of the abstract controllable and uncontrollable predecessors follow
from the definitions.

Lemma 1. Soundness and maximality. For every set σα of abstract states,
γ̂(CPreα

I (σα)) ⊆ CPreI(γ̂(σα)) and γ̂(UPreα
I (σα)) ⊆ UPreI(γ̂(σα)), expressing

soundness. Also, if qα �∈CPreα
I (σα) then γ(qα) �⊆CPreI(γ̂(σα)) and if qα �∈

UPreα
I (σα) then γ(qα) �⊆UPreI(γ̂(σα)), expressing maximality.

Abstract Model Checking of the Alternating-Time µ-Calculus. An ab-
stract model checking algorithm takes as input an abstraction of the collecting
semantics of the alternating transition system and an Aµ formula ϕ , and com-
putes a set of abstract states. This defines the abstract semantics of ϕ. Let
AbsModelCheck be the abstract model checking algorithm obtained from Mod-
elCheck by replacing the concrete collecting semantics 〈| · |〉, CPreI , and UPreI

by their respective abstract collecting semantics 〈| · |〉α, CPreα
I , and UPreα

I for
I = 1, 2, {1, 2}. The soundness of AbsModelCheck is proved by induction on the
structure of formulas, using the soundness of the abstraction of the collecting
semantics.

Theorem 2. Soundness of AbsModelCheck. The abstract model checking al-
gorithm AbsModelCheck is sound, i.e., if the algorithm AbsModelCheck produces
the abstract region [ϕ]αS on input formula ϕ and the abstract collecting semantics
of S , then for all abstract states qα ∈ [ϕ]αS , and for all concrete states q ∈ γ(qα),
we have q ∈ [[ϕ]]S .

In the proof of soundness, we can replace each of the predicates 〈|·|〉α, CPreα
I , and

UPreα
I by approximations without losing the soundness of the abstract model

checking algorithm. This is because any approximation of the sound abstraction
of the collecting semantics remains sound. This statement is made precise in the
following lemma.

Lemma 2. Approximation. The soundness of the abstract model checking al-
gorithm AbsModelCheck is preserved if the predicates 〈| · |〉α, CPreα

I , and UPre
α
I

are replaced by approximations 〈| · |〉A, CPreA
I , and UPre

A
I such that:

1. for all p ∈ ΠL, we have 〈|p|〉A�̂〈|p|〉α, and 〈|p̄|〉A�̂〈|p̄|〉α;
2. for all σα ⊆ Qα, we have CPreA

I (σα)�̂CPreα
I (σα);

3. for all σα ⊆ Qα, we have UPreA
I (σα)�̂UPreα

I (σα).

Although the abstract interpretations for the propositions and the controllable
and uncontrollable predecessors are maximal, unfortunately the maximality is
not preserved by the abstract model checking algorithm AbsModelCheck. This is
because the abstract model checking algorithm is defined compositionally. This
is a well-known fact [7], and the loss of precision occurs already with boolean
connectives. For example, let S be an alternating transition system with four
states Q = {q1, q2, q3, q4}, and let Qα = {a1, a2, a3} be an abstract domain with

Abstract Interpretation of Game Properties 229

three abstract states. Let the concretization function γ be given by γ(a1) =
{q1, q2}, γ(a2) = {q2, q3}, and γ(a3) = {q3, q4}. Let p be a proposition, with
[[p]]S = {q1, q2}, and [[p̄]]S = {q3, q4}. Note that [p∨ p̄]αS ,E is not maximal. In fact,
even if γ(a2) ⊆ [[p ∨ p̄]]S , we have a2 �∈[p ∨ p̄]αS ,E

Abstract LTL Control. The formulas of linear-time temporal logic Ltl are
defined inductively by the grammar

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2,

for propositions p in some set ΠL of propositions. Formulas are evaluated over
traces in the standard way [20]. From these formulas, we define the formulas
✸p = trueUp and ✷p = ¬✸¬p as usual. Player 1 can control the state q of an
alternating transition system S for the Ltl formula ϕ if player 1 has a strat-
egy f1 such that for all strategies f2 of player 2, every trace ρ ∈ Lf1,f2(q)
satisfies the formula ϕ. The Ltl control problem asks, given an alternating tran-
sition system S and an Ltl formula ϕ, which states of S can be controlled by
player 1 for ϕ. The Ltl controller-synthesis problem asks, in addition, for the
construction of witnessing strategies. The alternating-time µ-calculus can ex-
press controllability of Ltl formulas [1], that is, for each Ltl formula ϕ, there
is an equivalent Aµ formula ψ such that for all alternating transition systems S ,
player 1 can control a state q of S for ϕ iff q ∈ [[ψ]]S . For example, the Aµ formula
νXµY.(p ∧ 〈〈1〉〉 ©X) ∨ 〈〈1〉〉 © Y holds at a state if player 1 has a strategy to
enforce computations in which the observable p occurs infinitely often, and this
is equivalent to the Ltl control requirement ✷✸p. Thus, an algorithm for model
checking Aµ can be used to solve the Ltl control problem. In particular, we can
use algorithm ModelCheck of Figure 1 to solve the Ltl control problem.

Given an Ltl requirement ϕ and the abstraction of the collecting semantics
of an alternating transition system S, we can solve the Ltl control problem
on the abstract system in the following way. We construct an Aµ formula ψ
equivalent to ϕ, and use the abstract model checking algorithm AbsModelCheck
to compute the set of abstract states [[ψ]]αS . From the soundness of the abstract
model checking algorithm, we can conclude that player 1 can control ϕ from
all concrete states in γ̂([[ψ]]αS). Moreover, from the result of the abstract model
checking algorithm, one can derive a controller for player 1 in the concrete sys-
tem [28,17].

Completeness of Abstract Model Checking of Games. A necessary and
sufficient characterization of completeness is provided by considering the alter-
nating bisimilarity relation [2] on the state space of an alternating transition
system. A binary relation ∼=⊆ Q × Q on the states of an alternating transi-
tion system is an alternating bisimulation if q ∼= r implies the following three
conditions:

(1) π(q) = π(r).

230 Thomas A. Henzinger et al.

(2) For every set T ∈ δ1(q) there exists a set T ′ ∈ δ1(r) such that
for every set R′ ∈ δ2(r) there exists a set R ∈ δ1(q) such that if
(T ∩R) = {q′} and (T ′ ∩R′) = {r′} then q′ ∼= r′.

(3) For every set T ′ ∈ δ1(r) there exists a set T ∈ δ1(q) such that
for every set R ∈ δ2(q) there exists a set R′ ∈ δ1(r) such that if
(T ∩R) = {q′} and (T ′ ∩R′) = {r′} then q′ ∼= r′.

Two states q and r are alternating bisimilar, denoted q ∼=B r, if there is an
alternating bisimulation∼= such that q ∼= r. Let Q∼=B

denote the set of alternating
bisimilarity classes of states, and let q∼=

B

1 , q
∼=B

2 , . . . refer to classes in Q∼=B

. In [2],
it is shown that two states on an alternating transition system satisfy the same
alternating-time µ-calculus formulas iff they are alternating bisimilar. Using this
characterization, we can show that if the abstract model checking algorithm is
complete, then for each alternating bisimilarity class q∼=

B ∈ Q∼=B

there is a set
of abstract states whose concretization is exactly the class q∼=

B

. The proof is
by contradiction; if not, we can either find an Aµ formula that can distinguish
two concrete states that are in the concretization of the same abstract state,
or show that the concretization of all the abstract states is strictly included in
the set of concrete states implying that the abstract interpretation cannot be
complete. This shows that the abstract domain and the concretization function
must refine the alternating bisimilarity relation for the abstract model checking
algorithm to be complete. Moreover, by induction on the structure of formulas
we can prove the converse: if the set of abstract states refine the alternating
bisimilarity classes then the abstract model checking algorithm is complete.

Theorem 3. Completeness of AbsModelCheck. The abstract model checking
algorithm AbsModelCheck is (sound and) complete on an alternating transi-
tion system S with state space Q if and only if the abstract domain Qα and
the concretization function γ satisfy that for every alternating bisimilar class
q
∼=B ∈ Q∼=B

, there exists σα ⊆ Qα such that γ̂(σα) = q∼=
B

.

Thus, to achieve completeness, each alternating bisimilarity class should be the
image of a set of abstract states under the concretization function. In general,
the abstract model checking algorithm is sound, but not necessarily complete.
This means that if an Aµ property fails to hold on the abstract system, we can-
not conclude that it does not hold in the concrete system. In order to disprove
a property, we have to check if the negation of the property holds on the ab-
stract system. Of course, neither the property nor its negation may hold at a
state, in which case we have to refine our abstraction. Moreover, the abstract
interpretation can be used to produce both under and overapproximations of a
region satisfying a formula (to construct an overapproximation of a formula, we
compute an underapproximation of the negation of the formula by concretizing
the abstract region returned by the abstract model checking algorithm, and take
the complement of the resulting set). Using techniques in [19,10], this can give
more precise approximations of a region where the formula holds.

Abstract Interpretation of Game Properties 231

4 Multi-process Programs:
Concrete and Collecting Semantics

While the theory in the previous sections provides ways to model check an ab-
stract system via its abstract collecting semantics, the abstract collecting se-
mantics is derived from the (concrete) collecting semantics. In practice it is
often preferable to be able to compute the abstract collecting semantics directly
from the syntax of a program [7,14,25]. We introduce a simple programming
language that is able to model concurrent games and show how to construct an
abstraction of the collecting semantics directly from the program text.

Multi-process Programs. We consider a simple programming formalisms
based on Dijkstra’s guarded command language [18]. Let X be a set of variables
interpreted over some possibly infinite domains. We denote byX ′ = {x′ | x ∈ X }
the set of variables obtained by priming each variable in X . A valuation v of the
variables X is a function which maps each of the variables in X into a value in
its domain. Denote by VX the set of all possible valuations of the variables X .
For any valuation v, we write v′ the valuation obtained by priming each do-
main variable of v. For any predicate ϕ over the variables X and a valuation
v ∈ VX , denote by ϕ[[v]] the truth value of the predicate with all the free variables
interpreted according to the valuation v.

Given a set of program variables X , a Y -action ξ (guarded command) has the
form [] guard → update, where Y ⊆ X , the guard guard is a boolean predicate
over X , and the update relation update is a boolean predicate over X ∪ Y ′.
We also write guardξ and updateξ to represent the guard and update relation
of ξ respectively. Given a valuation v ∈ VX , the action ξ is said to be enabled
if the guard guardξ[[v]] evaluates to true. We assume that for every Y -action,
the update relation is functional, that is, for all valuation functions v ∈ VX ,
there is exactly one valuation function u ∈ VY such that updateξ[[v ∪ u′]] holds.
A Y -process Φ is a finite set of Y -actions. We say that the set of variables Y is
the controlled variables of Φ. We require that for any valuation of the program
variables, at least one action in the process is enabled.

To model two-player games, we partition the program variables X into two
disjoint sets X1,X2 , i.e., X = X1 � X2. Intuitively, Xi contains the variables
updated by player i. A program P = (Φ1, Φ2) over X is a pair of processes
such that Φi is an Xi-process. Each process of the program can be defined by
composing smaller processes, each of which controls a subset of the variables.
For two processes Φ1 and Φ2 with disjoint controlled variables, their composi-
tion Φ1‖Φ2 is the process Φ = {[] guardξ ∧ guardη → updateξ ∧ updateη | ξ ∈
Φ1 ∧ η ∈ Φ2}.
Example 1. Consider the program in Figure 3, depicting a protocol converter
that operates between a lossy sender implementing an alternating-bit protocol,
and a lossless receiver. The lossy sender Sender communicates with the converter
through a pair of two-phase handshake lines, namely sendreq and recvreq. It
signals the sending of a new message by inverting the variable sendreq, and

232 Thomas A. Henzinger et al.

recvack

sendreq

bitsend

recvreq

sendack

bitrecv

Sender

sendreqR

recvackR
Converter Receiver

Fig. 2. An lossy sender speaking the alternating bit protocol communicating
with a two-phase receiver through a protocol converter. The converter is to be
synthesized.

expects an acknowledgement from the converter at a later time. It also sends a bit
bitsend to the converter together with the message it sent. (The actual message is
not modeled.) The sender is lossy in the sense that it may not signal the converter
that a new message has been sent (by not inverting the variable sendreq), and
it may just drop the acknowledgement sent by the converter (by inverting the
variable recvack). If there is a loss, the variable drop will be set to true. The
Receiver simply checks if there is a new message sent by the converter, and
returns an acknowledgement after it has consumed the message. The Monitor
process counts the number of messages received and sent by the converter. In
this program Φ2 is the composition Sender‖Receiver‖Monitor. The process Φ1

is the most nondeterministic process which set the variables sendack, sendreqR,
recvreq, and bitrecv to arbitrary values.

Concrete Semantics of Programs. The concrete interpretation of a pro-
gram P = {Φ1, Φ2} over the program variables X is the alternating transition
system SP = 〈Σ,Q,∆,Π, π〉, where (i) Σ = {1, 2} (the two players of the pro-
gram P). (ii) Q = VX , i.e., a state of SP is a valuation of the program variables.
(iii) ∆ = (δ1, δ2) with δi : VX → 22VX is the transition function of player i and
is defined as δi(v) =

{
u | ξ ∈ Φi ∧ guardξ[[v]] ∧ updateξ[[v ∪ u′]]} . (iv) Π is a set

of boolean predicates over the program variables X . (v) π maps an element p
of Π to the set of states that satisfy p. Intuitively, for i ∈ {1, 2}, player i controls
the actions in Φi. A program is run in steps. At each step, player 1 chooses an
enabled action ξ ∈ Φ1, and updates the values of the variables in X1 according
to the predicate updateξ. Independently and simultaneously, player 2 chooses an
enabled action η ∈ Φ2 and updates the values of the variables in X2 according
to updateη.

Collecting Semantics of Programs. Given a program P over the set of vari-
ables X , let 〈| · |〉, CPreI , UPreI (for I = 1, 2, {1, 2}) be the collecting semantics
of SP . We construct predicate formulas that represent the collecting semantics of
the program P. Let R be a predicate over the variables X . We say R represents
a state v of SP if R[[v]] is true. We use predicates on X to denote the set of
states they represent, and naturally extend operations defined on sets of states

Abstract Interpretation of Game Properties 233

[] pc = s0 → drop ′ := false; pc′ := s1;
bitsend ′ := ¬bitsend ;

[] pc = s1 ∧ (recvack = recvreq) → drop ′ := false; pc′ := s1;
sendreq ′ := ¬sendreq ;

[] pc = s1 ∧ (recvack = recvreq) → drop ′ := true ; pc′ := s1;
sendreq ′ := sendreq ;

[] pc = s1 ∧ (recvack �= recvreq) ∧ (bitsend = bitrecv) → drop ′ := false; pc′ := s0;
recvack ′ := ¬recvack ;

[] pc = s1 ∧ (recvack �= recvreq) ∧ (bitsend �= bitrecv) → drop ′ := false; pc′ := s1;
recvack ′ := ¬recvack ;

[] pc = s1 ∧ (recvack �= recvreq) → drop ′ := true ; pc′ := s1;
recvack ′ := ¬recvack ;

Sender

[] (sendackR �= sendreqR) → sendackR′ := ¬sendackR;
[] (sendackR = sendreqR) → sendackR′ := sendackR;

Receiver

[] sendreq �= sendack → count ′ := count + 1;
[] sendreqR �= sendackR → count ′ := count − 1;
[] (sendreqR = sendackR) ∧ (sendreq = sendack) → count ′ := count ;

Monitor

Fig. 3. An alternating-bit sender, a simple receiver and a monitor

to predicates. Given a predicate R representing a set of states of SP , we define
the player-1 controllable predecessor predicate ΨCPre1

P (R) as:

ΨCPre1
P (R) ≡

∨
ξ∈Φ1

guardξ ∧

∧
η∈Φ2

(
guardη → ∀X ′ .(updateξ ∧ updateη → R′)

)

where R′ is the predicate obtained by substituting each free variable in the predi-
cate R by its primed counterpart. Similarly, we define the player-1 uncontrollable
predecessor predicate ΨUPre1

P (R) as:

ΨUPre1
P (R) ≡

∧
ξ∈Φ1

guardξ →

∨
η∈Φ2

(
guardη ∧ ∃X ′ .(updateξ ∧ updateη ∧R′)

)

The other predicates, ΨCPreI

P (R) and ΨUPreI

P (R) for I = 2, {1, 2}, can be defined
similarly. The following proposition states that the predicates constructed above
exactly coincide with the collecting semantics of the program P .

Proposition 3. The computed formulas 〈ΨCPreI

P (R), ΨUPreI

P (R)〉 from the pro-
gram P are equivalent to the collecting semantics of the alternating transition

234 Thomas A. Henzinger et al.

system SP of the program P, that is, for every state v of SP , and every predi-
cate R representing the set of states σ, we have v ∈ CPreI(σ) iff ΨCPreI

P (R)[[v]],
and v ∈ UPreI(σ) iff ΨUPreI

P (R)[[v]].

5 Abstract Interpretation of Multi-process Programs
with Respect to Game Properties

In this section we show two methods of computing an approximation of the
abstraction of the collecting semantics directly from the program text.

Abstract Interpretation via Domain Abstraction. In abstract interpre-
tation via domain abstraction, we are given for each program variable x ∈ X a
fixed abstract domain over which the variable is interpreted. Let Vα

X be the set
of abstract valuations of X , i.e., valuations of the variables over their abstract
domains. Let γ : Vα

X → 2VX be a concretization function mapping an abstract
valuation (an abstract state) to the set of concrete valuations (the set of con-
crete states). To derive sound abstractions of the collecting semantics from the
program text, we introduce, for ξ ∈ Φi and i ∈ {1, 2}, predicates guardC

ξ , guard
F
ξ

over the variables X , and predicates updateC
ξ , update

F
ξ over the variables X∪X ′.

These predicates represent over (or free) and under (or constrained) approxima-
tions for the guards and update relations of the program. We define formally the
free and constrained versions of the guard and update relations as follows.

– The predicate guardF
ξ is a free abstract interpretation of guardξ iff for all

u ∈ Vα
X , guardF

ξ [[u]] is true if there exists a concrete valuation v in the
concretization of u on which guardξ[[v]] evaluates to true; i.e., ∀u ∈ Vα

X . ∃v ∈
γ(u). (guardξ[[v]] → guardF

ξ [[u]])
– The predicate updateF

ξ is a free abstract interpretation of updateξ iff for all
u1, u2 ∈ Vα

X , updateF
ξ [[u1, u

′
2]] evaluates to true if there exists a pair of con-

crete valuations (v1, v2) represented by (u1, u2) on which updateξ evaluates
to true; i.e., ∀u1, u2 ∈ Vα

X . ∃v1 ∈ γ(u1), v2 ∈ γ(u2). (updateξ[[v1 ∪ v′2]] →
updateFξ [[u1 ∪ u′2]]).

– The predicate guardC
ξ is a constrained abstract interpretation of guardξ iff

guardC
ξ evaluates to true on u if all concrete valuations v in the concretization

of u make guardξ evaluates to true; i.e., ∀u ∈ Vα
X . ∀v ∈ γ(u). (guardC

ξ [[u]] →
guardξ[[v]])

– The predicate updateC
ξ is a constrained abstract interpretation of updateξ iff

for all u1, u2 ∈ Vα
X , updateC

ξ [[u1, u
′
2]] evaluates to true if all pairs of concrete

valuations (v1, v2) represented by (u1, u2) make updateξ true; i.e., ∀u1, u2 ∈
Vα

X . ∀v1 ∈ γ(u1), v2 ∈ γ(u2). (updateCξ [[u1 ∪ u′2]] → updateξ[[v1 ∪ v′2]]).

We now show how to approximate the abstraction of the collecting semantics
directly from the program text by nonstandard interpretations of the guard and

Abstract Interpretation of Game Properties 235

update predicates of the program P. For I = 1, 2, {1, 2} and a set of abstract
states represented by the predicate Rα, we construct the parameterized formulas
Ψ

CPreα
I

P (Rα) and ΨUPreα
I

P (Rα) from ΨCPreI

P (R) and ΨUPreI

P (R) as follows: we
replace every predicate that appears positively by its constrained version and
every predicate that appears negatively by its free version. For example, the
formula ΨCPreα

1
P (Rα) is as follows:

∨
ξ∈Φ1

guardC

ξ ∧
∧

η∈Φ2

(
guardF

η → ∀X ′. (updateF
ξ ∧ updateF

η → Rα′)
)

We similarly obtain abstractions of the other formulas. Since we are always
approximating conservatively, the following proposition holds.

Proposition 4. Domain-based abstract interpretation produces approximations;
i.e., for every predicate Rα representing the set of abstract states σα, we have
Ψ

CPreα
1

P (Rα) �̂ CPreα
1 (σα), and ΨUPreα

1
P (Rα) �̂ UPreα

1 (σα).

Abstract Interpretation via Predicate Abstraction. Domain-based ab-
straction computes abstractions from the program text compositionally, and
may often produce crude approximations. An alternative method of construct-
ing abstractions of the collecting semantics from the program text is predicate
abstraction. In predicate abstraction, the abstract state is represented by a set
of propositional predicates (called abstraction predicates) [24,15] over the vari-
ables X of a program. An abstract state assigns truth values to each abstraction
predicate. The concretization function γ maps an abstract state to the set of
concrete states that satisfy the predicates.

The abstraction of the collecting semantics under predicate abstraction may
be approximated directly from the program text. Whereas we can still construct
the abstract predicates compositionally by substituting for each concrete predi-
cate (guard or update) a conjunction of the abstraction predicates that implies
(or is implied by) the concrete predicate, very often this leads to an overly crude
abstraction. Therefore we sacrifice compositionality in order to obtain a more
precise approximation of the abstraction of the collecting semantics. The ap-
proximation of the abstraction of the collecting semantics is derived as follows
(we show the computation explicitly for ΨCPreα

1
P , the other operators can be

constructed similarly). For each pair ξ ∈ Φ1, η ∈ Φ2 of moves of player 1 and
player 2, we compute the formula

χξη(Rα) = guardξ ∧
(
guardη → ∀X ′. (updateξ ∧ updateη → γ̂(Rα)′)

)

Thus, the predicate χξη(Rα) holds at a concrete state v if we reach γ̂(Rα) from v
when player 1 plays move (action) ξ and player 2 plays move η. We replace each
predicate χξη(Rα) by a boolean combination of abstraction predicates χα

ξη(Rα)
which is implied by χξη(Rα) to obtain a sound approximation of the abstraction
of χξη(Rα). Finally, ΨCPreα

1
P (Rα) is obtained by existentially quantifying over the

236 Thomas A. Henzinger et al.

[] ¬reset rt ∧ pc = RESET ∧ conn → pc′ := WAITC ; req ′
ID := ConnReq ;

[] ¬reset rt ∧ pc = WAITC ∧ ack = (ID, 1) → pc′ := CONN ; req ′
ID := NoReq ;

[] ¬reset rt ∧ pc = WAITC ∧ ack = (ID, 0) → pc′ := RESET ; req ′
ID := NoReq ;

[] ¬reset rt ∧ pc = CONN ∧ disc → pc′ := WAITD; req ′
ID := DiscReq ;

[] ¬reset rt ∧ pc = WAITD ∧ ack = (ID, 1) → pc′ := RESET ; req ′
ID := NoReq ;

[] ¬reset rt ∧ pc = WAITD ∧ ack = (ID, 0) → pc′ := RESET ; req ′
ID := DiscReq ;

[] reset rt → pc′ := RESET ; req ′
ID := NoReq ;

Fig. 4. A remote whose id is ID .

[] ¬reset bs ∧ req id = ConnReq ∧ ¬register [id] → register ′[id] := true ; ack ′
id := 1;

[] ¬reset bs ∧ req id = ConnReq ∧ register [id] → ack ′
id := 0;

[] ¬reset bs ∧ req id = DiscReq ∧ ¬register [id] → ack ′
id := 0;

[] ¬reset bs ∧ req id = DiscReq ∧ register [id] → register ′[id] := false; ack ′
id := 1;

[] reset bs ∧ register [id] → register ′[i] := false; ack ′
id := 0

Fig. 5. A process of the base station. The complete base station is the compo-
sition of the above processes for each remote id.

moves of player 1 and universally quantifying over the moves of player 2 from the
predicates χα

ξη; formally, ΨCPreα
1

P (Rα) =
∨

ξ∈Φ1

∧
η∈Φ2

χα
ξη. Thus ΨCPreα

1
P (Rα)

is true at an abstract state if there is a move that player 1 can make, such
that for all moves that player 2 makes, the game ends up in Rα. The other
formulas are obtained similarly. We call this computation the predicate-based
abstract interpretation of programs. The following proposition holds because in
the construction of the operators we have always taken sound approximations.

Proposition 5. Predicate-based abstract interpretation produces
approximations; i.e., for every predicate Rα representing the set of abstract
states σα, we have ΨCPreα

1
P (Rα)�̂CPreα

1 (σα), and ΨUPreα
1

P (Rα)�̂UPreα
1 (σα).

6 Two Examples

We illustrate the methods introduced in the previous sections through two prac-
tical verification examples.

A Wireless Communication Protocol. This example is taken from the Two-
Chip Intercom (TCI) project at the Berkeley Wireless Research Center [4]. The
TCI network is a wireless local network which allows approximately 40 remotes,
one for each user, to transmit voice with point-to-point and broadcast commu-
nication. The operation of the network is coordinated by a central unit called
the base station which assigns channels to the users through the Time Division
Multiplexing Access scheme.

We briefly describe a simplified model of the actual protocol used in TCI.
The protocol operates as follows. Before any remote is operational, it has to

Abstract Interpretation of Game Properties 237

register at the base station. A remote (Figure 4) has a state variable pc, which
can be RESET or CONN . If the remote is in the RESET state, it can accept a
connection request conn from the user. The remote in turn sends a connection
request to the base station and waits for an acknowledgement. It moves to the
CONN state if it receives a positive acknowledgement, or to the RESET state
otherwise. Once the remote is in the CONN state, it can be disconnected by
accepting a disc request from the user.

A base station (Figure 5) keeps track of the states of the remotes in the
database register. If it receives a connection request ConnReq from a remote,
it checks if the remote is already registered. If not, it registers the remote, and
sends back a positive acknowledgement. If the remote is already registered, a
negative acknowledgement is sent back. A similar process occurs if the remote
wishes to disconnect. Both the remote and the base station has an external reset
signal (reset rt and reset bs) that can reset the units to the reset state.

We consider this protocol for a system with a base station and an arbitrary
number of remotes. A natural property that such a system should have is the
following: for any remote, say remote1, no matter what the base station and
the other remotes do, there should be a way to connect to the base station.
However, the original protocol contained a bug, which we found in the course of
the verification. We found the bug by proving the opposite, i.e., no matter what
this remote does, the base station and the other remotes are able to keep this
remote out of the network. This can be written as (assuming the two players in
our system are the remote remote1, and the base station together with all other
remotes, denoted by Env): ϕ = 〈〈Env , remote1〉〉✸|[remote1]|✷(pc1 �= CONN),
where pc1 is the state variable in remote1.

We automatically detected the bug using automated model checking. Since
the system was infinite state, we could not apply model checking directly, and
we needed to use abstraction to reduce the problem to a finite instance. By
symmetry, it suffices to show the bug for the first remote, remote1. We prove the
property as follows: for every i �= 1 we abstract the variable pci of remotei into
one value, say ⊥. To check the property, we need to constrain the behavior of the
remotes. We choose the simplest form of constrained predicates, namely false. In
other words, these remotes simply deadlock and therefore they can be removed
from our consideration. For variables of remote1 and the base station, we use
the trivial (identity) abstraction. The property is proved by model checking on
this abstract system in our model checker Mocha [3].

To understand why this bug occurs, consider the following scenario. Suppose
the remote has already been connected to the base station. The user resets the
remote and it returns to the reset state immediately. Now suppose the user
instructs the remote to send a connection request to the base station. The base
station, however, still has the remote being registered and therefore it simply
refuses to grant any further connection permission. Note also that the property
violated is a true game property: it cannot be expressed directly in a nongame
logic like Ctl. Thus, both abstraction and game properties were necessary in
the automatic detection of this bug.

238 Thomas A. Henzinger et al.

Protocol Converter Synthesis. As an example of predicate abstraction, we
consider the automatic synthesis of a protocol converter operates between the
lossy sender Sender and a the lossless receiver Receiver in Example 1. We re-
quire our protocol converter cv to satisfy the following property (note that the
converter is synthesized from the the process Φ1):

〈〈cv 〉〉✷((count = 0 ∨ count = 1) ∧ (✷✸¬drop ⇒ ✷✸(sendreqR �= sendackR)))

This formula specifies that the converter has a strategy that ensures the following
two properties. First, the difference between the number of messages received
and sent by the converter has to be either 0 or 1. Second, if the lossy sender is
fair, there should be an infinite number of messages received by the receiver.

The abstract predicates used are pc = s0, pc = s1, (sendreq = sendack),
(recvreq = recvack), (bitsend = bitrecv), (sendreqR = sendackR) and drop =
true. Moreover, we abstract the domain of the variable count to {0, 1,⊥} where
the abstract values 0 and 1 represent the values 0 and 1 respectively, and the
abstract value ⊥ represents all other values. Using these predicate and domain
abstractions, we are able to check that a converter that meets the requirement
exists. Using methods in [28,17], the actual converter can be synthesized.

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 100–109. IEEE Computer Society Press, 1997. 221, 223, 224, 226, 229

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement
relations. In D. Sangiorgi and R. de Simone, editors, CONCUR 97: Concurrency
Theory, Lecture Notes in Computer Science 1466, pages 163–178. Springer-Verlag,
1998. 222, 229, 230

3. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.
Mocha: modularity in model checking. In CAV 98: Computer-aided Verification,
Lecture Notes in Computer Science 1427, pages 521–525. Springer-Verlag, 1998.
222, 237

4. Berkeley Wireless Research Center. http://bwrc.eecs.berkeley.edu. 222, 236
5. E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using

abstraction and regular languages. In CONCUR 95: Concurrency Theory, Lecture
Notes in Computer Science 962, pages 395–407. Springer-Verlag, 1995. 222

6. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In
Proceedings of the 19th Annual Symposium on Principles of Programming Lan-
guages, pages 343–354. ACM Press, 1992. 222

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
the static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the Fourth Annual Symposium on Principles of Programming Lan-
guages. ACM Press, 1977. 221, 222, 225, 228, 231

8. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2/3):103–179, 1992. 225

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992. 221, 222

Abstract Interpretation of Game Properties 239

10. P. Cousot and R. Cousot. Refining model checking by abstract interpretation.
Automated Software Engineering, 6(1):69–95, 1999. 230

11. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proceedings of the
27th Annual Symposium on Principles of Programming Languages, pages 12–25.
ACM Press, 2000. 222

12. D.R. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, The Netherlands, 1996. 222

13. D.R. Dams, R. Gerth, G. Döhmen, R. Herrmann, P. Kelb, and H. Pargmann. Model
checking using adaptive state and data abstraction. In CAV 94: Computer-Aided
Verification, Lecture Notes in Computer Science 818, pages 455–467. Springer-
Verlag, 1994. 222

14. D.R. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems. ACM Transactions on Programming Languages and Systems, 19(2):253–291,
1997. 222, 224, 231

15. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In CAV
99: Computer-aided Verification, Lecture Notes in Computer Science 1633, pages
160–171. Springer-Verlag, 1999. 235

16. L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
pages 564–575. IEEE Computer Society Press, 1998. 221

17. L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. Technical report, University of California, Berkeley, 2000. 229, 238

18. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 222, 231

19. D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive over-
and underapproximation. In CAV 95: Computer-aided Verification, Lecture Notes
in Computer Science 939, pages 409–422. Springer-Verlag, 1995. 230

20. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier Science Pub-
lishers, 1990. 229

21. R. Giacobazzi, F. Ranzato, and F. Scozzari. Complete abstract interpretations
made constructive. In MFCS 98: Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science 1450, pages 366–377. Springer-Verlag, 1998.
227

22. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretation com-
plete. Journal of the ACM, 2000. To appear. 227

23. S. Graf. Verification of a distributed cache memory by using abstractions. In CAV
94: Computer-aided Verification, Lecture Notes in Computer Science 818, pages
207–219. Springer-Verlag, 1994. 222

24. S. Graf and H. Säidi. Construction of abstract state graphs with pvs. In CAV
97: Computer-aided Verification, Lecture Notes in Computer Science 1254, pages
72–83. Springer-Verlag, 1997. 222, 235

25. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:11–44, 1995. 231

26. D.E. Long. Model checking, abstraction, and compositional verification. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 1993. 222

27. K.L. McMillan. Verification of infinite state systems by compositional model check-
ing. In CHARME 99: Correct Hardware Design and Verification Methods, Lecture
Notes in Computer Science 1703, pages 219–233. Springer-Verlag, 1999. 222

240 Thomas A. Henzinger et al.

28. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987. 229,
238

29. P. Stevens. Abstract interpretation of games. In Proceedings of the 2nd Inter-
national Workshop on Verification, Model Checking and Abstract Interpretation,
1998. 221

FULLDOC: A Full Reporting Debugger for

Optimized Code�

Clara Jaramillo1, Rajiv Gupta2, and Mary Lou Soffa1

1 Department of Computer Science, University of Pittsburgh
Pittsburgh, PA 15260, USA
{cij,soffa}@cs.pitt.edu

2 Department of Computer Science, University of Arizona
Tucson, AZ 85721, USA
gupta@cs.arizona.edu

Abstract. As compilers increasingly rely on optimizations to achieve
high performance, the effectiveness of source level debuggers for opti-
mized code continues to falter. Even if values of source variables are
computed in the execution of the optimized code, source level debuggers
of optimized code are unable to always report the expected values of
source variables at breakpoints.
In this paper, we present FULLDOC, a debugger that can report all of
the expected values of source variables that are computed in the opti-
mized code. FULLDOC uses statically computed information to guide
the gathering of dynamic information that enables full reporting. FULL-
DOC can report expected values at breakpoints when reportability is
affected because values have been overwritten early, due to code hoisting
or register reuse, or written late, due to code sinking. Our debugger can
also report values that are path sensitive in that a value may be com-
puted only along one path or the location of the value may be different
along different paths. We implemented FULLDOC for C programs, and
experimentally evaluated the effectiveness of reporting expected values.
Our experimental results indicate that FULLDOC can report 31% more
values than are reportable using only statically computed information.
We also show improvements of at least 26% over existing schemes that
use limited dynamic information.

1 Introduction

Ever since optimizations were introduced into compilers more than 30 years ago,
the difficulty of debugging optimized code has been recognized. This difficulty
has grown with the development of increasingly more complex code optimiza-
tions, such as path sensitive optimizations, code speculation, and aggressive reg-
ister allocation. The importance of debugging optimized code has also increased
over the years as almost all production compilers apply optimizations.
� Supported in part by NSF grants CCR-940226, CCR-9808590 and EIA-9806525, and
a grant from Hewlett Packard Labs to the University of Pittsburgh and NSF grants
CCR-9996362 and CCR-0096122 to the University of Arizona.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 240–260, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

FULLDOC: A Full Reporting Debugger for Optimized Code 241

Two problems surface when trying to debug optimized code from the view-
point of the source code. The code location problem relates to determining the
position of a breakpoint in the optimized code that corresponds to the breakpoint
in the source code. The data value problem is the problem of reporting the values
of the source variables that a user expects to see at a breakpoint in the source
code, even though the optimizer may have reordered or deleted the statements
computing the values, or overwritten the values by register allocation.

Techniques have been developed that tackle both the code location and data
value problems with the goal of reporting expected values when they can be
determined from the optimized code but also reporting when an expected value
cannot be determined. Progress has been made in the development of debuggers
that report more and more expected values. The early techniques focused on
determining expected values using information computed statically [8,4,3,15,1].
Recent techniques have proposed using information collected during execution,
along with the static information, to improve the reportability of values [5,16].
Dhamdhere et al. [5] time stamp basic blocks to obtain part of the execution path
of the optimized code, which is used to dynamically determine currency (whether
the actual values of source variables during the optimized code execution are
the expected values) at breakpoints. Wu et al. [16] selectively take control of the
optimized program execution and then emulate instructions in the optimized
code in the order that mimics the execution of the unoptimized program. This
execution reordering enables the reporting of some of the expected values of
source variables where they occur in the source. Despite all the progress, none
of the techniques are able to report all possible expected values of variables at
all breakpoints in the source program.

In this paper, we present FULLDOC, a FULL reporting Debugger of Opti-
mized Code that reports all expected values that are computed in the optimized
program. We call this level of reporting “full reporting.” That is, the only values
we cannot report are those that are deleted; however in these cases, we report the
value has been deleted. It should be noted that techniques exist for recovering
some of these values in certain circumstances [8]. For example, if a statement
is deleted due to copy propagation, it is sometimes possible to report the value
if the copy is available. Since these recovery techniques can be incorporated
into all debuggers, regardless of what else they do, we choose not to include
these techniques, knowing that they can improve the results of all debuggers
of optimized code, including FULLDOC. As illustrated in Figure 1, FULLDOC
can report more expected values that are computed in the optimized code than
Wu et al. [16] and Dhamdhere et al. [5]. Our technique is non-invasive in that
the code that executes is the code that the optimizer generated. Also, unlike the
emulation technique [16], we do not execute instructions in a different order and
thus avoid the problem of masking user and optimizer errors. FULLDOC works
on programs written in C, syntactically mapping breakpoints in the source code
to the corresponding positions in the optimized code.

FULLDOC extends the class of reportable expected values by judiciously
using both static and dynamic information. The overall strategy of our technique

242 Clara Jaramillo et al.

Wu et al.

FULLDOC

statically current

techniques

 reportable at all breakpoints (where they should be reportable in the source program).

Existing static analysis
Dhamdhere

et al.

All values that are computed in the optimized program execution are

Report values that are

Fig. 1. Reportability of debugger strategies

is to determine by static program analysis those values that the optimizer has
placed in a precarious position in that their values may not be reportable. The
reportability of these values may depend on run time and debugging information,
including the placement of the breakpoints and the paths taken in a program’s
execution. Thus, during execution, our strategy employs invisible breakpoints [17]
to gather dynamic information that aids in the reporting of precariously placed
values. We employ three schemes, all transparent to the user during a debugging
session, to enable full reporting. To report values that are overwritten early
with respect to a breakpoint either because of code motion or register reuse,
FULLDOC saves the values before they are overwritten and deletes them as soon
as they are no longer needed for reporting. FULLDOC only saves the values if
they are indeed the expected values at the breakpoint. To report values that are
written late with respect to a breakpoint because of code sinking, FULLDOC
prematurely executes the optimized program until it can report the value, saving
the values overwritten by the roll ahead execution so that they can be reported
at subsequent breakpoints. When reportability of a variable at a breakpoint is
dependent on the execution path of the optimized code, FULLDOC dynamically
records information to indicate the impact of the path on the reportability of
a value, and thus is able to report values that are path sensitive either because
the computation of the value or the location is dependent on the path.

We implemented our technique and demonstrate its effectiveness and practi-
cality through experimentation. We also show that the technique is practical in
terms of the run time overhead.

The capabilities of FULLDOC are as follows.

– Every value of a source level variable that is computed in the optimized pro-
gram execution is reportable at all breakpoints in the source code where the
value of the variable should be reportable. Therefore, we can report more
expected values that are computed in the optimized program execution than
any existing technique. Values that are not computed in the optimized pro-
gram execution are the only values that we do not report. However, FULL-
DOC can incorporate existing techniques that recover some of these values.

– Run time overhead is minimized by performing all analysis during compila-
tion. FULLDOC utilizes debugging information generated during compila-

FULLDOC: A Full Reporting Debugger for Optimized Code 243

tion to determine the impact of reportability of values at user breakpoints
and to determine the invisible breakpoints that must be inserted to report
affected values.

– Our techniques are transparent to the user. If a user inserts a breakpoint
where the reportability of values is affected at the breakpoint or a potential
future breakpoint, FULLDOC automatically inserts invisible breakpoints to
gather dynamic information to report the expected values.

– Errors in the optimized code are not masked.
– User breakpoints can be placed between any two source level statements,

regardless of the optimizations applied.
– The optimized program is not modified except for setting breakpoints.
– Statement level optimizations that hoist and sink code are supported, in-

cluding speculative code motion, path sensitive optimizations (e.g., partial
redundancy elimination), and register allocation.

This paper is organized by Section 2 describing the challenges of reporting
expected values using examples. Section 3 describes our approach and imple-
mentation. Section 4 presents experimental results. Related work is discussed in
Section 5, and concluding remarks are given in Section 6.

2 Challenges of Reporting Expected Values

The reportability of a variable’s value involved in an optimization is affected
by 1) register reuse, code reordering, and code deletion, 2) the execution path,
including loop iterations, and 3) the placement of breakpoints. In this section,
we consider the effect of optimizations that can cause a value of a variable to be
overwritten early, written late, or deleted. Within each of these cases, we consider
the impact of the path and the placement of breakpoints. We demonstrate how
our approach handles these cases. In the figures, the paths highlighted are the
regions in which reportability is affected; reportability is not affected in the other
regions.

2.1 Overwritten Early in the Optimized Program

A value val of a variable v is overwritten early in the optimized program if val′

prematurely overwrites v’s value. The application of a code hoisting optimization
and register reuse can cause values to be overwritten early. For example, consider
the unoptimized program and its optimized version in Figure 2(a), where Xn

refers to the nth definition of X . X2 has been speculatively hoisted, and as a
result, the reportability of X is affected. Regardless of the execution path of
the optimized code, a debugger cannot report the expected value of X at a
breakpoint b along region 1❥ by simply displaying the actual contents of X .
The expected value of X at b is the value of X1, but since X2 is computed early,
causing the previous value (i.e., X1) to be overwritten early, the actual value
of X at b is X2.

244 Clara Jaramillo et al.

1

X =
3

2

1

3

X =
2

X =
2

X =
1

X =
3

1

3

2

X =
2

X =
1

X =
3

1

2

3
T F

X =

Program

(a) is speculatively hoisted

Unoptimized

T

 execution

FULLDOC’s debugging
 strategy

Report saved

Save previous
value of X

Discard saved

Report current

value of X

value of X

value of X

Optimized program

b) true path taken during execution

T F

Program
Optimized

X
2

Fig. 2. Overwritten early example

The path can also affect reportability. Assume now that a breakpoint b is
placed in region 2❥. The expected value of X at b is either X2 , if the true
path is taken, or X1 , if only the false path is taken within each loop iteration.
However, since X2 is computed before the branch, the actual value of X at b
in the optimized code is X2. Thus, when execution follows the true path, the
expected value of X at b can be reported, but when only the false path is taken,
its value cannot be reported.

The number of loop iterations can also affect reportability. The expected
value of X at a breakpoint b along region 3❥depends not only on whether the
true path was taken but also on the current loop iteration. During the first loop
iteration, the expected value is X1 . On subsequent loop iterations, the expected
value is either X2 (if the true path is taken) or X1 (if only the false path is taken
on prior loop iterations). However, since X2 is computed before the loop, the
actual value of X at b in the optimized code is X2. When execution follows the
true path, the debugger can report the expected value of X at b on subsequent
loop iterations; otherwise, the debugger cannot report the expected value of X .

Using only dynamic currency determination [5], the expected value of X at
breakpoints along region 1❥ cannot be reported because the value has been
overwritten. The emulation technique [16] can report the expected value of X
along region 1❥and along the true path of region 3❥, but since the technique is
not path sensitive, the expected value cannot be reported along region 2❥and
along the false path of region 3❥due to iterations.

FULLDOC can report all of these expected values. During the execution of
the optimized code, if a value is overwritten early with respect to a break-
point, FULLDOC saves the value in a value pool. FULLDOC only saves what
is necessary and discards values when they are no longer needed for report-
ing. Figure 2(b) illustrates FULLDOC’s strategy when the optimized program
in Figure 2(a) executes along the true path, assuming the loop executes one
time. FULLDOC saves X1 before the assignment to X2 and reports the saved
value X1 at breakpoints along regions 1❥and 3❥. FULLDOC discards the saved
value when execution reaches the original position of X2 . At breakpoints along

FULLDOC: A Full Reporting Debugger for Optimized Code 245

the non-highlighted path and region 2❥, FULLDOC reports the current value
of X . Notice that values are saved only as long as they could be reportable in
the source program, and thus, our save/discard mechanism automatically disam-
biguates which value to report at breakpoints along region 2❥. If X1 is currently
saved at the breakpoint, then only the false path was executed and the saved
value is reported. Otherwise if X1 is not currently saved, then the true path was
executed and the current value of X is reported. Notice that this saving strategy,
as well as the other strategies, are performed with respect to user breakpoints.
In other words, if a user does not insert breakpoints along the regions where the
reportability of X is affected, then FULLDOC does not save the value of X .

2.2 Written Late in the Optimized Program

A value val of a variable v is written late in the optimized program if the com-
putation of val is delayed due to, for example, code sinking and partial dead
code elimination. In Figure 3(a), suppose X2 is partially dead along the false
path and moved to the true branch. As a result, the expected value of X at a
breakpoint b along regions 1❥and 2❥is not reportable in the optimized code.

Consider a breakpoint b placed in region 3❥. The expected value of X at b
is X2 . However, the actual value of X at b in the optimized code is either X2

(if the true path is taken) or X1 (if the false path is taken). Thus, only when
execution follows the true path, can the expected value of X at b be reported.
Reportability can also be affected by loop iterations, which has the same effect
as for the overwritten early case.

Using only dynamic currency determination [5], the expected value of X at
breakpoints along region 3❥ can be reported provided the true path is taken
but not along regions 1❥and 2❥. Since the emulation technique [16] is not path
sensitive, the expected value of X along region 3❥cannot be reported. We can
report values in 1❥and 3❥provided the true path is taken. Note that values in

2
X =

X =
1

1

X executes

executing the
Save values while

2
program until

Program
Unoptimized

X =
1

X =
1

X =
2

1 1

2 2

3 3 3
along path
is computed

Remember X

3

Report X

Report current
value of X

2

value of X
Report current

 strategy
FULLDOC’s debugging

b) true path taken during execution(a) is partially deadX
2

T

execution
Optimized program

X =
2

T

= X

Program
Optimized

T

= X

FF

= X

Fig. 3. Written late example

246 Clara Jaramillo et al.

regions 1❥, 2❥, and 3❥could possibly be reported by all schemes if recovery
techniques are employed.

If a requested value is written late with respect to a breakpoint, FULL-
DOC prematurely executes the optimized code, saving previously computed val-
ues before they are overwritten (so that they can be reported at subsequent
breakpoints). Figure 3(b) illustrates FULLDOC’s strategy when the optimized
program in Figure 3(a) executes along the true path. At breakpoints along re-
gion 1❦, FULLDOC reports the expected value of X by further executing the
optimized code, saving previously computed values before they are overwrit-
ten. The roll ahead execution stops once X2 executes. At breakpoints along the
non-highlighted path and region 3❥, FULLDOC reports X2 .

2.3 Computed in the Unoptimized Program but not in the
Optimized Program

Finally, we consider the case where a statement is deleted and thus its value is
not computed in the optimized code. For example, in Figure 4(a), suppose Y 2

is dead in the unoptimized program and deleted. The expected value of Y at a
breakpoint b along region 1❥is Y 2 , which cannot be reported in the optimized
code.

Now consider placing a breakpoint at region 2❥. The expected value of Y
at b along region 2❥is either Y 1 (if the true path is taken) or Y 2 (if the false
path is taken). However, since Y 2 was deleted, the actual value of Y at b in the
optimized code is Y 1 . Thus, along the true path, the actual value is the expected
value and can be reported, but along the false path, the expected value cannot
be reported.

The emulation technique [16] cannot report the expected value of Y along
region 2❥because it is not path sensitive. Dynamic currency determination [5]
as well as our technique can report the expected value of Y at breakpoints along
region 2❥if the true path is taken.

3

Y =
2

Y =
3

Y =1 Y =1

Program
Unoptimized

Program
Optimized

Y =3

2
2

2

1

Y =
1

Optimized program
execution

FULLDOC’s debugging
 strategy

Y =

2
is not computed

Report current
value of Y

Report value of Y

Disregard Y’s

Remember Y

along path
is not computed

nonreportability
along path

F
value of Y
Report current

Y (a) is dead
2

b) false path taken during execution

FT FT

2
1 1

Fig. 4. Not computed in the optimized program example

FULLDOC: A Full Reporting Debugger for Optimized Code 247

Figure 4(b) illustrates FULLDOC’s strategy when the optimized program
in Figure 4(a) executes along the false path. At a breakpoint along the non-
highlighted paths, FULLDOC reports the current value of Y . When execution
reaches the original position of Y 2 , FULLDOC knows Y is not reportable along
regions 1❥and 2❥, and reports the expected value of Y is not computed. When
execution reaches Y 3 , FULLDOC disregards the non-reportability information
of Y .

3 FULLDOC’s Approach and Implementation

FULLDOC uses three sources of debug information for its debugging capabil-
ities. First, as optimizations are applied, a code location mapping is generated
between the source and optimized code. Second, after code is optimized and
generated by the compiler, static analysis is applied to gather information about
the reportability of expected values. This reportability debug information is used
when user breakpoints are inserted, special program points are reached in the
program execution, and when a user breakpoint is reached. Third, during execu-
tion, dynamic debug information indicating that these special points have been
reached is used as well as the position of the user breakpoints to enable full
reporting.

Figure 5 illustrates FULLDOC’s strategy with respect to a user inserting
breakpoints. When the user inserts breakpoints either before the program exe-
cutes or during program execution, FULLDOC uses the code location mapping
to determine the corresponding breakpoints in the optimized code. FULLDOC
uses the reportability debug information to determine the impact on reportabil-
ity at the breakpoints and potential future breakpoints:

• If a value is overwritten early with respect to a breakpoint, FULLDOC in-
serts invisible breakpoints [17] to save the value during execution as long as the
value should be reportable and discard the value when it is no longer needed.

• If the reportability of a variable with respect to a breakpoint is path sen-
sitive, FULLDOC inserts invisible breakpoints to update the dynamic debug
information regarding the reportability of the value.

Figure 6 illustrates FULLDOC’s strategy when a breakpoint is reached. If a
user breakpoint is reached, FULLDOC informs the user. FULLDOC responds to
user queries by using both static and dynamic information. For invisible break-
points, FULLDOC performs the following actions. For a value that is overwritten

source
program

breakpoints?
user inserts
breakpoints breakpoints

invisible
yes, set

code
optimized

set corresponding breakpoints
FULLDOC

code location mapping
reportability debug info

Static information

reportability
affected at
breakpoints
or future

Fig. 5. FULLDOC’s strategy with respect to user inserting breakpoints

248 Clara Jaramillo et al.

source
program

optimized

execution
code

queries

FULLDOC

code location mapping
Static information

path sensitive info
value pool

rollahead info

Dynamic information

reportability debug info

user breakpoint hit

(roll ahead)
invisible breakpoint

invisible breakpoint hit

Fig. 6. FULLDOC’s strategy with respect to breakpoints hit

early, FULLDOC saves the value in a value pool and discards the value when it
is no longer needed for reporting. For a value that is path sensitive, FULLDOC
updates the path sensitive info regarding the reportability of the value depending
on the execution path taken.

When execution reaches a user breakpoint and the user requests the value
of a variable, FULLDOC uses the reportability debug information and dynamic
debug information to determine the reportability of the value. If the value is
available at the location (in memory or register) of the variable or in the value
pool, FULLDOC reports the value. If the requested value is written late with re-
spect to the breakpoint, FULLDOC uses the reportability debug information to
roll ahead with the execution of the optimized code, saving previously computed
values before they are overwritten. It stops execution once the value is computed
and reports the value to the user if it is computed. If the value is not computed
in the execution, FULLDOC informs the user that the value is not reportable.

3.1 Code Location Mapping

The code location mapping captures the correspondence between the optimized
code and the source code. This code location mapping is used by FULLDOC to
map between user breakpoints in the source code and corresponding breakpoints
in the optimized code. This mapping is also used to compute the reportability
debug information, described in the next section. For each statement in the
source code, the code location mapping associates the statement with (1) its
original position in the optimized code, that is, the position in the control flow
graph Gopt prior to the application of optimizations and (2) its corresponding
statement(s) in the optimized code. Initially the optimized code starts as an
identical copy of the source program with mappings between original positions
and corresponding statements in the two programs. As optimizations are applied,
the code location mapping is maintained between the source and optimized code.

3.2 Reportability Debug Information

We now describe the reportability debug information computed through static
analysis of the optimized code that is provided to FULLDOC as well as how
FULLDOC employs this information at run time and collects dynamic debug

FULLDOC: A Full Reporting Debugger for Optimized Code 249

information in response to the user setting breakpoints and requesting values of
variables at these breakpoints.

Simply Reportable

AvailAtBkpts[b,v] = {l} or {(d1,l1), (d2,l2), ...}
If the value of variable v is always reportable at breakpoint b, then AvailAt-

Bkpts[b,v] provides the location (memory location or register name) where the
value of v can be found. In case the value can always be found at the same
location, no matter what execution path is taken, l provides the location.

However, it is possible that the location of v depends on the path taken during
execution because b is reachable by multiple definitions of v, each of which stores
the value of v in a different location (e.g., a different register). In this case, the
execution path taken determines the latest definition of v that is encountered
and hence the location where the value of v can be found. Each of the potential
definition-location pairs ((di,li)) are provided by AvailAtBkpts[b,v] in this
case. When a breakpoint is set at b, the debugger activates the recording of
the definition of v that is encountered from among (d1, d2, ...) by inserting
invisible breakpoints at each of these points. When an invisible breakpoint is
hit during execution, the debugger records the latest definition encountered by
overwriting the previously recorded definition.

Overwritten Early

EarlyAtBkpts[b] = {es: es overwrites early w.r.t. breakpoint b}
SaveDiscardPoints[es] = (save, {discard1, discard2, ...})

If the user sets a breakpoint at b, then for each statement es that over-
writes early in EarlyAtBkpts[b], we activate the save and discard points in
SaveDiscardPoints[es] by inserting invisible breakpoints. This ensures that
the values of variables overwritten early with respect to breakpoint b will be
saved and available for reporting at b from the value pool in case they are re-
quested by the user. Note that the save and discard points must be activated
immediately when a breakpoint is set by the user so that all values that may be
requested by the user, when the breakpoint is hit, are saved. If a discard point
is reached along a path and nothing is currently saved because a save point was
not reached along the same path, the debugger simply ignores the discard point.
The example in Figure 2, where X is overwritten early, is handled by this case.

Written Late
LateAtBkpts[b] = {ls: ls writes late w.r.t. breakpoint b}
StopPoints[ls] = {stop1, stop2, ...}

Assume the user sets a breakpoint at b. Then for each statement ls ∈
LateAtBkpts[b], we must first determine if ls is written late with respect to
the next instance of the breakpoint b. If the original position of ls is reached

250 Clara Jaramillo et al.

during execution but the current position of ls is not reached (before the break-
point b is hit), then ls is written late. We determine this information as follows.
For each statement ls that is written late, we insert invisible breakpoints at
the original and current positions of ls and record if the original position of
ls is encountered during execution. When the current position of ls is reached
during execution, the recorded information is discarded. Now, suppose execu-
tion reaches b, and the user requests the value of a variable v such that v is
written late by a statement ls in LateAtBkpts[b]. If the original position of
ls is currently recorded, then v is late at the current instance of the breakpoint
b and the execution of the program rolls ahead until one of the stop points in
StopPoints[ls] is encountered. At a stop point, either the value of v has just
been computed or it is known that it will definitely not be computed (recall that
sinking of partially dead code can cause such situations to arise). Unlike the
overwritten early case where the save and discard points were activated when a
breakpoint was set, here the stop points are activated when the breakpoint is hit
and a request for a value that is written late is made. The example in Figure 3,
where the reportability of X along region 1❥is affected, is handled by this case.

Never Reportable because Deleted Along a Path
NotRepDelAtBkpts[b] = {v: v is never reportable at b (deleted)}
NotRepLateAtBkpts[b] = {v: v is never reportable at b (late)}

When (partial) dead code removal is performed, the value of a variable de-
fined by the deleted statement becomes unreportable. For each breakpoint b, the
variables whose values are never reportable at b, no matter what execution path
is taken, are recorded in NotRepDelAtBkpts[b] and NotRepLateAtBkpts[b],
for statements removed from paths by dead code elimination and partial dead
code elimination, respectively. When the user requests the value of a variable v
at breakpoint b, if v is in NotRepDelAtBkpts[b] or NotRepLateAtBkpts[b], we
report to the user that the value is not reportable because the statement that
computes it has been deleted along the execution path. The example in Figure 4,
where the reportability of Y is affected along region 1❥, is handled by this case.
Also, the example in Figure 3, where the reportability of X is affected along
region 2❥is handled by this case.

Path Sensitive Nonreportability/Reportability when Deleted

MaybeDelAtBkpts[b] = {ds: ds may be deleted w.r.t. breakpoint b}
EndDelPoints[ds] = {EndDel1, EndDel2, ...}
PotFutBkptsDel[b] = {ds: ds may be deleted at later breakpoints}

A value may be deleted on one path (in which case it is not reportable) and
not deleted on another path (in which case it is reportable). In this path sensitive
case, the reportability information must be updated during execution, based on
the paths that are actually executed (i.e., program points reached).

If a user sets a breakpoint at b, invisible breakpoints are set at each of the
original positions of any deleted statement ds in MaybeDelAtBkpts[b] to record

FULLDOC: A Full Reporting Debugger for Optimized Code 251

if one of these positions is encountered during execution. Invisible breakpoints
are also set at the end of the definition range of ds, stored in EndDelPoints[ds].
When EndDeli in EndDelPoints[ds] is reached during execution, the recorded
information is discarded. Now consider the case when breakpoint b is reached,
and the user requests the value of variable v defined by some statement ds in
MaybeDelAtBkpts[b]. If the dynamically recorded information shows that the
original position of ds was encountered, the debugger reports that the value of v
was not computed as ds was deleted. Otherwise the debugger reports the current
value of v. The example in Figure 4, where the reportability of Y along region
2❥is path sensitive, is handled by this case.

We use the same strategy for each deleted statement in PotFutBkptsDel[b],
which prevents FULLDOC from setting invisible breakpoints too late. PotFut-
BkptsDel[b] holds the deleted statements where reportability could be affected
at potential future breakpoints even though reportability is not necessarily af-
fected at b, and invisible breakpoints must now be set so that during the execu-
tion to breakpoint b, FULLDOC gathers the appropriate dynamic information
for the potential future breakpoints.

Path Sensitive Nonreportability/Reportability when Written Late

MaybeLateAtBkpts[b] = {ls: ls may be late w.r.t. breakpoint b}
EndLatePoints[ls] = {EndLate1, EndLate2, ...}
PotFutBkptsLate[b] = {ls: ls may be late at later breakpoints}

Sinking code can also involve path sensitive reporting, because a statement
may be sunk on one path and not another. This case is opposite to the previous
one in that if a late statement is encountered, it is reportable. If the user sets
a breakpoint at b, the debugger initiates the recording of the late statements
in MaybeLateAtBkpts[b] by setting invisible breakpoints at the new positions
of the late statements. The debugger will discard the recorded information of
a late statement ls when a EndLatei in EndLatePoints[ls] is encountered
(EndLatePoints[ls] holds the end of the definition range of ls). Now consider
the case when breakpoint b is reached, and the user requests the value of variable
v defined by some statement ls in MaybeLateAtBkpts[b]. If the dynamically
recorded information shows that the late statement ls was encountered, the
debugger reports the current value of v. Otherwise the debugger reports that the
value of v is not reportable. The example in Figure 3, where the reportability
of X along region 3❥is path sensitive, is handled by this case.

The same strategy applies for each late statement ds in PotFutBkpts-
Late[b], which prevents FULLDOC from setting invisible breakpoints too late.

3.3 Computing the Reportability Debug Information

The code location mapping is used to compute the reportability debug informa-
tion. The algorithm in Figure 7 gives an overview of how this debug information

252 Clara Jaramillo et al.

1 For each source definition Dv

2 If Dv overwrites x early then
3 Let discard1, discard2, ... = the corresponding positions of original

definitions of x that are reachable from ARHead(Dv) in the optimized code
4 SaveDiscardPoints [Dv] = (ARHead(Dv), {discard1, discard2,...})
5 For each breakpoint B along a path from Dv to discard1, discard2,...,
6 EarlyAtBkpts[B] = EarlyAtBkpts[B] ∪ { Dv }
7 Else If Dv writes late in the optimized code then
8 StopPoints [Dv] = {ARHead(Dv)} ∪ {p : p is an earliest possible program

point along paths from ORHead(Dv) where Dv will not execute}
9 For each breakpoint B along paths ORHead(Dv) to p ∈ StopPoints [Dv],
10 LateAtBkpts[B] = LateAtBkpts[B] ∪ { Dv }
11 Compute AvailAtBkpts[,], NotRepDelAtBkpts[], and NotRepLateAtBkpts[]

by comparing ranges using ORHead(Dv) and ARHead(Dv)
12 Compute MaybeDelAtBkpts[] and MaybeLateAtBkpts[] by determining when

deleted and late statements occur on one path and not another
13 Compute EndDelPoints[], EndLatePoints[], PotFutBkptsDel[], and

PotFutBkptsLate[] by using reachability

Fig. 7. Algorithm to compute the reportability debug information

is computed. Lines 2− 6 determine what values are overwritten early and com-
pute the SaveDiscardPoints[] and EarlyAtBkpts[] information. Lines 7−10
determine what values are written late and compute the StopPoints[] and
LateAtBkpts[]. Lines 11-13 determine the rest of the debug information by
using data flow analysis. More details about the particular steps follow.

Determining Statements that Overwrite Early or Write Late. We de-
termine where values are overwritten early due to register reuse. Suppose Dx

is a definition of a variable x and the location of x is in register r in the opti-
mized code. If Dx reaches an assignment to r in which r is reassigned to another
variable or temporary, then x is overwritten early at the reassignment.

To determine where values of variables are overwritten early due to code
hoisting optimizations, we compare, using Gopt, the original positions of the def-
initions and their actual positions in the optimized program. Let ARHead(Dv)
denote the actual position of a definition Dv and let ORHead(Dv) denote the
corresponding original position of Dv. We determine the existence of a path P
from ARHead(Dv) to ORHead(Dv) such that P does not include backedges of
loops enclosing both ARHead(Dv) and ORHead(Dv). The backedge restriction
on P ensures that we only consider the positions of the same instance of Dv

before and after optimization. This restricted notion of a path is captured by
the SimplePath predicate.

Definition. The predicate SimplePath(x, y) is true if ∃ path P from program
point x to program point y in Gopt and P does not include backedges of loops
enclosing both x and y.

FULLDOC: A Full Reporting Debugger for Optimized Code 253

If SimplePath(ARHead(Dv), ORHead(Dv)) is true and the location of v at the
program point before ARHead(Dv) is the same location that is used to hold
the value of Dv, then v is overwritten early at Dv in the optimized code. For
example, in Figure 2, SimplePath(ARHead(X2), ORHead(X2)) is true, and
thus, X is overwritten early at X2 .

To determine where values of variables are written late in the optimized pro-
gram, we similarly compare, using Gopt, the original positions of the definitions
and their actual positions in the optimized program. That is, for a definition Dv,
we determine the existence of a path P from ORHead(Dv) to ARHead(Dv)
such that P does not include backedges enclosing both points. Thus, if Simple-
Path(ORHead(Dv), ARHead(Dv)) is true, then definition Dv is written late in
the optimized code. For example, in Figure 3, X is written late at X2 because
SimplePath(ORHead(X2), ARHead(X2)) is true.

Computing SaveDiscardPoints[] and EarlyAtBkpts[]. If a value of x is
overwritten early at Dv in the optimized code, then a save point is associated at
the position of Dv in the optimized code, and discard points are associated at the
corresponding positions of original definitions of x that are reachable from Dv

in the optimized code. Data flow analysis is used to determine reachable original
definitions, which is similar to the reachable definitions problem. After the save
and discard points of Dv are computed, we determine the breakpoints where
reportability is affected by Dv. Dv ∈ EarlyAtBkpts[b] if b lies along paths from
save to corresponding discard points of Dv. EarlyAtBkpts[] is easily computed
by solving the following data flow equation on Gopt:

EarlyAt(B) =
⋃

N∈pred(B)

Genea(N) ∪ (EarlyAt(N)− Killea(N))

where
Genea(B) = {Dv : Dv overwrites early and a save point of Dv is at B} and
Killea(B) = {Dv : Dv overwrites early and a discard point of Dv is at B}.

Then Dv ∈ EarlyAtBkpts[B] if Dv ∈ EarlyAt(B). For example, in Figure 2,
SaveDiscardPoints[X2] = (ARHead(X2), {ORHead(X2), ORHead(X3)}).
For a breakpoint b along regions 1❥, 2❥, and 3❥, EarlyAtBkpts[b] = {X2}.

Computing StopPoints[] and LateAtBkpts[]. For a definition Dv that is
written late, StopPoints [Dv] are the earliest points at which execution can
stop because either (1) the late value is computed or (2) a point is reached such
that it is known the value will not be computed in the execution. A stop point
of Dv is associated at the ARHead(Dv). Stop points are also associated with the
earliest points along paths from ORHead(Dv) where the appropriate instance
of Dv does not execute. That is, p ∈ StopPoint(Dv) if

p = ARHead(Dv) ∨ (1)
(Dv 	∈ReachableLate(p)∧ (2)

	 ∃p′(SimplePath(p′, p) ∧ p′ ∈ StopPoint(Dv))). (3)

254 Clara Jaramillo et al.

Condition 1 ensures a stop point is placed at Dv. Condition 2 ensures the rest of
the stop points are not placed at program points where the appropriate instance
of the late statement would execute. Condition 3 ensures stop points are placed
at the earliest points. ReachableLate(p) is the set of statements written late that
are reachable at p. ReachableLate() is easily computed by solving the following
data flow equation on Gopt:

ReachableLate(B) =
⋂

N∈succ(B)

Genrl(N) ∪ (ReachableLate(N)− Killrl(N))

where
Genrl(B) = {Dv : ARHead(Dv) = B} and
Killrl(B) = {Dv : ORHead(Dv) = B}.

Consider the example in Figure 3. StopPoints [X2] = {ARHead(X2), pro-
gram point at the beginning of the false path}. After the stop points of Dv are
computed, we determine the breakpoints where reportability is affected by Dv.
Dv ∈ LateAtBkpts[b] if b lies along paths from ORHead(Dv) to the stop points
of Dv. LateAtBkpts[b] is easily computed using data flow analysis.

Computing AvailAtBkpts[,]. The code location mapping is used to construct
program ranges of a variable’s value which correspond to the unoptimized code
(real range) and the optimized code (actual range). By comparing the two ranges,
we can identify program ranges in the optimized code corresponding to regions
where the value of the variable is always available for reporting. If breakpointB is
in this program range for a variable v then AvailAtBkpts[B,v] is computed by
performing data flow analysis to propagate the locations (memory and registers)
of variables within these program ranges.

Computing NotRepDelAtBkpts[] and NotRepLateAtBkpts[]. To determine
the values of variables that are not reportable along a breakpoint because of
the application of dead code elimination, we propagate the deleted statements
where reportability is affected (regardless of the execution path taken) through
the optimized control flow graph Gopt by solving the data flow equation:

NonRepDel(B) =
⋂

N∈pred(B)

Gennrd(N) ∪ (NonRepDel(N)− Killnrd(N))

where
Gennrd(B) = {Dv : ORHead(Dv) = {B} ∧ Dv is deleted} and
Killnrd(B) = {Dv : ORHead(D′

v) = {B} ∧ D′
v is a definition of v}.

Then for each breakpoint B, v ∈ NotRepDelAtBkpts[B] if ∃ Dv such that Dv ∈
NonRepDel(B). For example, in Figure 4(a), for a breakpoint B along region
1❥, Y ∈ NotRepDelAtBkpts[B]. NotRepLateAtBkpts[] is computed similarly.

Computing MaybeDelAtBkpts[] and MaybeLateAtBkpts[]. To determine
the values of variables that may not be reportable along a path when deleted,
we first compute the data flow equation on Gopt:

FULLDOC: A Full Reporting Debugger for Optimized Code 255

MaybeDel(B) =
⋃

N∈pred(B)

Genmd(N) ∪ (MaybeDel(N)− Killmd(N))

where
Genmd(B) = {Dv : ORHead(Dv) = {B} ∧ Dv is deleted} and
Killmd(B) = {Dv : ORHead(D′

v) = {B} ∧ D′
v is a definition of v}.

Then v ∈ MaybeDelAtBkpts[B] if ∃ Dv such that Dv ∈ MaybeDel(B) ∧ Dv 	∈
NonRepDel(B). For example, in Figure 4(a), for a breakpoint B along region 2❥,
Y ∈ MaybeDelAtBkpts[B] because Y 2 ∈ MaybeDel(B)∧Y 2 	∈NonRepDel(B).
MaybeLateAtBkpts[] is computed similarly.

Computing EndDelPoints[] and EndLatePoints[]. For a variable v of a
deleted statement ds ∈ MaybeDelAtBkpts[], EndDelPoints[ds] are the cor-
responding positions of original definitions of v that are reachable from OR-
Head(ds) in Gopt. For example, in Figure 4(a), EndDelPoints[Y]= the original
position of Y 3 , which is ORHead(Y 3). Similarly, for a variable v of a late state-
ment ls ∈ MaybeLateAtBkpts[], EndLatePoints[ls] are the corresponding
positions of original definitions of v that are reachable from ORHead(ls).

Computing PotFutBkptsDel[] and PotFutBkptsLate[]. For each deleted
statement Dv in MaybeDelAtBkpts[], Dv ∈ PotFutBkptsDel[b] if b lies along
paths from the ORHead(Dv) to the corresponding positions of original defini-
tions of v that are reachable from ORHead(Dv) in the optimized code. PotFut-
BkptsLate[] is computed similarly.

4 Experiments

We implemented FULLDOC by first extending LCC [6], a compiler for C pro-
grams, with a set of optimizations, including (coloring) register allocation, loop
invariant code motion, dead code elimination, partial dead code elimination, par-
tial redundancy elimination, copy propagation, and constant propagation and
folding. We also extended LCC to perform the analyses needed to provide the
debug information to FULLDOC, given in the previous section. We then imple-
mented FULLDOC, using the debug information generated by LCC, and fast
breakpoints [11] for the implementation of invisible breakpoints.

We performed experiments to measure the improvement in the reportability
of expected values for a suite of programs, namely YACC and some SPEC95
benchmarks. Rather than randomly generate user breakpoints, we placed a user
breakpoint at every source statement and determined the improvement in re-
portability of FULLDOC over a technique that uses only static information. We
also report for each breakpoint, the reasons why reportability is affected, and
thus we can compare the improvement of our technique over techniques that
cannot report overwritten values or path sensitive values.

256 Clara Jaramillo et al.

Table 1 shows for each benchmark, the percentage of values that could not be
reported by (1) using only statically computed information and (2) FULLDOC.
The first row gives the percentages of values that were deleted along all paths,
and are thus not reportable in FULLDOC (as noted, FULLDOC could recover
some of these values, as other debuggers can [8]). The next two rows give the
percentages of values whose reportability is affected because they are overwritten
early, either because of code hoisting (row 2) or a register being overwritten
early (row 3). If a debugger does not include some mechanism for ”saving”
values overwritten early, it would not be able to report these values. The next
three rows give the percentages of values whose reportability is affected because
the statements that computed the values were affected by partial dead code
elimination. Row 4 indicates the percentages of values that are not reportable
along paths before the sunk values. Row 5 indicates the percentages of values
that are not reportable along paths where the sunk values are never computed.
Row 6 indicates the percentages of values that are not reportable along paths
because the reportability of the values sunk is path sensitive. If a debugger does
not include some mechanism to “roll ahead” the execution of the optimized
program, it would not be able to report these values. The next two rows give the
results when reportability is affected by path sensitive information. The seventh
row gives the percentages that were not reportable for path sensitive deletes. In
this case, the values may have been deleted on paths that were executed. The
eighth row gives the results when the location of a value is path sensitive. A
technique that does not include path sensitive information would fail to report
these values. The last row gives the total percentages that could not be reported.
On average, FULLDOC cannot report 8% of the local variables at a source
breakpoint while a debugger using only static information cannot report 30%,
which means FULLDOC can report 31% more values than techniques using only
statically computed information. From these numbers, FULLDOC can report at
least 28% more values than the emulation technique [16] since neither path
sensitivity nor register overwrites were handled. FULLDOC can report at least

Table 1. Percentage of local variables per breakpoint that are not reportable

Problems yacc compress go m88ksim ijpeg
static FULL static FULL static FULL static FULL static FULL
info DOC info DOC info DOC info DOC info DOC

deleted-all paths 0.96 0.96 15.03 15.03 0.75 0.75 1.87 1.87 10.42 10.42
code hoisting 0.19 0.00 0.34 0.00 0.30 0.00 0.14 0.00 4.15 0.00
reg overwrite 42.65 0.00 17.24 0.00 9.44 0.00 1.83 0.00 15.87 0.00
code sinking (rf) 0.19 0.00 0.64 0.09 1.40 0.39 0.57 0.07 1.79 0.09
del on path 0.00 0.00 0.02 0.02 0.10 0.10 0.06 0.06 0.28 0.28
path sens late 0.00 0.00 0.18 0.09 0.51 0.18 0.41 0.37 0.58 0.39
path sens delete 8.27 6.07 0.18 0.00 2.25 0.74 0.00 0.00 2.36 1.20
path sens location 3.95 0.00 0.07 0.00 1.14 0.00 0.32 0.00 1.43 0.00

total 56.21 7.03 33.70 15.23 15.89 2.16 5.20 2.37 36.88 12.38

FULLDOC: A Full Reporting Debugger for Optimized Code 257

Table 2. Static statistics

yacc compress go m88ksim ijpeg

no. source statements 168 354 10876 5778 8214

% statements affected 85 57 59 52 56

number code hoisting 10 77 1502 987 2374
of table reg overwrite 517 234 11819 3961 9655
entries code sinking (rf) 13 177 5355 1839 3745

path sens late 0 117 2912 1203 1833
path sens delete 66 37 1785 397 1452

path sens location 48 59 1937 301 1447

% increase compile time 12.1 8.8 11.0 9.6 13.1

26% more values than dynamic currency determination technique [5] since early
overwrites were not preserved and no roll ahead mechanism is employed.

In Table 2, we present statistics from the static analysis for FULLDOC.
The first two rows show the number of source statements and the percentage of
source statements whose reportability is affected by optimizations. The next 6
rows give the number of entries in each of the tables generated for use at run
time. It should be noted that the largest table is for register overwrites. The
last row shows that the increase in compilation for computing all the debug
information averaged only 10.9%.

In Table 3, we show the average number of invisible breakpoints per source
code statement that was encountered during execution. These numbers are
shown for each of the various types of invisible breakpoints. These numbers in-
dicate that not much overhead is incurred at run time for invisible breakpoints.
The last three rows display the overhead imposed by the roll ahead execution of
the optimized program. On average, 9.7% of the source assignment statements
were executed during the roll aheads. The maximum number of statements exe-
cuted during a roll forward ranges from 5 to 4102 values, which means at most
5 to 4102 number of values are saved from the roll ahead at any given moment.
The average roll ahead of source assignment statements ranges from 2 to 7 state-
ments. The size of the value pool holding values that are overwritten early was
small with the maximum size ranging from 8 entries to 77 entries, indicating
that optimizations are not moving code very far.

Thus, our experiments show that the table sizes required to hold the debug
information and the increase in compile time to compute debug information are
both quite modest. The run time cost of our technique, which is a maximum of
less than one fast breakpoint per source level statement if all possible values are
requested by the user at all possible breakpoints, is also reasonable. The payoff
of our technique is substantial since it reports at least 26% more values than the
best previously known techniques.

The presence of pointer assignments in a source program can increase our
overheads because our strategies rely on determining the ranges in which the
reportability of variables are affected. For control equivalent code motion (as-

258 Clara Jaramillo et al.

Table 3. Runtime statistics
yacc compress go m88ksim ijpeg

% breakpoints where
reportability affected 94 95 67 21 92

avg. no. code hoisting 0.12 0.03 0.04 0.05 0.35
invisible reg overwrite 1.03 0.13 0.26 0.02 0.35
breakpoints code sinking (rf) 0.03 0.03 0.07 0.03 0.12
per source path sens late 0.10 0.05 0.13 0.04 0.23
statement path sens delete 0.09 0.00 0.03 0.01 0.23

path sens location 0.07 0.02 0.02 0.00 0.05
overall 1.44 0.26 0.56 0.18 1.37

(duplicates removed) overall 0.56 0.14 0.37 0.17 0.43

% source assignments executed for roll forwards 1.33 4.11 17.39 6.01 19.8
maximum roll forward length 5 60 314 4102 1482
average roll forward length 2 4 7 5 4

signments are not introduced into new paths nor removed from paths), we can
statically determine the ranges in which reportability of values are affected even
in the presence of pointer assignments. For the case when the reportability of
a value of a variable is affected and the end of its reportable range is possibly
at a pointer assignment (because of code deletion and non-control equivalent
code motion), our strategy has to dynamically track the range in which the
reportability of the value of the variable is affected.

5 Related Work

The difficulty of debugging optimized code has long been recognized [8], with
most work focusing on the development of source level debuggers of optimized
code [8,17,13,4,7,9,2,12,3,15,1] that use static analysis techniques to determine
whether expected values of source level variables are reportable at breakpoints.
Recent work on source level debuggers of optimized code utilizes some dynamic
information to provide more expected values. By emulating (at certain program
points) the optimized code in an order that mimics the execution of the unop-
timized program, some values of variables that are otherwise not reportable by
other debuggers can be reported in [16]. However, as pointed out in [16], alter-
ing the execution of the optimized program masks certain user and optimizer
errors. Also, the emulation technique does not track paths and cannot report
values whose reportability is path sensitive. The dynamic currency determina-
tion technique proposed in [5] can also report some values of variables that are
not reportable by other debuggers by time stamping basic blocks to obtain a
partial history of the execution path, which is used to precisely determine what
variables are reportable at breakpoints; but values that are overwritten early by
either code hoisting or register reuses are not always reportable. Recovery tech-
niques [8], which can be incorporated into all debuggers including FULLDOC,

FULLDOC: A Full Reporting Debugger for Optimized Code 259

are employed in [16] and [5] to recompute some of the nonreportable values in
certain circumstances.

Instead of reporting expected values with respect to a source program, the
Optdbx debugger [14] reports values with respect to an optimized source program
version. Also, Optdbx uses invisible breakpoints to recover evicted variables.

Another approach to debugging optimized code is COP [10], a comparison
checker for optimized code, which verifies that given an input, the semantic
behaviors of both the unoptimized and optimized code versions are the same.
This can be incorporated into a debugger to report all values, including deleted
values. However, this technique requires the execution of both the unoptimized
and optimized programs.

6 Conclusions

This paper presents FULLDOC, a FULL reporting Debugger of Optimized
Code that reports all expected values that are computed in the optimized pro-
gram. That is, every value of a source level variable that is computed in the
optimized program execution is reportable at all breakpoints in the source code
where the value of the variable should be reportable. Experimental results show
that FULLDOC can report 31% more values than techniques relying on static
information and at least 26% more over existing techniques that limit the dy-
namic information used. FULLDOC’s improvement over existing techniques is
achieved by statically computing information to guide the gathering of dynamic
information that enables full reporting. The only values that FULLDOC cannot
reported are those that are not computed in the optimized program execution.

References

1. Adl-Tabatabai, A. and Gross, T. Source-Level Debugging of Scalar Optimized
Code. In Proceedings ACM SIGPLAN’96 Conf. on Programming Languages Design
and Implementation, pages 33–43, May 1996. 241, 258

2. Brooks, G., Hansen, G. J., and Simmons, S. A New Approach to Debugging Opti-
mized Code. In Proceedings ACM SIGPLAN’92 Conf. on Programming Languages
Design and Implementation, pages 1–11, June 1992. 258

3. Copperman, M. Debugging Optimized Code Without Being Misled. ACM Trans-
actions on Programming Languages and Systems, 16(3):387–427, 1994. 241, 258

4. Coutant, D. S., Meloy, S., and Ruscetta, M. DOC: A Practical Approach to
Source-Level Debugging of Globally Optimized Code. In Proceedings ACM SIG-
PLAN’88 Conf. on Programming Languages Design and Implementation, pages
125–134, June 1988. 241, 258

5. Dhamdhere, D. M. and Sankaranarayanan, K. V. Dynamic Currency Determina-
tion in Optimized Programs. ACM Transactions on Programming Languages and
Systems, 20(6):1111–1130, November 1998. 241, 244, 245, 246, 256, 258

6. Fraser, C. and Hanson, D. A Retargetable C Compiler: Design and Implementation.
Benjamin/Cummings, 1995. 255

7. Gupta, R. Debugging Code Reorganized by a Trace Scheduling Compiler. Struc-
tured Programming, 11(3):141–150, 1990. 258

260 Clara Jaramillo et al.

8. Hennessy, J. Symbolic Debugging of Optimized Code. ACM Transactions on
Programming Languages and Systems, 4(3):323–344, July 1982. 241, 256, 258

9. Holzle, U., Chambers, C., and Ungar, D. Debugging Optimized Code with Dy-
namic Deoptimization. In Proceedings ACM SIGPLAN’92 Conf. on Programming
Languages Design and Implementation, pages 32–43, June 1992. 258

10. Jaramillo, C., Gupta, R., and Soffa, M. L. Comparison Checking: An Approach
to Avoid Debugging of Optimized Code. In ACM SIGSOFT Symposium on Foun-
dations of Software Engineering and European Software Engineering Conference,
pages 268–284, September 1999. 259

11. Kessler, P. Fast Breakpoints: Design and Implementation. In Proceedings ACM
SIGPLAN’90 Conf. on Programming Languages Design and Implementation, pages
78–84, June 1990. 255

12. Pineo, P. P. and Soffa, M. L. Debugging Parallelized Code using Code Libera-
tion Techniques. Proceedings of ACM/ONR SIGPLAN Workshop on Parallel and
Distributed Debugging, 26(4):103–114, May 1991. 258

13. Pollock, L. L. and Soffa, M. L. High-Level Debugging with the Aid of an Incre-
mental Optimizer. In 21st Annual Hawaii International Conference on System
Sciences, volume 2, pages 524–531, January 1988. 258

14. Tice, C. Non-Transparent Debugging of Optimized Code. PhD dissertation, Uni-
versity of California, Berkeley, 1999. Technical Report UCB-CSD-99-1077. 258

15. Wismueller, R. Debugging of Globally Optimized Programs Using Data Flow
Analysis. In Proceedings ACM SIGPLAN’94 Conf. on Programming Languages
Design and Implementation, pages 278–289, June 1994. 241, 258

16. Wu, L., Mirani, R., Patil H., Olsen, B., and Hwu, W. W. A New Framework for
Debugging Globally Optimized Code. In Proceedings ACM SIGPLAN’99 Conf. on
Programming Languages Design and Implementation, pages 181–191, May 1999.
241, 244, 245, 246, 256, 258

17. Zellweger, P. T. An Interactive High-Level Debugger for Control-Flow Optimized
Programs. In Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on High-Level Debugging, pages 159–171, 1983. 242, 247, 258

Partial Redundancy Elimination on Predicated

Code�

Jens Knoop1, Jean-François Collard2, and Roy Dz-ching Ju3

1 Universität Dortmund
D-44221 Dortmund, Germany

knoop@ls5.cs.uni-dortmund.de
2 Intel Corp. – Microcomputer Software Lab
3 Intel Corp. – Microprocessor Research Lab

Santa Clara, CA 95052
{jean-francois.j.collard,roy.ju}@intel.com

Abstract. Partial redundancy elimination (PRE) is one of the most
important and widespread optimizations in compilers. However, current
PRE-techniques are inadequate to handle predicated code, i.e., programs
where instructions are guarded by a 1-bit register that dynamically con-
trols whether the effect of an instruction should be committed or nullified.
In fact, to exclude corrupting the semantics they must be overly conser-
vative making them close to useless. Since predicated code will be more
and more common with the advent of the IA-64 architecture, we present
here a family of PRE-algorithms tailored for predicated code. Conceptu-
ally, the core element of this family can be considered the counterpart of
busy code motion of [17]. It can easily be tuned by two orthogonal means.
First, by adjusting the power of a preprocess feeding it by information
on predication. Second, by relaxing or strengthening the constraints on
synthesizing predicates controlling the movability of computations. To-
gether with extensions towards lazy code motion, this results in a family
of PRE-algorithms spanning a range from tamed to quite aggressive al-
gorithms, which is illustrated by various meaningful examples.

Keywords: Partial redundancy elimination, predicated code, IA-64,
busy code motion, lazy code motion, data-flow analysis, optimization.

1 Motivation

Partial redundancy elimination (PRE) is one of the most important and wide-
spread optimizations in compilers. Intuitively, it aims at avoiding unnecessary
recomputations of values at run-time. Technically, this is achieved by storing the
value of computations for later reuse in temporaries. Classical PRE-techniques,
however, are inadequate when instructions are predicated. In order to exclude
corrupting the program semantics, they have to be overly conservative. This is
� Part of this work was done while the second author was working at CNRS/PRiSM

Laboratory, University of Versailles, 78035 Versailles, France.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 260–280, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Partial Redundancy Elimination on Predicated Code 261

illustrated in the example of Figure 1(a), where statements are written using
the syntax of the IA-64 [4,6] for predication. In this example, the predicates p
and q guarding the execution of the statements will always have different truth
values according to the semantics of the IA-64 machine model (cf. Section 2).
Classical PRE-techniques, however, are by no means prepared to incorparate
such information. Hence, they have to conservatively assume that variable a is
modified between the two computation sites of a + b. Consequently, they fail to
achieve the desired optimization of Figure 1(b).

b)

(q) a = ...

(p) x = a+b

(q) a = ...

(p) y = a+b

a)

cmp.unc p,q = a<b cmp.unc p,q = a<b

h(p) y =

h(p) x =

= a+bh(p)

Fig. 1. Illustrating the essence of PRE on predicated code.

Intuitively, the reason for this is that, in standard PRE, branching is inter-
preted nondeterministically. It is the key to (efficient) decidability and hence to
an algorithmic solution of the problem. In predicated code, nondeterminism is no
longer adequate. Though one could easily represent each predicated statement
by an if-then-else-like graph structure, which would allow us to directly apply the
standard PRE-techniques, this would be close to useless because it introduces
many non-existent paths.1 As a consequence, lots of redundancies, as the one
in the example of Figure 1 could not be eliminated. Moreover, a transformation
performed on such an extended graph would introduce the problem of how to
retranslate it into predicated code.

On the other hand, simply neglecting the effects of predication is usually
incorrect and corrupts the program semantics. In fact, the transformation dis-
played in Figure 1(b) is correct if and only if the conjunction of p and q is
provably always false.

In this article, we therefore develop a new approach for PRE, which is tai-
lored for predicated code. Conceptually, the basic algorithm we present can be
considered the counterpart of busy code motion of [16,17]. Like busy code mo-
1 Approaches like qualified data flow analysis of [12] aim at figuring out “spurious”

paths on ordinary code. Generally, however, this works to some extent only, and it
is not clear how to generalize these approaches to predicated code.

262 Jens Knoop et al.

tion the new approach relies on two unidirectional data-flow analyses. First, a
hoistability analysis moving computations to their earliest down-safe computa-
tion points. I.e., to the earliest points satisfying that the computation will be
used on every program path starting there and reaching the end node without an
intervening modification of any of its operands. Second, a redundancy analysis
identifying all computations which are totally redundant after the hoisting step
of the algorithm. Both analyses are fed by predicate information yielded by an
independent preprocessing step. In addition, the predicate information allows us
to identify and suppress off-predicated insertions, i.e., insertions whose guarding
predicate is equivalent to false at the program point under consideration.2

Together, this results in the following overall structure of our algorithm:

1. Analysis Phase (Section 3.1):
(a) Preprocessing: Computing predicate information (Section 3.1.1)
(b) Hoistability analysis: Computing down-safety (Section 3.1.2)
(c) Redundancy analysis: Computing redundant and off-predicated inser-

tions (Section 8.3)
2. Transformation Phase (Section 3.2):

Insertions and replacements : Insert computations, which are not redundant
or off-predicated, and replace all original computations by references to
temporaries. (Section 3.2.1)

This algorithm (as well as its extensions) works for arbitrary control flow,
and constitutes the kernel of a family of PRE-algorithms for predicated code of
different power. In fact, we will demonstrate how the basic algorithm can easily
be tuned by simply modifying certain parameters in order to comply with given
demands on the transformational power. This ranges from conservative tamed to
quite aggressive versions differring in the constraints imposed on “synthesizing”
new predicates providing control on the movability of computations. Moreover,
extensions in the fashion of lazy code motion (cf. [16,17]) towards taking the
lifetimes of temporaries into account are possible, too.

The power of the complete approach is demonstrated by the example of
Figure 2, which is complex enough to illustrate its central features. By con-
vention, p0 denotes the always true and false the always false predicate. The
rationale for this notation is that several predicated architectures, including the
IA-64, feature a p0 predicate which cannot be written and whose value is always
equal to true. In the example of Figure 2, our approach is unique to achieve the
optimizations displayed in Figure 3. The basic version of our algorithm

1. ... eliminates the redundancy of the evaluation of x+y in the assignments to
a and b at the edges 4 and 6, and

2. ... the redundancy of the evaluation of x+y in the assignments to c, d and e
at the edges 10, 18, and 22 (Note that a and b do not reach the destination
node of edge 12, and that due to the instruction x=0 at edge 9, expression
x+y cannot be hoisted across this edge.)

2 Off-predicated insertions, and, more generally, off-predicated statements, can be
eliminated without changing the semantics but enhancing the performance.

Partial Redundancy Elimination on Predicated Code 263

p11 p12

(p21) a = x+y

(p22) x = 1

(p21) b = x+y

(p22) f = x*y

(p32) e = x+y

p31 p32

1

2

4

5

6

7

9

10

3

8

11

entry = s

p22

p4 = p22 or p31

(p4) h = x*y

(p31) d = x+y

17

18

19

20

e = exit

(p12) x = 0

(p12) c = x+y

15

12

2316

21

14

22

24

13

p21

cmp.unc p11,p12 = ...

(p12) cmp.unc p31,p32 = ...

(p11) cmp.unc p21,p22 = ...

Fig. 2. Running example: Illustrating the power of the new PRE-approach.

The full version of our algorithm, which makes a step towards “semantic PRE”
on predicates (cf. [20]) additionally

3. ... eliminates the redundancy of the evaluation of x*y at edge 19 by inserting
an assignment at edge 5 and edge 12.3

The processing of this example is presented in full detail in [14], where we also
discuss the necessity of a PRE framework on predicated code, including the
issues, such as why PRE before if-conversion (cf. [8]) or reverse if-conversion
(cf. [27]) does not suffice. Right now, it is worth noting that our PRE framework
can handle any type of predicated code so long as the preprocessing stage, which
is largely an independent phase to our core PRE algorithm and will be discussed
in Section 3.1, can analyze the predicates in a program correctly.

Related Work. PRE has been pioneered by the algorithm of Morel and Ren-
voise [22], and thoroughly been studied in the literature.

3 Note that also the basic version hoists the computation of x*y at edge 19. However,
this gets stuck at edge 17 thereby failing to eliminate this partial redundancy.

264 Jens Knoop et al.

(p12) h1 = x+y(p21) h1 = x+y

(p22) h2 = x*y

(p21) a = h1

(p21) b = h1

(p22) f = h2

(p12) c =h1

h2 = x*y(p4)

(p31) d = h1

(p4) h = h2

p11 p12

(p32) e =

p31 p32

1

2

4

5

6

7

9

10

3

8

11

entry = s

p22

17

18

19

20

e = exit

12

2316

21

14

22

24

(p12) x = 0

h1

p4 = p22 or p31

p21

13

15

(p22) x = 1
(p12) cmp.unc p31,p32 = ...

cmp.unc p11,p12 = ...

(p11) cmp.unc p21,p22 = ...

h2 = x*y(p31)

Optimization

Full

Full

Optimization

Fig. 3. The motivating example: Basic and full optimization.

The (intraprocedural) state-of-the-art algorithms fall into two major groups.
First, algorithms aiming at eliminating redundancies among lexically identical
terms, also known as syntactic PRE (cf. [3,5,16,17,22,25]). Second, algorithms
aiming at eliminating redundancies also among lexically different, yet semanti-
cally equivalent computations, also known as semantic PRE (cf. [2,20,24,26]).
The enhanced transformational power of the algorithms of the second group
comes at the price of usually significantly higher computational costs.

Common to all of these approaches is that they are not prepared for dealing
with predicated code. This also holds for the approaches of [8], which is restricted
to single-entry/single-exit acyclic regions, and of [10]. They are capable of in-
troducing predicated statements in order to enhance code sinking for enlarging
the power of partial dead-code elimination, but are not capable of systematically
working on predicated code.

In fact, to the best of our knowledge, the approach we are going to present
here is the first one systematically extending PRE to predicated code. Basically,
it falls into the group of syntactic PRE-approaches. However, in [14] we show how
to extend it towards semantic PRE at almost no costs on both the conceptual and
computational side. This is actually required in order to succeed in eliminating
the partial redundancy of x*y at edge 19 in the example of Figure 2 (cf. [14]).

Partial Redundancy Elimination on Predicated Code 265

On purpose, the presentation in this article focuses on the phenomena show-
ing up for PRE on predicated code, on their illustration by meaningful examples,
and on the impact they have on the design decisions underlying our approach.

2 Preliminaries

Predication. In this article, we assume the architectural support of general
predicated execution model in the IA-64 architecture [4,6], in which the execu-
tion of an instruction can be guarded by a qualifying predicate. The following
form of compare instructions is provided to set predicates:
(qp) cmp.crel.ctype p1,p2=r2,r3

Predicates p1 and p2 are two target predicates. Predicate qp is the qualifying
predicate. The two source operands, r2 and r3, are compared based on the
relation specified by crel. There are a number of comparsion types, and we list
three most relevant ones in the following table to describe their behaviors, where
nc indicates “no change.” The outcome of the crel comparison is in variable
result. Note that unc is short for unconditional.

ctype qp==0 qp==1 && result==0 qp==1 && result==1
unc p1=0 p2=0 p1=0 p2=1 p1=1 p2=0
or p1=nc p2=nc p1=nc p2=nc p1=1 p2=1
and p1=nc p2=nc p1=0 p2=0 p1=nc p2=nc

To explore predication, a compiler generally incorporates a technique called
if-conversion (cf. [1]), which eliminates branch instructions and converts affected
instructions to appropriate predicated form.

An execution trace includes all of the instructions being executed. A trace
belongs to the domain of predicate p if all the instructions on this trace are
executed when p is true. The domain of p includes all such traces. Note that
the notion of domain is purely for the discussion purpose, and we never have the
need to enumerate traces. We call a predicate which explicitly appears in the
instruction stream a materialized predicate.

Flow Graphs. As usual we represent programs by directed flow graphs
G = (N, E, s, e) with node set N , edge set E, a unique start node s, and a
unique end node e, which are assumed to have no predecessors and successors,
respectively. Edges represent the branching structure and the (possibly predi-
cated) statements of a program, while nodes represent program points. Edges
leaving a node with more than one successor are labeled by a (qualifying) pred-
icate, edges leaving a node with only one successor are labeled by a (possibly
predicated) statement (including the empty statement skip). We denote the set
of all qualifying predicates occurring in G by Q, and the set of all statements
by S. With these notations, E is the disjoint union of the sets ES and EQ,
denoting the sets of edges labeled by a statement and a predicate, respectively.
In particular, we define a function qualPred : EQ → Q, which maps an edge
of EQ to the qualifying predicate it is labeled with. Nodes with more than one

266 Jens Knoop et al.

successor are called branch nodes, nodes with more than one predecessor join
nodes. We denote the corresponding subsets of N by NB and NJ , respectively.

Without loss of generality we assume that edges leading to a join node have
been split by inserting a synthetic node. The edges emerging thereby are labeled
by skip. This allows us to insert computations uniformly at the “arrowheads” of
edges, and avoids blocking of the code motion process by so-called critical edges,
i.e. edges going from branch nodes to join nodes (cf. [16]).

We denote the set of predecessors and successors of a node n by pred(n)=df

{m | (m, n) ∈ E } and succ(n)=df {m | (n, m) ∈ E }. Additionally, src(e) and
dst(e), e ∈ E, denote the source node and the destination node of edge e. We
assume that every node of a flow graph G lies on a path from s to e. Finally,
let P denote the powerset operator, and B=df {true, false} the set of Boolean
truth values. Note that B can be considered a subset of Q by identifying true
and p0.

3 PRE on Predicated Code

This section defines the base concepts in the PRE. First, a candidate pattern for
code motion is as usual an expression or term that actually appears in the pro-
gram and which we may want to place somewhere else in the program. “Placing
somewhere else” is done in two steps: Insertion of evaluations of the term, the
result of the evaluation being stored in a fresh temporary, and replacement of
occurrences that are proved to be redundant with respect to evaluations that
already existed or were introduced.

To do so, the analysis relies, as usual for PRE, on two fundamental local
predicates Comp and Transp (local in the sense that they are attached to a
single edge and depend on this edge’s properties only), which are here tailored
for taking qualifying predicates into account. Comp π gives the predicate that
qualifies a computation of the term, π, in the considered edge, if any, while
Transp π tells us whether the current edge is transparent for hoisting π, when
guarded by the predicate passed as argument to it.

– CM-candidate patterns : terms t

– Local predicates : ... defined for every edge e ∈ E with respect to an arbitrary,
but fixed CM-candidate pattern π ≡ t. We assume that e ≡ (p) v := t′ for
e ∈ ES , and e ≡ p for e ∈ EQ.

1. Comp π : E → Q defined by

Comp π(e)=df

{
p if e ∈ ES ∧ π ∈ SubTerms (t′)
false otherwise

2. Transp π : E → (Q → B) defined by

Transp π(e)(q)=df

{
(v �= q ∧ v �∈SubTerms (π)) ∨ q⇒ p̄ if e ∈ ES
true otherwise

Partial Redundancy Elimination on Predicated Code 267

– Pattern of insertions : (qp) hπ := π, where hπ is a fresh variable for the
program under consideration, and qp is a qualifying predicate which for
every insertion point is computed in the course of the code motion process.

– Replacement candidates : occurrences of the CM-candidate pattern π.

The definition of the predicate Comp π(e) directly reflects the semantics of predi-
cated statements in the IA-64 architecture. Considering for illustration the state-
ment (p) x = a + b, and a program run, where p equals false when reaching
this statement, predication does not prevent the evaluation of the right-hand-
side term a + b, rather it excludes that the value is eventually assigned to the
left-hand-side variable x. However, the evaluation of the right-hand-side can be
interrupted at any intermediate stage when it turns out that the guarding pred-
icate is false. Hence, placing a + b immediately before (p) x = a + b is generally
unsafe as one cannot be sure that it will be computed (and committed) by this
statement. On the other hand, when guarded by p, it will be safe in this sense.

In distinction to the definition of Comp π, which only relies on the parame-
ter e, the predicate Transp π relies on a second argument, a qualifying predicate q.
Intuitively, the truth value of Transp π with respect to an edge e and predicate q
indicates, whether an occurrence of the computation pattern π guarded by q
can safely be hoisted across the statement attached to e. This is true, if the
left-hand-side variable v of the statement at e does neither modify an operand
of π (i.e., v �∈SubTerms (π)) nor modify q itself (i.e., v �= q), or if the statement
of e would be off-predicated, whenever the evaluation of π guarded by q would
be committed (i.e., q⇒ p̄, where ⇒ stands for logical implication).

Based on these local predicates, we will present the hoistability and redun-
dancy analyses for computation patterns, which constitute the algorithmic kernel
of our approach, in the following section. The semantic domain they are operat-
ing on is the powerset of (materialized) qualifying predicates P(Q).4

3.1 Analysis Phase

3.1.1 Preprocessing: Analysing Predicates The analyses involved in the
transformation rely on information on the relationships between predicates (see
e.g. the definitions of the local predicates Comp and Transp above). In our ap-
proach we assume that this information is provided by an independent prepro-
cess. The requirement for this preprocessing is to analyze the predicates in a pro-
gram and be able to answer the queries from our PRE algorithm on union (�) and
intersection (�) for given predicates correctly (though maybe conservatively). A
union query can also be used to derive a subset or superset relation between
predicates. An intersection query can be used to derive a disjoint relation.

Though the PRE transformation will always be correct, it will be the more
powerful the more precise the information on the relationships between predi-
cates is. Exchanging the preprocess by a different one is an easy means for trading
4 Aggressive versions of the algorithm may synthesize qualifying predicates in the

course of the PRE process enlarging the semantic domain (cf. Section 4).

268 Jens Knoop et al.

power against efficiency of the transformation. Note, the PRE-transformation it-
self has not to be modified. It is invariant under modifications of the preprocess.

There are several published predicate analysis techniques which meet the
requirement of being the preprocessing phase to our PRE framework.

– The predicate partition graph (PPG) of [9,13]. The techniques in these work
analyze predicates and control flow in a program and construct a graph to
represent the relations among predicates. A partition of the predicate is a
division of the domain of the predicate into multiple disjoint subsets, where
the union of these subsets is equal to the domain. The constructed graph in
this approach is called Predicate Partition Graph G = (Q, E), where each
node in Q represents a predicate p and each edge (p, p1) represents that
there exists a partition in p such that p1 is a subset of this partition. An edge
in G is directed and the edges created from the same partition are marked.
Techniques are discussed in [13] to perform the union and intersection oper-
ations for the given predicates and approximate the results if necessary. A
valid PPG is acyclic. Thanks to the property that edges represent partitions,
the PPG is a lattice with a natural (strict) partial order denoted by � (resp.
❁).

– The predicate hierarchy graph (PHG) of [21]. In this approach, a Predicate
Hierarchy Graph (PHG) is a graphical representation of boolean equations
for all of the predicates in a hyperblock. The PHG is composed of predicate
and condition nodes. Conditions are added as children to their respective
parent predicate nodes. Subsequent predicates are added to their parent con-
dition nodes. A boolean expression is built for a predicate to determine the
condition under which the predicate is true. The corresponding expressions
of given predicates are ANDed or Ored together to answer an intersection
or union query, respectively.

– The P-facts approach of [7]. The predicate extraction mechanism in this
work allows the compiler to find how predicates are defined and used. This
knowledge is expressed as logically invariant expressions, or P-facts, that are
guaranteed to hold, regardless of the execution trace, the results of compar-
isons and the values of other predicates. These P-facts will be used later to
determine feasible execution paths, i.e. execution paths which do not violate
any of the P-facts gathered. The P-facts associated with given predicates are
ANDed or ORed by a symbolic package which simplifies logic equations to
answer an intersection or union query, respectively.

3.1.2 Hoistability Analysis Intuitively, the first step of our PRE-algorithm
moves computations to the earliest points satisfying that their values will be used
on every program continuation reaching the end node without an intervening
modification of any of their operands. This property is usually known as very
busyness or anticipability of a computation (cf. [11,22]). In [16,18,25] it is called
down-safety. In order to emphasize the operational character we speak here of
hoistability. It requires a backward analysis of the argument program, and relies

Partial Redundancy Elimination on Predicated Code 269

on the local semantic functional

[[]]πhst : E → (P(Q) → P(Q))

where the index “hst” reminds to “hoistable.” It is defined as follows:

∀Q ∈ P(Q). [[e]]πhst(Q)=df CU ({Comp π(e)} ∪ { q ∈ Q |Transp π(e)(q)})

The induced analysis is indeed a counterpart of the ordinary very busyness
analysis, however, it is tailored for the predicated scenario. Intuitively, if for
every predicate q of Q there is on every path from the destination node of e
to the end node e of G a computation of π which is guarded by a predicate
implying q such that an evaluation of π at both sites yields the same value, then
this property holds analogously for every predicate of [[e]]πhst(Q) for the source
node of e.

Most important in the definition of [[]]πhst is the operator CU : P(Q) → P(Q).
It introduces a semantic flavour into the otherwise syntactic treatment of pred-
icates during the hoistability analysis. CU denotes an (upper) closure operator
on P(Q) with respect to the logical ∨ on materialized predicates.5 I.e., for all
Q ∈ P(Q), CU(Q) is the smallest set Q′ ∈ P(Q) such that

– Q ⊆ Q′

– If q, q′ ∈ Q′ and q � q′ = q′′ ∈ Q, then q′′ ∈ Q′

Intuitively, enlarging the set of “hoistable” predicates by CU enhances the power
of the hoistability analysis to move predicated computations across branch nodes
as hoistability information must be “met” there for preserving safety of the
transformation. This is discussed in the next paragraph. Here, just note that for
all edges e ∈ EQ, the function [[e]]πhst equals the identity on P(Q).

Fundamental for the fixed-point characterization of the set of hoistable pro-
gram points is a “meet”-operator defined on the powerset lattice of Q. In essence,
it is given by the set-theoretic meet on P(Q), however, adapted to taking qualify-
ing predicates at branch nodes into account. To this end, we introduce for every
node n ∈ N\{e} a k-ary, k=df | succ(n) | , function Mn : P(Q)k → P(Q). It is
defined by CU ◦M′

n, if n ∈ NB, and by M′
n, otherwise, where the i-th component

of the domain of Mn is assumed to correspond with the i-th successor mi of n.
The functions M′

n, n ∈ N\{e}, are defined as follows:6

5 Restricting CU to materialized predicates avoids the introduction of computations,
which are off-predicated with non-materialized predicates as in the example of Fig-
ure 4(d). Their computation costs may easily exceed those of a saved computation.
On the other hand, it may prevent moving a computation out of a loop. Dropping
this requirement is an easy means for getting a more aggressive hoisting algorithm.

6 Defining M′
n(Q1, . . . , Qk)=df

T

i∈{1,... ,k}
Qi, we get a “tamed” version of hoisting.

270 Jens Knoop et al.

∀ (Q1, . . . , Qk) ∈ P(Q)k. M′
n(Q1, . . . , Qk)=df

(i)
⋂

i∈{1,... ,k}
Qi

(ii) ∪
{ ⋃

i∈{1,... ,k}
{q ∈ Qi | q⇒ qualPred((n, mi))} if n ∈ NB

∅ otherwise

In this definition, line (i) handles the standard case: it collects the set of pred-
icates controlling a computation on every path starting at the branch node.
Line (ii), intuitively, collects argumentwise the predicates implying the guarding
predicate of the corresponding program branch. Note, line (i) is “conservative.”
Hoisting is in any sense safe. Line (ii), however, may introduce off-predicated
computations along some paths. If this is undesirable, it can simply be avoided
by dropping it from the definition. This shows the flexibility of our approach,
and the ease and elegance of tuning the algorithm.

Finally, note that for n ∈ N\(NB∪{e}), the function Mn is 1-ary. Hence, for
these nodes Mn equals the identity on P(Q). Based on the functions Mn, n ∈
N\(NB ∪ {e}), the fixed-point characterization of the set of hoistable program
points is as follows.

Equation System 1 (Hoistability).

hst(n) =
{∅ if n = e
Mn{[[(n, m)]]πhst(hst(m)) |m ∈ succ(n)} otherwise

Denoting by hst∗ the greatest solution of Equation System 6, we can now
determine the earliest safe computation points. To this end we introduce the
function E -HSTπ : N → P(Q). In essence, this function maps every node to the
set of predicates under whose control computation π can safely be hoisted to n,
but not to all of n’s predecessors. Intuitively, for every q in the image of E -HSTπ

for some n, it is safe to insert an occurrence of (q) hπ = π, while it is not for
some of n’s predecessors. Safety of the insertion here means that whenever the
computation of the right-hand side of the insertion guarded by q is committed,
then there is on every feasible program path starting at the insertion site and
reaching the end node an original computation of π guarded by a predicate, which
is implied by q. In other words, the value computed at the insertion site will be
used on every program path starting there. The term “feasible” is here related
to the definition of the operators M′

n introduced above. This means, if they
are defined with respect to line (i) only, feasible means every path according to
the usual nondeterministic interpretation of branching conditions. If it is defined
with respect to lines (i) and (ii), feasible means the subset of paths respecting
the implications taken care of by line (ii). If the computation of an insertion is
not committed, this feasibility constraint does not apply. In this case, there may
be paths on which this insertion has been added as an off-predicated one.

It is worth noting that certain insertions can be suppressed. This is because
insertions predicated by q, for which there is a q′ ∈ E -HSTπ(n) with q⇒ q′ are

Partial Redundancy Elimination on Predicated Code 271

obviously redundant. This is taken into account by means of a non-deterministic
cut operator defined on P(Q), which we denote by Cut . It maps an argument
Q ∈ P(Q) to a maximal subset Q′ of Q satisfying

∀ q, q′ ∈ Q′. If q⇒q′ then q = q′

Note that Q′ is usually not uniquely determined by this constraint. If there are
elements q and q′ in Q with q ⇐⇒ q′, then Cut has a non-trivial choice. The
function E -HSTπ : N → P(Q) is now defined as follows:

∀n ∈ N. E -HSTπ(n)=df Cut(hst∗(n)\
⋃

{hst∗(m) |m ∈ pred(n)})

As assignments are attached to edges rather than nodes, we introduce next the
“predicate” Insertcptπ : EX → P(Q) induced by E -HSTπ.7 It is defined by:8

∀ e ∈ EX . Insertcptπ(e)=df E -HSTπ(dst(e))

The index “cpt” (short for “conceptually”) reminds to the fact that insertions
need not immediately be done by an implementation. In fact, usually some of
them are globally redundant with respect to other insertions or off-predicated,
and will only be detected by the following redundancy analysis. For clarity,
however, we make this insertion step here explicit. It is given by:

– For all edges e ∈ E with Insertcptπ(e) �= ∅ do: Insert at the very end of e
an occurrence of the instantiated computation pattern (p) hπ := π, which
is preceded by the statement initializing the qualifying predicate p:9

p =
∨

{q | q ∈ Insertcptπ(e)}

Before proceeding with the redundancy analysis, it should be noted that
in the definition of E -HSTπ simply subtracting the union

⋃{hst∗(m) |m ∈
pred(n)} is sound because of the edge splitting we assumed for G. The edge
splitting guarantees that every edge ending in a join node is labeled by skip.
This guarantees the validity of the first part of Lemma 1, which directly implies
the required statements of its second and third part.

Lemma 1. 1. ∀n ∈ NJ ∀m ∈ pred(n). hst∗(n) = hst∗(m)
2. ∀n ∈ N ∀m ∈ pred(n). hst∗(m) =

⋃
hst∗(n′) |n′ ∈ pred(n)}

3. ∀ e ∈ E. dst(e) ∈ NJ ⇒ Insertcptπ(e) = ∅
7 Note that Insertcpt is not really a predicate as its domain is the powerset of Q. We

call it a predicate here in order to emphasize its role as counterpart of the insertion
predicate known from PRE-algorithms for conventional settings.

8 We assume that s is reached by a “virtual” edge evirtual, where in case of need, i.e.,
if E -HSTπ(s) �= ∅, the required insertions are made. The extension of E by evirtual

is indicated by the index X.
9 Usually, this statement must be split into a sequence of 3-address statements.

272 Jens Knoop et al.

3.1.3 Redundancy Analysis In this step, redundant insertions and compu-
tations are identified, which are globally redundant with respect to the hoisted
computations specified by Insertcptπ. This property is usually known as avail-
ability [22] or up-safety [17], and defined with respect to the original occurrences
of the computation pattern under consideration. Here, however, it is defined and
computed with respect to their hoisted counterparts. The redundancy analy-
sis requires a forward analysis of the program, and relies on the local semantic
functional

[[]]πrd : E → (P(Q) → P(Q))

where the index “rd” reminds to redundancy. It is defined as follows:

∀ e ∈ E ∀Q ∈ P(Q). [[e]]πrd(Q)=df CL(Insertcptπ(e) ∪ {q ∈ Q |Transp π(e)(q)})

The intuition given for the hoistability analysis by referring to very busyness
applies here analogously by referring to availability. In particular, like the hoista-
bility analysis, also the redundancy analysis, i.e., the functions [[e]]rd, e ∈ E,
rely on a closure operator. This time, however, it is a (lower) closure operator
on P(Q), essentially with respect to �, in symbols CL : P(Q) → P(Q). For all
Q ∈ P(Q), CL(Q) is the smallest set Q′ ∈ P(Q) such that

– Q ⊆ Q′

– If q′ ∈ Q′ and q ∈ Q such that q⇒q′, then q ∈ Q′

Like the upper closure operator CU , the lower closure operator CL introduces a
semantic flavour in the redundancy analysis. It allows us to syntactically detect
occurrences of predicated computations, which are redundant with respect to
insertions guarded by syntactically different predicates.

The fixed point characterization of the redundancy analysis is now as follows.

Equation System 2 (Redundancy).

rd(n) =
{
Insertcptπ(evirtual) if n = s⋂{[[(m, n)]]πrd(rd(m)) |m ∈ pred(n)} otherwise

Let rd∗ denote the greatest solution of Equation System 8. We are now ready
to present the transformation step of our PRE-algorithm.

3.2 Transformation Phase

3.2.1 Insertions and Replacements In this step all original computations
are replaced by the temporary hπ associated with the computation pattern π.
Moreover, all insertions made after the hoistability analysis,10 which are either
redundant or off-predicated are eliminated. While the first step, i.e., replacing the
original computations, is trivial, the second step, i.e., removing redundant and
10 For explanatory reasons we assumed that these insertions have been made. In an

actual implementation this can be avoided as sketched at the end of this section.

Partial Redundancy Elimination on Predicated Code 273

off-predicated insertions, relies on the predicate Remove π defined next. Here,
Ate, e ∈ EX , relies on information delivered by the preprocessing step discussed
in Section 3.1. Intuitively, Ate(p⇒false) is true, if and only if at edge e the
qualifying predicate p is equivalent to false. In this case, the computation inserted
under the control of p is off-predicated and can be suppressed.

– Remove π : E → P(Q) defined for all e ∈ E by Remove π(e)=df

{p ∈ Insertcptπ(e) |Ate(p⇒false) ∨ (∃ q ∈ rd∗(src(e)). p⇒ q)}

The final transformation step, which for the running example of Figure 2 yields
the basic optimization displayed in Figure 3, is as follows. Its result is the coun-
terpart of the busy-code-motion transformation of [17] for predicated code.

1. Remove all insertions at edges predicated by an element of Remove π(e).
2. Replace all original occurrences of the computation pattern π by the tem-

porary hπ, the one which is uniquely associated with π

Actually, the first step above reduces to replace the initialization statement

p =
∨

q∈Insertcpt π(e)

q by p =
∨

q∈Insertcpt π(e)\Remove π(e)

q

Pragmatics. As mentioned in Section 3.1, an implementation need not to
make insertions already after the hoistability analysis and to clean-up here. To
achieve this it suffices to replace the insertion predicate Insertcptπ by the predi-
cate Insertπ : EX → P(Q) defined as follows:11

∀ e ∈ EX . Insertπ(e)=df Insertcptπ(e)\Remove π(e)

4 Tuning the Algorithm

Central for the transformational power of the algorithm is the hoistability anal-
ysis. Essentially, it is controlled by the (1) closure operator CU , and the (2) meet
operator M. They are in fact the knobs for tuning the algorithm. We sketched
this already in Section 3.1, but demonstrate it here in more detail using the
example of Figure 4 for illustration.

Simply by adapting the definitions of CU and M, we obtain variants of the
algorithm ending up with either of the programs of Figure 4(b), (c), or (d).
While (b) is the most conservative one, which is safe in the strong sense known
from conventional PRE of not to introduce any kind of a new computation on
a path (this includes off-predicated computations, too.), (c) and (d) take the
specialities of predication into account. The transformation underlying (c) may
introduce off-predicated computations along some paths, however, off-predicated
11 Presenting the algorithm this way, the predicate Remove should be renamed to “Un-

necessaryInserts.” Unnecessary because they are totally redundant or off-predicated.

274 Jens Knoop et al.

by materialized predicates only (see the insertion guarded by r1). In contrast, the
transformation underlying (d) may introduce off-predicated computations along
some paths, which are off-predicated by both materialized and non-materialized
predicates (see the insertion guarded by r4. The disjunctive constituents r2
and r3 of r4 do not correspond to a materialized predicate).

5 Main Results

In this section we summarize the main results on our PRE-transformation, which
we call P-PRE, where the first “P” reminds to “Predicated.” First, P-PRE is
sound, i.e., insertions are safe, and replacements are correct. As usual, this means
that insertions do not introduce on any path a new (committed) computation of
the computation pattern under consideration. For replacements it means that at
every use site of a temporary, the temporary stores the same value that would
result from a re-evaluation of the computation it replaces. We have:

Theorem 1 (Soundness). P-PRE is sound, i.e., insertions are safe and re-
placements are correct.

Moreover, P-PRE reduces the computational cost of the argument program.
On every path the number of computations performed in the transformed pro-
gram is at most as large as in the original program.

Theorem 2 (Improvement). P-PRE is improving, i.e., the number of com-
putations of the pattern under consideration performed in the transformed pro-
gram is on every path smaller or equal to that in the original one.

Without taking execution frequency profiles into account, improvement is
actually the best we can hope for. This is in contrast to the conventional setting,
where PRE can be organized to produce computationally optimal results, i.e.,
programs, where no path can be improved any further by means of semantics
preserving PRE.12 On predicated code, however, we are faced with the problem
of incomparable minima. This is illustrated in the example of Figure 5. The
redundancy between the computations of a + b at edge 2 and 8 in Figure 5(a)
can only be removed by introducing a redundancy between the computations of
a+b at edge 4 and 11 (cf. Figure 5(b)). In fact, trying to remove this redundancy
without re-introducing the former one as shown in Figure 5(c) introduces on
the “left-most” path through this program fragment a committed computation
of a + b — the one guarded by q —, whenever p is false when passing edge 1.
In this case, however, the corresponding paths of the programs in Figure 5 (a)
and (b) would have been free of committed computations of a + b. Hence, the
two programs of Figure 5 (a) and (b) are of incomparable quality, since the “left-
most” path is improved by impairing the “right-most” one. Note that there is
no program which improves on both the programs of Figure 5(a) and (b).
12 Note that the impact of instruction level parallelism as provided e.g. by architec-

tures like the IA-64 is an orthogonal issue of later compilation phases, which applies
similarly to predicated and unpredicated code.

Partial Redundancy Elimination on Predicated Code 275

h = a+b(p1)

(p1) u = h

h = a+b(p3)

(p1) x = h

(q1) y = h

(p2) z = h

(p1) u = h

h = a+b(p3)

= a+bh(r1)

(p1) x = h

(q1) y = h

h(p2) z =

(p1) u = h(p1) x = h

(q1) y = h

h(p2) z =

= a+bh(r4)

r1 = p1 or q1
r2 = q1&p2
r3 = q2&p3
r4 = r1 or r2 or r3

(p0) a = ...

b)

3

2

1

6

7

8

5

12

13

14

11

4

9

10

14 16

15
q3

(p0) a = ...

(p3) v = h

q1

= a+bh(r1)
r1 = q1 or p2

17

q2

d)c)

3

2

1

6

7

8

5

12

13

14

11

4

9

10

14 16

15
q3

(p3) v = h

17

q2

(p0) a = ...
r1 = p1 or q1

q1h = a+b(p2) 3

2

6

7

8

5

12

13

14

11

4

9

10

14 16

15
q3

(p3) v = h

17
q1 q2

1

a)

3

2

(p0) a = ... 1

q1 q2

6

7

8

(p1) x = a+b

(q1) y = a+b

(p2) z = a+b

5

12

13

14

(p1) u = a+b

(p3) v = a+b

11

4

9

10

14 16

17

15
q3 q4 q4

q4

q4

Fig. 4. Tuning the algorithm is easy.

276 Jens Knoop et al.

Theorem 3 (Computational Optimality). On predicated code, computa-
tionally optimal PRE-results are in general impossible.

The impossibility of computational optimality for PRE in general is actually
quite typical for advanced settings. Examples, for which this has been shown,
too, include semantic PRE, interprocedurally syntactic PRE, and syntactic PRE
for parallel programs (cf. [15] for an overview). In fact, predication introduces
phenomena which are quite similar to those one encounters for semantic PRE.

2

3

5

6

7 10

8 11

9 12

1 4

2

3

5

6

7 10

8 11

9 12

1 4
(p) h = a+b (p) h = a+b

h(p) x =

(q) z = a+bh(p) y =

q = p
q = not p

b)

2

3

5

6

7 10

8 11

9 12

1 4
(p) h = a+b (p) h = a+b

h(p) x =

(q) z =h(p) y =

q = p
q = not p

(q) h = a+b

h

c)

(p) y = a+b (q) z = a+b

q = p
(p) x = a+b

q = not p

a)

Fig. 5. Computational optimality in general impossible.

Complexity. In comparison to traditional PRE, where a term pattern can be
placed in time linear in the program size, the data domain P(Q) the hoistability
and redundancy analyses operate on adds here the number of qualifying pred-
icates as a multiplicative factor to the worst-case time complexity. In practice,
however, we expect that the refined analyses working on P(Q) are almost as
efficient as their traditional counterparts working on the lattice of Boolean truth
values as the impact of qualifying predicates is usually limited to small program
fragments reducing the “effectively observable” chain length of P(Q).

6 Discussing Design Decisions

Up-safety/down-safety vs. hoistability/redundancy: Correctness. In
contrast to busy code motion of [17], where the computation of insertion points
is based on a pair of a down-safety and up-safety analysis,13 our approach here is
based on a pair of a hoistability and redundancy analysis. While this design deci-
sion is irrelevant for the conventional setting, it is important for the setting with
predicated code here. In the conventional setting of [17], placing a computation
at a certain program point is safe, if it is up-safe or down-safe. Intuitively, this
13 Down-safety and up-safety are also known as very busyness (anticipability) and

availability, respectively (cf. [23]).

Partial Redundancy Elimination on Predicated Code 277

means, placing a computation at a certain program point n is safe, i.e., it does
not introduce the computation of a new value on any path from the program’s
entry to its exit, if it is computed on all paths originating in s, before reaching n
without a subsequent modification of any of its operands, or if it is computed
on all paths after passing n without such a modification.

The correctness of the transformation as specified in [17] relies on this de-
composability of safety into up-safety and down-safety (cf. Safety Lemma [17]).

In the setting here, safety is not decomposable this way. This is demonstrated
in the example of Figure 6. Though a + b will be computed (and committed!)
on every (maximal) path passing the join node, hence it is safe at this point, it
is neither up-safe nor down-safe at this point.

Because of the failure of this lemma, which is crucial for the correctness proof
of the original transformation, we decided to base our approach on a hoistability
and a subsequent redundancy analysis. Correctness thus does not rely on the
decomposability of safety.

(p0) p1 = false

(p0) x = a+b

(p1) y = a+b (p1) z = a+b

(p0) p1 = true

a+b is safe at the join node, but
neither up-safe nor down-safe!

Fig. 6. Failure of the decomposability of safety into up-safety and down-safety.

Data domain Q vs. P(Q): Transformational power. A second important
design decision concerns the data domain the analyses involved in the transfor-
mation rely on. An obvious alternative to working on the power set of Q, would
be to work on Q exploiting e.g. the lattice structure of the PPG (if this is used by
the preprocess for providing predicate information), and to directly operate on Q
instead of P(Q). While the design decision above, was motivated by the issue of
correctness, the one here is motivated by the one of transformational power. In
fact, a hoistability analysis working on Q instead of P(Q) is inherently weaker
because of the domain’s greater coarseness in comparison to P(Q).

In essence, the reason for the loss of transformational power lies in the ob-
servation that “the more liberal a predicate is guarding the execution of a com-
putation, the less mobile it is.” This is illustrated in the example of Figure 7(a).
While the hoisting of a + b guarded by p0 is blocked by the assignment to a at

278 Jens Knoop et al.

edge 4, the one guarded by p is not because the conjunction of p and q is always
false. While, however, a hoistability analysis working on Q (correctly) detects
that a + b guarded by p0 can safely be hoisted to dst(4), it fails by merging the
informations on p and p0 that only p0, however, not p is blocked by the assign-
ment to a. In effect, this prevents hoisting the computation of a + b at 11 out of
the loop (cf. Figure 7(b)). In contrast, the finer granularity of P(Q) allows our
analysis to keep track on both informations. As illustrated in Figure 7(c), this
enables our analysis to remove the partially redundant computation of a + b at
edge 11 from the loop.

(p0) h = a+b h = a+b(p)

p false = false

(p0) x =

(p) y =

(q) a = ...

(p) z =h

h

h

p

p

p

p

false

false

false

false

false

false

false

p0 = p p0

cmp.unc p,q = a<b

b)

(p0) h = a+b

h = a+b(p)

(p) z =

(p0) x =

(p) y =

(q) a = ...

h

h h

{p}

{p}

{p}

{p}

{p}

{ }

{ }

{ }

{ }

{ }

{p}

{p,p0}

{p}

cmp.unc p,q = a<b

c)

1

2

3

4

6

5(p0) x = a+b

(q) a = ...

(p) y = a+b (p) z = a+b

cmp.unc p,q = a<b

12

11

10

9

8

7

14

13

a)

Fig. 7. Q vs. P(Q).

7 Conclusions

The advent of new architectures like the IA-64 supporting predicated code im-
poses new challenges on optimizing compilers. As demonstrated here for PRE,
classical techniques are usually inadequate when transferred straightforwardly.
In this article, we thus proposed a new approach for PRE, which is tailored for
predicated code, while simultaneously retaining as much as possible of the struc-
ture and philosophy underlying its traditional counterparts. The basic algorithm
of this approach can be considered the counterpart of busy code motion. It con-
stitutes the kernel of a family of PRE-algorithms for predicated code of varying
power. The members of these family can be derived simply by adapting certain
input parameters acting like tuning-knobs for the overall approach. In fact, the
pattern of the algorithms remains the same. Similarly, this holds for exchang-
ing the preprocessing step providing information on predicates. Both steps are
conceptually clearly separated in our approach making it extremely flexible and
highly adaptable to one’s specific needs. We believe that the methodology used
here to adapt a classical optimization to predicated code may be of important
impact for the transfer of other techniques, too. Currently, we are investigat-
ing an adaptation of the techniques for partial dead-code elimination [18] and
assignment motion [19].

Partial Redundancy Elimination on Predicated Code 279

References

1. J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control
dependence to data dependence. In Conf. Rec. 10th Symp. on Principles of Prog.
Lang. (POPL’83), pages 177 – 189. ACM, NY, 1983. 265

2. R. Bod́ık and S. Anik. Path-sensitive value-flow analysis. In Conf. Rec. 25th Symp.
on Principles of Prog. Lang. (POPL’98), pages 237 – 251. ACM, NY, 1998. 264

3. P. Briggs and K. D. Cooper. Effective partial redundancy elimination. In Proc.
ACM SIGPLAN Conf. Prog. Lang. Design and Impl. (PLDI’94), volume 29,6 of
ACM SIGPLAN Not., pages 159 – 170, 1994. 264

4. Intel Corp. IA-64 Application Developer’s Architecture Guide, May 1999. 261,
265

5. D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large programs
efficiently and informatively. In Proc. ACM SIGPLAN Conf. Prog. Lang. Design
and Impl. (PLDI’92), volume 27,7 of ACM SIGPLAN Not., pages 212 – 223, 1992.
264

6. C. Dulong. The IA-64 architecture at work. IEEE Computer, 31(7):24 – 32, 1998.
261, 265

7. A. E. Eichenberger and E. S. Davidson. Register allocation for predicated code.
In Proc. 28th Int. Symp. on Microarchitecture (MICRO-28), volume 26, pages 180
– 191, 1995. 268

8. J. Z. Fang. Compiler algorithms on If-conversion, speculative predicate assignment
and predicated code optimizations. In Proc. 9th Int. Workshop on Languages
and Compilers for Parallel Computing (LCPC’96), LNCS 1239, pages 135 – 153.
Springer-V., 1997. 263, 264

9. D. M. Gillies, D. C. R. Ju, R. Johnson, and M. Schlansker. Global predicate
analysis and its application to register allocation. In Proc. 29th Int. Symp. on
Microarchitecture (MICRO-29), volume 27, 1996. 268

10. R. Gupta, D. Berson, and J. Z. Fang. Path profile guided partial dead code elim-
ination using predication. In Proc. 5th IEEE Int. Conf. on Parallel Arch. and
Comp. Techniques (PACT’97), pages 102 – 115. IEEE Comp. Soc., CA, 1997. 264

11. M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland, 1977.
268

12. L. H. Holley and B. K. Rosen. Qualified data flow problems. IEEE Trans. Softw.
Eng., 1(SE-7):60 – 78, 1981. 261

13. R. Johnson and M. Schlansker. Analysis techniques for predicated code. In Proc.
29th Int. Symp. on Microarchitecture (MICRO-29), volume 27, pages 100 – 113,
1996. 268

14. J. Knoop, J.-F. Collard, and R. D. Ju. Partial redundancy elimination on pred-
icated code: Motivation and algorithm. Technical Report 731/2000, Fachbereich
Informatik, Universität Dortmund, Germany, 2000. 263, 264

15. J. Knoop and O. Rüthing. Optimization under the perspective of soundness, com-
pleteness, and reusability. In E.-R. Olderog and B. Steffen, editors, Correct System
Design – Recent Insights and Advances, LNCS State-of-the-Art Survey, vol. 1710,
pages 288 – 315. Springer-V., 1999. (Invited contribution). 276

16. J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. In Proc. ACM SIGPLAN
Conf. Prog. Lang. Design and Impl. (PLDI’92), volume 27,7 of ACM SIGPLAN
Not., pages 224 – 234, 1992. 261, 262, 264, 266, 268

17. J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion: Theory and practice.
ACM Trans. Prog. Lang. Syst., 16:1117–1155, 1994. 260, 261, 262, 264, 272, 273,
276, 277

280 Jens Knoop et al.

18. J. Knoop, O. Rüthing, and B. Steffen. Partial dead code elimination. In Proc.
ACM SIGPLAN Conf. Prog. Lang. Design and Impl. (PLDI’94), volume 29,6 of
ACM SIGPLAN Not., pages 147 – 158, 1994. 268, 279

19. J. Knoop, O. Rüthing, and B. Steffen. The power of assignment motion. In Proc.
ACM SIGPLAN Conf. Prog. Lang. Design and Impl. (PLDI’95), volume 30,6 of
ACM SIGPLAN Not., pages 233 – 245, 1995. 279

20. J. Knoop, O. Rüthing, and B. Steffen. Code motion and code placement: Just
synomyms? In Proc. 7th European Symp. on Programming (ESOP’98), LNCS
1381, pages 154 – 169. Springer-V., 1998. 263, 264

21. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. In Proc. 25th Int.
Symp. on Microarchitecture (MICRO-25), volume 23:1&2, pages 45 – 54, 1992.
268

22. E. Morel and C. Renvoise. Global optimization by suppression of partial redun-
dancies. Comm. ACM, 22(2):96 – 103, 1979. 263, 264, 268, 272

23. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, CA, 1997. 276

24. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations. In Conf. Rec. 15th Symp. Principles of Prog. Lang. (POPL’88),
pages 2 – 27. ACM, NY, 1988. 264

25. O. Rüthing, J. Knoop, and B. Steffen. Sparse code motion. In Conf. Rec. 27th
Symp. Principles of Prog. Lang. (POPL 2000), pages 170 – 183. ACM, NY, 2000.
264, 268

26. B. Steffen, J. Knoop, and O. Rüthing. The value flow graph: A program representa-
tion for optimal program transformations. In Proc. 3rd Europ. Symp. Programming
(ESOP’90), LNCS 432, pages 389 – 405. Springer-V., 1990. 264

27. N. J. Warter, S. A. Mahlke, Wen-Mei Hwu, and B. R. Rau. Reverse if-conversion.
In Proc. ACM SIGPLAN Conf. Prog. Lang. Design and Impl. (PLDI’93), volume
28,6 of ACM SIGPLAN Not., pages 290–299, 1993. 263

TVLA: A System for Implementing

Static Analyses�

Tal Lev-Ami and Mooly Sagiv

Department of Computer Science, Tel-Aviv University, Israel
{tla,sagiv}@math.tau.ac.il

Abstract. We present TVLA (Three-Valued-Logic Analyzer). TVLA is
a “YACC”-like framework for automatically constructing static-analysis
algorithms from an operational semantics, where the operational seman-
tics is specified using logical formulae. TVLA has been implemented in
Java and was successfully used to perform shape analysis on programs
manipulating linked data structures (singly and doubly linked lists), to
prove safety properties of Mobile Ambients, and to verify the partial
correctness of several sorting programs.

1 Introduction

The abstract-interpretation technique [5] for static analysis allows one to sum-
marize the behavior of a statement on an infinite set of possible memory states.
This is sometimes called an abstract semantics for the statement. With this
methodology it is necessary to show that the abstract semantics is conserva-
tive, i.e., it summarizes the (concrete) operational semantics of the statement
for every possible memory state. Intuitively speaking, the operational semantics
of a statement is a formal definition of an interpreter for this statement. This
operational semantics is usually quite natural. However, designing and imple-
menting sound and reasonably precise abstract semantics is quite cumbersome
(the best induced abstract semantics defined in [5] is usually not computable).
This is particularly true in problems like shape analysis and pointer analysis
(e.g., see [6,17,15]), where the operational semantics involves destructive mem-
ory updates.

In this paper, we present TVLA (Three-Valued-Logic Analyzer), a system
for automatically generating a static-analysis algorithm from the operational se-
mantics of a given program. The operational semantics is written in a special
form, based on first-order predicate logic with transitive closure. An additional
input to TVLA is an abstract representation of all the possible memory states at
the beginning of the analyzed program. TVLA automatically generates the ab-
stract semantics, and, for each program point, produces a conservative abstract
representation of the memory states at that point.

� Supported, in part, by a grant from the Academy of Science, Israel.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 280–302, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

TVLA: A System for Implementing Static Analyses 281

1.1 Main Results

TVLA is intended as a proof of concept for intra-procedural shape analysis, and
other static-analysis algorithms. It is a test-bed in which it is quite easy to try
out new ideas. The theory behind TVLA is based on [16,17] (see Sect. 5.2). The
system is publicly available from http://www.math.tau.ac.il/∼tla.

TVLA was implemented in Java and has been successfully used to perform
shape analysis on programs manipulating linked data structures (singly and
doubly linked lists), to prove safety properties of Mobile Ambients, and to verify
partial correctness of several programs. We also report on some programs that
are too complex for the current system. The system was tested on a Pentium
II 400 MHz running Linux with JDK 1.2. All the timing information about the
system refers to this computer1.

Applications TVLA has been utilized to analyze a variety of small but intricate
programs from the groups described below.

Singly Linked Lists. We performed shape analysis on the set of programs ma-
nipulating singly linked lists used in [7], including ones for searching, element
insertion, and element deletion. These programs perform destructive updating.
Some of these programs are (deliberately) semantically incorrect, and we are
able to locate the bugs in them. The analysis times are reported in AppendixA.

Doubly Linked Lists. Doubly linked lists are more challenging than singly linked
lists because they create shared memory cells and cycles. We have analyzed a
program that inserts a new element into an arbitrary place in a doubly linked
list, and the analysis was able to conclude that the insertion results in a doubly
linked list.

Sorting Programs. A different kind of application of TVLA is for program veri-
fication (see [11]). We applied TVLA to several implementations of sorting algo-
rithms, and proved that, given a possibly unsorted linked list as input, we always
end up with a sorted list. This is proven without the need for programmer-
specified loop invariants. Instead, the operational semantics also keeps track of
inequalities between the list elements. We are encouraged by the fact that we
have successfully verified both insert sort and bubble sort on singly linked lists.

Mobile Ambients. We implemented the analysis of [13] and found out that it is
imprecise and quite slow. This motivated us to generalize the techniques pre-
sented in [16,17] in order to guarantee that only a constant number of structures
arise at each program point (see Sect. 3.4). With this extension, TVLA was able
to successfully analyze a slight variant of the original specification used in [13].
This took 336 CPU seconds and the analysis proved the necessary properties
(uniqueness of ambient instance and mutual exclusion) precisely.
1 Our experience indicates that using JVM on Windows, the system runs about 20%
faster.

282 Tal Lev-Ami and Mooly Sagiv

1.2 Outline of the Paper

The rest of the paper is organized as follows. In Sect. 2, we give a primer on
the use of 3-valued logic in static analysis. Sect. 3 contains an overview of the
TVLA system and its capabilities. Sect. 4 gives a description of the analyses
done with the system. We conclude by summarizing related work and further
research directions (Sect. 5). Appendix A presents the empirical results for test
runs of the system. Appendix B presents an operational semantics for state-
ments manipulating nodes of singly linked lists. For other aspects of TVLA,
including algorithms, proofs, description of other features, additional examples,
and a user’s manual, we refer the reader to [10].

A program that destructively reverses a singly linked list is shown in Fig. 1.
The shape analysis of this program serves as a running example in this paper.

/* list.h */

typedef struct node

{
struct node *n;

int data;

} *L;

/* reverse.c */

#include "list.h"

L reverse(L x) {
L y, t;

y = NULL;

while (x != NULL) {
t = y;

y = x;

x = x->n;

y->n = t;

t = NULL;

}
return y;

}
(a) (b)

Fig. 1. (a) Declaration of a linked-list data type in C. (b) A C function that
uses destructive updates to reverse the list pointed to by parameter x.

2 A Primer on 3-Valued-Logic-Based Analysis

Kleene’s 3-valued logic is an extension of ordinary 2-valued logic with the special
value of 1/2 (unknown) for cases that can be either 1 or 0. Kleene’s interpretation
of the propositional operators is given in Table 1. We say that the values 0 and 1
are definite values and that 1/2 is an indefinite value.

TVLA: A System for Implementing Static Analyses 283

Table 1. Kleene’s 3-valued interpretation of the propositional operators.

∧ 0 1 1/2

0 0 0 0
1 0 1 1/2
1/2 0 1/2 1/2

∨ 0 1 1/2

0 0 1 1/2
1 1 1 1
1/2 1/2 1 1/2

¬
0 1
1 0
1/2 1/2

2.1 Representing Memory States via Logical Structures

Our vocabulary includes a set of predicate symbols partitioned into two disjoint
sets: core and instrumentation predicates. Instrumentation predicates are used
to observe derived properties based on core predicates.

A 2-valued logical structure S is comprised of a set of individuals (nodes)
called a universe, denoted by US , and an interpretation over that universe for
a set of predicate symbols. The interpretation of a predicate symbol p in S is
denoted by pS . For every (core and instrumentation) predicate p of arity k, pS is
a function pS : (US)k → {0, 1}. 2-valued structures are used to represent memory
states used in the operational semantics of the program.

TVLA makes an explicit assumption that the set of predicate symbols used
throughout the analysis is fixed. (The number of individuals in structures can
vary throughout the analysis.)

TVLA only supports predicates of arity ≤ 2; such logical structures can be
thought of as directed graphs. A directed edge labeled by p from u1 to u2 denotes
that pS(u1, u2) = 1. Also, we draw p inside a node u when pS(u) = 1.

Table 2. The core predicates used in the analysis of the running example.

Predicate Intended Meaning

x(v) Is v pointed to by variable x?

y(v) Is v pointed to by variable y?

t(v) Is v pointed to by variable t?

n(v1, v2) Does the n-field of v1 point to v2?

Example 1. In the running example, a 2-valued structure represents a memory
state (also called a store); an individual corresponds to a list element. The in-
tended meaning of the core predicates is given in Table 2, and the intended
meaning of the instrumentation predicates is given in Table 3 (for the moment
ignore the third column). The store in Fig. 2 is represented by the 2-valued struc-
ture S3 shown in Fig. 3. The structure S3 has four nodes, u0, u1, u2, and u3

representing the four list elements. This representation intentionally ignores the
values of the data field, which are usually immaterial for the analysis.

284 Tal Lev-Ami and Mooly Sagiv

Table 3. The instrumentation predicates used in the analysis of the running
example and their meaning. Similar instrumentation predicates are used in all
of our shape analyses for singly linked lists. The defining formulae are explained
in Sect. 2.3.

Predicate Intended Meaning Defining Formula

r[n, x](v) Is v reachable from program ∃v1 : (x(v1) ∧ n∗(v1, v))
variable xusing field n?

r[n, y](v) Is v reachable from program ∃v1 : (y(v1) ∧ n∗(v1, v))
variable y using field n?

r[n, t](v) Is v reachable from program ∃v1 : (t(v1) ∧ n∗(v1, v))
variable t using field n?

c[n](v) Does v reside on a directed n+(v, v)
cycle via dereferences along n-fields?

is[n](v) Is v pointed to by more ∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 �= v2

than one n-field

Pointer variables are represented by unary predicates (i.e., xS(u) = 1 if the
variable xpoints to the list element represented by u). In Fig. 3, the variable xis
represented by the unary predicate x, which is 1 only for u0. Notice that TVLA
allows the user to specify that a unary predicate is drawn as a box with an arrow
into each node for which it holds. In Fig. 3, x is drawn as a box and has an arrow
to u0. Pointer fields within the list elements are represented as binary predicates
(i.e., nS(u1, u2) = 1 if the n-field of u1 points to u2).

The instrumentation predicate r[n, x] holds for list elements that are reach-
able from program variable x, possibly using a sequence of accesses through the
n-field. The structure S3 in Fig. 3 has r[n, x]S3 set to 1 for all the nodes because
they are all reachable from x. An important aspect of explicitly storing r[n, x]
is that we can incrementally compute the appropriate values for the predicates
after execution of the program statement (see [17, Sect. 6.1]). For example, for
the statement y = x, the nodes reachable from y after the statement executes
are the same as the nodes reachable from x.

The instrumentation predicate is[n] holds for nodes shared by n-fields (a
node is shared by n-fields, if it is pointed to by more than one list element using
the field n). In Fig. 3, all the elements of the list are unshared, and thus is[n]S3
is 0 for all of them.

The instrumentation predicate c[n] holds for nodes on a cycle of accesses
along n-fields. We use the cyclicity instrumentation to avoid performing a
transitive-closure operation when updating the reachability information.
In Fig. 3, the list is acyclic, and thus c[n]S3 is 0 for all of the nodes.

In fact, throughout the analysis of the running example, is[n]S and c[n]S

are 0 for all of the nodes.

TVLA: A System for Implementing Static Analyses 285

x 5 8 n 1 n 4 NULLn

Fig. 2. A possible store for the running example.

x u0
r[n,x]

u1
r[n,x]

n u2
r[n,x]

n u3
r[n,x]

n

Fig. 3. A logical structure S3 representing the store shown in Fig. 2 in a graphical
representation.

2.2 Conservative Representation of Sets of Memory States via
3-valued Structures

Like 2-valued structures, a 3-valued logical structure S is also comprised of a
universe US , and an interpretation pS for every predicate symbol p. But, for
every predicate p of arity k, pS is a function pS : (US)k → {0, 1, 1/2}, where 1/2
explicitly captures unknown predicate values.

3-valued logical structures are also drawn as directed graphs. Definite values
are drawn as in the 2-valued structures. Binary indefinite (1/2) predicate values
are drawn as dotted directed edges. Unary indefinite predicate values are drawn
inside the nodes and marked as indefinite (this does not occur in the running
example).

Let S� be a 2-valued structure, S be a 3-valued structure, and
f : US� →US such that f is surjective. We say that f embeds S� into S if for ev-
ery predicate p of arity k and u1, u2, . . . , uk ∈ US�

, either pS�

(u1, u2, . . . , uk) =
pS(f(u1), f(u2), . . . , f(uk)) or pS(f(u1), f(u2), . . . , f(uk)) = 1/2. We say that S
conservatively represents all the 2-valued structures that can be embedded into it
with some function f . Thus, S can compactly represent many structures.

x u0
r[n,x]

u
r[n,x]

n

n

Fig. 4. A 3-valued structure S4 representing lists of length 2 or more that are
pointed to by program variable x(e.g., S3).

286 Tal Lev-Ami and Mooly Sagiv

Example 2. In the running example, the 3-valued structure S4 shown in Fig. 4
represents the 2-valued structure S3 for f(u0) = u0 and f(u1) = f(u2) =
f(u3) = u. In fact, the structure shown in Fig. 4 represents all the lists with
two or more elements.

The unary predicate symbol x has x
S4(u0) = 1, indicating that the program

variable xis known to point to the list element represented by u0, and x
S4(u)=0,

indicating that x is known not to point to any of the list elements represented
by u.

The binary predicate symbol n has n
S4(u0, u) = 1/2, indicating that the n-

field of the list element represented by u0 may point to a list element represented
by u — namely the second list element (u1 in Fig. 3) — but does not point to
all the list elements represented by u (e.g. u2 in Fig. 3). Also, n

S4(u, u) = 1/2,
indicating that the n-field of a list element represented by u may point to another
list element represented by u or even to itself but does not point to all the list
elements represented by u (e.g., in Fig. 3 the n-field of u2 points to u3, but not
to u1).

Summary nodes Nodes in a 3-valued structure that may represent more than
one individual from a given 2-valued structure are called summary nodes. For ex-
ample, in the structure shown in Fig. 3, the nodes u1, u2, and u3 are represented
by the single node u in Fig. 4.

TVLA uses a special designated unary predicate sm to maintain summary-
node information. Such a summary node w has smS(w) = 1/2, indicating that it
may represent more than one node in the embedded 2-valued structures. These
nodes are graphically drawn as dotted ellipsis. In contrast, if smS(w) = 0 then w
is known to represent a unique node. Only nodes with smS(w) = 1/2 can have
more than one node mapped to them by the embedding function.

The exact choice of which nodes should be summarized is crucial for the
precision of the analysis and is discussed in Sect. 3.2.

2.3 Formulae

Properties of structures can be extracted by evaluating formulae. We use first-
order logic with transitive closure and equality, but without function symbols
and constant symbols. For example, the formula

∃v1 : (x(v1) ∧ n∗(v1, v)) (1)

extracts reachability information. Here, n∗ denotes the reflexive transitive closure
of the predicate n. Therefore, in every structure S, x(v1) evaluates to 1 if v1 is
the node pointed to by xand n∗(v1, v) evaluates to 1 in S if there exists a path
of zero or more n-edges from v1 to v. The third column of Table 3 displays
the defining formula of all the instrumentation predicates used in the running
example.

We say that a formula ϕ is potentially satisfied on a structure S if there
exists an assignment that evaluates ϕ to 1 or 1/2 on S.

TVLA: A System for Implementing Static Analyses 287

The Embedding Theorem. The Embedding Theorem (see [16, Theorem 3.7])
states that any formula that evaluates to a definite value in a 3-valued structure
evaluates to the same value in all the 2-valued structures embedded into that
structure. The Embedding Theorem is the foundation for the use of 3-valued
logic in static-analysis: it ensures that it is sensible to reinterpret on the 3-
valued structures the formulae, that when interpreted in 2-valued logic, define
the operational semantics.

TVLA requires each instrumentation predicate to be associated with a for-
mula over the core predicates defining its meaning. For example, evaluating
formula (1) on the 3-valued structure shown in Fig. 4, yields 1 for v 	→u0, which
indicates that the list element represented by u0 is reachable from variable x,
and 1/2 for v 	→u, which indicates that the list elements represented by u may
or may not be reachable from program variable x. Notice that r[n, x]S4(u) = 1,
which is more precise. This is a general principle with instrumentation predicates
(referred to as the instrumentation principle in [16]). The stored information can
be more precise than the result of evaluating the corresponding formula.

3 System Description

The input to TVLA consists of two files: (i) a TVS (Three Valued logical Struc-
ture) file containing a textual representation of the input structures (see Fig. 5),
and (ii) a TVP (Three Valued Program) file, which includes the operational
semantics and the association of the operational semantics with the edges of
the control flow graph (CFG) of the analyzed program (see Figs. 6 and 7). To
simplify the specification, we allow the operational semantics to be specific to
the analyzed data type (e.g., singly linked lists in the running example). In the
conversion of a C program into a TVP file, some normalizing transformations
are applied (see [4,15]). For example, the assignment y->n=t is broken into two
statements: (i) y->n=NULL, followed by (ii) y->n=t assuming that y->n==NULL.
The full operational semantics for programs manipulating singly-linked-lists of
type L is given in Appendix B.

%n = {u, u0}

%p =

8
>><
>>:

sm = {u : 1/2}
n = {u → u : 1/2, u0 → u : 1/2}
x = {u0 : 1}
r[n, x] = {u : 1, u0 : 1}

9
>>=
>>;

Fig. 5. A TVS structure describing a singly linked list pointed to by x(cf. Fig. 4).

288 Tal Lev-Ami and Mooly Sagiv

3.1 TVP

There are two challenging aspects to writing a good TVP specification: one is the
design of the instrumentation predicates, which is important for the precision of
the analysis; the other is writing the operational semantics manipulating these
predicates.

An important observation is that the TVP specification should always be
thought of in the terms of the concrete 2-valued world rather than the ab-
stract 3-valued world: the Embedding Theorem guarantees the soundness of the
reinterpretation of the formulae in the abstract world. This is an application of
the well-known credo of Patrick and Radhia Cousot that the design of a static
analysis always starts with a concrete operational semantics.

/* Declarations */
%s PVar {x, y, t} // The set of program variables
#include “pred.tvp” // Core and Instrumentation Predicates
%%
/* An Operational Semantics */
#include “cond.tvp” // Operational Semantics of Conditions
#include “stat.tvp” // Operational Semantics of Statements
%%
/* The program’s CFG and the effect of its edges */
n1 Set Null L(y) n2 // y = NULL;
n2 Is Null Var(x) exit // x == NULL
n2 Is Not Null Var(x) n3 // x != NULL
n3 Copy Var L(t, y) n4 // t = y;
n4 Copy Var L(y, x) n5 // y = x;
n5 Get Next L(x, x) n6 // x = x->n;
n6 Set Next Null L(y) n7 // y->n = NULL;
n7 Set Next L(y, t) n8 // y->n = t;
n8 Set Null L(t) n2 // t = NULL;

Fig. 6. The TVP file for the running example shown in Fig. 1. Files pred.tvp,
cond.tvp, and stat.tvp are given in Figures 7, 11, and 12 respectively.

The TVP file is divided into sections separated by %%, given in the order
described below.

Declarations The first section of the TVP file contains all the declarations
needed for the analysis.

Sets. The first declaration in the TVP file is the set PVar, which specifies the
variables used in the program (here x, y, and t). In the remainder of the speci-
fication, set notation allows the user to define the operational semantics for all
programs manipulating a certain data type, i.e., it is parametric in PVar.

TVLA: A System for Implementing Static Analyses 289

Predicates. The predicates for manipulating singly linked lists as declared in
Fig. 1(a) are given in Fig. 7. The foreach clause iterates over all the program
variables in the set PVar and for each of them defines the appropriate core
predicate — the unary predicates x, y, and t (box tells TVLA to display the
predicate as a box). The binary predicate n represents the pointer field n.

For readability, we use some mathematical symbols here that are written in
C-like syntax in the actual TVP file (see [10, Appendix B]).

The second foreach clause (in Fig. 7) uses PVar to define the reachability
instrumentation predicates for each of the variables of the program (as opposed
to Table 3, which is program specific). Thus, to analyze other programs that
manipulate singly linked lists the only declaration that is changed is that of
PVar.

The fact that the TVP file is specific for the data type L declared in Fig. 1(a)
allows us to explicitly refer to n.

/* pred.tvp */
foreach (z in PVar) {

%p z(v1) unique box // Core predicates corresponding to program variables
}
%p n(v1, v2) function // n-field core predicate
%i is[n](v) = ∃v1, v2 : (n(v1, v) ∧ n(v2, v) ∧ v1 �= v2) // Is shared instrumentation
foreach (z in PVar) {

%i r[n, z](v) = ∃v1 : (z(v1) ∧ n∗(v1, v)) // Reachability instrumentation
}
%i c[n](v) = ∃v! : n(v, v1) ∧ n∗(v1, v) // Cyclicity instrumentation

Fig. 7. The TVP predicate declarations for manipulating linked lists as declared
in Fig. 1 (a). The core predicates are taken from Table 2. Instrumentation pred-
icates are taken from Table 3.

Functional properties. TVLA also supports a concept of functional properties
borrowed from the database community. Since program variables can point to at
most one heap cell at a time, they are declared as unique. The binary predicate n
represents the pointer field n; the n-field of each list element can only point to
at most one target list element, and thus n is declared as a (partial) function.

Actions In the second section of the TVP file, we define actions that specify the
operational semantics of program statements and conditions. An action defines
a 2-valued structure transformer. The actions are associated with CFG edges in
the third section of the TVP file.

An action specification consists of several parts, each of which is optional
(the meaning of these constructs is explained in Sect. 3.2). There are three major
parts to the action: (i) Focus formulae (explained in Sect. 3.2), (ii) precondition

290 Tal Lev-Ami and Mooly Sagiv

formula specifying when the action is evaluated, and (iii) update formulae speci-
fying the actual structure transformer. For example, the action Is Null Var(x1)
(see Fig. 11) specifies when the true branch of the condition x1 == NULL, is en-
abled by means of the formula ¬∃v : x1(v), which holds if x1 does not point
to any list element. Since this condition has no side effects there are no update
formulae associated with this action and thus the structure remains unchanged.
As another example, the action Copy Var L(x1, x2) (see Fig. 12) specifies the
semantics the statement x1 = x2. It has no precondition, and its side effect is
to set the x1 predicate to x2 and the r[n, x1] predicate to r[n, x2].

CFG The third section of the TVP specification is the CFG with actions asso-
ciated with each of its edges. The edges are specified as source action target.
The first CFG node that appears in the specification is the entry node of the
CFG. The CFG specification for the running example, is given in Fig. 6.

3.2 Process

This section presents a more detailed explanation, using the example shown in
Fig. 8, of how the effect of an action associated with a CFG edge is computed. To
complete the picture, an iterative (fixed-point) algorithm to compute the result
of static-analysis is presented in Sect. 3.3.

Focus First, the Focus operation converts the input structure into a more re-
fined set of structures that represents the same 2-valued structures as the input
structure. Given a formula, Focus guarantees that the formula never evaluates
to 1/2 in the focused structures. Focus (and Coerce) are semantic reductions
(see [5]), i.e., they transfer a 3-valued structure into a set of 3-valued structures
representing the same memory states. An algorithm for Focus of a general for-
mula is given in [10]. In the running example, the most interesting focus formula
is ∃v1 : x(v1) ∧ n(v1, v), which determines the value of the variable x after the
Get Next L(x, x) action (which corresponds to the statement x = x->n). Fo-
cusing on this formula ensures that xS(u) is definite at every node u in every
structure S after the action. Fig. 8 shows how the structure Sin is focused for
this action. Three cases are considered in refining Sin: (i) The n-field of u0 does
not point to any of the list elements represented by u (Sf0); (ii) The n-field of u0

points to all of the list elements represented by u (Sf1); and (iii) The n-field of u0

points to only some of the list elements represented by u (Sf2): u is bifurcated
into two nodes — nodes pointed to by the n-field of u0 are represented by u.1,
and nodes not pointed to by the n-field of u0 are represented by u.0.

As explained later, the result can be improved (e.g., Sf0 can be discarded
since u is not reachable from x, and yet r[n, x]Sf0 (u) = 1). This is solved by
the Coerce operation, which is applied after the abstract interpretation of the
statement (see Sect. 3.2).

TVLA: A System for Implementing Static Analyses 291

input
structure

x
u0

r[n,x]
r[n,y]

u
r[n,x]
r[n,y]

n

y

n

Sin

focus
formulae

{∃v1 : x(v1) ∧ n(v1, v)}

focused
structures

x

u0
r[n,x]
r[n,y]

u
r[n,x]
r[n,y]

y

n

x

u0
r[n,x]
r[n,y]

u
r[n,x]
r[n,y]

n

y

n

x
u0

r[n,x]
r[n,y]

u.1
r[n,x]
r[n,y]

n
y

n

u.0
r[n,x]
r[n,y]

n
n

Sf0 Sf1 Sf2

update
formulae

Predicate Update Formula

x(v) ∃v1 : x(v1) ∧ n(v1, v)

r[n, x](v) r[n, x](v) ∧ (c[n](v) ∨ ¬x(v))

output
structures

y

u0
r[n,x]
r[n,y]

u
r[n,y] n

x

u
r[n,x]
r[n,y]

n

y

u0
r[n,y]

n

x

u.1
r[n,x]
r[n,y]

n

y u0
r[n,y]

n

u.0
r[n,x]
r[n,y]

n
n

So0 So1 So2

coerced
structures

x

u
r[n,x]
r[n,y]

y

u0
r[n,y]

n

x

u.1
r[n,x]
r[n,y]

y u0
r[n,y]

n

u.0
r[n,x]
r[n,y]

n
n

Sc1 Sc2

Fig. 8. The first application of abstract interpretation for the statement x =
x->n in the reverse function shown in Fig. 1.

292 Tal Lev-Ami and Mooly Sagiv

Preconditions After Focus, preconditions are evaluated. If the precondition
formula is potentially satisfied, then the action is performed; otherwise, the ac-
tion is ignored. This mechanism comes in handy for (partially) interpreting pro-
gram conditions.

In the running example, the loop while (x != NULL) has two outgoing edges
in the CFG: one with the precondition ¬(∃v : x(v)), specifying that if x is NULL
the statement following the loop is executed (the exit in our case). The other
edge has the precondition ∃v : x(v), specifying that if x is not NULL the loop
body is executed.

Update Formulae The effect of the operational semantics of a statement is
described by a set of update formulae defining the value of each predicate after
the statement’s action. The Embedding Theorem enables us to reevaluate the
formulae on the abstract structures and know that the result provides a conser-
vative abstract semantics. If no update formula is specified for a predicate, it is
left unchanged by the action.

In Fig. 8, the effect of the Get Next L action (x = x->n) is computed using
the following update formulae: (i) x(v) = ∃v1 : x(v1) ∧ n(v1, v), (ii) r[n, x](v) =
r[n, x](v) ∧ (c[n](v) ∨ ¬x(v)). The first formula updates the xvariable to be the
n-successor of the original x. The second formula updates the information about
which nodes are reachable from xafter the action: A node is reachable from x
after the action if it is reachable from xbefore the action, except for the node
directly pointed to by x(unless xappears on an n-cycle, in which case the node
pointed to by xis still reachable even though we advanced to its n-successor).
For Sf2, the update formula for x evaluates to 1 for v 	→u.1 and to 0 for all
nodes other than u.1. Therefore, after the action, the resulting structure So2

has xSo2(u.1) = 1 but xSo2(u.0) = 0 and xSo2(u0) = 0.

Coerce The last stage of the computation is the Coerce operation, which uses
a set of consistency rules (defined in [16,17,10]) to make structures more precise
by removing unnecessary indefinite values and discarding infeasible structures.
The set of consistency rules used is independent of the current action being per-
formed. See [10] for a detailed description of the Coerce algorithm used in TVLA
and how TVLA automatically generated consistency rules from the instrumen-
tation predicates and the functional properties of predicates.

For example, Fig. 8 shows how the Coerce operation improves precision. The
structure So0 is infeasible because the node u must be reachable from y (since
r[n, y]So0(u) = 1) and this is not the case in So0. In the structure So1, u is no
longer a summary node because x is unique; u’s self-loop is removed because u
already has an incoming n-field and it does not represent a shared list element
(is[n]So1(u) = 0). For the same reason, in So2, u.1 is no longer a summary node;
Also, the list element represented by u.1 already has an incoming n-field and
it is not shared (is[n]So2(u.1) = 0), and thus u.1’s self-loop is removed. For a
similar reason, the indefinite n-edge from u.0 to u.1 is removed.

TVLA: A System for Implementing Static Analyses 293

Blur To guarantee that the analysis terminates on programs containing loops,
we require the number of potential structures for a given program to be finite.

Toward this end, we define the concept of a bounded structure. For each
analysis, we choose a set of unary predicates called the abstraction predicates.2

In the bounded structure, two nodes u1, u2 are merged if pS(u1) = pS(u2) for
each abstraction predicate p. When nodes are merged, the predicate values for
their non-abstraction predicates are joined (i.e., the result is 1/2 if their values
are different). This is a form of widening (see [5]). The operation of computing
this kind of bounded structure is called Blur. The choice of abstraction predicates
is very important for the balance between space and precision. TVLA allows the
user to select the abstraction predicates. By default, all the unary predicates are
abstraction predicates, as in the running example.

Example 3. In Fig. 4, the nodes u0 and u are differentiated by the fact that
x

S4(u0) = 1, whereas x
S4(u) = 0. (All other predicates are 0.) If x was not

an abstraction predicate, then the appropriate bounded structure S′
4 would have

had a single node, say u, with x
S′
4(u) = 1/2 and n

S′
4(u, u) = 1/2.

After the action is computed and Coerce applied, the Blur operation is used
to transform the output structures into bounded structures, thereby generating
more compact, but potentially less precise structures.

3.3 Output

Now that we have a method for computing the effect of a single action, what
remains is to compute the effect of the whole program, i.e., to compute what
structures can arise at each CFG node if the program was used on the given
input structures. We use a standard iterative algorithm (e.g., see [12]) with a
set of bounded structures as the abstract elements. A new structure is added
to the set if the set does not already contain a member that is isomorphic to
the new structure. In the running example, the analysis terminates when the
structures created in the fourth iteration are isomorphic to the ones created in
the third iteration (see Fig. 9). We can see that the analysis precisely captures
the behavior of the reverse program.

3.4 Additional Features

One of the main features of TVLA is the support of single structure analysis.
Sometimes when the number of structures that arise at each program point
is too large, it is better to merge these structures into a single structure that
represents at least the same set of 2-valued structures. TVLA enhances this
feature even more by allowing the user to specify that some chosen constant
number of structures will be associated with each program point.
2 In [16,17] the abstraction predicates are all the unary predicates.

294 Tal Lev-Ami and Mooly Sagiv

Iter Structures

0

x

r[n,x] r[n,x]
n

n

1

x

r[n,x] r[n,y]

y

x

r[n,x]

r[n,x]

n

y

r[n,y]

n

2

y

r[n,y] r[n,y]
n

x

r[n,x]

y

r[n,y] r[n,y]
n

x

r[n,x]

r[n,x]

n

y

r[n,y] r[n,y]
n

n

3

y

r[n,y] r[n,y]
n

n
x

r[n,x]

y

r[n,y] r[n,y]
n

n
x

r[n,x] r[n,x]
n

y

r[n,y] r[n,y]
n

n

n

Fig. 9. The structures arising in the reverse function shown in Fig. 1 at CFG
node n2 for the input structure shown in Fig. 4.

x

u0
r[n,x]

u
r[n,x]

n

last

u1
r[n,last]
r[n,x]

n

n
x

u3
r[n,x]

u2
r[n,x]=1/2

n

last

u4
r[n,last]

r[n,x]=1/2

n

n

Fig. 10. The structure before and after the rotate function.

TVLA: A System for Implementing Static Analyses 295

More specifically, nullary predicates (i.e., predicates of 0-arity) are used to
discriminate between different structures. For example, for linked lists we use
the predicate nn[x]() = ∃v : x(v) which discriminates between structures in
which xactually points to a list element from structures in which it does not. For
example, consider a structure S1 in which both xand y point to list elements, and
another structure S2 in which both x and y are NULL. Merging S1 and S2 will
loose the information that x and y are simultaneously allocated or not allocated.
Notice that S1 has nn[x] = nn[y] = 1 and S2 has nn[x] = nn[y] = 0 therefore S1

and S2 will not be merged together.
In some cases (such as safety analysis of Mobile Ambients, see [13]) this option

makes an otherwise infeasible analysis run in a reasonable time. However, there
are other cases in which the single-structure method is less precise or even more
time consuming than the usual method, which uses sets of structures.

TVLA also supports modeling statements that handle dynamically allocated
and freed memory.

4 A Case Study - Singly Linked Lists

We used the functions analyzed in [7] with sharing and reachability instrumen-
tation predicates (see Appendix A). The same specification for the operational
semantics of pointer-manipulating statements was used for each of the functions
was written once and used with each of the CFGs.

Most of the analyses were very precise, and running times were no more
than 8 seconds for even the most complex function (merge).

The rotate function performs a cyclic shift on a linked-list. The analysis
of this example is not as precise as possible (see Fig. 10). The indefinite edge
from u2 to u3 is superfluous and all the list elements should be known to be
reachable from x. The imprecision arises because the list becomes cyclic in the
process, and the 3-valued evaluation of the reachability update-formula in the
action Set Next Null L (see Fig. 12) is not very precise in the case of cyclic
lists. A simple rewriting of the program to avoid the temporary introduction of
a cycle state would have solved the problem.

The merge function, which merges two ordered linked-lists, is a good example
of how extra instrumentation (reachability) can improve the space consumption
of the analysis. Analyzing the merge function without the reachability predicate
creates tens of thousands of graphs and takes too much space. Adding the reach-
ability predicate as an instrumentation reduces the number of graphs to 327 and
the time to about 8 seconds.

5 Conclusion

The method of 3-valued-logic-based static analysis can handle a wider class
of problems than shape analysis. We have successfully analyzed Mobile Ambi-
ents [13] even though it is a completely different sort of language for specifying

296 Tal Lev-Ami and Mooly Sagiv

computation. We can also show partial correctness of algorithms such as sorting
programs [11].

However, it is clear that some analyses go beyond the scope of TVLA, and it
is not obvious whether TVLA can or should be extended to support them. Specif-
ically, the operational semantics must be expressible using first-order logic with
transitive closure; in particular, no explicit arithmetic is currently supported,
although it can be defined using predicate symbols. Also, the set of predicate
symbols is fixed.

The system was implemented in Java, which is an Object-Oriented imper-
ative language. The use of libraries, such as the Collections library, enabled us
to incorporate fairly complex data structures without using a more high-level
language, such as ML.

Static-analysis algorithms are hard to design, prove correct, and implement.
The concept of 3-valued-logic-based analysis greatly simplifies the problem, be-
cause it allows us to work with the concrete operational semantics instead of
the abstract semantics. The use of 3-valued logic guarantees that the transition
to the abstract semantics is sound. TVLA introduces two major contributions
toward the simplification of the problem. First, it provides a platform on which
one can easily try new algorithms and observe the results. Second, it contains
system and algorithmic support for instrumentation information.

5.1 The Essence of Instrumentation

Our experience indicates that instrumentation predicates are essential to achiev-
ing efficient and useful analyses. First, they are helpful in debugging the oper-
ational semantics. The instrumentation predicates are updated separately from
the core predicates, and any discrepancy between them is reported by the system.
Our experience indicates that in many cases this reveals bugs in the operational
semantics.

The conventional wisdom in static analysis is that there is a trade-off between
the time of analysis and its precision (i.e., that a more precise analysis is more
expensive). In case of 3-valued-logic-based analysis, this is not always true. Often
it happens that an analysis that uses more instrumentation predicates creates
fewer unneeded structures, and thus runs faster. A good example of this is the
merge function (see Sect. 4) where adding the reachability information drastically
reduces both the space and the time needed for the analysis.

In general, the introduction of instrumentation predicates is a very good tool
for improving precision, and has a very low cost. If a property holds for many
but not all nodes of the structures that arise in a program, then we can use
an instrumentation predicate to track at which program points and for which
nodes the property holds. This allows us to use the implications of the property
without limiting ourselves to programs where the property holds . For example,
we use cyclicity instrumentation to update the reachability information. If a
singly linked list is acyclic, updating the reachability information can be done
more precisely. The use of cyclicity instrumentation allows us to take advantage
of this property without limiting the analysis to programs in which lists are

TVLA: A System for Implementing Static Analyses 297

always acyclic. Of course, in some programs, such as rotate, where cyclicity is
temporarily introduced, we may lose precision when evaluating formulae in 3-
valued logic. This is in line with the inherent complexity of these problems. For
example, updating reachability in general directed graphs is a difficult problem.

Formally, instrumentation predicates allow us to narrow the set of 2-valued
structures represented by a 3-valued structure, and thereby avoid making overly
conservative assumptions in the abstract interpretation of a statement. For ex-
ample, the structure shown in Fig. 4 represents an acyclic singly linked list,
which means that all of the list elements represented by u are not shared. Thus,
is[n]S4(u) = 0. The same holds for u0. Without the sharing information, the
structure might also represent 2-valued structures in which the linked list ends
with a cycle back to itself.

For unary instrumentation predicates, we can fine-tune the precision of an
analysis by varying the collection of predicates used as abstraction predicates.
The more abstraction predicates used, the finer the distinctions that are made,
which leads to a more precise analysis. For example, the fact that is is an ab-
straction predicate allow us to distinguish between shared and unshared list ele-
ments in programs such as the swap function, where a list element is temporarily
shared. Of course, this may also increase the cost of the analysis.

5.2 Theoretical Contributions

Space precludes us from a comprehensive comparison with [17]. The Coerce al-
gorithm was optimized to avoid unnecessary recomputations by using lazy eval-
uation, imposing an order of constraint evaluation and using relational database
query optimization techniques (see [19]) to evaluate formulae. The Focus algo-
rithm was generalized to handle an arbitrary formula. This was crucial to support
the formulae used for analyzing sorting programs. In addition, the Focus algo-
rithm in TVLA was also optimized to take advantage of functional properties of
the predicates.

The worst-case space of the analysis was improved from doubly exponential
to singly exponential by means of the option in which all the structures with
the same nullary predicate values are merged together. Thus, the number of po-
tential structures becomes independent of the number of nodes in the structure.
Interestingly, in most of the cases analyzed to date the analysis remains rather
precise. However, in some cases it actually increases the space needed for the
analysis due to decreased precision.

5.3 Other Analysis Engines

The main advantages of TVLA over existing systems, such as [1,18,2], are:
(i) quick prototyping of non-trivial analyses (e.g., sorting); (ii) good control over
precision through instrumentation predicates; (iii) good separate control over
space requirements through abstraction predicates and the single-structure op-
tion; and (iv) the abstract semantics is automatically derived from the concrete

298 Tal Lev-Ami and Mooly Sagiv

operational semantics (i.e., there is no need to specify the abstract semantics di-
rectly, which is quite complicated for shape-analysis). However, TVLA currently
is intra-procedural only, there is an ongoing research to extend TVLA to handle
recursive procedures (see [14]).

5.4 Further Work

The system is very useful in the analysis of small programs. However, there are
many theoretical and implementation issues that need to be solved before the
analysis can scale to larger programs.

An operational semantics of the instrumentation predicates needs to be spec-
ified for all programming language constructs, which can be error-prone. In the
future, it may be possible to generate such update formulae for a subset of
first-order logic.

The choice of the abstraction predicates is very important for the
space/precision trade-off. We lack a good methodology for selecting these pred-
icates.

The major problem in terms of scalability of the system is the space needed
for the analysis. We have devised some techniques to alleviate the problem, but
they are not enough. A possible solution to the problem may be to use Binary
Decision Diagrams (BDDs) to represent logical structures ([3]). Another possible
solution is the use of secondary storage.

Acknowledgements

We are grateful for the helpful comments and contributions of N. Dor, M.
Fähndrich, G. Laden, F. Nielson, H.R. Nielson, T. Reps, N. Rinetskey, R. Sha-
ham, O. Shmueli, R. Wilhelm, and A. Yehudai.

References

1. M. Alt and F. Martin. Generation of efficient interprocedural analyzers with PAG.
In SAS’95, Static Analysis Symposium, LNCS 983, pages 33–50. Springer, Septem-
ber 1995. 297

2. U. Aßmann. Graph Grammar Handbook, chapter OPTIMIX, A Tool for Rewriting
and Optimizing Programs. Chapman-Hall, 1998. 297

3. R. E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. Computing Surveys, 24(3):293–318, September 1992. 298

4. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 296–310, New York, NY,
1990. ACM Press. 287

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Symp. on Princ. of Prog. Lang., pages 269–282, New York, NY, 1979. ACM Press.
280, 290, 293

6. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 230–241, New York, NY,
1994. ACM Press. 280

TVLA: A System for Implementing Static Analyses 299

7. N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In SAS’00,
Static Analysis Symposium, 2000. 281, 295

8. D. Evans. Static detection of dynamic memory errors. In SIGPLAN Conf. on
Prog. Lang. Design and Impl., 1996. 300

9. J.L. Jensen, M.E. Joergensen, N.Klarlund, and M.I. Schwartzbach. Automatic
verification of pointer programs using monadic second-order logic. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., 1997. 300

10. T. Lev-Ami. TVLA: A framework for Kleene based static analysis. Master’s thesis,
Tel-Aviv University, 2000. Available at http://www.math.tau.ac.il/∼tla. 282, 289,
290, 292

11. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. In International Symposium on Software Testing and
Analysis, 2000. Available at http://www.cs.wisc.edu/∼reps. 281, 296

12. S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan & Kauf-
mann, third edition, 1999. 293

13. F. Nielson, H.R. Nielson, and M. Sagiv. A kleene analysis of mobile ambients. In
Proceedings of the 2000 European Symposium On Programming, March 2000. 281,
295

14. N. Rinetskey and M. Sagiv. Interprocedual shape analysis for recursive programs.
Available at http://www.cs.technion.ac.il/∼maon, 2000. 298

15. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1–50, January
1998. 280, 287

16. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In Symp. on Princ. of Prog. Lang., 1999. 281, 287, 292, 293

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. Tech. Rep. TR-1383, Comp. Sci. Dept., Univ. of Wiscon-
sin, Madison, WI, March 2000. Submitted for publication. Available at
“http://www.cs.wisc.edu/wpis/papers/tr1383.ps”. 280, 281, 284, 292, 293, 297

18. S.W.K. Tjiang and J. Hennessy. Sharlit—a tool for building optimizers. In SIG-
PLAN Conf. on Prog. Lang. Design and Impl., pages 82–93, June 1992. 297

19. J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II:
The New Technologies. Comp. Sci. Press, Rockville, MD, 1989. 297

300 Tal Lev-Ami and Mooly Sagiv

A Empirical Results

The system was used to analyze on a number of examples (see Sect. 4). The
timing information for all the functions analyzed is given in Table 4.

Table 4. Description of the singly-linked-list programs analyzed and their tim-
ing information. These programs are collections of interesting programs from
LCLint [8], [9], Thomas Ball, and from first-year students. They are available at
http://www.math.tau.ac.il/∼nurr.

Program Description Time Number of
(seconds) Structures

search searches for an element in a linked list 40 0.708

null deref searches a linked list, but with a typical 48 0.752
error of not checking for the end of the list

delete deletes a given element from a linked list 145 2.739

del all deletes an entire linked list 11 0.42

insert inserts an element into a sorted linked list 140 2.862

create prepends a varying number of new elements to 21 0.511
a linked list

merge merges two sorted linked lists into one sorted list 327 8.253

reverse reverses a linked list via destructive updates 70 1.217

fumble an erroneous version of reverse that loses the list 81 1.406

rotate performs a cyclic rotation when given 25 0.629
pointers to the first and last elements

swap swaps the first and second elements of a 31 0.7
list, fails when the list is 1 element long

getlast returns the last element of the list 40 0.785

insert sort sorts a linked list using insertion sort 3773 160.132

bubble sort sorts a linked list using bubble sort 3946 186.609

B A TVP File for Shape Analysis on Programs
Manipulating Singly Linked Lists

The actions for handling program conditions that consists of pointer equalities
and inequalities are given in Fig. 11.

The actions for manipulating the struct node declaration from Fig. 1(a)
are given in Fig. 12. The actions Set Next Null L and Set Next L model de-
structive updating (i.e., assignment to x1->n), and therefore have a nontrivial
specification.

We use the notation ϕ1?ϕ2 : ϕ3 for an if-then-else clause. If ϕ1 is 1 then the
result is ϕ2, if ϕ2 is 0 then the result is ϕ3. If ϕ1 is 1/2 then the result is ϕ2�ϕ3.
We use the notation TC(v1, v2)(v3, v4) for the transitive-closure operator. The

TVLA: A System for Implementing Static Analyses 301

/* cond.tvp */
%action Is Not Null Var(x1) { %t x1 + ” != NULL”

%f { x1(v) } %p ∃v : x1(v)
}
%action Is Null Var(x1) { %t x1 + ” == NULL”

%f { x1(v) } %p ¬(∃v : x1(v))
}
%action Is Eq Var(x1, x2) { %t x1 + ” == ” + x2

%f { x1(v), x2(v) }
%p ∀v : x1(v) ⇔ x2(v)

}
%action Is Not Eq Var(x1, x2) { %t x1 + ” != ” + x2

%f { x1(v), x2(v) }
%p ¬∀v : x1(v) ⇔ x2(v)

}

Fig. 11. An operational semantics in TVP for handling pointer conditions.

variables v3 and v4 are the free variables of the sub-formula over which the
transitive closure is performed, and v1 and v2 are the variables used on the
resulting binary relation.

302 Tal Lev-Ami and Mooly Sagiv

/* stat.tvp */
%action Set Null L(x1) { %t x1 + ” = NULL”

{ x1(v) = 0 r[n, x1](v) = 0}
}
%action Copy Var L(x1, x2) { %t x1 + ” = ” + x2

%f { x2(v) }
{ x1(v) = x2(v) r[n, x1](v) = r[n, x2](v)}

}
%action Malloc L(x1) { %t x1 + ” = (L) malloc(sizeof(struct node))) ”

%new
{ x1(v) = isNew(v) r[n, x1](v) = isNew(v) }

}
%action Free L(x1) { %t ”free(x1)”

%f {x1(v)}
%message ∃v1, v2 : x1(v1) ∧ n(v1, v2) ->

”Internal error! assume that ” + x1 + ”->” + n + ”==NULL”
%retain ¬x1(v)

}
%action Get Next L(x1, x2) { %t x1 + ” = ” + x2 + ”->” + n

%f { ∃v1 : x2(v1) ∧ n(v1, v)}
{ x1(v) = ∃v1 : x2(v1) ∧ n(v1, v)

r[n, x1](v) = r[n, x2](v) ∧ (c[n](v) ∨ ¬x2(v))}
}
%action Set Next Null L(x1) { %t x1 + ”->” + n + ” = NULL”

%f { x1(v) }
{ n(v1, v2) = n(v1, v2) ∧ ¬x1(v1)

is[n](v) = is[n](v) ∧ (¬(∃v1 : x1(v1) ∧ n(v1, v))∨
∃v1, v2 : (n(v1, v) ∧ ¬x1(v1)) ∧ (n(v2, v) ∧ ¬x1(v2)) ∧ v1 �= v2)

r[n, x1](v) = x1(v)
foreach(z in PVar-{x1}) {

r[n, z](v) =(c[n](v) ∧ r[n, x1](v)?
z(v) ∨ ∃v1 : z(v1) ∧ TC(v1, v)(v3, v4)(n(v3, v4) ∧ ¬x1(v3)) :
r[n, z](v) ∧ ¬(r[n, x1](v) ∧ ¬x1(v) ∧ ∃v1 : r[n, z](v1) ∧ x1(v1)))

}
c[n](v) = c[n](v) ∧ ¬(∃v1 : x1(v1) ∧ c[n](v1) ∧ r[n, x1](v))}

}
%action Set Next L(x1, x2) { %t x1 + ”->” + n + ” = ” + x2

%f { x1(v), x2(v) }
%message ∃v1, v2 : x1(v1) ∧ n(v1, v2) ->

”Internal error! assume that ” + x1 + ”->” + n + ”==NULL”
{ n(v1, v2) = n(v1, v2) ∨ x1(v1) ∧ x2(v2)

is[n](v) = is[n](v) ∨ ∃v1 : x2(v) ∧ n(v1, v)
foreach(z in PVar) {

r[n, z](v) = r[n, z](v) ∨ r[n, x2](v) ∧ ∃v1 : r[n, z](v1) ∧ x1(v1)
}
c[n](v) = c[n](v) ∨ (r[n, x2](v) ∧ ∃v1 : x1(v1) ∧ r[n, x2](v1))}

}

Fig. 12. An operational semantics in TVP for handling the pointer-manipulation
statements of linked lists as declared in Fig. 1(a).

Tree Schemata and Fair Termination

Laurent Mauborgne

LIENS – DMI, École Normale Supérieure
45 rue d’Ulm, 75 230 Paris cedex 05, France

Tel: +33 (0) 1 44 32 20 66

Laurent.Mauborgne@ens.fr

http://www.dmi.ens.fr/~mauborgn/

Abstract. We present a new representation for possibly infinite sets of
possibly infinite trees. This representation makes extensive use of shar-
ing to achieve efficiency. As much as possible, equivalent substructures
are stored in the same place. The new representation is based on a first
approximation of the sets which has this uniqueness property. This ap-
proximation is then refined using powerful representations of possibly
infinite relations. The result is a representation which can be used for
practical analysis using abstract interpretation techniques. It is more
powerful than traditional techniques, and deals well with approximation
strategies. We show on a simple example, fair termination, how the ex-
pressiveness of the representation can be used to obtain very simple and
intuitive analysis.

1 Introduction

1.1 Trees and Static Analysis

Trees are one of the most widespread structures in computer science. And as
such, it is not surprising that sets of trees appear in many areas of static analysis.
One of the first practical use of sets of trees in an analysis was presented by Jones
and Muchnick in [15], using regular tree grammars to represent sets of trees. The
problem was with tree grammars, which are far from ideal, mainly because of
the use of set variables. Computing the intersection of two sets, for example,
requires the introduction of a quadratic number of variables [1].

In fact, the use of sets of trees have been proposed many times (see [20,2,22],
and recently all the developments around set based analysis [13]). But all these
applications suffer from the same drawbacks, namely the inadequacy of the rep-
resentation. Practical implementations have been exhibited using tree automata
instead of grammars (or sets constraints) [10]. But even tree automata have
been introduced at the origin as a theoretical tool for decision problems [23],
and they are quite complex to manipulate (see [4,14,3] for useful investigations
on implementations). Tree automata are also limited in their expressiveness, in
that we cannot express sets of trees with real relationship between subtrees, such
as sets of the form {f(an, bn, cn)|n ∈ N}. They become very complex when we

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 302–319, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Tree Schemata and Fair Termination 303

want to add infinite trees, whereas considering infinite behaviors is known to be
important in static analysis [21,24,6].

When we look closely at those analysis, we see that, due to some lack of
expressiveness in the representations, the actual behavior of programs is always
approximated in practice. We know a theory to deal smartly with approxima-
tions, namely abstract interpretation [7,8]. And in this framework, we do not
need too much from the representations we work with. In particular, there is
no need that the sets we can represent be closed by boolean operations, as long
as we can approximate these operations. What we propose is an entirely new
representation for sets of trees —tree schemata—, which is practical and more
expressive than traditional techniques (which means finer analysis), taking ad-
vantage of the possibilities offered by abstract interpretation.

1.2 How to Read the Paper

Tree schemata cannot be extensively described in the frame of one paper. It is
the reason why the main ideas leading to these structures have been published in
three papers, the present one being the final synthesizing one. The main idea of
tree schemata is the use of a first raw approximation, the skeleton, which is then
refined by the use of relations. The first approximation is called skeletons, and is
described in [18]. A short summary of what a skeleton is can be found in this pa-
per in section 2. The relations used in tree schemata may need to relate infinitely
many sets, which is why new structures where developed and presented in [16].
These new representations for infinite structures are also described section 3.3.

The rest of the paper is organized as follows: after some basic definitions
and the description of skeletons, we show in section 3 how we can enhance them
with relations, and still have an incremental representation. The next section
describes the expressiveness and some properties of tree schemata, and how they
fit in the abstract interpretation framework. Section 5 describes an example of
simple analysis exploiting a little bit of the expressiveness of tree schemata.

1.3 Basic Definitions and Notations

The trees we consider in this article are possibly infinite trees labeled over a
finite set of labels F of fixed arity. A path of the tree is a finite word over N.
We write ≺ for the prefix relation between paths. The subtree of a tree t at
position p is denoted t[p]. A tree is said to be regular when it has a finite number
of non-isomorphic subtrees. In this case, we can draw it as a finite tree plus some
looping arrows.

We will write
f

���� ��
��

t0 tn−1

for a generic tree. The label of its root is f of arity n,

and its children are the ti’s.
We will also consider n-ary relations and infinite relations. An n-ary relation

is defined as a subset of the cartesian product of n sets. The entry number i in

304 Laurent Mauborgne

such a relation corresponds to the ith position (or set) in the relation. An infinite
relation is a subset of an infinite cartesian product.

We will usually use a, b, f , g... for labels, t, u, v... for trees, x, y, z for
variables and capitalized letters for sets of trees or structures representing sets
of trees.

2 Skeletons

Skeletons (see Fig 1) were introduced in [18] as an efficient, yet limited, represen-
tation of sets of trees. This representation is based on a canonical representation
of infinite regular trees which allows constant time equality testing and very
efficient algorithms.

g

��

©
����
��

��
��
�

a b

f

����
�

��
��
�

a
��

b
		

©
����
��

��
��
�

a

b

f

�� ��

©
����
��

��
��
�

a

b
{ga, gb} {f(aω, bω)} S = {b, ab, aab, . . . , aω} {f(t, u)|t ∈ S and u ∈ S}

Fig. 1. Examples of skeletons

2.1 Set Represented by a Skeleton

A skeleton is a regular tree —possibly infinite— with a special label, ©, which
stands for a kind of union node.

Let F be a finite set of labels of fixed arity (© �∈F). A skeleton
©
���� ��

��

S0 Sn−1

will represent the union of the sets represented by the Si, and
f

���� ��
		

S0 Sn−1

will

represent the set of trees starting by an f and such that its child number i is
in the set represented by Si. This definition of the set represented by a skeleton
is recursive. In fact, it defines a fixpoint equation. We have two natural ways of
interpreting this definition: either we choose the least fixpoint (for set inclusion)
or the greatest fixpoint. In the least fixpoint interpretation, a skeleton represents
any finite tree that can be formed from it. In the greatest fixpoint interpretation,
we add also the infinite tree. As we want the skeletons to be a first approximation
to be refined, we choose the greatest fixpoint.

2.2 Uniqueness of the Representation

In order to have an efficient and compact representation, skeletons are unique
representations of sets of trees. It means that if two sets of trees are equal, they

Tree Schemata and Fair Termination 305

will be stored in the same memory location, making reuse of intermediate results
very easy.

In order to achieve this uniqueness, as skeletons are infinite regular trees,
we use a representation with this property for infinite regular trees [18]. But
we don’t have a unique representation for sets of trees yet. We need to restrict
skeletons to regular trees labeled by F ∪ {©} and even more:

– in a skeleton, no subtree is the empty skeleton1 unless the skeleton is the
empty skeleton,

– a choice node has either 0 or at least two children,
– a choice node cannot be followed by a choice node,
– each subtree of a choice node starts with a different label. In this way, the

choices in the interpretation of a skeleton are deterministic. As a conse-
quence, in addition to common subtrees, we also share common prefixes of
the trees, for a greater efficiency.

With these restrictions, skeletons have the uniqueness property, and they are
indeed easy to store and manipulate. But the last two rules imply that not every
set of trees can be represented by a skeleton. The limitation is that we cannot
have any kind of relation between two sets of brother subtree. For example,

in the set

{
f

 ��
��

a b

,
f

�� ��
��

c d

}
, the presence of the subtree b is related to the right

subtree a, but with a skeleton, the best we can do is

f

�� ��
��

©
���� ��

��
©
���� ��
��

a c b d

. If we did

not have infinite trees, the expressive power would be the same as top down
deterministic tree automata.

3 Links

3.1 Choice Space of a Skeleton

Skeletons can be used to give a first upper approximation of the sets we want
to represent. Then, we can enrich the skeletons to represent finer sets of trees.
A first step towards the understanding of what that means is to define what is
the set of possible restrictions we can impose on a skeleton.

The only places in the skeletons where we have any possibility of restriction
are choice nodes. Let us consider a choice node with n children. The restrictions
we can make are on some of the choices of this node, forbidding for example the
second child. So the choice space of a choice node will be the set {0, 1, . . . , n−1}.
Now, let S be a skeleton. We can make such a restriction for every path of S
leading to a choice, and each such restriction can depend on the others.

Thus, the choice space of a skeleton is the cartesian product of all the choice
spaces of its choice nodes. Indeed, it gives a new vision of skeletons: we can now
1 The empty skeleton is the tree ©, which is a choice with no child.

306 Laurent Mauborgne

see them as a function from their choice space to trees. Each value (which is a
vector) in the choice space corresponds to a commitment of every choice nodes
in the skeleton to a particular choice.

Example 1. Let S be the skeleton

f

�� ��
��

©
���� ��

��
©
���� ��
��

a c b d

. Then the choice space of S is

{0, 1}×{0, 1}. And if we consider S as a function from its choice space, S(01) =
f

 ��
��

a d

.

3.2 Links Are Relations

Now we can see clearly what is a restriction of a skeleton: it is a subset of the
set of trees it represents which can be defined by choosing a subset of its choice
space. And a subset of a cartesian product is merely a relation. So we have our
first definition of tree schemata: a tree schema is a skeleton plus a relation on
its choice space.

But this definition raises some problems. First of all, how do we represent
the relation? Second, this definition is not incremental. A representation is in-
cremental when you do not need to build again the entire representation each
time you make a tiny little change in the data. Changes can be made locally, in
general. For example, tree automata are not incremental, especially when they
are kept minimal, because for each modification of the set, you have to run the
minimization algorithm on the whole automaton again. Skeletons are incremen-
tal [18]. The advantage of incrementality is clear for the implementation, so we
would like to keep tree schemata as incremental as possible. The problem with
tree schemata as we have defined them so far is that the relation which binds
everything together is global. To change the relation into more local objects, we
address two problems: the entries in the relation should not be the paths starting
from the root of the tree schema, and the relation should be split if possible.
These problems are solved by the notion of links in the tree schema.

A link is a relation with entry names (or variables) [16] plus a function
from entry names to sets of choice nodes of the tree schema (formally, a couple
(relation, function)). The splitting of the global relation is performed by means
of independent decomposition. A relation R is independently decomposed in R1

and R2 if: the entries of R1 and R2 partition the entries of R, and R(e) is true
if and only if R1(e1) and R2(e2) are true, where ei is the subvector of e on the
entries of Ri. The idea is that the global relation is true for a given element
of the choice space if and only if it is true on every link. Each choice node is
associated with at most one link, and one entry name of that link.

Tree Schemata and Fair Termination 307

Example 2. Consider the following skeleton:

g

��

f

����
��

��
��

��

©

����
��

��
��
� ©

����
��

��
��
�

a b c d

Its choice space is {0, 1}00 × {0, 1}01 (we use subscripts to denote the entries
in the relation, which is the path from the root to the choice node). A possible

restriction would be to consider the set

g

��
f

��

 ��
��

a c

,

g

��
f

 ��
��

a d

,

g

��
f

�� ��
��

b d

. The associated

global relation would be {000001, 000101, 100101}. In order to define the local link,
let us call �1 and �2 the memory locations of the left and right choice nodes
respectively. The local link l would be (R, x→{�1}, y→{�2}), where R is the
relation {0x0y, 0x1y, 1x1y}. In the tree schema, the first choice node would be
associated with (x, l) and the second one with (y, l). If we represent the relation
by a Binary Decision Diagram (BDD) [5], the tree schema can be depicted this
way:

g

��

f

����
��

��
��

��

©

����
��

��
��
� x y

R���� ���� ©

����
��

��
��
�

a b c d

R =

x

0

����
��
��
��

1

��
��

��

y
1

�����
���

�
0
��

true false

Note that in this example, the letter R appears just for graphical conventions, in
tree schemata, links are named just by the representation of their relations and
the function from entry names to choice nodes that are associated with them.

3.3 Representation of Relations

The last problem concerns the representation of the independent relations. Bi-
nary Decision Diagrams [5] having entry names (variables) seem to be a good
candidate, as long as the relations are finite! Because the skeleton is an infinite
tree, we may have an infinite number of paths leading to choice nodes, and it may
be useful to link them together. To achieve this, we need to represent infinite
relations, which raise some problems. Those problems have been studied, and
a possible solution is presented in [16], which we briefly summarize here. Note
that the actual representation of relations is but a parameter of tree schemata,
and one could choose different representations to change the balance between
efficiency and precision, or expressiveness.

308 Laurent Mauborgne

Entry Names One problem which is common to all representations of infinite
relation is that we have an infinite number of entries in the relations, and each
of them should be named in order to perform operations such as restrictions.
In BDDs, entry names are the variables, one for each entry in the relation.
For infinite relations we can use the notion of equivalent entries: two entries i
and j are equivalent if for every vector v in the relation, the vector obtained by
exchanging its values on the entries i and j is also in the relation. In this case,
we show that we can use the same name for i and j. This allows the use of a
finite number of names, if the relation is regular enough.

Binary Decision Graphs In [16], a new class of infinite relations is defined,
the set of omega-deterministic relations. Intuitively, we can see in relations a
finite behavior part, which deals with the prefixes of the vectors, and an infinite
behavior. The idea is that for omega-deterministic relations, the finite behavior
is regular, and at any point in the decision process, there at most one infinite
regular behavior.

The representation of such relations is an extension of BDDs: instead of
having just DAGs (directed acyclic graphs), we allow cycles in the representation
(which are uniquely represented, thanks to the techniques developed in [18]),
and we add a special arrow, ��� , which signals the beginning of a new infinite
behavior. One can read those graphs as follows (see examples of Fig 2): to accept
a vector in the relation, we must follow the decisions in the graph, and count a
infinite number of true. Each time we encounter a ��� , we reset our count, and
each time we encounter a true, we start again at the last encountered ��� (or the
beginning of the graph if none was encountered yet). Finite BDDs correspond
to the graphs with no cycle and a ��� before the true.

x
0
�����
�� 1

���
��

��

x

0
��

1

����
���

� x1

�����
���

0
��

true false

x
0

����
��

1
		

true

x
0

����
�� 1

��
��
��

x0
��

1

��
��
��

x
0

����
��

1
		

true

x
0

����
��

1

�		

true

{0ω , 1ω} infinite number of 0’s fair vectors ends by 0ω

Fig. 2. Examples of Binary Decision Graphs

This class of relations is closed by intersection, and has a best (in the sense
of relation inclusion) representation property for all boolean operations. Also,
the representation is canonical, which gives the constant time equality testing,
as with BDDs. It is possible also to represent a bigger class of infinite relations,
the class of regular relations, which is closed under all boolean operations, but
with far less efficient data structures.

Tree Schemata and Fair Termination 309

3.4 A Pseudo-Decision Procedure

In order to help reading tree schemata, we give a pseudo2 decision procedure to
decide whether a tree is in the set represented by a tree schema. This procedure
is performed by going through the tree and the tree schema at the same time.
We call t the current subtree, and T the current subtree of the tree schema.

– If T =
©
���� ��

��
x�� R

T0 Tn

then

• if no Ti has the same label as t, then the tree is not in the tree schema;
• otherwise, let i be the index corresponding to the label of t. If R(x =
i) = false then the tree is not in the tree schema. Else proceed on Ti

and t, while keeping the fact that R is partially evaluated on x with
value i.

– T =
f

���� ��
		

T0 Tn−1

and t =
g

���� ��
		

t0 tn−1

• if f �= g then the tree is not in the tree schema,
• else proceed with each (Ti, ti).

If in this procedure, we need to evaluate a relation on an entry which is already
evaluated, we stack a new version of the relation. The procedure is a success if
we can go through the entire tree t in this way without failing, and the infinite
valuations of relations are accepted. Note that if a relation is not entirely eval-
uated and there is a possibility of evaluation accepted by the relation, then the
process is still a success.

3.5 Restrictions on the Links

Just as not every regular tree labeled on F ∪{©} is a skeleton, not every skeleton
with any link is a valid tree schema. There are two main reasons for that: the
whole thing must be kept finite (it is a constraint on the representation of the
relations only), and we want only one possible representation for the empty set
and no infinitely increasing (for the size of the representation) chain of tree
schemata representing the same tree.

Concerning the second constraint, the first thing we need to fix is the skeleton
on which the tree schema is based. Because the tree schema represents a subset of
the set represented by the skeleton, this skeleton could be any one approximating
the set we want to represent. If the set we want to represent admits a best
skeleton approximation, it is natural that we choose this skeleton, because the
better the first approximation (the skeleton), the more efficient the algorithms.
So we choose to put as much information as possible in the skeleton, which
corresponds to the arborescent backbone of the set of trees, sharing every possible
prefixes and subtrees. In this article, we will restrict tree schemata to such sets
2 We call this procedure a “pseudo decision” procedure because the trees and tree
schemata being infinite, it cannot end.

310 Laurent Mauborgne

of trees, although it is possible to represent sets of trees with no best skeleton
approximation, such as {anbnc|n ∈ N}. The reader is referred to [17] for further
description.

To restrict the sets we represent to sets with best skeleton approximation,
and to keep the skeleton of a tree schema be that best skeleton, we just need to
enforce the following two local properties:

Property 1. Whatever the link l between two choice nodes C1 and C2, either
there is no path from one choice node to the other, or if there is one from C1

to C2, then the choice leading to that path from C1 does not restrict the choices
in C2.

Property 2. Whatever the link l in a tree schema, the relation of the link is full,
that is for every entry in the relation and for every possible value at that entry,
there is always a vector in the relation with that value on that entry.

A tree schema respecting those properties is said to be valid. In the sequel, we
will only consider valid tree schemata.

Corollary 1. Whatever the valid tree schema T based on the skeleton S, S is
the best (for set inclusion) skeleton approximation for the set represented by T .

Proof. Suppose there is a skeleton S′ such that S′ �= S and the set represented
by S′ is included in the set represented by S, but still contains the set represented
by T . It means that there is a path p in S such that S[p] is a choice node and
there is a choice i which is not possible in S′. The choice node T[p] is associated
with the link l. If there is no other choice node in p linked to l, we know by
property 2 that there is a vector v such that v is admitted by l and the value
of v on the choice node is i. Because of the independence of the other links with l,
there is a tree in T which corresponds to the choice i in p, and necessarily this
tree is not in S′. If there is a choice node in p linked to l, say at path q. There
is a j such that qj p. By induction on the number of choice nodes linked to l
along p, and by the same argument as above, we show that there is an element of
the choice space that leads to q and allows the choice j. But then, by property 1,
such a choice allows the choice of i at p. Once again, we have a tree in T which
is not in S′. ��

4 Tree Schemata and Abstract Interpretation

Tree schemata were designed to be used in abstract interpretation. In this sec-
tion, we show what is gained by this choice, and how abstract interpretation can
deal with tree schemata.

4.1 Properties of Tree Schemata

Expressiveness One of the interesting properties of tree schemata is that they
are more expressive than their most serious opponents, tree automata. Of course,

Tree Schemata and Fair Termination 311

tree schemata can easily express sets containing infinite trees, and even complex
ones, but even when restricted to finite trees, the second example of Fig 3 shows
that tree schemata can express some sets of trees which cannot be represented
by tree automata.

R ©
����
�

��
��
��x

��

b a

���

R =

x
0

����
��

1

		

true

f

�����
���

��

�� ����
���

���

©
��

��

x
�� E

y
�� ©

����
��

y
�� E

z
�� ©

����
��

��

a

��

b

��

c

��

e

E =

x
0

����
�� 1

 �
��

�

y

0
��

1

��
��

��
y

0

����
�� 1

��
z

0 ��
��

��
1�� false z

0 !!

1����
��

true

{anb|n ∈ N} {f(ane, bne, cne)|n ∈ N}
Note that E is the equality relation.

Fig. 3. Examples of Tree Schemata

With the appropriate representation for relations, we can also represent any
regular set of trees with a tree schema. We give hereafter an idea of the con-
struction. Let L be the set of binary trees accepted by the finite top-down non-
deterministic tree automaton, A = (Q,A, q0, ∆, F) (see [12] for a definition).
To build the tree schema representing L, the first step is to build a non valid
tree schema based on a non valid skeleton, but which represents L, and then to
apply some rules that give a valid tree schema, without changing its meaning.
The first graph is built using the rules of Fig 4 and connecting the states to-
gether. For the final states, we just add the labels of arity 0 to the first choice.

For any tree
f

���� ��
��

t0 t1

recognized by the automaton starting at q, there is a rule

(q, f, q0, q1) ∈ ∆ such that each ti is recognized by the automaton starting at qi.
According to the pseudo decision procedure, it means that the tree is accepted
by the tree schema starting at the choice node pointed by q, and the converse
holds because of the relations = which force a valid (q0, q1) to be taken.

In order to simplify the skeleton on which the non valid tree schema is
built, we can suppress choice nodes everywhere there is only one outgoing edge,
but we still have some possible cascading choices, one of them with a rela-
tion, which cannot so easily be simplified. Fig 5 shows how this case can be
reduced, by choosing the set of S0’s and S1’s to be exactly the sets of T 0’s
and T 1’s, but without repetitions, and the relation R to be {(a, b)|∃c, d, e such
that S0

a = T 0
c,d and S1

b = T 1
c,e}. The relation R is finite, and so easy to represent

with the techniques of [16]. The last step will combine the relations to make the
skeleton deterministic: for each choice node such that there is an Si and an Sj

starting with the same label, we must merge the two schemata and incorporate

312 Laurent Mauborgne

q −→

©

��

""!!!
!!!!

!!!!
!!!

f0

##"""
"""

"

��#
###

##
fk

##$$$
$$$

$

��#
###

##

©
$$%%
%

��
&&
&&

=�������� �������� ©
$$%%
%

��
&&
&&

©
$$%%
%

��
&&
&&

=�������� �������� ©
$$%%
%

��
&&
&&

q0
0,0 q0

0,n0 q1
0,0 q1

0,n0 q0
k,0 q0

k,nk
q1

k,0 q1
k,nk

∀i ≤ k, n ≤ ni, (q, fi, q
0
i,n, q1

i,n) ∈ ∆

Fig. 4. Rules to build the non valid tree schema

their choice nodes in R. The immediate looping in the schema will result in the
construction of infinite relations.

f

��

""!!!
!!!!

!!!!
!!!!

©
##$$$

$$$
$

%%'
''

''
' =������������������ ������������������ ©

##$$$
$$$

$

%%'
''

''
'

©
$$%%
%%

��
		
		

©
$$((
((

��
&&
&&

©
$$%%
%%

��
		
		

©
$$((
((

��
&&
&&

T 0
0,0 T 0

0,k0
0

T 0
n,0 T 0

n,k0
n

T 1
0,0 T 1

0,k1
0

T 1
n,0 T 1

n,k1
n

−→

f

&&))
))
)

''*
**

**

©
��++
+

��
��

� R���� ���� ©
��++
+

��
��
�

S0
0 S0

i S1
0 S1

j

Fig. 5. Simplification rule to eliminate cascading choices

Other Properties Deciding the inclusion of tree schemata can be efficiently
implemented. If the relations used in tree schemata are closed by union inter-
section and projection, then tree schemata are closed by union, intersection and
projection. See [17] for proofs and algorithms. It seems that BDGs are the best
suited so far to represent relations in tree schemata, and we will use them in
the example of section 5. But as BDGs are not closed by union, tree schemata

Tree Schemata and Fair Termination 313

using BDGs are not closed by union, although we can indeed compute a best
approximation (for set inclusion) of the union of two tree schemata.

Concerning the limits of tree schemata, it seems that we cannot represent the

set of balanced trees, or the set

f
%%

��
��
�

t

∣∣∣∣∣∣ t is a tree

 because it would require

an infinite number of entry names in the relation denoting the equality between
the infinite number of trees.

4.2 Interactions with Abstract Interpretation

Abstract interpretation deals with concrete and abstract domains to describe
different semantics of programs. The semantics is generally computed via the
resolution of a fixpoint equation. Such equations can be expressed with formal
language transformers [9] using unions and projection (which subsumes inter-
section). The fixpoint can then be computed by an iteration sequence, possibly
with widening. Such iteration can be computed with tree schemata, where the
approximation for union can be seen as a widening. One of the most common
operations is the inclusion testing to decide whether we have reached a post-
fixpoint. And inclusion testing is quite efficient with tree schemata.

The structure of tree schemata can easily be used to perform meaningful
approximations (using widening techniques) when the size of the schemata is
too big, as this size often comes from the relations, and we can choose to relax
some relations. We can also simplify the skeletons if necessary.

One limitation of tree schemata is the finite number of labels for the trees.
In the next section, we will see how an infinite domain can be approximated by
a finite partition.

5 Example: Proving Fair Termination

In order to show the interests of one of the features of tree schemata —the ability
to deal with infinite trees—, we chose a problem where using tree schemata can
simplify a lot of things. We show how to prove automatically the termination
under fairness assumption of concurrent processes with shared variables using
abstract interpretation.

5.1 Semantics of the Shared Variables Language

We choose a simple language originated from [19] to describe concurrent pro-
cesses sharing their variables. A program will be of the form
P := I; [P1|| . . . ||Pn];T , where I, Pi and T are sequential deterministic programs
composed of assignments of integers or booleans, if-then-else branching and
while loops. In addition, the parallel processes Pi have an await instruction of
the form await B then S end where B is a boolean expression and S a sequential
program without await instruction.

314 Laurent Mauborgne

Informally the semantics of the program uses a global state. It executes I,
and when I ends each Pi are executed in parallel with a notion of atomic actions
which cannot interact (no simultaneous assignment to the same variable). The
effect of the await instruction is to execute its program as an atomic action
starting at a time when the boolean expression is true. The boolean expression
is guaranteed to be true when the sequential program starts. Finally, when every
parallel program has terminated, the program executes T .

We give the notion of atomic actions through a relation → defined by struc-
tural induction (following [11]). The definition is described in figure 6 using a
special empty program E. Based on this relation, we can define a semantics

〈x:=e, σ〉 → 〈E, σ[e/x]〉 E;S = S;E = S

σ |= B
〈while B do S, σ〉 → 〈S;while B do S, σ〉

σ |= ¬B
〈while B do S, σ〉 → 〈E, σ〉

σ |= B and 〈S, σ〉 →∗ 〈E, τ 〉
〈await B then S end, σ〉 → 〈E, τ 〉

〈S1, σ〉 → 〈S2, τ 〉
〈S1;S, σ〉 → 〈S2;S, τ 〉

〈Pi, σ〉 → 〈P ′
i , τ 〉

〈[P1|| . . . ||Pn], σ〉 → 〈[P1|| . . . ||Pi−1||P ′
i ||Pi+1|| . . . ||Pn], τ 〉

Fig. 6. Definition of the Transition Relation →

based on interleaving traces. We incorporate a notion of program points in the
states. The program points of the parallel programs are the vectors of their pro-
gram points. We have the following definition of the semantics T (〈i : S, σ〉) of a
program point i with expression S and environment σ:

T (〈i : S, σ〉) def=

{
〈i,σ〉
��
t

∣∣∣∣∣ t ∈ T (〈j : P, τ〉) and 〈S, σ〉 → 〈P, τ〉
}

T (〈i : S, σ〉) def= 〈i, σ〉 if there is no state reachable from 〈S, σ〉

A program P is said to be terminating if and only if for every σ T (〈P, σ〉)
does not contain any infinite trace. We can also define a deadlock as the end of
a trace with index different from the last index of the program. We define T (P)
as the union of the T (〈P, σ〉) for all environment σ. The elements of T (P) are
called the traces of P .

5.2 Expressing Program Properties as Sets of Traces

It is possible to express many program properties using just sets of traces. For
example, termination is expressed as the set of all finite traces. To check that
the program terminates, we just have to check that its set of traces is included in

Tree Schemata and Fair Termination 315

the termination property. In the same way, we can express termination without
deadlock.

We can also express different kinds of fairness to decide whether a given trace
of the program satisfies the fairness property. Every fairness property contains
all finite traces. If it is an unconditional fairness [11] property then it contains
also the infinite traces either with a finite passage in the concurrent part of the
program, or such that each concurrent program that is not terminated progresses
infinitely often.

We can prove that a program fairly terminates by proving that its set of
traces intersected with the set of fair traces is included in the set of terminating
traces.

Example 3. Consider the program

P =0 b:=true[0while b do 1skip2||0b:=false1]1

The set of traces of P can be described by the following tree schema (we omit
the beginning, which is not important):

T (P) =

00, t
��

©
		,,,
,

��
		

		
		

		

10, t
��

©

((

��''
'' 01, f

��

11, f

)),,,
21, f

The termination property is expressed as:

Term =
©

**---

--

		 �� ��
��

��
++..

...
...

�������� Fin

00, t

,,

01, f

--����
21, f 10, t

..

11, f

//

where Fin =
x

2
����
��

0,1,3,4
##

true

To express the fairness property, we first describe the infinite fair traces, then
we add the finite traces3:

Fairω =

©
��

��
��
��

������ Fai

00, t

��
��
��

11, f

��

©
��

��
��
��

������ Fai

01, f

00

10, t

11

where Fai =

x
0
����
�� 1

22
//

//

x0
%%

1
��
00
00

x
0
����
��

1
##

true

3 We use this presentation just for the clarity of the schemata, we could just as well
define Fair directly.

316 Laurent Mauborgne

Fair = Fairω ∪ Term

Then, to prove the fair termination of the programP , we just have to compute
Fair ∩ T (P) and verify that it is included in Term.

5.3 Abstraction of the Set of Traces

One of the limitations of tree schemata (necessary for a finite representation)
is that we need a finite set of labels. Choosing the states to be the labels, we
can have infinite sets of labels. To cope with this difficulty, we define an ab-
stract semantics which approximates the concrete one described above, using
the techniques of abstract interpretation.

Because we are interested in the control flow of the program, we just need to
distinguish between states that evaluate differently on the boolean expressions
in the program we analyze. We define abstract states to be each such partition
of the set of states. We write states� to denote this set of states. We define
now abstract traces as traces labeled by states�. The concrete semantics is a
set of concrete traces, the abstract semantics is a set of abstract traces. There is
a Galois connection (for set of traces inclusion) [7] between those two semantics.
Let trace be the set of sets of concrete traces, and trace� be the set of sets of
abstract traces. The concretisation of a trace t� is the set of traces obtained by
replacing every abstract state by a concrete state in the set of states it defines.
The concretisation of a set of abstract traces is the union of the concretisations
of its elements.

Sets of abstract traces are represented as tree schemata, but for our anal-
ysis to be ready, we need also to translate the properties into sets of abstract
traces which will then be represented by tree schemata. The problem is that,
whereas the fairness property can safely be over-approximated, we cannot over-
approximate the termination property. The good news is that we can always
represent this property exactly. Because of the way we chose the abstract states,
the set of states with no successor for → is represented exactly by the set of
abstract state with no successor. Thus the concretisation of the set of finite ab-
stract traces is exactly the set of finite concrete traces. The set of finite abstract
traces can easily be represented by a tree schema, the general method is the
same as in the previous example.

For more powerful results, we need also to take into account the decreasing
chains of integers in the states. For our purpose, such decreasing chains can be
seen as a further constraint that some loop can only be taken finitely often, a
fact that can be exactly expressed with tree schemata.

Of course, even with that analysis, we still manipulate abstractions of the
sets of traces, so there will be some programs fairly terminating and not proved
by this technique. This is inherent to approximation techniques, and unavoidable
anyway when dealing with termination.

Example 4. Let P be the following program:

P = 0x:=?1; b:=true; [0while b do 1x:=x− 12||
0await x < 0 then 1b:=false end2]

Tree Schemata and Fair Termination 317

In this example, the set of abstract states is {(x ≥ 0, t), (x ≥ 0, f), (x < 0, t),
(x < 0, f)} to which we add the indexes of the program. The abstract state
corresponding to the set of all the sets which are terminating is (22, x < 0, f).

Due to this approximation, the two possible states following (10, x ≥ 0, t)
are (20, x ≥ 0, t) and (20, x < 0, t). The first state leads to a loop towards
(00, x ≥ 0, t). It is a very simple analysis that reveals that in this loop we have a
decreasing chain, so this loop cannot be taken for ever. By adding this constraint
we can perform the same analysis as in the previous example and still conclude
that the program fairly terminates.

6 Conclusion

We presented a new representation for sets of trees. This representation has
been developed with tractability in mind. It is based on a structure, the skele-
ton, which is an upper approximation of the set we represent. Tree schemata
benefit from the great efficiency of the operations on skeletons. The skeletons
are enriched with possibly infinite relations. With them, they are more powerful
than tree automata, while more adapted to approximation techniques.

The example of fair termination showed that with such expressiveness it is
possible to model very easily the behavior of programs. There was no need for
complicated program transformations, introduction of variables or deep proofs.
It is to be noted that the full power of tree schemata have not been used in this
example, as no relation between distinct traces occurs.

The main drawbacks of this representation is that it is not fully tested yet.
But the algorithms presented in [17] show that it is very promising, due to
the unique representation of many elements of tree schemata. Moreover, the
canonical decomposition of sets of trees in a tree structure and relations, allows
for a very natural introduction of counters which can be very useful in analysis,
especially if some of these counters are related to the programs we analyze.

Acknowledgments

I would like to thank the anonymous referees for their encouraging comments
and their constructive remarks which helped a lot in the improvement of this
paper.

References

1. Alexander Aiken and Brian R. Murphy. Implementing regular tree expressions. In
J. Hughes, editor, Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, pages 427–446. Springer-Verlag,
1991. 302

2. Nils Andersen. Approximating term rewriting systems with tree grammars. Tech-
nical Report 86/16, Institute of Datalogy, University of Copenhagen, 1986. 302

318 Laurent Mauborgne

3. Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for guided tree au-
tomata. In First International Workshop on Implementing Automata, volume 1260
of Lecture Notes in Computer Science, 1997. 302

4. Jürger Börstler, Ulrich Möncke, and Reinhard Wilhelm. Table compression for tree
automata. ACM Transactions on Programming Languages and Systems, 13(3):295–
314, July 1991. 302

5. Randal E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677–691, August 1986. 307

6. Witold Charatonik and Andreas Podelski. Co-definite set constraints. In T. Nip-
kow, editor, 9th International Conference on Rewriting Techniques and Applica-
tions, volume 1379 of Lecture Notes in Computer Science, pages 211–225. Springer-
Verlag, March-April 1998. 303

7. Patrick Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique des programmes.
PhD thesis, Université de Grenoble, March 1978. 303, 316

8. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction of approximation of fixpoints. In
4th ACM Symposium on Principles of Programming Languages (POPL ’77), pages
238–252, 1977. 303

9. Patrick Cousot and Radhia Cousot. Formal languages, grammar and set-
constraint-based program analysis by abstract interpretation. In Conference on
Functional Programming and Computer Architecture (FPCA ’95), pages 170–181,
June 1995. 313

10. P. Devienne, JM. Talbot, and Sophie Tison. Solving classes of set constraints
with tree automata. In G. Smolka, editor, 3th International Conference on Prin-
ciples and Practice of Constraint Programming, volume 1330 of Lecture Notes in
Computer Science, pages 62–76. Springer-Verlag, October 1997. 302

11. Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer-
Verlag, 1986. 314, 315

12. F. Gécseg and M. Steinby. Tree Automata. Akadémia Kiadó, 1984. 311
13. Nevin Heintze. Set Based Program Analysis. PhD thesis, School of Computer

Science, Carnegie Mellon University, October 1992. 302
14. Jesper G. Henriksen, Jakob Jensen, Michael Jørgensen, Nils Klarlund, Robert

Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic second-order logic
in practice. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 1019 of Lecture Notes in Computer Science, 1996. 302

15. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like
structures. In 6th ACM Symposium on Principles of Programming Languages
(POPL ’79), pages 244–256. ACM Press, January 1979. 302

16. Laurent Mauborgne. Binary decision graphs. In A. Cortesi and G. Filé, editors,
Static Analyis Symposium (SAS’99), volume 1694 of Lecture Notes in Computer
Science, pages 101–116. Springer-Verlag, 1999. 303, 306, 307, 308, 311

17. Laurent Mauborgne. Representation of Sets of Trees for Abstract Interpretation.
PhD thesis, École Polytechnique, Palaiseau, France, November 1999. 310, 312,
317

18. Laurent Mauborgne. Improving the representation of infinite trees to deal with
sets of trees. In European Symposium on Programming (ESOP 2000), volume to
appear of Lecture Notes in Computer Science. Springer-Verlag, 2000. 303, 304,
305, 306, 308

19. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic
approach. CACM, 19(5):279–286, August 1976. 313

Tree Schemata and Fair Termination 319

20. J. Reynolds. Automatic computation of data set definitions. In Information Pro-
cessing ’68, pages 456–461. Elsevier Science Publisher, 1969. 302

21. Michael I. Schwartzbach. Infinite values in hierarchical imperative types. In
A. Arnold, editor, 15th Colloquium on Trees in Algebra and Programming
(CAAP ’90), volume 431 of Lecture Notes in Computer Science, pages 254–268.
Springer-Verlag, May 1990. 303

22. Morten Heine Sørensen. A grammar-based data-flow analysis to stop deforestation.
In Sophie Tison, editor, Trees in Algebra and Programming — CAAP ’94, volume
787 of Lecture Notes in Computer Science, pages 335–351. Springer-Verlag, April
1994. 302

23. J. W. Thatcher and J. B. Wright. Generalized finite automata with an application
to a decision problem of second-order logic. Mathematical Systems Theory, 2:57–82,
1968. 302

24. Moshe Y. Vardi. Nontraditional applications of automata theory. In Masami
Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software,
volume 789 of Lecture Notes in Computer Science, pages 575–597. Springer-Verlag,
April 1994. 303

Abstract Interpretation of Probabilistic

Semantics

David Monniaux

LIENS
45 rue d’Ulm, 75230 Paris cedex 5, France

http://www.di.ens.fr/ monniaux

Abstract. Following earlier models, we lift standard deterministic and
nondeterministic semantics of imperative programs to probabilistic se-
mantics. This semantics allows for random external inputs of known or
unknown probability and random number generators.
We then propose a method for analysing programs according to this
semantics, in the general framework of abstract interpretation. This
method lifts an “ordinary” abstract lattice, for non-probabilistic pro-
grams, to one suitable for probabilistic programs.
Our construction is highly generic. We discuss the influence of certain
parameters on the precision of the analysis, basing ourselves on experi-
mental results.

1 Introduction

In this paper, we give both a theoretical framework for abstract semantics of
probabilistic computer programs and practical methods of analysis. Our analyses
are set in the general field of abstract interpretation.

1.1 Abstract Interpretation

A well-known fact of computer science is that properties of the denotational
semantics of programs in Turing-complete languages cannot be decided mechan-
ically. Automatic methods of analysis thus have to forget completeness, while
still yielding interesting results on realistic programs.

The basic idea behind abstract interpretation [1,2] is to replace computations
on sets that are non recursive or too complex to handle by computations on
supersets of them (or subsets; what is important is we know whether we are
handling a superset or a subset). For instance, instead of handling sets of integers,
one might want to upper-approximate them using an interval. If all computations
are done monotonically, the result interval is necessarily a superset of the exact
set of possible values at the end of execution.

Intervals are just one of many possible abstract domains. For tuples of nu-
merical values, polyhedra can be used [3]. Tuples of integers can be abstracted
using congruences, interval congruences [13] or systems of linear congruential
equations [6]. Appropriate domains can be used to discover data structure con-
figurations [4].

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 322–340, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Abstract Interpretation of Probabilistic Semantics 323

1.2 Probabilistic Semantics

One of the drawbacks of such analysis methods is that they do not distinguish
between what is possible (even with extremely low probability) and what is likely
(possible with a non-negligible probability). This is especially important in the
analysis of reactive systems.

Let us take a real-life example: the monitoring program of a copy machine
system is a reactive program taking inputs for sensors and giving orders to servo-
motors. Each sensor has a probability of failure, from mechanical or electric
wearing, scraps of papers etc... Sensors are redundant, with the idea that if a
moderate amount of sensors are failing, the system will diagnosis the sensor
failure instead of getting a false idea of what is going on in the machine. It is
possible that failure of several sensors can make the system err. The reliability
of the system can be improved by increasing the number of sensors, which is
not always economically and mechanically possible. It is interesting, given a
description of the system, to get upper bounds on the probability of failure.

Another field of possible use of analysis is randomized algorithms. Random-
ized algorithms have enjoyed considerable interest [9]. While it is of course im-
possible to derive automatically the most advanced properties of some of these
algorithms, it is still interesting to be able to deal with such programs in a more
precise way than just considering them as nondeterministic.

It is required that the analysis method should not constrain the analyzed
programs in a class of well-studied algorithms. Also, we must allow all usual
flow-control constructs, including tests and loops.

1.3 Comparison to Other Works

The concrete semantics we consider is essentially equivalent to the one proposed
by Kozen [10,11, second semantic]; we do not consider structures as complex
as those proposed by Jones [9]. We extend this semantics to nondeterministic
probabilistic cases [12,8].

Contrary to some other works [8,12,14,15], our goal is not to propose rules to
reason on à la Dijkstra weakest precondition semantics and prove refinements.
These methods are adequate for computer-aided program design and verification,
but of course cannot deal automatically with loop invariants. We rather propose
a natural extension of abstract interpretation [1,2] to probabilistic semantics.
The analyses described here are meant to be fully automatic, even though some
heuristics need some tuning guided by experience.

Some automatic program analysis techniques with a view on improving op-
timizing compilers have been developed [17]. These techniques are essentially ad
hoc and imprecise; only the control flow is considered, the probability of tests
being taken or not being estimated from crude syntactic criteria (such as: a
branch whose condition is a conjunction is less likely to be taken than a branch
whose condition is atomic, tests checking for null pointers are not likely to be
taken...). While such techniques are interesting in heuristics for compilers, they
are not suitable to get any precise result on programs.

324 David Monniaux

1.4 Notations

P(X) shall be the set of parts of X . Y C shall be the complement of X if there
is no ambiguity as to the superset.

1.5 Structure of the Article

In section 2, we shall define denotational semantics for probabilistic programs.
In section 3, we shall see how to abstract this semantics, and more particularly
we shall explain how to deal with loops (fixpoints). In section 4 we shall define
a parametric abstract domain and in section 5 we shall review some implemen-
tation issues and experimental results.

2 Probabilistic Concrete Semantics

Throughout this paper, we shall define compositionally several semantics and
expose relationships between them. We shall use as an example some simple
Pascal-like imperative language, but we do not mean that our analysis methods
are restricted to such languages.

2.1 Summary of Non-probabilistic Concrete Semantics

We shall here consider denotational semantics for programs. (equivalent opera-
tional semantics could be easily defined, but we shall mostly deal with denota-
tional ones for concision).

The language is defined as follows: the compound program instructions are

instruction ::= elementary
instruction ; instruction
if boolean expr then instruction else instruction endif
while boolean expr do instruction done

and the boolean expressions are defined as

boolean expr ::= boolean atomic
boolean expr and boolean expr
boolean expr or boolean expr
not boolean expr

elementary instructions are deterministic, terminating basic program blocks like
assignments and simple expression evaluations. boolean atomic boolean expres-
sions, such as comparisons, have semantics as sets of “acceptable” environments.
For instance, a boolean atomic expression can be x < y + 4; its semantics is the
set of execution environments where variables x and y verify the above com-
parison. If we restrict ourselves to a finite number n of integer variables, an
environment is just a n-tuple of integers.

Abstract Interpretation of Probabilistic Semantics 325

The denotational semantics of a code fragment c maps the set X of pos-
sible execution environments before the instruction into the set Y of possible
environments after the instruction. Let us take an example: environments are
elements of Z

3, representing the values of three integer variables x, y and z, then
[[x:=y+z]] is the function 〈x, y, z〉 �→ 〈y + z, y, z〉. Semantics of basic constructs
(assignments, arithmetic operators) can be easily dealt with this way; we shall
now see how to deal with flow control.

The semantics of a sequence is expressed by simple composition

[[e1; e2]] = [[e2]] ◦ [[e1]]

Tests get expressed easily, using as the semantics [[c]] of a boolean expression c
the set of environments it matches:

[[if c then e1 else e2]](x) = if x ∈ [[c]] then [[e1]](x) else [[e2]](x)

and loops get the usual least-fixpoint semantics (considering the point-wise ex-
tension of the Scott flat ordering on partial functions)

[[while c do f]] = lfp λφ.λx.if x ∈ [[c]] then φ ◦ [[f]](x) else x.

Non-termination shall be noted by ⊥.

2.2 Our Framework for Probabilistic Concrete Semantics

We shall express probabilities using measures [16, §1.18]. We shall begin by a
few classical mathematical definitions.

Measures The basic objects we shall operate on are measures.

– A σ-algebra is a set of subsets of a set X that contains ∅ and is stable by
countable union and complementation (and thus contains X and is stable
by countable intersection). For technical reasons, not all sets can be mea-
sured (that is, given a probability) and we have to restrict ourselves to some
sufficiently large σ-algebras, such as the Borel or Lebesgue sets [16].

– A set X with a σ-algebra σX defined on it is called a measurable space
and the elements of the σ-algebra are the measurable subsets. We shall
often mention measurable spaces by their name, omitting the σ-algebra, if
no confusion is possible.

– If X and Y are measurable spaces, f : X → Y is a measurable function
if for all W measurable in Y , f−1(W) is measurable in X .

– A positive measure is a function µ defined on a σ-algebra σX whose range
is in [0,∞] and which is countably additive. µ is countably additive if, tak-
ing (An)n∈N a disjoint collection of elements of σX , then µ (∪∞

n=0An) =∑∞
n=0 µ(An). To avoid trivialities, we assume µ(A) <∞ for at least one A.

The total weight of a measure µ is µ(X). µ is said to be concentrated
on A ⊆ X if for all B, µ(B) = µ(B ∩A). We shall note M+(X) the positive
measures on X .

326 David Monniaux

– A probability measure is a positive measure of total weight 1; a sub-
probability measure has total weight less or equal to 1. We shall note
M≤1(X) the sub-probability measures on X .

– Given two sub-probability measures µ and µ′ (or more generally, two σ-finite
measures) onX andX ′ respectively, we note µ⊗ µ′ the product measure [16,
definition 7.7], defined on the product σ-algebra σX×σX′ . The characterizing
property of this product measure is that µ ⊗ µ′(A × A′) = µ(A).µ′(A′) for
all measurable sets A and A′.

Our semantics shall be expressed as continuous linear operators between
measure spaces, of norm less than 1, using the Banach norm of total variation
on measures. This is necessary to ensure the mathematical well-formedness of
certain definitions, such as the concrete semantics of loops. As the definitions for
these concepts and some mathematical proofs for the definition of the concrete
semantics are quite long and not relevant at all to the analysis, we shall omit
them from this paper and refer the reader to an extended version. As a running
example for the definitions of the semantics, we shall use a program with real
variables x, y and z; the set of possible environments is then R

3.

General Form Let us consider an elementary program statement c so that
[[c]] : X → Y , X and Y being measurable spaces. We shall also suppose that
[[c]] is measurable. Let us first remark that this condition happens, for instance,
for any continuous function from X and Y if both are topological spaces and
σY is the Borel σ-algebra [16, §1.11]. [[x := y+z]] = 〈x, y, z〉 �→ 〈y + z, y, z〉 is
continuous.

To [[c]] we associate the following linear operator [[c]]p:

[[c]]p :
∣∣∣∣M≤1(X)→M≤1(Y)
µ �→λW.µ([[c]]−1(W)) .

We shall see that all flow control constructs “preserve” measurability; i.e.,
if all sub-blocks of a complex construct have measurable semantics, then the
construct shall have measurable semantics. We shall then extend the framework
to programs containing random-like operators; their semantics will be expressed
as linear operators of norm less than 1 on measure spaces.

Random Inputs or Generators An obvious interest of probabilistic seman-
tics is to give an accurate semantics to assignment such as x:=random();, where
random() is a function that, each time it is invoked, returns a real value equidis-
tributed between 0 and 1, independently of previous calls.1 We therefore have to
1 Of course, functions such as the POSIX C function drand48() would not fulfill such
requirements, since they are pseudo-random generators whose output depends on an
internal state that changes each time the function is invoked, thus the probability
laws of successive invocations are not independent. However, ideal random generators
are quite an accurate approximation for most analyses.

Abstract Interpretation of Probabilistic Semantics 327

give a semantics to constructs such as x:=random();, where random returns a
value in a measured space R whose probability is given by the measure µR and
is independent of all other calls and previous states.

We decompose this operation into two steps:2

Xp
[[ρ:=random()]]

��

[[x:=random()]]

��(X ×R)p
[[x:=ρ]]

�� Xp

The second step is a simple assignment operator, addressed by the above method.
The first step boils down to measure products:

[[ρ:=random()]] :
∣∣∣∣Xp → (X ×R)p

µ �→µ⊗ µR
.

Tests and Loops We restrict ourselves to test and loop conditions b so that [[b]]
is measurable. This condition is fulfilled if all the boolean atomic sets are measur-
able since the σ-algebra is closed by finite union and intersection. For instance,
[[x < y]] = {〈x, y, z〉 | x < y} is measurable.

The deterministic semantics for tests are:

[[if c then e1 else e2]](x) = if x ∈ [[x]] then [[e1]](x) else [[e2]](x).

Let us first compute

[[if c then e1 else e2]]−1(W) = ([[e1]]−1(W) ∩ [[c]]) ∪ ([[e2]]−1(W) ∩ [[c]]C).

[[c]] is the set of environments matched by condition c. It is obtained inductively
from the set of environment matched by the atomic tests (e.g. comparisons):

– [[c1 or c2]] = [[c1]] ∪ [[c2]]
– [[c1 and c2]] = [[c1]] ∩ [[c2]]
– [[not c]] = [[c]]C

Using our above framework to lift deterministic semantics to probabilistic
ones, we obtain

[[if c then e1 else e2]]p(µ) = X �→µ([[if c then e1 else e2]]−1(X))

= X �→µ(([[e1]]−1(X) ∩ [[c]]) ∪ ([[e2]]−1(X) ∩ [[c]]C)

= X �→µ([[e1]]−1(X) ∩ [[c]]) + µ([[e2]]−1(X) ∩ [[c]]C)
= [[e1]]p ◦ φ[[c]](µ) + [[e2]]p ◦ φ[[c]]C (µ) (1)

where φW (µ) = λX.µ(X ∩W).
2 Another equivalent way, used by Kozen [10,11], is to consider random values as
countable streams in the input environment of the program.

328 David Monniaux

We lift in the same fashion the semantics of loops (we note � an union of
pairwise disjoint subsets of a set):

[[while c do e]]−1(X)

= (lfp λφ.λx.if x ∈ [[c]] then φ ◦ [[e]](x) else x)−1(X)

=
⊔
n∈N

(λY.[[e]]−1(Y) ∩ [[c]])n(X ∩ [[c]]C)

(2)

We therefore derive the form of the probabilistic semantics of the while loop:

[[while c do e]]p(µ) = λX.µ

(⊔
n∈N

(λY.[[e]]−1(Y) ∩ [[c]])n(X ∩ [[c]]C)

)

= λX.
∑
n∈N

µ
(
(λY.[[e]]−1(Y) ∩ [[c]])n(X ∩ [[c]]C)

)

=
∞∑

n=0

φ[[c]]C ◦ ([[e]]p ◦ φ[[c]])n(µ)

= φ[[c]]C

(∞∑
n=0

([[e]]p ◦ φ[[c]])n(µ)

)

= φ[[c]]C

(
lim

n→∞(λµ′.µ+ [[e]]p ◦ φ[[c]](µ′))n(λX.0)
)

(3)

Limits and infinite sums are taken according to the set-wise topology. We refer
the reader to an extended version of this paper for the technical explanations on
continuity and convergence.

2.3 Probabilities and Nondeterminism

It has been pointed out [12,8] that we must distinguish deterministic and non-
deterministic probabilistic semantics. Deterministic, non-probabilistic semantics
embed naturally into the above probabilistic semantics: instead of a value x ∈ X ,

we consider the Dirac measure δx ∈ M≤1(X) defined by δx(X) =

{
1 if x ∈ X
0 otherwise.

How can we account for nondeterministic non-probabilistic semantics?
We move from deterministic to nondeterministic semantics by lifting to

power-sets. It is possible to consider nondeterministic probabilistic semantics:
the result of a program is then a set of probability measures. Of course, non-
deterministic non-probabilistic semantics get embedded naturally: to A ∈ P(X)
we associate {δa | a ∈ A} ∈ P(M+(X)). We therefore consider four semantics:

determinism nondeterminism
probabilistic nondeterministic probabilistic

Abstract Interpretation of Probabilistic Semantics 329

The advantage of probabilistic nondeterminism is that we can consider pro-
grams whose inputs are not all distributed according to a distribution, or whose
distribution is not exactly known. Our analysis is based on probabilistic nonde-
terminism and thus handles all cases.

3 Abstract Semantics

We shall first give the vocabulary and notations we use for abstractions in gen-
eral. We shall then proceed by giving an example of an domain that abstracts
probabilistic semantics as defined in the previous section. This domain is para-
metric in multiple ways, most importantly by the use of an abstract domain for
the non-probabilistic semantics of the studied system.

3.1 Summary of Abstraction

Let us consider a preordered set X� and a monotone function γX : X� → P(X).
x� ∈ X� is said to be an abstraction of x ⊂ X if x ⊆ γX(x�). γX is called the
concretization function. The triple 〈P(X), X�, γX〉 is called an abstraction.
P(X) is the concrete domain and X� the abstract domain. Such definitions
can be extended to any preordered set X besides P(X).

Let us now consider two abstractions 〈P(X), X�, γX〉 and 〈P(Y), Y �, γY 〉 and
a function f : X → Y . f � is said to be an abstraction of f if

∀x� ∈ X� ∀x ∈ X x ∈ γX(x�) ⇒ f(x) ∈ γY (f �(x�)) (4)

More generally, if 〈X,X�,γX〉 and 〈Y ,Y �,γY 〉 are abstractions and f :X→Y is
a monotone function, then f � is said to be an abstraction of f� if

∀x ∈ X ∀x� ∈ X� x � γX(x�) ⇒ f (x) � γX(f �(x�)) (5)

Algorithmically, elements in X� will have a machine representation. To any
program construct c we shall attach an effectively computable function [[c]]� so
that [[c]]� is an abstraction of [[c]]. Given a machine description of a superset of
the inputs of the programs, the abstract version yields a superset of the outputs
of the program. If a state is not in this superset, this means that, for sure, the
program cannot reach this state.

Let us take an example, the domain of intervals: if X� = Y � = T 3 where
T = {(a, b) ∈ Z ∪ {−∞,+∞} | a ≤ b} ∪ {⊥}, γ(a, b) = {c ∈ Z | a ≤ c ≤ b}
and γ induces a preorder �T over T and, pointwise, over X�, then we can take
[[x:=y+z]]�((ax, bx), (ay, by), (az, bz)) = ((ay + az, by + bz), (ay, by), (az, bz)).

3.2 Probabilistic Abstraction

The concrete probabilistic domains given in 2.2 can be abstracted as in the
previous definition. Interesting properties of such an abstraction would be, for
instance, to give an upper bound on the probability of some subsets of possible
environments at the end of a computation.

330 David Monniaux

3.3 Turning Fixpoints of Affine Operators into Fixpoints of
Monotone Set Operators

Equation 3 shows that the semantics of loops are given as infinite sums or,
equivalently, as fixpoints of some affine operators. In non-probabilistic semantics,
the semantics of loops is usually the fixpoint of some monotone operator on the
concrete lattice, which get immediately abstracted as fixpoints on the abstract
lattice. The approximation is not so evident in the case of this sum; we shall
nevertheless see how to deal with it using fixpoints on the abstract lattice.

Defining µn recursively, as follows: µ0 = λX.0 and µn+1 = ψµn, with
ψ(ν) = µ + [[e]]p ◦ φ[[c]](ν), we can rewrite equation 3 as [[while c do e]]p(µ) =
φ[[c]]C (limn→∞ µn). We wish to approximate this limit in the measure space by
an abstract element.

We shall use the following method: to get an approximation of the limit of
a sequence (un)n∈N defined recursively by un+1 = f(un), we can find a closed
set S stable by f so that uN ∈ S for some N ; then limn→∞ un ∈ S. Let us note
than finding such a set does not prove that the limit exists; we have to suppose
that f is such that this limit exists. In our case, this condition is necessarily
fulfilled.

Let us take µ� and µ�
0 respective abstractions of µ. Let us call ψ�(ν�) =

µ�+�[[e]]p
�◦φ�

[[c]](ν�). Let us take a certainN ∈ N and call L� = lfp λν�.ψ�N (µ0
�)�

ψ�(ν�); then by induction, for all n ≥ N , µn ∈ γ(L�). As γ(L�) is topologically
closed, limn→ ∞ ∈ γ(L�). Therefore L� is an approximation of the requested
limit.

Let us suppose that we have an “approximate least fixpoint” operation lfp� :
(X� monotonic−−−−−−→ X�) → X�. By “approximate least fixpoint” we mean that if
f � : X� → X� is monotonic, then, noting x�

0 = lfp�(f), f �(x�
0) � x�

0. The
justification of our appellation, and the interest of such a function, lies in the
following well-known result:

Lemma 1. If f � : X� → X� is an abstraction of f : P(X) → P(X) and
f �(x�

0) � x�
0, then lfp f ⊆ γX(x�

0).

Of course, building such an operation is not easy. Trying the successive iter-
ations of f �n until reaching a fixpoint does not necessarily terminate. One has
to use special tricks and widening operators to build such a function (see 5.3).

Provided we have such an operation, abstraction follows directly:

[[while c do e]]�(W �) = φ�
[[c]]C (lfp�X� �→W � � [[e]]�(φ�

[[c]](X))).

As usual in abstract interpretation, it might be wise to do some semantics-
preserving transformations on the program, such as unrolling the first few turns
of the loop, before applying this abstraction. This is likely to yield better results.

Abstract Interpretation of Probabilistic Semantics 331

4 A Probabilistic Abstract Domain

As considerable effort has been put into the design and implementation of non-
probabilistic abstract domains (see §1.1 for examples), it would be interesting to
be able to create probabilistic abstract domains from these. In the this section,
we shall give such a generic construction.

4.1 The Intuition Behind the Method

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�������
�������
�������
�������

�������
�������
�������
�������

0.4

0.4

0.5

y

x

A

B

C

Fig. 1. An abstract value representing measures µ so that µ(A) ≤ 0.5, µ(B) ≤
0.4 and µ(C) ≤ 0.4.

A finite sequence Ai of disjoint measurable subsets of X and corresponding
coefficients αi ∈ R+, represent the set of measures µ so that:

– µ is concentrated on
⋃
Ai

– for all i, µ(Ai) ≤ αi.

For practical purposes, the Ai are concretizations of abstract elements, polyhedra
for instance (Fig. 1).

This abstraction is intuitive, but lifting operations to it proves difficult: the
constraint that sets must be disjoint is difficult to handle in the presence of non
injective semantics [[c]]. This is the reason why we rather consider the following
definition: a finite sequence Ai of (non-necessarily disjoint) measurable subsets
of X and corresponding coefficients αi ∈ R+ represent the set of measures µ so
that there exist measures µi so that:

332 David Monniaux

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��

��
��
��

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

0.5

y

x

B

0.4

C

A

y <= 6-x

Fig. 2. The abstract value of Fig. 1 after going into the first branch of a if
y<=6-x... test.

– µ =
∑
µi;

– for all i, µi is concentrated on Ai;
– for all i, µ(Ai) ≤ αi.

We shall see how to formalize this definition and how program constructs act on
such abstract objects.

4.2 Theoretical Construction

Let us take an indexing set Λ, an abstraction (see §3.1) ΓX = 〈σX , X
�, γX〉 and

an abstraction ΓW = 〈P([0, 1]Λ),W �, γW 〉. We define an abstraction ΓΛ,ΓX ,ΓW =
〈C(Xp), SΛ,ΓX ,ΓW , γΛ,ΓX ,ΓW 〉. C(Xp) is the set of closed sets of the topological
space Xp for the set-wise topology [5, §III.10] — this is a technical requirement
that is easy to fulfill. We wish to define compositionally abstract semantics for
our language (defined in §2.1). We shall omit the Λ, ΓX , ΓW subscript if there is
no ambiguity.

Domain Let SΛ,ΓX ,ΓW = X�Λ ×W � be our abstract domain. We then define
γΛ,ΓX ,ΓW : SΛ,ΓX ,ΓW → P(Xp) so that ((Zλ)λ∈Λ, w) maps to the set of measures
µ ∈ M≤1(X) so that there exist measures (µλ)λ∈Λ so that

– for each λ ∈ Λ, µλ is concentrated on γX(Zλ);
– the family (∫ dµλ)λ∈Λ of total weights of those measures is in γW (w).

Abstract Interpretation of Probabilistic Semantics 333

Regular Constructs Given two such constructions ΓΛ,ΓX ,ΓW and ΓΛ,ΓY ,ΓW

and measurable function f : X → Y so that f � is an abstraction of f (see
formula 4), we define

fp
� :
∣∣∣∣SΛ,ΓX ,ΓW →SΛ,ΓY ,ΓW

((Zλ)λ∈Λ, w)�→((f �(Zλ))λ∈Λ, w).

Theorem 1. fp
� is an abstraction of fp.

Random Inputs or Generators To accommodate calls to random-like in-
structions, we must be able to abstract a product of two independent random
variables knowing an abstraction for each of the variables. More precisely, let
us suppose we have two abstractions SΛ,ΓX ,ΓW and SΛ′,ΓX′ ,ΓW ′ . Let us also
suppose we have an abstraction ΓWp = 〈P([0, 1]Λ×Λ′

),Wp, γWp〉 and an abstrac-
tion p� : W ×W ′ →Wp of

p :
∣∣∣∣ [0, 1]Λ × [0, 1]Λ

′ → [0, 1]Λ×Λ′

((wλ)λ∈Λ, (wλ′)λ′∈Λ′)�→(wλ.wλ′)(λ,λ′)∈Λ×Λ′ .

Let us also suppose we have an abstraction ΓΠ = 〈P(X × X ′), Π�, γΠ〉 and
an abstraction ×� : X� × X ′� → Xp of × : P(X) × P(X ′) → P(X × X ′) (see
formula 5). Let us take abstract elements A = ((Zλ)λ∈Λ, w) ∈ SΛ,ΓX ,ΓW and
A′ = ((Z ′

λ)λ′∈Λ′ , w′) ∈ SΛ′,ΓX′ ,ΓW ′ then we define

A⊗� A′ =
(
(Zλ ×� Z ′

λ′)(λ,λ′)∈Λ×Λ′ , p�(W,W ′)
)

Theorem 2. (A�, A′�) �→A� ⊗� A′� is an abstraction of (µ, µ′) �→µ⊗ µ′. That
is, if µ ∈ γλ,ΓX ,ΓW (A�) and µ′ ∈ γλ,ΓX′ ,ΓW ′ (A′�) then µ⊗ µ′ ∈ γp(A� ⊗� A′�).

Tests Lifting equation 1 to powersets yields the concrete semantics:

[[if c then e1 else e2]]p
(W) = [[e1]]p

 ◦ φ
[[c]](W)+[[e2]]p

 ◦ φ
[[c]]C (W)

which can be abstracted right away by replacing *’s by +’s. All that is therefore
needed are suitable φ�

[[c]](W) and +�.
We define

((Zλ)λ∈Λ, w)+�((Z ′
λ)λ′∈Λ′ , w′) = ((Zλ)λ∈Λ	Λ′ , w⊕�w′)

where ⊕� is an abstraction of the canonical bijection between [0, 1]Λ × [0, 1]Λ
′

and [0, 1]Λ	Λ′
where Λ � Λ′ is the disjoint union of Λ and Λ′. It is easy to see

that such a +� is an abstraction of +.
Let us suppose we have a suitable abstraction I�

[[c]] : X� → X� of the inter-
section function W �→W ∩ [[c]]. We also require that ∀x� ∈ X� I�

[[c]](x�) � x�.3

Then we can define

φ�
[[c]]((Zλ)λ∈Λ, w) = ((I�

[[c]](Zλ))λ∈Λ, d
�(w))

3 One possible construction for this function is W � �→ W �∩�[[c]]� using an approxima-
tion [[c]]� of the set of environments matched by c and an approximation ∩� of the

334 David Monniaux

Theorem 3. φ�
[[c]] is an abstraction of φ

[[c]].

Loops Using the φ�
[[c]] functions defined in the preceding paragraph and the

framework of §3.3, it is easy to build an abstract semantics for loops provided
we have suitable widening operators. The heuristic design of such operators will
be discussed in §5.3.

4.3 Multiplicity of Representations and Coalescing

The reader might have been surprised we consider a preorder on the abstract
values, not an order. The reason is that we want to talk of algorithmic rep-
resentations, and a same concrete set can be represented in several ways. For
instance, rational languages can be represented by an infinity of finite automata.
Of course, an interesting property is that there is a minimal automaton and thus
a canonical form. Yet we point out that this minimal automaton is defined up
to state renaming, thus it has several representations.

We propose two coalescing operations to simplify representations without
loss of precision:

1. If there is a certain Z0 so that several λ are so that Zλ = Z0, and our nu-
merical lattice enables us to represent exactly a sum, then one could replace
all the entries for all these λ’s by a single one.

2. Similarly, if Zλ1 and Zλ2 are so that there exists W so that γX(Zλ1) ∪
γX(Zλ2) = γX(W), then one can coalesce Zλ1 and Zλ2 into W , with proba-
bility min(wλ1 + wλ2 , 1).

5 Practical Constructions

In the previous section, we have given a very parametric construction, depending
on parameters and assuming the existence of some operators. In this section we
shall give examples of instances of suitable parameters and experimental results
on a simple example.

5.1 Abstract Domain

We shall first define a narrower class of abstract domains for probabilistic appli-
cations, for which we shall give algorithms for some operations.

greatest lower bound. This does not in general yield optimal results, and it is better
to compute I�

[[c]](W
�) by induction on the structure of c if c is a boolean expression.

An example of suboptimality is the domain of integer intervals on one variable, with
W = [0,+∞[and boolean expression (x > 2) ∨ (x < −2). The abstraction of the
domain matched by the expression is �, which gives us the approximate intersection
[0,+∞[while recursive evaluation yields [2,+∞[. Further precision can be achieved
by local iterations [7].

Abstract Interpretation of Probabilistic Semantics 335

Finite Sequences Let us suppose that X� has a minimum element ⊥X� . We
then take Λ = N. We note X�(N) the set of sequences with finite support; that is,
those that are stationary on the value ⊥X� . We shall restrict ourselves to such
abstract sequences.

As for the set of numeric constraints, one can for example use polyhedric
constraints. Such constraints have the following nice property:

Theorem 4. Let us suppose that:

– the numeric constraints are expressed as convex polyhedra, and the inclusion
of two such polyhedra is decidable;

– the intersection test over X� is computable.

Then the preorder test on S(X�) (i.e. the function that, taking (a, b) ∈ S(X�)2

as parameter, returns 1 if and only if a �S(X�) b and 0 otherwise) is computable.

Proof. Let a = ((Zi)i<N , w) and b = ((Z ′
i)i<N ′ , w′). Let us call αi = µi(Zi) and

α′
i = µi(Z ′

i). Let (Ξi)i<M be the set of all nonempty intersections of elements of
the sequences Z and Zi. Let E be the system of equations of the form αi =

∑
ξj

taking only the ξj so that Ξj ⊆ Zi, E′ the system of equations of the form
α′

i =
∑
ξj taking only the xij so that Ξj ⊆ Zi. F the system of linear inequations

yielded by (αi)i<N ∈ w and F ′ the system of linear inequations yielded by
(α′

i)i<N ∈ w′. Given a system of (in)equations σ, we call S(σ) the set of solutions
of σ. We claim that

a �S(X�) b ⇐⇒ S(E ∪ E′ ∪ F) ⊆ S(E ∪ E′ ∪ F ′).

The right-hand side of the equivalence is decidable by hypothesis.

Our claim is the consequence of the following lemma:

Lemma 2. If Z is a nonempty measurable set and c ∈ R+, then there exists
µ ∈ M+(Z) so that µ(Z) = c.

Proof. Let z0 ∈ Z. Then we define µ(A) to be equal to c if z0 ∈ A and to 0
otherwise.

Simple Constraints We propose a very restricted class of polyhedric con-
straints, given by finite sequences (cn)n∈N ∈ [0, 1](N), so that

(αn)n∈N ∈ γW ((cn)n∈N) ⇐⇒ ∀n ∈ N αn ≤ cn.

An abstract element is thus stored a finite sequence (Zn, cn) of pairs in X�×[0, 1].
Similar convex hulls have already been proposed for rules operating on concrete
semantics [8].

It is very easy in such a framework to get an upper approximation of the
probability of a set W , if we have a function τW : X� → {true, false} so that
τW (X�) = true ⇐⇒ W ∩ γX(X�) = ∅: just take

∑
n∈{n∈N|τW (Zn)=true} cn.

336 David Monniaux

0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -3 -2 -1 0 1 2 3 4

abstract
exact

Fig. 3. Experimental results: X1 + X2 + X3 + X4 where the Xi are indepen-
dent random variables equidistributed in [−1, 1]. The approximate simulation
divided [−1, 1] into 10 sub-segments each of maximal probability 0.1. Estimates
on segments of length 0.2.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-4 -3 -2 -1 0 1 2 3 4

abstract
exact

Fig. 4. Same computations as Fig. 3. Approximations on segments of length 1
give more accurate results than approximations on smaller segments.

Abstract Interpretation of Probabilistic Semantics 337

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-4 -3 -2 -1 0 1 2 3 4

abstract
exact

Fig. 5. Same computation as Fig. 3, but the approximate simulation divided
[−1, 1] into 100 sub-segments each of maximal probability 0.01. The sampled
segments are of length 0.2. As with Fig. 4, precision is improved is sampling
segments are bigger than the segments used in the computation.

5.2 Experiments

Using our framework, we analyzed the following C program:

double x=0.0;
int i;
for (i=0; i<4; i++)
x += drand48()*2.0-1.0;

The drand48() function returns a double number equidistributed in [0, 1[. We
chose such a simple program so as to have an easy exact computation.

As an accurate representation of the double type would be complex and de-
pendent on the particular C implementation, we rather chose to use an idealized
version of this type as the real numbers. Figures 3, 4 and 5 show results of the
experiments with different parameters, comparing abstract samples and exact
computations.

In those tests, drand48() is supposed to return an uniformly distributed real
number in [0, 1]. It is abstracted as ([n/N, (n + 1)/N], 1/N)0≤n<N where N is
a parameter. The “samples” are segments [α, β]; for each sample segment W ,
both an upper bound and an exact results of µ(W) are computed, where µ is
the distribution of the final value of x in the above program. The upper bound
is is computed from the abstract result, by the method described in 5.1. The
bars displayed in the figure are the chosen segments [α, β] in x and their exact
and approximate probabilities in y.

338 David Monniaux

Those figures illustrate the following phenomenon: as computations go, the
abstract areas Zn grow bigger. If the samples are not enough bigger than those
areas, the approximation are bad (Fig. 3). Results improve if N is increased
(Fig. 5) or the sample size is increased (Fig. 4). An intuitive vision of this some-
what paradoxical behavior is that our abstract domain represents masses quite
exactly, but loses precision on their exact location. If we ask our analysis to pro-
vide information on the probability of a very small area of the output domain
(small compared to the precision of the input distribution and of the complex-
ity of the transfer function), it tends to overestimate it (Fig. 3) because lots of
masses could be located at that point. If we ask on a wider area, the error on
the locations of the masses compared to the area becomes small and thus the
error on the result becomes acceptable (Fig. 4).

5.3 Widenings

The crucial problem of the abstract domains not satisfying the ascending chain
condition is the “widening” to choose. By widening, we mean some kind of over-
approximation that jumps higher in the abstract domain to allow for convergence
in finite time even if the abstract domain does not enjoy the property that every
ascending sequence is stationary. Let us take a simple example on a nonproba-
bilistic program, with the domain of intervals: if successive abstract values are
[1, 1], [1, 2], [1, 3], [1, 4], the system might try jumping to [1,+∞[for the next
iteration. As this overestimates the set, it is safe.

The design of widenings is experimental in order to find a satisfying balance
between cost and precision. While it is always possible to give a widening in all
abstract domains with a maximum element (just jump to !), it is quite difficult
to design widenings giving interesting results. Here, we shall propose a few ideas:

– Let us suppose we have a widening operator in X�. When successive abstract
values in an iteration are (Zn, cn)n≤N so that both Zn and cn increase, then
try the next iteration with (Z, cN) where Z is the result of the widening in
X�.

– We can also apply widenings on the numerical coefficients cn. For instance,
if we have an increasing sequence (Z, cn)n≤N , we can jump to (Z, c) where c
is slightly above cN , possibly 1.

Both approaches can be combined.
Another important area is simplification. Each call to random-like functions

yields a product of measures and multiplies the number of length of the sequence
making up the abstract environment by the length of the sequence approximating
the measure of the function. This of course can mean fast explosion. While
coalescing (see 4.3) can help, we might have to consider more energic steps. A
possibility is to coalesce several abstract sets that have high probability (let us
say, > 0.8) and are “close enough”, such as [0, 2] and [1, 3].

We are currently working on designing on implementing such strategies and
testing them on realistic examples.

Abstract Interpretation of Probabilistic Semantics 339

6 Conclusions and Prospects

We have given simple probabilistic semantics to a deterministic language supple-
menting the usual constructions by functions returning random values of known
distributions. We have a generic construct to lift usual (that is, non-probabilistic)
abstract analyses to probabilistic analyses. The analysis we propose can be used
to get upper bounds on the probability of certain events at certain points of a
program. We have tested it on some simple examples where an exact computa-
tion of the probabilities was possible, so as to have early experimental results of
the influence of certain parameters over the quality of approximation.

We have proposed heuristics for some operators needed to handle large pro-
grams or loops. We expect to be able soon to propose results as to efficient
heuristics on certain classes of problems.

Acknowledgements

We wish to thank the referees, as well as Patrick and Radhia Cousot, Jérôme
Feret for their comments and proofreading.

References

1. Patrick Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’état ès sciences mathématiques, Université scientifique et médicale de Gre-
noble, Grenoble, France, 21 mars 1978. 322, 323

2. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. J. Logic Prog., 2-3(13):103–179, 1992. 322, 323

3. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the Fifth Conference on Principles
of Programming Languages. ACM Press, 1978. 322

4. Alain Deutsch. Semantic models and abstract interpretation techniques for induc-
tive data structures and pointers. In Proceedings of the ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation, pages
226–229, La Jolla, California, June 21–23, 1995. 322

5. J.L. Doob. Measure Theory, volume 143 of Graduate Texts in Mathematics.
Springer-Verlag, 1994. 332

6. Philippe Granger. Static analysis of linear congruence equalities among variables
of a program. In Proceedings of TAPSOFT ’91, volume 493 of Lecture Notes in
Computer Science, pages I. 169–172. Springer-Verlag, 1991. 322

7. Philippe Granger. Improving the results of static analyses programs by local
decreasing iteration. In R. K. Shyamasundar, editor, Foundations of Software
Technology and Theoretical Computer Science, 12th Conference, New Delhi, India,
volume 652 of Lecture Notes in Computer Science, pages 68–79. Springer-Verlag,
December 1992. 334

8. Jifeng He, K. Seidel, and A. McIver. Probabilistic models for the guarded command
language. Science of Computer Programming, 28(2–3):171–192, April 1997. Formal
specifications: foundations, methods, tools and applications (Konstancin, 1995).
323, 328, 335

340 David Monniaux

9. Claire Jones. Probabilistic Non-Determinism. PhD thesis, University of Edinburgh,
1990. 323

10. D. Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on
Foundations of Computer Science, pages 101–114, Long Beach, Ca., USA, October
1979. IEEE Computer Society Press. 323, 327

11. D. Kozen. Semantics of probabilistic programs. Journal of Computer and Sys-
tem Sciences, 22(3):328–350, 1981. A novel attempt at defining the semantics of
probabilistic programs. Two equivalent semantics are presented. 323, 327

12. Gavin Lowe. Representing nondeterminism and probabilistic behaviour in reactive
processes. Technical Report TR-11-93, Oxford University, 1993. 323, 328

13. François Masdupuy. Semantic analysis of interval congruences. In Formal methods
in programming and their applications, volume 735 of Lecture Notes in Computer
Science, Novosibirsk, Russia, June/july 1993. Springer-Verlag. 322

14. Carroll Morgan, Annabelle McIver, Karen Seidel, and J. W. Sanders. Probabilistic
predicate transformers. Technical Report TR-4-95, Oxford University, February
1995. 323

15. Carroll Morgan, Annabelle McIver, Karen Seidel, and J. W. Sanders. Refinement-
oriented probability for CSP. Formal Aspects of Computing, 8(6):617–647, 1996.
323

16. Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966. 325, 326
17. Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison.

Accurate static estimators for program optimization. ACM SIGPLAN Notices,
29(6):85–96, June 1994. 323

Code Specialization Based on Value Profiles�

Robert Muth, Scott Watterson, and Saumya Debray

Department of Computer Science
University of Arizona
Tucson, AZ 85721

{muth,saw,debray}@cs.arizona.edu

Abstract. It is often the case at runtime that variables and registers in
programs are “quasi-invariant,” i.e., the distribution of the values they
take on is very skewed, with a small number of values occurring most
of the time. Knowledge of such frequently occurring values can be ex-
ploited by a compiler to generate code that optimizes for the common
cases without sacrificing the ability to handle the general case. The idea
can be generalized to the notion of expression profiles, which profile the
runtime values of arbitrary expressions and can permit optimizations
that may not be possible using simple value profiles. Since this involves
the introduction of runtime tests, a careful cost-benefit analysis is neces-
sary to make sure that the benefits from executing the code specialized
for the common values outweigh the cost of testing for these values. This
paper describes a static cost-benefit analysis that allows us to discover
when such specialization is profitable. Experimental results, using such
an analysis and an implementation of low-level code specialization based
on value and expression profiles within a link-time code optimizer, are
given to validate our approach.

1 Introduction

Knowledge that an expression in a program can be guaranteed to evaluate to
some particular constant at compile time can be profitably exploited by compilers
via the optimization known as constant folding [17]. This is an “all-or-nothing”
transformation, however, in the sense that unless the compiler is able to guaran-
tee that the expression under consideration evaluates to a compile-time constant,
the transformation cannot be applied. A similar situation holds in partial eval-
uation, where a variable has to be static in order to permit specialization [15].
In practice, it is often the case that an expression at a point in a program “al-
most always” takes on a particular value [6]. As an example, in the SPEC-95
benchmark perl, the function memmove is called close to 24 million times. The
argument giving the size of the memory region to be processed has the value 1
in 70% of these calls. We can take advantage of this fact to direct such calls to an
optimized version of the function that is significantly simpler and faster. As an-
other example, in the SPEC-95 benchmark li, a very frequently called function,
� This work was supported in part by the National Science Foundation under grants
CDA-9500991, CCR-9711166, and ASC-9720738.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 340–361, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Code Specialization Based on Value Profiles 341

livecar, contains a switch statement where one of the case labels, corresponding
to the type LIST, occurs over 80% of the time. Knowledge of this fact allows the
code to be restructured so that this common case can be tested separately first,
and so does not have to go through the jump table, which is relatively expensive.
As these examples suggest, if we know that certain values occur very frequently
at certain program points, we may be able to take advantage of this informa-
tion to improve the performance of the program. Information about the relative
frequency of occurrence is given by value profiles: a value profile for a variable
or register x at a program point p is a (partial) probability distribution on the
values taken on by x when control reaches p during program execution. This idea
can be generalized to the notion of expression profiles, which profile the runtime
values of arbitrary expressions and can permit optimizations that may not be
possible using simple value profiles. Unfortunately, classical compiler techniques
cannot take advantage of knowledge of the distribution of values, and optimize
for the common case, in situations where a variable may take on multiple values
at runtime. The idea behind value-profile-based code specialization is to allow
such optimization.

From a semantic perspective, the transformation we use is very simple. To
specialize a code fragment C for a value v of a register r,1 we simply replace C
by the equivalent code ‘if (r == v) then C else C.’ Once this has been done,
“ordinary” specializing and optimizing transformations suffice to specialize the
true-branch of this conditional to the value v of r. The resulting code has the
structure

if (r == v) then 〈C〉r=v else C

where 〈C〉r=v represents the residual code of C after it has been specialized to
the value v of r. The runtime test ‘if (r == v) . . . ’ is required since we cannot
guarantee that r will take on only the value v at that point. This idea can be
generalized to multiple values: given a probability distribution on these values,
we can use a collection of tests such as that above, organized as an optimal
binary search tree, to choose between the specialized versions. For simplicity of
discussion, we focus on specialization for a single value in this paper, since this
illustrates the technical issues that arise.

Notice that this transformation is obviously semantics-preserving, can be ap-
plied anywhere, to any variable or register and any value (subject to any appli-
cable type constraints), without requiring, for example, a binding-time analysis.
This is the primary strength of our approach, and it allows optimizations that
would not be possible otherwise; it is also our biggest weakness, because we have
so little to guide us in exercising the tremendous freedom that we are given. For
example, notice that due to the runtime test that has been introduced, the code
resulting from specialization, shown above, is actually less efficient than the orig-
inal for values of r other than v. Thus, value-profile-based specialization reduces
1 In general, specialization can be carried out based on the value of a register, variable,
or memory location, or relationships between such values. To simplify the discussion,
and because our current implementation carries out specialization based on register
values, we refer to register values when discussing specialization.

342 Robert Muth et al.

cost of some execution paths, but the cost of other paths increases. If this tradeoff
is not assessed carefully, it can result in significant performance degradation. In
general, the technical issues that have to be addressed during value-profile-based
code specialization are as follows:

1. we have to determine the program point2 p where the specialization should
begin (this corresponds to the point where runtime tests on values have to
be inserted, as discussed above);

2. we have to identify the register r whose values we are interested in, and the
particular value(s) v of this register that we specialize for;

3. we have to determine the actual code fragment C that is to be subjected to
specialization.

The primary contribution of this paper is a low-level static cost-benefit anal-
ysis that allows us to evaluate the runtime tradeoff mentioned above—where
specialization can reduce the runtime cost of some execution paths but increase
the cost of others—and guide the specialization process. This analysis is crucial,
since specializing a piece of code for too many different values, or specializing
code where the benefits of specialization are not high enough, can lead to a
performance degradation. We then describe details of how the analysis, special-
ization, and subsequent code optimization have been automated and integrated
into a link-time code optimizer (alto), and give experimental results to validate
our ideas.

2 Code Specialization

Value-profile-based code specialization is a three-step process:

1. identify program points and registers where specialization may be profitable
using basic block profiles;

2. obtain value and expression profiles for those program points;
3. use these profiles to carry out specialization for those program points where

this is deemed profitable

A specialization triple is a triple of the form (p, r, v), where p is a program
point, r is a register, and v is a value for that register. These triples identify
the runtime tests that have to be inserted in the context of value-profile-based
specialization and the program points where they must be inserted. The special-
ization region of a triple (p, r, v) refers to the region of code that is chosen for
specialization; this identifies the code fragments that appear in the then- and
else-branches of the runtime test corresponding to that triple.

Section 2.1 describes a benefit analysis that is fundamental to our approach.
In Sections 2.2 through 2.4 we discuss the three steps mentioned above. Sec-
tion 2.5 provides an example illustrating our approach.
2 For our purposes a “program point” refers to the points immediately before or after
an instruction; this includes the entry and exit points of basic blocks.

Code Specialization Based on Value Profiles 343

2.1 Estimating Benefits of Specialization

Our value profiling and specialization decisions are guided by estimates of the
benefit that would be obtained from code specialization given the knowledge that
the value of a register r is known at a program point p. This estimate is denoted
by Benefit(p, r). There are two components to the computation of benefits:

(i) For each instruction I that uses the value of r available at p, there may
be some benefit to knowing this value. The magnitude of this benefit will
depend on the type of I, and is denoted by Savings(I, r).

(ii) It may happen that knowing the value of an operand register r of an in-
struction I allows us to determine the value computed by I. In this case, I is
said to be evaluable given r, written Evaluable(I, r). If I is evaluable given r,
the benefits obtained from specializing other instructions that use the value
computed by I for a particular value of r can also be credited to knowing
the value of r at p. The indirect benefits so obtained from knowing the value
of r in instruction I are denoted by IndirBenefit(I, r).

If we know the values of all operands to an instruction, we can compute the
result v of the instruction, and propagate this value to all instructions that
use v. There is therefore no need to execute this instruction at run-time. The
savings obtained from knowing the operand values for an individual instruction
is essentially the latency of that instruction (i.e., the number of cycles it takes
to execute), if knowing the operand values allows us to determine the value
computed by that instruction, and thereby eliminate that instruction entirely3

(our implementation uses latency figures for various classes of operations based
on data from the Alpha 21164 hardware reference manual):

Savings(I, r) = if Evaluable(I, r) then Latency(I) else 0.

Let Uses(p, r) denote the set of all instructions that use the value of register r
that is available at program point p. Then the benefit of knowing the value of a
register r at program point p is given by the following:

Benefit(p, r) =
∑

I∈Uses(p, r)
(Freq(I)4 × Savings(I, r) + IndirBenefit(I, r))

IndirBenefit(I, r) = if Evaluable(I, r) then Benefit(p′,ResultReg(I)) else 0.

Here p′ is the program point immediately after I, and ResultReg(I) the register
into which I computes its result.

These equations for computing benefits propagate information from the uses
of a register to its definitions. They can be recursive in general, corresponding
3 The benefit estimation can be improved to take into account the fact that for
some instructions, knowing some of the operands of the instruction may allow us
to strength-reduce the instruction to something cheaper even if its computation
cannot be eliminated entirely. While our implementation uses such information in
its benefit estimation, we do not pursue the details here due to space constraints.

4 Freq(I) refers to the dynamic execution frequency of the instruction.

344 Robert Muth et al.

to a cycle in the use-definition chain. The usual approach to solving recursive
equations in the context of program analysis is to use an iterative fixpoint com-
putation (e.g., see [9]). In our case, however, it is not obvious from a pragmatic
standpoint that this is the right thing to do. The reason for this is that propagat-
ing benefit information around a cycle is meaningful only if we know, a priori,
that the loop will be unrolled later (otherwise we cannot specialize the loop
body for values encountered on different iterations of the loop). When carrying
out loop unrolling, however, it is essential to take into account machine-level
resources such as registers and the instruction cache: excessive unrolling that
does not consider these factors can result in severe performance degradation
(e.g., see [11]). For this reason, the decision as to whether the loop should ac-
tually be unrolled is not made at the time of the cost-benefit computation, but
later, based in part on information obtained from value and expression profiling
(see Section 3). If benefit information is propagated around the loop but the
loop subsequently is not unrolled (e.g., due to cache considerations), we can get
wildly optimistic benefit values. These values can mislead the cost-benefit esti-
mation and lead to the introduction of useless runtime tests, thereby degrading
performance.

We therefore have a chicken-and-egg problem: propagating information
around cycles when identifying candidates for value profiling requires knowl-
edge of whether or not loops will be unrolled; but the decision of whether or not
to unroll a loop depends upon, among other things, knowledge of value profiles.
As a practical matter, it happens that complex low-level analyses of machine
code programs (as in our implementation) and determination of value profiles
are both quite expensive; this greatly limits our choices in dealing with this cir-
cular dependence. The approach we take, therefore, is one where we attempt to
“do no harm:” we conservatively assume that loops will not be unrolled when
carrying out our benefit analysis, and therefore do not propagate information
along loop back edges. This has the drawback that it can sometimes cause us
to underestimate the benefit that might actually have been obtained if cycles
had been taken into account; as a result we could miss some opportunities for
optimization. Note, however, that this is conservative, in the sense that it will
not insert runtime tests or specialize code that is not worth specializing.

Our approach, therefore, is to obtain approximate solutions to the benefit
equations given above, where the approximation occurs in the handling of loops
as discussed above. This is done as follows. First, let the defining instruction
of an instruction I, written defInst(I), be the (single) instruction J such that
knowing the value computed by J into its destination register allows us to de-
termine the value computed by I; if there is not a single such instruction, the
defining instruction is undefined, denoted by ⊥.5 Use-definition chains are used

5 Our implementation introduces, at the entry to each basic block that has more than
one predecessor, a pseudo-instruction, similar to a SSA φ-function, that defines each
register that is live at that point and has more than one definition reaching it. The
notion of defining instructions extends to such pseudo-instructions in the obvious
way.

Code Specialization Based on Value Profiles 345

to compute the defining instruction for an instruction I ≡ ‘rc = ra ⊕ rb’ as
follows:

(i) if the values of both ra and rb are statically known, defInst(I) = ⊥;
(ii) otherwise, if the value of one of the operand registers is statically known,

and there is a single definition J for the other operand register that
reaches I, then defInst(I) = J ;

(iii) otherwise, if ra = rb and there is a single definition J for ra that reaches I,
then defInst(I) = J ;

(iv) otherwise defInst(I) = ⊥.

In case (i), all of the operands of an instruction I are known statically.
This instruction will be specialized without relying on value profiles at all. For
the purpose of value profile based specialization, therefore, we do not consider
such instructions. A convenient way to do this is by setting defInst(I) to ⊥. In
case (iv), neither of the operands of an instruction are known statically. We do
not wish to propagate benefit from case (iv) instructions since they cannot be
evaluated after knowing the value of a single defining instruction.

The benefit for each instruction can now be computed as follows. Let
Benefit(I), where I is an instruction, denote the value Benefit(p, r), where p is the
program point immediately after I and r is the destination register of I. First,
we mark all instructions in the program as unprocessed, and set Benefit(I) = 0
for each instruction I. The following is then repeated until no new instruction
can be marked as processed:

for each unprocessed instruction I do
/* memory operations are not specialized away */
if I is not a memory operation then
J = defInst(I);
if J �= ⊥ and all instructions dependent on I have been processed then

Benefit(J) += Benefit(I) + Savings(I, r),
where r is the destination register of J ;

mark I as processed;
fi
fi

od

This algorithm will not process any instruction that is involved in such a cycle,
since Benefit(I) is added to Benefit(J) only after all of the instructions depen-
dent on I have been processed, i.e., after the value of Benefit(I) has stabilized.
This will cause benefit information to not be propagated around loops, for the
reasons discussed above. An added benefit of such an approach is that of effi-
ciency: disallowing information propagation around cycles makes the code for
estimating benefits simpler and faster.

2.2 Identifying Candidates for Specialization

In order to reduce the time and space overheads for value profiling as far as pos-
sible, we attempt to identify candidate (program point, register) pairs for which

346 Robert Muth et al.

specialization could conceivably yield a performance improvement if we had a
sufficiently skewed runtime distribution of values. Once the benefits associated
with each instruction have been computed as described above, we only consider
those instructions whose benefit is equivalent to the elimination of at least a
single instruction from a “hot” basic block. The intent is to avoid the overheads
associated with value profiling, and perhaps specializing, instructions where this
is unlikely to lead to a noticeable improvement in performance. Notice that this
does not mean that instructions considered for specialization must actually cause
the elimination of instructions in hot basic blocks, but simply that the savings
incurred from specialization be large enough to be comparable to the elimination
of at least one instruction from a hot block. Employing this cost-benefit analysis
reduces the overhead of profiling significantly. We discuss this in more detail in
Section 4

Alto uses a two-stage profiling scheme where basic block profiles are first
generated, and these are used to determine which value profiles to compute. At
this point, therefore, we have basic block execution counts. To determine the
basic blocks that are “hot,” i.e., executed sufficiently frequently, we start with
a value φ in the interval (0,1] and determine the largest execution frequency
threshold N such that the set of basic blocks that have execution frequencies
exceeding N together account for at least the fraction φ of the total number of
instructions executed by the program (as indicated by its basic block execution
profile). For the purposes of value-profile-based specialization, we use an empir-
ically derived value of φ = 0.50, i.e., the hot basic blocks consist of those that
allow us to account for at least 50% of the instructions executed at runtime.

2.3 Value Profiling

Given a set of (program point, register) pairs to be value-profiled, we use a scheme
based on that of Calder et al. [6] for obtaining value profiles. As mentioned
earlier, our implementation of value profiling obtains profiles for registers only,
not for memory locations. The actual profiling is carried out by a function created
for this purpose. This function, which is added to the program as part of the
instrumentation code and invoked at the profiling points, compares the value
of the register in question with the contents of a fixed-size table of previously
encountered values. If the current value is already in the table, the count of that
value is incremented. Otherwise, if the table is not full, the value is added to
the table and its count initialized to 1. If the table is full the value is ignored.
Periodically, the table is cleaned by evicting the least frequently used values from
the table: this allows new values to enter the table. We also keep track of the
total number of times execution passes through the point p by incrementing a
counter associated with that point.

2.4 Carrying Out the Specialization

Code specialization involves two steps: (1) identification of the particular spe-
cialization triples, and the corresponding specialization regions, that should be
specialized; and (2) transforming the program appropriately.

Code Specialization Based on Value Profiles 347

The benefit computation described in Section 2.1 is used to identify the
specialization triples for which code specialization is worthwhile. Once the actual
value profile has been obtained, we know the distribution of the values taken on
at the points that have been profiled and can determine the probability prob(v)
with which a value v occurs. The benefits of specialization have to be weighed
against the costs incurred due to runtime tests. The cost of such a test depends
on the register and value being tested: e.g., testing for the value 0 is usually fairly
cheap, while testing for a non-zero floating point constant may incur a load from
memory. The cost of testing whether a register r has a value v is denoted by
TestCost(r, v). Specializing at a program point p for a value v of a register r is
then worthwhile only if the marginal benefit, given by

Benefit(p, r) × prob(v) − TestCost(r, v) × Freq(p),

is equivalent to at least one hot instruction (cf. the discussion in Section 2.2).
Once we have identified the set of specialization triples for which specializa-

tion is worthwhile, we have to choose which of these should actually be special-
ized. An issue that must be addressed here is that the specialization regions for
different such triples may overlap. This is illustrated by the following instruction
sequence:

ld r5, 0(r4) # r5 := load from 0(r4)

and r5, 0xff, r6 # r6 := r5 & 0xff

Suppose that we have value profiled register r5 after the ld instruction and reg-
ister r6 after the and instruction, and that based on the cost benefit analysis,
both of these instructions are candidates for specialization. However, the pro-
gram points are dependent—r6 is computed from r5—and their specialization
regions overlap. Depending on the circumstances, it might be better to special-
ize based on the ld instruction because more instructions use the result of this
instruction; in other situations, it might be better to specialize based on the and
instruction because its value distribution might be more skewed. In such cases,
we specialize only the more promising one, based on the cost benefit analysis;
in the case of a tie, the program point that dominates the other is chosen (as
discussed below, overlaps are not possible unless one of the points dominates the
other).

Given a set of specialization triples, we have to determine the specialization
region associated with each of them. The basic intuition is that given a triple
(p, r, v), we want to identify the instructions that, directly or indirectly, use the
value of r available at p, and so might potentially benefit from specialization.
We first make precise the notion of an instruction using a value “directly or
indirectly.” Given a program point p and register r, we say that (p, r) influences
an instruction I if (i) I uses the value of r at p; or (ii) there is an instruction J
at a program point p′ such that: J defines a register r′; (p, r) influences J ; and
(p′, r′) influences I. Then, given a triple (p, r, v), the specialization region for
this triple is defined to be the smallest set of basic blocks R such that

348 Robert Muth et al.

– R contains the basic block Bp containing p is in R;
– if (p, r) influences an instruction I occurring in a basic block BI , and p

dominates BI , then BI is in R; and
– if B is in R, B �= Bp, and B′ is a (immediate) intra-procedural predecessor

of B in the control flow graph of the program, then B′ is in R.

It is not hard to see that, given a specialization triple (p, r, v), the basic block Bp

containing p dominates every block in the specialization region of this triple. This
is necessary for correctness: we have to ensure that any execution path that can
reach the specialization region of this triple must pass through the test inserted
at p.

There are two issues that are not addressed by this definition of specializa-
tion regions. The first is that, given a triple (p, r, v), it may happen that (p, r)
influences an instruction I but the basic block BI containing I is not in the spe-
cialization region of this triple because p does not dominate BI . This problem
can be remedied by duplicating code so as to make p dominate BI . This is an
issue that is, by and large, orthogonal to the main focus of this paper, and so
is not pursued further here. The second is that, as given, this definition does
not take into account the size of a specialization region relative to the bene-
fits obtained from its specialization. It may happen that an instruction I in a
block BI that is very far away from the point p is influenced by the value of a
register r at p. If we include BI in the specialization region, it is necessary to
also include all of the blocks between p and BI , even though these blocks may
not benefit from specialization. This could, in extreme cases, give rise to large
specialization regions in order to include distant influenced instructions. This
can be handled using a notion of density of influenced instructions, analogous to
the notion of density of case labels used for code generation for switch state-
ments [5], to limit the specialization regions to code that contains a sufficiently
high proportion of instructions that would benefit from the specialization. Our
current implementation does not address this issue.

The final step is to actually carry out the code transformations for special-
ization. The transformations that are effected during specialization can be quite
involved. Since much of this functionality is already available elsewhere in our
system in the routines that implement various analyses and optimizations, we
attempt to have as little code as possible for transformations specifically geared
towards value-profile-based specialization. Our goal is to transform the code just
enough, at this point, that the desired specialization will subsequently happen
in the course of “ordinary” optimizations. We have only two transformations
specific to value-profile-based specialization:

1. The basic transformation, aimed at transferring control to specialized code
when a register has the appropriate value, is implemented as follows. When
specializing for a triple (p, v, r), we simply create a copy C′ of the specializa-
tion region C for that triple and insert a test at program point p that tests r
and branches to the copy if r’s value is v.

2. When value profiling indicates that the iteration count of a (hot) loop C has
a sufficiently skewed distribution, we may generate a specialized version C′

Code Specialization Based on Value Profiles 349

of that loop that has been unrolled some number of times. The specific
number of unrollings is based on the sizes of the bodies of the loop under
consideration as well as those of any loops in which it is nested, together
with the size of the instruction cache, so as to avoid excessive unrolling that
could adversely affect the i-cache utilization of the program (e.g., see [11]).
Control is transferred to the unrolled loop by testing the register r control-
ling the number of iterations against a particular value v, as for the basic
transformation above.

Once the code has been transformed as described, the information that r has
the value v when control reaches the cloned region C′, but not the original code
fragment C, is propagated during the course of conditional constant propaga-
tion [19]; The actual specialization of the code then takes place in the course of
normal optimizations, which exploit the additional information that is available
about the value of r—and, possibly, other computations that use the value of r—
to effect a variety of optimizing transformations. Using this approach we are able
to reuse much of the optimization infrastructure of our system for value-profile-
based specialization, leading to a simpler system that is easier to implement,
debug, and maintain.

Given a specialization triple (p, r, v), a variety of idioms may be used to
implement the test inserted at the program point p, depending on the magnitude
of the value v and whether or not there is a free register available. If a free
register r′ is available, we simply compute the difference of r and v into r′, then
conditionally branch to the cloned code if r′ is zero. If there are no free registers
available, if v is small enough to be an immediate operand the following pair of
instructions is inserted:

subq r, v, r # r := r - v
beq r, Bclone # if (r = 0) goto Bclone;

else fall through to original code

To compensate for the effect of the subq instruction, we add the instruction
‘addq r, v, r’ at the entry to both the original specialization region and its
clone. If v is too big to be an immediate operand, one or more instructions may
be needed to compute it into a register; however, the cost of doing so will have
been taken into account in TestCost(r, v).

2.5 An Example

As an example illustrating our approach, we consider the function memmove(),
from the SPEC-95 benchmark perl. The frequently executed portion of its control
flow graph is shown in Figure 1(a), with the execution count of each basic block
shown in parentheses on the right of the block. Instructions that (directly or in-
directly) use the value of the third argument, passed in register $18, are shown in
italics. The distribution of values for this register is shown in Figure 1(b): notice
that over 70% of the time, this register has the value 1.6 The instructions along
6 The basic block execution counts given in Figure 1(a), as well as the value dis-
tribution shown in Figure 1(b), correspond to the training inputs of the SPEC-95

350 Robert Muth et al.

the critical path of the function that are influenced by the value of register $18
are shown in italics in Figure 1. We focus on the transformations that occur
along the critical path of this function in the course of specialization, since these
have the largest impact on performance:

– [+2 instructions] The most commonly occurring value for this register is 1,
and value-profile-based specialization introduces a test for this value in block
B0 (see Figure 1(c)).

– [−3 instructions] Constant propagation then causes the elimination of the
following instructions: ‘beq $18, ...’ from block B1; and the
pair ‘cmpule $1, 0x08, $1’, ‘beq $1, ...’ from block B4 (a similar pair
is eliminated from block B7).

– [−2 instructions] The elimination of the ‘beq $1, ...’ instruction from
block B4 causes the deletion of the control flow edge out of B4 away from the
critical path (i.e., into the oval marked “[14 basic blocks]”). This has two
effects. First, it causes register $20 to become dead at the end of block B4,
which allows the deletion of the instruction ‘addq $17, $18, $20’ in B4.
Second, it causes the instruction ‘and $16, 0x07, $2’ to become partially
dead in block B3; partial dead code elimination then moves it out of B3, and
hence out of the critical path.

– [−1 instruction] For the instruction pair ‘cmpult $1, $18, $6’, ‘beq $6,
...’ in block B2, given that the value of register $18 is 1, the instruction
‘cmpult $1, $18, $6’, which does an unsigned comparison of registers $1
and $18, will yield a value of 1 only if register $1 is 0. The optimizer rec-
ognizes this and replaces this pair of instructions by the single instruction
‘beq $1, ...’.

– [−1 instruction] Constant propagation of the value of register $18 also
succeeds in deleting a mskql instruction (a bit mask instruction used in byte
manipulations) from block B5.

The resulting code is also subjected to other transformations, such as code hoist-
ing and basic block fusion, that are enabled by the transformations described
above. The resulting code is shown in Figure 1(c). The overall effect of these
transformations is to reduce the length of the critical path through this function
from 37 instructions to 32 instructions, a reduction of 13.5%.

3 Expression Profiling

The idea of value profiling can be generalized to that of expression profiling,
where we profile the distribution of values for an arbitrary expression, not just
a variable or register, at a given program point. Examples include arithmetic
expressions, such as “the difference between the contents of registers ra and rb”
and boolean expressions such as “is the value of register ra different from that of
register rb?” In general, as shown below, the expressions profiled may not even
occur in the program, either at the source or executable level.

benchmarks, since that is what a compiler would use to reason about the program.
Those mentioned in Section 1 refer to the SPEC reference inputs.

Code Specialization Based on Value Profiles 351

[14 basic blocks]
[78 instrs]

[7 basic blocks]
[44 instrs]

ret ($ra)

[22 instrs]

lda $0, 0x0($16)

beq $1, ...
and $16, 0x07, $2
and $1, 0x07, $1
ldq_u $3, 0x0($17)
xor $17, $16, $1

subq $16, $17, $1

beq $18, ...

cmpult $1, $18, $6
addq $17, $18, $20

cmpule $18, 0x08, $1
addq $17, $18, $20
beq $1, ...

(2.87M)
ldq_u $3, 0x0($17)

cmpule $18, 0x08, $1
addq $16, $18, $19
addq $17, $18, $20
beq $1, ...

ret ($ra)

(3.85M)

(3.84M)

(3.84M)

(2.87M)

(0.01M)

(0)

(0)

beq $6, ...

B1

B2

B3

B4

B5

B8

B7

B6

(a) (Frequently executed portions of) the control flow graph

0 1 2 3 4 5 6 7 8 9 10+
0

10
20
30
40
50
60
70
80
90

100

pe
rc

en
ta

ge
 o

f
va

lu
es B2

lda $0, 0x0($16)
subq $16, $17, $1
lda $20, 0x1($17)
ldq_u $3, 0x0($17)
beq $1, ...

cmpeq $18, 0x1, $0
beq $0, ...

and $1, 0x07, $1

B3
cmpule $1, $31, $6
xor $17, $16, $1

beq $1, ...

ret ($ra)

B5

[21 instrs]

[176 instrs]
[32 basic blocks]

B0

(b) value distribution of reg.
$18

(c) After transformation

Fig. 1. A specialization example: the function memmove() (from the SPEC-95
benchmark perl)

352 Robert Muth et al.

Expression profiles are not simply summaries of value profiles: e.g., given
value profiles for registers ra and rb, we cannot in general reconstruct how often
the boolean expression ra == rb holds. Expression profiles are important for
two reasons. First, they conceptually generalize the notion of value profiles by al-
lowing us to capture the distribution of relationships between different program
entities. Second, an expression profile may have a skewed distribution, and there-
fore enable optimizations, even if the value profiles for the constituents of the
expression profile are not very skewed: for example, a boolean expression ra �= rb

may be true almost all of the time even if the values in ra and rb do not have a
very skewed distribution.

The expressions that we choose to profile are determined by considerations of
the optimizations that they might enable. Our implementation currently targets
two optimizations: loop unrolling and load avoidance.

3.1 Loop Unrolling

Here we try to determine the distribution of the number of iterations of the loop.
In simple cases, this may be just the value of a variable: e.g., in a loop of the
form

for (i = n; i > 0; i--) { ... }

In general, however, the iteration count may depend on more complex expres-
sions whose value may not be known at compile time: e.g., in a loop of the
form

for (i = m; i < n; i++) { ... }

iteration count is given by the expression n-m. This expression does not appear
in the source code. If the iteration count of a loop can be predicted given the
value of an expression prior to the execution of the loop, and this distribution is
sufficiently skewed, we may choose to generate, subject to i-cache considerations,
an unrolled version of the loop based on that information. Notice that the test
to decide whether or not to execute the unrolled version of a loop is made by a
single test that is outside the loop, so the associated overhead is not very high.

3.2 Load Avoidance

The goal here is to use expression profiling to determine relationships between
memory access operations, and thereby avoid unnecessary memory operations
where possible. Suppose we have a sequence of operations (typically within a
loop) as shown in Figure 2(a). Let k(r) represent the address obtained by
adding k to the contents of register r. If we can guarantee that the addresses
A(ra) and B(rb) will never overlap, we can eliminate the second load operation
in the sequence shown. However, in practice, it is very difficult to prove that the
two instructions will never overlap. We use expression profiling to determine
how often the two instructions overlap at runtime, and use this information to
optimize the code.

We first identify the instructions that define the index registers ra and rb

and attempt to determine the rate at which these registers change within the

Code Specialization Based on Value Profiles 353

....
ldq $r0, A($ra)

stq $r1, B($rb)

ldq $r0, A($ra)

....

....

....

....

TF

ldq $r0, A($ra)

stq $r1, B($rb)

ldq $r0, A($ra)

ldq $r0, A($ra)

stq $r1, B($rb)

subq $ra, $rb, $rc
addq $rc, A-B, $rc
bne $rc, ...

(a) original code (b) optimized code

Fig. 2. Load Avoidance Example

loop; if either register is defined by a load operation from a fixed location, we
attempt to determine the rate at which the value at that location changes. If we
can obtain constant rates of change δa and δb for these registers, respectively,
we consider the following cases:

(δa = δb): Here, it suffices to test whether A(ra) �= B(rb) at entry to the loop;
the expression profiled in this case is essentially this expression, simplified
as far as possible to reduce runtime overheads.

(δa �= δb): Assume that δa > δb and both rates are non-negative (the other cases
are analogous). There is no conflict between the two addresses if, at entry to
the loop, either ma(ra) > mb(rb) or (ma(ra) + n × δa) < mb(rb), where n is
the iteration count of the loop. In this case we profile these two expressions
separately.

In our example, ra and rb are unchanged within the loop. Therefore, we
profile the expression A(ra) �= B(rb). If expression profiling determines that
at runtime the above expression is true sufficiently frequently, we optimize the
code. The specialized code from our example is shown in Figure 2(b). Again, in
the specialized code the expression is tested once outside the loop and so is not
very expensive. Note that the aliasing test is not present in either the source
code or the original executable.

3.3 Transformation

Expression-profile-based code transformations are nearly identical to those per-
formed for value-profile-based code specialization. A clone of the affected blocks
is created, and a test is inserted to choose between the specialized code and the
original code. Additionally, information about (non-)aliasing between pointers,
obtained from expression profiling, is attached to the relevant basic blocks. We

354 Robert Muth et al.

then rely on other parts of our system to eliminate the unnecessary load and
store instructions.

As an example of the application of expression profiling, in the SPEC-95
benchmark m88ksim, expression profiling allows us to determine that three
pointers in a heavily executed loop within the function alignd are usually not
aliased; this information is used to eliminate several redundant memory accesses
and thereby effect a significant speed improvement.

4 Experimental Results

Execution Time (secs)
Program unspecialized specialized Tspec/Tnospec

(Tnospec) (Tspec)

compress 260.75±0.02% 254.25±0.30% 0.975

gcc 220.45±0.16% 221.58±0.08% 1.005

go 309.43±0.81% 301.57±0.26% 0.975

ijpeg 327.24±0.02% 320.95±0.41% 0.981

li 249.59±0.03% 237.97±0.04% 0.953

m88ksim 220.21±0.08% 189.19±0.06% 0.859

perl 178.96±1.91% 169.54±0.51% 0.947

vortex 301.22±1.09% 297.35±0.05% 0.987

Table 1. Impact of Value-Profile-based Specialization on Execution Time

We have implemented the ideas described here within the alto link-time op-
timizer [18]. The programs used were the 8 integer programs from the SPEC-95
benchmark suite. The programs were compiled with the vendor-supplied C com-
piler V5.2-036, invoked as cc -O4, with additional linker options to retain relo-
cation information and produce statically linked executables.7 Both the initial
execution frequency profiles as well as the value profiles for each program were
obtained using the SPEC training inputs; the execution times reported were
then obtained using the SPEC reference inputs.

The results of our experiments are shown in Table 1. The second column of
this table, with heading “unspecialized”, gives the execution time for the exe-
cutables using all optimizations within alto except for value-profile-based special-
ization, while the third column, with heading “specialized”, gives the execution
times when value-profile-based specialization is carried out as well. The last col-
umn gives the ratio of the execution times with and without specialization. The
timings were obtained on a lightly loaded DEC Alpha workstation (i.e., with no
7 We use statically linked executables because alto relies on the presence of relocation
information for its control flow analysis. The Digital Unix linker ld refuses to retain
relocation information for non-statically-linked executables.

Code Specialization Based on Value Profiles 355

other active processes) with a 300 MHz Alpha 21164 processor with a split pri-
mary cache (8 Kbytes each of instruction and data cache), 96 Kbytes of on-chip
secondary cache, 2 Mbytes of off-chip backup cache, and 512 Mbytes of main
memory, running Digital Unix 4.0. In each case, we ran the program 10 times
and discarded the biggest and smallest execution times; for the remaining runs,
we computed the mean as well as the maximum deviation of any run from the
mean. Our results are given in Table 1, with the maximum deviation expressed
as a percentage of the mean.

It can be seen from these numbers that automatic value-profile-based spe-
cialization can yield noticeable performance improvements for nontrivial pro-
grams. Most of our benchmarks experience speedups, with m88ksim and perl
experiencing the largest speedups of 14.1% and 5.6% respectively. Due to space
constraints, a description of the reasons for the performance improvements in
the various benchmarks is relegated to Appendix A. We have not yet determined
the reasons for the slowdown in the gcc benchmark: sometimes, as shown here,
the specialized code is slower than the unspecialized code, while at other times
the specialized code is faster; we are currently investigating this problem. A
detailed examination of the low-level performance of the specialized programs,
using hardware performance counters, indicates that the performance of the
specialized programs suffers from deficiencies in other parts of our system that
we believe will not be difficult to rectify. For example, several of the special-
ized benchmarks suffer from an increase in mispredicted branches (compress by
about 7%, perl by about 4%), which we suspect may be due to the layout of the
code. The number of i-cache misses also goes up in some programs (m88ksim
by 6%; compress by 16%, though in this case the miss rate is so low that it is
not clear that this has a significant effect), again pointing to code layout as a
possible culprit. We expect to be able to address these problems soon.

Program No. of Program Points
Total Profiled Optimized

compress 16749 74 0+1
gcc 271899 7231 196+0
go 65328 1352 4+0
ijpeg 49650 243 5+1
li 32221 171 7+0
m88ksim 40867 253 16+0
perl 82462 501 14+0
vortex 113236 322 15+0

Table 2. Extent of Profiling and Specialization

Table 2 compares, for each benchmark, the total number of program points
that could have been profiled/specialized (column 2) with the number that were
actually profiled (column 3) and the number that were then optimized (col-

356 Robert Muth et al.

Code Size (Instructions)
Program unspecialized specialized Ispec/Inospec

(Inospec) (Ispec)

compress 17381 17529 1.009

gcc 279429 281584 1.007

go 71046 71169 1.002

ijpeg 51045 52385 1.026

li 29106 29131 1.001

m88ksim 40865 41237 1.009

perl 82167 82304 1.002

vortex 103660 103743 1.001

Table 3. Impact of Value-Profile-based Specialization on Code Size

umn 4); the last of these entries are given in the form m + n, where m is the
number of program points that were specialized and n the number of loops that
were unrolled. This indicates that the our computation of the cost/benefit trade-
offs is highly selective: for most of the benchmarks fewer than 1% of the potential
candidates for profiling are actually chosen for profiling (gcc comes in highest
with a little under 2.5% of the candidates actually profiled). Table 3 shows, for
each benchmark, the code growth that results from specialization. The small
number of points chosen for profiling keeps the value profiling overhead under
control, while of the small number of points chosen for specialization keeps the
code growth modest. As mentioned previously in Section 2.2, our profiling over-
head is considerably reduced by applying our benefit analysis before performing
the value profiling. Calder et al. [7] report a 33x average slowdown for full value
profiling on the SPEC-95 benchmarks. Alto, in contrast, produced 3x-9.5x slow-
downs (6.3x on average) for value and expression profiling.

Figure 3 illustrates the overheads associated with value-profile-based special-
ization. It shows, relative to the time taken by alto to optimize an executable
program without either value profiling or specialization, the following quanti-
ties: (i) the time taken to instrument the code for value profiling, i.e., to read in
an executable file, identify candidates for value profiling, insert instrumentation
code, and write out the instrumented binary (Section 2.2); and (ii) the time
taken to specialize the program using value profiles, i.e., read in the program
as well as the profile data, carry out all optimizations including value-profile-
based specialization, and write out the optimized executable (Section 2.4). The
initial cost-benefit computation to identify profiling candidates, together with
the instrumentation overhead, results in overheads in the range of 20%–80%
(about 44% on the average) compared to the time for ordinary processing by
alto. Specialization based on value profiles incurs overheads of factors ranging
from 1.6x to 2.1x (about 1.87x on the average).

5 Related Work

There is a considerable body of work on program specialization within the partial
evaluation community: Jones et al. give an extensive discussion and bibliogra-

Code Specialization Based on Value Profiles 357

compress gcc go ijpeg li m88ksim perl vortex
0.0

1.0

2.0

N
or

m
al

iz
ed

 p
ro

ce
ss

in
g

ti
m

e
No specialization
Instrumentation
Specialization

Instrumentation average
Specialization average

Fig. 3. Overhead of Value-Profile-Based Code Specialization

phy [15]. This work focuses largely on code specialization starting with known
values for some or all of a program’s inputs. Specialization based on value pro-
files, where we reason about the runtime distribution of values taken on by a
variable, is not considered.

In some ways, our approach to specialization is reminiscent of a transforma-
tion referred to as “the trick” in the partial evaluation literature (e.g., see [15]).
There are two main differences between these transformations. The first is that
“the trick” is applied to variables of bounded static variation, i.e., which take
on values from a finite, statically known, set, while our approach does not have
such a restriction (e.g., in the example discussed in Section 2.5, the variable that
is specialized ranges over the set of integers). Furthermore, “the trick” offers no
guidance regarding which values are worth specializing and which are not: be-
cause of this, automatic application of this transformation can be problematic if
the candidate variable is of bounded static variation but ranges over a very large,
albeit finite, set. The analysis we describe is intended to address precisely this
problem. As such, it can be a useful complement to standard partial evaluation
techniques.

Also related to our cost-benefit analysis is the work on speedup analysis
in partial evaluation [2,15]. This analysis starts with a binding-time annotated
program, where variables whose values are statically known are marked as such.
Speedup analysis estimates the asymptotic speedup that partial evaluation of
the program would yield. By contrast to this work, we cannot assume that
we have a binding-time annotated program—indeed, the whole point of our
analysis is to take variables whose values cannot be statically predicted, and
determine which if any, of the (possibly unboundedly many) values taken on
by such variables might yield performance improvements. Another important
difference is that we are concerned not with asymptotic speedups but rather
with concrete improvements in speed, and therefore pay careful attention to low
level issues such as the effects of specialization on instruction cache utilization
(as discussed, for example, in Section 2.4 in the context of loop unrolling).

358 Robert Muth et al.

Some implementations of object-oriented languages attempt to mitigate the
high cost of dynamically dispatched calls using a limited form of value-profile-
based specialization. The idea, referred to as type feedback or receiver class pre-
diction [1,14], is to monitor the targets of dynamically dispatched function calls,
and to use this information to inline the code for frequently called targets. The
main limitation of this approach is that the specialization is restricted to dynam-
ically dispatched function calls, and so will not be applied to “ordinary” code
even if such code could benefit substantially from knowledge of the values most
commonly encountered at runtime.

Calder et al. have investigated issues and techniques for value profiling [6].
Our implementation of value profiling was inspired by theirs and is very similar
to it. While Calder et al. consider profiling both registers and memory locations,
we only profile registers. We use a two-stage profiling process in order to reduce
the time and space overheads. The idea is to first profile the application using a
simple basic-block profiler such as pixie, and then use the execution frequency
information so obtained to identify candidates for value profiling and special-
ization. In a different paper, Calder et al. discuss value-profile-based optimiza-
tion [7]: they use hand-transformed examples to show that value-profile-based
specialization can yield significant speed improvements. By contrast, our work
describes value-profile-based specialization that is fully automatic and that has
been integrated into a link-time optimizer.

Systems for dynamic code generation and optimization [4,8,12] are also con-
fronted with tradeoffs between the cost of generating specialized code and the
savings obtained from the execution of this code. The problem, while qualita-
tively similar to ours, is considerably more complicated in practice because the
runtime costs include the cost of generating the specialized code, which can be
difficult to estimate precisely. Systems that extend existing source languages with
facilities for dynamic code generation, such as Tempo [8] and DyC [12], gener-
ally require users to annotate the program fragments that should be subjected
to runtime code generation and specialization, effectively moving the burden of
analyzing the cost-benefit tradeoff to them. Systems for dynamic optimization of
conventionally optimized programs, such as Dynamo [4], rely on simple heuris-
tics to determine whether a code fragment is worth optimizing: programs where
these heuristics are inadequate can suffer noticeable performance degradation.

The work that is conceptually closest to that described here is some recent
work towards automating the cost-benefit analysis for DyC [16]. The goals of
this work are considerably more ambitious—and also more difficult—than ours.
A direct comparison of the efficacy of the two systems is difficult, partly be-
cause they take very different approaches towards specialization (one is static,
the other dynamic), and partly because the benchmarks used by the authors
are mostly different from ours; of the benchmarks considered for DyC [13], the
only one that is also considered by us is m88ksim. For this program, Grant et
al. report an overall speedup of 5%, whereas we obtain a speedup of a little
over 13%. Other studies by the authors of DyC suggest that, assuming that
the cost-benefit tradeoff assessment can be made properly, runtime specializa-

Code Specialization Based on Value Profiles 359

tion can yield significant asymptotic speedups, albeit sometimes with fairly high
break-even points [3].

6 Conclusions

This paper describes an implementation of low level code specialization based on
value profiles. Fundamental to our approach is a low-level cost-benefit analysis
that is used both to reduce the overheads due to value profiling and also to
identify the code to be specialized. Experimental results indicate that the cost-
benefit analysis is effective in filtering out unpromising candidates, and that
several non-trivial programs experience noticeable performance improvements
due to value-profile-based specialization.

Acknowledgements

We are grateful to Brad Calder for very helpful discussions as well as comments
on an earlier version of this paper.

References

1. G. Aigner and U. Hölzle, “Eliminating Virtual Function Calls in C++ Programs”,
Proc. ECOOP ’96, Springer Verlag LNCS vol. 1098, pp. 142–166. 358

2. L. O. Andersen and C. K. Gomard, “Speedup Analysis in Partial Evaluation (Pre-
liminary Results)”, Proc. ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, June 1992, pp. 1–7. (Also available as
Research Report YALEU/DCS/RR-909, Department of Computer Science, Yale
University, New Haven, CT.) 357

3. J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad, “Fast,
Effective Dynamic Compilation”, Proc. SIGPLAN ’96 Conference on Programming
Language Design and Implementation, June 1996, pp. 149–159. 359

4. V. Bala, E. Duesterwald, and S. Banerjia, “Transparent Dynamic Optimization:
The Design and Implementation of Dynamo”, Technical Report HPL-1999-78,
Hewlett-Packard Laboratories, Cambridge, Mass., June 1999. 358

5. R. L. Bernstein, “Producing Good Code for the Case Statement”, Software—
Practice and Experience vol. 15 no. 10, Oct. 1985, pp. 1021–1024. 348

6. B. Calder, P. Feller, and A. Eustace, “Value Profiling”, Proc. 30th International
Symposium on Microarchitecture, Dec. 1997, pp. 259–269. 340, 346, 358

7. B. Calder, P. Feller, and A. Eustace, “Value Profiling and Optimization”, Journal
of Instruction-Level Parallelism 1 (1999), 1–6. 356, 358

8. C. Consel and F. Noël, “A General Approach for Run-time Specialization and its
Application to C”, Proc. 23rd Annual ACM Symposium on Principles of Program-
ming Languages, Jan. 1996, pp. 145–156. 358

9. P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Apporoximation of Fixpoints”,
Proc. Fourth ACM Symposium on Principles of Programming Languages, 1977,
pp. 238-252. 344

10. J. Davidson and S. Jinturkar, “Memory Access Coalescing: A Technique for Elim-
inating Redundant Memory Accesses”, Proc. SIGPLAN 94 Symposium on Pro-
gramming Language Design and Implementation, June 1994, pp. 186-195. 360

360 Robert Muth et al.

11. J. W. Davidson and S. Jinturkar, “Aggressive Loop Unrolling in a Retargetable
Optimizing Compiler”, in Proc. CC’96: Compiler Construction, April 1996. 344,
349

12. B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. eggers, “DyC: An Ex-
pressive Annotation-Directed Dynamic Compiler for C”, Technical Report UW-
CSE-97-03-03, Jan. 1998 (updated May 1999). 358

13. B. Grant, M. Philipose, M. Mock, C. Chambers, S.J. Eggers, “An Evaluation of
Staged Run-time Optimizations in DyC”, Proc. SIGPLAN ’99 Conference on Pro-
gramming Language Design and Implementation, May 1999, pp. 293–304. 358

14. U. Hölzle and O. Agesen, “Dynamic vs. Static Optimization Techniques for Object-
Oriented Languages”, Theory and Practice of Object Systems 1(3), 1996. 358

15. N. D. Jones, C. K. Gomard and P. Sestoft, Partial Evaluation and Automatic
Program Generation, Prentice Hall, 1993. 340, 357

16. M. Mock, M. Berryman, C. Chambers, and S. J. Eggers, “Calpa:
A Tool for Automating Dynamic Compilation”, Proc. 2nd. ACM
Workshop on Feedback-Directed Optimization, Nov. 1999. Available as
http://www-cse.ucsd.edu/users/calder/fdo/fdo2-mock.ps. 358

17. S. S. Muchnick,Advanced Compiler Design and Implementation, Morgan Kaufman,
1997. 340

18. R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, “alto : A Link-
Time Optimizer for the DEC Alpha”, Technical Report 98-14, Dept. of Computer
Science, The University of Arizona, December 1998. 354

19. M. N. Wegman and F. K. Zadeck, “Constant Propagation with Conditional
Branches”, ACM Transactions on Programming Languages and Systems vol. 13
no. 2, April 1991, pp. 181–210. 349

Appendix A Sources of Improvements

The sources of performance improvements for these benchmarks are discussed
below. There is, however, one caveat. In our system, value-profile-based special-
ization is carried out after function inlining. Because of this, the code structure
encountered during specialization, and the functions associated with the special-
ized code fragments, may not always correspond to those of the source program.
Due to space constraints we only report most important sources for improve-
ments.

compress : Expression profiling is used to unroll a loop and identify non-
conflicting memory operations. This information allows memory access coa-
lescing [10].

gcc : Most of the improvement comes from knowing that one of the values in
the function note stores has the value 34 over 80% of the time, and from
knowing that 70% of the time the third argument to the function sim-
plify binary operation is 34.

go : Roughly half of the improvement comes from specializing a value in the func-
tion j2more to 0, which causes several conditionals to be eliminated. Most
of the rest of the speedup comes from specializing a value in the function
playnextto to 0.

Code Specialization Based on Value Profiles 361

ijpeg : Expression profiling is used to unrol a loop and simplify the code in the
unrolled loop.

li : Sequences of independent conditionals in functions xleval and sweep are trans-
formed so that the common case is tested first. A switch statement in the
function livecar is transformed so that the common case did not have to go
through a jump table.

m88ksim : Expression profiling is used to determine that three pointers in the
function alignd are unaliased in the common case, allowing the elimination
of several load and store instructions in that function. The function killtime
is specialized for an argument of 1.

perl : The function memmove is specialized for the single byte move. The (in-
ternal) function OtsDivide64Unsigned, which emulates integer divison (since
the Alpha does not have an integer division instruction), is specialized for
the divisor 16.

vortex : Most of the improvement comes from knowing that a value in the func-
tion Mem GetWord takes on the value -1 nearly 100% of the time.

Flattening Is an Improvement
(Extended Abstract)

James Riely1 and Jan Prins2

1 DePaul University
2 University of North Carolina at Chapel Hill

Abstract. Flattening is a program transformation that eliminates nested parallel con-
structs, introducing flat parallel (vector) operations in their place. We define a sufficient
syntactic condition for the correctness of flattening, providing a static approximation of
Blelloch’s “containment”. This is acheived using a typing system that tracks the control
flow of programs. Using a weak improvement preorder, we then show that the flattening
transformations are intensionally correct for all well-typed programs.

1 Introduction

The study of program transformations has largely been concerned with functional cor-
rectness, i.e. whether program transformations preserve program meaning. However, if
we include an execution cost-model as part of the programming language semantics,
then we can ask whether program transformations additionally preserve or “improve”
program performance. One program improves another if, for every binding of variables,
it evaluates to the same answer in fewer steps. Sands has initiated a formal study of im-
provement for source-to-source transformation of sequential programs [30,29]. In this
paper we study improvement for source-to-target transformation of parallel programs.
Our source language is equipped with a natural parallel semantics, including a cost
model, but lacks a direct parallel implementation. Our target is (almost) a subset of the
source language that is directly implementable on parallel machines within the bounds
of our cost model. We are interested in showing that a transformed program improves
execution cost, i.e. that its performance is approximately the same as that prescribed for
the source program. This gives our work a different flavor from that of Sands.

We study Blelloch and Sabot’s flattening transformations [7], used to implement
a nested data-parallel programming language in terms of a vector-based sublanguage.
Nested parallelism allows the simple expression of parallel algorithms over irregular
structures, such as nested lists. For examples, including many divide-and-conquer algo-
rithms, see [3].

The flattening transformations remove instances of a second order parallel “map”
functional, introducing vector operations in the process. We write parallel maps using
the iterator construct. The syntax is similar to that normally used for list comprehen-
sions [14], although the semantics is quite different. For example, the iterator

[x⇐ xs,y⇐ ys : plus(x,mult(y,2))] (∗)

specifies the evaluation of ‘plus(x,mult(y,2))’ for each binding of (x,y), drawn from
zip(xs,ys). If xs is 〈1,2〉 and ys is 〈5,7〉, then (∗) evaluates to 〈11,16〉. The expression

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 360-376, 2000.
 c Springer-Verlag Berlin Heidelberg 2000

has a natural parallel interpretation.1 The step-count of an iterator is the maximum of
the step-counts of the subevaluations. The work-count of an iterator is the sum of the
work-counts of the subevaluations. Thus (∗) takes a constant number of steps and takes
work proportional to the length of xs and ys.

Using the flattening transformations, (∗) can be rewritten to:

let twos⇐prom(xs,2) in plus1(xs,mult1(ys, twos)) (†)

Here, prom is a primitive that “promotes” its second argument by copying it to match
the length of its first argument; if xs is 〈1,2,3〉 then prom(xs,2) evaluates to 〈2,2,2〉.
plus1 and mult1 are respectively vector addition and vector multiplication. prom and
the vector operators each execute in one parallel step.

Note that in translating from (∗) to (†), the nesting of parallel and sequential con-
structs has been inverted. (∗) specifies the parallel execution of a sequential expression
involving scalar addition and multiplication, whereas (†) specifies the sequential exe-
cution of vector addition and vector multiplication. In both expressions the step-count
is constant and the work-count is proportional to the length of xs and ys. In general,
however, nesting inversion creates problems, particularly for conditional expressions.

We say that a transformation is correct if, for any program, applying the transfor-
mation results in a weak improvement. Weak improvement allows that program P may
improve Q even if P is slower by a constant factor. Weak improvement is a permissive
condition; nonetheless, the flattening transformations fail to satisfy it. Although flat-
tening does not change the results computed by an expression, it may serialize certain
parallel computations, increasing the step-count drastically. This lead Blelloch [1] to de-
fine a semantic condition, known as containment, that identifies iterator-based programs
that are suitable for implementation using only parallel vector operations. Contrary to
folklore, however, containment is not sufficient to guarantee that flattening results in
weak improvement; we present a counterexample in Section 5.

In order to specify a subset of programs for which flattening does imply weak im-
provement, we introduce a typing system that divides expressions into three categories.
Roughly described, these are: cnst, expressions that evaluate in a constant number of
parallel steps; flat, a subset of contained expressions; and exp, all expressions. Using
this typing system, we are able to prove that, for flat expressions, flattening is correct.
We believe that ours is the first proof of the correctness of flattening.

The paper is organized as follows: We first introduce the programming language
and its semantics and the flattening transformations. In Section 5, we show that the
transformations do not imply weak improvement, even for contained programs. The

1 The cost of a parallel program is typically described using two metrics, steps, which are com-
puted assuming that all available parallelism is realized, and work, which is computed assum-
ing that no available parallelism is realized. Terms in our target language can be mapped to
the Vector Random Acccess Machine (VRAM) [1] in a straightforward way that preserves both
steps and work. The VRAM, in turn, can be related to other models of computation [8]. An
expression in our target language that has step-count t and work-count w can be executed on
a p-processor PRAM in O(w/p+ t logp) time [1]. When w >> p logp, the PRAM running time
is a good estimate of actual running times on uniform-access shared-memory machines with
high-bandwidth memory systems, such as vector machines or the Tera MTA [4,23].

361Flattening Is an Improvement

Table 1 Source, Intermediate and Target Expressions

A,B,C,D,E ::= Expressions Sublanguage
a Value S/I/T
x Variable S/I/T
p Primitive S/I/T
B(A1, .., A�) Application S/I/T
if B then A else C Conditional S/I/T
let x⇐B in A Sequencing S/I/T
letrec f ⇐ (x1, .., x�) D,E in A Function definition S/I/T
[x1 ⇐B1, .., x� ⇐B� : A] Iterator S/I
〈x1 ⇐ xs1, .., x� ⇐xs� : A〉 Evaluated iterator I
B1 (A1, .., A�) Parallel application I/T

typing system is defined in Section 6. In the following section we sketch the correctness
proof. The details are omitted for lack of space; interested readers are referred to [27].
We conclude with a discussion of related work.

2 A Nested-Sequence Language

Source Language. The language is strict, functional, and first-order. The datatypes
include sequences and integer and boolean scalars. We use two notations for sequence
values, angle brackets and overlines; thus, 〈1,2,3〉 and 123 both represent the three-
element sequence whose ith element is the integer i. The empty sequence is written 〈〉
or •.

The basic constructors for sequences are a family of primitives build� that build
an �-element list from � arguments; for example, build2(1,2) = 〈1,2〉. The basic de-
structor is the elt primitive, which selects an element from a sequence; for example,
elt

(
2, 〈5,6,7〉) = 6. Other important primitives include rstr, which restricts a sequence

based on a sequence of booleans, merge, which merges two sequences based on a se-
quence of booleans, flat, which “flattens” a nested sequence, and part, which partitions
a sequence according to the structure of a different sequence. Let t and f be the boolean
values true and false respectively, and let a through e be arbitrary values, then:

rstr
(
t f t, 123

)
= 13 flat 12 345 = 12345

merge
(
123, f t f f t, 89

)
= 18239 part(ab cd e, 12345) = 12 345

The primitives satisfy the following equations. Let i be a natural number between 1 and
�. Let as be a sequence and let bs be a boolean sequence of equal length, with b̂s its
elementwise logical complement. Let ass be a sequence of sequences.

elt
(
i,build� (a1, .., a�)

)
= ai

merge
(
rstr(b̂s,as), bs, rstr(bs,as)

)
= as

part
(
ass, flat ass

)
= ass

The syntax is parameterized with respect to sets Prim, of primitive names, ranged
over by p, and Var, of variable names, ranged over by f , x, y, z, xs, xss, etc. Let h through
n range over integers, bv over booleans, and a, b, as, bs, etc. over arbitrary values.

362 James Riely and Jan Prins

Thesyntaxofexpressions,orterms,A,B,etc.isgiveninTable 1. A term is source
term if it contains no evaluated iterators or parallel applications. A term is target term
if it contains no iterators or evaluated iterators. We sometimes refer to arbitrary terms
as intermediate terms.

Parallelism. Most of the constructs of the language are sequential; thus step-count and
work-count are computed the same way. For example, the step-count of ‘let x⇐B in A’
is the sum of the step-counts for the subexpressions A and B; the work-count is the sum
of the work-counts for A and B.

Parallelism is expressed in the source language using reduction primitives and the
iterator construct. For example, the key step in the parallel quicksort of a sequence xs
(with no duplicate values) can be written, with some syntactic sugar, as follows [3]:

let les = [x⇐xs | x < elt(1,xs) : x]
gtr = [x⇐xs | x ≥ elt(1,xs) : x]

in flat [ys⇐build2(les,gtr) : quicksort(ys)]

If n is the length of xs, then the expected step-count is O(logn) and the expected work is
O(n logn). Like all other primitives, reductions are assigned a constant number of steps.
Thus ‘sum 〈1,2,3,4,5〉’ evaluates to 15 with step-count 1. We formalize the notions of
step and work complexity in Section 4.

Execution of the nested data-parallelism expressed in this simple algorithm is quite
challenging, as the subproblems created by recursive invocations vary in size, and the
quicksort call tree varies in depth. The correctness of the flattening transformations es-
tablished in this paper guarantee that the flattened quicksort combines all these separate
pieces of work in the form of an expected O(logn) vector operations of size O(n).

Intermediate Constructs. The flattening transformations eliminate iterators. To sim-
plify the expression of the transformation rules, we introduce an intermediate construct,
called the evaluated iterator or e-iterator. Semantically, e-iterators are similar to itera-
tors.

In the target language, parallelism is expressed using parallel implementations of the
primitives. Thus ‘[x⇐ xs : plus(x,x)]’ in the source language becomes ‘plus1(xs,xs)’ in
the target. We require that each primitive p have a parallel implementation p1. The target
language also allows for parallel application of user-defined functions. Thus ‘[x ⇐ xs :
f x]’ in the source language becomes ‘f 1 xs’ in the target. Here, however, the body of
f 1 must be provided explicitly. In the expression ‘letrec f ⇐ x̃D,E in A’, the expressions
D and E give definitions for f . Essentially D gives the sequential implementation of
f , whereas E gives the parallel implementation of f 1. In practice, only the sequential
definition need be provided by a programmer, the parallel definition can be derived au-
tomatically, as E

def=
〈
ỹ⇐ x̃ : D{|̃y/̃x|}〉. In examples, we usually write function declarations

simply as ‘letrec f ⇐ x̃D in A’ or equivalently ‘letrec f x̃⇐ D in A’.

Notation. The notation for iterators is sometimes cumbersome. We often write ‘[x1 ⇐
B1, .., x� ⇐ B� : A]’ as ‘

[
x̃ ⇐ B̃ : A

]
’. In examples, we also use a notation for filters,

which can be coded using the rstr primitive. For example, ‘[x⇐〈1,2,3,4,5,6〉 | oddx :
squarex]’ evaluates to the sequence 〈1,9,25〉. Here, ‘oddx’ is an expression that filters
the values over which the iterator is applied.

363Flattening Is an Improvement

Table 2 Transformations: Context and Let Rules

(X-CTXTA) BÃ B′ Ã if B B′
(X-CTXTL1) let x⇐B in A let x⇐B′ in A if B B′
(X-CTXTL2) let x⇐B in A let x⇐B in A′ if A A′
(X-CTXTC1) if B then A else C if B then A′ else C if A A′
(X-CTXTC2) if B then A else C if B then A else C′ if C C′
(X-CTXTR1) letrec f ⇐ x̃D,E in A letrec f ⇐ x̃D′,E in A if D D′
(X-CTXTR2) letrec f ⇐ x̃D,E in A letrec f ⇐ x̃D,E′ in A if E E′
(X-CTXTR3) letrec f ⇐ x̃D,E in A letrec f ⇐ x̃D,E in A′ if A A′
(X-ELET) let x⇐y in A A{|y/x|}
(X-ILETA) B (A1, ..,Ai, ..,A�) let x⇐Ai in B (A1, ..,x, ..,A�) if Ai /∈ Var
(X-ILETP) B1(A1, ..,Ai, ..,A�) let x⇐Ai in B1(A1, ..,x, ..,A�) if Ai /∈ Var
(X-ILETC) if B then A else C let x⇐B in if x then A else C if B /∈ Var
(X-ILETI)

[
x1 ⇐B1, ..,xi ⇐Bi, ..,x� ⇐B� : A

]
if Bi /∈ Var

 let xsi ⇐Bi in
[
x1 ⇐B1, ..,xi ⇐xsi, ..,x� ⇐B� : A

]

The variable x is bound in ‘let x⇐B in A’, the scope is A. The variable f is bound in
the definition ‘letrec f ⇐ x̃D,E in A’, the scope is D, E and A; the variables xi are also
bound in the definition ‘letrec f ⇐ x̃D,E in A’, the scope is D and E. The variables xi are
bound in the iterator ‘[̃x ⇐ B̃ : A]’, the scope is A. The variables xi are bound in the e-
iterator ‘〈x̃⇐ x̃s : A〉’, the scope is A. Let fv(A) be the set of free variables occuring in A.
We identify expressions up to renaming of bound variables. In every binding construct,
the variables xi must be unique. In every e-iterator 〈x̃⇐ x̃s : A〉, A must be a source term.

3 The Transformations

Flattening was introduced in [7] and is an important implementation strategy for NESL

[6] and Proteus [24,20]. Blelloch and Sabot described flattening as a set of transforma-
tions. A typical rule is the following rule for let-expressions. Given that variable zs does
not occur free in A, ‘[x⇐ xs : let z⇐B in A]’ rewrites to:

let zs⇐ [x⇐ xs : B] in [x⇐xs, z⇐ zs : A]

As the example implies, the basic strategy is to “push” the iterator expressions through
the abstract syntax until it can be replaced, either by a variable or a promoted constant.
The elimination rules allow ‘[x⇐xs : x]’ to be rewritten simply as ‘xs’ and ‘[x⇐xs : A]’ to
be rewritten as ‘prom(xs,A)’ as long as x does not appear free in A. The transformation
of conditionals specifies that if z does not appear free in A or C, then ‘[z⇐ zs, x ⇐ xs :
if z then A else C]’ rewrites to:

merge
(
[x⇐ rstr(zs,xs) : A], not1 zs, [x⇐ rstr(not1 zs,xs) : C]

)
We formalize the flattening transformations as a relation A� A′ on expressions.

The relation is defined in two tables. The context rules and the transformations for let
introduction and elimination are given in Table 2. The main rules are in Table 3. In all
of the rules, variables introduced on the right-hand-side of the transformation must be

364 James Riely and Jan Prins

Table 3 Transformations: Iterator Rules

(X-IIT) [̃x⇐ x̃s : A]

fv(A)\ x̃ = {y1, .., y�}
A is a source term

 if empty xsh then 〈〉
else let ys1⇐ prom(xsh,y1)...

let ys�⇐ prom(xsh,y�)
in 〈x̃⇐ x̃s, ỹ⇐ ỹs : A〉

(X-EIT) 〈ỹ⇐ ỹs, x⇐ xs, z̃⇐ z̃s : A〉 〈ỹ⇐ ỹs, z̃⇐ z̃s : A〉 x /∈ fv(A)

(X-CONST) 〈x⇐xs : A〉 prom(xs,A) x /∈ fv(A)

(X-VAR) 〈x⇐ xs : x〉 xs

(X-APP) 〈x̃⇐ x̃s : B(xi1 , .., xi�)〉 B1(xsi1 , .., xsi�)
(X-LETREC) 〈x̃⇐ x̃s : letrec f ⇐ ỹD,E in A〉 letrec f ⇐ ỹD,E in 〈x̃⇐ x̃s : A〉
(X-LET) 〈x̃⇐ x̃s : let z⇐B in A〉 let zs⇐〈x̃⇐ x̃s : B〉 in 〈x̃⇐ x̃s, z⇐ zs : A〉
(X-IF) 〈x̃⇐ x̃s : if xh then A else C〉

fv(A) = {xi1 , .., xi�} = /0
fv(C) =

{
xj1 , .., xjk

} = /0

 if all xsh then 〈x̃⇐ x̃s : A〉
else if not some xsh then 〈x̃⇐ x̃s : C〉
else let ysi1⇐ rstr(xsh,xsi1)...

let ysi� ⇐ rstr(xsh,ysi�)
let zsj1 ⇐ rstr(not1xsh,xsj1)...
let zsjk ⇐ rstr(not1xsh,xsjk)
in merge(〈ỹ⇐ ỹs : A〉, not1xsh, 〈̃z⇐ z̃s : C〉)

(X-IT) 〈x̃⇐ x̃s : [y1 ⇐xi1 , .., ym′ ⇐ xim′ : A]〉
fv(A) =

{
xk1 , .., xkp

}
∪

{
yk′1 , .., yk′q

}
= /0

 if all empty1xsh then prom(xsh,〈〉))
else let xs′k1

⇐ flat(prom1(xsih′ ,xsk1))...
let xs′kp

⇐ flat(prom1(xsih′ ,xskp
))

let ys′k′1
⇐ flat(xsik′1

)
...

let ys′k′q ⇐ flat(xsik′q
)

in part(xsih′ ,〈x̃⇐ x̃s′, ỹ⇐ ỹs′ : A〉)

fresh, that is, they may not appear free in any subexpression given anywhere in the rule.
We write

�� for the reflexive and transitive closure of�.
The general transformation strategy is as follows. The context and let introduction

rules are used to isolate an iterator expression. Once an iterator expression is found,
the let introduction rule (X-ILETI) is applied until the iteration space of the iterator is
described entirely by variables. Note that ‘x̃⇐ x̃s’ is shorthand for ‘x1 ⇐xs1, .., xh ⇐xsh,
.., xm ⇐ xsm’; thus, on the right-hand side of the rule, h can be bound to any integer
between 1 and m.

At this point (X-IIT) is used to remove the iterator construct, replacing it with an
e-iterator. The remaining rules of Table 3 are then used to “push” the e-iterator through
the syntax until it can be removed using (X-CONST), (X-VAR) or (X-APP). The rules
(X-ELET)and (X-EIT) allow for the elimination of useless let and e-iterator binders.

The rule (X-IIT) enforces two properties of e-iterators. First, it guarantees that e-
iterators are only invoked dynamically on non-empty sequences. Second, it guarantees
that e-iterators have no free variables. All free variables in an iterator are explicitly

365Flattening Is an Improvement

bound before the iterator is replaced with an e-iterator. The rules for conditionals and
iterators are designed to preserve these properties. The transformation rules (X-IF) and
(X-IT) require that A and C contain at least one free variable. Variants of these rules
must be used in the case that fv(A) or fv(C) are empty; the variants are straightforward
and have been elided. The soundness of (X-LETREC) is ensured by the typing rules,
presented in Section 6.

4 A Reference-Based Semantics

We present the semantics of the intermediate language, and thus also the source and
target languages. The semantics gives a formal defintion of the steps and work used
in the evaluation of an expression. We sketch a reference-based implementation of the
target language that meets the constraints imposed by the semantics and discuss other
alternatives.

The semantics of expressions is defined in Table 4 using judgments of the form
‘σ � A t−→w a’, which is read, “given environment σ, expression A evaluates to a with t
steps and w work.” We occasionally drop the annotations t and w when they are not of
interest. Here σ is a runtime environment which maps variables to values and function
definitions; formally,

σ :: = /0 f ⇐ x̃D,E x⇐a σ1,σ2

where σ1 and σ2 have disjoint domains. Intuitively, the evaluation of an expression is
an operation on a computer store. Given a store σ, the evaluation ‘σ � A t−→w a’ models
the execution of A to produce a value a stored in memory. In particular, I/O costs are
not taken into account. This leads us to the axiom ‘σ � x 0−→0 σ(x)’, which states that
variable x can be evaluated with no computation whatsoever; the value of x is already
in σ and therefore need not be computed.

The evaluation of a value takes time proportional to the cost of copying the value
into the store. Copying a value a takes steps proportional to its depth (D a) and work
proportional to its size (S a). For example, the depth of 〈〈1〉,〈2,3,4〉,〈5,6〉〉, is 2; its
size is 10.

Explicit sequencing, via the let construct, incurs no cost. This ensures the validity
of the let-introduction rules given in Table 2. For example, the semantics validates the
equation ‘f A = let x⇐A in f x’. In order to compute f A, one must first compute A. In
let x⇐A in f x the sequence of events is simply made explicit, it is not changed.

Function declaration also incurs no cost. This interpretation is justified by the typ-
ing rules given in the next chapter. Roughly, functions must be fully parameterized;
therefore, function declarations can be processed statically, with no runtime cost.

The rules (E-IT) and (E-EIT) formalize the interpretation of iterators outlined in the
Introduction. In

[
x̃ ⇐ B̃ : A

]
, the expressions Bi are evaluated sequentially to produce

sequences 〈bji〉n
j=1, then A is evaluated in parallel for each of the n bindings of bji to xi.

The work of an iterator includes a constant charge for each parallel subevaluation; this
ensures, e.g., that [x⇐xs : y] has work proportional to the length of xs.

The rule (E-APPP) appeals to an evaluation relation for primitives. The judgment
‘p ã t−→w d’ states that given parameters ai, p evaluates to d with t steps and w work. We
elide the definition for lack of space; a few examples are given at the end of this section.

366 James Riely and Jan Prins

Table 4 The Evaluation Relation

(E-VAR)

σ � x 0−→0 σ(x)

(E-VAL)

σ � a Da−−→Sa a

(E-LET)

σ � B tB−−→wB
b

σ,x⇐b � A tA−−→wA
a

σ � let x⇐B in A tB+tA−−−−→wB+wA
a

(E-LETREC)

σ, f ⇐ x̃D,E � A tA−−→wA
a

σ � letrec f ⇐ x̃D,E in A tA−−→wA
a

(E-IFT)

σ � B tB−−→wB
t σ � A tA−−→wA

a

σ � if B then A else C 1+tB+tA−−−−−−→1+wB+wA
a

(E-IFF)

σ � B tB−−→wB
f σ � C tC−−→wC

c

σ � if B then A else C 1+tB+tC−−−−−−→1+wB+wC
c

(E-IT)

{ σ � Bi
ti−→wi

〈bji〉n
j=1 }�

i=1

{σ, x̃⇐ b̃j � A tj−→wj
aj }n

j=1

σ � [
x̃⇐ B̃ : A

] 1+(∑ti)+(max tj)−−−−−−−−−−−→1+n+(∑wi)+(∑wj)
〈a〉n

j=1

(E-EIT)

{ σ � xsi
0−→0 〈bji〉n

j=1 }�
i=1

{σ, x̃⇐ b̃j � A tj−→wj
aj }n

j=1

σ � 〈x̃⇐ x̃s : A〉 1+max tj−−−−−→n+∑wj
〈aj〉n

j=1

n ≥ 1

(E-APPP)

{σ � Ai
ti−→wi

ai }�
i=1

pã tp−→wp
d

σ � pÃ 1+(∑ti+1)+tp−−−−−−−−−→1+(∑wi+1)+wp
d

(E-PAPPP)

{σ � Ai
ti−→wi

〈aji〉n
j=1 }�

i=1

{ pãj
tp−→wj

dj }n
j=1

σ � p1Ã 1+(∑ti+1)+tp−−−−−−−−−−→1+(∑wi+1)+∑wj
〈dj〉n

j=1

n ≥ 1

(E-APPF)

{ σ � Ai
ti−→wi

ai }�
i=1

σ, x̃⇐ ã � D tD−−→wD
d

σ � f Ã 1+(∑ti+1)+tD−−−−−−−−−−→1+(∑wi+1)+wD
d

σ(f) = x̃D,E

(E-PAPPF)

{ σ � Ai
ti−→wi

ai }�
i=1

σ, x̃⇐ ã � E tE−−→wE
e

σ � f 1Ã 1+(∑ti+1)+tE−−−−−−−−−→1+(∑wi+1)+wE
e

σ(f) = x̃D,E

In both primitive and function application, charges are assessed for storing the return
value, as well as for each parameter passed. Note that (E-APPF) and (E-PAPPF) differ
only in which definition, D or E, is executed.

In Section 7 we prove that the typed version of the source language can be imple-
mented in terms of the target language and that the translation respects the step and work
complexities of the source semantics. There remains the question of whether the target
language can be implemented on any actual machine. We treat this issue informally, by
sketching an implementation of the target language on the VRAM [1].

In implementing the target language on the VRAM, one is confronted with two main
difficulties: representing nested sequences in terms of vectors, and implementing the
primitives. Implementations of the other constructs of the target language — function
definition and application, let expressions and conditionals — are simple and direct.

The representation for sequences is crucial, as this sets a lower bound on the steps
and work required to implement the primitives; this, in turn, affects the implementability
of the source language. Blelloch and Sabot introduced the segment-vector encoding
of sequences [7]. In this encoding, a depth-d sequence is represented as a tuple of d
vectors: one to describe the data and d−1 to describe the nesting structure that contains
it. Using segment vectors, the prom(as,b) primitive must create n copies of b, where

367Flattening Is an Improvement

n is the length of as; this operation requires a minimum work of n ·S b. Unfortunately,
this means that our transformation rule for constant expressions is invalid. Consider the
iterator ‘[x⇐ xs : y]’, which (X-CONST) translates to ‘prom(xs,y)’. Suppose the length
of xs is n. Looking at the source term, ‘[x⇐ xs : y]’ takes work proportional n. However,
‘prom(xs,y)’ takes work proportional to n times the size of y. If y refers to a non-scalar
value, its size may easily dominate n. More important, the size of y depends on the
environment; thus we cannot bound the work of the target expression with respect to
the work of the source expression, not even asymptotically.

A solution adopted by Blelloch [2, appendix], is to change the costing of itera-
tors to include the size of free variables. This change creates an unintuitive cost model
for programmers that discourages the use of iterators. Here, we adopt a different strat-
egy, representing nested sequences as vectors of references. Using this representation,
prom(xs,y) takes work proportional n, creating n references to y.

This representation allows us to prove the transformations correct with respect to
the natural high-level metric. However, it also leads to a greater number of concurrent
reads, when compared to the segment vector representation, and hence greater memory
contention at runtime. We believe that a reference-based implementation can perform
well using techniques from [21], but we have no experimental results as of yet.

In [27], we present a semantics which captures the work/step model used in the
implementation of NESL [6]. By adapting the techniques presented here, [27] provides
the first proof of the correctness of flattening for NESL.

5 Improvement

To demonstrate the extensional correctness of the transformations, one can show:

if D
��D′ then σ � D −→ d iff σ � D′ −→ d

This states that transformation preserves the extensional meaning of programs.We wish
to show something stronger, however. Our goal is to show that the transformations pre-
serve computational cost, in some sense, not just extensional meaning. We wish to show
that D

��D′ implies D � D′, for some relation � that captures the intuition that if D re-
duces to a value, then D′ reduces to the same value and does so as fast or faster. As a
first attempt, we might say that D � E if for all σ,

σ � D t−→w d implies σ � E 6 t−−→
6w d

where “σ �D 6 t−−→
6w d” abbreviates “there exists t ′ ≤ t and w ′ ≤w such that σ �D t ′−→w ′ d.”

This relation is known as strong improvement; however, this relation is too strong to be
useful directly. The transformations do not imply strong improvement, as one can easily
see by looking at, e.g., (X-CONST), (X-IF2) or (X-IT2).

While we cannot prove that flattening strictly improves performance with respect to
our operational semantics, we can prove that it does so up to a constant factor (in some
cases). Formally, we will define D � E if there exist constants u and v such that for all
σ:

σ � D t−→w d implies σ � E 6u·t−−−→
6v·w d

This relation is called weak improvement.

368 James Riely and Jan Prins

Unfortunately, there are programs in our language for which flattening does not
imply even weak improvement. Suppose that f (x) is defined as follows:

f (x) ⇐ if x ≤ 1 then 1 else (if evenx then f (x/2) else f (x/2))

Then f (2n) evaluates to 1 in O(n) steps. If xs is the sequence 〈2n,2n +1, ..,2(n+1)〉 of 2n

values, then [x⇐xs : f x] also evaluates in O(n) steps. The transformations sequentialize
the branches of the conditional so that the two recursive calls to f are performed one
after the other. The result is that after the transformations, f 1(xs) takes O

(
n2

)
steps,

destroying any hope that the transformation of f might result in even a weak improve-
ment.

As we stated in the introduction, it has long been known that flattening is not correct
for all expressions, leading Blelloch to define containment [1]. Roughly stated, a recur-
sive function such as f is contained if it always evaluates in the same way, calling the
same functions and primitives in the same order, regardless of its actual parameters. Ac-
cording to Blelloch’s definition, f is contained, although it is not correctly flattened by
the standard transformations. This apparent anomaly can be explained by looking more
closely at Blelloch’s results. His containment theorem does not address flattening, but
rather uses an entirely different simulation technique which appeals to the semantics,
rather than the syntax, of expressions.

One of the main contributions of this work is to move containment from a semantic
criterion to a syntactic one, thus allowing us to precisely characterize a set of programs
for which flattening is correct. This is achieved using a typing system, presented next.

6 A Typing System for Containment

We introduce a typing system that captures the essential properties of containment using
three complexity annotations:

Φ :: = cnst flat exp

The complexity annotation cnst refers to constant-step (although not necessarily termi-
nating) expressions, flat refers to (a subset of) contained expressions, and exp refers
to all expressions. Every constant-step expression is contained, and every contained
expression is an expression. This gives rise to a natural ordering on complexity annota-
tions and, by extension, to types.

The syntax of types is parameterized with respect to a set TVar of type variable
names, α, β. The type language is stratified between value types U, V and types S, T.
The latter include function types:

V :: = α int bool V1 T :: = V (U1, .., U�)�Φ V

For function types, we require that fv(V) ⊆Si fv(Ui). Functions are constrained to act
over values. Additionally, the function body is constrained to be an expression with
complexity Φ; thus, a function’s type tells us something of how it evaluates.

The subcomplexity relation (notation Φ <: Ψ) is defined to be the smallest pre-
order on complexity annotations such that cnst <: flat and flat <: exp. The subtype

369Flattening Is an Improvement

Table 5 Typing Rules: Part I

(VAL-INT)

Γ � n :cnst int

(VAL-BOOL)

Γ � bv :cnst bool

(VAL-SEQ)

Γ � aj :cnst V (∀j)

Γ � 〈a1, .., an〉 :cnst V1

(EXP-SUB)

Γ � A : Φ S

Γ � A : Ψ T
Φ <: Ψ
S <: T

(EXP-VAR)

Γ(x) = T

Γ � x :cnst T

(EXP-PRIM)

δ(p) = T

Γ � p :cnst T

(EXP-LETREC)

Γ, f : Ũ�Φ V � f ⇐ x̃D,E
Γ, f : Ũ�Φ V � A : Ψ W

Γ � letrec f ⇐ x̃D,E in A : Ψ W

(EXP-LETE)

Γ � B :exp U
Γ, x : U � A :exp V

Γ � let x⇐B in A :exp V

(EXP-ITE)

Γ � Bi :exp Ui (∀i)
Γ, x̃ : Ũ � A :flat V

Γ � [
x̃⇐ B̃ : A

]
:exp V

(EXP-IFE)

Γ � B :exp bool
Γ � A :exp V
Γ � C :exp V

Γ � if B then A else C :exp V

(EXP-APPE)

Γ � B :exp (Ũ� exp V)
Γ � Ai :exp (Ui π) (∀i)

Γ � BÃ :exp (Vπ)

(EXP-PAPPE)

Γ � B :exp (Ũ� exp V)
Γ � Ai :exp (U1

i π) (∀i)

Γ � B1Ã :exp (V1π)

(ENV- /0)

Γ � /0

(ENV-VAL)

Γ � x :cnst V
Γ � a :cnst V

Γ � x⇐a

(ENV-UNION)

Γ � σ
Γ � ρ
Γ � σ,ρ

(ENV-FUNE)

Γ � f :cnst (Ũ�Φ V)
(Γ\F), x̃ : Ũ � D : Φ V
(Γ\F), x̃ : Ũ1 � E : Φ V1

Γ � f ⇐ x̃D,E

C
�
 D〈

ỹ⇐ x̃ : C{|ỹ/̃x|}〉 �
 E

relation (notation S <: T) is defined to be the smallest preorder on types such that
Φ <: Ψ implies Ũ�Φ V <: Ũ�Ψ V.

The typing rules are given in Tables 5 and 6. We prove that evaluation and trans-
formation preserve typing. We also prove an important property of cnst expressions,
described below. The significance of flat expressions is made clear in the proofs of
Proposition 6.1c and Theorem 7.2 where the typing rules for flat are used in conjunc-
tion with Proposition 6.1a to prove the flattening transformations correct.

The judgments of the type system have the form:

Γ � a : cnst V Value a has type V.
Γ � A : Φ T Expression A has type T and complexity Φ .
Γ � σ Environment σ is well typed.

Here Γ is a type environment that maps type variables to types. Let us first look at
Table 5, which gives the rules for values, exp expressions and environments. The three
rules for values are given on the first line of the table. Ignoring the complexity anno-
tations, these are standard rules for monomorphic sequences. The rule (VAL-SEQ), for
example, states that in order for a sequence value to have type V1, every element of
the sequence must have type V. The complexity annotation cnst indicates that the con-
struction of a literal value takes a constant number of steps (independent of the runtime
environment).

370 James Riely and Jan Prins

Table 6 Typing Rules: Part II
(EXP-EITC)

fv(A) ⊆ x̃
Γ � xsi :cnst Ui (∀i)
Γ, x̃ : Ũ � A :cnst V
Γ � 〈

x̃⇐ x̃s : A
〉

:cnst V

(EXP-EITF1)

fv(A) ⊆ x̃
Γ � xsi :cnst Ui (∀i)
Γ, x̃ : Ũ � A :flat V
Γ � 〈

x̃⇐ x̃s : A
〉

:flat V
(EXP-LETC)

Γ � B :cnst U
Γ,x : U � A :cnst V
Γ � let x⇐B in A :cnst V

(EXP-LETF1)

Γ � B :cnst U
Γ,x : U � A :flat V
Γ � let x⇐B in A :flat V

(EXP-LETF2)

Γ � B :flat U
Γ,x : U � A :cnst V
Γ � let x⇐B in A :flat V

(EXP-APPC)

Γ � B :cnst (Ũ� cnst V)
Γ � Ai :cnst (Ui π) (∀i)
Γ � BÃ :cnst (Vπ)

(EXP-APPF1)

Γ � B :cnst (Ũ� flat V)
Γ � Ai :cnst (Ui π) (∀i)
Γ � BÃ :flat (Vπ)

(EXP-APPF2)

Γ � B :cnst (Ũ� cnst V)
Γ � Ai :cnst (Ui π) (∀i = h)
Γ � Ah :flat (Uh π)
Γ � BÃ :flat (Vπ)

(EXP-PAPPC)

Γ � B :cnst (Ũ� cnst V)
Γ � Ai :cnst (U1

i π) (∀i)
Γ � B1Ã :cnst (V1π)

(EXP-PAPPF1)

Γ � B :cnst (Ũ� flat V)
Γ � Ai :cnst (U1

i π) (∀i)
Γ � B1Ã :flat (V1π)

(EXP-PAPPF2)

Γ � B :cnst (Ũ� cnst V)
Γ � Ai :cnst (U1

i π) (∀i = h)
Γ � Ah :flat (U1

hπ)
Γ � B1Ã :flat (V1π)

(EXP-ITC)

Γ � Bi :cnst Ui (∀i)
Γ, x̃ : Ũ � A :cnst V

Γ � [
x̃⇐ B̃ : A

]
:cnst V

(EXP-ITF1)

Γ � Bi :cnst Ui (∀i)
Γ, x̃ : Ũ � A :flat V

Γ � [
x̃⇐ B̃ : A

]
:flat V

(EXP-ITF2)

Γ � Bi :flat Ui (∀i)
Γ, x̃ : Ũ � A :cnst V

Γ � [
x̃⇐ B̃ : A

]
:flat V

(EXP-IFF1)

Γ � B :flat bool
Γ � A :cnst V
Γ � C :cnst V
Γ � if B then A else C :flat V

(EXP-IFF2)

Γ � B :cnst bool
Γ � A :flat V
Γ � C :cnst V
Γ � if B then A else C :flat V

(EXP-IFF3)

Γ � B :cnst bool
Γ � A :cnst V
Γ � C :flat V
Γ � if B then A else C :flat V

(EXP-SUB) is a standard rule for subsumption; the side conditions specify con-
straints on Ψ and T. The rule for primitives (EXP-PRIM) makes use of the function
δ which maps primitive names to types; the definition is elided. Both primitive and
variable occurrences can be resolved dynamically in a constant number of steps and
therefore are assigned complexity cnst.

The rule (EXP-LETREC) relies on the environment rule (ENV-FUN), described be-
low. In (EXP-LETREC), also note that the complexity and type of the expression A need
not be the same as the complexity or type of the function being defined. The rules for
let-expressions (EXP-LETE) and conditionals (EXP-CONDE) are standard. Note that us-
ing subsumption, these rules can be applied even if a subexpression is in cnst or flat.
The iterator rule (EXP-ITE) is similar to the let-rule in its treatment of binders, as should
be expected. Here, however, the bound expression A is required to be flat. This is an
essential aspect of the typing system; the main purpose of the type system, after all, is
to ensure that iterator expressions are correctly flattenable.

371Flattening Is an Improvement

The rules for application and parallel application allow for the instantiation of type
variables via a type substitution π. Note the difference between these rules. If B has type
Ũ� exp V, then BÃ has type V, whereas B1Ã has type V1.

The rules for runtime environments are presented in the bottom row of the table.
These are straightforward, but for (ENV-FUN). Note the difference in the treatment of
two function bodies, D and E. Whereas D must evaluate to a value of type V, E must
evaluate to a value of type V1; the types of the input parameters are adjusted accord-
ingly. The unusual side conditions enforce a syntactic relation between the two function
bodies, formalizing the intuition that E and D must be derived from a common source
C. The conditions are not onerous; in practice E is automatically generated from D.
We write (Γ\F) for the type environment derived by removing all value-typed variables
from Γ. Thus the type rules require that function declarations be fully parameterized;
i.e. D and E cannot refer to free value variables.

We now turn to Table 6. Here we find the first rule for e-iterators; the rule has a side
condition requiring that all variables in the iterator expression be bound.

The table is best read in columns. The first column gives rules for cnst expressions.
The exception is the conditional. Expressions that include a conditional may take a
varying number of steps depending on the value of the condition, which may in turn de-
pend on the runtime environment; therefore, no conditional expression is in cnst. Note
that cnst expressions can be recursive, although in this case the typing rules guarantee
that they are nonterminating, since no conditionals are allowed in cnst expressions.

The second and third columns give rules for flat expressions. These require that at
most one subexpression is flat, all others are cnst, ensuring that at most one sequential
component is recursive. This is a sufficient condition for containment.

It is important to emphasize that our typing system is not overly conservative. For
example, all but one of the programs on the Scandal website http://www.cs.cmu.
edu/~scandal/ can be typed using our system (although some require trivial rewrit-
ing). Potential improvements are discussed in Section 8.

Proposition 6.1. (a) Suppose that Γ � σ and Γ � ρ and that σ and ρ differ only in their
value bindings. If Γ � D : cnst V, σ � D t−→w d and ρ � D t′−→

w′ d′, then t = t′.
(b) If Γ � σ and Γ � D : Φ T and σ � D t−→w d, then Γ � d : cnst T.
(c) If Γ � D : Φ T and D� D′, then Γ � D′ : Φ T. �

7 Correctness of the Reference Implementation

We can now state the main result.

Definition 7.1. D is weakly improved by E under Γ (notation D ≈�Γ E) if Γ � D, Γ � E,
and there exist constants u and v such that for all σ such that Γ � σ,

σ � D t−→w d implies σ � E 6u·t−−−→
6v·w d �

Theorem 7.2. If Γ � A and A
�� B then A ≈�Γ B. �

This theorem is very hard to prove directly. Weak improvement has some nice proper-
ties; for example it is a preorder. However, it is not substitutive. In light of the context

372 James Riely and Jan Prins

rules given in Table 2, this makes it very difficult to prove the transformations correct
directly.

To prove Theorem 7.2, we define an alternative, costed semantics, and, using this, a
strong improvement relation ∼�Γ. Strong improvement is a congruence that allows us to
establish the following results, which together prove Theorem 7.2.

A ∼�Γ B implies A ≈�Γ B

Γ � A and A
�� B imply A ∼�Γ B

The close relation between standard evaluation and costed evaluation (denoted � �−→) is
given by a costing function C, which is determined by the syntax of a term. We have:

σ � D t� �−→w d implies σ � D 6 t−−→
6w d

σ � D t−→w d implies σ � D 6C(σ�D)·t� �−−−−−−−→
6C(σ�D)·w d

Our proof technique is similar to Sands’ use of the tick algebra [29]. We introduce
“ticks” in the costed semantics in order to account for the costs introduced later by the
transformations. There are differences, however; for example, our “ticks” depend on
the nesting depth of iterators and conditionals. Unfortunately, a detailed discussion is
beyond the scope of this extended abstract.

8 Related and Future Work

This paper is derived from [27] which closes many problems left open in [28], where
we first outlined our approach. The techniques and results in this paper are all new;
in particular, [28] does not mention the typing system, the costed semantics, strong
improvement, nor the counterexample for the adequacy of containment.

Several other authors have considered the implementation of nested parallelism via
flattening transformations. Steele and Hillis [32] presented a set of laws for relating ex-
pressions that include an apply-to-each operator. Blelloch and Sabot [7] picked up on
this theme to define a flattening compiler for Paralation-LISP, which became the basis
for NESL. Prins and Palmer [24] presented a different form of flattening using program
transformations; this approach was further refined in [21,20] and here. The thread-based
execution model of nested parallelism has been shown to respect the step and work com-
plexities of the source-level metrics [9,5]. However, overheads and space requirements
in the realization of this model require careful run-time scheduling [4], fast synchro-
nization [25], and granularity control (in the sense of [10]) to make it practical. Blel-
loch [1] and Suciu and Tannen [34,33], have presented nested parallel languages and
have argued that these languages can be implemented on the VRAM with the correct
step/work complexity. However, these results are based on simulation techniques rather
than explicit source-to-target translations.

Skillicorn and Cai [31] presented a cost calculus for parallel programs using the
Bird-Meertens formalism. This approach has been developed further by Jay [16,15],
using shape analysis. Another promising direction is that of Keller, who develops trans-
formations that take distribution into account [17]. In this setting, flattening can prof-
itably be combined with deforestation and related techniques [35,18,11].

373Flattening Is an Improvement

Nested data-parallelism may be seen as a particular form of the more general and-
parallelism found in logic programs [13]. Research on the parallel execution of logic
programs has explored ideas similar to flattening to reduce communication [26] and
scheduling overheads [13,22] for restricted nested and-parallel constructs. These are
presented as optimizations but there are no formal performance guarantees. A source-
level cost semantics is used in [10] to control the compilation and run-time execution
of parallel logic programs.

Our notion of weak improvement is similar that developed in [19,12]. There, how-
ever, the relation is a congruence by construction; it is the least congruence contained
in our (stronger) relation. In our setting, little is gained by forcing weak improvement
to be a congruence; therefore, we use the simpler definition.

There are several possibilities for further work. We believe it is possible to weaken
the typing system to allow for sequential composition of flat expressions. Currently we
require that for ‘let x⇐A in B’ to be in flat, either A or B must be in cnst. It appears that
both A and B could be in flat; however, we have not yet been able to establish a correct-
ness proof in this case. We plan to implement our reference-based semantics with the
intention of deriving an experimental measure of its performance. We would also like to
adapt our results to the “construct-results” costing function outlined in [28]; this cost-
ing function allows the use of the segment-vector representation of nested sequences
without the compromising the usability of the semantics.

Acknowledgements

We thank the referees and the DePaul Foundations of Programming Languages group
for useful comments and references to related work. The work reported here began
while the first author was a student at the University of North Carolina and was com-
pleted during an appointment at North Carolina State University. I would like to thank
both institutions, and Rance Cleaveland who supervised me at NCSU, for their support.

References

1. G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.
2. G. E. Blelloch. NESL: A nested data-parallel language (version 3.0). Technical report,

Carnegie-Mellon University, Department of Computer Science, 1994.
3. G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3), 1996.
4. G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank cone-

tention and delay in high-bandwidth multiprocessors. In Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, pages 84–94, Santa Barbara, CA, July 1995. ACM
Press.

5. G. E. Blelloch and J. Greiner. A provable time and space efficient implementation of NESL.
In International Conference on Functional Programming, 1996.

6. G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chatterjee. Implementation
of a portable nested data-parallel language. Journal of Parallel and Distributed Computing,
21(1):4–14, Apr. 1994.

7. G. E. Blelloch and G. W. Sabot. Compiling collection-oriented languages onto massively
parallel computers. Journal of Parallel and Distributed Computing, 8:119–134, 1990.

8. R. P. Brent. The parallel evaluation of generic arithmetic expressions. Journal of the ACM,
21(2):201–206, 1974.

374 James Riely and Jan Prins

9. D. Engelhardt and A. Wendelborn. A partitioning-independent paradigm for nested data
parallelism. International Journal of Parallel Programming, 24(4):291–317, Aug. 1996.

10. P. L. Garcia, M. Hermenegildo, and S. K. Debray. A methodology for granularity based
control of parallelism in logic programs. J. of Symbolic Computation, 22:715–734, 1998.

11. A. M. Ghuloum and A. L. Fisher. Flattening and parallelizing irregular, recurrent loop nests.
In Proceedings of the Symposium on Principles and Practice of Parallel Programming, pages
58–67, Santa Barbara, July 1995.

12. J. Gustavsson and D. Sands. A foundation for space-safe transformations of call-by-need
programs. In A. D. Gordon and A. M.Pitts, editors, The Third International Workshop on
Higher Order Operational Techniques in Semantics, volume 26 of Electronic Notes in The-
oretical Computer Science. Elsevier, 1999.

13. M. Hermenegildo and M. Carro. Relating data-parallelism and (and-)parallelism in logic
programs. The Computer Languages Journal, 22(2/3):143–163, July 1996.

14. P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language Haskell
version 1.2. ACM SIGPLAN notices, 27(5), May 1992.

15. C. Jay. The FISh language definition. http://www-staff.socs.uts.edu.au/~cbj/

Publications/fishdef.ps.gz, 1998.
16. C. Jay. Costing parallel programs as a function of shapes. Science of Computer Program-

ming, 1999.
17. G. Keller. Transformation-Based Implementation of Nested Data-Parallelism for Distributed

Memory Machines. PhD thesis, TU Berlin, 1999.
18. J. Launchbury and T. Sheard. Warm fusion: deriving build-catas from recursive definitions.

In Proceedings of the Conference on Functional Programming Languages and Computer
Architecture, pages 314–323, La Jolla, CA, June 1995.

19. A. K. Moran and D. Sands. Improvement in a lazy context: An operational theory for call-
by-need. In Conference Record of the ACM Symposium on Principles of Programming Lan-
guages, pages 43–56, San Antonio, Jan. 1999. ACM Press.

20. D. W. Palmer. Efficient Execution of Nested Data Parallel Programs. PhD thesis, University
of North Carolina, 1996.

21. D. W. Palmer, J. F. Prins, and S. Westfold. Work-efficient nested data-parallelism. In Fron-
tiers ’95, 1995.

22. E. Pontelli and G. Gupta. Nested parallel call optimization. In International Parallel Pro-
cessing Symposium. IEEE Computer Society Press, 1996.

23. J. Prins, M. Ballabio, M. Boverat, M. Hodous, and D. Maric. Fast primitives for irregular
computations on the nec sx-4. Crosscuts, 6(4), 1997.

24. J. F. Prins and D. W. Palmer. Transforming high-level data-parallel programs into vector
operations. In Proceedings of the Symposium on Principles and Practice of Parallel Pro-
gramming, pages 119–128, San Diego, May 1993. (ACM SIGPLAN Notices, 28(7), , 1993).

25. V. Ramakrishnan, I. Sherson, and R. Subramanian. Efficient techniques for fast nested barrier
synchronization. In ACM Symposium on Parallel Algorithms and Architectures, 1995.

26. B. Ramkumar and L. Kale. Compiled execution of the reduced-or process model on multi-
processors. In North American Conference on Logic Programming. MIT Press, 1989.

27. J. Riely. Applications of Abstraction for Concurrent Programs. PhD thesis, University of
North Carolina at Chapel Hill, 1999.

28. J. Riely, J. Prins, and S. Iyer. Provably correct vectorization of nested-parallel programs. In
Programming Models for Massively Parallel Computers (MPPM’95), Berlin, Dec. 1995.

29. D. Sands. Proving the correctness of recursion-based automatic program transformations.
Theoretical Computer Science, 167(10), Oct. 1996.

30. D. Sands. Total correctness by local improvement in the transformation of functional pro-
grams. ACM Transactions on Programming Languages and Systems, 18(2):175–234, 1996.

375Flattening Is an Improvement

31. D. B. Skillicorn and W. Cai. A cost calculus for parallel functional programming, 1994.
Queens University Department of Computer Science TR-93-348.

32. G. L. Steele and W. D. Hillis. Connection machine Lisp: Fine-grained parallel symbolic
processing. In Proceedings of the ACM Conference on LISP and Functional Programming,
pages 279–297, Cambridge, MA, Aug. 1986. ACM Press.

33. D. Suciu. Parallel Programming Languages for Collections. PhD thesis, University of
Pennsylvania, 1995.

34. D. Suciu and V. Tannen. Efficient compilation of high-level data parallel algorithms. In
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures. ACM Press,
June 1994.

35. P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science, 73:231–248, 1990.

376 James Riely and Jan Prins

Model Checking Guided Abstraction and

Analysis�

Hassen Säıdi

System Design Laboratory
SRI International

Menlo Park, CA 94025, USA
Tel: (+1) (650) 859-3810, Fax: (+1) (650) 859-2844

saidi@sdl.sri.com

Abstract. The combination of abstraction and state exploration tech-
niques is the most promising recipe for a successful verification of proper-
ties of large or infinite state systems. In this work, we present a general,
yet effective, algorithm for computing automatically boolean abstrac-
tions of infinite state systems, using decision procedures. The advantage
of our approach is that it is not limited to particular concrete domains,
but can handle different kinds of infinite state systems. Furthermore,
our approach provides, through the use of model checking as a tool for
the exploration of the state-space of the abstract system, an automatic
way of refining the abstraction until the property of interest is verified
or a counterexample is exhibited. We illustrate our approach on some
examples and discuss its implementation.

1 Introduction

The combination of abstraction and state exploration techniques is probably the
most promising recipe for a successful verification of properties of large or infi-
nite state systems. It is now widely accepted that abstraction techniques are not
only useful, but even necessary for a successful verification [19,6,21,13,12,9,14]
in order to avoid the limiting factor of using model checking by reducing all the
behaviors of a program to a simplified description on which the property of in-
terest can be verified using model checking. While the theoretical frameworks for
defining property preserving abstractions such as abstract interpretation [8] have
been widely studied in the literature, the automatic construction of useful and
accurate abstractions preserving useful properties is in an early stage of inves-
tigation. Abstract models are usually provided manually, and theorem proving
is used to check that the provided abstract mapping preserves the properties.
Once the preservation property is established, the abstract model is analyzed
by model checking. Recently [14,7,1,25,11], novel techniques based on abstract
interpretation have been proposed in the context of the verification of temporal
� This research was supported by DARPA contract F30602-97-C-0040.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 377–396, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

378 Hassen Säıdi

properties where theorem proving is used to compute automatically finite ab-
stractions. These techniques are quite effective, but require heavy use of theorem
proving and decision procedures.

The most general and yet simple and effective abstraction scheme consists of
constructing
boolean abstractions following the scheme introduced in [14]. Boolean abstrac-
tions consist in using predicates over concrete variables as boolean abstract vari-
ables. In this abstraction, certain predicates at the concrete level (that might
be used in guards, expressions, or properties) can be replaced by boolean vari-
ables at the abstract level. An abstract version of the infinite-state transition
system is a transition system where the set {B1, · · · , Bk} of abstract variables
is a set of boolean variables corresponding to predicates {ϕ1, · · · , ϕk} over the
concrete variables. An abstract state in this transition system is therefore a truth
assignment to these boolean variables. Boolean abstractions have very nice prop-
erties. In fact, any abstraction mapping that maps an arbitrary system to a finite
state system can be expressed as a boolean abstraction. Furthermore, the ab-
stract system can be represented symbolically using Binary Decision Diagrams
(Bdds) and therefore can be analyzed using symbolic model checking, allowing
an efficient exploration of abstract systems with a large state space. The tech-
niques we developed for the automatic construction of boolean abstractions do
not require a preservation check, and ensure that the constructed abstraction
indeed preserves various temporal logics properties, including safety properties.
Furthermore, boolean abstraction is an efficient and more powerful alternative
to static analysis techniques dedicated to the automatic generation of various
properties such as invariants like the ones presented in [3,2,24].

The drawback of using abstraction followed by model checking as a verifica-
tion and analysis technology consists in the fact that abstractions are approxi-
mations of the original systems that induce false negative results. For instance, a
model checker may exhibit an error trace that corresponds to an execution of the
abstract program that violates the desired properties. However, this error trace
may not correspond to an execution trace in the concrete program. This situa-
tion indicates that the abstraction is too coarse, and that the results of model
checking the abstract system are not conclusive. That is, too many details were
abstracted and the abstraction needs to be refined. The contribution of our work
can be summarized as follows:
- We propose an efficient algorithm for the automatic construction of boolean
abstractions that requires fewer calls to decision procedures and subsumes the
previous and recent work [14,7,1,11] in this topic.
- In all the recent work on the automatic construction of finite abstractions,
parallel programs are considered. However, each component are abstracted sep-
arately. In our work, the abstraction of a component takes into account its inter-
action with the environment, allowing the construction of more precise abstrac-
tions.
- We propose to use the error trace generated by model checking to automati-
cally refine the abstraction, even more. This methodology consists in successively

Model Checking Guided Abstraction and Analysis 379

refining a first abstraction until the property is proved or a concrete error trace
violating the property is exhibited. The refinement algorithm generates new
predicates that will be used to enrich the abstract state-space.

- The refinement procedure may not always terminate. However, at any refine-
ment step, the reachable states of the constructed abstract system represent
an invariant and a new more precise control structure of the concrete system
that can be exploited for further analysis. In [20], we use the newly generated
predicates to construct a more precise control structure of parameterized sys-
tems. Similar ideas are used in [18] for the generation of control structure in the
particular case of synchronous linear systems.

Our verification methodology based on abstraction followed by successive
model checking guided refinement steps is implemented in a verification environ-
ment that combines deduction and state-exploration techniques. We successfully
used our methodology to prove safety properties of several systems, including a
data-link protocol used by Philips Corporation in one of its commercial prod-
ucts. The original proofs [15,17,16] of the protocol required two to six months
of work and were entirely done using theorem provers. A boolean abstraction
of the protocol can be automatically generated using the predicates appearing
in the description of the protocol in about a hundred seconds with the help of
the PVS theorem prover [23] and its new efficient implementation of decision
procedures. The abstract protocol is then analyzed in a few seconds to check
that all the safety properties hold.

This paper is organized as follows: in Section 2, we present the model in
which systems are described, and give some basic definitions. In Section 3, we
define boolean abstractions in the general framework of abstract interpretation
using Galois connections. In Section 4, we show how boolean abstractions can
be constructed in an efficient way using decision procedures and compositional
reasoning. In Section 5, we show how model checking is used to prove proper-
ties on abstract systems and how it can be used as a guide to the automatic
refinement of already constructed abstractions. In Section 6, we describe our re-
finement algorithms. Finally, in Section 7, we describe a tool implementing our
methodology.

2 Preliminaries

We consider systems that are parallel compositions of sequential processes, where
each process is modeled as a transitions system.

Definition 1 (transition system).
A transition system S is a tuple S = < V , T = {τ1, · · · , τn},L, Init >, where

– V is a set of system variables including a program counter pc.
– T is a set of transitions.
– L is a set of control locations, that is, the possible values of pc.
– Init is a predicate characterizing the set of initial states.

380 Hassen Säıdi

Each transition τ is a guarded command

li : guard −→ v1 ::= e1, · · · , vn ::= en goto lj

where {v1, · · · , vk} ⊆ V and {li, lj} ⊆ L. The boolean expression guard is the
guard of the transition τ . Each variable vi is assigned with an expression ei of
a compatible type. Locations li and lj are, respectively, the source and target
locations of transition τi. A state of a system S is a valuation of the system
variables of V . A system can be a parallel composition of components described
as transition systems. The system can be described as a single transition system
where the set of variables is the union of the set of variables of each component,
the set of transitions is the union of all the transitions of all components, the
program counter is a tuple formed by the program counters of all components,
and the initial state is the conjunction of the initial states of each component.
Figure 1 shows the description of the Bakery protocol in our specification lan-

bakery : system
begin
process 1 : program

y1 : var nat
begin
p1 Try 1: true → y1 := y2+1 goto 2
p1 In 2: y2 = 0 ∨ y1 ≤ y2 → SKIP goto 3
p1 Out 3: true → y1 := 0 goto 1
end process 1

‖
process 2 : program

y2 : var nat
begin
p2 Try 1: true → y2 := y1+1 goto 2
p2 In 2: y1 = 0 ∨ y2 < y1 → SKIP goto 3
p2 Out 3: true → y2 := 0 goto 1
end process 2

initially : y1 = 0 ∧ y2 = 0 ∧ pc2 = 1 ∧ pc1 = 1
end bakery

Fig. 1. Bakery transition system (version A)

guage. The algorithm is called the Bakery algorithm, since it is based on the idea
that customers, as they enter a bakery, pick numbers that form an ascending se-
quence. Then a customer with a lower number has higher priority in accessing
its critical section, which in this case is control location 3. Each process process i
modifies its local variable yi, and can read the other’s variable.

We also recall the definitions of predicate transformers over transition sys-
tems. The predicate transformers post and pre expressing, respectively, the

Model Checking Guided Abstraction and Analysis 381

strongest postcondition and precondition by a transition τ of a predicate P
over the state variables of V are defined as follows:

post[τ](P) = ∃V ′.actionτ (V ′,V) ∧ P (V ′)
pre[τ](P) = ∃V ′.actionτ (V ,V ′) ∧ P (V ′)

where actionτ (V ,V ′) is defined as the relation between the current state and
next state, that is, the expression

pc = li ∧ guard ∧
k∧

i=1

v′i = ei, pc
′ = lj

Defining the transition relation of a system as a relational predicate for each
transition is a more general alternative to the use of guarded commands. The
semantics of a transition system S is given by its computational model KS =
(Q, T , R), where Q is the set of valuations of the program variables V , and
R ⊆ Q × T × Q a transition relation. A set of states of a program can be
represented by its corresponding predicate over the state variables of V .

3 Boolean Abstractions

Boolean abstraction is a simple abstraction scheme defined in [14] that con-
sists of using predicates over concrete variables as boolean abstract variables. In
an abstract version of the infinite-state transition system, the set {B1, · · · , Bk}
of abstract variables is a set of boolean variables corresponding to predicates
{ϕ1, · · · , ϕk} over the concrete variables. An abstract state in this transition
system is therefore a truth assignment to these boolean variables. Since the set
of boolean variables is finite, so is the set of abstract states. Boolean abstractions
can easily be defined in the framework of abstract interpretation using Galois
connections.

Definition 2 (Galois connection). A pair of monotonic functions (α, γ)
defining a mapping between a concrete domain lattice ℘(Q,⊆) and an abstract
domain lattice ℘(Qa,�), is a Galois connection if and only if

∀(P, P a) ∈ ℘(Q)× ℘(Qa). α(P) � P a ⇔ P ⊆ γ(P a)

Sets of states in ℘(Q) and ℘(Qa) are represented by their corresponding pred-
icates. Thus, ℘(Q) and ℘(Qa) correspond to lattices of concrete and abstract
predicates ordered by the logical implication. A boolean abstraction can be ex-
pressed as a Galois connection as follows:

- α(P) =
∧

{Ba | P ⇒ γ(Ba)} = P a, where Ba is any boolean expression over

the set {B1, · · · , Bk}.
- γ is defined as a substitution function. That is, γ(P a) = P a[ϕ1/B1, · · · , ϕk/Bk],

382 Hassen Säıdi

where each boolean variable Bi is substituted by its corresponding concrete pred-
icate ϕi.

Thus, the abstraction of a concrete set of states represented by a predicate P
over concrete variables is defined as the smallest boolean formula P a over the
abstract variables Bi. That is, an overapproximation of P . In [25], we presented
an efficient algorithm for computing the most precise boolean abstraction with
respect to a set of predicates, for systems where the transition relation is given
as a relational predicate. The algorithm consists of an efficient enumeration of
all boolean combinations Ba to test the assertion P ⇒ γ(Ba). The algorithm
abstracts systems where the transition relation is given as a predicate. Each
implication P ⇒ γ(Ba) is submitted to the decision procedure to test its validity.
In [25], we proved that in order to compute P a it is not necessary to consider
all the possible Ba, that is 22

k

expressions, but at most 3k − 1. However, this is
still a high price to pay for the construction of an abstract system. Notice that
any approximation of P a is a valid abstraction of P .

bakery : system
B3 : var bool
begin
process 1 : program

B1 : var bool
begin
p1 Try 1 : true → B1 := F, B3 := F goto 2
p1 In 2 : B2 ∨ B3 → SKIP goto 3
p1 Out 3 : true → B1 := T, B3 := T goto 1
end process 1

‖
process 2 : program

B2 : var nat
begin
p2 Try 1 : true → B2 := F, B3 := T goto 2
p2 In 2 : B1 ∨ ¬B3 → SKIP goto 3
p2 Out 3 : true → B2 := T,

B3 := if B1
then T
else if (¬B1 ∨ ¬B3)

then F
else ?

goto 1
end process 2

initially : B1 ∧ B2 ∧ B3 ∧ pc2 = 1 ∧ pc1 = 1
end bakery

Fig. 2. Abstract version of Bakery transition system (version A)

Model Checking Guided Abstraction and Analysis 383

Thus, in order to compute for a concrete system S, an abstract system Sa,
it is sufficient to abstract the initial state Init by computing α(Init), and to
abstract each transition τ as follows:

τa = α(τ) = α(actionτ (V ,V ′)) =
∧

{(Ba, Ba′
)| � post[τ](γ(Ba))⇒ γ(Ba′

)}

that is, the pair (Ba, Ba′
) characterizing the abstraction of the set of possible

predecessors by τ and the abstraction of the set of possible successors by τ . In
this case, the complexity of the computation of τa is (3k − 1) ∗ (3k − 1) calls to
the decision procedure, (3k − 1) calls to test the successors, and (3k − 1) calls to
test the potential predecessors.

The preservation of properties expressed in temporal logic is widely studied
in [21,10,5]. Preservation results are established via equivalences and preorders
between the concrete and abstract models. The following theorem establishes
the preservation of safety properties expressed in the logic CTL∗ via simulation.

Theorem 1 (weak preservation). Let S be a concrete system, and let Sa be
a boolean abstraction of S using any set of predicates. We have

Sa |= α(ϕ) ⇒ S |= ϕ

for each formula ϕ ∈ ∀CTL∗, that is, temporal formulas with universal quantifi-
cation over paths, including safety properties such as invariants.

Proof. This result can be established by proving that Sa simulates S. This can
be done by proving that the following holds for each transition τ of S:

∀P. post[τ](P) ⇒ γ(post[α(τ)](α(P)))

that is, each set of successor states by an abstract transition is an overapproxi-
mation of the corresponding set of states of the concrete system.

Intuitively, ∀CTL∗ properties hold in all execution paths. Since Sa simu-
lates S, that is, all the executions of S are executions of Sa, then if a property
holds along all execution paths of Sa, it holds in all execution paths of S. The-
orem 1 indicates that when a property is established in the abstract system, its
corresponding concrete property holds in the concrete system. However, noth-
ing can be concluded when the property does not hold in the abstract system.
Strong preservation results can be applied in this case under some conditions.

Theorem 2 (strong preservation). Let S be a concrete system, and let Sa be
a boolean abstraction of S using any set of predicates that includes all the literals
appearing in the guards of S and in the property ϕ. If Sa is deterministic, we
have

Sa |= α(ϕ) ⇔ S |= ϕ

That is, Sa and S are equivalent.

384 Hassen Säıdi

Proof. By construction Sa simulates S. Thus, it is sufficient to prove now that S
simulates Sa. To show this, it is sufficient to prove that for each pair of abstract
states sa

1 and s
a
2 , if s

a
2 is a successor of s

a
1 by τ

a in the abstract system, then, for
every pair s1 and s2 of states in the concretization of sa

1 and s
a
2 , s2 is the successor

of s1 by τ in the original system. Every concrete state s1 in the concretization
of sa

1 satisfies the guard of τ , and every successor s2 of s1 is in the concretization
of sa

2 . Thus, S simulates S
a.

The strong preservation result allows us to avoid false negative results by map-
ping abstract error traces to concrete executions violating the property. However,
the condition for strong preservation requires that Sa be deterministic. This is
usually not the case. However, we will see later how we exploit Theorem 2 to
generate boolean abstractions to verify properties, and also to generate coun-
terexamples when a formula is not a property of the concrete system. As we
mentioned earlier in the introduction, boolean abstraction subsumes abstrac-
tions where the abstract domain is finite.

Theorem 3 (generality). Let S be a system and let α be an abstraction func-
tion where the abstract domain is finite. Then, α can be expressed as a boolean
abstraction.

Proof. The proof is based on the fact that a finite domain can be encoded by a
set of boolean variables. Each abstract state is then a conjunction of a subset of
the set of boolean variables. The concretization of an abstract state is a set of
concrete states that can be represented as a predicate.

Figure 2 shows the abstraction of the Bakery protocol using predicates y1 = 0,
y2 = 0, and y1 ≤ y2 appearing in the guards. Notice that all the assignments
are deterministic except the assignment for the variable B3 in the transition
p2 Out.

4 Automatic Construction of Boolean Abstractions

Decision procedures can be used for the automatic construction of a boolean
abstraction of a concrete, infinite state system described as a transition system.
The abstraction of a concrete system S = < V , T = {τ1, · · · , τn},L, Init > is
an abstract system Sa = < Va, T a = {τa

1 , · · · , τa
n},L, Inita > such that

– Va is the set {B1, · · · , Bk, pc}.
– T a is a set of abstract transitions.
– Inita is the abstract initial state computed as α(Init).

The abstraction algorithm consists in computing Inita and for each concrete
transition τ

li : guard −→ v1 ::= e1, · · · , vn ::= en goto lj

Model Checking Guided Abstraction and Analysis 385

a corresponding abstract transition τa

li : guarda −→ B1 ::= b1, · · · , Bk ::= bk goto lj

such that:
- The abstract guard guarda is computed as α(guard). When using the literals
of the guards as abstract boolean variables, α(guard) is an exact abstraction,
where each literal of guard is substituted by its corresponding abstract boolean
variable. - Each assignment Bi := bi is defined as follows:

Bi :=

T if post[τ](true)⇒ γ(Bi) (1)
F if post[τ](true)⇒ ¬γ(Bi) (2)
? otherwise

that is, for each abstract variable Bi, the strongest postcondition by τ of any
arbitrary state is in γ(Bi) or ¬γ(Bi), that is, in ϕi or ¬ϕi. When neither of
the above implications is valid, the variable is nondeterministically assigned the
value ?.
- The variable pc is not abstracted since it is of a finite type.

When a variable is assigned the value ?, it is possible to compute a more
refined assignment by taking into account the dependencies between the abstract
variables. Thus, the assignment Bi :=? can be redefined as follows:

Bi := if bTi
then T
else if bFi

then F
else ?

where bTi and bFi are defined as follows:

bTi ≡
∨

{Ba | post[τ](γ(Ba))⇒ γ(Bi)}

bFi ≡
∨

{Ba | post[τ](γ(Ba))⇒ ¬γ(Bi)}

That is, bT and bF are, respectively, the smallest boolean combination over the
abstract variables {B1, · · · , Bk} that defines the abstract state from which, if
the transition τ is executed, the variable Bi gets either the value T or F. In
the worst case, both bTi and bFi are equivalent to true. Thus, the variable Bi is
assigned with the value ?.

In [25], the complexity of the abstraction algorithm for a transition is 3k −
1 ∗ 3k − 1. In our case, this is reduced to at most 3k − 1 ∗ 2 ∗ k.

Theorem 4 (complexity). The complexity of the abstraction of a transition τ
using k predicates {ϕ1, · · · , ϕk} requires checking the validity of 3k − 1 ∗ 2 ∗ k
implications.

386 Hassen Säıdi

Proof. For each abstract variableBi assigned in the abstraction of τ , The boolean
expressions bTi and bFi are computed. Thus 2 ∗ k implications have to be proved.
For each of the expressions bTi and bFi , all possible boolean expressions B

a over
{B1, · · · , Bk} have to be considered. There are 3k − 1 possible expressions as il-
lustrated in the following Figure with k = 2. The elements of the set of possible

1

B1 + B2B1 + B′
2B′

1 + B′
2B′

1 + B2

B1.B′
2 + B′

1.B2B′
1.B′

2 + B1.B2

0

B2B′
2

B′
1.B2 B1.B2B′

1.B′
2 B1.B′

2

B′
1 B1

Fig. 3. Boolean algebra for 2 boolean variables B1 and B2

boolean expressions Ba are the elements of the boolean algebra defined by the k
boolean variables, that is, 22

k

expressions. However, the expression Ba appears
on the left hand side of an implication. Thus, it is necessary to consider only
expressions that are conjunctions of boolean variables. That is is only 3k−1 pos-
sible expressions that can be tested incrementally by first testing each boolean
variable Bi and its negation, and then testing conjunctions of the set of variables
for which both tests fail.

The results in [25], shows that the enumeration of 3k − 1 expressions subsumes
the enumeration of the possible 22

k

expressions. However, the enumeration of
the possible Ba satisfying the above implications can be done only for the ex-
pressions Ba such that

FV (post[τ](γ(Ba))) ∩ FV (γ(Bi)) �= ∅

where FV (P) is the set of free variables of the predicate P .

5 Model Checking Guided Analysis

Once an abstract system is constructed, model checking is used to explore its
state-space. We use both symbolic and explicit-state model checking techniques.
Figure 4 shows the reachable abstract states of the Bakery protocol. It is easy
to show that the protocol does guarantee mutual exclusion for both processes
since there is no reachable state where both control variables pc1 and pc2 have
the value 3.

The advantage of model checking over other verification techniques is its
ability to generate counterexamples when a property is violated. The error trace

Model Checking Guided Abstraction and Analysis 387

1 1 B1 B2 B3

2 1 ~B1 B2 ~B3

p1_Try

1 2 B1 ~B2 B3

p2_Try3 1 ~B1 B2 ~B3

p1_In

2 2 ~B1 ~B2 B3

p2_Try

p1_Out

3 2 ~B1 ~B2 B3

p2_Try

2 2 ~B1 ~B2 ~B3

p1_Try

1 3 B1 ~B2 B3

p2_In

2 3 ~B1 ~B2 ~B3

p2_In

p2_Out

p1_In

p1_Out

p2_Out

p1_Try

Fig. 4. Abstract state graph for the Bakery protocol

is a sequence of states and transitions starting from the initial state of the system
leading to a state violating the property. Error traces of an abstract system can
be mapped to executions of a concrete system since each abstract transition
corresponds to a single concrete one with the same label.

Figure 5 shows a more complex version of the Bakery protocol (known as
Bakery C) where the critical section corresponds to control location 7. This
version was proposed to avoid the long wait of one process at location 2 in
the previous version (known as Bakery A) before the process enters its critical
section. The abstraction of the protocol with respect the guards y1 = 0, y2 = 0,
y1 ≤ y2, x1 = 0, and x2 = 0 is given in Figure 6. Figure 7 shows an error
trace from the initial abstract state 0 to abstract state 30 violating the mutual
exclusion property, where for both processes the program counter has value 7.
The simulation of the error trace on the concrete system indicates that it does
not correspond to an execution of the concrete system. However, this does not
rule out the possibility that the property is violated. In the next section, we show
how model checking can guide the automatic refinement of an abstract system
until the property is verified or a counterexample corresponding to a concrete
execution violating the property is generated.

6 Automatic Refinement of Abstractions

Unlike current model checking tools, the error trace we generate is a tree in-
dicating the states where abstract variables are nondeterministically assigned.
In Figure 7, states 9 and 12 indicate loss of information on, respectively, the
abstract variables B1, B3, and B2. The concrete system is deterministic. Thus,

388 Hassen Säıdi

bakery : system
begin
process 1 : program
y1, x1, t1 : var nat
begin
p1 init x1 1: true → x1 := 1 : 2
p1 init t 2: true → t1 := y2+1 : 3
p1 init y 3: true → y1 := t1 : 4
p1 init x0 4: true → x1 := 0 : 5
p1 Wait 5: x2 = 0 → SKIP : 6
p1 In 6: y2=0 ∨ y1 ≤ y2 → SKIP : 7
p1 Out 7: true → y1 := 0 : 1
end process 1

‖
process 2 : program
y2, x2, t2 : var nat
begin
p2 init x1 1: true → x2 := 1 : 2
p2 init t 2: true → t2 := y1+1 : 3
p2 init y 3: true → y2 := t2 : 4
p2 init x0 4: true → x2 := 0 : 5
p2 Wait 5: x1 = 0 → SKIP : 6
p2 In 6: y1=0 ∨ y2 < y1 → SKIP : 7
p2 Out 7: true → y2 := 0 : 1
end process 2
initially : y1=0 ∧ y2=0 ∧ x1=0 ∧ x2=0 ∧ t1=0 ∧ t2=0 ∧ pc1=1 ∧ pc2=1
end bakery

Fig. 5. Bakery transition system (version C)

in an execution of the concrete system, each abstract state s, such as the ab-
straction of s is state 9, has only one successor by the transition p1 init y. Also,
each state s such as the abstraction of s is state 12, has only one successor by
the transition p2 init y. However, if the error trace is a sequence and not a tree,
that is all assignments in the sequence are deterministic, the following theorem
allows us to conclude that the error trace corresponds to a sequence of concrete
transitions violating the property. The theorem is a corollary of Theorem 2.

Theorem 5. Let Let S be a concrete system, and let Sa be a boolean abstraction
of S using any set of predicates that includes all the literals appearing in the
guards of S and in the property ϕ. every sequence of transitions in Sa where all
assignments are deterministic is a sequence of transitions of S. We call such a
sequence a deterministic trace.

Model Checking Guided Abstraction and Analysis 389

Our refinement methodology consists in computing a new abstract system with
more abstract variables. This is done by enriching the current abstract state by
adding additional predicates, and therefore additional abstract boolean variables.

bakery : system
B3 : var bool
begin
process 1 : program
B1, B4 : var bool
begin
p1 init x1 1: true → B4 := F : 2
p1 init t 2: true → SKIP : 3
p1 init y 3: true → B1 :=?, B3 :=? : 4
p1 init x0 4: true → B4 := T : 5
p1 Wait 5: B5 → SKIP : 6
p1 In 6: B2 ∨ B3 → SKIP : 7
p1 Out 7: true → B1 := T, B3 := T : 1
end process 1

‖
process 2 : program
B2, B5 : var bool
begin
p2 init x1 1: true → B5 := F : 2
p2 init t 2: true → SKIP : 3
p2 init y 3: true → B2 :=?,

B3 := if B1 then T else ? : 4
p2 init x0 4: true → B5 := T : 5
p2 Wait 5: B4 → SKIP : 6
p2 In 6: B1 ∨ ¬B3 → SKIP : 7
p2 Out 7: true → B2 := T,

B3 := if B1
then T
else if ¬B1 ∨ ¬B3 then F else ? : 1

end process 2
initially : B1 ∧ B2 ∧ B3 ∧ B4 ∧ B5 ∧ pc1=1 ∧ pc2=1
end bakery

Fig. 6. Abstract version of Bakery transition system (version C)

We use Theorem 5 in order to construct a new abstract system that may
produce more error traces that are deterministic. That is, by eliminating the
nondeterminism in the current error traces. This is done by computing the con-
straints under which the system may execute one of the nondeterministic transi-
tions. These constraints are captured as preconditions and computed using the

390 Hassen Säıdi

predicate transformer pre. We use the following lemma, allowing an efficient
computation of preconditions for assignments.

Lemma 1. Let τ be a transition. If guard(τ) is equivalent to true, then

∀P. pre[τ](P) ≡ ¬pre[τ](¬P)

This lemma indicates that when computing a precondition for assignments, it
is not necessary to compute it for both the predicate and its negation. Let us
consider the case of the Bakery protocol. The error trace indicates that nonde-
terminism is created for transitions p1 init y and p2 init y at, respectively,
states 9 and 12. The refinement technique is applied to each of these states by
computing the preconditions for each boolean variable that is assigned the value
? as follows:

– refining state 9:
pre[p1 init y](y1 = 0) ≡ t1 = 0

pre[p1 init y](y1 ≤ y2) ≡ t1 ≤ y2

– refining state 12:

pre[p2 init y](y2 = 0) ≡ t2 = 0

Three new predicates t1 = 0, t2 = 0 and t1 ≤ y2 corresponding to the
new abstract variables B6, B7, and B8 are generated. Each transition where a
variable is not assigned with the value T or F is refined. The refinement of the
transition p1 init y

3: true → B1 :=?, B3 :=? : 4

where B1 and B3 correspond to y1 = 0 and y1 ≤ y2 is the transition

3: true → B1 := if B6 then T else if ¬B6 ∨ ¬B8 then F else ?,
B3 := if B6 then T else ? : 4

The refinement algorithm uses a refined way of computing the values bTi
and bFi

bTi ≡
∨

{Ba | γ(Ra
τ) ∧ post[τ](γ(Ba))⇒ γ(Bi)}

bFi ≡
∨

{Ba | γ(Ra
τ) ∧ post[τ](γ(Ba))⇒ ¬γ(Bi)}

where Ra
τ is a boolean expression representing the set of reachable states of the

already constructed abstract system at the source location of τ . For instance,
Ra

p1 Try of Bakery A is equal to B1 ∨B2. The expression Ba is any expression
over the union of the new set of variables and set of the old one that satisfy the
invariant Ra

τ . Thus, each refinement step uses the results of model checking the

Model Checking Guided Abstraction and Analysis 391

[29]
 6 7 B1 B2 B3 B4 B5

[30]
 7 7 B1 B2 B3 B4 B5

p1_In

[28]
 5 7 B1 B2 B3 B4 B5

p1_Wait

[21]
 5 6 B1 B2 B3 B4 B5

p2_In

[14]
 5 5 B1 B2 B3 B4 B5

p2_Wait

[13]
 5 4 B1 B2 B3 B4 ~B5

p2_init_x0

[12]
 5 3 B1 B2 B3 B4 ~B5

p2_init_y

[36]
 5 4 B1 ~B2 B3 B4 ~B5

p2_init_y

[11]
 5 2 B1 B2 B3 B4 ~B5

p2_init_t

[10]
 4 2 B1 B2 B3 ~B4 ~B5

p1_init_x0

[9]
 3 2 B1 B2 B3 ~B4 ~B5

p1_init_y

[167]
 4 2 ~B1 B2 ~B3 ~B4 ~B5

p1_init_y

[198]
 4 2 B1 B2 ~B3 ~B4 ~B5

p1_init_y

[179]
 4 2 ~B1 B2 B3 ~B4 ~B5

p1_init_y

[8]
 2 2 B1 B2 B3 ~B4 ~B5

p1_init_t

[0]
 1 1 B1 B2 B3 B4 B5

[7]
 1 2 B1 B2 B3 B4 ~B5

p2_init_x1

p1_init_x1

Fig. 7. Error trace for the Bakery Protocol

constructed abstract system to generate new abstract variables and to reduce
the cost of the refinement algorithm. Furthermore, the invariant Ra

τ refers to
variables written by the component where τ belongs and to variables that are
modified by other components that form its environment. The new generated
predicates are used as new abstract boolean variables to compute a refined ab-
stract system. The new abstract system is then analyzed and a new error trace
indicates that mutual exclusion is violated. However, the trace is not determin-
istic, and a new refinement step is performed where two new predicates y1 ≤ t2
and t1 ≤ t2 corresponding to the new boolean variables B9 and B10 are gener-
ated. A new abstract system is then generated and analyzed, and the property
is proved to be a property of the abstract system. Thus by Theorem 1, it is a
property of the Bakery protocol.

In general, the an abstract system obtained after refinement is a more precise
an accurate abstraction of the corresponding original system.

392 Hassen Säıdi

Theorem 6 (refinement simulation). Let Sa be an abstraction of a system S
using a set of predicates {ϕ1, · · · , ϕk}. Let Sa

r be a refinement of Sa using the
additional predicates {ϕk+1, · · · , ϕj}. Then, Sa simulates Sa

r .

Proof. The proof of the theorem can be established by proving that for each
abstract predicate P a, the set of successors of P a with respect to an abstract
transition τa is smaller that the set of successors of P a with respect to the
corresponding refined transition τa

r of S
a
r . That is:

∀P a. post[τa
r](P

a) ⇒ post[τa](P a)

Thus, the concretization of the set of reachable states of the abstract system is a
more refined invariant of the concrete system. It is a more precise approximation
of the reachable state of the concrete systems. Even when a property can not
be established after a number of successive refinement steps, one can use this
invariant as a starting point for a more elaborate proof and analysis technique
using for instance a theorem prover. It is in fact necessary for even very simple
systems and property to provide an invariant in order to be able to achieve a
correctness proof.

7 Implementation and Analysis Methodology

We have implemented the abstraction/model checking/refinement methodology
in a tool dedicated to the verification of infinite state systems. Figure 8 shows
the architecture of the tool. Our tool is built on top of the PVS theorem prover.
We explain the role of each component of the tool and how the analysis process
is organized.

Syntax: Systems can be described in a Simple Programming Language (SPL),
close to the one used in [22], but with the rich data types and expression defi-
nition mechanism available in PVS. Our SPL language includes common algo-
rithmic constructions such as single and multiple assignment statements, con-
ditionals If-Then-Else, and loop statements. We also allow parallel composition
by interleaving and synchronization by shared variables as in Unity [4]. Systems
described in SPL are translated automatically into guarded commands with ex-
plicit control. Program variables can be of any type definable in PVS, and can
be assigned by any definable PVS expression of a compatible type. It is possible
to import any defined PVS theory. The examples in this paper are presented in
the automatically generated LATEX format for guarded commands.

Internal representation: Pvs is implemented in LISP. Every object manipulated
in Pvs such as a theory, a theorem, or a proof is represented as an instance of
a predefined object class. We have defined for transition systems a representa-
tion that is also a class. An important aspect of such a structure is that it is

Model Checking Guided Abstraction and Analysis 393

High Level
Description

In SPL

Internal
Representation

Invariant
Data Base

Abstract
System

Abstract
State GraphTrace

Error

Static Analysis

SPL Compiler

System
Transition

Typechecking

Abstraction Predicates

Exploration Use

Add

Input System

Diagnostic

Refinement

State

LATEX

S1‖ · · · ‖Sn

LATEX/ Graph

LATEX LATEX/ Graph

Graph Reduction

Fig. 8. Analysis methodology

independent of the Pvs internal structure, and makes our implementation inde-
pendent of the possible changes in the Pvs internal representation. However, the
expression manipulated and the verification condition generated are represented
as Pvs expressions and Pvs obligations. This is necessary for the automatic
interaction with the decision procedures.

Static analysis: We use the techniques developed in [24] to generate useful in-
variants of the concrete system. Static analysis consists in a set of techniques
for the automatic generation of such invariants. These techniques are based on
propagation of guards and assignments through program control points. The
techniques we use computes invariants for each component and are composed
using a novel composition rule presented in [24] to form invariants of the global
system. These invariants are used to weaken all the implications that are gen-
erated when an abstraction is computed. When used, the allow a more efficient
construction of abstractions. That is, one can decide with the help of these in-
variants that a variable is not assigned the value ? but either T or F, and thus,
allows to generate less implications.

Automatic abstraction: The abstraction module takes a transition system and
builds a first abstraction using the predicates appearing in the guards and the
property to verify, and then submits the abstract system to our model checker.
This module is also used for automatic refinement.

394 Hassen Säıdi

Model checking: The state-space of the constructed abstract system can be ex-
plored in two ways. In the symbolic approach, the system is translated into a
boolean function represented by a Bdd that represents the successor function.
The exploration consists in applying the function recursively starting from the
initial abstract state, represented also by a Bdd until a fix point is reached.
In the explicit approach, it consists in translating the abstract system into an
executable form and then running it and by hashing the visited states. Both ap-
proaches can be exploited to construct the corresponding abstract state graph.
The abstract state graph can then be reduced using simulation and bisimulation
minimization algorithms as a way of performing additional abstractions.

Experiments: We have used our analysis methodology to verify several commu-
nication protocols such as the alternating bit protocol and a data link proto-
col. We also applied our methodology on several parametrized systems that are
compositions of arbitrary numbers of identical processes. Figure 7 shows our
experiments with three versions of the Bakery protocol. The versions Bakery A
and Bakery C were described previously and illustrated in Figures 1 and 5. The
version Bakery B is obtained by removing the transitions init x0 and Init x1
from the description of Bakery C. Figure 7 shows the number of predicates used
in the compute a first abstraction, the refinement steps used to reach a conclu-
sive result, that is either the property is verified, or to generate a deterministic
error trace. It shows, the number of predicates computed each refinement step.
It shows the numbers of implications generate and proved for each abstrac-
tion/refinement step, and the duration of each step. It also shows a comparison
with our previous work in [25] where transitions systems are given as relational
predicates, and where the numbers of implications is much higher as shown by
Theorem 4. Notice that in general the complexity of each refinement step is
less than the complexity of the computation of the first abstraction. The version
Bakery B is shown to violate the mutual exclusion property, and a deterministic
error trace is generated after two refinements steps.

#of initial #of refinements #of new #of calls to the comparison time
predicates steps predicates decision with (s)

procedure [25]

Bakery A 3 0 27 33 1.8

Bakery B 3 2 72 100 5.1
3 32 178 3.3
4 134 366 15.5

Bakery C 5 2 120 168 12
3 35 94 3.2
2 32 136 3.4

Fig. 9. Experiments results for 3 versions of the Bakery protocol

Model Checking Guided Abstraction and Analysis 395

8 Conclusion and Future Work

We presented a general, yet effective, methodology for the verification of large
systems, based on abstraction followed by model checking. The novelty of our
methodology consists of an efficient algorithm for the automatic construction
of boolean abstractions and an efficient algorithm for automatically refining a
coarse abstraction when model checking the abstract system fails. This method-
ology also allows in many cases the generation of counterexamples, that is exe-
cutions violating the property of interest. Our abstraction algorithm can be used
to compute abstraction for any abstract domain which is a boolean algebra. Our
verification tool represents the core of a verification and analysis technology for
large software. The first step will be to translate source code into transition
systems. For large programs, thousands of calls to the decision procedure are
necessary. This can be done in few minutes or at most few hours.

References

1. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state
systems compositionally and automatically. In Proceedings of the 9th Conference
on Computer-Aided Verification, CAV’98, LNCS. Springer Verlag, June 1998. 377,
378

2. S. Bensalem, Y. Lakhnech, and Hassen Säıdi. Powerful techniques for the auto-
matic generation of invariants. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, number 1102 in Lecture Notes in Computer
Science, pages 323–335, New Brunswick, NJ, July/August 1996. Springer-Verlag.
378

3. Nikolaj Bjorner, Anca Browne, and Zohar Manna. Automatic Generation of
Invariants and Intermediate Assertions. Theoretical Computer Science, 1997. 378

4. K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison-Wesley,
Reading, Massachusetts, 1988. 392

5. Ching-Tsun Chou. Simple proof techniques for property preservation via simula-
tion. Information Processing Letters, 60(3):129–134, 1996. 383

6. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, Septem-
ber 1994. 377

7. Michael Colon and Thomas Uribe. Generating finite-state abstractions of reac-
tive systems using decision procedures. In Proceedings of the 9th Conference on
Computer-Aided Verification, CAV’98, LNCS. Springer Verlag, June 1998. 377,
378

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
January 1977. 377

9. D. Dams. Abstract interpretation and partition refinement for model checking. PhD
thesis, Technical University of Eindhoven, July 1996. 377

10. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
Abstractions preserving ∀CTL*, ∃CTL* and CTL*. In Ernst-Rudiger Olderog,
editor, IFIP Conference PROCOMET’94, pages 561–581, 1994. 383

396 Hassen Säıdi

11. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. Lecture
Notes in Computer Science, 1633:160–??, 1999. 377, 378

12. J. Dingel and Th. Filkorn. Model checking for infinite state systems using data ab-
straction, assumption-commitment style reasoning and theorem proving. In Proc.
of 7th CAV 95, Liège. LNCS 939, Springer Verlag, 1995. 377

13. S. Graf. Characterization of a sequentially consistent memory and verification of
a cache memory by abstraction. Distributed Computing, 1995. 377

14. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Confer-
ence on Computer Aided Verification CAV’97, LNCS 1254, Springer Verlag, 1997.
377, 378, 381

15. J.F. Groote and J. van de Pol. A bounded retransmission protocol for large data
packets. Technical report, Department of Philosophy, October 1993. 379

16. Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe FME ’96, number
1051 in Lecture Notes in Computer Science, pages 662–681, Oxford, UK, March
1996. Springer-Verlag. 379

17. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link
protocol. Technical report, Department of Philosophy, Utrech University, The
Netherlands, March 1994. 379

18. Bertrand Jeannet, Nicolas Halbwachs, and Pascal Raymond. Dynamic partitioning
in analyses of numerical properties. In Agostino Cortesi and Gilberto Filé, editors,
Static Analysis, volume 1694 of Lecture Notes in Computer Science, pages 39–50.
Springer, 1999. 379

19. R.P. Kurshan. Computer-aided verification of coordinating processes, the automata
theoretic approach. Princeton Series in Computer Science. Princeton University
Press, 1994. 377

20. David Lesens and Hassen Säıdi. Automatic verification of parameterized networks
of processes by abstraction. In Faron Moller, editor, 2nd International Workshop
on Verification of Infinite State Systems: Infinity ’97, volume 9 of Electronic Notes
in Theoretical Computer Science, Bologna, Italy, July 1997. Elsevier. 379

21. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, Vol 6, Iss 1, January 1995, 1995. 377, 383

22. Zohar Manna and Amir Pnueli. The Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995. 392

23. S. Owre, N. Shankar, and J. M. Rushby. A tutorial on specification and verification
using pvs. Technical report, Computer Science Laboratory, SRI International,
February 1993. 379

24. H. Säıdi. Modular and incremental analysis of concurrent software systems. In
14th IEEE International Conference on Automated Software Engineering, pages
92–101, Cocoa Beach, FL, October 1999. IEEE Computer Society Press. 378, 393

25. Hassen Säıdi and Natarajan Shankar. Abstract and model check while you prove.
In Computer-Aided Verification, CAV ’99, Trento, Italy, July 1999. 377, 382, 385,
386, 394

Abstract Domains for Sharing Analysis by

Optimal Semantics

Francesca Scozzari�

Dipartimento di Informatica
Università di Pisa

Corso Italia 40, 56125 Pisa, Italy
scozzari@di.unipi.it

Abstract. We propose a new technique for transforming abstract do-
mains for logic program analysis in the theory of abstract interpretation.
The basic idea is to exploit the notion of optimal semantics in order to
improve the precision of a given analysis, with respect to a fixed prop-
erty of interest. We show an application of our technique to the analysis
of variable sharing. We propose a new domain for detecting pairs of in-
dependent variables which is obtained by transforming the Jacobs and
Langen’s domain for sharing analysis. The new domain has the advan-
tage of being strictly more powerful than the original domain in detecting
pair-sharing information and, at the same time, smaller in size.

1 Introduction

This work presents a new technique for transforming abstract domains for pro-
gram analysis, in the theory of abstract interpretation [7]. Abstract interpreta-
tion is a general theory for describing both approximated semantics and program
analyses. On the semantics side, it allows us to compare semantics at different
levels of abstraction and to order them in a suitable hierarchy, which reflects the
approximation order. From the analysis point of view, abstract domains proved
to be a powerful and elegant method to formally describe and compare static
analyses for a variety of programming languages.

In this paper we face with the problem of improving the precision of abstract
domains for static analysis of logic programs. We propose a new methodology for
transforming an abstract domain in order to improve its precision in computing
some fixed property of interest. The basic idea is to exploit the notion of optimal
semantics [10,11] as a guideline for the definition of the transformation. An op-
timal semantics can be thought of as a semantics which is neither too concrete
nor too abstract for characterizing a given property of interest. We consider as a
starting point the semantics of computed answers substitutions, the so-called s-
semantics [9]. As shown in [11], given any property of interest π (e.g., groundness,
sharing), it always exists the most abstract semantics σπ where the property π

� Part of this work was carried out while the author was at the Laboratoire
d’Informatique, École Polytechnique, Palaiseau, France.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 397–412, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

398 Francesca Scozzari

is observable without approximation errors. In abstract interpretation, it is of-
ten the case that the actual domain used for performing the analysis is not π,
but a more complex domain, which contains π and, in addition, some other
information which improves the precision of the analysis. For instance, this is
the case for the basic property of groundness, where the more complex domains
Def [1] and Pos [16,5,1] are used instead of the basic domain G by Jones and
Søndergaard ([14]) which merely describes the property of groundness. Another
example is the property of variable sharing, where the abstract domain Sh by
Jacobs and Langen [12,13], and even more complex domains which keep track
of linearity and freeness information, are used for sharing analyses.

Our idea is to exploit the optimal semantics of a given property π for enrich-
ing any abstract domain for the analysis of π. Let A be an abstract domain for
detecting the property π, i.e., which contains π. The idea is to substitute each
abstract object a ∈ A with the object σπ(a), where σπ is the closure correspond-
ing to the optimal semantics for π, and to consider the most abstract domain B
which contains all these objects, for all a ∈ A. The new domain that we obtain
is therefore the most abstract domain which contains the set {σπ(a) | a ∈ A}.
As a remarkable point of this construction, the new domain B turns out to be,
at least, as precise as A in computing the property π and, when B is different
from A, it is strictly more precise than A. It is worth noting that the new domain
we set up can be unrelated to the original domain A, when the common order
for comparing abstract domains is used. In other words, B can be neither an
abstraction nor a concretization of A. Therefore, the method we propose is not
a refinement, nor a widening operator on the domain A.

As an application, we consider the pair-sharing property ([2]), whose aim is
to detect which pairs of variables are definitely independent. One of the most
commonly used domain for pair-sharing analysis is the domain Sh [12,13]. We
fix the pair-sharing property and we apply our transformation technique to the
abstract domain Sh. The result is quite surprising, since the domain we obtain
is strictly more powerful than Sh in detecting pair-sharing information and, at
the same time, is smaller in size. It is worth noting that the domain we obtain is
incomparable to Sh, i.e., it is neither an abstraction nor a concretization of Sh.
Moreover, it clarifies how groundness information helps in pair-sharing analysis.

2 Basic Notions

Abstract interpretations. In the abstract interpretation theory [7,8], abstract
domains can be equivalently specified either by Galois connections, i.e., adjunc-
tions, or by upper closure operators (uco). In the first case, the concrete do-
main C and the abstract domain A (both assumed to be complete lattices) are
related by a pair of adjoint functions of a Galois connection (α,C,A, γ). Also,
it is generally assumed that (α,C,A, γ) is a Galois insertion, i.e., α is onto or,
equivalently, γ is 1–1. In the latter case, an abstract domain is specified as an uco
on the concrete domain C, i.e., a monotone, idempotent and extensive operators
on C. These two approaches are equivalent, modulo isomorphic representation of

Abstract Domains for Sharing Analysis by Optimal Semantics 399

domain’s objects. When 〈C,≤,∨,∧,	,⊥〉 is a complete lattice, the poset of all
uco’s 〈uco(C),�,,�, λx.	, λx.x〉 is a complete lattice as well. Hence, we will
identify uco(C) with the lattice of abstract interpretations of C, i.e., the com-
plete lattice of all possible abstract domains of the concrete domain C. For an
abstract domain A of C, αA : C �→A and γA : A �→C will denote, respectively,
the abstraction and concretization functions. When A is specified by a Galois
connection, then ρA = γA ◦ αA ∈ uco(C) denotes the corresponding uco. Let us
recall that each ρ ∈ uco(C) is uniquely determined by the set of its fixpoints,
which is its image, i.e., ρ(C) = {x ∈ C | ρ(x) = x}, and that, for ρ, η ∈ uco(C),
ρ � η iff η(C) ⊆ ρ(C). A subset X ⊆ C is the set of fixpoints of an uco iff X
is meet-closed, i.e., X =

c
(X) = {∧Y | Y ⊆ X}. Hence, often, we will identify

closures with their sets of fixpoints. This does not give rise to ambiguity, since
one can distinguish their use as functions or sets according to the context. The
ordering on uco(C) corresponds to the standard order used to compare abstract
domains: A1 is more concrete than A2 (or, equivalently, A2 is more abstract
than A1) iff A1 � A2 in uco(C). The lub and glb on uco(C) have therefore
the following meaning as operators on domains. Suppose {Ai}i∈I ⊆ uco(C):
(i) i∈IAi is the most concrete among the domains which are abstractions of all
the Ai’s, i.e., it is their least common abstraction; (ii) �i∈IAi is the most abstract
among the domains (abstracting C) which are more concrete than every Ai; this
domain is also known as reduced product of all the Ai’s.

Logic programming. Let V be an infinite, recursively enumerable (r.e.) set of
variables. Term denotes the set of terms with variables in V . A substitution
is a finite mapping from V to Term . If s is any syntactic object and σ and θ
are substitutions, then σ(s) denotes the application of σ to s, σ ◦ θ denotes
the standard composition of σ and θ (i.e., σ ◦ θ = λx.σ(θ(x))), vars(s) denotes
the set of variables occurring in s. A term t is ground if vars(t) = ∅. The set
of idempotent substitutions modulo renaming (i.e., θ ∼ σ if and only if there
exist β and δ such that θ = β ◦ σ and σ = δ ◦ θ) is denoted by Sub. Sub is
partially ordered by instantiation, denoted by �, i.e., σ � θ iff ∃δ ∈ Sub. σ =
δ ◦ θ. By adding to Sub an extra object τ as least element, one gets a complete
lattice 〈Subτ ,�,∨,∧, ε, τ〉, where ∨ is the least general anti-instance, ∧ is the
standard unification and ε is the empty substitution (see [18,15] for more details).
Our basic semantic structure is the algebra 〈℘(Sub),⊆,⊗〉, where 〈℘(Sub),⊆〉
is a complete lattice, ⊗ : ℘(Sub) × ℘(Sub) �→℘(Sub) is the obvious lifting of
unification ∧ to sets of substitutions, defined as:

X ⊗ Y
def= {x ∧ y | x ∧ y �= τ, x ∈ X, y ∈ Y }.

In the following, we will slightly abuse the notation by applying the operation ⊗
also to substitutions. Since ⊗ is additive on both arguments, commutative and
associative, given any c ∈ ℘(Sub), the unary function λx.c ⊗ x is still additive.
Thus it admits a right adjoint given by λx.

⋃ {d ∈ ℘(Sub) | c ⊗ d ⊆ x}. In the
following, we denote by y � x the object

⋃ {d ∈ ℘(Sub) | y ⊗ d ⊆ x}.

400 Francesca Scozzari

3 Optimal Semantics

An optimal semantics can be thought of as a semantics which is neither too
concrete nor too abstract for characterizing a given property of interest. We
briefly recall from [11] the definition and the main results concerning optimal
semantics for logic programs. Given a program P , let T s

P : ℘(Sub) �→℘(Sub)
be the immediate consequences operator for computed answer substitutions [9],
and let us define the semantics of a program P as the least fixpoint of T s

P ,
i.e., JP Ks = lfp(T s

P). Let π ∈ uco(℘(Sub)) be the abstract domain describing
the property of interest. We say that π is decidable when each set a ∈ π is a
r.e. set. In [11] it is proved that, for decidable domains, there exists the most
abstract domain σπ ∈ uco(℘(Sub)) such that π is still observable in σπ without
introducing approximation errors, as shown in the next theorem.

Theorem 1 ([11]). Let π ∈ uco(℘(Sub)) be a decidable domain and let σπ :
℘(Sub) �→℘(Sub) be defined as follows, for any x ∈ ℘(Sub):

σπ(x) def=
⋂

{θ � a | θ ∈ Sub, a ∈ π, x ⊆ θ � a}.

Then it holds π(lfp(T s
P)) = π(lfp(σπ ◦ T s

P)). Moreover, σπ is the most abstract
domain in uco(℘(Sub)) which enjoys this property.

This theorem ensures us that the result of any abstract computation on the
domain σπ (i.e., lfp(σπ ◦ T s

P)) is equal to the result on the concrete domain
℘(Sub) (i.e., lfp(T s

P)) when they are observed on the abstract domain π. There-
fore, the domain σπ can be freely used instead of the concrete domain without
introducing approximation errors. Moreover, σπ is the most abstract domain
(abstracting ℘(Sub)) for which this property holds. Thus, σπ can be rightfully
considered as the optimal semantics for the property π. It is worth noting that
being a decidable domain is a very weak notion and practically all the common
domains used in practice are decidable domains. In fact, an abstract domain π
is not decidable when there exists an abstract object a ∈ π such that a is not
r.e., i.e., one cannot decide when a substitution θ belongs to a. Therefore, the
property π is not decidable even for single substitutions, and the abstraction
function απ : ℘(Sub) �→π cannot be effectively computed. In the following, we
will always assume that the property of interest is representable by a decidable
domain π ∈ uco(℘(Sub)) and we will denote by σπ the optimal semantics for π.
The abstraction σπ can be equivalently defined as follows (see [11,19] for more
details):

– σπ is the most abstract domain which contains π (i.e., σπ � π) and is
complete for ⊗, i.e., for any a, b ∈ ℘(Sub), it holds:

σπ(a ⊗ b) = σπ(σπ(a) ⊗ σπ(b));

– for any x ∈ ℘(Sub):

σπ(x) = {θ ∈ Sub | ∀c, d ∈ ℘(Sub) x ⊗ c ⊆ π(d) ⇒ θ ⊗ c ⊆ π(d)}.

Abstract Domains for Sharing Analysis by Optimal Semantics 401

The first characterization of σπ shows the strict connection between the imme-
diate consequences operator T s

P and the unification operation ⊗. In fact, [11]
showed that an abstract domain ρ is complete for T s

P (i.e., ρ ◦ T s
P ◦ ρ = ρ ◦ T s

P)
if and only if ρ is complete for ⊗ (i.e., ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗). According to this
result, one can disregard the other operations involved in the computation of
the T s

P , namely union and variable projecting, in order to prove completeness
properties for the semantics of computed answer substitutions.

The latter characterization of σπ is particularly interesting, since it precisely
describes the way optimal semantics behave. For any x ∈ ℘(Sub), it states that
a substitution θ belongs to σπ(x) if and only if the following property holds:

∀c, d ∈ ℘(Sub) x ⊗ c ⊆ π(d) ⇒ θ ⊗ c ⊆ π(d). (1)

According to this property, the optimal semantics enriches the set x with all and
only the substitutions θ such that the unification of θ with any object c cannot be
distinguished from the unification of x with c, when they are observed in π. This
property also explains in which sense σπ is optimal. In fact, for any substitution θ
which is not in σπ(x), there always exist two objects c, d ∈ ℘(Sub) such that
x ⊗ c ⊆ π(d) but θ ⊗ c � π(d). As a consequence, we have that θ ⊗ c � π(x ⊗ c)
and thus Property (1) can be rephrased in a more compact way as follows:

∀c ∈ ℘(Sub) θ ⊗ c ⊆ π(x ⊗ c).

This last characterization gives us a precise upper bound to the set of substi-
tutions which can be added still preserving the property π in the unification
operation.

4 Abstract Domains by Optimal Semantics

In abstract interpretation, it is often the case that the abstract domain π, which
encodes the property of interest, is not actually used for the analysis. Instead of π,
some more complex domain α (which contains π) is used, in order to improve the
precision of the analysis. For instance, this is the case for the domains Def [1]
and Pos [16,5,1], which are commonly used instead of the basic domain G by
Jones and Søndergaard ([14]), encoding the property of groundness.

Let π ∈ uco(℘(Sub)) be a fixed property of interest and let us consider some
domain α ∈ uco(℘(Sub)) such that α � π. Our idea is to consider, instead of the
domain α, the abstract domain απ obtained by abstracting each element a ∈ α
by σπ . The domain απ is formally defined as follows:

απ def=
k

(σπ(α)) =
k

({σπ(a) | a ∈ α}).

By Property (1), σπ(a) is obtained by enriching a with all and only the substi-
tutions which behave like a when the result of the unification is observed in π.
Let us first show some properties of απ.

402 Francesca Scozzari

Proposition 1. Let α, π ∈ uco(℘(Sub)) with α � π. Then απ enjoys the fol-
lowing properties.

1. σπ � απ � π
2. απ ◦ α = σπ ◦ α
3. απ is complete for ⊗ w.r.t. α, i.e., for all a, b ∈ α, it holds:

απ(a ⊗ b) = απ(απ(a) ⊗ απ(b)).

4. lfp(απ ◦ T s
P) ≤ απ(lfp(α ◦ T s

P))

Note that, consistently with Point 3, it may well happen that απ is complete
for ⊗ w.r.t. α, even if απ and α are possibly unrelated domains. In particular,
it is not required for απ to be an abstraction of α. When α is more concrete
than απ, this notion boils down to the standard notion of completeness. Point 4
is a direct consequence of Point 3 and ensures us that abstract computations
on the domain απ are more precise than abstract computations on α when the
result is observed in απ. Since απ � π, as a consequence απ is, at least, as
precise as α when we are interested in observing the property π. Moreover, the
domain απ still enjoys Property (1) for any abstract object a ∈ α, as stated in
the next proposition.

Proposition 2. Let α, π ∈ uco(℘(Sub)) with α � π. Then, for all x ∈ ℘(Sub),
απ(α(x)) enjoys Property (1), i.e., ∀θ ∈ Sub, it holds:

θ ∈ απ(α(x)) ⇐⇒ ∀c, d ∈ ℘(Sub) α(x) ⊗ c ⊆ π(d) ⇒ θ ⊗ c ⊆ π(d).

Proposition 1 states that the new domain απ is a concretization of the property
of interest π and, more importantly, it is complete for the unification with objects
of α. This means that απ is at least as precise as α in computing the operation
of unification. These two properties are obviously the fundamental requirements
for any domain candidate for improving the precision of α. It is worth noting
that many other domains enjoy these properties, for instance σπ and α itself.
Let us denote by C(α, π) the collection of all the abstractions of π which are
complete for ⊗ w.r.t. α, i.e., :

C(α, π) def= {β ∈ uco(℘(Sub)) | β � π, β complete for ⊗ w.r.t. α}.
According to the above definition, for all β ∈ C(α, π) it holds:

∀c, d ∈ ℘(Sub) β(β(α(c)) ⊗ β(α(d))) = β(α(c) ⊗ α(d))

which, in turn, implies the following property:

∀c, d ∈ ℘(Sub) β(β(c) ⊗ β(d)) ≤ β(α(α(c) ⊗ α(d))).

The latter property precisely says that, given any two objects c, d ∈ ℘(Sub),
the result of any abstract computation on the domain β (i.e., β(β(c) ⊗ β(d)))
is more precise than the corresponding computation on the domain α (i.e.,

Abstract Domains for Sharing Analysis by Optimal Semantics 403

α(α(c) ⊗ α(d))) when the result is observed in β. This property, combined with
the assumption that β � π, ensures us that the domain β is, at least, as pre-
cise as α in computing the operation of unification, when we are interested in
observing the property π only. It is worth remarking that we do not require
that β(β(c) ⊗ β(d)) ≤ α(α(c) ⊗ α(d)), since we are not interested in directly
comparing the absolute precision of the two domains α and β.

In general, given two closures β1, β2 ∈ C(α, π), the closure β1 β2 may not
be in C(α, π) and, in particular, C(α, π) may not be in C(α, π). For instance,
it easy to see that both α and απ belong to C(α, π), but, in general, α απ

is not in C(α, π) (see Section 6.1 for a counterexample). The idea is to restrict
our attention to those domains β ∈ C(α, π) which satisfy Property (1) on the
abstract objects. In other words, we require that for any a ∈ α, it holds: θ ∈ β(a)
if and only if Property (1) holds. This ensures us that β has been designed by
adding to each abstract object a ∈ α the greatest amount of substitutions, still
preserving the observable property π. The next proposition proves that απ is
indeed the most abstract element in C(α, π) which satisfies Property (1) for all
abstract objects.

Proposition 3. Let α, π ∈ uco(℘(Sub)) with α � π. Then απ is the most
abstract domain in C(α, π) which enjoys Property (1) for all a ∈ α.

The above result implies that, for any domain β ∈ C(α, π), β is complete for ⊗
w.r.t. απ if and only if it is a concretization of απ, as the next theorem shows.

Theorem 2. Let α, π ∈ uco(℘(Sub)) with α � π. For any β ∈ C(α, π), it holds:

β is complete for ⊗ w.r.t. απ ⇐⇒ β � απ .

This theorem says that any domain which is at least as precise as απ must be
a concretization of απ . Thus, the domain απ cannot be further reduced without
loosing precision. It is worth remarking that in the previous theorem, απ is not
compared to its proper abstractions only, but to any domain in C(α, π), i.e.,
to all the domains which contain π and which are complete for ⊗ w.r.t. α.
Hence, this result is much stronger then a mere result of completeness, where
the domain is compared to its abstractions/concretizations only.

5 An Application to Pair-Sharing Analysis

In this section, we show an application of our construction to the property
of variable independence. In particular, we are interested in observing pair-
independence, i.e., independence of pairs of variables. We say that two variables
are independent if the terms they are bound to, have no variable in common. In
other words, two variables are independent if they are bound to terms which do
not share any variable. Information about pair-independence is typically used
in order to exploit the so-called AND-parallelism [13,17], i.e., to allow a parallel
execution of different atoms in the same goal, and for the safe elimination of the
occur-check [21], in order to speed-up the unification algorithm.

404 Francesca Scozzari

Variable independence analysis is strictly related to sharing analysis. In
fact, many domains for sharing analyses in the literature (e.g., Sh [12,13] and
ASub [21]) actually are concerned with possible sharing of variables, i.e., the
property of interest is to determine when variables are allowed to share. The in-
formation they encode is not that a set of variables definitely share, but, instead,
that a set of variables possibly share. This duality has lead to a non-uniform (and
quite confusing) terminology in the literature for the different properties of (def-
inite) variable independence and (possible) variable sharing. With a slight abuse
of terminology (and adopting the current name in the literature) we will refer
to the property of (definite) independence of pairs of variables as pair-sharing,
which has to be intended as possible pair-sharing.

Even if many different domains for sharing analysis have been proposed, the
abstract domain Sh by Jacobs and Langen [12,13] is undoubtly the most popular
and more frequently used for sharing analysis. The increasing amount of results
concerning this domain has contributed to confirm the adequacy and efficiency
of Sh. Hence, in the following, we apply our results to the domain Sh, where the
property of interest is pair-sharing. We proceed as follows. First, we formally
define the abstract domain PSh encoding the property of interest (which turns
out to be isomorphic to the domain for pair-sharing analysis described in [2])
and the optimal semantics for PSh, denoted by σPSh.

In order to compute ShPSh =
c

(σPSh(Sh)) we proceed modularly1. It is well-
known that the domain Sh can be decomposed into two parts, namely Sh+

and Def ([4]). We compute separately σPSh(Sh+) and σPSh(Def), which happen
to be both abstract domains. Then we show that ShPSh is the reduced prod-
uct of σPSh(Sh+) and σPSh(Def). Finally, we show that ShPSh is smaller in size
than Shand, at the same time, it is strictly more powerful in detecting pair-
sharing.

5.1 Sharing and Groundness

In this paper, we consider a finite set of variables of interest VI ⊂ V , which are
the relevant variables. According to this, abstract domains are restricted to have
variables in VI and do not explicitly show the set of relevant variables they refer
to. Let us recall the definitions of the abstract domains Sh, Sh+ and Def, in order
to fix the notation. All domains refer to the (finite) set of variables VI . For the
definition of Sh we follow the notation in [2] and define an element of Sh as a
collection of nonempty sets of variables. The domain Sh is defined as follows:

Sh
def= ℘(℘(VI) \ { ∅ }).

For the abstraction function αSh : ℘(Sub) �→Sh from the concrete domain of
substitutions to Sh and the corresponding closure ρSh ∈ uco(℘(Sub)) we refer
to [12,13]. We briefly recall the definitions of the operations on Sh. The closure
1 Note that, in general, given A, B, π ∈ ℘(Sub), it does not hold that (A � B)π =

Aπ � Bπ.

Abstract Domains for Sharing Analysis by Optimal Semantics 405

under union function ·∗ : Sh �→Sh is defined as follows, for any A ∈ Sh:

A∗ def= {T ⊆ VI | ∃n ≥ 1, ∃T1, . . . , Tn ∈ A, T =
⋃

1≤i≤n

Ti}.

The extraction of the relevant components rel : ℘(VI) × Sh �→Sh, for V ⊆ VI
and A ∈ Sh is given by:

rel(V,A) def= {T ∈ A | T ∩ V �= ∅}.
For A,B ∈ Sh, the binary union bin : Sh × Sh �→Sh is defined as:

bin(A,B) def= {T1 ∪ T2 | T1 ∈ A, T2 ∈ B}.
Finally, the unification operation amgu : Sh × Sub �→Sh is inductively given,
for A ∈ Sh and { x �→t }, θ ∈ Sub, by:

amgu(A, { x �→t }) def= (A \ rel(vars(t) ∪ {x}))
∪ bin(rel({x}, B)∗, rel(vars(t), B)∗)

amgu(A, { x �→t } ◦ θ) def= amgu(amgu(A, { x �→t }), θ).

It is well-known that the domain Sh can be decomposed into two parts,
namely Sh+ and Def ([4]). The abstract domain Sh+ is defined as the subset of
Sh whose elements contain all the singletons.

Sh+ def= {A ∈ Sh | ∀x ∈ VI { x } ∈ A}.
The corresponding closure operator αSh+ ∈ uco(Sh) is given by αSh+(A) def= A ∪
{{ x } | x ∈ VI }. Moreover, we denote by ρSh+ ∈ uco(℘(Sub)) the closure on the
concrete domain ℘(Sub) corresponding to Sh+.

The domain PSD has been recently proposed in [2] for capturing pair-sharing
dependency. As we will see in the following, PSD is strictly related to our con-
struction. We briefly recall the definition of PSD (see [2,22] for details). PSD
is defined by a closure operator on the domain Sh in the following way. For
any T ⊆ VI , let pairs(T) = {P ∈ ℘(T) | |P | = 2}. We say that T is redun-
dant for an abstract object A ∈ Sh if and only if |T | > 2 and pairs(T) =
∪{pairs(S) | S ∈ A,S ⊂ T }. In other words, T is redundant for A if all its pairs
can be recovered from the sets S ∈ A which are contained in T . The closure
operator αPSD ∈ uco(Sh) is defined as follows:

αPSD(A) def= A ∪ {T ⊆ VI | T is redundant for A}.
We denote by G

def= ℘(VI) the basic domain for groundness analysis by Jones
and Søndergaard ([14]), where each V ⊆ VI denotes the set of substitutions
which ground every variable in V . We denote by ρG : ℘(Sub) �→G the abstraction
function from the concrete domain of substitutions to G. The domains Def [1]
and Pos [16,6,1] can be characterized, starting from G, in the following way ([20]):

Def
def=
k

({a � b | a, b ∈ γ(G)})

406 Francesca Scozzari

Pos
def=
k

({a � b | a ∈ Def, b ∈ γ(G)}).

Let us denote, respectively, by ρDef , ρPos ∈ uco(℘(Sub)) the closure operators
corresponding to the domains Def and Pos. It is well-known that Def induces a
Galois insertion on Sh [3]. We denote by ρShDef ∈ uco(Sh) the closure operator
on Sh corresponding to Def, thus ρShDef(Sh) is isomorphic to Def (see [3]). Intuiti-
vely, an element ∩X � x ∈ Def corresponds to the element
in Sh {T ⊆ VI | x ∈ T ⇒ X ∩ T �= ∅}. In the following, we shall abuse the no-
tation and call Def its isomorphic image ρShDef(Sh). This does not give rise to
ambiguity, since one can distinguish the domains according to the context.

The next result summarizes the behavior of PSD on the two components of
Sh, i.e., Sh+ and Def.

Proposition 4.

1. αPSD(Def) = Def

2. αPSD ◦ αSh+ = αSh+ ◦ αPSD

3. PSD = αPSD(Sh+) � Def.

Note that, by Point 2 above, αPSD(Sh+) turns out to be an abstract domain.
Therefore, the reduced product in Point 3 is well-defined.

5.2 Pair-Sharing

We say that two variables x and y are independent for the substitution θ when
vars(θ(x)) ∩ vars(θ(y)) = ∅. Let us denote by Ixy the set of substitutions for
which x and y are independent:

Ixy
def= {θ ∈ Sub | vars(θ(x)) ∩ vars(θ(y)) = ∅}.

Our basic domain PSh for pair-sharing is given by the most abstract domain
which contains all the objects Ixy, for any x, y ∈ VI , with x �= y. In the following,
we shall assume that |VI | ≥ 2.

PSh
def=
k

({Ixy | x, y ∈ VI , x �= y}).

It is immediate to see that it holds Ixy = γSh({T ⊆ VI | { x, y } � T }). Therefore,
PSh induces a Galois insertion (αPSh, Sh,PSh, γPSh) defined as follows, for any
A ∈ Sh and B ∈ PSh:

αPSh(A) def= ∩ {Ixy | x, y ∈ VI , x �= y, ∀T ∈ A { x, y } � T }

γPSh(B) def= {T ⊆ VI | x, y ∈ VI , x �= y, T �= ∅, B ⊆ Ixy ⇒ { x, y } � T }.

Abstract Domains for Sharing Analysis by Optimal Semantics 407

6 Optimal Semantics for PSh

Now that we have formally defined the basic domain encoding the pair-sharing
property, we are ready to compute ShPSh =

c
(σPSh(Sh)). We proceed modularly

on the two parts of Sh, namely Sh+ and Def. We start by computing σPSh(Sh+).
The next theorem states that, for any c ∈ ℘(Sub), the object σPSh(ρSh+(c))
coincides with the abstraction αPSD on ρSh+(c).

Theorem 3.

σPSh ◦ ρSh+ = ρPSD ◦ ρSh+ .

In order to better understand the behavior of the optimal semantics on the
elements of Def, let us first characterize the bottom element ⊥σPSh of σPSh, given
by σPSh(∅). Since the domain ShPSh is an abstraction of σPSh, it is clear that any
object c ∈ ShPSh must approximate the bottom of σPSh.

Proposition 5. ⊥σPSh =
⋂ {γG(x) ∪ γG(y) | x, y ∈ VI , x �= y}.

The previous proposition shows that the least element of σPSh is given by the
intersection of all the possible disjunctions γG(x) ∪ γG(y), where γG(x) is the set
of substitutions which ground x. This result is quite surprising, since it implies
that the optimal semantics for detecting pair-sharing does not need to take
into account the information given by the groundness of a single variable. By
exploiting the distributive property of the concrete domain, the object ⊥σPSh can
be equivalently characterized as follows:

⊥σPSh =
⋃

x∈VI

⋂

v∈VI\{x }
γG(v).

Note that, for any x ∈ VI , the object
⋂

v∈VI\{ x } γG(v) is the set of substitutions
which ground every variable but x. It is clear that this information suffices for
proving that x is independent form any other variable. Therefore, the disjunction
of all these objects is the least amount of information which we need in order
to observe pair-independence. In other words, from the pair-sharing point of
view, it is equivalent to know either that a variable x is ground or that every
variable but x is ground. In both cases, x does not share with any other variable.
Finally, note that ⊥σPSh does not belong to Sh, and therefore nor to Def (but it
is easily seen that ⊥σPSh ∈ Pos). Hence, we expect that the domain ShPSh will be
incomparable to Sh, as we will see in the following.

Since any object in ShPSh approximates ⊥σPSh , it follows that for any ob-
ject a ∈ Def, σPSh(a) must approximate a ∪ ⊥σPSh . The next result proves that
σPSh(ρDef(a)) coincides with the abstraction in Pos of the object a ∪ ⊥σPSh .

Theorem 4. Let d ∈ ℘(Sub).

σPSh(ρDef(d)) = ρPos(ρDef(d) ∪ ⊥σPSh)).

408 Francesca Scozzari

The next theorem proves that the result of the application of σPSh to an
element of Sh can be computed modularly on the two components of Sh, i.e.,
Sh+ and Def.

Theorem 5. Let A ∈ γ(Sh). σPSh(A) = ρPSD(ρSh+(A)) ∩ ρPos(ρDef(A) ∪ ⊥σPSh).

As a consequence, the domain ShPSh can be specified as the reduced product of
the two parts.

Corollary 1. ShPSh = ρPSD(Sh+) � {ρPos(A ∪ ⊥σPSh) | A ∈ Def}.

6.1 Comparing Sh to ShPSh

Since pair-sharing is clearly a decidable domain, from Section 3 we immediately
inherits the following results for ShPSh.

Corollary 2.

– ShPSh � PSh

– ShPSh is complete for ⊗ w.r.t. Sh, i.e., for all A,B ∈ γSh(Sh), it holds:

ρShPSh(A ⊗ B) = ρShPSh(ρShPSh(A) ⊗ ρShPSh(B))

– For any β ∈ C(Sh,PSh), it holds:

β is complete for ⊗ w.r.t. ShPSh ⇐⇒ β � ShPSh.

This corollary summarizes the properties of the domain ShPSh which are straight-
forwardly inherited by construction. In particular, ShPSh turns out to be a con-
cretization of PSh and, at least, as precise as Sh in computing the abstract uni-
fication. Moreover, the last property ensures us that, among all domains which
are as precise as Sh, it does not exist any domain β which is precise as ShPSh

and that does not contain ShPSh. The importance of this result relies on the
fact that ShPSh is compared to all possible domains candidate to improving Sh,
including those which are incomparable to Sh. A similar result as been shown
in [2]. The authors proved that PSD ∈ C(Sh,PSh) and that it does not exist
any proper abstraction of PSD which is as precise as PSD. Note that in [2] the
domain PSD is compared to its proper abstractions only, which is a rather re-
strictive hypothesis and, in general, it does not suffice in order to ensure the
optimality of a given domain.

The next example shows that ShPSh is strictly more precise than Sh under
the hypothesis that |VI | ≥ 2.

Example 1. Let VI = { x1, ..., xn }, with n ≥ 2. Let θ, δ ∈ Sub defined as follows:

θ = { x1 ← a } δ = { x2 ← a, . . . , xn ← a }

Abstract Domains for Sharing Analysis by Optimal Semantics 409

where a is a constant of the language. Let us unify the concrete object c = { θ, δ }
with the substitution { x1 ← x2 }. On the concrete domain of substitutions we
obtain:

c ⊗ { x1 ← x2 } = { θ ⊗ { x1 ← x2 }, δ ⊗ { x1 ← x2 } }
= { { x1 ← a, x2 ← a }, { x1 ← a, . . . , xn ← a } } ⊆ Ix1,x2 .

Instead, when computing on Sh, we obtain:

amgu(αSh(c), { x1 ← x2 }) = amgu({{ xi } | xi ∈ VI }, { x1 ← x2 })
= { { x1, x2 }, { x3 }, . . . , { xn } }.

Therefore, γSh(amgu(αSh(c), { x1 ← x2 })) � Ix1,x2 .
Note that, by definition of ShPSh, it holds ρShPSh(θ) = ρPos(ρDef(θ) ∪ ⊥σPSh) =

ρPos(x1 ∪ ⊥σPSh) = x1 ∪ (x2 ∩ . . . ∩ xn) which stands for all the substitutions
for which either x1 is ground or all the variables but x1 are ground. Hence
δ ∈ ρShPSh({ θ }) and therefore ρShPSh({ θ, δ }) = ρShPSh({ θ }) = x1 ∪ (x2 ∩ . . .∩xn).
As a consequence, we have the following computation:

ρShPSh(ρShPSh(c) ⊗ { x1 ← x2 })
= ρShPSh(x1 ∪ (x2 ∩ . . . ∩ xn) ⊗ { x1 ← x2 })
= ρShPSh((x1 ⊗ { x1 ← x2 }) ∪ (x2 ∩ . . . ∩ xn) ⊗ { x1 ← x2 }))
= ρShPSh((x1 ∩ x2) ∪ (x1 ∩ . . . ∩ xn))
= ρShPSh(x1 ∩ x2) ⊆ Ix1,x2 .

Therefore, the domain ShPSh is precise enough to detect that x1 and x2 are
independent, while Sh is not able to detect it. �
It is worth noting that, being PSD an abstraction of Sh, it is as precise as
Sh , and therefore, according to the above example, PSD is strictly less precise
than ShPSh. Surprisingly, the increasing precision of ShPSh w.r.t. Sh is not due to
an enlargement of the domain. On the contrary, if we compare the size of ShPSh

to the sizes of Sh and PSD, we find out that the cardinality of ShPSh is strictly
smaller than the cardinality of PSD, and therefore of Sh.

Proposition 6. |ShPSh| < |PSD|
As an example of two abstract objects in PSD which are identified by ShPSh,
consider a variable x ∈ VI and the objects A = ∅ and B = {{x}} of PSD.
Note that A is the bottom of Sh and B denotes the set of substitutions which
ground all variables in VI but x. From the characterization of ⊥σPSh given in
Proposition 5, it is immediate to see that γSh(A) ⊆ γSh(B) ⊆ ⊥σPSh , and thus
σPSh(A) = σPSh(B) = ⊥σPSh .

For VI = { x, y }, the domains Sh, PSD and ShPSh are depicted in Figure 1,
where x ∪ y denotes the object γG(x) ∪ γG(y) (note that, in this particular
case, the domains Sh and PSD do coincide). As a further example of objects
which are identified by ShPSh, from Figure 1 it is easy to see that the objects
∅, {{y}}, {{x, y}}, {{x}} ∈ Sh all collapse in the same object x ∪ y ∈ ShPSh and
{{y}, {x, y}}, {{x}, {x, y}} collapse in 	.

410 Francesca Scozzari

✬

✫

✩

✪
•

•• •

• ••

•

����������

����������

����������

����������

����������

����������
����������

����������

��

{{x, y}}{{y}} {{x}}

∅

{{y}, {x, y}} {{x}, {x, y}}

� {{x}, {y}}

•

•

•

x ∪ y

�

{{x}, {y}}

Sh and PSD ShPSh

Fig. 1. Sh, PSD and ShPSh

7 Groundness Analysis

In this section we apply our construction to the property of groundness. We con-
sider as basic domain of groundness the domain G by Jones and
Søndergaard ([14]). The next theorem shows that both domains Def and Pos
are not further transformed by our construction.

Theorem 6.

– DefG = Def
– PosG = Pos

This result is a consequence of the fact that Def and Pos are both abstractions
of the optimal semantics for G (see [20]).

8 Conclusion

We have proposed a new technique for transforming abstract domains for logic
program analysis. The basic idea is to exploit the optimal semantics of a given
property in order to set up an enriched abstract domain, which improves the
precision of the analysis. The main point of this construction is that the new
domain is, at least, as precise as the original one. It is important to remark
that the transformation we propose is not a refinement operator. In fact, given
a domain α, the resulting domain απ can be incomparable to the original one
(e.g., this is the case for the domains Sh and ShPSh).

As an application, we have fixed the property of pair-sharing and we have in-
stantiated our construction to the well-known domain Sh. The new domain ShPSh

obtained by transforming Sh, turns out to be more precise than Sh and, at the
same time, smaller in size. A refining of the domain Sh for observing pair-sharing
was first presented in [2]. The authors propose the domain PSD, proving that it

Abstract Domains for Sharing Analysis by Optimal Semantics 411

is as precise as Sh and that no proper abstraction of PSD is as precise as PSD.
The weak point of the construction in [2] is that the domain PSD is compared
to its proper abstractions only. On the contrary, by using our optimal semantic-
based transformation, we can set up abstract domains which are incomparable
to the original ones. Up to our knowledge, this is the first method which allows
us to construct domains which are strictly more precise and, at the same time,
smaller in size than the original ones.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3–45, 1998. 398, 401, 405

2. R. Bagnara, P.M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 2000. To appear. 398, 404, 405, 408, 410, 411

3. A. Cortesi, G. Filé, , and W. Winsborough. The quotient of an abstract interpre-
tation. Theor. Comput. Sci., 202(1-2):163–192, 1998. 406

4. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complemen-
tation in abstract interpretation. ACM Trans. Program. Lang. Syst., 19(1):7–47,
1997. 404, 405

5. A. Cortesi, G. Filè, and W. Winsborough. Prop revisited: Propositional formula
as abstract domain for groundness analysis. In Proc. Sixth IEEE Symp. on Logic
In Computer Science, pages 322–327, Los Alamitos, Calif., 1991. IEEE Computer
Society Press. 398, 401

6. A. Cortesi, G. Filé, and W. Winsborough. Optimal groundness analysis using
propositional logic. J. Logic Program., 27(2):137–167, 1996. 405

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Confer-
ence Record of the 4th ACM Symposium on Principles of Programming Languages
(POPL ’77), pages 238–252, New York, 1977. ACM Press. 397, 398

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Conference Record of the 6th ACM Symposium on Principles of Programming
Languages (POPL ’79), pages 269–282, New York, 1979. ACM Press. 398

9. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science, 69(3):289–
318, 1989. 397, 400

10. R. Giacobazzi. “Optimal” collecting semantics for analysis in a hierarchy of logic
program semantics. In C. Puech and R. Reischuk, editors, Proc. of the 13th
Int’l Symposium on Theoretical Aspects of Computer Science (STACS ’96), vol-
ume 1046 of Lecture Notes in Computer Science, pages 503–514, Berlin, 1996.
Springer-Verlag. 397

11. R. Giacobazzi, F. Ranzato, and F. Scozzari. Building complete abstract interpre-
tations in a linear logic-based setting. In G. Levi, editor, Static Analysis, Proceed-
ings of the Fifth International Static Analysis Symposium SAS 98, volume 1503 of
Lecture Notes in Computer Science, pages 215–229, Berlin, 1998. Springer-Verlag.
397, 400, 401

412 Francesca Scozzari

12. D. Jacobs and A. Langen. Accurate and efficient approximation of variable aliasing
in logic programs. In E.L. Lusk and R.A. Overbeek, editors, Proc. of the 1989
North American Conference on Logic Programming (NACLP ’89), Workshops in
Computing, pages 154–165, Cambridge, Mass., 1989. The MIT Press. 398, 404

13. D. Jacobs and A. Langen. Static analysis of logic programs for independent AND-
parallelism. J. Logic Program., 13(2-3):154–165, 1992. 398, 403, 404

14. N. D. Jones and H. Søndergaard. A semantics-based framework for the abstract
interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Inter-
pretation of Declarative Languages, pages 123–142. Ellis Horwood Ltd, Chichester,
UK, 1987. 398, 401, 405, 410

15. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
625. Morgan Kaufmann, Los Altos, 1988. 399

16. K. Marriott and H. Søndergaard. Abstract interpretation of logic programs: the de-
notational approach. In A. Bossi, editor, Proc. GULP ’90, pages 399–425, Padova,
1990. 398, 401, 405

17. K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable depen-
dency using abstract interpretation. Journal of Logic Programming, 13(2-3):315–
347, 1992. 403

18. C. Palamidessi. Algebraic properties of idempotent substitutions. In M. S. Pater-
son, editor, Proc. of the 17th International Colloquium on Automata, Languages
and Programming, volume 443 of Lecture Notes in Computer Science, pages 386–
399, Berlin, 1990. Springer-Verlag. 399

19. F. Scozzari. Domain theory in abstract interpretation: equations, completeness and
logic. PhD thesis, Dipartimento di Matematica, Univ. di Siena, 1999. Available at
http://www.di.unipi.it/∼scozzari/. 400

20. F. Scozzari. Logical optimality of groundness analysis. Theoretical Computer
Science, 2000. To appear. 405, 410

21. H. Søndergaard. An application of abstract interpretation of logic programs: occur
check reduction. In Proc. ESOP ’86, volume 213 of Lecture Notes in Computer
Science, pages 327–338, Berlin, 1986. Springer-Verlag. 403, 404

22. E. Zaffanella, P.M. Hill, and R. Bagnara. Decomposing non-redundant sharing
by complementation. In A. Cortesi and G. Filé, editors, Proceedings of the 6th
International Symposium on Static Analysis (SAS’99), volume 1694 of Lecture
Notes in Computer Science, pages 69–84, Berlin, 1999. Springer-Verlag. 405

Concurrency Analysis for Java

Cristian Ungureanu and Suresh Jagannathan

NEC Research Institute
4 Independence Way, Princeton NJ 08540, USA

{cristian,suresh}@research.nj.nec.com

Abstract. Concurrency is an integral feature of Java. While there has
been recent research [CGS+99,BH99,WR99,Bla99] on devising analyses
to eliminate the overhead imposed by synchronization, these analyses do
not explicitly track multiple threads of control, nor do they appear par-
ticularly well-suited to facilitate other concurrency-related optimizations
that may be applicable in a parallel or distributed environment.
In this paper, we develop a novel program analysis for Java, which explic-
itly incorporates an abstract (semantic) notion of threads. Our analysis
framework is distinguished from related efforts in three important re-
spects:

1. It employs a whole-program flow analysis adapted from a simple
sequential analysis framework that formally defines a notion of an
abstract thread of control. Our initial approximation defines for each
thread the set of objects potentially locked or accessed by that
thread.

2. The approximation imposes no restriction on the lifetime of objects
involved in a synchronization event. Thus, objects may freely escape
from the context in which they are created without necessarily being
regarded as shared by multiple threads.

3. To provide added precision, the analysis is subsequently refined to
use a per program-point abstract heap. The use of such a heap allows
thread-specific flow-sensitive optimizations to be selectively applied
in different program contexts, but requires a more sophisticated no-
tion of reachability. One immediate consequence of this framework is
its ability to support strong-updates [CWZ90] of global shared data.

Our analysis has been implemented as part of a native-code optimizing
compiler for Java currently under development. Benchmark results indi-
cate the analyses have relatively small computation cost, but can lead to
significant improvements in the quality of generated code.

1 Introduction

An important reason for Java’s growing popularity is its integral support for
concurrency. Java’s simple thread semantics coupled with various extensions for
distributed and parallel computing [Jav98,Jav99] are likely to make it increas-
ingly attractive as a vehicle for expressing parallel and distributed applications.

In this paper, we define a novel flow analysis framework that deals explicitly
with Java’s concurrency features. Our starting point is a monovariant analysis for

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 413–432, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

414 Cristian Ungureanu and Suresh Jagannathan

Java’s sequential core extended with support for threads. The analysis defines an
approximate notion of an exact thread, and uses this approximation to associate
with each object o, the set of threads that lock or access o during execution
of the program. The analysis also imposes constraints to allow it to identify
potentially multiple (active) exact instances of the same abstract thread.

To improve precision, we subsequently develop a flow-sensitive refinement
of this analysis which introduces a per program-point abstract heap. For many
concurrent programs, an object that is not initially shared by multiple threads,
may eventually become shared. By using a per program-point heap, the analysis
can effectively capture this intuition; the structure of the heap at a given program
point reveals the sharing properties of an object with respect to the threads
which reference it at that point. By incorporating a notion of data reachability
at method call and return points, unreachable paths can be filtered, further
improving the precision. One immediate consequence of this analysis is its ability
to support strong-update [CWZ90] of globally shared data.

We envision a number of optimizations facilitated by our analysis framework.
Synchronization elimination is one obvious candidate. Researchers have recently
focussed on eliminating synchronization overhead in Java programs because of
its negative impact on sequential programs [BKMS98]. Because Java’s thread
semantics implicitly associates a lock with every object, many instances whose
state is not actually accessed simultaneously by multiple threads will nonetheless
incur synchronization penalties. Some implementations, including ours, reserve
space in each object for a lock. By knowing which objects will never be involved
in a synchronization event, this space overhead can be eliminated. Moreover,
synchronization operations on objects that cannot be locked by other threads
can be eliminated. Instances of the same type but allocated at different program
points, and calls to the same synchronized method made at different call points,
may have different synchronization requirements. The flow analysis framework
proposed here allows optimizations to selectively eliminate both kinds of syn-
chronization overhead.

For distributed programs, our analysis can also help improve locality. For
example, an object known to be local to a given thread can be allocated on the
same processor as that thread. An object shared among multiple threads can be
allocated on a heap accessible to just these threads. By explicitly tracking the
relation between objects and the threads which reference them, locality-specific
optimizations that improve memory layout are more easily expressed.

We have implemented the analysis as part of an optimizing native-code Java
compiler under development. Experimental results for both sequential and multi-
threaded Java programs are encouraging.

The remainder of the paper is organized as follows. Sections 2 and 3 introduce
a core language and its semantics. Section 4 presents the control-flow analysis for
this language. Section 5 extends this analysis with a notion of heap reachability,
leading to an analysis that yields a collection of heaps, indexed by program
points. Experimental results are described in Section 6, and related work is
discussed in Section 7.

Concurrency Analysis for Java 415

2 Syntax

We describe our analysis using a small kernel typed intermediate language (IL)
shown in Figure 1. A program in this language consists of a collection of type,
class, and static definitions. The expression µf.fn defines a local recursive func-
tion; x.i selects field i from instance x; x ⇐ m extracts m from x and binds
self in m to x; x ⇐ c.m extracts method m from class c and binds self to x;
r · i and r · m extract static fields and methods respectively; spawn (c,m) allo-
cates a new thread object and creates a new thread of control to run method m
defined in class c; synch (x) blocks execution if x is already locked by a differ-
ent thread; y → [ιi ⇒ expi]∗ else expn defines a case statement that dispatches
on y; store and fetch have the obvious meaning. To make the presentation
tractable, we have omitted many important features found in Java that must
be expressed within a realistic intermediate language; exceptions, mutable local
variables, type-casting, and arrays are some notable examples. Adapting these
features into the analysis is straightforward.

3 IL Exact Semantics

We present an exact semantics for our IL as a small-step operational semantics.
The semantic domain of values is given in Figure 2. Methods evaluate to clo-
sures, which are pairs consisting of expressions and environments; local recursive
functions are defined in the obvious way [MTHM97]. A class value is a record,
containing the definition of method bodies; the static fields and static methods
of a class are collected in a separate record. The elaboration of declarations pro-
duces an initial environment, ρ⊥, containing bindings for these records. Every
instance is represented as a triple consisting of the instance’s class, the variable
to which the instance is bound, and an integer used to distinguish multiple in-
carnations of the instance from the same program point. A location is either

P ::= T ∗ C∗ S∗ exp program

T ::= type ot
[
<: otj

]
fields {(i : t)∗} methods {(m :mt)∗} types

C ::= class c implements ot
[
inherits {c′}

]
with {(m =λself.fn)∗} classes

S ::= record r {(i : t)∗} {(m : t = fn)∗} statics

fn ::= λx.exp functions

exp ::= x let x = ntExp in exp end expressions

ntExp ::= ι µf.fn x.i x ⇐ m x ⇐ c.m r · i r ·m
x(x∗) new c spawn (c,m) synch (x)

y → [ιi ⇒ expi]
∗ else expn store (x, y) fetch (y)

Fig. 1. The Language.

416 Cristian Ungureanu and Suresh Jagannathan

an instance, a static field, or an instance field. An executing thread consists of
an identifier, the expression currently being evaluated by the thread, an envi-
ronment, and a continuation stack which is a list of continuation frames. There
are only three kinds of frames in the semantics: return frames are used to pass
control from return points at non-tail calls; unlock frames are used to handle
synchronization; and halt frames are used to mark terminated threads.

v ∈ Value = Loc +Clos + Record+ Const

Closure〈exp, ρ〉 ∈ Clos = LambdaExp× Env

Rec 〈f, exp, ρ〉 ∈ Rec = Var × LambdaExp× Env

ρ ∈ Env = Name
fin→ Value

σ ∈ Store = Loc
fin→ Value

l ∈ Loc = Inst + (ClassName + Inst) × FieldName

r ∈ Record = Name
fin→ Value

o ∈ Inst = ClassName × Var × Integer

t ∈ Thread = ThreadID ×Exp× Env ×Kont∗

tid ∈ ThreadID = {M ain} + Inst

TM ∈ ThreadMap = ThreadID
fin→ Thread

LM ∈ LockMap = Inst
fin→ P(ThreadID ×N)

k ∈ Kont = Return〈y, ρ, e〉 + Unlock〈y〉 + Halt

Fig. 2. Semantic Domains.

A program configuration consists of a thread map, a store, and a lock map. A
thread map binds thread identifiers to thread states. A lock map binds instances
to pairs 〈tid , n〉 consisting of a thread identifier tid for the thread that has locked
it and the number n of times it has been locked by that thread. The transition
rules are shown in Figure 3; we omit the rules for declarations. In presenting the
rules, we also omit unneeded components of a configuration.

The rules make use of auxiliary functions (CheckLock, CheckUnlock, Lock
and Unlock) that track how locks are acquired and released. Their definitions
are obvious and omitted here.

We define the semantics via an evaluation relation, Eval ⊆ Prog × Value:

Eval(T ∗C∗exp) = ρ0(last(exp)), if{〈Main , exp, ρ0,Halt〉}, φ, φ =⇒∗ TM,σ,LM

where
{

for all tid ∈ Dom(TM),TM(tid) = 〈tid , x, ρ,Halt : k〉.
Main is the main thread’s id.

The transition relation, written as →�, is a relation on configurations,

→� ⊆ (TM × Store × LM) × (TM × Store × LM).

Thus,
TM,σ,LM →� TM − {ti} • S, σ′,LM ′

Concurrency Analysis for Java 417

Thread × Store × LockMap → P(Thread) × Store × LockMap

〈tid , x, ρ,Halt : k∗〉 → {}
〈tid , x, ρ,Return〈y, ρ′, e〉 : k∗〉 → {〈tid , e, ρ′[y �→ρ(x)], k∗〉}
〈tid , x, ρ,Unlock〈y〉 : k∗〉, σ,LM → {〈tid , x, ρ, k∗〉}, σ,LM ′

if CheckUnlock(ρ(y), tid ,LM) and LM ′ = Unlock(ρ(y), tid ,LM)

〈tid , let x = ι in e end, ρ, k∗〉 → {〈tid , e, ρ[x �→ι], k∗〉}
〈tid , let x = r · i in e end, ρ, k∗〉 → {〈tid , e, ρ[x �→ρ(r).i], k∗〉}
〈tid , let x = r ·m in e end, ρ, k∗〉 → {〈tid , e, ρ[x �→ρ(r).m], k∗〉}
〈tid , let x = new(c) in e end, ρ, k∗〉, σ → {〈tid , e, ρ[x �→ 〈c, x, n〉], k∗〉}, σ′

where σ′ = σ[〈c, x, n〉 �→ NewObject(c)] and n is fresh

〈tid , let x = y.i in e end, ρ, k∗〉 → {〈tid , e, ρ[x �→σ(ρ(y)).i], k∗〉}
〈tid , let x = y ⇐ m in e end, ρ, k∗〉 → {〈tid , e, ρ′, k∗〉},

where σ(ρ(y)).m = Closure〈λself .λz.e′, ρ⊥〉
and ρ′ = ρ[x �→Closure〈λz.e′, ρ⊥[self �→ρ(y)]〉]

〈tid , let x = y ⇐ c.m in e end, ρ, k∗〉 → {〈tid , e, ρ′, k∗〉}
where ρ(c).m = Closure〈λself .λz.e′, ρ⊥〉
and ρ′ = ρ[x �→Closure〈λz.e′, ρ⊥[self �→ρ(y)]〉]

〈tid , let x = y(z) in e end, ρ, k∗〉 → {〈tid , e′, ρ′[w �→ρ(z)],Return〈x, ρ, e〉 : k∗〉
where ρ(y) = Closure〈λw.e′, ρ′〉

〈tid , let x = µf.fn in e end, ρ, k∗〉 → {〈tid , e, ρ[x �→Rec 〈f, fn, ρ〉], k∗〉}
〈tid , let x = y(z) in e end, ρ, k∗〉 → {〈tid , e′, ρ′′,Return〈x, ρ, e〉 : k∗〉}

where ρ(y) = Rec 〈f, λw.e′, ρ′〉, ρ′′ = ρ′[w �→ρ(z), f �→Rec 〈f, λw . e′, ρ′〉]
〈tid , let x = store (y, z) in e end, ρ, k∗〉, σ → {〈tid , e, ρ, k∗〉, σ[ρ(y) �→ρ(z)]}
〈tid , let x = fetch (y) in e end, ρ, k∗〉, σ → {〈tid , e, ρ[x �→σ(ρ(y))], k∗〉}
〈tid , let x = spawn (c,m) in e end, ρ, k∗〉, σ →

{〈tid , e, ρ[x �→ 〈c, x, n〉], k∗〉, 〈tid ′, e′, ρ0[self i �→ 〈c, x, n〉],Halt〉}, σ′

where tid ′ is fresh and σ′ = σ[〈c, x, n〉 �→ NewObject(c)] and m = λself i.λ().e′

〈tid , let x = synch (y) in e end, ρ, k∗〉, σ,LM → {〈tid , e, ρ′,Unlock〈y〉 : k∗〉}, σ,LM ′

if CheckLock(ρ(y), tid ,LM)=true, ρ′ =ρ[x �→ {}],LM ′ = Lock(ρ(y), tid ,LM)

〈tid , let x = y → [ιi ⇒ ei]
∗ else en in e end, ρ, k∗〉 → {〈tid , let x = e′ in e end, ρ, k∗〉}

where e′ = ei if ρ(y) = ιi, and e′ = en otherwise

Fig. 3. Exact semantics

if ti, σ,LM → S, σ′,LM ′ where ti is some thread in TM , and S is the set of
new threads created during the one-step transition of ti. We write F • S to mean
F [tid �→ 〈tid , e, ρ, k〉] for all 〈tid , e, ρ, k〉 ∈ S.

4 Abstract Semantics

Our initial specification is a monovariant analysis similar in spirit to other flow
systems developed for object-based languages [PC94,DGC98,PS91]. We differ
primarily in our support for concurrency. We subsequently refine the analysis to
derive a more precise heap reachability map. The analysis is given as a triple

418 Cristian Ungureanu and Suresh Jagannathan

〈Fenv , Fcell, Flock 〉 consisting of an abstract environment, an abstract store, and
an abstract lock map. We call this triple an abstract configuration; unlike the
exact semantics, the analysis computes a single abstract configuration for a given
program. An abstract environment maps variables to abstract values, i.e., a finite
approximation of the set of values to which a variable may be bound during pro-
gram execution. An abstract store maps abstract locations to abstract values. An
abstract location approximates a set of locations. An abstract lock map approx-
imates the set of threads that synchronize on a particular instance. Unlike the
exact semantics, all abstract threads share a single abstract environment, Fenv .
Since the analysis models the collection of exact states in a program’s evaluation
by a single abstract configuration, the only relevant information about a thread
is its identity, making an abstract thread map unnecessary. Thread identifiers
are represented by abstract thread instances.

Fenv ∈ Flow = Var → Aval
Fcell ∈ FStore = Aloc → Aval
Flock ∈ FLock = Ainst → P(AThreadId)
v̂ ∈ Aval = P(Aloc + ARecord+ LambdaExp + {ground})

l̂ ∈ Aloc = Ainst + (ClassName × FieldName) + (Ainst × FieldName)
ô ∈ Ainst = ClassName × Var
r̂ ∈ ARecord = Name → Aval
ˆtid ∈ AThreadId = {M ain} + Ainst

Fig. 4. Domains for the flow analysis.

One useful approximation is to regard the abstract value of an instance as a
set of class names. If o is an object instantiated from a class named c and bound
to variable x, and if the flow analysis associates abstract value v̂ with o, it must
be the case that 〈c, x〉 ∈ v̂. Similarly, the abstract value of a method selection of
the form “o ⇐ m” is the set of λ-expressions named m occurring in the classes
denoted by o’s abstract value. Ground values are used to approximate values of
primitive type. Abstract cells approximate exact locations. Abstract values and
cells are partially ordered by ordinary set inclusion.

To formally specify the meaning of an analysis, we define a relation between
exact and abstract configurations:

Definition 1. An exact configuration 〈TM,σ,LM 〉 agrees with an abstract con-
figuration, 〈Fenv , Fcell, Flock 〉 written 〈TM,σ,LM 〉 � 〈Fenv , Fcell, Flock〉 if
TM � Fenv , σ � Fcell, and LM � Flock .

The agreement relation is defined inductively over terms and values in the
exact semantics. Its definition is given in Figure 5.

Concurrency Analysis for Java 419

1. TM � Fenv if for all tid ∈ Dom(TM) such that TM(tid) =
〈tid , exp, ρ, k∗〉, ρ � Fenv and k∗ � Fenv .

2. ρ � Fenv if for all x ∈ Dom(ρ), ρ(x) � Fenv(x).
3. σ � Fcell if for all l ∈ Dom(σ) there exists l̂ ∈ Dom(Fcell) such that l � l̂.
4. LM � Flock if for every o ∈ Dom(LM), there exists ô ∈ Dom(Flock)

such that for all tid ∈ LM(o) there exists ˆtid ∈ Flock (ô) such that tid � ˆtid .
5. l � l̂ if σ(l) � Fcell(l̂).
6. k∗ � Fenv if for every Return〈y, ρ, e〉 ∈ k∗, ρ � Fenv .
7. ι � v̂ if ground ∈ v̂.
8. 〈c, x, n〉 � 〈c, x〉.
9. 〈o, f〉 � 〈ô, f〉 if o � ô.

10. Closure〈λx . e, ρ〉 � v̂ if λx . e ∈ v̂ and ρ � Fenv .
11. Rec 〈f, fn, ρ〉 � v̂ if fn ∈ v̂ and ρ � Fenv .
12. r � r̂ if for every x ∈ Dom(r), r(x) � r̂(x).

Fig. 5. Agreement relation.

For a specific program, there may be many flow functions which satisfy the
constraints shown in Figure 6. The following theorem states that any flow satis-
fying the safety constraints conservatively approximates the exact semantics.

Theorem 1 (Safety ⇒ Soundness). If 〈TM,σ,LM〉 � 〈Fenv , Fcell, Flock〉,
〈Fenv , Fcell, Flock 〉 is safe and 〈TM,σ,LM〉 →� 〈TM ′, σ′,LM ′〉 then
〈TM ′, σ′,LM ′〉 � 〈Fenv , Fcell, Flock 〉

Proof. By induction on exact transition sequences.

4.1 Multiplicity

To improve precision, the constraints incorporate a simple liveness property
among methods and threads. Recall that the flow analysis computes for ev-
ery instance an approximation to the set of exact threads that synchronize on
that instance. Because an abstract thread is represented by a birthplace, this
information is insufficient to distinguish between one or multiple invocations of
a thread created at a given spawn point. Consequently, the effectiveness of opti-
mizations such as synchronization elimination, that rely crucially on knowing if
there exists a unique thread accessing an instance, would be weakened.

To alleviate this problem, we fold a simple liveness calculation into the
flow analysis to reveal multiplicity properties of threads and methods. Given a
method m, we compute a conservative approximation of the number of times m
is invoked. To do so, we first define a multiplicity map that associates with every
method an element in a flat lattice:

M : LambdaExp → M + CallSite+�

420 Cristian Ungureanu and Suresh Jagannathan

Definition 2. Let R be an indexed set, whose indices are drawn from the set of
abstract threads. Each element in the set is itself a set of expressions reachable
from the representative thread. Let P = T ∗ C∗ S∗ exp where exp ∈ RMain. Define
for each x ∈ P , � ≥ M(x). Then, a flow analysis 〈Fenv , Fcell, Flock 〉 is safe if the
following conditions hold:

For all exp ∈ R ˆtid

if exp = let (x = b) in exp ′ end , then exp ′ ∈ R ˆtid and
(a) if b = ι, then {ground} ≤ Fenv(x) if PrimType(c);
(b) if b = µf.fn then {fn} ≤ Fenv(f) and {fn} ≤ Fenv(x);
(c) if b = y.i, then ∀ô ∈ Fenv(y), Fcell(ô).i ≤ Fenv(x);
(d) if b = r.i then ∀r̂ ∈ Fenv(r), r̂(i) ≤ Fenv(x)
(e) if b = r.m then ∀r̂ ∈ Fenv(r), r̂(m) ≤ Fenv(x)
(f) if b = y ⇐ m, then ∀ô = 〈c, z〉 ∈ Fenv(y), GetMethod(c,m) = λself i . f ,

1. {f} ≤ Fenv(x)
2. Fenv(y) ≤ Fenv(self i);

(g) if b = y ⇐ c.m and GetMethod(c,m) = λself i . f , then
1. {f} ≤ Fenv(x)
2. Fenv(y) ≤ Fenv(self i);

(h) if b = f(y1, . . . , yn) then ∀λc = λw1, . . . , wn . exp
′′ ∈ Fenv(f),

1. for i = 1, . . . , n, Fenv(yi) ≤ Fenv(wi)
2. Fenv(last(exp′′)) ≤ Fenv(x)
3. M(λc) = M(λc) � (〈λc, x〉 -. 〈λr,M(λr)〉) where λr encloses b.
4. exp′′ ∈ R ˆtid ;

(i) if b = store (y, z) then ∀l̂ ∈ Fenv(y), Fenv(z) ≤ Fcell(l̂);
(j) if b = fetch (y) then ∀l̂ ∈ Fenv(y), Fcell(l̂) ≤ Fenv(x)
(k) if b = y → [ki ⇒ expi]

∗ else expn then
1. for i = 1, . . . , n, expi ∈ R ˆtid

2. for i = 1, . . . , n, Fenv(last(expi)) ≤ Fenv(x);
(l) if b = new (c) then {〈c, x〉} ≤ Fenv(x);
(m) if b = spawn (c,m) and GetMethod(c,m) = λself i . f , then

1. {〈c, x〉} ≤ Fenv(x)
2. {〈c, x〉} ≤ Fenv(self i)
3. exp′′ ∈ R〈c,x〉, where f = λz.exp ′′

4. M(f) = M(f) � (〈f, x〉 -. 〈λr,M(λr)〉) where λr encloses b;
(n) if b = synch (y) then ∀ô ∈ Fenv(y), ˆtid ≤ Flock (ô).

Fig. 6. Safety constraints on flows.

where M ≤ CallSite ≤ �, and CallSite ranges over variables bound to call
expressions in the program. The bottom element of the lattice is M , indicating
the method is invoked multiple times. Initially, M maps all methods to �, indi-
cating that there are no calls to any method. The other elements of the lattice
are call-sites; if a method has at least two different call sites, then it is considered
multiple: p � q = M if p �= q.

Concurrency Analysis for Java 421

However, a method can be multiple even if it has a single call site, if that site
is located in a method which is itself multiple. Thus, in stating the safety rules
for our flow analysis, we must take into account the multiplicity of the caller as
well as that of the callee. For this, we define a join operation, ('(), on tuples of
methods and multiplicities:

(〈m1, p〉 '(〈m2, q〉) =
{
p if m1 �= m2 and q �= M
M otherwise

Then, the multiplicity of a method m1 called at site p in method m2 with
multiplicity q, is obtained from joining 〈m1, p〉 with 〈m2, q〉, and then doing a
meet operation with the previous value of m1’s multiplicity.

4.2 Constraints

We specify the analysis as a collection of constraints (see Figure 6). We regard
these constraints as safety rules that specify the structure of abstract value sets.
These constraints must ensure that the abstract values computed by an imple-
mentation of the analysis can be interpreted as a conservative approximation of
a program’s exact behavior. The rules specify a monovariant flow analysis akin
to 0CFA [Shi91] for expressions.

The rules refer to several auxiliary functions. The function getMethod, when
given a class name and a method name, returns the definition of the method
found in the class; and, last returns the variable bound to the last sub-term of
an expression. The rules are sensitive to reachable expressions. Informally, an
expression is reachable if its abstract value set is not empty. To express reacha-
bility in the presence of threads, we define an index set of reachable expressions,
with each element in the set corresponding to the set of expressions reachable
from a particular thread. We express reachability in the rules in several places.
Obviously, the main expression of a program is reachable. Second, if a let ex-
pression is reachable, then its body is also reachable. Third, when a new thread
is spawned, the body of the thread is reachable, i.e., as in spawn (c,m) the body
of m is reachable. Finally, the body of a method is reachable if there is an appli-
cation of the method that is reachable (i.e., the λ-expression corresponding to
the method occurs as an abstract value element in the flow).

Of particular interest are the rules for application and thread creation. Con-
dition (3) in the rule for function application reflects the multiplicity constraints
described in the previous section. The multiplicity of a function at a call point
is computed as M(λc) � (〈λc, x〉 '(〈λr,M(λr)〉).

The '(operator returns a multiplicity based on the multiplicities of the
caller (λr) and of the callee (λc). The callee is marked M if it has been ap-
plied at some other call-site, or if the caller is itself M . The rule for thread
creation also uses the multiplicity map to record the multiplicity of the function
being spawned.

422 Cristian Ungureanu and Suresh Jagannathan

class Container {
static Container container;

Vector leftV;

Vector rightV;

Container() {
leftV = new Vector(); // p3
rightV = new Vector(); // p4

}

class CThread extends Thread {
Vector vec;

CThread(Vector v) { vec = v; }
public void run() {
vec.addElement(new Integer(1));

}
}

static void main() {
container = new Container(); // p0
CThread leftT = new CThread(container.leftV); // p1
CThread rightT = new CThread(container.rightV); // p2
leftT.start();

rightT.start();

}
}

Fenv Fcell

container �→ 〈Container , p0〉
leftV �→ 〈Vector , p3〉
rightV �→ 〈Vector , p4〉
leftT �→ 〈CThread , p1〉
rightT �→ 〈CThread , p2〉

Container . container �→ 〈Container , p0〉
〈 Container , p0〉. leftV �→ 〈Vector , p3〉
〈 Container , p0〉. rightV �→ 〈Vector , p4〉
〈 CThread , p1〉. vec �→ 〈Vector , p3〉
〈 CThread , p2〉. vec �→ 〈Vector , p4〉

Flock M
〈 Vector , p3〉 �→ 〈CThread , p1〉
〈 Vector , p4〉 �→ 〈CThread , p2〉
〈 CThread , p1〉 �→Main
〈 CThread , p2〉 �→Main

〈 CThread , p1〉 �→p1 (single)
〈 CThread , p2〉 �→p2 (single)
Main (single)

Fig. 7. A simple multithreaded program and the result of its flow analysis.

4.3 Example

Figure 7 presents an example to illustrate the analysis. Objects of type
Container have two fields, left and right , each of type Vector . The main
method allocates a container and stores it in a static field, and then starts two
threads each of which operates on only one of the fields. Even though both vec-
tors are reachable from a (global) static field, and also from the thread instances
themselves, neither vector is accessed by multiple threads. The bottom of Fig-
ure 7 shows the relevant maps produced by the analysis. The program points p0
to p4 are the birthplaces of the respective instances. Note that because of the
start method, both thread objects must be synchronized in the main method.
The results obtained by the analysis enable the removal of all synchronization

Concurrency Analysis for Java 423

operations on rightV and leftV in the program, since no object is locked by
two different threads.

5 Flow-Sensitive Extensions

The analysis presented in the previous section tells us the objects for which
contention among various threads in the program is possible. However, even
objects manipulated by multiple threads are not always shared during their entire
lifetime. An analysis that tracks sharing properties of threads and instances at
different program points can lead to further optimization opportunities.

Conceptually, the refined analysis builds for each program point an approx-
imation of the heap that is relevant at that program point. For efficiency and
precision, it is important that we do not build an approximation of the entire
heap at every program point. For example, the interesting portion of the heap
to a leaf procedure that does not have any synchronized operations, and does
not refer to any static field, is limited to its arguments and what is reachable
from them. Since only a few operations affect the heap, abstract heaps can often
be shared among many program points.

For every heap at every program point, there is a set of roots that is con-
sidered shared; any other node that is reachable in the heap from these roots
is potentially shared as well. The root set must include: (1) any thread object
(because it is accessible to both the new thread of control and the thread that
created it); and (2) static fields whose contents consists of objects touched by
more than one thread.

5.1 Computing a Reachability Map

Prior to computing the structure of the per program-point heap, we must first
compute a transitive closure of the static fields accessed by a method. To compute
the closure we need:

1. some approximation of the control flow graph. In our case, this approxima-
tion is given by the earlier analysis;

2. the set of static fields accessed by each method

From (1) and (2) we compute the transitive closure of the static field accesses
for a method and all the methods it calls.

FreeV arMap : Method→ P(Aval)
FreeV arMap(λself .λx.exp) = FreeV arMap(exp)

FreeV arMap : Exp → P(Aval)
FreeV arMap(x) = {}
FreeV arMap(let (x = b) in exp′ end) = FreeV arMap(exp′)

⋃

〈r, i〉 if b ≡ r.i⋃
j FreeV arMap(λj) if b ≡ f(y1, . . . , yn), where λj ∈ Fenv(f)

{ } otherwise

424 Cristian Ungureanu and Suresh Jagannathan

5.2 Abstract Domains

The refined analysis computes an abstract heap at every program point. A heap
is a map from nodes to sets of nodes. For our purposes, a node is represented as
an abstract value. Given node n, AH(n) denotes the set of nodes immediately
reachable from n.

AH ∈ AHeap = N ode → P(N ode)
n ∈ N ode = Aval
e ∈ Edge = N ode× N ode

The function Reach computes the part of the abstract heap that is reachable
starting from the roots (a set of abstract values) given as arguments:

Reach : AHeap× P(Aval) → AHeap

It is used to propagate heaps from caller to callee at method call points, and
from callee to caller at method return points.

S ingle is a function from abstract cells to Booleans: S ingle : P(Aloc) →
Boolean. S ingle returns true if a strong update is possible on the argument.
Strong update is a property of an analysis that allows the contents of an abstract
cell to be overwritten if it is known that the cell corresponds to one exact cell.
Thus, the function returns true in the following cases:

– the cell corresponds to a local variable of a function called only once as
defined by the function’s multiplicity.

– the cell corresponds to a clean static field (i.e., a static field which contains
objects touched by only one thread).

– the cell corresponds to an instance field, and the instance is clean and single
(i.e., the instance is allocated in a function called only once)

Figure 8 contains the rules to compute the abstract heaps. Since most of the
expressions do not change the heap, the heap at the program point succeeding
the expression is the same as that of the preceding program point. The notable
exceptions are instance allocation, cell update, control flow join points and func-
tion calls. To build new heaps, the analysis uses two functions, N ode and Edge
to inject nodes (respectively edges) into heaps, and a join operation, ⊕ to merge
two heaps. Their definitions are obvious, and are omitted here.

5.3 Filtering Environments

This analysis uses the results of monovariant analysis presented in the previous
section which provides safe flow and cell environments. Because the results of
the flow analysis are valid at any program point (due to the safety rules), there
are cases when values are added to the environment because of merging induced
by the constraint satisfaction algorithm [JW95]. Since the second analysis com-
putes a solution per program point, we could compute a tighter approximation

Concurrency Analysis for Java 425

Definition 3.
For all exp ∈ R ˆtid

1. if exp = let (x = b) in exp ′ end , then exp ′ ∈ R ˆtid and
(a) if b = f(y1, . . . , yn) then ∀λj = λw1, . . . , wn . expj ∈ Fenv(f), let

– F = FreeV arMap(λj)
– S = {ô ∈ Fenv(yi)|ô ∈ AH exp}.

Then,
i. AH expj

= Reach(AH exp , F ∪ S)
ii. AH exp′ = ⊕j Reach(AH last(expj), F ∪ S ∪ {Fenv (last(expj))})
iii. expj ∈ R ˆtid

(b) if b = new (c), then AH exp′ = AHexp ⊕ N ode(〈c, x〉);
(c) if b = store (y, z) then ∀l̂ ∈ Fenv(y)|AHexp ,

let S = {Edge(l̂, ô) | ô ∈ Fenv(z)|AHexp }; then

i. if S ingle(l̂), AH exp′ = (AH exp −D) ⊕ S,

where D = {e = Edge(l̂, v̂)|e ∈ AHexp}
ii. otherwise, AH exp′ = AH exp ⊕ S.

(d) if b = y → [ki ⇒ expi]
∗ else expn then

i. for i = 1, . . . , n, AH expi
= AH exp

ii. AH exp′ = ⊕i AH last(expi)

iii. expi ∈ R ˆtid

(e) if b = spawn (c,m), and GetMethod(〈c,m〉) = λself . λ() . exp ′′

i. AH exp′ = AH exp′′ = AHexp ⊕ N ode(〈c, x〉),
ii. exp′′ ∈ R〈c,x〉

(f) AH exp′ = AHexp otherwise

Fig. 8. Safety constraints on abstract heaps.

as follows. Initially, the starting heap contains only the (empty) cells correspond-
ing to the static fields. Whenever an allocation expression is encountered, the
abstract values corresponding to the new object is added as a new node in the
heap at that program point. Now, when we use the flow environment of some
variable, we can restrict the set of values to those that actually exist in the
heap at that program point. The result is an analysis whose implementation has
slower convergence, but improved precision.

The filtering of the environment explains why the rules for allocation of
instances (new and spawn) introduce new nodes. Edges are added by the store
expression which augments the contents of a node with a new abstract value. As
mentioned above, some of these updates can be strong if the cell that is updated
is single.

5.4 Thread Local Objects

The results of the flow analysis can be used to eliminate runtime overhead in-
curred by unnecessary synchronization in two ways. First, we can eliminate any
lock operations performed on objects that are locked by a single abstract thread.

426 Cristian Ungureanu and Suresh Jagannathan

Second, we can eliminate synchronization on local objects. A local object is any
non-thread object that is accessible only from stack or from other local objects.
Thread instances and objects that are stored in static fields are non-local (or
global). Because an abstract thread that is multiple might correspond to many
exact threads, these two optimizations are complementary.

Local objects are obtained from a data dependency graph built from the
flow and cell environment as follows; any distinct abstract value used during the
analysis is represented by a node in the graph. Edges are introduced between: (i)
an abstract instance and its abstract instance fields, (ii) an abstract cell cell
and the abstract values in Fcell(cell). Starting from static fields and thread
instances, we compute the transitive closure of global objects. Any remain nodes
represent local objects. Note that we can have data-paths of arbitrary length
composed entirely of local objects. This gives us a first-order approximation of
the set of local objects, an approximation improved upon by the second analysis.
By refining the construction of abstract heaps on a per program point basis, we
obtain heaps with fewer edges, thus decreasing the number of nodes that become
global.

5.5 Abstract Heaps Example

Figure 9 contains an example for our second analysis: a tree whose nodes are
implemented by vectors of successor nodes. The class Node defines the data
type used for implementing the nodes of the tree; the class Main contains code
to build the tree, store its root in a static field, and then start a thread to
read the values stored in the nodes. Since the nodes of the tree are eventually
accessed by more than one thread (in this case the main thread and an instance of
TreeThread), our earlier analysis would be unable to reveal any opportunities
for optimization. However, note that during the construction of the tree, its
nodes are only accessible from one thread. By using a per program-point heap,
this information is revealed. Figure 10 presents the results of the analysis at
the program points shown inside comments. For the purposes of synchronization
elimination, synchronization overhead can be eliminated at program point p4 ,
(just before the call to addElement), and for the call to addChild at program
point p5 .

6 Experiments

We have applied our analysis on the applications presented in Table 11. JLex
and JCup are a lexer and parser generator; Zothello is a program playing the
game Othello; Dhry is a numeric benchmark. The other two programs are mul-
tithreaded: 224 richards creates a number of threads running multiple ver-
sions of OS simulator, and 233 tmix is a mix of applications (fibonacci, sort,
producer-consumer, etc.) each run in its own thread.

Since synchronization costs depend greatly on machine hardware, lock allo-
cation strategy used, etc., measuring interesting dynamic counts presents a more

Concurrency Analysis for Java 427

class Node {
Vector successors ;

Node() { successors = new Vector(); }
synchronized void addChild(Node child) {

/* p4 */ successors.addElement(child);

}
synchronized Enumeration getChildren(Node n) { ... }

}
class Main {
static Node root;

Node buildTree(int max) {
Node n = new Node();

if(max > 0)

while(randomBool()) {
Node t = buildTree(max - 1);

/* p5 */ n.addChild(t); }
return n;

}
static void main() {

/* p1 */ root = buildTree(5);

/* p2 */ TreeThread thread = new TreeThread();

thread.start();

/* p3 */ // ... more code here ...

}
}

Fig. 9. Tree example

Main.root <Node, b1>

<Vector, b2>

elements

successors

Main.root <Node, b1>

<Vector, b2>

elements

successors

p1:

p4, p5:

Main.root <Node, b1>

<Vector, b2>

elements

successors

<TreeThread, b3>

Main.root

p2:

p3:

Fig. 10. Abstract heaps

428 Cristian Ungureanu and Suresh Jagannathan

objective view of the analyses’ utility. Table 12 shows the dynamic counts for the
number of instances allocated in both the program and libraries, the number of
locks acquired, and the total number of calls made. To quantify the utility of our
analyses, we present results focused on synchronization overhead; these results
are easily extrapolated to other kinds of concurrency optimizations discussed in
the earlier sections. Table 13 gives percentages based on the baseline numbers
for the total number of allocations that were marked local by our analyses, the
total number of locks acquired on objects deemed local by our analyses, and
the total number of lock operations on objects (either local or global) that were
synchronized by only one thread. Synchronization overhead on local objects or
synchronization on an object accessed by only a single thread can be eliminated.

Note that our thread analysis reveals that no synchronization overhead must
be incurred by any of the sequential programs; however, as an ancillary benefit,
flow-sensitive heap analysis can also be used to reveal useful information about
object locality and lifetime. For example, an overwhelming majority of locks can
be removed from jcup, zothello, and dhry simply because the objects on which
these operations are performed have been identified as local. However, using just
reachability information leads to less convincing results for jlex because many
instances are referenced via static fields. For this program, it was critical that we
analyzed the structure of the global lock map computed by the thread analysis.
This map indicates that no object is shared by multiple threads, even though
many of these objects are accessible via static fields.

Whereas in the first four applications our initial monovariant thread analysis
gave perfect information, it alone wasn’t precise enough on the multi-threaded
benchmarks. In 224 richards it found that only 5% of the lock operations are
performed on objects locked by only one thread. This was caused by the fact that
the program spawns a number of identical threads from the same program point;
consequently, all thread instances with the exception of M ain were considered
multiple. On the other hand, in 233 tmix all threads are single, and 40% of
all synchronizations are on objects locked by only a single thread. A large per-
centage of the remaining synchronizations are on StringBuffer objects used in
string concatenation and on the queue of objects used in the producer-consumer
component of the benchmark. In the former case, because the concat method
is used in more than one thread, the string buffer allocated in it is considered

Program Description Number of methods size of classes

jlex Java lexer generator 136 101K
jcup Java parser generator 362 142K
zothello Othello game program 132 36K
dhry Dhrystone benchmark 22 6.5K
224 richards threads running OS simulator 394 143K
233 tmix thread mix 140 53K

Fig. 11. Benchmark description

Concurrency Analysis for Java 429

Program Allocations Number of locks Total number
application libraries application libraries of calls

jlex 23231 20094 1379642 1141876 8263281
jcup 26225 80414 34013 156831 1142196
zothello 83782 5179 14462 3350 32389270
dhry 600141 227 0 145 5405595
224 richards 2317 5077 66 4156 63604540
233 tmix 94825 245585 708917 841336 8699788

Fig. 12. Dynamic counts

Program Local Synchronizations locks Synchronizations % Locks
Allocations on local objects on single unoptimized

app. app. + lib. app. app + lib. threaded objects

jlex 47% 36% 13% 39% 100% 0%
jcup 55% 67% 78% 93% 100% 0%
zothello 89% 86% 100% 99% 100% 0%
dhry 99% 99% – 80% 100% 0%
224 richards 20% 26% 53% 83% 5% 17%
233 tmix 45% 84% 85% 93% 40% 7%

Fig. 13. Percentages of local objects and locks removed

locked on by all these threads. In the latter case, the queue of objects is indeed
shared by two threads; for correctness, synchronization overhead cannot be re-
moved here. For both these programs, the precision of the analysis was greatly
enhanced by employing our flow-sensitive heap analysis, which discovered that
many of the objects synchronized on were local, thus enabling the optimization
of 83% (respectively 93%) of lock operations.

The compilation overhead incurred by our analysis has two components. The
first component is constraint generation, and is about 3% of the compilation
time; the constraints that are generated can be reused as long as the source code
of the respective class does not change (such is the case of libraries, for example).
The second component is constraint solving; for the six benchmarks presented,
it took between 8% and 27% of the compilation time of the application only,
with an average of 19%. These percentages are likely to go down as we fine-tune
the implementation, and as more optimizations are added to the compiler.

7 Related Work

There have been many algorithms proposed for analyzing object-oriented pro-
grams with varying precision and costs [PS91,PC94,Age95,DGC98]. Many of
these analyses are variants or extensions of monovariant control-flow analy-
ses [Hei94,JM79,Shi91]. Extensions of control-flow analyses to handle concur-

430 Cristian Ungureanu and Suresh Jagannathan

rency have been explored in [CI92,Mer91,JW94]. While these efforts have influ-
enced our design, there are numerous technical differences in the development.
Most notably, none of these efforts consider analysis of monitor-style concurrency
in an object-oriented language, nor justify the practicality of their approach with
a realistic implementation.

There is a large body of work on analyzing reachability and computing shapes
over an abstract representation of a program’s memory; none of these efforts have
considered the applicability of such analyses for optimizing concurrent programs.
Ruggieri and Murtagh [RM88] compute sets of objects passed to and returned
from procedures for lifetime analysis to enable stack allocation of objects on
frames with greater lifetimes. Serrano and Feeley [SF96] present a similar idea
for a higher-order language. Deutsch [Deu90] uses abstract reachability to enable
stack allocation and to determine when objects can be destructively updated.
Chase et al. [CWZ90] use a per-program point “storage shape graph” to analyze
a language with mutable cons cells. They introduce the notion of “strong update”
in this context. Sagiv, Reps, and Wilhelm [SRW96] present an abstract inter-
pretation of a simple imperative language with heap-allocated data structures.
Like [CWZ90], they compute a per-program point static storage graph that ap-
proximates the heaps at each point. Rather than using a notion of birthplace (or
allocation point) to partition exact cells into abstract cells, their analysis keeps
track of cells immediately pointed to by program variables. Abstract heap nodes
are represented by sets of variables that must all point to the same runtime
location, for some execution reaching that point.

More recently, there has been increased interest in exploring optimization
opportunities for Java, especially in the context of its concurrency features.
Bogda and Holzle developed an analysis which identifies unnecessary synchro-
nizations [BH99] based on the observation that objects that are only reachable
from the stack can not possibly be accessed by two different threads. They
employ a flow-insensitive analysis that separates objects which can be stack
allocated from those that cannot; stack allocated objects require no synchro-
nization to access. Choi et al. [CGS+99] describe an escape analysis for Java
that can be used to facilitate synchronization elimination. They introduce an
abstraction, called connection graph, used to establish reachability constraints
among objects and object references. Their analysis takes into account thread
objects, but not threads of control. If the connection graph reveals that an ob-
ject does not escape, its methods require no synchronization. Like [CGS+99],
Whaley and Rinard [WR99] present a pointer and escape analysis for Java us-
ing an abstraction of a points-to graph that describes how objects refer to one
another. Blanchet [Bla99] describes another escape analysis for Java using a type-
based abstract interpretation rather than a dataflow graph framework. Aldrich et
al. [ACSE99] describe a static analysis for eliminating unnecessary synchroniza-
tion in Java programs, which discovers locking relationships between instances.
For example, no synchronization is necessary on a method that is always invoked
at call points where the corresponding receiver object is already locked.

Concurrency Analysis for Java 431

Our framework is distinguished from these efforts insofar as it deals explicitly
with threads. In contrast to analyses that indirectly compute sharing properties
of objects via their lifetime (escape) properties, our analysis defines an approx-
imation in terms of how threads access objects. In particular, it derives perfect
information about synchronization requirements for single-threaded programs.
Our second analysis provides a flow-sensitive characterization of object reacha-
bility, and, like [WR99], supports strong-updates on assignment to global data.
Using a per program-point heap abstraction in conjunction with a thread-aware
analysis leads to a refined approximation useful in optimizing a program’s heap
and stack layout. Our refined analysis may still find a number of program points
where an object is local, even though that object may eventually escape into the
heap. By tracking object reachability through threads, our analyses provide a
more refined approximation of the concurrency properties of a program.

References

ACSE99. Jonathan Aldrich, Craig Chambers, Emin Sirer, and Susan Eggers. Static
analysis for eliminating unnecessary synchronization in Java programs. In
International Static Analysis Symposium, pages 19–38, September 1999.
430

Age95. Ole Agesen. The cartesian product algorithm: simple and precise type
inference of parametric polymorphism. ECOOP’95 Conference Proceedings,
pages 2–26, 1995. 429

BH99. Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in Java.
In Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 35–47, November 1999. 413, 430

BKMS98. David Bacon, Ravi Konru, Chet Murthy, and Mauricio Serrano. Thin locks:
featherweight synchronization for Java. In ACM Conference on Program-
ming Language Design and Implementation, pages 258–268, June 1998. 414

Bla99. Bruno Blanchet. Escape analysis for object-oriented languages: applica-
tion to Java. In Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 20–35, November 1999. 413, 430

CGS+99. Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam Sreedhar,
and Sam Midkiff. Escape analysis for Java. In Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 1–19,
November 1999. 413, 430

CI92. Jyh-Herng Chow and Williams Ludwell Harrison III. Compile time analysis
of parallel programs that share memory. In 19th ACM Symposium on
Principles of Programming Languages, January 1992. 430

CWZ90. David. R. Chase, M. Wegman, and F.K. Zadeck. Analysis of pointers and
structures. In ACM Conference on Programming Language Design and
Implementation, pages 296–310, June 1990. 413, 414, 430

Deu90. Alain Deutsch. On determining lifetime and aliasing of dynamically allo-
cated data in higher-order functional specifications. In 17th ACM Sym-
posium on Principles of Programming Languages, pages 157–168, January
1990. 430

DGC98. Greg DeFouw, David Grove, and Craig Chambers. Fast interprocedural
class analysis. In 25th ACM Symposium on Principles of Programming
Languages, pages 222–236, January 1998. 417, 429

432 Cristian Ungureanu and Suresh Jagannathan

Hei94. Nevin Heintze. Set-based analysis of ML programs. In ACM Interna-
tional Conference on Lisp and Functional Programming, pages 306–317,
June 1994. 429

Jav98. ACM Workshop on Java for High-Performance Network Computing, 1998.
413

Jav99. Java Grande 99. ACM, June 1999. 413
JM79. Neil Jones and Stephen Muchnick. Flow analysis and optimization of Lisp-

like structures. In 6th ACM Symposium on Principles of Programming
Languages, pages 244–256, January 1979. 429

JW94. Suresh Jagannathan and Stephen T. Weeks. Analyzing stores and refer-
ences in a parallel symbolic language. In ACM International Conference
on Lisp and Functional Programming, pages 294–305, 1994. 430

JW95. Suresh Jagannathan and Stephen T. Weeks. A unified treatment of flow
analysis in higher-order languages. In 22nd ACM Symposium on Principles
of Programming Languages, pages 393–407, January 1995. 424

Mer91. N. Mercouroff. An algorithm for analyzing communicating processes. In
Mathematical Foundations of Programming Semantics. Springer-Verlag,
1991. 430

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David B. Macqueen. The
Definition of Standard ML (Revised). MIT Press, 1997. 415

PC94. John Plevyak and Andrew A. Chien. Precise concrete type inference for
object-oriented languages. Conference on Object-Oriented Programming
Systems, Language, and Applications, pages 324–340, October 1994. 417,
429

PS91. Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 146–161, October 1991. 417, 429

RM88. Cristina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynami-
cally allocated objects. In ACM Symposium on Principles of Programming
Languages, pages 285–293, January 1988. 430

SF96. Manuel Serrano and Marc Feeley. Storage use analysis and its applications.
In International Conference on Functional Programming, May 1996. 430

Shi91. Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Tam-
ing Lambda. PhD thesis, School of Computer Science, Carnegie-Mellon
University, 1991. 421, 429

SRW96. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape analysis
problems in languages with destructive updating. ACM Transactions on
Programming Languages and Systems, 20(1):1–50, 1996. 430

WR99. John Whaley and Martin Rinard. Compositional pointer and escape analy-
sis for Java programs. In Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 187–207, November 1999. 413,
430, 431

Author Index

Aiken, Alexander, 175
Amato, Gianluca, 38

Bensalem, Saddek, 58
Bozga, Marius, 58

Chin, Wei-Ngan, 75
Clark, David, 95
Collard, Jean-François, 260

Debray, Saumya, 340
Dor, Nurit, 115

Fähndrich, Manuel, 175
Feret, Jérôme, 135
Fernandez, Jean-Claude, 58
Fink, Stephen, 155
Foster, Jeffrey S., 175

Gagnon, Etienne M., 199
Ghirvu, Lucian, 58
Gupta, Rajiv, 240

Hankin, Chris, 95
Hendren, Laurie J., 199
Henzinger, Thomas A., 220
Hu, Zhenjiang, 75
Hunt, Sebastian, 95

Jackson, Daniel, 1
Jagannathan, Suresh, 413
Jaramillo, Clara, 240
Ju, Roy Dz-ching, 260

Khoo, Siau-Cheng, 75
Knobe, Kathleen, 155
Knoop, Jens, 260

Lakhnech, Yassine, 58
Lev-Ami, Tal, 280
Levi, Giorgio, 38

Majumdar, Rupak, 220
Mang, Freddy, 220
Marceau, Guillaume, 199
Mauborgne, Laurent, 302
Monniaux, David, 322
Muth, Robert, 340

Podelski, Andreas, 22
Prins,Jan, 360

Raskin, Jean-François, 220
Riely, James, 360
Rodeh, Michael, 115

Sagiv, Mooly, 115, 280
Sarkar, Vivek, 155
Säıdi, Hassen, 377
Scozzari, Francesca, 397
Soffa, Mary Lou, 240

Takeichi, Masato, 75

Ungureanu, Cristian, 413

Watterson, Scott, 340

	Front matter
	Chapter 1
	Enforcing Design Constraints with Object Logic
	Introduction
	Rationale
	What is a Design Constraint?
	Synthesis vs.Analysis
	Desiderata

	The Alloy Language
	Syntax
	Type System
	Semantics
	Shorthands

	Examples
	Exploring Queries in COM
	Checking an Intentional Naming Scheme
	Finding Bugs in Code

	Anaysis
	Analyzing Designs
	Analyzing Implementations

	Scenario
	Related Work
	Discussion
	References

	Chapter 2
	Model Checking as Constraint Solving
	Introduction
	Finite Automata as Infinite-State Systems
	Pushdown Systems
	Temporal Properties and Constraints Phi
	Solved Forms for Constraints Phi
	Solving Constraints Phi
	Related Work and Conclusion
	References

	Chapter 3
	Abstract Interpretation Based Semantics of Sequent Calculi
	Introduction
	Proofs and Proof Schemas
	Basic Definitions
	Semantic Operators

	The Concrete Semantics
	Declarative Semantics
	Top-Down and Bottom-Up Semantics

	Abstraction Framework
	Abstract Semantic Operators
	Pre-interpretations and Observables
	Abstract Semantics

	Examples
	Correct Answers
	Groundness

	Conclusions and Future Works
	References

	Chapter 4
	A Transformational Approach for Generating Non-linear Invariants
	Introduction
	Preliminaries
	Characterizing Reachable States of Self-Loops
	Decomposition Techniques
	The Biphase Protocol
	Protocol Modeling
	Invariant Generation
	Parameter Synthesis

	Conclusions
	References

	Chapter 5
	Deriving Parallel Codes via Invariants
	Introduction
	Language
	Parallelization Methodology
	Discovering Invariants
	Conditional Laws
	Conditional Elimination
	Constraint Solving via CHR

	MSP : A Bigger Example
	Related Works
	Conclusion
	References
	A Tiny Constraint Solver in CHR

	Chapter 6
	Safety of Strictness Analysis via Term Graph Rewriting
	Introduction
	Background
	Related Work
	Our Contribution
	Outline

	Graph Rewriting Systems
	Abstracting a Simple Functional GRS
	The Graph Model
	Safety
	Abstract Reduction
	Conclusions and Further Work
	References
	Appendix: proof outlines for key results

	Chapter 7
	Checking Cleanness in Linked Lists
	Introduction
	Main Results
	Limitations
	Outline of the Rest of this Paper

	The SG+R Algorithm
	Shape Graphs with Reachability
	Handling Statements and Conditions
	Cleanness Checking

	Comparison
	Implementation Issues

	Conclusion
	Related Work
	Usability and Scalability

	References

	Chapter 8
	Confidentiality Analysis of Mobile Systems
	Introduction
	Related Work
	pi - calculus
	Non-standard Semantics
	Closed Systems
	Interactions with a Context

	Abstract Semantics
	Abstract Domains
	Conclusion
	References

	Chapter 9
	Unified Analysis of Array and Object References in Strongly Typed Languages
	Introduction
	Analysis Framework
	Heap Arrays
	Definitely-Same and Definitely-Di .erent Analyses for Heap Array Indices

	Scalar Replacement Algorithms
	Redundant Load El m nation
	Dead Store Elimination

	Experimental Results
	Related Work
	Conclusions and Future Work
	References

	Chapter 10
	Polymorphic versus Monomorphic Flow-Insensitive Points-To Analysis for C
	Introduction
	Related Work
	Constraints
	The Analyses
	Andersen's Analysis
	Steensgaard's Analysis
	Adding Polymorphism
	Reconstructing Local Information

	Experiments
	Precision
	Speed
	Discussion

	Conclusion
	References

	Chapter 11
	Efficient Inference of Static Types for Java Bytecode
	Introduction
	A 3-Address Representation: Jimple
	Challenges of Typing
	Declared Variable Types versus Types at Program Points
	Problems Due to Interfaces

	Three-Stage Algorithm
	Algorithm Overview
	Stage 1
	Stage 2
	Stage 3

	Array Constraints
	Integer Types
	Experimental Results
	Related Work
	Conclusion
	References

	Chapter 12
	Abstract Interpretation of Game Properties
	Introduction
	Structures and Logics for Games
	Abstractions of Alternating Transition Systems
	Multi-process Programs: Concrete and Collecting Semantics
	Abstract Interpretation of Multi-process Programs with Respect to Game Properties
	Two Examples
	References

	Chapter 13
	FULLDOC: A Full Reporting Debugger for Optimized Code
	Introduction
	Challenges of Reporting Expected Values
	Overwritten Early in the Optimized Program
	Written Late in the Optimized Program
	Computed in the Unoptimized Program but not in the Optimized Program

	FULLDOC’s Approach and Implementation
	Code Location Mapping
	Reportability Debug Information
	Computing the Reportability Debug Information

	Experiments
	Related Work
	Conclusions
	References

	Chapter 14
	Partial Redundancy Elimination on Predicated Code
	Motivation
	Preliminaries
	PRE on Predicated Code
	Analysis Phase
	Transformation Phase

	Tuning the Algorithm
	Main Results
	Discussing Design Decisions
	Conclusions
	References

	Chapter 15
	TVLA: A System for Implementing Static Analyses
	Introduction
	Main Results
	Outline of the Paper

	A Primer on 3-Valued-Logic-Based Analysis
	Representing Memory States via Logical Structures
	Conservative Representation of Sets of Memory States via 3-valued Structures
	Formulae

	System Description
	TVP
	Process
	Output
	Additional Features

	A Case Study - Singly Linked Lists
	Conclusion
	The Essence of Instrumentation
	Theoretical Contributions
	Other Analysis Engines
	Further Work

	References
	Empirical Results
	A TVP File for Shape Analysis on Programs Manipulating Singly Linked Lists

	Chapter 16
	Tree Schemata and Fair Termination
	Introduction
	Trees and Static Analysis
	How to Read the Paper
	Basic Definitions and Notations

	Skeletons
	Set Represented by a Skeleton
	Uniqueness of the Representation

	Links
	Choice Space of a Skeleton
	Links Are Relations
	Representation of Relations
	A Pseudo-Decision Procedure
	Restrictions on the Links

	Tree Schemata and Abstract Interpretation
	Properties of Tree Schemata
	Interactions with Abstract Interpretation

	Example: Proving Fair Termination
	Semantics of the Shared Variables Language
	Expressing Program Properties as Sets of Traces
	Abstraction of the Set of Traces

	Conclusion
	References

	Chapter 17
	Abstract Interpretation of Probabilistic Semantics
	Introduction
	Abstract Interpretation
	Probabilistic Semantics
	Comparison to Other Works
	Notations
	Structure of the Article

	Probabilistic Concrete Semantics
	Summary of Non-probabilistic Concrete Semantics
	Our Framework for Probabilistic Concrete Semantics
	Probabilities and Nondeterminism

	Abstract Semantics
	Summary of Abstraction
	Probabilistic Abstraction
	Turning Fixpoints of Affine Operators into Fixpoints of Monotone Set Operators

	A Probabilistic Abstract Domain
	The Intuition Behind the Method
	Theoretical Construction
	Multiplicity of Representations and Coalescing

	Practical Constructions
	Abstract Domain
	Experiments
	Widenings

	Conclusions and Prospects
	References

	Chapter 18
	Code Specialization Based on Value Profiles
	Introduction
	Code Specialization
	Estimating Benefits of Specialization
	Identifying Candidates for Specialization
	Value Profiling
	Carrying Out the Specialization
	An Example

	Expression Profiling
	Loop Unrolling
	Load Avoidance
	Transformation

	Experimental Results
	Related Work
	Conclusions
	References
	Sources of Improvements

	Chapter 19
	Flattening Is an Improvement
	Introduction
	A Nested-Sequence Language
	The Transformations
	A Reference-Based Semantics
	Improvement
	A Typing System for Containment
	Correctness of the Reference Implementation
	Related and Future Work
	References

	Chapter 20
	Model Checking Guided Abstraction and Analysis
	Introduction
	Preliminaries
	Boolean Abstractions
	Automatic Construction of Boolean Abstractions
	Model Checking Guided Analysis
	Automatic Refinement of Abstractions
	Implementation and Analysis Methodology
	Conclusion and Future Work
	References

	Chapter 21
	Abstract Domains for Sharing Analysis by Optimal Semantics
	Introduction
	BasicNotions
	Optimal Semantics
	Abstract Domains by Optimal Semantics
	An Application to Pair-Sharing Analysis
	Sharing and Groundness
	Pair-Sharing

	Optimal Semantics for PSh
	Comparing Sh to Sh^PSh

	Groundness Analysis
	Conclusion
	References

	Chapter 22
	Concurrency Analysis for Java
	Introduction
	Syntax
	IL Exact Semantics
	Abstract Semantics
	Multiplicity
	Constraints
	Example

	Flow-Sensitive Extensions
	Computing a Reachability Map
	Abstract Domains
	Filtering Environments
	Thread Local Objects
	Abstract Heaps Example

	Experiments
	Related Work
	References

	Back matter

