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Preface 

An international conference. titled Nonlinear Phenomena in Chemical Dynamics was 
held in Bordeaux on September 7-11, 1981. The present volume contains the text of 
lectures and abstracts of posters presented during the meeting. 

This conference is part of a series of scientific multidisciplinary meetings 
in which chemistry is involved at various levels. Amongst the most recent ones let 
us mention Aachen 1979, Bielefeld 1979, New York 1979, Elmau 1981. In addition, 
this meeting is a direct extension of the first one that took place in Bordeaux 
in 1978 on the topic "Far from equilibrium: instabilities and structures," at the 
conclusions of which we could write (cf. Far fram Equilibrium, Springer Series in 
Synergetics, Vol.3): 

"The three key words, far fram equilibriUm, instabilities and structuPes, 
best illustrate the new concepts which emerge from the description of 
the dynamics of various systems relevant to many different research 
areas." 

The present proceedings show how much these remarks have remained true, even 
though substantial progress has been achieved during the three last years. To get 
a ,deeper experimental knowledge of open reacting systems, to model and simulate 
reaction-diffusion systems, to develop the mathematical theory of dynamical sys
tems, these are the main direction~ in current investigations. They give evidence 
for general behaviours that are related to the influence of the system's surround
ings rather than the specific nature of the population forming the system: insta
bilities, non-equilibrium transitions, periodicity of evolution, hysteresis and 
multistability, chaotic behaviour, etc. For this reason many conclusions of the 
studies published in this volume have a far-reaching effect beyond the scope of 
chE!f!1ical systems, to whi'ch this conference has voluntarily been restricted to pre
serve deeper discussions. 

In spite of this beautiful harvest of results, it seems to us that one field of 
investigation is still standing back, namely the study of spatial . structures that 
emerge spontaneously in non-equilibrium reacting systems. It is most likely that 
the forthcoming years should bring new lights on the various aspects of this im
portant question. 

We would like to thank the Centre National de la Recherche Scientifique for 
financial support, without which this meeting would have not been held. We express 
special thanks to Mrs Maurat, who helped us so efficiently in the organization of 
the meeting and preparation of the proceedings. 

Bordeaux, September 1981 C. vidal • A. PaaauZt 
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Preface 

Du 7 au 11 Septembre 1981 s'est tenu Ii Bordeaux un Colloque International du 
C.N.R.S. intitule Phenomenes non-lineaires de la dynamique chimique. Le present 
volume rassemble le texte des conferences et le resume des affiches qui y furent 
presentees. 

Cette reunion fait partie d'un ensemble de manifestations scientifiques pluri
disciplinaires ou la Chimie est partie prenante Ii des degres divers. Parmi les 
plus recentes, citons par exemple : Aix-la-Chapelle 1979', Bielefeld 1979, New-York 
1979, Elmau 1981. En outre, ce Colloque est dans le prolongement direct d'une pre
miere reunion, organisee Ii Bordeaux en 1978 sur le theme: Loin de l'equilibre 
instabilites et structures. A 1 'issue de celle-ci nous ecrivions (cf. Far from 
equilibrium, Synergetics vol 3) : 

"L'elaboration d'une description dynamique - et non plus statique - des 
phenomenes fait surgir peu Ii peu des concepts communs Ii la plupart des 
disciplines traditionnelles, pour autant que les evolutions considerees 
aient lieu loin de l'equilibre, auquel cas des instabilites peuvent ap
paraltre et donner naissance Ii des structures. II 

Les comptes-rendus presentes ici montrent combien de tels propos demeurent 
d'actualite, meme si - et qui pourrait s'en etonner - des progres sUbstantiels 
ont ete realises durant ces trois dernieres annees. L'approfondissement de notre 
connaissance experimentale des milieux ouverts sieges de transformations chimiques, 
la modelisation et la simulation numerique de l'evolution des systemes OU inter
viennent simultanement reactions et diffusion, le developpement de la theorie ma
thematique des systemes dynamiques constituent les axes de recherche principaux. 
Ils debouchent sur la mise en evidence de comportements generaux, plus lies Ii 
l'environnement qu'li la nature de la population etudiee : instabilites, transitions 
de non equilibre, periodicites, hystereses et multistabilites, evolutions chaoti
tiques, etc. C'est pourquoi le caractere general et la portee de certaines conclu
sions des travaux publies dans cet ouvrage vont bien au-delli du seul domaine des 
systemes .chimiques, auquel le theme' de ce Colloque Hait volontairement restreint 
afin de permettre des discussions en profondeur. 

En face d'une belle moisson de resultats que ce volume engrange, il est un sec
teur de recherche qui semble, pourtant, marquer le pas aujourd'hui : celui des 
structures spatiales prenant spontanement naissance au sein d'un milieu reaction
nel hors d'equilibre. Les annees Ii venir devraient, sans nul doute, apporter des 
eclaircissements sur les differents aspects de cette importante Question. 

Nous tenons Ii remercier le Centre National de la Recherche Scientifique sans 
le concours financier duquel ce Colloque n'aurait pu avoir lieu. Nous exprimons 
notre reconnaissance Ii notre secretaire, Mme Maurat, qui nous a efficacement aides 
Ii organiser cette reunion et Ii en preparer les actes. 

Bordeaux, Septembre 1981 C. Vidal • A. Pacault 
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Part I 

General Nonlinear Behavior 



Phenomenes nonlineaires de la dynamique chimique: 
allocution d'ouverture 

Paul Glansdorff 
Faculte des Sciences 
Universite Libre de Bruxelles 

Nombreux sont ceux qui, dans cette assemblee, ont eu le prlvl
lege d'assister au precedent colloque intitule : "Loin de 1 'equil i
bre. Instabi 1 i tes et Structures" et en ont conserve un souveni r 
durable. Comme pour la presente reunion, ce colloque avait ete or
ganise par le Centre National de la Recherche Scientifique, mieux 
connu par son sigle C.N.R.S., a l'initlative des memes animateurs, 
les professeurs Pacault et Vidal. On trouverait difficilement 
meilleure garantie de succes. Au surplus, pour ceux qui n'ont pas 
eu ce privilege, on peut presumer que la publication acceleree des 
compte-rendus les aura aussi edifies. C'etait non loin d'ici, au 
Centre Paul Pascal, il y aura dej a troi sans dans quel ques jours. 

Mais faut-il dire: "Deja" avec la nostalgie des instants heu
reux revolus, ou, tout au contraire, "Seulement", en temoignage de 
1 a di vers i te et de l' abondance des progres accompl is dans 1 e monde, 
depuis cette initiative exemplaire de stimulation scientifique? 
Reconnaissons qu'en cette circonstance au mOins, la sagesse nous 
impose le second terme de l'alternative. 

Tout avait'commence, comme on dit aujourd'hui, avec un nouvel 
essor de la Thermodynamique des phenomenes irreversibles, des qu'il 
fut possible d'en deduire un critere d'evolution suffisamment gene
ral pour contribuer a 1 'etude du comportement dans le domaine regi 
par des lois non lineaires. 11 devait en resulter directement une 
extension de la notion de stabilite aux processus physico-chimiques 
hors d'equilibr~, dans un etat stationnaire ou oscillant. L'unifi
cation de ce concept devait bientot etre sui vie par celle des me
thodes d'application avec l'emploi des proprietes de la production 
d'entropie d'exces et de l'energie cinetique d'exces comme fonc
tions de Liapounoff, representatives respectivement des effets dis
sipatifs et convectifs. La decouverte par ces methodes des etats 
critiques de stabilite marginale, generateurs de bifurcations, ou 
parfois simplement leur redecouverte, mais assortie d'une signifi
cation I'Ihysique. clarifiee, devait aboutir finalement au concept 
thermodynamique nouveau et unifie de structure dissipative. 

Depuis l'exemple en hydrodynamique des cellules de Benard en
gendrees parl'apparition d'effets convectifs, jusqu'a celui du cy
cle limite provoque par catalyse en cinetique chimique et en parti
culier dans les reactions d'interet biologique, les causes d'insta
bi 1 i te accompag'1ees de changement de branche rel event desormai s 
d'un mecanisme commun. Ce dernier se manifeste regulierement sous 
la forme d'un conflit entre deux tendances opposees. L'une est 
stabilisante et representative d'effets dissipatifs deja connus par 
la theorie lineaire, tandis que l'autre est destabilisante et di
rectement responsable des effets de non linearite. 
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Ces differents resu1tats provoquerent bientot un regain d'in
teret envers 1es prob1emes d'evo1ution sous leurs diverses formes 
mathematiques, physiques, chimlques et biologiques pro10ngees par
fois jusqu'a des as pets eco10giques ou ep;stemo10giques. 

Mais fondamenta1ement, il semble qLie l'actua1ite du sujet pro
vient surtout de 1a perspective offerte par 1 'etude du comportement 
des structures dissipatives, d'observer 1a manifestation spontanee 
d'un ordre d'origine dynamique, donc issu des lois du monde physi
que, et qui soit compatible avec 1 'ordre bio1ogique. 

A considerer le deve10ppement actue1 d~nt 1e present Co110que 
apporte un temoignage direct, i1 est permis d'affirmer que du cote 
de 1a dynamique chimique, ce fut une explosion. Le terme n'est pas 
exagere puisque toutes 1es evocations qui precedent appartiennent 
deja au passe, et font maintenant partie du patrimoine commun de 1a 
Science. 

Les prob1emes qui se posent a present vont beaucoup plus loin, 
car i1s concernent 1es lois qui regissent 1a succession des bifur
cations, leur mu1tip1icite, leur classification sous 1e rapport de 
1a stabi1ite, leurs interactions et leur aptitude a engendrer tan
tot des structures stables de plus en plus e1aborees, tantot a pro
voquer au contraire un retour au chaos. 

C 'est qu 'en effet, apres 1 a decouverte des structures. di ssi
patives est apparue ce11e des etats attracteurs chaotiques de non 
equi1ibre, sous l'inf1uence d'effets sous harmoniques, mis notam
ment en evi dence dans 1 es travaux recents de Fei genbaum. Apres 
ce1a faudr~-t-i1 encore distinguer entre differentes categories de 
chaos et proceder a leur c1assement. Jusques a quand enfin, 1e 
terme d'une te11e entreprise? 

Je me contenterai sur ce point d'evoquer 1a remarquab1e anti
cipation inspiree en 1909 au Directeur de 1 'Academie Fran~aise Fre
deri c Masson, dans sa reponse au di scours de recepti on de Henri 
Poincare, 1 'authentique et genial inventeur de nos cycles limites : 
"Est-ce a dire, Monsieur, que vous doutiez plus de 1a Science que 
de 1a Verite? Ni de l'une, ni de l'autre : mais ce11e-ci s'e10igne 
constamment devant ce11e-1a et, a proportion que l'homme franchft 
une etape, 1 es espaces qu' i 1 devra parco uri r recu1 ent devant 1 ui ; 
par de1a 1a steppe dont son regard embrasse l'etendue, d'autres 
l'attendent, et toujours d'autres, car ce1ui-1a seLi1 est assure 
d'arriver a son but qui en e"st reste -au rudiment et qui l'a appris 
par coeur ...... . 

Assurement, nous n'en sommes pas restes aux rudiments, mais 
1es nombreux progr~s que ces Journees vont nous faire connaftre, ne 
pourront pas m'empecher de constater que dans 1e domaine des appli
cations a 1a bio10gie, 1 'epoque est encore bien 10intaine, ou notre 
Science permettra de decouvrir si, fina1ement, 1 'homme descend du 
singe, ou au contraire si, po1itiquement au moins, i1 y remonte. 

Mis a part, 1 'orguei1 d'une telle exigence, nous aurons encore 
l'occasion d'apprecier une autre categorie de progres importants 
dans 1e domaine de l'ana1yse stochastique, appliquee a 1 'etude des 
fluctuations dans 1e domaine voisin d'un etat de non equi1ibre. Le 
principal souci consiste a etab1ir une theorie de l'instabilite qui 
permette d'interpreter 1e mecanisme d'apparition d'un ordre a 
1 'eche11e macroscopique. 
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L'etude de l'influence des fluctuations exterieures, celle des 
transitions de phase de non equilibre, avec elaboration de diagram
mes de phases, relatifs cette fois a 1a dynamique chimique loin de 
l'equilibre, l'influence de la non-linearite dans l'etude des pro
cessus biochimiques, sone autant de sujets en pleine evolution dont 
nous attendons d'importants resultats. 

On aura sans doute observe dans cette breve allocution, un 
souci de mettre en relief la rapidite exceptionnelle des progres 
accomplis au cours d'une peri ode aussi courte. Pour terminer je 
voudrais accentuer davantage encore ce caractere en l'opposant a 
l'evolution exceptionnellement lente du progres lorsqu'il se rap
porte a l'homme dan$ la Societe. 

11 y a deja bien longtemps que le biologiste Pasteur, ayant a 
congratuler un mathematicien de sa generation Joseph Bertrand, ain
si qu'un chimiste Jean-Baptiste Dumas - vous voyez que nous restons 
ainsi devant des figures particulierement eminentes des specialites 
qui nous occupent - s'exprima en ces termes : 
·S'il m'etait permis de terminer par une de ces idees generales 
qu' aimait Monsi eur Dumas, je di rai s que vous et 1 ui vous etes la 
personnification de ce que peuvent atteindre a notre epoque les 
existences laborieuses. Le vrai merite dans la vraie democratie, 
voil a ce que vous representez tous deux. La vraie democratie est 
celle qui permet a chaque individu de donner son maximum d'efforts 
dans le monde ••••• Pourquoi faut-il qu'a cote de cette democratie 
feconde, il en soit une autre sterile et dangereuse qui, sous je ne 
sais quel pretexte d'egalite chimerique reve d'absorber et d'anean
tir l'individu dans l'Etat? Cette fausse democratie a le gout, 
j 'oserais dire le culte de la mediocrite. Tout ce qui est supe
rieur lui est suspect ••• On pourrait definir cette democratie : la 
ligue de tous ceux qui veulent vivre sans travailler, consommer 
sans produi re, arri ver aux empl oi s sans y etre prepares, aux hon
neurs sans en etre dignes". 

Mesdames et Messieurs, il y a a peu pres cent ans que ces pa: 
roles ont He prononcees par Pasteur et notre question se pose a 
nouveau: Faut-il dire "Deja" ou "Seulement". Je vous laisse juges. 
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La Chimie a la croisee des disciplines traditionnelles. 
Comportements identiques de populations ditIerentes 

A. Pacault, F. Carmona, J.J. Piaud 

Centre de Recherche Paul Pascal (C.N.R.S.) 
Domaine Univsersitaire F-33405 Talence Cedex 

1. In troducti on 

"L 'amour' de l' etude de la NatUl'e suppose dans 
l'esprit deux quaUtes qui paraissent opposees. 
les grandes vues d'un genie ardent qui embrasse 
tout d'un aoup d'oeil. et les petites attentions 
d'un instinat lahorieux qui ne s 'attaahe qu'a 
un seul point". 

BUFFON [1J 1749 

Deux attitudes philosophiques president au developpement des recherches en discus
sion au cours de ce colloque. 

- L' une est analytique et specifique. Elle conduit a une description de pl us en 
plus precise a mesure que s'affinent les techniques d'analyse ; elle privilegie 
l'objet dont la connaissance est d'autant meilleure qu'il est plus reduit et qui, 
etant de mieux en mieux connu, est de moins en moins facile a classer. Cette atti
tude favorise la connaissance du particulier. 

- L' autre es t synthetiq ue et total i san te. Ell e conduit a 1 a definiti on de com
portements independants des populations qui les presentent, c'est-a-dire que le ro
le des contraintes est plus important que le choix des reponses*. Cette attitude 
favorise la connaissance du general. 

Ces deux attitudes sont complementaires et leur adoption depend a la fois de 
l'objectif poursuivi et de la psychologie de l'observateur. Elles permettent de 
classer en deux grandes categories les resul tats des recherches entreprises pour 
mieux comprendre donc pour mieux prevoir les phenomenes non lineaires. 

Illustrons par des exemples limites, ou presque, a la dynamique chimique les 
phrases trop 1 api dai res qui precedent. 

La premiere attitude est celle des cineticiens. Un exemple en est donne par 
l' analyse fine et reussie de la reaction de Belousov-Zhabotinskii conduisant au 
schema reactionnel F.K.N. [2]. A partir de 4 reactants (bromate de potassium, aci
de malonique, sulfate de cenum, acide sulfurique), on observe ou on imagine 14 es
peces chimiques qui reagissent les unes avec les autres en 13 etapes reactionnelles. 
Ce schema compJique est.en accord avec les observations. On peut cependant le sim
plifier sous le nom d'Oregonator [31 et le ramener a cinq etapes et 3 especes in
termediaires, sans pour autant perdre beaucoup d'informations. 

Une etude du meme genre a ete faite pour expliquer la reaction entre les espe
ces chimiques : iodate de potassium, eau oxygenee, acide malonique, acide sulfuri
que, sulfate de manganese [4,5]. 

Ainsi, une demarche reunissant les ressources de 1 'analyse chimique avec ses mo
yens les plus perfectionnes et celles de 1 'imagination enrichies par une bonne pra
tique de la cinHique reactionnelle, permet de connaitre de maniere de plus en plus 
approfondie une reaction chimique bien parti culi ere. 

*Le voaahulaire utilise est def~ni en 76-2 et 76-6. 
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La deuxieJre attitude, qui est p1utOt celle des thermodynamiciens, sous-tend 1es 
travaux que j'ai diriges ou encourages. Elle est ill us tree ici par des exemp1es 
pris pour simplifier parmi ces demicrs* ct rCsumes dans 1e tableau 1. 11 reunit 
quelques comporteJrents generaux (dont 1 'appellation seu1e montre bien qu'ils ne 
sont pas specifiqueJrent chimiques) et 1es references des travaux s 'y rapportant, 
en specifiant 1e type de population ayant ces comporteJrents. 

2. Ana10gie entre 1es comporteJrents de populations de molecules et de populations 
d' electrons 

Les comporteJrents generaux des systeJres chimiques rassemb1es dans 1e tableau qui 
suit sont analogues a ceux d'asservisseJrents possedant une non 1inearite qu'i1s 
soient mecanique, hydrau1ique, pneumatique, f1uidique, thermique, e1ectronique [6J. 
Des systemes e1ectroniques, sieges de certains de ces comporteJrents, sont c1assi
ques. Certains ont deja He decrits a propos de systeJres chimiques [7,8,9,10]. 

Nous proposons, ici, un circuit e1ectronique (Fig. 1 et annexe) ayant 1a parti
cu1arite de n'avoir qu'un seul element non lineaire - plus ou moins avec hysterese
associe a des e1eJrents 1ineaires c1assiques - constante de temps, integrateur, som
mateur. Ces e1eJrents sont eux-meJres constitues de selfs, capacites, resistances 
diodes et transistors dont 1es va1eurs sont ajustab1es. Ce sont autant de contrain
tes imposees par l'observateur a une population d'e1ectrons du circuit commandee 
par un potentie1 impose - autre contrainte - en un point bien determine du circuit. 
La reponse est un potentie1** mesure en un point dHini du circuit. 

Decrivons que1ques-uns des comportements observab1es avec ce montage. 

The circuit (Fig. 1) involves the following elements: a nonlinear e1eJrent E1 
followed by a first-order e1eJrent E2 with time constant T, and an integrator E3. 
The complete circuit involves a negative feedback and a sommator E4. 

E 
• 

The following behaviours can be observed 

2.1 Bistabi1ity 

The non 1 i near element (E 1) is fi rs t consi de red alone. The cons traint is the voltage 
at point A and the response is the voltage at point B. The relationship between 
tnose two voltages is given in the next figure. 

* L'occasion m'est ainsi donnee de rappeler a des lecteurs monolingues que les pu-
blications en anglais ne sont pas les seules interessantes. 

** Qu'un potentiel Boit a la fois reponse et contrainte n'etonnera pas ceux habitues 
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mostat au reacteur, siege d'une reaction chimique periodique dont la reponse est 
une temperature tempore llement peri odiq ue . 
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Quelques grandes classes de coqJortements Type de popul ations 
...... 

Molecules Molecules Bacteries 
etphotons 

Stationnarite. Multistationnarite. Transitions ~ ; 76-1 ; 76-3 ; 77-1 ; 77-4 ; 78-4 ; JlQ.=ll ; 
entre etats !kY.; 
Peri odi ci te teqJore lle. cyc le 11 mi te 72-1 ; 73-1 ; 73-2 ; 75-1 ; 76-4 ; 77-2 ; 77-3 ; 76-8 

78-5 ; 79-3 ; 80-1 ; 
Origine des oscillations teqJOrelles ; ther- 77-5 ; 78-6 ; 79-2 ; 80-6 ; 
mique. chimique 
Criteres d'existence des reactions chimiques 81-11 
peri odi q ues 
Diagranwne d'etats dans 1 'hyperespace des 75-2 ; 76-5 ; 78-3 ; 
con train tes 
Oiagramme croisi! : prevision des etats sta- 80-3 ; 81-9 ; 
tionnai res et des cycles limi tes 

Exci tabi 1 i te 76-3 

Regulation 78-4 

Rythmes - synchronisation 75-1 ; 75-3 ; 81-8 ; 79-1 81-8 

Bruit 78-7; 78-1< 

Turbulence chimique 76-7 ; 79-4 ; 80-2 ; 80-5 ; 80-7 ; 81-2 a 81-7 ; 

Fl uctuations 78-8 ; 78-14 ; ~; 
Interaction, reaction-di ffusion ~;~; 

- Les l"f'l'8rJCes non SOUUgM6S sont retat:ives d ass tmU:lWll e:cp'.-i.mentaum 
- Lea Nf.rences souUgMea sont retat:ives d ass traU:lum as si.mutat:ion SUI' ordinateUI'. 

response B 

-hl2 ftohl2 
conslro int A 

There is a bistabili.ty when the constraint is between the values - h/2 and 
+ h/2. 

2.2 Temporal periodicity, limit cycle 

The nonlinear elerrent is associated to the integrator (E ; Band C connected) 
with the negative feedback. The constraint is now the voTtage at pOint E and the 
response is the vol tage at D. Relaxation oscillations are then observed whatever 
the cons traint is. 

response 0 

Inserting the first order element EZ between Band C, the system still oscilla
tes at frequency wQ and a limit cycle 1S observed in the plane defined by the res
ponse at C, which 1S the time derivative of the response D. 
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response C 

response 0 

2.3 Exci tabi 1 i ty 

The nonlinear element is associated to the first-order element and there is no 
feedback. The constraint is the voltage at point A and the response is the voltage 
at point C. The constraint is a pulse of height 2 superposed on a continuous volta
ge E such that the non 1 i near e 1 emen t shows single s tabil i ty. E bei ng cons tant, the 
response depen ds on the value of L ' 

response B response B 

.E f E f 
I const. roint A raint A I const 
I 
I 

I 
I 
I 

-h/2 +h/2 

E+ r < + h/2 E + r > +h/2 

constraint A constroi Ii.. ~ -
+h/2 +h/2 1------------ 1---- - - - - 1--

- -
o 0 e e r tim 

r 
tim 

- ---- -- - ---hl2 -hl2 ---- - - -
I I 

I i 
I I 

I--
I I I 

response C response C 
1----; 

time 

2.4 Synchroni zation 

The complete circuit is used with the negative feedback. The constraint is a sine 
voltage at E and the response is the voltage at point D. Let e] and wf be the am
p1i tude and the frequency of the cons trai nt : the response depends on both e] and 
wf. Its behaviour is described in the next figure. 
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In region <D 

In region ® 

the response is a combined oscillation (beats), the shape of which 
depends on wf and e I. 

the response is an oscillation with frequency wf : there is syn
chronisation between the oscillating constraint and the oscillating 
response. 

In region ® the response is an oscillation at free oscillation frequency wo ' 
whatever wf and e l of the constraint are. 

3. Concl usion 

On observe des comportements i den ti q ues - bi s tabil i te ; oscill a ti ons de re 1 axa ti on, 
cycle limite; excitabilite, synchronisation -* avec des populations differentes -
molecules ou electrons. La nature de la population s'efface donc devant la prepon
derance de son environnement contrale (ensemble des contraintes qui lui sont impo
sees). On comprend une telle conclusion lorsque les populations ne se transforment 
pas, ne changent pas de nature, ce qui est le cas des electrons dans un ci rcuit 
electrique ou des molecules d' un fl uide dans une conduite (phenomenes hydrodynami
ques). On la comprend moins lorsque les especes chimiques en presence se transfor
ment en reagi ssant. 

En effet, la transformation de molecules differentes par reaction entre elles 
depend souvent de leur nature, de leur structure, fIde LeUX' herMite", plus que du 
milieu reactionnel. Il faut sans doute voi r dans la nature ionique des especes in
tervenant dans les reactions etudiees au cours de ce Colloque, la raison de la pre
ponderance de 1 'environnement. En effet, la nature de 1 'ion (Ce+4, Mn+2,Br03 ... ) 
conditionne surtout ses proprietes electriques globalement resumees par le poten
tiel d'oxydation ou d'oxydo-reduction. Ceci est confirme par le choix qu'on peut 
en ~faire comme critere de selection des ions susceptibles des comportements prece
demment decrits 181-111. On constate donc que l'environnement joue un role d'autant 
plus grand que la molecule est moins structuree. 

Au niveau de description macroscopique des comportements de populations molecu
laires susceptibles de se transformer, apparaissent deja les aspects complementai
res hereditariste et environnementaliste. 

Peut-on, enfin, esperer tirer de 1 'analogie de comportements de populations de 
molecules et d'electrons' une representation generale susceptible de les prevoir ? 

Chaque element electronique des montages presentes est decrit par une equation 
contenant les variables caracteristiques des ci rcuits. Faisons abstraction de leur 
sens physique et ne considerons plus ces equations que comme des representations 
mathematiques d' un bistable, d' une retroaction, d' une constante de temps etc., 
dont 1 'association judicieuse conduit, comme on l'a vu, aux comportements recher
ches. 

Considerons alors un phenomene quelconque - hydrodynamique, electrique, chimique, 
biplogique - ayant qualitativement les comportements deja decrits, faisons corres
pondre aux variables mathematiques les variables physiques pertinentes representa-

*Cette liste n'est pas exhaustive, le circuit electronique presentant encore d'au
tres comportemen ts. 
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tives du phenomeme ; les equations ainsi obtenues pourraient avoir un caractere de 
prevision telle qu'on pourrait les considerer COI1JllE une representation quantitati
ve satisfaisante. 

L'analogie originelle disparaitrait alors, ayant joue son role unificateur car 
l'efficacite de l'analogie se mesure a sa disparition [l1J. 

Cette demarche, relativement classique en automatique, ne semble pas avoir He 
uti lisee en chimie. 

Cette voie de recherche, conforme a la seconde attitude evoquee dans l'introduc
tion, merite peut-etre d'etre sui vie. 
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Dynamical Systems Described by Discrete Maps with Noise 

H. Haken and A. Wunderlin 
Institut fUr Theoretische Physik der Universitat Stuttgart, Pfaffenwaldring 57/IV, 
0-7000 Stuttgart 80, Fed. Rep. of Germany 

Some General Remarks 
Since this contribution is one of the first in this volume and this 
conference is a truly interdisciplinary one, it might be useful to 
begin with a few general comments before entering the more technical 
part of our contribution. 

When we ask ourselves where nonlinear phenomena are of greatest 
importance in chemi.stry, we are certainly led to the large class of 
nonequilibrium phenomena. In the first part of our contribution we 
want to discuss the question whether one might find general aspects 
or general principles which allow us to deal with nonequilibrium 
processes. When we look for theories which allow for a universal 
treatment,especially in chemistry, we are first led to thermodyna
mics.Its laws are indeed universal, being independent of the sub
stances. Thermodynamics uses the concept of macroscopic variables 
such as temperature, entropy, free energy. It finds its microscopic 
f9undation by statistical mechanics and this approach shows us that 
when going from microscopic to macroscopic descriptions, we need new 
concepts referring to new qualities. Temperature or entropy, e.g., are 
concepts alien to a single atom or molecule. There is a price to be 
paid for the generality of thermodynamics, however. First of all we 
are dealing here·with closed systems. Furthermore when quantitative 
formulas are derived, they refer to systems in thermal equilibrium 
which, as we shall see below, is a very strong condition. 

When dealing with systems away from thermal equilibrium in a next 
step, we may resort to irreversible thermodynamics. It should be 
stressed that its methods in general allow us to treat. systems which 
are close to thermal equilibrium. The main phenomena we are dealing 
with here are relaxation and transport. General concepts used are 
entropy p~oduction, thermodynamic forces and fluxes. It might be 
necessary, however, to pOint out that the usual methods of irrever
sible thermQdynamics. are still too rough to cope with the new kind 
of phenomena we encounter in systems far from equilibrium. Here we 
find in chemical reactions the formation of macroscmpic patterns, 
e.g. spiral waves or coherent oscillations. In other words, we find 
ordered structures on macroscopic scales. Here we may repeat the 
fundamental question we have asked at the beginning of this intro
duction. Is the formation of these patterns governed by universal 
principles, and can we deal with them by general concepts? It is 
worth mentioning that the formation of coherent patterns under non
equilibrium conditions can be observed in quite other fields also. 
For instance in physics (fluids, plasmas, lasers) in biology (morpho
genesis, population dynamics, neural networks) etc. Indeed more 
than a decade ago it was suggested that the formation of such 
patterns be studied within an interdisciplinary field of research 
to be called SYNERGETICS. It was pointed out at that time that there 
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exist universal principles governing these processes. Here again we 
study the behavior of systems composed of many subsystems, the emer
gence of new qualities and their dcscrl~Llun by macroscopic variables. 

In a wa~ the situation is similar to phase transitions of systems 
in thermal equilibrium, for instance in the ferromagnet whose order 
can be described by the magnetization which then serves as a so-called 
order parameter. 

In the following we shall make a few comments on how to obtain ordcl 
parameters for nonequilibrium phenomena. Over the past decade several 
paradigms (to use a word in vogue) have evolved. 
First paradigm: Evolution equations 
We describe nonequilibrium processes even for steady states by evo
lution equations which in chemistry are called kinetic equations. 
For a set of adequate variables q, such as densities of molecules~ 
evolution equations of the form -

q = N(q) ( 1 ) 

are used. They apply, for instance, to processes in a continuously 
stirred tank reactor. If space dependence is to be taken into account, 
a typical class of equations is given by reaction diffusion equations 
of the form 

q = R(q) + D~q (2) 

or in fluid dynamics, for instance, by the Navier-Stokes equations. 
In many cases fluctuations play a role which may be taken into 
account by adding fluctuating forces to egs. (1) and (2) or by other 
stochastic treatments based on the master equation or the Fokker
Planck equation. The processes described by the equations (1) or (2) 
are immense and it would not make much sense to look for the general 
solutions of these equations. Rather a 

Second paradigm: instabilities 

has evolved, namely to look for such situations in which by change 
of external conditions (or control parameters) nonequilibrium phase 
transitions or bifurcations occur. It should be noted that these two 
concepts are still too narrow. Usually bifurcation theory neglects 
fluctuations ~i~h, as W2 know from chemistry and physics, playa 
crucial role just at the bifurcation point. On the other hand the 
phenomena occurring are much richer than we would encounter by phase 
transitions alone. We have described the way to cope with these in
stabilities,etc. in previous contributions to these series and we 
shall confine ourselves to some general comments. One studies in a 
mathematically rigorous fashion qualitative changes in macroscopic 
behavior, for instance the transition fr~m monostability to bistabi
lity to the onset of oscillations, that means occurrence of limit 
cycles, the bifurcation of limit cycles to limit cycles with double 
period, or the bifurcation of a limit cycle to so-called quasiperio
dic motion, i.e. a motion governed by several fundamental frequen
cies. Such a motion can be geometrically described as motion of the 
systems vector S on a torus. The motion on a torus can also collapse 
again into a limit cycle or give rise to chaos. The conditions for 
the occurrence of these various possibilites are of delicate nature 
and we refer the reader to some more detailea comments made 
elsewhere [1]. 

Before going on to the second point of our presentation, a few 
general comments should be added. There are still some discussions 
going on in chemistry whether concepts of thermodynamics, such as 
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free energy, are capable of dealing with nonequilibrium phenomena, 
e.g. chemical oscillations. In a field which is in a way parallel to 
chemical processes, namely in laser physics, it was shown nearly 15 
years ago that in nonequilibrium processes rate constants play the 
dominant role. Such rate constants are inherent only in kinetic 
equations but cannot be derived from concepts as free energ~ 
Our quantum statistical treatment has revealed quite clearly that 
conventional thermodynamics is indeed inadequate to cope with open 
systems, whose state is kept far from thermal equilibrium. The general 
approach of synergetics has further shown that quite different"ele
mentary" mechanisms may give rise to the same macroscopic phenomena, 
e.g. a chemical oscillation. Thus quite generally speaking, scienti
fic study can proceed along two lines (or a combination of both of 
them). Either we want to study the detailed mechanism of a process 
or we are looking for universal features, shared by many otherwise 
different systems. Both approaches seem to us to be of equal impor
tance and the present meeting gives us beautiful examples of both. 

In particular, in the spirit of synergetics we find that analo
gies between different systems may be a useful guide to find new 
features. For instance, while chaos was first observed in fluid 
dynamics, we now find quite the same phenomenon in chemical reac
tions, as shown by Vidal [2] and other contributors to the pre
sent volume. On the. other hand, in chemistry it has become possible 
to find the alternating sequence between chaos and periodic motion 
and it will be a challenge to other fields to find a similar pheno
menon within their corresponding systems. Over the past years a 

Third paradigm: discrete maps 

has emerged, namely treating processes going on by discrete time 
intervals. Such a procedure may be useful for mathematical reasons 
as was first shown by Poincare, but it may also be of practical im
portance for complicated processes in chemistry and biology. (For 
a more detailed motivation of such procedures see [1]). 

In order not to duplicate too much of what we have stated be
fore, we refer the reader to [1] and present a few general results 
of discrete maps with noise. 

If xk is a n-dimensional vector, the discrete map with noise is 
descrioed by an equation 

(3) 

analogous to a Langevin equation. If WIn) describes the distribution 
of the noise, a Chapman-Kolmogorov equation belonging to (3) can be 
derived in the form [3] 

!:.(~,k+l) = Jdn~D(~)-lW(G-1(~) (~-~(~»)~(~,k) (4) 

where D = det G. To (4) an eigenvalue equation of the form 

!:.A(~) = AJdn~K(~'~)!:.A(~) (5 ) 

may be attached, where the kernel K is the same as that of (4). 

Depending on parameter values, critical points can be defined in 
which the system vector can be decomposed into order parameters and 
amplitudes of slaved modes. In order to eliminate the slaved modes in 
the case of a discrete map we first consider a case of eq. (1) in 

17 



which !(~) = A~ is a linear map. We have found the explicit solution 
of eq. (4) in this case,provided the distribution function of the 
noise is a Gaussian, 

Then P reads 

where Nk is the normalization constant, x(k) obeys the linear eq. (3) 
without noise and Bk obeys 

Our result can be considered as a generalization of the Orenstein
Uhlenbeck process to the case of discrete noisy maps. 

In order to generalize the slaving principle, which contains the 
center manifold theorem or adiabatic elimination techniques, to the 
present case, we write the probability density P in the form 

where ~u are the order parameters and ~s the slaved modes. Then two 
coupleQ integral equations may be derived for hand g. 

h(~sl~u,k+1) = JJKh(~~I~~)d~~d~~ 

where K and K contain g and h, respectively. We have devised an 
iteration procedure for the solution of these two equations which 
in particular allows us to eliminate the ~s' 

In a number of cases the Chapman-Kolmogorov equation can be sim
plified to a Fokker-Planck equation,e.q. in the case or ;nrp.rmittency 
treated [4] or, more recently, in the case of the logistic model 
[5]. We found that often the process can be well approximated by 
a Fokker-Planck equation whose stationary solution is given by 

The Fokker-Planck equation can be transformed into a Schrodinger 
equation and therefore direct contact with bound states, metastable 
states and tunneling states of quantum mechanics can be made. 

Concluding Remarks 

We think that with respect to the mathematics of discrete noisy maps 
we are just at ~he beginning. It should be mentioned, however, that 
the inclusion of noise into discrete maps [6] has been already proven 
to be a very valuable tool, for instance in the derivation of scaling 
laws for Ljapunov exponents [7]. 
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Thermokinetic Oscillations and Multistability in Gas-Phase Oxidations 

Peter Gray, John F. Griffiths, and Stephen M. Hasko 
School of Chemistry, University of Leeds 
Leeds, LS2 9JT, U.K. 

1. Introduction 

Although chemical interest in oscillatory inorganic reactions [1] goes back more 
than sixty years to LOTKA (1910, 1920), MORGAN (1916) and BRAY (1921), its 
renaissance dates from the discovery [2] by ZHABOTINSKII (1964+) that "spatial 
periodicity" was a possibil ity. Hopes that there might be worthwhile impl ications 
for biochemistry (and biological systems generally) catalyzed and influenced the 
direction of subsequent developments. This meant that the subject grew up 
rapidly but unevenly, and with very imperfect contact with other disciplines 
where similar phenomena had been already studied extensively and deeply. 

The science of combustion is one of these disciplines. In its general sense, 
combustion relates not only to the oxi'dation of fuels, but to many vigorous 
reactions that are related by their responsiveness to temperature and their 
ability to generate heat. Nonlinear kinetics, propagating waves, and discontinuous 
responses to slowly varying conditions are not unusual in such systems [3]. Also 
familiar are the phenomena of ignition, extinction, hysteresis, multi-stability, 
and oscillations - whether stable or unstable. It is one purpose of this invited 
lecture to sketch some of this development and to present recent results for two 
gas-phase oxidations - those of ethane and acetaldehyde. Another purpose is to 
stress the rewards of working in well-stirred, open systems. 

1.1 Advantages of well-sti rred, open systems 

In a closed system., chemical reaction proceeds to the poi nt of thermodynami c 
equil ibrium. The final state achieved is independent of the path taken towards it, 
and a stable equilibrium is finally approached in a non-oscillatory manner. In an 
open system, permanent stationary states far from thermodynamic equil ibrium and 
sustained oscillatory states are both possible. When reactions are kinetically 
complex or non-isotherwal (or both, as in hydrocarbon oxidation), they may show 
a duality or a multiplicity of states. Now the state finally achieved depends on 
the path taken towards it. In the same circumstances, sudden jumps can occur in 
response.to a steagily varying change and can also be studied properly. Theoretical 
interpretation is made easier in several ways. For example, in stationary states, 
Bodenstein's quasi-stationary-state hypothesis ceases to be an approximation, and 
its demands for qualitative distinctions where only quantitative differences exist 
are not necessary. Sustained oscillations can similarly be properly represented 
by limit cycles in the phase plane. The artifices of 'neglecting reactant 
consumption' or 'keeping pool chemicals constant', which often may imply deep 
differences in principle, or have to be regarded as modelling very impractical 
systems, are done away with. 

The use of an open system [4] can thus confer benefits on both experiment and 
theory. k~en the particular open system chosen for experimental use is the well
stirred, capacity-flow reactor (CSTR), another marvellous simplification can be 
achieved or closely approached: uniformity in temperature and concentration 
fields. Partial differential equations in spatial coordinates are replaced by 
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ordinary ones, and powerful theorems strengthen theory's grasp. In stationary 
states, algebraic equations are often sufficient. 

These advantages and simplifications are not bought at a heavy price, for whilst 
the amount of experimentation required is always greater than in closed systems -
flow-rate being an added variable and responses to transient perturbations an 
additional enquiry - the actual variety of interesting behaviour encountered is 
much enhanced [5J. 

1.2 Stabl e and unstabl e behaviour 

At constant temperature, deceleratory reactions are the conventional norm of 
behaviour. It has become a habit to reoard this behaviour as stable, loosely 
transferring the notion of stability from the final equilibrium state to which it 
properly belongs. Autocatalysis is thus a mild exception to normality; explosion 
constitutes a strong exception. By similar habits of mind, and in view of the 
violence of an explosive event, we tend to regard both the explosion and the 
exploded state before cooling as the instability: certainly the state of maximum 
reaction rate cannot be maintained for more than an instant. Topologically, 
however the course of events in a closed system is similar to those in non-explosive 
changes: temperatures remain bounded and end at ambient, where they began. 
Moreover if the system is open, then in a sufficiently fast flow, even the rapidly 
burning state can be maintained indefinitely, and we now see that both slow and 
explosively fast modes are stable possi.bilities. It is not helpful to label one 
stationary state as more stable than another of the same character, though they 
may have different ranges of existence, and attempts to do so do not seem to have 
led anywhere. ~!here ranges of physical conditions for their existences overlap 
we have hysteresis, and at the ends of these ranges, jumps are possible between 
them. 

2. Reactions in the CSTR 

The well-stirred reactor has been the subject of continuous investigations by 
chemical reactor engineers since the mid 1950s when BILOUS & AMUNDSON'S stability 
analysis (1955) showed the path to follow. 

Activity remains intense, and it is a measure of the subject that it is only 
in the years 1976-80 that aareement seems to have been reached [6J on the systematic 
enumeration of the variety of patterns of behaviour that can be shown in a CSTR by 
the simplest non-isothermal prototype: a single, exothermic, irreversible reaction 
that is kinetically first order and that obeys the Arrhenius law. 

We outline some of the important results [6,7J and the paths to them, because 
the behaviour of ethane oxidation with respect to ignition and extinction as 
residence time is varied does not fit the standard pattern in the simplest way. 

2.1 Thermal diagrams 

Before sketching the equations it is useful to comment on the "thermal diagram", 
familiar since SEMENOV (1928) and VAN HEERDEN (1953) and affording a very helpful 
way of looking at systems such as these. When rates of heat generation and heat 
removal can be represented as functions of reactant temperature, then their points 
of intersection represent stationary states of the system. Their gradients at the 
points of intersection govern the nature of the Singular points that they describe. 
Although in a CSTR two such diagrams can be drawn, one for matter and one for energy, 
they are not independent of one another, and at the points of intersection they are 
closely connected. The connections are simplest under "adiabatic" conditions (when 
none of the heat released in exothermic reaction is lost throuqh the vessel walls). 
Adiabatic and non-adiabatic conditions are compared below. -
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2.2 The equations of CSTR operation 

The conventional equations for conservation of matter and energy and their 
equivalents in terms of reduced concentrations and temperatures are 

V(dc/dt) vCo vc Vkc 
accumulation inflow outfl ow reacti on 

=> dA 1 - A A 8 
df tres 

-- exp T+£8 t chem + £8 

p CpV(dc/dt) qVkc XS(T - Tw) - vPcp(T - T ) 
0 

self exothermic loss via hea ted 
heating reaction walls outflow 

=> 1 d8 _A_ exp _8 __ 8 ( 1 +~) trCff -
if tres t chem 1 + £8 tn 

( 1 A) 

( 1 B) 

(2A) 

(2B) 

In these expressions, most symbols have their conventional meanings [7J. The 
time tn is the Newtonian cooling time for heat loss through the walls: in our 
circumstances tn is about 0.2 to 0.6 s. Dimensionless temperatures 8 are based 
on the reference .temperature Ta that would prevail in the absence of exothermic 
reaction: 8 = (T - Tq )/(RTa2/E). The group £ = RTa/E; the term B is the 
dimensionless abiabatlc temperature increase. 

2.3 Adiabatic operation 

If no heat is lost through the walls, the term 1ftn disappears from (2B) yielding 

(1/B) d8/dt 8/Btres 

At the stationary points, we have 8s/B = 1 - AS. For a fixed value of Ta but 
varying residence time, the stationary state solutions 8(tres ) and A(tres) 

(2C) 

either (i) vary monotonically with residence time, A falling steadily from unity 
to zero and (8/B) rising from zero to unity or (ii) they show an S- or Z-bend with 
a region of three solutions, the middle one physically unrealizable. Concentrations 
again fall to zero and temperatures eventually rise to abiabatic values. The 
possibility of multiple solutions disappears when 

or or 1 
£ ~ If 

As residence times are varied continuously, discontinuous jumps occur at the 
points when the curves turn round. Ignitions can only accompany lengthening 
residence times. Extinctions can only accompany shortening residence times. 
Stable oscillatory'behaviour is impossible in adiabatic operation. 

2.4 Non-adiabatic operation - heat losses to and through walls 

When oxygen and ethane react in ~lass vessels like those used here, heat-losses 
through the vessel walls greatly exceed the heat transported by the outflow. In 
these circumstances the dependence of temperature excess on residence time must 
end at zero excess at t + 00, and quite different curves are possible. The full 
variety of behaviour has only been recognized recently, though some of the recent 
results [6J are rediscoveries of ZEL'DOVICH & ZYSIN'S pioneering study [8J. 

Equations of identical structure can still be written if the term B is replaced 
by B', a time-dependent term 8' = B/(1 + tres/tn). Four consequences follow: 
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(i) for simple kinetics there is still a choice between one or three solutions, not 
more;(ii) ignitions can accompany decreasing residence times and vice versai(iii) 
detached regions (isolas) exist, only accessible by artificial ignition;(iv} 
oscillatory solutions become possible. 

The reactions that follow are not as simple as this' prototype, and they show 
oscillations in closed systems. But the versatility of the simplest model must 
always be born in mind. 

3. Kinetic aspects of ethane and acetaldehyde oxidation: the n.t.c.r. 

Both these oxidations have been extensively studied [5,10,11,12]. They follow 
rather different pathways and mechanistic differences may be illustrated by current 
interpretations of the negative temperature :oefficient of reaction rate (ntcr) 
that they both possess. ~Je do not otherwise plan to discuss detailed chemistry 
here. 

In acetaldehyde oxidation, the ntcr arises from competition between oxidation 
and decomposltlon of acetyl radicals 

CH 3 CO + M ... CH 3 + CO + M 

CH 3 CO + O2 ,,, CH 3 C03 . 

E + 0 

E '" 0 

Since CH 3 radicals participate only in a straight-chain mechanism, whereas CH 3 C0 3 

can give rise to chain branching (via CH 3 C0 2 0H ... CH 3 + CO 2 + OH), the fact that 
decomposition is favoured by higher-temperature at the expense of oxidation means 
that the overall reaction rate can fall as temperature increases. 

In ethane oxidation, a different competition is invoked. Ethyl radicals can 
associate wlth oxygen, and the resulting R0 2 can either dissociate again or (by 
a ,cycl ic transition state) open the route to faster oxidation by formingethylene 
ox i de a nd hydroxyl : 

lIH > 0 

C2 Hs02 ... C2 H40+ OH. 

Once again, increased temperature increases the rate of elementary steps, but 
nevertheless has an adverse overall effect. 

4. Apparatus and procedure for gas-phase oxidations 

4.1 Apparatus 

The reaction vessel is a Pyrex glass bulb about 10 cm in diameter and 0.5 dm3 in 
volume. It is kept at a steady (± 0.1 K), uniform (± 1 K) temperature in a 
recirculating air oven. 

Reactants enter at the bottom of the vessel after passing separately through 
pre-heating coils; products leave at the top. Mixing in the vessel and hence 
uniformity of temperature and composition is achieved by an internal, ceramic
coated, stainless-steel stirrer magnetically driven at constant speeds up to 
1200 rpm. 

Flow rates (and hence reactant compositions at entry and mean residence times) 
are controlled by critical-flow orifices made from watchmakers' artificial ruby. 
Holes down to 125 ~m diam. are drilled mechanically; smaller holes (down to 
12.5 ~m diam.) are made with a laser. So long as there is a sufficient pressure 
ratio across the orifice, flow rates depend only on the upstream pressure. 
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To monitor reaction, simultaneous, continuous measurements are made of emitted 
light intensity (I), species concentrations (c) and reactant temperature rise (boT). 
Concentrations of stable s~ecies are measured by mass ;pectrometry (from these 
rates of reaction can be derived). Temperature measurements are made with a very 
fine thermocouple: they reveal extents of self-heating and yield overall rates of 
heat release. 

4.2 Procedure 

Satisfactory experiments are not difficult to plan but they are demanding to carry 
out and they can be hazardous. Current procedures are derived from the experience 
of many thousands of observations. Details are given elsewhere [5,9]. 

The ranges of conditions investigated may be summarized as follows: 

Reactant Reactant Vessel Residence 
proportions pressure temperature time 

Acetaldehyde 3 - 25 kPa 400-620 K 2 - 10 s 

Ethane 6: 1 to 2: 1 100 kPa 650-800 K 15-150 s 

It is usually convenient to fix pressures and mass flow rates, and to vary the 
reaction-vessel temperature continuously or in steps. A stepwise sequence of 
temperatures permits the indefinite stabilisation of conditions at each step; 
"scanning" a temperature range by continuous variation allows quick recognition 
of 'discontinuous behavour, such as ignition or the sudden onset of oscillations. 
Small perturbations (e.g. transient alterations in flow rate) allow the nature 
of a stationary state to be diagnosed, an oscillatory return to normal signifying 
a stable focus and so on. 

5. Ethane oxidation in a CSTR 

Ethane is less reactive than acetaldehyde and requires higher temperatures 
(650 to 800 K), higher pressures (1 atm) and longer residence times (15 to 150 sec). 
At these pressures, reactant proportions must be kept remote from stoichiometric 
to reduce dang~r and avoid destructive explosion: we study 6 C2HS + O2, 
4 C2HS + O2 and 2 C2H§ + O2. Four distinct types of behaviour are displayed, 
of which two are oscillatory and two are not. Investigation is by no means 
complete, but find.ings to date may be summarized as follows 

Regime I-e : Slow, dark reaction and jumps to regime V-e 

There is a wide range of vessel temperatures Ta over which reaction proceeds 
rather slowly, without any emission of light, and without any. oscillations. 
Self-heating (boT) is very small below ambient temperatures of 740 K,but around 
these values boT becomes appreciable for all mixtures and residence times. The 
extent of reaction,and the rate of heat release increase with increasing residence 
time until the high-temperature end of this r~gime. 

As vessel temperatures increase, reaction in regime I-e grows stronger and a 
sudden jump ("igni tion") occurs to r~gime V-e (see below). There is norma 11 y an 
overshoot on the temperature record (boT vs Ta). 

The return path from r~gime V-e to regime I-e shows no overshoot,but there is 
hysteresis ignition occurs at Ta = 770 K and extinction at Ta = 750 K. 

Regime V-e rapid, luminous reaction 

The second non-oscillatory regime is found at vessel temperatures in excess of 
750 K. It is luminous and markedly more rapid than that in r~gime I-e. Over the 
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temperature range studied (750 - 820 K), steady temperature excesses are typically 
around 40 K. Reactant consumption and reaction rates are markedly greater, and 
increas'e with increased residence time. Little if dllY oxygen remains, even in 
the 2 : 1 mixture. The reaction stoichiometry is approximately ~(C2H6) = 0.83 ~(02)' 

R~gime IV-e : Oscillatory cool flame 

At the shorter residence times, and in the mixture 2 C2H6 + O2, an oscillatory, 
luminous reaction occurs - over a temperature range 759 < Ta < 788 when the 
residence time is 15 s. This oscillatory behaviour can only be generated in a 
decreasing temperature traverse. 

At the point of entry (Ta = 788 K) to the region, a steady temperature excess 
of 80 K gives place to an oscillation that grows in amplitude to about 70 K as Ta 
falls. When Ta = 763 K, temperature excesses at the peaks are ca 95 K above 
ambient, and they fall in the valleys to about 25 K. The perioo-is about 2.5 s. 

R~gime II-e : Oscillatory "ignition" 

A further region of oscillatory behaviour is found in an equimolar mixture at 
somewhat higher temperatures (Ta z 795 K) - the least remote from stoichiometric' 
equivalence of the mixtures studied. Here the system exhibits quite violent 
pressure and temperature pulses accompanied by bright yellow flashes of light. 
They are periodic, and 'at 795 K there is a time of about 1 minute between 
successive pulses when the residence time is 15 s. 

This region also can only be entered by a decreasing temperature traverse: 
strong oscillations do not build up gradually, but set in with a finite amplitude. 
As the region is traversed (Ta diminishing) the transition to the stationary mode 
of behaviour happens by the reaction "dropping out" on the last cycle. We cannot 
characterize the form or location of the reverse transition because it is too 
violent for our system to survive. 

6. Acetaldehyde oxidation in a CSTR 

More than 12 different patterns of behaviour have been encountered. Some of them 
extend over very nar,row regions of the p - Ta plane, but reproducible boundaries 
between the regions over which they occur have been mapped for 9 of them. They 
may be grouped into 5 major areas, one of these containing many subdivisions 

I steady reaction without 1 ight emission 
II oscillatory ignition 

III oscillatory multistage ignitions 
(five types observed and mapped : others only observed) 

IV oscillatory cool flames 
V steady reaction ~ith chemiluinescence 

We first describe the stationary states (I, V) then the oscillations with simpler 
wave forms (I-I, IV) and finally the hybrid, complex ignitions (III). To make points 
simpler, we sometimes stress the visual and thermal aspects, but it is the 
continuous mass-spectrometric sampling that provides the foundations of stoichiometry, 
reaction rates and thermochemistry on which thermokinetic interpretations are built. 
For more detailed descriptions, see [5,9,10]. 

6.1 Steady dark reaction (I) and steady cool flames (V) 

Over a large, low-temperature range there is steady reaction without light 
emission (I). The system exhibits a normal dependence of rate on temperature 
and the typical maximum value of ~T = 40 K corresponds to a heat release rate of 
about 9 W,i.e. 18 W dm-3 • 
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The other stationary state (V) occurs at higher temperatures and moderate pres
sures : any upper boundary to the (p,T) region over which it occurs lies beyond 
the experimental limits of the apparatus. 

This is a much more reactive state. Excess temperatures exceed 80 K. Increases 
in vessel temperature cause ~T to diminish, indicating a negative temperature 
dependence of heat-release rate. This dimunition is due more to shifting 
stoichiometry (away from CO 2 and towards CO) than to varying reaction rate. 

Table 1 Stationary states (I & V) compared 

Regime 

(a) pressure range/kPa o - 20 

(b) temperature range TalK 430 - 500 

(c) 1 ight emission none 
(d) self-heating ~T/K o - 30 

(~T rises with Ta) 

(e) heat release rate W dm-3 o - 20 (rising) 

(f) extent of. reaction ~ 20 % 

(g) ~(CH3CHO)/~(02) 0.9 

(h) abundant product CO 2 

(j) (-~H)/kJ mol- 1 '" 370 

(k) nature of stationary state stable nodal point 
(response to disturbance) monotonic 

Regime V 

5 - 20 
600 - 650 

steady weak blue glow 
100 - 60 

(~T falls) 

80 - 50 (falling) 

? 60 % 

1.10 

CO 

'" 320 

stable nodal focus 
oscilla tory 

6.2 Oscillatory cool flames (oscillatory luminescent reactions) IV 

As the vessel temperature is raised, slow dark reaction (I) changes suddenly into 
spiky oscillatory luminescence. These pulses look exactly like the repetitive 
cool flames of hydrocarbons, but here oscillations can be indefinitely prolonged. 

Temperature excesses can be as much as 200 K and the oscillations in light 
output and excess temperature show sharp peaks separated by shallow minima. 

The chemistry of oscillations is very significant: the major products that 
are formed are CO, H20, CH., CH 20 and CH 30H; hydrogen peroxide and peracetic acid 
are minor products. 

6.3 Oscillatory ignitions with simple waveform (region II) 

These oscillations, are successive viol ent, pul sed ignitions accompanied by an 
orange flash and by an audible click. Values for ~T > 400 K are measured; 
between ignition spikes, temperature excesses and light intensities fall to zero. 
Periods are typically 10 to 20 s for a 6 s residence time. 

The chemistry of ignition differs from the chemistry of cool flames; CH 20, 
CH30H and CH. are all destroyed at ignition - they were formed at cool flames. 
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The description above oversimplifies the ignition peaks: they are not feature
less spikes. Each spike has a small premonitory rise that slackens and may briefly 
become stationary before the main leap upward. Chemical analysis shows that this 
stage is characteristic of a cool flame: CH 2 0, CH 3 0H, CH q build up, only to be 
destroyed at ignition. Repetitive ignitions could thus be reclassified as 
repetitive, two-stage events and regarded as the extreme part of region III (see 
below). 

6.4 Oscillatory multi-stage ignitions III 

This is the region in which stable oscillatory ignition shows a complex wave form, 
and it accordingly can be subdivided into numerous zones each occupied by its 
characteristic type. Broadly speaking, regime III lies between regimes II and IV 
and is occupied by hybrid wave forms having II and IV as extremes of behaviour. 

Thus at the low temperature end of III, we see successive ignitions separated 
by one, detached cool flame. As the vessel temperature is increased and the region 
is traversed, the number of cool flames that separate successive ignitions increases 
in steps. We have been able to map five sub-regions,the last showing patterns of 
five detached cool flames per ignition. These regions get narrower and narrowe~ 
and we have seen still more without being able to draw precise boundaries. 

So long as conditions (To, p, t res ) are kept constant, each wave pattern is 
repeated. If To is stepped up a little and then caused to return gradually, 
there is a jump from 4-stage ignition to 7-stage followed by 6-stage and 5-stage 
patterns before the 4-stage pattern is produced again. 

These are not the only hybrids. Other forms also show up especially in the 
neighbourhood where regions II, III and IV merge. There we have found patterns 
in which n cool flames + 1 ignition and (n + 1) cool flames + 1 ignition alternate. 

It should be emphasized that these hybrid ignitions of complex wave form are not 
merely sequences of similar light and temperature pulses of different amplitude. 
Their chemistry is different. The mass-spectrometric analysis again permits the 
large and small amplitude pulses to be assigned to qualitatively different 
categories - one consuming and the other producing the intermediate species 
CH q , CH 2 0 and CH 3 0H. 

6.5 Chaotic behaviour 

Chaotic behaviour has not been encountered: we believe that this is because it 
has not been generated. That is not to say that some forms of chaos might not be 
expected, but there are forms that could arise as a consequence of imperfect mixing 
and turbulent flow. If a sensor is geometrically small and has a rapid response, 
then it senses conditions in small elements of fluid passing by. A hypothetical 
thermocouple yet faster and smaller than ours might seem to reveal chaotic 
behaviour (it is a well-known hazard in experimental thermochemistry) that stems 
not from exotic chemistry but from turbulent stirring. Small electrodes may be 
able to act in this way. Firstly they are not always immersed in a perfectly 
homogeneous medium at rest or in smooth unchanging flow. Secondly, their surfaces 
are neither always uniform nor unchanging. Thirdly in unfriendly or hostile media 
they are not always behaving reversibly. 

6.6 Thermokinetic mechanism 

The interpretation of oscillatory cool flame and related behaviour has a long 
h.istory [4J but is now based with confidence on thermal feedback and a supple 
kinetic mechanism of a system that shows both normal and abnormal responses to 
temperature [4,12,13J. The unification of chair branching and self-heating was 
achieved by B.F. GRAY & C.H. YANG [13J and the first detailed scheme for acetaldehyde 
was put forward soon after [12J. The present experimental results will form the 
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base for improvements to the existing models. It remains the case that no other 
system outside the biological field shows the richness of variety displayed here, 
and it is fair to say that at present discovery has outstripped modelling. 
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Part II 

Weak Thlbulence 



Chemical Kinetics and Differentiable Dynamical Systems 

David Ruelle 
I.H.E.S., F-91440 Bures-sur Yvette, France 

1. Introduction 

According to traditional physical views, the frequencies present in the time 

evolution of a system correspond to the excitation of various modes or degrees 

of freedom of the system. Following these views, hydrodynamical turbulence is due 

to the excitation of a large number of modes of a fluid which, being a continuous 

system, has indeeq an infinite number of degrees of freedom. This is the theory of 

Landau [9] and Hopf [8] • It has however been realized now that dynamical systems 

with low-dimensional phase space (dimension ~ 3) may already have a "continuous spec

trum", Le. a continuOlB superposition of different frequencies. Systems with a small 

number of degrees of freedom may thus exhibit a "turbulent" time behavior. It is 

now understood that fluid systems at"the onset of turbulence exhibit a great wealth 

of phenomena involving only a small number of degrees of freedom *). Homogeneous 

chemical systems have a priori only a finite number of degrees of freedom at their 

disposal. In view of what has just been said,they might in principle show the same 

variety of behayior as weakly turbulent fluids. 

I made this suggestion [19] at a time when such ideas were still viewed as some

what heretical. In fact the existence of a periodic chemical reaction (Beloussov

Zhabotinsky) had already shocked many chemists when it was discovered. Now, of 

course, the beautiful experiments by Vidal and his group [24], [25] have definitely 

shown that non-periodic chemical reactions exist, even though the exact dynamics is 

not completeiy clear. 

In the elucidation of the time dependence of chemical reactions, there are two 

different aspects. One is chemical, and deals with the kinetics of the many partial 

reactions which take place simultaneously in the system. The other aspect is the 

discussion of the global nature of the solution of the equations of motion. We 

shall,in what follows, discuss only this second aspect which, contrary to naive 

eXpectation, is surprisingly rich. We shall first discuss quiet dynamical systems, 

then truly turbulent systems. 

*) See Lorenz [11], Ruelle and Takens [22], McLaughlin and Martin [12], and the 
experimental work of Ahlers [1], and Go11ub and Swinney [6]. 
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2. Quiet Time Evolutions (stationary, periodic and quasiperiodic systems) 

dx = F (x) 
dt P (1) 

where x = (xl' ••• ,xn) and p is a parameter. The simplest type of asymptotic 

behavior for solutions of such an equation is given by a stationary solution 

x = x 
o 

Such a solution is visible of course' only if it is attracting. When p is 

increased, an attracting stationary solution may loose its attracting character and 

give rise to a periodic solution for p > Pc by the Hopf bifurcation. The newly 

created oscillations have an amplitude ~ ~c and a frequency 001 which 

depends only weakly on p It is tempting to believe that as p is further in-

creased new frequencies 002 ,003 , ••• successively appear. This is essentially the 

Landau-Hopf idea, and it gives rise to quasiperiodic solutions, i.e. solutions of 

the form 

(2) 

where f is separateiy periodic of period 2TI in each argument, and ool, ••• ,ook 

are independent frequencies. Notice that for k 0,1 the quasiperiodic motions 

reduce to stationary and periodic. A small change ox(o) in the initial condition 

amounts to replacing oolt, ••• ,ookt by oolt+al, ••• ,akt+ak with small al, •••• ak • 

Therefore ox(t) remains small at all times. We do not have here sensitive depen

dence on initial condition, this is why we say that quasiperiodic systems are 

q~ietdynamical systems. 

Using (2) we see that the quasiperiodic solutions form a k dimensional mani
k fold. This is the image by f of the cube [0,2TI] with opposite faces identified, 

and is therefore a k-dimensional torus. 

Quasiperiodic time evolutions are detected experimentally by their 'frequency 

spectrum which contains instrumentally sharp peaks at the frequencies ool, ••• ,ook 

and their linear combinations with integer coefficients. In this manner the case 

k = 2 is frequently observed in hydrodynamical experiments. The case k = 3 is 

observed only rarely, and k > 3 has not been seen. The reason why higher quasi

periodic motions are not observed is that they are very unstable under small changes 

of the right hand side F (x) 
p 

of the evolution equation (1). 

A way in which a quasiperiodic motion may be destroyed is by frequency locking. 

In practice it means that the frequencies 00 1 ,00 2 (and possibly 00 3) which had 

irrational ratios become replaced by integral multiples of the same frequency, and 

a periodic motion is obtaiRd. For instance if and were nearly equal, they 
will become synchronized • The synchronization of biological chemical oscilla-

tions in cells suspended in a common medium is problably due to frequency locking. 

Circadian rhythms may also use this phenomenon. It would be good to have detailed 

studies of frequency locking in nonbiological systems. 
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Another way for a quasiperiodic motion to be destroyed is through the formation 

of a strange attractors. This is an lln~onvention3l phenomenon, first studied in 

[22]. It can be expressed in conventional language by saying that the nonlinear 

coupling between different oscillations (or "modes") produces intrinsic noise. We 

come now to the study of these "intrinsically noisy" or "turbulent" systems • 
• 

3. Turbulence Time Evolutions (Strange Attractors) 

Computer studies have in recent years provided many examples of strange attrac

tors. An attractor is an asymptotic locus of solutions of the evolution equation 

(1) *) • A strange attractor is an attractor such that if x(O) is on the attrac

tor (or near it) and 6x(O) is a small perturbation of the initial condition, then 

6x(t) grows exponentially with t. We have thus sensitive dependence on initial 

condition. 'The rate of exponential growth is called characteristic exponent. It 

should be remarked that some very special perturbations will in fact decrease, but 

it is required that most small perturbations will increase with time. Of course 

the exponential rncreas~ will last only for a while : until the perturbed and the 

unperturbed solutions have become completely unrelated., Intuitively it is clear 

that for many time evolutions there are special initial conditions such that a 

small perturbation has important consequences, it is less obvious that this can 

occur for all initial conditions. This is probably why the role of strange attrac

tors has come to light in dissipative systems only recently (Lorenz [11], Ruelle 
**) and Takens [22]), even though they have been known mathematically for some time . 

Some strange attractors are well understood mathematically (see Smale [23]) but 

most are not. We shall discuss here an attractor which is poorly understood mathe

matically, but important because of its simplicity and frequent occurrence. This 

attractor has been' found by Rossler [16] and Pomeau in computer studies, and model

led by Henon [7]. It consists of a ribbon of solutions of an evolution equation in 

three dimensions which forms a loop with a cross section like the following 

Turning round the loop corresponds to a map of the above figure to itself which 

flattens it, stretches it, and folds it 
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tions to "shake them away" from non-attract~ng f~xed po~nts. A prec~se 
tion ~an be obtained along those lines. 

solu
defini-

**) For an elementary discussion of strange attractors and their role in turbulence 
see Ruelle [21]. 



-
The stretching is the feature which causes sensitive dependence on initial condition. 

A numerical study of the frequency spectrum associated with strange at tractors 

shows the presence of a continuous spectrum, i.e. broadband noise is present and/or 

peaks are not instrumentally sharp. This has to be viewed as a fact of life rather 

than a mathematical result *). It is however an important fact because the frequen

cy spectrum can by measured fairly easily while the experimental measurement of 

characteristic exponents is difficult (it has been obtained in an electric system 

by Gollub et al [5]). 

4. Diagnosis of Turbulence 

When one observes nonperiodic chemical oscillations,one would like to know if 

they are quasiperiodic or Ilturbulentll , and to analyse the transition from quasipe

riodicity to turbulence. 

First, let the system be quasiperiodic : the frequency spectrum contains only 

linear combinations of a finite number of frequencies. Suppose (for simplicity) 

that the spectrum is generated by linear combinations of two frequencies WI and 

w2 with wz'wl . irrational. The evolution of the system then takes place on a two

dimensional torus, which can be visualized as a circle by a cross section (Poincare 

map). To be more specific let x(t), y(t), z(t) be three observables of the 

system. Plotting (x(tn), y(tn)) where the tn are determined by z(tn ) = constant 

will yield points on a closed curve C. This curve will be a circle C' if the 

observables x,y,z are suitably chosen. 

c C~ 

*) Mathematical results are very few in this area. In fact a mathematical discussion 
should start by the question of which measure corresponds to time averages. For 
a brief discussion of this point see Ruelle [20]. 
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Let now the quasiperiodic system bifurcate to a turbulent one. The circle will be 

transformed into another set, ann thi~ tranqfnrmation will be indicative of the 

nature of the bifurcation which has taken place. A study of this sort has been made 

by Curry and Yorke [2], obtaining curves similar to those of Pomeau-Henon discussed 

above. 

Suppose that only one observable x(t) is known (often only one quantity is 

monitored in experiments - a concentration in chemical experiments). Time shifts 

will then produce other observables yet) = x(t+8),z(t) = x(t+y) . The above ana

lysis may thus still be performed. 

5. Other Pathways to Turbulence 

Turbulent behavior may arise from quasiperiodic behavior as we have discussed 

above *). It is also possible for a steady state or periodic solution to become 

unstable and make a finite jump to turbulence which is difficult to analyse. There 

are however two more ways to go to turbulence which are to some extent understood, 

and which we would like to discuss briefly (for a general review see Eckmann [3]). 

In the intermittent transition to turbulence, apparently regular periodic oscil

lations are interrupted at irregular intervals by puffs of irregular, turbulent, 

behavior. When some parameter ~ is increased,the puffs become more and more fre

quent and coalesce into continuous turbulence. This phenomenon has received a 

beautifUl explanation from Pomeau and Manneville [14J. Starting from an attracting 

periodic orbit,they argue that in one of the instabilities which may develop when 

~ increases,the solutions of the time evolution equation still make many turns 

near the now unstable periodic orbit, before making an excursion away from it. 

o These excursions are the turbulent puffs. 

Another way a periodic orbit may become unstable is by period doubling. A perio

dic orbit of period T becomes non-attracting for ~ = ~l ' while a periodic orbit 

of period ~ 2T is created near it : 

*) See Ruelle and Takens [22], Newhouse, Ruelle and Takens [13]. 
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phenomenon may occur repeatedly, an attracting periodic orbit of period 

being replaced at p by an attracting periodic orbit of period ~ 2~ 
n 

Feigenbaum [4] has discovered that the points Pn accumulate to a limit P~ 

iln+l-iln 
(Le. according to a universal geometric law tends to a universal 

iln-iln- l 
constant). After P~ ,turbulent behavior is predicted. This succession of events 

has apparently been seen in hydrodynamic experiments by Libchaber and Maurer [10]. 

I feel that there is no reason,why such events could not also be seen in chemi

cal experiments. It appears indeed that a period doubling bifurcation has been 

observed by Pye and Chance [15] in their study of oscillations in cell-free extracts 

of brewer's yeast. 

6. A Chemical Attractor 

We now briefly discuss the picture of a strange attractor obtained from a chemi

~al experiment by the group in Bordeaux (see [17]). We have in first approximation 

a closed orbit, which spreads out near one point to make little turns. The amount 

of turning depends on the position. We shall describe this situation by an approxi

mate Poincare map, which will be one dimensional and non-invertible (it can thus 

only be approximate). It is convenient to consider that the real variable x is 

mapped into the complex plane to 

Ax + B + Ceidx 

(A,B,C complex, d real) and then the complex plane linearly projected back to 

the real line (the projection may be oblique). Notice that Ceidx describes 

turns proportional to K. We have thus a real map of the form 

x ~ ax + b + ICI sin d(x-x ) 
o 

By a change of variable ~ = ax + B , we transform (3) into the normal form 

with real a,c,~o' To have an attractor we need lal < 1 , and we may take 

c > 0 , ~o € [0,2w) 

(3) 
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When c > lal ' the map (4) does not have a unique inverse; it resembles the 

well-studied F.; + aF.:(l-F.;) , but with several ma~ima.. In fact the roots of 

± f(~) = ~ are contained in [~ ~] and it is easy to see that iterates 
<, <, l-JaJ' l-JaJ 

of f map the whole of m into this interval. Furthermore 

(f"/f')' a a -2 
-(1 + C cos(F.;~»(c + cos(F.;-F.;o» 

< 0 

so that f has negative Schwarzian derivative. 

The"picture in [17] corresponds to a > 0 • Qualitatively, (4) appears to ex

plain the facts discussed in [17] : existence of periodic and nonperiodic behavior, 

possible coexistence of different types of behavior depending on initial condi

tion *). The Feigenbaum cascade should also be observable with suitable choice of 

parameters. 
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Topology of Chaos in a Chemical Reaction 

J.C. Roux* and Harry L. Swinney 
Department of Physics, The University of Texas at Austin, 
Austin, TX 78712, USA 

1. Introduction 

The authors and coworkers (TURNER et al. [1]; ROUX et al. [2]) have investiqated 
the dynamics of the Belousov-Zhabotinskii reaction in a stirred flow reactor. 
These experiments, which were motivated by the numerical modelinq studies of 
TURNER [1,3] described elsewhere in this volume, have revealed a sequence of 
periodic and chaotic regimes that alternate as a function of the flow rate. The 
periodic regimes are characterized by power spectra (of the bromide ion 
potential) that consist of a sinqle fundamental frequency component and its 
harmonics, as Fig. 1a illustrates, while the chaotic reqimes are characterized by 
broadband power spectra, as Fig. 1b illustrates. The observed periodic-chaotic 
sequence will be compared with the numerical modeling predictions and with other 
experiments in this section. The remainder of t~e paper will be devoted to an 
analysis of the phase space portraits-and Poincare maps for the data obtained in 
the first chaotic regime in the sequence. 

(c) 

(d) 

(0) (b) 

FREQUENCY (Hz) 

1.0 15 T {hr)2~ 

0.296 0.298 '£' (hr) 0.300 

P.' 
1 

• I • 

I 

P.' 
1 

Fig. 1 Power spectra obtained 1n (a) periodic reqime PI with T = 0.49 hr and (b) 
chaotic reqime C1 with T = 0.90 hr. The arrows on each ordinate indicate the 
intercepts at zero frequency of the broadband background noise level. The 
observed and predicted periodic-chaotic transition sequences are shown in (c) and 
(d), respectively (from [1,2]) 
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The reaction was studied for a range of residence times T, where T = reactor 
volume/flow rate. all other variables were held fixed [1,2]. One way in which we 
have distinguished the period1c and chaotic regimes is by comparing the 
zero-frequency intercepts of the background noise level in the power spectra. In 
the periodic regimes the background noise level, which is presumably due to 
instrumental noise, is typically three orders of magnitude lower than the 
broadband spectral intensity at low frequencies for the chaotic·regimes; this is 
illustrated for the fi rst peri odic regime ("P1") in Fi g. 1a and the fi rst chaotic 
re~ime ("C1") in Fig. lb. The sequence of dynamical reqimes distinquished in 
this way 1S summarized in Fi~. lc, which can be compared with Fi~. ld, which 
shows the sequence predicted [1] in a numerical study ofa four variable model of 
the Belousov-Zhabotinskii reaction. The qualitative agreement between the model 
predictions and the experimental observations is excellent. It is expected that 
refinements of the model will improve the quantitative agreement. 

The transition sequence that we have observed is similar to that observed 
earl i er by Hudson et ale [4-5] and by the Bordeaux qroup [6], except that our 
sequence has the opposite dependence on residence time. This difference reflects 
the fact that the experiments of Hudson and the Bordeaux ~roup were conducted for 
shorter residence times (0.06 < T < 0.2 hr) than our experiments (0.5 < T < 4 
hr)i these two ran~es in T are on the opposite borders of the oscillating domain 
(in terms of T) of the parameter re~ion in which oscillations are found. 

We conclude this discussion of the transition sequence by notinq that the 
sequence in Fig. 1c undoubtedly has a rich fine structure that could be studied 
if the flow rate control and stability were better than the few percent level we 
have achieved thus far. As an example of the underlyinq fine structure, a period 
doubling sequence (FEIGENBAUM [7]) apparently occurs in the PI reqime as C1 is 
approached. We have observed time series with periods 2, 4, and 8, but the 
system drifts uncontroll ably throu~h the di fferent 2n re~imes. The reverse 
(noisy) period doublinq sequence probably occurs just beyond the onset oJ C1• 
and, in fact. Fig. Ib can be seen to correspond to noisy period 4, where f = 
0'.0105 Hz is fairly sharp and f/2 and 3f/4 are broadened. 

2. Phase Portraits, Poincare Sections, Maps. and Perturbations 

·Phase portraits have been constructed from the bromi de ion time series records 
B(t·) [i = 1, ••• , 32768] following a procedure sug~ested by RUELLE [8]: an 
n-dlmensional (nO) portrait can be obtained by plottin~ successive points [B(t i ), 
B(ti+T), ••• , B(ti+(n-l)T)]. If n is sufficiently large, this procedure is 
justified by the embedding theorem of TAKENS [9]. A 20 portrait illustratin~ the 
strange attractor that characterizes regime C1 is shown in Fiq. 2. 

Two-dimensional projections of the attractor such as that in Fig. 2 show only 
that the trajectories are nonperiodic and that they are limited to some specific 
portion of the phase space. In order to learn more about this subset we can look 
at the (n-1)0 Poincare, sections of nO portraits. Consider, for. example, a 3D 
portrait with the th,.ird dimension normal to the two shown in Fig. 2. Fi~ure 3a 
shows the 20 Poincare section obtained for a plane that passes, perpendicular to 
the paper, through the dashed line in Fiq. 2. Clearly the points of intersection 
lie on a smooth curve, indicating that the trajectories lie on a wen-defined 20 
surface. Almost all the Poincare sections obtained in this way qave curves that 
were more or less straight lines, except those obtained in the constricted part 
of the attractor (see the discussion and diaqrams at the end of this section). 
Although all of the tra'jectories appear to merge in the constricted part of the 
attractor, this of 'course does not mean that a trajectory enterin~ this part of 
the attractor can emer~e in an arbitrary direction. In fact, when lookin~ at the 
attractor as it evolves (see movie [10]), one can see, for instance. that 
trajectories lying on the inside of the attractor emer~e from the constriction on 
the outside. Thus, the observed merqinq of the trajectories is simply a 
limitation of the method we used to construct them [11]. 
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Fig. 2 
~ase portrait obtained 
(with T = 8.8 s) for regime Cl 
(T = 0.90 hr) 

1. / 

8(t+ T) 

Fig. 3 (iI) Poincare section for C1• formed by the intersection of the 3D 
trajectories with the plane (normal to the paper) passing through the dashed line 
in Fig. 2. (b) The Poincare section after a perturbation that occurred about 
when the trajectory passed through the point numbered 4 (see text). The unstable' 
manifold is shown by the solid line and its extension by the dashed line. 

We can look closer at t~e structure of the attractor by constructing the first 
return map for the Poincare section as shown in Fig. 4a. The points can be seen 
to lie on a well-defined curve. indicating that the trajectories on the attractor 
have some kind of order. Some points are clearly off of this line; they are the 
results of some spontaneous perturbat ions of the chemi cal system. Although we 
cannot ascertain the precise origin of these perturbations (gas bubbles, 
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impurities, etc.), we can take advantage of their occurrence to understand some 
of the properties of the attractor. The chronoloqy of one of ~these perturbations 
is shown Fig. 4b and th~ corresponding points of the Poincare section are shown 
in Fig. 3b. 

After the perturbation, the trajectories rapidl'y return to the attractor, 
indicatinq that the attractor has some kind of stability. Furthe-rmore, one can 
see (Fig. 3b) that all the perturbed trajectories lie on the unstable manifold 
(the solid line) or on its extension (the dashed line), thus indicating that the 
stable manifold is strongly cO,!ltracting. Note that points 5, 7, and 8, which 
appear to be on the Poincare section (Fig. 3b), are actually~ off the map 
(Fig. 4b); this again illustrates the usefulness of the Poincare map for the 
description of a chaotic state. 

Figures 3b and 4b give insight into the way the attractor evolves: the "upper" 
trajectories, appearing as points 6 and 9, reappear on the lower part as points 7 
and 10, which themselves are mapped into the central part of the attractor 
(points 8 an9 II). So, although we have not yet been able to resolve folding in 
the Poincare section, we can propose the followinq scheme, inspired by the 
behavior of one of the Rossler attractors [12]: 

This figure represents schematically the evolution of the Poincare sections at 
different locations on the attractor. Diagrams 2, 3, 4, and 5 represent the 
probable form of the Poincare sections at successive positions along the 
constricted portion of the attractor, while dia~rams 1 and 6, which are similar 
to Fig. 3a, represent, respectively, the Poincare sections at locations preceding 
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I •• 

X(n) X(n) 
Fig. 4 (a) Poincare return map for CI' formed by plotting as ordered pairs 
TXfii'}, X(n+I)] the successive values of the bromide ion potential B(t+2T) for 
phase space trajectories when they cross t"l.e plane (normal to the paper) through 
the dashed line in Fig. 2. (b) The Poincare return map after a perturbation that 
occurred about when the trajectory passed through the point numbered 4 (see text) 
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and followinQ the constricted part of the attractor. AlthouQh the present method 
of constructinQ the attractor fails to show the foldinq indicated in diaQrams 2 
throuQh S, it may be possible to see the folding with other attractor 
construction methods [11]. 

3. Sensitivity to Initial Conditions and Phase Coherence 

Figure Sa shows 64 trajectories evolvinQ from a very small cube at the tip of the 
arrow near the lower left corner. The minimum time delay between two 
trajectories entering the small cube is 400At (more than three turns), where At = 
0.88 s. After 10SAt the initial distribution is spread over the attractor, the 
dispersion becominQ Qreater as time passes. However, notice that even after 
almost 2 turns, the points are widely spread in space but not that widely spread 
in time (Fi g. Sb indicates the time scale on the attractor). It thus appears 
that, even in this chaotic state, the attractor maintains some" kind of "phase 
coherence" [13], which is the oriqin of the sharp peaks that remain in the power 
spectrum in the chaotic state (Fig. 1b). 

;---.. 

f-
+ 

B(t j ) 

Fig. S (a) The evolution of a set of points that were initially all within a 
very small phase space volume located at the tip of the arrow on the left: A(A), 
80At: B(+), 10SAt: C(\.), 140At: D(~), 210At. (b) The speed of traversal of an 
orbit is illustrated by points plotted for different times (expressed in units of 
At). [At = 0.88 s] 
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Experiments on Chaos in a Continuous Stirred Reactor 

J.L. Hudson, J. Mankin, J. McCullough, P. Lamba 
Department of Chemical Engineering 
University of Virginia 
Charlottesville, VA 22901, USA 

1. Introducti on 

The Belousov-Zhabotinskii reaction can undergo a variety of oscillation types 
in an open system as has been demonstrated by means of experiments [1] and 
mathematical models [2,3]. There is also evidence that chaotic behavior can 
occur in this reaction system [4-12J. Recent theories support the proposition 
that chaos can be produced by chemical reactions and flow [11, 13-17] and that 
the observed behavior is not an artifact of the experiments. 

We have shown that with the variation of a sinqle parameter· (flow rate or 
residence time) in a continuous stirred reactor, there is a sequence of 
well-defined oscillatory states [5]. Over most of the range the behavior is 
periodic,but in three reproducible bands chaotic behavior is observed. This 
chaotic behavior is an irregular mixture of the periodic oscillations which 
bound it. More recently a similar sequence has been observed by researchers 
at the University of Texas in a different region of parameter space [10, 11]. 

Return maps have been constructed from our experimental data [9, 18] and 
we have recently calculated a positive Liapunov characteristic exponent for 
one apparent chaotic region [9]. Tomita and Tsuda [18-20] have constructed a 
model of the series of bifurcations and have analyzed the transitions from 
periodic n peak to periodic n + 1 peak oscillations. They predict a transition 
region containing both periodic and chaotic mixtures of n peak and n + 1 peak 
oscillations. Tomita and Tsuda have also compared this type of transition to 
the period doubling bifurcations discussed by Feigenbaum [21]. 

In this paper we reinvestigate in detail one of these transitions, viz., 
that from two peak peri odi c to three peak peri odi c osci 11 ations. Between the 
two and three peak periodic regions is a mixed (2-3) region which can be 
either periodic or chaotic as predicted by Tomita and Tsuda. We characterize 
the chaotic behavior by means of return maps. Finally we investigate the rate 
of convergence of transient trajectories toward the stable two peak oscillations. 

2. Experiments 

The experiments were carried out in a continuous stirred reactor of volume 
26.4 ml at a temperature of 25°C. The mixed feed concentrations of the malonic 
acid, sodium bromate, sulfuric acid and cerous ion are 0.3, 0.14, 0.2 and 
0.001 M respectively. Details are given in earlier publications [5, ~]. 

3. Results 

The dependence of the reactor behavior on reciprocal residence time (flow 
rate/reactor volume) is shown in Fig. 1. This is a portion of the series of 
transitions presented in [5]. Between the two peak and three peak periodic 
regions is a mixed region of width 0.005 min-I. This mixed region always 
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occurs and its width is very reproducible. The behavior in the mixed region 
is usually chaotic as shown in Fig. 2 (half of a stereoplot, variables Pt, Br-. 
and Pt (t-l0 sec) potenildls). The coordinates of Fig. 2 are on scales of 
o to 255 corresponding to the output of an 8 bit analog to digital converter 
used to interface to a microcomputer. Occasionally, however, the mixed mode 
behavior is a 2-3 periodic oscillation as shown in Fig. 3. Tomita and Tsuda 
have developed a model which yields both chaotic and periodic mixed mode 
oscillations between the period two peak·and three peak oscillations [18-201. 

two peak 
periodic 

mixed 
(2-3) 

three peak 
periodic 

0.165 0.170 
~ Transition from two peak 
to three peak oscillations 

reciprocal residence time (min-I) 

256r-------------, 

O~~2-m~i~n~ut-es--~~~r_~ 

~ Mixed 2-3 
chaotic behavior 

~ Mixed 2-3 periodic 
behavior 

Their model is based on,a return map constructed from our earlier experimental 
data [51. By adding a parameter b to the return map as shown in (1) Tomita 

and Tsuda demonstrate how the series of transitions seen in our exoeriments 
could arise. This form was chosen because the return m~ps constructed from 

(1) 

the experimental data for the 2-3 and 3-4 chaotic regions appear to differ only 
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by a constant. This model predicts that the 2-3 chaotic behavior should be 
bracketed by periodic oscillations which are mixtures of two and three peaks. 
In our earlier work we observed unly chaotic behavior in the mixed 2-3 region. 
It is now evident that a periodic 2-3 oscillation exists. Both the periodic 
and chaotic 2-3 modes are stable as evidenced by their persistence and their 
insensitivity to perturbations. However, we have not been able to determine 
the locations of the periodic and chaotic behaviors within the mixed 2-3 
regions. Usually the entire range is chaotic. Occasionally it is entirely 
periodic. We have also observed 2-3 periodic behavior bracketed by chaotic 
behavior. We have not yet observed the 2-3 chaotic bracketed by 2-3 periodic 
suggested by the model. The exact behavior in the mixed region is thus unknown, 
and the variablility in the results is probably caused by slight variations 
from day to day in feed concentrations or flow rates. It should be stated, 
however, that in a given series of experiments the results are reproducible. 

40 40 

.. N 
r:: . 

C 
c 

c 
! 'E .. .. 
In In 

200 200/ 
200 40 200 

Br(min)n 
40 

Br (min)n 

f.i.!L± n + 1 return map ~ n + 2 return mao 

A return map for the 2-3 chaotic region mlnlma in bromide ion potential is 
shown in Fig. 4. The + are experimental data and the curve is a function 
fitting the data [9]. The n + 2 and n + 3 maps constructed with both the data 
and the function are shown in Figs. 5 and 6,respectively. The fit is reasonable 
but is clearly not as good as for the n + 1 map. We investigated the effect 
'of varying the parameter b in (1). A sufficiently large negative value of 
b (b = -2.4) causes two additional crossings of the 45° line in the n + 2 map 
at the two outside discontinuities. These crossings are stable and therefore 
a periodic two peak cycle has been created. A sufficiently positive value of 
b (b = 0.5) produces three points of tangency in the n + 3 map and the subsequent 
creation of a stable 3 peak cycle. 

In order to investigate the reasonableness of the n + 2 map, particularly 
the creation of stable two peak cycles by means of new crossings of the 45° 
line rather than by the transition from unstable to stable of an already 
existing 2 peak, we performed the following experiment. We jumped from a two 
peak periodic cycle to the chaotic region by means of a change in flow rate. 
From this we constructed the n + 2 map of Fig. 7. The points start at the 45° 
line and diverge from it, alternating from one side to the other. This implies 
the existence of an unstable two cycle at conditions where the system is 
chaotic. The model, i.e., using the fit of Fig. 4 and varying b in (1), is 
not consistent with that observation. The discrepancy could very well be in 
the expression used to fit the return map. \~e plan to use such information to 
develop a more reasonable fit. 

Transient experiments can also be done by sudden changes into the periodic 
region. An n + 2 map constructed from a jump into the two peak periodic 
region is shown in Fig. 8. Here the points converge to the 45° line and 

46 



4o.---------------~ 

2002~OO~--------------~40 
Brlmin)n 

Fig. 6 n + 3 return map 

40,-------------~ 

Br (min)n 40 

~ Convergence to a stab 1 e 
two peak cycle 

30.---------------~ 

N 
+ 
c 

C 
~ ... 
ID 

707~O~--------------~30 
Br (min)n 

~ Divergence from an unstable 
two peak cycle 

1.5.--..,---.----,---, 

1.0 
c 
'E .... 
~ 0.5 
iii 

-< 0.0 

• • • 
-0.5~· -~----::-:'--:-----'--:-:-' 

-.0040 -.0000 .0040 

11, - I/'T (min.-I) 

~ Denendence of Liapunov 
characteristic eXDonent on residence 
time 

alternate sides. From such a plot a value for the Liapunov characteristic 
exponent can be obtained for periodic behavior. For the conditions of Fig. 8 
it is ~ = - 0.39 bits/min. 

The Liapunov characteristic exponent is shown in Fig. 9 as a function of 
T- 1 _ TTl where T- 1 is the recipiocal residence time and TTl is its value at 
the transition between the periodic two peak region and the 2-3 mixed region. 
Its value in the chaotic region was calculated from the fit shown in Fig. 4 as 
done in our earlier work [9]. ~ is of course negative in the periodic region 
and positive (or chaos L22]. Since it appears that a two peak cycle exists on 
both sides of the transition point, the value of ~ passes continuously through 

-1 -1 zero at T = TT 
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Chemical Kinetics as an Experimental Field for 
Studying the Onset of Turbulence 

C. Vidal 
Centre de Recherches Paul Pascal 
F-33405 Ta1ence 

1. Introduction 

The temporal evolution of chemically reacting systems has been known for a long 
time to obey nonlinear differential equations, according to the so-called kinetic 
mass-action law. Therefore nonlinear effects, such as periodic or non-periodic 
time dependence, may, in principle, be displayed by these systems, when a suitable 
set of experimental conditions is selected. This elementary remark leads us to the 
conclusion that chemical systems could and should be used i) to study nonlinear 
phenomena, ii) to check the relevance of the dynamical systems theory and iii) 
perhaps to discover some unobserved or unexpected behaviour. Though this conclu
sion may appear quite obvious nowadays, the situation was really different a few 
years ago and I should like to point out that this idea first appears in a paper 
by RUELLE 111 in 1973. 

I shall draw a parallel between experiments belonging to hydrodynamics and 
chemistry, so as to point out their similarity from the analytical viewpoint. Then, 
once the results on the transition to turbulent flows in Rayleigh-Benard convec
tion h~ve been briefly recalled, I shall review what we have learnt during the 

, last three years from the study of the onset of chemical turbulence. 

2. Hydrodynamic and chemical experiments 

In the wide field of hydrodynamic research, three geometries have been more tho
roughly studied than any other, namely the shear flow, the Couette flow and the 
Rayleigh-Benard convection'prob1ems*. One example is, of course, enough to esta
blish a comparison between hydrodynamics and chemistry. To this end we shall take 
the Rayleigh-Benard (RB) convection, mainly because the transition to turbulence 
is best known in that case, thanks to the great number of investigations devoted 
to it. 

2.1 Mathematical description 

The mathematical approach of thermal convection is based on the equations of mo
tion and heat transport. Considering an infinitely extended layer of a (neutral) 
incompressible fluid heated from below, with time and space-independent tempera-

* A aomp~ete peview being out of the saope of this papep, the peadep intepested 
in mope detaUs is pefepped to a peaentZy issued monogr-aph 121· 
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tures fixed at its lower and upper boundaries, one can derive the following set of 
dimensionless equations 131 : 

p- 1 (* + ~ . lit) = - VTf + ta + V2~ 
V. ~ = 0 (1) 

+ 
v velocity vector 
t unit vector in the direction opposite to gravity 
a deviation from the static temperature distribution 
VTf all terms which can be expressed as gradients in the Navier-Stokes equation 
t time 

The dependence of the problem on the physical properties of the fluid and the 
external conditions applied to the layer is expressed through two dimensionless 
parameters : 

i) the Prandtl number 

ii) the Rayleigh number 

g 
d 
aT 

kinematic viscosity } 
thermal diffusivity of the fluid 
isobaric thermal expansion coefficient 
acceleration of gravity 
thickness of the layer 
temperature difference between the lower and upper boundaries 

To get these dimensionless equations one has to introduce the thickness d as 
the length scale, the thermal diffusion time d2/~as the time scale and the ratio 
aT/R as the temperature scale. Moreover all the properties of the fluid are assu
med to be temperature .ndependent, with the exception of the density in the gravi
ty term (the so-called Oberbeck-Boussinesq approximation). The relative influence 
of the two nonlinear advection terms of (1), ~. V~ and ~. 'Va. will depend on the 
Prandt1 number. the first (second) being dominant at low (high) P values. Accor
dingly one expects to be different the nonlinear effects provided by mercury 
(P ~ 0.03). liquid helium (P ~ 1). water (P ~ 5) or siJicon oils (P ~ 130). Now. 
given a flUid layer (i.e. v. ~ a and d fixed, and therefore P) the only one para
meter, involved in equations (1). which can be changed is the Rayleigh number R. 
Since it does not'look quite easy to achievethis goal through g. the temperature 
difference aT is thus the experimental parameter used to this end. To summarize. 
the RB convection provides us with a simple physical system governed by a set of 
nonlinear differential equations; according to the bifurcation theory. the 
Rayleigh number R. monitored through the temperature difference aT, is the bifur
cation parameter under experimental control. 

Consider now an open reacting medium of constant volume V. through which a 
stream of chemicals is forced at a volume flow J. This medium is furthermore as
sumed to be homogeneous in temperature and composition. Let Xi and XR be th: con
centrations of chemical species Xt in the input and output flows. If N specles. 
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including intermediates, are involved, the mass-balance equations will be 

£=l, ... ,N 
X : (X l' •.. , X£, ... XN) 
F£ : concentration change of X£ species due to the chemical reaction 

When the chemical reaction 
a set of R elementary steps : 

kr 
X I X' vi r i ---'----+) V j r j 

is known (or at least assumed) to take place through 

i,j = 1, ••• , N r=l, ... ,R 

then the functions F£ can be further calculated. The rate of each step being given 
by the kinetic mass-action law, it comes out 1241 as 

F (X) = L (Vi - V ) k l{ x.vir £ r £1'J/,r r 1 1 

v£r' v~r : stoichiometric factors of the X£ species in step r 

kr : rate constant of step r 

Hence, the evolution of such a medium is described by the set of nonlinear 
differential equations : 

(2) 

i ,£ = 1, ..• , N r=l, ... ,R 

where T = ~ is the mean residence time of the chemicals inside the reacting volu
me V. The usual way to get a real system evolving according to (2) calls for a 
continuous stirred tank reactor (CSTR), a very common chemical engineering device. 

From this analytical point of view a RB cell and a CSTR are both real physical 
systems whose evolution is governed by nonl inear differential equations. There
fore, each of them may be used, as well, in experimental investigations of non-
1 i near phenomena. Amongst many differences, it is noteworthy that a CSTR offers 
several bifurcation parameters, namely: T (or ~ = l), X~ and even the temperatu
re T since the rate constants kr are temperature de~endent (Arrhenius law). Only 
~T is available with an RB cell. Up to now, however, the mean residence time T has 
always played this role in the reported chemical experiments 115-311. This does not 
mean at all that the other variables should be neglected. On the contrary, from 
some preliminary attempts undertaken in our laboratory, we expect interesting re
sults to appear from experiments bringing the temperature into play. 

2.2 Experimental techniques 

The number of techniques developed to investigate these two physical situations 
is not so great, at least if we pay attention to experiments where a time-depen
dent variable has been quantitatively measured. These techniques are displayed in 
table 1, together with some references where the corresponding experimental devi-
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Table 1 

Experimental techniques Measured References 
Variables 

Local temperature variation 
at a boundary of the cell T 141 151 

RB convection 
Doppler shift of a laser beam 
(Laser Doppler anemometry) v 161 171 

Br- electrode potential log [Br-] 1121 1151 1231 

BZ reaction Redox potenti a 1 E = f(X) 1121 

Optical density at 340 nm [Ce4+] 1161 1171 

ces are fully described. The RB convection has been studied in several liquids: 
He 181, H20 16,91, Hg 151, silicon ons 1101. The bifurcation parameter has al
ways been the Rayleigh number, scanned step by step changing the temperature dif
ference ":'T. 

All the reported chemical experiments 112-311 dealt with the same reaction, 
i.e. BELOUSOV-ZHABOTINSKY (BZ). As a matter of fact this reaction exhibits fasci
nating nonlinear effects (e.g. oscillations, chemical waves), which have been 
widely studied during the last twenty years*. The same bifurcation parameter, T or 
~ changed by varying the volume flow J, is involved in all these studies. With the 
exception of some experimental conditions (temperature, inlet concentrations) these 
studies differ only by the physical property chosen to monitor the reaction. 
Compared to potentiometric techniques (see table 1), the optical density measure
ment at 340 nm offers at least two advantages : the spectrophotometric signal is 
i) linearly proportional to the concentration of a single intermediate species, 
Ce4+ , and ii) without any time-delay. On the contrary, an ion-selective electrode 
has a response time of several seconds and its output varies on a logarithmic scale 
within the finite concentration range where the Nernst equation is valid 
(~ 5 10-6 M for Br-). 

2.3 Data analysis 

The most common way to look at the main features of a dynamic regime is to get the 
Fourier transform of the time series records. This can be done either with a 
Fourier analyzer or by computing the Cooley-Tukey FFT algorithm of data pOints 
equally spaced in time. In addition, phase-space portraits are very helpful, par
ticularly when irregular regimes are encountered. Here we are faced with a serious 

* A detailed mechanism ("FKN" 1321) and a sirrrplified model ("Oregonator" 1331) 
have been derived to account for the main features of the BZ reaction. A tho
rough analysis by TYSON can be found in reference 1341. 
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problem; because only 1, or sometimes 2 independent variables are being measured, 
the true phase-space trajectories can never be drawn. Nevertheless it is conjectu
red that the salient topological properties of 'these trajectories would be preser
ved in some phase-space pictures reconstructed from the time record of a single 
variable X(t). Two 3D-coordinate systems have been suggested: i) X(t), X(t+tl)' 
X(t+t2 ), tl and. t z being arbitrary values of time 1351, or ii) X(t) and its first 
~(t) and second X.(t) derivatives with respect to time 1361. Whereas I am aware of 
only two recent representations of this type in the field of RB experimentation 
18,91, several phase-space portraits have been obtained in chemistry 119,20,231 
since the first one published 1181. 

3. Onset of turbulence in RB convection 

To point out the original results obtained from chemical kinetics, it would seem 
useful as a first step to review briefly the observations yielded by RB experi
ments. Taking advantage of the recent theoretical progress 1371, we shall focus 
our attention on systems with a few degrees of freedom. This is the reason why the 
bar graphs of table 2 only sketch'the sequences of dynamic regimes observed in 
"little boxes", i.e. ion RB cells where no more than 3 rolls are allowed to develop. 
The set of abbreviations introduced is quite simple : 

S 
P 
Pz , P4 •• : 

QP z' QP 3 : 

stationary 
periodic time dependence 
periodic regimes generated by successive subharmonic bifurcations of a 
periodic state (period doubling) 
quasi-periodic regimes with 2 or 3 incommensurate basic frequencies 

L quasi-periodic regime where the basic frequencies are locked to a ratio
nal ratio (thus the regime actually looks periodic) 

NP 
IN 

non-periodic (or chaotic, or turbulent) state 
intermittent regime involving a switch at irregular time intervals 
between 2 'different states 

It must be remembered that the identification of a regime is based on the cha
racteristics of its Fourier spectrum. As the sequence of bifurcations leading to 
an NP motion depends on the whole set of experimental conditions, the same liquid may 
exhibit several bifurcation diagrams. Nevertheless, we can disregard these details 
at the moment. Even at a glance at table 2, there are two major facts which cannot 
escape attention, taking into account the variety of fluids concerned : 

i) only a few bifurcations are needed to reach a chaotic state; this is in ac
cordance with the new understanding of turbulence introduced ten years ago by 
RUELLE and TAKENS 1371 

ii) the roads to turbulence may take three different paths or "scenarios" 1381 

- the Ruelle-Taken-Newhouse scenario (Hopf bifurcation) 
- the Feigenbaum cascade (pitchfork bifurcation) 
- the Pomeau-Maneville intermittency (inverse saddle-node bifurcation) 

It is worth noting that the theoretical approach of these scenarios is already 
fairly well achieved 1381. As a consequence, it is time to set up a quantitative 
comparison between ,theoretical predictions and experimental results. The first 
attempts 18,91 dealing with the Feigenbaum cascade (universal scaling of bifurca-
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Table 2 

liquid Observed sequences of bifurcations R value 
Prandtl number leading to non-periodicity at the 
(authors) (R axis not scaled) onset (* 

Mercury I S 1 P I QP2 I QP s 1 NP 
P = . 03 • S - 6 
(lIBCHABER, FAUVE) Ls I P I QP2 I l I NP , I • 

Helium I S I P I QP 21 l 1-"2 1 P 4 jP 8 I P 16 1 NP 
• 

P = 0.4 - 0.8 I S I P ! QP 2 I IN I NP 40 - 80 
I I I • 

(lIBCHABER, MAURER) Ls 1 P I QP2 I QP s I NP 
• 

Water I S I P I QP2 I l I NP 
• 

P=2.S-S. I S I P I P2 I P4 I NP 
• 50 - 120 

(GOllUB, BENSON) Ls I P I QP2 1 QPs I NP 
• 

I S I P I QP2 1 IN I NP 
• 

Si li con oil I S I P I P2 I IN I NP 
• P = 130. 300 

(BERGE, DUBOIS) I S I P I QP2 1 l 1 NP .. 

(*) Order of magnitude in Rc units (Rc critical value of the Rayleigh number at 
which convection sets in) 

tion points, subharmonics lowering in the Fourier spectrum) do not show any great 
discrepancy, even though the measurements are not yet accurate enough to ensure 
full agreement. 

4. Dynamic patterns of the BZ reaction 

Since its discovery by BElOUSOV 1391 in 1958, the BZ reaction is known to undergo 
osci 11 ati ons. Any chemi ca 1 system bei ng dissipative, these osci 11 ati ons are damped 
and cancel after a while, when conducted in a closed vessel. They become self
sustained if they are performed in a CSTR with a suitable feed of reagents 1401· 
Thus, in such a chemical system, the nonlinear terms of equation (2) are impor
tant enough to give rise to a periodic behaviour. The experimental search for non
periodic (nor stationary) patterns began nearly four years ago, with the pioneering 

54 



work of SCHMITZ et al.1121. The chronological list* of the papers issued or in 
press since that time il. displayed in Fig.1, which is, in a way, an historical 
survey of this new field of experimental research. The transition from qualitative 
to quantitative investigations took place in the middle of 1979 when we' published 
the first Fourier analysis 1161. Whereas 8 papers appear from 1977 to 1980, there 
are 13, including this one, which will have appeared at least during 1981,a promi
sing (and perhaps somewhat disturbing) growth. 

QUALITATIVE STAGE • ~ QUANTITATIVE STAGE 

11-1-11 ........ 11..;...:, 1_12 ..... 1-+1-..:.1_13...:....;1 ,...:...11_4~1 +--,-115, I ~161--+ 1171,11841191 + 1311 
1977 1978 1979 1980 1981 

references -years 

Fig.1 The short story of experimental search for NP flows in chemical systems 

Let us now review the main results coming from these studies. For simplicity 
the symbols A, B, C will refer to the contributions of the groups working in 
Austin (A), Bordeaux (8) and Charlottesville (C). First of all the very existence 
of NP regimes has been unambiguously established by A, Band C. To illustrate this 
point by an example, the time dependence of the optical density, together with the 
corresponding noisy Fourier spectrum of this kind of regime, are presented in Fig.2 
124,281. Many others are given in 1261 and similar pictures appear too in A 123,25, 
271 and C 1201 publications. Then a bifurcation diagram, completely new with res
pect to those of table 2, has been discovered: this is a sequence of P and NP re
gimes which alternate regularly as the bifurcation parameter, T or ~, varies. This 
kind of sequence, first recognized in C 1151, has been more thoroughly investigated 
in A and B. The Fig.3 presents the two bifurcation diagrams thus obtained, which 
appear very similar, even though the experimental conditions were not identical. 

1\ f\ 
·z 

a 100 zoo 300 400 500 

Fi~.2 The BZ reaction in a chaotic state 124,261 
(a) the optical density record (arbitrary units) versus time (sec.). When M high 

amplitude oscillations are followed by m oscillations of lower amplitude, the 
pattern is noted as Mm Here is an example of an MI (M ~ 3) pattern 

(b) the corresponding power spectral density (HZ-I) versus frequency (10- 3Hz) in 
the usual semi-logarithmic plot. 

* This list. only devoted to experiments. does not include the numerical analysis 
and computer simulations which have also been carried out on this problem. 
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1.0 1.S 't' (hr) 

from reference 1271 

0;18 
from reference 126,281 

? . . 
i 

2.0 

e' 
1 

• I • 

0,22 0,24 0,26 
II. (min·1 ) 

Fig.3 The bifurcation diagrams obtained in A(a) and B(b) 
(a) for purposes of illustration, successive experimental regimes are shown to beof 

equal width, although the widths have not been measured (P = periodic,C = chaotig 
(b) the P regimes (above the axis) and NP regimes (under the axis) involve a limi

ted number of patterns displayed in the Mm notation (see legend of Fig.1). The 
width of P regimes becomes narrower and narrOwer as II increases. 

:3 
H 

·1 .. 
S·2 
z 

" 2 !.3 
" .. 
2·· 
!! 

1.5 2.0 100 200 
IESIDENCE TIM! (hr) 

(a) (b) 
from reference 1231 from reference 124,261 

Fig.4 Evolution of the noise level content 
(a) the noise in the chaotic regimes (C) is several orders of magnitude larger than 

in the periodic regimes (P). The curve is drawn to guide the eye 
(b) the H function (see text for definition) remains fairly constant at the begin

ning and then, beyond II = 0,17 min- i , it evolves towards white noise (H = 4.2 
for a pure sine wave; H = ° for white noise). The dashed line is drawn to show 
the general trend of increasing noise. 

One can note however a difference in the evolution of the noise level content of 
the Fourier spectra. Whereas all the chaotic states of the sequence exhibit a fair
ly constant broadband noise in the A experiment (Fig.4a), we found that this noise 
increases continuously from one NP regime to the next along the bifurcation axis 
(Fig.4b). Thus we detect an evolution towards more and more turbulent states. Per
haps this difference might be ascribed to the different ways in which the noise le-
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vel content is estimated: in the A work 1231. the intercepts at zero frequency of 
the 1 i nes drawn through the broadband background noise were used. whi 1 e we compu
ted 124,261 the function 

n 
H = L Pi log Pi 

i=l 

Pi power spectral density at frequency i.Af 
n number of frequencies in the Fourier spectrum 

In these chemical experiments, the signal to noise ratio is good enough to al
low a draft of phase-space trajectories. in the framework of the above mentionned 
conjectures. The first picture to be obtained 1181, shown in Fig.5. seems to pre
sent this sensitive dependence on initial conditions which characterizes a strange 
attractor. Chemistry would thus have led to an experimental illustration of this 
mathematical concept. The usefulness of the phase-space portraits is further de
monstrated by the Poincare (or first return) maps which can be deduced from them. 
For instance, Fig.6 shows the maps obtained in A and C experiments. when the re-

(a) from reference 1231 

-'+ c 
)( 

X(n) 

• • CI 

Fig.5 A X, X. X phase-space por-
trait where the trajectories pre
sent a sensitive dependence on ini
tial conditions. From reference 1181 

Fig.6a,b. The two Poincare maps obtain
ed 1n A and C experiments looks very 
similar. Since the points describe a 
smooth curve, the chaos is probably 
deterministic rather than stochastic, 
even though this argument is far from 
being a proof. 

. 
c 

60 

80 

100 

i 120 

tli 140 

180 

(b) from reference 1201 

140 120 100 60 60 40 

Brlmlt,,_ 
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gime is chaotic. It is seen that the points do not spread throughout the plane. 
but describe a smooth curve. Moreover onp can try to calculate the Lyapunov 
characteristic exponent of these Poincare maps. The values determined by A 1291 
and C 1201 are very close to each other: respectively,0.5 ± 0.1 and 0.62. Such 
positive values mean that the phase-space trajectories diverge in one direction, 
as expected for an NP flow. 

Other interesting results are provided by several experiments conducted in B. 
For instance we have found a sequence of regimes 1191 in good agreement with the 
simulat~ons previously carried out by TOMITA and TSUDA 1411 on a model of the BZ 
reaction, with an analogue computer. Even more exciting is the fact that we disco
vered an IN regime fairly well described 1211 by the Pomeau-Maneville theory of 
intermittency. I can even say that, up to now, this result is the most successful 
experimental check of this theory. Another observation worthy of mention is dis
played in Fig.7. Here, from time to time, the Ce"+concentration exhibits a damped 
oscillation immediately followed by an amplified one. This quite unusual behaviour 
suggests the very existence of an unstable fixed point in a (at least}'fourth-order 
system. More recently we have also observed a new kind of dynamic state 1311, cha
racterized by a structured Fourier spectrum (see the figure of page 277): depen~ 

ding on the frequency resolution, this spectrum exhibits three levels of well
ordered peaks. It looks like a russian "matriochka" : i.e. peaks, within peaks, 
within peaks. 

~ 
u .~ 

" 

'~ 

~ ~oo 

TIME (S) 

Fig.7 The time dependence of the Ce4+ concentra
tion sometimes exhibits a damped oscillation imme
diately followed by an amplified one. This behav
iour might be linked to an unstable fixed point 
in a fourth-order system. From reference 1191· 

do not want to end this overview without reminding that computer simula-
tions have, of course, been carried out on this problem. Very often, but not al
ways, they lie on more or less modified version of the Oregonator 127,41-431. A 
discussion of these simulations is far beyond the scope of the present paper. Ne
vertheless I should like to outline two significant results. Considering some sets 
of three ordinary differential equations, ROSSLER was able to show, several years 
ago, that chaos does occur and should be observed (see for instance 113,141). On 
the other hand TURNER 1431 worked out a mathematical model. which is the reversi
ble Oregonator, extended to the fourth dimension by considering HOBr as an inter
mediate species, and including a flow term according to the general equation (2). 
This model provides us with a sequence of alterning P and NP regimes, which looks 
very much like the sequence of Fig.3a 1271. 

5 Conclusion 

Amongst the r.eal physical systems whose evolution is described by sets of non
linear differential equations, the chemical systems already show a great variety 
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of patterns. as we have seen. I am convinoed that other dynamic behaviours will 
be discovered.in the near future. still increa5tng the diversity of observable 
nonlinear phenomena. The high signa1-to-noise ratio of the chemical experiments 
is certainly a very promising aspect. which opens the way to a systematic use of 
Poincare maps. Theoretical work is now in progress 144-481 in order to explain 
some of the observations reported above. The transition to turbulence via a sequen
ce of alternating P and NP regimes se~ms now to be one of the most challenging 
theoretical problem. since it remains today an unpredicted scenario. According to 
a very recent work of LOBRY and LOZI 1491. it seems that a quite successful analy
sis might be developed in the framework of a 3 variable system such as the Orego
nator. provided external noise is taken into account. 
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Transition vers la turbulence par intermittence 

Y. Pomeau 

L'etude des transitions vers l'instationnarite et la turbulence en mecanique 

des fluides a largement precede celIe des memes phenomenes en cinetique chimique. 

Aussi il ne parait pas deraisonnable de tenter quelque rapprochement 'entre ces 

deux domaines, si eloignes en apparence dans leur manifestation experimentale. Le 

principe unifiant ces deux categories de phenomenes'naturels est d'origine mathema

tique. En effet dans l'un et l'autre cas (mecanique des fluides et cinetique chi

mique) on a affaire a ce que l'on appelle des systemes dynamiques : comme remarque 

deja par David Ruelle [1], la cinetique chlmique obeit a des equations differentiel

les ordinaires non lineaires, qui constituent Ie prototype meme du systeme dynami

que. La description des mouvements d'un fluide par un tel systeme dynamique ne va 

pas tout a fait de soi : en effet l'evolution d'un fluide est, a priori, celIe 

d'un continuum spatial qui obeit .a des equations aux derivees partielles plut6t 

qu'a des equations differentielles ordinaires. En fait, pour des ecoulements en 

geometrie confinee, engendres par exemple dans une cellule de Benard de forme a 
peu pres cubique, on peut reduire a l'interaction de quelques "modes" significatifs 

une evolution regie a priori par des equations aux derivees partielles. L'idee 

d'une telle reduction a guide Lorenz [2] lorsqu'il a construit Ie systeme d'equa

tionsdifferentielles bien connu qui tend a modeler la convection de Rayleigh 

Benard instationnaire. 

A premiere vue, il pourrait sembler que c'est faire bien peu de progres que 

reconnaitre qu'en cinetique chimique comme en mecanique des fluides on a affaire 

a des systemes dynamiques : ne s'agirait-il pas d'une notion trop generale Dour 

etre utile? Je vais tenter de montrer maintenant qu'en fait il n'en est rien. Un 

des succes remarquables de cette approche "globale" des systemes dynamiques est la 

mise en evid-ence de ceooque J.P. Eckmann [3] appelle des "scenarios" de transition 

vers la turbulence. 

Considerons un certain ensemble d'equations differentielles ordinaires cou~ 

plees non lineaires autonomes qu'on ecrira sous la forme schematique : 

+ 
dx 
dt 

+ + 
f (x,~) (I) 

: est, dans cette equation un vecteur de ]Rd (= un tableau de d quantites reelles 
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qui peuvent dependent 11 1)riori du temns), et II ce que l'on appelle un paJ;"ametre de 

contrele. Dans Ie cas drune reaction chimique de Belousov-Zhabotinsky (nar exemple), 
-+-
x(t) est simplement la liste des concentrations des especes intervenant de fa~on 

significative dans la reaction (plus eventuellement la temperature, si la reaction 

n'est pas isotherme) et II Ie taux de renouvellement des reactifs. Pour eviter 

l'apparition de terme de diffusion spatiale, on suppose que la reaction se fait 

en phase homogene, par exemple par suite l'un brassage intense. 

II y a transition vers la turbulence lorsque les solutions du systeme (1) 

passent en variant II d'un regime de cycle limite stable ou, eventuellement d'un 

etat stationnaire a un re~ime d'attracteur etrange decrivant Ie comportement sto

chastiqu~ de systemes deterministes suivant Ruelle et Takens [4]. Les "scenarios" 

de ·transition donnent une certaine image des mecanismes possible pour ce passage 

du regime ordonne (cycle limite ou etat stationnaire) au regime stochastique. En 

un sens, l'idee qu'il y a un nombre restreint de "scenarios" de transition rappelle 

la classification des transitions de phase thermodynamiques par les Ehrenfest. 

Cet effort unificateur permet d'oublier certains details de la situation physique 

Ie point critique liquide gaz d'un fluide presente, on Ie sait maintenant, une 

analogie na~faite avec la transition de Curie d'un ferromagnetique uniaxe. On 

saura donc reconnaitre avec nrecision une certaine transition a partir de donnees 

experimentales, meme si l'on est pratiquement incapable d'analyser quantitative

ment Ie detail de tous les phenomenes mis en jeu lors de cette transition. Ainsi 

on analysera thermodynamiquement en detail Ie point critique liquide g~zd'un fluide 

independamment de la structure moleculaire a courte dis tance. 

On saura aussi identifier un scenario de transition vers la turbulence sans 

comprendre pour autant tous les details de la cinetique sous jacente. A l'heure 

actuelle, trois scenarios ont ete recenses. Ce sont(dans un ordre plus ou moins 

historique) la transition par couplage faible de 3 ou 4 oscillateurs de frequences 

incommensurables [4], la cascade de dedoublements de frequeQce [5] et la transi

tion par intermittence. Les dedoublements de frequence sont consideres par 

Feigenbaum dans cette conference. Je vais me limiter dans ce qui suit a une des

cription succinte de la transition par intermittence, renvoyant aux articles ori

ginaux les lecteurs interesses. 

La phenomenologie de la transition par intermittence est particulierement sim

ple. En dessous d'une valeur critique llc du parametre de contrele, Ie systeme 

presente un cycle limite stable:pour un ensemble raisonnablement grand de conditions 

initiales, i(t) tend pour les temps longs positifs vers une fonction periodique si 

II < llc' Pour II legerement superieur a llc' i(t) presente la plupart du temps des 

oscillations apparemment regulieres et tres semblables a celles qui existe pour II 

legerement inferieur a llc. 
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Mais ces oscillations sont interrompues de temps en temps par une grande fluc

tuation. Gette grande fluctuation est suivie d'une relaminarisation, c'est a dire 

d'un retour a des oscillations apparemment reguliere, interrompues plus tard par 

une grande fluctuation, et ainsi de sui.te. Gette description de base est suscep

tible de certaines modifications. Ainsi l'etat de comportement regulier separant 

deux grandes fluctuations peut etre un regime stationnaire plut6t qu'oscillant [6], 

cet etat stationnaire etant stable pour ~ <~c. Dans tous les cas, la propriete 

essentielle de la transition est l'Int~~enee : lorsque ~ tend vers ~c par va

leurs superieures, l'intervalle de temps moyen separant deux grahdes fluctuations 

croit indefiniment. Dans Ie cas Ie plus simple (que nous avons appele intermittence 
-I/? 

de type I avec Paul Manneville [7]) cet ecart moyen croit comme (~-~c) - lors-

que ~ ~ ~c •. Dans d'autres types d'intermittence la loi de croissance de cet ecart 

est beaucoup moins simDle et echappe meme encore a une analyse purement theorique. 

On a observe cette transition par intermittence en convection de Rayleigh

Benard [8] et dans lareaction chimique de Belousov-Zhabotinsky [9] en phase bras

see(donc homogene). Dans ce dernier cas il a meme ete possible d'avoir une confir

mation detail lee de la nature de cette transition en analysant a partir des donnees 

experimentales la faible instabilite des oscillations separant, dans Ie regime 

intermittent, deux grandes fluctuations., Gette (faible) instabilite est decrite 

par la theorie de Floquet pour sa partie lineaire et un terme non lineaire quadra

tique s'y ajoute, suivant la philosophie des formes normales de Poincare-Birkhoff. 

On per<;oit bien ici tout ce qu'apporte l'idee de "scenario" de transition: 

la forme normale de Poincare-Birkhoff suffit a comprendre les details essentiels 

de la transition, ignorant quasiment completement la cinetique chimique sous

jacente. Nul besoin enparticulier d'introduire artificiellement des variables a 

priori rapide ou lente : Ie "ralentissement critique" n'est que l'effet d'un etat 

de stabilite marginale. Les travaux de l'Ecole Bordelaise [10] sur la reaction de 

Belousov-Zhabotinsky ont amplement montre qu'on pouvait etudier valablement la ci

netique de cette reaction du point de vue des systemes dynamiques et assez indepen

damment des details d'une cinetique chimique sans doute difficilement accessibles. 

Une analogie superficielle donnerait a penser que cette intermittence de tran

sition des systemes dynamique a quelque chose a voir avec les observations class i

ques d'Osborne Reynolds [11] des transitions d'un ecoulement de fluide visqueux 

dans un tuyau cylindrique. Gette derniere situation est beaucoup plus complexe 

que celIe des systemes dynamiques simples, en raison en particulier de ce que l'in

termittence y est spatiotemporelle plut6t que temporelle. Dans ce cas des ecoule

ments paralleles, Ie phenomene fondamental est l'existence marginale (par rapport 

a la variation du nombre de Reynolds) de perturbations loe~ee6 et d'amplitude 

finie et se depla<;ant en bloc. La encore il parait raisonnable et possible de 

s'appuyer sur la theorie des systemes dynamiques pour aboutir a une explication 
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coh€rente des ph€nomenes observ€s. Sans doute les ph€nomenes classiques de struc

turation spatial Ie observ€s dans la r€action oscillante de Belousov-Zhabotinsky 

constitueront un champ d'observation particulierement int€ressant pour la transi

tion vers la turbulence spatio-temporelle, A comparer peut etre avec les instabili

t€s des fronts de flamme instables. Peut etre aussi n'est-il pas deraisonnable 

d'esperer ici encore mettre en evidence une liste plus ou moins exhaustive de 

"sc€narios" de transition. 

Je tiens A remercier Ie Professeur Pacault, Sabine Bachelart, Annie Rossi, 

Jean-Claude Roux et Christian Vidal d'avoir permis A un theoricien de participer 

bien modestement aux recherches sur les r€actions chimiques instationnai?es. 
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Bifurcation of Motifs in Families of Mixed Two-Vector Field 

C. Lobry 
Universite de Bordeaux, 351 Cours de la Liberation, F-33405 Talence 

R. Lozi 
Universite de Nice, Parc Val rose, F-06034 Nice Cedex 

Introduction: We try tm explain the succession of periodic and chaotic behaviours 
observed in B.Z.Z. reaction (See many contributions in this volume). We define 
an abstract mathematical object: "Mixed vector fields"which'is very similar to 
ROSSLER models with,howeve~ some new features inspired by the above mentioned 
experiments. Our model is not purely-speculative and is closely related to a modi
fied version of the Oregonator taken from TYSON. 

1. The experiments: In [3] one can observe periodic time records where L large 
amplitude oscillations are followed by p'small ones. The second author of this 
paper suggested that these patterns should be more pertinent for analysis than 
Fourier transforms. We decide to call them with the French word "Motif" and to 
denote them by the symbol LP. From [ 3] we quote the following succession of "Motifs". 

2- Abstract models: Two vector fields X and Y are given respectively on two domains 
Ox and Oy of the plane lR 2 . A "trajectory" is a continuous map from some inter
val [a,'b] of lRinto lR 2: t + y(t) which has the following properties: 
i) If y(a)EO~y, y is the integral curve of X starting at y(a) until it (eventu

ally) reaches the boundary of Ox and enters Oy at some point a1; then y is 
the integral curve of Y starting at a1 until it (eventually) reaches the 
boundary of Oy and enters Ox at some point a2; then y is the integral curve 
of X ... : 

ii) If y(a)EDy~x, change X by Y if y(a)EOXnOy specify the first choice. 

We call such a mathematical object a "mixed two-vector fields". The important 
features of this object are the following: 

Fig.i. Experimental succession of "Motifs" 

Fig.2. Two examples of "Mixed two-vector fields" with typical trajectories 
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They are two dimensional and .thus are tractable with some kind of Poincare 
Bendixon theory. 

Contrary to ordinary differential equations, solutions of "mixed two vector 
fields" do not depend continuously on initial conditions, this allows chaotic be
havior, which is impossible for ordinary differential equations in the plane. 

Mixed two-vector fields are just the proje~tion on the plane of the slow 
dynamics of a singularly perturbed differential system in ~3, where the slow 
manifold is a folded surface. It works like this: 

3 

x 

y 

Fig.3. Fast-slow differential system in ]R3 with associated mixed two-vector fields 

One sees on the picture that the slow manifold overlaps in the direction of the 
fast trajectories, and the "mixed two-vector fields" is just the projection in the 
plane. We emphasize here that by no mean have we proven that "mixed two-vector fields" 
are a correct idealization of singularly perturbed differential systems when E tends 
to the limit O. To our knowledge no such general results exist. 

3- Abstract mQdels for bifurcation of "motifs". 

Let X be a vector field with one limit cycle, 
Let Y be a trivial vector field with parallel trajectories, 
Let DX and Dy be half planes intersecting along a strip. 

Let our bifurcation parameter be a displacement of the strip with the dynamics 
fixed. In the following picture one sees positions of the strip which have a limit 
cycle or a 31 "motif". 

(b) 

Fig.4. (a) Stable limit cycle; (b) 3 1 Motif 
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Below we show an example of mixing 31 and 21 

Fig.5. Mixing of 31 and 21 motifs 

4. Oregonator type models: Fig. 6 is a representation of the slow manifold in 
a model of-the Oregonator given by Tyson in [2]. We made sure of the position 
of the slow manifold, but we are not sure of the precise shape of the slow dynamics. 
Some computations will be done and will appear elsewhere. 

IX) 

N 

predictions 

IX) 
N 
N 

Fig.6. Dyn4mics of an Oregonator 
type system in three dimensions 

1Il 
to 
N 

Fig.7. Comparison of experimental and predicted results 
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In fig. 7 one sees the comparison between experimental results and prediction 
from the model. One sees that the qualitative ::uce<!ssion of "motifs" is well 
described in a large range of variation of the parameter.Further work and details 
will appear elsewhere. 

5. Existence of chaotic solutions:We define a "Poincare map" which is the first 
return map to some suitable part of the boundary of DX • One sees easily that 
this Poincare map is continuous in the cafl! of a single "motif" ani is discontinuous 
in the case of a mixing of two different "motifS'! In the case of a single motif 
we can conclude by a standard argument the presence of a periodic regime. In 
the case of a mixing the conclusion is more difficult. One may have chaotic solution 
but it depends very much on the shape of the graph of the Poincare map. This was 
proved in a recent paper by KEENER [4]. The shape of the Poincare map depends on 
the geometry of the dynamics on the slow manifold. If the shape is not the right 
one, one has" just some kind of· pseudo-periodic behavior. 

The shape of a "moti:E"is very sensitive to the displacement of the strip, this 
is due to the presence of a discontinuity; thus our feeling is that it is very 
difficult to decide whether the observed randomness of mixings is due to an 
"intrisic" chaotic behaviournor to an external noise which induces a very small 
displacement of the strip that is amplified by the presence of the discontinuity 
in the dynamics. Further mathematical investigations and numerical analysis should 
be done. 

Conclusion: The mathematical study of cascad.e of "bifurcations" of "motifs" of 
"mixed two-vector fields" is appealing for many reasons. 
- Mixed two-vector fields are reasonably simple, and we hope to produce a rigourous 

theory of this object in the near future. 
- Mixed two-vector fields are an "idealization" of singularly perturbed three-dimensi

onal systems. It fs confirmed by computer simulations and especially the beautiful 
stereoscopic pictures by ROSSLER. We have some hope to put this in a complete 
rigourous form via the tools of hon-standard analysis. 

- Slight modifications of the Oregonator provide systems whose idealization is 
able to produce observed transitions. Thus we have a mathematical model whose 
variables have chemical significance, with a good qualitative power of prediction. 

Aknoledgements:We acknowledge A. PACAULT, S. BACHELART, A. ROSSI, J.C. ROUX and 
C. VIDAL for helIful discussions and for providing documents. 

The first author thanks J. TYSON and J. RINZEL for helpful 
discussions and for providing ref. [4] 
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Bifurcations elementaires - successions et interactions 

Gerard 100ss 
I.M.S.P., Universite de Nice, Parc Val rose 
F-06034 Nice 

1. INTRCDUCTION 

L'apparition de regimes oscillatoires periodiques par "bifurcation" 

d'un regime stationnaire est etablie experimentalement dans de nombreux domaines 

scientifiques, dont la Oynamique Chimique [8] , [2] • 

II ne semble pas que des bifurcations vers des regimes quasi-periodi

ques aient encore ete observes dans ce domaine, bien que l'on connaisse main tenant 

de nQrnbreux exemples en MBcanique des fluiues notamment. 

Ces bifurcations sont elementaires dans Ie sens qu'elles ne necessi

tent pour @tre comprises que les variations d'un seul parametre du systeme. Or 

les phenomenes physiques etudies dependent en general de nombreux parametres ; il 

est donc naturel d'etudier des situations specifiques a l'occurence de plusieurs 

parametres (on dit "de codimension superieurea 1"). Nous indiquons dans ce qui 

suit Ie resultat de l'interaction de deux bifurcations du type Ie plus Simple 

et nous montrons qu'ilest probable qu'a l'avenir des regimes quasi-periodiques 

se rencontrent en Oynamique Chimique. 

2. BIFURCATION DE HOPF '(voir [4] pour une methode simple de calcul). 

Considerons un systeme regi par une famille d'equations differentielles 

dependant d'un ensemble de parametres note ~ E Rk 

(1 ) dX 
dt F(u"X) 

Afin de simplifier l'etude nous supposons X(t) ERn mais tout ce 

qui suit marc he aussi bien pour les problemes d'evolution regis par des equations 

aux derivees partie lIes du type reaction-diffusion, et m@"me du type Navier-Stokes. 

Pour l'introduction du cadre fonctionnel adapte et les resultats de regularite 

en temps des solutions on peut se referer a [3]. 

Nous supposons que (1) admet une solution stationnaire que nous prenons 

comme origins de l'espace des phases: X = 0 • Avec ce choix, nous avons 
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(2) F(IJo,O) .. 0 

Dans la suite nous notons 

(3) F(IJo, X) = L X + N (X) 
IJo IJo 

oD L concentre la dependance lineaire en X et N la dependance non lineaire 
IJo IJo 

(au moins quadratique au voisinage de 0). 

La solution stationnaire X = 0 de (1) pard sa stabilite lorsque 

des valeurs propres de L traversent l'axe des imaginaires allant vers Ie cOte 
IJo 

reel positif (Lyapounov). Une bifurcation de Hopf correspond au cas oD une paire 

de valeurs propres a(lJo) , cr(lJo) traverse l'axe des imaginaires pour IJo = 0 en 

±iW , las autres valeurs propres de L rastant de parties reelles negatives. 
o IJo 

Pour ce type d'etude il est suffisant de se restreindre a un seul parametre reel 

IJo traversant la valeur critique (0 ici). 

Le resultat est alors qu'en general, dependant du signe d'un coeffi

cient calcule a l'aide des termes non lineaires, pour IJo > 0 ou pour IJo < 0 , 

il existe une solution periodique X(IJo,t) bifurquant a partir de X .. 0 

telleque X(O,t) =0, d'amplitude I\X(IJo,t)\\",O(/Tii:1), de frequence voisine 

de Wo (dependant regulierement de 1Jo). Gette solution periodique est stable si 

elle bifurque pour les valeurs de IJo oD la solution X = 0 est instable (Fig. 1). 

\lo < 0 1Jo>0 \10<0 j.L>0 

cas supercritique cas sous-critique 

Fig. 1. Bifurcation de Hopf. 

3. INTERACTION DE DEUX BIFURCATIONS DE HOPF. 

3.1 - Introduction. 

Gonsiderons encore Ie systeme (1) verifiant (2) , et supposons que 

pour \lo '" 0 on ait deux paires de valeurs propres de Lo imaginaires pures : 

± iWo ' ± iW1 ' les autres valeurs propres etant de parties reelles negatives. 

La situation linearisee correspond donc a deux oscillateurs independants. 
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II est alors nature 1 d'etudier les situations voisines de cet etat 

"doublelll3nt critique" de la fa90n suivante, a l'aide de deux parametres 

~ = (~1 ' ~) E R2 voisins de O. On peut choisir les parametres pour plus 

de commodite en posant Re a1(~) = U,1 - ~,,I(80'0 (1Jo)=1Jo 1'oU Cro (Ui)eta1(\ll) sont les 

valeurs propres de L voisines de iw et iW1 lorsque u, est voisin de O. 
\J. 0 

Alors pour ~ = (1Jo 1 ' ~2) = 0, ao iWo ,a1 = iW1 et les paires 

(cro(lJo) , cro(IJo)) et (cr 1(1Jo), a1(1Jo)) traversent l'axe des imaginaires respective-

ment lorsque ~1 passe par 0, et 1Jo1 passe par ~. Si ~ ~ a , cela 

entraine une non-simultaneite des deux traversees de l'axe des imaginaires, et 

l'on imagine aisement qu'il sera plus facile de comprendre les phenomenes m@ma 

si ces deux traversees de l'axe sont presque simultanees. On a donc un probleme 

d'interaction entre deux oscillateurs proches de la bifurcation. Nous allons 

mOQtrer cOmllEnt cette interaction peut engendrer des solutions periodiques, 

bi-periodiques et m@me des solutions avec 3 frequences fondamentales, s'enroulant 

sur un tore invariant de dimension 3 dans l'espace des phases. 

3.2 - Le probleme simplifie. 

Pour comprendre les phenomenes qu'entraine cette interaction, conside

rons Ie systeme differentiel suivant ou Zo et z1 sont complexes : 

(4 ) ! 
dz 

a30zolz012 a12zo lz 112 0 
tit = cr ozo + + 

dZ 1 
a21 1z012Z1 a03z 1 \z1 12 -at = a 1z 1 + + 

sont les valeurs propres definies precedemlll3nt, fonction de 

, et les coefficients a pq sont complexes et fonctions de 

D'ou provient (4) ? 

On montre [6] que tout systeme (1) qui verifie l'hypothese de 

~ . 

l' existence de deux paires de valeurs propres simples ± iW 0 ' ± i W 1 pour ~ = a , 
les autres valeurs propres etant de parties reelles negatives, et qui de plus 

verifie a < Wo < w1 (pour fixer les idees) , et 

non rationnel , ou 

peut se mettre, apres changement de variables, sous la forlll3 (4) , modulo des 

termes d'ordre superieur, au voisinage de O. Oonc, seules les 4 dimensions 

relatives aux vecteurs prop res des 4 valeurs propres 
2 

importantes et dans ces directions, identifiant R 
C7 0 ' a 0 ' a l' a 1 sont 

au plan complexe, les termes 
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non lineaires importants sont cubiques en zo,z1' vSrifiant de plus des 

proprietes de symetries. Neus parlerons plus loin de l'importance des termes 

negliges, et de leur influence sur les resultats deduits seulement de la forme 

simplifiee (4) • 

(4) devient 

(5) 

(6) 

Posons main tenant 

dr 

z = r e o 0 

ie 
o 

3 

ie1 
z1 = r 1e , alors l'equation 

2 0 
dt = 1J.1r o + 0I30r o + 01 12ror1 

dr1 
= (1J.1 - \Jo:2)r1 

2 3 
tit + 0I21r or1 + 0I03r1 

dec 2 2 
Cit .. 1'\0 + tl3~0 + tl 12r 1 

de1 2 2 
dt .. '1\1 + fl21 r o + tl03r 1 

La discussion principale porte alors sur le systems reduit (5) , 

pour lequel nous faisons les hypotheses (generiques) : 

(7) 

3.3 - Bifurcations primaires. 

La solution ro" r 1 .. 0 correspond a la solution X .. 0 du 

systems (1) • Sa stabilite change quand 1J.1 crott en passant par 0 si 

~ > 0 ou quand 1101 passe par IJ.2 si l"'2 < 0 • On obtient alors deux 

branches "primaires" 

(a) 

qui bifurque a partir de 0 en ~1 = 0 et est super (sous-) critique si 
a30 < 0 (> 0). Cette brenche correspond a une solution periodique de frequence 

.. fl301lt1 
w ='1\--o 0 a30 
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(u) l' 
o 

o 

qui bifurque a partir de 0 en ~1 = ~ et est super Lsous-J critique si 

0'03 < 0 (> 0) • Gette branche correspond a une solution periodique de frequence 
h ~03(~- ~1) 
w1 = 'll1 + 

Ges resultats pour Ie modele simplifie (4) se traduisent sur Ie 

systems complet (1) de fagon identique a des modifications d'ordre superieur 

pres. A savoir que les bifurcations primaires de type Hopf ont lieu de la m@ms 

fagon, et que les amplitudes et frequences sont voisines de celles indiquees 

ci-dessus (6] pourvu que l'hypothese (4') soit verifiee. 

pour 

3.4 - Bifurcations secondaires. 

Une bifurcation secondaire a partir de la branche (a) intervient 

(10) 
s 

1 
1J.1 

(l'30~ 
=--0--

1 
pourvu que 

celle-ci est super (sous-) critique si A01 > 0 « 0) 

Une autre bifurcation secondaire a partir de la branche (9) intervient pour 

(11) 

celle-ci est super (sous-) critique si A02 < 0 • Les branches secondaires 

sont donnees par les formules 

2 °21J.1 + 0'12112 
(1J.1 -

s2 02 
rOS fl 111 ) A 

(12) 

2 °1111 + O'30~ s1 °1 r 1s A = (\lo1 - 111 ) T 
et correspondent a des solutions stationnaires de (S) • 

Ges branches secondaires consistent en fait en tores de dimension 2 , 

invariants par l'equation (4) • Les trajectoires sur ces tores sont bi-periodiques 
h 2 2 

avec les frequences wOs = 'llo + ~30rOs + ~12r1s 
A 2 2 

et w1s = 'll1 + ~20 rOs + ~03 r 1s dans la direction 

dans la direction e 
o 

A h 

Une solution est qU8si-periodique si wos / w1s est irrationnel sinon elle 

est periodique, toujours situee sur Ie tore defini par (12) • 

Si 0102 > 0 et que 112 

marceau, allant du point 

est du bon signe, la branche secondaire est en un seul 
s1 s2 

111 =·\lo1 au point 111 = 1J.1 ,ceux-ci situes sur les 
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branches primaires. 8i 0 102 < 0 les branches secondaires n'existent que pour des 

signes opposes de ~2 

Pour 1e systems cOll1Jlet (1), ces resultats se traduisent de la fa90n 

suivante, paurvu que (4') soH verifiee. L'existence des branches (12) pour (4) 

correspond bien encore a une bifurcation vers des tores invariants de dimension 2, 

mais l'on ne peut predire si une solution sur le tore sera attiree vera une 

solution periodique ou non. En utilisant le spectre Fourier d'une quantite observa

ble on peut mesurer le rapport de "2 frequences fondamentales" et l'on a une 

variation continue en fonction des parametres. 8i oe rapport est rationnel pour 

certaines valeurs des parametres, le mouvement est alors periodique et il y a 

"accrochage" des frequenoes : pour des valeurs voisines des parametres le rapport 

des frequences reste constant. On voit deja ici l'influence des termes negliges 

lorsqu'on n'etudie que le systems simplifie (4) • 

Il Y a pire Nous allons voir en effet que l'on ne peut m@me pas 

garantir l'existence des tores invariants pour le systeme complet (1) au voisinage 

d'un point de bifurcation tertiaire, oe qui fait l'objet du § suivant. 

3.5 - Bifurcations tertiaires. 

8i l'on considere la solution (12) de (5) , on peut chercher si une 

bifurcation de Hopf, pour oe systeme de dimension 2 , peut intervenir, entra1nant 

ainsi l'existence d'une 3eme frequence naturelle. En effet, l'operateur linearise 

du second membre de (5) autour de la solution (12) est en fait 

( 13) 

On en deduit que 2 valeurs propres cOll1Jlexes traversent l'axe des imaginaires a 
condition que 

Dans ce cas, tracEiJs a 0 pour 

(15) T 
\Jo1 = \101 

et le point de bifurcation sur la branche secondaire est donne par 
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Mais sur Ie systeme (5) , la bifurcation de Hopf est degeneree 

[5] , c'est-a-dire que pour ~1 = ~~ on a une infinite d'orbites periodiques. 

II est donc necessaire de considerer des termes d'ordre superieur - i.e. d'ordre 

5 - ajoutes a (4) pour lever la degenerescence et decider de quel cate a lieu 

la bifurcation [5J • Pour cela on doit supposer un peu plus que (4'): 

(16) non rationnel, ou 

Avec cette hypothese on a bien une solution periodique qui bifurque 

a partir de la solution stationnaire correspondant a (12) pour Ie systeme 

obtenu en ajoutant a (5) les termes d'ordre 5 • La frequence de cette solution 

est voisine de la partie imaginaire des valeurs propres de Js ' c'est-a-dire de 
T T ~ f = 2 ras r1s~a ,qui est petite pour ~ voisin de 0 • 

La decouverte du fait qu'une interaction de 2 bifurcations puisse 

entra1ner l'apparition d'une frequence voisine de 0 qui s'ajoute aux 

frequences naturelles existantes, est due a W.F. Langford [7J. Gela se generalise 

a de nombreux examples d'interactions. 

Pour Ie systeme simplifie dans R4 cela correspond a l'existence d'une 

famille de tores invariants de dimension 3 bifurquant a partir de la famille de 

teres de dimension 2 • Les solutions sur ces tores ~ sont asymptotiquement 
" " quasi-periodiques avec 3 frequences fondamentales voisines de IDas , ID1s' f , 

(au sens de [4] chap. 10) • 

Pour Ie systeme complet (1) on ne peut pas decrire ce qui se passe 

au voisinage du point de bifurcation trouve sur Ie systeme simplifie, mais1[L 

dehors d'une petite region de l'espace des parametres (region qui pourrait 

@tre invisible a l'ordinateur !) , on peut montrer l'existence effective de la 

famille de tores ~ invariants (et des 3 frequences asymptotiques) [6J 

Pourquoi ce trou noir ? En fait, si l'on sait donner un critere precis 

pour la perte d'attractivite d'une solution periodique, tel n'est pas Ie cas pour 

une solution situee sur un tore ~. II n'y a pas de raison en general d'observer 

une bifurcation vers un tore ~ [1J , mais dans Ie cas d'interaction on impose 

suffisamment de conditions au systeme pour que ces tores ~ existent, mais en 

dehors d'une petite region dans l'espace des parametres. 

On schematise a la figure 2 certains examples ou ~ existe, en 

considerant un repere avec r o ' r 1 et ~1 ' et ou ~ est fixe. 
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\02 < 0 C\'3o < 0 , cx03 > 0' 

0 1 < 0 , O2 < 0 

.... f-V 
.. , , 

-- -> 

r· 
\02 < 0 , /::, > 0 , C\'30< 0 , C\'03 >0 

0 1 < 0 , O2 > 0 

~-'T2.J 
:.---T .. 

...... rz 
- --~--:.----- ->\1-

Fig. 2. Exemples avec bifurcation 
tertiaire. Les'traits pIe ins (respt . 
pointilles) sur les branches primaires 
et secondaires correspondent a la stabi
lite (resp. 1 'instabilite). La famille 
de tores T3 est indiquee differernment, 
sa stabilite depend d'autres coeffi
cients. La region ou l'on ne sait rien 
est marquee d'un gros point noir. 

o U:.' I i _____ r&" 

~2 > 0 , /::, > 0 , C\'30 < 0 , a 03 > 0 

01 > 0 , O2 > 0 

Remarque 

En cas de presence de symetries dans Ie probleme d'origine (par exemple 
une symetrie spatiale cylindrique pour un systeme regi par des equations aux 
derivees partielles), il faut prendre garde aux bifurcations qui rompent les 
s~metries et enrichissent encore les possibilites pour les phenomBnes observes 
(L4] , chap. 11) • 
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Chaos and Chemistry 

Otto E. Rossler 
Institute for Physical and Theoretical Chemistry, University of TUbingen 
D-7400 TUbingen, Fed. Rep. of Germany 

1. Introduction 

The thinking possibility of 'turbulent' behavior in chemically reacting systems was 
first seen by Ruelle and Takens [1] and Nicolis and Prigogine [2]. A few years later, 
when the Lorenz equation [3] was beginning to be appreciated as a concrete chaos
producing 3-variable ordinary differential equation, similarly behaving abstract re
action systems (belonging actually to a somewhat different, easier to analyze, type 
of equations; Rossler [4]) were soon seen and followed by experimental demonstra
tions; see Hudson and Mankin [5] and Pacault et al. [6] for reviews. 

Chaos in simple reaction systems described by partial differential equations was 
(after a suggestive early experimental observatlon by Winfree [7] that could later 
be reproduced simulationally [8]) first numerically observed and analyzed by Kuramoto 
and Yamada [9]. More recently, degenerate center manifold bifurcation techniques are 
being applied to this problem (cf. [10]). A special sub-case is the existence Of 
purely spatial ('frozen') chaotic solutions in spatially unbounded reaction-diffu
sion equations. Here·, only 'Hamiltonian' (divergence zero) chaos is possible and, 
in fact, easy to obtain [11]. 

This leads to the problem of the existence of Hamiltonian chaos also in 
single ('multiple oscillator') molecules. For a review of this growing field, see 
Percival [12]. 

In the following, an attempt is made to somewhat further extend the topic of chem
ical chaos,. in three directions. Specifically, three large systems will be consid
ered that fall outside the usual applied mathematician's point of view (O.D.E.'s of 
a few degrees of freedom; P.D.E.'s). They pertain to the fields of chemical evolu
tion, statistical mecha~ics, and quantum mechanics, respectively. 

2. The Class of Well-stirred 'Evolutionary' Systems 

At first glance, well-stirred, isothermic reaction sy~tems of mass action type are 
just one more class of physically implemented nonlinear ordinary differential equa
tions. However, there is a subtle difference that sets these systems apart: only 
in the case of the chemical implementation is there a complete identity between the 
state variables on the one hand and the supporting 'hardware' on the other. A typi
cal example of the ordinary ('non-chemical'). class would be the electronic digital 
computer. Here a potentially huge set of O.D.E.'s (happening to be also describable. 
in an automata-theoretic shorthand [13]) is physically implemented, namely, as volt
ages across certain capacitors. This means, however, that even before any of the 
state variables of this 'dynamical automaton' [13] can start changing dynamically 
(that is, before the computer has been switched on), the whole hardware has already 
to sit there squarely in space. 

Not so for chemically implemented 'huge computers'. Here it is possible in prin
ciple to 'buy' an equally big network (even one possessing somewhat similar equa
tions [13]), without needing to purchase more than 5 or 10·substances - not only to 
'start' the machine, but also to 'possess' it in the same sense as one owns the above 
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computer (after having rented it). In other words, chemistry makes 'invisible 
machines' possible~ 

The Belousov-Zhabotinsky reaction can be used to illustrate the principle. In 
order to make this chemical system with periodic (and even chaotic; Nagashima [14]) 
transients work, it suffices to pour together four substances obtained at the phar
macist's in addition to water: a bromate salt, some crystallized malonic acid, cerium 
sulfate, and sulfuric acid. As soon as a well-stirred mixture of these substances 
has been set up in a beaker, the whole system of mass-action type equations indicated 
by Field et al. [15] dictates what happens. This system comprises about 20 variables. 
(The same argument applies to the continuous-stirred-flow reactor version of the same 
reaction: again, only those five substances have to be supplied at a constant rate, 
in order to set up the whole system and let it go on indefinitely.) 

In other words, a 20-variable chemical reaction system exists at the very instant 
that five substances have been brought together. Mathematlcally, there is no differ
ence between the existence of this implementation of the Field-Karas-Noyes equations 
and (say) an electronic implementation of the same equations: all the variables are 
implemented. Physically, however, the 'existence' implied in these two alternat1\/!e 
implementations is rather different: in the electronic case, even those variables 
that are presently zero are 'visible' (in the form of supporting hardware), while in 
the chemical case most of the implemented variables are 'invisible' at the outset 
(because they have zero concentration). 

Of course, it would also have been possible to start the same reaction system by 
pouring together all of the reactants involved in the whole system (neglecting the 
fact that some of them are unstable when isolated). But this merely amounts to a 
different choice of initial conditions ('non-rarified' ones). 

In the special case of the Belousov-Zhabotinsky reaction, the ratio between the 
number of state variables of the whole system on the one hand, and the number of state 
variables whose initial conditions (or influxes, respectively) have to be non-zero to 
start (as well as define) the whole system on the other, has been 4:1. However, 
this is only a conservative estimate. It could .be that if the same system were let 
run for a much longer time than is usually allowed (for example, in a CSTR version), 
some additional 'late-blooming' variables would have to be taken into account too. 
Therefore, the general question of the minimum fraction of substances needed in order 
to set up a larger reaction system poses ltself. 

Apparently, this fraction can be rather small - for example, 10-1000 or even less. 
This is quite fortunate - computer designers would be grateful for having an analogous 
principle on their side. At the same time, the old philosophical problem of 'preforma
tion' versus 'creation' takes on a new twist: invisible preformation is compatible 
with physical creation. 

A case in pOint is the class of so-called evolutionary reaction systems. To define 
such a system (and set it going in the most inexpensive way), it suffices to provide 
constant influxes (or exogeneously maintained concentrations) of some ten variables. 
These might include water, ammonia, methane, carbonates, and some sulfates and phos
phates and other salts (cf. Darwin's [16] 'warm little pond'), whereby one should not 
forget to provide an - on the average - constant 'concentration' of hv, that is, 
photons. 

The situation is completely analogous to having poured together the initial reac
tants of the Zhabotinsky reaction and then providing for their further exogeneous 
supply. The reason that this time, not just 4 times five but something of the order 
of magnitude of 101000 times ten state variables have been created lies in the capa
bility of carbon atoms to form so-called backbones. If the free energy of the photons 
that were assumed as one of the reactants (which incidentally might be replaced by 
some more 'chemically accepted' derived substance) is not too small, a high percentage 
of this large set of substances can indeed be generated with appreciable finite reac
tion rates, supposed their precursors already exist. The same holds true for the pre
cursors, and so forth. In other words, the whole reaction system must be taken seri
ously, not only mathematically but also physically, from the outset. 
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Instead of C-C- backbones, other backbones like B-N-B-N- are equally appropriate, 
just as solvents different from water', dnd tellllleratUI'!:!!> different from those making 
water an appropriate solvent, are admissible. Moreover, a temperature gradient may 
replace the photons. (Such conditions may have been realized in a thick layer inside 
the planets Neptune and Uranus for billennia; see [17].) 

So far it is not known how a big, 'randomly wired' chemical network of this type 
behaves qualitatively in the long run. (The simplifying assumption of well-stirred
ness may interfere with a biology-analogous type of2~nfolding; similarly for the sti-
pulation of smooth concentrations - even below 10- moles per liter - implicit in 
any. mass-action type O.O.E formulation.) Nonetheless, it appears certain that at 
firs~at most one or two subsystems (with a few variables each) will start growing 
autonomously, but that after a while (when these subsystems have reached an upper 
quasi-steady state) the conditions for others to do the same have changed (since now 
twice as many 'pool substances' are available; and so forth). This amounts to a kind 
of 'super bifurcation' (if the word is allowed): the number of unstably growing sub
systems becomes an unstably growing variable itself [18, 13]. 

The paradigm of chaos makes two additional suggestions possible. Firstly, the 
whole system (after take-off) is bound to contain chaotic subsystems over substantial 
segments of its further temporal evolution (if it does not even possess chaotic be
havior asymptotically). This follows by induction from the fact that 3 variables of 
mass-action type (plus 2 exogeneously maintained pools) are sufficient for chaos in 
isothermic well-stirred mass-action systems [19](similarly 2 variables plus one pool 
are sufficient under non-isothermic conditions [20]). Secondly, the above opening up 
of ever new (to a first approximation uncoupled) subsystems is itself an - in a sense -
'chaotic' process. 

The unstably growing subsystems that are being successively triggered into 'physi
cal existence' show a superficial analogy to the 'eddies' that spontaneously form in 
succession in a turbulent P.O.E. At the same time there is also a major difference, 
however. While ordinary eddies are born and decay without leaving a trace, the pre
sent variety is 'rigid' enough to allow for a cumulative process to set in (in which 
more and more improbable channels are being opened up as a consequence of the earlier 
opening up of others). 

This hypothesis has yet to be confirmed both numerically and analytically (see 
Cohen [21] for applicability of the theory of growing graphs to the present class of 
~ystems). The general idea of a 'cumulative turbulence' is at the same time inter
esting in its own right also, suggesting the following mathematical possibility: 
there might exist dynamical processes that automatically search through a universal 
library (with the present system forming a first candidate). 

In the last century, the science fiction author Kurd Lasswitz (cited after [22]) 
introduced the notion of a 'universal library'. This is the set of all books of a 
given length that can be printed by random permutation of the about 35 letters of the 
alphabet (including punc;tuation marks. and blanks). The size of a universal 1 ibrary 
made up from 500-page books is 102,000,000 volumes or letters (there is no appreci
able difference [22]). This number is considerably bigger than the number of chemical 
reactants that make up an evolutionary chemical network. Nonetheless, since every 
universal library contains much smaller universal libraries which faithfully specify, 
with the highest possible degree of abstraction and compression, the content of the 
whole library, even 101000 possibilities do already approximate a universal library. 

It is tempting to think of an evolutionary chemical network as an automatic process 
that scans through a universal library. If this is a valid interpretation, then this 
class of chemical systems has even greater theoretical interest. For by definition, 
a universal library contains all possible knowledge. 

At this point, it is possible to point to the fact that in biology, little 'books' 
have evolYBd in the genomes of cells. A human cell, for example, contains strings of 
about 10 nucleic acids, that is, chemical letters. This corresponds to a library 
of about 10,000 volumes. The finding that every advanced evolutionary system is 
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necessarily 'recursive' (in the sense of producing a more and more effective evolu
tionary system [23]) makes it prohahle that the information content of this particu
lar sub-library at least has been accumulated by a highly effective search process. 

Chaos 1S a universal library. Evolution may be its natural counterpart. 

3. Time Does Not Flow 

So far, we have considered a subclass of dissipative dynamical systems. These are, 
most generally speaking, systems of ordinary differential equations which do not ful
fill the specific constraint that the divergence of the right-hand side of the-whole 
equation is zero. Among the set of all nonlinear dynamical systems, the class of di
vergence-zero systems is of measure zero. Nonetheless, Hamiltonian dynamical systems 
(as in classical mechanics) do belong to this special subclass. An important problem 
since Boltzmann [24] is how to explain irreversible macroscopic behavior (in the sim
plest case described by dissipative differential equations) from the basis of a postu
lated underlying class of Hamiltonian ordinary differential equations. 

In recent months, some progress has been made toward better understanding this prob
lem of 'time's arrow', as Eddington [25] called it. Prigogine and Stengers' [26] drew 
attention to the following fact: in chaos-generating maps of area-preserving type, the 
degree of 'choppedness' (how an initial volume is thinned and elongated) is increasing 
in both directions of time. The authors used Hopf's [27] map (the so-called baker's 
transformation) as an example, but the result holds true for all kinds of area-preser
ving chaos of the 'pure' ('not KAM', see below) type - like Sinai's [28] billard table 
system. In the 'strongly mixing' system of the baker's transformation, there is one 
positive and one neqative Lvapunov characteristic exponent. Time reversal therefore 
still qenerates one positive and one neqative Lvapunov characteristic exponent. Alter
nativelv speakinq. topoloqical entropv increases in both directions of time. (See 
r29l for details on these technical notions.) 

A similar result was recentlv obtained bv Hurley [30]. He showed that under the 
usual assumptions of statistical mech<l.nics, indeed almost all initial conditions lead 
to an increase in both directions of time. 

The relationship between both results (applying to systems of vastly different di
mensionalities) may be nontrivial. This is because higher-dimensional nontrivial 
generalizations of the baker's transformation [31] do not all have the property that 
the numbers of positive and negative characteristic exponents are equal. In such 
systems, the type'of chaos found can be different in both directions of time. None
theless, the higher the dimensionality, the more likely again is the (approximate) 
equality of both numbers. 

What is the physical interpretation of these mathematical results? Prigogine and 
his school have been struggl ing with this question for a long time (see again [26]). 
If time were first going in one direction and then in the other, a co~moving observer 
would notice that for a while, the formerly observable increase in 'choppedness' turns 
around, before thereafter picking up again. Another observer, however, opening his 
own eyes at the moment that time starts going backward, would experience only an in
crease in the degree to which his own initial condition (which to him appears "un
chopped') is being spread out. This means that more than one senslDTe interpretation 
can be given to the same phenomenon. 

If it is true that two observers can coexist, one of whom is observing an increase 
in order and the o,ther a decrease in order, in the same system, then something is 
wrong with the usual interpretation of the world (presuming that such deterministic 
models are admissible). 

The simplest solution to the problem appears to be: to abandon the notion that time 
is flowing altogether (cf. Minkowski [32] for an analogous, but differently motivated, 
proposal). In this case, the notion that time could be 'invertible' suddenly loses all 
meaning. There is no longer any contradiction in stating that entropy increase 
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in two directions simultaneously. Also, one is freed to acknowledge that indeed two 
different dissipative evolutions may be determined by the same divergence-zero micro
scopic process. To whic.h of these two 'coexisting' dh!>ipative worlds a macroscopic 
observer belongs depends solely on in vlhich direction of time he is 'facing'. 

The task to visualize the possibility of another dissipation (and perhaps evolu
tion and intelligence) existing in the same world, facing the other way, is not easy. 
Nonetheless, specific experiments verifying the existence of this 'counter-current' 
may be devised. 

From the mathematical pOint of view, however, there is no reason to wait for a 
positive outcome of such experiments. Their positive outcome is known beforehand. 
This is because, in mathematics, time does not flow anyhow. 

Subjective time, of course, does flow. But this, as philosophers are quick to 
point out, has perhaps nothing to do with physics (see Husserl [33], as well as [34]). 

4. A Macroscopic Illustration 

While there are several levels on which chaos will be significant for an understanding 
of the brain (starting with the Hodgkin-Huxley equations for a single neuron, and pro
ceeding through networks of coupled neurons), the apparently highest functional level 
where chaos theory can be applied is that of behavioral control ('motivation'). For 
one particular brain - that of the blackbird - Todt [35] showed that the next song 
phrase chosen by this songbird depends on the length of time that this particular 
strophe has not been sung. Assuming that the different phrases available to the black
bird have each their own motivation and compete for expression, Todt arrived at a model 
that is identical mathematically to one proposed later as a~ explanation for 'boiling
type turbulence': a set of (in their slow variables cross-inhibiting) relaxation oscil
lators of the single-threshold type [36]. 

If the brain can be understood as a macroscopic physico-chemical machine describable 
in classical space-time, it can serve as another, this time macroscopic, example by 
which to illustrate the likely absence of time's flowing. The following thought ex
perimentwas devised to show this. 

Suppose computer science had already succeeded in building a highly intelligent 
artificial motivational system (for which one could moreover make plausible that it 
functions according to the very rules that during the course of biological evolution 
were incorporated into actual brains). Then it would be possible to let this artiff
cial brain interact, not with the whole three-dimensional world that we know, but with 
an artificial simplified two-dimensional world only. This two-dimensional artificial 
world could be known and controlled completely, and the interaction between this world 
and the autonomous artificial brain could be recorded completely. 

As a second assumption, suppose that the 'wiring' of the artificial brain was con
fined to two dimensions as well. This is in principle possible [37]. For example, 
artificial axons, that is, information-carrying wires, can be made to cross in two di
mensions without 'cross-talking'; a proposed implementation involves excitable media 
(two-dimensional strips of such a medium) that possess junctions of a complicated shape 
making sure that an excitation travels only straight ahead after the junction [37]. 
In this way, an artificial analogue to a natural brain preserving the essential dynam
ics can be built in principle such that both the analogue and its environment are two
dimensional. 

Now comes the crucial point: after recording the interaction of this (two-dimen
sional) brain with its (two-dimensional) environment, over a certain piece of time, it 
is possible to take all this information and build another analogue, this time three
dimensional. Mathematically, the new analogue obeys the same equations as the former 
system. Physically, however, the role of time as the former third dimension is now· 
played by the third space dimension. 

Thus, in principle a dynamical system of 'brain type' can be implemented in the 
three space-dimensions alone. If it is true that the brain 'is' a dynamical system 
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implemented in space-time, then this purely three-dimensional 'frozen fixture' consti
tutes but another such implementation, 

Just as in the spatio-temporal implementation (x,y,t) the fact that one of the three 
dimensions was time did not show in the equations (except for the symbol used, t ), 
so it does not this time (x,y,z). And just as the symbol t could be meant to say: 
take a slide rule (preferably transparent, with a fine red hair-line running through 
the middle) and move it along the t-axis - in order to take into explicit account the 
fact that different instances in time succeed each other in a perfectly ordered man
ner - , so this time the same slide rule can be applied to the outside of the three
dimensional unchanging block along its z-axis, with the same words. 

Of course, it could still be that physical time (or rather: the 'point of nowness') 
is indeed moving. But for this to become a scientifically meaningful possibility, the 
postulated movement would have to show up in the ~quatioffisomehow. For example, one 
might try to add another differential equation, t = 1 , in order to make sure that 
time does change. But this in effect only means adding another independent variable 
t' along which time is changing. This 'super-time' would, in turn, be unchanging 
again, unless another variable t" would be added, and so forth ad infinitum. Thus, 
it is as difficult to build a physico-mathematical theory in which time is flowing as 
it is to define left and right - and perhaps equally challenging. 

5. Uncertainty in Classical Mechanics 

Ga1gani [38] recently gave an interesting example of how a finite h can be derived 
from a purely classical context. He argued, essentially, that the non-ergodic nature 
of Hamiltonian chaos (with its division into two classes of trajectories: strongly 
chaotic ones, and those that belong to KAM tori; cf. [39.]) effectively shields part 
of the energy contained in a classical mechanical system from interacting with the 
environment. This effect he took to explain the black-body radiation law with its 
under-representation of high frequencies, because in weakly coupled anharmonic oscil
lators it is also the highest frequencies that participate in the 'shielded' KAM tori. 

Two points remain open in the above picture: firstly, its applicability is con
fined to classical mechanical systems of the 'smooth' type, that is, to the non
collision type (non-Sinai) subclass. Secondly, it is not known whether the argument 
remains valid in the limit of the number of coupled oscillators going to infinity, as 
was assumed by Galgani. This is because even 1 inear systems in this 1 imit become 
strongly mixing (see [40] for a review), and so might the KAM tori. 

In the following, an alternative proposal is made based on the assumptions that 
(1) the class of systems is not restricted to the smooth subclass, and (2) the number 
of state variables is bounded from the outset. (Thus, we are back in the class of 
divergence-zero differential equations of finitely many variables.) It is proposed 
that for this class of systems, an 'uncertainty relation' holds true. 

The following example may show this. Suppose that there is a 'whole system' (with 
a 2n-variab1e, highl~ nonlinear Hamiltonian H that generates strong mixing), and 
within it a 'subsystem' (with 2m state variables, m« n ) that has 'wishes'. 
(Note that if the whole system were dissipative, there would be no problem in defining 
a subsystem that has wishes, that is, is an optimizer.) Specifically, assume that the 
subsystem wishes to catch fluctuations that occur at the boundary that it shares with 
the rest of the system. 

Obviously, if the subsystem is to be able to realize this wish, it must be built in 
such a way that it somehow 'registers' fluctuations as they build up at the boundary: 
In the second place it must also be capable of 'responding' (by increaSing the local 
coupling, for example). Making the last two assumptions is, however, impossible be
cause they lead to a contradiction. For if the subsystem could succeed in attracting 
energy, the Liouville property (of volume of flow preservation in state space) im
plicit in the assumed Hamiltonian structure of the whole system would be violated. 
Therefore, every subsystem must· be unable to register any 'equilibrium fluctuations'. 
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This general result can be specified. As the whole system oscillates chaotically, 
the mean energies of all its degrees uf freedom become equal (equipartition theorem; 
cf. [41]) if for simplicity the potential energy terms in the Hamiltonian are assumed 
equal in form to the kinetic ones. Each subsystem then has a mean energy content of 
mH/n. However, the same subsystem's mean internal energy is always by one unit 
( H/n ) smaller. This, too, is a consequence of the equipartition theorem [41]: each 
subsystem, taken as a whole, also represents just one degree of freedom to the rest 
of the system. A familiar illustration is a Brownian particle jiggling in a fluid. 
Its m internal oscillators do not possess the same mean energy as if the particles 
were isolated, at the same temperature, but only a rational fraction, (m - 1/2)/m , 
of this value. (Note the 1/2 - because a Brownian particle has only kinetic ener
gy.) Usually, this tiny difference is being ignored. 

Letting m shrink makes the principle stronger, however. If m = 1 , the internal 
mean energy of the subsys tem becomes zero ( 0/1 ) - thewhol e mean energy of the sub
system is now 'tied up' in the interaction. If m = 2 , the subsystem's internal mean 
energy becomes equal to its mean 'linking energy' (and half as big as if the subsystem 
existed isolated at the same 'temperature'); and so forth. This means: a subsystem 
can never take up arbitrary fractions of an energy offered to it by another subsystem: 
only the rational fractions 0, 1/2, 2/3, 3/4, ... can be absorbed into its mean energy. 
Conversely, when acting as a source itself, a subsystem can only invest a rational 
fraction of its own total energy content into another subsystem ( 0, 1/2, 1/3, 1/4, ... ). 
Moreover, pre-existing energies of both the receptor and the donator subsystem are al
ways 'put on the Procrustes bed' of one energy unit (H/n) as the two systems become 
coupled - so that their former states necessarily become 'obscured' by this amount. 

Thus, the present statistical mechanical approach predicts both 'quantization' and 
an 'uncertainty relation' to occur in finite-n classical mechanical systems of ergodic 
(or mixing) type. It appears possible that an analogous reasoning led Einstein [42] 
in 1904 to think of applying a 'molecular theory' to a radiation field (with the well
known outcome, one year later, of kT - that is, H/n - for the mean energy of a 
light energy quantum in a one-dimensional black cavity [43]). 

Historically, it is interesting to note that this early 'finite number of state 
variables view' was at variance with Max Planck's [44] original view (to whom the 
quantum had been a mere heuristical - even numerical - device within a continuous 
picture [45]. Einstein's later reluctance to continue sacrificing Maxwellian conti
nuity (in view of the convenient Lorentz invariance of Maxwell's equations) may have 
contributed to the 'compromise nature' (partly continuous, partly discrete) of modern 
quantum mechanics (cf. [45]). 

Interestingly, the fact that the second law of thermodynamics can possibly be ex
plained by classical mechanics only under the assumption of n bounded (more precise
ly: H/n nonzero) was known to Boltzmann [46] already [38]. The present 'limit to 
observation from the inside' could also have been seen and experimentally pursued in 
the last century. In fact, it has been seen - but only in the allegorical context of 
Maxwell's demo.n [47]. f; first concrete version of the demon is Feynman's [41, p.46-7] 
membrane (possessing trapdoors that can open to one side only when hit by flying par
ticle). Here a kind of 'microscopic providence' prevents any macroscopic anisotropic 
diffusion from occurring - if the number of internal degrees of freedom of the mem
brane is finite. Feynman [41] likened his membrane to a Brownian particle. The 
present theory j-s an attempt to further 'nail down' the point where the non-observ
ability arises. 

The proposed classical mechanical derivation of quantum mechanics would, if success
ful, not improve the observability 'from within' of the world's Hamiltonian - in 
accordance with the spirit of the Copenhagen interpretation of quantum mechanics. 
Nevertheless, something'symbolical' would be gained: one could set up model worlds 
(for example, in a computer) in which little subsystems (termed 'physicists') would be 
subjected to an analogous observation limit with respect to their own H - while the 
higher-world operator would be able to fully understand their struggling. 
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Thus, we are back to science fiction at last (cf. [48]). Being able to control a 
model world not demonstrably isomorphic, but also not demonstrably nonisomorphic, to 
one's own world is all-important - according to Descartes. In his booklet on the 
foundations of science and everything, Descartes [49] insisted on a minimum degree 
of consistency required from any world into which one has been thrown against one's 
will, if the verdict of ·unfairness (Descartes said: a bad joke) is to be refutable. 
In the 17th century, the boost in responsibility to be gained from a scientifically 
consistent world helped to create modern science. Chaos theory might reinstate that 
optimism. 

7. Summary 

The paradigm of chaos suggests a second look at three more than 100 years old theo
retical chemical problems: the qualitative behavior of well-stirred evolutionary 
chemical soups; the reversibility-irreversibility problem of statistical mechanics; 
and the nature of the measurement process in classical mechanics. Three new notions 
are suggested (invisible machines; counter-current dissipation; classical uncertainty). 
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Evolution of Chaos and Power Spectra in One-Dimensional Maps 

Hazime Mori 

Department of Physics, Kyushu Unive~sity 33 
Fukuoka 812, Japan 

1. Introduction 

Low-dimensional maps have turned out to be useful for discovering and understanding 
new properties of dynamical systems. Outstanding examples are the Bernoulli 
shifts [1] and the B transformations [2] in ergodic theory and the Lorenz map [3] 
and the quadratic model for the onset of fluid turbulence [4]. In fact these dis
crete processes have led us not only to a deeper understanding of chaotic orbits 
in terms of the topological entropy and the Lyapunov exponent, but also to the 
discovery of a band-splitting transition [5] and a dynamic scaling law near a 
chaotic transition point [4,6]. 
The structure of chaos can be described by the power spectrum, i.e., the Fourier
Laplace transform of the time-correlation function of nonperiodic orbits [7]. In 
this talk, we shall discuss how chaos evolves and the power spectrum changes as 
the excitation parameter is increased, taking two one-dimensional maps which 
display the transition from' non-chaotic to chaotic states. In particular we shall 
be interested in an ordered motion in chaos which is represented by a sharp peak 
of the power spectrum. 
Chaos is exhibited by nonperiodic orbits, but its structure can be characterized 
by peri odic orbi ts whi ch exi st densely among nonperiodi c orbits. We shall take 
this point of view and make use of Sharkovsky's ordering of periodic orbits for a 
contjnuous map [8] and Takahashi's ordering for the B transformations [2]. 
This work was performed in collaboration with T. Yoshida, H. Okamoto, H. Shigematsu 
and T. Ose. 

2, POWer spectrum PlW} 

For many chaotic systems, an essential feature of the long-time behavior can be 
described by a one-dimensional discrete process {xn}, (n=l ,2, ••• ) which is 
generated by a nonlinear transformation fex}; 

(2.1) 

where fn denotes the n-th iterate of f. If the slope Iflex} I is larger than unity 
in an attractor Q except at finite number of points, then 1) there exist periodic 
orbits densely everywhere in n and they are all unstable, 2) f(x) is ergodic in 
n; namely, for alm~st all initial values Xl' the orbit fnCx l ) is a nonperiodic 
orbit and the long-time average is equal to the space. average with a probability 
density p(x); 

1 N f <G> == 1 tm N I: G(x) = dx p(x)G(x). 
N-- n=l n n 

(2.2) 

The slope If' (xli> 1 ensures the stretching and folding of intervals in n which 
leads to the ergodicity. Two interesting models satisfying this condition are the 
B transformation 

fex) = { 
88 

2hx, 

2hx - h, 

(0 ~ x ~ 1/2) 

(1/2 < x ~ 11 
(2.3) 



and the tent transformation 

f(x) = {2hX 
(0 ~x~ 1/2) 

(1/2 < x~ 1) 
(2.4) 

-2hx + 2h 

where l~h> O. The l3 transformation is a generalization of the projection of the 
Baker's~ransformation onto the stretching axis, and the tent transformation is a 
simplification of the Lorenz map and the quadratic model. Both have the slope 
If'(x) I =2h> 1 if h> 1/2. If h< 1/2, then any orbit is attracted by the fixed 
point x=o. Thus the two models are chaotic if h> 1/2 and non-chaotic if h < 1/2. 
The power spectrum is given by 

00 

pew) = 1: C e- iwn + c c n •. , (2.5) 
n=O 

where Cn is the time-correlation function of orbits 

Cn :: IQ dx p(x) fn(x) ox, (ox:: x- <x» (2.6) 

and c.c. denotes the complex conjugate of the first part. Cn can be written as 

Cn ... IQ dx xHn[p(x)ox ] (2.7) 

in terms of the Frobenius-Perron operator H [7]. Let w~(x) be an eigenfunction of 
H, 

~ = 0,1,2,···, (2.8) 

weith an eigenvalue v~.· The probability density p(x) is the eigenfunction with 

eigenvalue unity; H p(x)=p(x). (vO=l). Expanding p(x)ox in terms of {w~(x)}, we 
obtain 

00 n 
Cn = 1: A~ v~ (2.9) 

~=1 ' 

which is inserted into (2.5) to give 

00 1 
pew) = 1: A~ -iw + c.c. 

~=1 1-v~e 
(2.10) 

Therefore, the power spectrum has a sharp peak at llrW~ if y~« 1, where 

iw~ -y~+iw~ 
v~ = Iv~le =,e . (2,11 ) 

3. 13 transformation (13:: 2h) 19J 

In this section we shall discuss pew) of the 13 transformation whose mapping func
tion is given by (2.3). Let {Pn} (n=1,2,· •• ) be a periodic orbit of period N 
(N=2,3, ••• ); 

N PN+i = f (Pi) = Pi' ;'1,2,···N. (3.1) 

A periodic orbit of period N exists if and only if B::2h~BN' where 

BN = 1 + BNN+1 , BN '> BN+1 > 13"" = 1. (3.2) 
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N=10 

, 
" 'Eto , . 

/. 
" , Eg : 

, , 
ES : , 

~ f{x) of (2.3) vs. x in 
the attractor at S=SlO~1.198, 
where the intervals flow as 
El+El , E2;Ei +E i+l 
( i =2 ,3, ••• N-1); EN ->- El . 

Examples of fiN are 

S2 = {1+>'5)/2 ~ 1.618, 133 ~ 1.466, 
(3.3) 

1325 ~ 1. 100, 

The minimal periodic orbit is the rising periodic 
orbit which has only one point on the right branch 
(1/2 < x~ 1). At S=SN the rising periodic orbit of 
period N lies on the top, as in Fig.l. It may 
easily be understood that Takahashi's ordering 

2 ~ 3 ~ 4 ~ 5 ~ ••• ~ N ~ ••• ~ 1 (3.4) 

holds [2J, where j ~ k means that, if a periodic 
orbit of period j exists, then a periodic orbit of 
period k also exists. Therefore, if 132:,132' then 
periodic orbits of all periods exist. As 13+ Seo =1, 
however, periodic orbits disappear successively in 
Takahashi's sequence, and all periodic orbits 
disappear at the transition point 13=1. This gives 

the mechanism of the degradation of chaos or, inversely, the evolution of chaos in 
terms of periodic orbits. 
Now let us calculate P{w) at S=SN' Let Ei be the subinterval (Pi-l' Pi) with Po =0, 
as in Fig.l, and Ei (x) be its characteristic function (l if x E Ei' 0 otherwise). 
Then the flow of intervals leads to 

El{x) 
_ 1 

H E2{x) - S- O (3.5) . .. 

EN{X) 0 .... ,. . 0 

The eigenvalues of the structure matrix are given by 

[ J N N-l det S 1 - M = S - S - 1 = O. (3.6) 

* This algebraic equation has N roots, SO' Sl""SN_l' satisfying SN_~=S~, which 
lead to eigenvalues of H, v~=S~/S. Only one positive root SO=S corresponds to 
vO=l and leads to the probability density 

N -i+l N p{x)=aOl .L 13 Ei{x), aOl :: 13 /N{S-l)+1. (3.7) 
1 =1 

Other (N-1) roots, satisfying IS~I < 13, determine P{w) as 

N-l A~ B 
P{w) = L 

;(w~-w) 
+ + C.C. (3.8) 

~=l 1 - 1 e- iw l-lv~le 13 

S~ l+N(S-1) 132_1 N-l 
A = 

S2_S 
, B = 1 - L A~, (3.9) 

~ NS(S-l)-l l+N(S~-l) ~=l 
~ 
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where P(w) has been normalized so that In dw P(w)=l~ v=l/S in the second term of -n 
(3.8) is an eigenvalue ot H characteristic of the time-correlation function (2.7). 
Thus P(w) is completely determined by St' 

N = 2S N 100 

~ N roots of (3.6) with N=25 and 100 in the complex plane, where the circle 
is the unit circle. 

1.0 1.0 
S, 

N=5 
s, N= 50 

P(") 
pc .. ) 

0.5 s, 0.5 

S, 

s, 

0.0 0.2 0.4. 0.6 0.8 1.0 0.0 02 0.4 _I' 0.6 0.8 1.0 

~ P(w) vs. win at S=SN (N=5,50), where the height of the highest peak is 
narmalized to be unity: The peak at w=o arises from v=l/S, but its height rapidly 
decreases as N+oo. The t-th peak comes from vt=St/S (t=l ,2,'" N-l), and the 
first peak Sl is rapidly enhanced as N+oo (i .e., S+ 1). 

Fig. 2 shows 5,t of 1~=25 & 100 in the complex plane. 5,t's lie on an ellipse. This 
ellipse approaches the unit circle as N+oo (i.e., S+l). If Iwtl <n/3, then 

, * IStl >·1. The nearest neighbors of the positive root, 51 and SN_l=51, have the 
largest magnitude among tto and hence are tne slowest eigenmodes which determine 
the main feature of P(w) as N+oo. This is illustrated in Fig.3. Thus, for large 
N, the nearest neighbor 51 dominates and leads to 

P(w) '" 
Al 

_y +i(w -w) + C.C. + (w+ -w), (3.10) 
l-e 1 1 

where (w+ -w) denotes those obtained by changi ng w to -w in the fi rst two terms. 
This leads to 

-yln 
Cn '" e cos(wln). (3.11) 
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A dYnamic scaling law holds as shown in Fig.4: 
-af -ad 

wl",N 'Yl'''N . Wehaveaf ",0.98.ad",1.22 
for 200< N< 500. Since (3.2) leads to 
1/N+ (13-1)/1 In(£3-1) 1 as N+co. we have 

(3.12) 

This scaling law implies that 
A. Least-period hypothesis: pew) and Cn are 
determined by the neighborhood of the minimal 
periodic orbit of the least period N as N+co. 
B. Similarity hypothesis: The neighborhood 
becomes similar as N+co. 
These ensure that (3.10) and (3.11) with (3.12) 
are valid even when the vertex is a nonperiodic 
Eoint. The details will be reported elsewhere 
L9]. 

4. Tent transformation (a = 2h) [10.11J 

The mapping function is given by (2.4), for 
which Sharkovsky·s ordering holds [8]: 

3 ~ 5 ~ n.. . .. 1-2x3 1-2x5 1-2x7 1- ••• 
••• ~ 2nx3 ~ 2nx5 I- 2nx7 ~ ••• (4.1) 
••• I- 2n I- ••• 1-8 ~ 4 I- 2 I- 1 

D.7 

D.' 
. 0.11 

D.' 
D.2 

:so SOlO JIll 1 2lXllIXIIJOO5lD 

20 3D 110 50 70 100. 200 300 10.1 500 

Fig.4 w1 and Y1 vs. N in the 
logarithmic scale. where af ", 0.98 
for 25 < N < 500. whereas ad'" 1 . 27 
for 25<N<100 and ad"'1.22 for 
200 < N < 500 . 

where the first two lines consist of the ascending sequences of 2nxN. N=2m+1. 
(m=1.2 •••• ) with n=0.1.2 •• ••• and the last line is the descending powers of 2. 
A periodic orbtt of odd period N exists if and only if a=2h~aN' [12]. where 

(4.2) 

Therefore. all periods exist if a~a3= (l+1S')/2~ 1.618. As a+aco =12. however. 
odd periods disappear successively in Sharkovsky's sequence and all odd periods 
disappear at a=~. where the attractor splits into two bands. This is the 
mechanism.of the band-splitting transition. 2 
Below a=l2. each of the two bands repeats the above process in the map f (x) with 
slope a2 and splits into two bands at a2=12. Thus it turns out that period 2nxN 
disappears below 

(4.3) 

and the attractor splits into 2M bands at a=an:co=21/2M. All periods. except 2n. 
disappear at a=aco:co=l where chaos disappears. 
Now let us calculate pew) at a=~. where the vertex is the rotating periodic orbit 
of odd period N like Fig.5. Then the flow of intervals leads to 
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El (x) 

H . a 
• , 

Em(x) 

Em+l 

E2m 

0 

/ 

? , 

0 

. 
• 

o 

The eigenvalues of the structure matrix are given 
by 

S2m+ 1 _ 2S2m- 1 _ 1 = 0 (S f -1) . (4.5) 

This leads to 2m roots, SO' Sl ""S2m_l which are 

illustrated in Fig.6. The positive root SO=a and 

the negati ve root Sl change as So ->- /2"; Sl ->- -/2" as 

m->-oo, whereas the other roots remain inside the 
unit circle IS£I < 1. Hence Sl is the slowest 

eigenmode which has the largest eigenvalue. 
Equation (2.9) takes the form [lOJ 

, 
• . 

'1 

(4.4) 

N= 9 

2m-l 
C = E 

n £=1 
[\]n 2m [t£]n A - + E B -

£ a £=1 £ a2 . 
~ f(x) of (2.4) vs. x in 

(4.6) the attractor at a;: a9~1.441, 
where the intervals flow as 

where t£=exp[2TIi£/(2m+l)J. Therefore, 

the Sl/a term dominates, leading to 

'" -y n 
Cn ~ 7~jv~ (_l)n e 1 

TENT N 25 

for n»l, El~Em+l' Em+2 ,···E2m ; 

E.~E2 +2' (i=2,3,···m); 1 m-l 

Em+14Em+l , Em; Em+i4 Em+l - i · 
(4.7) 

TENT N 101 

Fig.6 2m roots of (4.5) with N =2m+l=25 and 101 in the complex plane. 

with Yl=-lnIS,Ial ~ l2(a-l2) near a=l2. This is the critical mode which agrees 

with the cycling mode between two bands below a=l2. Thus the slowest eigenmode Sl 
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produces a sharp peak of pew) at w=rr. It also turns out that, as a.'" 1, a sharp 
peak centered at w=rr/M with width Yl/M appears near o.=21/2M (M=2n, n=0,1,2,···) 
successively so that pew) has (n+l) sharp lines at w=rr/2k, k=O,l,···n. 
It seems that, even when the vertex is a nonperiodic point, there exists a 
negative eigenvalue vl ' isolated from the others, and the above is still valid. 
The details will be reported elsewhere [lO,llJ. 

5. Short summary 

1) Chaos evolves by the successive excitation of a sequence of periodic orbits; 
e.g., Takahashi's sequence for the 6 transformation and Sharkovsky's sequence for 
the tent transformation. 
2) This evolution of chaos can be described by pew) whose sharp peak represents 
an ordered motion in chaos. 
3) A dynamic similarity law holds for pew) & Cn near a critical point. Its 
mechanism is that, in the 6 transformation, the neighborhood of the minimal 
periodic orbit of the least period dominates near 6=1, while, in the tent trans
formation, the critical mode of the band splitting dominates near 0.=12. These 
differ from Feigenbaum's scaling [4J which results from the similarity of map 
directly. In the tent transformation, Feigenbaum's type scaling [6J holds near 
0.=1 with 0=2. 
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Tests of the Period-Doubling Route to Chaos 

Mitchell J. Feigenbaum 
Los Alamos National Laboratory, Theoretical Division 
Los Alamos, NM 87545, USA 

Abstract 

The period-doubling route to chaotic behavior has characteristic spectral and temp
oral properties which are here outlined. 

When a system makes a transition to chaotic behavior by what is now termed period

doubling, there are well-determined universally true properties that are encountered. 

That is, there are definite temporal relations and equivalent spectral relations 

that can easily be put to experimental test. 

Simply put, as a c.ontrol parameter is varied, any dynamical variable demonstrates 

a systematic doubling of its period prior to the aperiodic limit signalling the on

set of chaos. This doubling occurs at particular parameter values which converge to 

the value at the transition point geometrically at the universal rate 8 = 4.6692 •• 

This is the most elementary test of the theory of this kind of transition. Unfor

tunately,_ it is a delicate test requiring a resolution that at the level of present 

experiments usually forbids a determination beyond order of magnitude. 

However, since the period doublings accumulate so quickly, gross features remain 

-nearly constant, whil; the new temporal features characterizing the newly doubled 

period contain a small fraction of the energy. Moreover, as period-doubling is pe

riodic in terms of logarithmic deviations from the transition point, each new modi

fication is a constant fraction of its predecessor. This entails very definite con

sequences, whether viewed temporally or through a Fourier transform, which we explore 

in this note. 

The basic theoretical quantification of this notion is that the deviations from 

the old periodicity that determine the new and doubled period systematically (and 

universally) scale from one doubling to the next. Formally, write 

xn(t)-xn(t+Tn_l ) 

2 

where xn(t) is any coordinate when -the parameter is such that the n-th period 

doubling has occured, for which the period is 

T = 2·T n n-l 

(1) 

(2) 
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(Actually, as the parameter varies Tn is only approximately constant. However, since 

the parameter valu~s accumulate, (2) is asymptotically correct.) Equation (1) defines 

dn to be non-zero if the period of xn is really Tn and not Tn_I' and so is 

the deviation in the' trajectory associated with the doubled period. The theoretical 

result (which is published elsewhere[I]) is that for large n, 

where cr(x) is a universal function a priori computable (the ~ function for 

each coordinate of the system), depending upon the level of period-doubling (n), 

only through a scaling of its argument. Observe that according to (I) 

so that cr has the symmetry 

cr (x+l/2) = - cr(x) 

cr (x+l) = cr(x) 

(3) 

(4) 

Equation (3) is a very strong prediction acquire the temporal data xn(t) and 

compute from it the half-period deviation function of (1) ; similarly obtain dn+l 
and divide it by dn ; then for each n on an appropriately scaled plot, the same 

function cr(x) should be observed. This is already a strong scaling result. However, 

there is an even stronger feature being tested : namely that o (x) is a known, 

available function with the approximate value 

{: 1/6.25 •.. o < x < 25 

cr(x) (5) 

= 1/2.5029 ... 25 < x < 5 

All spectral tests for period-doubling universality are tests of (3), while at present, 

the results following from the approximation (5) are as precise as experiment can 

hope to resolve. 

There are, however, difficulties in employing (3) as an experimental test which 

follow from the requirement of making two sets of measurements at different parameter 

values. The simpler problem is the phasing of the two time bases : to use (3) the 

time origins must be the same. This is. most easily handled by varying a delay, in 

say dn(t) , until its zero crossings are most nearly coincident with those of 

dn+l (t) • (There are indeed many nearly coincident crossings. Also, the time scale 

of dn(t) might require some adjustment so that Gn+l has precisely twice the pe

riod of dn .) More seriously, the parameter values must be chosen so that the limit 

cycles of xn and xn+l have identical stability. This requires, for example, some 

convergence data which might be hard to come by unless successive parameter values 
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at the bifurcation points (when the period doubles) are used. If these difficulties 

are attended to, however, (3) and (5) then serve as a simple and very direct measure

ment of the universality theory. (These same difficulties afflict the Fourier mea

surements, except that phasing is obviously unimportant if only amplitude spectra 

are determined). 

In fact, the universal function a is different for different stabilities (e.g. 

at superstable values as opposed to bifurcation values of the parameter.) However, 

the differences show up only in the corrections to the approximation (5). Indeed 

there are other functions a agreeing to the level of (5) which determine deviation 

signals, d(t) ,pertaining to the same parameter value (typically to he used at 

the transition value) which then bypasses the above difficulties. loIe shall explore 

these tests after determining Fourier properties which shall motivate them. 

Corresponding to the deviation signal, the fundamental frequency of x 
n 

is 

liT = -21 (l/T 1) , that n n- is, a half subharmonic of the previous fundamental. Had 

dn(t) vanished, there would have been no components at the odd multiples of the new 

fundamental. The even mUltiples represent the components at the previous fundamental; 

since the parameter change becomes increasingly small, these components cannot suffer 

significant changes. Accordingly, the basic result of the doubled period is the set 

of spectral lines at the odd mUltiples of the new sup harmonic fundamental. These are 

determined not by all of xn(t) , but only by its "subharmonic part" dn(t) • Since 

these scale (by a) , it is then clear that these successive additions to the spec

trum geometrically decrease in a universal way, as determined by the Fourier analysis 

of a. Let us now make these observations quantitative. 

By definition, 
Tn 

A 1 
x(n)(p) =TJ 

n 0 

dt x (t) e2~ipt/Tn 
n 

with inverse, 

xn(t) = L 
P 

Manipulating 

~(n)(2P+l) 

or 

x (n) (2p+l) 

with inverse 

d (t) = L 
n t 

A () -2~ipt/Tn 
x (n) p e . -

(5), 
Tn_ l 

1 =-J 
Tn-I 0 

Tn- l 
1 

= -T - J 
n-l 0 

dttn(t)-Xn(t:Tn- l )] e2~i (2rl)t 

n 

2~i 2p+l t 
dt dn (t) e -T-

n 

A (2 1) -2~i 2p+l t 
x(n) p+ e -T-

n 

(5) 

(6) 

(7) 

(8) 

(9) 
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Thus, the spectral components at odd mUltiples of the subharmonic fundamental are 

determined solely by the deviation signal dn(t) • 

Since all the new subharmonic components arise from the sane time signal, they 

can be smoothly connected as an ensemble by interpolating them. The natural inter

polation that reflects their common source is, th.en, the analytic continuation pro

vided by (3) : 
. Tn _ l 

A 1 
x. (w) = -- I n Tn_ l 

o 

dt d (t)e27fiwt 
n 

with 

or 

XA (2p+l) A 

n T = X(n)(2p+l) 
n 

Utilizing (9), this interpolation is 

i (w) 
n 

X (w) n 

E ~(n)(2p+l) ~ 
p n-l 

I 
Tn-I 

o 

7fiwT 1 ~(n)(2p+l) 
(l+e n) E TIl 2p+l-wTn p 

We now ask how ~ lew) is related to 
T n+ 

A lIn 27fiwt 
xn+l (w) = Tn 0 dt dn+l (t)e 

Employing the scaling 
T 

formula for large 

A 1 n 
xn+l (w) ~T I 

n 0 

dt G(2~ )dn(t)e27fiwt 
n 

Tn _ l 

E i(n)~2p+l) ~ I 
p n-l 0 

~ (w) . By definition 
n 

n , we have 

If we now use the approximation of (5) , then 
Tn- l 

E ~(n)(2p+l) 1 I dt e-27fi(2p+l-WTn)t/Tn 
p Tn_ l 0 

or 

by use of the interpolation formula (11) • 
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Equation (13) is the basic result of this paper regarding Fourier analysis, and 

is rich in content [Z] • .The first conclusion to be drawn is that rather than scaling 

uniformly, different parts of the spectrum scale very differently. Thus 

1. At w = 2p+l ,the actual new spectral components characterizing the n+l-st 
Tn+l 

level of period doubling are 

All P A 2p+1 
x (2p+l) "" -(- - E-l) i)x- (--) 

(n+l) 2a a n Tn+1 

or 

IA I 1 Ill"' IA 2p+1 I 
x(n+l) (2p+l) "" zV--=-Z; + 2" xn (-T-) 

a a n+1 
(14) 

That is, the new spectral components are obtained by scaling the previous interpo-

lation at these new positions by a factor of 

or dropped logarithmically by 

10 logl04.6 "" 6.6 

(The approximation (14) is the same as that for the scaling of successive R.~S avera~ 

of spectral lines as obtained by Nauenberg [3].) 

2. At 

n+l 

w = 2p+1 that is at those frequencies of the 
T 

interpo1Rtion scaled by 

2p+l 1 1 A 
xn+l (-T-) "" 2a ("(1+ 1) x(n) (2p+l) 

n 

n-th level, one finds the 

(15) 

That is, in the next generation of doubling, the interpolation scales by the anoma

lously small amount of 

or 

J:...('!' +1) 1 
2a a ""'TI 

10 logl03.6 "" 5.5 db 

at those frequencies that had just previously come into existance. 

3. At one has 

where 

(16) 
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or 

10 10g108.3 ~ 9.2 db 

Thus, in the second and all following generations after a spectral line has apyear

ed, the successive interpolations drop anomalously quickly. (The appro¥imation (16) 

is easily seen to be the same approximation of Grossman [4] for the "leading" edge 

of the spectrum). 

4. As a consequence of 2. and 3., if the n-th interpolation is raised by xn for 

any 5.5db < x < 9.2 db , these spectra will all have regions of overlap. In parti

cular, the original spectral prediction [1] of x = 8.2 db is included in this range. 

The present formula (13) is the full realization of the ideas of that previous paper. 

5. Since different parts of the spectrum have different geometric sca1ings, a geo

metric mean of the n-th level spectral lines is a more significant average than the 

mean of the squares. Given (13), we can then compute the scaling of the geometric 

mean, 

A 

X n 

Then, 

or logarithmically, the average of log-amplitudes 

1 
2n- 1_1 1 

dw inl;n(w)I 
'" 2n- 1 

E. inl;(n)(2P+1)1~ fo 
p=o 

dw in 
1 

"" -in(2a) + f 
o 

d n 11 ~i 2nwi w ",n - - e 
a 

However, the integ:ra1 on the right identically vanishes for I a I > 1 • Thus, 

Xn+1 - Xn "" -in(2a) (17) 

or the mean log amplitudes drop by 

(18) 

(This result is unchanged if the averaging is performed over all the n-th level 

spectral lines up to any mUltiple of the original fundamental, rather than just the 

subharmoni~ part.) 

(17) is a new result, and this approximate value has been numerically verified to 

be correct to the precision of (18). 

At this point we want to extend these results to spectral properties at a fixed 

parameter value .. rather than at successive period-doubling values. As previously de

monstrated, as the parameter increases, the n-th level lines slightly increase until 

they saturate after several further period doub1ings. This increase is uniform for 

each level of introduced spectral lines from which it follows that properties 1.-5. 
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are equally valid within a spectrum. at fixed A for all intermediate values of n 

(i.e. after several period doublings have occured, but not for the lowest lying 

interpolations which have not yet saturated.) Taking the fundamental period to be 

I, w = I is the original fundamental, and the n-th level of spectral lines are 

located at the frequencies 

(19) 

Now, all the spectral properties are consequences of (13) which itself is a conse

quence of (3). Working backwards, if we define, at a fixed parameter value An' 

d (t) as that part of xn(t) constructed purely from the m-th level spectral n,m 
lines, then (3) must again hold for a new scaling function 0 which has the same 

approximate value as (5). That is, 

d 1· (t) ~ 'O(t/T 1) d (t) n,m+ m+ n,m 
(20) 

where (20) is valid fer all m such that 1 «. m« nand cr has the approximate value 

(5) • Once d (t) is specified, (20) is now a direct time-domain test of the theory. n,m 
It is probably the best test to perform since just one time series is required, and 

there are no phasing problems. All that remains to be specified is d (t): 
n,m 

d (t) = _1_ 
n,m 2n-m+l 

where 

n 

2n- m+l _l 

l: 
r=O 

1 
xn (t) l: d (t) +-

n',m 2n m=l 

2n-l 
l: 

r=O 

SO that d n,m is just that part of 

(21) 

xn (t+rTo) (22) 

x which determines its m--th level spectrum. 
n 

For numerical experiments (20) is very readily verified ; the theory leading to 

(20) will be published elsewhere. (20) can be iterated so that (20) and (22) appro

ximately determines xn(t) from that part of it with ,eriod 2To This is a general 

structure arising from an underlying Cantor set, so that this type of data processing 

might be more· generally applicable to dynamical systems wi th a strange attractor 

present. The analogue to (13) is 

;, (w) C{. ~(! - e 1TiWTm)i (w) 
n,m+ 1 2a. a. n,m 

so that the log-amplitude spectrum is built out of sums of detennined periodic func

tions of successively doubled periods. 
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Thermal Fluctuations in Nonlinear Chemical Systems 
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1. Introduction. 

The study of fluctuations is an integral part of the analysis 
of non1 inear phenomena in far from equil ibrium conditions U-3) . 
In this respect, systems undergoing chemical reations and transport 
phenomena have been among the most privileged examples on which new 
ideas and new techniques have been tested. So far however, 
practically all the resu1 ts obtained are 1 imited to the behavior of 
the compositiop variables. It is the purpose of the present commu
nication to out1 ine an extension of the theory of f1 uctuations 
which inc1udes'energy and temperature fluctuations as well. 

Our motivation for undertaking this extension is manifold. 
Chemical reactions reflect the behavior of those molecules whose 
translational energy exceeds some threshold value. The statistical 
distribution of these molecules depends on the instantaneous am
bient temperature. It follows that fluctuations of the reagent's 
temperature will be immediately sensed by the reacting molecules. 
Energy fluctuations are also frequently invoked in discussions of 
the molecular basis of enzyme activity [4]. On a more macroscopic 
sca1 e, such common phenomena as energy transfer between a system 
and its ·environment, exothermic reactions. combustion, explosions. 
or flames, hvo1ve in one way or the other the internal energy or 
the temperature as a key variable. The stochastic analysis of these 
systems, which are known to exhibit a rich variety of bifurca-
tion and other' transi tion phenomena, mu.st therefore take into ac
count the thermodynamic fluctuations of these variables. 

2. Some typical problems involving temperature variations. 

I n the following we consider, in the order of increasing comple
xity, a number of typical situations involving internal energy or 
temperature f1 uctuations. In each case. we assume that the reac
ting mixture is' a dilute gas, and therefore do not consider expli
citly the effect of intermolecular interactions. It is known (51 
that this provides a realistic description of an important class of 
combustion processes known as rarefied flames. In the present Sec
tion we merely compile these various examples and briefly recall 
their macroscopic behavior, postponing the analysis of f1 uctua
tions for later on. 

(i) ~n~r~y_t~a~sfe~ ~e!w~e~ ~y~t~m_a~d_e~t~r~al ~e~e~v~i~s~ 

The simplest case involves the transport of energy between two 
vessels. Within the framework of our assump~ions this will proceed 
solely through the transfer of particles. w~ are thus led to a 
Knudsen flow model. Assuming that the two (well-mixed) phases com-
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municate by an openi ng whose diameter r 15 small compared to the 
mean free path and that at each moment the vel oci ty di stribution 
remains Maxwellian, we obtain the following expressions for the to
tal flow of particles and internal energy per unit time in a direc
tion perpendicular to the opening (see e.g. [6J ) : 

Yo 'I. • '/, 
! . .; s 6" (....!-) z. .!. f _ ~ ('tc.e.T ) ~ -to ". ( kaT.) &0] 
cit: 2. 1'. WI V L 

( )
Ya. [ - ~/2. )(30] 4 i ,. 26" ...!-- .!. _ ti (kiT) + h. (kr.T.) 

at 2.1t,1VI V 

( 2.1) 

Here ;'1: and ;= denote. respectively. the particle density.' energy 
density' and temperature of the system. m the molecular mass, k. the 
Boltzmann constant. and V the volume of the system. The subscript 
1 refers to the reservoir variables. Strictly speaking. a system 
described by eqs.(2.1l will sooner or later come to equilibrium 
with the reservoir: n = HI' T = rl' On the other hand. eqs.(2.1) 
are readily extended to the case of a system interacting with seve
ral reservoirs. Such a situation allows for the existence of none
q!lil ibrium steady .states. In the simplest case of. two reservoirs 
maintained at fixed temperatures Tl' T2 !nd densities nl' nt_ one 
obtains the following steady-state values Ts. "s for the system: 

'/'&,. "/ .. 
T b,T, + ""T .. 

5 :: 'II. T ·It. 
"", T. t: liz. z. 

~ ~ ) ii :: tI, T. + lit. T.. ( 2. 2 
, -va. 

" T, 

(ii) ~dia~a!i£ ~x£l~sio~. 

In (i) we considered transport phenomena in the absence of 
chemical reactions. We now consider the other extreme case. in 
which a single exothermic irreversible reacti~n proceeds in an iso
l~ted !ystem. Let t' .. be the heat of the reaction at constant volu
me, k(T) the (temperature-dependent) rate constant. Cy the specific 
heat at constant volume. One then has: 

>< ~ A 

!i: _ kef) i. 
ell: 

Cv !! T : - I'" ~~. :: 
d.t v~ 

( 2.3) 

where x is an intensive variable descriptive of the chemical compo
sition. It is immediately seen that eqs.{2.3) give rise to the 
conservation condition 

C T - C T + r x. = Cv T .. t"y i: = K y", ... - YO yo T (~.4) 

where (To. xo ) are the initial values of <'Lx) and (Tmax' 
are the final ones (after the reaction has been completed). 
to (2.4). eqs.(2.3) take the alternative simple form 

x = 0) 
Thanks 

t T :. k6) (T I'tIAIC _ ;= ) • 
d.I: ( 2.5) 
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The solution of eq.(2.5) is depicted in Fig.1, for a temperature 
dependence of k(l) given by the Arrhef11u~ law, k(l) = ko f.lC,(-E./kaT) 
It is seen [5J that the reaction rate abruptly reaches its maximum 
val ue at a temperature near tile maximum one •. The time correspon
ding to this value can be referred to as the "explosion time". 
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Fig.!. Variation in tem
perature (I, left-hand or
dinate), rel ative concen
tration x/xo (2, right
hand ordinate) and reac
tion rate (3, arbitrary 
units) as a function of 
kQt for an adiabatic reac
tlon. 

li.iJ L Ex~~rmJ_Lre~.!.i.£.!l-1!!.. ~_.£.~.!!..~y~!..e.!!!..: 
We finally discuss the more realistic case i'n which, in addi

tion to ,the exothermic reaction considered in (ii), the system is 
exchanging energy with its environment by the mechanism considered 
ir (1). We take for simplicity a single external reservoir. From 
eqs.(2.1) and (2.3) we obtain: 

'I. d - 'l - ~ :;;: -T liz.) 
- X. = _ ~ (r) ~ + X (XI T, _ ... 
~ 

(2.6) 

where we set 

(2. 6a) 

and (2.6b) 

The competition between local energy relea'se from the reaction 
and transport now allows the system to reach nonequil ibrium steady 
states, even though it interacts with a single reservoir. It is 
convenient to analyze the properties of these states by fixing the 
values of ! : z..k&/I"'" ,and g = E./"-8 ,and by using T1 and 'I<. 
as control parameters. Fi g. 2. describes a typical resul t. In the 
range rt)< T.(Tf+) and for a sufficiently small val ue of X., the system 
exhibits multiple stable steady' states and hysteresis. The tempe
ratures at the 1 imit pOints Ti->and Tr, which can be appropriately 
referred to as 
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Fig:2. Multiple steady 
states and hysteresis for 
the system described by 
eqs. (2.6) 

extinction and ignftion points, are given by 

(2.7) 

When these two val ues coalesce, the system presents a bifurcation 
Piinf. One easily finds the following critical values of the va
r, ab es and the control parameters : 

T., = "~ (SO - 2.Vi:) 
(2.8) 

t - , X I\, (T~) (1 ... gT,c., 
,:. - 'I&, -

!Tc: (T~ _ T,c.) 

For K.< Xc. the system presents multiple steady states and hystere
sis. Actually, the results shown in Fig.2 correspond to a value of 
K relatively close to the critfca·l one. For X«Kc one obtains a 
still larger variety of temperature-induced transitions, which are 
beyond the scope of the present communication. 

3. Construction of the transition probabilities. 

To study the fluctuations associated with eqs.(2.1), (2.5) and 
(2.6), we need to write down the master equation for the appropria
te probability ensemble. The explicit form of this equation de
pends on the transition probabilities per unit time corresponding 
to the various steps involved in the phenomenon. This is easily 
determined for the chemical reactions (1] , but is much less ob
vious for transitions affecting the temperature or the internal 
energy. We therefore resort to the following thermodynamic argu
ment. The transition rates depend on the microscopic mechanisms 
which are at the basis of a transition, and for this reason they do 
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not involve explicitly the nonequilibrium constraints. Moreover, 
at equilibrium, they must satisfy the property of detailed balance 
seperately for each individual chemical reaction and for each indi
vidual transport process. Now at thermodynamic equil ibrium the 
probability of fluctuations is given by the familiar Einstein rela
tion [8]. We may therefore utilize all these properties to obtain 
information on the structure of the transition probabilities. 

Let us first examine from this pOint of view a typical energy 
transport process of the kind described in 5ection 2, part (i). The 
basic quanti·ty to be determined here is the transition rate W(E+IO, 
N+1, E1-E, N1-11 E, N, E1, N1 ) where E and N are, respectively, the 
total energy and number of particl es of the system and E the amount 
of energy carried per particle. 
The detailed balance condition reads: 

W (E-+ t, N" +', E,_I:, N1_,1 E,tJ, E,,N,) 

'W (E, N' I E.,rf; I E +~,N+I/el-£.,tJ,_,) 
= P.2IJ (E,N', 6 .. "'1) 

P (E+E:,N·tl, E',_E.,N, .e.) 
, (3.1a) 

with [8] 

p~ '" l!.xf> .!. SI:oI;t>l "V .e..xf' ..!. [S(e,N') T 5, (e"r-r,)] 
I &.6 "'a (3.1b) 

5 , 51 being respectively the entropy of the system and of the re
servoir. The most symmetric relation which one can derive for the 
W's themselves and which is compatible with (3.1a) is : 

vJ (E -+ 6, NT' IE, I'll ) d ~ = \l' 1 ( e) d €. ~l'r .!. [ S (e, \1\ ) _ s,[ E + 6, N.,.I) ] 
kg (3.2) 

where the presence of the cross-section 6" of the opening between 
the two vessels ensures extensivity. A simil ar expression is ex
pected for WI' The function \.f(E) ol4O stands for the velocity de
pendence of the flow of particles per unit surface in a direction n 
perpendicular to the opening -

r (~) Ih =5' ,!. nl d~ ". ~~ e.d£ • 
_~lc..s 

Expanding the right hand Side of (3.2) around the state (E+6, 
N+1) and introducing the well-known thermodynamic relations for the 
derivatives of entropy we obtain : 

(3.3a) 

• <')c r [- 'i./ k.& T T 0 <." -. 1] . 
In eq.(3.3a) it is understood that T is a function of the instanta
neous state of the system as expressed by the stochastic variables 
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E. N : 

(3.3b) 

We hereafter call this quantity the fluctuating temperature. Re
markably. eq.(3.3a) displays the Maxwell-Boltzmann distribution 
with fluctuating particle density and temperature. 

The final step in the const,ruction of the transition probabi
lities is to derive an expression for a typical exothermic chemical 
reaction. Consider the processes 

It.(T) 
(3.4) x --- A V-

of which the forward one is assumed to be exothermic. Let W(X+l. 
A-I I X.A) be the corresponding transition rate. Because of energy 
conservation (cf.eq.(2.4». X and A completely characterize the 
process. Working Out the detailed balance condition along the same 
lines as before. we arrive at 

Again.it is understood that T is a fluttuating temperature. 
T:;=T!X+l). The "activition energy" E. arises through the difference
between the standard chemical potenti al of X. j'-If· • and that of the 
activated complex. J'-t . We recognize the familiar Arrhenius fac
tor. with the important additional feature that temperature is to 
be interpreted as a stochastic variable. 

4. Fluctuation-dissipation theorem in the transport regime. 

, Using Eqs.(3.3'a) and (3.3b) one can write down the master 
equation corresponding to either of the three situations described 
in Section 3. We first analyze the properties of this equation in 
the simplest case of transport between a well-mixed system and two 
external reservoirs. in the absence of chemical reactions. As the 
corresponding evolution equations. essentially of the same form as 
(2.1). have a single asymptotically stable steady state solution. 
it is legitimate to convert in the thermodynamic limit '1_ 00 • the 
master equation for the extensive variables (N.E) to a Fokker
Planck equation [9] for the corresponding intensive variablesn = 
N/Y. e = ElY. As well known. the latter is equivalent to a pair of 
stochastic differential equations for the random processes nIt). 
e(t). For the problem considered in the present Section we obtain 
the following expl icit form valid in the vicinity of the unique 
stable steady state 

( 4.1) 
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The correlation matrix of the random forces Fn ,Fe is 

1 

" 
where (T$' n ) is given by (2.2). Eqs. (4.2) provide a generalized 
fluctuatl0n-~issipation theorem, valid for arbitrary deviations 
from the equi14brlum state Ts = Tl = T2• It is noteworthy that the 
terms reflecting the deviation from the classical fluctuation-dis
sipation theorem are guadratic with respect to the deviation from 
equilibrium (essentially the thermal gradient across the system). 

Having relations (4.1) and (4.2) it is an easy matter to eva
luate the static as well as the time-dependent properties of the 
response. It is most convenient to switch from (n,e) to (n,T). 
One then obtains the following expressions for the second moments 
of the fluctuations: 

( 4.3 ) 

where the specifi£ heat per unit vol ume is given by C v = ?>'ii~ ks/.z. . 
At equilibrium, Ts = Tl = T2 and eqs. (4.3) reduce to the well
known expressions derived from Einstein's formula [81 • A surpri
sing feature is that the equilibrium-like expressions remain valid 
even in the 1 i near range of i rreversi bl e processes (tile range of 
the theorem of minimum entropy production [10J ), provided that the 
equilibrium values of nand T are replaced by the values descriptive 
of the nonequilibrium steady state. This is to be contrasted 
with the case of chemical reactions in isothermal systems, where 
the equilibrium-like expressions are affected by corrections which 
are linear in the deviation from equilibrium (ref. (3) , lecture by 
G. Nicolis). 

By switching from (4.1) to equations for (n,T) ,gr more preci
sely to equations for _~n ~ n - il s ' ~ T = T - Ts ' 1 inearized 
around the steady state (T s ' n~), one can also compute straightfor
wardly the time correl ation of the mass and heat fl uxes jn and jT 
respectively. As a matter of fact, since in our system the only 
irreversible processes going on are transport processes, jn and 
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iare simply linear combinations of the random forces Fn and Fe. We 
~thus obtain, for instdnce, 

<S j T (~) S'jT It') > ~ ! 'k.. T$ ".. ;2. Ita =r;, 1. [1 _ It Ci! -1')(;:$-"L)l.'itt'~~j ~) 
L V 3T( J 

Noting that 9><.;-;'1./2. is simply the coefficient of the part of eq. 
(4.1) which is linearized in ST, 'we recognize in the prebracket 
factor of (4.4) the Landau-Lifshitz result [l1J. In addition, eq. 
(4.4) provides a generalization of the classical theory to fluctua
tions around far-from-equil ibrium states. As before, the correc
tion is quadratic in the thermal constrai nt. Simil ar res·ul ts are 
obtained for <ijYlU')~il\tt'» and <&d'lIlt-)~iT(t') 

5. Fluctuations in the presence of exothermic reactions. 

We next consider the situation described in Section 2, p'art 
(iii). In the presence of fluctuations, a master equation can be 
derived using the transition rates evaluated in Section 3. In the 
regime of a unique stable steady-state solution of (2.6), one can 
reduce this equation to a Fokker-Planck equation as explained al
ready in the preceding Section. The corresponding stochastic dif
ferential equations have the form; 

~z. 't. 
1'\ ( 2:, -r. - :Ie T('e.,1f.)) + F x. l~) 

l' F,,{~ 

( 5.1 ) 

:. h ['l:.,T(e,-:c.)] + Felt) 

where the correlation matrix {Q~l of the random forces Fx and Fe is 
given by 

In the absence of transport ('X. = 0) we fi nd the 1 imi ti ng case di s
cussed in Section 2, part (ii). As the mass and energy balances 
are then related, the system is described by a single random varia
ble. Choosing the latter to be the temperature T, we can write the 
following Fokker-Planck equation with nonlinear friction and diffu-
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sion coefficients 

1 P(T,I:) = _ 2. [T _T] "-(T) P ... !!. 1. tJT", __ TJ It(T)f' 
~t- )T "''''I' Cy V n (5.3) 

~ ~ T ~ TI"nNC 

where we use the notation of eqs.(2.3) to (2.5). One can show that 
To and T""..x are, respectively, regular and exit boundaries (12) • 
Using reflecting and absorbing boundary conditions at To and T ... ...,., 
one can then compute first passage times and related quantities. 
In particul ar, the mean first passage time M" to state Tt. , star
ting from some state T .. , is : 

(5.4) 

A close look at eq.(5.4) shows that at zeroth order in V-I, M" 
reduces to the deterministic expression. On the other hand, the 
first-order correction in V -I is positive for T2., < T.tI<pl and negative 
for T2.,)Taxl'" ,where the explosion temperature TCj<.J'lis defined in 
Fig.L Thus, fluctuations have a "stabilizing" effect by slowing 
down the evolution prior to explosion. 

We now come back to the full chemical-transport problem, eqs. 
(5.1) and (5.2). We are interested in the behavior of fluctuations 
close to, but before, the bifurcation point leading to multiple 
steady states (cf. Fig.2). This type of problem has been discussed 
extensively in the case of isothermal chemical reactions [1] , (9) 
and most of -this discussion can be transposed straightforwardly to 
the present case. One finds that the solution of eq.(5.1) is a 
propagating bivariate Gaussian density distribution. At the steady 
state near the bifurcation point the variances of the fluctuations 
computed with this distribution show the, by now familiar, critical 
divergence. For instance, the variance of the temperature fluctua
tions turns out to be : 

( 5.5) 

• [- h~ Q/Cl\. + 2.f./'e, ~}(e. - tel.. G.ee.] • 

Here ft., he are derivatives of the rate functions f and h (cf.eq. 
(5.1» with respect to the internal energy e, and )." ).2., are the 
eigenvalues of the linearized stability operator. As one approa
ches the bifurcation point, one of the A's 'approaches zero, accor-· 
ding to some power of the distance from this pOint. Thus <~T).di
verges. Similar conclusions hold for the other moments. Finally. 
at the bifurcation point itself the probability distribution beco
mes the exponenti al of a quartic function in x,e and the fl uctua
tions cease to be extensive. Again, this is in accord with the be-
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havior found in isothermal chemical systems [9] • 

6. Discussion. 

In thi s paper we outl i ned a mean-fi el d theory of temperature 
and internal energy fluctuations in noneQuilibrium svstems. We have 
reproduced the familiar equilibrium and near equilibrium expres
sions (8) , [11] and, in addition, we have obtained a number of new 
results in the nonlinear range of irreversible processes. 

Several extensions of this work can be envisaged. It would be 
essential to work out a theory of spatially inhomogeneous fluctua
tions going beyond the mean-fiel d resul t. Of equal importance 
would be the extension of the results of Sec.5, especially eq. 
(5.5), to the region of multiple coexisting steady states. Indeed, 
in most problems involving exothermic reactions. like for instance 
combustion, the situation depicted in Fig.2 is much more typical 
than bifurcation. Such questions as what happens to fl uctuations 
near the ignition or extinction pOints, or whether there is a Max
well construction defining the true transition between extinction 
and ignition regimes, would find an answer within the framework of 
such an augmentid theory. The model of Knudsen flDW adopted throu
ghout our work might al so prove to be unnecessarily restrictive. 
In any case, the connection between eqs.(2.1) or (2.6) and the more 
familiar transfer laws like Newton's cooling law [13] should be 
elucidated. 

On the experimental side, we bel ieve that nonequil ibr'lum ef
fects on temperature fluctuations may prove to be more accessible 
to observation than composition fluctuations in isothermal systems. 
Indeed, the mechanism of exothermic reactions giving rise to non
equilibrium transitions is often simpler and better understood than 
the mechanism of reactions leading to chemical dissipative structu
res [13J. In addition, the variations of the different quantities 
involved are more pronounced. Finally, the fact that the system 
frequently operates at temperatures of the order of l,OOO"K, should 
enhance the level of thermal noise. 
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Fluctuations in Non-Equillibrium Phase Transitions: 
Critical Behavior 

P. Hanusse 

Centre de Recherche Paul Pascal (C.N.R.S.), Domaine Universitaire 
F-33405 Talence Cedex, France 

It is now well recognized that there exists a formal analogy between bifurcations 
in non-equilibrium dynamical systems and equilibrium phase transitions, hence the 
term non-equilibrium phase transitions now commonly used [1]. The equivalent of a 
first-order phase transition can be seen in model systems T2] as well as in experi
ments, for instance in chemical systems [31 when bistabil ity is observed: two sta
ble stationary states coexist for the same value of a bifurcation parameter. A se
cond-order transition can be defined in the same situations when, by changing some 
control parameter or constraint, this bistability vanishes at a critical point as 
shown in an example later. Also a supercritical Hopf bifurcation can be considered 
as another example where the amplitude of the limit cycle is taken as an order 
parameter. This analogy is described only within the framework of a purely detenni
nistic approach. Now, all that we know about equilibrium phase transitions tells 
us that fluctuations in the state of the system playa very important role, to 
such an extent that a phase transition can be viewed essentially as a fl uctuation 
phenomenon. A similar feature is suggested by the evolution equations of a dynami
cal system near a bifurcation point where an eigenvalue of the linear stability 
matrix goes to zero. In other words, some relaxation time goes to infinity. However, 
whereas for equilibrium phase transitions the very definition of the system inclu
des a microscopic level having particular properties resulting from equilibrium re
quirements from which we can in principle deduct some description of fluctuations, 
on the contrary for a dynamical system evolving near a bifurcation point,we have 
no such possibility. Usually these evolution equations result from a phenomenologi
cal descri pti on of a phYSi ca 1 sys tern that is not deri ved from fi rs t pri nci p 1 es or, 
more specifically, from a microscopic or molecular level which is, in the end, the 
only source of stochasticity. Here we do not consider the deterministic stochasti
city of strange attractors, but,for example,a chemical system near a bifurcation 
point. Clearly in this case the molecular level is indeed a source of fluctuations 
that will determine the behavior near a bifurcation point. But Obviously mass
action kinetic equations for a chemical system are essentially phenomenological 
ones. Of course,bne can argue that this kind of equations results from reasonable 
statistical views, assumptions and so forth. But how good is this near a bifurca
tion paint? In fact we have no guaranty that the macroscopi c equations that we 
would derive from microscopic level in some statistical limit for a non-equilibrium 
system would have the same properties near a bifurcation point as "the phenomenolo
gical equati.ons that we usually postulate. Similarly the behavior of f)uctuations 
predicted by such a theory might well be different from that given by phenomenolo
gical approaches like stochastic differential equations obtained by adding a ran
dom force to the determi ni s ti crate equati on or 1 i ke bi rth and death s tochas ti c dy
namics leading to a master equation. It is not clear yet that the result does not 
depend on the various approches or assumptions used, like the expression of the 
random force in one case, or that of the transition rates in other case, not to 
speak about the approximations that we are forced to use to obtain explici t sol u
tions. We think that this is still an open question and that the results obtained 
in the study of equilibrium phase transitions and the techniques used there cannot 
be applied straightforwardly to non-equilibrium situations. To some authors it is 
even doubtfull that a real phase transition can occur in a non-equilibrium system 
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141. For this reason we think that being able to solve a model system as exactly 
and explicitly as possible is highly desirtblc. This is what we are aiming at by 
studying the critical behavior of the Schlogl model 121 using the birth and death 
formalism and a Monte-Carlo technique to calculate the spatial correlation func
tion. So, leaving aside the question of the relevance of the approach used here, 
at least we should be able to know what such a description of fluctuations predicts 
without a priori postulating the existence of a critical phenomenon. In other words 
we would like to go beyond a study of the scaling properties or asymptotic beha-
vi or whi ch does not in fact soZve the model. 

Obtaining a definite answer to the questions above, even for an apparently sim
ple model is not so easy. The multivariate master equation that result in the ap
proach that we have choosen cannot be solve exactly and no systematiC scheme of 
approximations is available up to now. The same thing is true when using other 
possible approaches. This is why we have started f.tlnte-Carlo calculations some time 
ago._Details on the simulation technique 151 and preliminary results on one di
mension 161 can be found elsewhere. 

We consider the 
k} 

A + 2X t 3X 
k2 

following model 
k 

x ';8 
k4 

system 121, 

where A and 8 are held at fixed concentration and X is the free species that we al
low to diffuse in space. We adop t the us ua 1 rep resen ta ti on of space by a 1 a tti ce 
of cells b~tween which a linear diffusion process moves particles. Using a now 
standard change of variable III k} = 3jA, k2 = l/A, k = 3 + 5, k4 = 1, 8 =A(1+5'), 
x = XjA, defining 0 and 0' as new bifurcation parame~rs, we obtaln the following 
deterministic homogeneous equation 

~ = (x - 1)3 + 5x - 5' • 

It admits a triple point at 5 = 5' = 0 which corresponds to the aritiaaZ point in 
the equivalent equilibrium phase transition picture. If we go along the line 5 = 5' 
the system has one stationary state at x = 1 for 5 > 0 and three of these states, 
at x = 1, x = 1 ± /-5 for 5 < O. Here again we should pOint out that this is a de
terministic definition of the critical point. The critical point of the stochastic 
description may nO.t be located at 5 = 5' = O. Other phenomenological definitions 
might be used as, for example,the triple point of )'(X) - ll(X) where ). and II are 
the bi rth and death rates defined by 

)'(X) = k} A X(X - 1) + k4 8 

ll(X) = k2 X(X - 1)(X - 2) + k3 X 

which are the ones that we use in our simulations. The rate of the diffusion pro
cess betWeen two neighbouring cells is taken equal to DXj2d, where d is the dimen
sionality, and D a stochastic diffusion constant. For the birth and death approach 
to be valid we must consider a situation in which at cell level the rate of the 
diffusion process is somewhat larger or at least of the order of the rate of che
mical reactions. This ensures that our description is local enough to satisfy the 
1 oca 1 equi libri urn condi ti on that requi res that reacti ve colli si ons are dominated 
by ellastic collisions. On the other hand our treatment should not be too local to 
preserve the Markovi an character of the dynami cs. 

As mentioned above the resulting multivariate master equation for this reaction
diffusion model cannot be solved exactly. No need to say that an inverse system size 
expansion 181 o~ moments hierarchy ~runcation fails near the critical pOint, 
The best approximate treatment available so far is due to MALEK-MANSOUR and HOUARD 
191 (MH thereafter). From the multivariate master equation they derive a nonlinear 
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reduced master equation for one cell involvinq the mean particle nunDer < X > and 
the conditional mean...: X ;..c(X). i.e. the mean particle number in one cell knowing' 
the nunDer of particles X in the nearest-neighbor cell. Ne.xt they use the follCMing 
ansatz 

< X >c (X) = < X > + g oX ; oX = X - < X > 

where g is the nearest-neighbor correlation coefficient defined by g = <oXr oXr+l>/ 
<oX2>. It expresses a linear interpolation between two limiting cases, namely, 
g =rO (there is no correlation between adjacent cells and a mean field value 
< X >c = < X> is valid) and g = 1 (there is complete correlation, then < X > = X). 
The e.xpression of the spatial correlation function can be obtained a.nalyticalTy 
and an iterative numerical procedure can be used to evaluate it self-consistently. 
Let us skip immediately to the main result. (i) It agrees fairly well with simu
lation estimates, (ii) it does not predict any critical behavior iJl one, two or 
three dimensions. However,it is clear that this approach is unfortunately not sys
tematic and by no way exact. It is the purpose of simulations to show how good is 
the ttl scheme quantitatively as well as qualitatively. We have performed extensive 
calculations in one and two dimensions. Detailed results will be found elsewhere 
1101. We shall only give here a few typical results supporting the main conclusions. 

The main quantity of interest is the static spatial correlation function 
C(1) = < oXr oXr+R. > Which contains the essential features of the stationary fluc
tuating behavior. The integral of this function over space is simply related to the 
variance of the total number of particles in the system, or global variance, by 
I = < oX2 >d,V where V is the volume of the system. If this integral converges, 
then the global variance is extensive, which indicates a norma~ behavior. If not, 
there is critical behavior. The system size that we can consider in simulations is 
of course always finite. Therefore we have performed simulations at fixed systems 
size as a function of 0 and 0', and at 0 = o· = 0 as a function of system size de
fined by n,the number of cells in the system. Table I gives a few results in one 
dlmension. First we remark that far from the critical point the ttl prediction and 
simulation results agree perfectly well (Table l(a»).This was expected and may be 
considered as a test for the simulation procedure. the discrepancy is largest when 
the local variance is large, i.e. at the critical point or when the system is small 
(Table l(a).and (c». In that case the MH prediction is lower than the simulation 
result. This general. The MH approximation predicts always smaller fluctuations and 

Table 1 Spatial correlation function as a function of space r in one dimension. 
A = 20, 0 = 20. ( a) 0 = o· = 1, n = 21 ; (b) 0 = o· = 0, n = 10 ; 
(c) 0 = o· = 0, n = 41. Simulation (S), MALEK-rIANSOUR-BOUARD prediction 
(MH),. curve fitting of simulation results by. MH function (F). 90% con-
fidence interval of the order of 0.3. 

r 0 1 2 3 4 5 6 7 

(a) S 31.92 8.59 6.19 4.50 3.34 2.21 1.69 1.10 
ttl 31.82 8.54 6.15 4.44 3.21 2.34 1.72 1.30 

S 55.47 34.14 31.66 29.88 29.02 28.61 
(b) ttl 51.22 29.35 26.96 25.31 24.33 24.00 

F 55.63 33.90 31.58 29.96 29.01 28.69 

( c) S 46.49 24.17 21.38 18.80 16.59 14.57 13.03 11.32 
ttl 44.44 22.09 19.13 16.58 14.38 12.48 10.84 9.42 
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weaker correlation. An interesting result is shown in Table l(b), line F. These 
values are obtaiof'd by fitting the simulation results with the ~lH function. It 
shows that the shape of the MH function is much better than the values that it pre
dicts. This also is general and should be kept in mind if one wishes to improve the 
MH scheme. Nevertheless a finer analysis reveals that long-range correlation is 
systematically underestimated. 

Table 2 Diagonal spatial correlation function as a function of space r in two di-
mensions, i.e. C(~l'~Z) with ~l = ~2 = r. A = 20, D = 20, (a) 6 = 6'= 0, 
n = 10 x 10 ; (b) 6 = 6'= 0, n = 30 x 30. 

r 0 1 2 3 4 5 6 7 
S 33.32 9.42 8.05 7.40 7.88 7.29 

(a) MH 32.62 8.58 7.24 6.65 6.39 6.32 
F 33.31 9.38 8.06 7.47 7.21 7.14 

(b) S 29.25 4.90 3.36 2.53 2.01 1.59 1.27 1.15 
MH 28.94 4.69 3.18 2.35 1.82 1.45 1.19 1.00 

All these general observations. are also valid in two-dimensional systems as it 
appears in Table 2. Quantitatively the results seem even bette~. This is related 
to a smaller value Of the nearest-neighbor correlation. So, the statement that MH 
ansatz is better, the smaller g is, seems to be generally valid whatever is cau
sing such a low value: the distance from the critical point, the system size in 
connection with periodic boundary conditions or the dimensionality. However there 
are indications that the behavior might be qualitatively different in one and two 
dimensional systems. In one dimension if one considers larger and larger systems, 
the global variance saturates at a larger value than predicted by t1H, which means 
that although quantitatively slightly different, the qualitative behavior predic
ted by MH is correct. In two dimensions even for systems with n = 1 600 cells, sa~ 
turation does not seem to be achieved. Clearly it is difficult to conclude defini
tely in thOis kind of computations. Simulations on bigger systems are under progress. 
These are heavy calculations and because the correlation time tends to increase 
with system size - again an indication of critical behavior - one has to wait long 
enough between sampling times to avoid having biased long-range correlation values. 
So it is not yet certain that we shall be able to conclude by direct simulation. 
Much more interesting is the possibility given by such calculations to check di
rectly the various assumptions or approximations that one would like to use in 
analytical treatments. For instance we have measured the conditional mean < X >c 
which is the essential ingredient of MH scheme. We can clearly see where and 
why it fails. We hope that it will be soon possible to use this information to 
build a better approximation scheme,hopefu11y a more systematic one, and then to 
answer our initial question : does such a model using such a description exhibits 
a critical behavior? 

This work has been done with A. Blanche. 
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1. Introduction 

The surrounding of natural systems is rarely constant. Often indeed, 
biological populations, climatic systems, metabolic systems and other 
natural systems experience external driving forces whose precise tem
poral evolution is impredictible because it involves a significant 
amount of stochasticity. The characteristic property of this.external 
noise is that generally it is independent of the internal fluctuations 
which systems with many degrees of freedom exhibit spontaneously. The 
latter fluctuations scale with the inverse of the system size and be
come negligible once the limit of a large system has been taken. This 
is not the case with external noise: even in this limit, it still 
shows up in the form of fluctuating parameters. 

It is only recently that the full importance of these parametric 
fluctuations in physical, chemical and biological systems has been 
appreciated (for recent surveys see [1-3]). In general the influence 
of these fluctuations does not average out even in the limit of an 
extremely rapid and incoherent noise like white noise. In consequence 
of this fact it has come somewhat as a shock that external noise 
shifts deterministic transition points and futhermore induces new tran
sitions which are missing in the usual bifurcation diagrams. This fas
cinating class of behaviors has become a subject of systematic inves
tigations. Experimental stUdies in the laboratory, where external noise 
can be generated at will in a controlled fashion, have been undertaken 
for a rich variety of photochemical [4,5], electrical [6], and hydro
dynamical systems 17,8]. The results reported in this paper concern the 
theoretical side of these phenomena. We first discuss the fundamental 
unity which exists between some pure noise induced transitions and the 
usual equilibrium and nonequilibrium phase transitions taking place 
under constant environmental conditions. Second, we consider the pro
blems raised by the modelling of nonlinear fluctuating parameters. We 
show how these situations can be handled using the wide band perturba
ti on method whi·ch we presented el sewhere [9]. We apply these results 
to the analysis of the influence of external white noise on an electro
hydrodynamical instability in nematic liquid crystals. This problem was 
recently studied experimentally by Kai et al. [7]. 

2. Modelling of nonequilibrium systems subjected to external noise 

The modelling of the influence of external noise involves two steps. 
First, one estahlishes a phenomenological equation describing the sys
tem without noise. Second, some appropriate parameter of this equation 
is considered to undergo fluctuations with prescribed statistics. In 
Simplest cases, the deterministic equation is a first order differen
tial equation in time 

5< = f(x,A) . ( 1) 
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Two possibilities then arise. If the fluctuating parameter At enters 
linearly in the deterministic equation, i.e. (1) is of the form 

$( = h (x) + At9(X) , (2 ) 

and if there is no systematic evolution of the environment, i . e. 

At = A + 1;t with A = constant and E{1;t} = o , ( 3 ) 

then the equation describing the evolution of the system is 

$( = h(x) + Ag(x) + 1;t9(~). (4) 

The second possibility is that the parameter undergoing fluctuations 
enters nonlinearly in the equation. For instance, one has 

$( = h(x) + ~(A)g(X), ( 5 ) 

where ~(A) is some power or some transcendental function of A. If At 
is again given by (3), the evolution equation for x now reads 

$( = h(x) + ~(A + 1;t)9(X). (6) 

To proceed futher with either (4) or (6), the structure of the noise 
1;t must be specified. This introduces two additional parameters into 
tne description, namely the variance of the external noise a 2 which 
measures the intensity of the noise and its correlation time 'cor which 
measures the rapidity with which 1; fluctuates. In laboratory experi
ments, the choice of the noise is ~rbitrary and the number of possibili
ties is a priori infinite. This means that some noise induced phenome
na may be specific of particularities in the structure of the noise 
chosen. There exist however transitions which seem fairly general, in 
the sense that they are generally recovered within a certain limit even 
for very different noises. In the following we refer to transitions of 
this type and for simplicity we deal with the broad class of situations 
where the fluctuations of the external parameter are giveo_by;an Orn
stein-Uhlenbeck noise (O-U noise) (reasons for this choice are given 
in [1]). AccordinglY,1;t obeys the stochastic differential equation (SDE) 

-1 d1;t = - Y1;tdt + adW t with 'cor = Y (7) 

W is the Brownian motion process. The O-U noise has an exponentially 
d~creasing correlation function, a form which is widely found in appli
cations, and a power spectrum S(v) which is a Lorentzian. In the limit 
y + 00, a + 00 such that a 2/y2 = 0 2 = constant, one has S(v)- + 02/2n for 
all values of the frequency v, i.e. the white noise limit. This is the 
appropriate limit for the study of the frequently encountered situations 
where, 0 «'rna " being a measure of the time scale on which 
(1) evofv~s. The ~8SantW§~r9s then that when At appears linearly in (1), 
the latter equation is in a fluctuating environment replaced by the SDE 

(8 ) 

xt,as is well known.is a diffusion process and its transition probabi
lIty density p(x,t) is the solution of a Fokker-Planck equation (FPE). 

In the following we now introduce the phenomenon of pure noise in
duced transition and focus on some of its essential properties within 
the framework of the white noise limit and for a linear fluctuating 
external parameter; later on we will consider the case that the fluc
tuating parameter is nonlinear. 
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3. Similarity of noise induced transitions with classical and nonequi
librium phase transitions 

The first point which we want to make can easily be established in the 
white noise limit: among the various kinds of noise induced transitions 
encountered on varying the parameters describing some external noise, 
there may appear transitions which are not found in a constant environ
ment but which are nevertheless closely connected with the classical 
equilibrium or nonequilibrium phase transitions. 

To see this we will mainly be interested in the stationary behavior 
of systems subjected to external noise and focus on the stationary solu
tion of the FPE. A noise induced transition occurs for that value of the 
noise strength where the stationary probability d~nsity p,(x) undergoes 
a qualitative change. We will however not retain the complete informa
tion contained in p (x), but will consider only its extrema x which 
are sufficient indi~ators for such a change. There are three main rea
sons for this procedure: (i) the number and location of the extrema are 
the most distinguishing feature of p (x) and contain essential informa
tion on the stationary behavior 'of t~e system; (ii) the extrema are so 
to speak the continuation of the deterministic steady states. Indeed 
for a 2 -+ 0, x -+ x , the zeroes of the rhs of (1); (iii) p (x) is a 
measure for tWat part of time that an arbitrary sample pat~ spends in 
an infinitesimal vicinity of x. This motivates the identification of 
the extrema, which are preferentially seen in an experiment, with the 
macroscopic steady states: the maxima, where the process spends rela
tively much time, as the stable states and the minima which the process 
leaves quickly as unstable ones. We do not imply however that the maxi
mB dominate the probability density. Since external noise is of order 
V , the peaks are broadened and the system switches more or less rapi
dly from one maxima to the other. Nevertheless, the peaks correspond to 
priviledged regions in phase space as recalled above and can thus be 
likened to macroscopic phases. This interpretation is futhermore suppor
ted by the behavJor of systems for additive noise. 

We now consider the following system 

* = i-x + Ax(1 - x) (9) 

which finds realisations in population genetics and chemistry [2,10). 
A is the parameter which fluctuates. Obviously x is restricted to the 
interval [0,1) for values of A (_00,+00). Futhermore x is a single va-
lued function of A over th~_entire range of A; it is ~~ absolute attrac
tor, i.e. an asymptotically globally stable state. Since A is a linear 
parameter in (9), the effect of its fluctuations can immediately be 
obtained in the white noise limit from the stationary solution of the 
FPE. For A = 0, the extrema of Ps (x) are [ lU) : 

1 4 1/2 xm1 = 1/2 and xm± = ¥ 1 ± (1 - (i2) ). (10) 

Accordingly, for a 2 < 4 Ps.(x) has a unique extremum which is a maximum 
corresponding to the deterministic steady state. At a Z = 4, xm1 is a 
triple root; for a 2 >a 2 = 4, x is a minimum. The peak curre~ponding 
to a stable steady state under ~~terministic conditions has split into 
two peaks having maxima at x +' This shows that as to the extrema of 
p (x), in the (A,a 2 )-half plWne we have a critical point at (0,4). This 
c~itical point necessarily occurs for a finite value of a, Clearly, this 
noise induced transition has no deterministic equivalent for at -+ O. 
For colored noise, a 2 undergoes a shift due to the influence of the 
noise correlations; nowever whatever the value of the latter it remains 
fin i t e.[ 9 ,10 -12) . 
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To establish the close ties of the noise induced transitions just 
described and the usual phase transitions, we now consider their cri
tical exponents. Since the system is spatially homogeneous,we expect 
mean field results,and we will see that indeed the pure noise induced 
transition displayed by (9) is governed by classical critical exponents. 
In this sense one really is justified to speak of a phase transition. 

As we explained. the order parameter for noise induced transitions is 
the position of the extrema of p (x). To be precise, we chose m=lxm-xsl 
and compare the behavior of mode' (9) near its noise induced critical 
point with the classical paramagnetic to ferromagnetic transition. The 
role of the temperature T is played here by the intensity 0 2 of the 
noise; the analog of the applied external field h is the parameter des
cribing the average state of the environment, i.e. A. To determine the 
critical exponent 6 (order parameter m as a function of 0 2 for A vani
shingly small), we have to find the behavior of m near o~. One obtains 

m = i(1 - %2)1/2 ~ (0 2 - 0~)1/2 for 02 + o~. Hence 6 = i. (11) 

To determine the critical exponent 0 (order parameter m as a function 
of A at 0 2 = o~), we write the equation for the extrema in term of. m 
and specify that 02 = o~. This yields 

m3 + im2 - it = 0 from which we deduce that m ~ (A)I/3 showing (12) 

that the critical exponent 0 also takes on the classical value 3. To 
determine the exponent y, we have to calculate the behavior of the 
susceptibility 

X = (~~) as a function of 02for A = O. This yields that X ~ (0 2 - 0~)-1. 

Hence y = 1, and all the critical exponents of the pure noise induced 
transition are given by the classical values. This shows that equili
brium phase transitions, nonequilibrium phase transitions and noise 
induced phase transitions are indeed close kin. There is a deep unity 
in the fundamental phenomenon, namely to be a phase transition, and 
except for the qualifiers no futher distinction is warranted. 

4. Nonlinear noise induced transition in nematic liquid crystals 

The case of systems described by an evolution equation of the form 
(6) in which the fluctuating parameter appears nonlinearly is of gene
ral interest and futhermore occurs frequently in applications: typical 
examples are the biphotonic photochemical systems studied by Micheau 
et al. [5,14] under the influence of a fluctuating light intensity and 
the nematic systems in which Kai et al. [7] stadied the onset of Williams 
domain and of turbul.ence under the influence of a fluctuating electri
cal field. Recently San Miguel and Sancho provided a treatment for such 
situations using their functional method to derive an approximate FPE 
for the probability density when the noise approaches the white noise 
limit [15]. Here we will consider the same problem but proceed in a 
completely different manner. We report indeed the way in which a sys
tematic and practical approach to this problem can be based on the 
wide band perturbation expansion [9,13] . 

To situate the problem concretly, let us first have a look on the 
experiment of Kai et al. Nematic molecules are little rods which when 
distributed in a layer tend to align all parallel to a priviledged 
direction. When this layer is stressed by an electric field, at a cer
tain intensity of the field, a roll structure appears: the so-called 
Williams domains. Increasing further the stress leads to a turbulent or 
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chaotic regime. When' theLapplied"vpltage fluctuates, the average"exter
nal field which must be imposed tu triYY~I> either one of these transi
tions increases with the intensity of the noise. Below, we will only 
consider the first transition to the Williams domains. The electrohydro
dynamic description of transition phenomena in nematics is rather com
plicated. Kai et al. argue that the following equation for the director 
angle with respect to the privil.eged direction gives a good descrip
tion of the situation: 

(13) 

V is the applied field; V is the critical voltage at which the first 
transition occurs under d~terministic conditions. Obviously the fluctua
ting parameter V appears in a nonlinear manner. The evolution equation 
is of the form (6). It is meaningless to pass to the white noise idea
lisation by simply letting At = A + a~t where ~tis white noise. Plugging 
white noise in (6) does not make sense. It is impossible to give a well
d~fined meaning to nonlinear operations on the white noise ~ . Indepen
dently,howeve~ of this mathematical impossibility, it remainl of course 
true that the environment in the Kai's experiment' varies on a much fas
ter time scale than the system. In other words, ~ is a process with a 
short correlation time. It is thus natural to looi for a possibility to 
define an apprepriate white noise limit to the SDE. The obvious short 
cut is to write p(A) + ~ instead of p(A + ~ ) and then pass to the 
white noise idealisationtby setting ~t = a~t~ This approach which ends 
up with the Stratonovic SDE 

(14) 

has been employed by Schenzle and Brand [16]. The fact is that it yields 
results which are seemingly in qualitative agreement with the experiment. 
This result however is far from solving the problem for the following 
reasons. The procedure is not legitimate. If the potential fluctuations 
are, for instance, Gaussian distributed, then p(At) is a nonaaussian pro
cess. To,r.eplace p(A ) by p(A) + ai; is an arbitrary proce ure WhlCh 
completely neglects the physics spe~ific to the problem at hand. There 
is no solid connection between the results obtained in this way and the 
physical reality they purport to describ~. In fact such results may 
even be misleadjng was also pointed out by San Miguel and Sancho [15]. 

Following up with our above discussionJwe will again consider that 
~t is an O-U process and explore the behavior of a system subjected to 
a rapid external noise using the band width perturbation expansion. 
Defining the external noise process nt by 

nt = p(A + ~t) - m(A,a 2 ) with m(A,a 2 ) = E{P(A + ~t)}, (15) 

(6) can be written as 

(16) 

Speeding up the O-U process, i.e. putting nE = nt 2= p(A + ~t 2)
m(A,a 2 ). to take account of the fact that w~ are 6~rticularly 4nterested 
in the white noise limit where the band width E goes to zero, (16) and 
(7) read 

( 17) 

(18) 

The diffusion pair process (x~.~t) is associated to a FPE which can be 
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handled in exactly the same manner as in the linear case [9]but where 
now (in the notation of that paper): 

0 2 
F1 = azz + zazz ; F2 = -[ ].l(A+z) - m{A,(2)1 axg(x); F3 = - axf(x) - at. 

This permits one to evaluate the probability density of x in a straigh~
forward systematic way. To the lowest order in the case where ].l(].l) = A , 
it is found after some lengthy but simple calculations that the critical 
point of (13) is shifted by the noise to the value 

V~' = V~/{l - ( 2) - ~(2 - ( 2)/(1 - ( 2) or V~' = V~ + (V~ - i)if for 

0 2 + o. Accordingly, it increases with 0 provided that V~ < 1/2, which 
is the case experimentally. Because of the divergence at 0 2 = 1, the 
description becomes bad when the strength of the noise increases. In 
that case the results seem to suggest that the deterministic starting 
point (13) needs to be improved. 

Finally let us remark that a theoretical treatment of the second 
transition towards a turbulent regime is at present intractable. It is, 
howeve~ particularly interesting to remark that at variance with the 
results reported fgr other hydrodynamical systems ~ 17,18]~the effect 
of tbe noise observed experimentally here is an inhibition of.the 
transition towards the chaotic regime. 
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Critical Slowing down of Chemical Reactions Near Thermodynamic 
Critical Points 

Itamar Procaccia 
Department of Chemical Physics 
Weizmann Institute of Science 
Rehovot 76100, Israel 

1. Introducti on 

In this contribution I review our recent theoretical work concerning dynamical 
critical phenomena in chemically reactive fluid mixtures [1-3J. Of prime interest 
to us is the possible existence of a universal slowing down of chemical 
reactions near thermodynamic critical points; however, the influence of the 
occurence of a slowed down chemical reaction on the critical behavior of transport 
processes (diffusion, viscosity etc.) is also interesting. In particular, the 
critical behavior- of the complex sound attenuation coefficient seems to offer a 
good probe for some of our novel predictions. 

Regarding the slowing down of chemical reactions near critic~l points, the 
following rules of thumb have been proposed [2J: in an n-component reactive fluid 
mixture, when all the components participate in the chemical reaction, the reaction 
rate is expected to vanish like [(T-Tc)/TcJY, the critical exponent y~l .25, T is 
the temperature and Tc its critical value; when one component is non-reactive, and 
n-l components react, the rate depends on T like [(T-Tc)/TcJa, where a is another 
critical exponen~, a~0.12; when two or more components do not react, we expect the 
rate to be insensitive to the approach to the critical point. The above predictions 
hold irrespective of the nature of the chemical constituents. In section II I 
summarize the theory that leads to these predictions. The (scant) experiments that 
exist so far are in accord with these "rules" [1]. 

Concerni ng the effects on the critical behavior of transport processes, we have 
studi ed in detail ·onl y reacti ve bi nary mi xtures. Here we found that the (weak) 
divergence of n (the shear viscosity), which occurs in the non-reactive case,is 
removed, and the viscosity is finite. The diffusion constant D has a novel 
temperature and wave vector dependence. The compl ex bound attenuati on coefficfent, 
a~(w), has a divergent contribution, whose critical exponents are determined by the 
chemical rather than the diffusional pathway for composition relaxation. The mode 
coupling theory used in this context is summarized in sections III and IV. Section 
V is a short discussion, 

2. "Conventional" Theory and Mode-Coupl i ng Consi derati ons 

Consider an n-component reactive fluid and a linear theory of chemical reaction 
rates; for small deviations from chemical equilibrium the rate of reaction is 
proportional to the affinity [4J: 

rate = LA (l) 

The a ffi nity 
n 

A == - I Vi 11i 
i =1 

where vi are the stoichiometric coeffi~ients and 11i the chemical potentials of the 
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various species. The coefficient L contains microscopic information about rate 
constants, etc. Si nce the affi nity vani shes at equi 1 ibri um, we expand A at constant 
temperature and pressure: 

aA 
rate = L (a(;)P.T(~-~eq) (2) 

where ~ is the "progress variable", conveniently chosen through the relation 
vid~=dNi, where Ni is the number of molecules of species i. 

The crux of the argument is the fact that the derivative (aA/a~)p T vanishes at 
the critical point. To see this, write the Gibbs free energy as: ' 

n 
dG = Vdp - SdT + 2 ll· dN. • (3) 

i =1 1 1 

In a closed system· in which all components participate in the reaction.dNi=vid~ 
and thus: 

dG = Vdp - SdT - Ad~ • 

The condition for a stable equilibrium is: 
aG (-) = -A = 0 
a~ P,T 

At the critical point, which lies at the boundary of stability [2,4]. 

(4) 

( 5) 

(6) 

aA a2A 
(ar)p T = (-2)P T = 0 • (7) 

.." a~' 

Since equilibrium requires A=O (c.f. Eq. (5» ~eQ is a function of P,T. As a 
consequence, such a system has an isolated critlca1 point, and the behavior near 
this critical point is isomorphous to that of a pure fluid near its liquid-gas 
critical point [2,5]. Consequently, the derivative (aA/a~)p T vanishes like 

T~ , 
(T) Y, Y'l,l. 25 • 

c 
This stability argument leads to the prediction of the slowing down of the chemical 
reaction. 

In the case in which n-1 components react, the argument is the same except that 
now the rate is proportional to (lIA/adp T,No where No is the number of non
reactive particles. Being a thermodynamtc derivative computed with one extensive 
quanti ty he1 d fi xed, thi s quantity has a weaker si ngul arity and is expected [5] 
to vanish like [(T-Tc)/Tc]a. If more than one component is non-reactive, the rate 
is proportional to (aA/a~)p T N N where all the numbers of non-reactive 
components are held fixed. 'S~c~'a2tfiermodynamic derivative is non-singular at Tc 
[5] . 

To complete the argument we have to worry about the critical behavior of the 
quantity L in Eq. (2). Clearly, the slowing down might disappear if L diverges 
near Tc. We have studied this question by using mode coupling theory. It can be 
shown that the quantity L is related to a correlation function of the form 

L = lim J~ dt<rk(t)r_k> (8) 
k+O 0 

where rt is a microscopically defined quantity whose excat form is immaterial for 
the argument. The important thing is its symmetry property: rt is odd under time 
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reversal but even under parity. Consequently. it cannot couple, in the sense of 
correlation functions, to any of the slow (conserved) variables or to any multi
linear combination of them [6]. As' a result L has no mode coupling renormalization 
(to all orders). The only possible renormalization arises from dissipative non-
1 ineariti es, and these change the dynamical critical exponents only to the order of 
the critical exponent n, where n~.02 [1,7]. Thus we conclude that the critical 
slowing down of the chemical reaction is determined by the behavior of (dA/ds), 
leading to the above-mentioned rules of thumb. 

3. Transport Coefficients: Shear Viscosity and Diffusion Constant 

The exi stence of a chemical reaction, and its slowing down, has i nteresti ng 
implications on the critical behavior of the shear viscosity, n, and the diffusion 
constants, D. We have studied this problem in detail for reactive binary mixtures. 
In this context one can think about a dissociation-recombination reaction or an 
isomerization in a binary mixture near, say, the liquid-gas critical point. In 
non-reactive binary mixtures the shear viscosity and the quantity a, (defined by 

D = £l!. - a dC 

where 
]11 ]12 

]1 = ---
m1 2 

ml and m2 the molecular masses of the species) both diverge at Tc [8]. It has been 
snown that a~~~ where ~ is the correlation length. Most of the divergence is attri
buted to a, whereas n has a weak divergence, calculated to be logarithmic within 
the mode-coupling theory. In the reactiVe case we have shown that D and n are 
renorma1ized by the mode coupling non-1inearities as follows: 

D(q)=DO(q) + ~ foodk k2 foodS sin3s xq-t 1 (9) 
(2lT)2p 0 0 Xi< k2n(t)+(t-q)2D(i<_q)+L xtk-l+ 

-q 
+ + kBT foo 4flT 3 n(q)=n°(q) + 2 2 dk k' de sin e Xj(xq-t 

(4lT) q po 0 

(L __ 1_)2 1 
Xi< Xk-q k2D(k)+(q-k)2D(q-t)+L xi1+L ~l+ k q-k 

(10) 

In these equati ons DO (q) and n° (q) are the "bare" values of the respecti ve 
quantities, xk is the correlation function <sts-t> and p the density. Notice the 
contribution of· the chemical reaction, appearing as L~ -1 in the denominators of 
the integrands in Eqs. (9), (10). 

The details of the calculation of the quantities D(q) and n(q) are given in 
ref. 2. In calculating these two quantities we have used the Ornstein-Zernike form 
for the susceptibility Xk~[k2+~_2]-I. This approximation is acceptable for the 
evaluation of D and n, but it should be changed in favor of a scaling form in the 
calculation of Uq(W) , as is shown below. The final results for D and n are as 
foll ows: 

a) Denoting D(q)-DO(q) by LID we get 
kBTK x3 

LID = :----2 [K( x) -8 ~ K(y)] (11 ) 
6nnx p Y 

where K=~-I, x=k~, 8 = l~v ' v=L/n and y=[v/(1+v+x)]1/2. The function K(x) is: 

K(x) = i [(l+i)+(x3_x-l )tan-1 x] • (12) 

One can see that if n diverges, then v+0 and respectively 8+0 and then one gets the 
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usual result for 60 in a system without a chemical reaction [8]. However, we find: 

b) The quantity n remains finite near the critical point. We found that the most 
dangerous contribution to 6n is an integral of the form 

k 2 
6n '" r dk k (13) 

k3+Lk 2 
K 

The lower limit of the integral vanishes at Tc' When there is no reaction (i.e. 
L=O) this integral diverges logarithmically and 6n"'R.n~. However,when L!O,the 
integral is protected and does not diverge. As was mentioned before, L has no mode 
coupling corrections. Thus n is finite at Tc. The implication of this result is 
that Eq. (11) can be interpreted now as a closed equation for 60 rather than for 
the product 6Dn as is the case in non-reactive binary mixtures [8]. Consequently 
we can state that a diverges like ~. 

The inclusion of dissipative non-1inearities via a renorma1ization group calcu
lation might modify these conclusions slightly (to the order of the critical index 
n'VO.02) but is not expected to change the nature of the results [7]. 

4. Sound Attenuation and Oi spersion 

Sound attenuation is an attractive experimental probe of dynamical critical 
behavior since it offers a direct measurement of relaxation time scales with a 
mi nima1 perturbation of the equilibrium state. In the present context of a 
reactive binary mixture, both the chemical and diffusional pathways for composition 
relaxation contribute to sound attenuation. It is important to analyze the compe
tition between these two pathways to find which of them gove~ns the critical 
divergencies in the complex sound attenuation coefficients, aq(w). This quantity 
is related to the measurable sound attenuation coefficient a(w) and the change in 
sound velocity 6C(w)=C(w)-C(O) through the relations 

a(w) = Re ~(w) 

6C(w) = L 1m ;(w) • 
C 2w . 

The mode-coupling expression for ;a(w) was derived by Kawasaki [8], and in the 
present case it assumes the form [3] 

2 kT 3 f a1nxt ~+(w) = w _B_ (ap)2 _1 _ dk ( __ k_)2 
q 2? p3CV ,1; aT v,1; (2Tf)3 aT P,I; 

(14 ) 

Here Cv I; is the specific heat at constant volume and concentration and P the 
pressure. Since this expression involves a temperature derivative of X1t it is 
important to use a scaling form for Xl, rather than the Ornstein-Zernike expression: 

Xk = k-2+nf(k~). (15) 

We have found that close to the critical point,;q(w) is governed by the chemical 
process rather than the diffusional one and assumes the form 

2 k T 
~q(w) = ~ _B_ (ap)2 (1 )2[~ (.~l~s..)2]I(WT) (16) 

2C3 3C2 aT v,1; 2W t"3 aT 2 
p v.1; S 

where 

I (X) fOO y4 dy(a1n f(Y))2 1 
o ay i-f-1(y)-iX 

( 17) 

and where T-1=L~-2+n is the chemical time scale. 
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The reason why chemistry wins over diffusion can be summed up as follows: A 
sound wave will create local non-equilibrium conditions in a liquid which will 
relax back to equilibrium by the fastest available process. In the non-reactive 
case the only available pathway is diffusion and as diffusion processes show 
critical slowing down with a time scale ~D~(Dk2)-1~~3~(T_T~)-3V, the sound attenua
tion will show critical behavior given by this time scale a(w)!w 2 =to B(t)I(w~D). On 
the other hand,if relaxation can also take place via a chemical reaction, this 
situation may change. We can distinguish three cases: (1) the chemical reaction is 
on a slower time scale than the diffusion, (2) the chemical reaction is on a faster 
time scale but has no critical behavior, (3) the chemical reaction is on a faster 
time scale but also shows critical slowing down. Clearly for case (1) diffusion 
will still be the fastest process and will win over chemistry,giving the same 
exponents as for the non-reactive case (which is after all only the extreme limit 
of case (1)). For case (2) chemistry will win but as the chemistry shows no 
critical behavior neither will the sound attenuation. Finally there is case (3) of 
sound attenuation in critically slowed down chemically reactive mixtures which 
relax on a time scale ~c~~2-1l~(T-Tc)-Y. As y<3v the chemistry is faster and will 
win over diffusion~ and we thus expect the sound attenuation to obey 
a(w)/w2=~c B(T)I(wTc). 

One caveat must be made to the above analysis. The diffusion constant D(k) is 
wave vector dependent, and very high frequency sound waves will relax by high wave 
vector diffusion processes on a time scale ~D-l~D(k)k2~3. This will finally occur 
on a faster time scale than the chemistry and cross-over will occur back to diffu
sion controlled sound attenuation. Some possible experiments that utilize> these 
effects were suggested in ref. 3. 

5. Discussion 

The phenomenon of slowing down of chemical reactions near critical points has been 
observed experimentally by Krichevskii and coworkers. They looked at dissociation
recombination reactions in pure binary mixtures [9] (C1 2t2Cl) and in ternary mixtures 
[10] (C02/I2t2I) near the liquid-gas critical points. These examples indeed should 
show slowing down according to our rules of thumb. Other experiments dealt either 
with complicated reaction schemes or with more than one non-reactive component [1] 
and thus, as expected, did not show any universal behavior. It should be stressed 
that the phenomenon of slowing down in chemistry is independent of the slowing down 
in diffusion. It is the thermodynamic driving force for reaction (aA/a~), which 
vanishes at Tc. The diffusion of individual particles is insensitive to the 
approach to Tc and slowing down of diffusion cannot account for slowing microscopic 
collision rates [1]. In addition, it is important to realize that individual rate 
constants (1 ike the ones for the forward or backward reaction) are not si ngu1ar at 
Tc. It is only the observed rate, which is the net difference between forward and 
backward reactions, which slows down near Tc. 

Additional experiments are needed to test our theory. 
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Metastability and Nucleation in Chemical Systems with Multiple 
Steady States 

J. Boissonade 
Centre de Recherche Paul Pascal (C.N.R.S.) 
Domaine Universitaire - 33405 Talence Cedex (France) 

1. Introduction 

In 1971 Prigogine and Nicolis [1] suggested that the transitions between non
equilibrium chemical steady states are induced from local fluctuations by a nuclea-
tion process and exhibit metastability phenomena. In this frame, the chemical bis
tability appears as a close analog to the Van der Waals isotherm problem of the 
first-order equilibrium transitions [2]. The two deterministic steady states can 
only coexit, when fluctuations are included, for a single set of the constraints 
(ooexistence point). Elsewhere, the metastabZe state, say Em, converts into the 
stabZe state, say Es, as soon as a spontaneous fluctuation into state Es is large 
enough to spread to the whole system. The existence of a critical size for this 
fluctuation is related to the competition between the bulk nonlinear reactive pro
cesses and the diffusion processes which break and dilute the fluctuation, but 
are localized only to the surface between Em and Es. So the last dominate only for 
small fluctuations. When this critical size is large, near the coexistence point, 
or for fast diffusion,the life time T of Em is long and Em appears as stable. When 
this size is small, far away from the coexistence point on the metastable branch, 
or for slow diffusion, T is small, the transition occurs at once and Em appears to 
be unstable. 

These ideas are coroborated by analytical [3, 4, 5J and numerical [6, 7J solu
tions of various master equations in the frame of the stochastic theory,but in 
regard to numerous technical difficulties, no reliable real experiment has been 
achieved. A subtitute can be partially found in a numerical experiment of the 
moZecuZar dYnamics (M.D.) type: the dynamics of the system are then deduced in 
a fully deterministi c way from the 1 aws of mechani cs and elementary reactive pro
cesse~both described at a microscopic level. Several works, devoted to such tech
niques in the field of nonequilibrium systems (not focused on the nucleation pro
blem), have been published [8 -l1J, but they use global nonequilibrium conditions 
or additional local cooperative rules. Recently, we have developed a powerful MD 
method in order to deal with the reaction process and the nonequilibrium condi-
ti ons commonly used in the theoreti cal models [12, 13J. The technique is fully 
described elsewhere [14J. As we limit ourselves to the results obtained in the nu
cleation field, we shall only summarize the essential features. 

- The system, in mechanical equilibrium, is a two-dimensional assembly of 4 500 
hard disks, interacting through a hard-core potential and labeled according to the 
considered species in a square box with periodic boundary conditions. 

- The reactions are all bimolecular (first and second order kinetics) and occur 
during the elastic collisions (null global energy balance). The kinetic constants 
are adjusted by means of symmetric activation energy_ 
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- The concentration of the constrained species are kept constant and homogeneous 
in the whole. system. in accordance with the classical theoretical description. The 
diffusion processes are. of course, automatically included in the microscopic dy
namics. 

2. The numerical experiments 

We shall study the following model: [15] 

A + C kl ----=r 

B + Y 
k3 -

2 X ks -
D + X 

k6 -
X + Y 

k; -

Y + C 
X + Y 
X + N 
2 X 
2 N 

with kl = k6 = k, 1. 
ks = 0.5 
k3 = 0.2 

and B = 1.5 
C = 2. 

D = 3. 

A. B, C, D are the constrained species (constant and homogeneous concentrations), 
X, Y the intermediate ones and N a neutral species not involved in the kinetics. 

With these values the system exhibits two stable steady states,E 1 (X low, Y 
high) and E2 (X high, Y low) for 1.61 < A < 2.51. 

By dividing the system into 100 boxes (10 x 10), the local concentrations of 
the intermediate species X and Yare followed and their maps are drawn as functions 
of time. 

The stability picture predicted by the theory is shown on Fig.la, butinoursimu
lation, as well as in a real experiment,we must take into account the ratio of the 
life time of the metastable states to the experimental times. Far from the coexis
tence point Ao ' it·is generally so small that the transition occurs almost at once 
and the system appears as unstable, but near Ao it can be so long that the transi
tion never occurs during the experiment and the systems appears to be effectively 
stable. Observable finite life time (of the order of the experimental times) will 
be restricted to a narrow range of the constraint values around "thick"transition 
points, A~ and A~. The expected picture is given on Fig.lb where the shadowed 
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regions are for the observable fini te life times, The hysteresis range is reduced 
in comparison of the deterministi~ predictions, lhe effective stability of our 
system, initialized into state El or E2 ,was tested for a discrete set of the con
centration of A, covering the whole deterministic bistability range,and for two 
values of the radius R of the particlesJcorresponding to two different ratios of 
the reactive processes to the diffus ive process. The 1 imits of stabil ity Ai 
and A~ were determined in the two cases. 

3, Results 

In Fig.2 are represented the results of the stability studies for the two diffu
sion levels. The hysteresis range is reduced in accordance vlith the theory and some 
of the deterministic stable steady states are unstable. 
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Fig.2 Computed stability plot 
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Low diffusion rate 

Finite life times are expected for the state El in the vicinity of A~, Consider, 
for example, X as a function of t for the transition Tl (Fig.3):one can see that 
the system stays, for a long time (the typical duration of our experiments is 900 
time units except if a transition occurs) before the transition begins. Also, a 
life time of 350 time units was observed for T; in the low diffusion case. 

The temporal evolution of the concentrations maps of X and Y is shown in Fig.4a 
for the transition T1 • They are represented only by their low level (symbol' :E 1 

for X, E2 for Y) or their high level (symbol *: E2 for X, El for V). A nucleus of 
the stable state E2 forms in the metastable state Ez and spreads gradually to the 
whole system. A still more striking evidence for a nucleation mechanism is shown 
on Fig.4b for the transition Tz • 
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Coming back to Fig.2, we observe that the hysteresis (or bistability range) is 
~ = 0.125 for low diffusion rates and ~A = U.bU for large diffusion rates. This 
last result is in accordance with the theory, since, as mentioned in the intro
duction, increasing diffusion increases the critical size of the nuclei. 

4. Conclusions 

Ourmolecular dynamics simulations support the nucleation theory of transitions in 
non-equilibrium chemical systems. They give evidence for: 

- metastable states 
- formation and growth of nuclei during the transition 
- stabilization by diffusion. 

More details about the computationswill be given in a forthcoming paper (16). 
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Part v 

Coupling of Oscillators 



Synchronization of a Chemical Oscillation by Periodic Light Pulses 

E. Dulos 
Centre de Recherche Paul Pascal (C.N.R.S.) 
Domaine Universitaire - 33405 Talence Cedex (France) 

The synchronization of oscillators, a well-known phenomenon in physics, is of a 
major interest in the biological field where it is referred to as the entrainment 
of biological rhythms by periodic stimuli 11-21. However, the very complex network 
of interactions in the biological medium makes difficult the experimentation on 
biological oscillators. 

The situation is different in chemistry : here, the good experimental knowledge 
recently acquired about oscillating chemical reactions allows us to approach this 
study in various conditions. 

The oscillating Briggs and Rauscher (B.R.) 131 reaction has been choosen for 
this work because of two essential reasons : 

1) its rich phenomenology: indeed, depending on the values of the constraints 
it behaves in different fashions: various kinds of oscillating states, stationa
ry states, as well as multistability 14-5-61. 

2) it is photosensitive, so that the ability to synchronize the chemical oscil
lation can be investigated by means of periodic illumination 171. 

The experimental set up designed for this use is composed by two main elements 
(Fig.I) 

- the conventional C.S.T.R. reactor and its annexes. 
- a source of light and an optical device for irradiating the reactor. An in-

Diaphragm 

sourceL 
f--'-Fi'>--I t-er-------
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Reactor 
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Scheme of the experimental set up 



terferential filter selects the monochromatic light at 460 nm which irradiates the 
reactor (this wavelenght corresponds to the maximum absorption of iod.ine which the 
reaction produces in high quantity). A diaphragm allows us to adjust the quantity 
of light. By means of a set of lens, the beam is focused at two points: at the 
center of the reactor and on a shutter which is driven bv an electronic clock: 
the opening and closing times (i.e. illumination and extinction) obtained range 
from 1/10 sec to 1000 sec. (the period Pch of the chemical oscillation is always 
of the order of a minute). 

Two values are simultaneously recorded: 
- The chemical potential E of the reaction mixture, the evolution of which is 

exactly parallel to that of the chemical reaction. 
- The flux L of a derived beam from the main beam (in all our experiments, we 

have verified that L is always proportional to the flux.:e that effectively irra
diates the reactor). 

Square pulses of light are applied either isolated or in a periodic fashion. 
The periodic pulses are conveniently described in terms of size and duration 

by two parameters : (Fig.2) 

L 
LMax 

Fig.2 The square light pulses 

- the photoperiod PL = sum of the durations of illumination and extinction. 

PL = tLt1ax + tLMi n 

- the magnitude ~L of each perturbation. 

~L = LMax - LMin 

Notice that the interaction between the two oscillators is univocal. So, we are 
not dealing with coupled oscillators but only with a chemical oscillation forced 
by the periodic· illumination. 

We present the experimental results on the effect of light perturbations on 
two types of s.tates of the chemical system: 

1 : oscillating states 
2 : non-oscillating states 

1. Effects of light on oscillating states: 
Two types of oscillations of the B.R. reaction have been studied quasi-harmonic 
and relaxation oscillations. 

A) Effects of a single perturbation 
Let the period of the oscillation be T and the phase be ~. The effect of a 

single perturbation 181 can be described as follows (Fig.3) : 
Considerer two identical stable oscillators which are originally in phase. 

If a perturbation is applied to one of them, its period returns to T after some 
time, but it is no longer in phase with the unperturbed oscillator: the phase
shift ~~ can be measured as in Fig.3. 
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Fig.3 Determination of 
the phase-shift L'. ~ 

The value of L'. ~ depends on the phase ~ of app 1 i cati on of the perturbation: 
L'.~=f(~) 

f is called the response curve. 

These curves have different aspects, depending on the type of the perturbed 
oscillation: 

- The phase-shift measured for the quasi-harmonic oscillation (Fig.4) 
progressively increases and decreases as ~ goes along the oscillation. 

o~~ ________________ ~ 
o 

Fig.4 Response curve for the quasi
harmonic oscillation 

/ 

0r-~~~~~~~----~-+ 
~. refractory .1 sens . .l + 

zone zone 

Fig.S Response curve for the relaxation 
oscillation 

- The response curve for relaxation oscillation looks different (Fig.S) : 
it appears as a refractory zone where 1'1$ is always zero: whatever the phase $ 
in this zone where oneappliesthe perturbation. it has no effect. At the border of 
this zone, L'.~ sharply increases, then continues to increase progressively. This is 
the sensitive zone. This sUdden jump of L'.~ is related to an underlying excitabi-
1 i ty property. 

B) Effects of periodic perturbations 
Periodic light pulses also have different effects on the two types of oscil-

lations 
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a) On quasi-harmonic oscillations 
Periodic light pulses have no effect on these oscillations, except in 

very special conditions : 

then, phenomena analogous to beating can be observed sometimes. 

b) On relaxation oscillations 

Fig.6 Effect of periodic light pulses 
on quasi-harmonic oscillation: beating 

Periodic light pulses always synchronize these oscillations. Two modes 
of synchronization have been observed 

- Mode A defi·ned by 

Pch = n PL n integer. 

The chemical period is always an integer multiple of the photoperiod. 
When PL is growing, n takes the successive integer values n = ... 5,4,3,2, 1. 

- Mode B defined by 

Pch = n PL and 
y 

Pch = ~ PL , n, x, y, integer. 

In this case, depending on the PL values, Pch can be either an integer 
multiple or a fractional multiple of PL. 

1) Figure 7 illustrates the mode A for n = 2 and n = 1 (in the corres
ponding experiment, 1'1 L = 8) . 

In the simplest case, we have n = 1. This is the fundamental forced 
oscillation. One chemical oscillation is achieved exactly during one photoperiod. 

';;; 
.~ ..., 
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QJ ..., 
o 
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60s 

1 I I 
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Fig.7 Synchronization Mode A 
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~ 

Fig.8 Synchronization Mode B 
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Two events occur simultaneously: sudden jumpofLfromLr~in to LMax and reversal of 
the sense of evolution of the chemical potential. This usually results in a decrease 
in amplitude and period of the oscillation. The successive perturbations are applied 
at the same phase of the successive oscillations. This phase,of course, belongs to 
the sensitive zone. 

When n = 2 (this is the first sub-harmonic forced oscillation), then 
every other perturbation occurs in the sensitive zone of the oscillation : it is 
effective. The second one occurs in the refractory zone : it is uneffective. 

2) Figure 8 illustrates the mode B (same experimental conditions as 
in Fi g.7, except 1I L = 1). 

On the 1 eft side, one has n = 1, and on the ri ght one, one has 
n = 2. 

In between, one observes repetitive patterns composed of a number of 
oscillations x during y photoperiods (in the Fig.8b, x = 3, Y = 4). The x oscilla
tions have different amplitudes and periods because the y successive perturbations 
are applied at different phases of the x oscillations. Then, one defines a mean
chemical period Pch : 

~ s 

~ 
S 

., 

-. , 

p~ 

Vc s 
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Fig.9 Diagrams Pch/PL vs PL obtained 
for five different values of 1I L. 



3) In Fig.9 the ratio Pch/PL (i.e. n or Y/x) is given as function of PL' 
These kind of diagram presents the domain of e.xistence of the various sub-harmonics: 

We report here five experiments for five different values of ~L 

Pch 
- When the perturbations magnitude is large (~L = 8 or 6), 

PL take only integer values. 

- When the perturbations magnitude is small (~L = 2 or 1), 
Pch k' . 1 P'L can ta e lOteger or fractlonal va ues. The smaller ~L, the more numerous the 
fractional values are (see Fig.9 for ~L = 1). 

2. Effects of light on non-oscillating states 
A) On an excitable stationary state 

- When an excitable stationary state receives a singZe perturbation (Fig.l0) 
an excitability peak appears, provided the perturbation magnitude is large enough 
(example in Fig.l0 for L jumping from L = 4 to L = 0) : instead of returning direc
tly back to the stationnary state, the system first undergoes a huge deviation. 
This excitability peak looks exactly like a single relaxation oscillation. 

poUnlial E 

E(L:O 

1 
L:O 

L rJl-__ --, 
'Jo L 

Fig.l0 Effect of a single perturbation on 
~itable stationary state 

pot·l 

(---) flux L 
(_) potential 

Max ~ 
1 I PL=40s PL=120s PL=250s 

P =10s 
L Ipic/5 PL Ipic/2 PL Ipic/PL 

Fig.l1 Effect of periodic light 
pulses on an excitable stationary 
state 

- Periodic light pulses (provided PL is long enough with respect to the res
ponse time of the system) induce a series of excitability peaks. Of course, these 
peaks are synchronized with the light pulses which generate them. So, we can see 
in Fig.ll : 
no response for PL = 10 sec ; 1 peak / 5 PL for PL = 40 sec ; 
1 peak / 2 PL for PL = 120 sec; 1 peak / PL for PL '" 250 sec. 
Although not shown here, ·modes A and B have been observed also in this case. 

B) On a bistable system 
a) In continuous illumination 

Under continuous illumination, a bistability can appear in the B.R. reac
tion : as in Fig.12, two different potential levels (corresponding to states I and 
II) are possible, depending on the light flux L. Variations of L induce transi-
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Fig.12 Bistability appeared under 
continuous illumination 

Fig.13 Synchronjzation of induced oscil
lations by periodic light pulses 

tions with hysteresis between these two states. The transitions take place for two 
critical values LC and LC ; aLc is defined as ~LC = LC - LC • 

1 2 2 1 

b) Periodic light pulses 
When such a system receives periodic light pulses, it is easy to unders

tand that (provided the· perturbation magnitude is ~L ?~LC)' each change in illumi
nation level (LMax + LMin) can induce a transition from one state to the other 
(I + II). Then, the system runs around the hysteresis cycle. These are induced re
laxation oscillations (this requires that the time interval between two successive 
illumination Jumps is compatible with the transition times). 

This has been observed (Fig.13) for large enough ~L and long PL. Of cour
se, induced oscillations synchronize with periodic light perturbations. Both modes 
A and B exist also in this case. 
Conclusion 
The aptitude for synchronization appears as an exclusive property of relaxation 
oscillators which are characterized by excitability. 
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Electrically Coupled Belousov-Zhabotinsky Oscillators: 
A Potential Chaos Generator 

Michael F. Crowley and Richard J. Field 
Department of Chemistry, University of Montana 
Missoula, MT 59812, USA 

1. Introduction 

A most important reason for the investigation of oscillating chemical reactions is. 
their ability to demonstrate a wide variety of remarkable dynamic behaviors in rel
atively easily controlled experimental systems where the governing dynamic laws are 
sODeti~es reasonably well understood. The Belousov-Zhabotinsky (B) reactionl ,2 
(the metal-ion catalyzed oxidation and bromination of certain organic substrates ·by 
bromate ion in a strongly acidic aqueous medium), when run in a continuous-flow, 
stirred tank reactor {CSTR), is a prime example of such a chemical oscillator. It 
exhibits such phenomena as: both simple and complex waveform oscillations3, multi
ple steady states4, hysteresis Qhenomena5, excitability6 and quasi-periodic, ap
parently chaotic oscillations3,7. A simple model of the BZ chemical kinetics, the 
Oregonator8, reproduces, at least qualitatively, all of these phenomena except the 
last, aperiodic or chaotic oscillations. flowever, experimental observations of3 7 
aperiodic oscillations in the BZ reaction have been reported by several authors ' • 
It has not been entirely clear whether such aperiodic behavior is an intrinsic fea
ture of the dynamic laws of the BZ reaction or whether it results from random envi
ronmental per~urbations to the experimental system. The later experiments of 
HUDSOI~ et al. seem to have been the best controlled to eliminate environmental 
perturbations. The concentrations of reactants in the feedstreams to the CSTR were 
kept constant in their experiments as the flowrate (which controls the residence 
time of species in the reactor) was the critical parameter varied. Aperiodic, ap
parently chaotic, oscillations appeared in a rather small range of residence times 
during which the system passed across a bifurcation between complex waveform limit 
cycles of quite noticeably different forms. The chaotic behavior9was apparently a 
Dixture of these complex wt~eform oscillations. SHOWALTER et al. and later GANA
PATHISUBRAt-1ANIAN AND NOYES attempted to reproduce the experimentally observed 
chaotic behavior using an extended versionlO of the Oregonator model. They were 
unsuccessful. The transition between the two complex waveform oscillations observ
ed by HUDSON et al. 3 did indeed appear in their calculations, but it was very sharp 
with no apparent region of mixing. Thus it appears that the experimentally observ
ed chaos resulted fro~ either random environmental perturbations to the experimen
tal system or ,from co~plexities of the BZ kinetics not modoeled by the extended 
Oregonator. We ~elieve the latter to be the case. In this regard, it is notewor
thy that TURNERl has found chaotic oscillations using a model that, though overall 
sor.lewhat simpler than the one used in [9] and [10], did, unlike [9] and [10], con
sider the step modeling Process C of the FKN mechanisml to :"e reversible. This 
suggests that the experimentally observed chaos may result from complexities in 
Process C. However, the details of this very complicated chemistry are not likely 
to ever be well enough understood to decide whether or not this is true or to carry 
out mathematical analysis relating the BZ dynamics to the appearance of chaos. Thus 
there is a need to develop a chemical system which may exhibit chaos under easily 
characterized and understood circumstances. 
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2. Electrically Coupled Belousov-Zhabotinsky Oscillators 

ROSSLER12 has shown that a chaos-generating machine may be created by coupling a 
limit cycle oscillatnr to a switching subsystem. The same author13 as well as 
KURAMOTO AND Y~'~TA14 have shown that chaos can also occur in distributed systems 
of coupled oscillators. Thus ~ie have undertaken an investigation of electrically 
coupled BZ oscillators. An important, but by no means the only, motivation for 
this work is a search for chaos. It is suggested that such a system will reflect, 
mainly the gross limit cycle behavior of the BZ reaction and perhaps be less senSl
tive to the details of the BZ kinetics than a simple BZ-CSTR system. 

Previous experiments have been carried out on coupled BZ oscillators1 5• How
ever, in these experiments the coupling was effected by means of mass trans~er be
tween the two oscillators either by convection through an OQen port connectlng 
them15a,b,c or by pumping oscillating reagent between them15d• Although the latter 
method is easier to quantitatively model than the former, both suffer from the fact 
that the coupling is carried out by transfer of reagent containing all reacta~ts" 
products and intermediates. This problem is particularly difficult to deal wlth lf 
the reactant concentrations are quite different in the two reactors as is ~ften de
sired. The coupling of DZ oscillators by an electric current flow between large 
area Pt electrodes immersed in them offers the possibility of avoiding the mass
transfer problem. The circuit is completed by an ion bridge. 

The redox potential of a cerium-catalyzed BZ oscillator is one of the principal 
oscillatory variablesl . Because the concentrations of Ce(III) and Ce(IV) are the 
highest of those expected to affect the redox potential of a BZ oscillator and be
cause the form of the redox potential oscillations is very similar to the spectro
photometrically determined concentration of Ce(IV), we assume that the magnitude 
and sign of the redox potential between two electrically coupled BZ oscillators 
will depend primarily upon the difference between [Ce(IV)]/[Ce(III)] in the two re
actors. As a result of such a potential difference, a current will flow between 
the oscillators. The magnitude of this current will depend upon the amount of 
Ce(IV) reduced and Ce(III) oxidized in the respective oscillators. It is this chem
ical reaction which couples the oscillators. If it is assumed that the electrodes 
are reversible and that the reactions occurring at them mainly involve cerium ion, 
then the current, I, coupling the oscillators is given by the Nernst equation (1). 

d [Ce(IV)]l d[Ce(III)]2 E 0.0595 [Ce(III)]l [Ce(IV)]2 
dt = dt oc I = R = ~ log (1) 

[Ce(III)]2 [Ce(IV)]l 

In (1), R is the total resistance of the circuit and the subscripts refer to oscil
lators 1 and 2. The degree of coupling can easily be determined by measuring the 
current, I, and it can be controlled by varying the resistance. lie note that elec
trical coupling of BZ oscillators introduces naturally a logarithmic term into the 
dynamic law of a real chemical system. 

Preliminary experiments and calculations have been carried out to test the fea
sibility of carrying out experiments with electrically coupled BZ oscillators. The 
efficiency of coupling in such a system is expected to depend primarily on two fac
tors. The first is how much current can flow between the oscillators and the sec
ond is the volume of the reactors; more current is required to couple larger than 
smaller reactors. The resistance of the circuit including the two oscillators is 
critical in this regard. Experiments have been carried out to determine the resis
tance of circuits 'composed of two cells containing concentration ratios of Ce(III) 
to Ce(IV) in at least 1M H2S04 equivalent to those present at various phases of a 
BZ oscillation. These cells were coupled by large area Pt electrodes and an ion 
bridge. The solutions were rapidly stirred. It was quickly determined that most 
of the resistance of the circuit was in the ion bridge. Conventional Agar salt 
bridges had resistances of several hundred ohms. However, an ion bridge composed 
of two glass microfibre, 1-micron filter sheets (Whatman GF/C) gave circuit resis
tances as low as 20 ohms while allowing very little mass transfer. At the tenths 
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of a volt potential differences expectpd between out-of-phase BZ oscillators, about 
10 ma will flow in such a circuit. This corresponds to about 10-7 moles of reac
tion per second at each elect4ode. In a one ml reactor changes in [Ce(IV)] and 
[Ce(II~)] on the ~rder of.10- M will occur. The con~entration ~f ~erium ion cat
alyst 1n a BZ osc111ator 1S often of the order of 10- M. Thus 1t 1S expected 
that at experir.lentally accessible resistances the current flowing between reactors 
of about one ml volume should cause sufficient chemical reacUon to substantially 
perturb both oscillators. 

3. Numerical Simulations of Electrically-Coupled BZ Oscillators: Chaos 

Simulations have been carried out of electrically coupled BZ oscillators running 
in one ml CSTRs. Flow reactors were used to obtain maximum control of the system. 
The extended Oregonator of SHO~ALTEK et al. 9 was used as the basis of these simu
lations. This model involves seven species in each reactor (Br03' Br02' HBr02' 
HOar, B~6' Ce(III) and Ce(IV)). Thus the simulations involved the numerical inte
gration of a set of 14 differential equations. This complicated model was used 
in order to model the actual behavior of the HZ oscillators as closely as possible. 
The goal of the calculations was to guide in the construction of the experimental 
system rather than to carry out a systematic investigation of the properties of 
electrically coupled oscillators. For a mathematical analysis of the generalized 
dynar.lics o~ this system,-it probably} would be appropriate to use the simple 
Oregonator perhaps in its stiffly coupled form,which could lead to a set of only 
four differential equations to describe the coupled system. 

Figures 1-4 illustrate some of the various results obtained in these simulations. 
All calculations were carried out with an error parameter of at least 10-10 , and 
tightening it further did not affect the results of a calculation. Fig. 1 illus
strates the suppression of one oscillator by the other when they are strongly cou
pled through a 5 ohm resis~ance. The plots show the variable Y (equivalent to [Br-]) 
as a function of time. When the coupling was turned on at 500 s both oscillators 
went through a transition period before the oscillator with the shorter period (#1) 
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Fig. 2 Left side. Simple coupling of two oscil
lators. Right side. Successive period length and 
power spectrum of oscillations on the left side. 
R = 10 ohms. Other conditions the same as in Fig.l 

-7.0 -S.S -S.O -5.5 Fig. 3 Three-dimensional trajectory in Zl. Y1. 
Zt Y'2Sj)ace of the calculation in Fig. 2 

suppressed its mate. The mechanism of this suppression was that the faster oscillator 
kept [Br-] in the other high enough to keep it from ever entering the rapid oxidation 
phase of its oscillation. Fig. 2 (left) shows Y as a function of time for both oscil
lators when they are coupled to such a degree that both are perturbed but continue to 
exhibit periodic. complex wave-form oscillations. The conditions in Fig. 2 are the 
same as in Fig. 1 except that R= 10 ohm. Oscillator 1 repeats itself each 5 periods 
while oscillator 2 repeats itself each 2 periods. Fig. 2 (right) shows a plot of 
successive period lengths as well as the power spectra of the oscillators in Fig. 2 
(left). The power spectra are exceedingly sharply spiked (reflecting the precision 
of the simulation) and evenly ~paced. Fig. 3 is an orbit in Y(#l). Y(#2). Z(#l) 
space. The variable Z is equivalent to [Ce(IV)]. 
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Figures 4 (left) shows a simulation which led to aperiodic, apparently chaotic, 
oscillations in oscillators coupled by a very low resistance of 2 ohm. The residence 
ti~es in this simulation were much longer than in Fig. 2, and there was Br- in the 
feedstreams. In general, Br- in the feedstreams tends to enhance behaviors resulting 
from coupling. Similar, although somewhat less striking, aperiodic oscillations 
appear under other conditions at much higher resistances. The calculation in Fig. 5 
was carried from 0 to 16000 s. The first 8000 s were ignored to assure that the 
oscillations had reached equilibrium with their feed streams and each other. There is 
no detectable order in the remaining 8000 s of the calculation, only a fraction of 
which is shown. in Fig. 4, This aperiodic behavior occurs near a transition point as 
did that observed by HUDSON et a1. 3 in a simple CSTR. As the ratio of [Br03] in the 
two oscillators is varied, the system passes from a state of suppression of oscillator 
1 by 2 through a periodic coupling to a state of suppression of oscillator 2 by 1. 
The aperiodic region is rather broad and dependent upon [Br-] in the feedstreams. Fig 
4 (right) shows the power spectra of both oscillators calculated from the entire 8000 
s range. These are very noisy, especially as compared to the power spectra in Fig. 2. 
There are, though, sharp peaks in the power spectra. We believe that these result 
from the fact that the coupling does not move the oscillators far from their unper
turbed limit cycle; its chief effect is to simply introduce a large set of nested 
loops into the high Br- phase of the uncoupled limit cycle. Fig. 5 shows the chaotic 
successive peri~d maps ~esult~ng from the oscillato~s in Fig. 4. There app:ar~bto be 
some form to thlS plot lncludlng at least one crosslng of the P(N)=P(N+l) llne and 
very steep areas. We are not sure that this plot is meaningful, however, as it prob
ably is not single valued. That is, a period of length P(N) may be followed by per-
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iods of lengths corresponding to a number of P(N+l)'s. This apparently results from 
the multi-dimensional nature of the system. A more meaningful next period or next 
amplitude map is being sought. 

4. Conclusion 

While we are not totally convinced that our calculations unambiguously show that 'chaos 
exists in electrically coupled BZ oscillators, we do believe that interesting dynamic 
phenomena will occur in such a system. We are continuing with our calculations and 
construction of an experimental prototype. It iS,possible to generate a bi-stable BZ 
system4, and we suggest that electrical coupling of such a system with a BZ oscillator 
may approximate more closely the chaos-generating machine of Rossler. This idea is 
also bein9 investigated. - - ' 
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Part VI 

Reaction-Diffusion Problems 



The Rotor as a Phase Singularity of Reaction-Diffusion Problems and 
Its Possible Role in Sudden Cardiac Death 

Arthur T. Winfree 
Department of Biological Science, Purdue University, 
West Lafayette, IN 47907, USA 

1. Abstract 

Some years ago a simple topological theorem enabled discovery of arrhythmic "singu
larities" in biological clocks, e.g., in the glycolytic oscillation of yeast cells 
(1). The context then was homogeneous chemical reaction, i.e., ordinary differen
tial equations. It turns out now that the problem in spatially distributed context, 
i.e., the partial differential equation of reaction and diffusion, has the same to
pology. 'The singularity in this context appears to include the "ROTOR" or "REVER
BERJlTOR". A heuristic extension of this theorem suggests a simple experimental pro
cedure which may elicit rotors in a volume of oscillating reactants. This procedure 
resembles conditions which elicit fibrillation in oscillating heart muscle; the same 
singularity may underlie "SUDDEN CARDIAC DEATH". 

2. Background 

My purpose here is to exhibit a parallelism between certain aspects of heart physi
ology and corresponding aspects of physical chemistry in the Belousov-Zhabotinsky 
reagent. Its basic features have been noted before, but we can now additionally con
nect the earlier story to topological aspects of phase shifting in limit-cycle oscil
lators. 

Krinskii (2), Troy (3), and Winfree (4,5) have drawn attention to the mathemati
cal correspondence between Belousov-Zhabotinsky solution and other excitable media, 
e.g., neural membranes. In a nutshell, all exhibit a globally attracting steady 
state not far from a saddle-like region of flow beyond which trajectories execute 
a large excursion before inevitably returning to the steady state. In spontaneously 
oscillating excitable media, matters stand much the same except that trajectories 
only GRAZE the steady state and pass on to another excursion without assistance from 
any external stimulus (or, if you like, a chronic stimulus is built into the spon
taneous dynamics). 

3. Spat)ally Distributed Excitability 

We now redirect our interest from the ordinary differential equations of spatially 
homogeneous kinetics in a stirred tank reactor to the partial differential equations 
of a spatially extended medium. The striking similarity between chemical excitabi
lityand neuroelectric excitability remains and is even enhanced. In the chemical 
case a Laplacian operator is added to the local kinetics to represent molecular dif
fusion. In the neuroelectric case -the same operator is added to represent electric 
current flow along potential gradients. 

4. Reflection of Action Potentials 

We are accustomed to transfer sophisticated inSight from the more fundamenatal 
sciences, such as physical chemistry, to the more phenomenological, such as neuro-
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physiology. I believe there may be something to gain from carefully selected trans
fers in the opposite direction as well. 

For example, many at this meeting have surely contemplated the faint prospects 
of REFLECTING a reaction-diffusion wave. Recent experiments in neurophysiology sug
gest against intuition (mine at least) that this may yet be possible. It has in 
fact been done both in the physiological laboratory (6) and by numerical simulations 
(7). The latter use the Hodgkin-Huxley model of excitable media, a parabolic par
tial differential equation similar in all essential respects to the equation govern
ing excitable reactions spatially coupled by diffusion. The necessary trick seems to 
be to contrive a suitable parameter gradient to serve as a "mirror" at the boundary. 

5. Phase Resetting of Neuroelectric Oscillators 

A different example is better developed. It concerns rotating waves in an oscilla
tory excitable medium. We approach this subject through the topology of phase-reset
ting in pacemaker neurons. 

Consider first a spatially homogeneous bioelectric membrane, spontaneously oscil
lating as in a pacemaker neuron. A discrete perturbation kicks its state point off 
the attracting limit cycle, to which it presently returns with some discrepancy of 
timing relative to an unperturbed control. For several years it has been recognized 
that this'offset of timing depends on both the timing and the magnitude of the sti
mulus. This dependence' is best described by a 3-dimensional plot that resembles a 
screw surface. Figure 1 shows the contour map of one such surface. This one was cal
culated from the Hodgkin-Huxley equations of rhythmically firing squid axon subjec
ted to a current pulse (8,9). 

6. Black Holes or Singularities on the Phase Map 

The essential qualitative feature of this contour map for present purposes is the 
CONVERGENCE of contour lines to a BLACK HOLE in the half-plane of positive stimuli 
and to another in the complementary half-plane of negative stimuli. Each contour 
line joins the two BLACK HOLES. The BLACK HOLE may be arbitrarily small, even as 
small as an isolated point singularity bringing together all the contours lines. 
This curiosity is well understood theoretically - indeed, it was predicted from 
theory (10)- and is now also well established experimentally (11,12). 

The topological analysis of attracting limit cycle kinetics leads to the in
ference (13) that the same qualitative pattern will be found when the correspond
ing measurements are carried out on the FKN model (14) or an actual Belousov
Zhabotinsky solution in a CSTR (e.g., using ultraviolet irradiation or bromide 
injections). This remains to be verified. 

7. Phase Resetting in a Spatial Gradient 

Now consider the implication for a spatially extended thin layer of excitable 
medium, subjected to a spatially graded stimulus. Imagine a train of parallel 
plane waves (ideally "pseudo-waves", i.e., phase gradients little affected by dif
fusion of molecules or electric potential [see (13) page 305]. Let each wavefront 
extend North-South, the wave proceeding from East to West. A perturbation falling 
on the medium (e.g., ultraviolet light or acetylcholine from a widely branching 
vagus nerve) finds volume elements at various phases in the cycle according to 
distance behind the nearest wavefront to the left - exactly as described by the 
horizontal axis in Fig.I. The vertical axis in Fig.1 represents stimul us magnitude, 
from zero to infinity in the upper half-plane. In the chemical analogue we might 
achieve that arrangement by grading the UV irradiance from zero upward to some ex
treme. 

According to the scheme of Fig.l this should result in resetting the phase of 
parochial oscillation in each volume element, according to its initial phase and 
the local exposure. The contour lines of Fig.1 then represent loci of uniform phase, 
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Fig.l. This contour map shows loci on the plane of stimulus siz~ (zero in the middle, 
positive above, negative below) and stimulus timing (spanning one full cycle left 
to right) which result in resetting a.Hodgkin-Huxley pacemaker to the same phase. 
Phase values on these contours vary through one full cycle clockwise around HOLE 1 
and counterclockwise around HOLE 2. For details see (9,16,17) 

i.e., of identical time until turning from red to blue or time until bioelectric 
discharge. They therefore represent the successive positions of a wavefront (spe
cifically, of a "pseudo-wave"). This locus apparently rotates about an ambiguously 
phased pivat point once in every period of the spontaneous oscillation. 

8. Spatial Coupling: Does it Affect the Topology of Wave Circulation? 

This hand-waving argument ignores the spatial coupling of adjacent volume elements, 
blithely pretending that the autonomous ordinary differential equation is unaffec
ted by molecular diffusion (in the case of the Belousov-Zhabotinsky reaction) or 
by electric currents (in the case of neural membranes). This might be an excellent 
approximation were the experiment conducted on a gargantuan scale with correspond
ingly shallow gradients of timing and of perturbation magnitude. 

But even in this situation. contour lines AFTER perturbation converge to the 
boundary of a BLACK HOLE. Whether the latter be a finite disk or a mere point. con
tour lines approach infinite density there (15), so the gradients of phase AFTER. 
perturbation exceed any pre-established limit. Consequently the Laplacian term MUST 
be reckoned with. Can it alter the TOPOLOGICAL configuration of the wave grandly 
rotating alan the horizon? If not. then we have created a "reverberator", a "rotor". 
I know no mathematical proof but believe this to be the case. 

9. Rotating Waves First Discovered in Excitable Cardiac Ti-ssue 

In the case of neural media. graded stimuli do commonly fall upon sheets of perio
dically firing cells. spatially graded in their timing. The heart is such an organ. 
Electric currents and vagal arborizations (in the atria) provide such stimuli. Per
niciously stable rotating waves have been initiated in heart mus~le by procedures 
similar to that idealized above (see 16, 17 for citations). There is some specu
lation that this constitutes one mode of SUDDEN CARDIAC DEATH. a mysteriously ab
rupt and lethally catastrophic onset of arrhythmia in the normal healthy heat 
(16.17). 
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Chemical Waves in the Iodate-Arsenous Acid System 

Adel Hann, Alan Saul, and Kenneth Showalter 
Department of Chemistry, West Virginia University 
Morgantown, WV 26506, USA 

1. Introduction 

Chemical waves were observed in the iodate oxidation of arsenous acid over 25 years 
ago by EPIC and SHUB [1]. In a recent study [2], the existence of the waves was 
confirmed and a qualitative explanation was proposed. In addition, an electro
chemical method for initiating waves in a thin film of solution was developed. 

The chemical waves in the iodate-arsenous acid system differ siqnificantly from 
the chemical waves exhibited by the Belousov-Zhabotinsky (BZ) reaction [3,4,5]. 
The iodate-arsenous acid reaction has the features of a clock reaction: a slow 
induction period followed by the onset of rapid reaction. The chemical wave in 
this system is a propagatin~ front. The solution ahead and behind the front re
sembles the stirred reaction m~xture durinq and followin9 the induction period, 

Figure 1 

respectively. The chemical wave in the excitable 
BZ reaction mixture is a propaqatin9 puZee. The 
pulse leaves the solution essentially unchanged 
after passinn throunh it. 

In the first systematic study of the iodate
arsenous acid reaction, EGGERT and SCHARNOW [6] 
reported autocatalysis in iodide. Net reaction (1) 
describes the system when arsenous acid is in stoi
chiometric excess to iodate ([As(III)] > 3[10 3-]): 

(1) 

When iodate is in stoichiometric excess to arsenous 
acid ([As(III)] < 5/2[10 3-]), the system is de
scribed by net reaction (II): 

2103- + 5H3As03 + 2H+ = 12 + 5H 3As04 + H20 (II) 

It is convenient to describe the reaction as a com
bination of two processes: the Dushman reaction 
[7] (process A) and the Roebuck reaction [8] (process 
B). 

- - + 103 . + 51 + 6H = 31 2 + 3H20 

H3AS03 + 12 + H20 = 21- + H3As04 + 2H+ 

(A) 

(B) 

In solutions with [As(III)] ~ 3[103-], the overall reaction is autocatalytic in 
iodide according to (A) + 3(B) or (I). Iodide accuMulates until iodate is com
pletely consumed. Chemical waves in these reaction Mixtures (containin~ starch 
indicator) appear as thin blue bands. Fi~ure 1 shows a typical wave at 17.6 min 
that was initiated at ca. 3.7 min after mixing reactants. 
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In this paper, we report on an 
investigation of chemical waves in 
the iodate-arsenous acid reaction. 
We confine this report to waves in 
reaction mixtures containing H3As03 
in stoichiometric excess to 10 3-, A 
more detailed account of our investi
gation, includin~ experiments with 
[As(III)] < 3[103-], can be found 
elsewhere [9] . 

2. Experimental 

Chemical wave studies were carried out 
using a oetri dish with a plate glass 
botton, thermostated at 25.0 + 0.2oC 
by a water jacket. Reaction mixtures 
were prepared by pipettin~ appropriate 
volumes of stock solutions. A buffer 
solution, prepared by mixin~ appropri
ate nole ratios of NaHS04 and Na2S04, 
was added to each reacti on mi xture to 
maintain constant acidity. The result
ing solution was thorounhly mixed, 
spread over the bottom of the petri 
dish, and the electrodes were oosition
ed. The 10.0 ml reaction mixture 
oenerated a solution death of 0.8 mm 
in the petri dish. In all experiments, 
the reaction mixtures contained 0.04% 
starch indicator and 8 x 10-4 M sodium 
lauryl sulfate, which facilitated 
spreading of the solution in the petri 
dish. To investi0ate wave velocity 
deoendence on reactant concentrations, 
one reactant concentration was varied 
while the other reactant concentrations 
were held constant ([NaI0 3]0 = 5.00 x 
10- 3 ~1, [1I 3As0 3 ]0 = 1.55 x 10- 2 M, 
[H+]o = 7.1 x 10- 3 M). 

Waves were initiated at a Pt 
electrode in the center of the dish 
nenatively biased at -1.0 V with 
respect to a Pt electrode near the 
edge of the dish. The wave front 
position as a function of time was 
recorded by takin(! photo£,raphs at 
timed intervals. 

~1easurements of [C] were made with 
an iodide selective microelectrode 
positioned 19.0 mm from the Pt initi
ation electrode. Iodide concentration 
was measured as a function of time as 
a wave passed throuqh the electrode 

position. Other measurements of iodide concentration in stirred reaction mixtures 
were made with the same microelectrode. 
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3. Results 

Plots of wave front position as a 
function of time were linear; there
fore, waves propagate with a constant 
velocity. Fi~ure 2 shows position as 
a function of time for three reaction 
mixtures differinn only in initial 
[H 3As0 3]. 

3.1 Effect of Reactant Concentrations 
on Wave Propaqation 

Wave velocity dependence on initial 
reactant concentrations is shown in 
Figs.3-5. A linear dependence of 
wave velocity on initial [10 3-] is 
shown in Fig.3. Only a narrow range 
of iodate concentrations could be 
studied in this series of experiments. 
At iodate concentrations lower than 
those in Fig.3, waves were not initi
ated at the Pt electrode; at higher 
concentrations, ~As(lII)] < 3[103-] 

and wave velocity i's no longer 
constant [9]. A linear velocity de
pendence on initial [H 3As0 3 ] is shown 
in Fig.4 and Fig.5 shows a linear 
velocity dependence on [H+]. In the 
experiments for Fig.5, the NaHS04/ 
Na2S04 ratio of the buffer solution 
was varied to obtain different 
solution acidities. The [H+] of each 
reaction mixture was measured using a 
pH meter. 

The least squares slopes for the 
data in Figs.3-5 are given in Table 1. 
Also given are the relative slopes, 
obtained by multiplying the slope in 
each case by the concentration at 
which the reactant was held constant 

-=---:-:--:;:-;-;---:--:---:------d-v---- in the other experiments. The 
102[X]o(d[X])/mm S-1 relative slopes show that the Reactant (X) dv/mm S-1 

_..:...;."-'-;;;..;;;.. __ --=..o..:..:..."'-'-''--___ .....;:.-=~ .. ___ wave velocity dependence on H+ and Varied d [X] /~1 

NaI0 3 

H3AS03 

H+ 

5.049 
0.479 
1. 93 

2.525 
0.742 
1. 37 

3.2 Iodide Concentrati on ~leasurements 

103- is, respectively, about 2 and 
3 times ~reater than the dependence 
on H3As0 3. 

Iodide concentratiQn was measured as a function of time as a wave passed through an 
iodide selective microelectrode with a sensor diameter of about 0.4 mm. The curve 
in Fig.6 (left) shows iodide concentration as a function of time (standard reactant 
concentrations except [H 3As0 3 ]0 = 5.43 x 10- 2 M). The wave velocity for this 
reaction mixture composition was 4.12 x 10- 2 mm S-I. The increase in iodide concen
tration occurred almost entirely between 6.2 and 6.6 min; therefore, the wave front 
is about 1.0 mm wide. Photographs of waves in reaction mixtures with the same 
compOSition showed the width of the visible blue band to be about 0.4 mm. 
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According to (I), the iodide concentration should increase to a value given by 
the stoichiometric relation [C]ma~ = [IOs-]o' rhe measured [l-]maJS in Fig.6 is 
about 8% higher than the .value of 5.0 x lO- s M expected from stoicmometry. The 
discrepancy is apparently due to expertmental error. Also shown in Fig.6 (right) 
is·the iodide concentration as a function of time in a stirred reaction mixture 
with the same composition. The measured [I-]max for the stirred reaction mixture 
is also about 8% above the value expected from stoichiometry. 

4. Discussion 

The oxidation of arsenous acid by iodate can be expressed as a combination of the 
Dushman reaction [7] and the Roebuck reaction [8]. LIEBHAFSKY and ROE [10] have 
summarized the many studies of the Dushman reaction. They conclude that the 
kinetics of the reaction are best described by (1). 

(1) 

The reaction is first order in iodide at [1-] less than about 10-6 M and second 
order in iodide at higher concentrations. Iodine generated by the Dushman reaction 
is reduced to iodide by As(III) in the Roebuck reaction. Process B is more rapid 
than process A and therefore the Dushman reaction is rate determining for the over
all reaction. The regeneration of iodide by process B gives rise to autocatalysis 
in iodide at a rate given by (1). 

In reaction mixtures containing HsAsOs in stoichiometric excess, the iodine and 
oxyiodine intermediates never reach concentrations which are stoichiometrically 
significant. Therefore, the concentrations of iodate and iodide are related by 
[IOs-] = [IOs-]o - [1-] according to (I). Substituting this relation into (1) 
allows us to wrlte the reaction-diffusion equation 

(2) 

where C = [1-]. We now have a single variable model for the system with third
order kinetics. In (2) we must assume that 1- and IOs- have the same diffusion 
coefficients. The homogeneous steady states from (2) are -kl/k2' 0, and [IOs-]o' 
A linear stability analysis shows that for the homoreneous system, the negative 
and positive roots are stable and the zero root is unstahle to infinitesimal 
perturbation. 

Figure 2 shows that waves propagate with a constant velocity. Substitutin9 
v = {ax/at)c into (2) gives 

D d2C dC - + 
(IxT + v dx + (k 1 + k2C)( [lOs ]0 - C)[H ]2C = 0 (3) 

A linear stability analysis of the two simultaneous first order differential 
equations derived from (3) shows that the zero root is an unstable node and that 
the positive root is a saddle point for v < O. These reaction-diffusion stationary 
states correspond to a stable propagating front [12]. 

A particular analytical solution of (2) or (3) is given by: 

Co 
C(x,t) = 1 + A ek(x-vt) 

where, 

(4) 

(5) 
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k = CO[H+)(k2/2D)~ (6) 

v = (kdk)[I0 3 )0[H+)2 + D k (7) 

Fi9ure 7 shows C as a function 
of distance for the arbitrary 
constant A = 1.0, t = 100 s, D = 
1.52 X 10- 5 C~2 S-I, kl = 4.5 X 
10 3 M- 3 S-I, k2 = 1.0 X lOB M- 4 

S-I, [H+) = 7.1 x 10- 3 M, Co = 
[10 3-)0 = 5.0 x 10- 3 M, and the 
measured velocity for the reaction 
mixture composition in Fig.6. The 
values of kl and k2 are from a 
study of kinetic bistability 
exhibited by this system in a 
CSTR [11). From (5), (6) and (7), 
we calculate v = 9.96 X 10- 3 mm 
S-I. Therefore, the calculated 
velocity is low by a factor of 4 

compared to the experimental velocity in Fig.6. Equations (2)-(7) do not take 
into account the effect of [H 3As0 3 ) on wave velocity. For the standard reaction 
mixture compositi'on with [H 3As0 3 )0 = 1.55 x 10- 2 M, the experimental velocity 
(v = 2.3 X 10-2 mm S-I) differs from the calculated velocity by a factor of only 
2.3. 

Equations (5)-(7) give the wave velocity dependence on reactant concentrations. 

v = a[H+] + S[H+][I0 3-]0 (8) 

~Ihere, a kl(~~)~ 2.48 x 10- 3 cm S-I WI 

a = (¥)~ = 27.57 cm S-1 I·P 

For the standard reaction mixture, the first term !n (8) accounts for l~ss than 2% 
of the calculated velocity. The plot of v vs [10 3 ] with a constant [H 1 in Fiq.3 
gives a and 6 values of -3.40 x 10- 2 cm S-I M-l and 71.11 cm S-I M-2, respectively. 
Disregarding the nonzero intercept of the plot of v vs [H+] in Fig.5, the slope 
gives (a + 6[103-] ) = 0.19 cm S-l M- 1 compared to a value of 0.14 cm S-1 M- I from 
(8). The reasonab~y good agreement with experiment indicat~s that the essential 
features of the traveling chemical wave are accounted for by (3) and (4). 
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Mecanisme reactionnel fonde sur nne etude experimentale expliquant 
des instablilites interfaciales liees a des reactions cbimiques 

E. Nakache, M. Dupeyrat 
Laboratoire de Chimie Physique de l'Universite P. et M. 
Curie - L.A. 176 C.N.R.S. - 11, Rue P. et M. Curie 
75 231 Paris Cedex 05 (France) 

Les instabilites hydrodynamiques que nous etudions apparaissent dans un systeme a 
deux phases liquides non miscibles loin de l'equilibre. Elles se manifestent par 
exemple, lorsqu'on superpose une solution aqueuse d'un halogenure d'alkyltrimethylam
monium (RCI), compose tensioactif hydrophobe, et une solution d'un compose hydrophile, 

l'acide picrique (HPi) dans Ie nitrobenzene. Lors de la mise en contact des phases 
chaque compose se trouve dissous dans la phase pour laquelle il a Ie moins d'affinite 
et Ie systeme est loin de l'equilibre thermodynamique. On observe des mouvements spon
tanes de l'interface lors de la relaxation du systeme. lIs se presentent sous la for
me so it d'une vague qui apparait Ie long d'une paroi de verre et deforme l'interface 
so it de contractions et d'expansions dans Ie plan de l'interface visibles grace a une 
emulsion qui se produit spontanement peu apres Ie contact des phases, mais qui n'est 
pas necessaire a l'apparition des mouvements. 

Ces deux types de mouvements sont lies a des variations locales de la tension in
terfaciale (11. Ce sont donc des effets "MARANGONI". Ils ne peuvent etre attribues 
121 ni a un effet de densite lie au passage d'un solute d'une phase dans l'autre ni 
a un transfert de chaleur, ni au transfert d'un solute tensioactif entre les deux 
phases. Enfin ils n'obeissent pas aux criteres de STERNLING et SCRIVEN t3i. Nous 
avons montre que l'existence d'une reaction chimique est necessaire a l'apparition 
de ces instabilites et nous proposons maintenant un mecanisme reactionnel, base sur 
I 'experience, pour justifier les phenomenes observes. 

I. Methodes Experimentales 

Nous avons correle visuellement les expansions et contractions de l'interface avec 
les variations de ,tension interfaciale "0, elles-memes couplees avec des modifica~ 
tions de la difference de potentiel 61fde part et d'autre de l'interface 141 . Pour 
etudier les mouvements nous avons trace la courbe de la variation de () , mesuree par 
la methode de l'etrier 151, en fonction du temps. La figure (1) represente a titre 
d'exemple les oscillations de relaxation obtenues avec HPi 1,25 10-3 M (n) et Cl Br 
5 10-3 M (e). Le mecanisme reactionnel propose do it rendre compte de l'allure de§ 
oscillations. 

t~o.zsmN/m 
I' 

Fig.1 Variation de la tension interfaciale du systeme HPi 1,25 10-3 M(n) 
c I2Br 5 10 M (e) en fonction du temps. 
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2. Bases Experimentales du Modele 

La variation simultanee de ret de r:N au cours du temps est liee au· transfert des es
peces d'une phase dans l'autre. Celui-ci suppose un transport par diffusion au sein 

des phases et un processus d'adsorption - desorption a 1 'interface. Le probleme se 
pose donc de determiner Ie role de chacun de ces phenomenes dans l'instabilite. 

Des travaux anterieurs sur des interfaces analogues, a l'equilibre, soumises a un 
champ electrique ont montre qu'on obtient une variation de l( lorsqu'on fait varier 
la d.d.p entre phases et que ce p~enomene, appele Electroadsorption, resulte de la 
modification de concentrations des especes au voisinage de 1 'interface. 

A partir de ces travaux nous avons pu [6] justifier la variation de tension inter
faciale observee en supposant 1) que Ie transport des especes tensioactives est impose 
par Ie processus de migration-convection. 

2) qu'il existe a l'interface une reaction d'echange 
entre Ie contre ion de l'ion tensioactif et les contre ions en solution. 

Nous avons considere l'electroadsorption comme Ie phenomeAR~8~~einstabilites etu
diees et nous avons suppose que les memes processus etaient Mis en jeu dans les deux 
cas. Si cette hypothese est cOFrecte, Ie processus d'adsorption - desorption des ions 
tensioactifs est rapide et l'on peut considerer qu'il y a toujours equilibre entre 
l'interface et les couches volumiques sous-jacentes situees de part et d'autre de 
celle-ci. La fluctuation de Test alors liee a la modification de concentration des 
especes tensioactives dans les zones voisines de l'interface, modification qui est 
regie par un processus· de diffusion - convection. 

Par ailleurs les especes tensioactives concernees sont RX, compose initialement 
present dans la solution, et RPi qui resulte de la reaction interfaciale d'echange 

RX int + RPi int + 

Nous avons montre a propos du compose en C que, a meme concentration volumique,RPi 
abaisse moins la tension interfaciale que leI. Dans ces conditions, Ie mecanisme re
actionnel do it expliquer pourquoi les concentrations de RX et RPi varient de fa~on os
o~cillatoire au voisinage del'interface. Nous decrirons·un tel mecanisme, puis nous 
donnerons des preuves experimentales de la validite du modele propose. 

3. Mecanisme Reactionnel 

Considerons la courbe experimentale"6 = f( t) (Fig. 1). Nous constat6ns qu' au debut 
d'une oscillation la tension interfaciale est celIe d'un systeme qui contiendrait 
uniquement RX,dans Ie cas present C12B~ partage entre les de~ solvants. Au cours 
d!une oscillation 11 comm~nce par augmenter, ce qui implique que X- est remplace 
pai" Pi- a l'interface. Or la relaxation du systeme impose la diffusion de HPi du ni
trobenzene vers la phase aqueuse dans laquelle ce compose est entierement dissocie. 
Ceci provo que la formation de RPi et justifie l'augmentation de la tension interfa
ciale. 

La chute de If dans la seconde partie de l'oscillation devrait provenir de la dis
parition des ions Pi-. En effet les ions R+, du fait dela relaxation du systeme, ten
dent a passer dans la phase organique. Les contr~ ions qui les acc2mpagnent par suite 
de l'electroneutralite seront non pas les ions X mais les ions Pi qui ont plus d'af
finite pour Ie nitrobenzene du fait d~ leur structure. Mais les ions Pi- presents dans 
Ie nitrobenzene peuvent reagir avec H en redonnant HPi suivant la reaction 

pC + H+ ~ HPi 
n n n 

dont la constante d'equilibre est importante. De ce fait, la concentration en Pi
diminuerait - de meme que la tension interfaciale - et Ie compose initial HPi serait 
reforme, ce qui ferme Ie cycle et justifie I' entre·tien des oscillations. L' ensemble 
de ces reactions pourrait etre resume par Ie schema suivant 

eau 

nitrobenzene + X 
n 

interface 
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4. Preuves Experimentales de la Validite du Mecanisme Propose 

Si l'apport de Pi- resulte d'une dittusion de HPi, l'augmentation de l( avec Ie temps 
dans la premiere partie d'une oscillation doit suivre une lei en ft. En effet, les 
donnees de'.la Fig.l exprimees en '(t donnent bien une droite lors de la partie ascen
dante de l'oscillatmon (,ig.2) 

1"-0.. 
mN/m 

o 2 6 8 sec:lnc:e: 

Fig.2 Variation de la tensio~3inter
faciale d~3systeme BPi 1,2510 M(n) 
C12Br 5 10 M(e) en fonction de la 
racine carree du temps .. 

Si Ie mecanisme est correct, la suppression de la recombinaison des Pi- doit em
p@cher Ie declenchement des instabilites. Si l'on remplace HPi par un compose analo
gue mais dont·la constante de formation dans Ie nitrobenzene est tres faible, comme 
KPi par exemple. on supprime l'etape de retroaction. Or l'experience montre qu'on 
n'obtient pas d'instabilites dans ce cas, ce qui confirme notre hypothese. 

Par ailleurs Ie mecanisme n'explique pas la brutalite de la diminution de ll. En 
effet, Ie processus de recombinaison des Pi- en BPi etant rapide, la diminution de 
tension en resultant devrait @tre progressiVe au fur et a mesure du transfert de RPi 
dans Ie nitrobenz~ne. En fait la recombinaison de Pi- necessite la presence de H+ 
dans la phase organi~ue, espece qui ne peut provenir que de la phase aqueuse. Le 
transfert des ions H ~,easentiellement sous forme acide halogen' HX, suppose un pro~ 
cessus de diffusion e~dfsg¥~g16g~ s'il a lieu brusquement cela signifie que ces ions 
ne passent pas continuement dans la phase organique par diffusion. Done c'est l'ad
sorption - desorption qui est predominant pour ces especes. 

Nous avons compare cette situation a celIe observee par DUPEYRAT et coll.I71 au 
cours de l'etude de la penetration d'un alcool a chaine courte dans un systeme eau
de cane contenant un tensioactif dont les molecules "occupent" 1 'interface. Les con
clusions de ce travail nous ont permis de supposer que l'adsorption - desorption des 
ions H+, dont l'adsorbabilite est tres faible a l'interface "occupee" par les especes 
tensioactives u'a lieu que lorsque leur concentration en phase aqueuse atteint un 
certain seui!. Si .cette hypothese est fondee, 1 'augmentation de la concentration 
d'HX dans la phase aqueuse doit permettre d'atteindre plus rapidement Ie seuil de 
concentration. Elle doit done augmenter la frequence des oscillations. La figure(3) 
montre en effet que la periode des oscillations diminue apres l'injection d'acide 
pres de l'interface. 
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Fig.3 Effet de l'addition d'RCl sur Ie systeme RPi3,5l0-4 M(n)/C16Cl 4l0-t M(e) 

5. Critique du Modele 

Cette interpretation peut sembler correspondre au modele propose par RUCKENSTEIN et 
BERBENTE [81 qui ont modifie l'approche theorique de STERNLING et SCRIVEN en y ajou
tant une reaction chimique dans l'une des phases. ElLe en differe essen~iellement par 
Ie fait que ces auteurs n'ont pas tenu compte de de .... x conditions eS'sentielles sans 
lesquelles nous n'observons pas de mouvements. D'une part, un important desequilibre 
de concentration est necessaire pour declencher Ie mouvement ; il est obtenu en dis
solvant des composes de coefficients de partage tres differents, daBs la phase pour 
laquelle ils ont Ie moins d'affinite. D'autre part c'est 1a grande difference entre 
les coefficients de partage et l'adsorbabcr.lite des composes intermediaires, qui favo
rise Ie retour des especes initiales dans leur phase d'origine et permet la formation 
et l'entretien des oscillations. 

Par ailleurs SANFELD et colI. ont examine Ie systeme que nous avons etudie d'un 
point de vue theorique, en tenant compte des memes proc~ssus de transport et d'une 
reaction interfaciale [91. Or Ie phenomene peut etre decrit par un mecanisme inter

facial a condition que tous les composes s'adsorbent notablement a l'interface, ce qui 
n'est pas Ie cas iC1. L'utilisation de ce modele suppose donc une approche differente 

du probleme relativement aux especes non adsorbees. 

Gonclus~on 

Ce phenomene est un des rares exemples experimentaux de structure dissipative d'ener
gie incluant des reactions chimiques dans un systeme biphasique. II est remarquable 
que les reactions mises en jeu soient simples, contrairement aux reactions chimiques 
oscillantes en phase homogene. C'est que peut intervenir en systeme biphasique, une 
competition entre diffusion et adsorption-desorption des diverses especes. Par ail
leurs il n'est pas neces~aire que les oscillations de concentration se manifestent 
par des mouvements pour qu'elles existent, ce qui autorise a elargir l'application de 
tels modeles par exemple a l'etude des reactions biochimiques oscillantes au voisina
ge des membranes. 
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1. Introduction 

Pattern formation in reputedly homogeneous chemical systems has manifested itself 
in two characteristically quite different conditions: the BELOUSOV-ZHABOTINSKY reac
tion [1,2J as well as the glycolyzing cell-free extract of yeast L3,4,5J demon
strate time and space dependent concentration gradients. The common feature that 
these two systems share is their time-dependent coupling of the rate of chemical 
reaction and diffusion of reactants and products with the consequence that all 
components of the system are no longer homogeneously distributed in space. These 
features are maintained for given dynamic conditions. 

We represent dynamic compartmentation by simultaneous differential equations for 
suitable geometry and boundary conditions, which incorporate the necessary terms 
for chemical reactions and diffusion. The properties of a two-dimensional represen
tation of the solution of such a system of equations may be compared with· patterns 
observed experimentally. We analyse numerically the influence of boundary condi
tions on the mathematical form of the waves produced. Standing wav.es are produced 
from discrete ~omain and steady state boundary conditions. Travelling waves are 
produced from boundary sink conditions, and the direction of the waves and velo
city depends on the length of the boundary element. Theoretical and experimental 
results will be discussed. 

2. ~athematical Analysis 

In earlier studies.r4,6] partial differential equations have been solved which were 
discretized in one dimension using linear increments in distance. Such a treatment 
would lead, in a two-dimensional representation, to a square mesh and results in 
artifactual effects at the corners induced by the higher density of the mesh. 
points. Furthermore, from an overhead perspective, the patterns observed experi
mentally in yeast appeared to be hexagonal in space, a geometry nearer to a circle 
than a square. Therefore, it was decided to discretise the one-dimensional equa-. 
tions in circular geometry linear in ~ (r2)(the change in the square of radius at 
each mes~ point) i~ order to obtain mesh cells of equal area. 

Circular symmetry was thus assumed and the roughly hexagonal shape was approxi
mated by an outer circular boundary, within which diffusion takes place. Catalysis is 
restricted to a smaller concentric region. consistino of a whole number of such cells. 
Consider the non-dimensional chemistry of an allosteric enzyme (for definitions see 
(6,7)) at a segment of a one-dimensional mesh 

kI ~(a,y) kG 
>>----=--~) a. )>------~> y )>----='--~> 

Let 

L' = L(1+e:)2 

A = 2aDoe: 
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(2) 
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then 

to account for diffusion let 

Then 

n = total number of radial mesh cells 
m = number in which catalysis occurs 
b = outer radius 
r i = outer radius of ith cell • 

r i =b ~ i =1,2,3, .......... ,n 

(so that rn = b) and the equations to be solved are 

1 0 ( Oil) q,1l + - - rD -r or Il or 

0'( 1 0 OV - = q, - k '(+ - - (rD ..::..L) ot G r or '( or 

(4) 

(5) 

(6) 

(7) 

where ,D , D are the diffusion constants for Il and ,(, respectively. Both equations 
are sim~lar'(in structure, and we describe in detail the discretisation of equation 
(6) only. 

Multiply equation (6) by 2r dr and integrate over the ith cell, from r = ri_l 
to r = rio Writing Il; for its mean value over this cell we obtain 

n dt n 

r. 

[
(k I - q,.Il.) + 21T rD Oil] 1 

. 1 1 Il 0 
1 r ri_l 

(8) 

In the last term of (8) we replace rOil/or by 2r2oll/0(r2), and approximate the de
rivative, at,for example,r = r i , by 

(9) 

With a similar approximation at r = r i _l 1T, (8) becomes, after dividing by 1Tb2/n, 

(10) 
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4nD a (11 ) 

The form of the la~t equation shows trrat we have exact conservation since the amount 
4nDai(ai+1 - a.)/b entering cell i across r. will, on replacing i by (i+1) in (11) 
be exattlY the amount leaving cell 1(i+1) across the same boundary. A pre
cisely similar treatment of (7) leads to 

dy 
(12 ) 

dt 

where 

(i-I) (Yi (13 ) 

Our choice of rm as the outer boundary for catalysis imposes the conditions 

= <l>. 
1 kGi = 0, i = m+ 1, m+2, ........ , n (14 ) 

Four types of boundary conditions were applied to the basic equations: 

I. 

II. 

III. 

No Flux - Reflective boundary at r = b. 

Discrete Domain - for value of r> r catalysis and diffusion takes place. 
For values of r <r <b only diffusioW takes place. m -
Boundary Sink - a and y diffuses across r = b into a boundary element whose 
area is Vb times the area of a mesh cell. If B ,B are the amounts in this 
element, the concentrations (in units to~res~ondrng to a~, Yi) are B /V b, 
By(Vb. Thus, the term i(a.+1 - a.) in T. a for i=n is replacea by n(Ba/Vb -
an)' and similarly for y! Cons~rvatio~ then requires that a 

dB 
a 

dt 
(15 ) 

and similarly 

(16 ) 

In this case we take m = n. 

IV. Steady State - the boundary element has constant steady-state values of a and 
y (as and Ys)· This was achieved by setting 
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(17) 

(18) 

and V~ very large instead of (15) and (16). Here a and yare obtained by 
solving the nonlinear steady-state equ~tions with transpo~t terms absent 
and m = n. 

The global initial values are: 

Do 5 x 10-3 [mM] 
a 5x105 [{mMs)-1] 

c 

L 

e: 

0.01 

5 x 106 

0.1 

~ = a2·· . = an = as 

YJ = Y2··· = Yn = 0 

kG{s} = 0.15 [s-l] • i = 1 to m 

Ys kG.' i = 1 to m. 
1 

(19) 

(20) 

(21 ) 

(22) 

(23) 

(24) 

(25 ) 

(26) 

(27) 

where Y was chosen to be 1.5 and as was obtained by solving the steady-state 
equatio~ 

k {s} 
G Ys ' {28} 

The initial value of the boundary element in the boundary sink solutions are 

B 
a 

B 
Y 

{29} 

{30} 

For Type I boundary condition m = n = 40, so that b = rn = r = 0.1 [cm] and in 
all cases the radius rm of the catalytic region was 0.1 [cm]'? 

For Type II boundary condition, we have 

= r ~ m\}; (31) 

and in this case we took (after some experimentation) m = 40, n = 45, giving b = 
0.1061 [cm} 

For Type III boundary condition we took n = m = 40. and values 1.0. 7.5, 20 for 
Vb. b in this case is given by 

b=r"~ • m \)1 ... m {32} 
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For Type IV boundary condition m = n = 40. b = rm = 0.1 [cm] and Vb = 106. 

The well-stirred bulk values of a and y (at'Yt )' the normalized concentration term 
Tr • and the characteristic length A. are 

i 1 

1 n 

-L a i 
n i 

100 

1 n 

At = -l A. 
1 n . 

1 

A. .f: 1 

for 0 = 0 . a Y 

1 n 

Yt = - 2 Y 
n i 

The mean value of the characteristic length is calculated from 

1 n 

X = ~lAi 
i 

and the normal.ized bulk concentration term Tr 
n 

T =: \" T 
r nL r i . 

i 

(33 ) 

(34) 

(35) 

(36 ) 

(37) 

(3S) 

The initial values of the concentrations of the various elements in the mesh were 
chosen so that the solution would reach the oscillatory steady state. from which 
the results were obtained in a reasonably short time. y was chosen to be 1.5 
which results in a value Of 65.0775 for a and a period 8f about 10 minutes. The 
equations \1ere sol'ved on the Cambridge IB~ 360!16~ computer using the FACSI~ILE 
program [SJ. and the oscillation was taken to have settled after 5 complete cycles. 
which required about 30 seconds of CPU time. 

3, Results and Discussion 

The effects of boundary conditions on the wave forms produced from numerical solu
tion of the above equations are summarized in Table 1. 

Steady-state boundary conditions ~roduced travelling waves qualitatively similar 
to those obtained by Goldbeter [6J, although the period in his study was about 3 
times shorter. The direction of waves propagation were from boundary towards the 
center. For Vb = 1, the reverse was observed, and for Vb = 7.5, the two effects 
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Table 1 Effect of boundary conditions on spatial waves 

Boundary Conditions r m [cm] b [cm] b 
rm 

Wave Form 

No F1 ux 0.1 0 0 None 

Discrete Domain 0.1 0.1061 1.06 o 
Boundary Sink (Vb 1) 0.1 0.1012 1.01 

Boundary Sink (Vb 7.5) 0.1 0.1090 1.09 o 
Boundary Sink (Vb 20) 0.1 0.1225 1.225 + 

Steady State 0.1 0 0 + 

Wave Forms 

o = Standing Wave 
- = Wave travell ing from centre to boundary 
+ = Wave travelling from boundary to centre 

were balanced producing stable standing waves over a narrow range of Vh (7.5+0.5). 
Experimental studies on yeast [3,4,51 suggested a transition from one standing 
wave pattern to another during a cyc~. 

The boundary conditions which produced the best qualitative agreement with the 
experimental observation were the discrete domain conditions which produced 
standing wave patterns over a wide range of n, 42 < n < 50.being tested. There
fore, we chose' to do a more detailed analysis of the discrete domain case. 

It 2an be seen from the inspection of equation (4) that the breakdown of a varies 
with y . From the bulk concentration plot (Fig.1) Yt is significantly non-zero for 
only about 40% of the period, whereas at is always non-zero, indicating the domain 
in which the enzyme is inhibited and activated. 

60 

40 

20 

3 :5 

Fig.1 The dimensionless con
centration parameters at 
(broken line), Yt (plus sign), 
and Tr (solid line) are plot
ted against time in minutes. 
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The formation and subsequent decay of a complex three-dimensional structure in T 
is shown in (Fiq. 2). T is plotted in x, y, z co-ordinate system making full us~ 
of the concentric circufar symmetry implied in the discretization. 

Fig. 2 Spatial Distribution of Tri at 
20 second intervals (see text) 

The diameter of the outer circular grid (see Fig.2) is 2b (0.212 [cml ) and the 
relative length of the x, y and z axes are 140:92:68 respectively. x and z repre
sent distance and y concentration. The axes have not been plotted for the sake 
clarity and the lines behind the surface which would not be normally visible from 
this perspective have not been removed. Circular grid lines are plotted every 5 
mesh points and are not linearly spaced. The diameter of the second outer ring is 
2 r (0.2 [cm] ). The di stance between the gri d poi nts can be cal cul ated from 
equWtion (5) for i = 5,10,IS, .... ,4S. Six snap shots were taken at 20 second in
tervals from 26S0 [sJ(44.2 [min], Fig.l) and are displayed in a clockwise direction 
from the top to describe the formation of the complex structure and the beginning 
of its decay (Fig.2). The fully developed structure is snap shot S (lower left Fig.2) 
which occurs at 4S.S min, when the value of Tr is maximal. 

The cycle may be divided into two parts, the resting portion in which Yt~ 0 and 
the active part Yt »0. In the resting p~rtion of the cycle there are only small 
gradients in T reflected by a value of A = 0.0310 cm. In the active part of the 
cycle r decrea~es to 0.0118 [cm]during maximum bifurcation. 

da The spatial distribution of A is also of interest. The graph of A vs. dt' 
~ vs. r yield parallel lines if no structure is present because w is constant 

over rand ~~ f ~i . When a dynamic structure forms and decays, a large pertur
bation from parallel lines occurs. This perturbation is propagated outward from the 
center to the boundary as a travelling wave and when it reaches the boundary the 
complex structure has degenerated to its resting dish-shaped structure ready to 
form the complex structure in the next cycle. 

These results show how allosteric enzyme kinetics can be coupled with diffusion 
processes to form very complex chemical structures without the need of physical com
partments. In the course of evolution it is possible that rigirous chemical control 
could be exercised by an enzyme system before the complex physical organelles of the 
eukaryote cells were developed. 
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Two Topics in Chemicallnstabillties: 
I Periodic Precipitation Processes; 
II Resonances in Oscillatory Reactions and Glycolysis 

John Ross 
Department of Chemistry, Stanford University 
Stanford, California 94305, USA 

I. Periodic Precipitation Processes 

In a series of experiments [1-4] we have investigated the periodic precipitation 
process known as Liesegang ring formation in which a sparingly soluble salt is precip
itated in discontinuous bands during the diffusion of an electrolyte into a s~cond 
electrolyte solution. We also performed experiments on instabilities in colloidal 
growth in which macroscopic structure arises from an electrolyte solution in the 
absence of concentration gradients. In our studies we were mainly concerned with 
the temporal development of Liesegang structures and the influence of the concentra
tions of tae reagents on these spatial patterns. 

A. Measurements of Temporal and Spatial Sequences of Events 

We have chosen NH40H and MgS04 to form Liesegang rings of Mg(OH)2 precipitate in a 
gelatin gel, as well as KI and Pb(N03)2 for periodic precipitation of PbI2 in an 
agar gel. For the Mg(OH)2 system we determined a temporal sequence of events during 
the entire period from the start of a Liesegang experiment in a test tube to the 
completion of the final pattern at many locations in the tube by visual observations, 
and by measurements of transmitted light, of scattered light and of deflection of the 
transmitted light beam. By mixing the MgS04 with an indic~tor we observed and mea
sured the motion of a pH front which corresponds approximately to an ion product 
three times that of the solubility product of the Mg(OH)2 salt. After a given inter
val of time following the pH front we detected the onset of a weak turbidity at any 
given location in the tube. Thus a broad turbidity region of colloid of Mg(OH)2 is 
established, the front of which travels along the tube and lags behind the pH front 
by a certain distance and time. After passage of these two fronts, which both obey 
a simple diffusion law, a strong change of the index of refraction occurs localized 
at the positions where visible rings form later. 

The visual observations were reinforced by measurements with optical techniques. 
By combining measurements of the intensities of transmitted and scattered light as 
a function of time and space we confirmed that the formation· of colloidal particles 
is continuous in space. The existence of colloidal particles is observed for a sub
stantial interval' of time prior to the next event, which is the onset of a substantial 
gradient of index of refraction. This gradient was measured by light deflection 
methods. It signals ring formation which occurs by a focussing mechanism in that 
the ring is formed in a space interval of a certain width which becomes narrower 
in time. The regions on either side of the ring become depleted in colloidal parti
cles during the formation process as detected by light scattering. The light deflec
tion technique also leads to the detection of the onset of homogeneous nucleation 
of colloidal particles. The colloid concentration close to the nucleation site is 
estimated to be 10-2 moles/liter. The particle number density ranges between 1015 
and 1016/cm3. 

The measured sequence of events for Liesegang ring formation shows that as diffu
sion occurs nucleation takes place at any and all points in space where the ion 
product exceeds three times the value of the·solubility product. Nucleation is 
followed in time by colloid formation, which again is continuous in space. Repeti-
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tive ring formation comes about by a focussing mechanism which partially depletes 
the regions neighboring the ring of colloidal material and gives rise to the observed 
sharply defined rings of visible precipitate. We conclude that the ring formation 
is a post-nucleation phenomenon in that structure arises from a spatially homogeneous 
region of colloid a long time after nuc1eaEion has occurred. This conclusion is also 
supported by our experiments on the influence of gravity on the final location of 
PbI2 rings in agar. The observed effect of gravity provides evidence for the exis
tence of colloidal particles of several hundred angstroms in size for a substantial 
fraction of the time required for the formation of a visible structure. These exper
imental findings are contrary to the theories of Ostwald, Wagner, Prager and Keller 
in which nucleation, due to supersaturation, occurs discontinuously in space and the 
spatial pattern of nucleation determines the ring locations. We propose that the ring 
formation is associated with the autocatalytic growth of colloidal particles coupled 
with diffusion, as has been pointed out in connection with structures arising in the 
absence of macroscopic gradients. . 

B. Variation of Periodic Precipitation Processes with Concentration of Reactants 

1. Dependence on Ion Product and Concentration Difference 

We determined the influence of the variation of electrolyte concentrations (lead 
nitrate and potassium iodide) on the Liesegang patterns in several series of experi
ments with PbI2 rings ih agar gel. The concentration difference 8 = 1/2 [1-] - [Pb++] 
and the ion product 0 = [Pb++] [1-]2 or the quotient S = 0/00 , where 0 0 denotes the 
solubility product of PbI2, are determined to be important parameters. A simple ring 
spacing law is obeyed only when the number of rings is large. The experiments show 
the existence of a minimum value S*, below which no ring formation takes place. 

2. Spatial Bifurcation of Precipitation Bands and Stochastic Pattern Formation 

E~eriments on the early stages of pattern formation in a series of tubes with con
stant S (of the order of 103) and varying 8 (ranging from 0 to 0.03 M) show that 
after typically one day two rings appear in tubes with high 8, one ring appears in 
tubes with intermediate 8, while ring formation in the systems with lowest 8 values 
requires at least one week. The rings which have already formed after one day are 
surrounded by broad ~ones of PbI2 colloid as determined by light transmission measure
ments. A comparison of the ring locations and the zones of colloid in tubes of dif
ferent 8 suggests that an increase of 8 results in a broadening of the zones and a 
s~litting of one ring into two well-separated rings (bifurcation of a precipitation 
band) • 

The reproducibility of Liesegang patterns is high for large 8 and S values and 
decreases with decreasing 8 or S. By preparing a large number of identical systems 
we determined the statistical distribution of ring locations. Within a set of identi
cal systems the width of the distribution becomes larger when the ring number n 
increases from 1 to N. When 8 is close or equal to zero the location of rings appears 
to be nearly stochastic within a braod spatial region. 

II. Resonances in Oscillatory Reactions and Glycolysis 

Oscillatory reactions may occur in chemical and in biochemical systems sufficiently 
far from equilibrium [5-7]. The response of such systems to externally applied peri
odic perturbations produces entrainment of oscillations at the external period and 
higher multiples, quasi-periodic oscillations, and in certain cases chaotic motion [8]. 
There are a number of experimental studies on entrainment of biological and chemical 
oscillators. These studies include: entrainment of circadian rhythms by light and 
temperature cycles [9,10]; entrainment of neuronal oscillators in Ap1ysia by pulsed 
inhibitory synaptic inputs [11]; control of aggregation in Dictyoste1ium discoideum 
by an external periodic pulse of cyclic AMP [12]; resonance in the ATPase activity 
of insect fibrillar muscle by sinusoidal stretch and release [13,14]; entrainment 
o~ the Be10usov-Zabotinsky reaction by a'periodic UV irradiation [15]. 
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In previous work [16-18], we have analyzed the entropy production, or dissipation 
in entrained osd llatory reaction system", l,,,duw anu above marginal stability. It 
was shown that large increases and decreases in dissipation (resonance phenomena) 
may occur in a very narrow range of the frequency of entrainment, which points to 
possible regulatory functions. 

The purpose of the present article is to determine the role of this and other 
control features in glycolysis. We begin with a model for the glycolytic mechanism 
which is more comprehensive than previous ones in that it includes a larger number 
of known activations and inhibitions of enzymes by metabolites. We find resonance 
which in fact is established by a self-tuning mechanism. A more extensive presenta
tion of our results can be found in [19-22]. 

A. Model 

The model includes the phosphofructokinase (PFK) and pyruvate-kinase (PK) reactions, 
which are most irreversible steps in the pathway. The most important interactions 
of metabolites with enzymes are included in the model: ATP inhibition and AMP acti
vation of PFK; FDP activation and ATP inhibition of PK. In deriving the scheme, we 
have lumped all the intermediate (reversible) reactions between FDP and PEP into an 
overall reversible reaction even though the intermediate phosphoglycerate-kinase 
reaction has a 6G greater than RT. 

The rate equations for the model are of the form: 

input of glucose: J l = J = constant. 
n 

Vm [F6P]n/(K + K R [ATP] + [F6P]n), 
2 2 2 2 [AMPjn 

PFK reaction: J 2 

FDP + PEP reaction: J 3 = k3 [FDPja - k; [PEPj~. 

PK reaction:-

output of lactic acid: J S = -kS [PYRj. 

ATP output: J 6 = -k6 [ATPj . 

(1) 

We assume that the adenylate-kinase (AK) reaction is at equilibrium and that the 
total adenine nucleotide concentration remains constant. The values of the parameters 
appearing in the above kinetic equations can be extracted from experimental data [19j. 
There is substantial agreement of our calculated results with experimental findings 
in regard to the period of the oscillations, the periodic changes in the PFK activity, 
the ATP/ADP ratio as well as those in the concentrations of the intermediate metabo
lites .. Phase shifts also are in agreement with experimental findings, except for 
the phase shift associated with the insufficiently represented GAPDH/PGK reactions. 

B. Dissipation and Control Features in the Absence of Entrainment 

The free energy dissipated in the glycolytic pathway in an oscillatory regime can be 
written 

T 
Dose = T-l fa (2 J 3 + J 4 - J - J 2) (~ADP - ~ATP)dt. (2) 

where we omit a part J(~GLU - ~LAC) which is assumed constant. We analyze our model 
for different values of the parameter k3 which represents the (lumped) forward rate 
constant for the FDP + PEP reaction. For a range of k3 values around the best esti
mates obtained from experimental data. we confirm oscillatory behavior. For a given 
k3' we further calculate the ATP/ADP ratio and the free energy dissipation (2) as a 
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function of the driving force for the glycolytic pathway, a measure of which is the 
total adenine nucleotide concentration. The model shows that the average ATP/ADP 
ratio is increased and the average free energy dissipation is decreased substantially 
in an oscillatory compared with a steady-state mode of operation [23,24]. Past 
marginal stability the period To of the self-sustained oscillations approaches a 
plateau value which depends on k3. 

We next inquire about the possibility of resonance response in glycolysis, as 
represented by the model system. In order to do this, we decompose the model into 
two coupled 2-variables subsystems (one for PFK and one for PK) and perform a linear 
stability analysis on each of them. The two variables necessary to describe the 
PFK subsystem are ATP and PDP, whereas those for the PK are FDP and PEP, the two 
subsystemsbeing coupled through the variable FDP. Results.obtained from our linear 
stability analysis of the PFK subsystem show [20] that sustained oscillations are 
indeed expected in the range of parameter values investigated above. In addition, the 
period TpFK of the oscillations obtained from our linear analysis is within 25% of 
the period T obtained by computer simulation of the full model. Thus, in agreement 
with previous work [25], our analysis indicates that the PFK reaction is the primary 
oscillophor in the glycolytic pathway. Our linear stability analysis of the PK reaction, 
on the other hand, shows an oscillatory relaxation (with period TpK) in that, on 
perturbation, the reaction returns to its stable stationary state with damped oscilla
tions. For values of k3 around the best estimate, our analysis shows that the period 
of the PFK and that ofPK oscillators are close and a typical ratio To/TpK ~ 0.72 is 
observed at marginal stability. As the distance from marginal stability is slightly 
increased, the transitions observed in the dependence of dissipation and period on the 
pump parameter are seen to bring the period To very close to TpK. For lower values 
of k3' To is much smaller than TpK and no such transitions are observed. 

Finally, we note that transitions similar to those observed above have been obtained 
for a substantial range of the other parameters. Hence, those results are not due to 
accidental choice of parameters. The sharp decrease in dissipation and increase in 
the (ATP/ADP) ratio immediately after the onset of oscillations are a result of the 
forced tuning of the PFK reaction by the PK reaction. The frequency of the primary 
oscillophor, the PFK reaction, is tuned by the PK reaction to resonance, which then 
allows control of dissipation and higher efficiency. Further analysis [20] shows 
that it is the coupling of the PFK and of the PK reactions via the FDP intermediate 
which leads to the resonance tuning of PFK by PK, precisely the coupling omitted in 
previous models. 

c. Dissipation in the Presence of Entrainment 

The dissipation Dosc in the presence of a sinusoidal variation (with period T) of the 
rate of glucose injection shows a large resonance effect in the fundamental entrainment 
band and smaller effects athigher harmonics and one subharmonic. The reduction in 
dissipation in the entrainment band is about 20% of the dissipation in the unstable 
steady state. Fundamental entrainment occurs in the range 0.85 ~ To/T ~ 1.25 which 
agrees well with that fo~nd experimentally [26]. 

For small amplitudes of the external perturbation, the width of the fundamental 
entrainment band (on aT olr scale) is very small and our results on the dissipation 
show a single resonance peak inside that band. For larger amplitudes however, the 
width of the entrainment band increases and an additional resonance peak appears when 
T in the band reaches a value close to T PK. Thus, a secondary resonance between 
the perturbation and the PK oscillator occurs. These secondary resonances are not 
observed for low values of k3 at which the PK reaction loses its oscillatory behavior 
[22] . 
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Part VIII 

From Bistability to Oscillations 



Bistability in a C.S.T.R.: 
New Experimental Examples and Mathematical Modeling 

I.R. Epstein, C.E. Dateo, P. De Kepper, K. Kustin and M. Orban 
Department of Chemistry, Brandeis University 
Waltham, MA 02254, USA 

1. Introduction 

The ability of an open system to exhibit more than one stable state 
under the same set of external constraints is a classic illustration 
of the profound difference between open and closed systems. until 
quite recently, however, the set of homogeneous systems reported to 
show multistability was limited to the Belousov-Zhabotinsky reaction 
[1] (and its cerium-bromate subsystem [2J), the Briggs-Rauscher re
action [3J, and the reaction of bis(trichloromethyl)trisulfide with 
aniline in methanol [4J. 

Spurred by the fundamental connection between bistability and chem
ical oscillation [5], we have undertaken a search for new bistable 
systems, and we report here on a number of these. All of the experi
ments to be discussed were carried out in a continuous-flow stirred 
tank reactor (CSTR) thermostatted at 25°C with a range of residence 
times from 86 sec to infinity (batch), and in which the optical den
sity at wavelengths between 350 and 700 nm and the potential from an 
ion-sensitive, pH or platinum redox electrode could be simultaneously 
monitored. Like chemical oscillation, predicting and understanding 
bistability provides a challenge to the theoretician attempting to 
model a chemical reaction, and we shall touch briefly on the mathe
matical mOdeling of bistable systems. 

2. Bistable Systems 

Thus far, six different reactions, all of them autocatalytic, have 
been found to exhibit bistability. We give below a brief description 
of each. 

The reaction between arsenite and iodate is autocatalytic in the 
product iodide and forms part of the first systematically designed 
chemical oscillator [6), which was built by combining two bistable 
subsystems that share common intermediates. At low flow rates the 
system is found in a state (SSI) characterized by relatively high 
[I-] and [I 2 ] in the reactor, while at higher flow rates, it under
goes a transition to a low (I-J, low [I 2 ) state SSII. For input con
centrations [IO;J o = 1.33 x 10- 3M, [H 3 As0 3 J O = 2 x 10- 3 M, the two 
states coexist over a range of residence times from about 100 to 4440 
sec. DE KEPPER et al. (7J and PAPS IN et al. [8J have constructed 
simple models which are in excellent agreement with the experimental 
Observations. In Fig. 1, we illustrate for both states the effects 
of sub- and supercritical perturbations which result, respectively, 
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in a return to the initial steady state or in a transition to the 
other state. 

The chlorite-iodide reaction constitutes the second half of the 
ch10rite-iodate-arsenite oscillator [9), as well as serving as the 
basis for a large family of oscillators [10J involving chlorite, an 
iodine containing species (I-, IO;, 'I 2 ) and an appropriate oxidizing 
or reducing substrate. The reaction is autocatalytic in iodine. This 
system exhibits bistabi1ity both between two steady states and 
(Fig. 2) between a steady state and an oscillatory state. 

A composite system containing AsO~-, IO;, I- and C10; shows a rich 
variety of nonlinear behavior including oscillations and three dif
ferent steady states, one resembling one of the states of the arsenite
iodate system, another similar to one of the chlorite-iodide steady 
states, and a third which appears to involve all of the species. As 
shown in Fig. 3, under appropriate values of the constraints any of 
the three states may be reached. We have tristabi1ity! --

Chlorite and bromate undergo a clock reaction in batch and exhibit 
bistabi1ity in the CSTR with [BrO;] = 10- 3 M, [C10;) = 2 x 10- 3 M, 
pH = 0.80'for residence times between 86 and 440 sec. 

At PH's between 4 and 6, chlorite and thiosulfate show bistabi1ity 
as a function either of pH or of flow rate. At pH 2-5 this system 
forms the first non-iodine containing chlorite based oscillator [11). 

The reaction between Fe 2 + and nitric acid is autocatalytic in NO. 
As Fig. 4 shows, bistabi1ity and hysteresis in the CSTR are easily 
seen by following the absorbance of the FeN0 2 + complex or the redox 
potential. 

The permanganate-oxa1ate reaction, which is autocatalytic in Mn 2 + 
[12], shows bistabi1ity as the residence time is varied between 187 
and 374 sec for [MnO~]o = 0.0033 M, [C 2 0 4 H2 )o = 0.017 M at a pH of 
about 1. 

3. Mathematical Modeling 

The requirement of showing bistabi1ity provides a stringent criterion 
for any model of a chemical reaction. To simulate a reaction in the 
CSTR, one must <add appropriate flow terms. The rate equations then 
take the form 

dX -= = F(X) + k (x -x) dt - - 0 -0 -
(1) 

The vectors X, X and F contain, respectively, the species concentra
- -0 

tions in the reactor, the input concentrations, and the chemical reac-
tion rates, and ko is the reciprocal of the residence time. 

The steady states can be found by equating the right hand side of 
(1) to zero and solving the resulting algebraic equations. A 1:inear 
stability analysis can then be performed. Alternatively, one can solve 
the differential equations (1), which are often stiff, by an appro
priate numerical method. 
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Ideally, the results of the calcl11<\t-ion will D.'Jree in all respects 
with the experimental data. More realistically, we list some pos
sible points of comparison with which one hopes for at least qualita
tive agreement: 

1.) The existence and location of state to state transitions, 
i.e., the number of states and the values of the constraints at which 
the states become or cease to be stable. such information can be con
veniently represented by a "phase diagram" like that of Fig. 3. 

2.) Steady state concentrations of whatever species can be moni
tored (e.g., Figs. 2 and 4). 

3.) Sub- and supercritical perturbations. How big a change in a 
particular concentration is necessary to induce a transition between 
two states of a bistable system? 

4.) Relaxation behavior. How and how rapidly does the system 
approach a steady state. Do we see undershoots, overshoots or criti
cal slowing [13J? This is an area which deserves more attention and 
analysis. 

4. Conclusion 

with the rec~nt rapid growth in the number of systems known to be bi
stable, we can expect bi- and multistability to become increasingly 
familiar phenomena to those with even a passing interest in chemical 
dynamics. If mechanical limitations on available flow rates can be 
overcome, the range of bistable systems should broaden still further. 
The success of a scheme [6J for designing chemical oscillators by ad
ding a feedback to a bistable subsystem should further spur the search 
for more of these fascinating systems. 
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Chlorite Oscillators: 
A Result of the Cross-Shaped Phase Diagram Technique 

P. De Kepper 

Department of Chemistry, Brandeis University, Waltham, MA 02254, USA and 
Centre de Recherche Paul Pascal (CNRS), 33405 Talence Cedex, France 

1. Introduction 

The number of fundamentally different known homogeneous isothermal 
chemical oscillating reactions is very small. In spite of intensive 
efforts in the last two decades to design new oscillators, only two 
nonbiological systems, both discovered by accident, have been well 
characterized: the Bray-Liebhasky [1) (B-L) and the Belousov-Zhabot
insky [2) (B-Z) reactions. The array of known oscillators has been 
augumented essentially by variation [3J, and hybrids [4J of the above 
two reactions. The ability of chemists to test and develop general 
theories of chemical dissipative structures [5J has been somewhat 
hindered by this paucity of examples. Since no set of sufficient con
ditions to generate nonlinear oscillators is known, any practical 
method that can be used as a guideline in the discovery of new oscil
lators should be of considerable interest. We have recently presented 
such a systematic approach [6j and have successfully applied it to 
reveal a new family of chemical oscillators [71. 

2. The Cross-Shaped Diagram Technique 

The method starts with the determination of bistability phenomena by 
studying autocatalytic reactions in a continuous stirred tank reactor 
(CSTR). The CSTR guarantees that the system is maintained far enough 
from equilibrium, a necessary condition for both bistability and sus
tained oscillations. Then, the results of a simple dynamical model 
developed by BOISSONADE and DE KEPPER [8J are used. They show that 
sustained oscillations can arise from the association of an intrin
sically bistable system with a relatively slow feedback step which 
shifts the stability region of each branch of the bistable system and 
creates, as the amplitude of the feedback increases, a region of con
straint where both branches become unstable. Sections of the phase 
diagram involving a constraint controlling the relative amplitude of 
the feedback will then exhibit a cross-shaped form [8J where the re
gion of bistability gradually decreases and gives place to a domain 
of sustained oscillations. Referring to this characteristic topologi
cal feature, the experimenter can easily direct his search in the con~ 
straint space. 

3. Application to Chlorite-Iodide Systems 

The chlorite-iodide reaction is a spectacular clock reaction, the 

initial stage of which is characterized by process A: 
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This process is activated by its product I2 (autocatalysis) and in
hibited by iodide [9,10J. If chlorite is in excess, the iodine is 
further oxidized to iodate in the rapid process B: 

- + 5ClO; + 2I2 + 2H20 = 5Cl- + 4I0 3 + 4H (B) 

3.1 CSTR results. In a CSTR the chlorite-iodide reaction exhibits 
bistability (Fig. 1) between a low (SSI) and a high (SSII) iodide 
state. Figure 2a shows a section of the bistable domain in the chlo
rite-iodide constraint space. Points P and pi terminate tne bistable 
region respectively at high and low [ClO;J o and [I-Jo • Beyond pi 
only continuous changes from SSI and SSII are observed. under these 
experimental conditions,point P could not be reached because of iodine 
precipitation perturbing the system. Applying the method, a feedback 
reaction was sought to modify the region of stability of SSI and/or 
SSII as a function of iodide. Iodate appeared to be the most natural 
species to introduce, since it reacts with iodide to produce iodine, 
a chemical species capable of destabilizing SSII. Figure 2b shows the 
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resulting phase diagram in the [Io;1 o-[I-]o phase plane with fixed 
[CI02]o, Beyond [IO;]o = 5 x 10- 3 M, the bistable region vanishes 
and gives place to a domain of large amplitude sustained oscillations 
as shown in Figure 3. This system constitutes the first methodically 
devised chemical oscillator. Remarkably, it involves only halogen 
species and seems to be a much "cleaner" system than many other known 
oscillators since it is not associated with any macroscopic gas evolu
tion nor insoluble products. 

Further studies of the phase diagram revealed that, for a lower pH 
and longer residence time than in Figure 2a, point P can be reached, 
and oscillations are also observed beyond this point in the absence of 
additional iodate input flow [11]. 

Many other oscillating variants of the chlorite-iodide-iodate sys
tem have been discovered. Iodide can be replaced by a number of one 
and two electron reducing substrates [6,7J, such as: arsenite, thio
sulfate, sulfite, ascorbic acid or ferrocyanide ions, while iOdate 
can be exchanged for other oxidizing species such as bichromate, per
oxodisulfate or bromate. 

3.2 Batch oscillations. All the previously enumerated systems only 
give rise to oscillations in a CSTR, i.e. oscillations cease as soon 
as the inlet flow is stopped. It was felt that in order to produce 
oscillations in batch, some chemical steps simulating a flux of iodine, 
in the oxidation state -1, 0 or +1, should be introduced. This was 
first achieved by adding a chlorite solution to a freshly prepared 
iodomalonic acid solution containing iodate (iodomalonic acid solutions 
readily decompose at room temperature). In a beaker, some of these 
compositions [12 J can exhibit 50 .or more rapid potential oscillations 
on a platinum electrode. The most dramatic results are obtained by 
mixing in a 10- 2 M sulfuric acid solution [CH 2 ICOOH)2] = 2~6 x 10- 3 M, 
(I-] = 6.6 x 10- 3 M and [CI02] = 7 x 10- 3 M, in this order. In the 
presence of starch this composition exhibits, after a short induction, 
period a dozen orange-blue alterations. 

3.3 spatial structure. Since the iodide concentration varies by a 
factor of more than 10 5 during each oscillation, marked excitability 
phenomena could be expected and thus wave structure propagation should 
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Fig.4. Spontaneous wave patterns observed at 5°C at a thin layer (2rnm) 
of reaction solution with initial composition [CH2(COOH)2] =0.0033 M, 
[1-] =0.09 M,[CI02] =0.01 M, [H2S04] =0.0056 M and starch. 

be observed in unstirred solution, as in the BZ reaction. Figure 4 
shows the expected wave pattern triggered at many different pace
makers. Waves here appear as pale yellow rings migrating through a 
violet-blue solution [12]. These waves generally travel faster than 
their analogue in the BZ reaction, but the solution loses its propa
gation properties after only a few minutes. 

4. Conclus.ion 

It is hoped that the success of the cross-shaped phase diagram tech
nique in devising a new family of chlorite oscillators and the in
crease in the number of bistable systems [11) will contribute to the 
multiplication of fundamentally different chemical oscillators. The 
method described here is probably not unique and more efforts should 
be devoted to practical approaches to chemical dissipative structures. 
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A New Type of Chemical Oscillatior: 
Potential Oscillation and Bistability on a Platinum Electrode in some 
Aqueous Hydrogen-Halogen (ATE) Pumped Systems 

Miklos Orban1a,b and Irving R. £pstein 1b 

Institute of Inorganic and Analytical Chemistry 
aL. Eotvos University, H1443 Budapest and 
bDepartment of Chemistry, Brandeis University, Waltham, MA 02254, USA 

Introduction 

Reviews on homogeneous [1], heterogeneous [2] and e1ectrochemica1[3] 
oscillating systems have emphasized the need to explore new classes 
of oscillators in order to learn more about the processes which gov
ern oscillatory behavior. 

In a recent paper [4) we reported on sustained oscillation and bi
stability in the potential of a platinum electrode immersed in an 
aqueous sulfuric acid solution of bromate, iodate or chlorite when a 
continuous stream of hydrogen gas is pumped through the solution. We 
report here that oscillation and bistabi1ity also occur if the halo
genate solution is replaced by a flow of an acidic bromine or chlor
ine solution into a stirred tank reactor (CSTR). 

Several examples of oscillatory reactions involving H2 gas and 
platinum are known. BELYAEVet al. [5J and WICKE et a1. [6] find 
oscillation in the gas-phase reaction between H2 and O2 in the pres
ence of Pt wire, foil or pellets. THALINGER and VOLMER [7] describe 
current oscillations, while ARMSTRONG and BUTLER [a] observe oscilla
tions in potential at bright Pt during the electrochemical oxidation 
of H2 in a dilute H2 S0 4 solution. 

The systems reported here represent a new type of oscillator be
cause the halogen or halogenate plays an essential role in the os
cillation and because the experimental conditions are rather different 
from those of known heterogeneous oscillators. No heterogeneous 
oscillations involving halogens at metal surfaces have previously 
been reported. Furthermore, these new oscillations proceed in aque
ous solution at room temperature without the imposition of any ex
ternal current or voltage on the platinum plate. 

Experimental Results 

The experiments involving halogenate solutions have been described in 
[4J. For the halogens, solutions were flowed into a stirred thermo
stated (25°C) CSTR of 30 cm3 volume by a peristaltic pump, while H2 
gas was bubbled in through a capillary tube. The potential change of 
a bright Pt plate electrode (surface area, 2 cm2 ) VS. HgIHgS041K2S04 
reference electrode was monitored by a high impedance chart recorder. 
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Depending upon the values of several constraints, the potential 
of the Pt electrode can tak~ on (a) a 3tc~dy high value near that of 
the pure halogen solution; (b) a steady low value slightly above 
that of a hydrogen electrode; (c) either potential (a) or (b) under 
the same constraints (bistability); or (d) sustained periodic oscil
lation, roughly between the potentials in (a) and (b). The most im
portant constraints determining which state is reached are: concen
tration of halogen(ate), surface area of the Pt electrode, flow rate 
(residence time) in the reactor, intensity of the H2 gas stream, and 
acidity of the solution. Less important constraints which may also 
influence the stability of the various states are temperature, stir
ring speed and rate of evaporation of volatile species. 

Detailed results on the halogenate-H2 -Pt systems are presented in 
[4]. For the halogen systems only crude limits of bistability and 
oscillation have been established so far. However, even these pre
liminary results clearly show the existence of both phenomena with 
flow solutions containing either bromine or chlorine in a concentra
tion range of about 10- 4 M-IO- 2 M in 1 M sulfuric acid. Figures la 
andlli illustrate sustained oscillations in solutions containing bro
mine and chlorlne,respectively. Bistability is found in these sys
tems near the limits of concentration and residence times that give 
rise to oscillations. Transitions between the two bistable states 
can be induced by transient application of an appropriate potential 
to the Pt electrode. with iodine, oscillations and bistability have 
not been observed, even at very low [I2 ]«10-SM), presumably because 
of the extremely strong adsorption of iodine on platinum. 

Discussion 

Several models have been proposed for heterogeneous, isothermal os
cillations and/or bistability in gas-solid systems. These models 
can easily be adapted to the experiments treated here, and we pre
sent some simple calculations after first pointing out the essential 
similarity of the principal mOdels. 

The three most successful schemes, the surface coverage dependent 
activation energy (se) model, the vacant site (VS) model and the 
phase transition (PT) model, all involve the adsorption of the two 
reactive species onto the surface followed by reaction on the sur
face to form a product which rapidly desorbs. In the se model [9), 
the rate of the , reaction at temperature T is given by 

(1) 

where k O is a constant, EO is an activation energy, U is an inhomo
geneityrfactor, 9 and 9 are the fractional coverages of the sur
face by adsorbed ~peciesBA and B,respectively, and nand n are 
stoichiometric factors. The vs model [lOJ assumes tftat twoBneigh
boring empty sites are required in order for A and B to react, and 
thus replaces the exponential term in (1) by the term (1-9 -9 )2. 
In the PT model [11) one postulates that above a certain tftre~old 
value of e , the metal surface undergoes a transition to another 
form (e.g.~ an oxide) with an abrupt change in the rate constant for 
the reaction step and possibly for adsorption and desorption as well. 

198 



Residence time 390 s,," a) 
b) - B'2 in flow 0.00082 Mil in - Residence time 900 sec 

.~ 1 M H2SO4 
.:!! CI2 In flow 0.0013 Mil in i-i- t: 1 M H2SO4 t: 

q) '!> 
i- i-

~ ~ 

;1 
> 
E 

0 
0 

"' 

20 30 40 min 10 15 min 

Fig. 1. Oscillations observed in the potential of a Pt electrode in 
(a) a Br2-H2 and (b) a e12-H2 pumped system. 

e 

0,6 

0,6 

0,4 

0,2 

o 

a) 

~5-' I kl( = 4.29,10 M em s 
_ 6 -1 2 -1 
k = 8.15-10 M em s x 

18 -2 5_1 
kH = 1.02-10 M em s 

........ - 8 -1 2-1 
kH =1.22·10 Mcm s a) 

• = 1.22·10 b) 

k~ == 1.63"012 M-1cm2;1 

I I' = 16 

~ 
Surface site area: 

-15 2 
10 em 

[H. aq] = 8·10" M 

e x. 

0,4 

0,3 

I 
I 
I 

0,2 I 
I 
I , , 
I 

0,3 I 

0,1 : 

.J 

b) 

[x, aq] =1.9·10"M 

", , , , 
, , , , 

\ , 
\ 
\ 

, 
' ....... 9 H2 

, , , -- I 
..... _-- I 

ex, 

Time 

200 280 360 •• c 

Fig. 2. Bistability (a) and oscillations (b) calculated using the se 
model ( 1 ) - ( 4) • 

Thus, (1) contains no exponential or vacant site factor, butk is 
r 

replaced by krl for 9B<9crit and by kr2 for 9B>9crit. 

On closer analysis, one observes that all three models generate 
oscillation by means of a cornmon destabilizing element. In each case, 
the rate of reaction, and hence of removal of B from the surface, de
creases as 9 increases, thus providing an autocatalytic feedback on \. 
We show in F~gure 2 the results of a calculation using the following 
se model for the X2-H2 (x = Br or el) system: 

k 
~ 2X(s) 

~ 
(2 ) 

k 
xes) + H(s) ~ + 

x(aq) + H (aq) + 2v(s) 

(3) 

(4 ) 
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where (s) represents surface site, (aq) aqueous, v a vacant site, and 
kr has the form gi,;,en in (1) with A- X2 , B = H2, nA = nB = 1. The 
aqueous concentrat10ns of hydrogen and halogen are assumed constant. 
The value taken for U, though high, appears consistent with similar 
"inhomogeneity factors" found for the adsorption of organic species 
on platinum surfaces by BAGOTZKY and VASSILIEV [12J. 

The model studied here can produce oscillations and/or bistability 
for any value of u > 16. H~gh values of kHIk appear to promote os
cillation, while lower values tend to favor b!stability. Similar 
results may be obtained for the other types of model. Unfortunately, 
establishing values for the parameters in our model or distinguishing 
among the models discussed above is not an easy task. Monitoring 
the state of a surface which has several absorbed species and is in 
contact with a concentrated aqueous solution will not be straight
forward, though application of rotating disk electrodes as well as 
recent advances in surface spectroscopic techniques may prove worth
while. 
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Constrained and Continuously Pumped Chemical Systems with 
Emphasis on Conditions for Bistability 

Richard M. Noyes 

Department of Chemistry, University of Oregon 
Eugene, OR 97403, USA 

Science owes more to the steam engine 
than the steam engine owes to science 

Lawrence J. Henderson [lJ 

1. Introduction 

This Conference is the second in three years at the Centre de Re
cherche Paul Pascal. The first was titled "Loin de l'Equilibre" and 
the second "Phenomenes non-lineares". These excellent titles desig
nate the major areas of theory as chemists attempt to develop general 
procedures for treating that most difficult of subjects - the living 
organ-ism as a chemical system. We may get some guideposts for that 
attempt by looking briefly at the evolution of some of our ideas for 
treating simpler chemical systems. 

The steam engine referred to a~ove represents the first use of 
chemical change to perform use·ful work. It was invented and devel
oped by clever engineers before the concepts of thermodynamics existed. 
Only later did scientists recognize the utility of describing all in
teractions between a system and its surroundings in terms of the in
terchange of two conserved entities called matter and energy. Inter
change of energy was further divided into mechanical work, electrical 
work. and heat flow2 • 

1 The first deliberate use of chemical change was probably to warm 
a cave. The first use to perform work was probably at the Bat
tle of Crecy. It remains a value judgment as to whether the 
first uses of chemical (1346) and nuclear (1945) change to gen
erate force were "useful". 

2 Emission or absorption of electromagnetic radiation can be treat
ed as heat flow if only first law relations are involved. Sec
ond law relations are not relevant unless the spectral distrib
ution coincides with that of black body radiation at the temper
ature of the system. 
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2. Constrained Chemical Systems 

Chemical thermodynamics has developed almost entirely for systems 
that do not change their positions in any fields (gravitational, 
electrical, or magnetic), and those fields are assumed to remain in
variant. We shall maintain those restrictions and the additional one 
that any mechanical work is associated with the interaction of a 
changing vol~e with an external force 3 

It has also usually been assumed that in chemical systems each of 
the four possible types of interchange is either prohibited entirely 
or is restricted by the effects of a constant applied potential. Such 
a system is said to be constrained. The various types of constrained 
systems and the processes in them are summarized in Table I. 

Table I 

Classification of Chemical Systems (and Processes) 
Associated with Possible Types of Cpnstraints 

Type of Interchange Flux Prohibited Constant Potential 

Energy Flux 

Mechanical Work 

Electrical Work 

Heat Flow 

Constant Volume 3 
Hsochoric) 

Electrically Insulated 

Thermally Insulated 
(adiab ati c) 

Constant Pressure 
(isobaric) 

Constant Voltage 

Constant Temperature 
(-isothermal) 

Matter Flux Closed 
Constant Chemical 

Potential 4 

Matter ~ Energy Flux Isolated 

If all of the possible flux types are constrained, a system will 
decay with time to a unique invariant state called chemical equilib
rium. An important characteristic of the equilibrium state is that 
every phase is uniform and without gradients in composition. The 
path followed in the decay to equilibrium need not be unique, but one 
of the great conceptual advances in chemistry was the construction of 
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4Examples are an oxidation-reduction reaction in a solution satu
rated with air or a protolytic reaction in a system separated by 
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state functions like entropy and Gibbs free energy. Such a function 
can be developed in principle for any combination of the constraints 
of Table I. For any conceivable state of the system and for any pos
sible path through that ~tate, the sign of the change of such a state 
function unequivocally determines the direction in which change will 
occur. The state function acts as a potential that directs the sys
tem monotonically towarg the ultimate equilibrium state. However, 
although thermodynamics is very valuable because it dictates the £i
rection of change in any constrained system, it tells nothing about 
the ~ of that change. 

3. Pumped Chemical Systems 

3.1 Nature of Pumped Systems 

No living organism can be approximated for long as a constrained chem
ical system. We must include fluxes other than those associated with 
maintenance of the constraints of the right column of Table I. Chem
ical dynamics will no longer be irrelevant to direction of change, 
and rate of change of state functions will become a significant fac
tor in our considerations. If such additional fluxes exist, we shall 
say the system is pumped. 

Pumping may be associated with any of the four possible types of 
interchange in Table I. Often, but not necessarily, any flux of mat
ter or energy entering the system will be balanced by an equal flux 
leaving it so that the total mass, energy, and elemental composition 
remain constant. Even when entering and leaving fluxes are thus 
equal in magnitude, they are not usually equal in kind. 

:J..2 Temporal Classification of Pumped Systems 

One convenient clas.sification is according to the variation of pump
ing with time. Such a classification recognizes pulsed, periodic, 
and continuous pumping. 

Pulsed pumping can be illustrated with flash photolysis. A burst 
of matter or energy is introduced rapidly, and the subsequent evol
ution of the system is followed. Shock waves illustrate another type 
of pulse pumping. 

Periodic pumping may involve successive pulses repeated at regular 
intervals. Input of pumped energy may also approximate a sine func
tion. Periodically pumped systems need not be uniform in composition, 
and standing or traveling waves may develop. 

5 Relations in constrained systems might better be called "thermo
statics", but usage is too well established to try to change 
convention. 
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Continuous pumping maintains constant fluxes both entering and 
leaving the syctcm. Periodic and continuous pumping need not be 
clearly differentiable, and the periodic nature of the pumping may 
be ignored if the period is short compared to any relaxation times 
of importance to the dynamics of the system. 

3.3 Engines as Closed Energy-Pumped Systems 

Often a convenient system to consider is one in which the excess flux 
is only matter or only energy while any flux of the other is subject 
to the constraints of Table I. The first major triumph of thermody
namics involved just such a system. The Carnot engine is a closed 
system for which the pumping energy flux is restricted to mechanical 
work and heat flow. The restrictions on relative values of those 
fluxes launched the whole subject of thermal efficiencies of heat 
engines. 

3.4 The CSTR as an Energy-Constrained Matter-Pumped System 

All living organisms are matter-pumped6 systems. We have already 
seen how the steam engine was an important technical device whose 
study provided the base from which came the whole subject of thermo
dynamics 5 of closed chemical systems. Another technical device has 
been familiar to engineers for years but has been ignored by most 
scientists. That device is the continuously stirred tank reactor 
(CSTR) • 

In such. a reactor, chemicals of high energy are added at a con
stant rate, and material is removed at the same rate from the homogen
ized contents of the reactor. Energy fluxes are determined by typi
cal constraints of Table I which are usually electrically insulated7, 
constant temperature, and constant pressure. 

Such a system eventually settles to a condition in which total 
mass, total energy, and elemental composition maintain constant time 
averages. However, that condition mayor may not be invariant in 
time. If it is indeed invariant, the reactor is said to be in a 
stationary ~ whose free energy is clearly definable. However, 
the free energy is not a local minimum the way it is for the unique 
stationary state corresponding to equilibrium in the constrained 
system. In fact', stationary state composition in the CSTR need not 
be a unique function of pumping rate. If two stationary states do 
exist for the same pumping rate, the direction of spontaneous trans
ition may involve either an increase or a decrease of system free 
energy [2J and may depe~d upon the way in which the system is per
turbed [3J. The thermodynamic 5 restrictions on constrained systems 
obviously do not apply. 
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If the final condition is not time invariant, the composition of 
the reactor contents may vary through large amplitudes. Even when 
these variations are regularly periodic, the pattern may be very com
plicated. It does not yet seem to be established whether or not 
truly chaotic behavior is possible [4J. 

4. Possibilities for Bistability in a CSTR 

This manuscript will conclude by considering a CSTR constrained to 
constant temperature and pressure and exhibiting a region of two dif
ferent stationary states for the same pumping conditions. It is con
venient to describe possible conditions with a G-~ phase plane as in 
Fig. 1. Here G is the Gibbs free energy per unit mass of reactor con
tents and ~ is the pumping rate described as the reciprocal of average 
residence time of any material in the reactor. Although Fig. 1 im
plies that two parameters are sufficient to describe the system, re
actor composition is not necessarily a unique function of G. Therefore, 
a full description of the system might require several dimensions. 

LOG ~ 

Fig. 1. Example of bistability in a CSTR. Abscissa is logarithm of 
pumping rate in volume per unit time, and ordinate is logarithm of free 
energy of reactor contents. Lower curve is equilibrium branch, and 
upper is rapidly pumped branch. 

The minimum possible free energy in the system will be that of the 
equilibrium composition attained with zero pumping rate; no other 
state can ~ersist in the unpumped system. The maximum possible free 
energy will be the stationary state corresponding to indefinitely 
large pumping rate and corresponding to reagents mixed without any 
reaction; as pumping rate increases, all system compositions must 
approach this state. Of the two curves in Fig. I, the equilibrium 
branch extrapolates smoothly to zero pumping rate, and the rapidly 
pumped branch extrapolates to indefinitely large pumping rate. 

Figure 1 is drawn so that for pumping rates at which two station
ary states are possible the rapidly pumped branch has a larger free 
energy than the equilibrium branch. We have proved [5J that such a 
free energy difference will be found if the system can truly be de
scribed by the two dimensions of Fig. 1. Such a difference also seems 
to apply to all known experimental examples. Although we cannot 
prove the assertion, we anticipate that no exception will be found 
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just as we anticipate that nobody will ever find a liquid that freezes 
reversibly when its temperature is raic~J at constant pressure! 

A corollary of that conclusion can be stated as follows: "If the 
pumping rate is varied inde"finitely slowly and eventually returned to 
its original value, the trajectory in the ~-G plane will either be a 
segment of a single curve or a loop traversed in the counter-clockwise 
direction." This assertion is si·milar to the familiar one for a 
closed isothermal system: "If any overall process eventually returns 
the system to its original state, ~~y net fluxes will be such that 
electrical and/or mechanical work will have been done on the system 
and heat will have been evolved." The ultimate justification for 
that statement is only that nobody has ever found a statistically 
valid exception. 

5. Concluding Remarks 

The examination of constrained systems led in unanticipated ways to 
general principles of great value to understanding the behavior of 

closed chemical systems. Those thermodynamic 5 principles are of only 
limited value for treating matter-pumped systems. However, there is 
at least a suggestion that some general principles do exist for mat
ter-pumped systems. The further study of those principles may be 
very valuable for examining systems of greater complexity even though 
the extrapolation of a CSTR to a living bacterium must be at least as 
great as that from a Carnot engine to a fuel cell. 

Acknowledgment. The development of these ideas was supported in 
part by a Grant from the United States National Science Foundation. 

References 

1. H. L. Burstyn: In "The History and Philosophy of Technology", 
ed. by G. Bugliarello and D. B. Doner, University of Illinois 
Press (1979), p. 62 

2. R. M. Noyes: J. Chern. Phys. n, 5144 (1979) 

3. R. M. Noyes: J. Chern. Phys. E, 3454 (1980 ) 

4. N. Ganapathisubramanian , R. M. Noyes: J. Chern. Phys. (submitted) 

5. R. M. Noyes: Proc. Nat. Acad. Sci. USA (manuscript in prepar-
ation) 

206 



Perturbation of Bromate Oscillators 
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1. Introduction 

Bromate oscillators have been investigated from many aspects. One of 
the aims has been to reveal the chemical prerequisites of the oscil
latory behaviour. Some quantitative results have been already pub
lished 11]. The bromate oscillators can be perturbed, e.g. by the ad
dition of inhibitory property halides [2,31, by the supply of 02 
[3-6]; by keeping low the bromide concentration (ad~ition of Ag+) 
[7]; or by y-irradiation of the reacting system [8}. From the effect 
the perturbation exerts on a bromate oscillato~ important information 
can be gained on the chemical mechanism of the oscillatory reaction. 

Here we report briefly on some novel findings and quantitative data 
in respect to three different perturbations: 

a/ irradiation with 60co y-rays of some bromate oscillators of 
different catalysts. (A critical examination of [8].) 

b/ addition of iodide to some catalyzed and uncatalyzed bromate 
oscillators. The main aim was to reveal the chemistry during the high 
frequency preoscillations. 

c/ the addition of Tl/III/ ion. This ion forms soluble bro
mocomplexes of high stability and thus its presence in the reacting 
oscillatory system considerably influences the actual free bromide 
concentration and through this the course of the reaction. 

2. Perturbations 

2.1 Perturbation by y-Irradiation 

RAMA RAO and PRASAD [8] have investi~ated the effect of 60co y-irrad
iation on the "classical" BZ system Lbro!llate, malonic acid, sulphuric 
acid and ce/III/] and found that depending on the composition of the 
reaction mixture, the oscillation terminated either immediately after 
the start of irradiation or only a certain period of time after it • 
. They explained the oscillation-quenching effect by assuming that af
ter the accumulation of a certain amount of bromomalonic acid (BrMAJ 
one of the radiolysis products of water - the hydrogen atom - reacts 
with it, generating bromide ion. 

and thus a higher-than-critical bromide concentration is sustained 
throughout the irradiation. 

We doubted the important contribution of (1) to the overall process 
and therefore looked again at this problem also comparin~ the ~ffect 
of· y-irradiation on BZ systems of different catalyst Ice +, Mn +, 
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Fe/phen/~+, and Ru/dipY/~+ J. The oscillatory sls~em~ were ir
radiated from a 60Co radiation source of GxlO l Bq out~ut at two 
dose rates: 2.74xl018 eV dm-3 s-l and 1.37xl018 eV dm- s-l, resp. 
The overall chemical reaction was followed by measuring the decrease 
of the total oxidation power of the reaction mixture. Fig. 1 shows 
typical experimental curves. 

[Br~'l M 
0.05 on 

oj 2.14 a1d8eV/diIt's(15a4001h) 
b) 1.37 -10'AeVjdrJa (792.00rjh) 

~ff c) without irradiation 
"--_+-_f_--!. 

0.01 
oj 

~-'io--____ t!} 

100 200 300 (mill) 

Fig. 1. The decrease of 
bromate concentration in 
time in a system with the 
composition: O.05M KBr01 , 
O.20M malonic acid, 1.ON 
H2S04 and O.002M Ce/IV/. 

We also measured both the radiation-induced and the spontaneous 
hydrolytic decom~osition of BrMA. The obtained values (O.9x10- 7 
and 2.0xlO-7M s- , resp.) are very close to each other. 

The behaviour of a BZ reacting system on y-irradiation depends also 
on the bromate concentration. At high initial bromate concentrations 
(above O.lM) y-irradiation has no effect on the chemical oscillation 
irrespectively of the catalyst used. At lower bromate concentrations 
the oscillation is either quenched or considerably decreased in fre
quency if Ce 3+ or Mn2+ is the catalyst. However, BZ systems with 
Fe/phen/j+ or RU/diPY/~+ are not affected by y-irradiation. This dif
ference in behaviour is shown on Fig. 2. 

(1) 

-.2 
I100mv "+l toff c:: 

Q) on .... 
~ • (,f ) 

0 10 20 30 40 50 60 time (min) 

Fig. 2. The behaviour of two BZ systems during irradiation and with
out irradiation'. Cowposition: O.05M KBr01 , O.2m1 malonic acid, l.OM 
H2S04 and (1) 4xlO- M Ce/IV/; (2) 4xlO- 4N RU/diPY/~+. 

If a hydrogen atom scavenger (e.g. NO;' is added to an otherwise 
radiation-sensitive BZ system, no change in the parameters of oscil
lation is observable. Since organic components of the complex BZ ca
talysts (i.e. phenanthroline or dipyridine) do not function as hydro
gen atom scavengers (proved in separate experiments),we assume that 
hydrogen atoms inhibit the autocatalytic oxidation by bromate of the 
catalyst if the catalyst is a labile complex (Ce- or Mn-sul~hato), 
but exer2 no influence on inert complex catalysts Fe/phen/ 3+ and 
Ru/dipy/ + • This probably can be attributed among otherthinqs to 
the diffJrence in mechanisms by which the hydrogen atoms reach the 
metal ion center across a labile inorganic and an inert organic co-
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ordination sphere. It can be concluded that y-irradiation af-
fects lif at alII the BZ systems through its effect on the catalyst. 

Uncatalyzed bromate oscilla~ors studied so far laromatics~ phenol, 
1, 2, 3-trihydroxibenzene, 1-(p-hydroxyphenyl}-2-methylamine-propanel 
are not perturbed by y-irradiation because the aromatics are rather 
effective hydrogen atom scavengers. 

2.2 Perturbation by Iodide Ion 

KANER and EPSTEIN have reported the effect of iodide ion added 
to an oscillatorl 131. Among their findings the most fascinating was 
the observation of a high-frequency preoscillation in a rather narrow 
iodide concentration range: between lxlO-3M and 3x 10-3M. 

We thought that this peculiar behaviour of the iodide-containing BZ 
systems deserves a more thorough investigation and extended our 
studies both to different bromate oscillators and also to BZ systems 
of different composition. Our main goal was to get an insight into 
the chemistry of the iodide-induced high-frequency oscillatory period 
of the reaction. 

First we performed measurements at various concentrations of the 
BZ systems and used also Mn2+ as a catalyst (replacing ce). The re
action was followed polarographically by measuring both the sum of 
the concentration of iodomalonic acid (IMA) and BrMA, and separately 
that of iodate. Thus the concentration of IMA could be calculated. 
The fate of iodide introduced into the BZ system is as follows: it is 
oxidized immediately by bromate to IMA with the simultaneous formation 
of BrMA: 

2I- + 3CH2/COOH/2+BrO;+3H+ ~ 2ICH/COOH/ 2+BrCH/COOH/ 2+3H20 (2) 

During the high-frequency oscillatory period, there is a low rate ac
cumulation of BrMA and a low rate decomposition of IMA. (Iodine ends 
up in the system as iodate) After termination of the nigh-frequen
cy oscillatory period, a non-oscillatory period starts during which 
the rate of formation of BrMA is considerably higher land equals with 
that measured in the iodine-free BZ system/, and finally the normal 
BZ oscillation begins and the rate of formation of BrMA drops some
what. IMA added to a BZ system instead of iodide has the same effects. 
All these are shown in Fig. 3. It can also be seen that the high
frequency oscillatory period terminates when the concentration of IMA 
drops below a critical concentration value Ihere lxlO-3M/. 

A change in catalyst or malonic acid concentration has practically 
no effect on the iodide concentration range where high-frequency os
cillations occur. However, bromate and sulphuric acid concentration 
of ~e system and tne nature of the catalyst do effect it. The 
higher is the bromate concentration, the wider is the iodide concen
tration range where high-frequency oscillation occurs. E.g. in a BZ 
system composed of 0.2M malonic acid,l.O H2S04 and O.OOlM Mn/III at 
0.05M bromate the iodide-concentration range ~s 6xlO-4-1.SxlO-3M, at 
O.lSM bromate it is 2.2xlO-3-S.3xlO-3M. Beyond the upper concentration 
value, inhibition by iodide is observable. At sulphuric acid concentra
tions higher than 3M high-frequency oscillation cannot be initiated 
even at 10-2M iodide, and neither is iodide an inhibitor. At 
high acid concentrations iodide is oxidized by bromate rapidly to 
iodate, the latter having only negligible effect on reacting BZ sys
tems. 
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Our results do not preclude the formation of glyoxylic acid IGOAI 
during the reaction, this compound, hUWdVt:!l., is not responsible for 
the high-frequency oscillation as assumed in [3]. This has been proved 
by adding to a BZ system IMA just below its critical (high-frequency
-oscillation-inducing) concentration, BrMA (about half of the amount 
of IMA) and the IMA missing to the critical value was substituted by 
GOA. High-frequency oscillation was ~ot observable in any of the ex
periments. 

At Present what we know positively is that during the high-frequen
cy oscillation,IMA is decomposed by its reaction with Ce/IV/ or 
Mn/III/ : 

ICH/COOH/2+H20+2M/n+l/+ ~ I-+C02+CHO/COOHI + 2Mn+ + 3H+ (3) 

and is regenerated in (2). Since some iodine is removed as iodate 
from this cycle after some time, the concentration of IMA drops below 
a critical value. At this time the concentration of BrMA is still be
low its crucial value to sustain the normal BZ oscillation Isee Fig. 
3/. 

[mAl "[BrMA] 

r,r-----~ ___ ~~~ime~ ("'in) 
o 20 

Fig. 3. Curve A: The 
accumulation of BrMA and 
decomposition of IMA in a 
BZ system with the compo
sition O.075M KBr0 3 , 
O.2QM malonic acid, 1.OM 
H2S041 O.OOlM Ce and 
0.002M IMA. Curve B: The 
accumulation of BrMA in 
the same BZ system without 
IMA. Curve C: Decrease in 
IMA concentration. 

The effect of iodide on uncatalyzed bromate oscillators is rather 
diverse. In the case of systems containing l-(p-hydroxyphenyl]-amino
propane deriva~ives,the effect manifests itseif in an increase in the 
number of oscillations. For a system with the composition 0.025M 
1-(p-hydroxyphenyl)-2-methylamino-propane, 0.075M KBr0 3 and 0.5M H2SO4' 
the following results were obtained: 

[I-1 x l 0 3M 

No. of oscillations 

o 
10 

1.0 

14 

2.0 

30 

3.0 3.5 

38 43 

4.0 

32 

8.0 

4 

10.0 

o 
The aromatics-portioning effect of iodide is now under thorough 

study in our laboratory. 

2.3 Perturbation by Bromocomplex-Forming Ion: TI/IIII or Hg/III 

In the reacting bromate oscillators Br- has an essential role which 
has been discussed also lately in. [91. Bromide is the control inter
mediate in bromate oscillators since the kinetic state of the react-
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ing system depends on its actual concentration. This means that any . 
additive which influences in some way tho concentration of Br results 
in a change in the behaviour of the oscillatory system [7}. 

We have been interested in how bromocomplex-forming ions [Tl/III/, 
Hg/IVI influence the course of the oscillatory reaction. Here we re
port mainl~ on our investigations with Tl/III/. This ion forms soluble 
bromocomplexes of high stability (lg 61=9.62, 19 62=17.06, Ig 63=22.59 
and Ig 64=26.73). In addition, TIlIII/ - as has been proved in separate 
experiments - does n0t react either with the main components or with 
the intermediates /except Br-/ of the BZ system. 

The addition of Tl/III/ in concentrations between 10-5 and 10-4M 
to any type of bromate oscillators - "classical" BZ, double substrate 
BZ /acetone-oxalic acid/, "heterogeneous" BZ /oxalic acid/, or unca
talyzed - causes a decrease in the frequency of oscillation and final
ly a total inhibition. 

Table 1 Period-time-increasing effect of Tl/III/ 

Relative time of the 1. oscillation 
[Tl3:J xl05 

period 
System I. System II. System III. 

M 

0 1.0 1.0 1.0 
1.0 1.7 1.4 1.2 
4.0 3.6 6.8 2.8 
6.0 7.1 10.5 3.3 
8.0 no osc. no osc. 3.6 

10.0 no osc. no osc. 4.9 

System I: 0.05M KBr03 , O.lM malonic acid, 1.OM H2S04 and 0.002M 
Ce/IV/ 

System II: instead of Ce/IV/ 0.002M Mn/II/ 
System III: 0.075M KBr03 ,0.025M 1-(p-hydroxyphenyl)-2-methylamine

-propane ana 0.5M H2S04 
In System I. the effect of Hg/II/ is as follows: 

6 8 10 ( Hg2+] xl05 , M 

Rel. period time 
o 

1.0 2.3 3.0 no osc. 

At Tl/III/ concentrations above 5xlO-3M a rather high-frequency po
tential oscillation can be recorded which is very strongly damped. A 
repeated addition of Tl/III/ induces this high-frequency oscillation 
again as shown in F~g. 4. 

-2 -By the addition of Tl/III/ (~10 MJ the amo~nt of Br formed in a 
sing-le oscillation can be determined, since Br is complexed by 
Tl/III/, and TIBr2+ reacts only very slowly with bromate. Bromide in 
the TIBr2+ complex is determined - after quenching the reaction with a 
pH 5 acetate puffer in the presence of EDTA - by titration with a 
O.OIM AgN03 solution applying potentiometric end-point detection. The 
amount of Br- liberated during a single oscillation naturally depends 
on the composition of the reaction mixture. Under usual conditions 
~05M KBr03 , 0.2M malonic acid, 1.0 H2S04 and 0.002M catalyst/ it is 
in the order of lO-4M. 

Our experimental results (the details to be reported in a sub
sequent paper) seem to clarily the much debated question on the role 
of Br in the bromate ?scillators. 
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-3 Fig. 4. The effect of T1/IIr/ (9xlO M) on a BZ systern with the com-

position: 0.05M KBr03 , 0.20M malonic acid, 1.0M H2S04 and 0.002M 
Ce/IV/. (a) B'romide concentration trace; (b.) redox potential trace. 
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Periodic Reactions with Bromate II: 
Verification of Selection Criteria of Organic Radicals Oscillating 
Without Cagtaiysts 

J. Chopin-Dumas and P. Richetti 
Centre de Recherches Paul Pascal 
F-33405 Talence 

1. Introduction 

Most chemical oscillators are oxido-reductive reactions which can be understood 
through electrochemistry; in 1977-1978, the publication of lists of reducing 
agents which oscillate with bromate alone incited us to investigate the anodic 
behaviour of these redu.cing agents [1] -in particular the anilines and the phenols
which was just becoming better known [2]. 

The compilation of anodic studies of anilines and phenols informs us, on the 
one hand, of the oxidizability of the reducing agent to a radical R (S + R + e-) 
the greater the oxidation potential, the weaker the reducing agent - and, on the 
other hand, the oxidizability of the radical. This last statement is indicated by 
the process by which the radical disappears: an oxidizable radical becomes oxidized 
(R + C + e-), a radical that is slightly oxidizable is dimerized (2R+ D), while 
a 'radical that is moderately oxidizable follows the above two processes simultane
ously. The body of electrochemical data which brought us to this conclusion and 
the references of original publications have been outlined in a previous article [3J. 

The results obtained by RPE, which we have brought together in order to go dee
per into the problem of the reactivity of radicals, have also produced two pieces 
of information. One concerns the exact values of hyperfine coupling constants of 
H of the benzene cycle; and the other, an approximate estimate of the radical 
half life - time. Only this last piece of information can be used. This has made it 
possible for us to note that dimerization was the process of the disappearance of 
the most unstable radicals, and oxidation that of the more stable radicals (3, an
nex 2]. As to spin densities which can be calculated from the coupling constants, 
these show, upon reflection, a static (thermodynamic) representation of the radi
cal that is useless for the study of its kinetics. The few publications which 
suggest values" of disappearance rates of radicals underline very well the absence 
of connection with those of spin densities. In practice, the most one can say is 
that high coupling constants are a condition necessary to, but not sufficient for, 
a great instability of the radical. 

2. Selection criteria 

Let us propose two rules for selecting organic reducing agents that oscillate with 
bromate. These compounds should: 

1) Have an oxidation potential less than 1.1 V/SCE at pH = 1, that is to say, 
to be oxidized easily. 
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2) Supply an unstable radical, resistant to later anodic oxidation by dimerization 
from a carbon, 

The excellent agreement observed between the oscillating property of a reducing 
agent and the great instability of its radical is at the very base of the above 
suggested selection criteria. Inversely, most of the nonoscillating reducing agents 
were found in connection with rather stabel radicals. Statistically, once the nitru
aniljnes, because of their over-high oxidation potential, have been eliminated (as 
stipulated in the first criterion), we have: 

out of twelve oscilZating reducing agents examined : 

- eleven dimerizable radicals 
- one oxidizable radical(2,4-diaminodiphenylamine) but the oxidation product of 

the radical is hydrolysed by producing aniline having a dimerizabZe radical. 

out of sixteen non-oscillating reducing agents examined : 

- nine oxidizable radicals, 
- three radicals oxidizable under conditions of pH and potential compatible 

with the oxidizing properties of bromate. These are the radicals of p cresol, 
p anisidine and guaiacol, 

- four dimerizable radicals, those of 0 and m toluidines and anisidines. 

The list of oscilZating and non-oscillating reducing agents do not have the 
same value. The first is irrefutable, while the second can be questioned. We are 
therefore gOing to reexamine the cases of 0 and m toluidines and anisidines. 

We refer you to our previous article [3] for further details concerning the 
subject of our summary. The anodic mechanisms are described in detail beyond the 
first two stages which we have cited (diagram 1 and annex 1). Tables 3, 4 and 5 
show each reducing agent individually. 

3. Experimental results 

The simplest means of verifying the validity of the criteria is to prove the exis
tence of the oscillations expected. The experiments carried out show encouraging 
results and raise new questions. 

A) Study of 0 and m Toluidines and Anisidines 

Dimerizing anodically into substituted benzidine (Cp - Cp dimer) and/or 
4-aminodiphenylamine (N -Cp dimer) [31, like aniline, these compounds ought to 
oscillate, according to the principles which we propose. 

Ortho-toluidine oscillates in a closed reactor (Fig.I) as in an open one 
(point B, Fig.l) : 
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[Br03] 
0.03 

0.02 ~o 0 1 = 3.8 
~,1 

;~3~" 0.01 u3··~ 

[H2S04] 

2M 3M 4M 

ErrW 

~ 

:::
E 

w 

Poi nt B 

4 min 

t [min] 

Fig.1 Diagram of oscillating states of ortho-toluidine in a CLOSED reactor, in 
space I(H2 S0 4 ), (Br04 -)1 
Point B represents the composition in an OPEN reactor. Residence time T = 8'40". 

Ortho-anisidine oscillates in an open reactor (Fig.2) and in a closed reac
tor (point A in Fig.2) with colour change : 

OSCILLATiNG 
,_2 

5TAlE2 
(orange) 

T:= 200e 

~=JM 
't=1mn"'5 

STATE 1 

(eod) 

, ,., 

w 

t [min] 

Point A 

Fig.2 Diagram of oscillating states of ortho-anisidine in an OPEN reactor, in 
space I (Br0 3 -), (O-A) I 
Point A represents a composition studied in p CLOSED environment. The oscilla
tions are nearly instantaneous. 

Meta-anisidine oscillates in an open reactor, for example 

IM.AI 2 x 1O-3M T = 8'15" 
EmV 8mn ------. 

10-211 

MN\fIMMI~ 
IBr0 3 -I T = 20°C 

IH 2 S04 1 3M 
tm 

We were surprised not to find oscillations in a closed environment. 

It seems that meta-toluidine oscillates neither in an open environment, no in 
a closed environment at ordinary temperature, in an aqueous solution. 
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Unlike aniline whose oscillating area covers a large ratio interval UBr03 -I / 
Ireducing agentl], for example from 5 to 75, the oscillations of methyl- and methoxy
anilines take place within a very narrow ratio interval, for example, from 
2,7 to 3,8 (cross section a1-a3 of Fig.1). 

B) Sudy of compounds having dimerizable radicals 

Diphenylamine·is dimerized into tetraphenylbenzidine [4]. Neither of these 
two products is very soluble, and we had to add a little acetronitrile in order to 
maintain a homogeneous solution. It oscillates in an open reactor: 

EmV 

2'\7 5; '21 

t [min] 
In a closed reactor, the oscillations are numerous 
and hardly damped, 

Open reactor : 

ID.P.AI = 2,6 x 10-3M ID.P.AI = 1O-3M 

IBr03 -I = 2,3 x 10-31.1 IBr0 3 -I = 3,5 x 1O- 3M 

IH2s0 4 1 = 3M ,= 22'10" 
T = 20°C 

Ortho-bromoaniline dimerizes into dibrominated benzidine and 4-amino-dipheny
lamine [2bJ. As these are not very soluble either in an aqueous acid' environment, 
we had to add some acetonitrile. 

It oscillates in an open reactor 

E mV 
10.B.AI = 3,3 x 10- 3M 

IBr03 -I = 1,3 x 10-2M 

IH 2 S04 1 = 2,5 M 

Acetonitrile 1,33% 

It does not oscillate in a closed environment. 

, = 20'40" 

1 Naphtol can, like phenol, be oxidized to a dimer and to a monomer [5], 
Acetonitrile is necessary to its solubility. We obtained oscillations in an 
open environment during a preliminary trial. 

These results, which seem to confirm our rules for selection, raise other pro
blems, however. 
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C) Duality between the closed and the open rpactor. Study of sulfanilic acid 

The verifications above stress the duality between the continously supplied 
and the closed reactor. Reactions known up to the present, Bray, Belousov .
Zhabotinsky, Briggs-Rauscher, showed of course different state diagrams, but with 
oscillations occurring for both reactors. We have just found for the compounds meta
anisidine and 2-bromoaniline conditions ~hich are suitable for oscillations in an 
open environment, without being able to adapt these conditions to the case in 
which residence time T + 00 ; the closed environment is not therefore a simple 
borderline case of the open environment. 

A study of sulfanilic acid made it possible for us to bring out an opposite 
case of a product which oscillates in a closed environment [lc], but which does 
not oscillate in a CSTR. In this last case, however, the reaction is bistable. We 
have studied the diagrams of the bistable states (Fig.3). 

M /°3-1 01 .... 

907~/":-' .: 
005 •• / /;. 5TATE.2 

.' , 
Q02}., 

Q01 

5TATE .1 

Fig.3 

5TATE.2 

T :.J.C-3S ~ 
(A ~=q02M 
< 

5TATE.1 ... 
,r,--~r---~"r---or--~~~--~~ 

a) Diagram of bistable states of sul
fanilic acid in an OPEN environment, 
in space I (A-S) ; (H 2 S04 ) ; ( Br0 3 -) I 

b) Cross section of the state diagram, 
in space I (Br0 3 -) ; (H 2 S04 ) I 

Exploration of the temperature factor up to 75°C, the increase of IH2 S04 1 over 
4 M, according to the hypothesis that Fig.3b repr'esents a crossed curve [6]
nothing made it possible to obtain oscillations. Subsequently, it is possible 
to consider this bistable bromate - sulfanilic acid as an element to which a 
retroaction should be added in order to obtain an oscillator. 

D) Primary and Secondary radicals. Study of Catechol 

In the case of 2,4-diaminodiphenylamine, whose radical oxidizes, but which 
produces aniline by hydrolysis of its oxidation product, we imagined that the os
cillating property could not be attributed to the primary radical stemming from 
the initial molecule, but rather to the aniline radical, described as secondary. 
Other diphenylamines parasubstituted by - OH, - NH 2 , - OCH 3 are likely to be oxi
dized then hydrolysed [Ref.3, annex 11], and can have the properties of their 
secondary radicals. 

We also cite the case of gallic acid, an oscillating reducing agent whose 
anodic mechanism is not known. The primary radical shows coupling constants so 
weak that its dimerization is most unlikely. On the other hand, a secondary radi-
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cal is formed whose coupling constants are the highest that we recorded for the 
pheno 1 s [7J - the usci 11 ati ng property of gall i c aci dis very 1 i ke 1y due to its 
secondary radical. Pyrogallol and another of its derivatives show the same type 
of qui noi d se.condary radi ca 1 [7J. 

Catechol [8J, hydroquinone, p-aminopheno1 and p--iJhenylenediamine [9] are still 
examples of reducing agents having oxidizable primary radicals (m-quinones, imino
quinone or diimine), which are transformed more or less quickly in an oxidizing acid 
medium into a dimerizable secondary radical [8J, that of the oscillating reducing 
agent ca 11 ed 1, 2, 4-tri hydroxybenzene [lc]. 

The compounds cited above can neither invalidate nor confirm our rules what
ever their behaviour with bromate may be. The most one can say is that if they 
oscillate, the hydrolysis stage is taking place at a suitable speed; and if 
they do not oscillate, hydrolysis is too slow for the secondary radical to do its 
job. We have, however, studied catechol. It oscillates in an open environment but 
not in a closed one, which agrees with NAIR's [10] results for a stirred solution. 

1 Catechol 1 1O-2~1 

IH2 S0 4 1 2M 

IBrO -I = 9,5 x 1O- 3M 

t [min] 

E) Role of solyant 

T = 2' 44" 
T = 20°C 

We had to add acetonitrile to some 
reactors in order to make the reducing 
agent soluble or to maintain a homogeneous 
medium. The figure opposite is an example 
of the change brought about in the kine
tics of the reaction. The effect of aceto
nitrile is far less than that of methanol. 
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4. Discussion 

The problem of the validity of our rules for selection can be approached in two 
ways. The first is a statistical verification, an experimental evaluation of the 
percentage of exceptionsto the rules. The second is the justification of these 
rules by means of a theoretical approach supported experimentally. 

The justification of criteria is more difficult than their verification. We 
have suggested - since this happens in an anodic medium for parabrominated radi
cals - that the dimerization stage be the stage when bromide is free 131. By ex
periment, it would be necessary to characterize the dimers, which are transitory 
forms, easily oxidized, then hydrolysed (with the exception of the benzidines). 
We have only been able to note that the oxidation of sulfanilic acid by bromate 
or by means of a potentiostat produce in both cases a growing peak which after
wards disappears, at the 530-nm absorption region of the 4-aminodiphenylamines. 

Only the verification of our selectiort rules has been taken up in the prece
ding paragraph. On the whole, the balance sheet appears to be satisfactory: we 
were able to obtain os .. cillations with six reducing agents out of the seven which 
were tried because of their adequate characteristics. However, this work raises 
the question of experimental conditions : closed or open reactor, use of organic 
solvent, stirring of the solution. These factors have a real importance, general
ly little known; their influence can become primordial in borderline cases where 
oscillating state diagrams are of small dimensions. 
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Mathematical Modeling 



On Scaling the Oregonator Equations 

John J. Tyson 
Department of Biology, Virginia Polytechnic Institute 
Blacksburg, VA 24061, USA 

1. Introduction 

The Oregonator is a system of three ordinary differential esuations suggested by 
FIELD & NOYES [lJ as a model of the FIELD, KOROS & NOYES [2J mechanism of the 
BELOUSOV-ZHABOTINSKII reaction. The equations are 

X k1AY k2XY + k3 AX -
2 2k4X , (la) 

Y k1AY k2XY + fk5Z, (lb) 

Z k3AX k5Z, (Ie) 

whe:e the dot-n~~ation indicates a time derivative, A = [Br03-J, X = [HBr02J, Y = 
[Br J, Z = 2[Ce J, f is a stoichiometric parameter and k1 , ••• , kS are rate con
stants. FIELD & NOYES [lJ cast this system of equations lnto dimefisionless form 
by defining 

x = (k2/k1A)X, y = (k2/k3A)Y, (2a) 

z 
2 ,1/2 

(k2k5/klk3A )Z, t = (k1k3 ) A (time), (2b) 

s 1/2 (k3/k1) , w = ( ) 1/2 
k5/A kl k3 ' (2c) 

q 2k1k/k2ky (2d) 

In these terms (1) becomes 

x = s(y - 2 xy + x - qx ), (3a) 

y = -1 ( s -y - xy + fz), ( 3b) 

Z = w(x - z). (3c) 

From known values of rate constants i~the FKN mechanism of the BZ reaction, FIELD 
& NOYES estimated that s ~ 80, q ~ 10 , w ~ 0.1, and f ~ 1. They realized that, 
for s » 1, x would change very rapi~ly (since I xl » 1) except near the "slow 
manifold" defined by y - xy + x - qx = O. They suggested that the full system 
(3) could be approximated by (3b), (3c) and 

x = {(l-y) + [(1_y)2 + 4qyJ 1/ 2}/2q. (4) 

This is, of course, the start of an analysis of (3) by singular perturbation the
or~: the complete_~atched asymptotic expansion was derived by STANSHINE & HOWARD 
[3J who set q = Qs , Q = 0(1), f = 1, and solved (3) in the limit s -> 00. 
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Fig.1 The nullclines (---) and 
a limit cycle solution (---) of 
system (3b), (3c) and (4). 

Figure 1 illustrates a limit cycle solution of (3) in the y-z phase plane. The 
limit cycle has been divided into five sections. In section 1 -> 2, y is s~fll, x 
is large~ and z = wx, so z increases rapidly. In section 2 -> 3, z = x = q ,and 
y = O(fs /Q) » 1 ; thus, y_tncreases very rapidly at approximately constant z. 
In section 3 -> 4, y = O(q ), y is small, and z = w(1 - z), i.e. z -~11 expo
nentially with time constant w. In section 4 -> 5, z = x = 1 and y = s (f - 2y) 
< 0, so y decreases very slowly. Finally, section 5 -> 1, which brings us back to 
where we started, is difficult to describe analytically (it took STANSHINE & HOW
ARD six different scaling regions to match the expansion at point 5 with the 
expansion at point 1). 

-3.6 

t>J -5.6 
CJ 
0 
H 

-7.6 

16 32 48 
SECONDS 

+ 
~ 

OJ 
U 

CJ 
0 
H 

-4. 

-5. 

600 900 
SECONDS 

1200 

Fig.2 Waveform for Ce4+ oscillations: left as predicted by the Oregonator [1J, 
and right, as observed in the BZ reaction [2j. The observed period of oscillation 
is about 2 minutes. 

Figure 2 shows the waveforw+for Z predicted by this analysis in comparison with 
the observed waveform for [Ce J. Notice that the Oregonator oscillation does not 
agr4~ with th4+observed ,oscillation3in amplitude and wave!~rm. Th4+model predicts 
[Ce Jmax/[Ce Jmin too large by 10 , and it predicts [Ce J = [Ce Jmin for most 
of the oscillation, which is not usually the case experimentally. The analysis of 
STANSHINE & HOWARD [3] shows that 

[Ce4+J /[Ce4+J, = (4q)-1, (5a) 
max mJ.n 

Period = -In(4q(ws-2))/2k1A. 

Thus the amplitude and period of the model could be_grought in line with observa
tions if q were chosen significantly larger t~fn 10 ,but the whole asymptotic 
analysis would have to be redone4rwith q = Qs ,say) and it is not clear how this 
would change the waveform of [Ce J oscillations. 

223 



In the next section I will show that asymptotic analysis of the Oregonator 
equations can be gr4~tly simplified by scaling them differently and that, inde!~, 
the waveform of [Ce ] oscillations comes out right when q is taken to be 0(10 ). 

2. An Alternative Scaling of the Equations 

Let us replace the definitions in (2) by 

x .. (2k4/k3A)X, y = (k2/k3A)Y, 

z .. (2k4k5/(k3A)2)Z, t = ~A(time), 

.. 2k4/k2 , P .. ~A/k5' q .. 2k1k4/k2k3' 

Then (1) becomes 

2 x-qy-xy+x-x, 

€y .. -qy - xy + fz, 

pz = x - z. 

(6a) 

(6b) 

(6c) 

From rate constants in the FK!1mechanism we estimate that € ~ 0.05 and p ~ 500 
{where I have used k5 .. 1 sec , in l,ine with the value chosen by FIELD & NOYES 
[1]). This suggests a singular perturbation analysis with € -> 0 and p -> w. In 
chemical terms, y (bromide ion) changes on the fastest time scale and z (cerium IV 
ion) changes on the slowest time scale. 

For € « 1, (7) can be approximated by [4] 

:f: - x( 1-x) - fz(x-q)/(x+q), (8a) 

pi! .. x - z, (8b) 

and 

y - fz/(x+q). (9) 

The phase plane of system (8) is illustrated in Fig.3. In fection 1 -> 2, x .. 
0(1) and pz ~ 1 - z > 0, so z inc~ases slowly, rate" O(p- ), and during this 
time x is given by x(1-x) .. fz. In section 2 -> 3, z .. z.max ~ 1/4f and x 
decreases very rapidly, rate = 0(1), to x = x.min ~ q. In section 3 -> 4, X" 
O(q) and pz ~ -z, so z decreases exponentially, half-life" 0.7 p, from z.max to 

~----------------------~x 
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Fig.3 The nullclines (-) and 
a limit cycle solution (---) of 
system (8) for p» 1. 



.z.min = O(q). Finally, in section 4 -) 1, z = z.mi~+and x increases rapidly from 
x.min to x.max ;;; 1. Obviously, the waveform of CCe J oscillations is similar to 
the observed waveform (Fig.2 (right», and does not have the long flat section in 
Fig.2 (left). The amplitude and period of the oscillation are given by [4] 

[Ce4+] /[Ce4+]. ;;; (24q)-1, (lOa) 
max m~n 

Period;;; -In(24q)/kS• (lOb) 

The amplitude is too lar~ if q ;;; 10-S but can be brought in line with experiment 
[4]_Py choosing q = 4xl0 • In that case, the period is correct if kS = 0.02 
sec 

The analysis I have just sketched is valid only if the time scales on which x, 
y and z change are such that y changes most rapidly, x changes moderately rapidly, 
and z changes slowly during all phases of the limit cycle. This will be the case 
if the right-hand sides of (7) are all of the same order at each point around the 
limit cycle. Examining (7) at positions 1 through 4 in Fig.3, we see that the 
right-hand sides are all 0(1) at 2, 0(1) at 3, and O(q) at 4, but at position 1 we 
find that 

i=o(1), d O(q), pz = 0(1). (11) 

In order that Iyl » Iii, we must insist that E «q. If q « E = Sxl0-2 , then 
our description of the limit cycle breaks down in the vicinity of position 1, but 
this does not greatly change the qualitative and qu~~titative.result~ given above 
until q becomes smaller than E/p. If.q« E/p = 10 , then Iy\ « Izi and this 
changes the picture drastically. 

This conclusion has been confirmed numerically by John RINZEL [private 
communication], who integr~ed sl~tem (7) ~~th a Gear-type algorithm for E = O.OS, 
P = SOO, f = 1, and q = 10 ,10 , and 10 and compared these results with the 
numerical integration of the second-order subsystems obtained from (7) by making a 
pseudo-steady-state hypothesis (pssh) for x or y. He found that the pssh for x 
gives a good approximation to (7) for all values of ~3 but_4he pssh !gr y gives a 
good, fair, and poor approximation to (7) for q = 10 , 10 , and 10 , respec
tively. 

3. Discussion 

The Oregonator, though derived from a reasonable mechanism of the BZ reaction, was 
not intended by its authors to be a quantitative model o·f the BZ reaction, but 
rather to be an abstract model of oscillato~ chemical kinetics, akin to and, per
haps, more realistic than the Brusselator [SJ. What I have shown here, and previ
ously [4], is that the Oregonator can give a quantitatively accurate description 
of oscillations in the BZ reaction if q is taken to be considerably larger and kS 
is taken to be considerably smaller than the values estimated by FIELD & NOYES 
[1] . 

Are the values that I use for q (10-3 ) and k (10-2) more or less reasonable 
than the values used by FIELD & NOYES? First 60nsider k. In the experiments of 
ZHABOTINSKII, ZAIKIN, KORZUKHIN & KREITSER [6j, bromomalo~ic acid replaced malonic 
acid as the organic substrate for the BZ reaction. This considerably simplifies 
the estimation of kS ' since KAS4~REK & BRUICE [7] have determined that the oxida
tion of bromomalonic acid by Ce follows the kinetics 

(12) 

where k = 0.07 sec-1 and K = 0.20 M. For [BrMA] - 0.01 M, as in the experiments 
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of ZHABOTINSKII ~ al. [6], 

-d[Ce4+]/dt = k5[ce4+], -1 sec (13) 

which is within a factor of 2 of the value used in [4]. With malonic acid pres
ent, as well, in the rea~tion mixture, k~ should be somewhat larger; in the 
neighborhood of 0.02 sec estimated abo~e. 

The parameter q = 2k k /k2k was estimated by FIELD & NOYES [1] from rate con
stants given by FIELD et il. [t]. FORSTERLING, LAMBERZ & SCHREIBER [8] have stud
ied the kinetics of the-HBr02/Br03- reaction and concluded that the ratio k /k 
should b~450 times larger than the value used by FIELD & NOYES, which impliis ~hat 
q ~ 4x10 • Furthermore, the term k3AX in the Oregonator equations is meant to 
represent the combined kinetics of at least three reactions [2] 

Ce3+ + H+ 4+ Br02 + <-> HBr02 + Ce , 

(R5) 

(R6) 

4+ - + Ce3+ + (R7) Br02 + Ce + H20 <-> Br03 + 2H . 

FIELD et al. [2} have shown that the kinetics of these three reactions (neglecting 
the reverse of reaction R5) can be represented by 

dX/dt = k3AXF(A,C,Z) (14 ) 

where A,X,Z have their usual meanings, C = [Ce]total, and F is a rather compli
cated function of its arguments and the rate constants of reactions (R5) - (R7). 
From the data given in EDELSON, FIELD & NOYES [9] one can estimate that F ;;; 0.1 
during that phase of the oscillation when [HBr02] is small (this is the phase when 
q plays an important role). Thus, the effective value of k3 should .be ~~en at 
least ten times smaller, and q at least ten times larger, i.e. q ;;; 4x10 as sug
gested above. 

4T~2se ~fguments suggest that k should be taken 50-500 times smaller than 
10 M sec ,the value estimated ~y FIELD et al. [2]. Not only does this provide 
much better agreement with the observed perio~and amplitude of oscillations in 
the well-stirred batch reactor, but it also clears up a long standing discrepancy 
between the observed and predicted speed of trigger-wave propagation in unstirred 
thin layers of Z reagent. FIELD & NOYES [10] showed that waves of oxidation 
should propagate with speed 

wh~5e ~ is_the diffusion constant for HBr02 • Taking k3 
10 cm sec ,we find that 

c = '38 mm min~1 M-1 ([H+][Br03-])1/2, 

(15) 

(16) 

which compares favorably with the experimental results of FIELD & NOYES [10] and 
SHOWALTER [11]. 

Finally, let me make a few comments about scaling conventions and pseudo-steady
state hypotheses (pssh's). If systems (3) and (7) are integrated numerically for 
the same values of the parameters A, f, and k ,"', k , then we must get exactly 
the same limit cycle solutions, since the scaling con?entions, (2) and (6), are 
arbitrary definitions. However, whether we make a pssh for HBr02 or Br- is not 
arbitrary: the two hypotheses lead to two different approximations to the exact 
solution of the full third-order syste~4 As mentioned earlier, a pssh for Br- is 
not uniformly valid for q < £/p = 0(10 ), but it is a good approximation for 

226 



larger values of q. Since experimen!s suggest that q = 0(10:~), it is equally 
val!d to make a pssh for HBr02 or Br. !~d~~d, fur q - 0(10 ) both [HBr02] and 
[Br] change rapidly with respect to [Ceo ], and it is valid to make pssh's for 
both variables (except, of course, during the short periods, twice per cycle, when 
[HBr02] and [Br-] make rapid jumps). 

I am indebted to John Rinzel for many helpful discussions about the Oregonator 
and for permission to quote his unpublished results on numerical integration of 
system (7) and its subsystems. My research on chemical dynamics is supported by 
the National Science Foundation, Grant MCS-7919787. 
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The Behavior of a Multistable Chemical System Near the Critical Point 

Kedma Bar-Eli 
Department of Chemistry, Tel-Aviv University 
Tel Aviv 69978, Israel 

Abstract 

The bistabi1ity of the cerium-bromate-bromide system in an open flow (CSTR) system 
was investigated near the critical point where the bistability disappears. The crit
ical point is approached via a "cusp" catastrophe. The behaviour of the Jacobian in 
this region is di.~cussed. Due to the appearance of complex eigenvalues. certain 
SS became unstable without changing the regularity of the Jacobian matrix. Beyond 
the critical point a region with only one unstable SS was found. In this small 
region,oscil1ations occur around the SS. 

I ntroduc.t i on 

The oxidation of cerous ions by bromate in sulfuric acid medium was investigated 
earlier. both in a closed system [1] and in an open system [2.3.4] of a continuous 
stirred tank reactor (CSTR). It was shown first by GEISELER and FOLLNER [2] that 
the above system in CSTR shows bistabi1ity and can transfer from one steady state 
to the other via a hysteresis cycle. BAR-ELI and NOYES [3.4] using a mechanism 
devised by NOYES. FIELD and THOMPSON [5] (NFT mechanism) calculated the various 
steady states and the kinetic approach to them. Recently GEISELER and BAR-ELI [6] 
calculated and measured the hysteresis limits under a variety of constraints, thus 
confirming the NFT mechanism and giving accuracy limits to the various rate 
constants. . 

The multistabi1ity is limited, of course. to a certain region of the constraints 
space, and beyond this region only one stable steady state exists. In this work we 
have investigated the behaviour of the system near the critical point where the bi
stable system becomes monostable. We have limited ourselves mainly to the bromate
bromide subspace of constraints, while keeping all other constraints constant. As 
it turns out, due to the high degree of nonlinearity of the system. the approach to 
the critical point is quite complicated • .The stability of the various steady states 
changes, certain stable steady states become unstable and the possibility of oscil
lations appears to be feasible. This region of possible osci11ations,although small. 
may be tested experimentally. 

Calculations and Results 

The NFT mechanism is made up of the following seven chemical reactions, the rate 
constants of which are shown. These rate constants are partly measured [7]. partly 
estimated [8] and slightly corrected to agree with kinetic data [lb]. 
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Bro; + Br- + 2H ~ HBr02 + HOBr 

k1 = 2.1 M-3 s-l k_l = lxl04 M-l 

- + ... HBr02 + Br + H -+- 2HOBr 

-I s 

k2 = 2xl09 M- 2 s-l k_2 = 5x10-5 M" 1 

- + + HOBr + Br + H -+- Br 2 + H20 

k3 = 8xl09 M-2 s-l k_3 = 110 s-l 

- + .... Br03 + HBr02 + H -+- 2Br02 + H20 

-1 s 

k4 = lxl04 M- 2 s-l k_4 = 2x107 M-1 s-l 

7 -1 -1 k_5 = 2.4xlO M s 

4+ ... 3+ - + Ce + BrOi + H20 -+- Ce + Br03 + 2H 

1 1 -4 -3 -1 k6 = 9.6 M- s- k_6 = 1.3x10 M s 

... - + 2HBr02 -+- Br03 + HOBr + H 

k7 = 4x107 M-1 s-l k_7 = 2.1xlO-10 M-2 s-l 

(1 ) 

(2) 

(3) 

(4 ) 

(5) 

(6 ) 

(7) 

The rate constants a.re used with the assumption that the concentration of water 
is constant at unit activity. thus making the total number of chemical species - 9. 

To the rate equations formed from the seven reactions (1-7). the terms ko(Coi-C i ) 
are added. where Ci is the concentration of species i, Coi is the concentration of 
this species in the feed flow. and k is the ratio between the flow rate V and the 
volume of the reaction vessel VR. I~S reciprocal is sometimes called the "retention 
time". 

The equations thus obtained are 

dCi = F.(C) + k (C. - C.) (8) err 1 0 01 1 

where Fi (C) describes the chemical mass action rates derived from (1-7). Eq. (8) 
was solved by Newton's method for a steady state,i.e. for C = 0. The fact that 
there are only 5 independent concentrations was. of course, taken care of (see 
appendix) • 
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~ Dependence of steady state bro
mlde concentration [Br-]SS on bromide 
concentration in the inflow [Br-]o for 
different bromate flows. Values of 
[Br03] are A-2xlO- 3M, B-IOxlO- 3M, 
C-20x18- 3M, D-IOOxlO- 3M and E-200xlO- 3M. 
Constant constraints: [Ce+ 3]0=1.5xlO-QM 
[H+]0=1.5M kO=4xlO- 3 sec- l 

In Fig.I, the general behaviour of the system is shown. At low bromide ion 
concentrations, the system can, in a certain range of bromide ion concentrations, 
exist in three steady states [4,5]: SSI - having relatively high concentration of 
bromide and low concentration of ceric ions. SSII - having relatively low concen
tration of bromide and high concentration of ceric ions. This steady state is the 
one which will go over smoothly to equilibrium as kO becomes zero,i.e. when the 
system is closed. Between these two stable steady states, a third unstable one 
SSIII exists - shown in dashed lines. Being unstable. it cannot, of course. be 
attained experimentally. The transition between the physically attainable SSI and 
SSII can be achieved by changing slowly bromide ion concentration and tracing a 
hysteresis cycle. 

As bromate ion concentration is changed. the region of multistability is changed 
too. Increasing bromate concentration narrows the limits of the multistability, 
until finally a point will be reached where only one steady state exists. A smooth 
transition between, high and low bromide (or ceric) ion concentrations without hys
teresis will occur. This is clearly shown by the different plots of Fig.l. At 
low bromate concentrations. (Plots A.B.C). the three steady states, with the pos
sibiliW of hysteresis. are contrasted with the high bromate concentrations (Plots 
D.E). where a smooth transition between high and low bromide is observed. These 
predictions and hysteresis limits were calculated and tested experimentally by 
GEISLER and BAR-ELI [6]. Typical results for [BrO-3] -[Br-] subspace are shown 
in Fig.2., The comparison between the experimental anS calcuYated data in this as 
well as in other subs paces was used by the above authors to obtain accuracy limits 
for the various rate constants. 

The three steady states afe characterized by the Eqs. C.=O where Cj are the 
c~ncentrations of the various species in the reaction cell ~ The Jacooian matrix 
aci/acj has only negative eigenvalues for SSI and SSII. while SSI11 must have at 
least one positive eigenvalue. 

If we assume that this is indeed the case. namely. that the Jacobian matrix of 
SSIII has only on~ positiVe eigenvalue, then the Jacobian. which is equal to the 
product of all the eigenvalues, will have three values in the region of coexist
ence of the three SS: lone positive and two negative. whereas it will be single 
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Fig.2 Hysteresis limits in [Br03]0 -
[Br-]u ~ubspacc of constraints. Constant 
constraints: [Ce+ 3]0=1.5xlO-4 M. [H+]0=1.5M. 
ko=4xlO- 3 sec- 1 • (-) calculated,experi
mental (.) 
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Fig.3 The Jacobian determinant as a func
tion of [Br-]o in the flow. Constant con
straints: [Bra ]0 - 2xlO- 3M, [Ce+3]~ = 
1.5xlO-4M, [H+]o = 1.5M ko = 4xlO- sec- 1 . 
JI, JII and JIll correspond to the Jacobian 
of SSI, SSII and SSIII. respectively 

Fig.4 A detailed view of Fig.3 near the 
upper and lower hysteresis 1 imi ts 

values and ne[ative in all other regions. The sign of the Jacobian will, of course, 
change if the number variables is even instead of odd, as in our case. 

Figure 3 shows that this is indeed the case. At low and high values of [Br-] 
the Jacobian J has only one negative value, in certain intermediate values, the 0 
Jacobian has two negative values, corresponding to 551 and 5511. and one positive 
value, corresponding to 55I!!. 5ince J > 0, this steady state cannot be stable 
and 55! II cannot be physically attai ned. 

At the hysteresis limits, J~O and it passes through this point with infinite 
slope. Fig.4. which is a magnification of Fig.3 near the upper and lower 
hysteresis limits, stresses this point. 
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Since J is a continuous function of [Br-] , J must have a maximum with a zero 
slope at some point between the upper ann thg lower hysteresis limits. 

As the other constraint. namely [BrO~] ,increases, the region of multistability 
changes. This was shown already in Figs.~ and 2 and is shown again with a dif-
ferent view point in Fig.5. Here the Jac?bian of S5111-J rrr is plotted as a 
function of [Br-] for different values of [BrO;]. As bromate concentration 
increases, the re~ion of multistability increasesoand then decreases and finally 
disappears at the critical point. Following this change there is a parallel change 
in the maximum value of JIll' The rather strange values given in Fig.5 were ob
tained in the following way. 

12 c 

10 

8 
J. 

6 F 

4 G 

2 

0 
[Br-Jo ( 104 ) 

Fig.5 The Jacobian of S5111-J II1 vs. [Br-] for the different following values 
of [BrO~] : A - 2xlO-3M, B - 20.225894x~O-3M, C - 40.85939xlO-3M, 0 -
48.ll639x?O-3M, E - 51.23639x10-3M. F - 52.92939xlO-3M, G - 53.94523xlO-3M, 
H - 54.60423xlO-3M, I - 5~.05812xlO-3M! J - 5~.405924xlO-3M __ 
Constant constraints: [Ce 3]0 = 1 .5xlO 4M [H]o = 1.5M ko = 4xlO 3 sec 1 

A point [BrO~]o and [Br-] ,between the upper and lower hysteresis limits at 
S5111 was taken. Newton metgod was used to calculate other points of C=O at 
55111 at constant [Br03]o and increasing values of [Br-]o until the point of the 
upper hysteresis limit was reached. This point was recognized by the failure of 
Newton's method, due to the singularity of the Jacobian matrix at this point. 
The increase of [Br-] was stopped and an increase of [BrO~] started until a 
further_singularity wgs reached. Thus, by alternately chang~ng [BrO;]o increase 
and [Br ]0 increase, the 1 imits of 5S1 II region were traced. 

Same limits are obtained by starting from any point at SS1, decreasing [Br-]o 
and reaching J=O;'repeating such calculations for different [BrO;] gives the 
lower limits of the bistabi1ity region. Starting at a point at SS~1 and increasing 
[Br-] will end at the other points of J=O - the upper limit of the region. The 
same °resu1ts are obtained regardless of the method of calculation. Thus, the 
obtained limits are certainly reliable inasmuch as the NFT mechanism is correct. 
The experimental verification is shown in Fig.2 and in the work of GE1SELER and 
~-EL1 [6] for the other subspaces. 

The critical point. namely the pOint at which SSII1 disappears,is slowly ap
proached through a "cusp" catastrophe [9]. 
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In Fig.6 and especially in the insert. this "cusp" catastrophe is clearly shown. 
The critical point occurs at [BrO;J = 56.7283x10-3M. [Br-] = 29.037x10-sM at the 
constant constraints [Ce+3Jo = 1.5x90-4M, [H+]o = 1.5M andoko = 4x10-3 sec-i. Ob
viously the critical point will change with the change of the constant constraints. 

This figure is. of course. a detailed enlargement of Fig.2 near the critical 
point Where 55III disappears. 

At this critical point, the three points. namely dJ = +~ dJ =0 and 
d[Br·-Jo • d[Br-Jo 

dJ . 
drB -J = - oo,W1ll coalesce as 

L r 0 
is evidenced from Figs.? and 8. which are very simi-

1ar to Fig.3 except that they correspond 
larger than the critical value. 

to [Br03Jo slightly smaller and slightly 

In Fig.8, both the dependence of the Jacobian and that of [Br-Jss are shown. 
It is seen that the Jacobian is negative and single valued throughout. and has a 

maximum, i.e. dJ = 0 at a certain point. The two pOints where the Jacobian 
d[Br -]0 

0 0 

-8 
/I 

3 J J 
-16 4 r 

5 

-24 

-32 2.2 2.4 2.6 2.8 t.an".L·--2::;-.8!;.,8"'0-....L--.,2;:-1.8~9:-;:O-...J...J 

[8'-1 0'104 

Fig/ The Jacobian of the various 55 vs. [Br-] at [BrO;] =56.4059x10-3M 
[Ce 3Jo=1.5x10-4M [H+J o = 1.5M and ko = 4x10-30sec-1, jus~ before the 
critical point. Upward arrow - Hopf bifurcation pOints. Downward arrow -
real part of a conjugate pair of eigenvalues becomes zero. 
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Fig.;.8 The Jacobian of the 55 and [Br-]ss vs. [Sr~]o = 60x10-3M 
[Ce 3]0 = 1.5x10-~M. [H+]o = 1.5 and ko = 4x10-3 sec-I, slightly 
after the critical point. Note the existence of only one SS. 
Upward arrow - Hopf bifurcation points. Downward arrow - real 
part of a conjugate pair of eigenvalues becomes zero 

Fig.9 The change of two eigen values of 551 which become a conjugate 
pair vs. [Sr-] • ~n1y the real pa~t of th~ pair is s~own. ~onstant 
constraints: ~Sr03J =56.405924x10 3M [Ce 3Jo=1.5x10 3M [H Jo=l .5M o _ ~ 

k =4x10-3 sec-I. Hopf bifurcation points at [Sr Jo=2.8954x10- M and 
[~r-J =2.8777x10-~M. Real part of eigenvalues equal zero at [sr-Jo= 
2.882~x10-~M 

changes its sign with infinite slope has disappeared beyond the critical pOint. 
The_behaviour of [Sr-Jss changes accordingly. Whereas before the critical point 
[Sr Jss has three possible values. as shown in Fig.l (plots A,S.C). after the 
critical point it is single valued only. It changes smoothly from low to high 
values nf [Sr-J without hysteresis. It will be noted from Fig.8 that the maximum 
of the Jacobian corresponds exactly to the maximum slope of [Sr-Jss ' 

When the system is far away from the critical point. all its eigenvalues are 
real and J = IT A •• As the system approaches the critical point, a Hopf bifurcation 

i 1 

occurs and two re~l eigenvalues coincide to become a conjugate pair, as shown in 
Fig.9 for the pair belonging to 551. Similar phenomenon happens for 5511. The 
limits of existence of the conjugate pair is shown by upward arrows in Figs.? and 
8. Wh~n the real part of two such conjugate eigen values changes its sign, the 
sign of the Jacobian determinant remains negative as before, and the previous plots, 
such as Figs. 7 and 8,are unaffected. The Jacobian does not become zero at this 
point since the imaginary part will contribute its share. In other words, the 
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Jacobian matrix remains regular at this point. The steady state in question will, 
however, become unstable despite the Jacobian being negative. 

As a consequence, the steady states I and II may lose their stability and become 
unstable even in regions where hitherto they were considered stable. Fig.6 shows 
this delicate and rather unexpected phenomenon. For instance, SSI is unstable in 
a narrow region above the upper and lower hysteresis limits. SSI! is unstable in 
a region well below the critical point; SSIII is. of course. unstable at all times. 
It will be noted that the instabi1it¥ of SSII1 results from one eigenvalue being 
positive, while the instabi1it¥ of SSI and SS1I results from two eigenvalues 
(conjugate pair or not) being positive. 

As seen from Fig.8, the possibility of two eigenvalues being positive exists 
even beyond the critical point - where only one SS exists. In fact, we see in 
Fig. 6 a whole region where only one unstable state exists. This implies that in 
this region the system must oscillate around the steady state. In fact, the solu
tion of the differential equations in this region [10] does oscillate in a simple 
periodic manner while in all other regions the solution will go very fast. as ex
pected, to the same SS as is found by Newton's method. 

Table I shows the period,at various points in this region, as a function of 
bromate, bromide and flow rates. It is seen that the period increases with bromide 
concentration. decreases with bromate concentration and increases also with the 
flow rate. 

Table 1. Constant constraints: [Ce+ 3lo = 1.5x10-4M + [H lo = 1.5M 

Period (sec) [Br- ]ox1 O+SM [BrO;]ox10+3M k 103 (sec -1 ) 
0 

135 31 65 4 
130 32 65 4 
150 33 65 4 
180 34 65 4 
230 35 65 4 
160 28 60 4 
170 29 60 4 
205 30 60 4 
265 31 60 4 
510 32 60 4 
185 27 58 4 
210 28 58 4 
270 29 58 4 
455 30 58 4 
290 26 55 4 
stable SS 31 65 3.8 
190 31 60 3.8 
155 29 60 3.8 
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The range of existence of this unique unstable steady state is rather small. 
as can be seen from Fig.6. Moreover, the flow rates limits are also very small. 
e.g. at the point [BrOi] = 60xlO- 3M and [Br-] = 31 .10-sM the positive eigen
values exist only between ~o = 3.425xlO- 3 sec-I gnd ko = 4.165xlO-3 sec-I. 

The bromide ion concentration changes during the oscillation by at most one 
order of magnitude. while that of the cerium ions changes by not more than 30%. 
These values become smaller as the period is shortened. 

All these factors may contribute to the difficulties of observing oscillations 
experimentally. 

Our oscillating system differs in one important aspect from the other well-known 
homogeneous oscillating reactions [11]. In the BELOUSOV-ZHABOTINSKII [12] reaction. 
to take an example. the cerium ions serve as an intermediate. They are oxidized 
by the br.omate ions, while the malonic acid (or some other reducing organic species 
[13]) reduces them. Oscillations arise when these two processes occur alternately 
as described in detail by FIELD. KOROS and NOYES [7] (FKN mechanism). In the present 
system, which contains all the ingredients of the Be10usov-Zhabotinskii system apart 
from the malonic acid. no reducing species exists. The cerous ions are the only 
species which can reduce the bromate ions. 

In the closed system, i.e. ko=O,the species concentration will approach equili
brium in kinetics which is well documented in the literature [1,14]. The open 
system,i.e. ko F 0 stabilizes generally, under certain sets of constraints is rather 
surprising because of the lack of malonic acid. The experimental verification of 
these oscillations seems therefore to be of utmost importance and deserves the 
effort in spite of the above-mentioned difficulties. 

APPENDIX A 

There are N=9 chemical species (not counting the water) and R '=7 chemical reac-
tions. Since reactions 4.5 and 6 and 1. -2 and 7 sum up to null reactions. it 
turns out that there are only R=5 independent reactions. In other words. the stoi-
chiometric matrix has only five independent columns and its rank is thus five and 
not seven: 

~~~S~iQ!! 2 3 4 5 6 7 

Species 
1 (Br03) 0 0 0 -1 -1 

2 (HBr02) -1 0 -1 0 2 

3 (HOBr) -1 -2 0 0 0 -1 

4 (BrOi) 0 0 0 -2 0 

v (A.1 ) 
5 (Br- ) 0 0 0 0 

6 (H+) 2 -2 -1 

7 (Ce+4) 0 0 0 0 -1 0 
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o 0 -1 0 0 0 0 

o 0 0 0 -1 0 

Greek characters are used to denote matrices, and Latin ones to denote vectors. 
The matrix yl multiplied bY v will give zero. yl is of course: 

IT y = 
o 

vyl = O. 

o 
-1 

o 

o o o 
o 

o 

A matrix ~ exists of N-R = 9-5 = 4 rows and N = 9 columns which will annul the 
matrix v 

~ v = O. 

The matrix a is found to be: 
1 0 0 2 0 

0 0 0 0 0 0 1 0 1 

a = 
6 -1 2 0 -3 -1 -4 

-38 -152 -3,2-212 322-234 -147 56 147 

and its rank is obviously four. 

(A.2) 

(A.3) 

(A.4 ) 

(A.5) 

We realized immediately that the first two rows of ~ express the conservation of 
bromine and cerium atoms, respectively, while the two bottom lines were chosen so 
as to be orthogonal to both the first two rows and to the columns of v. Since 
water concentration'is considered constant (its value is already included in the 
rate constants). no conservation of hydrogen or oxygen atoms is applicable. 

There are,therefore. only five independent concentrations (C ind ). while the 
other four (Cdep ) can be expressed as a linear combination of the independent ones. 
Cind can be arb,trarily chosen as the first five and Cdep as the last four concen
trations. Introducing the functions "f" which are the mass action rates of the 
individual reactions 1-7. Eq. (8) will be written in matrix form as: 

ko is, of course, a scalar. The functions F of Eq. (8) is relate to f by F = 'tIf. 

Multiplying Eq. (A.6) by ~ one obtains: 

(A.7) 

The last equality is the result of Eq. (A.4). 

At a steady state C=O and one obtains: 

aco = B = ~C, (A.8) 
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where the vector B (of dimension nine) is a constant for a particular set of 
constraints. Dt;fith: S. d and 13~ as the first five and last four columns of 1n ep 
matrix S,respective1y. Eq. (A.8 can be rewritten: 

As the rank of ma tri x f3 is four Sd must have an inverse and thus ep 

or 

Cdep = ~Cind - ~Coind + Codep , 

where the matrix ~ -1 = -Sdep Sind ts computed to be 

6 3 4 0 
-5 -3 -1 -4 1 

~ = 
-la -la la -la ~ 

5 3 4 -1 

(A.9) 

(A.10) 

(A.11 ) 

(A .12) 

In this way the computations via ~ewton[s method are done only on the five 
independent concentrations. 

As is reported in the text, the region of oscillations associated with the 
unique unstable steady state is rather small and depends strongly on the external 
constraints. A check was made regarding the possible influence of the variation 
of water concentration on the existence and extent of this region. Addition of 
water as one of the variables may cause slight changes in the rates of those reac
tions where water participates. namely (3), (4) and (6). The number of variables 
increases from 9 to 10 and thus the number of dependent variables will increase to 
5. The algebraic calculations are facilitated by the fact that conservation laws 
can be used throughout. The appearance of water in the equations causes the con
servation of bromine, cerium. hydrogel1 and oxygen atoms to hold. In addition to 
these fou~ conservation of charge gives the necessary five rows of the matrix B. 
The fifth row of matrix ~ is thus calculated to be -3. -2. -1, -2, O. while the 
first four rows are the same as given in Eq. (A.12). 

When the calculations are repeated with the possible variation of water, the 
same results are obtained as reported above. Thus no error is introduced when 
water is considered constant and its concentration absorbed directly into the ap
propriate rate constants. 

REFERE~CES 

1. a. G.J. Kasperek and T.C. Bruice. Inorg. Chern. 10.382 (1971). 
b. S. Barkin, M. Bixon, R.M. Noyes and K. Bar-Err. Int. J. Chern. Kinet. 11, 

841 (1977) .. 
2. W. Geiseler and H. Follner. Biophys. Chern. 6, 107 (1977). 
3. K. Bar-Eli and R.M. Noyes. J. Phys. Chem. 81, 1988 (1977). 
4. K. Bar-Eli and R.M. Noyes, J. Phys. Chern. 82. 1352 (1978). 
5. R.M. Noyes. R.J. Field and R.C. Thompson, J:- Am. Chern. Soc. 93. 7315 (1971). 
238 



6. W. Geiseler and K. Bar-Eli. J. Phys. Chern. (in press). 
7. R.J. Field, E. K5r6s dnd R.M. N.oyes. J. Am. Chern. Soc. 94,8649 (1972). 
8. W.M. Latimer. "Oxidation Potentials~ 2nd ed., Prentice Ha'll, N.ew York, 

N..Y. (1952). 
9. R. Poston and LN.. Stewart, "Taylor Expansions and Catastrophes", Pitman 

Publishing, London (1976). 
10. a. C.W. Gear. "Numerical Initial Value Problems in Ordinary Differential 

Equations", Prentice Hall. Englewood Cliffs, N..J .• 1971, p. 209-229. 
b. A.C. Hindmarsh. "Gear: Ordinary Differential Equation System Solver", 
VCID 2001, rev. 3, Dec. 1974. 

11. R.M. Noyes and R.J. Field. Acc. Chern. Res. 10, 273 (1977), and references 
therein. -

12. a. B.P. Belousov, Sbornik Referat Radiats. Med. Medgiz Moscow 1950, p. 145. 
b. A.M. Zhabotinskii. Dokl. Akad. N.auk. SSSR 157, 392 (1964). 
c. A.M. Zhabotinskii, Biofizika 9, 306 (1964)--.--

13. P.G. Bowers. K.E. Caldwell and D~. Prendergast. J. Phys. Chern. 76, 2185 (1972). 
14. K. Bar-Eli and E. Geiseler (in press). 

239 



Recent Developments in the Theory of Stoichiometric Networks and 
App6cation to the Belousov-Zhabotinsky System 

Bruce L. Cl arke 
Department of Chemistry, University of Alberta 
Edmonton, Alberta, Canada T6G 2G2 

1. Introduction 

The term "stoichiometric network" refers to a set of processes (such 
as chemical reactions) which proceed according to rate laws having a 
particular mathematical form and rate constants in the range O~k.<~. 
Networks whose rate laws are products of concentrations are best1 under
stood [lJ. These "power law" networks are specified by a matrix v giving 
the net react~on stoichiometries and a matrix K giving the orders of 
kinetics. 

A typical question is whether a particular network can have chaotic 
dynamics for any possible choices of nonnegative rate constants. Other 
questions conoern the existence of oscillations, multiple steady states 
or explosions. The ideal answer to such questions is an algorithm 
which answers the question for the general network starting from the 
network specification -- usually v and K. 

The aim of this paper is to illustrate what can be said about a 
typical network using the current state of the theory and corresponding 
computer algorithms which test v and K. The network used is a model of 
the Belousov-Zhabotinski system which should be of interest from a 
purely chemical standpoint. 

2. Motivation for the Model 

Oscillations have been observed [2,3J in a BZ system using oxalic acid 
and acetone instead of malonic acid. NOSZTICZIUS believes that Br- does 
not play a role in these oscillations and has proposed new reactions to 
explain the oscillations [4J. The model we study is essentially the 
Oregonator after modification to include the dynamics of HOBr and the 
reactiQns propo~ed by NOSZTICZIUS. The model is (see [lJ for notation) 

(_1_fj~ 4 ~_..;:;....6 ---1\ 

Y C(;;9 7 

c.... 9 

(1) 

C = 2Ce(III), P HOBr, W ·BrO, X y= Br-, z = 2Ce(IV) 
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Reactions 1,2,3,4,5 and species X,Y, and Z are the Oregonator with 
P made explicit. Instead of using variable stoichiometry in reaction 
5, I used reaction 9 to achieve the same effect. 

The model which NOSZTICZIUS used to explain oscillations in the 
absence of Br- is roughly the following subnetwork of our model but 
without cerium 

~86) 
C~Z 

where reaction 9 represents the oxidation of oxalic acid by cerium. 

(2) 

If cerium is omitted and reactions 7 and 8 are combined, the resulting 
network ~ ~ 

\.X~\.P~ (3) 

is the Lotka-Volterra (LV) oscillator whose dynamics are a structurally 
unstable centre. If the reaction X+P+2P in (3) is replaced by X+P+2W 
+2P, the' system has a limit cycle instead of a centre. Thus model (1) 
has two distinct oscillators -- an Oregonator oscillator and a modified 
Lotka-Volterra (MLV) oscillator. In this paper we study how these 
oscillators interact with each other. 

As justification for the important new reactions 7 and 8, note that 
these reactions represent the autocatalytic reproduction of HOBr by a 
mechanism precisely analogous to the reproduction of HBrO. Such 
reactions were seriously considered by FIELD and NOYES prior to the 
original development of the Oregonator [5]. 

A network which combines two separate oscillators or sources of 
instability is a good candidate for chaotic dynamics. For example, 
take the LV oscillator (3) and co~~ine it with the network 

CZ~~ 
which is an unstable competition between X and Z. The resulting 

network Cz~o.~~ (4) 

has been shown by WILLAMOWSKI and ROSSLER [6] to have chaotic dynamics 
if the reactions are reversible. Model (1) is essentially this chaotic 
model with an Oregonator replacing the XZ competition. The possibility 
of chaos in our model is a second reason for studying it. 

3. Analysis of the Model 

Model (1) has 6 species which will be taken in alphabetical order. It 
has 18 reactions, 9 forward and 9 reverse. The stoichiometric matrix 
\! and the kinetic matrix K appear below and on the next page. Rows 
correspond to species and columns to reactions. 

0 0 -1 0 1 0 0 -1 1 0 0 1 0 -1 0 0 1 -1 
1 2 0 1 0 -1 -1 2 0 -1 -2 0 -1 0 1 1 -2 0 

\! = 0 0 0 0 0 0 2 -2 0 0 0 0 0 0 0 -2 2 0 
1 -1 1 -2 0 0 -1 0 0 -1 1 -1 2 0 0 1 0 0 

-1 -1 0 0 1 0 0 0 0 1 1 0 0 -1 0 0 0 0 
0 0 1 0 -1 0 0 1 -1 0 0 -1 0 1 0 0 -1 1 

From \! we first determine an "extreme current" matrix E using the 
algorithm CURRENTS [7]. E has 59 columns but only 12 of them are given 
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below. 

K = 

steady state flow or 
current on the network. 
The entries in the 
columns are the weight 
factors that the stoich
iometries must be mult
iplied by to obtain a 

en TIT n .! TiTn f"! H]eme 

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
o 0 0 0 1 0 0 0 1 001 000 0 1 0 set of reactions which 

will sum to the null reaction. o 1 0 1 000 0 0 0 0 0 
1 0 0 0 1 0 0 0 000 0 
1 1 1 001 0 0 0 0 0 0 
o 1 000 0 1 000 0 0 
1 1 0 0 0 0 0 1 000 0 
221 0 0 0 0 0 1 000 
001 000 0 0 0 1 0 0 
001 0 0 0 0 0 001 0 
002 0 0 0 0 0 0 0 0 1 

These reactions represent a steady 
state. For example, column 1 is 

E a steady state combining reactions 
2,3, and 5 with the original stoich
iometry and reaction 6 with the 
stoichiometry doubled. Drawing 
these reactions as a network gives 

o 0 0 1 000 0 0 000 
o 0 001 0 0 0 0 000 
o 0 0 0 0 1 0 0 0 0 0 0 
o 0 0 0 0 0 1 0 0 0 0 0 
o 0 0 0 0 0 0 1 0 0 0 0 
o 0 0 0 0 0 0 0 1 000 
000 0 0 0 0 0 0 1 0 0 
o 0 0 0 0 0 0 0 0 0 1 0 
o 0 0 0 0 0 0 0 0 0 0 1 This "extreme current" of model 

is also found in the Oregonator 
is the unstable steady state which leads to oscillation. 

~ The Oregonator with forward reactions 
only has only two extreme currents. In 
addition to (5) the current shown at 
the right is an extreme current of the 
Oregonator. It appears as column 2 in 
E for our model. Steady states 
involving this current are stable 
provided this current is the main 
contribution to the steady state. 

The network proposed by NOSZTICZIUS 
appears as column 3 in E and has the 
diagram shown at. the right. This 
subnetwork has unstable steady states 
and is a modified Lotka-Volterra 
oscillator. 

4. All Steady States 

y X'" 4 P~ 

l8z 

(5) 

(1) 
and 

(6) 

(7) 

All steady states of the general network for concentrations X.~O and 
rate constants k.~O can be found for any rate laws [7]. The ~complete 
set of steady states of model (1) on the open domain Xi>O, ki>O are 

l/hi 

59 

L 
R,=l 

K . 
h m~ 

m 

i=1, .•• ,6 (8) 

i 1, ... ,18 (9) 

where the parameters h=~hl, .•. ,h6) ag~ j=(jl, ... ,jS9) take all values 
in the open orthants R+ and R+. This set 'or steady states is a 
simply connected 19-dimensional differentiable manifold imbedded in the 
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24-dimensional space of X and k. 

Most reaction networks have 
the boundary of the set {X€R~, 
network 10 

a c2mplicated set of steady states in 
k€R+}. As an illustration consider the 

X 

x~ 

whose steady states are shown in Fig. 1. 
For X>O the steady state manifold M 
satisfies k l =k2 . For X=O·the entire 
k l -k2 plane is a steady state manifold 
called ~dy· kl 

M Fig. 1 

The steady states (8)-(9) are agglogous5go M in Fig. 1. If hand j 
take values on the closed domains R~ and ~ , then (8) and (9) can also 
give some of the steady states on the bounaary. Of interest are the 
steady states where all components of j vanish except jl,j, and j3. 
These boundary steady states involve only the first three columns of 
E diagrammed in (5), (6) and (7). Since these steady states tell us how 
the Oregonator interacts with the oscillator proposed by NOSZTICZIUS, 
we will later consider them in more detail. 

The complete set of steady states can be found with the algorithm 
ALLSS given in [7J. This algorithm divides X-k space into 2n domains, 
where n=number of species = 6. For each domain enough information is 
given to construct equations analougous to (8) and (9) for the manifold 
of steady states in the boundary. 

Only one of the 64 cases will be discussed. Suppose cerium (C and_Z) 
is absent. ALLSS says that the boundary steady states with C = Z = 0 
form an l8-dimensional manifold. Thus if cerium is missing,the system 
will probably be in a stable steady state at some point in this 
boundary manifold ~ . If a small ("infinitesimal") amount of cerium 
is now added, the s~~~em will probably evolve to a stable steady state 
in the interior (X.>O, k.>O). The interior manifold M is 19 dimensional 
and intersects the~bound!ry c=z=o in a manifold having at most 17 
dimensions. Little of the l8-dimensional manifold of steady states 
with C=Z=O can be n~ar this l7-dimensional manifold. Hence it is 
im~robable that the original steady state in ~d lies near where M 
intersects C=Z=O. Therefore the addition of ~Ds~all amount of cerium 
must usually cause the system to make a large jump between the initial 
stable steady state in ~d and a second distant stable steady state of 
M near C = Z = O. Fgr the general network, it frequently happens 
that the introduction of a very small amount of some species can cause 
a very large change in the steady state. 

5. Geometry of the Interior Steady State Manifold M 

From the explicit form of M some simple tests [8J can be made to deter
mine some features of its geometry. 

In order for multiple steady states to exist the characteristic 
equation must have a zero "relevant" eigenvalue. Multiple steady states 
are possible for model (1) only if the fifth coefficient of the 
characteristic equation as can vanish for some hand j. This coefficient 
is a polynomial in hand J which was constructed by computer. It has no 
negative terms and thus is always positive. Hence no folding of M 
occurs. This means that each set of positive rate constants has at 
most ~ positive steady state. 

A closely related question is whether some steady state with Xi >0 
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exists for every set of positive rate constants. The network in Fig. 
1 is an example where steady RrarPr only 0xist if kJ=k,. This question 
may now be answered for the general network [8]. Tfie Eest uses a 
complicated algorithm which is currently being programmed. 

6. M and Thermodynamic Equilibrium 

The 19-dimensional manifold of interior steady states M is in a one to 
one correspondence with a 19-dimensional convex polyhedral cone C. 
This correspondence is a diffeomorphism. The thermodynamic equilibrium 
states form a l5-dimensional @ubmanifold MO of M and these correspond 
to a l5-dimensional subcone C of C. These cones can be expressed 

C = R6 x C 
+ v 

where C and CO have 
of C an~ corre¥ponds 

CO = R6 x CO 
+ v 

13 and 9 dimensions, respectively. 
to the equilibrium steady states. 

CO is a subcone 
v 

The 9-dimensional equilibrium cone CO is spanned by columns 4 to 12 
of E as given. These are the 9 extremevcurrents which satisfy detailed 
balancing. A sui table slice through C yields a l2-dimensional polytope 
Pv and within it lies an 8-dimensionalV equilibrium simplex pO whose 
vertices are these detailed balanced columns of E (suitably ¥caled) . 
Figure 2 gives the idea. This cube represents c%J 
a 3-dimensional P and its diagonal represents Fig. 2 
a I-dimensional v pO. For model (1) P has 
59 vertices and P~ h¥s 9 vertices. v 

One way to draw a polytope is to choose a project~on which project8 
pO into a point. Since P for model (1) has 4 more dimensions than P , 
tKis projection gives a 4Ydimensional result. v 
The same teChnique applied to Fig. 2 gives 0 Fig. 3 
Fig. 3. All equilibrium steady states have 
been projected inCo the point in the centre. • 
The rest of the hexagon consists entirely of 
nonequilibrium steady states. 

7. A Globa~ Lyapunov Function 

The Gibbs free energy fUnction for an ideal mixture is called a Lyapunov 
function when it has certain properties. Having these properties (for 
some steady state) implies the steady state is globally asymptotically 
stable. One can prove that if the Gibbs function is a Lyapunov function 
for a set of subnetworks corresponding to some columns of E, then all 
steady states in the cone spanned by these vectors are globally 
asymptotically stable and have the same Lyapunov function [8]. 

The reversible Oregonator is a good example. The polytopes Pv and 
pO are similar to those in Fig. 3. There are 6 nonequilibrium extreme 
c~rrents. Numerical studies show that the Gibbs function is a global 
Lyapunov function for four of these non
equilibrium extreme subnetworks. It 
follows that the shaded region in Fig. 
4 consists of globally attracting 
steady states. ~he two remaining regions 
are unstable. One corresponds to (5) 
and the other to the .reverse of this 
subnetwork. • 

Fig. 4 

The Gibbs function was shown to be a Lyapunov function for "zero 
deficiency networks" by HORN, FEINBERG and JACKSON (HFJ)[9]. "Zero 
deficiency" means the steady states are "complex balanced" and more 
generally HJF proved complex balanced steady states are globally 
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attracting. The only soeady states of the Oregonator that are complex 
balanced are those in P f i.e. thODC which corrcspond to the dot in the 
centre of Fig. 4. Henc¥ the set of networks that have the Gibbs function 
as a Lyapunov function is very much larger than the zero-deficiency 
networks. HJF's proof was analytical while my result is numerical. 
For model (1) the conservation condition (C+Z= constant) makes the Gibbs 
function fail as a Lyapunov function; however, there is hope this 
weakness can be overcome. 

8. Stability Analysis 

The stability of any steady state depends only on the steady state con
centrations and the weights (j) of the extreme subnetworks. The range 
of concentrations for which instability occurs is given by systems of 
inequalities which can be approximated quite well by other systems of 
inequalities which specify convex polyhedral cones in the space of the 
logarithms of the parameters. For mathematical details see [1,10,11,12]. 

Stability analysis tells us how these cones of instability are con
nected to each other and associates each cone with various extreme 
subnetworks. Our results will be summarized using diagrams in which a 
dot represents a cone and a line between two dots means the cones touch 
each other facet to. facet. Hence, connected regions of these diagrams 
correspond to connected regions in parameter space where the network is 
unstable due to particular functions being negative. 

Since our purpose is to understand the interaction between extreme 
subnetworks (S), (6), and (7), only these have been included. Contrib
utions from all other extreme subnetworks must be sufficiently small for 
this analysis to be valid. The contributions are marked thus: (S) = U 
unstable Oregonator, (6) = S = stable Oregonator, (7) = L = modified 
Lotka-Volterra. 

The network is unstable if any of the coefficients a. of the char
acteristic equation are negative. Both a l and as are always positive. 
The topology of the negative region of a 2 is 

(10) 

Thus it has two disconnected regions, one for the unstable Oregonator 
current (S) and the other for the unstable MLV current (7). The topol
ogy of the negative region of a 3 is given below at the left. 

U2L L3 U2L2 UL 3 3 

U3~L3 U3L<1 1 1::3 (11) 

U2L . UL si2 U2L2 UL3 
Thus the Oregonato3 unstable region (U 3 ) is simply connected to the MLV 
unstable region (L ). The topology of the negative region of a 4 is 
given above at the right. This region is also simply connected. The 
two sets of cones above occupy roughly the same region of parameter 
space and the two cones (10) lie in the same region. Thus the whole 
region of instability is simply connected. The Oregonator limit cycle 
can thus be continuously changed into a MLV limit cycle by continuously 
changing the rate constants. 

Each vertex in (10) and (11) is a system of lS to 20 inequalities. 
The inequalities describing the negative region of a 2 ,where the Oregon
ator is predominant, say that P, C, and Z must be large: 

P>X Z>X PZ>XY C>2Y C>2X (12) 
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In addition"there are 15 inequalities giving lower bounds on j]/j, 
and jl/j3' The mai2 r~gion of q~ in~tnhility of the MLV cur renE is 
given by the cone L in (10) which says C, W, and Z are large: 

C>4X CW>2PX C>P Z>4X ZW>4PX (13) 

and in addition j3/ j 1 and j3/ j 2 have certain lower bounds. 

9. Bifurcation Theory and Dynamics 

Throughout the unstable region two eigenvalues have Re(\»O. A Hopf 
bifurcation occurs on the boundary. The limit cycles which occur are 

x 

p 

shown at the left. The left
most cycle is in the Oregon
ator region (12) while the 
rightmost cycle is in the 
MLV region (13). 

10. Possibilities for Chaos 

So far,efforts to find chaos by computer integration of realistic 
models of the BZ system have failed, although complicated limit cycles 
have been found in flow system models[13J. Extreme sensitivity to the 
flow rate in these models [14J suqqests that the experimentally observed 
cliaos could be due to flow rate fluctuations. In this paper we have 
examined a model which appeared more likely than the Oregonator to have 
chaos but chaos was not found. Perhaps extension to a flow system will 
give chaos. 

11. Generality of the Method of Analysis 

Starting with reactions typed as 'X+Y=Z' the computer constructs \i, K 
and E. It finds all steady states, if multiple steady states occur, 
and if some rate constants have no steady states. The computer finds 
the unstable region, optimal solutions to these inequalities, and int
egrates the dynamics in any cone of instability. The 20 second analysis 
given here can easily be repeated for any model of similar complexity. 
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Stratification Phenomena in Corrosion Scales: 
Towards a Nonlinear Interpretation 

G. Bertrand, J.-M. Chaix, K. Jarraya, J.-P. Larpin 
Laboratoire de Reactivite des Solides, (LA. 23) 
Universite de Dijon, Faculte des Sciences Mirande 
BP 138, 21004 Dijon Cedex, France 

This study is part of a work we have undertaken on dissipative structures in solid
gas reactions in order to explain some self-organization phenomena in the solid as 
the result of a coupling between diffusional and chemical processes. 

The stratification phenomenon. High temperature oxidation of several metals and al
loys give rise to multilayered corrosion scales. The oxidation of titanium in oxy
gen and the sulfidation of a Fe-22Cr-5.5Al alloy in H2S have been chosen for an ex
perimental study. 

Non-equilibrium: time evolution. The multilayered state is not a stable equilibrium 
state of the system : it di sappears with time by 'recrysta 11 i sati on, si nteri ng, dif
fusion and/or phase transition processes, finally leading to an homogeneous Ti02 
layer (Fig. 2a, 2b) and a duplex sulfide scale (Fig. la, lb). 

I 
temperature 

t 

time 
---+ 

Fig. la-c. Fe-22Cr-5.5Al/H2S, (a) 710°C, 30 hours; 
(b) nooc, gO hours; (c) 10000C 

Nonlinear phenomena: experimental critical values. Temperature: the su 'lfide scale 
is multilayered below 740°C; in this range, the thickness of the layers increases 
with temperature. The sulfide scale is a duplex scale above 740°C (Fig. lc). 
Sample thickness: when the Ti sample is completely oxidized, a core in the middle 
of the sample always remains unstratified (Fig. 2b) ; below a critical value of the 
initial sample thickness, no stratification can be obtained (Fig. 2c). 

Modelling approach. Corrosion scales self-organization phenomena are studied on mo
dels involving the growth of a scale on a solid substrate by the coupling of diffu-
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sion processes through the scale and nonlinear interface chemical processes. A first 
simple model, used in an heuristic purpose, is dble to find the existence of a cri
tical scale thickness and a critical temperature for transition between multi steady 
states. 

thick~ess 
+ 

time 
~ 

Fi,. 2a-c. Ti/02; (a) 965°C, 27h, 250~m; (b) 965°C, 140h; 
(c 965°C; eo = 4~m 
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Nucleation Process in the Two-Dimensional X3 Schliigl Model 

A. Blanche and P. Hanusse 
Centre de Recherche Paul Pascal (C.N.R.S.), Domaine Universitaire 
F-33405 Talence Cedex, France 

We have perforred Monte Carlo calculations of birth and death dynamics of the one 
and two-dirensional X3 Schlagl model (A + 2X -:. 3X , X -:. B) using a technique des
cribed elsewhere [1J. Following the study of the critical behavior near 0 =0' =0 
[2] we have explored the bistable region (0,0' < 0). First we have determined an 
"experimental" bistable domain using the following procedure. For a given point in 
the (0,0') parareter space we perform two separate simulations with an initial sta
te corresponding to each stationary state predicted by the deterministic theory. 
We let the system evolve for a given fixed tire t f , large in comparison to any cha
racteristic time in the system, typically 5 x 10 7 processes. We then record the na
ture of the final state and so determlne three distinct regions in the plane: A, 
h~gh-concentrati?n sta~ at t f wh~tever initial sta~ is consid~red ; B, the i.ni
t1alstate determ1nes Wh1Ch state 1S reached at t f (blstable reglOn) ; C, low-con
centration state at t f whatever initial state is considered. A cusp-like diagram is 
obtained [3]. Border lines between A and B regions and between Band C regionsare 
accurately determined. A change of parameter smaller than 0.01 is enough to switch 
from one regime to the other. The cusp so determined is narrower than that given 
by the deterministic theory, and narrower in one dirension than in two dimensions. 
This is consistent with the idea that the higher the dimensionality the stronger 
the mean field effect. These calculations were achieved with A = 20, D = 20 (see 
[2J for definitions). With these values no nucleation process was observed. The 
transition between two states occurs usually rapidly and looks rather like a spino
dal decomposition. However; it was possible to observe a nucleation process for dif
ferent parameter values (A = 40, D = 3,0 = -1,0' = -0.622). Starting with X = 0 
particles in the system,the lower state is reached in a few time units and is main
tained for 75 units when a rapid transition occurs through the formation of a lo
cal nucleus of 1 arge concentration that grows and fill up the system. The upper 
state is then reached. Now a more carefull examination reveals a very interesting 
pretransitional phenomenon, which is observable on mean and variance plots. Namely, 
an intermediate state is stabilized for about 10 time units, which means that the 
transi tion occurs in two stages through a metastable state. In some instances this 
intermedtate state .can be observed temporarily, well before the transition. It turns 
out that this intermediate state is just at the position of the unstable state pre
dicted by the global deterministic theory! This state seems to be stabilized in 
some sense by local fluctuations. This very peculiar feature seems to be specific 
of this kind of nonequilibri urn dynami cal system. Nothing equivalent seems to exist 
in equilibrium transitions. It is reminiscent of observations reported some time 
ago on the effect of local fluctuations on a 1 imit cycle bifurcation [4J. 
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From Bistability to Oscillations: 
A Phase Diagram Approach. 
Application to the Belousov-Zhabotinsky Reaction 

J. Boissonade and P. De Kepper 
Centre de Recherche Paul Pascal (C.N.R.S.),Domaine Universitaire 
F-33405 Talence, France 

During the last years, we have developed a simple theory which shows that many 
chemical oscillations can be described by the association of a bistable system 
and a feedback with suitable time scale ratios. The cross shaped topology of the 
phase diagram is very characteristic and furnishes a very convenient experimental 
tool to discuss the mechanism of a reaction [1] and a practical guide to create 
new oscillating systems [2J. The theoretical and experimental application to the 
BZ case, presented on the poster, is extensively expounded in Ref.1. 
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Numerical Simulations of Surface Reactions * 

M. Bouillon, R. Dagonnier, P. Dufour and Martine Dumont** 
Falulte des Science, Universite de l'Et~t 
B-7000 Mons, Belgium 

The nonlinear kinetics of isothermal surface reactions of the type 

A + 1 B ~ AB , n = 1 or 2 
n n (1) 

is investigated by means of Monte Carlo simulations. The simulation includes the 
following steps: 

kl 
A+S'k -AS 

-1 

k2 k3 
Bn + nS > nBS , AS + BS ~ AB + 2S 

" k-2 
where S denotes an active site. When the surface distribution of the components 
is quasi ~niform (i.e. when the clustering is weak) we may tentatively propose 
coverage functions for the various steps included in the reaction. The resul
ting kinetic equations should be profitably compared to the corresponding model 
equations. 

First exampZe : the CO oxidation on Pt at atmospheric pressure (i.e. A = CO, 
B2 = 02, ease = 2). The average fractional coverages are noted x = 6eo ,y = 60 . 
We assume k_· = 0 and kH2) ~ exp [ -(+)j.l(x - y)] where x, y denote tfie ZoeaZ 
coverages. The simulated dimensionless (al = kl/k3' T = k3t) kinetic equations 
are represented by 

dx 
cr:r 

* 
i=- e-.j.l(x-y)(I-X-y) - (Xy)I/2 e-j.l(x-y) 

a2 ej.l(x-y)(I-x-y)7xy - (Xy)1/2 e-j.l(x-y) 

(2a) 

(2b) 

Notice that the reaction mechanism contribution is not simply proportional to xy. 
Seeond exampZe : the TSA model [1], i.e. the ease n = 1 but with a reaction 

mechanism requiring two adjacent vacant sites. With TSA parameter values the 
simulated kinetic equations are (x = 6A ' Y = 6B) 

dx a_I 2 2 2 2 
CIT 4al xy(l-x-y) - -2- x Y - 4 xy (l-x-y) (3a) 

a2 2 2 2 2 
:2 (l-x-y) - a_2x y - 4xy (l-x-y) (3b) 

which should be compared to those proposed by TSA [ 1] • 
These two examples show that Monte Carlo simulations of surface reactions can 

provide coverage functions rather different than those involved in usual model 
with, as a result, possible changes in the stability features of these systems. 

1 C.G. Takoudis, L.D. Schmidt and R. Aris, Surface Sci. 105,325 (1981) 

* Work partly supported by the IRIS Program sponsored by the Belgian t1inistry for 
Science Policy. 

**Charge de Recherches au F.N.R.S. de Belgique. 
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On the Preoscillatory Period of the Belousov-Zhabotinsky Reaction: 
A Search for Intermediates 

Maria Burger and Krisztina R1icz 
Institute of Inorganic and Analytical Chemistry 
L. Eotvos University 
Budapest, Hungary 

In the Belousov-Zhabotinsky systems, where the catalytic oxidative bromination of 
malonic acid IMA] takes place with bromate, oscillations start only after a pre
oscillatory period. Intermediates formed dUring this part of the reaction initiate 
the transition from the non-oscillatory to the oscillatory state of the system. 

Our previous results concerning the investigation of the preoscillatatory 
period have shown that the bromomalonic acid [BrMA] concentration grows during this 
time and reaches a crucial concentration value [BrMA]cru at the onset of the oscil
lation. Having determined the [BrMA]cru values in the MA-bromate-manganese-nitric 
acid [5M] syste, in order to c.larify whether BrMA alone was responsible for the 
start of the oscillation or other organic intermediates played also an important 
role, the effect of the BrMA addition on th~ preoscillatory period was studied. 

The addition of BrMA to the reaction mixture shortens the preoscillatory period, 
but oscillation does not start when [BrMA] added is equal to [BrMA]cru. Generally, 
the value of the [BrMA] added has to exceed the crucial value to get prompt oscil
lation. However, the preoscillatory period always disappears when the reaction mix
ture contains about 0.001 M glyoxylic acid [GOA] or oxalic acid [OA] beside the 
crucial Brt-lA concentr.ation. It should be noted that at this low concentration 
neither GOA alone nor OA alone show an oscillating character with bromate and man
ganese. 

The 1 iterature data do not rule out the formation of GOA and OA during the pre
oscillatory period. OA reacts with manganese [III] very quickly, probably it can not 
accumulate in detectable concentration. The rate of the GOA-manganese [III] reac
tion is slower than that of OA, therefore GOA can be present in the reacting system. 

By devising an analytical method, GOA was dete~ined during the preoscillatory 
period of the MA-bromate;nanganese-nitric acid [5M] system in the order of O.OOOlM 
concentration range. Its concentration showed a maximum during the preoscillatory 
period, a typical behaviour of intermediates. 

Our results show that during the preoscillatory period, another reaction besides 
the BrMA accumulation takes place too: Brt~A reduces the catalyst. In this reaction 
intermediates are formed which react with manganese [III] faster than BrMA, and 
these compounds are important in the initiation of the oscillation. If we add BrMA 
to the reacting system, then a certain time has to elapse to produce these inter
mediates. Probably this is the reason why oscillation does not start adding the 
[BrMA]cru to the reaction mixture. 
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Non-Equilibrium Phase Transition of the Intercalation Process 
T. Sutz and A. HUbler 
Physik-Department, Technische Universitat MUnchen, 
0-8046 Garching, Fed. Rep. of Germany 
and 
A. Lerf 
Zentralinstitut fUr Tieftemperaturforschung der Sayerischen Akademie der Wissenschaften, 
D-8046 Garching, Fed. Rep. of Germany 

We have observed a non-equilibrium phase transition during the process of electro
chemical lithium intercalation into 2H-TaS2' the prism surface current d~nsity being 
the control parameter. Information on the Tithium distribution was obtained via the 
observation of the Ta nuclear quadrupole interaction by means of time differential 
perturbed angular correlations. The electric field gradient at the Ta nucleus was 
found to depend very sensitively on the lit~ium concentration [1]. 

For a surface current density j~50 ~A/cm the intercalation proceeds as follows. 
In pristine 2H-TaS2 a threshold lithium concentration of x=0.22 is required to force 
the phase boundary empty/intercalated lattice to propagate towards the crystal cen
ter (ashtray thickness profile). When this phase boundary reached the center, the 
average ~.33, and further intercal~tion proceeds via a continous and homogenous 
filling up of empty lattice sites (single ph~se). 

For a surface current density j~175 ~A/cm the intercalation proceeds in a dif
ferent way: superimposed onto the Tow concentrated phase (x=0.22 to 0.33) new phases 
with limiting concentrations x=0.67 and x=1 build up (coexistence of up to three 
phases). The x=0.33 and x=0.67 phases disappear as the average x approaches unity. 
This behaviour is quite analogous to the chemical intercalation via n-bu~~llithium, 
where the initial surface current density is calculated to be j=200 ~A/cm [1]. We 
thus estimate the critical surface current density to be jcritical=100 ~A/cm2. 

~ 
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Llx TaS2 80 -140 JA ; 

,,- 0 ,,-0 

! o~~~~~--"~-"""""", 
... 1·.16 ,,-.oe". ! J - 25,aA1an2 J- 175)&A1Cm2 

o~~~~~~~~~~~ 
o 0 2 

FREQUENCY 61 [M RadI8ec:] 

Fig.l. Nuclear quadrupole frequencies ob
served during lithiation of 2H-TaS2' 
(Left) Low surface current density yields 
two phases until x=0.33, then single phase. 
(Right) High current density yields up to 
three coexisting phases 

Reference: 1. R. MUhlberger, T. Sutz, A.Lerf: Physica 105S, 218 (1981) 
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Pseudo-Steady States in Solid-Liquid Systems 

M. Cournil, P. Galtier, and F. Conrad 
Ecole Nationale Superieure des Mines, 158, Cours Fauriel 
F-42023 Saint-Etienne, France 

The behaviour of a closed system consisting of a solid phase with uniform 
granulometry and its aqueous solution is described by three equations 

- a condition expressing thermodynamical equilibrium 
- a stability - or self-evolution - condition for the system 
- the mass balance. 

Where as for an open system every equilibrium state is unstable, we show 
that our closed system may meet two equilibrium states during its evolution 
an unstable one corresponding to VOLLMER's critical nucleus and a stable one. 

The hydration mechanism of a solid-like plaster involves a dissolution step 
(for the anhydrous) and a nucleation-growth step (for the hydrate). Experiment 
e~tablishes that as soon as water comes into contact with plaster, the 
concentration of the solution first increases rapidly to some value which is 
kept constant for a certain time, then decreases to reach the equilibrium value 
of the hydrate. 

It is possible to describe quantitatively the kinetics of the different 
stages ; nucleation is genuinely nonlinear, dissolution and growth of the 
grains are autocatalytic. The evolution of the system has been predicted by 
computer ; we notice that the supersaturated state is a pseudo-stationary 
one. It seems that tHe end of this state is not only determined by the 
exhaustion of the plaster. 

It will be important, for applications, to get a good understanding of the 
status of the pseudo-stationary states. In particular they govern the setting 
of some solids like plasters and cements. 
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A + 2B = 3B Kinetics Producing all of Flip or None Stimulus 
Response in a Cell Model, and Strategies for a Chemical 
Implementation of such Kinetics 
Peter Decker and Oemer Saygin 
Chemical Institute, Veterinary School 
0-3000 Hannover, Fed. Rep. of Germany 

Autocatalysis second order in products, A+2B=3B (ASOP), the 
nonlinear reaction in the classical Brusselator model, may cause 
nontrivial behaviour in open systems: oscillations, morphogene
sis (1) or the production of optically active compounds (2). 

A cell model with A50P, a first order shunt A ~ B and diffu
sion of A and B through a cell membrane (mathematically equiva
lent to a stirred reactor with inflow and overflow of A and B) 
can exhibit up to three steady states. Among the phase topolo
gies of such systems we found a remarkable model of an excitable 
cell exhibiting a novel "all or flip or none" stimulus response. 
Depending on stimulus size we have three response qualities: i. 
spiking;oii. switching into another state; and iii. no response. 

A 

Fig.1 Phase portrait of a cell 
model with bimodal stimulus res
ponse to a sudden input of the 
product B: input a causes spiking 
around state 53' b produces swit
ching into 53' c produces no reac
tion. d returns the system from 
state 53 back to 51 (3) 

5ince in real nonlinear systems chemical analysis represents a 
bottleneck, there is a need for a chemical i'mplementation of the 
so far unknown class of simple A50P reactions. Weak octahedral 
complexes where MeXB2 or MeAB 2 catalyzes the formation of B from 
A should afford Michaelis-Menten-like approximate A50P kinetics, 
a challenging goal for researchers in the vast field of metal 
ion cat:alysis(4) 

Me + A + 2B ~ MeAB2~ MeB 3 ;==! Me + 3B 

1) Decker, P., (1979), Ann. New York Acad. 5ci. 316, 236. 
2) Decker, P., (1979), In: D.C.Walker Ed., Originsof Optical 

Activity in Nature, pp. 109-124, Elsevier, Amsterdam. 
3) Decker, P. a,nd 5aygin, Oe., (1979), Z.Naturforsch. 34c, 649. 
4) Decker, P., (1975), Origins of Life .§., 211. --
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Topological Order in 2D Chemical Systems 

G. Dewe1*, D. Wa1graef*, and P. Borckmans* 
Facu1te des Sciences de Universite Libre de Bruxe11es 
Campus Plaine, C.P. 231 
B-1050 Bruxe11es 

Depending on the val ues of the external constraints, the "Brus
sel ator" non1 i near chemical prototype (11 exhibits either a tran
sition to chemical oscillations (HOPF bifurcation) or to spatial 
patterns (TURING bifurcation). These instabilities are characteri
zed by the spontaneous breakdown of a continuous symmetry, respec
tively that of phase or translation and rotation. Near those insta
bilities the behaviour of the system is dominated by its slow mode 
dynamics that leads to a TDGL description which is used to analyze 
the fluctuations in analogy with equilibrium phase transitions [2]. 

In both cases, for large 2d systems (thin layers), the strong 
phase fluctuations preclude the existen~e of long range order. The 
systems therefore exhibit power law decay (quasi-long-range order) 
of the correlations of the order parameter and are characterized by 
the presence of pairs of topological (phase) excitations,the unbin
ding of which mediate the instabilities leading to short-range or
der [3) • 

Above the HOPF bifurcation, the system therefore desynchronises 
spontaneously creating excitations such as target patterns or pair 
of Archimedian spirals. The characteristics of these spatio-tempo
ral structures and their statistics are found to be different and 
present strong analogies with the observations (4) • 

. The spatial patterns ariSing at Turin!1.'s instability also spon
taneously develop topological defects [Sj (dislocations, disclina
tions, ••• ) of which the dynamics may be invoked to explain not only 
the Turing bifurcation but al so the fusion of these structures at 
higher amplitudes first by formation of grain boundaries and crys
tallites and thereafter the melting of the crystallites themselves 
in analogy with certain instabilities in liquid crystals [6] ~ 

References : 

1. G. Nicolis, 1. Prigogine : Self-Organization in Nonequilibrium 
Systems (Wi 1 ey, New York, 19771. 

2. D. Walgraef, G. Dewel and P. Borckmans : Adv. in Chem. Phys. 
to appear 198!. 

3. J.K. Kosterlitz, D. Thouless, J. Phys. C.6, 1181 (1973). 
4. A.T. Winfree: Science 175, 634 (1972).---

M.L. Smoes : Dynamics o:r-Synergetic Systems, ed. by H. Haken 
(Springer, Berlin, Heidelberg, New York, 1980), page 80. 

5. G. Dewel, 0. Walgraef and P. Borckmans : J. Physique-Lett. ~, 
L-361 (1981). 

6. E. Guazzelli, E. Guyon: C.R. Hebd. Sean. Acad. Sci. 292 II, 
141 (1981). 

* Chercheur Qualifie F.N.R.S. 

257 



Birfurcation of Multiple Limit Cycles in 
Plane Quadmtic Mass-Action Systems 

c. Escher 
Institut fUr Theoretische Physik, Technische Hochschule Aachen 
D-5100 Aachen, Fed. Rep. of Germany 

1. Models Under Consideration 

We consider homogeneous open two-variable mass-action systems with 
quadratic rate equations: 

y 

If these equations are to account for elementary processes between 
particle or species - as is the case in chemistry, biochemistry, ecol
ogy and £emiconductors - it is necessary that 

a3 , as' a6 , b 1 , b4 , b6~O 

2. Questions to be Answered 

We ~aise the question if these simple nonlinear rate equations can ac
count for such a complex behaviour as bistability of two limit cycles 
or of a limit cycle and a stationary point. 

3. Method to Tackle the Problem1 

By the aid of nonlinear stability theory we show that it is indeed 
possible that up to three limit cycles appear from multiple foci 
in the considered models. 

4. Results 

We affirmatively answer the questions raised above and give some 
examples of chemical reaction systems with the desired properties. 
Two of them lead to reaction schemes and phase portraits (Poincare 
plots of the positive quadrant) shown below (Q [,-'.;] : stable 
[unstable] limit cycle). ..?' 

A+2X ~3X Y A+2X ~ 3X X 
X+Y ~2Y X+Y -- 2Y 

B ~X B+X --+ 2X 

C ~Y C -- X 

D ~ Y 
X )< 

1A detailed paper will appear in Chern. Phys. 
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Belousov-Zhabotinsky System: 
Mechanism of the Ce J+ /Bromate Reaction 

H.D. Forsterling, H.J. Lamberz, and H. Schreiber 
Fachbereich Physikalische Chemie, Universitat Marburg 
D-3550 Marburg, Fed. Rep. of Germany 

The overall reaction 

4Ce3+ + HBr03 + 4H+ • 

was analysed by studying the set of elementary reactions 

Ce3+ + Br0 2 + H+ • Ce4+ + • 
HBr02 + HBr03 • Br204 + .. 
Br204 • 

.. 2Br02 
2HBr02 HOBr + 
Ce4+ + Br02 + H2O • Ce3+ + 

Proof of formation of Br02: 

R1 

HBr02 R2 
H2O R3 

R4 
HBr03 R5 
HBr03 + H+ R6 

Reaction R3: a solution of NaBr02 in NaOH was injected into a solution of NaBr03 
in sulfuric acid. The formation of an intermediate was monitored spectroscopi
cally using the dual wavelength technique. The absorption spectrum of the inter
mediate was found to be identical with the Br02 spectrum. The same results were 
obtained for the reaction of Ce4+ with HBr02 (R2) and for the reaction of Ce3+ 
with HBr03 (R1, formation of Br02 in steps R2-R4). 

Proof of the stoichiometry of the reactions: 
By~decreasing the initial concentration of NaBr02 in R2, R3 and Ce3+ in R1 from 
10-3 m to 10-7 m, the yield of the reaction products (Ce3+ in R2, BrO in R3 and 
R1) was increased drastically and reached nearly the value predicted 2by stoichio
metry. In these experiments it is clearly to be seen that the competitive reaction 
R5 is playing a serious role at high HBr02 concentrations. 

Computer simulation of the overall reaction: 
On the basis of the results obtained in the case of the elementary reactions, new 
values of the rate constants for (R2) - (R6) were obtained. Computer simulations 
on the basis of these new rate constants are in good agreement with experimental 
results for the overall reaction R1. 

References: 
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H.D.Forsterling,H.J.Lamberz, H.Schreiber, Z.Naturforsch. 35a, 329 (1979); 
35a, 1354 (1 980) -
H.D.Forsterling, H.J.Lamberz, H.Schreiber, W.Zittlau, Acta Chimica Acad.Sc. 
Hungaricae, in press. 
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The Legitimacy of the Quasi-Steady State Approximation in 
Enzyme Kinetics: A Singolar Perturbation Approach 

G. Fritzsch and M.S. Seshadri 
Max-Planck-Institut fUr Biophysik. Kennedy-Allee 70 
0-6000 Frankfurt 70. Fed. Rep. of Germany 

Although the quasi-steady state hypothesis is frequently employed 
in enzyme kinetics, its legitimacy and domain of validity have not 
been properly defined. We address ourselves to this question in the 

context of one substrate - one enzyme sequential reactions. 

It is pOinted out that the existence of a well-defined quasi-steady 
state implies a small parameter (some function of the initial concen

trations and rate constants). The method of singular perturbation 
takes cognisance of the existence of two time scales in the evolution 
of the system. The transients are contained in the short-time de
scription. The system runs to the quasi-steady state after the 

transients die out. This treatment imposes weaker restrictions than 
those used in MICHAELIS-MENTEN kinetics. 

Incidentally, it turns out that in sequential reactions in a 
closed system (with neither autocatalysis nor feed-back regulation) , 
damped oscillations may occur about the quasi-steady state for a 
certain range of the parameters. 
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Nonlinear Phenomena in Stirred Flow Systems 
of Mn 2+ and Acidic Bromate 
w. Geiseler 
Institute of Technical Chemistry, Technical Universi~v 
0-1000 Berlin 12, Fed. Rep. of Germany 

The oxidation of Mn2+ ions by acidic bromate in the presence of bromide inhibitor 
was studied experimentally in isothermal flow systems (single and coupled CSTRs). The 
reaction is closely related to the oscillatory BELOUSOV-ZHABOTINSKII reaction [1] and 
exhibits peculiar nonlinear phenomena which were investigated in some detail. The 
set of experimental conditions used generally was,: [KBr03]0 = 0.002 M, [KBrlo = O.OOOOIM, 
[MnS04]0 = 0.00015 M, [H2S0410 = 1.5 M, ko = 0.004 s 1, T = 2 SoC. 

In a single CSTR two different locally stable steady states (SSI and SSII) could 
be attained for identical flow conditions (bistability). The concentrations of inter
mediate species differed considerably in each steady state. After a perturbation 
introduced to the CSTR in SSII by temporarily increasing the inflow concentration of 
the inhibitor, the system either returned to its previous steady state (SSII) orme-ved 
to the other one (SSI).. depending on how long the per.turbation persisted. The critical 
period of perturbation was measured for various enhanced inhibitor inflows. The data 
described a hyperbola-like curve which was found to be fitted reasonably well by a 
relationship analogous to BLAIR's law [2]. If any constraint (inflow concentration, 
residence time) was varied slowly within certain ranges while the others remained 
constant, the steady state once established followed a hysteresis curve. Such curves 
were observed for each input reactant and residence time. The hysteresis loop limits 
which define the region of bistability for a certain set of constraints were measured 
systematically. As a result we obtained some two-dimensional ~omains of bistability, 
which are quite similar to those of the cerous flow system [3]. Oscillations, although 
predicted recently [4], were not detected under the tested flow conditions. 

Inspired by the papers of SMALE [5] and TYSON [61 we coupled two identical CSTRs 
in series configuration in order to generate oscillations. However, instead of oscil
lations the system exhibited quite different behavior, namely switching phenomena 
and hysteresis effects. The different steady states which could be established in 
~he CSTRs were subject~d to increasing coupling (mixing the reactor contents by means 
of a pump) and to varying the inhibitor inflow concentration, respectively. The system 
either switched to two similar steady states (increasing the coupling) or followed 
two separate hysteresis loops, the limits of which collapsed for sufficiently large 
couplings (increasing the inhibitor inflow concentration). 

The observations and data reported here are quite similar to those of cerous flow 
systems [3,7], although some slight deviations were noticed. In spite of these minor 
deviations the data of the Mn2+ systems appear to be fitted reasonably well by the 
same model [3~7,8]. The' results add considerably to our confidence in the NfT mecha~ 
ni sm ["9 J checked here wi th MnZ+ as the weak one--£! 1 ectron reduci ng agent. 
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On Phase Transitions in Schlogl's Second Model 

P. Grassberger 
Phy~ics Department, University of Wuppertal, 
0-5600 Wuppertal, Fed. Rep. of Germany 

We study Schlagl 's second model, characterized by chemical reactions 

in d-dimensional space. The reactions are assumed to be local ; local fluctua
tions are fully taken into account, and particle transport occurs via diffusion. 

In contrast to previous investigations, we find no phase transition when 
k4 f 0 and d < 4. For k4 = 0, k3 f 0, and 1 ~ d < 4, we find a second-order 
phase transition which is in the same universality class as the transition in 
Schlagl's first model. Only for d ~ 4 we do find the first-order transition 
found also by previous authors. 

These claims are supported by extensive Monte Carlo calculations for various 
realizations of this process on discrete space-time lattices. 

262 



A Nonlinear Phenomenon of Chemical Dynamics in Geology: 
The Case of Skams 

Bernard Guy 
Department Geologie, Ecole des Mines 
F-42023 St. Etienne, Cedex, Fran~e 

In our poster, we wish to draw the attention of the chemists to certain transfor
mations met in geology. They are observed in the rocks called skarns: these are 
the result of the transformation of various rocks, particularly limestones, by the 
operation of aqueous fluids in strong disequilibrium with them. These waters perco
late through the mass of the rock that they progressively transform. They may ori
ginate from a granitic mass under crystallization and/or they may be waters moved 
by convection at the vicinity of a hot granitic intrusion. These phenomena occur at 
depths of 4-5 km or more, at temperatures of the magnitude 400-600oC and pressures 
of the magnitude 1-2 kh. The transformations may affect several m3 of rocks. Such 
rocks may be observed today (their formation having ended several millions years 
ago) thanks to orogenic movements and erosion. 

One of the conspicuous features of skarns is the frequent existence of zones 
of ABCD and so on which seem to indicate that the starting material was transformed 
by steps. Each zone is defined by a group of minerals (at centimetric or metric 
scale) and is separated from the adjacent zones (before and after) by sharps limits. 
More rarely, recurrent zonations constituted by "strata" ABAB and so on may be ob
served, also in the same context. 

We do not propose to achieve an analysis of these phenomena. Let us simply men
tion that several features of these transformations should be of interest to a con
ference such as the present one: 

- the chemical reactions are in competition with transport phenomena (convection 
and also diffusion). 

- these may produce components in competition with one another, and this start
ing from the affrontement of other components of composition maintained constant at 
the boundaries: the input fluid on one hand, the starting rock on the other • 

.. - the modeling, already classical among the geologists, proposed by the russian 
author Korzhinskii,makes a nonlinearity appear: it is responsible for the "shocks" 
or fronts which may be seen in these phenomena. The nonlinearity lies in the ex
change term between the fluid and the solid. 

It is not certain that this appraisal, which is based on the hypothesis of a 
chemical equilibrium between the solid and the fluid, may explain all the observed 
cases, and notably the recurrent alternations that one would be tempted to reappra
ise to the cQemical di~sipative structures. 
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The Prepattem Theory of Mitosis: 
Spatial Dissipative Structures in the 3-Dimensional Sphere 

Axel Hunding 
Institute for Chemistry, University of Copenhagen 
Raadmandsgade 71, DK-2200 Copenhagen N 

Spontaneous pattern formation in biology mav arise through bifurca
tions in nonlinear biochemical reaction-diffusion systems. Numerical 
simulations have been carried out for the 3-dimensional sphere, and 
primary and secondary bifurcations are studied. The algorithm is 470 
times faster than non-stiff methods, exploiting the sparseness and 
stiff structure of the equations. Series of patterns are obtained, 
and their change-over studied numerically and by analytical bifurca
tion theory to reveal the proper selection rules. The theoretical 
pattern series corresponds to previously experimentally recorded 
chromosome distributions in spindle-free nuclear division in certain 
protozoans. This is evidence that Turing structures do playa gover
ning role in biology. The proof is based on experimentally observed 
chromosome distributions of more than 1000 chromosomes, being confi
ned to a 3-dimensional form resembling a highly buckled circular 
plate not explainable by conventionai spindle-forces. The structure 
is identified as the null region of the pattern j1 Y10 + j2Y22 which 
shows up numerically. This pattern experimentally breaks up into two 
parallel 'horseshoes' with their openings in the same direction, and 
the same happens numerically. Among the stable patterns arising is 
the bipolar 'mitosis' prepattern j2Y20' also observed experimentally. 
Asymmetrically placed live chromosomes in trivalents (i.e. with 2 mi
crotubules toward one pole, and 1 to the other) are shown to be in 
force balance, if the 'mitosis' prepattern governs the spindle forces. 
Subsequently, a 'cytokinesis' prepattern j2Y20 + jo appears. The nu
merically recorded spatial dissipative structures should be an ideal 
series of prepatterns for the process of mitosis~ It is suggested 
that the evolutionary origin of the governing principles in mitosis 
was such prepatterns, later to be supplemented by centriolar struc
tures. 
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Mechanistric Study of the Briggs-Rauscher Reaction 

Patrick De Kepper and Irving R. Epstein 
Department of Chemistry, Brandeis University 
Waltham, MA 02254, USA 

~e Briggs-Rauscher reaction involving iodate, hydrogen peroxide, 
malonic acid and Mn(II) in acid solution exhibits bistability and 
oscillation in a CSTR as well as batch oscillation. We have devel
oped a mechanism for this reaction which reproduces these and other 
dynamic features. Astonishingly, our model is qualitatively identi
cal to, though quantitatively different from, that derived indepen
dently by NOYES and FURROW [1). 

In Fig. 1, we show that the model is in excellent qualitative 
agreement with the observed "cross-shaped phase diagram" [2) in which 
bi~tability and oscillations appear as the flows of IO; and I2 into 
the reactor are varied. ~e observed steady state iodine concentra
tion undergoes hysteresis with "inverse regulation" as a function of 
I2 flow, jumping from a high to a low iodine state as [I 2 )0 is in
creased [2). ~e model predicts this surprising behavior as well as 
the batch oscillations and the experimentally observed increase in 
the period of oscillation when parameters corresponding to methyl
malonic acid are employed. ~ese results suggest that the scheme 
does indeed account for the kinetic skeleton of the reaction. 

~is work was supported by NSF Grant CHE 7905911. 
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Fig. 1. Experimental (----) 
and calculated (---) "cross
shaped phase diagram" in the 
[IO;Jo-[I 2 J O constraint space. 
[H 2 0 2 ]0 = 3.3 M, [MA)o = 
0.0015 M, [H+)o 0.056 M, 
[Mn+2J = 0.004 M, residence 
time 156 s. 
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Multiwavelength Analysis of Linear and 
Nonlinear Kinetics in the CSTR 

H. Lachmann 

Institut fUr Physikalische Chemie der Universitat WUrzburg, MarcusstraBe 9-11 
D-8700 WUrzburg, Fed. Rep. of Germany 

By measuring the reaction spectra (i.e. the time-dependent spectra 
A(A)t t t of a reaction mixture) and/or the absorbance-

1,2, ••• , m 
time curves A~t)A1 Al Anat several selected wavelengths, it is 
possible to get mo~e ~pecific information about a chemical reac
tion system than by analyzing a single progress curve. 
First of all the number of linear independent reaction steps is 
determined by graphical matrix rank analysis (A-, AD-, ADQ-dia
grams) [1-4]. 
Subsequently, a number of new evaluation methods are used for 
kinetic analysis. In contrast to other methods, absorbance-time 
curves at different wavelengths are combined for evaluation. Ini
tial concentrations, A.-values, molar absorptivities,etc. do not 
need to be known [2-6]. Therefore the whole reaction system can be 
analyzed with high precision and significance. 
AlL these methods, which have been developed originally for closed 
reaction systems, may be extended to open systems, too. They may 
be applied to different spectroscopic techniques, if there exists 
an equation corresponding to Beer-Lambert's law (for example in 
VIS-UV absorption and fluorescence; CD, ORD, IR spectrometry),. 
The advantages of these new methods are demonstrated by some bio
organic reaction systems in ,the continuous stirred tank reactor 
(CSTR) and by the autocatalytic conversion of trypsinogen to 
trypSin, which is a first realistic example of "critical slowing 
down" in the CSTR [7]. 
The application of multiwavelength analysis to chemical oscilla
tions is discussed. 
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Inhomogeneous Fluctuations and Bifurcations in 
Nonlinear Chemical Systems 

H. Lema rchan d 
Laboratoire de Chimie GE!nerale, Universite Pierre et Marie Curie 
75 230 Paris Cedex 05, France and 
G. Nicolis 
Faculte des Science de 1 'Universite Libre de Bruxelles 
C.P. 226 1050 Bruxelles, Belgique 

Nonlinear systems far from eqUilibrium undergo a variety of bifur
cations leading to multiple steady states, limit cycles, space struc
tUres, or propagating waves. The understanding of these transition 
phenomena necessitates the explicit consideration of thermodynamic 
fluctuations. At present, fluctuations are studied primarily at the 
stochastic level and the approaches used are the ~a~te~ equation and 
the Langevin equation. The latter is motivated by the analogies between 
nonequilibfium bifurcat,ions and equilibrium critical phenomena. As we 
do not wish to take such analogies for granted, but rather deduce them 
from the analysis, we here adopt the Master Equation approach. 

For a reaction-diffusion system this equation has the form [1,21: 
d 
dt P({Xir};t) = L LchCd P + L LdCr,g) P . (1) 

- r rl 
The chemical operator LC'h and the-diffusion operator Ld are both exten
sive,i.e. proportional to the volume V of each cell within our macro
scopic system. Most of the methods of solution of (1) are based on this 
property-. We may mention VAN KAMPEN's expansion [3J, the cumulant 
method (4J, the KUBO-MATSUO-KITAHARA method [5], and the singular 
perturbation method of NICOLlS, MALEK-MANSOUR and TURNER [2,6] , 

In the present communication we extend the KUBO-MATSUO-KITAHARA me
thod to systems involving inhomogeneous fluctuations. We set 

P ~ exp (V U) (2) 
and develop U around an extremum. By solving the equations for the ex
pansion coefficients we find an explicit representation of the statio
'nary probability distrubution in the following situations [8]: 
(i) One variable systems near a cusp bifurcation. For a cubic nonline
arity we recover previou~ results displaying the exponential o~ the 
LANDAU-GINZBURG functional [2,7J. 
(ii) Multivariable systems near a bifurcation leading to steady state 
spatial dissipative structures. We show that, in general, the "stocha
stic potential" U has cubic terms in the deviation from the extremum. 

Some comments on the structure of P in the region of multiple solu
tions (9J are finally presented. 
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Temperature-Compensated Epigenetic Oscillations: 
Timing of Cell Division Cycles and Circadian Rhythms? 

David Lloyd and Steven W. Edwards 
Department of Microbiology, University College 
Newport Road, Cardiff, Wales, UK 

An extensive literature describes biological oscil lations with periods of the order 
of minutes {metabolic oscillations} or of about a day {circadian oscillations}. 
The former have no well-establ ished functi~n and may simply represent an inevitable 
consequence of feedback control in an open system. The latter are of paramount 
importance in all eukaryotes for accurate timekeeping. It is widely bel ieved that 
long period circadian oscillations must be derived from a high frequency rhythm; 
no metabolic oscillation that has been tested fulfils the criterion of temperature
compensated frequency. We have observed another class of oscillators in 
Acanthamoeba cast!,llanii, and in several other protozoa. These have a period of 
about I h, and are thus in the epigenetic time domain. Respiration and adenine 
nucleotide pools show these oscillations, but the fundamental oscillator appears to 
be in a transcriptional or translational feedback loop. Thus total cellular 
protein and RNA contents oscillate and these systems slave the system of mito
chondrial energy supply. The coupled oscillators are revealed in synchronous 
cultures establ ished by a method which causes no measurable perturbation. Lowering 
the temperature from 300 to 200 increases the cell cycle time from 8 to 16 h, but 
does not influence the period of the rhythm. I t is suggested .that these epigenetic 
oscillations may serve the dual role of cell cycle and circadian timekeeping 
(Fig. 1). 

U!tGENETlC LIMIT CYCLE 
(p~th) 

Fig.1. Epigenetic-cell division cycle-circadian interaction in A. castellanii: 
a hy~othetical scheme. An epigenetic oscillator with a period of-approximately 
I h IS temperature compensated. Frequency reduction by an unknown mechanism 
generates quantized cell division cycle times which may have values between 8 h 
{under optimal growth conditions} and the circadian value. 
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Chaotic Behavior of E.H.D. Instability for an Insulating Liquid 
Subjected to Unipolar Injection 

B. Malraison and P. Atten 

C.N.R.S. Laboratoire d'Electrostatique - 166 X 
F-38042 Grenoble, Cedex 

A plane layer of an insulating liquid is subjected to strong injection of ions from 
one of the electrodes. The bulk Coulomb force due to the space charge plays a de
stabilizing role balanced by viscosity; thus an electrohydrodynamical instability 
appears above a critical voltage. Despite the analogy with the Rayleigh-Bernard 
problem, this instability exhibits particular features, such as the nature of the 
transport mechanism (ion migration and not diffusion), the existence of two in
stability criteria (linear and not linear, associated with an hysteresis loop, and 
the three-dimensional pattern of hexagonal convective cells (1). 

Transition to chaotic regime of motion in this system has been investigated 
through the study of the fluctuations of the total current induced by the time-de
pendant convection. The onset of unsteady convection coincides with the instability 
threshold. There are different routes leading to chaos which depend mainly on the 
aspect ratio r (i. e., successively periodi c. bi periodic and chaotic for small r, 
always chaotic for large r); in all cases a fundamental oscillation mechanism can 
be recognized with a frequency fl varying with U as the mean quadratic velocity of 
the liquid (2). 

We examine the characteristics of power law spectra of current fluctuations in 
the chaotic regime. We can distinguish two regimes of motion, one dominated by vis
cous effect (U < UT)' the other by inertial effect (U > UT). In the viscous domain 
the spectra beyond the oscillation peak exhibit an exponential decayexp(-f/fc) 
with a characteristic frequency fc ~ 0.6 f1 (3), 

In the inertial regime this exponential decay is observed only in a frequency 
interval of relative width decreasing as U is increased. In the high frequency part 
of the spectra a power law is obtained with an exponent in the range 6 to 8. As 
$uggested by a recent theory (4) the exponential decay may be related to intermit
tency phenomena which has been observed in the viscous regime. 
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Effect of Light Intensity Fluctuations on a Real Photochemical 
Reaction: The Thermoluminescence of Fluorescein in Boric Acid Glass 

J.C. Micheau, W. Horsthemke and R. Lefever 
Chimie Physique II - Campus Plaine C.P. 231 
Universite Libre de Bruxe11es 
B-1050 Bruxe11es 

The thermoluminescence of fluorescein in boric acid glass is a photoche
mical biphotonic reaction. Its non1 inear behaviour against incident light inten
sity has allowed us to approach an experimental investigation of light intensity 
fluctuations using a well-known real system. For this purpose an optical noise 
generator delivering a quasi-gaussian real noise was put into shape. 

The steady state values of thermoluminescence are sensitive to light in
tensity fluctuations : 

1 - even if the overall light dose was kept stri~k1y constant and, 
2 - even in the limit where the noise is rapid as compared with the 

relaxation time of the system (~cor« gmacro)' fluctuations are able to deeply 
modify the yield of the photochemlca1 process. Particularly, the saturation into 
the energy-rich species (i.e. photoionized dye) is reached for lower mean light 
intensities. 

This phenomenon corresponds to a significant bias between deterministic 
and fluctuating steady state values as illustrated in Figure 1 . 
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Fig. 1 - Experimental relative bias between deterministic (full line) 
and fluctuating (dotted line) steaqy state values of 
thermoluminescence as a function of mean light intensity 

The nature of such bias is fully consistent with our previous theore
tical predictions. 
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Bifurcation Theoretic Approach for Strong Field 
Photodissociation Phenomenon 

N.K. Rahman 

Istituto di Chimica Quantestica ED Engergetica Molecolare Del C.N.R. 
Via Risorgimento 35, 1-56100 Pisa and 
Service de Physique des Atomes et des Surfaces, CEN/SACLAY 
F-91191 Gif-sur-Yvette, Cedex 

Photodissociation problems of molecules are usually limited to the linear regime of 
the coupling constant which arises from the coupling of the electromagnetic field 
to the transition dipole moment of the molecule between the relevant electronic 
states. When the electromagnetic field is strong (high powered lasers), it is pos
sible to encounter the situation where the exponential depopulation of the discrete 
state is replaced by a generalized Rabi-like oscillation. Another way of looking 
at this physical situation is to regard this as a "return from the continuum:." We 
shall see, in what follows, that the process lies in the realm of bifurcation theory. 

Consider a discreteostate Ii> coupled to the continuum la,E>, where a is the set 
of quantum numbers needed to describe the continuum and E 1S the energy. Let the 
total Hamiltonian be H = HO + AV and the coupling matrix element v(a,E) = <iIVla,E>. 
Then, the amplitude of the evolution of the state Ii> is given by 

Ui(t) = lim f dE eiEt[Gi(E + ie) - Gi(E - ie)] 
g-o() 

with 
1 Gi(E)-e 2 

E - E. - A2 f IV(a,E')1 dadE' 
1 E - E' 

The functi.on 

F(E) = lim [Gi(E + ie) - Gi(E - ie)] 
e...o 

is real, and since the Fourier transform of this function determines the time evo
lution, it behooves one to examine this function. Under quite relaxed conditions 
on v(a,E), the maxima of F(E) show qualitative changes of behaviour with increase 
of A. It is seen that normally, (a) for weak A, F(E) has a single maximum; (b) for 
critical A = AC' a maximum appears at negative energy; (c) for above this critical 
value and beyond certain particular value AD, three extrema arise, two of which are 
maxima, while one is a minimum [1,2]. 

It is qui~ easy to see that for a large class of functions IV(a,E)1 2, this qua
l itative change of behaviour is best described by the bifurcation theory-. This al
lows one a deeper analysis of the dissociation phenomena than the usual one, and 
at the same time, permits the description with a small number of parameters (in
stead of the knowledge of in general complex valued function over a semiinfinite 
domain of energy, which is usually not available). 

Recent developments on imperfect bifurcations appear to offer further assistance 
in this regard [3]. 
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A Linear Method to Analyze a Nonlinear Oscillator: 
Drbing the Glycolytic Oscillator by Sinusoidal Temperature Cycles 

K. Rinast, R. Heringer, R. Joerres, T. Kreuels, W. Martin, K. Brinkmann 
Botanisches Institut der Universitat Bonn, Kirschallee 1, 
0-5300 Bonn, Fed. Rep. of Germany 

The well-known glycolytic oscillator has been investigated with respect to temper
ature responses. The examination of the NADH oscillations driven by sinusoidal 
temperature cycles should give new aspects for a more general system description 
and improve existing models. 

Fluorescence signals and temperature were recorded on tape punch from 40-ml 
yeast suspensions kept under temperature program by means of Peltier elements. 
Amplitude and phase of the signals were calculated using the program system TIMESDIA 
(W. MARTIN, 1977) which includes spectral analysis, calculation of average signals 
and complex demodulation. The fluorescence signals must be corrected by the tem
perature dependenc'e of the NADH fl uorescence, whi ch can be done by means of a mul
tiplicative model. 

Typical runs are partitioned into three sections sequential in time: A) Anaerobic 
glycolysis without substrate, B) Oscillating glycolysis induced by adding excess of 
substrate and C) Stationary non-oscillating glycolysis. The behaviour of the sys
tem in these three sections is examined under driving temperature cycles. 

The temperature responses differ drastically in part Band C. Part B responded 
with an unstable amplitude and phase, indicating a complex interaction of the tem
perature cycle with the temperature-dependent eigenfrequency of the system. In 
Part C synchronous oscillations of the fluorescence are seen with stable amplitudes 
and phases, which both depend on the frequency of the driving temperature cycle. 
Some preliminary data are presented towards a BODE diagram. 

ReleaSing the system from the driving temperature cycle in part B causes the 
oscillation to switch back to its eigenfrequency and normal damping behaviour. 
After releasing in part C however, the oscillation will stop immediately suggest
ing different internal states of the glycolysis in part Band C. 

Reference 

W. Martin, U. Kipry, K. Brinkmann: TIMESDIA - ein interaktives System zur Analyse 
periodischer Zeitreihen. EDV in Medizin und Biologie 8, 90-96 (1977) 

272 



Bursting Phenomena in the Belousov-Zhabotinsky Reaction 

John Rinzel 
National Institutes of Health, Bethesda, MD 20205, USA 
and 
Will iam C. Troy 
University of Pittsburgh, Pittsburgh, PA 15260, USA 

We [1] have investigated a model for the Belousov-Zhabotinskii reaction in a con
tinuous flow, stirred tank reactor. The model consists of a system of three ordi
nary differential equations derived from a more complicated five-variable, Orego
nator [2] model proposed by JANZ, VANECEK, and FIELD [3]. Over an appropriate range 
of physical parameters (e.g., lower flow rates) the system exhibits bursts of os
cillations. As in some experiments (e.g., MAREK and S~OBODOVA [4]), the observer 
sees several spikes followed by an interval of quiescence (IQ) which is subsequently 
foll owed by a resumption of the spi kes, etc. The bursti ng phenomenon results from 
a hysteresis loop in which the solution alternates between a stable periodic so
lution, during the oscillatory phase, and a stable steady state of low oxidation, 
during the IQ, of a two-variable batch-reactor sub-system. This bistable behavior 
is due to a subcritical Hopf bifurcation (hard-oscillation) in the two variable 
system. We have estimated analytically the IQ duration and its dependence on par
ameter values. For other parameter ranges we find qualitatively different bursting 
phenomena. In one example the CSTR system is excitable"; there is a stable steady 
state and the response to an adequate perturbation is an excitation burst of several 
pulses and then a return to the steady state. At considerably higher flow rates, 
there are repetitive, single-spike bursts with lQ's of high oxidation; such pat
terns resemble those calculated by SCHOWALTER, NOYES, and BAR-ELI [5] and observed 
experimentally by SCHMITZ, GRAZIANI, and HUDSON [6]. 
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Experimental Investigations and Model Simulations for Studying the 
Influence of Noise and External Disturbances on the Behavior of the 
Belousov-Zhabotinsky Reaction 

P. Graae Sprensen 
Department of Chemistry, H.C. ~rsted Institute 
University of Copenhagen, Universitetsp~rken 5 
DK-2100 Copenhagen 

Abstract 

The homogeneity of concentration variations for the 
Belousov-Zhabotinskii (BZ) reaction in a CSTR has been investigated 
by simUltaneous measurements of light absorbtion at two different 
positions in the cell. By varying the distance between the examined 
volumes and the propeller, information about the spatial coherence 
properties of the reaction can be obtained. 

The results are compared with numeric integrations of an 
Oregonator based model for the BZ reaction. The model use 5 
variables and show burst oscillations which agree with the 
experim~ntal bifurcation pattern, when the total flow rate is used 
as bifurcation parameter. To simUlate the behavior of stirred 
systems the model has been integrated with random perturbations of 
the rate constants. Results from perturbation free behavior is 
compared with the beh.avior at two different perturbation levels. 
Fig(1) show the variations in the concentration of bromo-malonic 
acid during burst oscillations in a typical run with initial 
concentration zero. 
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Fig(1) Variations in the concentration of bromo-malonic acid. 
Time unit 1 sec. 
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Linearization Procedure and Nonlinear Systems of DitJerential and 
DitJerence Equations 

W.-H. Steeb 
Universitat Paderborn, Theoretische Physik 
0-7490 Paderborn, Fed. Rep. of Germany 

Carleman [11 showed that an autonomous finite dimensional nonlinear system of 
differentia' equations x=f(x) can be embedded into an infinite linear system of 
differential equations, where the f. are polynomial in x. Recently, several 
authors fi2-7] have taken up this id~a and solved nonlinear differential equations 
within this approach. Steeb and Wilhelm [4] have written the original system 
with the help of the Kronecker product Bas: x=Ax+B(XBX)+ .. +Z(XBXB ... BX), 
where A,B, .. ,Z are matrices with constant coefficients. They calculated the time 
evolution of XBX, XBXBX and so on and obtained an infinite system with simple 
block structure, whereas the infinite system obtained from Carleman linearization 
has no simple block structure and must be rearranged before this can be obtained. 
The infinite system can easily be expressed with the help of Bose operators. 
The infinite system and the finite system are not equivalent, because the infinite 
system admits solution.s which are not solutions of the finite system. However, if 
we restrict ourselves to analytical solutions, then the two approaches are 
equivalent. When we solve the infinite system by Laplace transformation or an 
exponential ansatz,we are forced to consider carefully the problem of convergence. 
When we cut off the infinite system at some finite dimension,we do not, in general, 
find a good approximation, in particular for large times. However, when the 
original system admits only asymtotically stable s~ationary solutions,such an 
approximation can be carried out. Recently, Steeb L7] applied the approach to non
linear difference equations. The solution of the logistic equation 
x(t+1)=ax(t)(1-x(t» (t=1,2, .. ) for a=4 can be determined. The ansatz 
Xn(t):=(x(t»n leads to the linear infinite system 

n 
xn(t+1) = an L( -1{ (~)Xn+r(t) 

r=O \ 

The solution x1(t)=x(t) is given by x(t)=1/2-1/2coS(2tarccos(1-2xo» (white noise 
behaviour) • 
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3. E. Montroll and R. Helleman, AlP Conf. Proc. 27 (1976) 75. 
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Reversible and Non-Reversible Modifications of Enzyme Systems 
Activity by Electric Fields 

J.M. Valleton, E. Selegny, and J.C. Vincent 
Laboratory of Macromulecular Chemistry 
ERA 471, CNRS, F-76130 Mont-Saint-Aignan 

In the past,multiple steady states have been theoretically pointed out in enzyme 
diffusion-reaction systems [1 ][2]. In particular, the existence of two stable steady 
states leads to hysteresis phenomena,experimentally observed with urease and uricase 
[3],for example.The introduction of imposed electric fields in these multiple steady 
states systems was first applied theoretically and experimentally to kinetics with 
inhibition by an excess of an ionic substrate' [4]. 

An analytical treatment,supported by a convenient graphical interpretation was 
carried out by defining a unidimensional compartmented model (the chemical reaction 
is limited to ~ central cell separated from two reservoirs by electrically and che
mically inert films). Assuming the presence 'of a high concentration of electrolyte, 
the electric field E,perpendicular to the films,was considered constant.Calculations 
led to the fundamental equation: 

A °=2 (so-so)/ljJ • 
A is the substrate dependence of the enzyme activity (here A is the only parameter 
of the activity) and 1jJ is the dimensionless transport-reaction parameter: 

ljJ=cr/ (e/l+ I Zl; I /2) , 
where cr is the diffusion-reaction parameter [5] modulated by the electrical parame
ter I; [6] which is proportional to the electric field. Superscript ° corresponds to 
steady state values and subscript ° to boundary values of a variable. 

Five typical solutions A ° (E) of the fundamental equation exist : three correspond 
to continuous variations of enzyme activity: activation ,deactivation and activation 
followed by deactivation,and two correspond to discontinuous phenomena: hysteresis 
and electrically non-reversible modifications of activity.The activity surface 
AO(so,E) is a typical "fronce" catastrophe surface. The projection of this surface 
on the (so,E) plane corresponds to a cusp, which can also be obtained by a linear 
analysis of stability. A similar (analytical and graphical) treatmen~ can Qe applied 
to reactions inducing pH changes, by the use of a symbolic species: (H ) - (OH ) D /~ • 

The case of electrically non-reversible modifications of activity,experimeH~alty 
observed with uricase, can be considered as a binary memorization of information 
(the eleGtric field itself). This memory is protected from any new electrical action 
but it is,however,possible to erase it by chemical potential variations on the boun
daries. We can also point out that an electrically non-reversible modification of 
activity is possible with a bienzyme system,leading,with adequate assumptions,to an 
active transport induction from a global'zero activity system. 
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A Dynamic Regime with Structured Fourier Spectrum 

C. Vidal and A. Rossi 
Centre de Recherches Paul Pascal 
F-33405 Talence 

The Belousov-Zhabotinsky reaction carried out in a CSTR is well known to display 
different kinds of dynamic regimes (for a review, see in this volume the paper 
titled "ChermeaZ kine ties as an experimentaZ fieZd for studying the onset of 
turbuZenee", by C. VIDAL). With the following set of experimental conditions: 

[CHZ(COOH)Z]O = 0.33 mole I-I [ce Z (S04)3]0 = 0.00025 mole I-I 

[Na Br0 3]0 = 0.036 mole 1-1 [Hz S04]0 = 1.5 mole I-I 

we have observed three dynamic regimes, depending on the flow rate at which the 
CSTR is fed with reagents. Two of them are periodic, but the third one exhibits a 
Fourier spectrum whose shape is very peculiar. Three sets of well-ordered peaks 
appear in this spectrum, depending on the frequency resolution of the plot PSD 
versus frequency, as shown in Fig.l. Although a parallel may be drawn with some 
theoretical predictions made in the field of solid state physics [IJ, the inter
pretation of our observation remains an open problem. 

1. S. Aubry, private communication 
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Fig.l Power spectral density (HZ-I, 
logarithmic scale) versus frequency 
(mHz). The abscissa of the black 
points are given by the relations : 
a) f. = 96. n n = 1, 2, 3 
b) f. = 19.5 + 13.5 n n = 0,.... 11 
c) f. = 3.6 n n = 1, ... , 12 
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